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Foreword

The oceans cover more than two thirds of the surface of the Earth. They have a pro-
found influence on our climate, our weather, and the Earth’s ecosystems. They store
and transport heat, CO2, nutrients, and, of course, water, as well as other important
components determining the conditions of life on our planet. Through their large
storage capacity for heat, the oceans act as a flywheel, dampening short-term nat-
ural variations in weather and climate. But, by the same process, they also convert
short-term weather fluctuations into longer term climate variations, in the same way
as a long swing exposed to short gusts of wind slowly develops longer-term ran-
dom oscillations (or large molecules in a sea of small molecules exhibit Brownian
motion). Thus, a clear insight into the dynamics of the ocean is a prerequisite for
understanding our present climate, including both the mean climate state and the
superimposed natural climate variability. This applies still more, of course, to our
attempts to assess the impacts of human activities on climate and to predict the evo-
lution of climate in the future. To resolve these questions, it is essential that we are
able to distinguish conceptually and in observations between natural and human-
induced climate change. This is again critically dependent on understanding of the
dynamics of the oceans.

The widespread recognition of the important role of the oceans for climate has led
to a strong increase in ocean research in recent years. Much of the enhanced effort
has been directed towards the development of more detailed numerical models of
the ocean circulation, a focus which has appeared particularly rewarding in view of
the parallel rapid increase in supercomputer power. However, the oceans represent
a highly complex system, characterized by many different space and time scales.
Although the physics is well understood at the basic level of the underlying fluid
dynamic equations, the range of space and time scales involved in the coupling of
the oceans to the rest of the climate system span far too many orders of magnitude
to be captured by even the most advanced super-computer. Thus, approximations
are necessary. But in order to introduce meaningful approximations, and to assess
their implications and ranges of validity, a thorough understanding of the underlying
dynamics of the oceans is essential.

This book is the most thorough and carefully researched representation of the dy-
namics of the ocean that I am aware of. It begins at the most fundamental level of
the fluid dynamic equations and, from there, gradually develops a series of pictures
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vi Foreword

of the ocean system obtained by focusing on different aspects of the dynamics. Each
approximation is carefully and rigorously introduced. The treatise leads, finally, in
the last chapters and Appendix B, to a number of state-of-the-art ocean models de-
signed for particular applications. But the emphasis is always on the fundamentals,
rather than the numerical models.

One cannot fail to be impressed. However, when first asked to write a foreword,
I demurred. The level of fundamental rigor lies so far beyond the level at which I
have been working as a climate scientist that I felt (and still feel) unable to provide
due justice to the detailed, careful mathematics on which the book is based. But
on second thoughts I thought that precisely because I have always been a rather
broad-brush scientist with a somewhat cavalier attitude towards mathematical rigor,
it is fitting that I pay homage to this truly impressive work of fundamental scientific
analysis.

This is all the more appropriate, since the many of the topics in the book have
evolved from the joint beginnings of the first two authors and myself in the early
years of the Max Planck Institute of Meteorology in Hamburg. In the second half
of the 1970’s we were struggling to develop a realistic numerical global ocean cir-
culation model that we could couple to our available global atmospheric model to
create a useful global climate model. Our thinking was very much along the lines
of this treatise: first identify the modes of motion of the ocean circulation relevant
for the space and time scales of climate variability that we were interested in; then
develop numerical models for the different ocean modes based on this space and
time scale decomposition; finally, couple the different subsystems together to pro-
duce a numerically efficient global ocean model. We profited much from the lectures
of Pierre Welander and the lively discussions on ocean dynamics during his many
sabbaticals at MPI. However, the project turned out to be far more complex than we
had naively envisaged, and our goals were never achieved. Fortunately, the day was
saved through the numerical creativity of Ernst Maier-Reimer, another member of
the MPI ocean modeling team who produced a global large scale geostrophic (LSG)
numerical ocean model using a novel implicit filtering scheme, which we were then
able to couple to our atmospheric model, producing one of the first realistic global
climate models. But this channeled the future MPI ocean modeling efforts into large
numerical models, rather than in the direction of careful dynamical analysis pursued
in this book.

It is thus a source of considerable gratification to see that Dirk Olbers and Jürgen
Willebrand, after leaving the MPI to head theoretical oceanography departments at
their respective institutes in Bremerhaven and Kiel, have, in collaboration with their
colleague Carsten Eden, successfully pursued and realized our original dream. The
present book does indeed lead from first principles to the basic modes of motion
of realistic oceans to an example of a highly efficient but simplified ocean model
(BARBI, modestly hidden in an appendix) based on intelligent mode decomposition
and filtering.

Unfortunately, the sheer volume of detailed analysis that needed to be carefully
presented to describe the dynamics of the ocean itself precluded the discussion of fur-
ther interesting problems related to the role of the oceans in coupled systems. Exam-
ples include the storage and transport of CO2 and other substances in the ocean, in-
teractions with sea-ice, natural modes of oscillation of the coupled ocean-atmosphere
system and the related question of decadal-scale climate predictability, the dynam-
ics of the air-sea interface and ocean waves, and methods of satellite remote sensing
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of the sea surface. For climate scientists and other researchers interested in these
broader questions, the present book, through its rigorous treatment focusing on the
complex dynamics of the ocean itself – the key component in all of these examples
– will provide an invaluable reference text. But still more important, it should lay
the foundation for a deeper appreciation of the complexities of the dynamics of the
ocean for the next generation of physical oceanographers striving to understand the
role of the oceans in the Earth system.

Hamburg, November 2011 Klaus Hasselmann



Preface

This book is directed to graduate students of physical oceanography and neighboring
fields like meteorology, geophysics or general physics, and to anybody interested
in a thorough discussion of ocean dynamics. Based on the well-known fundaments
of fluid mechanics, thermodynamics, and wave theory, the first three parts of the
book provide a detailed derivation of the basic physical laws describing the motions
in the ocean, common approximations which are made to simplify the discussion
of e. g. the large-scale fluid dynamics of the ocean, and a comprehensive treatment
of linear wave theory. The following part on the theory of turbulence in the ocean
attempts to reach for newer results, in particular regarding the role of eddies for
the large-scale dynamics. In the next part, classical concepts and models of ocean
circulation are combined with newer material. Finally, an appendix reviews some of
the needed mathematical tools and the models which are used in the book. While
far from being complete, we have included as much as possible of what we think is
important to understand the physics of the ocean, aiming for a high accuracy both in
physical argumentation and mathematical derivation.

In the last decades, increasing interest in climate change has fostered research
with respect to the role of the ocean in the climate system and has changed the field
of physical oceanography from a small group of largely ignored academical experts,
into a highly recognized arena of scientific discussion, which sometimes even takes
place in the media. At the same time, the increasing performance of computers al-
lowed more and better resolved integrations of numerical ocean models. In this book
we have not addressed the field of numerical ocean modeling. However, we believe
that for both, the scientific discussion and a thorough interpretation of numerical
models, knowledge of the material presented in this book should be of value.

The book is based on material from a series of lectures to graduate oceanography
students at the University Kiel and to graduate physics students at Bremen Univer-
sity which has evolved over the years. While the reader of this book does not need
any prior knowledge about physical oceanography, we assume a sound physical and
mathematical basis comparable to that of a Bachelor in physics. In the notation we
mostly follow the conventions in the oceanographic literature. Relevant variables are
generally introduced when they arise in the context of the discussion; a list of sym-
bols and their meaning is given in Appendix .

ix
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List of Symbols

In a text covering various aspects of ocean dynamics, it is unfortunately not possible
to use a notation which is at the same time both simple and unambiguous. To facili-
tate reading, as far as possible conventional notation is used in this book. However,
it occurs that a symbol has different meanings in different parts of the book. The
following list contains symbols and the corresponding variables which appear, with
the same meaning, in more than one chapter. Also listed are the physical unit and the
section of first appearance or explanation.

Symbol Variable, Unit Section

r D .@=@x; @=@y; @=@z/ gradient (or nabla) operator, in m�1 1.1
(see also
Appendix A.1.1)

a Earth radius, in m 4.2
B baroclinic vector, in m s�2 2.11.2
Bu Burger-number 5.2.1
b buoyancy, in m s�2 4.1.6
C Cox-number 11.3.3
cg wave group velocity, in m s�1 6.2.1
cp specific heat, in J kg�1 K�1 1.2.7
cs sound velocity, in m s�1 2.6.4
E internal energy per mass, in J kg�1 D m2 s�2 1.2.3
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Part IFundamental Laws

The fundaments of ocean physics are based on the concepts of hydrodynamics and
thermodynamics. Molecular structures of the media are not considered explicitly
(except in radiation processes which, however, are not treated in this book). Physical
properties of small but finite volume elements are defined according to the continuum
hypothesis, e. g. a mean velocity or a mean concentration of constituents are defined
locally at each point of the fluid domain. Such mean values are well defined because
a volume of only 1 µm3 of sea water or air contains more than 1010 molecules. The

A fluid parcel (also called
fluid particle) is a small
volume element moving
with the local velocity, in
case of seawater this is the
barycentric velocity of the
pure water and the salt con-
stituents. The fluid parcel
conserves its mass but may
exchange material by dif-
fusive processes with the
surrounding fluid (pure wa-
ter in/out and salt out/in).
The sketch shows the parcel
with a vectorial flux J of
a substance through a sur-
face element dA with nor-
mal n. Further explanations
are given in Chapter 2.

average separation 
 between molecules is much smaller than any relevant scale L
over which variations of variables are considered. In water 
 is only about 10�8 cm,
whereas the smallest scale in microstructure measurements in the ocean is typically
a few millimeters. With very good accuracy. the corresponding state variables can
thus be regarded as continuous fields in space and time.

The equations, which describe the evolution of the state of the ocean, are the
macroscopic conservation theorems for partial masses, momentum, and internal en-
ergy, as used in conventional hydrodynamics and thermodynamics. These macro-
scopic theorems can in principle be derived from a statistical theory in which the
basic physical laws, governing the microscopic state of single molecules, are em-
bedded (see textbooks on statistical mechanics as e. g. Huang, 1987). The molecular
structure of the fluid also determines the values of important parameters appearing
in these equations, such as molecular diffusivities for momentum and partial masses,
in terms of the forces acting between molecules.

In this part we follow instead a phenomenological derivation of hydrodynamics,
based on the empirical knowledge that mass, momentum and energy of small (ma-
terial) volume elements moving in the fluid are conserved. The thermodynamics is
also formulated for such volume elements, assuming that the properties are locally
in a thermodynamical equilibrium. Thermodynamic and molecular properties then
have to be taken from empirical findings. The macroscopic theory is built in this La-
grangian point of view, but the evolution equations are transformed to the Eulerian
form of a field theory which is more useful in applications.
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In this chapter some aspects of the kinematical description of oceanic
flows are discussed. Furthermore, the equilibrium thermodynamics of
seawater is reviewed. The results are prerequisites for the derivation of
conservation laws in Chapter 2.

The concept of a fluid element is essential for the formulation of hydrodynamics.
A fluid element is a small portion of the fluid, marked at some initial time. Its mass
is small, and the linear dimension related to the volume of the fluid element is small
compared to all relevant scales of motion. We only consider fluid elements with
a mass which is constant in time, so that the fluid element is to some extent analogous
to a mass point in mechanics. Note, however, that individual molecules of the fluid
element may be exchanged with the environment (cf. the treatment of salt diffusion
in Section 2.2). Although mass and volume of the fluid element are finite, mathemat-
ically it is often practical to treat both as infinitesimally small. We also refer to these
fluid elements as fluid ‘particles’ or ‘parcels’. Section 1.1 describes the kinematics of
a moving fluid particle, whereas Section 1.2 reviews the thermodynamic properties
of a seawater parcel at rest.

