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Vol. 293, 2010

C-H Activation

Volume Editors: Jin-Quan Yu, Zhangjie Shi

Vol. 292, 2010

Asymmetric Organocatalysis

Volume Editor: Benjamin List

Vol. 291, 2010

Ionic Liquids

Volume Editor: Barbara Kirchner

Vol. 290, 2010

Orbitals in Chemistry

Volume Editor: Satoshi Inagaki

Vol. 289, 2009



Multiscale Molecular
Methods in Applied
Chemistry

Volume Editors: Barbara Kirchner � Jadran Vrabec

With Contributions by

R. Abrol � D. Bratko � C.D. Daub � L. Della Site � P.J. di Dio �
W.A. Goddard III � G. Guevara-Carrion � H. Hasse � C. Holm �
J. Hutter � A. Jaramillo-Botero � H.A. Karimi-Varzaneh � F.J. Keil �
B. Kirchner � A. Luzar � J. Mueller � F. Müller-Plathe � R. Nielsen �
T. Pascal � J.L. Rafferty � G.C. Schatz � M.R. Schure � J.I. Siepmann �
J. Su � J. Vrabec � N.F.A. van der Vegt � S. Yockel



Editors
Prof. Barbara Kirchner
Wilhelm-Ostwald Institute of Physical
and Theoretical Chemistry
University of Leipzig
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Preface

Driven by advances in simulation methodology and computer hardware, an increas-

ing spectrum of topics in applied chemistry is becoming accessible via the use of

computational methods. In recent years, multiscale molecular simulations of com-

plete and realistic processes have thereby emerged. This volume of Topics in
Current Chemistry focuses on molecular methods for large and complex systems,

such as technical chemical processes. It spans the spectrum from representative

methodological approaches containing static quantum chemical calculations, ab

initio molecular simulations, and traditional force field methods, to coarse-grained

simulations from a multiscale perspective. Each field of theoretical chemistry is

highly advanced, and although there is still room for further developments, these do

not seem as tremendous as ten years ago if only one scale is considered. Current

developments are often concerned with the refinement of old methods rather than

with introducing new ones. Because the considered systems have become larger

and more complex, the next step towards their accurate description lies in combin-

ing the advantages of more than one method, i.e. in multiscale approaches.

The multiscalar aspect comes into play on different levels; one level is given by

the well-known hybrid approach, i.e. combining existing methods in a concurrent

calculation. Separate calculations applying different methods to the same system

provide another approach. Coarser methods can be refined by more accurate

methods and more accurate methods speeded up by making them more coarse.

The investigated systems range from a single molecule to industrial processes. On

the level of fluid properties, a scale-bridging ansatz considers molecular properties

such as electronic energies, as well as thermodynamic quantities such as pressure.

Thus, a connection between different levels is established. Furthermore, dynamic

heterogeneity is accessible, and therefore a broader scale range in terms of dynam-

ics can be covered. As microscopic movements on the femtosecond scale may

substantially influence entire processes, the consequences for the macroscopic level

are also taken into account.

The contributions to this volume cover applied topics such as hierarchically

structured materials, molecular reaction dynamics, chemical catalysis, thermody-

namics of aggregated phases, molecular self-assembly, chromatography, nanoscale

ix



electrowetting, polyelectrolytes, charged colloids and macromolecules. Through-

out, the authors have aimed at quantitative and qualitative predictions for complex

systems in technical chemistry and thus in real-world applications. The nine

chapters are structured in three groups: 1. From first-principle calculations to
complex systems via several routes (Jaramillo-Botero et al., Yockel and Schatz,

Keil, and Kirchner et al.), 2. Making molecular dynamics simulations larger and
accessing more complex situations (Daub et al., Rafferty et al., and Guevara-

Carrion et al.) and 3. Coarse grained modelling reaching out afar (Delle Site

et al., and Karimi-Varzaneh and Müller-Plathe).

We would like to thank all the authors as well as all those who have facilitated

this volume, and hope that readers will consider it as a helpful tool for obtaining an

overview of the recent developments in the field of multiscale molecular methods in

applied chemistry.

Leipzig and Paderborn Barbara Kirchner

Jadran Vrabec

x Preface



Contents

First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics

and Dynamics Methods for Describing Complex Chemical Processes . . . . . 1

Andres Jaramillo-Botero, Robert Nielsen, Ravi Abrol, Julius Su, Tod Pascal,

Jonathan Mueller, and William A. Goddard III

Dynamic QM/MM: A Hybrid Approach to Simulating Gas–Liquid

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Scott Yockel and George C. Schatz

Multiscale Modelling in Computational Heterogeneous Catalysis . . . . . . . . 69

F.J. Keil

Real-World Predictions from Ab Initio Molecular Dynamics

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Barbara Kirchner, Philipp J. di Dio, and Jürg Hutter

Nanoscale Wetting Under Electric Field from Molecular Simulations . . 155

Christopher D. Daub, Dusan Bratko, and Alenka Luzar

Molecular Simulations of Retention in Chromatographic Systems:

Use of Biased Monte Carlo Techniques to Access Multiple Time

and Length Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Jake L. Rafferty, J. Ilja Siepmann, and Mark R. Schure

Thermodynamic Properties for Applications in Chemical Industry

via Classical Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Gabriela Guevara-Carrion, Hans Hasse, and Jadran Vrabec

xi



Multiscale Approaches and Perspectives to Modeling Aqueous

Electrolytes and Polyelectrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Luigi Delle Site, Christian Holm, and Nico F.A. van der Vegt

Coarse-Grained Modeling for Macromolecular Chemistry . . . . . . . . . . . . . . 295

Hossein Ali Karimi-Varzaneh and Florian Müller-Plathe

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

.

xii Contents



Top Curr Chem (2012) 307: 1–42
DOI: 10.1007/128_2010_114
# Springer-Verlag Berlin Heidelberg 2011
Published online: 18 January 2011

First-Principles-Based Multiscale,

Multiparadigm Molecular Mechanics and

Dynamics Methods for Describing Complex

Chemical Processes

Andres Jaramillo-Botero, Robert Nielsen, Ravi Abrol, Julius Su, Tod Pascal,

Jonathan Mueller and William A. Goddard III

Abstract We expect that systematic and seamless computational upscaling and

downscaling for modeling, predicting, or optimizing material and system properties

and behavior with atomistic resolution will eventually be sufficiently accurate and

practical that it will transform the mode of development in the materials, chemical,

catalysis, and Pharma industries. However, despite truly dramatic progress in

methods, software, and hardware, this goal remains elusive, particularly for systems

that exhibit inherently complex chemistry under normal or extreme conditions of

temperature, pressure, radiation, and others. We describe here some of the signifi-

cant progress towards solving these problems via a general multiscale, multiparadigm

strategy based on first-principles quantum mechanics (QM), and the development of

breakthrough methods for treating reaction processes, excited electronic states, and

weak bonding effects on the conformational dynamics of large-scale molecular

systems. These methods have resulted directly from filling in the physical and

chemical gaps in existing theoretical and computational models, within the multi-

scale, multiparadigm strategy. To illustrate the procedure we demonstrate the appli-

cation and transferability of such methods on an ample set of challenging problems

that span multiple fields, system length- and timescales, and that lay beyond the

realm of existing computational or, in some case, experimental approaches, includ-

ing understanding the solvation effects on the reactivity of organic and organome-

tallic structures, predicting transmembrane protein structures, understanding carbon

nanotube nucleation and growth, understanding the effects of electronic excitations

in materials subjected to extreme conditions of temperature and pressure, follo-

wing the dynamics and energetics of long-term conformational evolution of DNA
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macromolecules, and predicting the long-term mechanisms involved in enhancing

the mechanical response of polymer-based hydrogels.

Keywords Multiscale modeling, Nanotube growth, Non-adiabatic molecular

dynamics, Organometallic structures, Protein structure prediction, Reactive

molecular dynamics
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1 First Principles-Based Multiscale, Multiparadigm

Simulations

The computations required for accurate modeling and simulation of large-scale

systems with atomistic resolution involve a hierarchy of levels of theory: quantum

mechanics (QM) to determine the electronic states; force fields to average the

electronics states and to obtain atom based forces (FF), molecular dynamics (MD)

based on such an FF; mesoscale or coarse grain descriptions that average or

homogenize atomic motions; and finally continuum level descriptions (see Fig. 1).

By basing computations on first principles QM it is possible to overcome the

lack of experimental data to carry out accurate predictions with atomistic resolu-

tion, which would otherwise be impossible. Furthermore, QM provides the funda-

mental information required to describe quantum effects, electronically excited

states, as well as reaction paths and barrier heights involved in chemical reactions

processes. However, the practical scale for accurate QM today is <1,000 atoms per

molecule or periodic cell (a length scale of a few nanometers) whereas the length

scale for modeling supramolecular systems in biology may be in the tens of nano-

meters, while elucidating the interfacial effects between grains in composite materials

may require hundreds of nanometers, and modeling turbulent fluid flows or shock-

induced instabilities in multilayered materials may require micrometers. Thus,

simulations of engineered materials and systems may require millions to billions

of atoms, rendering QM methods impractical.

2 A. Jaramillo-Botero et al.



Nonetheless, QM methods are essential for accurately describing atomic-level

composition, structure and energy states of materials, considering the influence of

electronic degrees of freedom. By incorporating time-dependent information, the

dynamics of a system under varying conditions may be explored from QM-derived

forces, albeit within a limited timescale (<1 ps). The prominent challenge for theory

and computation involves efficiently bridging, from QM first-principles, into larger

length scales with predominantly heterogeneous spatial and density distributions,

and longer timescales of simulation – enough to connect into engineering-level

design variables – while retaining physicochemical accuracy and certainty. Equally

challenging remains the inverse top-down engineering design problem, by which

macroscopic material/process properties would be tunable from optimizing its

atomic-level composition and structure. Our approach to this challenge has been

to develop breakthrough methods to staple and extend hierarchically over existing

ones, as well as to develop the necessary tools to enable continuous lateral (multi-

paradigm) and hierarchical (multiscale) couplings, between the different theories

and models as a function of their length- and timescale range – a strategy referred to

here as First-Principles-Based Multiscale-Multiparadigm Simulation.
The ultimate goal is a reversible bottom-up, top-down approach, based on first

principles QM, to characterize properties of materials and processes at a hierarchy

of length and timescales. This will improve our ability to design, analyze, and

interpret experimental results, perform model-based prediction of phenomena, and

to control precisely the multi-scale nature of material systems for multiple applica-

tions. Such an approach is now enabling us to study problems once thought to

be intractable, including reactive turbulent flows, composite material instabilities,

Fig. 1 Hierarchical multiscale, multiparadigm approach to materials modeling, from QM to the

mesoscale, incorporating breakthrough methods to handle complex chemical processes (eFF,

ReaxFF). Adapted from our multiscale group site http://www.wag.caltech.edu/multiscale

First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics 3
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dynamics of warm-dense-matter and plasma formation, functional molecular biol-

ogy, and protein structure prediction, among others.

In this chapter, we describe some of our progress in theory, methods, compu-

tational techniques, and tools towards first-principles-based multiscale, multipar-

adigm simulations, in particular, for systems that exhibit intricate chemical

behavior. We map the document over the hierarchical framework depicted in

Fig. 1, threading the description from QM up through mesoscale classical

approximations, presenting significant and relevant example applications to dif-

ferent fields at each level.

2 The Role of QM in Multiscale Modeling

QM relies solely on information about the atomic structure and composition of

matter to describe its behavior. Significant progress has been made in the develop-

ment of QM theory and its application, since its birth in the 1920s. The following

sections present an overview of some parts of this evolution, describing how it

provides the foundations for our first-principles-based multiscale, multiparadigm

strategy to materials modeling and simulation.

2.1 The Wave Equation for Matter

Circa 1900 Max Planck suggested that light was quantized, and soon after, in 1905,

Albert Einstein interpreted Planck’s quantum to be photons, particles of light, and

proposed that the energy of a photon is proportional to its frequency. In 1924, Louis

de Broglie argued that since light could be seen to behave under some conditions as

particles [1] (e.g., Einstein’s explanation of the photoelectric effect) and at other

times as waves (e.g., diffraction of light), one could also consider that matter has the

same ambiguity of possessing both particle and wave properties. Starting with de

Broglie’s idea that particles behave as waves and the fundamental (Hamilton’s)

equations of motion (EOM) from classical mechanics, Erwin Schr€odinger [2]

developed the electronic wave equation that describes the space- (and time-)

dependence of quantum mechanical systems [3], for an n-particle system as

��h2
Xn
i¼1

r2

2mi
þ V r1; r2:::rn; tð Þ

" #
c r1; r2:::rn; tð Þ ¼ i�h

@

@t
c r1; r2:::rn; tð Þ; (1)

where the term in brackets corresponds to a linear operator that involves the kinetic

(first term) and potential (second term, V) energy operators that act over the

systems’ wavefunction, C, and the right-hand side the quantized energy operator,

corresponding to the full energy of the system, acting on the same wavefunction.

4 A. Jaramillo-Botero et al.



The wavefunction is interpreted as the probability amplitude for different config-

urations, r, of the system at different times, i.e., it describes the dynamics of the n-
particles as a function of space, r, and time, t. In more abstract terms, (1) may also

be written as

_

Hc ¼ Ec; (2)

and take several different forms, depending on the physical situation.

In principle, all properties of all materials, with known atomic structure and

composition, can be accurately described using (1) and one could then replace

existing empirical methods used to model materials properties by a first principles

or de novo computational approach design of materials and devices. Unfortunately,

direct first principles applications of QM is highly impractical with current meth-

ods, mainly due to the computational complexity of solving (1) in three dimensions

for a large number of particles, i.e., for systems relevant to the materials designer,

with a gap of ~1020!

There are numerous approaches to approximate solutions for (1), most of which

involve finding the system’s total ground state energy, E, including methods that

treat the many-body wavefunction as an antisymmetric function of one-body

orbitals (discussed in later sections), or methods that allow a direct representation

of many-body effects in the wave function such as Quantum Monte Carlo (QMC),

or hybrid methods such as coupled cluster (CC), which adds multi-electron wave-

function corrections to account for the many-body (electron) correlations.

QMC can, in principle, provide energies to within chemical accuracy (�2 kcal/

mol) [4] and its computational expense scales with system size as O(N3) or better

[5, 6], albeit with a large prefactor, while CC tends to scale inefficiently with the

size of the system, generally O(N6 to N!) [7].

Nevertheless, we have shown how QMC performance can be significantly

improved using short equilibration schemes that effectively avoid configurations

that are not representative of the desired density [8], and through efficient data

parallelization schemes amenable to GPU processing [9]. Furthermore, in [10] we

also showed how QMC can be used to obtain high quality energy differences, from

generalized valence bond (GVB) wave functions, for an intuitive approach to

capturing the important sources of static electronic correlation. Part of our current

drive involves using the enhanced QMC methods to obtain improved functionals

for Density Functional Theory (DFT) calculations, in order to enhance the scalability

and quality of solutions to (1).

But for the sake of brevity, we will focus here on methods and applications that

are unique for integrating multiple paradigms and spanning multiple length- and

timescales, while retaining chemical accuracy, i.e., beyond direct use of conven-

tional QM approaches. The following section describes the general path to classical

approximations to (1), in particular to interatomic force fields and conventional

MD, which sacrifice electronic contributions that drive critical chemical properties,

and our departure from conventionalism to recover the missing physicochemical

details.

First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics 5



2.2 Approximations to Schr€odinger’s Equation

A number of simplifications to Schr€odinger’s equation are commonly made to ease

the computational costs; some of these are reviewed below in order to explain the

nature of our methods.

2.2.1 Adiabatic Approximation (Treat Electrons Separately from the Nuclei)

An important approximation is to factor the total wavefunction in terms of an

electronic wavefunction, which depends parametrically on the stationary nuclear

positions, and a nuclear wavefunction, as

ctotal ¼ celectronic � cnuclear: (3)

This is also known as the Born–Oppenheimer [11] approximation. The under-

lying assumption is that since nuclei are much heavier than electrons (e.g., the

proton to electron mass ratio is ~1836.153), they will also move in a much lower

timescale. For a set of fixed nuclear positions, (1) is used to solve for the

corresponding electronic wavefunction and electronic energies (typically in their

lowest or ground-state). A sufficient set of electronic solutions, at different nuclear

positions, leads to the systems’ nuclei-only dependent Potential Energy Surface

(PES). Modern codes can also lead directly to the inter-atomic forces, from the

negative gradient of the potential energies, required for understanding the dynamics

of systems.

Methods for solving the electronic equation (1) have evolved into sophisticated

codes that incorporate a hierarchy of approximations that can be used as “black

boxes” to achieve accurate descriptions for the PES for ground states of molecular

systems. Popular codes include Gaussian [12], GAMESS [13], and Jaguar [14] for

finite molecules and VASP [15], CRYSTAL [16], CASTEP [17], and Sequest [18]

for periodic systems.

The simplest wavefunction involves a product of one-particle functions, or spin-

orbitals, antisymmetrized to form a (Slater) determinant that satisfies the Pauli

(exclusion) principle, i.e., two electrons with the same spin orbital result in no

wavefunction. Optimizing these spin-dependent orbitals leads to the Hartree–Fock

(HF) method, with the optimum orbitals described as molecular orbitals (MO). HF

is excellent for ground state geometries and good for vibrational frequencies, but its

neglect of electron correlation [19] leads to problems in describing bond breaking

and chemical reactions. In addition, it cannot account for the London dispersion

forces responsible for van der Waals attraction of molecular complexes. A hierar-

chy of methods has been developed to improve the accuracy of HF. Some of the

popular methods include second-order Moller–Plesset perturbation theory (MP2)

[20], CC with multiple perturbative excitations, multireference selfconsistent field

(MC-SCF), and multireference configuration interaction (MR-CI) [21] methods
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(see [22] for a recent review). A form of MC-SCF useful for interpreting electron

correlation and bonding is the GVB method, [23–25] which leads to the best

description in which every orbital is optimized for a single electron. These are

referred to as ab initio methods as they are based directly on solving (1), without

any empirical data. Many methods, which rely on empirical data to obtain approxi-

mate descriptions for systems too large for ab initio methods, have also been proved

useful. [26]

A non-empirical alternative to ab initio methods that now provides the best

compromise between accuracy and cost for solving Schr€odinger’s equation of

large molecules is DFT. The original concept was the demonstration by Hohenberg

and Kohn [27] that the ground state properties of a many-electron system are

uniquely determined by the density, r, as a function of nuclear coordinates, r, and
hence all the properties of a (molecular) system can be deduced from a functional

of r(r), i.e.,

E ¼ e rðrÞ½ �: (4)

DFT has evolved dramatically over the years, with key innovations including the

formulation of the Kohn–Sham equations [28] to develop a practical one-particle

approach, while imposing the Pauli principle, the Local Density Approximation

(LDA) based on the exact solution of the correlation energy of the uniform electron

gas, the generalized gradient approximation (GGA) to correct for the gradients in

the density for real molecules, incorporating exact exchange into the DFT. This

has led to methods such as B3LYP and X3LYP that provide accurate energies

(~3 kcal/mol) and geometries [29] for solids, liquids, and large molecules [30, 31].

Although generally providing high accuracy, there is no prescription for improving

DFT when it occasionally leads to large errors. Even so, it remains the method

of choice for electronic structure calculations in chemistry and solid-state physics.

We recently demonstrated improved accuracy in DFT by introducing a universal

damping function to correct empirically the lack of dispersion [32].

An important area of application for QM methods has been determining and

describing reaction pathways, energetics, and transition states for reaction pro-

cesses between small species. QM-derived first and second derivatives of energy

calculated at stable and saddle points on PES can be used under statistical

mechanics formulations [33, 34] to yield enthalpies and free energies of structures

in order to determine their reactivity. Transition state theory and idealized ther-

modynamic relationships (e.g., DG[P0!P] ¼ kTln[P/P0]) allow temperature and

pressure regimes to be spanned when addressing simple gas phase and gas-surface

interactions.

On the other hand, many applications involve interactions between solutes and

solvent, which utterly distinguish the condensed phase from in vacuo, free energy

surfaces. To tackle this challenge, we describe below a unique multiparadigm

strategy to incorporate the effects of a solvent when using QM methods to deter-

mine reactivity in organic and organometallic systems.
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Application Example: Solvent and pH Effects on Reactivity

Interactions critical to the rate and selectivity of reactions include the relaxation of

a wavefunction or zwitter-ionic geometry in response to a polarizable solvent,

hydrogen bonding, and reversible proton transfer. It is necessary in these cases to

introduce solvation effects explicitly through the inclusion of solvent molecules,

and/or implicitly through a continuum representation of the medium. Adding

explicit solvent molecules increases the cost of already expensive QM calcula-

tions, while implicit solvation models vary in their degree of parameterization and

generality.

One approach assigns an empirical surface free energy to each exposed atom

or functional group in a solute. More general algorithms combine an electrostatic

term based on atomic charges and solvent dielectric constant with empirical

corrections specific to functional groups and solvent cavitation energies. In the

Poisson–Boltzmann (PB) model [25], solvent is represented as a polarizable

continuum (with dielectric e) surrounding the solute at an interface constructed

by combining atomic van der Waal radii with the effective probe radius of the

solvent. Charges are allowed to develop on this interface according to the

electrostatic potential of the solute and e through the solution of the Poisson–

Boltzmann equation. Charges representing the polarized solvent are then included

in the QM Hamiltonian, such that the wavefunction of the complex is relaxed self-

consistently with the solvent charges via iterative solution of the PB and

Schr€odinger equations. Implicit models offer the advantage over explicit solvation

that degrees of freedom corresponding to solvent motion are thermally averaged;

thus the number of particles in a QM simulation (which typically scales as N3 or

worse) is not significantly increased.

In spite of the success of implicit solvation models, it is often easier and more

precise to take advantage of the tabulated free energies of solvation of small,

common species such as proton, hydroxide, halide ions, and so on [35, 36]. To

screen new potential homogeneous catalysts for favorable kinetics and elucidate

mechanisms of existing systems, we have typically employed the following expres-

sion for free energies of species in solution:

G ¼ Eelec þ ZPEþ Hvib � TSvib þ Gsolv; (5)

which includes an electronic energy, Eelec, a temperature-dependent enthalpy,

TSvib, entropy contributions, Hvib, the zero-point-energy, ZPE, and a solvation

free energy, Gsolv, provided by a PB continuum description [14].

An example of fundamental transformations that cannot be modeled without

accurate accounting of changes in electronic structure (on the order of 100 kcal/

mol), solvation of multiply charged species (~100 kcal/mol), and the macroscopic

concentration of protons (~10 kcal/mol) is the pH-dependent oxidation of acidic

metal complexes. Figure 2 compares experimentally determined pKas and oxida-

tion potentials [33] of trans-(bpy)2Ru(OH2)2
2þ to values computed with (5). Maxi-

mum errors are 200 mV and 2 pH units, despite the large changes in the components
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of free energy. The changes in free energy associated with redox processes deter-

mine the driving force behind many catalytic cycles. Coupled with the energies of

transition states between intermediates, these tools allow predictive work in appli-

cations of homogeneous catalysis to problems in synthetic and energy-related

reactions. Given that spin–orbit coupling corrections are important for open-shell

wavefunctions of heavy elements and have been computed to useful accuracy [37],

such corrections may be incorporated into (5).

Having described a hybrid approach that integrates a first-level QM-DFT

approximation with a continuum-level implicit APBS solvation model, as a multi-

paradigm stratagem to study the effects of solvation on reactivity, we now return to

describing further approximations to (1).

2.2.2 Treat the Nuclei as Classical Particles Moving on a PES

The PES found via the adiabatic approximation described in the previous section

portrays the hyper landscape over which a nucleus moves, in the classical sense,

while under the influence of other nuclei of a particular system. This is useful for

describing vibrations or reactions. Electronic contributions have been averaged

into each point on the PES, and their effect considered for that particular nuclear
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conformation; therefore one might consider replacing (1) by Newton’s ordinary

differential equation of motion, i.e.,

F ¼ � @V

@R
¼ m

d2R

dt2
; (6)

where F represents the forces (obtained from the negative gradient of the PES with

respect to nuclear positions) and m the corresponding atomic mass. Integrating (6)

with respect to time leads to particle trajectories, and this is conventionally referred

to as MD. Since only nuclei motions are considered, all information about the

electrons is gone (e.g., quantum effects like electron tunneling, exited electronic

states, and so on). Such calculations in which the forces come directly from a

QM computed PES are often referred to as Car–Parrinello calculations [38].

Unfortunately, the costs of QM-MD limit such calculations to ~1,000 atoms, and

at best <1 ps, so an additional simplification is to find an alternative mean to

compute the PES. This is discussed next.

2.2.3 Approximate the PES with Inexpensive Analytical Forms:

Force Fields

A practical solution for large systems, requiring long-term dynamics, is to describe

the PES, U, in terms of a force field (FF), a superposed set of analytic functions

describing the potential energy between the interacting particles (and its negative

gradient, corresponding to the inter-atomic forces, F) as a function of atomic

(nuclear) coordinates (x):

F ¼ mi€xi ¼ �riU x1; x2; . . . ; xnð Þ; (7)

where U is conventionally portioned in terms of valence, or bond functions, and

non-bond functions, as follows:

U ¼ Ur þ Uy þ U’ þ Uc
� �

bond
þ UvdW þ UCoulomb½ �non�bond: (8)

Integrating (7) with respect to time, leads to a description of nuclear trajectories

as a function of time.

U can take numerous forms, and since it is the key element affecting the

accuracy and transferability of a force field we discuss this further below, but

first a few words about the validity of the classical approximations to (1) discussed

thus far.

When the thermal de Broglie wavelength is much smaller than the interparticle

distance, a system can be considered to be a classical or Maxwell–Boltzmann gas

(the thermal de Broglie wavelength is roughly the average de Broglie wavelength of

the particles in an ideal gas at the specified temperature). On the other hand, when
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the thermal de Broglie wavelength is on the order of, or larger than, the interparticle

distance, quantum effects will dominate and the gas must be treated as a Fermi gas

or a Bose gas, depending on the nature of the gas particles; in such a case the

classical approximations discussed are unsuitable. Their use is also not recom-

mended for very light systems such as H2, He, Ne, or systems with vibrational

frequencies hn > KBT, systems in extreme conditions of temperature and pressure,

with high energy or a large number of excited electronic states, nor for systems with

two different electronic states but close nuclear energy (i.e., different cn).

3 From QM to Molecular Mechanics/Dynamics: Force Fields

As mentioned previously, the definition of an empirical potential establishes its

physical accuracy; those most commonly used in chemistry embody a classical

treatment of pairwise particle–particle and n-body bonded interactions that can

reproduce structural and conformational changes. Potentials are useful for studying

the molecular mechanics (MM), e.g., structure optimization, or dynamics (MD)

of systems whereby, from the ergodic hypothesis from statistical mechanics, the

statistical ensemble averages (or expectation values) are taken to be equal to time

averages of the system being integrated via (7).

In the following sections, we outline our first-principles-based Dreiding [39]

potential, to exemplify regular force fields, which usually cannot reproduce chemical

reactions, and follow up with an introduction to two of our unique force field

approaches, which overcome most of the limitations in the conventional approach.

In each case, we present unique applications to demonstrate their usefulness.

3.1 Conventional Force Fields

Traditionally, the bonded components are treated harmonically (see expressions

in Fig. 3). There are generally two non-valence or non-bonded terms: the van der

Waals term (UvdW) which accounts for short-range repulsion, arising from the Pauli

Principle and interacting dipoles, and for long range attractions arising from the

weak London dispersions, expressed generally as

UvdW ¼
X

Rij >Rcut

excl 1�2;1�3ð Þ½ �

ÛvdWðRÞ � S Rij;Ron;Roff

� �
;

(9)

where UvdW can represent different forms, and the electrostatic or Coulomb inter-

actions, which account for the charged interactions between every ij pair of atoms
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flowing within a dielectric medium (e ¼ 1 in a vacuum but larger values are used

for various media), expressed conventionally as

UCoulomb ¼ C0

X
i> j

QiQj

eRij
S Rij;Ron;Roff

� �
; (10)

where C0 corresponds to a unit conversion scalar (e.g., for energy in kcal/mol,

distances in Å, and charge in electron units, C0 ¼ 332.0637), Qi,j to the pairwise

point charges, Rij to the interparticle distance, and S to a cutoff function.

One additional term included in Dreiding accounts for weak hydrogen bonded

interactions, as a mixture of 3-body angles (between an H atom, and H donor and

acceptor atoms) and non-bonded terms (between donor and acceptor atoms), and is

given by

EHBðR; qAHDÞ ¼ EbðRÞEa cos qAHDð Þð Þ: (11)

The most time-consuming aspect of MD simulations for large systems corre-

sponds to the calculation of long-range non-bond interactions, (7) and (8), which

decrease slowly with R. This scales as O (N2) for an N particle system (e.g., a

protein with 600 residues would have ~6,000 atoms requiring ~18 million terms to

be evaluated every time step). One way to reduce this cost is to allow the long-range

terms to be cut off smoothly after a threshold value (S function in (9) and (10)).

Alternatively, our Cell Multipole Method (CMM) [40] (and the Reduced CMM

[41]) enable linear scaling, reducing the computational cost while retaining accu-

racy over large-scale systems.

Fig. 3 Conventional (Dreiding) valence interatomic potentials. Sub-indices 0 indicate equilib-

rium values, k constants are related to force constants for vibrational frequencies, c constants are
related to an energy barriers, and n refers to periodicity
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Many useful FF have been developed over the last 30 years ([42] provides a

recent review), a significant number of which are aimed at biological systems.

Commonly used FF include AMBER [43], CHARMM [44], Dreiding [39], and

OPLS [45]. Most of the parameters in these FF were adjusted to fit a combination of

results from theory and experiments.

A key strategy in our multiscale approach has been to parameterize force fields

(e.g., non-reactive Dreiding) fromQM calculations on small representative systems,

adjusting the FF descriptions to reproduce the structures, energetics, and dynamics

from QM on nanoscale systems. This favors transferability and the predictive

capability, in particular for systems with little or no existing empirical data.

With an FF it is practical to apply MD simulations to the atomic-level dynamics

of large-scale systems (e.g., proteins [46]) interacting with other nanoscale compo-

nents or external fields under complex conditions. Force fields allow one to carry

MD simulations on systems ~106–9 times larger than for QM. It is no surprise then

that a particularly well-suited niche for the application of force fields is in the

prediction of protein structures, in particular for membrane proteins that are other-

wise impossible to crystallize in their active form using existing experimental

methods. One class of membrane proteins with significant relevance is that of

G-protein coupled receptors, mainly because they are involved in many diseases.

This fact makes them a target of approximately 30–50% of all modern medicinal

drugs. GPCRs are seven-transmembrane protein domain receptors, that sense

molecules outside the cell and activate inside signal transduction pathways and,

ultimately, cellular responses. GPCRs are found only in eukaryotes, choanoflagel-

lates, and animals. The ligands that bind and activate these receptors include light-

sensitive compounds, odors, pheromones, hormones, and neurotransmitters, and

vary in size from small molecules to peptides to large proteins.

The following section describes our multiscale, multiparadigmmodeling approach

to protein structure prediction, and in particular to GPCRs.

3.1.1 Application Example: Structure Prediction of GPCRs

The activation related conformational changes in G protein-coupled receptors

(GPCRs) allow cells to sense their environment and convert extracellular signals

(e.g., ligand binding) into intracellular signals (through G protein and b arrestin

pathways), leading to physiological responses. They are activated by a variety of

molecules (including biogenic amines, peptides, lipids, nucleotides, hormones,

proteins, tastants, odorants, among others) and non-molecular sensory signals

(such as light, touch, and others), and thus play an important role in all major

disease areas including cardiovascular, metabolic, neurodegenerative, psychiatric,

cancer, and infectious diseases. There are ~370 non-sensory human GPCRs (out of

~800 human GPCRs [47, 48] but experimental crystal structures are available only

for two (human b2 and human A2A), both in the inactive form. We can expect

additional structures for human GPCRs to become available slowly over the next
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few years, but most will also be in the inactive form. This lack of structures is

contributing to the shortage of safe and efficacious drugs that target GPCRs.

Availability of GPCR structures, experimental or predicted, can lay the foundation

for rational structure-based drug design. So, a fast but accurate computational

approach is needed that can generate structures for all important conformations of

a target receptor and any other receptors implicated for off-target therapeutic side-

effects and determine their ligand binding efficacies for developing highly selective

drug candidates with potentially minimal side-effects. We have developed one such

FF based method.

The structural topology of GPCRs consists of seven transmembrane (TM) a-
helices that span the membrane and are connected by both intracellular and

extracellular loops. To characterize this topology quantitatively with respect to a

common reference frame, the middle of the membrane is assumed to correspond to

the z ¼ 0 plane or the hydrophobic plane that cuts the 7-helix bundle into two

halves. Each GPCR structure can then be characterized by the six orientation

parameters of the seven helices shown in Fig. 4, which shows how the helix position

and tilt are defined. Helix position on the hydrophobic plane is then given by x and
y. Value h corresponds to the hydrophobic center residue from the helix that will be

positioned on the hydrophobic plane. Two angles, y and f, specify the tilt angles of
the helix and the angle Z corresponds to the helix rotation angle about its axis. The

two tilt angles (y, f) and the rotation angle (Z) require a definition of the helical

axis which needs to account for the reality of bent helices as prolines are commonly

found in the TM helices. We use a helical axis that corresponds to the least moment

of inertia vector for the helix obtained by eigensolution of the moment of inertia

matrix for the helix using only heavy backbone atoms.

The structural analysis of available experimental structures shows large varia-

tions in helix tilts and rotations. Considering a �10� sampling of the y tilt angle,

and �30� sampling of the f and Z angles, for each of the seven helices, leads to

(3 � 5 � 5)7, ~10 trillion possible conformations, for each of which the amino acid

side chains must be optimized. To make such a huge sampling computationally

feasible, we developed the SuperBiHelix sampling (BiHelix sampling only sampled

the Z rotation angle) procedure. As indicated by 12 double arrows in Fig. 5 (left)

a typical class A GPCR template has 12 important pair-wise interactions. For

each such pair of helices, we will sample all combinations of y, f, Z over some

grid. During this sampling, the other five helices are ignored, as indicated in Fig. 5

Fig. 4 Definitions of

orientation parameters of a

transmembrane helix
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(right) for helix 1–2 pair. For each of the (3 � 5 � 5)2 ¼ 5,625 rotational-tilt

combinations of each of the 12 pairs, we optimize the side chains using SCREAM

[49] with all-atom DREIDING force field [39]. SCREAM uses a library of residue

conformations ranging from a CRMS diversity of 0.4–1.6 Å in conjunction with a

Monte Carlo sampling using full valence, hydrogen bond, and electrostatic inter-

actions from D3FF, but with a special flat bottom van der Waals (vdW) potential

that reduces the penalty for contacts that are slightly too short while retaining the

normal attractive interactions at full strength.

The total energies for each of the (12) � (5,625) helix pair combinations are

used to estimate the energy for all 10 trillion 7-helix bundle conformational

combinations. In a procedure called SuperComBiHelix, the top 2,000 of these

helical bundles are explicitly built and the side chains reassigned, given that they

will take different conformations compared to those in the bihelical model. Then

the structure is minimized for ten steps. The energy ranking will be different in

SuperComBiHelix than SuperBiHelix because all seven helices are present instead

of just two at a time. This procedure results in an ensemble of low-lying structures.

Examination of the low-lying structures shows the helix packing preferred by the

receptor, which should also include conformations relevant for understanding

function and activation of these proteins. This procedure was applied to A2A

receptor where its helices were placed in the b2 template. The starting structure

was 2.0 Å from the A2A crystal structure (see Fig. 6). After the SuperBiHelix/

SuperCombiHelix optimization (sampling ~10 trillion conformations), the lowest

energy structure was 1.3 Å from the A2A crystal structure (Fig. 6), an improvement

that was also critical in the identification of correct ligand binding mode in the

protein. The procedure has been applied to all available crystallized receptors

(humBeta2, turBeta1, bovRhod, humA2A). For each of these systems we first

sampled only the helix rotation angle Z over full 360� range in increments of 15�,
which needs the sampling of 247 (~4 billion) conformations. This resulted in crystal

structure ranking number 1 at the end of the procedure for all cases. The results for

turBeta1 are shown in Table 1, which shows the crystal structure as ranked number

1 and other near-native structures also ranked in the top ten list.

Fig. 5 Left: The 12 important helix pair interactions. Right: The BiHelix concept in which the

interhelical interactions are optimized for a pair of helix rotations, while ignoring the other 5
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These results show that the two-helices-at-a-time sampling method is robust,

but, more important, the FF-based energies used for scoring the conformations can

be trusted to resolve the near-native structures of proteins.

3.2 Simulating Complex Chemical Processes with FFs

A major drawback with MD using conventional FFs is that they are unable to

describe chemical reaction processes, or other electronic structure dependent pro-

cesses such as electronic excitations, and as we’ve already discussed, QM is not

Table 1 Top ten predicted conformations for Turkey b1 adrenergic receptor

Eta H1 H2 H3 H4 H5 H6 H7 TotEnergy RMSD

Eta 0 0 0 0 0 0 0 �385 0.0

Eta 0 0 0 345 0 0 0 �379 0.4

Eta 0 0 0 0 345 0 0 �377 0.4

Eta 0 0 0 0 15 0 0 �376 0.4

Eta 0 0 0 345 15 0 0 �365 0.4

Eta 0 0 345 345 15 0 0 �364 0.5

Eta 0 0 0 15 0 0 0 �349 0.4

Eta 0 0 0 15 345 0 0 �349 0.4

Eta 0 0 0 0 0 0 345 �346 0.4

Eta 75 0 0 345 0 0 0 �341 1.1

Fig. 6 Visual comparison of

the starting crystal structure

(green) and the predicted

tertiary structure [before (red)
and after optimization (blue)]
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practical for systems larger than ~1,000 atoms, and timescales longer than 1 ps. We

have made significant breakthroughs in recent years towards addressing these

problems, through the development of the reaxFF reactive force field [50] for

describing “ground-state” reaction processes, and the electron force field (eFF)

[51] for describing systems with explicit electrons in their ground or excited states.

3.2.1 The ReaxFF Force Field for Studying Reactive Processes

ReaxFF [50] provides a generally valid and accurate way to capture the barriers for

various chemical reaction processes (allowed and forbidden reactions) into the

force fields needed for large-scale MD simulation. ReaxFF is parameterized exclu-

sively from QM calculations, and has been shown to reproduce the energy surfaces,

structures, and reaction barriers for reactive systems at nearly the accuracy of QM

but at costs nearly as low as conventional FFs.

Applications of ReaxFF have been reported for a wide range of materials,

including hydrocarbons [50], nitramines [52], ceramics [53], metals and metal

oxides [54, 55], metal/hydrocarbon interactions [56], and metal hydrides [57].

ReaxFF has been used to simulate chemical events in many systems, including

nanotube deformation and buckyball polymerization [58, 59], thermal decomposi-

tion of polymers [60], high-energy materials initiation [61, 62], crack propagation

[63], reactive oxygen and hydrogen migration in fuel cells [64], and metal/metal

oxides surface catalysis [65].

Salient features of reaxFF include: (a) Environmentally dependent charge dis-
tributions on atoms. The charges on the atoms adjust in response to the local

environment allowing them to change as bonds are broken and formed and to shield

the Coulomb interaction between atoms at small distances; (b) Bond order depen-
dent valence terms. A general relation is provided between bond distance and bond

order and between bond order and bond energy (and hence forces). The bond orders

gradually go to zero as the bond lengths increase and they gradually increase for

shorter distances, finally saturating for the smallest distances (e.g., BO ¼ 3 for CC

bonds). This provides a smooth description of the valence terms during chemical

reactions; (c) Non-bond or van der Waals interactions. ReaxFF uses a simple Morse

function to account for the short-range repulsion and steric interactions arising from

the Pauli principle (between every atom pair). The long range attraction accounts

for vdW attraction; (d) No cutoffs. All interactions change smoothly during reac-

tions (which are allowed to occur at any time and place) so that ReaxFF can be used

with general conditions of temperature and pressure; (e) Transferable potential.
Simple FFs provide different parameters for different atomic environments (e.g.,

single vs double bonds, sp3 vs sp2 geometries). ReaxFF eschews such description

using only a single atom type for each element, which is necessary since bond

orders and geometries change during reactions. This leads to good transferability of

the FF; (f) It is QM-based. All parameters are optimized/derived directly from QM

studies on a large number of reactions. This allows extensions to new materials

where there may be no experimental data.
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Recently, we have demonstrated the use of reaxFF to the challenging problem of

elucidating the growth process of carbon nanotubes (CNTs). Understanding this

process is critical for determining the control variables that lead to chiral-specific

(with semiconducting or metallic electrical conductivity behavior) mass production

of CNTs. These results are summarized in the following section.

Application Example: Dynamics of CNT Growth

Since their discovery in 1991 [66], CNTs have been widely studied. Researchers

have proposed CNT applications to an ample set of technologies [67] including

interconnects, transistors, and diodes for microelectronics [68], as well as electro-

chemical transducers [69], sensor components [70], field emission devices [71], and

even gas sensors [72]. The mass production of uniform, well-characterized CNTs is

crucial for realizing many of these applications. However, while CNT synthesis has

been demonstrated for numerous catalysts, and a wide range of reaction conditions,

complete product control has remained elusive [73]. Thus, multiple investigations

aimed at elucidating the key mechanism or mechanisms of CNT growth are still

being carried out, in the hope that a more fundamental understanding of the growth

process will result in better synthetic control [74]. Experimental observations have

shed some light on CNT growth mechanisms. Atomic force microscopy (AFM),

scanning electron microscopy (SEM), and tunneling electron microscopy (TEM)

have been used to support instances of tip and base growth mechanism in different

synthesis procedures [75–77]. More recently time-resolved, high-resolution in situ

TEM studies have highlighted the role of catalyst deformation in SWNT growth

and provided direct experimental validation for a Yarmulke mechanism for nucle-

ation [78, 79]. Nevertheless, these cutting edge techniques provide overarching,

general descriptions rather than detailed, atomistic mechanisms for each stage of

CNT synthesis.

To fill in these experimentally inaccessible details, mechanistic studies often

appeal to atomistic simulations. DFT is now widely used to explore catalytic

systems, and has been applied to simplistic models of CNT growth [74, 80, 81].

Nevertheless, the usefulness of DFT is hampered by stringent limitations on the

number of atoms and especially the number of structural iterations that it is feasible

to consider with current computer technology [82]. Tight binding (TB) methods,

which use approximations (i.e., simplified integrals) to reduce the computational

cost of handling electron–electron interactions explicitly, have been used in con-

junction with MD simulations to study this problem [83]; however, the timescales

necessary for observing the growth process are still beyond the reach of this approach –

even though TB calculations are typically a couple orders of magnitude faster than

DFT [83]. Monte Carlo methods have provided another popular means of “simulat-

ing” CNT growth [82, 84]. At best, however, Monte Carlo methods show a

succession of possible snapshots from the growth process, leaving the mechanistic

details hidden.
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As reported previously [85, 86], we have developed a set of ReaxFF parameters

describing hydrocarbon chemistry catalyzed by nickel and nickel carbide catalyst

particles. This ReaxFF potential is capable of treating the adsorption and decom-

position of both saturated and unsaturated hydrocarbon species on several different

nickel surfaces. Of particular relevance for studying CNT growth is that a single

set of ReaxFF parameters accurately describes carbon in all hybridization states and

a variety of chemical environments. These states include sp, sp2, and sp3 hybridized

carbon in various hydrocarbon molecules, carbon binding at and migrating between

interstitial sites in bulk nickel, and carbon bonded to nickel surfaces strongly as

an adsorbed lone adatom or in a small hydrocarbon molecule, or weakly as part of

a graphene layer.

While the vast majority of theoretical studies of CNT growth starts with lone

carbon atoms, assuming that decomposition has already taken place, there are

conditions (e.g., low temperature growth) under which decomposition is believed

to be the rate-limiting step [87]. Thus we have utilized this ReaxFF force field in

a reactive dynamics (RD) study of the early stages of CNT growth. In [85] we

reported on the chemisorption and decomposition of various hydrocarbon species

on a nickel nanoparticle. Over the course of 100 ps of RD simulations performed,

we were able map out the preferred reaction pathways for the decomposition of

each hydrocarbon species studied.

The synthesis of CNTs can be broken down into three or four distinct stages. The

first stage is feedstock decomposition, as discussed above. Under low temperature

growth conditions, experiments suggest that feedstock decomposition is the rate-

limiting step [87]. Thus our analysis of hydrocarbon decomposition pathways on

nickel nanoparticles shows how the selection of different hydrocarbon species for

the feedstock influences the chemisorption rate, surface coverage, and extent of

carbide formation during the nanotube growth process. In particular, because we

find that chemisorption is the rate limiting decomposition step for saturated hydro-

carbons, the selection of unsaturated hydrocarbon species, with very small chemi-

sorption barriers, for the feedstock, is expected to improve the growth rate where

feedstock decomposition is rate limiting.

Following feedstock decomposition is the carbon transport stage, in which a

hydrocarbon or carbon species is either transported along the catalyst surface or else

diffuses through the catalyst bulk as carbide. Because a constant supply of carbon is

needed for both nucleation and growth, carbon transport likely occurs during

both the nucleation and growth stages and so is most naturally treated as a part of

each of these stages taken separately. It is also possible that a partially decomposed

species migrates to the nucleation or growth site where it further decomposes

into the activated species. In any case, experiments indicate that there are growth

conditions under which surface diffusion is the rate-limiting step [88]. ReaxFF RD

simulations demonstrate the formation of nickel carbide following acetylene che-

misorptions and decomposition, lending plausibility to either mechanism.

It is believed that nucleation occurs when enough carbon material accumulates

on the surface for the formation of surface ring structures. The ring structures

develop into a graphene island on the particle which, when it becomes large enough,
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lifts its center off the particle surface in the experimentally observed Yarmulke

mechanism [78, 88]. Currently, ReaxFF RD simulations beginning with several

hundred gas-phase acetylene molecules surrounding a nickel nanoparticle support

the early stages of this picture. Initially, as acetylene chemisorbs and decomposes

on the Ni nanoparticle, the C atoms formed migrate into the bulk of the catalyst and

forming carbide. After a couple nanoseconds of dynamics, the chemical potential

gradient reverses and carbon begins segregating to the surface, forming carbon

chains. As more carbon moves to the surface, ring structures form and clump

together to form larger ring structures, resulting in multi-ring structures with tens

of rings formed from a couple of hundred carbon atoms (see Fig. 7). Thus, the

trajectories from these RD simulations provide an atomistically detailed picture of

the early stages of CNT growth.

Following nucleation is the nanotube growth stage in which carbon is added to

the end of the growing nanotube. This stage likely lasts significantly longer than the

previous stages, which means that ReaxFF RD simulations of the entire growth

stage are probably not computationally feasible at present. Nevertheless, a couple

different strategies are available for overcoming this difficulty. The first is to use an

already growing nanotube as the initial structure for ReaxFF simulations, and study

just a part of the growth process. As a simple model we have used ReaxFF to

consider the barriers for adding small hydrocarbon species to the edge of a graphene

sheet laying on a Ni(111) surface. These simulations find the lowest carbon addition

barriers for C2 hydrocarbon species, suggesting that C2 may be the activate form of

carbon responsible for CNT growth. Unconstrained ReaxFF RD on a full-scale

model of a growing CNT will provide further validation for this hypothesis.

The second option for circumventing the time limitations on ReaxFF RD is the

use of a kinetic Monte Carlo procedure to bypass long periods of quasi-equilibrium

dynamics between reaction events using principles from statistical mechanics and

Fig. 7 ReaxFF RD simulations of acetylene adsorption and decomposition on a 468-atom nickel

particle [not shown]: (a) after 1 ns a limited number of structured rings have formed and (b) after

2 ns of ReaxFF RD simulations a clear ring pattern formation appears. Simulations were

performed using the parallel prototype reaxFF implementation from collaboration with H.M.

Aktulga and A. Grama at Purdue, and A.C.T van Duin at Penn State
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transition state theory. Because traditional kinetic Monte Carlo methods require

predefined reactions and make the lattice approximation, they are not directly

applicable to a complex process such as CNT growth. Nevertheless, alternative

schemes have been proposed for circumventing the lattice approximation by calcu-

lating reaction barriers on the fly [89]. The bond order/bond distance relationship

already present in ReaxFF would provide a natural tool for the development of an

automated reaction search procedure, enabling kinetic Monte Carlo simulations

within the ReaxFF framework. Such simulations would be capable of looking at

CNT growth over a significantly longer timescale than ReaxFF RD.

As effective as reaxFF is for handling reactive systems and processes in their

ground-state, it is unable to describe the dynamics of electrons and systems with

excited electronic states. QM-MD is also limited mostly to ground-state dynamics

or to a very small number of excited electronic states (see [90] for further discussion

on this). The following section presents our progress in addressing this problem

with a mixed quantum-classical force field method, the eFF.

3.2.2 Non-Adiabatic Excited Electronic State Dynamics with an FF

A significant number of processes involve excited electronic states, whose character –

and representation in a theoretical method – depends strongly on the degree

of excitation involved. Low-level electron excitations of molecules can initiate

radical reactions, isomerize bonds, and induce transfers of electrons. Such pro-

cesses can be studied effectively using conventional QM, using a wavefunction

formed from Hartree–Fock or Kohn–Sham orbitals. At the other extreme, high-

level excitations result in the formation of a weakly-coupled plasma, where bonding

and chemistry vanishes, and electrons act as point particles interacting with nuclei

via classical electrostatics. Such systems can be studied using classical plasma

simulations techniques, i.e., particle-in-cell codes.

However, in between low and high extremes of electron excitation lies a rich

variety of phenomena where the electrons are far removed from the ground state,

yet remain strongly coupled to the nuclei, so that remnants of bonding and chemis-

try persist.

Understanding the properties of warm dense matter present in moderately

excited systems is of crucial importance to developing a range of new technological

enterprises. For example, in inertial confinement fusion, liquid deuterium is com-

pressed by a shock wave, causing molecules to dissociate into atoms, atoms to

ionize into plasma, and metallic conducting phases to form. Knowledge of how

these phases interact could contribute to the design of improved fuel pellets.

Other examples come from the semiconductor industry, where electron beams

are used to etch ultra-fine features (<35 nm) into silicon, the nuclear industry,

where the interior of reactors must be protected from the passage of fast charged

particles, and the biological community, where synchrotron radiation could enable

single molecule X-ray diffraction, if the dynamics of highly excited and ionized

biomolecules could be understood. In the above cases, theory could play a critical
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role by elucidating the fundamental properties of chemical bonds and relating it to

the performance of materials under extreme conditions.

To study such systems, our group has developed the eFF [59, 90, 91] approximation

to QM, which can simulate moderate excitations (tens to hundreds of electron volts)

that vary sharply over space and time, in large systems (tens of thousands of atoms)

where strong couplings between nuclei and electrons exist, and chemistry occurs. In

eFF, electrons are represented by wave packets, and nuclei by classical point charges

moving in the time-varying field of the electrons (Ehrenfest dynamics). The overall

electronic wavefunction is represented by a Hartree product of spin orbitals, where

each orbital is a single Gaussian wave packet with size (s) and position (x):

CðrÞ /
Y
i

exp � 1

s2i
� 2ps;i

si

� �
r � xið Þ2

� 	
� exp ipx;ir

� �
; (12)

where px and ps correspond to the conjugate translational and radial momenta,

respectively, which represent the translational motion and radial expansion/shrinking

of the wave packet over time. To account for the orbital orthogonality imposed by the

Pauli principle, a spin-dependent Pauli repulsion potential is included in the Hamil-

tonian, which increases with the overlap between the wave packets (see Fig. 8).

The eFF method is similar to previous wave packet molecular dynamics

(WPMD) approaches, but differs in the form of the Pauli potential, which we

derived to account for the effect of pairwise orthogonalization on the kinetic energy

of orbitals; with this change, the scope and accuracy of previous approaches is

greatly extended. The only other terms present in eFF are interactions between

charge distributions from classical electrostatics, and a kinetic energy term for the

electron wave packets derived from QM, which provides the “kinetic energy

pressure” that prevents electrons from collapsing to a point:

EKE ¼ �h2

me

X
i

3

2s2i
; (13)

where me corresponds to the electron mass. From these simple terms, a rich array of

chemical phenomena emerges – separation of core and valence electrons into

Fig. 8 Pauli repulsion

between two electrons with

size s ¼ 1 bohr, as a function

of their separation, r, and
spin. These curves are

described with three universal

parameters adjusted to give

reasonable structures and

energies for CH4, C2H6, LiH,

and B2H6
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separate shells, atomic hybridization, covalent, ionic, multicenter, and/or metallic

bonds, and steric repulsions between bonds.

Since the interactions between particles in eFF are simply pairwise forces,

the overall method is extremely fast and scales well computationally. We have

simulated on a single processor tens of thousands of electrons, and on multiple

processors millions of electrons [90].

Application Examples: Material Shock Hugoniots and Auger Decay

In one application of eFF we studied the thermodynamics of shock-compressed

liquid hydrogen, characterizing molecular, atomic, plasma, and metallic phases at

temperatures up to 200,000 K and compressions up to fivefold liquid density (see

Fig. 9). We found reasonable agreement with data from both static compression

(diamond anvil) and dynamic compression (shocks from explosives, magnetically

pinched wires, lasers) experiments.

We have also demonstrated the capabilities of eFF for computing single-shock

Hugoniots for lithium metal from dynamic shock wave experiments, via the shock

wave and piston kinematics and initial and final densities of a 640,000-particle

system (see Fig. 10). We also reported on the degree of ionization suffered by the

material, a function of the explicit nuclear delocalization of electrons [90]. A

simpler depiction of such dynamic shock experiments is shown in Fig. 11, wherein

Fig. 9 Shock Hugoniot curve for liquid D2. We show here that eFF agrees well with most

experiments: gas gun (red dots), Z machine (green dots), convergence geometry (orange), and
the more recent laser data (blue dots) from LLNL. The PIMC results agree with eFF up to a

compression of 4.2, but leads to a lower limiting compression than eFF. To compute the Hugoniot

curve, we perform NVE simulations of D2, interpolating to temperatures such that the internal

energy, volume, and pressure satisfy the Rankine–Hyugoniot relationship. We note that the eFF

Hugoniot curve connects to an eFF low temperature starting point, while the PIMCHugoniot curve

connects to a U0 from a separate calculation
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a small lithium cluster impacts onto a lithium metal slab at different speeds.

Different material phases are observed as a function of impact velocity, as well as

degrees of electron ionizations. Dynamic shock experiments enable higher com-

pressions than static compression experiments.
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Fig. 10 Shock Hugoniot for

lithium calculated directly

from the planar shock

velocity Us, particle or piston

velocity Up, and initial and

final densities obtained

from our simulations

compared to existing

experiments. From [90]

Fig. 11 Hypervelocity impact of a Li cluster on a Li metal slab. (a) Initial state. (b) Impact at

v ¼ 2 km/s leads to welding and no ionization. (c) Impact at v ¼ 5 km/s leads to melting, and

scattered ionized valence electrons. (d) Impact at v ¼ 10 km/s leads to a fluid, and ~0.25 fraction

of ionized valence electrons. (e) Impact at v ¼ 20 km/s leads to a plasma with ~0.7 fraction of

ionized electrons. Dark small spheres represent nuclei, red/blue spheres depict electron up/down

spin, and their size represents the degree of de/localization
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In another application we have examined the Auger decay process in a

diamond nanoparticle and in silicon, relevant to the etching of semiconductor

substrates using low energy electron-enhanced etching processes [92]. We found,

for the diamond case, that ionizing core electrons induced selective breaking of

bonds via a variety of mechanisms, i.e., through direct excitation and ionization

of valence electrons, or through indirect heating, or even in a small subset of

cases, a billiard-ball like scattering away of valence electrons through ejection

of neighboring bonding electrons (see Fig. 12). Our results were consistent with

ion ejection data from photon-simulated desorption experiments performed on

diamond films.

Our current development of eFF involves adding explicit electron exchange-

correlation potentials, core pseudo-potentials, and extended support for systems

with significant p- and d-character. Using eFF, we’re now able to study the effect of

highly excited electrons in the dynamics of material subjected to extreme condi-

tions, including those described before, as well as other open problems in interfacial

shock instabilities, radiation damage, to name a few.

As simulation requirements shift to larger length scales and longer times and

system properties are amenable to homogenization in space and averaging in time,

for example in characterizing the conformational behavior of supramolecular

systems, coarse-grain methods tuned from finer scale ones (e.g., QM, MM) repre-

sent a suitable and more efficient alternative for evolving the dynamics of systems

with reduced degrees of freedom. The following section discusses our progress

in developing coarse-grain force fields and time-lower bound solutions to the

resulting rigid multibody EOM.

Fig. 12 Single Auger trajectory after ionization of a carbon core electron at the center of the

diamond nanoparticle (melec ¼ mp). Valence electrons surrounding the core hole with the same

spin as the ionized core electron are highlighted in red, green, blue, and purple. Distance of

valence electrons from the core hole, showing the green electron filling the core hole, the red
electron being ejected (and trapped after 20 fs, not shown), and the blue and purple electrons being
excited. From [93]
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4 Bridging MM/MD with the Mesoscale

Successful applications of first principles methods to supramolecular modeling

requires a scale lying in between the molecular or atomistic scale (where it is

convenient to describe molecules in terms of a collection of bonded atoms) and the

continuum or macroscale (where it is convenient to describe systems as continuous

with a finite element mesh basis) [94]. This coarse grain or meso-scale level is most

important for determining the properties and performance of a wide range of different

materials, including “soft condensed matter,” amphiphilic fluids, colloids and poly-

mers, gels, liquid crystals; proteins, and DNA. An important class of problems that

need to be described at these scales include biological processes such as protein

activation, enzymatic transformations, ribosome activity, and general diffusive

motions of biomolecules on timescales of microseconds and longer [95].

Several approaches can reduce the computational costs of solving (7) for systems

with a large number of atoms, including the use of explicit constraints on fast atomic

motions, bead representations which join several atoms into pseudo-particles with

no rotational inertia, or representations which cluster collections of atoms into rigid

bodies with inertia, among others. We will refer here to those treating clusters of

atoms as rigid bodies that interact with others through net forces and torques, and

which use coarse-grain force fields to solve the system’s dynamic behavior.

4.1 Constrained and Coarse-Grain MD

By imposing constraints on fast atomic motions, one can effectively increase the

timescales of integration of the EOM, thereby enabling longer simulation times.

Conventional methods for doing this on Cartesian atomistic degrees of freedom

include those that compensate relative restraint forces into the particle EOM,

such as SHAKE [96, 97], RATTLE [98], and the like [99–101]. Unfortunately,

these methods are limited to low temperature dynamics [102] and to relatively

small systems, due to the added cost of solving for the explicit constraints. To

overcome this, alternative approaches have focused on simplifying the description

of the system through EOM that operate only on the degrees of motion of a

system, mostly using internal coordinate representations that treat clusters of

atoms as rigid bodies.

Mazur et al. [103, 104] demonstrated the conformational dynamics of bio-

macromolecules. However, their method scaled exponentially with size and relied

on an expensive expression for the inter-atomic potentials in internal coordinates.

Subsequently, our group pioneered the development of internal coordinate cons-

trained MD methods, based on ideas initially developed by the robotics community

[102, 105–107], reaching O(n) serial implementations, using the Newton–Euler

Inverse Mass Operator or NEIMO [108–110] and Comodyn [111] based on a variant

of the Articulated Body Inertia algorithm [112], as well as a parallel implementa-

tion of O(log n) in O(n) processors using the Modified Constraint Force Algorithm
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or MCFA [107, 113]. These methods can selectively handle implicit constraints

through appropriate projection matrices in the EOM. Nonetheless, most have

focused on the torsional degrees of freedom (DOF) which affect the conformation

of a system. The general state space EOM for internal coordinate constrained MD

can be written as

t ¼ MðQÞ €Qþ C Q; _Q
� �

_Q ; (14)

where t corresponds to the vector of generalized forces (e.g., torques), M denotes

the articulated body inertia matrix, C denotes the nonlinear velocity dependent

terms of force (e.g., Coriolis, centrifugal and gyroscopic forces), and Q; _Q; €Q
correspond to the generalized coordinates that define the state of the system. It

then follows that the dynamics of motion for a microcanonical ensemble is obtained

by solving for the hinge accelerations, access to increased integration time-steps,

faster exchange between low- and high-frequency modes for high temperature

dynamics, and faster and smoother sampling of the PES (conformational space),

among others. Our rigid body MD approaches, with atomistic and coarse-grain

force fields, are currently used to predict the conformational evolution of helical

domains in GPCR protein bundles (see Fig. 13):

€Q ¼ M�1ðQÞ t� C Q; _Q
� �

_Q
� �

: (15)

Fig. 13 Beta2 GPCR helix 7 final structure (shown in ribbons representation) after 100 ps of

constrained MD-NVT, using Comodyn with a 5 fs timestep and the Dreiding force field, shows a

kink about a proline amino-acid group. The kink is also observed during full-atom MD-NVT at

roughly the same timescale. The original starting structure is shown in transparency, for both the

full-atomistic and ribbon representations. The coarse-grain representation involved 127 clusters

for a total of 133 DOF in the internal coordinate representation of the equations of motion

(compared to the 1,170 DOF for the atomistic model)

First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics 27



These constrained MD methods rely on efficient solutions to the rigid-body

EOM and on the use of atomistic, simplified atomistic (i.e., no intra-cluster valence

or non-bond interactions) or coarse-grain force fields, discussed next.

Coarse grain (CG) models must carry enough information about the atomistic

behavior while at the same time be efficient to scale in both time (>1 ms) and length

(>100 s nm). For example, accurate models to represent solute-solvent interactions

should account for solvent momentum so that its behavior can be consistent with

hydrodynamics, have the correct density at the desired temperature, and be able to

maintain a liquid/vapor interface over such a temperature [114].

To this end, several approaches have been used and demonstrated for phospho-

lipids [115–123], oligosaccharides and their water mixtures [124], proteins [125],

and dendrimers and polymers [126]. Coarse-grain force fields have been developed

from heuristically simplified models of biomolecules (e.g., water, alkanes, lipids,

etc.) and by systematic optimization procedures of a set of interaction potentials

between collections of atoms treated as rigid bodies. In the former case, the fitting

process relies on results from the finer atomistic MD using Monte Carlo schemes

[114, 127], random search algorithms including genetic algorithms (GAs) [128,

129], and hybrid algorithms to accelerate convergence using artificial neural net-

works (ANNs) [128] and gradient based algorithms near local minima.

Our effort focuses on a first-principles-based strategy in order to provide not

only the accuracy from finer grain calculations, but improved scalability and a

seamless coupling. We exemplify this next with a coarse-grain approach for

representing the dynamics of DNA.

4.1.1 Application Examples: Meso-Scale Dynamics of DNA

Our meso-scale model of DNA corresponds to a backbone-based structure, where

three pseudo-atoms, with two or three pseudo-beads, represent each nucleotide. For

each nucleotide, one pseudo-atom represents the phosphate group and another

represents the sugar group of the sugar-phosphate backbone. There is then a

pseudo-atom representing each of the different nucleosides (adenine, cytosine,

guanine and thymine). Additionally, guanine and cytosine have three mass-less

pseudo-beads, representing the three hydrogen bonding sites. Similarly, thymine

and adenine have two pseudo-beads (see Fig. 14). These pseudo-beads move as rigid

bodies with their parent pseudo-atom. This removes the need to define bond and

angle terms for them.

Statistics of the potential of mean force (between sets of atoms representing each

bead) is computed from various full atomistic DNA simulations. These distribu-

tions are then fitted to standard potentials in order to obtain the interaction para-

meters for every bead. The resulting force-field uniquely describes the interaction

of each bead with every other bead in system, whose total energy is given by

ETotal¼EBonds þEAngles þETorsions þEnonBond þEhBond; (16)
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where EBonds, EAngles, and ETorsions take the same form as those in Fig. 3, while the

EnonBond corresponds to a Morse type potential:

EnonBond ¼ D0 e�a �1þrij r0=ð Þ � 2e�0:5a �1þrij r0=ð Þh i
; (17)

and the EhBond:

EhBond ¼ D0 5
r0
r


 �12
� 6

r0
r


 �6� 	
cos4y; (18)

where y corresponds to the angle between a hydrogen and the corresponding

donor–acceptor pair.

Coarse-Grain Parameter Optimization

The snapshots used when computing the nearest neighbor parameters are analyzed

over 1,049 structures. For each snapshot, atoms comprising each pseudo-atom were

determined. The center of mass of these atoms was then computed and the

corresponding pseudo-atoms were placed at this center of mass.

Valence Parameters

Each snapshot was iteratively traversed and the two body bond lengths, three body

angles, and four body dihedrals calculated from the positions of the pseudo-atoms.

Fig. 14 Meso-scale model of

DNA
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These were tabulated and histograms of the distribution of these valence terms,

for each unique combination of pseudo-atoms, were generated (see Fig. 15a).

These distributions were shown to be a single-model Gaussian distribution

for the bonds and angles, and multi-modal for dihedrals. The only exception

occurred when considering the bond distribution between the phosphate (PHO)

and sugar (SUG) pseudo-atoms, which was bi-modal. This anomaly is explained

by considering that starting at the 5’ end, the SUG –> PHO bond length (4.4 Å)

is longer than the next PHO –> SUG bond length (4.0 Å). When constructing

the meso-model from the atomistic representation, if the backbone atoms are

alternatively labeled as PHO-SUG-PHP-SUS-PHO, this anomaly is effectively

resolved and the PHO-SUG, PHO-SUS, PHP-SUG, and PHP-SUS distributions

are uni-modal.

The parameters were obtained by performing a least squares fitting of a Gaussian

curve of the desired functional form. The fitting function is an exponential with

exponent equal to the relevant potential/2RT. For the bonds, the fitting function was

therefore y ¼a0e
�0:5k r�r0ð Þ2 2RT= . Table 2 gives the parameters obtained for the

various bond-stretch terms.

Fig. 15 Plots of (a) adenine–sugar bond distribution from atomistic MD and (b) adenine dimer

interaction energy. This includes the binding energy of the dimer as well as the interaction with the

water molecules

Table 2 Bond parameters for pseudo-beads

k0 (kcal mol�1 Å�2) r0 (Å)

SUG-THY 167.848 4.2136

SUG-ADE 155.974 4.6175

SUG-GUA 143.419 4.7412

SUG-CYT 193.31 4.1101

SUG-PHO 46.0059 4.0053

PHP-SUG 18.2605 4.4283
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Non-Bond Parameters

Two copies of the atoms comprising each pseudo-atom were obtained, displaced by

4 Å in the z-direction and individually immersed in a pre-equilibrated box of TIP3

water. The charges were maintained, and hence the only set of atoms with a net

charge were the five atoms comprising the phosphate (PHO/PHP) bead, with a

net �1 charge per set of atoms. If necessary, the system was neutralized with Naþ
ions and subjected to the same simulation protocol as before. First 100 ps of NPT

dynamics was performed, with snapshots of the last 20 ps (every 2 ps) saved. The

ten snapshots were then superimposed on each other and the average MD solution

structure obtained as previously discussed.

A constrained MD simulation was then run, where the center of mass of each of

the two sets of atoms are constrained by a harmonic potential. Every time step, the

distance between the two centers of mass is checked, and if they are not equal to a

specified distance, a restoring spring of magnitude –kDx is applied to all of the

atoms in the second set. Here, Dx is the differential distance from equilibrium and k
is a force constant of 500 kcal mol�1 Å�1. The center of mass of the two sets of

atoms are constrained, starting at 2.0 Å, in 0.1 Å increments, until 10 Å. After each

increment, 40 ps of NPT dynamics is performed to equilibrate the structure at the

restraint, followed by a further 20 ps of NPT dynamics, during which time the non-

bond energy of both sets of atoms is calculated and tabulated.

The average energy per center of mass separation was then computed and plotted

vs the center of mass (Fig. 15b). This function was then shifted so that its plateau

was at 0, and fitted to the Morse potential in (17) using the least squares fitting

procedure previously discussed. This fitting is the effective potential of mean force

between both sets of atoms, in the presence of water. This potential has both

electrostatic and van der Waals contributions, which is critical since none of the

pseudo-atoms are charged.

Meso-Scale Simulation of B-DNA Dodecamer

Simulation Protocol

Bond stretches are the highest frequency modes in any MD simulation. The largest

time step of any MD simulation is inversely proportional to the highest frequency

modes, which is related to the force constant by f ¼ 1 2p=
ffiffiffiffiffiffiffiffi
k m=

p
(assuming har-

monic bonds), where m is the reduced mass of the parameter atoms being consid-

ered. A rule of thumb is that the largest time step possible should be 1/(6*f). The

pseudo-atoms of this meso-scale force field are much heavier than those of regular

atoms and the largest bond force constant is one-fifth that of the typical largest

atomistic force constant, which allowed the use of a 10 fs timestep. Furthermore,

the meso-scale system contains fewer particles than its atomistic counterpart (each

nucleotide is composed of 3 pseudo-atoms, compared to about 40 for an atomistic

nucleotide) and it avoids electrostatic interactions because the pseudo-atoms were
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chosen to be neutral, which led to an overall increase in the times spanned during

simulations.

A 1.4-Å crystal structure of the B-DNA dodecamer (355D) was solvated in a

TIP3 water box and neutralized. This fully atomistic structure was simulated using

the usual procedure for 2 ns of NPT dynamics, with snapshots of the last 500 ps

(every 5 ps) saved for thermodynamic and structural analysis. The average MD

structure was calculated as before and the ions were removed. It was then converted

into its mesoscale description, with the waters modeled as inflated van der Waals

spheres. This water model is the same as the M3B model from our previous work in

Molinero et al. [124], and was parameterized to reproduce the density, diffusivity,

and cohesive energy of experimental bulk water. The mesoscale dodecamer is then

simulated for 2 � 106 steps, representing 2 ms of total simulation time. Snapshots of

the system during the last 50 ns of simulation were saved and used for thermody-

namic and structural analysis. The average MD structure during the last 50 ns was

calculated and the atomistic level description reconstructed from this average

structure. This reconstructed atomistic structure was then minimized and simulated

for 1,000 steps of NPT dynamics (Fig. 16).

Comparison of Meso-Scale and Atomistic Dodecamer Simulations

Timing tests indicate that the atomistic level simulation took twice as long to

complete 2 ns than the meso-scale did to complete 2 ms (150 vs 69 CPU hours).

This is remarkable, and represents a 2,000� speedup for the meso-scale model.

This opens the door for studying DNA system in the micro-second timescale.

As a measure of the similarities between the meso, atomistic, and crystal

structures, we calculate the CRMS. We find that the simulation structures are

quite different from the crystal structure (5.5 Å and 3.2 Å for meso and atomistic,

respectively), as well as from each other (4.7 Å difference between the two). This is

further illustrated in Fig. 17, where the average MD structures of both the meso-

scale and the atomistic structures are compared. A smooth backbone profile can be

Fig. 16 Meso-dodecamer (left and center) and its atomistic reconstructured model (right)
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observed in the case of the atomistic DNA, contrasted with the irregular profile for

the meso-scale case. The overlay of the two structures illustrated the sharp differ-

ences in the backbone torsions of the atomistic (blue) and the meso scale (red)

structures. A considerably larger distortion can be seen for the meso structure, in

particular the presence of several backbone kinks. The backbone parameters for

both sets of simulation are within the acceptable range of B-DNA, except for

the backbone twist, where the average MD structures are under-twisted (this is

a known issue with the AMBER force field). There is also significant deviation in

the backbone twist for the meso dodecamer, which is a consequence of the

aforementioned kinks in the structure.

From these helical analyses it is clear that further optimization of the meso-scale

force field is required. In particular, the Phosphate-Sugar-Phosphate backbone twist

angle and the Phosphate-Sugar-Phosphate-Sugar backbone dihedral angles need to

be optimized to prevent the under-twisting of the helix seen in the dodecamer

simulation. The helical rise in the meso-scale dodecamer is outside the accepted

range for B-DNA (3.4 � 0.2) which, when combined with the under-twisting of the

helix, points to unwinding of the helix.

The following section describes the application of QM-parameterized atomistic

and coarse-grain potentials to tissue engineering.

4.1.2 Application Example: Mechanoregulation in Polymer-Based

Hydrogel Networks for Tissue Engineering

We are currently studying the nanoscale properties that lead to improved micro-

scale mechanoregulatory response of polymer-based hydrogel networks for carti-

lage tissue scaffolding. The structural similarity of synthetic polymer-based hydrogels

to the collagen ECM found in human cartilage and their ease of processability

makes them ideal candidates for cartilage scaffold-supported cell therapies [131].

These hydrogels can act as a temporary artificial extra cellular matrix (ECM) to

provide mechanical support, or provide the ambience for new cells to grow towards

Fig. 17 Comparison of average MD structures between meso-scale and atomistic
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the desired lineage, as well as enable transport or confinement of cells to/within

defect sites. Yet, in spite of the significant progress in polymer-based tissue

engineering during the past decade, important challenges remain to be addressed

in order to restore tissues that serve a predominantly biomechanical function

[132–134]. Recent experiments demonstrate the existence of high strength double

network polymer-based combinations [135] that may serve as potential candidates

for cartilage tissue scaffold development, yet little is known about the atomic

composition and the nanometric structures that lead to the enhanced response.

We have developed a multiscale approach to characterize the nature of this phe-

nomena [130], and to provide an in silico framework for developing improved

materials for cell-therapies with high mechanical loading requirements.

Our approach to characterizing the mechanisms and for tuning the mechanical

response of polymer-based hydrogels involves a first principles QM-derived Dreid-

ing force field to investigate the thermodynamic and composition conditions for the

gel point near the Flory–Stockmayer transition in selected double network hydrogel

combinations (poly(acrylamide)-PAAm and poly(2-acrylamido-2-methylpropane-

sulfonic acid)-PAMPS), with N,N0-methylene bisacrylamide (NNMBA), and a first-

principles coarse-grain model for describing the long-term dynamics of percolation

based on composition and density ratios between the polymeric and crosslinking

agents. We found that percolation events at particular threshold ratios (between

polymer components and crosslinker concentrations) are a key atomistic mecha-

nism to promote enhanced mechanical strength in crosslinked hydrogel networks.

We used atomic charges and torsional potential energy curves from QM to calculate

single chain statistics (including radius of gyration as a function of degree of poly-

merization). Substituting the radius of gyration in an adjusted continuum model for

percolation from [136] led to an estimate of the number of polymer molecules

required to achieve percolation using the critical number density found from our

atomistic simulations (see Fig. 18). Using our constrained MD with a coarse-grain

potential based on a QM parameterized finite extensible nonlinear elastic (FENE)

[137], we have been able to determine percolation thresholds as a function of

composition (i.e., solvent, crosslinking agent concentration, molar ratio between

polymer component, among others) on single and double solvated networks.

Figure 19 shows two snapshots of our coarse-grain representation, on the left

a set of linear poly(acrylamide) chains mixed at a particular proportion with solvent

(water), starter, and crosslinking molecules, and on the right the appearance after

running MD-NVE (from a starting temperature of 300K) of a percolated structure

of poly(acrylamide). Our results are consistent with experimentally measured gel

points and help explain the precipitous loss of the high fracture energy in double

network hydrogels at particular crosslink densities [138]. We have also confirmed

the mechanical strengthening process via calculation of elastic constants and visco-

elastic response of the final networked structures, relative to the single network

components. These results will be reported in a separate publication. We were

able to determine the critical cross-link concentrations as a function of starting

monomer concentrations and degree of polymerization required for improved
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mechanical strength. These findings suggest a strategy for systematic characteri-

zation and optimization of polymer-based hydrogel molecular network architec-

tures, using design-level tuning of the structural and compositional variables that

correlate to their mechanical and thermodynamic response.

5 Concluding Remarks

Seamless integration of paradigms and simulation time- and length-scales, using

first-principles-based methods poses tremendous challenges that go far beyond

parameter coupling between methods and scales, requiring new physical models

Fig. 19 Snapshots of coarse-grain unit cell model of PAAm and crosslinker mixture (left), and
PAAm percolated structure after a few ns of MD-NVT (right)
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and novel computational schemes capable of systematic upscaling or downscaling.

Nevertheless, the hierarchical strategy we have followed has spurred important

breakthroughs in the development of methods that bridge paradigms and scales,

without sacrificing the ability to model complex chemical processes, including

the mixed QM-APBS scheme to understand the solvation effects on molecular

reactivity, our reactive and non-adiabatic explicit eFF, reaxFF and eFF, and our

efficient coarse-grain methods to bridge, using finer details from atomistic force

fields, into the meso scale for conformational studies of systems that are defined

through complex chemical interactions (including H bonding). We have demon-

strated how these methods are applied to problems that have been untreatable

using conventional QM or MM/MD methods.

As described for our simulations of CNT growth, ReaxFF extends our ab initio

knowledge of the reactivity of small, model systems to complex, extended phe-

nomena involving thousands of atoms throughout nanoseconds of dynamics. This

sets us closer to the goal of elucidating and optimizing the fundamental mechan-

isms that control the chirality of CNTs during their growth. Our results using

the eFF methodology, on the hypervelocity shock-induced and electron-induced

chemistry of materials, demonstrate its unique ability to depict and predict accu-

rately processes that are highly dependent on electronic contributions, enabling

us to understand the real-time dynamics of systems with excited electronic states,

all of which is beyond existing QM, QM-approximations (e.g., tight-binding),

or MM/MD methods, and in some cases, experimental observation.

Last but not least, our parameterization of non-reactive atomistic and coarse-

grain force fields has proven invaluable to understanding and predicting the struc-

ture and dynamics of conformations of large biological complexes, such as

GPCRs and DNA, both of which lay beyond the capabilities of experiments,

considering GPCRs have not been crystallized in their native form (embedded

in the cellular membrane), and that activation and critical conformation events in

these macromolecules stretch to the micro-second, and beyond, timescales.

We also described the use of our coarse-grain and rigid body MD approaches to

elucidate a long-standing problem, associated with the chemical processes that

lead to enhanced mechanical strength in polymer-based double network hydrogels

(i.e., percolation thresholds as a function of polymer molar ratios and cross-

linking concentrations near the Flory–Stockmayer transition limit in polymers

gels), of significant importance in the development of scaffolds for load-bearing

tissue engineering (e.g., cartilage).

In spite of our progress in methods development and the advent of more

powerful computing resources, in-silico de novo design and optimization will still

have to rely on the correct chemical and physical insight from modelers, especially

considering the combinatorial explosion of interactions and the increased number

of degrees of freedom as one approaches the continuum macro-scale. As we have

shown, a first-principles-based approach does not need to propagate all degrees

of freedom during upscaling, but those that are pertinent to the properties and

phenomena of interest.
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Dynamic QM/MM: A Hybrid Approach

to Simulating Gas–Liquid Interactions

Scott Yockel and George C. Schatz

Abstract In this chapter we describe molecular dynamics simulation methods in

which the system being studied is divided into a region where quantum mechanics

(QM) is used to determine forces for doing Born-Oppenheimer direct dynamics

calculations (i.e., doing electronic structure calculations on the fly to determine

energies and forces) and another region where empirical potentials that are com-

monly used in molecular mechanics (MM) calculations are used to determine

forces. The two regions are linked through an embedding process that may or

may not involve the possibility that atoms can be passed back and forth between

regions at each time step. The idea with this dynamic QM/MM methodology is that

one uses QM calculations to define the potential surface in portions of the system

where reaction occurs, and MM to determine forces in what is typically a much

larger region where no reaction occurs. This approach thereby enables the descrip-

tion of chemical reactions in the QM region, which is a technology that can be used

in many different applications. We illustrate its use by describing work that we have

done with gas–liquid reactions in which a reactive atom (such as an oxygen or

fluorine atom) reacts with the surface of a liquid and the products can either remain

in the liquid or emerge into the gas phase. Applications to hydrocarbon and ionic

liquids are described, including the characterization of reaction mechanisms at

hyperthermal energies, and the determination of product branching and product

energy distributions.
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1 Introduction

There are many cases in simulating chemical processes in which the necessary

system size to provide a realistic model is quite large (e.g., enzyme reactions,

surface phenomena, condensed phase, . . .). While the structure and electrostatic

interactions in these systems can be well studied with typical molecular mechanics

(MM) force fields using molecular dynamics (MD), no chemical reactions (bond

making/breaking events) are allowed to take place. On the other hand, it is well

established that standard quantum mechanical (QM) methods can compute bond

making/breaking with great accuracy; however, the efficiency of these codes limits

their practical use to only ~100 atoms on typical computational resources. Even if

the computing power was available to handle a larger (~1,000 atoms) QM compu-

tation, then it is unlikely that a simulation could be performed for long enough

(~10–100 ps) to represent appreciable chemical change in the molecular system.

Therefore, dividing up a large-scale system into reactive (bond making/breaking)

and nonreactive (electrostatic, steric, interacting vdW, . . .) regions is essential.
Research combining QM and MM has an extensive history going back to the

early 1970s, and there are numerous review articles [1–12], mostly concerned with

enzymatic reactions. A key component of many of these studies concerns the

technique used to describe covalent bonds that cross between the QM and MM

regions. A common procedure is to add an atom in the QM region where the

covalent bond is cut so as to avoid the creation of dangling bonds. This link-atom

approach [13] is relatively easy to implement, but there are many variations on what

the properties of the link-atom should be [14]. Typically it is taken to be a hydrogen

atom, which means that standard electronic structure packages can be used without

modification; however in some cases this is not appropriate, or modified hydrogen

atom properties should be used. There are also questions about how the QM

calculations should be embedded into the overall system. Popular schemes are

based on the Morokuma ONIOM scheme or related schemes [15–17], but there
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are issues concerning the partitioning of charges between QM or MM regions that

keep being refined.

One major difference in the charges in the QM and MM regions is that the MM

charges typically do not change during the simulation as they are predefined in the

potential force field. The development of QM/MM methods in which the charges

from one region dynamically affect those in the other, as would be the case in a true

system, is an active aspect of research [18–20]. This approach is referred to as

electrical embedding, as opposed to the simple mechanical embedding where the

charges are fixed. Evidently, mechanical embedding should be used when charge

transfer or long range polarization effects are minimal for the chemical system

being studied.

Only a small fraction of the QM/MM studies have explicitly considered molecular

dynamics calculations involving both QM and MM regions, as the computational

time associated with a QMmolecular dynamics calculation is quite demanding. Some

examples where this has been done are covered in [21–26]. Recently, our group has

developed a simulation model to specifically study reactions at the gas–liquid

interface that merges classical MM for the entire system with a QM treatment of

the atoms in the reaction region(s) at each time step to form a hybrid QM/MM–MD

approach. This new computational approach extends the direct dynamics models our

group has used to study gas phase collision chemistry previously [27], and now

includes MM calculations for the liquid that is not involved in reactive events. Our

primary target liquids have been squalane (for which there are many experiments)

and ionic liquids (an unconventional fuel of current interest), and in most cases we

have been interested in studying the collision of reactive atoms such as atomic

oxygen (O) and fluorine (F) with the liquid surfaces in order to simulate gas–surface

molecular beam experiments. In addition, since most of these experiments refer to

reactive atoms that have several eV of energy (hyperthermal energies), our appli-

cations have been concerned with highly nonthermal processes in which reaction

mechanisms that do not normally contribute to thermal kinetics are described.

Projects concerning the O + squalane [28] and F þ squalane [29] reaction

dynamics have been completed, and they provide detailed information about the

spatial distribution of reactive sites and the correlation of the reaction mechanism

with the angular and translational distribution of the scattered products. These

results have been used to give a detailed mechanistic understanding of beam–liquid

surface experiments in the Minton lab [30, 31]. In some cases we were able to

identify products not initially considered in the experimental studies, providing

stimulus for subsequent molecular beam measurements where they were seen [32].

Our F þ squalane studies [29] have been used to interpret experiments done by

Nesbitt and coworkers at thermal collision energies [33–35], showing that there is a

component of the HF product vibrational and rotational distributions which

involves escape of HF from the surface with little relaxation. In more recent work

we have considered the collisions of atomic oxygen (and also hyperthermal argon)

with the surfaces of ionic liquids [36, 37], providing detailed information about

a class of chemical reactions that has not been considered previously, and enabling

the interpretation of experiments by Minton, McKendrick, and collaborators.

Dynamic QM/MM: A Hybrid Approach to Simulating Gas–Liquid Interactions 45



Our motivation for doing these studies is that the structure and dynamics of

chemical interfaces at phase boundaries (e.g., gas–liquid interface) is of significant

importance to chemistry and only recently has the capability been established to

describe these processes (both with modeling and with experiments) at an atomistic

level. Newly developed experimental methods provide the capability to study the

reactivity of a liquid surface with beam–surface scattering, which provides detailed

mechanistic information, but it is often difficult to interpret these experiments

without theoretical modeling. Among the experiments being developed is work

by Nesbitt et al. [33–35] who have resolved quantum-state reaction dynamics via

direct absorption detection of the rovibrational states of the nascent gaseous

products coming from the surface using high resolution infrared spectroscopy.

Related technology has been developed by Nathanson [38, 39] and McKendrick

[40, 41], who have used laser-induced fluorescence methods to detect the

nascent products in gas–liquid surface reaction dynamics studies. In addition,

Minton and coworkers [31, 32] have performed molecular beam experiments

involving hyperthermal oxygen scattering from liquid surfaces, in which a mass

spectrometer is used to determine the angular and translational energy distributions

of the nascent gaseous products. These experiments, as well as others, require

theoretical modeling that includes the flexibility to compute the dynamics of the

reactive events (and sometimes several sequential reactive events), while at the

same time the simulation needs to include a considerable portion of the liquid

(thousands of atoms) so that energy transfer, diffusion, and electrostatic interactions

can be described. Also, the hydrocarbon and ionic liquids are often nanostructured,

which means that a simulation region of sufficient size is needed in order to capture

all of the dynamical complexity that can occur.

2 Description of the Method

2.1 Basic QM/MM

Since most large-scale chemical processes can generally be partitioned into reactive

and nonreactive regions, dividing up the system to be treated with different levels of

sophistication in the theoretical model is logical. As stated above, the atoms in the

reactive parts of the model are treated by direct dynamics QM (electronic structure)

computations, while the remaining nonreactive part is treated with an empirical

MM potential. Our dynamic QM/MM code utilizes various subroutines from

TINKER 4.2 [42] to compute the MM part of the simulation (forces and potential

of the MM atoms). For the QM part of the code, subroutines from the MSINDO 2.1

electronic structure code were used [43], which includes the MSINDO (modified

symmetrically orthogonalized intermediate neglect of differential overlap) semi-

empirical Hamiltonian to compute the energy [44, 45]. In general, semiempirical

methods are a middle ground between a fully ab initio QM calculation and fully
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empirical MM potentials and are suitable for efficiently computing the electronic

structures of hundreds of atoms in a reasonable time (seconds) to be used in

dynamics. In comparison to other standard semiempirical methods, MSINDO

provides reaction energies and barriers for gas-phase reactions of atoms with

small hydrocarbons that are nearer to experimental values than AM1 and PM3

[27]. Therefore, it has been the QM method of choice for our studies on O(3P)

and F(2P) with squalane. Additionally, we have used MSINDO when studying

O(3P) þ [emim][NO3], a room temperature ionic liquid.

Many of the features of the nondynamic QM/MMmodel, which has been widely

used as a multilevel computation, exist in our dynamic QM/MM algorithm. When

bonds straddle the QM/MM boundary, the link atom method is employed to

truncate the QM region without leaving dangling bonds. For example, if a C–C

bond spans this boundary, then the C(MM) atom is replaced with an H(QM) atom at

0.9 Å (the equilibrium C–H bond length) from the C(QM) during the QM part of

the computation. During a full QM/MM computation, three separate calculations

are performed, as prescribed by the ONIOM mechanical embedding approach. In

the following notation, the atomic system is denoted in parenthesis. First the full

atomic system is computed with MM, [EMM(QM þ MM)]. Then the QM atomic

system is computed with MM [EMM(QM)], and the QM system with QM

[EQM(QM)]. Therefore, the energies, potentials, forces and other properties are

computed as follows: EQM=MM ¼ EMM QMþMMð Þ � EMM QMð Þ þ EQM QMð Þ.
Subtracting EMM(QM) from EMM(QM þ MM) is an approximation that describes

electrostatic interactions between charges in the QM and MM regions at the MM

level. The importance of this depends on the system being studied and the choice of

partitioning at the QM/MM boundary, but it is consistent with the assumptions in the

mechanical embedding model. In the case of our studies with squalane, the system is

a neutral nonpolar liquid and charge transfer between interacting atoms from inside to

outside the reactive region is thought to be negligible; therefore a simple mechanical

embedding approach was chosen. Additionally, we rely on this assumption, as

discussed later, when we allow the QM region to change over time.

One of the most common numerical methods used in molecular dynamics to solve

Newton’s equations of motions is the Velocity Verlet integrator. This is typically

implemented as a second order method, and we find that it can become numerically

unstable during the course of hyperthermal collision events, where the atom velo-

cities are often far from equilibrium. As an alternative, we have implemented a fifth/

sixth order predictor–corrector scheme for our calculations. Specifically, the driver

we chose utilizes the Adams–Bashforth predictor method together with the Adams–

Moulton corrector method for approximating the solution to the equations of motion.

2.2 Dynamic Partitioning via the “Seed Atom” Method

In some simulations, like that of large biological systems that involve reactive sites

and proton transfer, the choice of a reactive region does not change while the
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reaction occurs and the QM/MM scheme is easily implemented. However, there are

many chemical systems in which a priori knowledge about where the reactive

region will be during the course of the simulation is not predictable by chemical

intuition. Within our group we have had success employing a simplistic approach to

a QM/MM–MD algorithm that is applicable to chemical systems where a priori

knowledge is largely unavailable as to which atoms should be considered as part of

the reactive region [28, 29]. This is specifically the case when gaseous atoms collide

with an amorphous surface that can readily diffuse over time. For example, in our

studies with squalane we even found that the incident atom was not always confined

within a ~20 Å (radius) � 20 Å (height) cylindrical box that contains over 2,000

atoms comprising the liquid. This is not the situation that is observed with crystal-

line solids or self-assembled monolayers. When modeling those surfaces, one can

predefine atoms into a QM region because the incident atoms would rarely interact

with more than the first or second monolayer.

In order to circumvent the limitation of predefining which atoms are to be

treated with QM, we allow atoms to be redefined dynamically as “in” or “out” of

the reactive region depending on their location relative to radical species that are

capable of undergoing a reaction. Specifically, the reactive regions are centered

around “seed atoms”, which are defined as all of the open-shell/radical atoms. In

the case of our studies involving atomic radicals reacting with squalane, the seed

atoms were defined as the initial gaseous incident atom plus, over the course of the

simulation, any atom that loses one of its originally bonded atoms. For example

(see Fig. 1), if the F(2P) atom abstracts a H from squalane, then the carbon radical

Fig. 1 Pictorial representation of the dynamic partitioning using the “seed atom” method for the

F(2P) þ squalane reaction
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site also becomes a seed atom, since this radical site is considered to be a reactive

atom. The radius of the QM region around a seed atom (or the distance from the

seed atom to atoms treated as MM) was defined as the distance where the forces

between the atoms are less than 1 � 10�7 hartree/bohr, at which point the

differences between MM and QM forces are thought to be negligible. This was

empirically determined to be 10.0, 10.0, 12.0, 12.5 bohr for F, O, H, and C,

respectively, when interacting with methane. We also found it convenient to do an

assessment on which atoms should or should not be in the reactive region only

every ten time steps, since this involves a distance search and, for 10-a.u. time

steps, the atoms have not moved very far. Throughout much of the simulation it is

common to have between 75 and 150 atoms within the reactive region(s). Given

the effort associated with QM calculations at each time step, the use of a

computationally efficient semiempirical QM method such as MSINDO is clearly

desirable.

2.3 Issues with Dynamic Partitioning

It must be noted that the instantaneous switching of an atom in and out of the

reactive region has raised concern in the past [21]. This is because from one time

step to the next there will inevitably be an abrupt change in the forces on that

atom. In dynamics studies this discontinuity can influence the integration with

respect to time and conceivably lead to nonphysical behavior. To circumvent

this we use a more robust integration method (a sixth order predictor–corrector

algorithm) that is not available in TINKER. This integration technique should

help dampen out any fluctuations in the force/position changes that would lead

to discontinuities when atoms are switched back and forth between the MM and

QM regions.

Recently other groups have designed algorithms that include dynamically

moving QM regions to model explicit solvent interactions. Morokuma et al. have

extended their multilevel ONIOM technique to include the exchange of solvent

(ONION-XS) molecules dynamically throughout the simulation [23]. They imple-

mented a fifth order polynomial switching function to accommodate the instanta-

neous change in forces and potentials on atoms changing from one level to the next

in the ONIOM regime. This technique extends the “Hot Spot” method that Rode

et al. originally used [46] by not only smoothing out the differences in forces of

atoms that are in a defined “buffer” region between the various levels, but also

smoothing out the forces for all atoms in the QM region when any atom crosses in

or out of the buffer region. In addition, the ONIOM-XS method uses the same

switching function algorithm to smooth the potential energy for the atoms in the

QM and buffer regions. However, knowing how large the buffer region needs to be

for each chemical system is uncertain. Furthermore, it has been demonstrated that

when multiple molecular groups are in the buffer region the ONIOM-XS method is

no longer able to remove all discontinuities in the potential [23].
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Truhlar and coworkers have developed an elaborate algorithm for smoothing

the forces and the potential of the atoms switching regions in order to conserve

both energy and momentum [21]. Their adaptive partitioning (AP) method is able

to fix the conservation problem in a long time regime (400–1,000 ps), and they

suggest using their permuted AP method when dealing with equilibrium condi-

tions, a situation when energy or momentum drift could noticeably influence the

physical or chemical behavior of the system. The permuted AP method does

however include a number of multilevel computations at each time step (as

opposed to just one) in order to assess how the potential smoothing functions

are applied. This increases the number of computation by 2N for each N groups in

the buffer zone. By our estimates, in the squalane system ~4.4 carbon atoms

would be in the buffer zone on average, thus increasing the QM calculations by

>21 times and making the AP method unattractive when thousands of trajectories

are needed.

In both of the algorithms just described, only small solvent molecules (e.g.,

H2O, NH3, . . .) are present in the simulations, and these molecules never straddle

a boundary. The use of switching functions when an atom or small molecule is in a

buffer region is convenient when the solvent molecule does not span from inside

the QM region, through the buffer, and into the MM region. In this situation, the

buffer region atoms are being given some MM character while still being bonded

to atoms in the QM region, which could lead to extraneous forces on all the QM

atoms in that molecule. This makes the inclusion of such algorithms to our

current model nontrivial. Additionally, it must be noted that in our simulations

we are not concerned with equilibrium conditions since the incident atom collides

at the surface with 1–5 eV of translational energy. Furthermore, our simulation

times are <10 ps, at which appreciable energy or momentum drift should be

very minimal.

Though we had success with dynamic partitioning with squalane, when we

began to study gas–liquid collision chemistry of room temperature ionic liquids,

dynamic partitioning as we had done in the past became problematic. This is

because the liquid, 1-ethyl-3-methyl-imidazolium nitrate or [emim][NO3], is

composed of cations and anions, and each of these cannot meaningfully be

divided into parts in the QM and MM region. This would require some sort of

charge partitioning algorithm, likely requiring charges to switch back and forth

between regions as a function of time, resulting in extraneous forces. Because

the liquid is ionic, it has slower diffusion and much higher density than the hydro-

carbon liquids, preventing the surface from changing much over time. After

testing numerous trajectory paths, we found that it was rare that the incident

atom with an ET � 5.0 eV had a direct interaction with more than the first two ion

pair layers. Therefore we decided to fix the QM region to include five ion pairs

(115 atoms) at or near the surface and the incident O(3P) atom. In comparison

to squalane, where there were often several well separated radical species,

O(3P) þ [emim][NO3] can be treated with a more localized QM description.
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3 Simulating Gas–Liquid Interactions

3.1 Building a Model Liquid Surface

Prior to the scattering of a gaseous atom off of a liquid surface, a properly

equilibrated surface must be created. Initially, we have created a bulk model of

the desired liquid with the TINKER program by using the OPLS all-atom force field

[47] and the isobaric–isothermal (NPT) ensemble for ~1.0 ns at 400 K with periodic

boundary conditions applied. This ensures that the fluctuations in bulk density have

reached a minimum. Afterward, the final structure of this simulation is used as the

initial structure for an additional NPT simulation which is cooled to 298 K (or some

arbitrary experimental temperature) for ~0.5 ns at which the average bulk density is

measured in comparison with physical property values. In our work with squalane

(C30H62) the density was found to be 0.769 g/cm3, compared to the observed value

of 0.815 g/cm3. To create a liquid surface, at this point the periodic boundaries in

one direction are extended by a factor of three so that two empty vacuum regions

are present on top and bottom of a slab of the equilibrated bulk liquid. This system

is then run for ~1.0 ns with the NVT ensemble to allow for surface relaxation of the

bulk liquid. After the surface density has equilibrated, random snapshots of the

surface are used as the starting surface for the reactive scattering simulations. It is

these surfaces that are used to compute the average surface density profiles, which

enables us to analyze the types, locations, and orientations of different molecules

(or parts of the molecule, like functional groups) within the liquid.

In our previous work, we were able to show that, even though the bulk squalane

contains twice as many secondary carbons as primary or tertiary, at the surface the

majority of the carbons are primary and stick up out of the surface (see Fig. 1). It is

important to understand what types of atoms are on the surface as their reactivity is

what drives the surface chemistry. Additionally, with our [emim][NO3] surface we

found that the anion is more abundant at the surface than the cation and that the

ethyl-chains that lie on the surface tend to stick up towards the vacuum [37].

However, we found that there exists a slightly different surface topology for

[emim][NTf2], which includes a larger anion that keeps the ethyl chain from

protruding out of the surface [36]. In contrast, the surface of [C12mim][NTf2] has

long hydrocarbon chains sticking up into the vacuum, causing a noticeable differ-

ence in the reaction profile that occurs upon gaseous atom collision.

3.2 Gas–Liquid Scattering Model

In order to simulate gaseous atoms scattering from a liquid surface that represents a

realistic sampling of the various chemical and surface features, various input

conditions should be considered to enable a connection to the experimental con-

ditions. The following conditions are what we have chosen for our models. After an
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equilibrated surface has been generated, multiple snapshots that are well separated

in time are used as the input for the scattering surface. Each of these snapshots

represents a unique surface, and several such surfaces are sampled in the trajectory

calculations. Because of the nature of the QM/MM calculation, periodic boundaries

are not used, and therefore, to keep the surface density consistent over the time of

the simulation, we fix the coordinates of atoms in the outer walls and base of the

liquid as shown in Fig. 2 for O þ [emim][NO3]. The incident atom is directed to

collide with the surface at locations that are chosen from a series of grid points

spaced ~2.5 Å apart to ensure sampling of the various functional groups or atom

types that are present at the surface. In order to understand the angular dependence

of the scattering and not bias the incident atom to a particular angle of incidence,

several azimuthal angles are sampled and results are considered from different

incident polar angles (yi) relative to the surface normal. Figure 3 provides a sche-

matic representation of this basic setup, which was utilized in our various gas–

liquid scatter experiments. In the case of our O/Ar þ [emim][NO3] studies, ten

unique surfaces, nine points on the surface grid, four azimuthal angles (0�, 90�,
180�, 270�), and four incident polar angles (0�, 30�, 45�, 60�) are considered for

Fig. 2 Side view depiction of the 32.3 � 34.5 � 31.6 Å3 QM/MM simulation box of O þ [emim]

[NO3]. The sticks represent the 2,093 atoms computed with MM and the tubes are the 116 atoms

computed with QM. Atoms within the 5 Å thick shaded regions on the sides and bottom are the MM

atoms kept fixed during the simulations to keep the liquid density from changing over time
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a total of 1,170 trajectories. For this chemical system there exist ~40–60% scattered

nascent products, which provide a large enough sample set to compute statistical

averages.

4 Application of Dynamic QM/MM to Gas–Liquid Scattering

4.1 Squalane

Squalane (C30H62) is a branched hydrocarbon with very low vapor pressure. It is a

popular liquid for molecular beam experiments as the chance that atoms in the beam

will collide with molecules evaporating from the liquid is sufficiently low; thus the

beam atoms can move ballistically, and reactions will only occur at the interface.

Experiments from Nesbitt et al. [34, 35] and Minton et al. [31, 32] have demon-

strated that, with incident F(2P) or O(3P) atoms, there exist two distinct reactive

processes with squalane. When the incident atom and nascent products have very

few collision events and spend very little time (on the order of ps) in the liquid, the

products leave the liquid with velocities and internal states that are largely reflective

of the primary reactive event. For hyperthermal initial conditions, this mechanism

is referred to as the hyperthermal desorption/scattering (HDS) component. On the

other hand, the incident atom and nascent products may have many collisions,

spending significant time in the liquid (ns–ms). In this case, the products leave the

surface with comparable energy to the surface temperature, and the mechanism is

referred to as the trapped desorption (TD) component. Due to current computing

resource limitations, our current dynamic QM/MM can only simulate <10 ps of

these reactions. Thus, any TD products coming from the liquid are missed; these

products are still trapped in the liquid at the termination of the simulation.

20Å

20Å

θi

15Å

15Å

F

C30H62 (squalane)

Fig. 3 Schematic picture of

the simulation region. The

outer region is composed of

fixed coordinate atoms while

atoms in the inner region are

allowed to move freely.

Arrows indicate the trajectory
of the incident fluorine atom

with angle of incidence yi
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We have completed two complementary gas/surface collision studies with

squalane, using incident O(3P) with 5 and 1 eV and F(2P) with 1 and 0.5 eV initial

translational energy [28, 29]. To understand the viability of using MSINDO for the

QM method, we computed the reaction enthalpies and barriers for the H abstraction

and elimination reactions of O/F with methane and ethane, and compared the results

to those from the advanced ab initio method CCSD(T). These comparisons show

that for the reaction barriers, which are important for the bond making/breaking

events in our simulations, the MSINDO computations are comparable (~0.15 eV)

to the CCSD(T) results. For the methane reaction, the H abstraction reaction (O þ
CH4 ! CH3 + OH) has an DErxn ¼ �0.342 eV whereas with F the reaction is

more exothermic (as expected) with an DErxn ¼ �1.418 eV, based on MSINDO.

Also, the reaction barriers are completely distinctive for these two reactions, with

the barrier for O + CH4 being 0.564 eV and that for F + CH4 only 0.167 eV. The H

elimination reaction (O + CH4 ! CH3O + H) has a quite different thermochemis-

try with a DErxn ¼ 0.081 eV while that for F + CH4 is DErxn ¼ �0.015 eV; the

reaction barriers are 1.869 and 1.769 eV, respectively. Generally, the MSINDO

computed thermochemistry with ethane has slightly lower reaction barriers as

compared to methane for both the H abstraction and elimination channels.

Considering the differences in thermochemistry between F and O reactions with

methane and ethane, it is not surprising that in our F + squalane studies, with

incident energies of 1.0 and 0.5 eV, no H elimination reactions are found; in

contrast, in O + squalane with the incident energy of 5 eV the probability of an

H elimination reaction is as high as 0.14. Additionally, in the O collision studies

double H abstraction and C–C bond cleavage occur with probabilities as high as

0.22 and 0.06, respectively. Another interesting difference in these two reactions is

in the probability that the product does not desorb from the surface by the end of the

simulation time (~10 ps). Upon H absorption, HF has a desorption probability of

0.90–0.95 (dependent on incidence angle), while OH has a bit lower probability of

0.71–0.83. This may be in part due to the average depth of penetration of the

incident atom before the reaction occurs, whereas the O average depth for H

abstraction is ~0.5 Å deeper than for F. Also, HF is formed with a higher probabi-

lity than OH, with reaction probabilities of 0.78 and 0.41, respectively, which is

understandable given that the MSINDO reaction barriers for H abstraction (of

methane or ethane) are ~3–4 times higher for O than F. However, the copious

formation of HF does not necessarily translate into the efficient transfer of the

incident energy into the product’s vibrational, rotational, and translational modes.

To examine these results in more detail, we now look at how the vibrational

states of the HDS component for the H abstraction product are affected by the

choice of F or O as the reactant. We compute these vibrational states based on the

classical histogram method [48], wherein the vibrational quantum numbers (calcu-

lated from the vibrational action [49]) is rounded to the nearest integer to determine

vibrational state populations. A similar method is used to define rotational quantum

number starting from the classical rotational angular momentum.

The dynamic QM/MM calculations show that the nascent gaseous product

HF leaves the surface with nearly all its vibrational distribution in either the
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n ¼ 1 or 2 state, and is split fairly equally between them. This is similar to what is

seen for gas phase reactions of atomic fluorine with hydrocarbons, indicating that

there is only modest vibrational relation as the HF exits the liquid. For the OH

product, most of the vibrational distribution is in n ¼ 0, with only a fraction (0.13)

being in the n ¼ 1 state. This reflects the smaller energy release in this reaction,

together with inefficient conversion of reagent kinetic energy into product vibra-

tional energy (as is also known from gas phase analogs). When the incident energy

of O is lowered from 5 to 1 eV there is even less population of OH in the n ¼ 1

state, with a probability of only 0.05. On the other hand, when changing the incident

energy of F from 1.0 to 0.5 eV, there is a decrease in the n ¼ 0 population and an

increase in the n ¼ 2 population. The vibrational distribution of HF with the lower

incident energy of 0.5 eV is more closely aligned with the experimental results from

Nesbitt et al. where the incident energy is ~0.08 eV. This indicates that the

population of the product vibrational modes is not governed by the incident energy

of the colliding gaseous atom, but is mostly due to the release of energy in the bond

breaking event.

Some of the energy released during the reaction is also transferred into the

rotational states of the nascent products. Figure 4 presents the distribution of

rotational states of HF for the major vibrational states. For the n ¼ 1 state of HF,

the distribution of rotational states is largely unchanged by the incident energy,

while for n ¼ 2, there are slightly hotter rotational states from the 0.5 eV initial

energy. A more drastic change in rotational distribution can be seen when changing

Fig. 4 Distribution of rotational states for the n ¼ 1 (red) and n ¼ 2 (blue) vibrational states of
HF, as obtained from F þ squalane simulations. Solid lines are for 1.0 eV and dashed lines are for
0.5 eV input translational energy

Dynamic QM/MM: A Hybrid Approach to Simulating Gas–Liquid Interactions 55



the incident energy of O from 5 to 1 eV. With 5.0 eV incident energy, the OH

rotational distribution peaks around J ¼ 5–6 and has a bit of a Boltzmann-like

distribution. On the other hand, with 1 eV incident energy the OH rotational

distribution is hotter and peaks around J ¼ 10–12. This is further evidence that

the transfer of energy into the product states is not governed by the incident energy.

Comparing translational energy distributions provides another contrast of the

results from F vs O. Here we compare the H abstraction products (OH and HF) as

well as the inelastic scattered atoms (O and F). For both inelastically scattered

products there is a similar variation of final translation energy distribution with

respect to angle of incidence. At 60� angle of incidence there is a broad distribu-

tion of translational energies, covering the range from almost zero energy to an

energy equal to the incident energy (i.e., 1.0 eV for F and 5.0 eV for O) as shown in

Figs. 5 and 6. By contrast, at 30� angle of incidence, most of the input translational

energy is transferred into the liquid.

There is a notable difference in the final translation energy of the H abstraction

products, OH and HF. The OH final translational energies are very similar to the O

energies and still have a distinctive variation with respect to the incidence angle.

In contrast, the HF product final translational energies are largely independent of

Fig. 5 Distribution of product translational energies in eV of HF (left) and scattered F (right) from
incident translational energies 1.0 eV (top) and 0.5 eV (bottom) and for each angle of incidence

30�, 45�, and 60�
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Fig. 6 Distribution of product translational energies in eV for OH (top) and scattered O (bottom)
for O þ squalane collisions with an incident translational energy of 5 eV and for each angle of

incidence 30� (solid red), 45� (dashed blue), and 60� (dotted green)
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incidence angle in comparison to the scattered F energies. Also, there is very little

difference in the final translational energy of the HF product with regard to input

translational energy. Furthermore, for the 0.5 eV incident energy it is even common

that the HF product has more final translational energy than F had initially. This

brings clarity to the notion that the molecular energy transferred to the product

states is mainly from the chemical reaction that takes place and not from the

collision energy.

4.2 [emim][NO3]

We have also applied our dynamic QM/MMmodel to study the surface reactivity of

room temperature ionic liquids (RTIL). These RTIL are quite unique liquids in that

they are comprised solely of cation and anion pairs that can be interchanged with

other types of cations or anions; therefore, their physical and chemical properties

are a bit tunable. Generally these liquids are nonvolatile and nonflammable, chemi-

cally and thermally stable, and possess high ionic conductivity. Our interest in

RTIL is in their use as environmentally conscious hypergolic bipropellants.

Although these liquids are becoming more readily utilized as solvents, little is

known about the surface reactivity of these liquids. Since we have had some

success in analyzing the reactivity of squalane via gaseous atom/surface scattering,

we extended our work to include a simple RTIL, 1-ethyl-3-methyl-imidazolium

nitrate, referred to as [emim][NO3]. This liquid can be viewed as three distinctive

components – the NO3 anion, the imidazolium ring cation, and the nonpolar

hydrocarbon tail (ethyl-chain) – all with their own unique local chemistry.

The [emim][NO3] RTIL was chosen because an OPLS-AA force field had

already been developed for it [50], and it limits the chemical interactions to only

C, H, O, and N, atoms for which we have confidence in using MSINDO to predict

reasonably accurate thermochemistry of nitrogen-containing ring systems [51, 52].

In order to grasp the difference in the reactivity of the different surface compo-

nents with each other. As opposed to the incident atom, we chose to compare the

nonreactive scattering of Ar with the surface to the chemistry that results in reactive

scattering with O(3P), both with an initial 5.0 eV of translational energy.

The gas–liquid scattering setup is very similar to that described with the squa-

lane experiments in the previous section. However, as mentioned in Sect. 2.3, the

QM region in these simulations was fixed to a localized region near the surface. Our

surface analysis of [emim][NO3] indicates that the ethyl-C sticks up out of the

surface, followed by an even distribution of cations and anions. This means that

there are readily accessible H atoms sticking up out of the surface for H abstraction

or H elimination reactions to occur before the incident O crosses the surface

threshold (the point where the density is equal to half the bulk density). Our

study was done in tandem with Minton and coworker’s similar experimental

study [36] that used the RTILs [emim][NTf2] and [C12mim][NTf2], which they

are able to obtain with high purity, unlike [emim][NO3] at the time of their study.
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In both of these liquids the computed surface topology demonstrated that the large

anion and the ethyl-chain are equally present at the surface, while the longer C12-

chain extends well out of the surface, thus exposing a significant amount of

accessible H to the incoming O atoms.

Upon collision with Ar, some translational energy is transferred into the [emim]

[NO3] surface causing minor changes in the local chemistry as shown in Table 1.

Nearly all of the incident Ar atoms scatter from the surface (a probability of 0.91)

with a small fraction trapped at the end of the simulation time of 7.3 ps. The

momentum transfer causes on average two to three proton transfers to occur

between the imidazolium ring and the anion (see Table 2), thus neutralizing the

Table 1 Probabilities for

scattering Ar and O(3P) from

an [emim][NO3] surface,

including the distribution of

each nascent product

From Ar From O(3P)

Totala 0.17 � 0.01 0.57 � 0.02

Incident atomb 0.91 � 0.03 0.23 � 0.01

HNO3 0.06 � 0.01 0.04 � 0.006

emimc 0.10 � 0.01 0.12 � 0.01

emim + [NO3]
d 0.01 � 0.003 0.05 � 0.006

O – 0.13 � 0.01

OH – 0.04 � 0.005

O2 – 0.02 � 0.005

HNO2 – 0.05 � 0.007

Me/Et fragmente – 0.02 � 0.005

IM-chainf – 0.01 � 0.003

IM-chain fragmentg – 0.04 � 0.006
aFor Ar this value includes the sum of all non-Ar products; for O,

this includes all desorption products
bIncludes only desorption products containing the incident atom
cRefers to the neutral species from the cation [emim] after

loss of Hþ
dRefers to any pairs or groups derived from the imidazolium ring

(cation or neutral) with the anion
eMethyl or ethyl fragment from elimination of hydrocarbon

from ring
fThe unfolded imidazolium ring from ring scission – O addition
gA piece of the unfolded ring from ring fragmentation – O

addition

Table 2 Distribution of

number of proton transfers

and cation/anion pair

recombinations

Proton transfer Incident O Incident Ar

0 0.12 � 0.01 0.13 � 0.01

1 0.29 � 0.02 0.21 � 0.01

2 0.35 � 0.02 0.31 � 0.02

3 0.20 � 0.01 0.30 � 0.02

4 0.04 � 0.01 0.05 � 0.01

5 0.00 0.00

[emim] þ [NO3] !
emim-ONO2

a 0.12 � 0.01 0.12 � 0.01
aAn oxygen from NO3 attaches to the imidazolium ring
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cation/anion pair. Once neutralization occurs, it is inevitable that the neutral species

will eventually desorb from the charged liquid. Instead of proton transfer, the

surface collision can also supply enough energy to enable the anion to react with

the cation. This bond usually occurs between an O in [NO3] and one of the C–H

carbons on the imidazolium rings. It is likely that these recombinations with the

cation and anion are only short lived in the actual system. However, within our

simulation time, we found that the probability of these events was 0.12. When the

proton transfer event occurs to a molecular species that is located at the surface

edge, there is sometimes enough momentum to “push” the neutral species off of the

surface, which is listed as “total” in Table 1. The probability for this event to happen

to [emim] is 0.10 and for [NO3] is 0.06. There is only a very slight probability of

0.01 that more than one molecular species departs the surface together. Overall, for

nonreactive scattering of Ar from the surface, little change occurs chemically to the

ionic liquid molecules. This adds to knowledge concerning the chemical and

thermal stability of RTIL.

The collision of a reactive atom, O(3P), with [emim][NO3] causes a multitude of

chemical reactions to ensue at the surface. This is in contrast to the scenario that we

just presented with the bombardment with Ar, a nonreactive atom, although there

are some common features as well. The types of reactions that occur have been

grouped into reaction types in Table 3. One of the most common reactions, with a

probability of 0.43, is the elimination of NO3, which occurs when the incident O

collides with [NO3] forming NO2 or HNO2 and O2 or occasionally OOH. The

second most prevalent reaction type, occurring with a probability of 0.21, is ring

scission – O addition; this occurs when O addition causes a bond scission in the

imidazolium ring, opening it up into an intact chain. About a quarter of the time

there is enough vibrational energy in the chain that it splits apart creating the

channel labeled ring fragmentation – O addition. Commonly, in both the ring

scission reaction types, an aldehyde is formed. As with the O þ squalane reactions,

H abstraction also occurs in the O þ [emim][NO3] reaction yielding OH with a

probability of 0.09. Note that this is much lower than the 0.41 that is found with

Table 3 Reaction probability

from O(3P) + [emim][NO3]

by reaction type

Distribution of reactions by type

O scattering 0.13 � 0.01

O addition to NO3 0.02 � 0.004

Elimination of NO3 0.43 � 0.02

O addition to HCa 0.01 � 0.002

Elimination of HC from ring 0.04 � 0.01

Ring scission – O additionb 0.21 � 0.01

Ring fragmentation – O additionc 0.05 � 0.01

H abstraction 0.09 � 0.01

NO3 substitution 0.01 � 0.003

HC substitution – H elimination 0.02 � 0.004
aHC refers to the ethyl or methyl hydrocarbon on the imidazo-

lium ring
bAfter ring scission the [emim] becomes an intact chain
cAfter becoming a chain, fragmentation occurs
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squalane, which makes sense since the ionic liquid has a smaller fraction of

abstractable hydrogens. There is a small chance, 0.13, that the O does not react

and bounces back from the [emim][NO3] surface; inelastic collisions of this nature

with O þ squalane occur more often, with an overall average probability of 0.23.

In the O þ [emim][NO3] collisions, more than half of the products desorb from

the surface during our simulation time, as shown in Table 1. This is in contrast to the

Ar collision study where the probability of non-Ar containing products was 0.17. As

with the nonreactive study, the O collisions also cause one to three proton transfers

(see Table 2). Interestingly, a similar portion of HNO3, emim, and emim þ [NO3]

desorb from the [emim][NO3] surface as compared to the nonreactive study; HNO2

is an additional product found in the O scatter data. It is likely that the proton

transfer event is responsible for these species desorbing from the [emim][NO3]

surface. The H abstraction channel, which occurs predominantly at the ethyl or

methyl sites on the imidazolium ring, forms OH and has a desorption probability of

0.04. Nearly half of all the OH created desorbs from the surface by the end of the

simulation (7.3 ps). In squalane, around 80% of the OH exits the surface. This is

reflective of the differences in the surface density and the amount of diffusion that is

possible within these two liquids. It must be noted that no charged species were

found to desorb, which is not surprising because they would inevitably be attracted

back to either the cations or anions at the surface.

In connectionwith the experimental observables thatMinton et al. havemeasured

for the similar reaction (O + [emim][NTf2]), we also report the translational energy

distribution of the inelastically scattered atoms as well as of the major molecular

products. Figure 7 provides a basis for understanding how the [emim][NO3] liquid is

Fig. 7 Distribution of the final translational energy (in eV) of Ar for each angle of incidence

(yi ¼ 0�, 30�, 45�, and 60�)
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able to absorb energy upon bombardment by a nonreactive atom. Overall there is a

broad distribution of final translational energies from the more glancing angle of

60�, and on average about half the 5.0 eV initial energy is transferred to the liquid.

For more direct angles of incidence, nearly all the final translational energy is below

1.0 eV, indicating that multiple collisions play an important role. Figure 8 shows the

corresponding results for inelastically scattered O atoms. (No 0� data are presented
because almost all the incident Os undergo reaction for this angle.) For an incident

angle of 60�, there is a very similar distribution of final translational energies for O as

was found with Ar. This is likely due to the fact that at this glancing angle there is

very little penetration of the surface (0.94 Å for Ar and �0.68 Å for O on average),

thus minimizing the number of collisions and leaving the incident atom mostly

unchanged. For the more direct collisions at 30� and 45�, the scattered O has more

translational energy than Ar, as if the larger, heavier Ar atom is a “softer” atom

losing more energy to the liquid. The distribution of final translational energy from

the OH desorption product is depicted in Fig. 9. There is a slight decrease (~0.5 eV)

in the translational energies of the OH product in comparison to the inelastically

scattered O, with similar distributions between the various angles of incidence. Most

of the OH products are fromH abstraction at the C–H groups on the ethyl andmethyl

substituents on the imidazolium ring, which are sticking up out of the surface. On

average, at 60� incidence angle, both O and OH scatter from [emim][NO3], as we

found with our QM/MM–MDmodel, with about half the initial translational energy;

this coincides with the experimentally determined final translational energy of O and

OH scattering from [emim][NTf2]. Other nascent products, which are not shown

Fig. 8 Distribution of the final translational energy (in eV) of O(3P) for each angle of incidence

(yi ¼ 0�, 30�, 45�, and 60�)
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here, are HNO2 and HNO3, both of which have smaller and much narrower distribu-

tions of translational energies and are largely independent of incidence angle. It is

thought that this is because the reactive channels that govern these products involve

a proton transfer event, and are not dependent directly upon a primary collision

event.

5 Summary

In this chapter we reviewed the details of our theoretical methods that are used to

describe gaseous atoms scattering from liquid surfaces. Scattering experiments of

this type allow for the direct study of the surface reactivity of liquids, including

studies of the partitioning of molecular energy transfer into various vibrational,

rotational, and translational modes of the scattered products. One of the complex-

ities in modeling such a dynamic system at hyperthermal energies is that many

chemical changes can occur (i.e., the making/breaking of several bonds), and a

priori knowledge of when and where this will occur is not easy to estimate in the

absence of a simulation. Additionally, the spatial length scale needed to describe

gas–surface reactions is larger than what can normally be computed purely with ab

initio QM. Thus we use a hybrid approach that partitions the system into reactive

and nonreactive regions to be treated by a dynamics QM/MM approach.

The nonreactive regions (thousands of atoms) were described with predeter-

mined force fields (OPLS-AA) using MM, and the reactive regions (hundreds of

Fig. 9 Distribution of the final translational energy (in eV) of OH for each angle of incidence

(yi ¼ 0�, 30�, 45�, and 60�)
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atoms) were computed with semiempirical QM (MSINDO), an efficient approach

to describe bond-breaking for the reactions we are interested in. The coordinates

and forces in our simulations are propagated in time using a rather robust fifth/sixth

order predictor–corrector scheme. One unique aspect of our QM/MM algorithm is

that we allow for a dynamic partitioning of atoms to be treated either with MM or

QM, which we refer to as the “seed atom” method. Though we took a simplistic

approach to the dynamic partition of atoms, we found this to be very useful in

studying a surface like squalane that is very porous, allowing the incident atoms lots

of freedom to move around within the liquid surface. We further discussed in

Sect. 2.3 some of the difficulties involved in reassigning atoms in and out of the

reactive region, as this changes the forces computed from one step to the next with a

different level of theory.

Thus far, we have applied our QM/MM–MD model to study reactions at the

surface of a well known hydrocarbon liquid, squalane, and we have also provided

perhaps the first theoretical study of gaseous atom scattering from an RTIL surface.

With squalane we observed the reactivity of both O(3P) and F(2P) scattering from

the surface at a few different initial translational energies. The chemistry that

ensued upon bombardment with F(2P) with 1.0 and 0.5 eV incident energy was

limited to H abstraction. However, when O(3P) hits the surface of squalane at 5 eV,

it is capable not only of H abstraction but also of H elimination and C–C bond

scission. Even though understanding the barriers to these reactions helps determine

whether there is enough initial translation energy to overcome these barriers, it is

only through the dynamics simulations that we gain an insight into the mechanism

of these reactions and the likelihood of these reactions occurring as a function of

position relative to the liquid interface. One major theme that is noted throughout

the discussion in Sect. 4.1 is that the molecular energy (be it vibrational, rotational,

or translational) of the nonthermal nascent products emerging from the surface is

predominantly due to the bond making/breaking event and is largely independent of

the incident atom’s energy and collision angle. This indicates that nonthermal

products are incompletely relaxed as they emerge from the liquid surface, even

when they are produced a few angstroms beneath the surface.

Probing the reactivity of our RTIL surface of [emim][NO3] was done with both

Ar and O(3P) at 5 eV to study both the nonreactive and reactive scattering. The Ar

scattering shows that proton transfers can occur between the cations and anions, and

there exists a small probability that the neutral species emim or HNO3 can subse-

quently desorb during our simulation time of 7.3 ps. Desorption of neutral emim

and HNO3 can also occur in the O(3P) scattering simulations and other neutrals

such as HNO2 and O2 can also be produced. Bombardment of the RTIL with O(3P)

can also produce many other chemical species. Consistent with the Minton et al.

experimental studies, we find that the abstraction product OH desorbs from the

RTIL, resulting in an average translational energy that is about half of the input

energy at an angle of incidence of 60�, and even less when the angle of incidence is
more direct.

The QM/MM applications that we have considered have focused on hyperther-

mal chemistry for the most part, and this is a natural direction for this research due
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to the short time (few ps) and small spatial regions (100–200 quantum atoms)

required for describing the hyperthermal dynamics. Even with this limitation, there

are a growing number of applications accessible to this method, as high energy

atomic sources provide useful information about the structure and reactivity of

liquid surfaces. The same technology can also be used to describe gas–solid

reactions, as reviewed elsewhere [27], and in this case it is relevant to a number

of important industrial etching processes as well as space materials research.

Thermal reactions at gas–liquid interfaces can also be described, but the computa-

tional effort can easily get out of hand unless one implements additional compo-

nents in the calculations (such as umbrella sampling so that the reacting species are

initiated in close contact). Ultimately one needs to separate the reactive event for

such problems from adsorption and diffusion, and there are serious questions as to

whether a dynamic QM/MM approach is going to be the most useful way to

describe the dynamics.
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Heterogeneous Catalysis
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Abstract The goal of multiscale modelling of heterogeneous catalytic reactors is

the prediction of all steps, starting from the reaction mechanism at the active centre,

the rates of reaction, adsorption and diffusion processes inside the porous system

of the catalyst support, based on first principles, quantum chemistry, force field

simulations and macroscopic differential equations. The progress in these fields of

research will be presented, including linking models between the various levels of

description. Alkylation of benzene will be used as an example to demonstrate the

various approaches from the active centre to the reactor.
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1 Introduction

Catalysis is the study of materials that can accelerate reactions and control reaction

mechanisms. After a catalytic cycle, namely adsorption of reactants, reactions and

desorption of products, the catalyst is restored to its initial state. An ideal catalyst
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for a given reaction should convert the reactants to the desired products with no

production of undesired by-products, which means it should have a high selectivity.

Furthermore, the catalyst should accelerate the rates of reactions by orders of

magnitude. In comparison with the reaction without using a catalyst, the catalyst,

in general, changes the reaction mechanisms. In reality these ideal requirements

cannot be fully met, but one has to accept compromise on these requirements. The

challenge of catalyst development is to find materials that will come as close to

optimal performance as possible. At present, catalyst development is in essence an

experimental discipline, but computational approaches play an ever increasing role

in catalysis research. The final goal is the design of a catalyst on a rational basis.

Currently, computational catalysis can already give deep insight into the details of

catalytic reaction mechanisms, diffusion inside catalyst supports, and adsorption

processes which cannot be obtained by experiments only. The most useful approach

is a combination of experiments, like various spectroscopic tools, gas chromato-

graphy, mass spectrometry and computational methods. Massively parallel compu-

ters, quantum chemical software and classical molecular simulation methods have

considerably expanded the classes of catalytic problems that can be treated on the

basis of first principles approaches.

In the present article multiscale computation in heterogeneous catalysis in

porous catalyst supports will be described. Multiscale modelling is the field for

solving physical problems which have important features at multiple spatial and/or

temporal scales. An important problem is the scale linking. Catalysis spans a signi-

ficant range of length and time scales. The active centre can be composed from a

single metal atom or acid site to a few dozen metal atoms. The active sites are inside

porous materials which may be crystalline [e.g. zeolites, metal-organic frameworks

(MOFs)] or amorphous, like silicas or aluminas. The reactants have to adsorb onto

the porous materials, followed by a diffusion process inside the pores to the active

centres. There, the catalysed reactions occur, followed by diffusion of the products

to the surface of the porous material. The reactions have to be computed by

quantum mechanical methods as chemical bonds are broken and formed. This is a

genuine quantum mechanical phenomenon on the nanoscale with respect to the

length and the femtosecond time scale. Most existing codes employ a form of the

Kohn–Sham density function theory [1–3]. For the case that van der Waals (vdW)

forces play an important role, more advanced approaches like Møller–Plesset-2 or

even coupled cluster (CC) methods have to be used [4–6].

The reaction pathways, and in particular the transition states, have to be calcu-

lated followed by the determination of all the rate constants, employing the transi-

tion state theory (TST) [7–9]. Here, chemical knowledge and intuition is needed to

include all significant reaction steps. Finding transition state structures (first-order

saddle points) in high-dimensional systems can be a difficult problem. According to

the experience of the present author’s group, a combination of a modified nudged-

elastic-string approach [10] and the so-called dimer method [11] turned out to be

most useful for this purpose. These approaches are installed in various commercial

programs like Vienna Ab-initio Simulation Package (VASP) [12] and QChem [13].

Another method which might be employed, either as a stand-alone program or
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in combination with the two routines just mentioned, is the partitioned rational

function optimisation (P-RFO) [14]. One has to make sure that the reactants and

products are connected via the transition structure by following pathways down-

ward along the potential energy surface (PES). One should keep in mind that the

kinetics of reacting systems are mostly governed by the free energy of populations

of molecules, and not the potential energy of single molecules. The individual

molecules within the population may be exchanging energy with one another to

rise and fall relative to the PES, but the net distribution remains determined by

temperature. Many molecules of the population may pass to the left or right of the

transition state structure. The transition state structure, a stationary point, should not

be confused with the transition state which has 3N�7 degrees of freedom for an

N-atom system. The transition state is also called “activated complex”. A relation-

ship between the properties of the activated complex and reaction kinetics is

obtained by means of TST [7–9]. Here, statistical thermodynamics comes into

play as one has to calculate partition functions of the reactants and transition state

structure [15–18]. In the simplest version of TST the rigid-rotor-harmonic-oscillator

approximation is employed. The kinetic constants have to be inserted into proper

kinetic expressions to calculate the rates of reaction. Comparisons of experimental

kinetic data and their computed values have to be made under consistent conditions.

The canonical TSTmay be improved by variationally moving the reference position

along the minimum energy path (MEP) that is used for the computation of the

activated complex free energy, either backwards or forwards from the TS structure,

until the rate is minimised (variational transition-state theory, VTST) [19]. Quan-

tum effects, like tunnelling, can also be included. Non-adiabatic effects can, at

present, only be calculated for small systems. Hopping probabilities between

different PES can sometimes approximately be calculated by the Landau–Zener

model [20]. The kinetic constants have to be inserted into proper kinetic expressions

to calculate the rates of reaction.

The adsorption of the reactants and their diffusion into the pores of the catalyst

support is calculated by Monte Carlo (MC) methods [21–25] and Molecular

Dynamics (MD) [21, 23, 26–28]. The fluid dynamics around the porous particles

inside a channel reactor may be described by various computational fluid dyna-

mics (CFD) approaches [29–31]. In Fig. 1 the hierarchy of modelling approaches is

presented.

As mentioned above, the limited time and length scales accessible with quantum

chemistry calculations require the use of a modelling hierarchy as given in Fig. 1.

This hierarchy is referred to as “multiscale approach”. This term is not restricted to

a specific set of methods employed for calculating different time and length scales,

but it is also used in various disciplines for a variety of modelling approaches

[32–39]. In the present chapter the term is used for a modelling approach starting

with quantum chemical calculations at the active centre of the catalyst, followed by

MC and MD simulations of the multi-component adsorption and diffusion of the

reactants and products. The concentration profiles inside the pores of the pellet can

be calculated by partial differential equations whereby the data from the previous

molecular simulations are included. A protruding problem in multiscale modelling
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is the linking of the various levels of the model hierarchy. One needs a linking

model which can include the data from a higher level of simulation in a well-

founded way (see Fig. 2).

In the following paragraphs a short presentation of the approaches employed is

given accompanied by a demonstration of a multiscale modelling in heterogeneous
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catalysis. Compilations of density functional theory (DFT) applications to catalysis

may be found in the books by van Santen and Neurock [40] and van Santen

et al. (eds.) [41].

2 Computational Approaches

Some of the most widely used computational approaches will be briefly described

below, namely some quantum chemical methods, classical simulations by Monte

Carlo and Molecular Dynamics techniques and a few mesoscale methods.

2.1 Quantum Chemistry

In this section a recapitulatory description of the most common ab initio and density

functional approaches will be presented. Ab initio methods calculate the electron

properties of atoms and molecules at the absolute temperature (T ¼ 0). The starting

point is in most cases the non-relativistic Schr€odinger equation

Hc ¼ Ec; (1)

where H is the Hamiltonian operator which is given by

H ¼ �
X
i

�h2

2me
r2

i�
X
k

�h2

2mk
r2

k �
X
i

X
k

e2Zk
rik

þ
X
i<j

e2

rij
þ
X
k<l

e2ZkZl
rkl

; (2)

where i and j run over electrons, k and l run over nuclei, �h is Planck’s constant

divided by 2p, me is the mass of the electron, mk is the mass of the nucleus k, r2 is

the Laplacian operator, e is the charge on the electron, Z is an atomic number and

rab is the distance between particles (electrons or nuclei) a and b. The wave function
c is thus a function of 3n coordinates where n is the total number of particles

(electrons and nuclei).

The Born–Oppenheimer approximation leads to the electronic Schr€odinger
equation

Helcel ¼ Eelcel: (3)

PES can only be computed by employing the Born–Oppenheimer approxima-

tion. The variational principle leads to an upper bound of the electronic energy

Ð
celHceldrÐ
c2
eldr

� E0: (4)
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If we consider only the nuclei of a molecule in fixed positions and just one

electron in the field of the nuclei, the eigenfunctions of (3) are called molecular

orbitals (MOs). In quantum chemistry an MO is often expanded in a sum of atomic

orbitals, for example, the familiar hydrogenic atomic orbitals, fA0 1s, 2s, 2p, 3s, 3p,
3d, etc.:

cel;k ¼
XN
i¼1

ai;kfA0: (5)

The Hartree–Fock (HF) method is widely used in electronic structure calcula-

tions, which is based on the following assumptions: (1) Born–Oppenheimer approx-

imation, (2) the many-electron Hamiltonian is replaced with an effective one-electron

Hamiltonian which acts on orbitals (one-electron wave functions), (3) the Coulomb

repulsion between electrons is represented in an averaged way.

In practice the HF method is applied in the form of so-called Roothaan equations

(see [4]):

FCk ¼ ekSCk; (6)

where F is the Fock matrix and S contains the overlap elements between the basis

set functions. The term C is a square matrix of the basis set expansion coefficients,

and e represents a diagonal matrix of the orbital energies.

The HF iteration scheme is given in Fig. 3a. The HF wave function |HFi is thus
the variationally best one – determinant approximation to the electronic ground
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Fig. 3 Hartree–Fock and Kohn–Sham SCF scheme
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state of the system. The HF method predicts molecular geometries (distances,

angles) within a few percent of experiment. Even vibrational frequencies, derived

from the curvature of the total energy as a function of nuclear separations, were

found to be within about 10% of experiment. The binding energies of molecules

are less satisfactory. Some systems like F2 caused serious problems. The F2 mole-

cule was predicted to be less stable than two isolated F atoms. The calculation of the

geometry and vibrational properties of O3 also turned out to be quite difficult.

The HF model has also been used for solid state applications. To obtain more

exact results, one has to calculate the correlation energy which is defined as the

difference between the HF energy and the exact energy:

Ecorr ¼ Eexact � EHF; (7)

where Eexact is the energy of the system obtained from solving exactly the non-

relativistic Schr€odinger equation. In the HF approach the instantaneous position of

an electron is not influenced by the presence of other electrons. In fact, the motions

of electrons are correlated and they tend to “avoid” each other more than HF

predicts, giving rise to a lower energy. There are a number of techniques to improve

the HF approach, like the configuration interaction (CI) method, Møller–Plesset

perturbation theory (MP) or CC approach, and many others [5]. The CI approach

describes the total wave function as a linear combination of the ground- and

excited-state wave functions. A CI calculation is variational and, therefore, gives

an upper bound of the true energy. Of course, a full CI calculation is expensive,

such that only a few excitations are taken into account. But those calculations are

not size consistent. That means that the energy of a number N of non-interacting

atoms or molecules is not equal to N times the energy of a single atom or molecule.

To overcome this problem the quadratic configuration interaction method (QCISD)

was introduced to try to deal with this. It can be considered a size consistent CISD

theory. The procedure involves the addition of higher excitation terms which are

quadratic in their expansion coefficients (see [5]).

The MP perturbation theory, basically the Rayleigh–Schr€odinger perturbation
theory, is size-independent. The idea is a partitioning of the Hamiltonian into a HF

part and a perturbation V:

H ¼ HHF þ lV; (8)

where l is a parameter that can vary between zero and one.

Further evaluation reveals that at least second-order perturbations have to be

included. This level of theory is referred to as MP2 and involves an evaluation of

E
ð2Þ
0 : Higher order approximations are also possible. The MP perturbation theory is

not variational and can sometimes give energies that are lower than the “true”

energy. As any perturbation theory, MP perturbation theory depends on how close

the starting wave function is to the exact wave function. When this is the case,

convergence of the MP series is rapid. However, when bonds are stretched the MP
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series sometimes become oscillatory. Moreover, higher orders of MP perturbation

theory can even diverge [5].

Another popular post-HF technique is the CC method [4–6]. The CC method

solves the size consistency problem of CI by forming a wave function where the

excitation operators are exponentiated:

CCj i ¼ expðT̂Þ HFj i; (9)

where

T̂ ¼ T̂1 þ T̂2 þ T̂3 þ ::: (10)

and T̂n is a linear combination of n-type excitations, for example,

CCSj i ¼ expðT̂1Þ HFj i; (11)

CCSDj i ¼ expðT̂1 þ T̂2Þ HFj i; (12)

CCSDTj i ¼ expðT̂1 þ T̂2 þ T̂3Þ HFj i (13)

and so on. Thus, at the |CCSi level, all possible single excitations are included in the
cluster operator, and at the |CCSDi the double excitations are also taken into

consideration, etc. At each level of CC theory one includes through the exponential

parametrisation of (9) all possible determinants that can be generated within a given

orbital basis. These are all the determinants that enter the full CI wave function in

the same orbital basis. Thus, the improvement in the sequence |CCSDi, |CCSDTi,
and so on does not occur because more determinants are included but because of an

improved representation of their expansion coefficients. Owing to the presence of

the disconnected clusters, CC wave functions truncated at a given excitation level

also contain contributions from determinants corresponding to higher-order excita-

tions. The terms that are missing relative to full CI represent higher-order connected

clusters and the associated disconnected clusters. By contrast, CI wave functions

truncated at the same level contain contributions from determinants only up to this

level.

The CC model is not variational. With a large enough basis set CCSD typically

recovers 95% of the correlation energy for a molecule at equilibrium geometry, while

the inclusion of triple excitations give rise to a further five- to tenfold reduction in

error. The CCSD(T) method has become the method of choice for accurate small-

molecule calculations.

In recent years there has been a growing interest in numerical techniques which

can speed up quantum chemical computations. Various methods are available to

approximate the four-index electron repulsion integrals as products of three-index

intermediates. These methods are called density fitting (DF) or resolution of the

identity (RI), and Cholesky decomposition (CD) techniques. A general comparison
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of RI and CD methods has been published by Weigend et al. [42]. That article also

gives the citations of the methods mentioned. It is shown that RI methods lead to

insignificant errors only, which are partly comparable to or even better than that

of CD treatments, but RI procedures are superior in speed. Other problems are

electronic near-degeneracies, which occur for bond-breaking processes, diradicals,

first-row transition metals, etc. Potential energy curves for bond-breaking reac-

tions can be qualitatively incorrect even for CC calculations. For systems with few

atoms, multi-reference configuration interaction (MRCI) is the method of choice

[43]. For slightly larger molecules, complete-active-space second-order perturba-

tion (CASPT2) is the preferred approach [44]. MRCI and CASPT2 are computa-

tionally demanding. Partially this problem can be overcome by parallel algorithms

[45]. Work has also been done on linear scaling MRCI using local correlation and

integral screening techniques [46]. Avoiding wave functions and solving directly

for the two-electron reduced density matrix (2-RDM) using N-representability

constraints on the possible 2-RDMs considered is now allowing accurate computa-

tions of molecular energies directly from linear functionals of the 2-RDM [47]. In a

recent PhD thesis, Chaykin [48] has developed approaches for bounding optimal

values of semi-definite programming applied to the electronic structure problem in

the reduced density matrix (RDM) formulation. This approach introduced a verifi-

cation algorithm adapted to utilise the specific problem structure for computing a

rigorous lower bound of the ground state energy.

Fast computers led the interest of many researchers to general many-electron

systems like CI expansions based on an orbital description and Slater determinants.

The main advantage of these methods is the reduction of n-electron Hamiltonian

matrix elements to one- and two-electron integrals, as stated in the Slater–Condon

rules, but also showing a slow convergence. There are two sources of the slow

convergence of the CI expansion. (1) The “combinatorial problem”. For an n-
electron system and a basis of m spin-free one-electron functions the number of

Slater determinants in a “full CI” goes as
2m
n

� �
, which is a very large number

unless n and m are quite small. (2) The slow convergence of “the partial wave

expansion” even for a two-electron atom. If one truncates the one-electron basis at

the same angular quantum number l, then the error is of the order l�3. Dissatisfac-

tion with the level of accuracy obtainable with orbital-based approaches has led to

renewed interest in methods that include an explicit r12-dependence into the wave

function. Explicitly correlated methods have to overcome the integration over n
coupled electronic degrees of freedom, required for the evaluation of Hamiltonian

expectation values. Even if the n-particle basis functions are restricted to corre-

late explicitly only one electron pair at the time, numerous three- and four-electron

integrals must be calculated, which is a formidable task. In 1985 Kutzelnigg [49]

published a new explicitly correlated approach. He proposed to use an orbital

basis set and to augment it with geminals that depend on a single, universal, linear

r12-term. This term was to describe the electronic cusp that is poorly represented in

conventional orbital expansions. Kutzelnigg avoided direct evaluation of the
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numerous three- and four-electron integrals, and got very good results nevertheless.

The first MP2-R12 calculations on molecules were reported by Klopper and

Kutzelnigg [50]. Developments of explicitly correlated wave functions can be

found in a book by Rychlewski [51]. There are many extensions of the R12 method.

Examples are calculations of intermolecular interaction energies [52] and an

MP2-R12 method in which each electron pair uses a set of contracted Gaussian-

type Geminals (GTG) with fixed exponents, whose coefficients are optimised

linearly [53].