1.1 Flow Kinematics

In the present section we outline some properties of fluid kinematics. Kinematics
deals with the motion of the fluid without account of its dynamical balance. Forces
affecting the fluid motion are considered in Section 2.3. The description of hydro-
dynamic fields most conveniently uses vector calculus. The mathematical tools nec-
essary to describe vector and tensor fields arising in this context are summarized
in Appendix A.1. For the notation see the box on p. 4.

1.1.1 Lagrangian and Eulerian Representation

In the LAGRANGIAN1 framework of hydrodynamics the motion of the fluid is de-
scribed by following the trajectory, i. e. the location x D .x1; x2; x3/ of each single

1 JOSEPH LOUIS LAGRANGE, *1736 in Turin, †1813 in Paris, mathematician and physicist.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 3
DOI 10.1007/978-3-642-23450-7_1, © Springer-Verlag Berlin Heidelberg 2012
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1. Notation for Fields and
Derivatives

The notation for scalar functions �.x1; x2; x3; t/ D �.x; t/ and vectors functions u.x; t/ is
standard, and denotes their functional dependence on position and time (or on other arguments
when needed). Tensor functions are denoted as A.x; t/ � � � . Partial derivatives of such functions
with respect to the coordinates xi and time t are denoted by @=@xi and @=@t , respectively, and
likewise for other arguments. Moreover, we use the vector notation r for the spatial gradient,
r � for the divergence, and r � for the curl. The total or substantial derivative D=Dt is defined
by (1.3) and used throughout this book. It acts on variables which are functions of time and
space. Derivatives of variables which are functions of a single independent variable, e. g. time t ,
are usually expressed as d=dt . Occasionally, time derivatives are denoted by a dot over the
symbol.

fluid element as function of time t . Fluid elements (or parcels) are identified by an
index a, such that the trajectory of parcel a through the fluid is given by

x D X.a; t/

A convenient choice for the parcel’s index a is the position vector of the parcel at
some initial time t0,

a D X.a; t0/

The Lagrangian framework corresponds to the kinematics of a mass point in me-
chanics. The velocity of the parcel with index a is given by

uL.a; t/ D @

@t
X.a; t/ (1.1)

and is referred to as Lagrangian velocity. The acceleration is the second time deriva-
tive of X.a; t/. Similarly, any scalar property  of the fluid can be represented as
a Lagrangian variable by attaching it to the parcels in the form  D .a; t/. A sketch
of the parcel motion is given in Figure 1.1.

The kinematic relation between the positionX.a; t/ and the velocity uL.a; t/

X.a; t/ D aC
tZ

t0

uL.a; t 0/dt 0

follows by integration of (1.1). Inversion yields the parcel’s index a in terms of the
position vectorX D x at time t ,

a D A.x; t/ (1.2)

This relation identifies the parcel that is situated at time t at the position x in the fluid.
It may be used to transform to EULERIAN2 fields which describe the fluid properties

2 LEONHARD EULER, *1707 in Basel, †1783 St. Petersburg, mathematician and physicist. He
worked in Berlin and St. Petersburg. The attribution of the development of hydrodynamics is a bit
intricate. The Eulerian representation was actually introduced by d’Alembert who gave the com-
plete equations of motion for an incompressible fluid – the so-called Euler equations – in 1747,
while Euler generalized it in 1752. Euler was the first who considered the equations of motion in
rotating coordinates. The Lagrangian representation was not developed by Lagrange. In his mem-
oir of 1781 he contributed to methods of solving the equations, written in Lagrangian coordinates.
They were used by Euler already in 1751. Also Laplace used the Lagrangian representation in his
theory of tides in 1776.



1.1 Flow Kinematics 5

Fig. 1.1 Sketch of Lagrangian trajectory of a fluid element starting at the initial position X D a.
The initial position a is also used to label the element and to differentiate it from others

at a fixed position and their changes in the course of time. Thus

uE.x; t/ D uL.a; t/ D uL.A.x; t/; t/

E.x; t/ D L.a; t/ D L.A.x; t/; t/

are the Eulerian velocity and property fields, respectively. Knowledge of the Eulerian
velocity uE.x; t/ enables as well to determine the trajectory of each parcel. It follows
from

@X

@t
D uE.X ; t/

with the initial condition X.t0/ D a. Likewise, the rate of change of a parcel’s
property can be expressed in either form,

@

@t
L.a; t/ D @E

@t

ˇ̌
ˇ̌
X

C @E

@xi

ˇ̌
ˇ̌
t

@Xi

@t
D @E.x; t/

@t
C uL.a; t/ � rE.x; t/

D @E.x; t/

@t
C uE.x; t/ � rE.x; t/

Note that we use here and in the following the Einstein summation convention: if the
same index appears twice in one term of an equation, the summation over this index
is implied. We now define the operator

D

Dt
� @

@t
C uE � r (1.3)

and arrive at

@

@t
L.a; t/ � D

Dt
E.x; t/ D @

@t
E.x; t/C uE � rE.x; t/ (1.4)

often referred to as Euler’s relation. Both expressions in (1.4) describe a temporal
change of the parcel’s property, however, in the Eulerian form (right hand sides of
(1.4)) the parcel context of the Lagrangian form (left hand side of (1.4)) is lost. We
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shall refer to the above operator D=Dt as the ‘material’ or ‘substantial’ derivative
(see also the box on p. 4). While the term ‘material’ is custom, as mentioned before,
the matter in a ‘material’ fluid parcel is not necessarily conserved because of diffu-
sion of partial masses. In the Eulerian form, the material derivative consists of a local
rate of change and the change implied by the advection of fluid through the point of
observation. If the material rate of change vanishes for a specific property, this prop-
erty is conservative – a parcel carries a constant value of that property for all times.
Nevertheless, the property observed at any fixed (Eulerian) position x may change
in the course of time, because of advection of parcels with different properties.

The Lagrangian and Eulerian formulations of fluid mechanics are completely
equivalent. While the first is more intuitive, the latter is generally more convenient.
This becomes evident when the dynamical evolution equations are written com-
pletely in Lagrangian coordinates; see Section 2.12. We shall be mostly concerned
with the Eulerian framework and abandon the index ‘E’ in the rest of this book, thus
e. g. u.x; t/ � uE.x; t/ is referred to as the velocity field which in Section 2.2 will
be identified with the velocity of the center of partial masses constituting the fluid.
The derivation of conservation equations of fluid properties outlined in the following
sections will use the Eulerian form, some arguments will however be borrowed from
the Lagrangian framework.

1.1.2 Deformation and Rotation

The velocity field u.x; t/ completely quantifies the macroscopic flow of the fluid. At
any fixed time, the velocity vectors define a family of streamlines which are every-
where tangential to u.x; t/, i. e. we have u.x; t/ � dx D 0 where dx is an infinite-
simal line element along the streamline at the position x, or

dx

u.x; t/
D dy

v.x; t/
D dz

w.x; t/

in a Cartesian coordinate system with u D .u; v; w/ and x D .x; y; z/. Streamlines,
taken at a particular time, and parcel trajectories, filling out the space with time
progressing, are congruent if the flow is steady (meaning that it does not change in
the course of time). In an unsteady flow, the streamline pattern taken at time t and
the trajectories with initial condition taken at the same time are initially tangent but
generally diverge at later times.

These families of lines are used to present a ‘global’ view of the fluid motion.
Zooming in locally, a fluid parcel at x is translated by the motion an infinitesimal
distance u.x; t/ıt during the time interval ıt along the corresponding streamline
(and trajectory). But taking parcels on neighboring streamlines, we notice that these
could be displaced in a slightly different way. The distortion of a pattern of infinitesi-
mal neighboring parcels is contained in the gradient ru of the velocity field which is
tensor with (3�3) Cartesian components @ui=@xj . Even simple structures of this ten-
sor may lead to complex distortions of the fluid. Note that some important elements
of vector and tensor algebra are summarized in Appendix A.1.
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The velocity vector gradient may be decomposed into a symmetric and an anti-
symmetric part,

@ui

@xj
D 1

2

�
@ui

@xj
C @uj

@xi

�
C 1

2

�
@ui

@xj
� @uj

@xi

�
D Dij CRij (1.5)

where

Dij D 1

2

�
@ui

@xj
C @uj

@xi

�
D Dji is the deformation tensor

Rij D 1

2

�
@ui

@xj
� @uj

@xi

�
D �Rji is the rotation tensor

(1.6)

The above names already indicate the role of the corresponding tensors, which will
be discussed in this section. Other names are rate of strain tensor3 forDij and vortic-
ity tensor for Rij.

Two parcels at the positions x0 and x0 C `.t/, separated by an infinitesimal vec-
tor `.t/ at time t (see Figure 1.2), move relative to each other with the velocity
ıu.x0; t/ D u.x0 C `.t/; t/ � u.x0; t/ D `.t/ � ru.x0; t/C O.`2/. At a later time
t0 C ıt the parcels are separated by `.t C ıt/ D `.t/C ıuıt ; so the distance vector
`.t/ between them is governed by

d`

dt
D D`

Dt
D ` � ru D .D C R/ � ` (1.7)

using (1.5). The above evolution equation needs more explanation. In fact, ` is a La-
grangian property: it is the distance vector of two parcels. We attach the Lagrangian
index x0 to ` writing ` D `.x0; t/ and replace the time derivative by the Lagrangian
operator D=Dt (see also the box on p. 4).

Apparently, the distance vector is affected by both tensor contributions to the
velocity gradient. There are other important quantities which are affected by only the
one or the other. We elucidate the two contributions to the gradient tensor separately.

Fig. 1.2 Sketch of the motion of two Lagrangian points in the fluid separated by the distance
vector `.t/

3 The strain tensor is often defined as the tensor of displacement gradients corresponding to D.
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Deformation

The evolution of the distance
p
`2 between the parcels is governed by the deforma-

tion tensor D only,

D`2

Dt
D 2` � .D � ` C R � `/ D 2` � D � `

since the quadratic form ` � R � ` of the antisymmetric rotation tensor vanishes iden-
tically. The rate of change of the volume V D .a� b/ � c of an infinitesimal material
volume element spanned by three vectors a, b and c is given by

DV

Dt
D
�

Da

Dt
� b

�
� c C

�
a � Db

Dt

�
� c C .a � b/ � Dc

Dt

D .D � a � b/ � c C .a � D � b/ � c C .a � b/ � D � c (1.8)

Again, the contributions from the asymmetric part of ru are canceled. From the
symmetric part only the diagonal tensor elements Dii remain, as shown by an ele-
mentary evaluation of (1.8). Hence

DV

Dt
D VDii D V r � u (1.9)

Here, r � u is the divergence of the velocity field, in Cartesian coordinates given by
r � u D @ui=@xi . If the flow is divergent at the respective position, i. e. r � u > 0,
then the fluid parcel expands in volume. If the flow is convergent, i. e. r �u < 0, then
the parcel’s volume shrinks. Equation (1.9) is most easily proven if the tensor D is
diagonal: expanding the scalar triple products in (1.8) into the determinant form, it
is found that each single sum to the determinants contains only one of the diagonal
entries of D, and the three triple products then combine to the form (1.9).