At present no single method can give quantitative results (accuracy of 1 kJ/mol

or less) for practical problems. Therefore, so-called composite methods have been

developed in which the contributions are computed at different levels of theory in

accordance with the accuracy desired. For example, the Gaussian-4 theory (G4)

has been developed for the calculation of energies of molecules containing first- and

third-row main-group atoms [54]. Starting points are Becke–Lee–Yang–Parr

B3LYP/6-31G(2df,p) geometries and harmonic vibrational frequencies, scaled by

a factor of 0.9854, for the zero-point vibrational energies (ZPVE). The HF energies

have been extrapolated to the limit of a complete basis, and Møller–Plesset-4/6-31G

(d) single-point calculations are executed. When the MP4/6-31(d) energy EMP4 is

considered as the base line of G4 theory, then the following energy corrections are

added in the G4 composite scheme:

EG4 ¼ EMP4 þ DEHF þ DECCSDðTÞ þ DEdiffuse þ DEpolarisation þ DEG3L arg eXP

þ DEHLC þ DESO þ DEZPVE; (14)

where

DEHF � correction for the HF basis set limit

DECCSD(T) � E(CCSD(T))/6-31G(d)-E(MP4/6-31G(d))

DEdiffuse � corrections for diffuse functions

DEpolarization � corrections for polarisation functions

DEG3LargeXP � correction for larger basis set effects

DEHLC � empirical energy correction that depends on the number of occupied

a and b orbitals

DESO � spin-orbit term, taken from experiment or accurate calculations

DEZPVE � zero-point vibrational energy

The Gaussian-4 theory was tested on the G3/05 test set [55] including 454

energies. The overall average absolute deviation for these energies was found to

be about 3.5 kJ/mol.

There are several other composite approaches, for example, complete basis set

(CBS) models [56], focal-point analysis [57], multi-coefficient correlation methods

[58], “high-accuracy extrapolated ab initio thermo-chemistry” (HEAT) [59] and the

Weizmann-4 theory [60]. Hansen et al. [61] have employed the so-called MP2:DFT

[193] scheme for analysing benzene ethylation over H-ZSM-5. Density functional

calculations applying periodic boundary conditions [Perdew–Burke–Ernzerhof

(PBE) functional] were combined with MP2 energy calculations on a series of
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cluster models of increasing size which allows extrapolation to the periodic MP2

limit. Basis set truncation errors (BSSE) are estimated by extrapolation of the MP2

energy to the CBS limit. Contributions from higher-order correlation effects are

accounted for by CCSD(T) coupled cluster calculations. The sum of all contribu-

tions provides the “final estimates” for adsorption energies and energy barriers.

Dispersion contributes significantly to the PES. As a result, the MP2:DFT potential

energy profile is shifted downward compared to the PBE profile. More importantly

this shift is not the same for reactants and transition structures due to different self-

interaction errors.

Other recent developments in electronic structure theory were reviewed by

Sherrill [62] and Huang et al. [195].

Only a very brief description of some quantum chemical correlation approaches

could be given. For details see [5, 6].

Over the last 10 years the DFT became more and more popular because of its

high computational efficiency and good accuracy [2, 3]. The basis for DFT is the

proof of Hohenberg and Kohn [63] that the ground state electronic energy is

determined completely by the electron density r. In other words, there exists a

one-to-one correspondence between the electron density of a system and the energy.

Within DFT all aspects of the electronic structure of the system of interacting

electrons in an “external” potential Vext(r) generated by atom cores are completely

determined by the electronic charge density r. In DFT, the total energy is decom-

posed into three contributions, a kinetic energy, a Coulomb energy due to classical

electrostatic interactions among all charged particles in the system and an

exchange-correlation energy term that captures all many-body interactions. Unfor-

tunately the exact expressions that should be used for the many-body exchange and

correlation interactions are unknown. The local density approximation (LDA)

turned out to be computationally convenient and very accurate. The LDA assumes

that the density locally can be treated as a uniform electron gas, or equivalently that

the density is a slowly varying function. An improvement is the local spin density

approximation (LSDA) which is useful in cases where the a- and b-spin densities

are not equal. Kohn and Sham [1] developed a self-consistent system including

exchange-correlation effects. For some problems further improvements have to be

made. The most common approach is the generalised gradient approximation

(GGA). These approximations depend upon the gradient of the electron density at

each point in space and not just on its value. These gradient corrections are typically

divided into separate exchange and correlation contributions. A variety of gradient

corrections have been proposed in the literature. A very popular one is the B3LYP

functional [64]. In most DFT programs for calculating the electronic structure of

molecules the Kohn–Sham orbitals (KS) are expressed as a linear combination of

atomic-centred basis functions:

ciðrÞ ¼
XK
n¼1

cnifn: (15)
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This expansion is substituted into the KS equations which lead to matrix form

like the HF Roothaan equations

HC ¼ SCE: (16)

The Kohn–Sham iteration procedure is presented in Fig. 3b.

Obviously the procedure is very similar to the HF scheme. Details of the DFT

approach are given in [2, 3].

A variety of DFT-based codes is commercially available, for example, VASP

[12, 65], Cambridge Serial Total Energy Package (CASTEP) [66], TURBOMOLE

[67], CRYSTAL [68], Jaguar [69], GAUSSIAN [70], General Atomic and Molecu-

lar Electronic Structure System (GAMESS) [71] and QChem [13], amongst others.

A rather complete list of DFT codes is available from an internet address1 which

also contains programs available for free. Some of these programs also comprise

many other QM approaches.

There is a problem with DFT: the conventional functionals cannot treat disper-

sive forces. GGA, meta-GGA and hybrid functionals are unreliable for systems

where vdW interactions are important. The most rigorous description of dispersion

interactions is provided by explicitly non-local correlation functionals. However,

these methods are computationally demanding and far more complicated than

standard DFT. Although vdW interactions are often considered to be weak, they

dominate the behaviour of all neutral physical systems at separations of order

0.5 nm or larger. vdW interactions are crucial for the chemistry and physics of

weakly bound systems, for example bio-molecules, layered materials, organic

crystals or adsorbing of neutral molecules on surfaces. To overcome this deficiency

of DFT, two strategies have been adopted: semi-empirical approaches have been

developed where an approximately derived R�6 term, multiplied by a suitable short-

range damping function, is explicitly introduced. The R�6 term describes the corre-

lated instantaneous dipole fluctuations together with higher order terms. The second

strategy is the introduction of new density functionals and/or complex schemes

that allow for a first-principles treatment of the vdW interactions. For example, a

seamless vdW density functional (vdW-DF), valid for all interatomic distances, has

been developed by Langreth and co-workers [72, 73]. An example of this approach

is given by Rudenko et al. [74], which describes adsorption of halogen molecules on

graphene. Implementation of vdW-DF is non-trivial. An implementation of vdW-

DF with Gaussian basis functions has been presented by Vydrov et al. [75]. The

semi-empirical so-called DFT plus dispersion approaches (DFT-D) employ addi-

tion of empirical, pair-wise atomic dispersion corrections of the form –C6R
�6,

which are used in the force field methods. To avoid double-counting electron

correlation effects at short range, these contributions are damped for small inter-

nuclear distances. This approach has been refined by Grimme et al. [76] by intro-

ducing atom-pair-wise specific dispersion coefficients and cut-off radii that are both

1http://dft.sandia.gov/Quest/DFT-codes.html.
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computed from first principles. The coefficients for new eighth-order dispersion

terms are computed, and system (geometry) dependent information is used for a

DFT-D type approach by employing the new concept of fractional coordination

numbers. They are used to interpolate between dispersion coefficients of atoms in

different chemical environments. The method only requires adjustment of two

global parameters for each density functional. Three-body non-additivity terms

are considered. Benchmark calculations showed an improvement by 15–40% com-

pared to previous DFT-D functionals. An approach which combines the simplicity

of the semi-empirical formalism with the accuracy of the first principles methods

has been developed by Silvestri [77]. This approach is based on the use of the

maximally localised Wannier functions.

A general scheme for systematically modelling long-range corrected (LC)

hybrid density functionals has been proposed by Chai and Head-Gordon [78, 79].

Adapted to B3LYP functionals the LC hybrid functionals are quite accurate

in thermo-chemistry, kinetics and non-covalent interactions, when compared to

common hybrid density functionals.

There are also problems if one deals with the chemistry of an oxide surface and

its role in the reactivity with adsorbed species [80].

Here, only a few papers on recent developments of including vdW forces into the

DFT scheme could be mentioned.

As soon as one knows the molecular wave function, one can calculate any

property of the molecule like dipole moment, chemical shift, force constants, etc.

Of particular importance is the PES, which will be used in the statistical mechanics

procedures discussed below.

2.2 Monte Carlo, Molecular Dynamics

Quantum chemical approaches give results for the absolute zero temperature

(T ¼ 0). In fact, systems in chemical engineering are ensembles at higher tempe-

ratures. In order to compute properties of systems of many particles at any temper-

ature and pressure, one has to refer to statistical mechanics [15–18]. As most

systems occurring in practice are very complicated, computational methods have

to be employed. The most prominent ones are MC and MD approaches.

The first MC scheme was developed by Metropolis et al. [81]. The MC methods

follow a Markov process to evolve a system towards equilibrium, regardless of

pathway. In principle one starts with an initial configuration of molecules. The total

potential energy of the initial configuration is calculated. Then several thousand

random moves of the particles are executed. After each move it is checked whether

the energy goes down. If it does, the move is accepted. If not, the energy is com-

pared with a random number. If the energy is lower or higher than the random

number, the movement is accepted or rejected. MC methods do generate states that

are correlated owing to the sequential Markov process. In detail the so-called

Metropolis algorithm works as in Fig. 4a.

Multiscale Modelling in Computational Heterogeneous Catalysis 81



After equilibrium is achieved, equilibrium properties can be calculated by an

appropriate sampling of the ensemble. As only about a few hundred or thousand

particles are used in a simulation box,many particles are close to the wall. This creates

special wall effects which have to be avoided. This can be overcome by implementing

periodic boundary conditions.

MC techniques can also be used for solving the Schr€odinger equation (quantum

MC) [82, 83]. QMC differs from other post-HF approaches in that it is a fully

correlated method from the outset, rather than building on a mean-field approach.

All QMC methods are presently computationally very demanding. Details of the

MC approach can be found in the books [23–25].

The accuracy of MC and MD calculations depends primarily on proper force

fields. General force fields for molecular systems are not of sufficient quality for

universal use. As they were adapted to specific interactions, the terms are not

transferable to any other application. Nevertheless, one can formulate some require-

ments force fields should satisfy. They should be robust, that means they should be

valid in varying environments. For example, phase behaviour can only be des-

cribed correctly if the same model represents all phases of the same quality. Other

requirements are accuracy, simplicity and transferability. The accuracy of a force

field should be such that experimental data can be reproduced with the required

precision. Transferability means that the underlying principles of constructing the

model and the parameters obtained should be applicable for various molecular

problems. It is often the non-additivity of constituent terms, and the omission of
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important contributions, that makes the terms non-transferable. Since most force

fields contain parameters adjusted to measurements, one obtains effective interac-

tion parameters, that means a deviation or omission in one term is compensated by

other terms, which are then not precise enough in different molecular environments

or various physical conditions. In principle, quantum chemical ab initio calculations

can provide proper PES for atoms and molecules, but the calculations are extremely

time consuming. The simplicity requirement means that force fields should include

as few terms as possible. The following elements can be found in most simple force

fields. The interactions between atoms are divided into bonded and non-bonded

interactions. Bonded interactions are the covalent bonds between two atoms in a

molecule, mostly described by harmonic potential. Other bonded interactions are

bond angles, dihedral angles or improper dihedral angles (to keep planar molecules

planar). Non-bonded interactions are in general described as pair-additive, and a

function of the distance between the two particles of each pair. If all pair-wise

interactions are included, the algorithm has an N2 complexity which has to be

simplified for large systems. Dispersion interactions and short-range repulsions

are often described by a Lennard-Jones potential:

ULJ ¼ 4e
s
r

� �12
� s

r

� �6� �
: (17)

The empirical r�12 repulsion term may be replaced by more realistic expressions

in an exponential form. Coulomb interactions can be added by a Coulomb term

Ucoul ¼ f � qiqj
r

: (18)

Special care is needed for the treatment of the long-range Coulomb interactions.

The atomic charges in (18) should not be taken from a simple Mulliken analysis but

from a fit of the charges to multi-poles [84–86] derived from accurate quantum

calculations. Reducing the N2 complexity by introducing a proper cut-off radius

creates only a small error for the r�6 dispersion potential, but for the r�1 Coulomb

potential simple cut-offs result in gross errors. When an abrupt potential cut-off is

used, the force is no longer a derivative of the potential, and therefore, the potential

is no longer conservative. The derivative of a truncated potential contains a delta

distribution at the cut-off radius. This creates artefacts which cannot even be remo-

ved by shifted potentials. When particles diffuse through the limit of the interaction

range they encounter a sudden force change leading to extra noise, to heating arte-

facts and to artefacts in the density distributions. Also so-called switching functions

are of limited use, as inadequacies of the effective potentials, which deviate from

the true Coulomb form, might occur. Fluids containing ions show an accumulation

of like ions and a depletion of oppositely charged ions near the cut-off radius. Like

ions repel each other until they reach the cut-off distance, after which they will

try to diffuse back in. The effect of dielectric response of the medium beyond the

cut-off radius can be incorporated by the introduction of a reaction field [87, 88].
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The reaction field addition does not account for the polarisation effects in the

medium beyond the cut-off due to charges rather than dipoles, and they are not

satisfactory in inhomogeneous systems and systems with a long-range correlation.

Ways out are, for example, the smooth-particle mesh-Ewald (SPME) approach of

Essmann et al. [89] and the continuum correction methods by Wood [90]. The

dominant and most relevant omission in the usual force fields is the incorporation of

electronic polarizability, which is a non-additive electrical interaction. The electron

distribution around a given nuclear configuration depends on the presence of

external electric field. A comprehensive review of approaches including polariz-

abilities is given for the simulation of water by Guillot [91]. A strategy of a

systematic development of force fields based on quantum calculations is described

by Saint-Martin et al. [92, 93]. After obtaining the average values of certain

molecular properties from short simulations with a fully flexible model, those

average values can be kept fixed and the simulations continued. This is a self-

consistent alternative to construct potentials based on ab initio calculations and

single molecule properties, without reparametrising for each different set of ther-

mophysical conditions, and with the advantage that even the simpler models will

reflect the improvement in quality of the ab initio data used as the learning set. This

is particularly important for a variety of molecular systems for which the experi-

mental data of condensed phases are rather scarce. Different types of force fields

were developed over the last few years, among them being MM3 [94], MM4 [95],

Dreiding [96], SHAPES [97], VALBON [98], UFF [99], CFF95 [100], AMBER

[101], CHARMM [102], OPLS [103], MMFF [104], GROMOS [105] and MAR-

TINI [106]. Many other force fields and their respective citations are given by Jalaie

and Lipkowitz [107]. Coarse-grained force fields like, e.g. MARTINI are typically

parametrised based on comparison to detailed atomistic simulations, using inverted

MC schemes [108, 109] or force matching approaches [110].

Fitting complex PES is a highly non-trivial task. Many optimisation algorithms

for this purpose have been described by Schlick [111] and Leach [112]. The

functional form has to be sufficiently flexible to adapt to the reference points with

high accuracy. The obtained PES should have continuous derivatives for applica-

tions in MD simulations. The choice of the functional form requires great care,

because otherwise unphysical artefacts may be introduced. In connection with the

description of molecule-surface interactions, the modified Shepard method [113,

114] turned out to be useful. It is based on a Taylor expansion of the energy around

the reference points. In recent years artificial neural networks (NN) [115] have

become a promising new tool for the representation of PES. Due to their flexibility

they are able to reproduce accurately a given set of electronic structure data, while

the resulting continuous NN-PES can be evaluated several orders of magnitude

faster than the underlying electronic structure calculations. Examples of NN-PES

are given by Lorenz and Scheffler [116] for the dissociation of H2 on Pd(100)

surfaces, and by Behler et al. [117] for the dissociation of oxygen molecules on

Al(111).

Enabling dynamical simulations on large reacting systems (>>1,000 atoms),

so-called reactive force fields have been introduced. An example of such force
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fields is the ReaxFF [118]. The harmonic approximation employed in non-reactive

force fields to describe bond stretching needs to be replaced by a description that

converges to the bond dissociation energy at infinite atom separation, rather than to

infinite energy as in the harmonic description. Furthermore, this bond distance/

energy relation has to be continuous and should, preferably, be based on physical

theory. The ReaxFF uses the bond order/bond energy concept of Pauling [119]

which effectively describes the number of shared electrons in the bond between

two atoms, and is linked by means of a continuous function to the bond length.

At short distances, this bond order/bond distance relation approaches a maximum

while at infinite distance the bond order goes to zero. ReaxFF is able to describe

atom hybridisation and the related multi-body interactions. Non-bonded vdW and

Coulomb interactions are also included in this model. The ReaxFF has been applied

to the study of the activity of Cu, Co and Ni metal atoms for initiating nanotubes

growth [120], conversion of methanol to formaldehyde on V2O5(001) [121], disso-

ciation of H2, CH4, C2H5 and C3H8 on Ni(111) [122], amongst others.

In the acceptance steps of the above-mentioned MC algorithm (see Fig. 4a), trial

steps are sometimes discarded, in particular if the temperature is low compared to

typical interaction energies. Bortz et al. [123] suggested an N-fold way algorithm

that avoids discarded attempts. This algorithm has been the first step towards

kinetic Monte Carlo (kMC) simulations. In kMC the possible configurations of

the system, i.e. the micro-states contributing to the macro-state of a statistical

ensemble, need to be numerable in order to set up a list of all possible process

types. In an MC simulation, on the other hand, there is no limit on the number of

micro-states. For this reason, the MC algorithm can be applied to problems with a

huge configuration space. In advantage over MC, a kMC simulation allows one to

assign a physical time to the simulation steps [124]. In order to make use of this

advantage, one has to provide as input the rates of all relevant individual processes.

This can be a difficult task. The best way for getting values for the individual rates is

by performing MD simulations, possibly with first-principles electronic structure

methods such as DFT. In order to be able to interpret the results of kMC simulations

in terms of time, one has to refer to some assumptions about the separation of time

scales. The shortest time scale in the problem is given by the time it takes for

an elementary process. This time scale should be clearly separated from the time

interval between two events taking place at the same process (e.g. adsorption–

desorption of a molecule at the same site). This second time is called the waiting

time between two subsequent events. The waiting time follows a Poissonian distri-

bution. It is assumed that any particular transition which is possible at t can again be
possible at some later time t þ Dtwith a uniform probability based on its rate and is

independent of previous events. This is a Poisson process [125]. An important

attribute of Poisson process is that the probability density of time t between

successive events is

pðtÞ ¼ Re�Rt; (19)

where R is the total rate of events.
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From this probability density, the mean time between successive events is

hti ¼ R�1. The time to an event is

TðtÞ ¼
ðt
0

dt0Re�Rt0 ¼ 1� e�Rt (20)

which lies between [1, 0]. So a random variable U ¼ e�Rt is uniformly distributed

between [0, 1], and this relation allows one to obtain the real time t (in units of MC

steps) between successive events as

t ¼ � lnU

R
: (21)

This random sampling of the Poisson time distribution for each chosen event

ensures that a direct and unambiguous relationship between a real time step and an

MC step is established. There are various algorithms for kMC simulations possible.

In connection with catalytic reactions on surfaces, Lukkien et al. [126] have deve-

loped an efficient time–order list algorithm. Kinetic MC simulations allow one to

bridge time scales over several orders of magnitude.

MD calculates the “real” dynamics of the system, from which time averages of

properties can be calculated. In contrast to MC, with MD non-equilibrium proper-

ties like, for example, transport diffusivities can also be calculated. This is impor-

tant for calculating diffusion of reactants and products in porous catalyst supports.

The position of the molecules as a function of time are obtained by integrating

Newton’s equation of motion over several thousand or even million time steps,

typically up to a few femtoseconds (10�15) per step. At each step, the forces on the

molecules are computed and combined with the current positions and velocities to

generate new positions and velocities a short time ahead. The force acting on each

molecule is assumed to be constant during the time interval. The molecules are then

moved to new positions, the forces are updated, and so on. By this approach,

trajectories of all molecules are generated.

A simplified MD algorithm is presented in Fig. 4b.

The MD approach therefore provides information about the time dependence of

the properties of the system whereas there is no such information within the MC

scheme. In an MC simulation the outcome of each trial move depends only upon its

immediate predecessor, whereas in MD it is possible to predict the configuration of

the system at any time in the future. MD has a kinetic energy contribution to the

total energy whereas in an MC simulation the total energy is determined from the

potential energy function only. In general, MD simulations are executed for a

micro-canonical (N,V,E � const.) ensemble whereas MC simulations are executed

for a canonical (N,V,T) ensemble. MD and MC schemes can, however, be modified

for other ensembles.

Three aspects have to be considered with MD simulations: (1) the model

describing the intra- and inter-particle interactions, (2) the calculation of ener-

gies and forces from the model and (3) the algorithm employed to integrate the
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equations of motion. The interaction potentials have been explicated in connection

with the MC approach. The most time-consuming step is the evaluation of energies

and, when needed, forces [21, 23]. The Newtonian equations of motion are solved

in proper time steps Dt. The following considerations influence the choice of

algorithm: (1) the time reversibility of Newton’s equations of motion should be

conserved and (2) the generated trajectories should conserve volume in phase

space; that means the integrator should be symplectic (see p. 381 in [127]). This

is important to conserve equilibrium distributions in phase space, because deviation

from symplectic behaviour will produce time-dependent weight factors in phase

space [128]. The computing time for MD simulations is dominated by force calcu-

lations. Therefore, approaches that use only one force evaluation per time step are

preferred.

A more rigorous derivation of integration schemes, which leads to the possibility

of splitting the propagator of the phase space trajectory into several time scales, is

based on the phase space description of a classical system. The time evolution of a

point in the 6N dimensional phase space is given by the Liouville equation

GðtÞ ¼ eiLtGð0Þ; (22)

where G ¼ (q,p) is the 6N dimensional vector of generalised coordinates, q ¼
q1, . . ., qN, and momenta p ¼ p1, . . ., pN. L is the Liouville operator, defined as

iL ¼ :::;Hf g ¼
XN
j¼1

@qj
@t

@

@qj
þ @pj

@t

@

@pj

 !
: (23)

Equation (22) is the starting point for the derivation of numerical integration

schemes. In order to construct a discrete time-step integrator, the Liouville operator

is split into two parts, L1 þ L2, and a Trotter expansion [129, 130] is performed:

eiLdt ¼ eiðL1þL2Þdt ¼ eiLdt ¼ eiL1dt=2 � eiL2dteiL1dt=2: (24)

The exact formula is the so-called Baker–Campbell–Hausdorff formula [131].

Any partial operators can be chosen to act only on positions or momenta.

Assuming Cartesian coordinates for a system of N free particles, this can be written as

iL1 ¼
XN
j¼1

Fj
@

@pj
; iL2 ¼

XN
j¼1

vj
@

@rj
: (25)

Applying (24) to the phase space vector G and using the property exp(a∂/∂x)
f(x) ¼ f(x þ a) for any function f, where a is independent of x, gives

viðtþ dt=2Þ ¼ vðtÞ þ ðFiðtÞ=mÞdt=2; (26)
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riðtþ dtÞ ¼ riðtÞ þ viðtþ dt=2Þdt; (27)

viðtþ dtÞ ¼ viðtþ dt=2Þ þ ðFiðtþ dtÞ=miÞdt=2: (28)

This is the velocity Verlet algorithm. Interchanging L1 ! L2 and L2 ! L1 leads
to the position Verlet algorithm. Both Verlet algorithms are examples of symplectic

integrators, which are volume conserving of the phase space. Any method which is

based on the splitting of the Hamiltonian is symplectic. The time reversibility is

guaranteed by symmetric methods [132]. The decomposition of the Liouville

operator offers the opportunity for a decomposition of time scales in an MD

simulation. A somewhat more general factorization of (24) leads to the reversible

reference system propagator algorithm (r-RESPA) [133]. Multiple time scale (MTS)

methods partition the MD simulation into “slow” and “fast” portions, assigning

appropriate time steps to each segment. The r-RESPA provides an integration

scheme which is reversible in time and evolves in a symplectic way. This algorithm

has been implemented, for example, in simulation packages such as NAMD2 [134],

AMBER [101] and DESMOND [135]. Although symplectic integrators like

r-RESPA can generate long stable trajectories, the performance of the algorithms

depends on the details of the implementation. This is particularly important in the

way in which non-bonded interactions are partitioned. The algorithm r-RESPA and

related integrators are known to suffer from resonance instabilities [136], which

bound the size of the time step of the slowest motions relative to the size of the

faster modes. Resonance phenomena engender the building up of energy in the

system, thereby giving rise to drifts in average properties and inaccurate sampling.

Morrone et al. [137] show how this can be corrected. Skeel [138] describes various

integration schemes for MD simulations and related applications.

The micro-canonical ensemble (NVE) may be considered as the natural ensem-

ble for MD simulations, as it is the canonical ensemble (NVT) for MC simulations.

By control of certain thermodynamics quantities, it is possible to realise diffe-

rent types of thermodynamic ensembles by MD simulations. This can be achieved

by external control methods like stochastic approaches, strong or weak coupling

methods and extended system dynamics. The application of stochastic disturbances

to control temperature was introduced by Schneider and Stoll [139] and corre-

sponds to a Langevin thermostat. The idea is to apply a frictional force and a

random force to the momenta. Velocity rescaling, as is executed by an Andersen

thermostat [140], distributes the external disturbance less smoothly. Strong cou-

pling methods artificially constrain a property to the desired value, e.g. the total

kinetic energy to a given temperature. This iso-kinetic or Gauss thermostat was

introduced by Hoover et al. [141] and Evans et al. [142]. Strong coupling can also

be applied to constrain the pressure to a preset value [143, 144]. It produces a

canonical distribution as has been shown by Tuckerman et al. [145]. Weak coupling

methods [146] are not stochastic, and can be employed both for temperature

and pressure control. For temperature control they do have the same effect as a

Langevin thermostat on the variance of velocities. The velocities are rescaled per
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step in such a way that the total temperature of the system will decay with a first-

order process to the desired temperature T.
Nosé [147, 148] introduced a so-called extended system dynamics by giving an

extra degree of freedom that can be used to control a variable in the system. Hoover

[149] modified the time-scaling somewhat into a scheme known as Nosé–Hoover

thermostat.

Jakobtorweihen et al. [150–152] have developed a so-called “Lowe–Andersen

interface-fluid collision thermostat” (LA-IFC) that mimics the thermal effects of

a flexible porous framework stochastically. This thermostat avoids simulations

employing a flexible carbon nanotube, for example. The results of diffusivity calcu-

lations coincide with MD simulations using fully flexible pore walls, but LA-IFC

simulations are orders of magnitude faster than MD simulations.

One of the key quantities in thermodynamics is the free-energy associated with

changes in molecular conformations or chemical reactions. Unfortunately, it is

generally much more difficult to calculate free energy differences from simulations

than to obtain energy differences. The reason for this is that the free-energy

expression contains an entropic term –TS, whereby entropy is given by an inte-

gral over phase space, while energy is an ensemble average. Free energies can be

evaluated from completely equilibrated trajectories or ensembles that contain all

accessible regions of configurational space. In practice it is hard to generate such

complete ensembles, in particular for “rough” energy landscapes. For this purpose

various new techniques have been developed, like parallel tempering [153, 154],

hyper-dynamics [155], meta-dynamics [156], blue-moon ensemble approach [157,

158], umbrella sampling [159] and adiabatic free-energy dynamics [160], amongst

others. A comprehensive review of free-energy techniques was presented by Chipot

and Pohorille (eds.) [161].

Since the 1990s, massively parallel computers have become available, where

thousands of processors may work on a single task. An MD program consists essen-

tially of the force routine, which usually takes up more than 90% of the execution

time. The integrator may be naturally parallelised, since the loop over N particles

may be subdivided and performed on different processors. The new message pass-

ing interface (MPI) II standard offers parallel read/write operations. Other libraries,

like Pnet CDF and net CDF-4, offer even more efficient parallel I/0. Some examples

of parallel MD simulations are given by [27]. Other details of MD simulations may

be found in the books [21, 23, 26, 27].

2.3 QM/MM, Transition State Theory

The paper written by Warshel and Levitt [162] introduced the first QM/MM

concept. Since about 1990, QM/MM approaches have been used by many groups,

in particular for modelling enzyme reactions, but also for other catalytic reactions,

for example, in zeolites [163]. QM/MM methods are established as a power-

ful computational technique to treat reactive processes in large systems. They are
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useful whenever one has to model a localised chemical reaction at an active site that

is influenced by an interacting larger environment. Recent advances in QM/MM

have been reviewed in various papers, for example [164–167]. In QM/MM simula-

tions one wants to retain as much as possible the formalism of the methods that are

being combined and to introduce well-defined coupling terms. The entire system is

divided into the inner QM region that is treated quantum-mechanically and the

outer MM region that is described by a force field. There is not one single QM/MM

method, and the multitude of different implementations can be characterised by

several main distinctions. For example, the so-called subtractive methods apply the

QM approach to the active site and the MM method to the entire system, including

the active site. The MM contribution for the active site has to be subtracted:

E ¼ Eacts
QM þ Etot

MM � Eacts
MM: (29)

The advantage of this approach is that it allows one, in a simple way, to combine

different QM schemes and MM schemes. The disadvantage is that the active site has

to be calculated by MM which might be difficult for complex electronic structures.

The additive scheme applies the MM only to the environment of the active site, and

a coupling term has to be introduced for the two regions:

E ¼ Eacts
QM þ Eenvir

MM þ Ecoupl
QM=MM: (30)

The coupling terms normally include bonded terms across the QM/MM bound-

ary, non-bonded vdW terms and electrostatic terms. A further problem is the treat-

ment of the QM/MM boundary. The choice of the QM region is usually made by

chemical intuition. This region can be enlarged step-wise, and its sensitivity to the

QM/MM results can be checked. Standard QM/MM applications employ a fixed

QM/MM partitioning where the boundary between the QM and MM regions is

defined once and for all at the outset. Park and Heyden [168] have derived a mixed-

resolution Hamiltonian and an explicit symplectic integrator for conservative mixed-

resolution systems that allow for a dynamic change in resolution of selected groups

of atoms during MD simulation. The so-called adaptive partitioning of the Lagrang-

ian (APL) method permits a simulation with accuracy comparable to an atomistic

one at the computational cost of a coarse-grained one.

DFT is the workhorse for the QM part. For extensive QM/MM MD simulations

one has to refer to semi-empirical methods. Linear scaling local correlation meth-

ods have also been used [169]. For the MM part proper force fields have to be

employed, e.g. GROMOS [105], AMBER [101], OPLS [103]. The electrostatic

coupling between the QM charge density and the MM charge model can be done in

various ways [170]. Mostly, electrostatic embedding is employed which allows for

the polarisation of the QM region since the QM calculation is performed in the

presence of the MM charge model, whereby the MM point charges are included as

one-electron terms in the QMHamiltonian. The treatment of the QM/MM boundary

can be executed in various ways. Most schemes give nearly the same results as long
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as the charges at the QM/MM boundary are carefully treated [171]. Introduction of

dangling hydrogen bonds or treating the frontier functional group as a pseudo-atom

with an effective one-electron potential are the most common approaches.

Nowadays many QM and MM software packages offer QM/MM capabilities.

ChemShell (www.chemshell.org) software is an example of a modular QM/MM

implementation.

Finding the transition states in high-dimensional spaces is a challenging prob-

lem. Transition states are first-order saddle points. The algorithms for finding first-

order saddle points on one spin PES can be divided into two groups: (1) approaches

based on interpolation between a reactant and a product minimum and (2) those

using only local information. A combination of both algorithms is probably the

most efficient way of finding first-order saddle points. Interpolation methods

generate a sequence of approximate MEP by interpolating between a reactant and

a product state. The highest energy configuration along an MEP is a first-order

saddle point. Both reactant and product states must be known so that these methods

cannot reveal unexpected chemical pathways with multiple intermediates. Further-

more, if multiple pathways exist, only that nearest to the interpolated guess will be

found [10]. The interpolation algorithms convert a saddle point search in configu-

ration space to a minimisation problem in discretised path space. Minimisation

problems in path space can easily handle large numbers of low-frequency modes,

a significant challenge for most local surface walking algorithms. Interpolation

algorithms include, for example, nudged elastic band (NEB) [172] and the string

method [173]. These methods initiate the search for a transition state by assuming

that the MEP is a straight line in multidimensional space connecting the reactant

and product states. Peters et al. [10] have shown that the growing string method, an

interpolation method that does not require an initial guess for the initial pathway,

needs significantly fewer gradient calculations to find the saddle point than the NEB

and the string method.

Local surface-walking algorithms explore the PES using local gradient and

usually second derivative information. These methods can be initiated any-

where on the PES. These algorithms perform poorly for systems with several

low-frequency vibrational modes or for searches started far from a transition state.

Furthermore, even if a transition state is found it is possible that it does not

connect reactant and product states. Therefore, it is recommendable to employ

an interpolation algorithm like the growing string method to generate a starting

point for the local surface walking algorithm. Two of the most used algorithms

of this type are the P-RFO method by Baker [174] and the dimer method by

Henkelman and Jónsson [175] or its improved version by Heyden et al. [11]. The

latter method is available in some commercial program packages like VASP [65]

or QChem [13].

The reaction rate constants are mostly calculated based on the harmonic TST.

Comprehensive review of this subject was presented by H€anggi et al. [176]. The
rate coefficients for elementary reactions on a catalyst surface are obtained by

conventional TST in the following way:
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kTSTðTÞ ¼ kBT QTSðTÞ
h QRðTÞ exp �Eþ

RT

� �
; (31)

where kB is Boltzmann’s constant, h Planck’s constant, T is the absolute temperature

and E+ is the difference in electronic energies between the transition state and the

reactant state, respectively. The partition functions of the transition state,QTS(T), and
the reactant state may be calculated, for example, like this:

Q ¼ 2pMkBT

h2

� � ffiffiffi
p

p
s

T3

yAyByC

� �0:5 Y3n�6

j

1

1� e�yvj=T

 !
oel; (32)

where M is the molecular mass, yi are the moments of inertia, the yvj the normal

modes and oel the electronic energy. A transmission coefficient can also be intro-

duced which has the general form like this [19]:

gðTÞ ¼ GðTÞkðTÞgðTÞ; (33)

where G(T) arises from dynamical recrossing. It takes into account that some

trajectories that cross the dividing surface in the direction of products recross and

return to the reactant region. G(T) is smaller than one. k(T) arises from quantum

mechanical tunnelling. k(T) is greater or equal to one. g(T) takes deviations of the
equilibrium distribution in phase space into account. g(T) can be either less than or

greater than one. In conventional TST g(T) is set equal to one. Further develop-

ments of TST may be found in papers by Truhlar’s group [7–9].

There are important examples where the harmonic/rigid-rotor approximation to

TST fails in describing the reaction kinetics. Even worse, simulations based on the

static approach can sometimes lead to completely incorrect prediction of the

reaction mechanism. For example, in catalytic transformations of short alkanes,

entropy plays an important role. During the reaction the mobility of the reactants

varies according to the strength of their interactions with the zeolite, leading to a

substantial entropy contribution to the free-energy reaction barrier. Entropy can

even stabilise some otherwise unstable reaction intermediates, opening unexpected

alternative reaction channels competing with the mechanism deduced from a static

TST search. Therefore, one has to explore the free-energy surface and not just of the

PES in configuration space. Bucko and Hafner [177] have shown that the static

approach, corrected for dynamical effects within harmonic TST, is insufficient for

describing reactions including weakly bound adsorption complexes such as hydro-

carbon conversion reactions. The most important reasons for this failure were found

to be as follows. (1) An adsorption complex identified by static total-energy

minimisation is not a proper representation of the reactant state. Hence the work

needed to create an adsorption complex represents in some cases an important

contribution to the free-energy barrier. This contribution is not taken into account in

harmonic TST, which is based on the analysis of the energy surface in the vicinity

of stationary points only. (2) The static approach does not account for reaction
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intermediates which are not potential-energy minima, hence it does not allow for

changes in the reaction mechanism induced by thermal fluctuations.

Bucko and Hafner [177] employed transition path sampling techniques [178,

179] to overcome the static TST problems (see also [196]).

Other general aspects for computing catalytic reactions are discussed by

Raimondeau andVlachos [38, 184], Berendsen [180] and Broadbelt and Snurr [181].

3 Applications: From the Active Centre to the Chemical

Reactor

An example of a heterogeneous catalytic reaction will be presented, which, to the best

of my knowledge, for the first time describes the complete picture consistently from

the active centre to the chemical reactor [182, 183]. Previous simulations of hetero-

geneous catalytic reactions were summarised by Raimondeau and Vlachos [184],

Broadbelt and Snurr [181], Vlachos [185] and Santiso andGubbins [36]. Furthermore,

results on simulations of heterogeneous catalytic reactions may be found in books by

van Santen and Sautet (eds.) [40] and van Santen and Neurock [41]. Christensen and

Norskov [186] describe some computational investigations on trends of reactivity of

catalyst surfaces.

Molecular simulation of heterogeneous catalytic reactors, which is a multiscale

problem (Fig. 5) initiated by quantum chemical calculations, may be used in combi-

nation with TST to obtain intrinsic kinetic data and to elucidate the reaction

mechanism.

In [182, 183] the alkylation of benzene with ethene over H-ZSM-5 was inves-

tigated. The electronic energies and vibrational frequencies of each stationary point

along the reaction coordinate were calculated for the two mechanisms presented in

Fig. 6.

Adsorption from the gas phase into the zeolite leads to a decrease of the potential

of each molecule (Fig. 7).

active center

microscopic
nm

mesoscopic
mm μm

macroscopic
m

Fig. 5 Orders of magnitude in heterogeneous catalytic reactors
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This is caused by dispersion interaction between the carbon atoms of the reactant

and the oxygen atoms of the zeolite framework. Interaction of the reactants with the

Brønsted acid site further reduces the potential. The intrinsic energy barrier for

the forward reaction is the difference between the bottom of the well for the co-

adsorption of A and B at the active site and the top of the transition state. First, the

One-step alkylation of benzene:
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Fig. 6 Elementary steps involved in the alkylation of benzene
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reaction mechanism for the alkylation was elucidated using DFT applied to cluster

representations of the active site. Second, the MP2:DFT hybrid approach suggested

by Tuma and Sauer [193] was employed. Structure optimisation of all stationary

points within the full ZSM-5 unit cell using DFT with periodic boundary conditions

has been the first step in this approach. Stationary points were characterised by

harmonic frequencies obtained by diagonalisation of the full dynamical matrices

(absence of imaginary frequencies for minima and presence of exactly one imagi-

nary frequency for all transition structures). To confirm that the transition states

were connected to the correct energy minima, each transition state was perturbed

slightly along the reaction coordinate in the reactant and product direction. The per-

turbed geometries were used as starting geometries for energy minimisation. The

second step was the calculation of the high-level correction; that is the difference

between MP2 and DFT single-point adsorption energies and energy barriers, res-

pectively, for clusters of progressively larger size. These clusters were cut out from

the periodic DFT-optimised structure. The size-dependent high-level correction

[187]

DEðCÞhigh ¼ DEðCÞMP2 � DEðCÞDFT (34)

was then extrapolated to the periodic structure (S). This periodic model limit,

D ~EðSÞhigh; is added to the plane-wave DFT energy for the periodic structure,

DE(S)DFT, to get an estimate of the MP2 energy for the full periodic system,

E
ne

rg
y

Reaction coordinate
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A(ads, O),
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Transition
structure
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Fig. 7 Schematic energy diagram for a zeolite-catalysed one-step reaction A + B ! C. (1)

Reactants in the gas phase. (2) Adsorption of A and B in the zeolite channels. (3) Co-adsorption

of A and B on the Brønsted acid site. (4) Formation of the transition state. (5) Product adsorption

on the Brønsted site. (6) Product adsorption in the channel system. (7) Product in the gas phase
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D ~EðSÞMP2 ¼ D ~EðSÞDFT þ D ~EðSÞhigh; (35)

where the tilde is used to discriminate energies which were obtained through fitting

and/or extrapolation, respectively, from those obtained directly from quantum

chemical calculations. The third step was the extrapolation of the MP2 energy to

the CBS limit. Additionally, single-point coupled cluster calculations [CCSD(T)]

were conducted to account for higher order correlation effects. Thermodynamic

contributions arising from finite temperatures were taken into account by calcula-

tion of partition functions within the harmonic approximation assuming separa-

bility of electronic translational, rotational and vibrational terms. The first step in

linking the outcome of a quantum chemical calculation (i.e. the PES) to a rate of

reaction is the calculation of rate coefficients for elementary steps. For the alkyl-

ation of benzene the barrier crossing is an infrequent event because the condition

Ebarr/RT � 1 holds. This allows the use of classical TST. Therefore, the intrinsic

rate constants were calculated according to (31)/(32).

The next step is the modelling of multi-component adsorption and diffusion

inside the pores (Fig. 8).

This sequential strategy is possible if the length and time scales of the problem

are well separated, and if suitable models for linking the levels of modelling are

available. The adsorption isotherms for ethene, ethane, benzene, ethylbenzene and

hydrogen in MFI (all silica form) were determined by “configurational-bias Monte

Carlo” (CBMC) simulations in the grand canonical ensemble at a variety of tem-

peratures. The outcome of these simulations depends on the quality of the force

fields. A united atom force field was employed that was parametrised against adsor-

ption isotherms in zeolites. The simulated isotherms were fitted to a three-site

Langmuir expression:

qið fiÞ ¼ qi; sat;Abi;A fi
1þ bi;A fi

þ qi;sat;Bbi;B fi
1þ bi;B fi

þ qi; sat;Cbi;Cfi
1þ bi;C fi

; (36)
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where qi,sat,X denotes the saturation capacity of species i on site X, bi,X is the affinity
constant and fi is the gas phase fugacity of species i. The continuum level of an

entire pellet is calculated according to the partial differential equation

@qi
@t

¼ � 1

r
1

z2
@

@z
ðz2NiÞ þ 1

r
nir; i ¼ 1; 2; . . . ; n (37)

where qi is the loading of species i, r is the zeolite framework density, z the

diffusion path, Ni the molar flux of species i, ni the stoichiometric coefficient and

r is the rate of reaction. As the composition of reactants and products along the

pores changes continuously due to reaction, the adsorption equilibria for arbitrary

compositions inside the pores need to be calculated. This was achieved by means of

ideal adsorbed solution theory (IAST) [194] which requires only the pure compo-

nent isotherm data as input. These isotherms are taken from CBMC simulations.

The suitability of the IAST has to be checked by a limited number of MC simula-

tions of the multi-component adsorption equilibria. Therefore, IAST is a linking

model for MC adsorption results.

MD simulations were carried out in a rigid zeolite framework for a variety

of loadings and temperatures, employing the same force field as was used in the

CBMC simulations. From these data, self-diffusivities and Maxwell–Stefan diffu-

sivities were extracted. These diffusivities were used in the Ni terms of (37). Again

one has to check the validity of the Maxwell–Stefan approach by means of some

multi-component MD simulations. As the composition of the molecular mixture

inside the pores changes along the pore and with time, one has also to refer to a

linking model for diffusivities, as a complete calculation by MDwould be by far too

time consuming. The Maxwell–Stefan approach serves as a linker. For details

see [182].

The rate of reaction of the one-step mechanism (see Fig. 6) is given by

r

r
¼ ~r ¼ kf qEþB;Hþ � krqEB;Hþ ; (38)

where kf and kr are the rate coefficients for the forward and reverse reaction of

ethene and benzene to form ethylbenzene, respectively, qEþB;Hþ is the amount of co-

adsorbed “ethene + benzene” at the active sites and qEB;Hþ is the amount of adsor-

bed ethylbenzene at the active sites. As benzene and ethylbenzene are mostly sited

in the zeolite cages whilst the ethene molecules can move into the channels and the

cages, the assumptions made for Langmuir–Hinshelwood kinetics are not fulfilled.

For qEþB;Hþand qEB,H analytical expressions are needed in order to calculate them

from species loadings qE, qB, and qEB. As was outlined in [182], such terms may be

obtained from MC simulations of the multi-component adsorption isotherms. As

benzene and ethylbenzene are mostly sited inside the cages, fitting to Langmuir–

Hinshelwood kinetics is not possible.

To conclude, by employing suitable linking models based solely on mole-

cular data, one can obtain results on a macro level, i.e. composition profiles inside
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catalyst pellets and reactors. The pellet (37) is solved, for example, by a finite

difference approach, and a reactor plug flow model was used for the entire reactor.

The results are presented in [182, 183]. One result is discussed here. Figure 9 shows

plots of the effectiveness factor vs particle radius. The bulk phase composition has a

benzene/ethylene molar ratio of five. It can be seen that the conventional results

obtained for a fixed value of an effective diffusivity deviates considerably from

detailed simulations based on real local compositions and rates along the pores, in

particular for higher pressures.

4 Outlook

Over the last few years there has been considerable progress in multiscale modelling

of catalytic processes, although there is still considerable room for improvement on

all levels. One of the weakest points is the harmonic TST. There is increasing

evidence that this fails for reactions involving loosely bound reactant and/or

transition states where entropy makes a significant contribution to the free-energy

reaction barrier. The free energy of activation may be derived by free-energy

integration schemes such as the Blue-Moon ensemble technique in combination

with constrained ab initio MD simulations. There is a need for accurate experimental

kinetic data to assess the reliability of modelling approaches for predicting effective
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reaction rates for zeolite-catalysed reactions. The problem of vdW forces with DFT

calculations is in part solved. In heterogeneous catalysis, only for very few reactions

is the mechanism known in detail. Well understood are ammonia synthesis and the

hydrogenation of ethylene. The industrial Envinox process has also been investi-

gated in great detail [188–191]. On the force field level there is a need for force fields

that can describe interactions between hydrocarbons and Brønsted acid sites. Such

force fields have to be parametrised against accurate quantum mechanical calcula-

tions because experimental data are hard to obtain. Reliable approaches are required

to calculate diffusion coefficients for slowly diffusing molecules such as aromatics

which are difficult to obtain directly from classical MD simulations. On the contin-

uum level, the description of multi-component diffusion can be improved by

accounting for strong adsorption sites by using, for example, the effective medium

approximation by Coppens and co-workers [192]. Therefore, modelling of catalysed

heterogeneous reactions will be an active field of research in the future.
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Abbreviations

AIMD Ab initio molecular dynamics; molecular dynamics with electronic

structure calculations on the fly

ASPC Always stable predictor–corrector algorithm

BOMD Born–Oppenheimer molecular dynamics; molecular dynamics with

electronic structure calculations on the fly, diagonalization in each step

CPMD Car–Parrinello molecular dynamics; molecular dynamics with elec-

tronic structure calculations on the fly, orthogonalization in each step

otherwise the coefficients of the wavefunction are propagated like the

nuclear positions

CV Collective variables

DFT Density functional theory; static quantum chemical method using

functionals of the electronic density to account for electron correlation

DVR Discrete variable representation

ECP Effective core potential also called pseudopotential

FBR Finite basis representation

FES Free energy surface

FFT Fast Fourier transformation
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GGA Generalized gradient approximation (GGA) functional, a functional

that depends on density and its gradient

HF Hartree–Fock, static quantum chemical method

IR Infrared red

loc Local functional depending only on r

MD Molecular dynamics, simulation method

MEP Minimum energy path

MFEP Minimum free energy path

MLWC Maximally localized Wannier centers

MLWO Maximally localized Wannier orbitals

MTD Metadynamics, method to calculate rare events

NAO Numerically tabulated atom-centered orbitals

NEMD Non-equilibrium molecular dynamics

nl Non-local, functional depending not only on r but also on r0

NPT NPT ensemble: isothermal-isobaric ensemble; constant particle (N),

pressure (P), and temperature (T) simulation

PBC Periodic boundary conditions

QM/MM Hybrid quantum-mechanical/molecular-mechanical calculations

RPA Random phase approximation

SCF Self consistent field

vdW van der Waals, dispersion forces; usually not well-described in DFT

1 Introduction

Ab initio molecular dynamics (AIMD) simulations combine classical molecular

dynamics simulations with electronic structure calculations on the fly. The theoret-

ical foundations for ab initio molecular dynamics were laid with the work of

Ehrenfest [1] and Dirac [2] at the beginning of the twentieth century. Dirac

developed the theory of time-dependent self consistent field (SCF) equations for

nuclear and electronic motion and Ehrenfest derived mixed classical-quantum

mechanical (time-dependent electronic structure) equations [3]. In 1985 it was the

seminal article of Roberto Car and Michele Parrinello [4] which initiated the use

and further development of ab initio molecular dynamics simulations. The authors

intended to derive a new method which is able to “(1) compute ground-state

electronic properties of large and/or disordered systems using state-of-the-art

electronic structure calculations; (2) perform AIMD simulations where the only

assumptions are the validity of classical mechanics to describe ionic motion and the

Born–Oppenheimer (BO) approximation to separate nuclear and electronic

coordinates” [4]. For this purpose Car and Parrinello made use of the extended

Lagrangian technique, previously invented to simulate systems under constant

pressure [5, 6]. This ingenious method solved the problem of the expensive self-

consistent solution to the electronic structure problem along the molecular dynam-

ics trajectory. By showing a feasible route to extensive ab initio molecular dynamics
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simulations of condensed systems, Car and Parrinello kick started and dominated

the field. Their method stays at the beginning of all new developments in the field.

Section 2 provides a brief overview of the AIMD methodology mainly in the

representation of Car–Parrinello molecular dynamics simulations. Born–Oppenheimer

molecular dynamics (BOMD) simulations (time-independent electronic structure)

are introduced in a generalized formulation based on the work by Niklasson [7, 8].

This will be followed (Sect. 3) by some recent methodological advancements which

allow for computationally more efficient simulations with better statistical sampling

and which use more accurate electronic structure methods. After this, some

examples from applied chemistry studied from AIMD will be given in Sect. 4.

2 Ab Initio Molecular Dynamics Simulations in a Nutshell

2.1 Molecular Dynamics Simulations: Basics

Molecular dynamics (MD) is an application of classical mechanics using computer

simulations. Good introductions can be found in many textbooks, for example the

excellent book by Tuckerman [9]. In order to carry out MD, equations describing

the motion of molecules are needed. These equations of motion can be derived for

example from the classical Lagrangian L, a function of the kinetic (K) and the

potential energy (U):

LðRI; _RIÞ ¼ KðpIÞ|fflffl{zfflffl}
kin: energy

�UðRIÞ|fflffl{zfflffl}
potential

¼
XN
I¼1

1

2
MI

_R
2

I � UðRIÞ (1)

with RI andMI being position and mass of particle I. The momentum pI is related to

the velocity _R ¼ pI/MI. The equations of motion are then obtained from the

Euler–Lagrange relation:

d

dt

@L
@ _RI

¼ @L
@RI

: (2)

This means that the nuclei (atoms) are treated as classical particles, a well

founded and tested approximation [10, 11]. Applying the Euler–Lagrange equation

(2) to the Lagrangian L (1) leads to Newton’s second law:

MI
€RI ¼ FI: (3)
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Using Newton’s second law (3) the acceleration ( €RI) of the particles can be

obtained from the forces FI acting on the particles.

2.2 Obtaining the Forces and Integrating
the Equations of Motion

Traditional molecular dynamics simulations use pre-defined analytical potentials.

The potentials most commonly work with the pairwise additivity approximation

(U(RI J) ). This means that an analytical expression of the pair potential, a potential

between each set of atoms I and J, is parameterized such that good structural and/or

thermodynamics quantities can be expected [12]. Alternatively, electronic structure

calculations are carried out for a pair of particles as a function of distance and the

analytical expression has to be fitted to these energy points on the potential energy

surface [12]. It also means that the Born–Oppenheimer approximations have to be

valid, i.e., a separation of nuclear and electronic variables is possible and coupling

terms (non-diagonal and diagonal) can be neglected [13, 14]. From the analytical

potentials the forces are then obtained by taking the derivatives with respect to the

positions

FI ¼ � @UðRIÞ
@RI

¼ � @UðRI JÞ
@RI J

: (4)

In order to propagate the atoms, a small discrete time step Dt is introduced and a
numerical step-by-step integration of the equations of motion is carried out. Taking

the Taylor series expansion in Dt gives

RIðtþ DtÞ ¼ RIðtÞ þ Dt _RIðtÞ þ 1

2
Dt2 €RIðtÞ þ 1

6
Dt3BIðtÞ þ � � � (5)

and

_RIðtþ DtÞ ¼ _RIðtÞ þ Dt €RIðtÞ þ 1

2
Dt2BIðtÞ þ � � � (6)

The time evolution of the system is followed by applying integration algorithms

(the so-called integrator) in an MD computer program. One can obtain these

integrators from the Taylor expansion around t + Dt and t � Dt and by combining

the resulting equations. The following form is the velocity Verlet (Str€omer–Verlet)

integrator:

RIðtþ DtÞ ¼ RIðtÞ þ _RIðtÞDtþ FIðtÞ
2MI

Dt2; (7)
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_RIðtþ DtÞ ¼ _RIðtÞ þ FIðtþ DtÞ þ FIðtÞ
2MI

DðtÞ: (8)

It is apparent how the new positions RI(t + Dt) can be calculated from the

current positions RI(t), velocities _RI(t), and forces FI(t). Similarly, the new

velocities can be obtained from knowledge of current velocities and forces FI(t)
as well as from the new forces which are available as soon as the new positions (7)

are calculated. An overview over how integration algorithms are derived is

provided in [10].

In many molecular systems it is desirable to freeze fast degrees of freedom. This

can be necessary in order to allow the integration of the slower motions using larger

time steps. Or the freezing of fast degrees of freedom might be necessary if the

quantum nature of such degrees of freedom (e.g., bond stretch vibrations including

hydrogen atoms) are important. A technique developed [10, 15] to handle properly

such constraints to the molecular structure in molecular dynamics simulation is

based on undetermined multipliers. The constraint conditions with the undeter-

mined multipliers are added to the Lagrangian of (1). The constraint condition then

gives rise to additional (constraint) forces GI in the equation of motion

MI
€RI ¼ FI þ GI: (9)

The constraint forces depend linearly on the multipliers which have to be

determined in accordance with the numerical integration scheme. This usually

leads to nonlinear equations which can in special cases be solved directly. However,

the most common algorithm, called SHAKE [15], solves the equations iteratively,

until self consistency between input and output multipliers is achieved.

In order to avoid surface effects for condensed phase simulations, periodic

boundary conditions are applied. The central computational box is replicated

infinitely in all dimensions. A detailed description can be found in the textbooks

of Allen and Tildesley [10] as well as of Frenkel and Smit [11].

2.3 Born–Oppenheimer Molecular Dynamics Simulations

Instead of using a pre-parameterized potential, the potential can be calculated on

the fly using electronic structure theory within the Born–Oppenheimer approxima-

tion. In such calculations the potentials are obtained by solving a time-independent

quantum chemical electronic structure problem:

UðRIÞ ¼ min
fCg

E½fCg;RI�: (10)
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The Schr€odinger equation with an optimized electronic wavefunction C at

current nuclear position RI is solved in order to provide the forces for calculating

the next step.

2.4 Car–Parrinello Molecular Dynamics Simulations

The basic idea of Car–Parrinello molecular dynamics simulations can be expressed

by “A two-component quantum-classical problem is mapped onto a two-component

purely classical problem with employing the constraints that quantum mechanics

has to be fulfilled at all times” [3].

This leads to two separate energy scales at the expense of losing the physical

time information of the quantum subsystem dynamics. The corresponding Lagrang-

ian (1) reads

L ¼
XN
I¼1

1

2
MI

_R
2

I þ
X
i

m _fij _fi

D E
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kin: energy

� eel½ffig;RI�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
potential

: (11)

The second term of (11) describes the fictitious kinetic energy of the electrons.

The term contains an arbitrary parameter (fictitious mass parameter) m with appro-

priate units of energy times a squared time. The explicit form used in (11) is for

orbital based methods.

How this mass parameter has to be chosen is extensively discussed in [3]. A

critical point of view about the fictitious mass parameter and about arguments used

for the justification of the CPMD approach is given in [16]. The dot in this

Lagrangian indicates the time derivative; thus it is apparent that the wavefunction

fulfils the same task as the nuclear position variable. The potential is now a

functional of the electronic energy Eel plus the constraints which are enforced in

order to satisfy quantum mechanics, i.e., the orbitals which are altered during time

evolution are supposed to stay orthonormal; see second term of (12). The additional

constraint is introduced by the standard Lagrange multipliers approach, where the

Lij are the Lagrange multipliers and dij is the Kronecker delta:

E½ffig;RI� ¼ Eel þ
X
ij

Lij fijfj

D E
� dij

� �
: (12)

As the electronic energy is a function of the nuclear positions as well as function

of the orbitals fi, its derivative is taken with respect to the nuclear positions but also

with respect to the wavefunction. The Euler–Lagrange equations then read
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d

dt

@L
@ _RI

¼ @L
@RI

and
d

dt

@L
@ _fi

D �� ¼
@L
@ fih j : (13)

This leads again to the equations of motion, in this case to the Car–Parrinello

equations of motion, given below:

MI
€RI ¼ � @Eel

@RI
þ
X
ij

Lij
@

@RI
fijfj

D E
; (14)

mj€fi

E
¼ � dEel

d fih j þ
X
j

Lijjfj

E
: (15)

The forces on the nuclei are given by

FðRIÞ ¼ � @Eel

@RI
þ
X
ij

Lij
@

@RI
fijfj

D E
(16)

and the forces on the electrons are given by

f i ¼ fðfiÞ ¼ � dEel

d fijh þ
X
j

Lijjfij

E
: (17)

The integration algorithm for these equations of motion is given by the scheme

below. The resemblance to (7) is immediately apparent. Because we follow the line

of [3] these equations are valid for the special case of Kohn–Sham density func-

tional theory in the plane wave basis set representation as electronic structure

method. This leads to the simplification that the second term of (14) vanishes,

because the orthonormality constraint is independent of the nuclear positions.

Furthermore, the wavefunction (now Kohn–Sham orbitals in the plane wave repre-

sentation) are replaced by the expansion coefficients ci of the plane waves. The

possibility of different integrators for equations of motion was alluded to above; the

following scheme for the expansion coefficients is also based on the velocity

Verlet algorithm. The constraint is enforced by the Rattle algorithm [10, 11];

therefore, the new “positions” of the coefficients without applying constraints
c̃i(t + Dt) read

~ciðtþ DtÞ ¼ ciðtÞ þ _ciðtÞDtþ f iðtÞ
2m

Dt2; (18)
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and then the constraints are corrected which is expressed in the second term of

ciðtþ DtÞ ¼ ~ciðtþ DtÞ þ
X
j

Lc
ij

2m
Dt2cjðtÞ: (19)

The Lagrange multipliers Lc
ij of the constraints depend now only on the elec-

tronic part. For their determination see [3]. Of course the nuclei are also propagated,

their positions being obtained according to (7). From these new “positions,” i.e.,

new nuclear positions and new coefficients, the forces on the nuclei F(RI) and those

on the electrons fi are obtained. Again, the “velocities” of the coefficients are

derived as

_c0iðtþ DtÞ ¼ _~ciðtþ DtÞ þ f iðtþ DtÞ
2m

Dt: (20)

They are corrected afterwards by determining the constraints

_ciðtþ DtÞ ¼ _c0tðtþ DtÞ þ
X
j

L _c
ij

2m
Dt cjðtþ DtÞ: (21)

The difference from classical force field based simulations where the forces are

calculated from pre-defined pair potentials is that the forces are derived from the

global potential energy surface of an electronic structure theory. The vastly higher

computational costs of an electronic structure calculation restrict the system size

and the length of trajectories accessible by ab initio molecular dynamics simulations.

However, it becomes clear that CPMD and AIMD are important steps towards

general predictive methods, due to their independence from parameterizations.

2.5 Generalization of the Car–Parrinello and Born–Oppenheimer
Molecular Dynamics Approaches

In order to allow for higher order symplectic or geometric integration schemes,

Anders Niklasson et al. introduced a Lagrangian generalization of the time-revers-

ible Born–Oppenheimer molecular dynamics simulations [7, 8].

Integrators in molecular dynamics simulations are supposed to be accurate, i.e.,

they should enforce the exact trajectory being followed as closely as possible.

They should provide stability, meaning that the constants of motion, e.g., the total

energy in the microcanonical ensemble, are preserved. Nevertheless, the integrators

should be efficient, which means that a minimum number of force calculations are

needed in order to save computer time. The best numerical methods are based on
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symplectic and time-reversible integrators. For integrator algorithms see Sect. 2.2,

in which the Str€omer–Verlet integrator was introduced. However, in general, long

time stability is more important than short time accuracy.

For ab initio molecular dynamics simulations it is important to understand how

the errors in the forces affect the long term MD stability of the simulations. While

the error in the energy [minf E[{f}, RI], see (10)] is, due to the variational

principle, of second order in the error df of the wave functions, the error in the

force (dE[{f}, RI]/dRI) is of first order in df. This suggests that MD stability can

only be achieved with numerically highly accurate wavefunctions.

In the following the indices for the nuclei and the electrons will be omitted.

Applying the extended Lagrangian method introduced by Niklasson [7, 8] a general

expression for the AIMD Lagrangian can be written as

Lðq; _q; x; _xÞ ¼ 1

2
M _q2 þ 1

2
m _x2 � Eðq; yÞ þ kmGðjjx� yjjÞ: (22)

q and x are now generalized coordinates of the nuclei and electrons, respec-

tively. The vector y expresses the wave function after complete or partial

optimization:

y ¼ Fðq; xÞ: (23)

G(kx � yk) is a retention potential that ensures that the propagated

wavefunction x stays close to the optimized wavefunction y and m is a mass

parameter, k ¼ o2 is the force constant of the retention potential.

From the generalized Lagrangian follows the equations of motion

M€q ¼ � @E

@q
� @E

@y

@F

@q
þ km

@G

@y

@F

@q
(24)

and

m€x ¼ � @E

@y

@F

@x
þ km

@G

@q
þ @G

@y

@F

@x

� �
: (25)

In this notation the Car–Parrinello molecular dynamics scheme is obtained with

the condition

y ¼ x ) Gðjjx� yjjÞ ¼ 0: (26)

This leads directly to the Car–Parrinello Lagrangian [see (11)]

Lðq; _q; x; _xÞ ¼ 1

2
M _q2 þ 1

2
m _x2 � Eðq; xÞ (27)
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and, accordingly, the equations of motion; see (14) and (15). The accuracy of

CPMD simulations with respect to Born–Oppenheimer surface as well as the

efficiency, through the maximal time step dt, is controlled by the fictitious mass

m. The two conditions, accuracy and efficiency, have conflicting requirements on

the mass and usually a rather large m value is selected. As the fictitious mass

changes the dynamics of the system, a renormalization of all dynamic quantities,

for example the vibrational spectrum, is needed. However, the stability of the

CPMD trajectory is excellent, because the calculations of the forces can be carried

out easily to high precision. The efficiency of CPMD calculations is strongly system

dependent as the maximal time step is dictated by the electronic energy gap.

Born–Oppenheimer molecular dynamics is obtained from the generalized

Lagrangian with the conditions

y ¼ argmin
x

Eðq; xÞ and m ¼ 0: (28)

The Born–Oppenheimer Lagrangian is thus simply

Lðq; _qÞ ¼ 1

2
M _q2 � Eðq; yÞ: (29)

Next the respective equations of motion are decoupled:

M€q ¼ � @E

@q
and €x ¼ �k

@G

@x
:

This set of equations suggests a simple scheme where the nuclei are propagated

on the Born–Oppenheimer surface according to the forces calculated from

the derivatives of the optimized Kohn–Sham energy functional. Furthermore, an

independent dynamical system can be applied to propagate an initial guess for the

wavefunction. Accuracy and stability of the nuclei propagation are seemingly

independent from the details, initial guess, and optimization method of the elec-

tronic structure calculation. The variational nature of the energy functional

guarantees a quadratic dependence of the error in energy on the residual error in

wavefunction. However, the derivative with respect to nuclear coordinates will

show a linear dependence on the error in wavefunction. A rather tight convergence

of wavefunction will be needed and this will require a rather large number of SCF

cycles. It is therefore natural to try to reduce the number of SCF cycles by using a

cleverly chosen initial wavefunction. A first simple choice would be to use the last

optimized wavefunction along the trajectory. However, simulations using this

approach have been shown to possess large drifts in total energy, even for tight

SCF convergence criteria. This problem has been analyzed by Niklasson and

coworkers [7, 8] in a series of papers. They realized that the incomplete SCF

convergence leads to errors in the energy and forces of the Born–Oppenheimer

system. Because the forces are calculated under the assumption of complete
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optimization, i.e., the wavefunction derivatives are neglected, energy and forces are

also no longer fully consistent. This would constitute, for energies sufficiently close

to the Born–Oppenheimer energy, no real problem if these errors did not depend on

the optimization method and initial guess wavefunction. Initial wavefunctions

selected in a non-time reversible way, e.g., by taking the last optimized wavefunction,

will transfer this property with the force error to the nuclear dynamics. The nuclear

dynamics is therefore no longer time reversible, despite a seemingly time reversible

integration algorithm, and very poor stability of integration results. To cure this

problem a time reversible propagation of the initial wavefunction has to be chosen.

A time reversible BO molecular dynamics scheme based on the propagation

of one-particle density matrices has been proposed by Niklasson [8]. The equation

of motion for the density matrix is

€P ¼ o2ðD� PÞ: (30)

Here, D is the self-consistent, optimized density matrix. Using a time-reversible

Verlet scheme we get an explicit integration of the form

Pðtþ dtÞ ¼ 2PðtÞ � Pðt� dtÞ þ dt2o2½DðtÞ � PðtÞ�: (31)

With k ¼ dt2o2 ¼ 2 as the original form proposed, using stability analysis the

largest possible value of k can be determined. A larger value of k is desirable, as for

a given time step dt a larger k corresponds to a stiffer harmonic potential keeping

the propagated density matrix P closer to the optimized density matrix D. The
largest value of k that is consistent with stability is the one that guarantees that the

distance D(t) � P(t) does not diverge. For the Verlet family of integrators this

optimal value is in fact k ¼ 2.

The propagation of wavefunctions expanded in atom centered basis functions

needs special care. It is best to use an extrapolated contra-covariant density matrix

PS as a projector on to the occupied subspace

Cpðtþ dtÞ ¼
XK�1

m¼0

BkCðt� mdtÞCTðt� mdtÞSðt� mdtÞCðt� dtÞ; (32)

where S(t) is the overlap matrix and C(t) are the orbital expansion coefficients at

time t. An approximate time reversible predictor–corrector method proposed by

Kolafa [17], always stable predictor–corrector (ASPC), originally proposed for

classical polarizable force fields, can be used. The extrapolation coefficients for

this method are

Bk ¼ ð�1Þmðmþ 1Þ
2K þ 2

K � m

� 	

2K
K

� 	 : (33)
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The coefficients Bk ensure time reversibility to O(dtK+3). The corrector

associated with this method is

CðtÞ ¼ o argmin
C

EKSðR;CÞ þ ð1� oÞCpðtÞ; (34)

with o ¼ Kþ1
2Kþ1

. Variations of the above two methods are possible and have been

discussed together with, for example, a noise dissipation algorithm [18–20] for

additional stability.

3 Faster, Larger, and More Accurate: Recent Developments

Advanced applications in AIMD require the treatment of systems with hundreds of

atoms and an extended sampling of configurations. These simulations are only

possible using large computational resources and the most advanced algorithms.

Tapping the power of massively parallel computers was therefore an important goal

in many AIMD code projects. Further important improvements in AIMD simulations

came from better sampling algorithms and the emergence of improved electronic

structure methods.

3.1 Massively Parallel Implementation

Modern high performance computer architectures are all based on massively

parallel assemblies of multi-core CPUs with high speed networks. In order to

take advantage of the available computing power it is necessary to revise and

adapt algorithms constantly and to update computer codes. The AIMD community

using plane wave based codes played a leading role in the efficient usage of parallel

computers. These codes are dominated by a small number of computational kernels,

e.g., three-dimensional fast Fourier transforms (FFT) and matrix multiplication,

which can be mapped efficiently on distributed memory architectures. Early

parallelization strategies focused either on a parallelization by bands (orbitals) or

on the 3d-FFT [21, 22]. The FFT route proved to be more successful but mixed

schemes were also explored in order to extend the range of optimal scaling.

Efficient scaling to tens of thousands of processors was achieved with these

implementations [23]. The recent trend to multi-core systems led to compute

nodes with many compute elements. This caused an adaptation of algorithms

using multi-level parallelization [24–26]. Typically a coarse-grain distributed

memory level using the MPI library is used for inter-node parallelization and a

fine-grain, loop level, parallelization using OpenMP takes advantage of the com-

pute cores within the nodes. Several leading AIMD codes, e.g., CPMD [3, 22],

Qbox [23], and Quantum ESPRESSO [26] are following this approach.
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Implementations using massively parallel algorithms are no longer restricted to

codes using plane wave basis sets. Atomic orbital based [27] or local basis sets

based on regular grids [28] were successfully adapted to modern computers. These

implementations are able to reduce scaling with system size and are therefore more

efficient to simulate larger systems. However, this also leads to more complex

algorithms and data structures which in turn make parallelization more difficult.

This increased complexity is also responsible for the fact that these codes typically

scale less efficiently to large numbers of processors.

Currently, reduced scaling methods using localized basis sets or the plane wave

method are both capable of performing AIMD simulations for systems of thousand

atoms at a rate of several picoseconds a week. The plane wave codes reach this

performance by making use of their excellent scaling while the localized basis set

codes profit from algorithmic efficiencies. In the future, plane wave codes will still

be of importance for system sizes up to a thousand atoms, but for considerably

larger systems the local basis set methods will dominate. For a further selection on

reviews about high performance computing on vector systems we refer the inter-

ested reader to [29] and references therein.

3.2 Basis Sets

Simulations using the plane wave-pseudopotential framework were completely

dominating the field of AIMD in the early years [3]. Plane waves are especially

suited to be used with the Car–Parrinello method and also have other advantages,

e.g., their orthogonality, control by a single parameter, or the absence of basis

set superposition errors [30]. However, the original plane wave approach has

an intrinsic cubic scaling with system size. For large system sizes, local basis set

methods are more advantageous as they can lead to a reduced and ultimately linear

scaling.

3.2.1 Finite Difference and Discrete Variable Representation Methods

Fattebert and Gygi proposed a real-space finite differences implementation for

O(N) density functional theory molecular dynamics simulations [31]. They showed

that the discretization error can be reduced systematically by adapting the mesh

spacing. Linear scalability was demonstrated with increasing system size using a

localized orbital scheme. The authors were able to demonstrate energy-conserving

AIMD with plane wave accuracy in O(N) operations. Similar achievements were

possible using spline function type basis sets within the CONQUEST code [32].

AIMD simulations at the complete basis set limit were demonstrated successfully

by Lee and Tuckerman [33]. The authors used a discrete variable representation

(DVR) approach. DVRs are local analytic functions defined at regular grid points.

In contrast to finite difference methods, the DVR is a basis set approach, and
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the kinetic energy can be evaluated exactly. DVRs and other grid based local basis

functions try to combine the advantages of plane waves, e.g., the absence of

basis set superposition errors and Pulay forces, with the screening abilities of

local basis set methods. Another such approach was implemented in the ONETEP

program [28]. Hine and coworkers showed that they are able to perform linear-

scaling DFT with tens of thousands of atoms [34]. Their linear scaling approach

was based on non-orthogonal generalized Wannier functions. The authors stressed

the importance of linear scaling DFT developments for AIMD, as this is the only

way to simulate system sizes in DFT that go beyond model systems.

3.2.2 Wavelets

Plane waves are highly suitable for electronic structure calculations of periodic and

homogeneous systems, but are much less efficient for localized systems. For

inhomogeneous or isolated systems other basis sets might be more appropriate.

Still, it is for computational reasons desirable to work with orthogonal basis sets.

Genovese et al. proposed Daubechies wavelets for DFT calculations, because they

form a systematic orthogonal and smooth basis, localized both in real and Fourier

spaces and they therefore meet both the requirements of precision and localization

found in many applications [35]. The authors were able to show the principal

features of an electronic structure pseudopotential method based on wavelets within

the ABINIT code. The strength of the wavelet basis is reflected in the fact that the

matrix elements, the kinetic energy, and nonlocal pseudopotential operators can be

calculated analytically. The basis shows systematic convergence properties, very

good computational performances, and an excellent efficiency for parallel

calculations. For example, the gain in CPU time for large systems of several

hundred atoms compared to a plane wave program was observed to be proportional

to the significant reduction in the number of degrees of freedom [35].

3.2.3 Atomic Orbital Basis Methods

Gaussian type orbitals are the most popular basis in quantum chemistry

calculations. For AIMD simulations, however, plane waves were used much more

often. This was related to the difficulty in finding efficient algorithms for periodic

systems based on atomic orbital basis sets. The Gaussian and plane waves (GPW)

method [36] addressed this problem with a dual basis set approach. While the

Kohn–Sham orbitals were expanded in Gaussians, plane waves were used for the

electronic density. This allowed for a rapid calculation of the Hartree potential,

similarly to plane wave codes, using fast Fourier transforms. VandeVondele et al.

[27] published a general overview of the GPW method as part of the CP2K

program. All computational aspects of the method are discussed. It was shown

that the computational cost of calculating the Kohn–Sham matrix scaled linearly

with system size with a very small pre-factor. Wavefunction optimization with the
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orbital transformation technique resulted in good parallel performance

outperforming traditional diagonalization methods. The efficiency of this method

enabled the use of large Gaussian basis sets. Energy conserving Born–Oppenheimer

dynamics were shown to be possible, and a highly efficient scheme was obtained

using an extrapolation of the density matrix [27].

A comparison of plane waves and Gaussian basis sets was carried out in 2007

[30]. This was conducted in the framework of density functional theory for the

hydrogen bond description with the water dimer as an example. Molecular dynam-

ics simulations enforcing the self-dissociation reaction of the water dimer to study

the influence of the basis set onto the reaction showed strongly varying results of the

calculated forces for a chosen cutoff along the reaction coordinates. The basis set

superposition errors of the dimer interaction energy was analyzed along the free-

energy surface. Based on the analysis along the trajectories a qualitative and

quantitative estimate depending on the particular point of the free-energy surface

was provided.

In 2008, Artacho et al. presented developments and applicability of the Siesta

method for a large variation of systems [37]. Within the Siesta code the plane wave

basis for the electron density is combined with numerical atomic orbitals of finite

support. In their article, Artacho et al. demonstrate linear scalability of the Siesta

program using a system with more than 4,000 atoms [37].

Blum et al. suggested the application of numerically tabulated atom-centered

orbitals (NAOs) in AIMD. These basis sets are implemented in the ab initio

molecular simulations package FHI-aims. In benchmark calculations the authors

showed an O(N) scalability and a good parallelization [38].

3.3 New Developments in Accuracy

Real-world predictions do not just rely on a sufficiently large system size and fast

calculations. Accuracy of the calculations plays an equally important role in

applications. As most of the AIMD codes are carried out within the framework of

density functional theory, the errors connected with this electronic structure method

have to be reduced. For instance, frequencies calculated by Gaigeot et al. using the

BLYP functional had to be down shifted by up to 100 cm�1 compared to

frequencies calculated with hybrid functionals (e.g., B3LYP) or with wavefunction

based ab initio calculations [39]. Gaigeot et al. stated that 5–10% underestimation

of frequencies is typical for the BLYP functional. The amplitudes of methyl groups

d (C–H) bands were underestimated in their calculations which they attributed to

C–H–water interactions being more sensitive to dispersion than to electrostatics

forces. Therefore they estimated that this deficiency could be related to the lack of a

proper dispersion term in DFT calculations. In 2008, Cohen et al. discussed the

deficiencies of DFT in a short communication [40]. Approximations to the

unknown exchange-correlation functional lead to major failures in DFT, e.g.,

underestimation of chemical reaction barriers and band gaps, errors in dissociation
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energies of molecular ions as well as charge transfer excitation energies. Binding

energies and the response to electric fields are often overestimated. Many of these

errors are due to the self-interaction error [40]. This problem is partly cured by the

inclusion of Hartree–Fock exchange in hybrid functionals. Another apparent defi-

ciency is due to static correlation which is difficult to describe within a single

determinant Kohn–Sham approach [40]. Finally, it is not possible to capture an

intrinsically non-local interaction like dispersion using only local correlation

functionals.

In order to improve on accuracy, new functionals had to be developed that are,

on one hand, more exact but that are, on the other hand, still feasible for large scale

periodic computations. Especially challenging was the inclusion of exact-exchange

needed for hybrid functionals while more pragmatic solutions to the dispersion

problem were found.

3.3.1 New Functionals

In 2003, Heyd et al. proposed to use a screened Coulomb operator in the

Hartree–Fock exchange part of hybrid functionals [41]. The Coulomb operator

was split into short-range (SR) and long-range (LR) components,

1

r
¼ erfcðorÞ

r|fflffl{zfflffl}
SR

þ erfðorÞ
r|fflffl{zfflffl}

LR

; (35)

with erfc(or) ¼ 1 � erf(or) and o being an adjustable parameter. In the next step

a new hybrid functional was proposed which performs the exact exchange mixing

only for short-range interactions in both HF and DFT. For the density functional

part the authors developed a special screened operator version of the PBE func-

tional. The performance of this functional was very promising, i.e., for molecular

systems it yielded an accuracy comparable to the best established hybrid methods,

such as B3LYP and PBE0. For periodic boundary condition-calculations a perfor-

mance similar to established functionals were found while, at the same time,

significant reductions in the computational costs were observed [41].

A variety of databases for testing and designing new density functionals together

with a suite of new functionals were developed by Zhao and Truhlar in 2008 [42].

The new density functionals were termed M06-class (and, earlier, M05-class)

functionals, for which the authors enforced some fundamental exact constraints

such as the uniform-electron-gas limit and the absence of self-interaction energy.

The M06-suite functionals depended on spin densities, on spin density gradients, on

spin kinetic energy densities, and, for nonlocal (hybrid) functionals, on Hartree–Fock

exchange. This led to the design of four new functionals:
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1. The hybrid meta functional M06 was found to perform well for transition metals,

main group thermochemistry, medium-range correlation energy, and barrier

heights.

2. Another hybrid meta functional, M06-2X, failed for transition metals but

showed excellent performance for main group chemistry. It predicted accurate

valence and Rydberg electronic excitation energies, and it was an excellent

functional for aromatic–aromatic stacking interactions.

3. M06-L was not as accurate as M06 for barrier heights but was the most accurate

functional for transition metals and was the only local functional (no

Hartree–Fock exchange) with better average performance than B3LYP.

4. M06-HF showed good performance for valence, Rydberg, and charge transfer

excited states with minimal sacrifice of ground-state accuracy.

In 2008, Spencer and Alavi [43] introduced a scheme for calculating the exact

exchange energy in periodic solids within a Kohn–Sham or Hartree–Fock approach

in such a way that the need to treat the integrable singularities via an auxiliary

function was removed. In the exchange integrals, the authors used a modified

Coulomb potential, which tended to the exact potential as the number of k points

increased. It also showed no singularities and was very simple to implement.

A comparison of this approach to the auxiliary function scheme for diamond,

graphite, and two allotropes of silicon carbide showed a rapid convergence with

the number of wave vectors [43].

Guidon et al. [44] used the truncated Coulomb operator, as presented in [43],

for a robust and accurate scheme for large condensed phase systems. This scheme

was based on previous work [45], where the authors suggested a linear scaling

implementation of an exact exchange functional using periodic boundary conditions.

Atom-centeredGaussian basis functions were employed, allowing for efficient screen-

ingwith the density matrix. The new scheme showed increased stability if applied with

large and flexible basis sets.

In 2010, Paier et al. showed the applicability of the random phase approximation

(RPA) to ground-state correlation [46]. RPA correlation has the advantage that it

is compatible with exact Hartree–Fock-type exchange and that it describes van der

Waals interactions exceptionally well. The inclusion of second-order screened

exchange rectifies problems with one-electron self-interaction errors, which lead

to disturbingly large correlation energies in stretched bond situations. A large

number of molecular benchmark results obtained using full-range as well as long-

range corrected hybrids incorporating second-order screened exchange correlation

were presented [46].

3.3.2 Correcting for van der Waals Interaction

To treat the dispersion problem of density functional theory (i.e., the failure to

describe van der Waals interaction accurately) is now an active field of research.

It is especially important for AIMD to treat these kinds of interactions more
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accurately, because in large and condensed phase systems the chemistry often relies

solely on the intermolecular forces of such type.

Several articles on corrections of van der Waals interactions applying the

seamless approach in density functional theory have appeared in the literature

[47–50]. In an early article of a series, Dion et al. developed and applied a van

der Waals density functional in order to treat situations for which nonlocal, long-

ranged interactions, such as van der Waals (vdW) forces, were influential. The

authors suggested the following form:

Enl
c ¼ 1

2

Z
d3rd3r0nðrÞfðr; r0Þnðr0Þ (36)

for the nonlocal correlation energy part in which f (r, r0) is some given, general

function depending on r � r0 and the densities n in the vicinity of r and r0. This
truly non-linear functional has been applied successfully to many systems and

recently a second generation further improved version has been proposed [51].

R€othlisberger and coworkers proposed to add an effective atom centered nonlo-

cal term to the exchange-correlation potential in order to cure the lack of London

dispersion forces in standard density functional theory [52, 53]. In particular, the

authors constructed an effective potential consisting of optimized nonlocal terms

dependent on higher angular momentum for all atoms in the system. They modeled

van der Waals forces by an atom-electron interaction, mediated by appropriate

nonlocal effective core potential (ECP) projectors, which were obtained from an

optimization scheme. R€othlisberger and coworkers stated that this scheme has some

advantages over empirical pair potential corrections: “. . . First, the improved

electronic properties (dipole moment, quadrupole moment, and polarizability)

indicate that, due to the non-locality of the ECP projectors, the valence

wavefunctions reproduce more of the characteristics of dispersion interactions

than a simple additive atom-atom based correction. Second, properly calibrated

and transferable atomic dispersion calibrated ECPs no longer need any artificial a

priori assignment of interacting groups or atoms” [52].

Among the approaches discussed here, the most simple and straightforward and

thus the most practical approach is that followed by Stefan Grimme [54, 55].

Grimme defined the dispersion corrected total energy EMF–D as

EMF�D ¼ EMFjEdisp; (37)

where EMF is the Hartree–Fock or DFT mean-field energy and Edisp is an empirical

dispersion correction expressed as

Edisp ¼ �s6
XNat�1

i¼1

XNat

j¼iþ1

Cij
6

R6
ij

fdmpRðRijÞ: (38)
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With Nat being the number of atoms in the system, Cij
6 denotes the dispersion

coefficient for an atom pair ij, s6 is a global scaling factor that only depends on the

DFT functional used, and Rij is an interatomic distance. To avoid near-singularities

the damping function fdmp was added:

fdmpðRÞ ¼ 1

1þ e�aðR=R0 � 1Þ : (39)

Here R0 is the sum of van der Waals radii and a is a scaling factor [54]. The

C6 coefficients were partly taken from the literature [54], but also newly averaged

over possible hybridization states of the individual atoms. Mixing rules of the

following kind:

Cij
6 ¼ 2 � Ci

6 � Cj
6

Ci
6 þ Cj

6

(40)

were applied. This approach was termed DFT-D2 by Grimme [56].

As the fragment densities of hydrogen bonded systems significantly overlap,

these kinds of interactions are well described by standard DFT. However, if errors

of 10–30% need to be corrected, Grimme recommended his dispersion correction

scheme. As a consequence, Grimme mentioned the fact that steep damping

functions need to be applied in order to retain the original DFT description as

closely as possible in hydrogen bonded systems [54]. An improvement of the

original approach followed in 2006 [55], where Grimme stated that the following

shortcomings were addressed:

1. Consistent atomic parameters (C6 coefficients) were only available for elements

H, C-Ne, but studies of supramolecular structures or problems in material

science require parameters for elements from the whole periodic table.

2. Test calculations for molecules with third-row elements showed systematic

errors.

3. Adding the dispersion energy to the KS-DFT energy led to inconsistencies for

“normal” thermochemistry, e.g., atomization energies: the dispersion correction

is zero for the free atom and always nonzero (and large) for the molecule.

In order to account for these problems Grimme reduced the scaling factor from

1.22 to 1.10, which improved computed intermolecular distances for systems with

heavier atoms [55]. Smaller values of a from the damping functions were chosen

which provided larger corrections at intermediate distances and at negligible

dispersion energies for typical covalent bonding situations. Furthermore, Grimme

applied a new combination rule:

Cij
6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci
6 � Cj

6

q
(41)
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for mixed atom situations, which yielded much better results but required a new

fitting of s6. Altogether, Grimme obtained much improved results and the main

reason for the higher accuracy was that the short range part of the density functional

was adjusted to the presence of the long-range correction and double-counting

effects could be avoided. In 2010, Grimme and coworkers [56] suggested a consis-

tent and accurate ab initio parameterization of the DFT-D approach for the 94

elements H-Pu termed DFT-D3. The main ingredients of the new approach were

atom-pairwise specific dispersion coefficients and cutoff radii which were both

calculated from first principles. Three-body terms were also considered [56].

3.3.3 Explicit Relativistic Description

In 2009, the scalar-relativistic Douglas–Kroll–Hess method was combined with

Born–Oppenheimer molecular dynamics simulations [57]. Using relativistic

densities in a nonrelativistic gradient routine was found to be a valid approximation

of relativistic gradients. An excellent agreement between optimized structures and

geometries obtained from numerical gradients was observed with an error smaller

than 0.02 pm. Hydrogen halide dimers (HX)2 with X¼F, Cl, Br, and I served as

small test systems for AIMD simulations [57]. Relativistic effects were observed.

In particular, the amplitude of motion was larger, the frequency of motion was

smaller, and the distances were larger in the relativistic picture. Several localization

schemes were evaluated for different interatomic and intermolecular distances.

The errors of these localization schemes were small for geometries which were

similar to the equilibrium structure. They became larger for smaller distances,

introducing a slight bias towards closed packed configurations.

3.4 New Integration Schemes

Using a time reversible BO scheme as discussed in Sect. 2.5 allows for efficient and

stable dynamics. However, a sufficient accuracy of the nuclear forces is still

needed. In systems with slow convergence this will require many self-consistency

cycles and therefore it will slow down the simulation. For such systems, an

algorithm that would allow for less stringent convergence criteria on the forces

could bring considerable gains in efficiency.

Based on their previous work on molecular dynamics using noisy forces, K€uhne
et al. [58] demonstrated a novel AIMD method that combines Langevin dynamics

for the nuclei with time reversible dynamics for the electronic degrees of freedom

and incomplete SCF convergence. The method is based on the observations [59]

that the error of the nuclear forces has a Gaussian distribution, that the autocorrela-

tion function of the force errors decays rapidly, and that the force errors show a

random distribution with respect to the velocities. From these observations it was
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deduced that the canonical distribution can be sampled using a Langevin-type

equation:

MI
€RI ¼ Finc � g _RI þ XI þ Xinc

I

� �
; (42)

where g is a Langevin friction coefficient, XI a random noise term, and FBO ¼
Finc + Xinc

I . The force from the incomplete SCF optimization is denoted here by Finc

and the corresponding fully converged force by FBO. Sampling of the Boltzmann

distribution requires that the fluctuation dissipation theorem is obeyed:

XIð0ÞXIðtÞh i ¼ 6gMIkBTdðtÞ: (43)

In applications, the friction term is split into two contributions g ¼ gD + gL,
where gL is taken to be an arbitrary constant and gD is determined by requiring

that the correct temperature T ¼ 1
3kB

MI
_R
2

I

D E
is generated.

If the parameter gD can be kept small, the Langevin method not only generates the

correct canonical distribution but also dynamical properties are accurately described

[60]. In order to achieve this goal, the error of the forces can be consistently reduced

by noting that the last self-consistent cycle can be interpreted as a Harris functional.

The missing force FBO � Finc can then be approximated to a high degree by

�
Z

dr
@VXC½rin�

@rin

� 	
Drþ VH½Dr�

� �
rIrin

 �
; (44)

where Dr is the difference between input rin and output density, and VXC and VH

are the exchange-correlation and Hartree potential, respectively.

Using the Langevin method, K€uhne et al. were able to accelerated their bench-

mark calculations on liquid SiO2 by one to two orders of magnitude. In 2009,

K€uhne et al. simulated liquid water with the new method [60]. Oxygen–oxygen

radial distribution functions agreed well with other approaches. Because of the

acceleration they were able to estimate for the first time reliably the diffusion

coefficient and shear viscosity of liquid water.

3.5 Enhanced Sampling

3.5.1 Elastic Band and String Methods

Of special importance to AIMD are the enhanced sampling methods termed elastic

band and string methods. Michaelides and coworkers explained in their excellent

free-energy method assessment article that special considerations have to be taken

when rare event simulations are done within AIMD. As the iterative SCF procedure

has an impact on the calculation of the forces in contrast to the exact forces in

empirical simulations, the convergence tolerance of the SCF procedure has to be

chosen carefully, especially for reactive situations [61].
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A very excellent introduction to string methods is found in [62] in which the

authors introduced a combined approach of the string method with a sampling

technique to determine minimum free energy paths (MFEP). The string method was

originally designed to determine reaction pathways without making any a priori

assumption about the mechanism [63]. With the string method, an evolution

equation for a parameterized curve is constructed, coined a string, which is such

that any initial guess for the string converges to a solution as time evolves. The

solution has the condition that the force must be everywhere tangent to the

minimum energy path (MEP). Maragliano et al. stated [62] that the string method

is very robust and efficient at determining minimum MFEP in a given landscape,

requiring as input only the calculation of the mean force. The cost of the string

method calculations performed locally scaled linearly with the number of points

along the discretized string. However, it was independent of the dimension which

was in marked contrast with free energy mapping techniques, for which the cost

increases exponentially with the number of reaction coordinates used to describe

the reaction. In order to eliminate potential difficulties for the string method when

being applied in the original state space of the system, the authors removed

fast degrees of freedom. They found that working in free energy space was easier

as well, because the free energy landscape is in general much smoother than

the original potential energy landscape of the system [62], The applicability of

the new technique was demonstrated with the example of the dipeptide alanine

isomerization transition. Most importantly, the example showed that the transition

mechanism can be described by using the four dihedral angles; however, it was not

captured using only two of them [62].

Michaelides and coworkers explained the nudged elastic band (NEB) method

[64] as taking a set of system images between the initial and the final states

and optimizing them simultaneously in a subspace perpendicular to the imaginary

line connecting the images [61]. Additional forces keep the images evenly

distributed along the pathway between the initial and final states. According to

Michaelides the location of the transition state with the NEB method can be

achieved using the climbing image procedure, where the highest energy image

is moved with the aid of the modified real force. The modified real force is obtained

by flipping the component of the force parallel to some direction [61]. In their

study the authors evaluated the performance of a number of methods for locating

transition states with DFT. They also introduced three new algorithms. A major

conclusion from their work was that the NEB method is relatively fast, especially

when just a single (climbing) image is used [61].

3.5.2 Metadynamics

Metadynamics is a method based on MD simulations that allows thorough sampling

of a predefined multidimensional configurational space and provides, at the same

time, the direct reconstruction of the explored free energy surface (FES) [65–71].
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The metadynamics method was introduced in 2002 by Laio and Parrinello as an

elegant extension of adaptive bias potential methods [65]. The authors used a

coarse-grained non-Markovian dynamics in the space defined by a few collective

coordinates si. With the aid of a history-dependent potential term the minima of

the FES were filled in time, allowing the efficient exploration and accurate deter-

mination of the FES as a function of the collective coordinates. Laio and Parrinello

demonstrated the applicability of this approach in the case of the dissociation of

a sodium chloride molecule in water and in the study of the conformational changes

of a dialanine in solution [65].

With the metadynamics approach, the free energy surface FðsÞ of a limited set

of collective variables si can be explored [68]. This is done by introducing an

extended Lagrangian with fictitious particles sa for each CV:

L ¼ LCPMD=BOMD þ
X
a

1

2
ma _s

2
a �

X
a

1

2
kaðSaðrÞ � saÞ2 � Vðt; sÞ: (45)

While the first term on the right-hand side of (45) is the usual AIMD Lagrangian,

the second term is the total kinetic energy of the fictitious particles. For large

enough masses ma they are adiabatically separated from the ionic and electronic

degrees of freedom. Each fictitious particle sa is connected to its actual collective

variable S(r) by a harmonic potential [68]. The history-dependent biasing potential

[last term in (45)] is introduced in order to enhance sampling. This biasing potential

V(t, s) constitutes a sum of repulsive Gaussian-shaped potential hills:

Vðt; sÞ ¼
X
ti<t

H exp � ðs� siÞ2
2ðDW?Þ2

" #
exp

ððsiþ1 � siÞðs� sÞÞ2

2ðDWk
i Þ

4

2
4

3
5 (46)

with si ¼ {sa(ti)} and H the height. DWk
i ¼ siþ1 � si gives the width along the

direction of motion and DW⊥ the size in the orthogonal direction. In the limit of a

long simulation time, the following equation holds [66]:

lim
t!1Vðt; sÞ ¼ �FðsÞ: (47)

Laio and Parrinello stated [65] that constructing dynamics on an FES that

depends on a few collective coordinates allowed one to simplify the complexity

of the problem, which depends exponentially on the number of degrees of freedom.

The FES will be smoother than the underlying PES and topologically simpler, with

a greatly reduced number of local minima [65]. A history-dependent bias potential

as defined in (46), but applied in a regular MD simulation without applying the

collective variable space, is efficient in finding escapes from the local minima but

will not provide quantitative information about the FES [65].
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3.6 Properties: IR, NMR and EXAFS

3.6.1 IR Spectra

Due to the costs associated with the electronic structure calculations, AIMD

simulations always suffer from short simulation times; see also previous Sect. 3.

In 2005, Iftimie and Tuckerman devised a method that allows well-converged

results for IR spectra from small AIMD systems and short trajectories [72]. The

frequency-(n)-dependent Beer–Lambert absorptivity coefficient a(n) is given as

aðnÞ ¼ pn½1� expð�b�h2pnÞ�
3�hVcnðnÞE0

Z 1

�1
expð2pintÞ � M̂ð0ÞM̂ðtÞ� �

qm
dt (48)

with b being 1/(kbT), V the sample’s volume, c the speed of light, n(n) the index of

refraction, e0 the vacuum permittivity, and M̂ the quantum mechanical total dipole

moment operator. Iftimie and Tuckerman applied the harmonic approximation

expressed in

Z 1

�1
expð2pintÞ � M̂ð0ÞM̂ðtÞ� �

qm
dt ¼ b�h2pn

1� expð�b�h2pnÞ
Z 1

�1
expð2pintÞ

� Mð0ÞMðtÞh icldt:
(49)

In the last line “cl” denotes a classical ensemble average, i.e., phase space

integration. Next, the authors suggested the application of integration by parts:

2pn
c

E00 ¼ aðnÞnðnÞ ¼ 1

6cVE0kBT

Z 1

�1
expð2pintÞ _Mð0Þ _MðtÞ� �

cl
dt: (50)

Applying this expression with the four-term Blackman windowed Fourier trans-

form approach led to sufficient accuracy based on a relatively short trajectory

(10 ps), i.e., the authors found excellent agreement between the experimentally

obtained spectra for liquid water and ice. Using this approach and decomposing the

total dipole moment

M ¼
X
A

mA (51)

the contribution of a molecule A was calculated via cross-correlation:

E00 ¼ 1

12pVE0kBT

Z 1

�1
expð2pintÞ _Mð0Þ _mAðtÞ

� �
cl
dt: (52)
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Iftimie and Tuckerman demonstrated that the absolute spectrum of an excess

proton in water can be accurately obtained by subtracting the spectrum of bulk

water from that of an aqueous solution of HCl.

Similarly, Gaigeot and coworkers analyzed the IR spectrum ofN-methylacetamide

(NMA) in gas phase and aqueous solution [39]. Two approaches were tested. The

first is based on (49) with individual dipole moments of molecules and they applied

the derivative similar to (50). However, the derivative of dipole moment j is

obtained via the following expression:

jbðtÞ ¼
X
i;a

@Mb

@qai
ðtÞ dq

a
i

dt
ðtÞ ¼

X
i;a

@Mb

@qai
ðtÞvai ðtÞ (53)

with qi being the position of atom i and @Mb=@qai ða; b ¼ x; y; zÞ representing the

components of the atomic polar tensor of atom i. Gaigeot and coworkers found that,
despite the very short time span of 1 ps, the IR spectrum from the current–current

autocorrelation function gave most of the important features of the absorption. That

is, all amide bands were present. In contrast, the most intense amide I-amide II band

was not correctly reproduced from the same 1 ps time interval when the

dipole–dipole correlation function was used. The authors explain that “This

improved convergence is most likely an effect of the favorable statistics of

velocities. Atomic velocities, in contrast to dipoles, are isotropic and fluctuate

very quickly during the dynamics. Therefore, calculations of infrared spectra

through current–current correlation functions can be done on shorter timescales

of dynamics. This might be particularly important in the case of strong coupling

between almost degenerate modes, such as for example the d (O–H) bending mode

of water and the amide I and amide II bands of NMAwhich both occupy the same�
1,600 cm�1 frequency band.” [39].

Furthermore, it was pointed out by Gaigeot and coworkers that thermalization of

all degrees of freedom might be difficult to achieve and can therefore induce errors

in calculated infrared intensities. To compare the calculated infrared spectra to

experiments (gas and liquid phase), use of two different scaling factors that adjusted

the position of the calculated amide III band were made, 1.064 and 1.117 for the gas

phase and the solution, respectively [39]. Gaigeot and coworkers state that there is

no reason why the scaling factor of gas phase and solution should be the same. The

scaling factor depends on frequency and thus might change in a condensed phase

environment. Another difference in solution could be an enhanced inertia (giving

rise to frequency red-shifts) due to the fictitious electron mass used in the

Car–Parrinello molecular dynamics scheme. As also shown by Iftimie and

Tuckerman, the fictitious electron mass can contribute to the underestimation of

the frequencies, up to 40–50 cm�1 [72]. If the well-known frequency red-shifts due

to the use of the BLYP functional are kept in mind, this leads to an increased

underestimation of the frequency positions [39].
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3.6.2 NMR and ESR/EPR

The calculation of NMR parameter has been studied extensively; see [3, 73] for

general overviews. In 2001, Sebastiani and Parrinello implemented the NMR

chemical shift calculation in the plane wave AIMD code CPMD [74]. From this

implementation it was possible to treat extended systems within periodic boundary

conditions, i.e., the method was applicable to crystalline and amorphous insulators

as well as to liquids. The problem of the position operator was solved by the use of

maximally localized Wannier functions. Several benchmark calculations showed

good agreement with experimental values.

A linear scaling, tested with up to 3,000 basis functions, was implemented in

Q-Chem by Ochsenfeld et al. in 2004 [75]. The calculations were dependent on a

Hartree–Fock formalism and test calculations with more than 1,000 atoms made.

In 2009, the calculation of the NMR chemical shifts and EPR g tensors was

extended to the Gaussian and plane wave code CP2k [76]. Weber et al. performed

several test calculations with good agreement with experimental results. Addition-

ally, the NMR shifts in isolated as well as hydrated adenine were calculated.

3.6.3 EXAFS

Near-edge X-ray absorption spectra calculations at the DFT level were also carried

out in the framework of AIMD [77–81]. Several test calculations have been carried

out: water and CO with different basis sets and core-hole potentials, the C, O, and N

K-edges in (CH3)2CO, CH3COH, and C5H5N, as well as water and CH3OH dimers

for the sensitivity to weak intermolecular interactions. For the basis set dependence

the 6-31G**, 6-311G**, 6-311++G(2d,2p), 6-311++G(3fd,2dp), Iglo-III, Roos-

ADZ-ANO, Roos-ATZ-ANO, aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, and

aug-cc-pV5Z basis sets were compared, and it was observed that the EXAFS

spectra significantly varied with the basis set in number of signals, signal position,

as well as signal shape. Even with the largest basis set the experimental O K-edge in

water was only marginally described by the BLYP exchange functional. The same

was found for CO. For the dependence on the core-hole potential, a comparison for

H2 and CO molecules with the aug-cc-pV5Z basis set and the BLYP functional

were made. Using full core-hole potentials, the entire spectrum was shifted by

several eV to higher energies and, similar to the basis set choice, the choice of the

functional largely influenced the spectrum. Despite these deficiencies, EXAFS

calculations of (CH3)2CO, CH3COH, and C5H5N showed a resemblance between

theoretical and experimental spectra for the different atoms, and therefore an

alignment depending on these calculations was possible [80]. Weaker interactions

were investigated at water–water and methanol–methanol dimers. In both

calculations the weak hydrogen bonds significantly changed the spectra for the

acceptor and the donor in accordance with chemical intuition and experiment,

allowing for an assignment of the experimental results to different coordinations
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and clusters. In the computed EXAFS spectrum a systematic error with respect to

the experimental spectrum was obtained. In a subsequent study from 2008 the

different dependencies of the calculated EXAFS spectra were studied for liquid

water and hexagonal ice within the supercell approach [81]. Several configurations

of AIMD simulations were produced and asymmetrically coordinated water

molecules were observed. For example, such water molecules with only one hydro-

gen bond showed well defined spectral lines which significantly differed from the ice

signals.

For a review of calculations of the X-ray adsorption spectra (XAS) which

especially focused on the transition potential approach and its application to

water, see the recent work of Leetmaa et al. [82].

4 Applications in Chemical Engineering

In this section we discuss several studies in which AIMD was applied to special

chemical problems, reactions, and industrial processes.

4.1 Wavefunction Analysis

Many schemes were adapted to analyze the wavefunction (electronic structure) in

AIMD simulations. The most important ones are the Wannier analysis based on

maximally localized Wannier functions (MLWF) [83], the electron localization

function (ELF)[84], the Fukui function [85], and the nucleus-independent chemical

shift maps [74].

The usefulness of Wannier functions was demonstrated by Silvestrelli et al. [86]

in a study of amorphous silicon. The authors were able to describe the bond

structure using the Wannier functions. The investigation of defect configurations

was possible with a novel degree of accuracy through the Wannier approach [86].

Another application of Wannier functions was published by Fitzhenry et al.

investigating silicon–carbon alloys [87]. In this study the bond structure was

resolved by the application of Wannier functions and Fitzhenry et al. were able to

identify, classify, and quantify the types of bonding present in the alloy. They were

able to observe three-center bonding and a temperature dependent flipping of bonds

during the simulation [87]. In 2005, B€uhl et al. investigated the ionic liquid (see also
Sect. 4.2.2) 1,3-dimethylimidazolium chloride ([Mmim][Cl]) at 438 K using

CPMD [88]. Population analyses showed noticeable charge transfer from anions

to cations and Wannier functions demonstrated this specifically for the CH ··· Cl

hydrogen bonds. Another important tool of the Wannier analysis is the derivation of

local dipole moments. The applications of dipole moment calculations is discussed

in Sect. 4.2.1.
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The electron localization function (ELF) was applied to investigate a system of

30 AlCl3 molecules with one [Emim][Cl] ion pair [89]. It was found that, due to the

decrease in electron deficiencies, large anionic clusters formed.

Aromaticity and homoaromaticity of a parent barbaralane and a tetraphospha-

barbaralane of C2v-symmetry were visualized by means of three-dimensional

nucleus-independent chemical shift maps [90]. In combination with CPMD

simulations the fluxional character of tetraphosphabarbaralane was revealed and

it was shown that the ionic motion at room temperature leaves the aromaticity in

this case unchanged [90].

4.2 Properties of the Vapor Phase, Liquids, Mixtures,
and Solvent Effects

AIMD is well suited for describing several properties of the vapor phase, liquids,

mixtures, and solvent effects. Solvent effects are especially very well described by

AIMD if the molecules actively solvate the solutes, because the electronic structure

is explicitly described by AIMD and changes according to the solvent-solute

interaction will be well captured.

4.2.1 From Gas Phase to Liquid Phase

Differences between gas phase molecules and molecules in condensed phases have

been summarized previously [91]. Chemical reactivity can be highly influenced

by the chemical environment and, therefore, chemical reactivity of an isolated

molecule in vacuum is not always a good model for a molecule surrounded by

other “active” or solvent molecules. A first step to study solvent effects is to

consider the dipole moment of molecules in gas phase as well as in condensed

phase.

The dipole moment of liquid water was investigated by several authors [92–94].
Silvestrelli and Parrinello calculated dipole moments of a single water molecule

(1.87 D), a dimer (2.1 D), a trimer (2.4 D), as well as liquid water (2.95 D) [92]. In a

subsequent study with refined methods they obtained a dipole moment of 3.0 D

for liquid water from AIMD simulations [93]. In 2004, Kuo and Mundy reported

a study of the aqueous liquid–vapor interface where water was simulated in such a

fashion that in one simulations box the water molecules moved freely from the

dense bulk phase into the low density vapor phase, i.e., the number of molecules

surrounding a water molecule changed smoothly [94]. In this study, Kuo and

Mundy found a molecular dipole moment at the vapor/liquid interphase of approxi-

mately 2.4 D which changed smoothly to a value of 3.0 D in the bulk phase.

Together with other water properties, the temperature change of the water dipole

moment was investigated by McGrath et al. in 2006 [95]. The authors observed
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a dipole moment of gas phase water of 1.8 D at 323 K and 2.1 D at 523 K, while in

the liquid phase the dipole moments changed to 3.0 D at 323 K and 2.5 D at 523 K.

This demonstrates not only the dependence on the chemical environment but also

on the temperature.

Besides water, methanol was investigated with respect to its changing dipole

moment [96]. Handgraaf et al. found – despite little alterations in the Wannier

center positions – a dipole moment increase of methanol from 1.73 D in the gas

phase for a single molecule to 2.54 D in the liquid phase.

N-Methylacetamide was investigated byWhitfield et al. in 2006 [97]. For the gas

phase molecules a dipole moment of 3.74 D was found and in the liquid phase the

dipole moments had a value of approximately 6 D. AIMD simulations also show for

this liquid a broad distribution of molecular dipole moments. The average AIMD

value is considerably higher than the dipole moment of 4 D that is used in classical

force field simulations of this liquid.

In associating liquids the molecular dipole moments increase by 40–60% com-

pared to the isolated molecule. These solvents will therefore strongly affect the

chemical reactivity of solute molecules. Classical force field simulations neglecting

polarization will not be able to capture these changes.

4.2.2 Liquids: Water, Ionic Liquids, and Others

Water serves as an ideal test system for different calculations, because a wide range

of experimental as well as theoretical data are available [98–107].

One of the first water AIMD study was undertaken by Laasonen et al. in 1993

[98]. The authors applied a gradient corrected exchange functional in order to

capture accurately the hydrogen bonding in the liquid. The simulation results

were in good agreement with available experimental data.

Three gradient-corrected density functionals – B, BP, and BLYP – in liquid

water simulations were tested by Sprik et al. in 1996 [100]. The authors observed

from the structural and dynamical properties that hydrogen bonding was too weak

with the Becke (B) functional, while hydrogen bonding was too strong if the BP

functional was applied. The BLYP functional provided the best agreement with

experiment.

Another functional assessment was carried out by VandeVondele et al. in 2005

[104]. The influence of the temperature was investigated within the different

functionals (BLYP, PBE, TPSS, OLYP, HCTH120, and HCTH407). The BLYP,

PBE, and TPSS functionals gave similar results, while OLYP, HCTH120, and

HCTH407 showed a more diffusive dynamics and a lower structuring of the liquid.

The BLYP and PBE functionals were again compared in a study by Schmidt et al. in

2009 [106].

Ionic liquids are liquids at or near room temperature which are composed

entirely of ions [108]. Their special properties enable a wide range of application

andmany theoretical [109, 110] as well as experimental [108, 111, 112] investigations
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have appeared in the last few years in the literature. AIMD simulations were

performed as well to investigate their extraordinary behavior [88, 110, 113–118].

In 2005, AIMD simulations on dimethyimidazolium chloride [Mmim][Cl] car-

ried out by Del Pópolo et al. showed significant differences compared to both the

classical simulations and the neutron diffraction results [113]. In particular, and

unlike the gas-phase ion pair, chloride ions tended to be located near a ring C–H

proton in a position suggesting hydrogen bonding. It should be noted, that these

results might be due to the choice of the applied functional. No dispersion correc-

tion was used and later it was shown that GGA functionals favor the hydrogen

bonded states [119, 120].

Bhargava and Balasubramanian found that the apparently good agreement

between the pair correlation functions from classical MD and AIMD conceal subtle

but crucial, differences [114]. The radial pair distribution functions between the

most acidic proton of the [Mmim] cation and the chloride anion were extremely

different regarding location and width of the peaks. Furthermore, differences

between AIMD and MD in the spatial distribution of chloride ions around the

cation were found. The data were explained in terms of the formation of a hydrogen

bond between the most acidic hydrogen of the imidazolium ring and the chloride

ion. Size effects were excluded by simulations of 32 ion pairs with traditional MD

simulations. The cation–anion hydrogen bond present in the melt was observed as a

red-shift in the C–H stretching frequency.

The structural and dynamical hydrogen bonding in the IL [Emim][SCN] was

investigated by Thar et al. in 2009 [117]. The geometric picture indicated a superior

role for the most acidic hydrogen bond as compared to the two other hydrogen

atoms at the rear. Despite the structural picture, the hydrogen bond dynamics at the

most acidic hydrogen atomwas found to decay faster than the corresponding dynamics

at the other ring hydrogen atoms. Neglecting the directionality in the hydrogen

bond analysis provided dynamics which reflected the geometrical analysis. Two

movements were identified. First, a fast (<0.3 ps) hopping of the anion above and

below the imidazolium ring and, second, a translational motion of the anion away

from the cation in-plane of the imidazolium ring (5–10 ps).

The first AIMD simulation of an IL applying dispersion-corrected functionals

[52] was carried out on the protic ionic liquid monomethylammonium nitrate [118].

On average, 1.8 of 3 possible hydrogen bond contacts formed, leaving one free

acceptor and donor site similar to water. Furthermore, like water, monomethy-

lammonium nitrate exhibited a fast fluctuating hydrogen bond network. However,

the hydrogen bond network of monomethylammonium nitrate and water also

showed some important structural differences. While the hydrogen bonds in

water arrange in parallel fashion, the hydrogen bonds of monomethylammonium

nitrate prefer angles of 0�, 90�, and 180�. The ion dynamics of monomethy-

lammonium nitrate was described by a model of ions rattling in long living cages

[118].

Other liquids, like liquid ammonia NH3 [121], formamide HCONH2 [122], and

liquid hydrogen fluoride HF [123], as well as more exotic liquids, like liquid
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deuterium D2 [124, 125], melted carbon, graphite or diamond C [126–130], melted

aluminum chloride AlCl3 [131], and liquid phosphorus P [132], were examined.

Liquid metals and alloys were investigated as well from AIMD because of their

importance in physics, chemistry, industry, electronics, and engineering. These

studies contain Li [133], Na [134], Al-Si alloy [135], Si [136, 137], K-Pb [138],

Fe-Si [139], Ni [140], Cu [141], GaAs [142], Ge [143–145], As2Se3 [146], Se [147],

Zr [148], CdTe [142], CsPb [149], and Hg [150]. For a review see the article by

Kresse [151].

4.2.3 Properties of Mixtures and Solvent Effects

In the following section examples of solvated molecules, ions, and ionic liquids in

water as well as in methanol are given. Both the effects of the solvent on the solute

as well as the opposite effects of the dissolved species on the solvent were

considered. In many studies these effects are reflected in altered dipole moments.

For an overview over the effects of salts on dipole moments see [91].

Solutes in water are of interest, because many chemical reactions are carried out

in water and this liquid influences the solutes and chemical reactivity greatly.

Hydrogen chloride HCl was investigated by Laasonen and Klein [152]. Several

AIMD simulations were performed with additional water molecules. Starting from

an HCl molecule in water, dissociation appeared forming H3O
+ and Cl� ions. Two

different configurations for the proton were reported: an H3O
+ ion and an H5O

þ
3 ion.

An excellent overview of the solvated proton [153] and the hydroxyl ion in water

was published by Marx [154]. The solvated electron was also investigated exten-

sively from AIMD [155–158].

In a study from 2004, dimethylsulfoxide (DMSO) in water and its changing

dipole moment was investigated [159]. From the CPMD simulations the dipole

moment increase of DMSO from 3.97 D (isolated molecule [160]) to 7.39 D liquid

was observed. The temperature dependence of the dipole moment for isolated

DMSO was negligible; it increased from the geometry optimized value of 3.97 D

to 4.08 K at 319 K.

The solvent effects of uracil in water [161], ethene and ethanol in water [162], as

well as hydrogen in water [163] were discussed in detail elsewhere [91].

Solvent effects were found as well in the IR study of N-methylacetamide (NMA)

(cis and trans) in aqueous solution carried out by Gaigeot and coworkers in 2005

[39]. From geometry optimization of N-methylacetamide microsolvated with a few

water molecules, formation of bridges between the carbonyl functional group and

the amide group would be expected. However, no such arrangement was found in

the aqueous solution. A very noticeable effect of the solvent on the vibrational

density of states was that the amide I stretching motion exhibited a red-shift

(87 cm�1 for trans-NMA and 46–72 cm�1 for cis-NMA), whereas the amide II

was blue-shifted (�8–25 cm�1 and �3–38 cm�1, respectively). In general,

solvent–solvent hydrogen bonds were observed to be energetically more favorable

than solute–solvent hydrogen bonds [39]. Whereas in the gas phase the neutral form
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was the most stable, in aqueous solution the zwitterionic state was more stable as

has been observed for alanine [164].

Salts, ions, and ionic liquids in water are widely studied in AIMD. Several

anions [165–172], cations [153, 165, 173–182], and ion pairs [164, 183, 184], as

well as ionic liquids ion pairs [185] in water were studied using AIMD. In all cases

structural as well as dynamical properties of the ion’s hydration shell were exam-

ined. In some cases the influence of the solvated ions on the water molecules were

studied within the Wannier approach. In general, little effect of the halogen ions on

the dipole moments of the water molecules in the first hydration shell was observed,

while further water molecules remain unaffected. In contrast to this, it was observed

that cations increase the dipole moments of the first hydration shell water by

approximately 0.2–0.5 D. The second hydration shell and the bulk phase water

molecules were mostly unaffected with regard to the dipole moment by the cations

as well [91].

4.3 Chemical Reactions

4.3.1 Metal-Free Organic Reactions

In the following, AIMD studies of the SN2 reaction shall be briefly reviewed. Other

metal-free organic reactions like the Diels–Alder and the Wittig reaction have been

discussed elsewhere [91].

Between 1999 and 2004, several SN2 reactions of the type

RYþ X� ! RXþ Y� ðR ¼ CH3; CH2Cl; . . .Þ

were investigated from AIMD simulations in vacuum as well as in solution

[186–192]. Raugei et al. found that the dipole moment changed drastically along

the applied reaction coordinate in a gas phase SN2 reaction investigation [186]. In a

subsequent study, Raugei et al. added one and two water molecules to the reactants,

and they observed important hydrogen bonds between the substrate as well as the

ion X� and the water molecules [187].

The complete substitution reaction in water was calculated by Pagliai et al. in

2003 [189]. The authors investigated hydrogen bonds from Wannier functions and

the electron localization function (ELF) during the reaction. They found the charge

at the transition states to be delocalized and, as a result, weakened and shorter lived

hydrogens bonds. Similar results were obtained in other investigations [188, 190].

In 2003 and 2004, Ammal et al. [191] and Yang et al. [192] showed how

temperature and dynamical effects can alter the chemical reactions even more

than classical concepts in organic chemistry predict.
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4.3.2 Metal-Organic Reactions and Catalysis

In 2004 and 2005 the photochemical activation of dinitrogen with transition metal

model complexes of the Sellmann type nitrogenase was studied using CPMD [193,

194]. A dinuclear complex – designed to emulate the open-side FeMoco model –

was simulated. Several side reactions were observed which have to be suppressed in

order to arrive at the reduced species [194]. Chelate effects and their partial

dissociation as well as low temperatures led to successful events. An optimized

design of the complexes to inhibit side reactions was suggested [194].

In a subsequent study from 2009, the last step in the dinitrogen reduction, i.e.,

the ammonia-dinitrogen exchange of the Schrock’s molybdenum catalyst, was

examined [195]. For this purpose the complete Schrock catalyst without any

simplifications was simulated with the CPMD approach. Several exchange

mechanisms were observed. All constituted the addition-elimination type via a

single stable six-coordinate intermediate. No dissociation-addition mechanism

occurred in accordance with experiments. Furthermore, a possible detection of

the intermediate by a significantly different N�N IR mode in the intermediate in

comparison to other N�N stretching modes in similar complexes was suggested

[195].

In 2007, Urakawa et al. investigated the rational design of ruthenium CO2

hydrogenation catalysts from AIMD simulations [196]. The authors established

the concerted CO2 insertion by a mechanism that involves the rotation of

the formate group. Several interesting intermediates were observed along the

reactive trajectories. One example was the complex with molecular H2 coordinated

to [Ru(�2-H2)]. The most relevant structures were discussed in detail and their

relative stability was calculated in terms of the interatomic interactions as well as

the associated electronic charge distribution. The free-energy profiles reconstructed

by MTD were consistent with experimental results and provided a more precise

interpretation of the observed behavior. Urakawa et al. concluded that the reaction

proceeds more easily by the trans-isomer route and H2 insertion into the formate

complex, which is the rate-determining step of the reaction. On the basis of the

disclosed reaction pathways, a procedure that predicts the activity of catalysts with

different ligands was proposed.

Another catalytic reaction was studied in 2007, namely the C–C and C–H

reductive eliminations at Pt(IV) complexes [197]. The octahedral Pt(IV) complexes

of the formula L2Pt(CH3)3X (with X¼H or CH3) contained as L2 diphosphine

model ligands of dppe and dppbz. These two different chelating diphosphine

ligands are dppe (bis(diphenylphosphino)-ethane, PPh2(CH2)2PPh2) and dppbz

(o-bis(diphenylphosphino)benzene, o-PPh2(C6H4)PPh2), of which the latter is a

less fluxional ligand compared to dppe because of its benzene backbone. Due

to the difference in rate constants for the C–H (no influence) and the C–C (large

influence) reductive elimination it was assumed earlier that a dissociative mecha-

nism takes place for C–C the reductive elimination and a direct mechanism for the

C–H reductive elimination. This so-called Crumpton–Bregel and Goldberg rule
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was thoroughly investigated from MTD. Free energy activations were calculated

for the C–H and C–C reductive elimination but also for the dissociation of one arm

of the diphosphine ligand. Thereby, Michel et al. estimated the free energy cost thus

including entropy effects and the Pt–P distance of the transition state structure. The

authors deduced that, from a mechanistic point of view, the C–C reductive elimi-

nation occurs through a two-step dissociative pathway with barriers of around 19

and 16 kcal mol�1 if the less rigid ligand dppe is used. From kinetic simulations it

was shown that this combination of values provides results comparable to a first-

order kinetics with a barrier of around 40 kcal mol�1. If the more rigid ligand,

dppbz, was treated, the increase of the dissociation cost prevented the system from

being reactive. For C–H reductive elimination, two mechanisms were found, the

direct one previously postulated and a new one – the concerted mechanism discov-

ered from MTD. In the concomitant mechanism the platinum-phosphorus bond

formation occurred simultaneously with the C–H bond formation. Depending on

the cost of the phosphine dissociation, the direct or the concomitant mechanism was

observed. Thus, the strong influence of the phosphine ligand’s basicity as well as

the influence of its intrinsic rigidity was detected. A subsequent study was

undertaken in 2008 [198].

4.4 Electrochemistry

This section of complex electrochemical reactions in solution and on electrodes is

divided into three parts regarding the following questions. First, how does the

solvent interact with the unbiased and biased metal surface? Second, how does

the oxidation/reduction of a single electrochemical active species work in pure

solvents? And finally, how does a complex electrochemical reaction proceed in

solution and on metal surfaces? Therefore, metal–liquid interfaces are discussed at

the beginning, followed by half cell reactions in solvents, and finally complex redox

reactions in metal–liquid interfaces are reviewed.

4.4.1 Metal–Liquid Interfaces

In 2001, Izvekov and coworkers investigated the Cu(110)-water [199] and the Ag

(111)–water [200] interface from AIMD simulations. In both simulations an

absorption of water on the surface and a bilayer structure of water was found, in

which water was tightly bound to the metal surface in the first shell. Exploration of

the interface’s electronic structure showed strong coupling of the water molecules

and the metal. However, the metal surface remained almost undisturbed in the

presence of water, both geometrically as well as electronically.

In 2007 and 2008, Sugino et al. [201] and Otani et al. [202] investigated biased

platinum–water interfaces. Sugino et al. found that an orientation of the water

molecules emerged due to the negative bias potential of the water–Pt(111) interface
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and, furthermore, that the water molecules screened the electric field due to these

reorientations (almost completely in the first shell) [201]. Similar results were

obtained from the simulations by Otani et al. in which an O-down configuration

(oxygen is attached to the Pt surface) was found in the neutral interface, while at the

negative biased interface mostly H-down configurations (hydrogen is directed to

the Pt surface) occurred.

4.4.2 Redox-Reactions in Solution

Since 2004, several redox and half cell reactions in solution have been studied from

AIMD simulations; see Table 1 [203–206].

Please note that this list is far from being complete. It is impossible to discuss all

studies in detail but one special case bears going into detail, i.e., reaction (n) of
Table 1 will be briefly reviewed along with the main facts of the other studies.

In all studies AIMD simulations of the ions were carried out in solution (aqueous

or organic) and the Marcus theory was applied to calculate the electrochemical

potential. All electrochemical potentials were in good to very good (error 	 0.2 V)

agreement with experimental data. The reaction (n) from Table 1 is the redox

reaction of two rubredoxin molecules: Clostridium pasteurianum rubredoxin

CpRd and Pyrococcus furiosus rubredoxin PfRd [221]. Sulpizi et al. used X-ray

structures for their study in 2007 [221]. Classical molecular dynamics simulations

were carried out, and at every 100 ps a configuration was selected in order to

perform an electronic structure calculation with the CP2k program.

From these calculations, under application of the Marcus theory, which leads to

the formula

Table 1 Selected redox reaction investigated in solution since 2004, where bpy is 2,20-bipyridine,
TH thianthrene, TTF tetrathiafulvalene, Q 1,4-benzoquinone, CpRd Clostridium pasteurianum
rubredoxin, and PfRd Pyrococcus furiosus rubredoxin. For reviews see [203–206]

(a) Mn2+ ! Mn3+ + e� [207]

(b) MnO2�
4 ! MnO�

4 þ e� [208]

(c) Cu+ ! Cu2+ + e� [209–211]

(d) Ru2+ ! Ru3+ + e� [212–215]

(e) RuðbpyÞ2þ3 ! RuðbpyÞ3þ3 þ e� [214]

(f) [RuCl6]
4� ! [RuCl6]

3� + e� [216]

(g) [Ru(CN)6]
4� ! [Ru(CN)6]

3� + e� [216]

(h) RuO2�
4 ! RuO�

4 þ e� [208]

(i) RuO�
4 + H2O + e� ! [RuO3(OH)2]

2� [217]

(j) Ag+ ! Ag2+ + e� [209, 210, 218]

(k) TH•+ + TTF ! TH + TTF•+ [219]

(l) TH2+ + TTF•+ ! TH•+ + TTF2+ [219]

(m) Q� ! Q + e� [220]

(n) CpRd� + PfRd ! CpRd + PfRd� [221]
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DAX ¼ 1

2
EXh ired þ EXh iox

� � ðX ¼ CpRd; PfRdÞ; (54)

Sulpizi et al. gained a redox potential difference

DDA ¼ DACpRd � DAPfRd (55)

of �40 mV. The experimental value is �60 mV. The electrochemical properties of

the other reactions listed in Table 1 were obtained in a similar fashion. For the

smaller systems with only one cation or anion in water a full AIMD treatment is

feasible.

4.4.3 Complex Electrochemical Interfaces and Electrochemical

Reactions on Surfaces

In this part, complex electrochemical interfaces and electrochemical reactions

on surfaces with various molecules in solvents will be discussed. Examples

are the oxidation and evolution of hydrogen on different transition metal surfaces,

the reduction of oxygen on several surfaces as well as carbon monoxide reactions,
and a complex photoactive reaction in a solar cell.

Hydrogen under electrochemical conditions was investigated very recently [222,

223]. Santana et al. investigated the electro-oxidation of molecular hydrogen at the

Pt(110)–water interface [222]. The Tafel–Volmer mechanism with a homolytic

H–H bond cleavage followed by the formation of adsorbed terminal hydrogen

atoms and further oxidation of the H atoms was observed by the authors. Further-

more, Santana et al. found the potential dependent activation energies for this

process to be in accordance with experimental results.

Skúlason et al. investigated the hydrogen oxidation as well as evolution reaction

on a Pt(111) surface under electrochemical conditions [223]. Three steps were

examined, the Tafel, Heyrovsky, and Volmer steps. Skúlason et al. found that

the rate determining steps on Pt(111) surface consisted of the Tafel–Volmer

cascade for the oxidation and the Volmer–Tafel cascade for the evolution. Addi-

tionally, the H adsorption energy and energy barriers for the Tafel reaction were

calculated for many metals1 with different faces and steps. Their results suggested

that the binding free energy of hydrogen is the most important parameter for

describing oxidation and evolution activity of an electrode.

Oxygen and its electroreduction on a Pt(111) surface was studied under electro-

chemical conditions byWang and Balbuena in 2004 [224]. They observed a stepwise

adsorption of two oxygen atoms with a very low energy barrier (0.08 eV) and no clear

barrier for the decomposition was found. Addition of H3O
+ from the surrounding

1Au, Ag, Cu, Pt, Ni, Ir, Rh, Co, Ru, Re, W, Mo, and Nb.
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water led to a rapid formation of a proton transfer intermediate H+–O2 ··· Pt(111)

followed by an electron transfer to H–O–O–Pt(111). Wang and Balbuena found that

the formation of H–O–O–Pt(111) has a much higher activation barrier (0.4 eV) than

its dissociation (0.1 eV) and that, therefore, the rate determining step for the first

electron transfer reaction is the electroreduction of O2.

In 2008, the oxygen reduction on a ZrO2(�111) surface was calculated by

Okamoto [225]. During the reactions a spontaneous bond cleavage in HOOH

suppressed termination of the reduction reaction at the 2e� step. These simulations

showed that at least reduction to HO on the surface should be possible and further

reactions could only be hindered by OH poisoning the surface.

In 2009, Hirunsit and Balbuena published AIMD simulations of a Pt(111)– and a

Pt-Co-alloy–water interface and oxygen [226]. Different oxygen coverages were

investigated as well as surface reconstruction effects due to different coverages of

the adsorbed oxygen. Additionally, an electric field (�0.51 to +0.51 V/Å) was

applied on the surface but no spontaneous water dissociation or oxygen reduction

was observed. Only the reorientation of the water molecules from O-down to

H-down orientations was observed, as previously found [201, 202] and is already

discussed in Sect. 4.4.1.

Gas phase partial and complete reduction of oxygen by different hydrogen

covered transition metal2 (111) surfaces with static but periodic calculations were

examined by Ford et al. in 2010 [227].

Carbon monoxide was investigated on a Pt surface as well as on a Pt-Ru-alloy

surface with water by Santana and Ishikawa in 2010 [228]. The simulations

revealed new interpretations for the adsorbed CO and water interactions, as well

as rationalized observed quantitative relationship between IR intensities and Pt and

Pt-Ru-alloy due to water molecules firmly hydrogen bonded to bridging CO

molecules. Furthermore, the authors found the linear dependency of the O–H

stretching mode with the potential and the CO coverage.

The photoactive part of dye sensitized solar cells consists of a wide band gap

semiconductor covered by a monolayer of sensitizing dye [229]. The semiconduc-

tor can be directly supported by a transparent electrode on one side, while the dye is

connected to the back electrode via a liquid electrolyte or a solid hole conducting

material. The initial step of the photovoltaic process is a light induced electron

injection from the dye into the semiconductor material. This process yields an

oxidized dye and an energetic electron. Rapid regeneration (reduction) of the dye

by the electrolyte prevents back transfer of the electron or degradation of the photo-

oxidized dye. Meanwhile, the energetic electron diffuses away from the dye,

passing through the electrode and an external load, finally reaching the counter

electrode where it regenerates the electrolyte. From AIMD simulations Schiffmann

et al. identified a highly efficient mechanism for the regeneration of the cis-bis
(isothiocyanato)bis(2,20-bipyridyl-4,40-dicarboxylato)-ruthenium(II) sensitizing dye

2Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au.
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(N3) by I� in acetonitrile. A barrier-free complex formation of the oxidized dye

with both I� and I�2 , and facile dissociation of I
�
2 and I�3 from the reduced dye, were

determined to be key steps in this process. The authors also carried out in situ

vibrational spectroscopy and could thus confirm the reversible binding of I2 to the

thiocyanate group. Furthermore, Schiffmann et al. were able to simulate the elec-

trolyte near the interface and found that acetonitrile is able to cover the (101)

surface of anatase with a passivating layer that inhibits direct contact of the redox

mediator with the oxide [229, 230]. It was also observed that the solvent structure

specifically enhances the concentration of I� at a distance which further favors

rapid dye regeneration.

5 Summary

This review serves as an overview of modern aspects concerning methodology as

well as applications of ab initio molecular dynamics simulations.

First, a general introduction into the ab initio molecular dynamics simulations

technique of the Car–Parrinello type was given. The derivation of forces and

equations of motion were explained. In the last part of this introductory section,

generalizations according to Niklasson were detailed.

Next, difficulties encountered in ab initio molecular dynamics simulations were

discussed. Topics covered were massive parallelization to address computer time

problems, basis set considerations, density functionals and van der Waals

interactions, relativistic corrections, and new integration schemes. Several simula-

tion techniques used to gain chemical insight were summarized. Enhanced sam-

pling methods, metadynamics and other methods to explore free energy surfaces,

reaction pathways and transition states were covered. Simulation of spectra (IR,

NMR, EXAFS) from ab initio molecular dynamics simulations was the subject of

the remaining paragraphs.

The last section was devoted to a range of real-world applications treated with ab

initio molecular dynamics simulations. Results of gas to liquid phase transition

simulations, structural and dynamical properties of liquids such as common

solvents as well as the emerging neoteric media of ionic liquids were presented.

After a short discussion of chemical reactions concerning homogeneous catalysis,

we presented an overview of electrochemical reactions and related processes.

We hope this choice of topics showed that, despite some difficulties, ab initio

molecular dynamics simulation is nowadays capable of analyzing and predicting

real-world processes, especially those which are poorly accessible through

experiments or other theoretical techniques.
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Nanoscale Wetting Under Electric Field

from Molecular Simulations

Christopher D. Daub, Dusan Bratko, and Alenka Luzar

Abstract Applying an electric field is a well-established experimental method to

tune surface wettability. As accessible experimental length scales become shorter,

the modification of interfacial properties of water using electric field must come to

grips with novel effects existing at the nanoscale. We survey recent progress in

understanding these effects on water interfacial tension and on water-mediated

interactions using molecular simulations. We highlight the key role of external

conditions in determining the system’s response to applied electric field. We

further discuss the role of appropriate boundary conditions in modeling polar

fluids subject to collective polarization. The work reviewed here broadens the

basic understanding of applied and internal field effects that can operate in

condensed phase systems, from modulating local hydrophilicity/hydrophobicity

of engineered and biological surfaces, to surface manipulation in nanofluidic

devices.

Keywords Confined water � Interfacial hydrogen bonds � Nanofluidics �
Nanoparticle ordering � Nanoscale electrowetting
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1 Introduction

Modulation of solid/liquid interfacial tension by the applied electric field is cur-

rently enjoying explosive growth in a wide range of applications: from electrospray

ionization and ink-jet printing to electrical control of optical devices [1, 2]. Under-

standing the influence of an applied electric field on interfacial properties of water

is of great interest to workers in the field of microfluidics [3, 4], in particular the

electrowetting on dielectric (EWOD) [5]. There is also great interest from the

biology perspective since strong fields E (water dipole energy E�d comparable

to thermal energy kBT) arise in ion channels of cell membranes [6–10], in mem-

brane electroporation [11, 12], and at the active site on an enzyme [13]. Recent

experiments [14–17] investigated the effect of electric field on contact angle, which

also potentially impacts the stability of liquid–liquid interfaces [18] and may be

pertinent to carbon nanotube sieves of O (1 nm) thickness [19]. There are excellent

review articles on electrowetting from macroscopic perspective that the reader is

referred to [16, 20–23].

The advent of micro- and nanoporous materials sparked renewed interest in

wetting techniques including electrowetting in nanomaterials whose high surface-

to-volume ratio makes these media especially difficult to permeate with water.

Rapid developments in nanofluidics warrant a transition from continuum to mole-

cular level descriptions [24]. Computer simulation offers unique possibilities for

investigating molecular-level phenomena difficult to probe experimentally [25].

In this review chapter we focus on nanoscale effects that can currently be probed

best via molecular simulations. These tools give us the predictive power to discover

novel effects operating at short length scales.

The chapter is organized as follows. We start with macroscopic thermodynamic

predictions and discuss the phase behavior of confined liquids in general in the

absence of applied electric field. The primary focus is on capillary evaporation,

a phenomenon that can be reversed in the presence of the electric field. The reader

is directed to extensive excellent reviews [26] of capillary condensation. Next we

focus on the combined effect of confinement and electric field on liquids structure

and thermodynamics, water in particular, its stability against evaporation, and

resilience of the hydrogen bond network in polarized water. We devote increased

attention to issues of external conditions, as they determine how the system

responds to applied electric field. We concentrate on systems maintaining
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equilibrium with external bath at ambient temperature and pressure. Next we

review novel nanoscale effects in electrowetting where polarity and field direction

come into play. We briefly describe the method for calculating wetting free energies

(and associated contact angles) in a field-exposed nanopore from pressure tensor

calculations. We describe a novel mechanism for nanoparticle alignment, based on

the notable dependence of surface free energy on the angle between applied field

and nanoparticle surface. We end with conclusions and future possibilities.

2 Continuum Thermodynamics

2.1 Confinement Effects on Liquids

Spatial confinement can have significant effects on the phase behavior of a confined

fluid compared to its bulk counterpart. Classical examples are the shift of the

bulk gas–liquid condensation in adsorbing confinement towards lower pressures

(capillary condensation), or shift towards higher pressures [27] in a lyophobic

confinement (capillary evaporation) [28] and the corresponding shift of the

vapor–liquid critical point [29–31]. In a simulation study of strongly coupled

dipolar fluids (spherical particles with permanent point dipoles), Klapp and Schoen

showed that the presence of confining walls can promote long-range parallel

ordering of the dipoles [32, 33].

Confining a liquid between weakly attractive lyophobic surfaces (characterized by

contact angles above 90
�
) at a sufficiently small separation will lead to spontaneous

evaporation. This thermodynamic process is controlled by competition between

bulk energetics (that favors the liquid phase) and surface energetics (that favors the

vapor phase). The liquid-to-vapor transition occurs when the grand potential of the

confined liquid and confined vapor are comparable [28, 34, 35]:

Ol � �PV þ 2Awgwl ¼ Ov � �PvV þ 2Awgwv þ Ag (1)

where V ¼ AwD is the volume of the confined region, Aw/ L2 the wetted area of

the wall, and A / LD the area of the liquid/vapor interface. The A term is relevant

because of finite lateral size. For an incompressible fluid the difference in the bulk

pressure, P, and the pressure of the coexisting vapor, Pv, can also be replaced by

rDm [36, 37], where r is the number density of the liquid and Dm is the difference in

the chemical potential of bulk liquid from the value at liquid–gas coexistence.

From the above equality, the general expression for the critical threshold distance

for spontaneous expulsion of a liquid confined between surfaces of the finite lateral
size, L, follows [28]:

Dc ¼ 2Dg=ðP� Pv þ bg=LÞ; (2)
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where

Dg ¼ gwl � gwv ¼ � gcosyc (3)

is the Young equation [38] relating the difference in wall/vapor and wall/liquid

surface tension to the surface tension of the free liquid–vapor interface, g, and
the contact angle yc. b is a geometry dependent constant of the order of unity.

Equation (2) shows that for (laterally) small confinements, the critical separation

approaches the confinement lateral size, Dc ¼ O(L). Berne and coworkers have

used an analogous equation (2) to study capillary-evaporation induced collapse of

ellipsoidal hydrophobic particles [34, 39]. For macroscopic surfaces L ! 1, and

P � Pv, (2) reduces to the well-known Kelvin equation [40],

Dc ’ 2Dg=P: (4)

The thermodynamic effects of finite size and the kinetic barriers, DG*, for the
formation of vapor phase have been fully developed [41–46]. Macroscopic thermo-

dynamics predicts that when we have two non-polar surfaces immersed in a liquid

and bring them closer together, at a critical distance, Dc, liquid will be replaced by

vapor (2). Due to a considerable free energy barrier for confinement-induced

evaporation, however, the liquid phase is often metastable below Dc [36, 41, 43,

45, 47]. Coarse-grained simulations confirmed [45] macroscopic scaling predictions

[48, 49]:

DG� / D2; DG� / 1=cosyc: (5)

Combining the known result for the magnitude of the activation barrier and the

evaporation rate of molecular water in a specified molecular confinement [41] with

the above scaling results enables predictions of kinetic viability of expulsion of

water over a range of length scales and between arbitrary physically and chemically

modified hydrophobic surfaces with contact angles above 90
�
. In many practical

situations the activation barrier for evaporation can lead to a strong metastability of

confined liquid phase. For extended, strongly hydrophobic nanopores (yc ~ 135
�
),

widths above ~1.6 nm proved sufficient to suppress capillary evaporation kineti-

cally over practical simulation times [36, 41].

Extrapolation from intermediate to lower contact angles (closer to 90
�
) enables

estimating DG* at conditions where critical cavity sizes and barrier magnitudes

make simulations impractical even for coarse-grained models [45]. This regime is

important because low contact angles slightly above 90
�
are characteristic of many

so-called hydrophobic surfaces observed in nature. If the relation DG* ~ 1/cosyc is
approximately valid, reducing the contact angle from, say 110–100

�
nearly doubles

the barrier to evaporation. In view of barrier values for yc ¼ 109
�
(Fig. 6 in [45]),

it is clear that in most naturally occurring systems we cannot expect to observe

spontaneous evaporation except from a small molecular-sized confinement.
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These predictions [45] have been confirmed in studying the capillary evaporation

events within hydrophobic pockets of melittin dimers [50].

When the liquid-to-vapor transition is suppressed kinetically, the loosening of

water structure characteristic of hydrophobic interfaces (so-called soft interfaces

[51, 52]) can still be inferred from the rise in compressibility, k, within the solvation
layer. The increase in surface compressibility of water has been quantified from

density fluctuations [36] and direct density dependence on the pressure [43].

Compressibility next to hydrophilic surfaces, on the other hand, remains virtually

indistinguishable from that of bulk water [43, 53]. Local compressibility has also

been shown to offer a viable measure of hydrophobicity at a molecular level

[52, 54]. The issue will be addressed in the following sections as we describe the

changes in surface compressibility revealed in a simulated electrowetting

experiment.

2.2 Combined Effects of Confinement and Electric Field:
Electrocapillarity

If an electric field is applied across the planar confinement, additional contributions

reducing the wetting surface free energy (3) arise. Electrocapillarity can reverse

the sign of cosyc, leading to electrowetting of a lyophobic surface. Ignoring any

field dependence of liquid/vapor (g) and solid/liquid (gsl) surface tensions, within

continuum approximations, the macroscopic relation due to Lippmann [55]

describes electrocapillarity by

cosycðVÞ ¼ gsl � gsv
g

�WelðVÞ
g

¼ cosyo �WelðVÞ
g

: (6)

Here Wel(V) is the change in electrostatic energy per unit area, associated with

surface spreading of the liquid wetting both walls, V is the voltage across the

interface, and yo is the contact angle in the absence of electric field. Precise form

ofWel depends on system geometry and material properties but is generally presumed

to be proportional to the areal electric capacitance of the interface, c, and the potential
drop across the interface squared, Wel � �cV2=2 [16, 20]. Inserting Lippmann’s

effective surface tension into Young’s equation (3), we obtain the electrowetting

Young-Lippmann equation:

cosyc ¼ cosyo þ cV2=2g (7)

which describes the low voltage behavior of the contact angle [20, 56].

In macroscopic experiments, electrocapillarity effects usually originate in a thin

surface layer where electric field is strong [20, 38]. In microscopic pores, on the other

hand, the field permeates throughout the whole aqueous slab. Notwithstanding its
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weak ionization, pure water in a nanopore can be considered to behave as a

dielectric of relative permittivity e because the double layer screening length

associated with water ions exceeds the nanopore width by orders of magnitude.