Since D is symmetric, a coordinate system where D is diagonal can always be
found. It is the system spanned by the three eigenvectors of D (for eigenvalue prob-
lems see the box on p. 9); hence the new coordinates are along the principal axes
of D. In these rotated coordinates the deformation tensor is given by

D D .Dij/ D
0
@


.1/ 0 0

0 
.2/ 0

0 0 
.3/

1
A

where 
.˛/; ˛ D 1; 2; 3 are the eigenvalues of D. Note that this coordinate trans-
formation applies to the reference point x0, i. e. all quantities, including the 
.˛/

thus depend on the position. On the other hand, the trace Dii D P
i 


.i/ of a tensor
is invariant under orthogonal transformations. The evolution equation (1.9) for the
volume of a fluid parcel is thus invariant as well. The interpretation of this relation
is now straightforward in the coordinate system of the principal axes: each side a,
b, c of the volume element is stretched by a factor 1 C 
.˛/ıt , respectively, in the
time ıt . The expanded volume is thus a.1 C 
.1/ıt/b.1 C 
.2/ıt/c.1 C 
.3/ıt/ D
abc

�
1CP

i 

.i/ıt CO.ıt2/

�
.

The deformation is thus completely determined by the three principal strain
rates 
.˛/ describing stretching along the principle axes. Distance vectors pointing
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in other directions experience stretching and rotation, however. The deviatorD? of
the deformation tensor, defined by

D?
ij D Dij � Sıij with S D 1

3

X
i

Dii D 1

3

X
i


i D 1

3
r � u (1.10)

has zero trace and thus has no effect on the volume change. Only the isotropic
part .Sıij/ is responsible for the change of volume. The deviator will be met again
in Section 2.3 where it will be related to molecular friction in the momentum budget.

Rotation

The rotation tensor R, given by

.Rij/ D 1

2

0
@ 0 �!3 !2
!3 0 �!1

�!2 !1 0

1
A

is antisymmetric and thus has only three independent components !i ; .i D 1; 2; 3/,
defining a vector ! D .!1; !2; !3/. More accurately, ! is a pseudovector (see Ap-
pendix A.1.6). The contribution to the rate of change of the distance vector can thus

2. Eigenvalue ProblemsThe real n � n matrix A has an eigenvalue � with corresponding (right) eigenvector a if .A �
�I/a D 0. In order that this problem has nontrivial solutions, the determinant of the matrix
must vanish,

det.A � �I/ D 0

which is the characteristic polynomial of A. It is of nth order in �; so there are in general n
solutions �.i/, a.i/, i D 1; : : : ; n to the eigenvalue problem. Eigenvectors with different eigen-
values are linearly independent but not necessarily orthogonal. Eigenvectors may be normalized
to unity because they are defined only up to a factor.
If all eigenvalues are different, the set of normalized eigenvectors forms a basis in which A
becomes diagonal, i. e. grouping the eigenvectors to a matrix T D Œa.1/; : : : ;a.n/� the trans-
formation generates the eigenvalue diagonal matrix T�1AT D ƒ D diag.�.1/; : : : ; �.n//.
The right-eigenvalue problem may thus be written in matrix form AT D ƒT . It is associ-
ated with a left-eigenvalue problem T�1A D ƒT�1 which generates a set of left eigenvectors
b.i/; i D 1; : : : ; nwhich are mutually orthogonal to the right eigenvectors, a.i/b.j/ D ıij. The
sets of eigenvalues for the left and right eigenvalue problems are identical. Further properties:

� det.A/D Qn
iD1 �

.i/ and trace.A/D Pn
iD1 �

.i/

� If A is symmetric then:
1. All eigenvalues are real.
2. Eigenvectors with different eigenvalues are orthogonal, i. e. T�1 D TT.

� If A is not symmetric, complex eigenvalues may occur but always in conjugate pairs. Then
also the eigenvectors and T and T�1 are complex.

� If A D BC with symmetric B and C and invertible B, hence .C � �B�1/a D 0, then A
has real eigenvalues. Most eigenvalue problems arising in physics are of this form.

If there are multiple eigenvalues and if A is of diagonal similarity (or reducible; i. e. it can be
transformed to a diagonal form T�1AT D ƒ), then a complete set of eigenvectors is contained
in the transformation matrix T. There are, however, irreducible cases where A cannot be put
into a diagonal form and less than n eigenvectors exist. It is always possible to find a T which
transforms A to a Jordan form T�1AT which has zeros below the diagonal, the eigenvalues
(with their multiplicity) in the diagonal and generally nonzero elements above the diagonal.
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Fig. 1.3 a A sketch of the local rotation. b A sketch visualizing the distortions due to dilation and
rotation of a fluid parcel. Redrawn after Aris (1989)

be expressed as the vectorial product of ! and `,

R � ` D 1

2
! � ` (1.11)

describing pure (rigid body) rotation of ` with angular velocity!=2. Written in terms
of the velocity gradient, the vector ! becomes

! D
�
@u3

@x2
� @u2

@x3
;

@u1

@x3
� @u3

@x1
;

@u2

@x1
� @u1

@x2

�
D r � u (1.12)

which is the curl of the velocity vector and termed vorticity vector. The effect of the
rotation tensor on the local relative motion is elucidated by considering the fluid in
an infinitesimal disk with radius r and normal vector n, centered around the refer-
ence point (see Figure 1.3a)). The fluid motion generates an average angular veloc-
ity utangential=r which we estimate as utangential � .r=2/! � n D .r=2/!? following
STOKES’4 integral theorem (see Appendix A.1.3). The disk thus rotates with !?=2,
half the normal component of the local vorticity vector.

We summarize this section by noting that any arbitrary state of motion may be
decomposed in each point into a uniform translation, a dilation along three mutually
orthogonal axes, and a rigid rotation, according to

u.x; t/ D u.x0; t/C ` � D C ` � R
with ` D x � x0 and D and R referring to the point x0. Figure 1.3b) shows a sketch
of the distortions due to dilation and rotation, associated with the deformation and
rotation tensors.

1.2 Thermodynamics of SeaWater

In this section, we discuss the fundamental laws of thermodynamics which form the
basis for the consideration of energy conservation in fluids in Chapter 2, by apply-
ing the thermodynamic laws to a moving infinitesimal material fluid element. The

4 GEORGE GABRIEL STOKES, *1819 in Skreen, †1903 in Cambridge, mathematician and physicist.
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3. Variations in the
Composition of Seawater

A constant mass ratio of the salt components in seawater is a very good assumption for dynam-
ical purposes. This assumption will be used in this book. However, it turns out that there are
small variations in the salt components, which are measurable (with some effort) but difficult to
deal with. It is even not obvious how to differentiate freshwater from dissolved salt: Consider
for instance a certain amount of mass of the gas CO2 dissolving in sea water: it is decomposed
into different fractions, i. e. CO2, H2CO3, HCO�

3 , CO2�

3 , HC, OH� and H2O. This means that
some of the freshwater turns into salt during the dissolving process; the amount, furthermore,
depends on ambient temperature and pressure.
The largest deviation in the worlds ocean of the composition of sea water from a reference com-
position (referring to the North Atlantic) can be seen in the North Pacific Ocean with a value
in terms of salt concentration of about 0:025 g kg�1. The reason for this deviation appears to
be mostly related to the microbial demineralization of biological material in the interior ocean.
A variety of variables describing the salt concentration and corrections for the variable compo-
sition of seawater have been put forward so far; a summary and some recommendations can be
found in IOC, SCOR and IAPSO (2010).

discussion will also allow to infer the direction of molecular transports of heat and
salt. Furthermore, we will introduce thermodynamic properties such as thermal ex-
pansion, specific heat, etc. which will also turn out to be important for the dynamics
of fluids.

The concept of thermodynamic equilibrium plays a central role in thermodynam-
ics: a system is in thermodynamic equilibrium if there is mechanical equilibrium
(i. e. if all forces are balanced), if there is thermal equilibrium (i. e. if the temperature
is uniform), and if there is chemical equilibrium (i. e. if there is no change of struc-
ture and chemical composition). While almost any interesting hydrodynamic process
is usually not in thermodynamic equilibrium, one can normally assume that locally,
i. e. for a sufficiently small volume (i. e. fluid element), thermodynamic equilibrium
prevails to a sufficiently good approximation, due to the small space-time-scales of
molecular processes.

Different types of thermodynamic systems can be distinguished. Open systems
exchange both matter and energy with the environment. Closed systems exchange
energy but not matter, adiabatic systems exchange matter but not energy, and adi-
abatically closed (or isolated) systems exchange neither energy nor matter. While
a fluid element in the ocean always constitutes an open system, it is nevertheless
often very useful to consider the idealized case of an adiabatically closed system.5

1.2.1 Salt Concentration and Salinity

Seawater consists of pure water and a number of dissolved salts. The main compo-
nents are chloride (about 55% by mass), sodium (30%), sulfate (8%), magnesium
(4%), potassium and calcium (each 1%) and many further components (in fact, any
element worth talking about can be found in seawater at a certain concentration).
The mass ratio of the salt components is very nearly constant throughout most of the
world’s oceans (compare the box on p. 11), and for almost all dynamical purposes it
is sufficient to consider their total mass, respectively their concentration. Hence we
have the variables

5 Adiabatic systems with mass exchange are rarely of interest, and in the following the term ‘adia-
batic’ is used to describe ‘adiabatically closed’ systems.
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s salt concentration in kg salt=kg seawater
�s density of salt in kg salt=m3

w content of freshwater in kg freshwater=kg seawater
�w density of freshwater in kg freshwater=m3

Notice that s and w are concentrations in the conventional sense. They are dimen-
sionless, e. g. s D 0:035 is a typical value for the open ocean. The definitions imply

�s D s� ; �w D w� D .1 � s/� and � D �s C �w (1.13)

for the oceanic partial masses. The density variable � refers to the total mass of
the system, and the relations (1.13) have to be modified if more than two partial
masses contribute to the total mass. Usually the additional components have negligi-
ble concentrations compared to those considered above. In principle, one also should
account for sea ice concentration as an additional variable. Ice formation may occur
locally in the interior of the ocean in supercooled seawater in form of small ice plates
(the ocean’s equivalent of rain drops) which, however, experience rapid updraught to
the surface. We, therefore, assume that sea ice normally occurs only very close the
ocean–atmosphere interface, so that the associated phase transitions can be consid-
ered separately.

Instead of using the salt concentration s, it is common to use the salinity S with
the numerical value S D 1000 s such that s D 0:035 kg salt=kg seawater corresponds
to a salinity of S D 35 g=kg. This choice follows the oceanographic convention; it
has, however, the disadvantage that many thermodynamic relations are more conve-
niently formulated in terms of the salt concentration s, as can be seen already from
the relations (1.13). In Section 1.2 we will use, therefore, both variables simultane-
ously, but in the following sections only the salinity S will be used.

The definition of salt concentration, respectively salinity, as a mass fraction is
natural from a theoretical viewpoint. For practical reasons, other definitions such as
practical salinity or absolute salinity have been introduced, which can be calculated
from conductivity and temperature. See IOC, SCOR and IAPSO (2010) for an ex-
tensive discussion.