The field Eo can stem from charges on the plates of a capacitor [15] or can be

attributed to charges in the nearby environment. Water can enter the confinement

from external field-free reservoir at ambient temperature and pressure, hence the

state of confined water is fully described by specifying the values of chemical

potential m, volume AwD (Aw � D2 is the plate area and D inter-plate separation),

temperature T, and field strength E.
For a uniform field, the continuum level approximation for the difference between

electrical energies of water-filled (l) and empty (e) pores, treated as capacitors with

areal capacitances ce ¼ e0/D and cl ¼ ere0/D, gives [7]

Wel ¼ Wl �We ffi D

2
ðere0E2 � e0E2

0Þ 	 � e0D
2

E2
0: (8)

In (8), E0 ¼ V0/D is the applied electric field across the slit before reduction due

to water polarization (Eo ! E ¼ O(Eo/er)). Equations (6) and (7) suggest an

expression for apparent contact angle cosyc ~ cosyc
o þ eoDEo

2/4g. Here, Wel is

associated with volume rather than with the surface layer alone. Equation (6) also

presumes that bare surface tensions, gab (a, b ¼ s, l, v) remain unaffected by the

field. While the latter is usually true for the solid–vapor term, gsv, the alignment of

water molecules in the field can modify molecular interactions at the surface and

hence further affect gsl and glv, an effect confirmed by simulations (see Sect. 4.2).

Favorable interaction of a polar liquid with electric field also results in increased

liquid density r. To the first order, electrostriction is given by

dlnr ¼ kr
8p

@e
@r

dðE2Þ; (9)

where E is local field and k is isothermal compressibility [57, 58]. In common with

predictions for other geometries [16], in weak fields (7) and (8) imply that the

change in contact angle and relative increase in local density vary in proportion to

field squared. Equations (6) and (7), combined with an appropriate estimate of areal

capacitance of the surface, provide the basis for techniques to tune hydrophobic/

hydrophilic surfaces electrically [20, 59, 60] while (8) offers a qualitative explanation

of the role of ions in gating of biological channels [6, 7, 61].

As already discussed, in narrow hydrophobic confinements, unfavorable surface

energetics can trigger capillary evaporation if D < Dc [(2) and (4)] [36, 41, 44, 46,

48, 49], provided the kinetic barriers are surmountable [45]. Dzubiella and Hansen

discussed a generalization of Kelvin equation that incorporates the effect of electric

field [62]. The energy density change due to the field augments the PV term, which

tends to suppress liquid expulsion, thus reducing the threshold separationDc. For an

extended planar confinement subject to a weak electric field Eo, the generalized

relation takes the form [63]
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D < �2glvcosy0= Pþ e0E2
0

4glv

� �
: (10)

The extended expression enables studies of phase instability in dispersions of

charged particles like ionic colloids. In the context of this review, it helps to explain

electrostriction or electrowetting in a confinement maintaining equilibrium with

a field-free aqueous bath. Brunet et al. discussed the use of electric field to tune

mixing/demixing equilibria in a multicomponent system [64, 65].

3 Molecular Thermodynamics

3.1 Water in Hydrophobic Confinement and Applied Field

Stabilization of liquid phase under an applied field conforms to experimental

observations of electrostriction as the field attracts more water into the exposed

region. The behavior is captured in several simulation studies, both in the bulk

[66, 67] and confined [7, 53, 61, 66, 68] regimes. On the other hand, some studies

reported field induced depletion or evaporation in bulk [69] and confined [57]

water; hence it is of interest to discuss the underlying differences between these

works.

Some of these differences can be attributed to different thermodynamic

conditions (Fig. 1). Studying confined water in a field-exposed confinement, open

to water flow from the external, field-free bath, is an entirely different situation

from the case of an isobaric system, closed to water exchange. In the former

scenario, water in confinement responds to applied field by increasing the density

Fig. 1 Imposed external conditions lead to different responses of confined water to electric field.

Left: field free water in a hydrophobic confinement. Right: field-exposed systems. Top: isobaric,
mass conserving system of variable lateral dimensions. Bottom: isochoric confinement subject to

applied field, and open to exchange of water with field-free aqueous bath
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to equalize its chemical potential with that in the external bath. In the closed

isobaric system, the amount of water is fixed and volume adjusts to maintain

pressure constant despite the application of the field.

The response of the volume V in a mass-conserving isobaric (N, P, T) system to

the application of field Eo¼|Eo| can be described by

@ < V >

@Eo
¼ @

@Eo
D�1

X
Vj

X
states i

Vje
� Ui

kBT�
pVj
kBT

0
@

1
A

¼ �ðkBTÞ�1 < V
@U

@Eo
> � < V ><

@U

@Eo
>

� �

where D ¼
X
Vj

X
i

e
� Ui

kBT�
pVj
kBT:

(11)

Each of states i corresponds to a distinct configuration [rN, VN] consisting of

positions r and orientations V of all N particles. The angle brackets denote the

ensemble average. The slope @U=@Eo measures the ease with which the molecules

align with the field, and can increase with fluid dilution. All Nmolecules are exposed

to the field and any structural rearrangement takes place only to find the best

compromise between molecular alignment with the field and orientation-dependent

interactions among molecules. The density of a mass-conserving isobaric polar fluid

can therefore decrease under applied field Eo. The prediction agrees with the (N, P, T)
simulation in [69] but is not transferable to other external conditions.

Electrowetting experiments typically involve transfer of water from a field-free

region or region with weak field to a region under strong field to maximize field/

dipole interaction [20]. Pressure is therefore neither fixed nor uniform, but the

chemical potential of an equilibrated system is uniform. These thermodynamic

conditions are best described by grand canonical (m, V, T) statistics with fixed

volume (V), temperature, and chemical potential m. The field dependence of the

mean number of molecules, <N>, in the field-exposed region is given by

@ < N >

@Eo
¼ @

@Eo
X�1

X
N

X
states i

Ne
� Ui

kBT�1þ mN
kBT�1

" #

¼ � 1

kBT
< N

@U

@Eo
> � < N ><

@U

@Eo
>

� �

with X ¼
X
N

X
i

e
� Ui

kBTþ mN
kBT:

(12)

Electric field Eo affects the energy U through orientation-dependent interaction

with molecular dipoles d, UðNÞ ¼ �Eo

PN
1 di cos yi ¼ �NEodcos y :
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@N=@Eo ¼ d

kBT
< N2 @ðEocos yN;iÞ

@Eo
> � < N >< N

@ðEocos yN;iÞ
@Eo

>

 !

¼ d

kBT
< N2cos yN;iÞ > � < N >< Ncos yN;iÞ >
� �

;
(13)

where d¼|d|. cos yN;i measures the average dipole alignment, d.Eo/|d||Eo|,

of N molecules in the system in configuration (N,i), because cos yN;i 
 0 for all

representative configurations, and the product ðNcos yN;iÞ generally increases with

N. The density of a dipolar liquid in an open system will therefore rise with

increasing field strength Eo as predicted by continuum analyses [57, 70, 71] and

seen in electrostriction experiments.

Simulation studies for bulk and confined systems at different external conditions

have been compared over a range of applied electric fields. Open (m, V, T) systems

invariably show density increase under applied field, both in bulk and confined

phases, with or without Ewald periodic conditions. Bigger effects are restricted to

hydrophobic confinements, as water fills the initially depleted interfacial layers.

On the other hand, dilution and eventual evaporation are observed in mass conserv-

ing, isobaric systems when constancy of pressure is enforced in the presence of the

field. Representative results are collected in Fig. 2.

3.1.1 Electric Fields in Modeled Systems

A few comments pertaining to simulation studies of field-exposed aqueous systems

discussed in this review are in order to aid in evaluating the results, presented in

Fig. 2 and in subsequent sections.

Eo /VA
o

-1

Fig. 2 Simulated water density dependence on the strength of (unscreened) applied field

0 � Eo � 0.6 V Å�1. The actual field, E, is lowered by orientational polarization of water, and

spans the range 0 � E � 0.025 V Å�1. In confinement, dielectric screening renders the field both

weaker and nonuniform. Blue: 1.64 nm wide hydrophobic confinement (wall contact angle 135o),

black: bulk water. Solid lines and circles describe open systems (varying N) under the field, in

equilibrium with field-free water bath. Dashed lines and open symbols: closed (mass conserving)

isobaric systems. To keep pressure constant, these systems expand under the field. Note that

different conditions (m,V,T) (solid symbols) vs (N,P,T) (open symbols) correspond to contrasting
physical situations, and not the same situation described using different ensembles
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First, the reported field strengths warrant explanation. In the absence of tin-foil

boundary conditions [72, 73], the actual strength of electric field spanning the

aqueous phase, E(r), differs significantly from the unperturbed “applied” field Eo

due to the opposing effect of water polarization. The actual, dielectrically screened

field E(r) is generally nonuniform and is of the order er
�1 weaker than the

unscreened field Eo. In the bulk phase, modeled by Ewald summation with vacuum

boundary conditions [72], the exact relation (for the absolute values of the field) is

E ¼ 3Eo/(er þ 2), where er is the relative permittivity [74]. While constant-voltage

simulation techniques have been presented [75, 76], in most cases, Eo represents

input information for a simulation experiment and the screened, position dependent,

field E(r) can be determined during the simulation. In the latter case, a viable

estimate of the average field E across the system can be obtained from the observed

polarization of water, measured in terms of the cosine of the alignment angle,

< cos yN;i > [77–79]. When compared with a laboratory measurement, a simula-

tion with fixed applied field Eo is akin to an experiment on a system between

electrified surfaces (or capacitor plates) with fixed charge densities. The common

fixed-voltage experiment, on the other hand, corresponds to preselecting the aver-

age field across the system. The implications of the two different constraints have

been discussed by Jia and Hentschke [80]. In capturing electrostatic screening in

a globally polarized system, simulations employing Ewald periodic conditions are

generally superior to cutoff-based techniques. While the use of a distance cutoff on

the intermolecular interactions mostly gives a satisfactory qualitative description of

the system’s responses to the field, dielectric screening is typically underestimated,

and the average field E, and apparent voltage V across the system, V � DE are

overestimated in this approach [68]. For clarity, both the exact value of the

unscreened input field Eo and the approximate average of the actual field will be

listed in most cases we discuss below.

The second comment concerns the usage of rigid water models such as the

SPC/E model [81], which by design cannot undergo ionization or react chemically.

We note that actual fields considered here are much too weak to polarize signifi-

cantly, let alone decompose water when any flow of electric current is prevented by

proper insulation. Top end insulators like polymer and silica films with dielectric

strength of up to 5 � 108 V m�1 can provide more than adequate insulation.

3.2 Resilience of the Hydrogen Bond Network in Polarized Water

For an open system, described by (13), any field-induced density depletion,

ð@N=@EoÞmVT < 0, could only be expected in case of dramatic rise in orientational

polarizability of the molecules upon dilution. A mean-field analysis [69, 82] of a

water-mimicking Ising model in electric field explored the assumption

that molecular dipole alignment perturbs hydrogen bonding. Over an interval of

intermediate field strengths, the model-system featured a density drop akin to the
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reported evaporation from an open, field-exposed confinement [57] in equilibrium

with unperturbed bath. Repeated observations of electrostriction (density increase

under field) in other simulation studies of open systems [6, 7, 61, 63, 66–68]

question the hypothesis [69] of strongly negative correlation between attractive

water–water interactions (dominated by hydrogen bonding), and water’s ability to

align with the applied field.

The issue was addressed in Monte Carlo and Molecular Dynamics simulations

directly monitoring water structure and the extent of hydrogen bonding as the

molecules became increasingly aligned by the applied field [68]. Below, we report

results for fields Eo up to 0.8 V Å�1, corresponding to actual fields of up to

0.03 V Å�1, thus spanning the range of fields detectable near charged electrodes,

ion channels, ionic biomolecules or assemblies [6, 79, 83–93]. Within the above

range of fields, no significant field-induced changes in water hydrogen bond

populations, in atom–atom distribution functions or in water’s tetrahedral coordi-

nation were observed [68]. The resilience of hydrogen-bond strength and their

population were confirmed by:

1. Direct population statistics: the number of bonds does not diminish upon polari-

zation by the field.

2. The average energy of the bonds remained essentially equal to that in field-free

water.

3. The preserved free-energy advantage of forming bonds was evidenced by

unperturbed equilibrium between the populations of formed and ruptured

bonds. Any weakening in the free-energy of the bonds in the field-oriented

water would be reflected in at least some increase in the fraction of ruptured

bonds, which did not happen.

Simulation results demonstrate that high alignment of aqueous dipoles can be

achieved without serious penalties in the number and free-energies of hydrogen

bonds or distortion of tetrahedral coordination. An onset of the transition from

tetrahedral toward tightly-packed, highly coordinated “electrofrozen” structure can

be observed at extreme fields of about 2 V Å�1 and higher [79, 94, 95]. Remarkable

persistence of the hydrogen-bond network under aligning electric field equal or

below 1 V Å�1 is evidenced by several studies [79, 88, 96–98] showing no

evidence that field alignment would be conducive to unraveling of the hydrogen

bonded network. For uniform phases, recent Gibbs ensemble simulations by

Sieppman and coworkers [67] explicitly confirm that orientational polarizability

of water molecules in liquid phase exceeds that in vapor.

A common Molecular Dynamics approach in studies of confined systems

at fixed chemical potential employs an isobaric, bulk-like bath surrounding

the confinement. The conditions inside a field-exposed confinement (e.g., inside

a capacitor) should therefore be close to (m, V, T) ones of GCMC cases [66, 68],

suggesting similar electrostriction behavior. Occurrence of a field-induced expul-

sion of water has, however, been reported in a Molecular Dynamics study of this

kind [57]. To secure proper barostat performance under strongly nonuniform and

anisotropic pressure fields, and to account for the discontinuity between field/no
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field regimes (impulse on crossing molecules) in (N, P, T) Molecular Dynamics are

still open technical challenges. Avoiding explicit boundaries between field and

no-field regions, Grand Canonical [61, 66, 68] and Gibbs ensemble [67] Monte

Carlo approaches represent natural choices for molecular studies of electrowetting

under nonuniform applied field. Local Molecular Field (LMF) theory [99] is poised

to offer a promising alternative to molecular simulations in electrically nonuniform

systems.

4 New Effects at the Nanoscale

Traditionally, electrowetting has been considered a relatively non-specific phenom-

enon defined in terms of a material’s macroscopic properties. The effect of

applied field on cosyc has generally been found to be proportional to voltage

squared, independent of field polarity and direction, as in (7). Nanosized aqueous

confinements we review next, however, behave very differently from macroscopic

systems. Due to molecular anisotropy of water, the electric field effect on the

surface tension at aqueous interfaces depends on the angle between the field and

the surface. The field-induced alignment competes with orientational preferences

of interfacial water molecules relative to a wall to maximize hydrogen bonding

[100–103]. The two trends are reconciled when the field is parallel to the interface.

Perpendicular field, on the other hand, results in asymmetric wettability of opposing

confinement surfaces (Fig. 3). These nanoscale effects, in contrast to conventional

macroscopic experiments, derive primarily from the properties of the first solvation

layer, and are negligible in systems of macroscopic dimensions. Analogous direc-

tion dependence is observed in sessile nanodroplets’ response to electric field [104].

Preferred alignment of confinement surfaces with the field suggests a novel

mechanism whereby the applied electric field can orient nanoparticles even in

the absence of charges or dielectric contrast.

Fig. 3 Simulated density profile of water in an extended hydrophobic (hydrocarbon-like)

nanopore subject to normal electric field of strength 0.2 V Å�1 (average actual field

E ~ 0.005 V Å�1) in equilibrium with a field-free aqueous reservoir. Model: SPC/E water.

Method: GCMC with slab-corrected Ewald sums for laterally periodic boundary conditions
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Examples discussed below illustrate field-direction effects in selected scenarios.

Avoiding possible ambiguities related to the angle between the surface and the

applied field in the presence of surface roughness, these examples focus on smooth

interfaces described by two forms of substrate/water interaction. The integrated,

laterally invariant Lennard-Jones (9–3) potential [102] was used in nanopores as it

allows lateral scaling, thus facilitating surface free energy calculations [53, 66]. The

Grand Canonical Transition Matrix Monte Carlo approach developed by Errington

and coworkers enables extensions to nonplanar surfaces [105, 106]. Interfacial

behavior at smooth surfaces was consistent with that observed on molecular

substrates mimicking graphitic surfaces in sessile drop [104], thin films [107],

and suspended nanoparticle calculations [108].

4.1 Effects of Field Direction and Polarity on the Wetting
Properties

Molecular simulations of water equilibrium between nanopores under electric

field and unperturbed bulk phase demonstrated notable differences between

electrowetting at the nanoscale and in macroscopic systems [53, 66, 68]. Due to

the coupling between surface/water and field/water forces, the water/wall surface

tension depends on the alignment between the surface and the field. This, in turn,

reflects in angle-dependent uptake of water in the pore. The transition from hydro-

phobic to hydrophilic behavior of paraffin-like nanopores upon imposition

of electric field is enhanced when the field is parallel with confinement walls.

In a narrow, 1.64 nm wide planar pore (a width just above kinetic threshold to

capillary evaporation from a hydrocarbon-like pore [41]), simulated by GCMC,

electrostriction (solid blue curve in Fig. 2), is about twice the strength in parallel vs

normal fields. In a normal field, the coupling of field-induced alignment and

orientational preferences of interfacial water molecules relative to a wall renders
solvation layers at opposing walls completely different. As shown in Fig. 3, the

hydrophobic wall under incoming field (pointing into aqueous phase) features

a pronounced density peak of water/wall distribution function, g(z), in the first

solvation layer, reminiscent of hydrophilic hydration. The opposite wall, on the

other hand, shows essentially no peak, in analogy with hydrophobic solvation in the

absence of the field [66, 68]. Polarity dependence of water density profiles have also

been reported between oppositely charged colloids [63] and between parallel

graphene sheets under strong electric field [57]. When the field is applied along

the walls, prominent hydration peaks form at both walls [66]. The sensitivity to field

direction and polarity is explained by competition between spontaneous water

molecule-surface orientations and molecular dipole alignment with the field. As

do all polar fluids, aqueous dipoles prefer polarization parallel to walls. This general

tendency acts in concert with orientational ordering imposed by hydrogen bonding.

Under the combined effects, the optimal orientation of interfacial water molecules

corresponds to dipoles almost aligned with the wall, but pointing slightly into the
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liquid phase. Electrowetting is therefore most effective when the field polarizes

water along the wall, but is considerably weaker when the field tends to turn water

dipoles toward the wall. Consistent with the above picture, hydrogen bond popula-

tions, monitored as a function of field angle relative to the walls, are enhanced in

parallel fields and depleted especially at interfaces with field pointing toward the

wall [66]. Analogous preference for the interface/field alignment has been observed

and discussed in recent simulation studies of nanodroplet elongation [109] and

aqueous film evaporation [110] in the field. The surprisingly strong effect of field

direction and polarity on surface wetting is a signature of the nanoscale regime

where surface molecules represent a statistically significant constituency.

4.2 Wetting Free Energy

Field-enhanced wettability can be quantified in terms of wetting surface free

energy, s(E), here defined as the sum Dg þ Wel(E) ¼ �g cosyc(E) [(3) and (6)].

For smooth surfaces, s inside an open nanopore of fixed width D has been shown

[66] to relate to the lateral component of the pressure tensor, Pk :

s ¼ @O
@A

¼ �PkD
2

: (14)

Here, O is the grand potential of the wetted part of the confinement atop

the wetted area A with volume AD. A recent study reported systematic GCMC

calculations of s(E) in hydrocarbon-like nanopores [66]. To estimate contact angles

under the field also required calculations of surface tension (glv) as a function of

the field strength. Calculations for a free-standing aqueous slab were performed

using the conventional relation sðEÞ ¼ ðP? � PkÞD=2. A novel finite-difference

technique for the calculation of pressure tensor components determined energy

differences DUa, associated with uniform scaling of molecular coordinates a (a ¼ z
or x, y) and volume change DVa [66]. DUa ¼ Ua(V þ DVa/2)�Ua(V – DVa/2)

comprised changes in intermolecular and water–wall interactions. As described in

Supporting Information to [66], pressure tensor components were obtained from the

relation

Paa ¼ rkT þ lim
DVa!0

kT ln < expð� DUa
kT Þ >

DVa
¼ rkT � lim

DVa!0
<

DUa

DVa
>: (15)

Related finite-difference techniques have been studied in a number of contexts

involving fluids with hard-core [111] and soft potentials [112–116]. The central

finite-difference approximation, analyzed systematically in [115], was implemented

[66] through scaling by a factor of f ¼ 1 e with e ¼ 10�5 in forward and backward

directions. Within the range 10�6 � e � 10�4, no significant dependence on e has
been detected and exponential and linearized forms of (15) produced identical
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results. The calculated normal component of the pressure tensor, Pzz � P?,
matched the wall pressure calculated directly from wall/water forces as described

elsewhere [36]. Consistency of the pressure tensor approach was also verified by

direct surface free energy calculations using thermodynamic integration [117]. An

interesting variant of thermodynamic integration with phantom wall approach was

introduced by Muller-Plathe and coworkers [118]. Pressure, compressibility, and

wetting free energies followed the trend described in discussing electrostriction and

water structure in the presence of the field. As water is driven into the pore, the

pressure rises approximately in proportion to field squared; however, the rise is

steeper in a parallel field [66]. The change is accompanied with decreasing interfa-

cial compressibility, approaching that of bulk water in the strong field limit (Fig. 4).

Compressibility next to hydrophilic surfaces, on the other hand, proves essentially

insensitive to applied field. The nonlinear dependence of compressibility on surface

contact angle, highly sensitive at high yc and almost insensitive at yc < 90
�
, is

illustrated in Fig. 5 [119]. The observed asymmetric dependence conforms to

Fig. 4 Reduced compressibility, rkBTk, in a planar nanopore of widthD ¼ 1.64 nm as a function

of applied (nonscreened) electric field Eo from Grand Canonical Monte Carlo simulations in SPC/E

water for three wall/water contact angles yc ¼ 135
�
(diamonds), 93

�
(circles), or 69

�
(triangles).

Actual field E ranging from 0 to 0.0095 V Å�1 Reduction in compressibility inside a hydrophobic

pore, yc ¼ 135
�
, is indicative of electrostriction in the field. Electrostriction is stronger in parallel

than normal field

Fig. 5 Reduced compressibility, rkBTk, of water in a planar nanopore of width D ¼ 1.64 nm as a

function of surface contact angle, yc in SPC/E water [53, 66, 119]. Contact angle of chemically

homogeneous pore walls was varied through surface chemistry (circles at yc ¼ 135
�
, 93

�
, or 69

�
),

or by applying electric field across a hydrophobic pore (squares at 114
�
and 129

�
)
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reported sensitivity to minority polar groups on hydrophobic surface and marginal

influence of hydrophobic groups in a polar context [52, 117, 120, 121].

Calculated wetting free energies, shown in Fig. 6, reveal the prominent effect of

field direction. In a 1.64 nm wide pore and strong field Eo ~ 0.3 V Å�1, the wetting

surface free energy in parallel field is nearly 50 mN m�1 lower than the average

over both walls in a normal field. Again, the fields Eo in Fig. 6 correspond to external

field before reduction due to dielectric screening, which renders the field across the

pore nonuniform and over an order of magnitude weaker (E up to 0.008 V Å�1).

Based on the structures of hydration layers (Fig. 3), the solvation of the confinement

wall with outgoing normal field is similar to that observed at both walls in the

parallel field. The wall with incoming normal field, on the other hand, remains only

weakly affected by the field. In sufficiently strong normal field, this asymmetry

renders one wall strongly hydrophilic, the other hydrophobic. This situation, known

as a Janus interface, shows very interesting behavior experimentally [122].

Janus interface can be produced, for example, by applying voltage of ~0.1 V

(E0 ~ 0.2 V Å�1, average field E ~ 0.005 V Å�1) across a 2 nm wide confinement,

without modifying the surfaces themselves.

4.3 Water-Mediated Ordering of a Nanomaterial

A crucial step in the manufacture of many complex materials is the orientation of

the constituents in a solvent such that they can be deposited on a substrate with

a desired orderly structure. Several methods have been considered for an efficient

solute orientation in a solvent [123, 124], but they all rely on the presence of a

nanoparticle permanent dipole or considerable dielectric contrast between the

particle and the medium [125, 126]. A newly proposed method of orienting

nanoparticles [53] exploits the coupling between the field-alignment of polar

solvent molecules and anisotropic solvent–solute interactions due to solvent

Fig. 6 Wetting free energy s(Eo) in 1.64 nm wide hydrophobic pore as a function of applied field

Eo (actual normal field E up to 0.008 V Å�1). Empty circles: perpendicular field, solid symbols:
parallel field, and squares: water/air surface tension of a free-standing aqueous slab of identical

thickness. Field direction was not significant in the latter case
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molecules’ electrostatic and geometrical asymmetry. This coupling can lead to

directional solvent–solute forces [66] and torques, which favor certain solute

orientations, irrespective of the electric nature of the solute itself. A major contri-

bution to the torque comes from the preference of water to maximize its hydrogen

bonding [66, 104], augmenting the general tendency of dipolar fluids to spontane-

ously polarize parallel to the interface [32, 33, 127, 128]. According to macroscopic

electrostatics, electric field will generally align anisotropic particles with dielectric

constant different from that of the medium. The free energy F of an object of

volume V2 and permittivity e2 in the medium e1, and associated aligning torque

t(f), is [125]

F ¼ 1

2

ð
V2

ðe2 � e1ÞE!1 � E!2ð r!Þd3 r!; jtj � @F

@f

����
���� (16)

where E1 is the field in the absence of the particle, E2 the perturbed field, and f the

angle of rotation. At the molecular and nanometer scale, however, significant

additional orientational forces operate without requiring the nanoparticle to have

a dipole moment, or strongly contrasting permittivity. For example, this effect could

orient a solute of permittivity close to that of the solvent in a large local electric field

next to a DNA polyion (actual field E ¼ O(10�2)V Å�1, Eo ¼ O(1)V Å�1) [83].

4.3.1 Nanopore Geometry

Because of the coupling between orientational forces on surface water molecules

and their aligning with the field, the wetting free energy of nanopore walls depends

on the angle f between the walls and the direction of the field. In a planar pore, the

wetting free energy, s(E, f), is lowest in the parallel orientation, gradually increas-
ing as the angle f approaches 90�. Figure 7 illustrates this dependence for planar

nanopores of two widths, 1.64 and 2.7 nm. The applied field across the pore before

accounting for dielectric screening equaled 0.2 V Å�1, with the average actual field

0 30 60 90
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–25

0

/d
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Fig. 7 Wetting free energies

inside planar confinements of

widths 1.64 (upper) and
2.7 nm (lower curve) as
functions of the angle

between the field and the

walls. Field strength:

Eo ¼ 0.2 V Å�1, average

actual field E ~ 0.005 V Å�1

(at f ¼ 90
�
), wall contact

angle 93
�
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of O(10�2) V Å�1. The comparison between wetting free energies at different pore

widths shows that the effect of the field grows with the thickness of the polarized

water slab; however, the free energy change with the angle f is essentially

independent of the pore width. Given the smaller width amounts to about four

layers of water molecules, it is clear that the angle dependence is dominated by pure

surface-layer effects. The variation of the free energy with the angle produces an

aligning torque of (absolute) magnitude

tðE;fÞ ¼ �ð@F=@fÞ � �Awl@sðE;fÞ=@f (17)

where F is the free energy and Awl is the area of solid wall/liquid interface. The

torque on nanopore walls arises solely due to anisotropic water/wall interactions

and independently of any direct interaction between the wall material and the field.

Importantly, because a major part of angular forces on water molecules reflects

orientational preferences of hydrogen-bonding, a nonzero torque can exist even

when there is no dielectric contrast between the pore material and water.

4.3.2 Dispersed Nanoparticles

The orienting effect, discussed above, is present in other geometries including

nonspherical nanoparticles in a dispersion. As orientational forces between

the solvent molecules and the particle surfaces couple with those imposed by the

applied field, they augment the classical effect (16), and enhance the trend to align

the nanoparticle surface with the field. This expectation, based on surface thermo-

dynamics calculations for aqueous confinements [53], is confirmed in molecular

dynamics simulations of freely rotating nano-platelets suspended in water under

external field [108]. Orientational forces are found to exceed continuum theory

predictions [129] by a factor close to two [108], providing a direct measure of the

molecular mechanism neglected in macroscopic theories. Enhanced torques can

considerably facilitate the use of electric field in tuning suspension structure and

thus, for a supersaturated regime, also the structure of any emerging crystalline

phase. For materials science as well as for the design of electro-mechanical sensors,

it is essential to estimate also the dynamics of nanoparticle orientation. Reorienta-
tion time of a 2–3 nm wide graphene-like platelet under the (actual) field of

~0.03 V Å�1 is of O(102) ps. A very interesting result is an approximate balancing

between increased hydrodynamic friction and the electric torque upon particle size

scaling. The field-induced reorientation dynamics therefore depends only weakly

on the particle size and remains fast O(102–103 ps) even for comparatively big

O(10) nm particles; these results can be extrapolated to even bigger sizes not

accessible by molecular dynamics simulations with explicit solvent. Apart from

the torque enhancement due to hydration-shell molecules, the observed dynamic

behavior conforms well to predictions [129] from classical hydrodynamics.
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5 Conclusions

We have reviewed computational studies of neat water under combined effect of

confinement and electric field. Molecular simulations in these systems were able

to demonstrate remarkable differences between field-enhanced wetting at the
nanoscale and in macroscopic systems. In particular, they highlighted the cou-

pling between interfacial hydrogen bonds [100–103] and molecular alignment in

the electric field. This coupling introduces a dependence of wetting on field

direction and polarity in contrast to the conventional picture in macroscopic

systems; system size plays a crucial role. The observed anisotropy in field-

induced wetting is a new nanoscale phenomenon that has so far been elusive as,

in the majority of current experimental setups, surface molecules represent a very

low fraction of the total number of molecules affected by the field [130]. It may

find applications, for example in the design of electrowetting techniques in

fabrication and property tuning nanomaterials. Likewise, these effects may play

a role in function of membrane proteins that are voltage sensitive, like pumps,

transporters, and channels (Roux B, private communication, [131]), including

artificial ones [132, 133].

Another novel mechanism that originates from molecular anisotropy of polar

solvent molecules such as water reveals strong field-induced orientational forces

acting on apolar surface through water mediation, which operate regardless of

the presence or absence of solute/solvent permittivity difference. The findings

have applications in nanomaterials engineering, where direct interactions between

dipolar nanoparticles and applied electric field have been used to control and

explain nanoassembly processes [134]. The new mechanism [53, 108] can be

used in a similar way, regardless of the electrostatic nature of a nanoparticle. The

water-mediated torques can act in concert with direct electrostatic interactions, and

can be of similar magnitude when the particles are of nanosize. The response to

the applied field takes place at an attractively short time scale [108]. Therefore, the

mechanism can be considered in the development of chemical and biosensors.

The examples presented highlight the importance and predictive power of

molecular modeling techniques in providing new insights into microscopic scale

phenomena not fully accessible in experiment. The novelty of the results should

have a broad impact in very active research fields of nano- and bioengineering,

physics at the cell scale [135], etc. The future outlook calls for natural extensions

of the work reviewed here: exciting new physics can emerge upon inclusion

of aqueous salt solutions [136, 137] and evaluating the dynamic response of

nanoconfined water to field change [138], a critical dynamic property for electro-

switchable nanofluidic or optical devices.
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Abstract The use of configurational-bias Monte Carlo simulations in the Gibbs

ensemble allows for the sampling of phenomena that occur on vastly different time
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1 Introduction

A multiscale method refers to a computational technique that spans multiple levels

of length (resolution) and/or timescales. Most commonly, the term refers to multi-

ple levels of theory being utilized in an energy or force calculation (e.g., a small part

of the system is treated using expensive electronic structure calculations, whereas

less expensive molecular mechanics force fields are used for the surrounding) or the

presence of multiple timesteps in a molecular dynamics simulation where forces

arising from short-range interactions are calculated more frequently than those

arising from long-range interactions. The term “multiscale” is also often used to

describe a set of separate calculations or simulations where one level provides

information used in the next level.

The main goal in a molecular simulation is to sample the important regions of the

statistical–mechanical phase space, i.e., those configurations that contribute most to

the thermodynamic averages for the system. Sampling inefficiencies occur when

these important regions of phase space are separated by free energy barriers, which

manifest themselves in long relaxation times. In a Monte Carlo simulation, special

(sometimes termed “unphysical” or biased) moves can be deployed that allow one

to hop over these kinetic barriers. As multiple different move types can be

employed in a Monte Carlo simulation, multiple timescales can also be accessed,

and the most efficient computation of equilibrium properties is achieved when the

vastly different timescale for different types of motion (e.g., bond stretching vs

transfer of a molecule over large distances) are merged into a common computa-

tional timescale. The Monte Carlo technique also allows for the use of open

ensembles where multiple phases (each handled in a separate simulation box) are

thermodynamically connected via special Monte Carlo moves but do not share a

direct interface. These phases may also represent different length scales, e.g., a

phase confined in a nanopore and a bulk phase.

In this review we discuss the application of multiscale Monte Carlo simulations

to explore various chromatographic systems. Chromatography is a collective term

for a set of techniques used for the separation of chemical mixtures. The common

theme in these techniques is that the mixture to be separated is dissolved in a mobile

phase which is passed through a stationary phase usually placed in an elongated

column. The separation of the mixture is based upon the differential partitioning of

the components in the mixture between the two phases. When a molecule has a

higher affinity for the stationary phase, it is retained in this phase longer and can be

separated from the less retained components that spend a relatively longer time in

the mobile phase. In gas chromatography (GC), the mobile phase is an inert gas and
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the stationary phase is either a solid or a liquid film adhering to the inside of a

capillary tube. In reversed-phase liquid chromatography (RPLC) the mobile phase

is an aqueous/organic solvent and the stationary phase is most often composed of

alkyl chains chemically bonded to the surfaces of highly porous silica particles.

2 Multiscale Monte Carlo Techniques

To enable the simulation of chromatographic systems, a combination of two Monte

Carlo techniques that allows for the sampling of processes across different length

and timescales is used. These are the Gibbs ensemble Monte Carlo (GEMC) and the

configurational-bias Monte Carlo (CBMC) methods. The Gibbs ensemble [1, 2]

involves the concurrent simulation of multiple phases that are thermodynamically

coupled through special Monte Carlo moves, but do not require consideration of

explicit interfaces between these phases. One of the special GEMC moves allows

for direct particle transfers (as opposed to slow diffusive processes) between two or

more separate phases, i.e., the molecule may transfer from one bulk phase to

another bulk phase without having to encounter an interface. Nevertheless, the

GEMC technique can also be used to connect phases that exhibit different charac-

teristic length scales (e.g., a nanoporous sorptive phase and a bulk solution phase)

and may involve explicit interfaces. Such a set-up is used in our Monte Carlo

simulation of RPLC systems. As illustrated in Fig. 1, these GEMC simulations use a

three-box setup. The first simulation box contains the stationary phase and is

elongated in the z-direction with Lx ¼ 20.0, Ly ¼ 26.0, and Lz ¼ 90.0 Å. The

center of this box contains a five layer slab of b-cristobalite with its two (1 1 1)

surfaces exposed. To these surfaces, octadecylsilane chains (ODS) are grafted. In

contact with this stationary phase, and connected through the periodic boundaries

used in the simulations, is the mobile phase solvent sorbed in the pore. This box is

periodically replicated in all three dimensions. Thus, the setup in this first box

Box 1:
Stationary phase in contact with solvent

Box 2: 
Bulk solvent

Box 3:
Vapor phase

90 Å

~30 Å ~100 Å
Fig. 1 Three-box Gibbs

ensemble simulation setup
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corresponds to a planar slit pore with a spacing of about 70 Å. The second box

contains a bulk solvent reservoir and the third box a helium vapor phase (used as a

reference phase to deconstruct free energies of transfer into stationary and mobile

phase contributions). These two boxes are cubic and their volumes are allowed to

fluctuate in response to an external pressure bath (whereas the volume of the slit

pore is fixed).

The three simulation boxes are in thermodynamic contact through the exchange

of solvent and analyte molecules via CBMC particle transfer [3, 4] and identity

exchange moves [5, 6] (i.e., this move converts a molecule of type A into a molecule

of type B in one simulation box and concurrently converts B to A in another box)

that ensure that the chemical potential of these species is the same in all three boxes.

Exchange of solvent molecules is an extremely important aspect of the simulation

setup because there is no way to know, a priori, the correct amount of solvent

molecules to be placed in the stationary-phase box with its hydrophobic surfaces in

order to represent a given chromatographic condition (composition of the mobile

phase, temperature, and pressure). In addition, these particle transfer and exchange

moves allow for a much more efficient sampling of the spatial distribution of the

solvent and analyte molecules than could be achieved by simple translational

moves that mimic diffusive behavior. Precise information on the spatial distribution

allows for the calculation of distribution coefficients and free energies of transfer

between the mobile and stationary phase (the free energy of retention) from the

ratio of average analyte number densities in each phase:

DGa!b¼� RT lnK ¼ �RT ln
rb
ra

; (1)

where ri is the number density of the species in phase i. The distribution coefficients
and free energies computed from the simulations can be directly compared with

experimental retention data to validate simulation results.

The coupled–decoupled CBMC method [3, 4, 7] selects trial configurations for a

stepwise growth of the trial molecule using a biased preselection process to find

favorable regions of phase space and, thereby, greatly increases the acceptance

rates for particle transfer and identity exchange moves. In addition, it allows for the

sampling of the conformational degrees of freedom of articulated molecules via

regrowing a part of the molecule that includes either one or multiple terminal

segments [3] or only interior segments [8]. The CBMC technique can also be

extended to utilize multiple energy scales. To enhance computational efficiency

for simulations using molecular mechanics force fields, the biased preselection of

configurations first generates a set of growth directions based on the bonded

interactions (e.g., bond stretching and angle bending) for which the cost of the

energy calculation depends only on the trial molecule and is independent of system

size. This is followed by a selection of a specific growth direction based on a less

expensive approximation of the nonbonded interactions (shorter cutoff and only

direct-space part of the Ewald sum), while the final acceptance of the move is based

on the full potential including a correction for the more expensive part of the

184 J.L. Rafferty et al.



nonbonded interactions (longer cutoff, reciprocal-space part of the Ewald sum)

[3, 9]. In another application, the CBMC technique (with preselection of moves

based on an empirical potential) has also been used to enable the simulation of

phase equilibria using a first principles description of the interaction system [10].

The main advantage of the GEMC/CBMC approach in the study of chromatog-

raphy is the multiple time and length scales that can be accessed. In chromatogra-

phy, observing the distribution of analyte molecules between the mobile and

stationary phases is of utmost importance. The time scale of this event, which

depends on the diffusion of molecules over large distances, is simply inaccessible in

a traditional molecular dynamics simulation that is limited to a few nanoseconds.

Furthermore, events such as the re-equilibration of the RPLC stationary phase after

switching solvents, which has been shown to take tens of minutes in the laboratory

[11–13], can be observed in a GEMC/CBMC simulation.

3 Gas Chromatography

In gas chromatography, the mobile phase is a low-density gas. It is further divided

into gas–solid chromatography (GSC) and gas–liquid chromatography (GLC)

according to the nature of the stationary phase. The former is sometimes referred

to as gas adsorption chromatography and the latter as gas–liquid partition chroma-

tography, indicating the thermodynamic processes that are the main driving forces

for the retention processes. The liquid phase in GLC is only one part of the

stationary phase which is coated (bonded) to a solid support material such as

fused silica. Thus adsorption at the gas–liquid and liquid–solid interfaces (and, if

the phase loading is low or if the liquid does not wet the support, also at the gas/

solid interface) can contribute to retention [14].

The Kovats retention index [15] has proved to be one of the most useful concepts

in GLC, allows for direct comparison of experimental and simulated retention data,

and can be expressed either in terms of specific retention volumes or partition

coefficients:

Ix¼ 100nþ 100
log V

0
x=V

0
n

� �
log V

0
nþ1=V

0
n

� �
" #

¼ 100nþ 100
logðKx=KnÞ
logðKnþ1=KnÞ

� �
; (2)

where the subscripts x, n, and n + 1 represent the analyte of interest, the highest

normal alkane (having n carbon atoms) that elutes before and the lowest normal

alkane that elutes after the analyte, respectively. Use of the Kovats retention index

has many advantages: (1) if interfacial adsorption can be neglected than I should be
independent of phase loading; (2) I is far less temperature dependent than V

0
x or Kx;

(3) in any homologous series (at least for higher homologs) I should increase by

100 per methylene group added; and (4) experimentally measured I values are

extremely reproducible.
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Figure 2 illustrates the ability of GEMC/CBMC simulations using the TraPPE

force field [3, 16–18] to predict (with some exceptions) rather reliable Kovats

indices for various combinations of analytes and stationary phases. It should be

noted here that the GEMC/CBMC methodology affords computations of Kovats

indices of multiple analyte molecules in the same simulation box with a statistical

uncertainty (standard error of the mean) of less than 10 Kovats units, an impressive

achievement when one considers that the computation of a Kovats index requires

partition constants (or transfer free energies) of three analytes. The retention

order and Kovats indices of six branched alkanes (2-methylpentane, 3-

methylpentane, 2,2-dimethylpentane, 3-ethylpentane, 2,5-dimethylhexane, and

3,4-dimethylhexane in order of increasing I) were correctly reproduced [19], i.e.,

the simulations are able to pick up differences caused by displacing a methyl branch

along the backbone or by replacing two methyl branches with a single ethyl branch.

Benzene and toluene are more retained in a squalane phase than n-hexane and

n-heptane, respectively. This separation involves a subtle balance of enthalpic

contributions (larger polarizability of arenes, but lack of significant quadrupole–

multipole interactions for arene/squalane pairs) and entropic contributions (smaller

partial molar volume for benzene vs n-hexane). The data in Fig. 2 illustrate that the
TraPPE force field with explicit quadrupole for arenes yields accurate predictions

for the Kovats retention indices of benzene and toluene at 323 and 383 K where the

temperature increase results in an increase of the I values by about 20 Kovats units

[20]. Figure 2 also depicts the I values for benzene, toluene, and the three xylene

isomers in a polyethylene oxide phase. In this case, the quadrupole–dipole

interactions result in stronger retention for arenes with I values close to those of n-
alkanes with four additional carbon atoms [21]. Although the simulations predict the

correct retention order for alcohols (methanol, 2-propanol, ethanol, 1-propanol, and

1-butanol in order of increasing I values), it consistently overpredicts the I values by
about 100 Kovats units; this is an indication that the TraPPE force field overestimates

the strength of hydrogen bonds between alcohols and the polyether [21].

600 800 1000 1200

Iexp

600

800

1000

1200

I s
im

alkane/squalane
arene/squalane
arene/PEO
alcohol/PEO

Fig. 2 Predicted Kovats

retention indices for various

analytes in gas–liquid

chromatography with

squalane and polyethylene

oxide stationary phases. See

text for description of the

analyte molecules
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GEMC/CBMC simulations were also successfully applied to investigate the

contribution of adsorption at the mobile/stationary phase interface (here the station-

ary phase is represented as a two-dimensional film) [22] and the influence of analyte

overloading (here the analyte concentration is sufficiently high to result in

departures from Henry’s law behavior) [23] in gas–liquid chromatography.

4 Reversed-Phase Liquid Chromatography

RPLC is similar in principle to GLC in that both techniques rely on the differing

affinities of analyte molecules for the mobile and stationary phases to enact a

separation. The distinct difference between RPLC and GC is complexity. In

RPLC, the stationary phase typically consists of dimethyl octadecyl silane chains

grafted to the surfaces of highly porous silica particles and the mobile phase is a

binary solvent containing water and an organic modifier, most commonly methanol

or acetonitrile. The complex interplay between the stationary phase, solvent, and

analyte has made a molecular-level description of RPLC extremely difficult.

Before focusing on the application of Monte Carlo techniques to RPLC systems,

we would like to highlight some important contributions that employed the molec-

ular dynamics approach. In 1994, Schure investigated the bonded-chain conforma-

tion and solvent structure in an alkylsilane RPLC system [24]. A few years later,

Klatte and Beck [25] and Slusher and Mountain [26] provided quantitative data on

the transfer of a methane solute from the mobile phase to the stationary phase in

model RPLC systems. More recently, Zhao and Cann [27] investigated chiral RPLC

phases and obtained qualitative data on the retention of ten analytes, Fouqueau et al.

[28] investigated the adsorption of acridine orange at the mobile/stationary-phase

interface in an RPLC system, and Melnikov et al. [29] probed the influence of

residual (protonated and deprotonated) silanol groups on solvent and ion distribu-

tion in an RPLC system.

Over the past 6 years we have used the GEMC/CBMC methodology to provide

much needed molecular-level insight into the stationary-phase structure and the

retention mechanism in various RPLC systems. For alkylsilane stationary phases

we have investigated the effects of mobile phase composition for water/methanol

and water/acetonitrile mixtures [30–34], of alkylsilane coverage [35, 36], of

alkylsilane chain length [37, 38], and pressure and pore shape [37]. In addition,

the effects of embedded polar groups (ether and amide) have been explored [39]. To

illustrate some of the insights that can be gleaned from the GEMC/CBMC

simulations, this review will focus on mobile-phase effects for water/acetonitrile

mixture on bonded-phase structure and retention of small analyte molecules

(a more complete discussion can be found in [34]), and briefly mention studies

involving the retention of large polycyclic aromatic hydrocarbon (a more complete

discussion can be found in [40]).
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4.1 Mobile Phase Solvent Effects and Small Molecule
Retention Mechanisms

For decades, RPLC has been one of the most widely used techniques for the

separation and analysis of chemical mixtures, but there remains significant debate

about the molecular level details of numerous aspects of the RPLC process. For

example, it has been observed that a dramatic loss of retention can occur when the

concentration of water in the mobile phase exceeds a certain threshold [12, 41].

One explanation for this phenomenon is that the alkyl chains of the stationary phase

collapse in the presence of highly aqueous solvents [41–43]. A more recent,

competing explanation for this retention loss is that a highly aqueous mobile

phase does not enter a substantial fraction of the smaller pores in the silica particles

due to its higher surface tension and hence is not able to bring the analytes in

contact with the stationary phase chains [12]. With regard to solvent effects, another

well known phenomenon in RPLC is the tendency of the organic component of the

mobile phase to solvate preferentially the stationary phase. However, it is not fully

resolved if this preferential solvation occurs solely through the formation of an

organic layer atop the stationary phase [44, 45] or if penetration of the organic

modifier into the stationary phase is also important [46, 47].

Perhaps the biggest and most longstanding debate in RPLC is on the retention

mechanism. Here there are conflicting views as to whether analyte molecules

adsorb at the stationary phase/mobile phase interface or fully partition into the

stationary phase and to what extent various chromatographic parameters, such as

mobile phase composition, affect this mechanism [48–51]. Even if partitioning is

taken to be the dominant mechanism of retention, it is not clear if the process can be

modeled accurately by bulk liquid–liquid (e.g., oil–water) partitioning [48, 52] or if

partitioning into the constrained hydrocarbon chains of the RPLC stationary phase

would involve a different molecular mechanism [53, 54]. Furthermore, it is dis-

puted whether the thermodynamic driving forces for analyte retention (transfer

from mobile to stationary phase) are primarily from solvophobic interactions with

the mobile phase [50] or lipophilic interactions with the stationary phase [48, 52].

To illustrate the effects of mobile phase composition, results for four different

water/acetonitrile mobile phase compositions are discussed here: (1) pure water, (2)

33% molfraction acetonitrile, (3) 67% molfraction acetonitrile, and (4) pure aceto-

nitrile, (hereafter referred to as systems WAT, 33A, 67A, and ACN, respectively;

the results for system WAT are taken from [32] and those for the other three

compositions from [34]). Each system contained 1,200 solvent molecules and 16

analytes (2 each of C1 to C4 normal alkanes and alcohols) and utilized a stationary

phase with a surface coverage of 2.9 mmol/m2 (9 ODS chains on each surface)

which resulted in a residual silanol density of 4.8 mmol/m2 (15 silanols on each

surface). The temperature and pressure used in this study were 323 K and 1 atm,

respectively. For each solvent system, four independent simulations were carried

out. Each simulation was equilibrated for 2 � 105 Monte Carlo (MC) cycles (one

MC cycle corresponds to NMCmoves, where N is the total number of molecules in
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the system). Thereafter, the simulations proceeded with an additional 2 � 105 MC

cycles during which averages were collected.

Snapshots from the simulations at each solvent composition are shown in Fig. 3.

Although these snapshots represent only a single configuration of the millions

generated during the simulation, they convey a wealth of information about these

systems. First, it is observed that as acetonitrile concentration is increased there is

extension of the alkyl chains and greater amount of solvent sorbed into the

stationary phase. Furthermore, it appears that in the binary solvent systems most

of the solvent within the chain region is the organic modifier and not water. Also

appearing enriched in the organic modifier is the interfacial region between the

alkyl chains and the solvent.

These effects mentioned above can be quantified by examining the ensemble

averaged density profiles, also shown in Fig. 3. These profiles show the density of

each component of the system as a function of z, or the distance from the silica

surface. As indicated by the solvent densities in the region z ¼ 5–15 Å, there is

essentially no solvent within bonded chains for system WAT. However, as the

acetonitrile concentration is increased there is a dramatic increase in solvent

penetration. For the binary solvents, most solvent in the alkyl chain region appears

to be the organic modifier and very little water is present.

In all systems examined, there are peaks in the solvent density around z ¼ 3–5 Å.

These peaks are the result of solvent hydrogen bonded to the residual silanols present

on the silica surface [31, 34]. There is a large decrease in the peaks as the fraction of

acetonitrile in the solvent is increased. It appears that water shows a strong
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Fig. 3 Snapshots and density profiles of RPLC systems with varying water/acetonitrile ratios. In

the snapshots the stationary phase is shown as tubes with carbon in black, silicon in yellow, oxygen
in red, and hydrogen in white. The mobile phase is shown in the ball and stick representation with
carbon in cyan, nitrogen in blue, oxygen in red, and hydrogen in white. The analytes are shown as
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the Gibbs dividing surface (GDS) is a plane that defines the boundary between the mobile and

stationary phase [55, 56] and the gray shaded area represents the width of the 10–90 interfacial

region [57] according to the total solvent density
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interaction with the surface silanols and acetonitrile does not. This is also apparent

when examining the fraction of silanols involved in a hydrogen bondwith solvent. In

system WAT, only �20% of silanols are not involved in hydrogen bonds to solvent

while in system ACN more than 80% of the silanols are free. This is an important

effect because the degree of saturation of these surface silanols can have significant

consequences on the retention of analytes that can interact with the silanols, as will

be demonstrated later.

Moving into the interfacial region, other interesting effects are observed. First,

there is a distinct minimum in the total system density for system WAT, but this

minimum disappears as acetonitrile concentration is increased. This dewetting

effect for water near extended hydrophobic surfaces has been predicted by Lum,

Chandler, and Weeks and is attributed to a disruption of the solvent’s hydrogen

bonding network [58]. Also present in the interfacial region is an enrichment in the

acetonitrile concentration for the binary solvent systems. This effect is most

dramatic for system 33A, where a distinct density maximum for acetonitrile is

observed at around z ¼ 17 Å.

The preferential sorption of the organic component of the solvent is a well

known effect in RPLC. Based on their interpretation of adsorption isotherm

measurements with water/acetonitrile mixtures, Kazakevich and coworkers have

inferred that the excess adsorption occurs purely at the surface of the alkyl chains

and that acetonitrile forms up to five molecular layers atop the alkyl chains. Clearly,

from the snapshots and the density profiles in Fig. 3, this layering does not appear.

The simulations indicate that the excess adsorption occurs both within the chain

region and at the chain surface. Furthermore, the adsorbed solvent at the surface is

not pure acetonitrile; it is simply a local enhancement of the acetonitrile

concentration.

From the solvent density profiles shown in Fig. 3, it is clear that the alkyl chains

in the stationary phase are solvated to a larger extent when the concentration of

acetonitrile in the mobile phase is increased. To ascertain what effect this solvation

has on the structure of the C18 chains in the stationary phase, various structural

properties for the alkyl chains can be examined (see Table 1 and Fig. 4). The first

structural parameter assessed is the fraction of gauche defects along the carbon

backbone of the chains. The fraction of gauche defects is around 26% in all solvent

systems. This is in agreement with Raman spectroscopic measurements by

Table 1 Structural properties of alkylsilane chains in contact with different mobile phase

solventsa

System

Property WAT 33A 67A ACN

fgauche 0.251 0.271 0.261 0.271
cos yete 0.251 0.463 0.522 0.562
zCH3 (Å) 9.11 11.23 12.41 12.93
S �0.142 �0.021 0.022 0.051
aSubscripts indicate the statistical uncertainty in the final digit
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Pemberton and coworkers that indicated little dependence of the dihedral angle on

solvent composition [46, 47].

Another important structural characteristic of the RPLC stationary phase is the

degree of chain alignment. One parameter that measures this alignment is cos yete,
where yete is the angle between the chain end-to-end vector and the normal to the

silica surface, or the tilt angle. Unlike the fraction of gauche defects, the orientation

of the end-to-end vector changes substantially with changes in solvent composition.

In system WAT, the value of cos yete is 0.25 (yete ¼ 75�) and it increases to 0.56

(56�) in system ACN. A structural parameter complementary to the end-to-end

orientation is zCH3
; the height of the terminal methyl group above the silica surface.

As indicated in Table 1, zCH3
also steadily increases as the concentration of organic

modifier is increased. Thus it appears that the chains become directed away from

the silica surface and are more extended as acetonitrile concentration is increased.

In addition to the average value of cos yete, it is useful to examine the distribution

of this angle to ascertain whether a particular chain tilt angle is preferred (like the

uniform tilt angle observed for alkyl monolayers on metal surfaces). These

distributions are shown in Fig. 4. For system WAT, the distribution is clearly

bimodal with peaks in cos yete near values 0 and 0.45, corresponding to chains

nearly parallel to the surface and chains with yete � 65�, respectively. This bimodal

behavior also appears in the other solvent systems but, as the concentration of

organic modifier is increased, the height of the peak corresponding to chains

parallel to the surface decreases significantly. Furthermore, the peak corresponding

to more extended chains becomes broadened and shifts to around cos y ete � 0.6. It

is interesting to note that, despite the large differences in end-to-end orientation in

the different solvents, there remains a somewhat broad distribution of chain

alignments in all systems. There is no single conformation that dominates in any

system and there remains a probability for both parallel and perpendicular chains.

Indeed, the chains are more extended in the mobile phases with higher organic

concentrations. However, the simulation data does not indicate that the chains

become collapsed in a purely aqueous solvent. This is clearly indicated by the

broad cos yete distribution shown in Fig. 4 and the position of the Gibbs dividing
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surface shown in Fig. 3, which shows little dependence of solvent composition.

Therefore, retention loss when highly aqueous solvents are used is more likely due

to pore dewetting as opposed to chain collapse.

The end-to-end vector discussed above provides a picture of the overall align-

ment of the chains, but more local information on individual segments within the

chain can be gleaned from the orientational order parameter Si along the chain

backbone:

Si ¼ 1

2
3cos2yi � 1
� �

; (3)

where yi is the angle between the ith 1–3 backbone vector in the C18 chain and the

normal to the silica surface. This order parameter is equivalent to the experimen-

tally observable NMR order parameter for deuterated alkyl chains [59, 60]. Figure 4

shows this order parameter for each 1–3 vector along the chain backbone and

Table 1 gives Sn, the value of the order parameter averaged over all 16 1–3

backbone vectors. Looking at the order parameter along the chain backbone one

sees a similar trend for all four solvent systems. The order parameter is large and

positive for the first few backbone vectors and reaches a minimum somewhere near

vector number 10, and then approaches zero beyond this minimum. Thus, the initial

portion of the chain shows a significant preference to align itself away from the

silica surface while the terminal portion of the chain is oriented more randomly.

Despite the similarity in shape, the curves are shifted upward as acetonitrile

concentration is increased, again indicating an increase in chain alignment.

Now that structural characteristics of the RPLC system have been discussed, a

discussion of the retention mechanism can begin. To describe the mechanism of

analyte retention in RPLC one needs to know, with high resolution, the preferred

locations and orientations of the analyte molecule within the stationary phase. The

simulations described here are able to yield this type of data directly. The preferred

locations of the analytes are described through the z-dependent distribution coeffi-

cient profiles, or K(z) plots, shown in Fig. 5 for n-butane and 1-propanol. These

profiles are analogous to the (experimentally measurable) distribution coefficient

for transfer from mobile to stationary phase but offer much more detailed informa-

tion on where retention occurs within the stationary phase. Larger values of K(z)
correspond to more favorable (lower free energy) locations of the analyte within the

stationary phase. In examining these profiles, one of the most striking features is the

large dependence of the analyte distribution coefficient on z. From this, it is clearly

evident that the stationary phase is not a homogeneous medium into which analytes

partition nor a nonpolar surface to which analytes adsorb. Rather, the stationary

phase is a microheterogeneous medium with multiple preferred regions for the

analytes.

For n-butane the K(z) profiles show a bimodal distribution in all solvent systems.

There is one peak in the center of the bonded phase (z � 8 Å) and another in the

interfacial region. The peak in the center of the bonded phase remains rather sharp

regardless of solvent composition. However, the shape of the peak in the interfacial
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region broadens as acetonitrile concentration increases. The broadening of this

interfacial peak coincides with the increasing width of the interfacial region.

From this it is apparent that even a simple nonpolar analyte has multiple modes

of sorption. It can either partition deep into the bonded phase or adsorb at the

hydrocarbon surface.

The preference of n-butane to reside in the interfacial region is not entirely

surprising since a density depletion is observed in this region (see Fig. 3). However,

the peak deeper in the bonded phase is in a region where the overall system density

is significantly higher. Analysis of the bonded-phase structure shows that it is much

more ordered in this region, as indicated by the larger S values for the initial portion
of the chain (Fig. 4). Thus, there may be more free volume of appropriate size and

shape for the analyte in this region.

A very different retention mechanism is observed for the polar analyte,

1-propanol, and this retention mechanism appears to be somewhat dependent on

the mobile phase composition. In system WAT, 1-propanol exhibits a distinct

preference to reside in the interfacial region with a peak centered directly at the

GDS. This preference to adsorb at the alkyl surface clearly diminishes as the

fraction of organic modifier is increased and 1-propanol becomes more soluble in
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the solvent. Additional but smaller peaks in the K(z) profile of 1-propanol are

observed in the z ¼ 3–7 Å region of system WAT. These are due to hydrogen

bonding of 1-propanol molecules directly to residual surface silanols and to solvent

molecules which are bound to the substrate [32, 34]. Interestingly, these peaks

become much stronger as acetonitrile concentration is increased. This is related to

the availability of the surface silanols for hydrogen bonding. Interestingly, this

effect is not observed for water/methanol mixtures where methanol is observed to

have a higher affinity to interact with the surface silanols than acetonitrile [32, 34].

In addition to a comprehension of where an analyte molecule is retained within

the stationary phase, a complete description of the retention mechanism would

also require knowledge of how the analytes are oriented. For this reason, the

z-dependent S profiles for n-butane and cos yete profiles for 1-propanol are shown

in Fig. 5. For n-butane, the order parameter S is the same as that described for the

alkyl chains in Table 1, except here is it plotted as a function of z. For 1-propanol,
the end-to-end vector originates at the methyl group and terminates at the hydroxyl

hydrogen. Thus, values of cos yete will be positive for hydroxyl groups pointing

away from the silica surface, and negative for hydroxyl groups directed towards the

surface.

The S(z) profiles indicate that n-butane has some orientational preferences in the

stationary phase and interfacial region, although these preferences are not very

strong. In the interfacial region, the n-butane molecule prefers to lie parallel to the

interface, consistent with interfacial adsorption. In the center of the bonded phase,

n-butane changes its orientational preference to perpendicular with a maximum in S
(z) at around z ¼ 8 Å. This maximum occurs at the same position as the peak in the

K(z) profile that was attributed to partitioning. Clearly, given the perpendicular

orientational preference of n-butane and alignment of the chains in this region, this

partitioning does not resemble bulk liquid–liquid partitioning for which one would

see no orientational preference. Moving further into the bonded phase, S(z) values
become negative at around z ¼ 6 Å, indicating a parallel preference as the n-butane
analyte nears the silica surface.

1-Propanol exhibits much stronger orientational preferences than n-butane. In
the interfacial region, the cos yete(z) profiles indicate that this analyte has a

preference to direct its hydroxyl group towards the mobile phase and its alkyl tail

towards the stationary phase. With this orientation, the analyte can hydrogen bond

with the solvent while its nonpolar tail is solvated by the hydrocarbon stationary

phase. The magnitude of the interfacial peak in cos yete(z) decreases as the

molfraction of the organic modifier is increased. Moving through the bonded

phase to near the silica surface, cos yete(z) shifts from positive to negative values,

thus indicating that the polar hydroxyl group is directed towards the silica surface.

In this manner, the 1-propanol analyte can form hydrogen bonds with the surface

silanols. This preference is weakest in system WAT, where the silanols are

mostly saturated, but very strong in system ACN, where the silanols are mostly

unsaturated.

In order to validate the simulation data against experiment, and to assess the

contribution of the mobile and stationary phases to the thermodynamics of
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retention, incremental free energies of transfer were computed for the methylene

group, DGCH2
. These free energies are computed from the K(z) profiles for the series

of alkane analytes used in the simulation. This data is presented in Fig. 6 in the form

of a free energy level diagram. This diagram takes the vapor phase present in the

simulation as the zero free energy reference state. Also present in the diagram is the

free energy level of a liquid n-hexadecane phase to facilitate comparisons to bulk

liquid–liquid partitioning. The simulation data for n-hexadecane comes from [33].

First, it should be noted that the calculated values of DGCH2
are in excellent

agreement with experiment (compare the solid black and dashed gray lines in

Fig. 6). The largest deviation observed in the diagram is around 0.2 kJ/mol, a

very small value in terms of free energy, and in most cases the deviation is much

smaller. The fact that the simulations are able to reproduce the thermodynamics of

the retention process, as measured experimentally, provides good confidence that

the molecular details observed in simulations are indeed correct.

The free energy diagram also allows for a discussion of the driving forces for

retention. Shown on the right in Fig. 6 is a thermodynamic cycle decomposing the

free energy of retention (DGretn) into mobile and stationary phase components

(DGmob and DGstat) using the vapor phase as a reference state. As shown in

Fig. 6, the mobile to vapor phase transfer (or mobile phase contribution to retention)

for the methylene group is favorable only in system WAT. Thus, solvophobic

forces [50, 62, 63] are not important for retention unless highly aqueous mobile

phases are used. The free energy of transfer from the vapor phase to the ODS

stationary phase (stationary phase contribution) is always favorable and greater in

magnitude than the mobile phase contribution in all solvent systems examined. This

is in agreement with the lipophilic view of Carr and coworkers [48, 49, 52], which

argues that interactions with the stationary phase drives the retention process. The

free energy level of the ODS phase changes little with changing solvent composi-

tion suggesting that solvent penetration into the stationary phase and its influence

on chain alignment has little effect on nonpolar groups.
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Comparing the ODS phase to the n-hexadecane phase, one sees that they are

very similar in terms of free energy. This similarity has been used to suggest that the

retention mechanism in RPLC resembles bulk liquid–liquid partitioning [49, 64].

The current work shows this conclusion is not valid and this comparison should not

be made when assessing the molecular mechanism of retention. The profiles in

Fig. 5 clearly indicate that nonpolar analytes can either partition into the stationary

phase or adsorb at the surface and in either case have a clear orientational prefer-

ence, which would not be present in a bulk liquid.

4.2 Shape Selectivity in RPLC

In most cases, the difference in retention times between two analytes is governed by

differences in physical properties such as polarity. For example, a more polar

analyte will have a higher affinity to reside in the mobile phase and, therefore,

have a shorter retention time. However, many RPLC systems have the ability to

separate analytes that have very similar chemical functionalities and physical

properties, but differ only slightly in molecular shape. This ability, termed “shape

selectivity,” is typically applied in the context of separating the geometric isomers

of rigid molecules, such as polycyclic aromatic hydrocarbons (PAHs), among

others. However, the separation of alkane isomers illustrated in Fig. 2 is also a

form of shape selectivity.

The topic of shape selectivity has been examined in detail by Sander, Wise, and

coworkers [65–70]. In general, it has been noted that, for PAHs of the same

molecular formula (i.e., geometric isomers), ones with larger length to breadth

(L/B) ratios and/or greater planarity are more retained. For example, in Fig. 7 the

naphthacene molecule has the largest L/B ratio and the triphenylene molecule the

smallest. It has also been observed that greater selectivity between different PAH

isomers can be achieved by adjusting chromatographic parameters that lead to

increased ordering of the stationary phase chains. These parameters include

decreasing temperature, increased grafting density, increased chain length, and

Naphthacene
(NAP) Benz[a]anthracene

Chrysene

Benzo[c]phenanthrene
(BcP)

Triphenylene
Fig. 7 Four-ring PAH

molecules present in the

GEMC/CBMC simulations
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the use of polymeric, as opposed to monomeric, bonded phases. The effect of

grafting density will be examined here.

To discern the molecular causes of shape selectivity in some traditional RPLC

systems, GEMC/CBMC simulations were carried out with a water/acetonitrile

mobile phase containing �67 mol% acetonitrile and a stationary phase with ODS

chains at surface coverages of 1.60, 2.88, and 4.15 mmol/m2 at a temperature of

308 K [40]. In addition to the stationary and mobile phase entities, numerous PAH

analytes were present ranging in size from benzene up to the four ring isomers

shown in Fig. 7. Although the focus of this study was the larger PAH analytes since

they exhibit the largest shape effects, the smaller PAH analytes are needed as

intermediates for the identity exchange moves mentioned in Sect. 2. It would be

extremely difficult to sample the spatial distribution of the large PAH analytes

by traditional means. However, by “growing in” these large molecules starting

from a small molecule like benzene, a much higher sampling efficiency can be

achieved [40].

As mentioned above, an important aspect of simulation is validation against

experimental results. For this purpose, the selectivities between the five different

four-ring isomers (see Fig. 7) computed from simulation are compared to experi-

ment [71] in Table 2. The selectivity a for each PAH is computed as the ratio of its

capacity factor k0 to the capacity factor for triphenylene, the least retained of the

four-ring isomers:

ax ¼ k
0
x=k

0
Triphenylene: (4)

The capacity factor can be determined experimentally from retention data and is

exactly equivalent to the average number of analyte molecules in the stationary

phase divided by the average number in the mobile phase. Thus, this quantity is

easily measured in a GEMC/CBMC simulation.

As can be seen in Table 2, the selectivities computed from simulation are in

excellent agreement with experiment. This agreement is a testament to the precision

of the simulation method and the accuracy of the force field. For example, the

selectivity between chrysene and triphenylene at a coverage of 2.8 mmol/m2 is

Table 2 Simulated selectivities of C18H12 PAH isomers relative to triphenylene compared to

experiment at different surface coveragesa,b

Coverage (mmol/m2) Naphthacene Chrysene Benz[a]-anthracene
Benzo[c]
pyrene

Simulation 4.15 1.5616 1.1408 1.1610 1.0204
Experiment 4.20 1.70 1.13 1.13 1.08

Simulation 2.88 1.2714 1.1208 1.0709 1.0605
Experiment 2.84 1.58 1.08 1.12 1.06

Simulation 1.60 1.1110 1.1209 1.0111 1.0610
Experiment 1.60 1.19 0.97 1.02 1.02
aSubscripts indicate the standard error of the mean in the final two digits
bExperimental data from Sentell and Dorsey [71]
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around 1.1. This represents a difference in free energy of retention of 0.2 kJ/mol, an

extremely small quantity to measure in either experiment or simulation. Addition-

ally, this agreement with experiment allows for much greater confidence in the

molecular details from simulation results.

Analysis of K(z) profiles and of the orientational distribution for the four-ring

PAHs shows that the analyte molecules penetrate deeply into the bonded-phase

region (the maxima in K(z) are typically found at z � 10 Å) where the analytes

exhibit an increasing preference to align perpendicular to the surface with increas-

ing ODS coverage [40]. The orientational preference is most pronounced for NAP,

the most retained compound. Analysis of the lateral distribution of the analytes at

the highest ODS coverage (where the largest selectivities are observed) indicates

that NAP is preferentially found in locations that are relatively more crowded

with ODS chains, whereas BcP exhibits a preference for relatively less crowded

regions [40].

From a calculation of the density of ODS methylene segments for configurations

without an analyte molecule being present, it is evident that the upper part of the

bonded phase resembles a liquid phase without pre-existing cavities [40]. Further-

more, it can be shown that the chain structure is modified by the presence of the

PAH analytes. For all coverages, values of cos yete and S increase by about 0.1 for

ODS chains near to any of the four-ring PAH analytes compared ODS chains

without any analyte being present, i.e., the conformational flexibility of the ODS

chains allows them to respond to the presence of the analyte and the favorable

regions do not correspond to static cavities.

5 Conclusions

The GEMC/CBMC simulation methodology applied here has proved very useful

for studying structure and retention in complex GLC and RPLC systems. The

methodology affords the computation of retention data with sufficient precision

(and accuracy for the TraPPE force field) for complex analytes to validate the

predictions against experimental data. This validation, in turn, builds confidence in

the molecular-level details on structure and retention mechanism that can be

obtained from the simulations.

In closing, we would like to mention some applications of the GEMC/CBMC

approach and very much related combination of CBMC and the grand canonical

Monte Carlo technique to other complex systems: prediction of structure and

transfer free energies into dry and water-saturated 1-octanol [72], prediction of

the solubility of polymers in supercritical carbon dioxide [73], prediction of the

upper critical solution pressure for gas-expanded liquids [74], investigation of the

formation of multiple hydrates for a pharmaceutical compound [75], exploration

of multicomponent vapor-to-particle nucleation pathways [76], and investigations

of the adsorption of articulated molecules in zeolites and metal organic frameworks

[77, 78].
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Thermodynamic Properties for Applications

in Chemical Industry via Classical Force Fields

Gabriela Guevara-Carrion, Hans Hasse, and Jadran Vrabec

Abstract Thermodynamic properties of fluids are of key importance for the chemical

industry. Presently, the fluid property models used in process design and optimization

are mostly equations of state or GE models, which are parameterized using experimen-

tal data. Molecular modeling and simulation based on classical force fields is a

promising alternative route, which in many cases reasonably complements the well

established methods. This chapter gives an introduction to the state-of-the-art in this

field regarding molecular models, simulation methods, and tools. Attention is given to

the way modeling and simulation on the scale of molecular force fields interact with

other scales, which is mainly by parameter inheritance. Parameters for molecular force

fields are determined both bottom-up from quantum chemistry and top-down from

experimental data. Commonly used functional forms for describing the intra- and

intermolecular interactions are presented. Several approaches for ab initio to empirical

force field parameterization are discussed. Some transferable force field families, which

are frequently used in chemical engineering applications, are described. Furthermore,

some examples of force fields that were parameterized for specific molecules are given.