1.2.2 Additive State Variables

Consider a system with n chemically different constituents i D 1; : : : ; n with partial
masses Mi and a total mass M D P

Mi in a volume V . Let mi D Mi=M be the
respective concentration and �i D Mi=V D mi� the density of constituent i , so thatX

i

mi D 1 ;
X
i

dmi D 0 and
X
i

�i D � (1.14)

where � D M=V is the density of the sum of partial masses, and dmi is an infinites-
imal increment of the concentrationmi .

The thermodynamic state of a system with n constituents can be characterized
by its temperature T , pressure p, and n � 1 concentrationsmi , since one of the mi
is redundant due to the first relation in (1.14). Hence we have n C 1 independent
thermodynamic state variables.

In the case of seawater, we have two constituents, salt (concentration ms) and
pure water (concentrationmw), and we choose the salt concentration s – respectively
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4. The Additivity
Relation for Extensive
Variables

The volumeV will depend on the partial massesMi as well as on temperature T and pressure p,
V D V.M1; : : : ;Mn; T; p/, and is an extensive (or additive) quantity. An extensive variable
depends on the amount of material in the region considered (e. g. total volume, total mass or total
energy) whereas an intensive variable is independent of the amount of matter but has a value at
each point of the space (e. g. temperature, pressure or density).
Consider the general extensive variable W . It must double if we double all partial masses Mi

for given (constant) T and p. In general, the relation

W.˛M1; : : : ; ˛Mn; T; p/� ˛W.M1; : : : ;Mn; T; p/

must hold for an arbitrary value of ˛. This relation states thatW is a homogeneous function (of
grade one) of the partial masses Mi . Differentiation with respect to ˛, and then putting ˛ D 1
yields the additivity relation

W.M1; : : : ;Mn; T; p/D X
i

@W

@Mi

Mi (B4.1)

The corresponding variable W per unit mass, w D W=M , accordingly satisfies the additivity
relation

w.m1; : : : ;mn; T; p/ D X
i

wimi with wi.m1; : : : ;mn; T; p/D @w

@mi
(B4.2)

The quantities wi D @W=@Mi D @w=@mi can be identified as the specific quantity of the
constituent i , referred to the respective massMi . Thewi may still depend on the concentrations
m1; : : : ;mn, but no longer on the partial masses M1; : : : ;Mn. Note that w becomes now an
intensive variable. Taking W to be the total volume V , � D V=M D 1=� is the specific
volume. Note that �i�i < 1 and

P
i �i�i D 1.

salinity S – as state variable (in addition to temperature T and pressure p). For the
specific volume � D 1=�, it follows

�.ms; mw; T; p/ D ms�s Cmw�w with �s D @�

@ms

ˇ̌
ˇ̌
mw

and �w D @�

@mw

ˇ̌
ˇ̌
ms

from the general additivity relation (B4.2) for the case of seawater with the specific
volumes of salt �s and pure water �w and where the derivative with respect to each
constituent is such that the other is kept constant. Hence the change of specific vol-
ume � with respect to changes in salt concentration s is given by

@�

@s
D @

@s
�.ms; mw; T; p/ D @�

@ms

@ms

@s
C @�

@mw

@mw

@s

We now specify s D ms as state variable so that mw D 1 � s. Note that ms D s but
@=@ms ¤ @=@s becausemw is constant when taking the derivative with respect toms,
whereas both ms and mw change in correspondence when taking the derivative with
respect to s. We find for � D �.s; T; p/ the rule�

@�

@s

�
T;p

D �s � �w (1.15)

where the subscripts T; p indicate the variables that are kept constant during dif-
ferentiation6. The relation (1.15) states that the changes in � by changes in salt

6 From now on we shall drop this notation, which is customary in thermodynamics, and assume that
differentiation with respect to one of the independent state variables s; T; p (respectively S;T; p)
is always such that the other two are kept constant, unless stated otherwise.
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concentration s are given by changes in the specific volume of salt or freshwater,
i. e. � increases by adding salt or removing freshwater.

Since only the additivity relation (B4.2) for the specific volume has been used
in deriving (1.15), corresponding relations must hold for all additive state variables.
All energies and the entropy (to be introduced below) are additive variables which
must satisfy relations analogously to (B4.1) or, in their intensive form, to (B4.2),
or, for the case of seawater, to (1.15). From now on, we will use the intensive form
for all variables unless otherwise stated. In other words, these variables are defined
for a unit mass. This definition enables as to proceed in a straightforward way from
the differentials in thermodynamics to the (material) Lagrangian rate of change and
further to the Eulerian form of a field equation in which all state variables are locally
defined, so that e. g. �.x; t/ is the specific volume at time t and the spatial point
represented by the three-dimensional position vector x.

1.2.3 First Law of Thermodynamics

The first law of thermodynamics introduces the concept of an internal energyE (en-
ergy per mass, in J kg�1 D m2 s�2). In seawater, the internal energy (per mass) E
contains the kinetic energy of water molecules and the binding/solution energy of
freshwater and of salt ions, which we will refer to as chemical energy. In a closed
system, internal energy may be changed by work on the volume7, i. e. �pd� if sur-
face effects such as e. g. surface tension are ignored, and through energy exchange.
Thus we have

dE D �pd� C ıQ (closed system) (1.16)

Here dE is the change in internal energy, and ıQ denotes the total heating per mass
which is added, resulting both from external fluxes (e. g. radiation and heat flux) as
well as from internal conversions (as e. g. heat production by friction). Whereas dE
refers to the change of the state variable E, the heating rate ıQ is not connected to
a state variable (ıQ is an infinitesimal increment but not a differential). The forms
of energy that have to be included in E depend on which constituents are included
in the systems and which processes are relevant. The thermal energy of molecular
motion is always relevant, likewise the binding energy of molecules. Other forms of
energy may be relevant in phase transitions (which are not considered here).

The internal energy per mass E D E.m1; : : : ; mn; T; p/ is an additive variable.
As discussed in the box on p. 13, it satisfies the additivity relation

E D
X
i

miEi with Ei D @E

@mi
(1.17)

where Ei .m1; : : : ; mn; T; p/ is the internal energy of constituent i , referred to its
respective mass. The first law may also be formulated in terms of the enthalpy (per
mass)

H D E C p� (1.18)

7 This derives from the simple argument work D force � change of distance D force=area �
change of distance � area D force=area � change of volume.
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Since the enthalpy is also an additive variable, we have again

H D
X
i

miHi with Hi D @H

@mi
D Ei C p�i (1.19)

where Hi .m1; : : : ; mn; T; p/ is the specific enthalpy of constituent i . With the total
differential of the enthalpy dH D dE C pd� C �dp one finds

dH D �dp C ıQ (closed system) (1.20)

The change in enthalpy H thus corresponds to the energy ıQ added at constant
pressure (dp D 0). In contrast, the change of internal energy corresponds to the
energy added at constant volume (d� D 0). Note that enthalpy is, with respect to the
following discussion, more convenient than internal energy since we might assume
that a fluid element exchanges energy with its environment at constant pressure,
while the volume (density) of the fluid element might change during or because of
this exchange (cf. also the box on p. 16).

Fluid elements do not just exchange energy but also matter with their environ-
ment. If we now allow for mass exchange, i. e. if the system is open, we must account
for the different enthalpies of the constituents. For a mass exchange at constant pres-
sure, a change dmi of constituent i changes the enthalpy of the system by an amount
Hidmi . Hence for an open system we reformulate the first law in the form

dH D ıQ C �dp C
X
i

Hidmi (open system) (1.21)

or equivalently

dE D ıQ � pd� C
X
i

Hidmi (open system) (1.22)

From (1.22) it follows immediately that dE D ıQ � pd� C Hsdms C Hwdmw for
seawater. Using relation (1.15) for additive variables and changing the independent
variable from salt concentration s to salinity S , one obtains8

dE D ıQ � pd� C @H

@S
dS or dH D ıQ C �dp C @H

@S
dS (1.23)

as a convenient form of the first law for seawater. Note that ıQ contains all internal
irreversible and all external energy exchanges, except those connected to the diffu-
sive exchange dS of salinity, which are explicitly included in the last term of (1.23).
On the other hand, it will turn out in Section 2.4 that the effect of salt exchanges
on the internal energy changes of a fluid element takes a slightly different form as
suggested by the last term in (1.23) (compare with Section 2.4.3).

In principle, melting/freezing leads also to a substantial energy exchange (heat
of melting) and could be included in ıQ. However, since this process occurs almost
always very near to the ocean’s surface, it is commonly included in the formulation
of energy and mass exchange at the boundary rather than as a source/sink in the
interior ocean. Note that this is different in the atmosphere9, where phase changes in
the interior are important (i. e. in clouds).

8 Note that when one changes the independent variable from salt concentration s to salinity S ,
derivatives such as @H=@s change by a factor of 1,000 but .@H=@s/ds D .@H=@S/dS .
9 Differences and congruences of oceanic and atmospheric thermodynamics are discussed in Sec-
tion 2.10.
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5. Alternative Derivation
of the First Law for Open
Systems

Applying the first law for closed systems (1.16) to open systems is not immediately possible,
since the exchange of matter with the environment will change the internal energy, and, in par-
ticular, the total and specific volume of the system. It is, however, possible to account for that
exchange by adjusting the differentials of internal energy and volume in (1.16) (see e. g. Warren,
2006). According to the additivity rule of the box on p. 13 these adjustments due to the matter
exchange dmi are given by

dE �X
i

Eidmi and d� �X
i

�idmi

Using the adjusted differential in (1.16) yields

dE D ıQ � pd� CX
i

.Ei Cp�i /dmi D ıQ � pd� CX
i

Hidmi

implementing the definition of the specific enthalpy (1.19) of constituent i . Hence we derive the
first law for open systems (1.22) again.

1.2.4 Second Law of Thermodynamics

If energy and mass are exchanged in such a way that the system can be brought
back into its initial state without leaving changes in the environment, the process is
called reversible, otherwise irreversible. Natural processes are generally irreversible
because dissipative changes occur during the process. Reversibility is thus an ideal-
ization.

The second law of thermodynamics states that when a small amount of energy ıQ
is added to a closed system at absolute temperature T , the quantity ıQ=T is equiva-
lent to the change of a state variable, which is the entropy � (entropy per mass, thus
in m2 s�2 K�1) given by

d� D ıQ

T
(closed system) (1.24)

The entropy is also an intensive additive state variable, hence the additive rule of the
box on p. 13 applies

�.m1; : : : ; mn; T; p/ D
X
i

mi�i with �i D @�

@mi
(1.25)

where �i .m1; : : : ; mn; T; p/ denotes the specific entropy of the component i . For an
open system with mass exchange like a fluid element, we must also account for the
different entropies of the mass entering or leaving system. In analogy to (1.21) we
then obtain the second law in the form

d� D ıQ

T
C
X
i

�idmi (open system) (1.26)

From the first law (1.22) and the second law (1.26) we see that external masses bring
or take their respective enthalpy (not internal energy) and entropy when entering or
leaving an open system, because this process occurs at constant pressure.

As stated above, exchanges of energy and mass in a system are reversible when
they take place in a way, such that the system can be brought back into its initial
state without any changes in the environment. The second law (1.26) holds for both
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reversible and irreversible processes, as discussed by De Groot and Mazur (1984).
It is normally assumed to be valid even for small deviations from thermodynamic
equilibrium and can hence be applied to fluid motions. It is conceptually useful
to decompose energy and mass fluxes into reversible and irreversible components,
ıQ D ıQrev C ıQirr and dmi D dmrev

i C dmirr
i . The second law, in addition to the re-

quirement that the entropy is a state variable, states that irreversible processes always
lead to an increase in entropy; hence one must have ıQirr > 0 and

P
i �idm

irr
i > 0.

This property will be used in Section 2.5 below to determine the direction of certain
molecular fluxes.

Processes that conserve entropy, i. e. satisfy d� D 0, are called isentropic. Pro-
cesses in an adiabatically closed system with ıQ D 0 and dmi D 0 are always
isentropic. However, reversible processes (which have ıQirr D 0 and dmirr

i D 0) are
not necessarily isentropic, and likewise isentropic processes need not be reversible.
The two concepts are only equivalent if there are no external (irreversible) sources
for energy and mass. This is largely the case in the interior of the ocean but not in
the atmosphere, due to radiation and condensation/evaporation processes.

Applying the general relation (1.26) to seawater, we have d� D ıQ=T C�sdms C
�wdmw. Since the entropy satisfies the additivity relation (1.15), the second law takes
for seawater the form

d� D ıQ

T
C @�

@S
dS (1.27)

Note that salinity exchanges in the interior ocean are normally diffusive and hence
irreversible. We will use the second law in the form (1.27) in Section 2.5 to infer the
direction of molecular heat and salt fluxes.

1.2.5 Thermodynamic Potentials

Combining the thermodynamic laws (1.22) and (1.26) with elimination of ıQ yields
the GIBBS10 relation

T d� D dE C pd� �
X
i

�idmi or T d� D dH � �dp �
X
i

�idmi (1.28)

is also sometimes called the fundamental thermodynamic relation. Here the vari-
able �i has been defined as

�i D Ei C p�i � T �i (1.29)

It is called the chemical potential of the constituent i . Note that (1.28) also holds for
systems with external mass fluxes. Multiplication of (1.29) by mi and summation
yields

E D T �� p� C
X
i

mi�i (1.30)

10 JOSIAH WILLARD GIBBS, *1839 in New Haven/Connecticut, †1903 in New Haven/Connecticut,
physicist.
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combining (1.30) with (1.28) one then derives the Gibbs–Duhem relation

�dT � �dp C
X
i

mid�i D 0 (1.31)

which relates changes in the chemical potentials �i to changes in T and p.
The internal energy E.m1; : : : ; mn; T; p/ and the enthalpy H.m1; : : : ; mn; T; p/

are called thermodynamic potentials. This is because they allow to determine cer-
tain state variables by differentiation, e. g. the specific volume is given by @H=@p at
constant � and mi which can be seen from (1.28) for d� D 0 and dmi D 0. Ad-
ditional potentials which can be equally useful are the HELMHOLTZ11 free energy
(or work function) F.m1; : : : ; mn; T; p/ and the free enthalpy (or Gibbs function)
G.m1; : : : ; mn; T; p/ which are defined by

F D E � T � D
X

miFi (1.32)

G D E C p� � T � D H � T � D
X

mi�i (1.33)

All thermodynamic potentials are additive, which is easily shown from the additivity
rules (B4.2), (1.17), and (1.25). The four potentials E, H , F and G all have the
dimension energy per mass but a rather different physical interpretation. The internal
energy E describes the sum of all energies participating in energy transformations,
in particular energy of molecular motions and intermolecular attraction potential, as
well as the ‘chemical’ energy of the dissolution of salt in seawater. The enthalpy H
describes the heat content at constant pressure. The Gibbs function is the chemical
potential of the mixture (in other texts G is frequently denoted by �; we will not
follow this convention). Note that dF D ��dT�pd� , hence the free energyF is the
energy that is available for conversion into work under isothermal conditions. From
dG D ��dT C �dp we learn that G is constant for isothermal-isobaric processes, it
is actually the only thermodynamic potential with this property.

All thermodynamic properties of a system can be derived from any of the four
potentials as a function of the state variables. Using the Gibbs relation (1.28) and the
definitions (1.32) and (1.33), the total change of any potential can be expressed in
the following form

dE.m1; : : : ; mn; �; �/ D
X

�idmi C T d�� pd� (1.34)

dH.m1; : : : ; mn; �; p/ D
X

�idmi C T d�C �dp (1.35)

dF.m1; : : : ; mn; T; �/ D
X

�idmi � �dT � pd� (1.36)

dG.m1; : : : ; mn; T; p/ D
X

�idmi � �dT C �dp (1.37)

These fundamental relations (1.34)–(1.37) describe the change in each thermody-
namic potential in terms of changes in the mass ratios and in two state variables
which may be considered the ‘canonical’ independent state variables for the respec-
tive potential because the formulation of derivatives is particularly simple (see the
diagram in Figure 1.4). In oceanography and meteorology, temperature T and pres-
sure p are the most convenient independent state variables as they can be easily
measured – in contrast to entropy and specific volume.

11 HERMANN LUDWIG FERDINAND VON HELMHOLTZ, *1821 in Potsdam, †1894 in Charlotten-
burg, physicist and physiologist.
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Fig. 1.4 Thermodynamic potentials with associated independent (canonical) variables indicated in
the neighboring parentheses, as e. g. G D G.mi ; T; p/

It follows that the free enthalpy G, which has T and p as its canonical variables,
contains the most convenient description of thermodynamic properties. It is, there-
fore, also used to express the thermodynamic properties of seawater (Feistel, 2008).
However, occasionally, other potentials may also be convenient and will be used in
this book instead of G. Using (1.29), the chemical potentials of the individual com-
ponents are related according to

Ei D �i � p�i C T �i (1.38)

Hi D �i C T �i (1.39)

Fi D �i � p�i (1.40)

Gi D �i (1.41)

where the last relation follows immediately from (1.33). From the Gibbs rela-
tion (1.28) and using the definition of the chemical potential (1.29), the additivity
rule for internal energy (1.17) and entropy (1.25), one obtains

X
i

mi .T d�i � dEi � pd�i / D 0

The terms in the sum depend on mi ; T; p. The equality must hold for arbitrary con-
centrations mi which can only be satisfied if the equality holds for each component

Table 1.1 State variables and the thermodynamic coefficients defined in the Sections 1.2.6 and 1.2.7
expressed in terms of the Gibbs functionG.S; T; p/ and its derivatives

Specific volume � D @G=@p Thermal expansion ˛ D .@2G=@T@p/=.@G=@p/

Chemical potential � D @G=@S Haline contraction 	 D �.@2G=@S@p/=.@G=@p/
Entropy 
 D �@G=@T Isothermal compressibility � D �.@2G=@p2/=.@G=@p/
Enthalpy H D G � T @G=@T Specific heat cp D �T @2G=@T 2
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6. Units of State
Variables

We use temperature T , salinity S and pressure p as state variables. It should be noted that in this
chapter T refers to thermodynamic temperature with units in kelvin (K) with 273:15K D 0ıC,
where ıC refers to the Celsius temperature scale. However, in all figures of this section, T is
shown for the relevant oceanographic range of temperatures using the Celsius temperature scale,
but it should be kept in mind that all equations refer to the thermodynamic temperature. We have
discussed the units of salinity in Section 1.2.1. For pressure, there is a large variety of units,
examples are

1Pa D 1N m�2 D 10�4 dbar D 10�5 bar D 10:197 � 10�6 at D 9:8692 � 10�6 atm

where at denotes technical atmosphere and atm atmosphere. The unit dbar is common amongst
oceanographers, since by the hydrostatic relation @p=@z D �g�, which determines the over-
whelming part of the vertical pressure variations in the ocean, (hydrostatic) pressure relates the
depth by 1 dbar � 1m. It is also common to subtract a constant from the pressure variable,
given by the pressure of the ‘standard atmosphere’, p0 D 1:01325 � 105 Pa.

individually so that the differentials of specific potentials are related by

dEi D T d�i � pd�i (1.42)

and likewise by

dHi D T d�i C �idp (1.43)

dFi D ��idT � p d�i (1.44)

d�i D ��idT C �i dp (1.45)

Equations (1.42)–(1.45) can be considered as the component-wise versions of the
fundamental relations for the thermodynamics potentials (1.34)–(1.37).

According to the definition (1.33) for G, the Gibbs function for seawater is given
by

G.S; T; p/ D
2X
iD1

mi�i D �ss C �w.1 � s/

The physical units of T and p are discussed in the box on p. 20. As the other ther-
modynamic potentials, it satisfies the additivity relation

�
@G

@s

�
Tp

D �s � �w � O� (1.46)

The difference between the chemical potentials of salt and pure water, O� D �s ��w

is often (albeit somewhat imprecisely) termed chemical potential of seawater. For
the corresponding term in the Gibbs relation (1.28) we have

2X
iD1

�idmi D �sdS C �wd.1 � S/ D O�ds D �dS

where we have introduced two chemical potentials, one referring ( O�) to salt con-
centration and one (�) referring to salinity, which take different numerical values.
With (1.34) we obtain the Gibbs relation e. g. in the form

dE D T d� � pd� C �dS (1.47)
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while for the other thermodynamic potentials corresponding relations hold. The
Gibbs relation (1.47) states that any change in salinity, e. g. by diffusion, leads to
a change in internal energy (and likewise enthalpy). As will be seen in Section 2.6
below, the contribution of salinity on the energy budgets, however, is generally small.
Differential changes in the Gibbs function follow from (1.36) and are given by

dG D ��dT C �dp C �dS (1.48)

where the derivatives are seen to be

� D @G

@S
; � D �@G

@T
; � D @G

@p
(1.49)

Note that similar relations hold for the other thermodynamic potentials, where, how-
ever, other state variables (than T , S or p for the case of the Gibbs function) are
held constant. Numerous thermodynamic relations can be derived from (1.49), in
particular the MAXWELL12 relations

@�

@S
D � @�

@T
;

@�

@p
D @�

@S
;

@�

@T
D �@�

@p
(1.50)

All oceanographically relevant thermodynamic variables of seawater follow directly
fromG.S; T; p/, as shown in Table 1.1. A very accurate determination ofG.S; T; p/
which is based on high-precision measurements of sound velocity, freezing temper-
ature, expansion coefficients, specific heats, etc. has been given by Feistel (2003,
2008). An updated version based on absolute rather than practical salinity can be
found in IOC, SCOR and IAPSO (2010).

We finally note in this section that the Gibbs functionG.S; T; p/ has an arbitrari-
ness to some degree: replacing G by

G� D G C AC BT C .C CDT /S (1.51)

with arbitrary constants A;B;C;D defines an equally valid Gibbs function G�. The
fundamental Gibbs relation (1.48) holds for any choice of the constants, however
with corresponding changes in entropy � and chemical potential �. It is, therefore,
not very useful to display � and�. However, the first derivative ofG, i. e. the specific
volume � D @G=@p is not affected by (1.51) and shown in Figure 1.5.