Molecular dynamics and Monte Carlo methods for the calculation of transport proper-

ties and vapor-liquid equilibria are introduced. Two case studies are presented. First,

using liquid ammonia as an example, the capabilities of semi-empirical force fields,

parameterized on the basis of quantum chemical information and experimental data, are

discussed with respect to thermodynamic properties that are relevant for the chemical

industry. Second, the ability of molecular simulation methods to describe accurately

vapor–liquid equilibrium properties of binary mixtures containing CO2 is shown.
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1 Introduction

The knowledge of thermodynamic properties plays a crucial role in the design and

operation of chemical plants [1]. Therefore, the chemical industry requires reliable

and accurate thermodynamic data for very different fluids, covering a wide range of

temperature, pressure, and composition [1–6]. There is a great demand for data

on vapor–liquid, liquid–liquid, and solid–liquid equilibria, as well as an increasing

need for caloric and transport properties [1]. Classical approaches to predict these

properties like equations of state and GE models, as reviewed, e.g., by Poling et al.

[7], do exist. However, the parameters of these models are determined based on

experimental data. These are often not available and may be difficult to obtain,

especially for extreme conditions or when hazardous substances are involved.

Furthermore, as the amount of experimental data is always limited, usually extra-

polations are necessary, but they are inherently uncertain. Therefore, an alternative

route to determine fluid properties, independent of the established phenomenologi-

cal approaches, is highly desirable. This would allow the carrying out of predictions

in different ways and, if the results agree, give confidence or, alternatively, give a

warning regarding the quality of the extrapolation.
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Moreover, most processes in the chemical industry are governed by nanoscale

phenomena. In many cases the nanoscale structure plays an important role, e.g., the

local concentrations and not the overall concentrations govern reactions at active

sites of catalysts. Phenomenological thermodynamics provides no route to obtain

insight in these nanoscale structures and processes, whereas molecular simulations

based on forces fields do. The key is to carry them out with models that are suitably

developed and reasonably represent the compounds.

Molecular modeling and simulation comprises computational techniques

derived from quantum chemistry and statistical mechanics to predict equilibrium

and non-equilibrium properties of molecular ensembles based on intra- and inter-

molecular interaction potentials. Because of the ongoing exponential increase

in computing power and the development of new numerical methods, the range

of molecules that can be covered and the accuracy of the results is growing rapidly [8].

Nowadays, molecular modeling and simulation is being actively applied in physi-

cal, chemical, and biological sciences, as well as in engineering research, and its

importance will further increase [1, 9]. The development of new molecular theories

as well as the prediction of material properties as a function of molecular structure

and thermodynamic conditions are other examples of current applications of

molecular methods. Moreover, molecular simulation can also provide insight into

the molecular behavior and properties which are not experimentally accessible.

One of the central issues of the molecular approach is to devise adequate

force fields that accurately describe the properties of real systems. Depending on

the application field, different requirements need to be fulfilled. In biology, for

instance, to study protein folding in aqueous environments, typically rather com-

plex force fields are used to determine microscopic molecular structures. In the

chemical industry, much more aggregated macroscopic properties are needed, but

the quantitative correctness of the data is essential.

Simulation results are primarily determined by the employed force field. Fortu-

nately, in the past two decades, the quality of force fields has greatly improved,

mainly due to the inclusion of molecular parameters obtained from high-level ab

initio calculations [10]. The aim of this chapter is to review the current status of

force field development and application for the prediction of thermodynamic

properties of fluids that are relevant for the chemical industry.

2 Force Fields

The development of force fields comprises a trade-off between computational

feasibility and coverage of the molecular interactions details and is thus driven by

the growth of computational resources [9].

Force fields are a set of mathematical functions and parameters that relate a

potential energy to a configuration of the regarded molecular system. The potential

energy is usually described by pair potentials. Three- and more-body interactions

contribute significantly to the potential energy as well [11], but are usually not
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explicitly included in engineering force fields because of their high computational

cost. Rather, their contributions are incorporated into pairwise approximations by

effective pair potentials [11].

In molecular force fields, the interaction energy between sites can be divided into

contributions from intramolecular and intermolecular interactions. The significance

of the different contributions to the force field varies depending on the required

application. E.g., for industrial engineering applications, simple models with a low

computational cost are required that are nonetheless able to predict accurately

thermodynamic properties. Numerous force fields of varying complexity are cur-

rently available. The simplest force fields include only potentials that describe the

intermolecular interactions and are frequently used for small molecules. More

complex force fields include intramolecular interactions that are necessary for the

simulation of larger molecules such as polymers.

All-atom force fields consider every atom as an individual interaction site,

while united-atom force fields gather different atoms of a functional group into

one interaction site, e.g., as is often done to model methyl or methylene groups.

To describe chain-like polymers or proteins, coarse grained force fields are also

employed, where the interaction sites usually represent a larger number of atoms.

2.1 Intermolecular Interactions

In modeling with classical force fields, the intermolecular interactions are usually

divided into Van der Waals interactions (repulsion and dispersion) and electrostatic

interactions. In this framework, the Van der Waals interactions take into account all

interactions between sites that are not related to permanent electrostatics, such as

dispersion, repulsion, and induction [12]. Hydrogen bonding is usually modeled by

electrostatic sites. For a detailed discussion of the intermolecular interactions, the

interested reader is referred to [13].

2.1.1 Van der Waals Interactions

The simplest potential to describe the Van der Waals interactions, neglecting

attractive forces, is the hard-sphere (HS):

uHSðrijÞ ¼ 1 rij � s;
0 rij > s;

�
(1)

where s is the site diameter and rij is the site–site distance. A slightly more detailed

alternative to the HS potential is the soft-sphere (SS) potential:

uSSðrijÞ ¼ zðs=rijÞv rij � s;
0 rij > s;

�
(2)
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where n is a parameter usually chosen to be an integer number and z is a measure of

the magnitude of the repulsive interaction. The square-well (SW) potential is the

simplest model that considers both repulsion and attraction:

uSWðrijÞ ¼
1 rij � s;
�e s < rij � ls;
0 rij > ls;

8<
: (3)

where e is a measure of the attractive interaction and l is some multiple of the hard-

sphere diameter. Another simple potential that includes a physical description of

dispersion is the Sutherland potential:

uSuðrijÞ ¼ 1 rij � s;
�eðs=rijÞ6 rij > s:

�
(4)

The HS, SS, SW, and Sutherland potentials are highly idealized approximations

that are nowadays rather used for the development of liquid state theories.

The most popular effective pair potential representing the Van der Waals inter-

actions is the Lennard-Jones (LJ) potential, which was given in a general form by

Mie [14]:

uMieðrijÞ ¼ e
n� m

nn

mm

� � 1
n�m s

rij

� �n
� s

rij

� �m� �
; (5)

where s and e are the size parameter and the energy well-depth, respectively. For

the dispersive term, m ¼ 6 is specified because of its physical significance. For the

repulsive term, with little theoretical justification, n ¼ 9···16 is usually employed.

The most common form is the LJ 12–6 potential (n ¼ 12, m ¼ 6):

uLJðrijÞ ¼ 4e
s
rij

� �12
� s

rij

� �6" #
: (6)

The choice of the exponent n ¼ 12 has rather computational than physical

reasons, because it is simply the square of the dispersion term.

There are also many variations of the LJ 12–6 potential. One example is the

computationally inexpensive truncated and shifted Lennard-Jones potential (TSLJ),

which is commonly used for molecular simulation studies in which large molecular

ensembles are regarded, e.g., for investigating condensation processes [15, 16].

Another version of the LJ potential is the Kihara potential [17], which is a non-

spherical generalization of the LJ model.

One weakness of the LJ potential is the lack of a realistic description of repul-

sion, which originates from the Pauli exclusion principle. The Buckingham expo-

nential-6 potential takes the actual exponential decay into account [18]:
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uX6ðrijÞ ¼
e

1� 6=a
6

a
exp

�
a
�
1� rij

R

��
� R

rij

� �6" #
rij > Rmax;

1 rij � Rmax;

8><
>: (7)

where a is the repulsive steepness factor, e is the well-depth located at the distance

R, and Rmax represents the distance of the potential false maximum. By definition,

the Buckingham potential is set to infinity for rij � Rmax in order to avoid an

unphysical behavior of the potential at short distances which is only due to

mathematical reasons.

Another potential function that describes the dispersive forces due to instanta-

neous polarities arising from fluctuations in the electron clouds is the Drude model

series expansion [19]:

uDðrijÞ ¼ �C
ð6Þ
ij

r6ij
� C

ð8Þ
ij

r8ij
� C

ð10Þ
ij

r10ij
� � � � ; (8)

where all coefficients C
ðnÞ
ij are positive, implying an attractive interaction. The first

term of the expansion considers instantaneous dipole–dipole interactions, while

the higher order terms include instantaneous dipole–quadrupole, quadrupole–

quadrupole, etc., interactions.

As computational resources improved, force fields were introduced which are

parameterized exclusively based on ab initio calculations [20–24]. Different analy-

tical site–site potential functions are employed, e.g., the Tang and Toennies

potential [25]:

uTTðrijÞ ¼ Aij expð�aijrijÞ � f6
C
ð6Þ
ij

r6ij
� f8

C
ð8Þ
ij

r8ij
: (9)

The damping functions f6 and f8 account for the influence of the charge overlap on
the dispersion potential in the region of the potential well and are defined by [25]:

fnðrijÞ ¼ 1� expð�bijrijÞ
Xn
k¼0

ðbijrijÞk
k!

; (10)

where bij is a parameter that determines the effective damping length.

2.1.2 Combining Rules

The definition of different sites, particularly in the case of mixtures, implies that

interaction parameter sets for unlike site pairs are required. If sufficient data – either

experimental or theoretical (ab initio) – are available, these rules can be abandoned

completely. The main reason for using combining rules is to avoid a huge number
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of additional parameters for unlike atoms. Thus, many combining rules have been

proposed, which are empirical or based on mathematical and physical intuition

[26–31]. Most of the combining rules for the LJ potential parameters rely on

pure component data alone. However, some combining rules incorporate additional

molecular information like polarizability, ionization potential, or diamagnetic sus-

ceptibility. A review and detailed description of LJ combining rules can be found,

e.g., in [32–34].

Some force fields use the geometric mean (Berthelot rule) for both LJ parameters:

sij ¼ ffiffiffiffiffiffiffiffi
sisj

p
;

eij ¼ ffiffiffiffiffiffiffi
eiej

p
: (11)

However, by far the most commonly employed LJ combining rule is that of

Lorentz [35] and Berthelot [36]:

sij ¼ 1

2
ðsi þ sjÞ;

eij ¼ ffiffiffiffiffiffiffi
eiej

p
: (12)

The use of the arithmetic mean for the unlike size parameter was proposed by

Lorentz motivated by the collision of hard spheres; on the other hand, the geometric

mean for the unlike energy parameter was proposed with little physical argument by

Berthelot. Therefore, it is not surprising that this combining rule often leads to

inaccurate mixture properties [34, 37, 38].

An effective approach is to provide the Lorentz–Berthelot combining rule with

at least one extra parameter that can be adjusted to some experimental data of

the mixture. A modification that is adequate for the description for the unlike LJ

parameters for vapor-liquid equilibria [34] is

sij ¼ 1

2
ðsi þ sjÞ;

eij ¼ x
ffiffiffiffiffiffiffi
eiej

p
: (13)

This modified rule was successfully applied to vapor-liquid equilibria of numerous

mixtures [39–41]. Here, the binary parameter xwas adjusted to one experimental data

point for vapor pressure or Henry’s law constant of the studied binary mixture.

2.1.3 Electrostatic Interactions

The electrostatic interactions of ionic and polar molecules in the form of charges or

multipoles contribute significantly to the potential energy. For an exact description of

a typical charge distribution, a large set of electricmoments is required [42]. However,

often just dipoles and quadrupoles are taken into account, since they are usually the

most significant [19]. Because the multipole expansion at one site converges slowly,
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an alternative approach is to distribute fictitious point charges, dipoles, or quadrupoles

throughout the molecule to cover the multipole moments [11, 43].

Electrostatic interactions can also be represented by a distribution of point

charges, an approach used in numerous force fields. Both representations (point

charges and atomic multipoles) are strictly valid only at long range. The electro-

static interaction which acts between a pair of point charges qi and qj is described
by Coulomb’s law:

uqqðrijÞ ¼ 1

4pe0

qiqj
rij

; (14)

where e0 ¼ 8.854187817 � 10�12 F/m is the permittivity of the vacuum.

The interaction potential between two dipoles mi and mj is

ummðrij;vi;vjÞ ¼ 1

4pe0

mimj
r3ij

� f mmðvi;vjÞ; (15)

and the one between two quadrupoles Qi and Qj is given by:

uQQðrij;vi;vjÞ ¼ 1

4pe0

3QiQj

4r5ij
� f QQðvi;vjÞ: (16)

f QQ and f mm are expressions for the dependency of the electrostatic interactions

on the orientations vi and vj of the molecules i and j. Their definition and the

potential functions acting between higher order multipoles, as well as the cross-

interactions between different polarities like charge–dipole or dipole–quadrupole,

can be found, e.g., in [44].

2.1.4 Polarization

Polarization is a response of the spatial electronic charge distribution of a molecule

to an external field, e.g., induced by neighboring polar molecules [19]. The energy

contribution due to polarization is accounted for by different methods; reviews on

this topic can be found in [45–47]. A common approach is to include induced point

dipoles for each atom [48]. An induced atomic dipole is given by [19]:

mind ¼ aVf ; (17)

and the interaction energy is

uindða;Vf Þ ¼ �
ðVf

0

dVfaVf ¼ � 1

2
aV2

f ; (18)

where a is the atomic polarizability, which is usually assumed to be isotropic. The

electric field Vf is the sum of the fields due to permanent and induced dipoles acting

on the atoms.
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An induced dipole can also be modeled by a charge fixed to an atom to which an

opposite massless movable charge is attached via a harmonic potential. This simple

model is called Drude oscillator or charge-on-spring [47]. An alternative route to

model polarizability is the fluctuating charge model [49]. This method uses the

principle of electronegativity equalization, which ensures that atomic chemical

potentials are constant throughout the molecule. Hence, the charges are fluctuating

variables which respond to their environment. The charges flow between the atoms

until the instantaneous electronegativities of the atoms are balanced [45]. In this

context, the charges are replaced by dynamic charge distributions whose interac-

tions are calculated by a Coulomb integral expression [19].

2.1.5 Hydrogen Bonding

In addition to the interactions mentioned above, other types of attractive interac-

tions can also be observed, e.g., the widespread hydrogen bond. Hydrogen bonding

occurs when a hydrogen atom, which is covalently bonded to an electronegative

atom A, is able to approach closely to another electronegative atom B with a

relatively strong attractive interaction. A hydrogen bond can be represented as

A–H···B. Therein, A and B are usually of the chemical type O, N, S, or halogens.

However, weakly electronegative atoms like C can also be bonded to an H atom that

acts as a proton donor, e.g., in formic acid [50].

One common approach to represent hydrogen bonding in force fields is based on

point charges superimposed on LJ 12–6 sites, such as, e.g., in the SPC/E water

model. The charges on the electronegative and hydrogen sites provide the electro-

static forces between molecules, while Lennard–Jones interactions between elec-

tronegative sites provide short range repulsion to balance the electrostatic attraction

and determine the size of the molecule. In this type of model, hydrogen bonds are

purely electrostatic and arise because the hydrogen sites are near the periphery of

the molecule. Figure 1 illustrates a hydrogen bonding group composed of one LJ

site and two point charges. The negative point charge (q�) coincides with the LJ

site, while the positive point charge (q+) is positioned eccentrically with a distance

h to the LJ site.

h

q- q+

Fig. 1 Hydrogen bonding group composed of one Lennard-

Jones site (s, e) and two point charges (q�, q+)

Thermodynamic Properties for Applications in Chemical Industry 209



Hydrogen bonds can also be explicitly modeled, replacing the LJ 12–6 term

between hydrogen bonding atoms by an empirical hydrogen bonding potential

function that reproduces the hydrogen bonding distance and energy [19]. An

example is a modification of the LJ 10–12 potential:

uHBðrij; yBHAÞ ¼ Cij

rij

� �12
� Dij

rij

� �10
cos4 ðyBHAÞ; (19)

where Cij and Dij are the repulsive and attractive parameters and yBHA is the angle

between the atoms of the hydrogen bond (A–H···B).

2.2 Intramolecular Interactions

There are several types of intramolecular interactions, also called bonded or

valence interactions, which contribute to the potential energy, i.e., bond stretching,

bond angle bending, dihedral angle motion, improper angle bending, etc. These are

not exclusively pair interactions, but include three- and four-body interactions as

well. The parameters of the intramolecular potentials are typically fitted to repro-

duce geometries, vibrational frequencies, and energy profiles from ab initio calcu-

lations [9].

2.2.1 Bond Stretching

Bond stretching potentials describe the change in potential energy with the bond

distance between two neighboring sites. Bond stretching is frequently represented

by a harmonic potential. Thereby, analogously to Hook’s law, the sites are

connected by an ideal spring:

uharbondðrijÞ ¼
1

2
kijðrij � r0Þ2; (20)

where kij is the bond stretching force constant and r0 is a reference bond length. This
reference value is not the equilibrium length, but the bond length reached when all

the other force field terms are set to zero [19]. However, physically, bond stretching

does not exhibit a harmonic potential. Thus, anharmonic bond stretching potentials

are also used, the simplest one adding a cubic term to (20). Other examples of

anharmonic potentials are the Simon–Parr–Finland potential [51] or the Morse

potential [52]:

uMor
bondðrijÞ ¼ D½1� expð�arijÞ�2; (21)
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where D is the energy well-depth and a is related to the stretching force constant of
the bond. The Morse potential is more suitable to describe bond stretching than the

simple harmonic potential [53]. Note that (20) is a good approximation of (21) in

the case of small rij.

2.2.2 Angle Bending

Angle bending interactions occur when an angle formed by three consecutive sites

is perturbed from its equilibrium value. Several potentials are employed to describe

this energy contribution. However, the majority of force fields is based on the

harmonic potential [54]

uharangleðyÞ ¼
1

2
kyðy� y0Þ2 (22)

or the trigonometric potential

ucosangleðyÞ ¼
1

2
kyðcos ðyÞ � cosðy0ÞÞ2; (23)

where y is the angle formed by three consecutive sites; cf. Fig. 2, and y0 is its

equilibrium value. The bending force constant ky is typically smaller than the bond

force constant kij, because the energy required to distort an angle from its equilib-

rium value is lower than that required to stretch a bond [19].

2.2.3 Torsional Rotation Terms

Many of the major changes in molecular conformations are due to bond rotations.

The torsion interactions account for the rotation around bonds of four adjacent sites

or the motion of dihedral angles. The torsional potentials are 2p-periodic and

symmetric at 0 and p. For alkanes, the Ryckaert and Belleman [55] torsional

potential is often used:

θ

r
ϕ ψ

Fig. 2 Schematic representation of the intramolecular coordinates: bond length r, bending angle

y, torsional dihedral angle ’, and improper dihedral angle c
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uRBtorsionð’Þ ¼
X
n

cncos
nð’Þ; (24)

where cn are the dihedral force constants of order n. An equivalent torsional

potential is based on the Fourier cosine series expansion:

uFtorsionð’Þ ¼
X
n

1

2
Vnð1þ cosðn’� dnÞÞ; (25)

where ’ is the dihedral angle as shown in Fig. 2. Vn are the torsional rotation force

constants, dn the phase factors, and n the multiplicity or number of function minima

upon a rotation of 2p. The specified number of terms in the series expansion varies

for different force fields. Common choices are the first three terms of the expansion

and terms with selected multiplicity from one to six [53].

2.2.4 Improper Torsion

A special type of torsional potential is employed to enforce geometrical constraints

like planarity, e.g., in aromatic rings, or to prevent transitions between chiral

structures. This potential is usually referred to as improper torsion or out-of-plane

bending. Improper torsion acts between four atoms in a branched structure. There

are several approaches to describe this potential. E.g., to maintain the improper

dihedral at 0 or p, the torsional potential of the form

u2pimproperð’Þ ¼ Vnð1� cosð2’ÞÞ (26)

can be used. Another route to incorporate the out-of-plane bending motion is to

define an angle c between a bond from the central atom and the plane defined by the

central atom and the other two atoms; cf. Fig. 2. With this definition, a harmonic

potential can be constructed:

uharimproperðcÞ ¼
1

2
kcðc� c0Þ2; (27)

where c is the improper angle and c0 its equilibrium value. kc is a constant that

determines the stiffness of the potential.

2.2.5 Valence Coordinate Cross Terms

Some force fields include cross terms to account for the coupling between different

intramolecular interactions. E.g., it has been found that, upon decrease of a bond
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angle y, adjacent bonds stretch to reduce the interactions between the atoms

forming the bond. Only few force fields include such cross terms, because it was

found that they are rarely important. Cross terms are usually a function of two

interactions like bond–bond, bond–angle, bond–torsion, or angle–torsion, but terms

containing more than two interactions can also be used. Cross terms are important

to cover vibrational spectra, but do not significantly affect structural or thermody-

namic properties [56]. Force fields can be classified depending on whether or not

they include cross terms. Various forms of cross terms can be found in [19] that are

not further discussed here.

2.2.6 1–4 Interactions

Van der Waals interactions were mentioned as intermolecular interactions. How-

ever, in many force fields Van der Waals and electrostatic interactions are also used

to describe the intramolecular interactions between different sites of the same

molecule that are separated by three (1–4 potential) or more bonds. Usually, the

intramolecular 1–4 potential is scaled for both the LJ and coulombic contributions

by an empirical factor, depending on the force field.

3 Force Field Parameterization

In the past, force fields were parameterized based only on experimental data;

nowadays, most modern force fields include substantial quantum chemical infor-

mation. According to the nature of the data used for parameterization, force fields

can be classified as ab initio, semi-empirical, and empirical. Simple potentials, e.g.,

for argon, which require few parameters, can be fitted exclusively to macroscopic

experimental data; however, more complex force fields have numerous parameters

and thus depend heavily on ab initio data. This chapter gives an introduction to the

present state-of-the-art in this field. Attention is given to the way modeling and

simulation on the scale of molecular force fields interact with other scales, which is

mainly by parameter inheritance. Parameters are determined both bottom-up from

quantum chemistry and top-down from experimental data.

In principle, every quantity that can be predicted from force field calculations

can also be used for its parameterization. The choice of the properties taken as

optimization target may depend on the intended application. However, if the target

properties are suitably chosen, force field models often show powerful predictive

capabilities. This is due to the fact that they reasonably separate the different types

of intermolecular interactions and are thus able to account for the interplay of

interaction energy and structure of the fluid, which is generally a weak point in

phenomenological approaches. Force fields for applications in the chemical indus-

try should be developed, including data on the liquid density as well as on entropic

properties, namely phase equilibria [57]. This is in line with more than 100 years
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experience from phenomenological thermodynamics which shows that, for char-

acterizing a pure fluid, its vapor pressure curve is of prime importance. It may,

however, also be desirable to include other properties like transport coefficients in

the parameter optimization. Mathematically, a multi-objective optimization prob-

lem has to be solved. However, because of parameter correlations [58], quite

different parameter sets may reproduce a given set of target data with satisfactory

accuracy.

There are several methods by which to perform a force field parameterization. In

the trial and error approach, the parameters are gradually refined to fit the target data

better. However, this is inefficient and difficult because of parameter coupling. It

is more reasonable to use dedicated fitting algorithms to describe optimally the

target data. Over the last few years, numerous algorithms have been developed to

facilitate automated force field parameterization on the basis of thermodynamic

target properties [59–62] and quantum chemical information such as energy sur-

faces [63–65].

3.1 Ab Initio Parameterization

Ab initio quantum mechanics (QM) can be used to calculate a wide range of

molecular and structural properties and, additionally, to derive properties that

depend on the electronic structure. Ab initio data from QM calculations can be

employed in different stages of force field parameterization. They can be adopted

directly into the force field, taken as target data or as initial values in optimization

procedures, and may also be used for force field validation.

Bearing in mind that the quality of a force field depends on the quality of the data

used for optimization, a benchmark analysis of the QM calculations should be

performed, because ab initio data are only reliable when sufficiently high levels of

theory and large basis sets are used. However, such QM calculations are computa-

tionally very demanding. Therefore, with current computer capabilities, system

sizes that can be handled are limited to up to approximately 103 non-hydrogen

atoms.

Ab initio calculations are mostly used for molecular geometries and intra-

molecular interaction parameters [66–68]. However, QM calculations can also be

employed to determine parameters of the intermolecular potential, e.g., for the polar

interactions.

3.1.1 Van der Waals Interactions

The Van der Waals interactions are not easily accessible with ab initio methods,

because the characterization of short-range intermolecular interactions requires a

much higher level of theory than molecular structure or conformational energies.

Moreover, at least a reasonably complete two-body interaction energy landscape is
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required. Thus, a large number of molecular separations and mutual orientations

must be considered, which is computationally very demanding. Once the appropri-

ate points of the energy landscape are obtained, they can be fitted to an analytical

function [69]. Note that the liquid behavior is not well reproduced by ab initio

calculations, since only small clusters can be handled [70]. A review of QM

methods used for the calculation of interaction energies and potential energy

sampling is given in [69].

3.1.2 Electrostatic Interactions

Electrostatic properties of molecules can be determined from the electron density

distribution obtained by QM. Different methods have been proposed for this end.

E.g., atomic charges can be estimated using different partitioning methods like

Mulliken and L€odwin population analysis [71, 72], the charge model 2 (CM2)

formalism [73], natural population analysis (NPA) [74], or the theory of atoms in

molecules (AIM) [75]. A comparison of these methods for the calculation of atomic

charges can be found, e.g., in [76]. Atomic charges calculated by population

methods are often considered to be inappropriate for force field parameterization

[19]. The most common approach is to derive the atomic charges from the electro-

static potential (ESP), applying either semi-empirical density functional theory

(DFT), Hartree–Fock (HF), or post HF methods [77]. The ESP is a QM observable

which can be determined from wave functions. In this method, atomic charges are

fitted to the calculated ESP for a series of points in a three-dimensional spatial grid

surrounding the molecule. The fitting procedure is performed with the constraint

that the sum of the charges equals the net charge of the molecule. The positions

where the potential is evaluated are often chosen just outside the atomic Van der

Waals radii, because the accuracy of electrostatics is most important there. Differ-

ent methods consider different sampling points where the ESP is calculated, i.e., the

distance from the Van der Waals surface [19]. The CHELP [78] method considers

spherical shells extended to 3 Å from the Van der Waals surface, whereas the

CHELPG [79] method contemplates a cubic grid of points extended to 2.8 Å.

A restrained electrostatic potential (RESP) [80] fit is often used to include restric-

tions to the obtained charges, e.g., to restrain charges in buried atoms. RESP can

be employed to fit partial charges to the ESP of a single or multiple conformers [77].

There are various difficulties with the ESP fitting approach, like conformation,

basis set dependency, and the presence of buried atoms. The inclusion of mul-

tiple conformations in the fitting procedure can be employed to overcome

these problems [81]. A comparison of some commonly applied schemes can be

found in [82].

The second order Møller–Plesset (MP2) perturbation theory is often adequate in

terms of accuracy and efficiency for describing the ESP [10]. It is generally

considered that the 6-31G* basis set gives reasonable results [19]. This basis set

results in dipole moments that are 10–20% larger than expected in the gas phase,

which is desirable for deriving charges for liquid phase simulations [80]. More
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advanced ab initio methods, e.g., the coupled cluster method together with correla-

tion consistent basis sets, can also be used for such calculations [83].

Electrostatic multipole moments of molecules, i.e., dipoles, quadrupoles, or

octupoles, can also be obtained from QM wave functions. Methods like distributed

multipole analysis (DMA) [84] or AIM [85] assign multipole moments to each

atom or to specified sites of a molecule. The DMA method estimates multipole

moments from QM wave functions and the highest obtained multipole moment

depends on the basis set used. There are no limitations in this method on number or

position of the multipoles; anisotropic effects due to lone pairs or p electrons can

also be considered.

A simpler approach, typically employed for small symmetric molecules, is to

estimate ideal point multipoles by integration over the orbitals resulting from the

calculated electron density distribution. The accuracy of the calculated moments is

highly dependent on the basis set, electron correlation, and molecular geometry

[19]. The MP2 level of theory with the 6-31G* polarizable basis set is broadly

applied in such calculations. In order to save computational effort, MP2 is often

executed as a single point calculation for a geometry determined on the basis of a

lower level of theory.

In condensed phases, the mutual polarization of solute and solvent molecules

should be considered. This can be done by placing a single molecule into a cavity

that is surrounded by a dielectric continuum and assigning the dielectric constant of

the liquid to it [86]. Thus, the molecule in the cavity induces polarization in the

surrounding dielectric continuum, which in turn interacts with the electron density

of the molecule. There are numerous techniques of varying complexity; a review

can be found e.g. in [87]. One of the pioneering techniques is the self consistent

reaction field (SCRF) [88, 89] approach. Some variations of this method treat the

continuum solvent as a conductor, such as in the conductor-like screening model

(COSMO) [90] or the polarizable continuum model (PCM) [87]. Another rather

simple approach to account for condensed phase polarization is the multipole

scaling procedure [80, 91].

3.1.3 Intramolecular Interactions

The geometric parameters of force fields, i.e., reference bond lengths and bond

angles, are commonly assigned according to equilibrium molecular geometries

determined by QM, combined with an energy minimization algorithm. The agree-

ment between ab initio and experimental equilibrium geometries increases with

the size of the basis set and the level of theory. However, the HF level of theory

with a relative small basis set, such as 6-31G, is sufficient to obtain good results

[60, 86, 92]. Fortuitously, the STO-3G basis set often performs well with respect to

molecular geometry, despite its deficiencies. In general, the bond lengths predicted

by the STO-3G basis set are too long, while those obtained with the 6-31G basis set

are too short [19]. As an alternative QM approach, DFT, using gradient corrected

and hybrid methods, can be applied, since it is known to achieve excellent results
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for equilibrium geometries [10, 93]. An important example is the Becke’s three-

parameter density functional hybrid method combined with the Lee, Yang, and Parr

gradient-corrected correlation functional B3LYP [94].

QM is widely used to calculate relative energies of conformation sets and energy

barriers between them. Hence, bond length, bond angle, and torsional potential

terms can be fitted to reproduce intramolecular energy surfaces, the relative energy

of conformational pairs, or rotational energy profiles. The variation of energy for

different configurations can be calculated quite accurately with relatively small

basis sets. The rotational energy profiles are often taken as a basis to determine the

torsional interactions. For this purpose, the energy of a series of molecular struc-

tures generated by bond rotation is obtained from ab initio calculations. The

torsional potential is fitted to the resulting energy profile together with the Van

der Waals and electrostatic potentials [19]. Both HF and MP2, together with the

6-31G basis set, are often employed for such calculations [95]. It should be noted

that DFT with the B3LYP functional performs rather poorly for intermolecular

interactions and conformational energies [10].

3.2 Empirical Parameterization

Due to the difficulties of QM methods to describe correctly condensed phase

behavior, Van der Waals parameters and atomic point charges of molecular models

are often adjusted to reproduce experimental data on macroscopic properties of the

liquid state. Usually, they are fitted to thermodynamic properties determined by

means of molecular dynamics (MD) or Monte Carlo (MC) simulations.

3.2.1 Intermolecular Interactions

Intermolecular potential parameters can be optimized to different types of experi-

mental data. For engineering applications, liquid density and liquid enthalpy are

very often used. E.g., the liquid density strongly depends on the LJ size parameter

s, whereas the enthalpy of vaporization strongly depends on the LJ energy well

depth e [60]. Therefore, intermolecular parameters are frequently adjusted to

experimental data on both of these quantities, as in the OPLS force field [96].

The vapor pressure is even more sensitive to the intermolecular potential para-

meters so that, particularly in recent years, it was chosen together with the saturated

liquid density and the heat of vaporization to devise numerous generic force fields

of interest to chemical engineers like TraPPE, AUA, and NERD. The latter strategy

was also used for the development of a wide variety of specific molecular models

for engineering applications [97–99].

Many other physical properties may also be taken as targets for parameter

optimization of Van der Waals and electrostatic potentials: second virial coefficient
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[100, 101], critical temperature [102], free energy of hydration [103], self-diffusion

coefficient [104, 105], shear viscosity [105–107], radial distribution functions

[57, 108], or multipole moments [109].

3.2.2 Intramolecular Interactions

Equilibrium geometries of molecules can be derived from gas-phase experiments,

such as electron diffraction and microwave spectroscopy [60]. Raman and infrared

vibrational frequencies can also be used to determine force constants for bond

stretching and angle bending. If available, experimental data on relative configura-

tion stabilities and barrier heights can be used to parameterize torsional and

improper potential terms [19].

4 Force Field Families

Numerous force fields with different degrees of sophistication are in use today;

however, none of them is universally accepted. A molecular force field is generally

designed and parameterized to reproduce certain properties and should be able to

predict a wide range of thermodynamic properties for different thermodynamic

conditions. Force fields can be transferable (using the same set of parameters to

model a variety of related compounds) or specific (using distinct sets of parameters

for each molecule). Beside the choice of the potential functions of the force field,

another important decision is whether or not to represent all atoms explicitly. In this

context, force fields can be divided into all-atom, united-atom, and coarse grained

types.

4.1 Transferable Force Fields

In transferable force fields, the parameters for a given functional group are deemed

transferable between different molecules. There are numerous transferable force

field families, which were developed for different applications. Below, some

families relevant for chemical engineers are described: optimized potentials for

liquid simulations (OPLS) [96, 110–112], transferable potential for phase equilibria

(TraPPE) [113–122], optimized potential model for phase equilibria (OPPE)

[59, 68, 107, 123–130], Nath, Escobedo, and de Pablo (NERD) force field

[100, 131–133], and the GIBBS99 exponential-6 force field [18, 134], (cf. Table 1).

Many force fields families are continuously being improved and extended to

include new types of compounds; thus numerous versions are available.
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4.1.1 OPLS Force Field

The optimized potentials for liquid simulations (OPLS) force field can be divided

into the OPLS-UA (united-atom) [96, 110–112] and the OPLS-AA (all-atom)

[57, 67, 92, 103, 135–139] versions. Among the two, the OPLS-UA force field is

predominantly used for engineering applications, mainly because it is computation-

ally cheaper than the all-atom version. The OPLS-UA force field is available for

hydrocarbons [96], amides [110], peptides [110], alcohols [111], or proteins [112].

The OPLS-AA force field was parameterized for small organic molecules and is

intended for biochemical applications. The parameters of the OPLS-AA force field

are available for a broader range of functional groups and molecules. Thus, besides

hydrocarbons [103] and alcohols [57], parameters can be found for thiols [57],

sulfides [57], ketones [57], amides [57], amines [139], pyrrole [138], furan [138],

diazoles [138], oxazoles [138], proteins [67], and carbohydrates [92], among others.

The functional forms of both OPLS force field families are similar. In the original

OPLS-UA force field, the only intramolecular degrees of freedom that were taken

into account were torsions. Later on, the OPLS-UA force field was merged with the

description of bond stretching and angle bending from the AMBER force field to

yield the OPLS-UA/AMBER force field for peptides and proteins [57]. In OPLS-AA,

bond stretching and angle bending were described by harmonic potentials [(20) and

(22)]. The OPLS-UA and OPLS-AA force fields consider the energetic contribution

of the torsional motion by a Fourier series truncated after the third term (25). The Van

der Waals interactions are represented by the LJ 12–6 potential and electrostatics is

represented by point charges. The LJ potential is not only used to describe the

intermolecular interactions, but also the interactions between different sites of

the same molecule that are separated by three (1–4 potential) or more bonds. The

intramolecular 1–4 potential is scaled for both the LJ and coulombic contributions by

an empirical factor. The OPLS-AA force field uses a scaling factor of 1/2 for both

potentials, while the OPLS-UA/AMBER force field uses factors of 1/2 and 1/8,

respectively. Also, the unlike LJ parameters are defined by the geometric mean for

the size and energy parameter, cf. (11). Different OPLS force field versions were

optimized applying different methods. Geometrical parameters, such as for bond

stretching and angle bending, were taken from other force fields (AMBER94 [66],

CHARMM [91, 95, 140]), fitted to experimental molecular structures or to ab initio

calculations at the HF/6-31G* level of theory. The rotational terms of the OPLS-UA

Table 1 Some important characteristics of the different united-atom force field families for

alkanes

Force field family Van der Waals

potential

Bond

stretching

Angle

bending

Torsional

potential

Combining rule

OPLS-UA LJ 12–6 No No Yes Berthelot

OPLS-UA/AMBER LJ 12–6 Yes Yes Yes Berthelot

TraPPE LJ 12–6 No Yes Yes Lorentz–Berthelot

OPPE-AUA LJ 12–6 No Yes Yes Lorentz–Berthelot

NERD LJ 12–6 Yes Yes Yes Lorentz–Berthelot

GIBBS99 Buckingham No Yes Yes Lorentz–Berthelot
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force field were derived from rotational potentials obtained by molecular mechanics

(MM) simulations, while in the most recent versions of the OPLS-AA force field, the

torsional potentials were fitted to ab initio calculations at theMP2 level of theory with

the 6-31G* or even the correlation consistent polarized triple zeta (cc-pVTZ) basis

set. The parameterization of the intermolecular interactions was performed to repro-

duce saturated liquid density and enthalpy of vaporization. In some versions of the

OPLS-AA force field [137, 138], the partial charges were fitted to the ab initio ESP

with the CHELPG [79] procedure. Since the OPLS-UA force field for hydrocarbons

was parameterized considering primarily short alkane chains, the deviations to

experimental vapor-liquid equilibrium data become more significant for larger

chain lengths [141].

4.1.2 TraPPE Force Field

The transferable potential for phase equilibria (TraPPE) was originally developed

by devising a united-atom representation for the alkyl segments (TraPPE-UA).

However, a TraPPE force field with explicitly considered hydrogens (TraPPE-EH)

[119] was also formulated. The TraPPE force field is available for a large number of

compound families, including linear and branched alkanes [117, 118], alcohols

[114], ethers [120], ketones [120], glycols [120], amines [122], amides [122], thiols

[115], aromatics [119, 121], and acrylates [116], among others. The TraPPE force

field takes the intermolecular interactions into account by the LJ 12–6 potential (6)

and coulombic terms (14). For the unlike LJ interactions, the standard Lorentz–

Berthelot combining rule (12) is assumed. The intramolecular interactions covered

by this force field are: angle bending on the basis of a harmonic potential (22) and

torsional motion expressed as a set of cosine series (25) and a harmonic improper

dihedral potential (27). The bond lengths are fixed and thus bond stretching is

not taken into account. Usually, the intramolecular parameters for angle bending

were transferred from the AMBER94 [66] force field and the dihedral parameters

were taken from the OPLS-UA force field. The LJ and point charge parameters

were fitted to reproduce experimental vapor-liquid coexistence data. The TraPPE

force field reproduces the saturated liquid density of linear alkanes with a mean

accuracy of approximately 1%, which has to be seen in the light of traditional

predictive methods like Lee–Kesler that have an accuracy of 2–3% [9]. The TraPPE

force field reproduces vapor pressure, saturated vapor density, and critical point

with more significant deviations to the experiment [9]. It does not reproduce the

second virial coefficient well and consistently underpredicts the shear viscosity of

short chain paraffins [106].

4.1.3 OPPE-AUA4 Force Field

The anisotropic united-atom optimized potential model for phase equilibria

(OPPE) force field is an elaboration of the anisotropic united-atom (AUA) force
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field, initially proposed by Toxvaerd [142, 143] that was further developed by

Ungerer and coworkers [130]. This force field is currently available for n-alkanes
[130], olefins [59], alcohols [68], polyalcohols [144], amines [123], amides [123],

nitriles [127], sulfides [126], thiols [126], ketones [128], aromatic hydrocarbons

[124, 129], or polycyclic aromatics [125]. The major novelty of AUA force fields

was that the force center is spatially located between the carbon and the hydrogen

atoms of the represented molecular group. The intermolecular interactions were

described by the LJ 12–6 potential and point charges [(6) and (14)]. The Lor-

entz–Berthelot combining rule (12) was used for the unlike LJ parameters. As in

the TraPPE force field, the bond lengths were kept fixed. Angle bending was

modeled by a trigonometric potential (23) and the torsional potential following

Ryckaert and Belleman (24). Some angle parameters were taken from the

AMBER94 [66] force field and the torsional potential parameters were taken from

the OPLS-UA [96] force field. In other cases, molecular geometry and electrostatic

charges were determined from ab initio calculations. Usually, geometries were

optimized with the B3LYP functional and the 6-311G** basis set. The partial

charges were parameterized according to the procedure of Lévy and Enescu [145]

to reproduce the ESP around the isolated molecule for several representative con-

formations using RESP [80]. The ab initio ESP of the molecules was determined at

the MP2 level of theory with a 6-31G* or a 6-311G** basis set. The LJ parameters

were optimized to reproduce experimental values of saturated liquid density,

enthalpy of vaporization, and vapor pressure. The OPPE force field provides a

good representation of the vapor pressure and a very accurate representation of the

liquid density over a wide temperature range for n-alkanes, branched alkanes, and

cycloalkanes [56]. The vapor pressure of alkanes is predicted with an average

deviation to experimental data of 15%, compared to 30% for the TraPPE force

field and 35% for classical prediction methods based on boiling temperature and heat

of vaporization [9]. Since transport properties are not well predicted by this force

field, Nieto-Draghi et al. [107] proposed a modification of the OPPE model by

adjusting the parameters of the torsional potential to reproduce experimental reori-

entation dynamics and shear viscosity.

4.1.4 NERD Force Field

The Nath, Escobedo, and de Pablo (NERD) force field [100, 131–133] was developed

to provide accurate predictions of thermodynamic properties. It is currently available

for linear [100] and branched alkanes [131, 133] as well as for alkenes [132]. It has a

similar functional form as the TraPPE-UA force field, but bond stretching is included.

This interaction and angle bending are represented by harmonic potentials [(20) and

(22)]. The torsional potential is of the form of (25), neglecting cross terms. The LJ

12–6 potential (6) is used to describe the intermolecular and intramolecular interac-

tions between sites that are separated by more than three bonds. The LJ parameters

were obtained from fits to experimental values of liquid density and second virial

coefficient. Saturated liquid densities from the NERD force field are in good
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agreement with experimental data. However, the vapor pressure predictions are

typically slightly above experimental data at low temperatures and below experimen-

tal data at high temperatures [56], while the critical temperature is overestimated,

e.g., by 7 K for short-chain alkanes (ethane and pentane) [18].

4.1.5 GIBBS99 Force Field

The GIBBS99 exponential-6 force field [18] is a united atom representation that is

available for linear alkanes, cyclohexane, or benzene [134]. It differs from the

NERD and TraPPE force fields in the description of the Van der Waals interactions:

The Buckingham exponential-6 potential (7) was used instead of the LJ 12–6

potential (6). Similarly to the TraPPE force field, bond stretching was neglected.

However, the bond length between two methyl groups of the alkane chain was not

fixed as in the TraPPE force field, but depends on the molecular groups that form

the bond. Angle bending was represented by the harmonic potential (22) and the

torsional motion by a third order Fourier series (25). The force field parameters

were fitted to critical properties and saturated densities. The GIBBS99 force field

represents the vapor pressure and saturated densities for the alkanes from ethane

to n-dodecane with average deviations of around 2%. The experimental vapor

pressures of benzene and cyclohexane are reproduced with average errors of 2.6

and 1.7%, respectively [134].

4.1.6 Other Force Fields

Transferable force field families intended for biological applications are sometimes

applied in chemical engineering for the simulation of large molecules like poly-

mers. Also, some ionic liquids were parameterized in that framework [105]. Some

relevant force fields are chemistry at Harvard molecular mechanics (CHARMM)

[91, 95, 140], assisted model building with energy refinement (AMBER) [65, 66,

146, 147], Groningen molecular simulation (GROMOS) [148–150], condensed-

phase optimized molecular potentials for atomistic simulation studies (COMPASS)

[70], and consistent force field (CFF) [151–153], among many others. These force

fields best reproduce the data for which their parameters were optimized. AMBER,

CHARMM, and OPLS-AA overestimate the free energy of hydration of protein

functional groups [154]. Several works on the comparison of various of these force

field families for the simulation of proteins [155–159], deoxyribonucleic acids

[160], peptides [161], carbohydrates [162], or aqueous salt solutions [163] can be

found in the literature.

Some examples for transferable polarizable force fields are Drude [83], TraPPE-

pol, CHARMM-FQ [164], PIPF [165–167], and AMOEBA [168]. A review on

polarizable force fields can be found, e.g., in [45]. Many of the mentioned force

fields for biochemical applications as well as the polarizable force fields are being
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continuously developed, improved, and refined. Therefore, numerous versions of

each family can be found in the literature.

4.1.7 Force Fields Comparison

Martin [169] compared the AMBER, CHARMM, COMPASS, GROMOS, OPLS-

AA, and TraPPE force fields with respect to their ability to predict vapor–liquid

equilibrium properties and the liquid density of small alkanes and alcohols. He

concluded that the force field families performing best for fluid phase simulations

are TraPPE and CHARMM. CHARMM better predicts the vapor density, while

TraPPE has a higher accuracy for liquid density predictions.

TraPPE and OPPE-UA are, in our opinion, the best transferable force fields devel-

oped to date for chemical engineering applications. However, they still have some

deficiencies. The capabilities of these force field families are still less explored than

group contribution methods like UNIFAC in phenomenological thermodynamics.

4.2 Specific Force Fields

A force field that is carefully parameterized for a specific substance is usually more

accurate than a transferable force field. Therefore, when high levels of accuracy are

required, specific force fields are preferred. Most of the newer specific force fields

developed for engineering applications were parameterized to reproduce experimen-

tal data on saturated liquid density and enthalpy of vaporization. The use of ab initio

calculations gained importance in the last decade and the majority of force field

developers nowadays thus makes use of QM calculations to some extent. There are

numerous parameterization strategies for the development of such force fields, which

depend on the availability of experimental data and the complexity of the chosen

functional form. There is an immense number of specific force fields; therefore it is

impossible to give a comprehensive overview here. Only a small selection will be

discussed in the following to exemplify different parameterization strategies. The re-

parameterization of existing or transferable force fields using a different set of

experimental or ab initio data as in [170] will not be treated in further detail.

4.2.1 Empirical Force Fields

All transferable force fields discussed in Sect. 4.1 employ point charges to account

for the molecular charge distribution, although a more accurate description of the

electrostatics with higher multipole moments may be used. Hasse, Vrabec, and co-

workers [102, 109] proposed a set of simple united-atom force fields for more than 70

compounds of different classes that describe the intermolecular interactions using

two LJ 12–6 sites plus a point dipole (15) or a point quadrupole (16). The potential
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model parameters were optimized to experimental values of critical temperature,

saturated liquid density, and vapor pressure; thus, no direct information on the

multipole moments or the geometry was taken into account. These force fields

allow the description of vapor–liquid equilibria with an average accuracy of 4% for

the vapor pressure, 0.5% for the saturated liquid density, and 3% for the enthalpy of

vaporization throughout the entire temperature range from the triple point to the

critical point. Furthermore, the shear viscosity and the thermal conductivity are

predicted within 10% accuracy [171, 172]. It can be argued that oversimplified

molecular models can be adjusted to a few experimental pure substance properties,

but major deficiencies should be visible when applied to mixtures. Recently, all

systems for which experimental mixture data were available containing these

simple models were studied by molecular simulation [39–41] using one experimen-

tal data point to obtain the adjustable combining rule parameter x (13). The results

of this study were very satisfactory.

4.2.2 Semi-Empirical Force Fields

Fermeglia et al. [173] proposed flexible all-atom force fields for several hydro-

fluorocarbons to describe vapor–liquid equilibria. They used a more complex

expression for the potential energy including intramolecular interactions, i.e.,

bond stretching (20), angle bending (23), and torsional motion (24). The intermo-

lecular interactions were represented by the LJ 12–6 potential (6) and partial

charges (14). The parameters of the intramolecular terms were determined by

geometry optimization and potential energy surface sampling. For this purpose,

DFT with the BPW91 functional was employed [173]. The partial charges were

obtained from fits to the ESP, while the LJ parameters were optimized to experi-

mental data on liquid density and cohesive energy. These force fields predict the

phase behavior with an average error of about 2% for saturated densities in the

temperature range from 200 to 380 K.

Hasse, Vrabec, and co-workers [86, 174] presented a set of semi-empirical rigid,

united-atom force fields for hazardous fluids, such as cyanide, acetonitrile, nitro-

methane, or phosgene. They described the intermolecular interactions with LJ 12–6

sites and point charges, point dipoles, or point quadrupoles. The geometric para-

meters of these force fields, i.e., bond lengths, angles, and dihedrals, were deter-

mined by ab initio calculations at the HF/6-31G level of theory. The electrostatic

multipole moments (dipoles and quadrupoles) were obtained by integration over the

orbitals from the electron density distribution, using QM at the MP2 level of theory

with a 6-31G(d,p) basis set. The LJ parameters and point charge magnitudes were

optimized to experimental vapor–liquid equilibrium data. These specific force

fields describe vapor–liquid equilibrium properties with a better accuracy than the

available transferable force fields [86].

A united-atom force field based on GROMOS96 [148] was proposed by Micaelo

et al. [105] for imidazolium-based ionic liquids. They used ab initio calculations at

the HF/6-31G* level of theory to obtain partial charges based on the single-step
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RESP method. Bond lengths and bond angles were constrained to reproduce the

optimum geometry from QM calculations. The LJ parameters were optimized to

experimental values of shear viscosity, self-diffusion coefficient, and liquid density.

A review on force fields for the simulation of imidazolium-based ionic liquids can

be found in [175].

Liu et al. [176] developed force fields for guanidinium-based ionic liquids

following the AMBER force field approach. The intramolecular interactions of

their force fields include harmonic bond stretching and angle bending, together with

torsional motions. The equilibrium bond lengths and bond angles were taken from

QM calculations at the HF/6-31+G(d) level. The force constants were adjusted to

vibrational frequencies obtained by ab initio calculations or from experiment.

Single point MP2/6-31+G(d) calculations were taken to parameterize the torsional

potential and QM calculations at the B3LYP/6-31+G(d) level to obtain RESP

charges. The LJ parameters were transferred from the AMBER99 force field.

4.2.3 Ab Initio Force Fields

Hellmann et al. [23, 177, 178] have proposed ab initio force fields for several small

molecules, such as helium, neon, or methane, based on the Tang and Toennies

potential (9) and coulombic terms (14). With these force fields, gas phase properties

like second virial coefficient, shear viscosity, thermal conductivity, or self-diffusion

coefficient can be predicted extremely accurately. Typically, the generated data are

within the experimental uncertainty.

Domański et al. [179] developed an ab initio force field for liquid carbon dioxide

by fitting the LJ parameters and the coulombic terms to the potential energy surface

calculated with QM at the MP2 level of theory and the 6-31G* basis set. Unfortu-

nately, their model does not reproduce the thermodynamic behavior of the liquid

state so that an empirical scaling factor had to be adjusted to experimental data.

Hloucha et al. [24] developed force fields for methanol and acetonitrile from ab

initio calculations for the prediction of macroscopic properties. These all-atom

force fields include LJ 12–6 or modified Buckingham exponential 6 sites plus

partial charges. Interaction energies for many hundreds of configurations calculated

via symmetry adapted perturbation theory (SAPT) were employed for the parame-

terization of the LJ and Buckingham terms. To cover electrostatics, the charges

were fitted to the ESP from quadratic configuration interaction with single and

double substitution (QCISD) calculations and the augmented correlation-consistent

polarized valence double-zeta basis set (aug-cc-pVD). Despite the fact that the

force field for acetonitrile yields a reasonable agreement with the experiment for

vapor–liquid equilibrium properties, for methanol the saturated liquid density was

strongly underpredicted and the vapor pressure was overpredicted by one order of

magnitude. Cabaleiro-Lago and Rı́os [20] proposed a similar ab initio force field

for acetonitrile optimized at the MP2/6-311+G* level of theory. However, their

force field gives a poor prediction of the phase behavior [24]. Further examples of

ab initio force fields can be found, e.g., in [69].
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5 Molecular Simulation Methods

Given an adequate force field, molecular simulation is in principle capable of

yielding predictions of thermodynamic properties for a broad range of thermody-

namic conditions. To this end, different simulation techniques can be employed,

which can be divided in MD and MC. Here, some simulations tools for predicting

thermodynamic properties that are important for chemical engineering, i.e., vapor–

liquid equilibrium and transport properties, will be addressed briefly.

5.1 Molecular Dynamics

MD is a technique in which the time evolution of the molecular motions is simulated

following the laws of classical mechanics. Therefore, the physical variable time

must be considered explicitly. In this way, the dynamic evolution of coordinates and

moments, i.e., the trajectory of the system, is calculated by numerically solving

Newton’s equations of motion. This trajectory, together with the associated energies

and forces, leads to the static and dynamic thermodynamic properties of the studied

system via statistical analysis methods. MD is also a powerful tool to understand

dynamic processes at the atomistic level that involve fluids or materials [9].

In MD, a set of second order differential equations is solved by finite difference

techniques. This can be done with a variety of integration algorithms, such

as Verlet, velocity Verlet, Leap-Frog, or Gear predictor-corrector. Although

the microcanonical (NVE) ensemble is the most natural one for MD simulations,

generally the canonic (NVT) or the isobaric-isothermal (NpT) ensembles are

applied. Particularly in chemical engineering, physical properties are needed for

specified thermodynamic conditions like temperature or pressure. Several methods

exist to control temperature and pressure during simulation, e.g., velocity scaling,

Anderson thermostat, Berendsen thermostat, Nosé–Hoover thermostat, Nosé–

Hoover chains thermostat, or Berendsen barostat. A description of these algorithms

can be found, e.g., in [11, 180].

An MD simulation yields a significant amount of useful information for chemi-

cal engineering applications [11]. E.g., it is employed to study dynamic processes,

like diffusion, adsorption, or glass transition. A review of MD applications can be

found, e.g., in [9].

5.2 Monte Carlo

MC is a stochastic method that samples the configuration space of a system with a

specified Hamiltonian [181]. In MC simulations, the transition between states or

configurations is achieved by a random generation of a new state, evaluating a

probabilistic acceptance criterion, and accepting or rejecting the perturbation.
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New configurations are usually generated by displacing, removing, or adding

individual molecules. The acceptance of new states is performed most commonly

according to the Metropolis criterion.

In the production phase of MC simulations, all configuration-dependent proper-

ties fluctuate around constant average values that correspond to the thermodynamic

equilibrium. Each state is thereby sampled with a frequency proportional to its

equilibrium probability density [182]. In the canonical ensemble the probability

density rNVTm is given by [181]:

rNVTm ¼ expð�Em=ðkBTÞÞP
all states

expð�Em=ðkBTÞÞ ; (28)

where kB is the Boltzmann constant and Em is the potential energy of a state m.
An advantage of MC is that it can be readily adapted to any ensemble [11].

Therefore, many MC ensembles have been developed for the simulation of specific

systems or properties. A wide variety of MC simulation techniques can thus be

found in the literature. Reviews and detailed information about MC techniques are

presented, e.g., in [11, 181–185].

5.3 Methods for Determining Phase Equilibria

The calculation of vapor–liquid equilibria by molecular simulation is a longstand-

ing and important task. In the last two decades a variety of methods for this purpose

have been presented. There are, among others, thermodynamic scaling [186],

histogram reweighting [187, 188], Gibbs–Duhem integration [189], NpT plus test

particle method [190], grand canonical ensemble [191], grand equilibrium method

[192], or the Gibbs ensemble MC method [193]. Here, some of these simulation

methods will be briefly addressed. A comprehensive discussion of the different

approaches can be found, e.g., in [181, 182, 194, 195].

The Gibbs ensemble MC method (GEMC) [193] was developed to sample two

homogeneous coexisting phases that are in thermodynamic equilibrium but not in

physical contact with each other. The pressure and chemical potential of the phases

are equated by allowing the volume and the number of molecules to fluctuate

between the phases, while keeping the total volume and total number of molecules

constant. This ensemble is widely employed to calculate phase equilibria [18], also

in combination with Gibbs–Duhem integration [189, 196]. It is also used to

simulate chemical reactions in phase equilibrium [197, 198]. In the literature,

some advanced methods related to this ensemble can be found, e.g., the thermody-

namic scaling Gibbs ensemble [199].

In the grand canonical (GC) ensemble, a system at constant temperature, vol-

ume, and chemical potential is considered. The number of molecules is therefore

allowed to fluctuate. In such simulations, molecule displacement, insertion, and

deletion are attempted. From a series of several GCMC simulations, the pressure
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dependence of the chemical potential in the vapor and in the liquid phase can be

obtained. The coexistence condition is then found at the intersection point [181].

The number of molecules is not constant for this ensemble and the coexisting

phases are simulated independently. The semigrand canonical ensemble [200,

201] was introduced to overcome the low acceptance probability of molecule

insertions and deletions for liquids in the GC ensemble. Furthermore, the GC

ensemble can be combined with finite-size scaling methods, e.g., to evaluate the

surface tension [202, 203].

Another technique to determine the vapor–liquid equilibrium of pure substances

or mixtures, which has some similarities with what is described in [190, 204–206],

is the grand equilibrium method [192]. It is a two-step procedure, where the

coexisting phases are simulated independently and subsequently. In the first step,

one NpT simulation of the liquid phase is performed to determine the chemical

potentials m1i and the partial molar volumes v1i of all components i. These entropic
properties can be determined by Widom’s test molecule method [207] or more

advanced techniques, such as gradual insertion [208–210] (see below). On the basis

of the chemical potentials and partial molar volumes at a specified pressure p0, first
order Taylor expansions can be made for the pressure dependence:

m1i ðT; x; pÞ � m1;idi ðTÞ þ m1;rei ðT; x; p0Þ þ v1i ðT; x; p0Þ � ðp� p0Þ; (29)

where m1;idi (T) is the solely temperature dependent ideal contribution and the

residual chemical potential is m1;rei (T, x, p0). Note that m
1;id
i (T) does not need to be

evaluated for vapor–liquid equilibrium calculations, because it cancels out when

(29) is equated to the corresponding expression for the vapor. In the second step,

one pseudo-mVT simulation [192] is performed for the vapor phase on the basis of

(29) that yields the saturated vapor state point of the vapor–liquid equilibrium. This

simulation takes place in a pseudo-ensemble in the sense that the specified chemical

potentials are not constant, but dependent on the actual pressure in the vapor phase.

Thus the vapor simulation rapidly converges to the saturated vapor state point

during equilibration so that effectively the equilibrium chemical potentials are

specified via the attained vapor pressure. The grand equilibrium method has been

extensively used for the determination of vapor–liquid equilibria of hundreds of

systems [40, 41].

Several methods to obtain vapor–liquid equilibria or the Henry’s law constant

[39] require the accurate calculation of the chemical potential. Widom’s test

molecule method [207] is the most common approach for that task. Widom’s

method randomly introduces test molecules of the component for which the chemi-

cal potential is evaluated into the simulation volume, to calculate their potential

energy ci. The test molecules are instantly removed after the calculation and do not

influence the remaining molecules. Widom’s method is applicable to MC as well as

to MD simulations [56]. In the NVT ensemble, the residual chemical potential mrei of

component i is calculated by

mrei ¼ �kBT lnhexpð�ci=ðkBTÞÞi: (30)
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Widom’s method presents problems when dealing with very dense and strongly

interacting fluids, because inserted test molecules almost always overlap with

“real” molecules, which leads to extremely large values for the potential energy

ci. These insertions contribute little information, resulting in poor statistics [56].

Therefore, advanced methods have been proposed in the literature. An example is

the gradual insertion method [208–210], where a fluctuating molecule is introduced

into the simulation. The fluctuating molecule undergoes a stepwise transition

between non-existence and existence, which allows the determination of the chem-

ical potential. This method has been applied successfully to vapor–liquid equilib-

rium calculations of numerous binary and ternary mixtures [40, 41, 174]. Many

other methods, such as configurational biased insertion [211] or minimum mapping

[212], have been proposed in the literature. A detailed description and comparison

thereof can be found, e.g., in [213].

The Henry’s law constant can be obtained from molecular simulation using

several approaches [214, 215]. It is related to the residual chemical potential of the

solute i at infinite dilution m1i by [216]:

Hi ¼ rkBT expðm1i =ðkBTÞÞ; (31)

where r is the density of the solvent.

5.4 Methods for Determining Transport Properties

Transport properties, such as diffusion coefficients, shear viscosity, thermal or

electrical conductivity, can be determined from the time evolution of the autocor-

relation function of a particular microscopic flux in a system in equilibrium based

on the Green–Kubo formalism [217, 218] or the Einstein equations [219]. Autocor-

relation functions give an insight into the dynamics of a fluid and their Fourier

transforms can be related to experimental spectra. The general Green–Kubo expres-

sion for an arbitrary transport coefficient g is given by:

g ¼ 1

G

ð1
0

dt h _AðtÞ � _Að0Þi; (32)

and the general Einstein or square displacement formula can be written as

g ¼ 1

2Gt
h½ _AðtÞ � _Að0Þ�2i: (33)

Therein, G is a transport property specific factor, A the related perturbation, and _A
its time derivative. The brackets <. . .> denote the ensemble average. It was shown

that (33) can be derived from (32); thus both methods are equivalent [220].

In case of the self-diffusion coefficient, A(t) is the position vector of a given

molecule at some time t and _A(t) is its center of mass velocity vector. In this way,
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the self-diffusion coefficient is related to the velocity autocorrelation function. On

the other hand, the shear viscosity is associated with the time autocorrelation

function of the off-diagonal elements of the stress tensor. The thermal conductivity

and the electrical conductivity are related to the autocorrelation functions for the

energy and electrical current, respectively.

Beside the Green–Kubo and the Einstein formulations, transport properties

can be calculated by non-equilibrium MD (NEMD) methods. These involve an

externally imposed field that drives the system out of the equilibrium. Similar to

experimental approaches, the transport properties can be extracted from the long-

time response to this imposed perturbation. E.g., shear flow and energy flux

perturbations yield shear viscosity and thermal conductivity, respectively. Numer-

ous NEMD algorithms can be found in the literature, e.g., the Dolls tensor [221], the

Sllod algorithm [222], or the boundary-driven algorithm [223]. A detailed review of

several NEMD approaches can be found, e.g., in [224].

The NEMD methods are based on the general expression [225]:

g ¼ lim
Fe!0

lim
t!1

hJðtÞi
Fe

; (34)

where hJ(t)i is the steady state average of the thermodynamic flux J(t) perturbed by
the external field Fe. Although a methodology for calculating diffusion coefficients

with NEMD is available, such methods are predominantly employed to calculate

the shear viscosity and the thermal conductivity [226, 227]. NEMD methods are

favored when the signal-to-noise ratio is high for long times. There is an extensive

ongoing discussion on whether or not NEMD methods should generally be

preferred over equilibrium MD [11, 225, 228, 229].

5.5 Simulation Tools

There are numerous available open source and commercial molecular simulation

codes. Examples for MD codes are CHARMM,1 DL-POLY [230], GROMACS

[231], LAMMPS [232], MACSIMUS,2 Moldy [233], ms2 [234], NAMD [235],

Tinker [236], and YASP [237]. Some MC simulation codes are BIGMAC,3 BOSS

[238], GCMC,4 MedeA Gibbs,5 MCCCS Towhee6, and ms2 [234]. These software

packages have been developed for different applications and show large differences

in terms of performance, parallelization paradigm, and handling. Most of them use

1http://www.charmm.org/
2http://www.vscht.cz/fch/software/macsimus/index.html
3http://molsim.chem.uva.nl/bigmac/bigmac.html
4http://kea.princeton.edu/jerring/gibbs
5http://www.materialsdesign.com/medea/medea-gibbs
6http://towhee.sourceforge.net/

230 G. Guevara-Carrion et al.

http://www.charmm.org/
http://www.vscht.cz/fch/software/macsimus/index.html
http://molsim.chem.uva.nl/bigmac/bigmac.html
http://kea.princeton.edu/jerring/gibbs
http://www.materialsdesign.com/medea/medea-gibbs
http://towhee.sourceforge.net/


their own input and force field files as well as analysis programs to compute the

desired properties from the simulation output. Many simulation tools are in constant

development and have an increasing number of active users; thus their supported

features are constantly changing.

6 Case Study: Ammonia

Ammonia is one of the most important industrial chemicals. Due to its relevance

and its simple symmetric molecular structure, much work has been devoted to the

development of a force field that is capable of accurately predicting a broad range of

its thermodynamic properties. In the following, the capabilities of force fields fitted

to QM and vapor–liquid equilibrium data to predict other pure component proper-

ties over a wide range of states are addressed.

6.1 Force Fields

Several semi-empirical and empirical force fields have been developed for ammo-

nia [108, 139, 239–247]. In this work, some rigid, non-polarizable models opti-

mized with different parameterization strategies will be addressed. Jorgensen and

Ibrahim [239] used experimental geometric information, i.e., bond lengths and

bond angles, together with ab initio information, to devise a force field based on

one LJ 12–6 site and four point charges. They used the STO-3G minimal basis set

to calculate the energy of 250 different ammonia dimer configurations. An empiri-

cal scaling factor was adopted to account for the polarizability in the liquid

phase. Hinchliffe et al. [240] followed a similar parameterization strategy, but

employed a Morse potential for repulsion and dispersion. The parameters of the

Morse potential and the four point charges were fitted to the dimer energy surface

calculated with the 6-31G* basis set for seven different dimer configurations. The

geometric parameters were taken from experimental results. Impey and Klein [108]

re-parameterized the model by Hinchliffe et al. [240] and replaced the Morse

potential with one LJ 12–6 site located at the nitrogen nucleus to describe the

dispersive and repulsive interactions. They kept the point charges at the hydrogen

nucleus positions, but displaced the nitrogen partial charge towards the hydrogen

atoms. The parameters of this five-site model were optimized to the radial distribu-

tion function of liquid ammonia.

Kristóf et al. [246] proposed an empirical force field, fitted to experimental

molecular geometry and vapor–liquid equilibrium properties. This force field con-

sists of one LJ 12–6 site plus four partial charges. Recently, Zhang and Siepmann

[247] proposed a five-site ammonia force field based on the geometry of the Impey

and Klein [108] model. This force field also consists of one LJ 12–6 site and four

partial charges, three of them located at the hydrogen positions and one located at a
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distance of 0.08 Å from the nitrogen nucleus. The LJ parameters, partial charge

magnitudes, and the position of the displaced nitrogen charge were optimized to

vapor–liquid equilibrium data.

Eckl et al. [97] introduced a semi-empirical force field for ammonia also based

on one LJ 12–6 site and four partial charges that are located at the nitrogen and

hydrogen positions. The geometry was calculated at the self-consistent field HF

level of theory with a 6-31G basis set. The resulting geometry ðrNH ¼ 1:0136 Å;
∢HNH ¼ 105:99�Þ is very close to the experimental data ðrNH ¼ 1:0124 Å;
∢HNH ¼ 106:67�Þ [248]. Eckl et al. [97] adjusted the partial charge magnitudes to

the results from a single point QM calculation at the MP2 level of theory with the

polarizable basis set 6-311G(d,p) using the COSMO [90] method to account for the

liquid polarizability. Only the two LJ parameters were adjusted to experimental

data on saturated liquid density, vapor pressure, and enthalpy of vaporization.

6.2 Vapor–Liquid Equilibria of Ammonia

Both the GEMC and the grand equilibrium method have been applied to evaluate

vapor–liquid equilibrium data for ammonia. Kristóf et al. [246] calculated the vapor

pressure and saturated densities using the force field by Impey and Klein [108] and

found systematic deviations from experimental data; cf. Fig. 3. Therefore, they

proposed a new ammonia force field that was optimized to vapor–liquid equilibria

[246], achieving a better accuracy. Simulated saturated densities and enthalpies

based on this force field agree with the experimental data within 1 and 3%,

respectively. However, it shows a mean deviation of 13% from experimental

Fig. 3 Saturated densities of ammonia on the basis of different force fields by Impey andKlein (open
diamonds) [108], Kristóf et al. (open squares) [246], Eckl et al. (open circles) [97], as well as Zhang
and Siepmann (open inverted triangles) [247]. The simulation results are compared with a reference

equation of state (solid line) [249]. The calculated critical points (full symbols) are also shown
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vapor pressure data and the critical temperature is underestimated by 2.4% [97].

A further improvement was achieved by the model from Eckl et al. [97] with mean

deviations from the critical temperature, saturated liquid density, vapor pressure,

and enthalpy of vaporization of 0.8, 0.7, 1.6, and 2.7%, respectively. The recently

introduced force field by Zhang and Siepmann [247] reproduces the saturated liquid

densities up to 375 K with a similar accuracy to that of the model of Eckl et al. [97].

This force field predicts the critical density, critical pressure, and normal boiling

point with deviations of 0.9, 2, and 0.5%, respectively.

Figures 3 and 4 show the saturated densities and the vapor pressure on the basis of

the force fields by Impey and Klein [108], Kristóf et al. [246], Zhang and Siepmann

[247], and Eckl et al. [97] for the whole temperature range from triple point to

critical point together with a reference equation of state [249] for comparison.

6.3 Properties of the Homogeneous State

As discussed in Sect. 2, force fields should not only be able to represent the

thermodynamic properties that were used for their parameterization, but should

also be capable of predicting other properties at different thermodynamic conditions.

The force field for ammonia by Eckl et al. [97] is an example of such a force field.

Eckl et al. [97] predicted the density and the enthalpy of liquid, gaseous, and

supercritical ammonia at 70 different state points, covering a wide range of states

for temperatures up to 700 K and pressures up to 700 MPa. They found typical

deviations from experimental data below 3 and 5% for the density and the residual

enthalpy, respectively. Figure 5 shows the density results on the basis of this force

field compared with a reference equation of state [249].

Fig. 4 Saturated vapor pressure of ammonia on the basis of different force fields by Impey and

Klein (open diamonds) [108], Kristóf et al. (open squares) [246], Eckl et al. (open circles) [97], as
well as Zhang and Siepmann (open inverted triangles) [247]. The simulation results are compared

with a reference equation of state (solid line) [249]
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Fig. 5 Relative deviations of the density of ammonia as predicted from the force field by Eckl

et al. (plus signs) [97] from a reference EOS [249]. The size of the bubbles denotes the relative

deviations as indicated in the plot. The solid line is the vapor pressure curve

Fig. 6 Temperature dependence of the self-diffusion coefficient (top) and the thermal conductiv-

ity (bottom) of liquid ammonia on the basis of the force field by Eckl et al. [97]. Simulation results

at 10 MPa (filled circles) and 200 MPa (filled triangles) are compared to experimental data (open
symbols) [250] and to a correlation of experimental data (solid line) [251]
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This model was extensively tested with respect to its ability to yield transport

properties. E.g., the self-diffusion coefficient was predicted in the temperature range

from 203 to 473 K for pressures between 10 and 200 MPa with a mean deviation of

15% over the whole range of studied conditions. As an example, Fig. 6 shows the

temperature dependence of the self-diffusion coefficient at 10 and 200 MPa in

comparison to experimental data [250].

The thermal conductivity and the shear viscosity of ammonia were also predicted

with a good accuracy on the basis of the force field by Eckl et al. [97] in the same

temperature and pressure range. The predictions of the thermal conductivity and the

shear viscosity deviate on average by 3 and 14%, respectively, from the experimen-

tal data.

7 Case Study: Binary Mixtures Containing CO2

CO2 is an important substance which is present in many processes in the chemical

industry. In the following, a case study on the prediction of the Henry’s law constant

for CO2 in ethanol and the vapor–liquid equilibrium of the binary mixture CO2 þ
C2H6 is discussed. The aim is to explore the capabilities of force fields to predict the

temperature dependence of gas solubility and to predict azeotropic behavior.

7.1 Force Fields

The Van der Waals interactions of the force fields for CO2 and C2H6 were described

by two LJ 12–6 sites and one point quadrupole (16). Both force fields were

empirically parameterized to experimental critical temperatures, saturated liquid

densities, and vapor pressures by means of a nonlinear optimization algorithm. For

both pure substances, the vapor–liquid equilibrium properties from simulation

deviate by less than 1% from experimental saturated liquid density data and less

than 3% from experimental vapor pressure and enthalpy of vaporization data.

The force field for ethanol [252] consists of three LJ 12–6 sites plus three point

charges and was parameterized to ab initio and experimental data. The nucleus

positions of all ethanol atoms were computed by QM at the HF level of theory with

a 6-31G basis set. This force field is also based on the anisotropic approach of

Ungerer et al. [130]. The LJ parameters and the anisotropic offset were fitted to

experimental saturated liquid density, vapor pressure, and enthalpy of vaporization.

The simulation results from this ethanol force field deviate on average from

experimental values of vapor pressure, saturated liquid density, and heat of vapori-

zation by 3.7, 0.3, and 0.9%, respectively.
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7.2 Henry’s Law Constant of CO2 in Ethanol

Schnabel et al. [252] calculated the Henry’s law constant of CO2 in ethanol. They

evaluated the chemical potential with Widom’s test molecule method [207];

cf. (30). In this approach, by simulating the pure solvent, the mole fraction of the

solute in the solvent is exactly zero, as required for infinite dilution, because the test

molecules are instantly removed after the potential energy calculation.

The results from Schnabel et al. [252] are in excellent agreement with the experi-

mental data; cf. Fig. 7. It has been shown for over 100 other mixtures [39, 252] that

the Henry’s law constant can reliably and accurately be obtained by molecular

simulation using relatively simple force fields when the unlike LJ interaction is

adjusted to a single binary data point from experiment.

7.3 Vapor–Liquid Equilibria of the Mixture CO2 + C2H6

Particularly when polar groups are present in liquid mixtures, azeotropes are often

formed. For the design of separation processes like distillation, the knowledge

of the azeotropic composition at different thermodynamic conditions is of critical

importance. In this context, molecular simulation offers a powerful route to predict

azeotropic behavior in mixtures. The prediction of the vapor–liquid equilibrium of

the mixture CO2 + C2H6 is presented here as an example.

Vrabec et al. [41] predicted the vapor–liquid equilibrium of the mixture CO2 þ
C2H6 for three different isotherms. The azeotropic behavior of this mixture was

predicted using the Lorentz–Berthelot combining rule (12), i.e., relying exclusively

on pure substance models without considering any experimental binary data. The

quality of the predicted data is clearly superior to the Peng–Robinson EOS with the

Fig. 7 Henry’s law constant of CO2 in ethanol. The simulation results by Schnabel et al. (filled
circles) [252] are compared with experimental data (plus signs) [253–259]
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binary interaction coefficient kij ¼ 0, which shows no azeotrope; cf. Fig. 8. As

discussed in Sect. 2.1.2, for simulations of binary mixtures, unlike LJ parameters

are needed. In many cases, the Lorentz–Berthelot combining rule (12) is too crude

to obtain accurate results [34]. Therefore, the modified version of the Lorentz–

Berthelot rule (13) was preferred. When the binary parameter x is adjusted to one

experimental binary data point, the simulation results are in excellent agreement

with experimental data; cf. Fig. 8. The Peng–Robinson EOS, being a workhorse in

Fig. 8 Vapor–liquid equilibria of the mixture CO2 + C2H6. The upper figure shows a magnified

view of the simulation results at 263.15 K by Vrabec et al. [41] with x ¼ 1 (open circles) and
x ¼ 0.954 (filled circles) compared with experimental data (plus signs) [260] and the Peng–Ro-

binson equation of state with kij ¼ 0 (dashed line) and kij ¼ 0.132 (solid line). The figure at the

bottom shows the simulation results by Vrabec et al. [41] for 223.15, 263.15, and 283.15 K with

x ¼ 0.954 (filled circles) and the Peng–Robinson EOS with kij ¼ 0.132 (solid line) compared with

experimental data (plus signs) [260]
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industrial applications, also shows very good agreement with the experiment when

kij is adjusted.

8 Concluding Remarks

With the ongoing increase of computer performance, molecular modeling and

simulation is gaining importance as a tool for predicting the thermodynamic proper-

ties for a wide variety of fluids in the chemical industry. One of the major issues of

molecular simulation is the development of adequate force fields that are simple

enough to be computationally efficient, but complex enough to consider the rele-

vant inter- and intramolecular interactions. There are different approaches to force

field development and parameterization. Parameters for molecular force fields can

be determined both bottom-up from quantum chemistry and top-down from exper-

imental data.

Transferable force fields have the benefit that they are ready to use and do not

need to be fitted for each component individually, although at the expense of

prediction accuracy. On the other hand, specific force fields, parameterized for a

single molecule, are time-intensive in development and require experimental and/or

QM data for optimization. Their main advantage is that they can yield excellent

accuracies. The advances of the QM methods in recent years allow for the con-

struction of force fields based on high quality ab initio data, i.e., nowadays force

fields can be constructed even for new fluids whose properties have been poorly

measured or not measured at all. Therefore, molecular modeling and simulation

based on classical force fields is a promising alternative route, which in many

cases complements the well established methods like classical equations of state or

GE models.
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Abstract We review recent work on scale-bridging modeling approaches applied

to aqueous electrolytes and polyelectrolytes, connecting the local quantum

chemical details to classical statistical and thermodynamics properties. We discuss

solvation and pairing of ions in water, ways to include solvent degrees of freedom

in effective ion–ion interactions, and coarse-grained simulations of polyelectrolytes

including dielectric boundary effects.
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1 Introduction

Systematic bridging of length and time scales is one of the central themes of

modern chemistry and physics to which computer simulations have provided

important contributions in recent years. In particular in the fields of materials

science and (soft) condensed matter, which also includes many areas of biophys-

ics, most of the problems are inherently multiscale. This means that the intercon-

nection among the different scales plays a key role in determining the relevant

properties of the system. Some examples which may clarify this concept are

edge dislocation in metals, where local chemistry affects large scale material

properties [1], the cracking of materials where the rupture of a local interatomic

bond is then propagated to the larger scale and again back to the next interatomic

bond and so on [2, 3], or the adsorption of large molecules on metal surfaces

out of a melt [4, 5] or out of solution [6, 7] to cite only a few. In general, an

exhaustive description of such systems requires the simultaneous treatment of all

relevant scales. However, despite the massive progress of computer technology

this often remains a prohibitive task. A possible way to overcome this dilemma is

to identify and use only those degrees of freedom that are essential for its physical

characterization. This generates immediately the problem of how to know

“a priori” which degrees of freedom are relevant and which are not. There is

not, and probably never will be, a general method around which is able to

separate unessential degrees of freedom from the essential ones. Therefore

physical intuition (or experience) is needed for the initial development of the

so-called coarse-grained model that can be verified only “a posteriori.” Another

problem is that, even if one has a limit set of degrees of freedom, most often one

still needs to develop sophisticated methods which combine a solid theoretical

approach and an efficient use of computational resources. Such methods can have

a sequential hierarchical structure which treats the results of a scale as an input

for modeling the next (see, e.g., [8]) or treats all the scales at the same time but

taking into account, as much as possible, only the strictly required degrees of

freedom (see, e.g., [9–11]). Along the lines drawn above, in this review we report

a scale bridging idea performed in a sequential way for aqueous electrolytes and

polyelectrolytes. We start from the quantum study of small systems and show

how this approach can provide precious information to model more complex

systems at the classical atomistic level and from there to the coarse grained larger

scales. The focus of this review is largely based on the authors’ own contributions

to these fields.
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2 Positively Charged Ions in Water: Quantum Calculations

Water as a natural solvent plays a central role in many biological, physical, and

chemical processes. Owing to its unique capability of building a hydrogen bonded

network, the liquid state properties remain difficult to describe in computer simula-

tions or theoretical calculations. Although many of its important features have been

uncovered over the past years by experimental and theoretical research efforts,

several problems remain unsolved and their solution is crucial for addressing the

current demand in biological, chemical and industrial applications. One problem

of central importance is the behavior of water as a solvent of positive ions [12–19].

On a large scale, thermodynamic properties characterize ionic hydration, expressed,

for example, by the free energy of solvation. These thermodynamical quantities are

experimentally accessible and thus are of interest to theoretical studies whose

methodology can reach these large scales, e.g., classical simulations. However,

structural properties of the solvation shell, at the level of the single molecule, are

characterized by a local microscopic scale (e.g., electronic) and go deep into the

very specific chemistry of the ion–water interaction; at the same time the overall

structure and stability of the first solvation shells are strongly influenced by the rest

of the system (bulk). This interplay of local and global scales is not yet fully

understood; this section concerns this latter aspect.

2.1 Theoretical Framework

Chemical intuition would suggest that the dominant ingredient in the solvation

process is the direct ion–water interaction [20]. In fact one would expect that water

molecules in the first solvation shell of a positive ion are not screened by the

presence of other molecules and thus are highly polarized due to the direct interac-

tion of the positive charge of the ion with the lone pair electrons of the oxygen.

However, recent experimental [20, 21] and theoretical work [22–30] suggested

that this effect is not crucial for the structure of liquid water around the ion. In

reality the problem is rather complex and, as anticipated, a detailed understanding

of the process requires, at theoretical level, a multiscale analysis that clarifies the

interplay between the molecular scale in the vicinity of the solute (local scale) and

the bulk scale (global scale) of the solvent. In the following we will present a

scale analysis, in the sense mentioned above, of ab initio Density Functional (DFT),

Car-Parrinello1 simulations of several positive ions in water, namely Liþ, Naþ, Kþ,
Mg2þ, and Ca2þ. This scale analysis is based on the calculation of the molecular

dipole moment of water; such a quantity represents a physical indicator of

1The results discussed here were produced with the version 3.9.2 of the CPMD code. CPMD,

Copyright IBM Corp. 1990–2004, Copyright MPI f€ur Festk€orperforschung Stuttgart 1997–2001/

http://www.cpmd.org.
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molecular charge displacement and local packing of the liquid, and can be used to

derive an effective range of molecule–molecule correlation [30, 31]. First principles

Density Functional (DFT) calculations have proven to reproduce experimental data

well for aqueous systems of interest here [32–35]. This success is the reason why in

the last decade this approach has also been used to investigate properties for which

no experiments are performed [36, 37]. Here, within the DFT framework, molecular

dipoles are determined using the Wannier localization method [38–40]. The centers

of the maximally localized Wannier functions [38–40] are used to localize the

electrons onto point charges as in [36, 37]. It must be underlined that the conclu-

sions obtained from our studies reviewed below do not suffer from the fact that a

unique way to localize the electron density in space does not exist [41–44], because

our conclusions are based on comparing relative values. In order to identify local

effects and somehow separate them from non-local ones, we adopt a procedure

which consists of building stepwise the solvation shell of an ion [31]. This means

that we study clusters starting with one water molecule (and the ion) up to the

number of water molecules corresponding to the typical coordination number of the

ion. For each system we then calculate the average molecular dipole moment of

water; these results will tell us how any additional water molecule contributes to the

change of the average molecular dipole. Next we compare such results with the

results obtained for the molecules in the first solvation shell of the ion in bulk liquid

water; this will tell us what is the influence that the molecules beyond the first

solvation shell have on the polarization of those in the first shell, since the

molecules of the bulk are not present in the cluster calculations. This is a practical

way to link the local ion–molecule contribution to the more global water–water

contribution. Technical details of the simulation set up can be found in [30, 31, 45].

2.2 Results

The left part of Fig. 1 shows the trend of the molecular dipole of water as a function

of the clusters size. For one water molecule the chemical intuition is obviously

correct; the molecule is strongly polarized and the divalent ions induce a larger

polarization compared to the monovalent ones, as one would expect. But, interest-

ingly, such a polarization rapidly decays as the number of water molecules

increases. This is understandable from a general point of view because the presence

of any additional molecule induces some electrostatic repulsion between the polar-

ized electron clouds; however, here chemical intuition started to be less predictive.

In fact the decay of the dipole value is much larger for the divalent ions than

the monovalent ones; the ion–water interaction should still be very dominant but

eventually, for large clusters, the difference between monovalent and divalent ions

becomes roughly half that of a single molecule system. The maximum difference

between monovalent and divalent ions, for comparable clusters (five molecules),

is about 0.7–0.8 Debye compared to the 1.7 Debye of a single molecule system.

The minimum difference is about 0.5 Debye for large clusters and 1.0 Debye for
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one molecule. These numbers clearly show that the direct ion–water interaction is

not as dominant as expected. Furthermore, the comparison of the left side of Fig. 1

with the right side shows that, when the solvation shell is embedded into a liquid

system, the average dipole moment of the molecule in this shell converges to the

average value of bulk water, 3.0 Debye, independently from the size and the charge

of the ion. The results of Fig. 1 lead to the conclusion that water–water interaction

actually plays the principal role in the overall charge displacement of the molecules

in the first solvation shell of an ion. There are two effects that contribute to this

scenario: (1) the interaction among molecules in the solvation shell via the electro-

static repulsion between the electron clouds and (2) the interaction of those mole-

cules with the rest of the system (bulk), which creates a hydrogen bond network and

thus capture electron charge along these bonds. However, the presence of an ion

in water should still have clear effects because it perturbs the typical structural

order and density fluctuations of a pure liquid system. Although the absolute

value of the molecular dipole in the first solvation shell is mainly determined by

water–water interaction, it is expected that water molecule are oriented with

their dipoles collinear with the ion–oxygen direction and the question is whether

this ion-induced order extends to only the molecules in the first solvation shell or, at

least in part, also goes beyond.

Figure 2 shows the orientation of the molecular dipole with respect to the

oxygen–ion direction for different solvation shells. A clear signature of the orienta-

tion of the dipole along the ion–oxygen distance is represented by the peak at zero

degrees of the distribution for divalent ions, while the same is less evident, though

Liquid

Clusters

Fig. 1 Average molecular dipole of water. Left part for clusters of one molecules up to the typical

coordination number of the specific ion. Right part, average molecular dipole of water molecules

in the first solvation shell of the ion in a liquid system for three different system sizes of 32, 64, and

128 water molecules. Figure adapted from [31]
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present, for monovalent ions and depends on the size of the ion. However, indepen-

dently from the size and the charge of the ion, in the second shell there is no

preferential structure. This means that water molecules beyond the first solvation

shell do not feel the presence of the ion.

2.2.1 Electronic Analysis

An interesting question is how the results previously shown are linked to the

specific electronic properties of the molecules [45]. In this section we perform an

analysis of the results shown before in terms of electronic orbitals. With this aim,

we decompose the various component of the molecular dipole moment, calculated

by taking the oxygen as the origin of the Cartesian system: (1) the lone pair,

negative charge, contribution of the valence electrons of the oxygen, (2) the

bonding pair, negative charge, contribution of the electrons shared by the oxygen

and the hydrogen along the O–H bond, and (3) the positive charge of the protons

(see also Fig. 3a). Figure 3b shows the comparison for three representative ions,

namely Mg2þ, Ca2þ, and Naþ. The values are calculated taking the isolated water

as a reference. In all three cases, on average, the positive charge of the protons

does not contribute significantly (in absolute term this contribution is the same as in

the gas phase). The main role is played by the balancing of the lone pair and

bonding pair deformation. Interestingly, above all for divalent ions, the lone pair

contribution rapidly decays as the number of molecules increases, in contrast to the

bonding pair contribution. The negative values of the bonding pair contribution

must be intended as the difference between absolute values (of such contribution) of

the ion–water system and the isolated water (reference).
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Fig. 2 Water dipole average orientation with respect to the oxygen-ion direction for different

solvation shells. Some structural order can be seen only in the first shell of the divalent ions. Figure

adapted from [31]
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These results basically show, at electronic level, what was already speculated on

a larger scale in the previous section: as the number of water molecule increases,

the repulsion of the electronic clouds of the lone pair electrons increases and thus

the corresponding contribution decreases. This in turn leads to a partial charge

redistribution of the electrons of the bonding pair. In fact, these electrons are also

polarized by the presence of the ions and their orbitals are shifted from the

hydrogens towards the oxygen in the oxygen–ion direction; however, since the

repulsion increases as the number of molecules increases, the electrons are shifted

back towards the hydrogens. Moreover, the rapid increase of the bonding pair

contribution for larger clusters is due to the formation of hydrogen bonds that

shift the bonding pair electron distribution further towards the hydrogen as in the

case of bulk water. These conclusions can be pictorially described by Fig. 4 for the

case of Mg2þwhere the focus is on one specific molecule of the system, represented

together with its corresponding electron density map. The latter is determined by

subtracting the electron density of an isolated water molecule with the same

geometry of the molecule in the water–ion system.

bpbp

lp lp

Z

YXO

H H

μ

a b

Fig. 3 (a) Pictorial representation of the projections of the charge vectors along the molecular

axis. O-lp is the vector with origin at the oxygen which identifies the Wannier center for the

electrons of the lone pair orbitals; this vector is indicated by lp. Analogously bp, for bonding pair,

and OH, for the protons. m represents the total dipole vector. (b) Projection of the oxygen-

Wannier-center vectors (times the charge) along the molecular axis of water (in Debye) measured

w.r.t. the isolated molecule. Figure adapted from [45]
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2.3 Methodological Implications

Our main conclusions are that an ion produces some small structural effects only on

a very local scale and that the molecular charge displacement is mostly due to

water–water interaction. The average dipole in the first solvation shell of an ion,

independent of the ion size and the charge, is the same as that of the bulk molecules.

However, one must take into account that the conditions of our simulation corre-

spond to the case of a dilute system; much higher ion concentrations would indeed

change the situation. However, these results clarify why a single spherical positive

ion (monovalent or divalent) does not produce the effects expected on the solvent;

this conclusion may have far reaching consequences for molecular modeling. In

fact a far lasting debate endorses the use of polarizable models of water for classical

simulations where ions are present. The DFT calculations discussed here provide

indications that non-polarizable water models, developed for bulk water, may

perform particularly well in studies of ion solvation, as will be further discussed

in the subsequent chapter of this review.

2.4 Beyond the First Solvation Shell

So far we have been focused on the behavior of the water molecules in the

immediate neighborhood of the ion. We have concluded that water–water

Clusters:

Liquid:

b

d e

a c

Fig. 4 A two-dimensional section of the density difference, with respect to the isolated water

molecule with the same HOH geometry, projected onto the Wannier functions for the Mg2+

solvated by the various clusters and in the liquid. The density is measured in e
au3 . The dark blue

color indicates an excess of charge compared to the isolated molecule while the light brown
indicates depletion of electron charge. Figure adapted from [45]
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interaction plays the major role in determining the physical properties of the

solvation shell, while the presence of the ion plays almost (only) the role of

“excluded volume” perturbation which acts very locally. This is clearly shown by

study of the distribution of molecular dipoles and their orientation with respect to

the oxygen–ion direction. However, one may perform a finer analysis based on the

very microscopic (electronic) details and understand whether, on a finer scale, some

physical effects, produced by the ions, have consequences regarding the properties

of water, which in the dipole analysis are averaged out and thus not visible. Such an

analysis was performed by Scipioni et al. [46], who have analyzed the distributions

of the Wannier centers of the system. This is a finer scale analysis, compared to that

of the dipoles (also based on Wannier Centers), because it considers each single

localized electron center and its changes due to the presence of other molecules or

ions; its contribution is not averaged out (with those of the other centers) as instead

happens when the same quantity is employed to determine the molecular dipole.

Scipioni et al. have shown that the electronic structure of water molecules in

the bulk is modified due to the presence of the ion compared to the case of pure

water with no ions. The hydrogen bonding network is slightly altered because of

a lowering of the local tetrahedral order. These results in any case do not change the

conclusions of the previous paragraph and actually strengthen the idea that, for low

concentrations, positive ions play the role of perturbation to the pure water rather

than an active physical role with effects on the whole system. For this reason our

suggestions for the construction of classical models remain valid. In fact the

hydrogen bond network distortion of the bulk water occurs on a very fine scale

which does not induce relevant thermodynamic consequences on the scale covered

by classical simulations. However, indirect effects of the hydrogen bonding distor-

tion may be related to the statistical fluctuations of the solvation shell structure.

Density fluctuations around the solute play an important role for both structural and

thermodynamic properties [47]; for this reason, an analysis complementary to that

performed by us should consider the exchange of molecules in the solvation shell.

The typical theoretical tools used for this analysis is that of rare events type [48].

This tool requires a system size and time scale that are usually beyond the current

quantum-based methods and apply only to classical simulations; however, here the

multiscale idea may play an important role and the hope is that current techniques,

employed so far for test systems only, can be extended to these problems as well

[217]. Another point to put in perspective is the possibility of analyzing ions of

non-spherical shape and defining general statistical quantities that define well the

solvation shell, which in this case is no longer homogeneous. Recent ideas in this

direction have been provided by Babiaczyk et al. [49] who have proposed

a combined distance–orientation distribution. This can give more details about

the solvation structure and yet provide a general classification of the solvation

properties. Combination of statistical methods and straight molecular dynamics

simulation on different scales are the route to follow for the next few years in

this field in order to build a closely connected exchange between theory and

experiments and the multiscale idea based on quantum calculations will certainly

play a major role.
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3 Classical Models: Detailed-Atomistic and Coarse-Grained

Force Fields for Multiscale Modeling of Electrolyte

and Polyelectrolyte Solutions

In aqueous electrolyte and polyelectrolyte solutions, electrostatic interactions are

strongly screened, owing to the large dielectric constant of the aqueous medium. In

effect, the interaction between two ions in water at room temperature only exceeds

kBT when the distance between them is smaller than 0.7 nm. At this distance the

ions are separated by approximately three water molecules; hence the effective

ionic interaction can be fully understood only when solvent molecules are explicitly

considered. Monovalent and divalent ions polarize molecular dipole orientations of

surrounding water molecules only within their first hydration shells, as indicated

in Fig. 2. Hence, the electrostatic fields emanating from ions in water are to a large

extent screened beyond the first hydration shell and, therefore, electrostatic inter-

actions between ions in water are expected not to be strong enough to justify that

water–water (hydrogen bonding) interactions can be left out in the description of

inter-ionic interactions and interactions between ions and polyelectrolytes.

Global thermodynamic properties of complex systems are often affected by the

local-scale chemical details. In recent years, experimental and computational

studies of aqueous systems containing charged and uncharged polymers, polypep-

tides, and proteins have provided ample evidence that effects of ions are local,

ion-specific, and involve direct interactions with macromolecules and their first

hydration shells [50–54]. These systems, however, are usually too large to be

described with theoretical models that include of all those details. Local chemical

processes in these systems may moreover depend on global system properties

determined by structural organization or dynamical processes at large time and length

scales, i.e., processes on local and global scales are interdependent. Computer

simulations that use only one type of Hamiltonian (quantum-mechanical, classical

atomistic, or classical coarse-grained) cannot provide a complete understanding of

these complex systems and multiscale simulation approaches are needed instead.

Here, we limit the discussion to hierarchical multiscale simulations. In hierarchical

simulations, quantum-mechanical, classical-atomistic, or classical coarse-grained

Hamiltonians are used consecutively. The different Hamiltonians each describe the

same system with different resolution (different number of degrees of freedom),

which is achieved by “parameter-inheritance” and exchange of configurations by

means of forward and backward mapping procedures [55, 56]. Systematic coarse

graining refers to deriving a coarse-grained (CG) model based on molecular simula-

tions with a higher resolution, quantum-mechanical or classical atomistic model [56].

Linking chemistry and properties in computer simulations has made huge progress

in recent years. However, significant challenges remain which are the subjects of

many studies performed today, where systematic coarse-graining methods are

being further explored. Some recent examples of our own research will be reviewed

here. Section 3.1 presents a short review of ion pairing, a phenomenon which

is determined by chemistry-specific, local details, but which potentially affects
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large-scale properties of biological systems including proteins, lipid bilayers, and

polyelectrolytes. In Sect. 3.2, coarse-graining methods are discussed that attempt to

include chemical-specificity in effective potentials for aqueous electrolytes. The

methods discussed in this section may also be used to derive effective potentials for

ionic interactions in systems containing peptides, proteins, polyelectrolytes in

solution or at (charged) interfaces, and so on. To arrive at a complete description

of CG models for macromolecular systems in aqueous solution, we finally also

briefly review CG models for polymers and hydrophobic moieties in water, empha-

sizing some aspects of model transferability.

3.1 Ion Pairing and Its Thermodynamic Implications

Formation of ion pairs in aqueous solution influences thermodynamic properties

such as the salt activity and osmotic pressure, double layer interactions and surface

forces [57], polyelectrolyte conformations [58], protein–protein interactions [59],

and so forth. When ions pair up, their osmotic activity decreases, water activity

(vapor pressure) increases, electrostatic double layer repulsions decrease, proteins

precipitate, and so on. Despite their importance, the basic mechanisms of ion

pairing are poorly understood, even in “simple” electrolyte solutions. In particular,

aspects of solvent mediation at short length scales, and various types of the

chemical specificity resulting from dispersion interactions, hydrogen bonding,

and electronic polarization, cannot easily be described with a simple physical

model. Early primitive models [60] used the electrostatic interactions between

ions and the ionic radii as key physical ingredients, but replaced the solvent with

a dielectric background that attenuates the ionic interactions. Effects of solvent

degrees of freedom on short-range inter-ionic interactions are therefore not cap-

tured by these models. Primitive models have nevertheless been very successful

in describing, for example, aqueous alkali halide solutions and polyelectrolyte

solutions, but it was also realized early on that these models fail to describe the

strength of ion–ion interactions correctly when solvent degrees of freedom play

an important role [61]. Pairing between large ions serves as an example. Here, the

hydrophobic contribution to the ion–ion attraction may become equally large

or bigger than the electrostatic contribution [62]. The “law of matching water

affinities” introduced by Collins [63, 64] emphasizes the role of the water mole-

cules explicitly, and provides a qualitative explanation of contact ion pairing. This

law states that contact ion pairs are formed between ions with comparable hydration

enthalpies only. Within the validity of a simple electrostatic model, spherical

ions with equal charge and size (radius) have equal hydration enthalpies, the

magnitude of which increases with the ion charge density. Strongly hydrated

ions (“kosmotropes”) are typically small in comparison with the size of a water

molecule; weakly hydrated ions (“chaotropes”) are typically large in comparison

with the size of a water molecule. It then follows that contact ion pairs are formed

between equally-sized ions (small–small or large–large), while unlike pairs
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(small–large) tend to stay solvent separated. Detailed-atomistic computer simula-

tions performed by Vlachy, Dill, and coworkers have confirmed this qualitative

picture [65].

3.1.1 Can Classical Force Field Models Predict Properties of Aqueous

Electrolytes Quantitatively?

In biomolecular force fields the nonbonded interactions are usually described

with Lennard–Jones and Coulomb potentials [66]. Several of the popular non-

polarizable force fields use (partial) electronic charges that do not vary in response

to changes of the local electric field at the positions of the interaction sites. While

such simple force field models do realistically describe hydration thermodynamic

properties of nonpolar and polar chemical compounds [66, 67], it is not a priori

clear if this also holds for chemical groups that dissociate to form charged species in

solution. Molecular simulations with non-polarizable force fields have indeed

shown that short-range ion–ion attractions in water, and, as a result, solution

osmotic coefficients, depend strongly on the ion parameters and water models

used in the simulations [68]. Interestingly, quantum-mechanical calculations have

indicated (cf. Sect. 2) that electronic polarization of water molecules in the first

hydration shells of mono- and divalent ions is relatively weak compared to water

self-polarization [31]. Therefore, non-polarizable classical models should in

principle be suitable to describe ion hydration in bulk. In principle, efforts could

be made to obtain classical non-polarizable force fields for electrolyte solutions

by coarse-graining over electronic degrees of freedom in quantum-mechanical

calculations (e.g., using data from CPMD simulations). This approach bears the

advantage of not having to rely on experimental input in the development of the

model. To this end, an inverse Monte Carlo method has been used in the past [33]

in which it was illustrated that a simple single-exponential form describes the short-

range lithium–water interaction in bulk water better than the Lennard–Jones inter-

action type. In view of this result [33], it perhaps is not surprising that recent

attempts to parameterize classical force fields based on experimental data have pointed

out limitations in applying standard mixing rules to describe the short range ion–

water interaction with Lennard–Jones potentials [69, 70]. Successful parameteriza-

tion could be achieved by applying scaling factors for the ion–water Lennard–Jones

interaction, the effect of which reduces the short-range ion–water repulsion [69, 70].

The scaling is particularly substantial for the smaller lithium ion [70]. The standard

mixing rules were shown to fail for the fluoride anion as well [71]. A number of

recent force field parameterization studies have used experimental salt activity

coefficients as model input [69–72]. There, it was shown that the resulting non-

polarizable force fields are transferable over a fairly broad range of salt concentra-

tions and provide quantitative accuracy. Similar observations were made by Kalcher

and Dzubiella [73] who investigated aqueous LiCl, NaCl, and KCl solutions with an

existing non-polarizable model. These authors found that the osmotic coefficients

262 L. Delle Site et al.



calculated from the exact compressibility route from liquid state theory match

experiments for salt concentrations up to 2 M.

3.1.2 Hofmeister Series of the Osmotic/Activity Coefficient

Ion-specific effects often give rise to changes in thermodynamic observables that

follow a particular ion series [50, 51, 53]. These series are known as Hofmeister

series or lyotropic series. Osmotic coefficients (or the related salt activity coeffi-

cients) depend on the ion types at finite salt concentration, while being independent

of the ion type in the limit of infinite dilution, where simple electrostatic models

(for example the Debye–H€uckel limiting law) can be used to describe them.

Because small ion–ion separation distances are rarely sampled at low salt concen-

trations, short-range ion–ion interactions are unimportant relative to the electro-

static forces operative at larger distances. Short-range interactions, however, start

playing an important role at finite salt concentrations, leading to the formation of

ion pairs which we examine here. It is well-known that osmotic coefficients follow

a Hofmeister series as shown in Fig. 5 [74]. When activity coefficients are presented

instead, this series remains qualitatively the same. The law of matching water

affinities [63, 64] predicts that activity and osmotic coefficients of aqueous alkali

bromide solutions decrease in the order Liþ > Naþ > Kþ > Rbþ > Csþ, as
observed in Fig. 5a. In LiBr solution, a small (“hard”) cation (Liþ) combines with

a large (“soft”) anion (Br�); because small ions and large ions remain solvent

separated, the osmotic coefficient of this system is high. In CsBr solution, on the

other hand, two large ions are combined; these two ions favor forming contact ion

pairs with a corresponding reduction of the osmotic (and salt activity) coefficient.

Qualitatively similar ion series are obtained if the bromide anion is replaced by

chloride or iodide. Interestingly, a reversed Hofmeister series is obtained upon

replacing bromide with the molecular anion CH3CO
�
2 (acetate) as shown in Fig. 5b.

Fig. 5 (a) Experimental osmotic coefficients [74] of aqueous alkali bromides and (b) aqueous

alkali acetates as a function of salt molality at 298 K
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This particular anion is biologically relevant, because it is found in two amino acids

(aspartic acid and glutamic acid) found abundantly on protein surfaces. The smaller

osmotic coefficient of Liþ in this system can be explained in terms of small–small

pairing: Liþ pairs with the negatively charged, small carboxyl oxygen of the acetate

moiety. Despite these qualitative insights, the law of matching water affinities does

not quantify the effects observed in Fig. 5 and moreover assumes formation of

contact ions pairs, neglecting alternative pairing mechanisms.

Figure 6 shows the potential of mean force (PMF) between a sodium ion and a

chloride ion in water, at infinite dilution of the two ions, obtained from classical

atomistic simulations [75]. The first minimum of the potential corresponds to the

contact ion pair (CIP) distance, the second minimum corresponds to the solvent-

shared ion pair (SIP) distance, and the third minimum to the solvent-separated ion

pair (2SIP) distance. Figure 7a shows an example of a SIP in aqueous NaCl [75].

The infinite dilute potential of mean force in Fig. 6 can be used as an effective pair

potential in implicit solvent simulations. The osmotic coefficient f (rs) ¼
P/2rskBT (with P the osmotic pressure and rs the salt number density) can be

obtained through the virial route. For the case of a binary mixture of components

i and j and pairwise additive, density-independent pair potentials, the virial equation
can be expressed as

fðrsÞ ¼ 1� p
3
rs

X
ij

ð1
0

gijðr; rsÞ
dbVeff

ij ðrÞ
dr

r3 dr: (1)

This equation involves the infinite-dilute pair force dVeff
ij =dr, while the pair

correlation function gij (r; rs) has to be evaluated at the density considered.

Fig. 6 Potential of mean force between a sodium ion and a chloride ion at infinite dilution in water

at 298 K obtained from atomistic simulations with the SPC/E water model (red curve). (Adapted
from [75]). The dashed curve shows the Coulomb potential � e2/4pe0er with e ¼ 71 the static

dielectric constant of SPC/E water
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Equation (1) is not exact, because it employs the infinite-dilute pair potential and

multi-body contributions to the effective pair interaction at higher salt concentra-

tions are not considered [75]. These multibody contributions are induced by the

water (further described in Sect. 3.2.1), but also include ion multiplet interactions.

Direct interpretation of the microscopic electrolyte structure with respect to the

osmotic coefficients in Fig. 5 is subtle. Structure and pressure are linked by the

virial expression, which is an integration over the pair structure and pair potential

weighted by a factor r3. This weighting is the reason that the osmotic coefficient

cannot be related one-to-one to peak heights of the pair correlation functions

without also considering the minima and the whole oscillatory form of these

functions [73]. To relate the contributions of CIPs, SIPs, and 2SIPs to the osmotic

coefficient, different spatial regions corresponding to the peaks in gij (r; rs) can be

integrated separately; however, this procedure remains approximate due to the

assumption of pairwise additivity.

While linking structure and thermodynamics based on the virial expression is not

straightforward, this link can in fact be established using an alternative description

based on Kirkwood–Buff (KB) theory [76]. Whereas the virial route requires

information on the effective potential, the KB description does not make any

assumption on the nature of the potentials, is exact, and its central quantities can

be interpreted in terms of local solution structure. To this end, we consider the

derivatives of the salt activity with respect to the density at constant pressure p and
temperature T. For the systems shown in Fig. 5 these derivatives show the same

order as the osmotic coefficients/salt activities for the different ions [70]. Hence, the

microscopic mechanism explaining the order among the derivatives of the salt

activity for the different ions also explains the Hofmeister series for the activities

obtained by integration of the derivatives. Based on this, the relation between

Fig. 7 (a) Solvent-shared ion pair (SIP) in aqueous sodium chloride solution [75]. The central

water oxygen (red) coordinates the sodium ion (yellow) while this molecule is at the same time

forming a hydrogen bond with the chloride ion (blue). (b) SIP in aqueous sodium (blue) acetate
solution [70]. In this system, changes in the excess number of SIPs (the observed number of SIPs

minus the number expected at the corresponding distance if all ions are statistically distributed)

within the Li+, Na+, K+ ion series are responsible for changes in the salt activity coefficient
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thermodynamic changes and formation of CIPs, SIPs, and 2SIPs can be examined

in a relatively straightforward manner. To see this, we express these derivatives in

terms of excess coordination numbers by means of the Kirkwood–Buff theory of

solution [76, 77]:

@ log as
@ log rs

� �
p;T

¼ 1

1þ DNSS � DNWS

(2)

where as ¼ gsrs the salt activity, gs denotes the molar scale salt activity coefficient,

and DNss and DNws denote the salt–salt and water–salt excess coordination numbers

defined as

DNij ¼ rj4p
ð1
0

gijðrÞ � 1
� �

r2 dr: (3)

Differences in DNss � DNws within a Hofmeister series result from short-range

contributions to this integral. If we assume that contributions to the integral in

equation (3) vanish beyond distance R, DNij can be interpreted as the change in the

average number of particles of type j in a spherical region of radius R caused by

placing a particle of type i at the center of the region. Hence, DNij is a measure of

the affinity between particle types i and j. Molecular simulations of alkali chlorides

and alkali acetates showed that (at 1 M salt) ion specificity, as expressed by the

denominator on the right hand side of equation (2), arises from the interactions

between oppositely charged ions. We therefore replace the denominator 1 þ DNss

� DNws with 1 þ DN�:

@ log as
@ log rs

� �
p;T

� 1

1þ DN� : (4)

This equation relates thermodynamic changes to a measure of affinity, deter-

mined by the local electrolyte structure. We can furthermore write

DN� ¼ DNCIP þ DNSIP þ DN2SIP þ C (5)

with DNCIP denoting the excess number of CIPs, obtained by integration over the

first peak of g� (r; rs), DNSIP denoting the excess number of SIPs, obtained by

integration over the second peak, etc. Equations (4) and (5) provide a route to link

thermodynamics to structure by means of integrals over peaks of the pair correla-

tion function corresponding to CIPs, SIPs, and 2SIPs. All ion-specificity for the

systems in Fig. 5was observed in the three excess coordination numbersDNCIP,DNSIP,
and DN2SIP, while the constant C in equation (5), corresponding to the contribution

from distances larger than approximately 0.8 nm, was the same for all cations with-

in the alkali ion series investigated [70]. It was found [70] that the series shown in

Fig. 5a (alkali bromides) can be explained with the observed changes in DNCIP, in
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agreement with the interpretation based on the law of matching water affinities.

However, the behavior shown in Fig. 5b (alkali acetates) could not be explained

with a contact pairing mechanism. Instead, this Hofmeister series was shown to result

from changes inDNSIP among the different cations. Hence, a solvent-mediated pairing

mechanism, shown in Fig. 7b, explains the thermodynamic changes in this system.

Hydrogen bonding within the hydration shells plays an important role in this mode of

ion pairing. A similar solvent-mediated interaction mechanism was more recently

observed in molecular simulations of aqueous solutions with dimethyl phosphate

anions [78]. This system may serve as a model for describing interactions of alkali

cations with phosphate groups on nucleic acids.

This example shows that, in contrast to the approximate virial route in equation

(1), a link between thermodynamic changes and microscopic electrolyte structure

can be made using an analysis based on Kirkwood–Buff theory. It illustrates,

moreover, how different modes of ion pairing with a given cation may lead to

opposing thermodynamic changes in systems with different anion types. Clearly,

effective potentials used in coarse-grained models should ideally retain enough

sophistication in order to distinguish CIP states from SIP states.

3.2 Towards Coarse-Grained Models for Aqueous
Electrolytes and Polyelectrolytes

Systematic coarse graining aims at developing models which, despite improved

computational efficiency, preserve chemical specificity and accuracy. Apart from

these “specific” CG models, which have gained significant popularity during the

past decade, “generic” CG models have been used much longer. In specific and

generic CG models, the degrees of freedom are usually chosen with an eye to the

required system size and the level of resolution, required to describe the physical

and chemical phenomena of interest. The effective potentials for the “remaining”

degrees of freedom of a specific CG model are determined by averaging over the

“lost” degrees of freedom of the specific chemical system it is intended to describe.

In generic models, there exists no such link to a detailed chemical system. Potentials

for bonded and nonbonded interactions in generic models are usually kept simple,

containing a small number of free constants needed to describe the generic physical

behavior of various classes of materials systems.

Systematically CG models for specific systems are often obtained by sampling

probability distributions of the “remaining” degrees of freedom with a high resolu-

tion model. The sampling method achieves statistical averaging over the “lost”

degrees of freedom. The effective potentials obtained from the probability distribu-

tion functions are state-dependent, i.e., dependent on density (concentration) and

temperature. The dependence on state limits the thermodynamic transferability of

the effective potentials. Although a plethora of methods have been developed to

obtain effective CG potentials [79], which in turn have been used to simulate
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various systems under different conditions, little attention has been devoted to the

question of transferability [75, 80–84]. In this section we provide examples of

coarse graining approaches which led to CG models with improved thermodynamic

transferability. We will focus on aqueous solutions and polymers, covering implicit

solvent CG models for electrolytes and hydrophobic solutes, as well as conforma-

tional sampling of polymers.

3.2.1 Transferable Coarse-Grained Models for Aqueous Electrolytes

In this section we discuss recent progress made in developing implicit solvent

coarse-grained models for aqueous electrolytes that, despite improved computa-

tional efficiency, preserve chemical specificity and quantitative accuracy. Implicit

solvent CG models for ions may be obtained based on calculations of potentials of

mean force (cf. Fig. 6) in atomistic simulations at high ion dilution [75]. Alterna-

tively, they may be obtained by an inverse Monte Carlo or an iterative Boltzmann

inversion (IBI) procedure that optimizes a set of effective two-body potentials that

best reproduce the two-body correlations (i.e., the electrolyte radial distribution

functions) at finite salt concentration [85]. Regardless of the procedure, the effec-

tive pair potentials obtained at one concentration are not transferable to another

concentration, i.e., we cannot generally assume that the multibody potential of

mean force of the ions at finite salt concentration can be expressed as a pairwise

additive sum of effective two-body contributions determined at another concentra-

tion. Thus, no guarantee exists that one set of effective two-body potentials

validated at one concentration also correctly describes the liquid structure and

thermodynamic properties (i.e., osmotic coefficient/salt activity) at another concen-

tration. A possible solution to this problem has been proposed by Hess et al. [75].

The PMF shown in Fig. 6 cannot be used as an effective two-body potential at finite

salt concentration, because the two-body potential is affected by the additional ions

through their effect on the dielectric behavior of the solvent. With increasing salt

concentration, the solvent dielectric constant decreases due to electrostriction

and the effective two-body attractions between oppositely charged ions become

stronger. The authors [75] managed to obtain a transferable effective two-body

potential Veff, by correcting the potential of mean force Vp, obtained from atomistic

simulations of only two ions in water, with a Coulomb term that includes a salt

concentration dependent dielectric constant eE (rs):

Veff r; rsð Þ ¼ VpðrÞ þ q1q2
4pe0

1

eE rsð Þ �
1

e

� �
1

r
¼ VsrðrÞ þ q1q2

4pe0eE rsð Þr : (6)

In (6), e is the dielectric constant of the atomistic water model and Vsr denotes the

short range part of the potential which includes effects of dispersion interactions and

ion hydration. It could be shown that the effective two-body potential in equation (6)

reproduces the osmotic coefficients of aqueous sodium chloride solutions in

satisfactory agreement with experiments up to almost 3 M salt [75]. The idea of
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accounting for solvent-mediated multi-body correlations by means of a salt density

dependent dielectric constant [75] has been adopted by Kalcher and Dzubiella [73]

who compared the osmotic coefficients of alkali halide solutions obtained through

the approximate virial route to osmotic coefficients obtained through the exact

compressibility (Kirkwood–Buff) route. Although these studies [73, 75] have con-

tributed to a better understanding of thermodynamic transferability of the CG

implicit solvent pair potentials, it remained unclear whether – in addition – these

potentials are transferable with respect to their ability also to reproduce the electro-

lyte pair correlations at different concentrations. In other words, are the CG implicit

solvent pair potentials capable of reproducing the electrolyte structure and thermo-

dynamics in agreement with the atomistic explicit solvent model? This question has

been addressed in a recent study [86] that used aqueous sodium chloride as a model

system. The osmotic pressures and pair correlation functions obtained with the CG

and atomistic models were found to be in satisfactory agreement up to concentra-

tions of approximately 1 M salt, providing evidence that thermodynamics and

electrolyte structure (at the pair level) can be described with an effective pair

potential which, moreover, is transferable over a fairly broad range of electrolyte

concentrations. Discrepancies between the predictions of the atomistic explicit

solvent model and the CG implicit solvent model were observed at larger salt

concentration. At high salt concentration, the implicit solvent CG model failed to

reproduce the sodium–sodium and chloride–chloride pair correlations obtained

with the atomistic model, leading to an overestimation of the osmotic pressures,

while the sodium–chloride pair correlations could still be reproduced.

3.2.2 Are Hydrophobic Interactions Between Coarse-Grained

Moieties Pairwise Additive?

To develop an implicit solvent CG polyelectrolyte model by systematic coarse

graining, several types of interactions need to be considered in addition to the

electrostatic interactions discussed in the previous section. Large ions have a

propensity for the water/vapor interface [87] as well as for nonpolar groups on

protein surfaces [59] and are known to salt-in nonpolar molecules in water [88–91].

The physical origin of these effects can in part be explained by enhanced solvent

density fluctuations vicinal to hydrophobic groups [91] and hydrophobic surfaces

[92, 93]. Larger fluctuations imply greater ease of formation of cavities, favoring

solvation of large hydrophobic ions. The magnitude of the corresponding, specific

interactions can be quantified based on PMF calculations in simulations with

atomistic, explicit-solvent models. These potentials of mean force have previously

been used as effective pair potentials in implicit solvent CGmodels [57, 59, 68, 75, 94].

Hydrophobic interactions between nonpolar moieties can be treated in a similar

spirit [95].

In view of our aim to develop transferable CGmodels, again the question should

be asked as to whether the implicit solvent CG potentials – in this case involving

CG interactions between nonpolar moieties – are transferable to thermodynamic
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conditions with varying solution concentrations. This question has been addressed

in a recent study of benzene–water mixtures [84]. There, the authors investigated

the variation of the solute (benzene) activity coefficient with a detailed-atomistic

and a CG model in the entire range of stable solution concentrations varying

between high solute dilution up to the solubility limit where large density fluctua-

tions and corresponding hydrophobic benzene clusters were observed. To this end,

the authors developed a CG single-site benzene–benzene pair potential, based on

the benzene–benzene pair potential of mean force obtained from detailed-atomistic

simulations at high benzene dilution. The CG pair potential contained a hydropho-

bic contribution in additional to the contribution of direct benzene–benzene van

der Waals interactions. It could be illustrated that the thermodynamic changes and

benzene clustering obtained with the CG model matched almost perfectly with

the predictions of the corresponding atomistic model in the entire range of stable

solution concentrations [84]. This result indicates that the hydrophobic interactions

in this system are pairwise additive, supporting the ideas of an earlier study by Wu

and Prausnitz [96] who examined a larger set of hydrophobic solutes.

3.2.3 Coarse-Grained Polymer Models

Hierarchical modeling of polymers has made significant progress in recent years.

The coarse-grained models discussed in this section consist of “united atoms,”

which typically merge 5–15 real atoms [55, 56, 97, 98]. Figure 8 shows an example

of a polystyrene (PS) fragment in which two coarse grained beads are used to

represent the chemical repeat unit. Effective pair potentials are used to describe the

non-bonded interactions between CG beads, the bonded interactions including

potentials for bond stretching, angle bending, and torsional rotations along CG

bonds [56]. Molecular dynamics simulations of polymer melts with these types

of CG models are typically four orders of magnitude more efficient than detailed-

atomistic models [99]. Hence, long enough time scales are achieved, required to

Fig. 8 Coarse-grained poly(styrene) model [98]. The gray beads represent the dangling phenyl

groups, red beads represent the aliphatic (backbone) part of the chemical repeat unit. Red and gray
beads are connected by coarse-grained bonds. Atomistic details can be reinserted in the coarse

grained beads (“inverse mapping”), allowing for scale-hopping between the different resolution

levels
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equilibrate the chain conformations and melt packing of high molecular weight

polymers and to investigate polymer dynamics [100–102] as well as the dynamics

of slowly diffusing additives [99]. Today, these models are used to describe static

and dynamics properties of soft matter systems at length scales ranging between

0.3 nm and 100 nm and time scales up to 10�3 s. Since the degree of coarse graining

is moderate, atomistic chain conformations can easily be mapped onto the CG chain

conformations, as illustrated in Fig. 8.

Switching resolution, from atomistic to coarse grained and back [56] offers

new opportunities for scale-bridging approaches in multiscale modeling of complex

soft matter systems. For example, recently developed hierarchical PS models have

significantly contributed to computationally efficient, quantitative modeling of

chain diffusion in entangled melts [102], liquid and vapor permeation data [99],

and detailed-atomistic structures of free-standing polystyrene surfaces [103]. Most

of these properties are not amenable to modeling with a detailed-atomistic model

alone.

A coarse-grained force field for a selected macromolecule should ideally be

developed such that it is transferable to conditions where the chemical environment

or thermodynamic conditions are different. Different methodologies exist to obtain

the CG potentials for polymer models. The IBI method [104] optimizes a set of CG

potentials (bonded and nonbonded interactions) against selected target quantities.

These target quantities are obtained from atomistic simulations of oligomer melts

(or polymer solutions) and include pair correlation functions between the CG bead

centers and probability distribution functions of the bonded degrees of freedom

corresponding to the coarse-grained mapping points. The iterative procedure is

usually performed under constant NVT conditions. The virial pressure of the

atomistic system is often included as an addition target in the iterations. Because

IBI is an automated procedure [104, 105], CG models can readily be obtained once

an atomistic trajectory is available. However, it usually remains unclear whether the

resulting CG models can be applied outside the thermodynamic state point where

the IBI parameterization was carried through. Since IBI-derived models are fitted to

the structure and pressure at a selected density and temperature, the models may fail

to describe condensed phase properties at different temperatures and densities. In a

recently developed, alternative coarse graining method [98], coarse-grained bonded

and nonbonded potentials have been derived from sampling single oligomers and

oligomer pairs in vacuum, respectively, with a detailed-atomistic model. Hence,

fitting of the potentials on condensed phase structures or conformations is avoided

in this method and the resulting potentials are not biased to represent any environ-

ment-dependent (melt, solution) property, such as chain conformations or bead

packing characteristics. In order to obtain CG bonded potentials, single oligomers

were sampled in vacuum, taking into account all atomistic interactions along the

backbone up to a cutoff distance which is determined by the local interactions that

influence the bond stretching, angle bending, and torsional degrees of freedom of

the CG model. Longer-ranged nonbonded interactions along the backbone, that in

the final CG model are accounted for with nonbonded interactions, were all

switched off during the single-oligomer sampling stage in order to avoid “mixing”
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of bonded and nonbonded contributions in the CG bonded potential. The potentials

of mean force corresponding to the CG bonded degrees of freedom, obtained from

this sampling procedure, are used as effective potentials to describe bonded degrees

of freedom, including bond stretching, bond angle bending, and torsional rotation in

the CG model. This procedure was performed for PS oligomers with different

stereo-sequences, leading to a set of CG bonded potentials that were used to

describe stereo-regular (isotactic and syndiotactic) and atactic PS conformations

in condensed phase simulations. Effective pair potentials for nonbonded bead–bead

interactions were obtained by computing the free energy of a coupling process that

introduces the atomistic interactions between two groups of atoms corresponding to

the CG beads on two oligomers in vacuum. Figure 9 illustrates this procedure. It

should be noted that the effective nonbonded potentials obtained by this procedure

include effects of multi-body correlations related to steric constraints mediated

by chain backbone atoms surrounding the chemical moieties for which the CG

potential is evaluated. The overall coarse graining procedure of [98] is very

cheap (sampling in vacuum) and moreover ensures that bonded and nonbonded

interactions are strictly decoupled.
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Fig. 9 Thermodynamic cycle used to obtain CG nonbonded interactions [98]. W (R) denotes the
reversible work to bring two trimer molecules from infinite distance to distance R computed with a

detailed-atomistic force field. The distance coordinate R between the mass centers of the two

central methylene units, for which a CG interaction potential is being sought, is used as reaction

coordinate. Woff (R) denotes the reversible work to bring the same two trimer molecules from

infinite distance to distance R, while all direct nonbonded interactions between the atoms belong-

ing to the two central methylene units are switched off. Propane is chosen here for illustration

purposes. In the gas phase, Veff (R ! 1) ¼ 0. The CG potential function Veff (R) ¼ W (R) �
Woff (R) represents the reversible work (free energy) expended to introduce nonbonded interac-

tions between all atoms of the methylene moieties and can be used as a CG two-body potential for

methylene united atoms in propane
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Figure 10 shows the CG nonbonded phenyl–phenyl potentials (“B–B”) at two

temperatures obtained by applying the procedure depicted in Figure 9 to PS

sequences which have been coarse grained according to the mapping scheme

shown in Fig. 8 [106]. The attractive tail of the nonbonded potential can be fitted

with an r�6 distance dependency, while the short-range repulsive part is typically

“softer” (n < 12) than the r�n (n ¼ 12) dependency of the Lennard–Jones potential.

The ABAB torsion potential of the meso diad is also shown in Fig. 10. The tempera-

ture dependencies of these bonded and nonbonded potentials are noticeable but weak;

therefore the potentials obtained at the higher temperature may potentially also be

used at lower temperatures. Although the parameterization procedure is cheap

enough to be repeated at various temperatures, the potential obtained at 503 K was

used in lower temperature simulations of PS melts in order to test the temperature

transferability of the model.

Figure 11 shows the density of polystyrene 10-mers in the liquid phase (1 atm)

obtained with the detailed-atomistic and CG models. Note that the density is a

prediction of the CG model, since condensed phase data have not entered the

parameterization. The CG model, parameterized at 503 K, is transferable to lower

temperatures in a range as large as 100 K. Another IBI-derived PS model, with one

CG bead per chemical repeat unit, was recently shown not to be transferable to

other temperatures [107]. The temperature dependence of the density observed in

that work was opposite to the dependence observed with the atomistic model (i.e.,

the CG model predicted a negative thermal expansion coefficient). The poor

temperature transferability was suggested to be caused by the coarse description

(one bead per repeat unit), which, for example, does not permit one to account for

subtle changes in the liquid state packing of the phenyl groups [107].

The coarse-grained PS model in Fig. 8 furthermore describes the global

chain conformations of stereo-regular PS melts in satisfactory agreement with

Fig. 10 (a) Nonbonded phenyl–phenyl (B–B) interaction potential and (b) the coarse-grained

ABAB torsion potential (A ¼ backbone bead; cf. Fig. 8). The potentials were sampled at two

temperatures [106]
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experiments [98]. At the local scale of a few chemical repeat units, chain conforma-

tions sampled with the CG and atomistic models were also in good agreement, hence

properties related to the global and local conformational behavior can be realisti-

cally modeled with the CG model. Figure 12 shows two chain conformations taken

from simulations of atactic and syndiotactic PS melts at 503 K [106]. Because

neither the bonded potentials nor the nonbonded potentials have been biased to

reproduce any structural property in the condensed phase, it can be justified using

them not only in simulations of amorphous melts, but also in simulations of

polystyrene in solution or at interfaces. Preliminary hierarchical simulations of

free-standing PS surfaces have provided indications for surface-induced crystalliza-

tion of syndiotactic PS [103], thereby significantly extending the scope and applica-

bility of the isolated chain approach to molecular coarse graining [98].
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Fig. 11 Liquid density

(1 atm.) of polystyrene

10-mers as a function of

temperature obtained with

the detailed-atomistic and

coarse-grained models

[98, 106]

Fig. 12 (a) Snapshot of an atactic PS conformation in the melt [106]. (b) Snapshot of a

syndiotactic PS conformation in the melt –trans configurations along the backbone leads to a

larger radius of gyration compared to atactic PS and cause kinks that may serve as a crystallization

nucleus at low temperatures
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3.2.4 Towards Systematic Coarse Graining of Polyelectrolytes in Solution

Polyelectrolytes in aqueous solution are frequently modeled with generic CG

models rather than with systematically coarse-grained ones. The Bjerrum length

in these systems is, however, small and contributions of the explicit water mole-

cules to the effective forces between the ions cannot be neglected, in particular in

systems where polyelectrolyte concentrations are large. Systematic coarse graining

techniques can be used to account for these contributions in the short range part

of an effective (implicit solvent) ion–ion potential. A so far non-existing implicit

solvent CG model for polystyrene sulfonated (PSS) may be obtained using the

isolated chain approach to molecular coarse graining [98]. To this end, the PS

mapping scheme of Fig. 8 can be used (alternative mapping schemes may also be

chosen), augmented with a CG bead that represents the sulfonate group connected

to the phenyl bead. Conformational sampling with isolated atomistic PSS chains

in vacuum provides the bonded potentials of the CG model. At this stage, the

electrostatic interactions between the sulfonate groups may be set to zero (e.g., by

using a SO3H group instead of the charged SO�
3 group); hence the CG bonded

potentials are not influenced by the electrostatic condition, which is described by

nonbonded potentials determined independently. The nonbonded implicit solvent

potentials between the various PSS beads can be obtained from pair potential of

mean force calculations in explicit water, using chemical compounds resembling

the CG beads, along the lines investigated previously for small peptides [94]. This

approach, however, does not account for the bead being part of a polymer chain,

nor does it take into account that the hydration properties of isolated chemical

compounds are different from those of the corresponding chemical groups within a

macromolecule. It is, for example, unclear to what extent the effective nonbonded

interaction between two benzene molecules in water resembles the effective inter-

action between two phenyl beads on PSS chains in water. To account for both bead

connectivity and differences in aqueous hydration, the approach in Fig. 9 can be

invoked. Note that, in this case, not only the direct interactions between atoms

contained by the central beads of the two solutes are switched off in the lower part

of Fig. 9, but also the interactions between these atoms and the solvent. Hence,

unlike in the gas phase, the effective potential Veff (R ! 1) 6¼ 0 and is determined

by the conditional hydration free energy of the central bead, the condition being that

interactions between the atoms in this bead and the solvent are introduced in an

environment that has the solute atoms connected to the central bead already

“dissolved.” Standard thermodynamic integration or thermodynamic perturbation

techniques can be used to calculate the conditional hydration free energy. By means

of the way described here, the effects of the solvent, counter ions, and salt on the

conformations of the CG polyelectrolyte in solution are modeled through the

nonbonded CG interactions, as required. Note that this will not necessarily be

the case when alternative coarse graining methods are used. With the inverse

Monte Carlo or IBI methods, the effects of the nonbonded interactions at the

atomistic scale will be “mixed” between the CG bonded and CG nonbonded

potentials, in effect limiting the transferability of the polyelectrolyte model thus
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obtained. A concentration dependent dielectric constant [75] can furthermore be

used to account for multi-body effects in the effective pair interaction between the

charged beads. Although this systematic coarse graining approach has not been

investigated so far, it offers a promising future route to studying chemistry-specific

effects in polyelectrolyte systems.

Implicit solvent models are in particular efficient in modeling of dilute polyelec-

trolyte systems. The implicit solvent potentials may however lose validity in dense

systems such as polyelectrolyte brushes, polyelectrolyte multilayers, and so on. In

these systems, local compositional variations may give rise to strong, unscreened

electrostatic interactions in regions where the water content is low as well as to

weaker, screened electrostatic interactions in regions with greater water content. To

describe such types of systems, CG models are needed that keep an explicit yet

coarse-grained solvent description. These models have previously been developed

for peptides and hydrophobic solutes in water [84, 108] where one water molecule

has been represented by a single interaction site. Recently developed CG water

models map four water molecules on a three-bead model that can account for the

orientational polarizability of real water [109, 110].

4 The Generic Polyelectrolyte Coarse-Grained Model

The classical way of simulating the static properties of polyelectrolyte solutions

with explicit electrostatic interactions and counterions dates back to the early 1990s

[111–114]. The model is based on the restrictive primitive model of electrolytes

that treats the counterions or salt ions in general as charged hard spheres moving in

an implicit dielectric background of relative permittivity to that of water at the

desired temperature (i.e., 78 for water at room temperature). The polymer model is

that of a bead-spring model, i.e., a Kremer–Grest model [115] where parts of the

beads are carrying an explicit charge (that is opposite to the counterions); see

Fig. 13 for the mapping scheme for a simple PSS monomer.

Details of the model and some applications can be found in some reviews

[58, 117–119]. The solvent is completely structureless, and therefore cannot

account for ion specific effects in its simplest form and the other effects mentioned

in the previous sections. However, since only coarse-grained polymer beads plus

salt and counterions have to be taken into account, relatively large system sizes

(meaning many and very long polyelectrolytes) can be modeled. In this way, for

example, the structure of the solution, the origin of the polyelectrolyte-peak in the

scattering patterns, and scaling properties of polyelectrolyte solutions or polyelec-

trolyte gels can be studied; see [114, 120–123] for a biased selection of examples.

The polymers can each have up to about 300 beads, and 30–50 of them can be

investigated. By means of a tailored attraction between the polymer beads, the

polymer can be modeled to behave as being in a good, theta, or poor solvent.

Polyelectrolytes in a poor solvent are a particular interesting class of PEs, since for

those PEs pearl-necklace conformations [124] have been theoretically predicted,
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found by simulations and experiments, and intensively studied during the last 10

years [120, 125–129]. Another interesting polyelectrolyte is, of course, DNA,

which is a negatively charged PE. Since the persistence length of DNA is around

50 nm, on short length scales DNA can be considered as a charged rod. This rod

can, to a certain extent, be modeled as an infinite charged cylinder within a cell

model [130]. Furthermore, synthetic model systems have been synthesized that

are strongly charged like DNA and rodlike, and can therefore serve as simple

systems, where effects like counterion condensation or mean-field approaches can

be studied. We will illustrate here as an example a comparison between osmotic

coefficient data of short and stiff polyelectrolyte rods [131] and several simulation

studies [132–134]. The target quantity here is the reduced thermodynamic activity

of the counterions that can be expressed in terms of the osmotic coefficient:

f ¼ P
Pid

; (7)

where Pid ¼ cckBT is the ideal gas pressure at given counterion concentration cc
and temperature T, and kB is the Boltzmann constant. Experimental studies of

strongly charged polyelectrolytes show that f is a weak function of polymer

concentration, and typically measured values are of the order of 0.2–0.3 for

univalent counterions in the dilute regime; see references in [118]. In our first

paper [132] we used the Poisson–Boltzmann (PB) solution of the infinite-rod cell

model for strongly charged polyelectrolyte solutions that neglects electrostatic

correlations and the finite sizes of the rods and compared it to explicit ion simula-

tions. The correlation effects were found to decrease the osmotic pressure by

approximately 7% [132] at low concentrations, but overall the main part of the

decrease of the osmotic coefficient was captured by the model. However, in a later

NaPS (sulfonated Polystyrene)

Fig. 13 Mapping scheme of a PSS polymer onto a generic charged bead-spring model with an

implicit solvent representation and counterions. Figure adapted from [116]
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and more detailed study [133] we found that the finiteness of the chain can lead

to even more drastic effects. Figure 14 summarizes our results. The osmotic

coefficients obtained via the finite cell models are corrected by the 1/N term to

obtain the bulk pressure. All finite rod methods yield similar results which are

significantly higher than both the theoretical and the simulation data of the osmotic

coefficient for an infinite rod. The prediction of the optimal cylindrical cell model in

turn was always below the measured bulk pressure. This effect, found to be of the

order of 1%, was attributed to the weak polymer–polymer interactions present in

bulk but not in the cell model. The simulation of a cylindrical cell periodic in one

dimension made it possible to assess directly the counterion–counterion electro-

static correlations. Their effect was found to decrease the osmotic pressure com-

pared with the mean-field PB prediction. This is in good qualitative and quantitative

agreement with previous theoretical studies [132] and simulations [136] of strong

polyelectrolyte solutions. The correlation effects discussed above are all small in

comparison to the large difference between the pressure obtained for a finite and an

infinite polymer chain. The finiteness of the chain therefore plays the leading role in

the studied concentration range. The P (cc) curve obtained for the finite macroion

not only decreases monotonically, as would indeed be expected at very low density,

but also goes well above the curve obtained for an infinite rod. We finish this

paragraph by stating that the difference between the simulation and the experimen-

tal data of [131] remains unclear up to now, although most relevant corrections to

this simple model have been tested by us, but without any success [134].
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Fig. 14 The osmotic coefficient calculated at different counterion concentrations using various

models. The results for a finite rod calculated using the spherical cell model (empty circles),
cylindrical cell with adjustable geometry (empty squares), and bulk system (empty triangles) are
found to be in very good agreement. The dotted line is a numerical fit to the bulk data drawn to

guide the eye. The solid line is the prediction of the PB theory and the dashed line fits the results
obtained fromMMM1D [135] simulations for an infinitely long rod (filled circles). Experimentally

measured osmotic coefficient for iodide (open diamonds) and chloride (filled diamonds) counter-
ions [131] are also shown. Figure adapted from [133]
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We will conclude this part of the review by mentioning that if one is interested in

solvent mediated interactions in polyelectrolytes, i.e., to study dynamical behavior,

then one immediately faces a problem since we have used so far an “implicit”

solvent. The obvious thought of including an explicit solvent is only viable for very

small system sizes, since the amount of solvent particles needed quickly reaches the

range of millions and more particles even for small simulation boxes, and the

needed computational time quickly becomes prohibitive. A possible way out is to

use a mesoscale solver for solvent dynamics such as the Lattice-Boltzmann (LB)

method, stochastic rotational dynamics (SDR), dissipative particle dynamics

(DPD), or Stokesian dynamics, and couple the coarse-grained PE model to the

background fluid in such a way that the PE can exchange momentum with the fluid

background and vice versa, such that correct hydrodynamical interactions are

generated [137, 138]. This becomes necessary for electrophoretic applications

[139] where the dynamics of the PE under applied fields is studied [140–143].

The usage of simple Langevin (or Brownian) dynamics destroys any hydrodynamic

interactions, and, although several studies of dynamical aspects of PE behavior

have appeared [144–146], they can be valid only as long as hydrodynamical

interactions do not play any role.

4.1 Polyelectrolyte Multilayers

Polyelectrolyte multilayers (PEMs) denote an interesting class of materials that are

formed by alternating layers of oppositely charged PEs. In the early 1990s Decher

et al. [147, 148] demonstrated the feasibility of building such a type of multilayers

using the so-called Layer-by-Layer (LbL) technique. In order to build up a PEM

one sequentially exposes a normally negatively charged substrate to a cationic PE

solution followed by a rinsing step in order to dispose the supernatant ions and PEs.

Then the substrate is dipped into an aqueous solution of anionic PEs, always

followed by a rinsing step. Repeating this simple procedure can result in a build-

up of hundreds of alternating charged layers. Films made up by PEMs exhibit

unique properties which make them suitable candidates for many different uses:

matrix materials, bio-coatings, selective membranes, chromatography, optical

materials and devices, micro- and nanocarriers, or biocides, just to name a few.

There have been only a few attempts to describe theoretically the electrostatic

self-assembly of PEMs, and often they rely on several serious assumptions that are

hard to test experimentally [149–151]. Recently simple models based on mean-field

descriptions have been developed [152–155] that reproduced better some of the

experimental observations regarding the stability and the different growth regimes

for PEMs. The film thickness of PEMs normally grows linearly with the number of

layers, but exponentially growing PEMs are also known. Strong correlations that

exist between oppositely charged polyions provide a formidable challenge to the

theoretical description of PEMs.
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In order to go beyond mean-field theories, numerical simulations have been used

to study PEM formation. The large number of particles involved in the simulation

of such systems renders a fully atomistic description of the whole PEM and the

solvent computationally too demanding. For this reason, so far only the adsorption

of short chains onto a bare surface has been reported using atomistic models

[156–161]. The more common approach has been the use of coarse-grained

primitive models: the first simulational models aimed at understanding PEM was

developed by Messina et al. [162] where the multilayering onto a charged sphere

was investigated using Monte Carlo (MC) simulations. This study revealed an

important point, namely that additional attractive short ranged forces of non-

electrostatic origin were needed to produce stable PEMs, otherwise weakly bound

PE complexes would form on the substrate and desorb from the surface again,

diffusing into the bulk solution. The difficulty of obtaining a purely electrostatically

bound PEM already suggested the possibility that PEM formation cannot be an

equilibrium phenomenon. Later Messina [163, 164] studied the multilayering on

charged rods and planar surfaces, confirming that the previous findings were not

geometry specific, and also for these surface geometries additional non-electrostatic

forces were needed to keep the PEMs stable. The main findings obtained up to 2004

were reviewed in [165]. Later Panchagnula et al. [166] used the same model with

Langevin simulations to revisit PEM growth on spherical substrates. Their results

suggested that the stratified multilayers found around adsorbing particles where

only temporal structures whose intermixing could be slowed down via the forma-

tion of strong ionic-pairs between oppositely charged monomers. Subsequently,

Messina [167] studied the effect of the image forces arising from the dielectric

mismatch between surfaces and the surrounding aqueous solution on the adsorption

of PE in planar surfaces. In was shown that image forces can considerably reduce

the degree of adsorption of PE and can even inhibit the charge inversion process in

the topmost layer. The effects of the length and fraction degree of charge of PE on

PEM formation of planar substrates were studied by Patel et al. [168] using

Langevin simulations, confirming the importance of short-range interactions for

all fraction degrees of charge and the considerable intermixing between chains

deposited on subsequent steps. Other works followed [166, 169, 170].

Despite the great progress gained during the last two decades of research in

PEMs, many questions are still only partially solved. Some examples are: the

source of the apparent stability of PEMs and the rationale behind the different

types of growth modes (linear vs exponential growth; the role of non-electrostatic

short-range interactions on the stability and properties of PEMs [171]; the possi-

bility that PEMs are not true equilibrium structures, but kinetically trapped states

[172]; the intermixing of PE over several layers [148, 173, 174] and the ion

distribution inside PEMs [175, 176]; the influence of the substrate on the first

layers [177, 178]; the influence of the charge density [179–181] and type of

counter ions [182, 183] on PEM formation and properties; and the effects of pH,

temperature and salt concentration on the properties of PEMs [184, 185], to name

just some of the questions.
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Numerical simulations can help to shed light on some of these issues. However,

they also face some technical problems, namely, if the dynamics is slow in experi-

ment, it will also be slow in the simulation, provided the correct interaction

potentials are used. Therefore speeding up the dynamics, for example via a reduc-

tion of the number of degrees of freedom, is essential. Therefore, to obtain a

realistic description of PEMs, current models and techniques need to be further

improved.