1.2.6 Equation of State

For each substance with n constituents there is an equation relating the specific vol-
ume � or density � D 1=� with nC 1 other independent state variables. This is the
equation of state for the particular substance. For seawater it takes the form13

� D �.S; T; p/ D F.S; T; p/ (1.52)

12 JAMES CLERK MAXWELL, *1831 in Edinburgh, †1879 in Cambridge, physicist and mathemati-
cian.
13 In the following F denotes the equation of state; the previous notation for the Helmholtz free
energy will not be used anymore.
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Fig. 1.5 Density of seawater as function of S , T at 0 dbar (a) and 1;000 dbar (b)

The equation of state is determined by the molecular structure of the substance.
While analytical (exact) expressions for the function F do not exist, empirical ex-
pressions with a relative accuracy of .3� 5/� 10�6 are available in various polyno-
mial approximations (e. g. Fofonoff and Millard Jr., 1983; Jackett et al., 2006). All
empirical expressions are based on measured properties of seawater. These properties
have been embedded into the above mentioned construction of the Gibbs function,
and formally the equation of state of seawater then follows by differentiation,

� D 1

�
D @G

@p
(1.53)

For more than 90% of the ocean the salinity is in the range 34 g kg�1 < S <

35 g kg�1 and the temperature is in the range �2ıC < T < 10 ıC. Density changes
in the ocean by at most a few percent,��=� Š 10�3�10�2. It is, therefore, custom-
ary to define the density variable �� 1;000 kg m�3. The density is mainly dependent
on pressure. Only a small part of the density variations, mainly the one arising from
temperature and salinity variations (see Figure 1.5), turns out to be dynamically rel-
evant, as will be discussed in Chapter 4 below.

Fig. 1.6 a Thermal expansion coefficient ˛.S; T; p/ and b haline contraction coefficient
	.S; T; p/ at S D 35 g kg�1
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The derivatives of the state equation with respect to the independent variables

˛ D �1
�

�
@�

@T

�
S;p

coefficient of thermal expansion (1.54)

� D 1

�

�
@�

@S

�
T;p

coefficient of haline contraction (1.55)

	 D 1

�

�
@�

@p

�
S;T

isothermal compressibility (1.56)

appear in many of the thermodynamic equations considered in the following chap-
ters. All these derivatives can be expressed by the Gibbs function as outlined in Ta-
ble 1.1. The coefficient of thermal expansion ˛ is mainly dependent on pressure and
temperature, whereas the one describing haline contraction, � , is nearly constant
(see Figure 1.6). The isothermal compressibility is mainly dependent on pressure
and temperature. A further discussion of these coefficients (as well as of the heat
capacities introduced below) can be found in Section 2.6.4.

1.2.7 Specific Heat

The heat capacity c (per unit mass, also named specific heat) describes for constant
mass ratio the energy or heat change, respectively, per unit temperature change

ıQ D cdT

The value of c depends on how the heat is exchanged. For constant pressure and
constant composition (dp D 0, dmi D 0) one has from the first law (1.21) dH D
cpdT or

cp D
�
@H

@T

�
p;mi

D T
@�

@T
D �T @

2G

@T 2
(1.57)

This is the specific heat at constant pressure. If the volume rather than the pressure is
kept constant during the heat exchange (d� D 0, dmi D 0), it follows from the first
law formulated for dE as in (1.22) that dE D cvdT and hence

cv D
�
@E

@T

�
�;mi

(1.58)

which is the specific heat at constant volume. In this case, changes of pressure and
of temperature are related according to

d� D @�

@T
dT C @�

@p
dp D 0

and it follows that

cv D
�
@E

@T

�
�;mi

D
�
@E

@T

�
p;mi

� @E

@p

@�=@T

@�=@p
D cp � ˛2�T
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Fig. 1.7 Specific heat of seawater cp (a) and difference cp � cv (b) as a function of S and T at
surface pressure, in J kg�1 K�1

The second relation follows from E D G � p� C T �, the derivatives of the Gibbs
function (1.49) and the definitions of the derivatives of the equation of state given
by (1.54) and (1.56). Thus we always have cv < cp.

For seawater, the Gibbs function is conveniently used to evaluate the specific heat
at constant pressure cp D cp.S; T; p/ by (1.57) as function of the state variables.
Its values at surface pressure are approximately 4;000 J kg�1 K�1 within a range
of ˙1% (the pressure dependence of cp is not relevant for the energy budgets consid-
ered later). The specific heat increases with temperature and decreases with salinity
(see Figure 1.7). The difference between cp and cv is below 1%; it is relevant mainly
for thermodynamic considerations.



Conservation Laws
for Moving Fluids 2

In this chapter the basic conservation laws for mass, momentum, and
energy are presented, including a discussion of appropriate boundary
conditions. From the basic laws, budgets of other variables such as
temperature and vorticity are derived. The result of the discussion will
be a set of equations suitable to describe oceanic motions at all scales.

The equations which govern the evolution of fluid properties and its motion are dif-
ferential equations, derived from elementary conservation laws of physics. They are
usually formulated as conservation equations and arise if a property .x; t/ (units
property per mass) respectively �.x; t/.x; t/ (units property per volume) of a sub-
stance is changed due to sources and sinks, represented by C.x; t/ (units property
per volume and time), and due to transport by a flux J .x; t/ (this is a vector in the di-
rection of transport, with the magnitude giving the units property per area and time).
If C is nonzero, there, is actually no conservation of the property, not locally and
generally not in the integral sense. Even in case of vanishing sources/sinks there is
no local conservation unless the divergence of the flux vector vanishes in addition
to C . An important aspect is the condition of fluxes through the boundary of the
domain, governed by the normal component J � n where n is the outward normal
vector (see the figure on page 1). Hence  is generally not constant, but still we
will call the equation governing.x; t/ a conservation equation. Fluid dynamics and
thermodynamics largely deal with conservation equations.

2.1 General Form of Conservation Equations

Consider a volume V , which is fixed in space and bounded by a surface A, and an
arbitrary scalar fluid property  (in units per mass) or � (in units per volume). The
total amount of the property  in the volume, given by

R
V
�dV , may change in time

in one of two ways:

� Transport through the surface:
The volume transport (volume per unit time) through a surface element dA D
ndA (n outward normal unit vector) is u � dA, the outward transport of  is thus
�u � dA. Here �u is the advective flux of  (unit Œ�m�2 s�1). In addition,

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 25
DOI 10.1007/978-3-642-23450-7_2, © Springer-Verlag Berlin Heidelberg 2012
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a nonadvective flux J� may occur, e. g. by diffusion, heat conduction, radiation
etc. The total outward transport across A is hence given by

I

A

�
�uC J�

� � dA (2.1)

� Interior sources and sinks:
Let C� denote the net sources/sinks of , measured in -units per time and vol-
ume, through internal processes within the volume. Examples are heat sources,
radioactive decay, chemical reaction, consumption of  material etc. The change
within the volume is then given by

Z

V

C�dV

Both quantities, the flux J� and the sources/sinks C�, have to be specified for the
corresponding fluid property. They contribute to the total rate of change of the -
content in the volume according to

@

@t

Z

V

�dV D �
I

A

�
�uC J �

� � dA C
Z

V

C�dV (2.2)

For a fixed volume the time rate of change may be placed inside the integral over the
volume, and with GAUSS’1 theorem (see Appendix A.1) the surface integral in (2.2)
may be rewritten as a volume integral according to

I

A

�
�uC J�

� � dA D
Z

V

r � ��uC J�
�

dV

so that (2.2) can be written as
Z

V

�
@

@t
.�/C r � ��uC J �

� � C�

	
dV D 0 (2.3)

As this holds for an arbitrary volume, the integrand has to vanish identically, i. e.

@

@t
.�/ D �r � ��uC J�

�C C� (2.4)

which is the general conservation equation for the  property in the so-called flux
form. The right-hand side contains the divergence of the total -flux �u C J�, as
well as interior sources/sinks contained in C�. It should be mentioned that the ad-
vective part of the flux – despite its nonlinear character – describes a conceptually
simple process because the fluid velocity u and the property  belong to the state
vector, and thus usually to the resolved part of the system. The challenge is to obtain
the nonadvective fluxes and the sources and sinks as a correct physical, mathemati-
cal and resolved form. For many properties of the ocean J�.x; t/ and C�.x; t/ are
not well known. In Part IV we describe the most elementary attempts to construct
parameterizations of turbulent fluxes in the fluid dynamical and thermodynamics
equations.

1 CARL FRIEDRICH GAUSS, *1777 in Braunschweig, †1855 in Göttingen, mathematician.



2.1 General Form of Conservation Equations 27

General Boundary Condition

The air-sea interface is of fundamental importance for ocean dynamics. With the ex-
ception of tides, nearly all oceanic motions are forced by the exchange of momentum,
energy, and water between atmosphere and ocean across the sea surface. Momentum
exchange with the solid earth across the bottom boundary is also important, whereas
the water, heat and salt exchanges at the bottom play only a limited role for oceanic
motions.

The considerations leading to conservation equations for energy, mass, momen-
tum, etc. within the ocean must also be valid at the boundary between ocean and at-
mosphere. The general conservation equation for a fixed volume in its integral form
was given in (2.2). As the air-sea boundary in general will move in time, we now
consider an infinitesimal volume instead, which is moving with the velocity uI of
the air-sea interface and which includes the interface at all times. More specific, the
volume is bounded by a surface A which consists of a surface I just above the inter-
face between ocean and atmosphere on the one side, and corresponding surface I 0
inside the fluid and the associated side boundaries (see Figure 2.1). The following
analysis applies as well at any interface on the fluid boundaries or inside the fluid. At
the bottom where I is the bottom surface, however, uI is to be taken as zero. At the
surface of the test volume, only the difference velocity u� uI between the fluid and
the moving volume is relevant for the budget inside the volume. Notice that uI ¤ u

in general since the surface I is not necessarily a material surface. With the same
notation as before it follows that we have now

@

@t

Z

V

.�/dV D �
I

A

�
� .u � uI /C J�

� � dA C
Z

V

C�dV (2.5)

where dA is the surface element pointing in the outward normal direction. The con-
tributions of the volume integrals in (2.5) can be made small compared to those
arising from the surface integrals by taking a pillbox of sufficiently small height.
Neglecting thus the volume integral for an infinitesimal pillbox height, one has

I

A

�
� .u� uI /C J�

� � dA D 0 (2.6)

The integrand in (2.6) describes the sum of the advective flux of  (relative to the
moving boundary) and the diffusive flux. As the outward normal vector points into
opposite directions on both sides of the interface, the condition (2.6) requires in the
limit of very small height that the normal component of the flux vector is continuous

Fig. 2.1 Sketch of the ocean-atmosphere boundary and the test volume described in the text
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across the interface, and one obtains the general boundary condition�
� .u� uI /C J�

� � n D J tot
� (2.7)

Here n is the unit vector normal to the boundary, and J tot
� denotes the normal com-

ponent of the total flux of the substance  in the other system, e. g. the atmosphere
or the solid earth. Note that J tot

� may also include flux components associated with
phase transitions at the boundary, such as evaporation at the sea surface.

The velocity u � uI in (2.7) can be expressed in terms of the state variables. For
the air-sea interface, the location of the boundary can be implicitly represented by
I.xh; z; t/ D z � �.xh; t/ D 0. The normal vector n, taken positive upwards from
the sea surface, is

n D rI
jrI j D .�r h�; 1/q

1C .r h�/
2

(2.8)

On the surface I , one has dI D @I=@tdtCrI � dx D 0 and dx=dt D uI , and hence
@I=@t CuI � rI D 0. Then, the normal velocity of the moving boundary is found as

uI � n D �@I=@tjrI j D @�=@tq
1C .rh�/

2
(2.9)

and the difference to the normal component of the fluid velocity is thus given by

.uI � u/ � n D @�=@t C uh � r h� � wq
1C .r h�/

2
(2.10)

For the ocean bottom, with I.xh; z/ D z C h.xh/ D 0 where h.xh/ is the ocean
depth referred to the mean sea level, the normal vector n defined in (2.8) is pointing
from the bottom into the fluid. Equation (2.7) then applies with

.uI � u/ � n D �u � n D � w C uh � r hhq
1C .rhh/

2
(2.11)

In most applications, the square root terms in the above relations can be replaced
by 1 because the slopes of the interfaces are very small.