Recently we have revisited the usage of the generic coarse-grained model to

study PEM formation out of solution [186, 187]. There are several issues during the

build-up of a PEM. First, one has to develop a suitable simulation protocol which

allows one to mimic the dipping process closely in order to obtain realistic adsorbed

chain conformations. Since in experiments the surface can be exposed to the

solution in the order of minutes, one has to speed up the adsorption process in the

simulation. In recent work on the adsorption of one layer of PEM, Carrillo et al.

[188] have introduced a so-called “stirring” step where, after a certain time, chains

that remain non-adsorbed are randomly repositioned in order to improve adsorption

rates. They showed that, without stirring steps, the adsorption might not be in the

real saturation regime within the time intervals used in their previous works [189].

We followed a somewhat different route and introduced several dipping-rinsing

subcycles in which we “refilled” the bulk solution of the simulation box in order to

keep the bulk polymer concentration constant. This is necessary since in a finite box

under NVT conditions the adsorption process depletes the “bulk” from polymers.

With this we were able to achieve excellent saturation conditions, and we could

simulate larger systems with substrate areas A up to A ¼ 40 � 40 (in units of the

square of the particle diameter).

Fig. 15 Simulations showing the thermodynamic instability of a bilayer (upper plot). However,
a fast deposition step of a third layer stabilizes the then tri-layer (bottom figure). The interaction
parameters are emm ¼ 1.0, ems ¼ 10. Figure adapted from [187]
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Our results on a bilayer showed that the standard coarse grained model can lead

to a much more diverse behavior than previously reported [189]. Figure 15 shows

the temporal evolution of a typical PE monolayer when the system is brought into

contact with a solution of PE of opposite sign via successive dipping–rinsing sub-

cycles with the same type of PE. Values for the main system parameters are

roughly similar to previous works of Patel et al. [188, 189]: the fraction degree of

charge is f ¼ 1/3 (i.e., one in each three monomers is charged), the density

surface charge is set to S ¼ Qtot/A ¼ 0.5625, and both attractive short-range

interactions (monomer–monomer em�m and monomer–substrate em�s) are of

the order of kBT. Our simulations revealed that the polyanions and the polycations

can complex with each other, thus destroying the bilayer and the build-up of a

PEM. We observed two different modes of complexation in our model: at low

values of the monomer–monomer interaction em�m ~ 0.2, the bilayer expels just

small complexes consisting of only a few pairs of chains. However, when the

monomer–monomer attraction is of the order of the thermal energy, em�m ~ 1, the

oppositely charged PEs do form a complex followed by a dewetting of

the surface. Patel et al. [189] had already reported that for some longer runs the

PEMs surface coverage also gradually decreased. They unfortunately only pre-

sented results for PEMs with six and eight layers, but not for bilayers. Thus it is

plausible that the PEMs in the study of Patel et al. [189] corresponded to kineti-

cally trapped states, which given enough time and a bulk reservoir large enough to

accommodate the adsorbed matter might also redissolve over the course of time.

However, we also found that if to the (unstable) bilayer we added sufficiently fast

a third PE layer, then the trilayer seemed to be stable in the course of a very long

MD run. Also the subsequent addition of a fourth layer did not change the

apparent stability, at least within the long run time up to the order of tens of

millions of MD steps we could afford. This dewetting process has indeed been

observed in some types of PEMs, although it is poorly reported in the experimen-

tal literature because they focus mainly on reporting systems and pathways that

are able to form PEMs. In principle our findings could also be related to the

experimental fact that odd numbers of layers are more stable than even numbers

of layers.

To investigate further the critical role played by dispersion forces for the PE

adsorption process and for PEMs stability, we performed both CG and atomistic

simulations. To investigate the role of dispersion forces in the CG models we took

already formed PEMs and progressively reduced the value of the monomer

charges q from 1 to 0. We observed that the PEM is able to sustain its inner

structured layering almost without modifications even when electrostatic inter-

actions are quite drastically lowered. Only for q < 0.2 could noticeable changes

in the inner PEM structure be observed. Therefore, it seems that there is a

minimum level of electrostatic interaction needed to sustain a PEM structure,

but once such a level is attained, the inner structure is almost no further modified

by increasing the strength of electrostatic interaction among PEs. This was

verified by increasing the charge values up to three times the usual unit charge

of monomers.
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The most important facts we infer from our studies of the simple coarse-grained

PEM model are that:

l Without any surface-monomer short range interaction there is no stable surface

coverage.
l Using only electrostatic interactions and purely repulsive monomer–monomer

interactions for the excluded volume, no multilayering occurs.
l A short range hydrophobic interaction between all polymeric monomers as well

as a monomer–surface attraction is needed to achieve multilayering.
l The precise interaction values need to be fine tuned in order to obtain a stable

layering.

This situation is, of course, far from satisfactory. We therefore turned to atomis-

tic simulations of all-atom (AA) poly(styrene sulfonate) (PSS) and poly(diallyldi-

methylammonium) (PDADMA) systems [160]. The polymers had a low degree of

polymerization which was 12 at most. Our main target was to investigate some

properties such as the dielectric constant and water structure that cannot be

addressed using CG models. Moreover, in a second recent effort, we looked at

PSS monolayer simulations for hydrophilic/hydrophobic surfaces and different

surface charge [161].

Our AA molecular dynamics simulations on PSS–PDADMA–water-salt (NaCl)

mixtures have provided us with another significant insight: when NaCl is added

to the PSS–PDADMA–water mixtures of composition similar to real PEMs, the salt

ions tend to form clusters inside the mixture [187], which can explain why the

addition of moderate amounts of salt has been observed not to modify significantly

the structural properties of the PE complexes. In such PE complexes, intrinsic

(polyions pair with polycations) and extrinsic (polyions pair with salt ions) charge

compensations have been found to co-exist, although the intrinsic mechanism

has been observed to be dominant [160]. The addition of NaCl decreases the weight

of the intrinsic mechanisms in the PE complexes. But even at the highest simulated

NaCl concentrations (CNaCl ¼ 1 mol/L), the intrinsic charge compensation mecha-

nism is still the dominant one. Furthermore, our study of such mixtures has allowed

us to determine the relative scale of the interaction energy of the ion pairs in the

mixture: Na � Cl > PSS � Na > PDADMA � Cl � PSS � PDADMA [160].

The relative scale of the interaction energy can be very useful to model properly

the interactions between ion pairs in refined CG numerical simulations and theoret-

ical approaches. The analysis of the water structure showed us that PE mixtures are

percolated through leading to a homogeneous distribution of waters.

Even though the slow dynamics of water in PEMs has been experimentally

studied [190], no theoretical or numerical works have been reported yet. Some

recent simulation studies [68, 75, 191] have provided an important insight about the

dielectric constant of water in concentrated electrolyte solutions where electrostatic

interactions can be almost twice as strong as in pure water. In the work of Qiao et al.

[160] the slow dynamics of water inside PSS/PDADMA systems was investigated

via the static dielectric constant (i.e., static relative permittivity) and the water

diffusion coefficient (see Table 1). Error estimates are determined by block
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averages 20 ns in length. For the pure waters system, the experimental value e is
78.3 [196], and for the pure SPC/E water system, the diffusion coefficient is

obtained at ambient condition in an extra simulation of 4,000 SPC/E water

molecules.

All the observed dielectric constants in the simulations fall within the range of 9–17,

which is in good agreement with the experimentallymeasured values in PSS/PDADMA

PEMs [192, 193].Moreover, it demonstrates that the dielectric constant of water in PSS/

PDADMA PEMs is greatly decreased when compared to the case of pure water.

The diffusion coefficients of water are in the range of 3.5 � 9.8 � 10�7 cm2/s,

which are of the same order of magnitude as the experimental value of about

2 � 10�7 cm2/s measured by pulsed field gradient diffusion NMR [194]. Compar-

ing this with the diffusion coefficient of 2.6 � 10�5 cm2/s in a pure SPC/E water

system, one can conclude that in the PSS/PDADMA PECs under study the

water molecules diffuse about two orders of magnitude slower than in the pure

water system. Therefore, the obtained results of the water diffusion lead to the same

conclusion as our dielectric measurements: water molecules inside PE mixtures

exhibit a slow dynamics when compared to water molecules in a bulk environment.

The AA simulation of a PSS monolayer that we performed showed that a narrow

water-rich region is formed between the substrate and the first PSS adsorption layer.

In this region, water molecules show several kinds of orientations, depending on the

nature of the substrates. In systems with hydrophilic surfaces, a strong hydrogen-

down orientation is observed which diminishes when the surface charge density is

increased. The water orientation is strongly related to the formation of hydrogen-

bondings of waters with the above PSS sulfonate groups (and the underlying

hydrophilic surface groups on hydrophilic adsorbing surface, if present). The

dielectric constant of waters very close to the surface is found to decrease almost

linearly with the increase of the PSS adsorption from 40 to 15 [161].

These findings demonstrate convincingly that the electrostatic interactions

within the PEMs are probably five to six times stronger than in bulk water. This

might explain the necessity of ad hoc addition of extra short range “hydrophobic”

Table 1 Simulated diffusion coefficients and dielectric constant of water confined within a

polyelectrolyte mixture that corresponds to an experimental PEM [160]. Three parallel simulations

were performed for system (i), which has the slowest dynamics of water, and two for systems (ii)

and (iii). In the parallel runs, only the random seeds in building the initial structures were different.

Experimental data based on PSS/PDADMA PEMs

System e Diffusion coefficient/10�7 cm2/s

11.7 � 1.4 3.61 � 0.01

i 11.1 � 1.2 3.49 � 0.03

9.9 � 0.6 3.65 � 0.01

ii 14.0 � 0.6 6.02 � 0.01

14.0 � 0.4 6.51 � 0.01

iii 16.2 � 0.7 9.77 � 0.03

16.5 � 0.4 9.00 � 0.07

Exp. data <19 [192, 193] ~2 [194]

SPC/E (pure) 71 � 6 [195] 260 [160]
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attractions to the coarse-grained PE model. However, there might be a valuable

alternative to the extra short range attractions. In principle, one could take into

account the change in the dielectric constant among the different regions within the

system. Of course, an all atom simulation model with explicit solvent would be

ideal, since these effects would be automatically included. However, as has been

shown before, with that approach currently is not possible to tackle PEM systems

due to their large size and long time scales. The simplest approach to try to

circumvent the problem of the solvent could be to start with a very simple three-

region approach of different homogeneous dielectrics, as shown in Fig. 16. In that

approach, the substrate, the layer-region and the bulky-water region would have

different dielectric constants. Due to the dielectric boundaries the calculation of the

electrostatic interactions is necessarily more complex than in the case of just one

homogeneous dielectric background. For planar geometries, the electrostatic

boundary conditions can be fulfilled through the inclusion of virtual image charges.

Based on this method, we have developed three very efficient and accurate algo-

rithms, which can in one case even reach almost linear scaling [197–199], and

which easily allow for the presence of three dielectric slabs. An even more refined

model would be to allow the dielectric constant in the multilayer-region to be a

variable function e ¼ e (x, y, z) of position. In this way one could also incorporate

the local salt concentration, which would affect the dielectric constant. This case is

much more difficult to handle efficiently such that it can be used within a standard

MD or MC calculation. Some possible candidates for such algorithms could be

extensions of standard multigrid algorithms [200, 201] and Maggswellian lattice

algorithms [202–204].

4.2 Polyelectrolyte Translocation Through a Nanopore

The problem of polymer translocation through nanometer-sized pores has recently

stimulated much experimental [205–208] as well as theoretical and simulation

based research [209–214]. This is mainly since macro-molecular transport through

– – – – – – –

water

PEM

substrate

Fig. 16 Schematic plot

showing the three-regions

system suggested in the text

as a first model to take into

account the mismatch

between the dielectric

constant in the bulk, on the

surface, and inside the PEM.

Figure adapted from [186]
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pores plays a major role in biological processes and also has a large potential for

technological applications. Molecular transport is indeed one of the key functions

fulfilled by the plasma and membranes of the cell, and a sizable amount of transport

mechanisms which work in the cell are characterized by the same general design,

namely by the presence of pores, mostly through membrane proteins. The con-

trolled transport of single molecules through synthetic or biological nanopores is

considered as a versatile tool of single molecule sensing and to be a most promising

candidate for rapid DNA sequencing.

The complex interplay of interactions – electrostatic, hydrodynamic, and

specific chemical ones – and the entropic properties of chain molecules make a

full understanding of these systems very difficult. The presence of an interface

between the highly polarizable aqueous solution (e � 80) and the membrane which

is much less polarizable (e � 2) leads to repelling forces between charged objects

and the pore wall. Since DNA is a highly charged molecule this effect is likely not

to be negligible and potentially gives rise to an energetic barrier that that the DNA

has to overcome in order to tranverse the pore. Its characteristics and dependence on

the pore size, DNA length, or salt concentration are not known.

The role of the dielectric mismatch between solvent and pore can be investigated

via a simple model DNA, consisting of a rigid charged DNA fragment, where the

translocation free energy barrier can be easily computed; see Fig. 17 for a schematic

plot of the situation.

All simulations were performed both with and without use of the ICC* algorithm

[199] to investigate the influence of dielectric mismatch. In a recent article [215]

we employed coarse-grained Molecular Dynamics (MD) simulations to compute

the mean force acting on the DNA fragment, taking explicitly into account the

combined effect of the DNA counterions, salt ions at different ionic strengths, and

surface polarization charges generated by the presence of the dielectric mismatch.

It is straightforward then to calculate the free energy barrier by computing the

PMF acting on the center of mass of the model DNA along the pore axis. For this

reaction coordinate the Fixman potential [216] is constant, and the PMF can be

obtained by numerical integration of the mean force. The obtained PMFs are

shown in Fig. 18. The free energy barrier in the salt-free case is strikingly higher

Fig. 17 The plot shows the schematic view of a charged rod confined to a finite nanopore. The

environment has a dielectric constant of 80, whereas the material of the nanopore itself has a

dielectric constant of 2. The inner part of the pore that is filled with water is also assumed to have a

dielectric constant of 80
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(increasing to approximately 20 kBT) when polarization charges are taken into

account using ICC*, in comparison to the case when they are not considered.

In contrast, at a salt concentration of 100 mmol/L, the barrier increase is less

pronounced, and the curves obtained with or without taking ICC* into account

show a comparable pattern with a barrier height of about 4 kBT. The presence of a
barrier for the higher salt concentration case, as well as in the case when no

polarization charges are considered, can be explained by the steric confinement of

the counterion cloud in the nanopore. In contrast, at low salt concentration the

Coulomb interaction is not screened, and the effect of polarization charges is

maximized, leading to the observed higher free energy barrier.

5 General Conclusions and Perspectives

In this chapter we reviewed some of our recent works on scale-bridging modeling

approaches for charged (macro)molecules. On the basis of quantum-chemical

calculations, we illustrated that molecular dipoles of water molecules in the hydra-

tion shells of positive ions in liquid water are predominantly affected by the

water–water interactions. The average molecular dipole moment in the first hydra-

tion shell is close to that of bulk water. Classical, non-polarizable water models are

therefore suitable to study ion solvation in bulk water. We discussed molecular

simulations of ion pairing and the resulting ion specific thermodynamics of aqueous

electrolyte solutions containing carboxylate or phosphate anions, which may serve

as models for charged groups on proteins and nucleic acids. It was shown that

solvent-mediated interactions of these ions with alkali cations favor the formation

of solvent-shared ion pairs over direct contact pairs. We then went on to discuss

the important field of systematic coarse-graining strategies for electrolyte solutions

and charged macro-molecules. We discussed how accurate atomistic and coarse-

grained force fields can be obtained for aqueous electrolytes and polyelectrolytes,
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and demonstrated in a few examples what one can expect from these models. In

particular, we have discussed the thermodynamic transferability of effective poten-

tials used in systematically coarse grained force field models and illustrated how to

obtain nonbonded interaction potentials with improved transferability for implicit

solvent electrolyte models and polymer melts. Poor transferability of effective

potentials, however, remains a concern in several of the systematic coarse graining

methods and requires further investigation in future. At the end of this contribution

we presented the standard generic coarse-grained model for polyelectrolyte solu-

tions. We argued why this might still be of interest for some large scale solution

properties, but also gave some examples which showed the need for the develop-

ment of more accurate models. Especially in the case of PEMs we still lack a

predictive model. For the case of implicit solvent representation we showed that

there are important cases like a nanopore where different dielectric regions are

present. Here we need fast algorithms that can deal with such situations under

various periodic boundary conditions and we gave some first results on the impor-

tant case of a DNA fragment in aqueous solution passing through a nanopore.

The field of multiscale modeling is rapidly developing, but due to its complexity

and wide area of applications, many more thorough investigations are still needed.

Specifically we tried to demonstrate that our own attempts for connecting detailed

information on the quantum level to coarse grained descriptions, and the subsequent

developments of systematic coarse-graining strategies, as well as refined implicit

solvent models for charged (macro-) molecules, might be worth following.
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Coarse-Grained Modeling for Macromolecular

Chemistry

Hossein Ali Karimi-Varzaneh and Florian M€uller-Plathe

Abstract The physical phenomena and properties of macromolecules such as

polymers or biological materials cover a wide range of length and time scales:

from Ångstr€oms and subpicoseconds to millimeters and minutes. Multiscale simu-

lation methods link different computer simulation approaches, which cover these

scales and the respective levels of resolution. Different simulation methods that

bridge the atomistic description of the system to a coarser level have been devel-

oped in order to reach the mesoscopic time and length scales important for many

material properties. Here, we give a short introduction to multiscale simulation

approaches in macromolecular chemistry. Then, we review the coarse-grained

simulation models developed to drive a simple model from a more detailed one.

Some different methodological aspects such as time scale and dynamics in coarse-

grained simulations and several typical problems are briefly addressed, finishing

with a look at future challenges.

Keywords Atomistic simulation � Coarse-graining simulation � Computational

chemistry � Multiscale modeling
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1 Introduction

Polymeric systems are characterized by a wide range of length scales that extend

from Ångstr€oms for the distance between the bonded atoms to at least micrometers

for the contour length of the chain. The corresponding time scales associated with

motions on such length scales are even broader: bond vibrations occur on the scale

of picoseconds (10–13 s) and chain relaxation and morphology formation can occur

over seconds, minutes, or hours, depending on molecular weight, temperature, and

density. For this reason, an equally wide range of simulation methods at different

levels of resolution and, consequently, including differing degrees of freedom is

employed to study them [1].

Quantum mechanical (QM) methods present the most detailed picture of the

system by using different levels of approximations to solve the Schr€odinger equa-
tion and evaluate electron wave functions. A work by Martonak et al. [2] shows that

even at room temperature, quantum effects are crucial to understanding the aniso-

tropic thermal expansion of polyethylene crystals. It is clear that if the number of

details that a simulation technique describes is increased, then the accessibility of

long time scales and large length scales is decreased. Therefore, the QM methods

can be used only for very short time and length scales, which are typically of the

order of Ångstr€oms and picoseconds, respectively. However, QM methods are

extremely valuable in providing important information for preparation of an atom-

istic model about the basic structure of molecules, i.e., bond lengths, bond angles,

torsion and associated force constant, partial charges, and torsional barriers.

In classical molecular dynamics (MD) simulations, the charge distributions are

approximated either by putting fixed partial charges on interaction sites or by

adding an approximate model for polarization effects. Thus, in MD simulations

the time scale of the system is not dominated by the motion of the electrons, but

mainly by the time of rotational motions and intramolecular vibrations, which are

orders of magnitude slower than those of electron motions. Consequently, the time

step of integration is larger, and trajectory lengths are in the order of nanoseconds

and accessible lengths in the order of 10–100Å. In MD methods, the Hamilton

equations of motion [3] are integrated to move particles to new positions and to

assign new velocities at these new positions, which is, in principle, probing the

whole phase space. Consequently, MD simulation is a powerful technique for

computing the equilibrium and dynamic properties of classical many-body systems

[4]. Over the last 20 years, with rapid development of computers, polymeric

systems have been the subject of intense study using MD simulations, but MD

simulations using atomistic force fields are still unable to access the time scales

necessary to achieve chain relaxation for polymeric systems of intermediate or high

molecular weights [5]. To equilibrate the dense polymeric systems with long

chains, advanced Monte Carlo (MC) methods have been developed that probe the

configuration space by trial moves of particles. Within the so-called Metropolis

algorithm, the energy change between two consecutive steps is used to accept or

reject the new configuration to find the system in its energy-minimum state [4, 6–9].
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Nevertheless, the size of the systems that can be efficiently simulated is still limited

by the performance of present-day computers.

In order to study polymeric systems, particularly their ability to self-assemble

over tens or hundreds of nanometers, it is necessary to reduce the number of degrees

of freedom. Simple generic models (such as bead-and-spring or lattice models) are

found to be suitable for study of scaling properties of macromolecular systems

[10–12], both for static and dynamic properties, by reducing the computational

complexity to the absolute minimum, namely connectivity and excluded volume

plus some specific interactions, if needed [5, 6, 10]. Thus they allow for much

longer effective time and length scales than more detailed models. The bead-and-

spring models [10] are the most elementary MD models that are still able to resolve

polymer chains. In these models, the individual polymer chain is modeled by mass

points that repel each other via most often a purely repulsive Lennard–Jones

(Weeks Chandler Anderson) potential to produce the excluded volume interaction,

and they are connected along the chain by, for example, a finite extensible nonlinear

elastic potential (FENE) to take care of the connectivity. These models have been

used frequently to study the dynamics of short- and long-chain polymer melts as

well as the relaxation properties of crosslinked polymer melts [13, 14]. However,

for a complete understanding of polymer properties (such as viscosity or crystalli-

zation), both generic chain length and connectivity information (namely, meso-

scopic model) and detailed material-specific information about the chemical

composition (namely, atomistic model) are necessary, and one needs to combine

the models. One approach to attain this goal is the development of “systematically

coarse-grained” models, which can be used to predict the quantities for a specific

material. The coarse-grained (CG) models allow a simplified picture and interpre-

tation of complex molecular phenomena by averaging over unessential atomic

details. However, the models still retain some of the material-specificity of the

parent atomistic models. They are obtained by lumping groups of chemically

connected atoms into “superatoms” and deriving the effective CG interaction

potentials from the microscopic details of the atomistic models.

2 Mapping Scheme

The position of the beads in the CG model can be related to the atomistic coordi-

nates of a structure by using a mapping scheme. It is clear that there is no unique

way to map a given set of atoms onto a CG description. Depending on the specific

system and on the properties that one wants to see reflected at the coarse level, one

can define criteria to determine the mapping scheme. Examples for such criteria are

the ability of the mapping scheme to account for stereoregularity of chain mole-

cules or to capture certain geometry changes. Figure 1 shows different mapping

schemes that have been used recently by our group to develop CG models for

different polymers {polyamide-66 (PA-66) [15, 16], poly(methyl methacrylate)

(PMMA) (Karimi-Varzaneh et al., unpublished results), and polystyrene (PS)
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Pollyamide-66 

Isotactic Poly(methyl methacrylate)

Ethylbenzene and atactic Polystyrene 

1-alkyl-3-methylimidazolium Hexafluorophosphate

Polyphenylene Dendrimer

a

b

c

d

e

Fig. 1 Chemical structure and mapping schemes for some of the discussed CG examples. (a) PA-66

[15, 16]: The centers of the beads A, M2, M3 are located, respectively, in the carbonyl carbon, in

the center of mass of the ethylene unit, and in the central carbon atom. The end groups are treated

separately because their local dynamics differ from the internal monomers, and to conserve the

total mass of the system. AP is the end monomer containing the amide group, and M3P is the end

monomer containing the aliphatic moiety. (b) Isotactic PMMA (Karimi-Varzaneh et al., unpub-

lished results): Every monomer is represented by one bead placed on the center of mass of the

monomer (A), and the end groups (T1 and T2) are treated differently to internal beads. (c) EB and

atactic PS: PS-MS1 is mapping scheme 1 for PS [17]; meso indicates that in this study two
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[15, 17, 18]}, for ionic liquids (1-alkyl-3-methylimidazolium hexafluorophosphate

[C4mim][PF6] [19]), and for dendrimers (polyphenylene dendrimer [20]). For

example, in the case of PS chains (Fig. 1c), two different mapping schemes have

been proposed (PS-MS1 and PS-MS2). In PS-MS1, when two consecutive chiral

carbon atoms have the same absolute configurations, the bead is called “meso” and

if the configurations are different the bead is labeled “racemo”. The superatoms are

located on the methylene carbon between the two stereocentres. The meso and

racemo superatoms are treated as two different monomer species. In this way, the

model is able to account for the tacticity of the polymer chain, and it accurately

describes static properties of melts in a broad range of molecular weights [17].

In PS-MS2, bead types (R and S) are defined according to the absolute configuration
of the monomer given by the asymmetric –CHR group defined against a given

direction of the carbon backbone, and they are placed at the centers of mass of

chemical repeat units. As will be discussed in Sect. 3, the CG potential in this model

is temperature-independent [18]. Two different mapping schemes are also proposed

by Hermandaris et al. [21] that use two beads per monomer in order to model the

tacticity of PS. In one case, the CH2 group of the backbone chain represents one CG

effective bead, whereas the remaining CH group of the monomer in the backbone

and the phenyl ring are mapped to another effective CG bead. In the other case, a

CG bead includes information from three consecutive CHx groups along the

backbone (the CH2 of a PS monomer plus the half mass of each one of the two

neighboring CH groups along the chain backbone), while the other CG bead is just

the phenyl ring. Their results showed that relatively small changes in how to divide

the monomer into two beads influence the performance of the models and the

reproduction of the local chain conformations and melt packing observed in

atomistic simulations of the polymer.

To see how the different mapping schemes proposed in the literatures for PS

were able to reproduce the atomistic structure, we plotted the intermolecular radial

distribution functions (RDFs) between the centers of mass of PS monomers,

ethylbenzene (EB) molecules, or both, obtained from the CG model proposed by

�

Fig. 1 (continued) consecutive chiral carbon atoms have the same absolute configurations and

racemo indicates that the configurations are different. PS-MS2 is mapping scheme 2 for PS [18].

The CG beads represent each EB molecule or each styrene unit, and the tacticity of the PS chains

are captured in the CG model by defining different bond/angle types between S (phenyl ring

located behind) and R (phenyl ring in front) types of beads. (d) [C4mim][PF6]: IL-MS1 is mapping

scheme 1 and IL-MS2 is mapping scheme 2 [19]. In the alkyl tail of IL-MS1, one bead is placed

every three carbon atoms (CT) while the imidazolium ring is split into three beads (R1, R2, and
R3). Note that one carbon and one hydrogen atom are shared equally among the R1 and R2 beads.

In IL-MS2, M1 indicates the methyl group directly bonded to the imidazolium ring and M2
the methyl group at the end of the aliphatic chain. Bead R indicates the imidazolium ring. In

the aliphatic chain, three methylene units are collected into one single bead C. In both models, the

anion (PF6
�) is described by one bead (PF). (e) First and second generation of polyphenylene

dendrimer [20]: One type of bead (A), which contains the entire repeat unit, placed at the center of
mass, is used to build the model for the first generation of dendrimers. For the second generation,

bead types A (the inner beads) and B (the outer beads) are used
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Hermandaris et al. [22] and Qian et al. [18] (for PS-MS2) at a temperature of 463 K

(see Fig. 2). The RDFs are compared with the united-atommodel of [22]. The figure

shows that the mapping scheme of Qian et al. [18] reproduces the atomistic

Fig. 2 Intermolecular RDFs

between centers of mass of

EB molecules (a), PS and

EB molecules (b), or PS

monomers (c), obtained from

the CG models proposed by

Hermandaris et al. [22] and

Qian et al. [18] (for PS-MS2)

compared with the united-

atom model of [22] for a

mixture of PS (96-mers) and

EB (10 mol%) at 463 K
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structure much closer than the mapping scheme of Hermandaris et al. [22] for

different RDFs. The difference between RDFs of the two mapping schemes could

also be due to the different ways of developing the CG force fields, which we will

discuss in Sect. 3. However, it is clear that the different mappings for PS implicitly

provide a bias of the resulting model towards the description of certain properties: if

the superatom location is on the main chain, at the center of mass of the repeat unit,

or at the center of the phenyl ring it will lead to a better reproduction of the main-

chain structure or the phenyl ring arrangements, for example.

Two mapping schemes have also been used for [C4mim][PF6] in Fig. 1d

(IL-MS1 and IL-MS2). In IL-MS1, every three carbon atoms in the alkyl tail is

represented by one bead (bead CT), whereas the imidazolium ring is split into three

beads (R1, R2, and R3). This model has been proposed for study of the orientation

of the imidazolium ring in the CG model. In IL-MS2, three different superatoms

are used to describe the methyl moieties (identified by labels M1 and M2) and the

imidazolium ring (bead R). In the aliphatic chain, three methylene units are

collected into one single site called C. We have found that the two schemes,

which retain different features of the original molecule, perform differently depend-

ing on the properties. Both mapping schemes are able to reproduce with sufficient

accuracy the experimental X-ray and neutron scattering results (Fig. 3). However,

the difference between the models becomes more apparent in the details of the

position of the two major peaks (� 1.5A
�� �1 and � 1A

�� �1) and of the specific

interactions that contribute to them. The inset in Fig. 3 compares the position of

the two peaks as obtained from the CG simulations and as measured experimen-

tally. The figure shows that IL-MS1 better fits the data corresponding to the lower q,

Fig. 3 Neutron and X-ray scattering structure factors of [C4mim][PF6] obtained from CG

simulation (IL-MS1) and experiment at 200 K. The inset shows the positions of the two major

peaks of the X-ray scattering structure factors of [C4mim][PF6] for the two mapping schemes

(IL-MS1 and IL-MS2) at different temperatures. Neutron and X-ray scattering data are from [23]

Coarse-Grained Modeling for Macromolecular Chemistry 301



whereas IL-MS2 agrees better with the position of the peak at higher q. This can be
understood by looking at the different details retained in the two mapping schemes:

IL-MS1, which describes the aromatic ring with more details using three different

beads and preserving its flat shape, predicts a better position of the lower q peak,

which in fact is due to the interactions between the rings [24–26]. In contrast,

IL-MS2, which describes the alkyl tail more accurately with two beads instead

of one, predicts better the position of the peak at 1.5A
�� �1, which arises from the

tail–tail interactions [24–26].

In addition to the positions of the superatoms, their number is also important.

The number of real atoms collected into one superatom is often referred to as the

degree of coarse-graining. It cannot be chosen completely arbitrarily, or else the

essential physics of the polymer may be lost, as the following example shows.

If polyethylene were to be coarse-grained, one could combine 1, 2, 3, or n CH2 units

into one superatom. For efficiency, one should opt for a high degree of coarse-

graining n. The volume of the spherical superatom has to be approximately the sum

of the volumes of the constituting methylene units, which fixes its diameter. For

large enough n, this will lead to neighboring superatoms whose excluded volumes

no longer overlap. As a consequence, polymer chains can cut through each other in

a simulation and are not forced to reptate through the tubes formed by their

neighbors. It is obvious that the dynamics of such a polymer melt will be qualita-

tively wrong, so that no diffusion coefficients, viscosities, elastic, or rheological

parameters can be obtained. In the case of polyethylene, the largest possible n is 3.

If the polymer has bulkier, more spherical subunits then n can be considerably

larger. An example is the above-mentioned PS model where a styrene repeat unit

(16 atoms) can be combined into one superatom without any harm to the dynamics

because PS has a much fatter envelope than polyethylene.

The choice of the number and position of the superatoms is the responsibility of

the human researcher. Guidelines can be given, but it cannot be automated. One

possible principle for selecting the superatom center is that the bonds between

superatoms can be represented by a single harmonic potential. One can calculate the

bond distributions between the beads for different possible positions of the center of

the superatom. Mapping schemes with a more localized bond length distribution are

often preferred for technical reasons. For example, in the case of PA-66 (Fig. 1a),

the main concern is on the M3 bead and we can consider two possibilities for the

center of the bead: the center of mass (CM) of the bead or the central carbon atom.

Figure 4 compares the distributions for the two different mapping schemes. As

shown in this figure, the mapping with beads centered on the CM of M3 gives a

three-peaked bond length distribution, whereas a more localized, double peak is

found in the case of the beads centered on the second carbon atom of M3. In the

light of this result, we locate the M3 center on the carbon atom of the backbone

(rather than in the CM of the bead).

Another criterion that needs to be taken into account relates to the statistical

correlations of internal degrees of freedom. The mapping scheme should be chosen

such that these correlations are as weak as possible so that the intramolecular

potentials can be separated, to a good approximation, into bond stretching, bond
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angle bending, and torsions, as outlined in Sect. 3.1. A direct way to check the

correlation is by plotting contour plots of combinations of energies (or probability

distributions) of different bonded potentials in the CG description obtained from the

atomistic simulation [21]. Once the position of the mapping centers is chosen, we

have to define the type and characteristics of the effective interactions between such

centers.

3 DifferentMethods for Developing the Coarse-GrainedModels

The development of system-specific CG models for polymers is a very active

research field. Coarse-graining means that about 90% of the degrees of freedom

of an atomistic model are discarded. As a consequence, a CG model cannot be

expected to reproduce all results of the parent atomistic model. Before developing a

CG model one must, therefore, decide which polymer properties it shall reproduce.

One can determine a set of target properties of microscopic character (such as

forces or instantaneous energies) or structural averages (such as RDFs, average

energies, and pressure), which the CG model is required to keep. Depending on

the target properties, the way the effective CG potentials are derived, and also on

Fig. 4 Histogram of M3–M3 bond length (see Fig. 1a) extracted from atomistic simulation at

300 K for center of bead located at the center of mass (dashed line) and for the second carbon as the
center of M3 (solid line)
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the degree of coarse-graining, various models and methods have been proposed in

the literature [15, 17, 27–44].

3.1 Structure-Based CG Model

One way to develop a CG model is using a structure-based coarse-graining

approach, where the direct link to the chemistry is achieved through structurally

defined bonded and non-bonded effective CG potentials derived from the atom-

istic model. In this class of methods, the determination of interaction potentials

for the CG model is based on the assumption that the total potential energy can

be separated into bonded and non-bonded contributions. The bonded interactions

are derived such that the conformational statistics of a single molecule is

represented correctly in the CG model. A very important criterion for a mapping

scheme, as mentioned in Sect. 2, is its ability to decouple internal degrees of

freedom so that the intramolecular (bonded) potentials can be separated into

bond, angle, and torsion terms. One option for deriving the CG bonded potentials

is to use a simple Boltzmann inversion to convert the distributions of interparti-

cle distances or angles into potentials. Another option is to determine analytical

potentials that reproduce the probability distributions for the bonded part, for

example by fitting the (multipeaked) bonded distributions by a series of Gaussian

functions that can then be inverted analytically, resulting in smooth potentials

and forces [45].

Similar to the bonded interaction functions, there are two options for deriving

the non-bonded potentials: either using analytical potentials or using numerically

derived tabulated potentials. In the first case, analytical potentials of various types

can be used. The “normal” Lennard–Jones 12-6 potential is frequently used, which

is sometimes too repulsive for the CG soft beads [44, 46], and for softer cases the

Lennard–Jones-type (e.g., 9-6 or 7-6) [21, 47], Buckingham, or Morse potentials

[48] have been employed. The potential parameters are chosen in such a way that

the CG model reproduces satisfactorily the physical properties of the atomistic

simulation or available experimental data. This task can be done automatically by a

computer in a more efficient way than the usual manual trial and error method by

using, e.g., the simplex algorithm [49, 50]. In this algorithm, a penalty function that

compares the calculated values of selected properties with their target values from

atomistic simulations or experiment is minimized by adjusting the force field

parameters. In a parameter space of dimension N, N+1 preliminary molecular

dynamics simulations with slightly different starting parameter sets are performed.

Then, the physical properties of interest and the penalty function for each parame-

ter combination are calculated. If for one of these sets the value of the penalty

function is below a certain user-defined threshold, the corresponding force field

is supposed to be satisfactory. Otherwise, a new molecular dynamics simulation

is run with a new parameter set provided by a simplex move, and this process is

repeated until the penalty function converges. However, slow convergence of the
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analytical potentials and the manual process of selecting a good functional form of

the potential are disadvantages of the first case of deriving the non-bonded CG

potentials.

Concerning the second option to generate numerically a tabulated potential that

closely reproduces a given melt structure, the iterative Boltzmann inversion (IBI)

method [29, 41, 51, 52] has been developed.

3.1.1 Iterative Boltzmann Inversion Method

The main feature of the IBI method is the automatic and iterative way of determin-

ing the effective bead–bead interactions that match a set of structural quantities

(such as intermolecular RDFs) calculated from a more detailed reference simulation

model (i.e., atomistic). Henderson [53] proved that at a given density and tempera-

ture, there is a unique mapping between the RDF and the intermolecular potential.

Thus, a potential that reproduces the target RDF is a fixed point of the iteration and,

if the algorithm converges, a valid solution is obtained for the CG potential. For a

complete polymer model, one assumes that the total potential energy UCG can be

separated into bonded (covalent) and non-bonded contributions:

UCG ¼
X

UCG
b þ

X
UCG

nb ; (1)

where UCG
b and UCG

nb represent the bonded and non-bonded part of the potential,

respectively. The bonded interactions are derived such that the conformational

distribution PCG, which is characterized by specific CG bond lengths r between

adjacent pairs of CG beads, angles y between neighboring triplets of beads, and

torsions ’ between neighboring quadruplet of beads, i.e., PCGðr; y; ’Þ, in the CG

simulation is reproduced. If one assumes that the different internal CG degrees of

freedom are uncorrelated, then PCGðr; y; ’Þ factorizes into independent probability

distributions of bond, angle, and torsional degrees of freedom:

PCG r; y; ’ð Þ ¼ PCGðrÞPCGðyÞPCGð’Þ: (2)

To obtain the bonded potentials, the individual distributions PCGðrÞ, PCGðyÞ, and
PCGð’Þ are first fitted by a suitable sum of Gaussians functions and then Boltzmann

inverted. It should be noted that the bond length and bond angle probability

distributions are normalized by taking into account the corresponding metric,

namely r2 for bond lengths and sinðyÞ for bending angles. It should be noted that

the Boltzmann inversion of a distribution leads to a potential of mean force (PMF),

i.e., a free energy, which is only in certain limiting cases identical to a potential

energy. This means that using a free energy in place of a potential energy is wrong

in a strict statistical–mechanical sense. In the case of bonded interactions, however,

which are rather stiff and energy-dominated and which separate well from the
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remaining degrees of freedom, this approach is nevertheless often a good numerical

approximation.

Non-bonded interactions are derived as effective non-bonded potentials UCG
nb ðrÞ

from a given target intermolecular RDF, gtargetðrÞ; obtained from atomistic refer-

ence simulations or experimental data. First, a reasonable initial guess is needed. It

can be obtained by directly Boltzmann-inverting the RDF (which is a probability

distribution):

FðrÞ ¼ �kBT ln ðgtargetðrÞÞ; (3)

where kB is the Boltzmann constant and T is the temperature. It is important to notice

that F(r) is a free energy and cannot be used directly as a two-body interaction

potential in the CG model because it incorporates multibody contributions of all the

other particles in the system in a statistically averaged way (see above). However, it

is usually sufficient as an initial guess, UCG
nb;0ðrÞ, for the iterative procedure whereby

these multibody contributions are eliminated and an effective two-body interaction

potential is determined that reproduces the target structure. Simulating the system

with UCG
nb;0ðrÞ now yields a corresponding RDF, gCG0 ðrÞ, which is different from

gtargetðrÞ. Therefore, the CG potential needs to be improved, and this can be done

by adding to UCG
nb;0ðrÞ a correction term � kBT ln ðgCG0 ðrÞ=gtargetðrÞÞ. This step is

iterated:

UCG
nb;iþ1ðrÞ ¼ UCG

nb;iðrÞ þ kBT ln
gCGi ðrÞ
gtargetðrÞ

� �
(4)

until the reference gtargetðrÞ is reproduced and the potential is stationary,

UCG
nb;iþ1ðrÞ ¼ UCG

nb;iðrÞ. The convergence can be measured quantitatively by evaluat-

ing the following error function:

ftarget ¼
ðrcutoff
0

ð
wðrÞðgCGi ðrÞ � gtargetðrÞÞ2dr; (5)

where wðrÞ ¼ expð�r=sÞ is a weighting function to penalize more strongly the

deviations at small distances.

Since the IBI method has no obvious way in which the system energy or pressure

can influence the value of the potential at a particular distance, the following

approach can be used to add this information. Adding to the non-bonded potential

a weak linear potential term DV, which goes to zero at the cutoff and whose slope is
positive or negative (V0), does not significantly change the RDFs produced by the

model but changes the pressure down or up, respectively. The so-called ramp

correction is of the form:

DV ¼ V0 1� r

rcutoff

� �
: (6)
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This correction can be inserted into the Boltzmann-inversion iterations to adjust

the pressure to the target value.

On the basis of the CG simulations performed by our group, and in order to

validate the workflow of developing CG models using the IBI method, a new

program package (called IBIsCO) has been developed recently especially for CG

simulations using Gaussian potential functions and/or tabulated interaction poten-

tials derived by the IBI approach [54]. Various standard ensembles (NVT, NPT, and

NVE) are available in IBIsCO. The techniques of dissipative particle dynamics

(DPD) [55] and Lowe–Andersen (LA) [56] equations of motion are also embedded

in IBIsCO. Besides their use as thermostats for the generation of the canonical

ensemble, DPD and LA can also be used as techniques to compensate for the effects

of lost degrees of freedom in CG models on the dynamics. These techniques

slowdown the too-fast dynamics in CG models due to the softness and the lack of

friction [57], which will be discussed in more detail later. IBIsCO also includes an

implementation of the reverse nonequilibrium molecular dynamics method for the

calculation of viscosities [58]. A detailed description of the IBIsCO code is

presented in [54].

Because the RDF incorporates temperature, density, composition, and other

dependencies into the effective pair interaction, the force field developed by IBI

can have a severely limited range of applicability, and transferability of the CG

force field is still a challenge [15, 18]. In the literature, several attempts at using IBI

force field mapped at a specific temperature in a broader range have been reported.

Vettorel and Meyer [59] faced the problem in studying the crystallization of a CG

model of polyethylene, and the effect of the temperature changes in the model was

checked by looking at the different effective potentials and monitoring their

behavior as the temperature was modified. They found that the bond potential is

temperature-independent, whereas the PMF obtained by direct Boltzmann inver-

sion of the angle distributions depends on the temperature chosen for the mapping.

However, after the iterative procedure that leads to the optimized potentials, the

mismatch tends to disappear. Similar results were obtained for the non-bonded

interactions. These observations allowed the authors to use the same potential for

studying the crystallization of polyethylene. Ghosh and Faller [60] investigated a

small organic glass former (ortho-terphenyl) using a mesoscale model composed of

only a single interaction center. The authors used the same IBI potential at different

temperatures and compared the resulting structural properties (in their case only the

RDF) with the corresponding atomistic ones. In this way, they found that the CG

potential depends not only on the structure but implicitly also on the temperature at

which it has been optimized. In our recent studies [15, 18], we chose the strategy

followed by Ghosh and Faller to investigate the transferability of the IBI force field

by comparing the CG structural and dynamical properties with the atomistic

reference calculations. Moreover, we investigated whether the degree of coarse-

graining (how many real atoms per bead) and the size of the macromolecule affect

the transferability. We analyzed the polymer case by investigating bulk melts of PS

and PA-66 whose CG models differ in the chain length and in the number of atoms

per bead (Fig. 1a,c). We found that the finer model used for PA-66 allowed us to use
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one IBI potential over the entire temperature range of interest (300–600 K), and all

properties investigated showed good agreement with experimental and atomistic

results. In contrast, for PS, by using PS-MS2 the analysis of the intramolecular

distribution of parameters such as distances and angles, as well as the RDFs,

showed that the PS IBI force field can be confidently applied only in a small

temperature range (~50 K) around the optimization temperature. Within this

range, the density and the static properties of the PS bulk are in reasonable

agreement with experimental and atomistic values; however, for temperatures

further from the optimization point, the IBI potential cannot correctly reproduce

the behavior of the polymer. By changing the mapping scheme from PS-MS2 to

PS-MS1, the CG potential turned out to be very robust and transferable between

different temperatures (over a range of 100 K) [18]. Figure 5 shows the density

changes with the temperature for the atomistic and CG simulations of PS using

PS-MS1 and PS-MS2. These results show that the transferability of the CG force

field developed by the IBI method depends strangely on the location of the

superatom within the real monomer, the number of degrees of freedom removed

during the CG procedure, and the polymer under investigation.

Concerning the transferability of CG force field for PA-66 to different tempera-

tures, we explored different thermodynamic and structural properties of the system

at different temperatures [15, 16, 61]. The hydrogen bonding is one of the intermo-

lecular interactions that most influences the dynamics of molecular systems, being

responsible for the structure, function, and dynamics of many chemical systems

from inorganic to biological compounds [62]. Due to the simplification of the CG

Fig. 5 Density change with the temperature for the atomistic and CG simulations of PS using

PS-MS1 and PS-MS2 (see Fig. 1c). The density values have been normalized with respect to the

reference value at 500 K
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models, the atoms directly involved in the hydrogen bonding (oxygen, nitrogen, or

fluorine as hydrogen bond donors and acceptors) as well as the hydrogen atom itself

are usually ‘coarse-grained away’, i.e., lumped together with other atoms into

beads. Several models have been developed to describe hydrogen bonding, espe-

cially in studying protein folding [63], and have met with different degrees of

success. In the case of synthetic macromolecules, the presence of the hydrogen

bond strongly affects their conformation, chemical–physical properties, crystalli-

zation, self-assembly behavior, and many other global properties. Since the hydro-

gen bonds are only present in an effective and averaged way, it is therefore

particularly interesting to see whether and how the properties directly affected by

the hydrogen bonds are preserved in the CG model. In addition, the possibility of

correctly describing the hydrogen bond dynamics using a CG model would be of

great importance for further improvements of CG force fields. In polyamides,

nearly all the amide groups that are separated by a sequence of methylene groups

are hydrogen-bonded [64]. The large number of hydrogen bonds forms an extended

three-dimensional network whose dynamic rearrangement influences several prop-

erties of the material, such as the glass transition temperature and the melting point.

For these reasons, understanding the thermal mechanical properties of polyamides

by studying the thermal stability of hydrogen bonds has been a popular topic in

previous research [64–68]. In our recent publications [16, 61], we first describe the

detailed analysis of the effect of temperature on the local and global dynamics of

unentangled PA-66 using atomistic molecular dynamics simulations. The local

dynamics was mainly investigated by looking at the hydrogen bond dynamics and

calculating the hydrogen-bond relaxation time and lifetime by means of specific

correlation functions. The influence of the relaxation of the hydrogen-bond network

on the global dynamics of the polymer was also analyzed. Our results show that

the global dynamics of PA-66 is intimately related to the relaxation of the hydro-

gen-bond network formed among the amide groups. Then, we studied a CG model

of the same PA-66 system (as shown in Fig. 1a), focusing on the dynamics (and

thermodynamics) of the hydrogen bond [16]. The ability of the CGmodel to capture

correctly the dynamics of the hydrogen-bond network at different temperatures was

tested. To address this issue we then used the same correlation functions that were

employed in the analysis of hydrogen bond dynamics in atomistic simulations.

From a quantitative analysis of the hydrogen bond dynamics and thermodynamics,

it turned out that the CG model is characterized by a weaker hydrogen-bond

network than the corresponding atomic model. The weakness of the CG hydrogen

bonding might be due to the lack of directionality as a consequence of the mapping

scheme where the donor and acceptor atoms are lumped into spherical beads.

Hence, as happens for biological systems, the necessity to introduce explicitly a

new interaction accounting for the directionality of the hydrogen bonding interac-

tions and their increasing strength with the decrease in the temperature is probably

fundamental to the analysis of processes that are governed by their dynamics, such

as self-assembly or crystallization in the polymers.

Transferability is also an issue for mixtures of different species. The canonical

protocol to derive CG potentials for, say, mixtures of A and B would be to run an
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atomistic reference simulation of a small A–B mixture and to generate CG poten-

tials for A–A, B–B, and A–B interactions from it. This would have to be repeated at

every composition of the mixture that is of interest. The approach is straightfor-

ward, but inefficient and cumbersome. Moreover, it precludes the coarse-graining

of systems in which A and B phase-separate. For these reasons it is therefore

desirable to come up with schemes in which coarse-graining is done for the

individual components A and B separately, and the mixed interaction potentials

are then obtained via some combinations rules, similar to the widely used combina-

tions rules for atomistic force fields [69]. Some progress has been achieved recently

in a study of PS solutions in EB [18]. Here, it was determined that IBI-derived CG

potentials for EB and PS could be combined by taking their geometric average. The

resulting CG potential for mixed EB–PS interactions successfully described struc-

tural and thermodynamic properties of the solutions at all compositions studied.

Further research is needed in order to establish whether a geometric combination

rule is a general option or whether its success is coincidental and due to the

chemical similarity of the two components.

Investigations of dynamic properties such as mean-squared displacement, diffu-

sion constant, and Rouse-mode analysis necessitate the transition from unentangled

to entangled motion for IBI force fields, and it turns out that such structure-based

CG potentials can be used for a qualitative study of the dynamics of polymer

systems [10, 36]. The CG force fields in general do reproduce, e.g., the scaling

behavior of the dynamics. However, since many of the original degrees of freedom

are removed in the CG description, the effective CG potentials are softer compared

to the atomistic ones, and this results in a reduced effective friction between the

beads. Thus, CG simulations cannot be used directly for quantitative predictions of

the dynamics. Of course, the three basic units (particle mass, size, and energy scale)

define a time scale in the MD simulation of the CG systems, but the time in the CG

description does not correspond to the real physical time of the underlying mobility.

One of the main problems of such CG models is the artificial dynamics, which

are too fast compared to either atomistic or experimental reference data [15, 70].

To re-establish the correct dynamics in CG simulations, different approaches

have been proposed. Izvekov and Voth [71] proposed an approach within the

coarse-graining framework of force matching (see below) that reproduced correct

dynamics in the CG simulation. However, in order to map the time accurately

between the atomistic and the structure-based CG models one can use one of the

following two methods. The first method is to gauge the CG dynamics by equating a

scalar dynamical quantity like the diffusion coefficient or the viscosity [15, 70]. The

results of the CG model could thus be matched to the value from long atomistic MD

runs or experiments. By doing this, only the asymptotic long time scale regime is

compared, and one hopes that one single time-scaling factor covers all dynamic

processes. The second way to map the time is to match the mean-square displace-

ment (MSD) of the monomers [37, 72, 73], if there is data available from atomistic

MD simulations. The time-scaling factor determines the real unit to which the CG

time corresponds.
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According to the workflow presented here to develop the CG force fields using

the IBI method, one obtains potentials for bonded and non-bonded interactions at

the same time on the basis of the same atomistic simulation; thus there is no clear

separation between the optimization procedures for bonded and non-bonded inter-

action potentials. One can achieve this separation by deriving CG bond length, bond

angle, and torsional distributions from the atomically detailed conformations sam-

pled by a single (chain) molecule in vacuum, if the conformational sampling of the

molecule in vacuum and in the bulk (or solution) phase does not differ substantially

[48]. The IBI method has the advantage that detailed structural information is

included into the CG model, and it has been used successfully for molecular liquids

[18], polymer melts [15, 37, 73], dendrimers [20], polymer solutions [18], polymer

blends [74], and ionic liquids [19].

However, there can be limits to this approach because it is not always clear

whether the chosen CG mapping scheme can converge to an optimal fit. For liquid

mixtures or solutions, the situation is more complex because several RDFs that

mutually affect each other need to be simultaneously reproduced. In addition, for

dilute solutions, where we have a low concentration of solute, the solute–solute

RDFs converge very slowly in the CG simulations. In this case, the PMF between

the solute molecules can be obtained using free-energy calculation methods such as

umbrella sampling or constraint dynamics. Recently, these methods have been used

in an iterative optimization approach to study self-assembling dipeptides at the CG

scale [75, 76]. The PMF between solute molecules in a solvent box, VAA
PMFðrÞ, is

calculated by all-atom simulation from n distance constraint simulations:

VPMFðrÞ ¼
ðr

rm

hfcis þ
2kBT

s

� �
dsþ C; (7)

where fc is the constraint force, and rm is the maximum distance between the centers

of mass of the two molecules. This potential was successfully employed to simulate

the aggregation process of a hydrophobic dipeptide in solution with an implicit

solvent representation in a CG model [76]. Since the so-obtained PMF incorporates

the thermally averaged contributions from solute and solvent degrees of freedom, it

cannot be directly used as CG potential if the CG model has an explicit solvent

representation. To determine the solvent contribution that needs to be removed

from VAA
PMFðrÞ, the PMF calculations with the CG potential are run, while the direct

solute–solute interactions are excluded. The effective solute–solute potential can

then be obtained by subtracting VCG
PMF;exclðrÞ from the all-atom PMF, VAA

PMFðrÞ [76].
This subtraction procedure removes the solvent contribution from the PMF, and is

similar to iteration steps in the IBI method. Recently, the method has also been used

to develop a CG model for PS [77]. To derive the non-bonded interactions, PS

oligomer pairs were simulated in vacuum with a detailed atomistic model. The

effective non-bonded potentials obtained in this procedure include the effects of

multibody correlations related to the chain connectivity (Brini et al., 2010, unpub-

lished results).
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3.1.2 Multiscale Coarse-Graining Method (Force Matching Method)

With the goal of providing a systematic multiscale approach to coarse graining,

Izvekov and Voth introduced the multiscale coarse-graining (MS-CG) method

(force matching method) [78, 79]. In this method, the forces in the CG system are

determined such that they are mapped to corresponding sums of forces in the

corresponding atomistic system [80–82]. The MS-CG method has been applied to

the development of accurate CG models for peptides [83, 84], pure bilayers [78],

mixed bilayers [85], carbohydrates [83], simple fluids [71, 79], ionic liquids [86,

87], soot nanoparticles [88], and mixed-resolution models of transmembrane pro-

teins [89]. The MS-CG theory can also serve as a basis for achieving more correct

dynamic behavior (e.g., self-diffusion) in the CG model [71]. If no approximations

are introduced into the method, the MS-CG variational principle provides a compu-

tational algorithm for determining the many-body CG free-energy surface for a

given atomically detailed model. The bonded parameters of the potentials devel-

oped by MS-CG method are found to be transferable to different temperatures,

whereas the non-bonded potentials are less transferable. However, the MS-CG

models are well transferable to different system sizes [86]. Recently, a three-body

potential has been used to develop a one-site CG model for water to improve

the results over the two-body approximation [90]. However, the effects of electro-

static interactions and direct comparison with the other methods need further

investigation.

3.1.3 MARTINI Force Field

The MARTINI force field, in close connection with atomistic models, has been

developed as another method for obtaining the interaction potentials between the CG

beads. The method’s philosophy of the coarse-graining approach is substantially

different from the other methods [32, 91]. Instead of focusing on an accurate

reproduction of structural details at a particular state point for a specific system,

the aim is for a broader range of applications without the need to reparameterize

the model each time by extensive calibration of the chemical building blocks of the

CG force field against thermodynamic data. Currently, the MARTINI force field

provides parameters for a variety of biomolecules, including many different lipids,

cholesterol, and all amino acids. Properties accurately reproduced include structural

[32, 92, 93], elastic [32, 91], dynamic [32], and thermodynamic data [91, 93, 94]. In

order to parameterize the non-bonded interactions of the CG model, a systematic

comparison with experimental thermodynamic data has been performed. Specifi-

cally, the free energy of hydration, the free energy of vaporization, and the partition-

ing free energies between water and a number of organic phases were calculated for

each of the different CG particle types. To parameterize the bonded interactions, the

method uses structural data that are either directly derived from the underlying

atomistic structure (such as bond lengths of rigid structures) or obtained from

comparison with fine-grained simulations. In the latter procedure, the fine-grained
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simulations are first converted into a “mapped” CG simulation by identifying the

center of mass of the corresponding atoms as the mapped CG bead. Second, the

distribution functions are calculated for the mapped simulation and compared to

those obtained from a true CG simulation. Subsequently, the CG parameters are

systematically changed until satisfactory overlap of the distribution functions is

obtained. The MARTINI force field has also been applied recently to model poly-

mers such as polyethylene glycol [95] and PS [96]. To reproduce the specific

structural properties of polymer systems, the radius of gyration of the polymer

chains has also been used as a target in the parameterization of the non-bonded

interactions for the two different mapping schemes proposed for PS [96]. Different

aspects of the CG force field compared to the previous models developed for PS have

been discussed in [96].

The range of applications of the MARTINI force field is very broad. There are,

however, certain important limitations that should be kept in mind. For example,

the model has been parameterized for the fluid phase. Thus, properties of solids,

such as crystal packing, are not expected to be accurate. On the other hand, both the

gas and the solid phase appear somewhat too stable with respect to the fluid phase

[91], and therefore the thermodynamic behavior of solid–fluid and gas–fluid inter-

faces should be interpreted with care, at least at the quantitative level.

3.1.4 Newton Inversion Method

Another systematicway to construct CGmodels fromdetailed atomistic simulations is

theNewton inversionmethod [97]. In thismethod, the structural information extracted

from atomistic simulations is used to determine effective potentials for a CGmodel of

the system. Suppose the effective potentials in theCGmodel are determined by a set of

parameters lif gwhere i runs from 1 to the number of parameters in the potential. The

set of target properties that are known from atomistic simulations is represented by

Aj

� �
, where j changes from 1 to the number of target properties. By means of the

Newton inversion method, a set of nonlinear multidimensional equation between lif g
and computed average properties hAji

� �
is solved iteratively. At each iteration of the

Newton inversion, the effect of different potential parameters on different averages

can be calculated by the following formula [97]:

@hAji
@li

¼ �b h@H
@li

Aji � h@H
@li

ihAji
� �

; (8)

where b ¼ 1=kBT, kB is the Boltzmann constant andH is the Hamiltonian of the CG

system. By using (8) and solving the system of linear equations (2), the parameters

lif g corresponding to the target values of hAji
� �

can be found:

DhAji ¼
X
i

@hAji
@li

Dli þ O Dl2
� 	

; (9)
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where the second-order corrections are neglected. Simulation starts from some

initial potential determined by a trial set of parameters and, after running the

simulation, the deviation of computed average properties hAji
� �

from the target

values (DhAji) as well as (8) is determined. Then, from (2) the corrections to the

potential parameters Dli can be found. The procedure is repeated with the new

parameter set until convergence is reached. In the case where the parameters lif g
are the values of the pair potential at a number of points covering the whole range of

distances, and the target properties are the values of RDF at the same set of points,

the method becomes equivalent to the inverse Monte Carlo approach [98, 99]. The

method has been used successfully to develop a united atom model for water, a CG

model for an equimolar mixture of L- and D-proline dissolved in dimethyl sulfoxide,

and a CG model of dimyristoyl phosphatidylcholine lipid molecules. However, the

transferability of the CG potentials needs to be checked in every case [97].

3.2 Dynamic-Based CG Model

An alternative way to develop a CG force field is a starting from the dynamic

properties of the system. In this case, the Langevin-equation formalism [10, 100] is

used to describe the dynamic evolution of the system, and the friction coefficients that

partially slow down the dynamics are determined from atomistic reference simula-

tions using force–velocity and velocity–velocity correlation functions [34, 71]. This

method is usually used to study complex liquids [101] or biomolecular systems [85].

In the same class of methods also fall those that tune the friction coefficients until the

dynamic properties match the atomistic ones [33]. In any case, it is of interest to

understand the physical origins of the acceleration of the CG dynamics for specific

cases, to assess the methods mentioned above, and to gain a better understanding

of the effect of coarse graining on the dynamics of a system. However, this class of

method could fail to reproduce the structure of the system, since the developments

of the CG force field only take care of the dynamic properties of the system. There is

currently much research being carried out to investigate, whether it is possible to

derive coarse-grained potentials that are both dynamically and structurally consistent

with the underlying higher-resolution description. In a recent work of Qian et al. [57],

the DPD [55] and LA [56] equations of motion have been applied in CG simulations

to slow down the dynamics of the CG model obtained through the IBI method. The

simulation results showed that both DPD and LA could re-introduce friction into the

system and compensate for the dynamic effects of coarse-graining. Thus, the too-fast

dynamics of CG models in molecular dynamics can be corrected and can be slowed

down to match reality. Empirical rules have been found for the control parameters

(noise strength in DPD and bath collision frequency in LA) in CG simulation of liquid

EB [57]. Further work needs to be done to establish how transferable these rules are

among different systems.

The different simulation hierarchies (QM, atomistic MD, and CG simulations)

can be used to address phenomena or properties of a given system at several levels
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of resolution and, consequently, on several time and length scales. The easiest way

to combine different simulation models on different scales is to treat them sepa-

rately and sequentially by simply passing information (structures, parameters,

energies etc.) from one level of resolution to the next. A step beyond these

sequential schemes is involved in those approaches where the scales are coupled

in a concurrent fashion within a unified computational scheme. In these approaches,

two or more levels of resolution are used at the same time in the simulation. A dual-

scale approach has already been used to study the interaction between bisphenol-A

polycarbonate and a nickel surface [102, 103]. In this method, the regions with

different resolutions are fixed and the exchange of particles among the different

regions is not allowed. While this may not be a crucial point for hard matter, it is

certainly a strong limitation for soft matter (i.e., complex fluids) since relevant

density fluctuations are arbitrary. An even more sophisticated multiscale approach

allows adaptive switching between resolution levels for individual molecules on the

fly, e.g., depending on their spatial coordinates. Recently, such an adaptive resolu-

tion scheme (AdResS) has been developed in which molecules can freely exchange

between a high-resolution (CG) and a low-resolution (atomistic) region by chang-

ing the molecular degree of freedoms [104–110]. In this case, the atomistic and the

CG scales can be coupled via a position-dependent interpolation formula on the

atomistic and CG force in such a way that allows a smooth transition from atomistic

to CG trajectories without altering the equilibrium of the system [111]. The method

has been already used for liquid water [105] and for a polymer–solvent system in

which the water molecules within few solvation shells around the polymer chains

are considered atomistically while outside the water is treated on a rather coarse

level [106]. It has even been augmented by a continuum region, and a methane-like

liquid has been simulated using this triple-resolution scheme [112].

3.3 Coarse-Graining in Time

Although CG models have been successfully used to simulate large systems for

very long time and length scales, the lack of detailed atomistic information in CG

simulations still limits the systems and the properties that can be studied using these

models. As an alternative to the spatial coarse-graining techniques, Violi [113]

proposed a novel method to describe the evolution of reactive systems (diffusion

processes and chemical reactions) over long time scales while preserving an all-

atom description of the system by coarse-graining in time. The method combines

the MDmethodology with kinetic Monte Carlo (KMC) to allow the extension of the

accessible time scales compared to the direct MD simulation [114]. In the KMC

step, the structure of the growing species is modified during the reaction and then

the newly formed structure is relaxed towards thermal equilibration using an MD

run. The MD describes the local phase space changes and rearrangement reactions

and allows for relaxation as well as processes very far from equilibrium. The KMC

method is responsible for the conformational changes that jump to a completely
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different area of phase space and allows much larger time-scale changes to the

system than the MD simulation. The method has been used to study the formation

of carbonaceous nanoparticles with an average diameter of 50 nm by using the

AMPI (atomistic model for particle inception) code [113].

4 Back-Mapping

The combination of CG simulation with an efficient back-mapping methodology

(i.e., reintroduction of atomistic detail) is also a powerful tool for efficiently

obtaining well-equilibrated atomistic structures. In general, the back-mapping

procedure has no unique solution because every CG structure corresponds to an

ensemble of atomistic microstates. Therefore, one needs to find one representative

all-atom structure with the correct statistical weight of those degrees of freedom

that are not resolved in the CG description. Several slightly different strategies for

reintroducing atomistic detail into a CG structure have been presented [13, 16, 115,

116]. When the mesoscale model is tailored on the atomic contour using atomic

distributions to build up the CG force field, zooming back to the atomic description

is usually a simple geometrical problem. The general strategy is to use reasonably

rigid all-atom chain fragments (corresponding to a single or a small set of CG

beads) that were taken from a correctly sampled distribution of all-atom chain

structures. An alternative for the case of more flexible low-molecular-weight

molecules is to restrain some atomistic coordinates to the CG structure to avoid

deviation of the atomistic structure too strongly from the CG reference [117]. In

some cases, as for Santangelo and coworkers [115], if the model is particularly

coarse or the beads contain asymmetric atoms and the polymer chain has a specific

tacticity, a more sophisticated method must be followed: For instance, the atomic

fragment inserted into the CG model must be chosen from several that correspond

to the same type of bead. The structures resulting from the back-mapping procedure

can be directly compared to experimental data (e.g., X-ray or neutron scattering)

or they can be used in further computations, for example to determine dynamic data

(e.g., the permeabilities of small molecules in large polymeric systems) [118–120].

Additionally, the combination of CG simulations, where the CG model is based on

an underlying atomistic description, with a back-mapping procedure can be further

employed to validate the atomistic force field on time and length scales not

accessible to atomistic simulations.

5 Outlook

The key motivation for CG molecular modeling and simulation derives from

the need to bridge the atomistic and mesoscopic scales. Typically, there are two

to three orders of magnitude in length and time separating these regimes. Only

at the mesoscopic scale can one see the emergence of important phenomena
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(e.g., self-assembly in biomolecular or soft matter systems). CG simulations,

especially as the aim is to make increasing contact with experimental results for

complex systems, therefore play a significant role in the exploration of mesoscopic

phenomena and, in turn, of the behavior of real biomolecular and materials systems.

Although CG models provide a highly efficient computational tool for rapidly

investigating different properties of the system with a desired resolution, they face a

number of significant challenges before they can become widely utilized by the

research community, especially by experimental researchers as a tool to help

interpret their experiments. As discussed before, the structure-based CG models

are state-point dependent, which means that the potentials obtained at a given

thermodynamic condition do not generally provide a good description of the

structure and other properties at other conditions. Thus, one needs to test the

transferability for each CG model individually. Our results show that for a defined

mapping scheme, IBI potentials develope independently and with different shape,

and give comparable self-diffusion coefficients for high-enough temperatures.

At high temperatures, the specifics of a force field become unimportant and only

global properties such as excluded volume and bead connectivity prevail. We have

also shown that the scaling factor measuring the artificial speed-up of the CG model

over the parent atomistic model depends on the simulation temperature. A key goal

then is both to define and to understand what is and what is not transferable in a

given CG model and why. Recent work by Harmandaris et al. [73] shows that the

dependence of polymer dynamics on density is not described accurately with the

CG model, whereas the dependence on chain length is the same as in atomistic

simulations. Thus, at high molecular weights where the change in the polymer

dynamics is entirely due to the increase of the molecular weight we will have a

constant scaling factor between the atomistic and the CG model. The asymptotic

plateau value of the scaling factor allows us to quantitatively predict the diffusion

coefficient (and of other dynamic properties) of higher molecular weight polymer

melts directly from the CG simulations. Since we have IBIsCO as a powerful tool

for CG simulations, combining these results with the recent work of Qian et al. [57]

to control the fast dynamics in the CG models could lead to a robust method for

calculating the viscosity of long polymer chains.

Another challenge involves the establishment of a proper formal connection

between the behavior of the CG representation of the system and the underlying

all-atom (full atomic resolution) model. In many systems, the formation (e.g., self-

assembly) and dynamics of large-scale structures and conformations cannot be

decoupled from local, chemical processes and specific intermolecular interactions.

A hydrogen bond is an attractive interaction acting between an electronegative

atom (the acceptor) and a hydrogen atom bonded to a donor nitrogen, oxygen, or

fluorine. Due to the simplification of the CG models, the atoms directly involved in

the hydrogen bonding (donor and acceptor) are usually ‘coarse-grained away’ i.e.,

lumped with other atoms into beads. The poorly described hydrogen bonding

interactions can lead to an unphysical CG dynamics that prevents the correct

description of the collective properties of the polymers. A method that explicitly

introduces an orientation-dependent CG hydrogen bonding potential would allow
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the study of those collective phenomena in materials that, driven by the presence of

hydrogen bonds, cannot be investigated with an atomistic approach. Polymer

crystallization and self-assembly of block copolymers could be the first objects of

investigation. Because hydrogen bonding is the driving force in many biological

processes, the new force field approach could be particularly suitable for the study

of biopolymers such as polysaccharides and of biomaterials in which a polymer

interacts with a biological system.

The proposed CG models can also be used for the study of systems more

complicated than bulk polymer melts. Possible examples are the study of the

diffusion of a penetrant in a polymer matrix, or of block copolymers, blends, etc.

[121, 122]. In addition, the method can be directly incorporated into multiscale

methodologies, which include multiple levels of simulation, and where both atom-

istic and mesoscopic descriptions are needed at the same time, but in different

regions. An example is the study of the long time scale dynamics of polymers near

solid attractive surfaces, where an atomistic description is needed very close to the

surface but a mesoscopic description can be used for length scales far from the

surface.
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Reduced density matrix (RDM) 77

Reference system propagator algorithm

(r-RESPA) 88

Relativistic electronic structure 109

Resolution of the identity (RI) 76

Restrained electrostatic potential (RESP) 215

Retention mechanism 181

Retention potential 109

Reversed-phase liquid chromatography
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Room temperature ionic liquids (RTIL) 43, 58

Roothaan equations 74, 80

Rubredoxin 144

S

Schr€odinger’s equation 6, 73

Self consistent field (SCF) 109, 111

Self consistent reaction field (SCRF) 216

SHAKE algorith 109

Shear viscosity 229

Shock Hugoniots 23

Soft-sphere (SS) potential 204

Solar cells, dye-sensitized 146

Solvent effects 109, 140

Solvent-separated ion pair (2SIP) 264

Squalane 43, 53

Stochastic rotational dynamics (SDR) 279

String method 109

SuperComBiHelix 15

Sutherland potential 205

T

Taylor expansion 113

Thermal conductivity 229

Thermodynamics 201

Tight binding (TB) methods 18

Tissue engineering 33

Torsional rotation terms 211

Transferable potential 17

Transferable potential for phase equilibria

(TraPPE) 218, 220

Transition state theory (TST) 70, 89

Transmembrane protein structures 1

Transport properties 229

Trapped desorption (TD) 53

Truncated and shifted Lennard-Jones potential

(TSLJ) 205

Two-electron reduced density matrix

(2-RDM) 77

U

Uracil 140

V

Valence coordinate cross terms 212

van der Waals interaction 109, 127, 204, 214

van der Waals term 11

Variational transition-state theory (VTST) 71

W

Wannier orbitals 109

Water 109, 138

confined 155

Water-mediated ordering 170

Wave equation 4

Wave packet molecular dynamics (WPMD) 22

Wavefunction analysis 136

Wavelets 109, 123

Wetting, nanoscale 155

Wetting free energy 168

X

X3LYP 7
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