2.2 Mass Conservation

As discussed in Section 1.2.1, it is sufficient for almost all dynamical purposes to
take the chemical composition of seawater as constant. Thus it suffices to consider
the two components salt and pure water, with concentrations s and w D 1 � s mea-
sured in kg salt, respectively kg freshwater, per kg seawater, and densities �s D �s D
�S=1;000, �w D �w, in kg m�3. The total mass of the respective molecules must be
conserved, i. e. the general conservation equation must hold for mass (notice that we
ignore here freezing of freshwater and melting of sea ice). Formally, it is possible
to simply use  D 1 and J� D 0 and C� D 0 in (2.4) (the total mass has nei-
ther sources/sinks nor a nonadvective flux) to derive a conservation budget for total
mass. However, we consider first budgets for the partial masses of salt and freshwa-
ter independently. The combination yields the total mass and the salt conservation
equation.
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2.2.1 TotalMass and Salt Conservation Equation

Consider the partial mass ıMs of salt in a moving material volume element with
volume ıV which is defined with respect to the mean motion us of the salt molecules.
This volume element is moving with the salt velocity which may differ from the flow
velocity u, and thus corresponds to a Lagrangian derivative Ds=Dt formed with us.
In this Lagrangian frame of reference ıMs must be constant, thus Ds.ıMs/=Dt D 0.
For the density �s D ıMs=ıV of salt we thus have

Ds

Dt
�s D � ıMs

.ıV /2
Ds

Dt
ıV

According to (1.9), the volume change is given by Ds.ıV /=Dt D ıV r � us, and it
follows that

Ds

Dt
�s D ��sr � us (2.12)

Both components, salt and freshwater, must independently satisfy a conservation
equation of the form (2.12). In the Eulerian form, these become

@�s

@t
C r � �sus D 0 ;

@�w

@t
C r � �wuw D 0 (2.13)

The transport velocities us and uw for both components generally differ. The total
mass per volume has the density � D �sC�w, and the mass-weighted mean velocity –
the flow velocity u – is defined as the barycentric mean

�u D �sus C �wuw D �.sus C wuw/ (2.14)

Addition of the two equations in (2.13) yields the conservation of total mass,

@�

@t
C r � �u D 0 (2.15)

which is also called the continuity equation.
The velocities of the partial masses are not easily measurable and hence are not

suitable to describe the flow. Using �s D �S=1;000 and introducing the advective
flux of salinity by the flow velocity u, one obtains from (2.13) and (2.14) the salt
conservation in the form

@�S

@t
C r � �Su D �r � Œ.us � u/ �S� D �r � J S (2.16)

Here, the diffusive salinity flux J S D .us � u/�S is introduced as a consequence of
eliminating the salt velocity us. It results from the difference of the mean velocity us

of salt and the flow velocity u. As outlined in Section 2.5 below, the diffusive flux
is empirically related to the salinity gradient (and possibly gradients of other fluid
properties).

The continuity equation (2.15) allows to rewrite the general conservation equa-
tion (2.4) in the form

�
D

Dt
D �r � J� C C� (2.17)
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which will be referred to as the parcel form, in contrast to the flux form (2.4). The flux
form (2.4) is preferred for integral budgets, whereas the particle form (2.17) permits
to follow the particle properties. Mathematically, both formulations are equivalent.
Alternative formulations of mass conservation (2.15) are given by

1

�

D�

Dt
D �r � u ; �

D�

Dt
D r � u (2.18)

with the specific volume � D 1=�. Note that the equations are in parcel form; thus
the velocity divergence is the volume source of the specific volume.

The total (advective plus diffusive) salt flux (kg salt per m2 and s) is given by
�SuC J S. It enters the flux form of salt conservation,

@�S

@t
D �r � .�SuC J S/ (2.19)

corresponding to the general form (2.4), without interior sources/sinks. Alternatively,
the parcel form of salt conservation reads

�
DS

Dt
D �r � J S (2.20)

2.2.2 Boundary Conditions for the Fluxes of TotalMass and Salt

For  D 1 and J � D 0 the relation (2.7) yields the boundary condition for the total
mass at the sea surface,

� .u� uI / � n D Jmass D E � P (2.21)

The mass flux Jmass D E � P (in kg m�2 s�1) across the air-sea interface (positive
upwards) is given as the difference between evaporation E and precipitation P of
pure water2. With (2.10) one obtains

@�

@t
C uh � rh� �w D �Jmass

�
D P � E

�
at z D �.xh; t/ (2.22)

which is referred to as kinematical boundary condition since no forces are involved.
We have assumed .r h�/

2 � 1 to write the condition in the above commonly used
form.

At a solid boundary as the bottom, where uI � 0 and Jmass D 0, (2.7) leads to
kinematical boundary condition

u � n D uh � rhC w D 0 at z D �h.xh/ (2.23)

so that the normal component of the velocity vector has to vanish.
The processes of evaporation and precipitation exchange pure water with the at-

mosphere, but there is no salt flux through the interface. With  D S and J� D J S

equation (2.7) yields

Œ�S .u � uI /C J S� � n D 0 (2.24)

2 The mass flux of other substances is very small and negligible for dynamical purposes.
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and with (2.21), this can be written as

J S � n D �SJmass D S.P � E/ D �
S

1 � S=1000
.Pw � Ew/ (2.25)

at the sea surface. In the last relation Ew D E=�w;Pw D P=�w are the corresponding
volume fluxes (in units of m3 m�2 s�1 D m s�1). Notice that although no flux is
transported through the surface, (2.25) appears as if a virtual flux of salt enters the
ocean from the atmosphere and is carried further there by salt diffusion. Therefore,
the right hand side S.P�E/ is called equivalent salinity flux. It describes the changes
of salinity due to the freshwater flux P � E . At the bottom, assuming zero exchange
of salt with the ocean floor, one has a vanishing diffusive salt flux normal to the
bottom, J S � n D 0. Note, however, that the transport of water and salt by rivers can
be relevant.

2.3 Conservation of Momentum

With respect to spatial scales, two different kinds of forces acting on any part of
a fluid can be distinguished. Long-range forces have a macroscopic range and affect
all parts of a fluid. They are generally proportional to the fluid volume, and for that
reason they are called volume forces. The principal volume force influencing motions
in ocean and atmosphere is the force of gravity. Other relevant volume forces are the
centrifugal and Coriolis forces discussed in Section 2.3.3 below. Short-range forces
have a microscopic range of the order of the distance between molecules. If a vol-
ume is deformed, the relative positions of molecules change and the deformation
generates internal forces, so-called stresses, that attempt to bring the volume shape
back into its equilibrium state. These internal stresses cannot exist in a nondeformed
volume; they are the result of molecular forces which have a very short range, of
the order of the distance between molecules (e. g. VAN DER WAALS3 forces). These
forces hence must be proportional to the surface area and are independent of the vol-
ume. They can affect the motion of a fluid parcel only through contact of the parcel
with the surrounding fluid (or the boundary of the fluid), and, therefore, they are
termed surface forces. Examples for surface forces are molecular friction or surface
tension. The mathematical treatment of surface forces is attributed to CAUCHY4.

Fig. 2.2 Material fluid par-
cel experiencing a body
(volume) force f v and
a surface force dF acting
on on infinitesimal surface
element

Following NEWTON’s5 second law of motion, the conservation of momentum is
the balance between the mass times acceleration and the sum of all forces applied to
a fluid parcel6,

�
Du

Dt
D f D f v C f s (2.26)

3 JOHANNES DIDERIK VAN DER WAALS, *1837 in Leiden, †1923 in Amsterdam, physicist and
thermodynamicist.
4 AUGUSTIN LOUIS CAUCHY, *1789 in Paris, †1857 in Sceaux, mathematician.
5 SIR ISAAC NEWTON, *1643 in Woolsthorpe-by-Colsterworth/Lincolnshire, †1727 in Kensington,
physicist, philosopher, mathematician and astronomer.
6 The differential form of Newton’s second law (2.26) is actually not found in Newton’s Prin-
cipia of 1687 or any of his work. Newton still formulated differential equations with geometrical
approaches. It was Euler who first wrote the fundamental law of dynamics in the above form (in
1749).
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Here f is the force per volume, separated into those forces arising from volume (f v,
long range) and from surface (f s, short range; with infinitesimal contribution dF )
related origin (see sketch in Figure 2.2). Note that the form of momentum conserva-
tion given by (2.26) is valid only in an inertial frame. Rotating frames of reference,
more appropriate to the ocean, are considered in Section 2.3.3. In the following sec-
tion, we will consider the mathematical representation of the forces proportional to
the surface, while in Section 2.3.4 we consider the forces proportional to volume.
Boundary conditions for momentum are discussed in Section 2.3.2.

2.3.1 Stresses, Pressure and Frictional Forces

A first result is gained by considering (2.26) for a material volume V D V.t/ where
volume forces f v must appear as an integral over the volume and surface forces f s

as an integral of a vector ts over the surface

d

dt

Z

V.t/

�udV D
Z

V.t/

f vdV C
Z

A.t/

tsdA (2.27)

The vector ts is thus a force per unit area, called a stress. The relation of ts to a rep-
resentation in terms of a force f s per volume is not yet clear, but the integral form
allows immediately to point out an important property of surface forces: because the
volume terms in (2.27) are proportional to d 3 and the surface integral to d2 in terms
of a characteristic scale d of the volume, the limit of small d cancels the volume
contribution faster than the surface contribution. Hence

lim
d!0

1

d 2

Z

A.t/

tsdA D 0 (2.28)

Fig. 2.3 The tetrahedron with side areas, associated units vectors, and stress components. The
tetrahedron is bounded by three surfaces which are normal to the coordinate axes and a surface with
arbitrary orientation specified by the normal vector n. Redrawn from Aris (1989)
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stating that the stresses must be locally in equilibrium. This statement allows to ex-
press the relation of the surface stress ts to the volume term f s in (2.26) in a simple
mathematical form. The direction of the resulting force dF D tsdA may have an
arbitrary angle with the surface element which is characterized by the normal vec-
tor dA D ndA (see Figure 2.2). Cauchy postulated that dF at any given time t
and at any position x only depends upon the orientation n, i. e. the curvature of
the surface is irrelevant for the stress. This postulate is indicated by the notation
ts D ts.nIx; t/. Expressing now the stress equilibrium (2.28) for a small tetrahe-
dron (see Figure 2.3), having three of its faces parallel to the coordinate planes with
unit normals ej and area elements dAj ; j D 1; 2; 3, and the fourth with the normal n
and area dA (see Figure 2.3), we find

ts.n/dA� ts.ej /dAj D 0

using ts.�ej / D �t s.ej /, a consequence of the principle of action and reac-
tion, which also follows from Cauchy’s postulate. A geometric consideration yields
dAj D nj dA for n D .n1; n2; n3/, and hence

ts.n/ D nj t
s.ej / or t si .n/ D nj t

s
i .ej /

stating a linear proportionality of the stress with the normal of the respective surface
element. The latter relation is component-wise, and denoting the i th component of
the stress vector ts.ej /, acting on the area element normal to the coordinate axis j ,
by ˘ji, we may write

dFi D dAnj˘ji or dF D dA �… (2.29)

for the stress force dF acting on the infinitesimal area dA. The proportionality fac-
tor˘ji stands for the i -component of the force per unit area on the area perpendicular
to the j -axis. The ˘ji can be combined into a tensor … D .˘ij/ (with 3 � 3 com-
ponents), the stress tensor. The components with associated surfaces are displayed
in Figure 2.4. Hence nj˘ji is the i -component of the force per unit area on the area
perpendicular to n.

Fig. 2.4 The components of the stress tensor
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The resulting force F on a volume V results from all forces dF on the surface of
the volume, and integration yields

F D
I

A

dA �… D
Z

V

r �…dV D
Z

V

f sdV (2.30)

which clarifies that the volume form f s of the surface forces is given by the di-
vergence r � … of the stress tensor. The relation follows by application of Gauss’
theorem. This mathematical form guarantees that the surface forces, acting between
different interior parts of the volume, must sum up to zero as action and reaction
must compensate on every interior surface. The i -component @˘ji=@xj constitutes
a force per volume in the i -direction. Likewise,˘ji is the flux of i -momentum in the
negative j -direction. Notice that this sign convention used for the molecular flux of
momentum, given by … and below also by †, differs from the convention of sign
used for molecular fluxes of partial masses and heat (compare to the Sections 2.2
and 2.4.3).

It may be somewhat counterintuitive that the last relation expresses the surface
forces again by a volume term, but now the spatial variations of the stress tensor
come into play. In fact, if … is constant, the first expression in (2.30) vanishes as
well. Taking (2.30) for an infinitesimal volume V , the force per volume becomes
r �…, and the momentum balance (2.26) is written in the form

�
Du

Dt
D r �…C f v (2.31)

This form of momentum conservation is due to Cauchy. It is valid for any continuum,
but the stress tensors of different materials can be rather different.

The stress tensor for fluids is symmetric, i. e. ˘ij D ˘ji, according to BOLTZ-
MANN’s7 postulate. It may be shown that the symmetry of the stress tensor is equiv-
alent to the postulate that the angular momentum of a material fluid element is only
changed by torques x � f v associated with the volume forces, and torques x � ts

arising from the stress forces, expressed by

d

dt

Z

V.t/

�x � udV D
Z

V.t/

x � f vdV C
Z

A.t/

x � tsdA (2.32)

Put in mathematical terms, the torque of the volume representation x � r � … can
only be expressed by a divergence r �x�… if the stress tensor is symmetric. Details
are found in the box on p. 35. We like to emphasize that the symmetry of .˘ij/ is
a postulate which is very well satisfied for fluids: a nonsymmetric stress tensor would
generate stress couples as body torques, arising by a net volume contribution from
the stress forces. These are not observed in fluid motions.

The diagonal elements of .˘ij/ which act normal to the corresponding surface
are normal stresses. The off-diagonal elements of .˘ij/ act tangential; they are the
tangential stresses. The normal stresses on different surfaces of a volume element
need not be identical. The mean normal inward stress is the pressure

p D �1
3
.˘11 C˘22 C˘33/ D �1

3
˘ii D �1

3
tr… (2.33)

7 LUDWIG BOLTZMANN, *1844 in Linz, †1908 in Duino near Triest, physicist.
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The relation (2.33) defines the mechanical pressure which is now assumed to be
identical8 to the thermodynamical pressure introduced in Section 1.2.

It is useful to decompose the stress tensor according to the isotropic pressure part
and the remaining terms,

˘ij D �pıij C˙ij (2.34)

The remainder .˙ij/ is called the friction tensor (or viscous stress tensor or deviatoric
stress tensor). It does not transport any normal component of momentum in the mean
since by definition the sum of the viscous normal stresses must vanish, ˙ii D 0. For
the surface force per volume f s acting on a volume element we have then

f s D r �… D �rp C r �†
In a fluid at rest or in uniform motion all tangential stresses must vanish; otherwise
fluid elements would start to move relative to neighboring elements. Likewise, all
normal stresses must be identical, otherwise the volume would be deformed and also
induce relative motion. More generally, an ideal or perfect fluid is defined by the
vanishing of all viscous stresses, † � 0. The surface forces are then given by the
gradient of pressure alone, f s D �rp. In real fluids, the viscous stresses do gener-
ally not vanish. The behavior of a solid body and a fluid is fundamentally different. In
a deformed body, forces occur directly as result of deformations and hence a relation
between stress tensor and deformation tensor is expected. This constitutive law or
stress–strain relation is a material property of the medium. With respect to changes

7. Balance of Angular
Momentum

The stress tensor for fluids must be symmetric, ˘ij D ˘ji, as any antisymmetric component
would result in net torques internally in the fluid and hence would lead to a rotation of respective
volume elements. To prove this property, we write (2.31) in the flux form and proceed to the
balance of angular momentum (with respect to the coordinate origin),

@

@t
�x � u C x � r � .�uu �…/ D x � f v

obtained by taking the cross-product with the position vector x. As uu is a symmetric tensor,
we have

x � r � .�uu/ D r � �u.x � u/

so that only the divergence of the advective flux of angular momentum is of relevance. Likewise,
for the stress tensor we must require

x � r �… D r � x �… (B7.1)

as otherwise torques would arise from the stresses in the interior of any volume. Written in
component form, this results in �ijk˘jk D 0, which directly shows that the tensor … must be
symmetric. The relation (B7.1) or directly˘ij D ˘ji is known as Boltzmann’s postulate. Then,
in the Lagrangian view, the angular momentum balance becomes

�
D.x � u/

Dt
D r � .x �…/C x � f v

8 The thermodynamic pressure relies on the concept of thermodynamic equilibrium; the mechanical
pressure is defined for a moving fluid which is not in equilibrium. The equivalence of the two
pressure concepts is nontrivial; we refer the reader to Batchelor (1977).
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in volume, most materials react in a similar elastic way. Differences between ma-
terials occur, however, when the deformation causes a strain rather than a volume
change.

In a fluid, displacements generally do not result in forces. Only a relative motion
of a neighboring parcel exerts a stress. It is phenomenologically well known that for
a constant velocity field all tangential stresses vanish. A Newtonian fluid is defined
by a linear relation between stress and velocity shear, for instance a shear flow u.y/

in the x-direction the tangential stress ˙yx (describing flux of x-momentum in the
negative y-direction) is proportional to the gradient @u=@y, i. e.

˙yx D �
@u

@y

with a down-gradient direction of transport (note here again the above-mentioned
sign convention). The (dynamical) viscosity � is a property of the fluid. A general
linear relation between stress and strain must involve both the stress tensor and the
deformation tensor. Both tensors are symmetric, but the stress tensor has a vanishing
trace. The deviatorD?

ij of the deformation tensorDij, introduced in (1.10), describes
shearing motion without a change in volume. It is symmetric and also has a vanishing
trace. The simplest relation between stress and strain hence is given by

˙ij D 2�D?ij D 2�

�
Dij � 1

3
D``ıij

�
(2.35)

or explicitly

˙ij D �

�
@ui

@xj
C @uj

@xi
� 2

3

@u`

@x`
ıij

�
(2.36)

Relation (2.36) defines a general Newtonian fluid, and has been confirmed experi-
mentally for gases and most fluids. However, there are fluids which behave differ-
ently, e. g. where a nonlinear or more complicated, (e. g. time-dependent) relation be-
tween stress and strain is found. Such fluids are called non-Newtonian fluids; promi-
nent examples are suspensions like paint, which gets less viscous when painted and
more viscous when it remains at the wall or paper, or ketchup, which also often needs
some time-dependent treatment to get less viscous and leave the bottle. The dynam-
ical viscosity of pure water is about 10�3 N s m�2 at 20ıC and decreases (increases)
significantly for higher (lower) temperatures. There are not many fluids which are
less viscous than water, e. g. acetone has a viscosity of 3 � 10�4 N s m�2 at 25ıC,
but many which are more viscous, e. g. olive oil with a viscosity of 0:08N s m�2.
Figure 2.5 shows the dynamical viscosity of seawater, which is very similar to pure
water, for range of temperature and salinity representative for the ocean. The depen-
dency of � on salinity is much weaker compared to the one on temperature.

The divergence of the frictional stress tensor, i. e. the frictional force per volume,
is given by

@˙ji

@xj
D @

@xj

�
�
@ui

@xj

�
C @

@xj

�
�
@uj

@xi

�
� 2

3

@

@xi

�
�
@uj

@xj

�
(2.37)

In most applications it is sufficiently accurate to neglect the spatial variations of �
(which is due to the dependence of � on thermodynamic variables as shown in
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Fig. 2.5 Dynamical viscosity of seawater  in 10�3 N s m�2 as a function of temperature
and salinity. After Sharqawy et al. (2010)

Figure 2.5) so that

@˙ji

@xj
D �

 
@2ui

@x2j
C 1

3

@2uj

@xi@xj

!
(2.38)

Incorporating the force of the molecular stresses into Newton’s law of motion, the
balance of momentum (2.26) thus takes the form

�
Du

Dt
D r �…C f v D �rp C r �†C f v (2.39)

where f v denotes the volume force which still remains to be specified (compare Sec-
tion 2.3.4). Using the continuity equation (2.15), we obtain the equivalent flux form

@

@t
�u D �r � .�uu �…/C f v D �rp � r � .�uu�†/C f v (2.40)

with the momentum flux tensor �uu � … which includes the momentum flux both
through advection and through surface forces. Occasionally, only the advective con-
tribution is called momentum flux.

Expressing the divergence of the frictional tensor by (2.38) (i. e. neglecting the
spatial dependency of viscosity) leads to the NAVIER–STOKES9 equations

�
Du

Dt
D �rp C �r2uC �

3
r.r � u/C f v (2.41)

written here in the parcel form. These equations form the basis of most applications
of hydrodynamics.

9 CLAUDE-LOUIS NAVIER, *1785 in Dijon, †1836 in Paris, engineer and physicist. He laid down
the complete Navier–Stokes equations in 1823 for an incompressible fluid. His work received little
contemporary attention, and so the equations were rediscovered at least four times: by Cauchy
in 1823, by Poisson in 1829, by Saint-Venant in 1837, and by Stokes in 1845 (Darrigol, 2009).
GEORGE GABRIEL STOKES, *1819 in Skreen, †1903 in Cambridge, mathematician and physicist.
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2.3.2 Boundary Condition for theMomentumFlux

For the momentum (per mass) u and the momentum flux … one obtains from (2.7)
and (2.21)

uJmass �… � n D �…a � n (2.42)

where Jmass D E � P as before, and …a is stress tensor of the neighboring
medium, considering the sea surface. The first term on the left-hand side represents
the transfer of momentum associated with vapor leaving or rain drops entering the
ocean. It is generally very small compared to molecular stresses exchanging mo-
mentum (at the sea surface: Jmass=� D .E � P/� is a very small velocity of order
1m=y 	 10�7m s�1, and the second term is of order �=.��/ 	 10�6=�m2 s�1

where � is the scale of the velocity gradient. The first term in (2.42) is, therefore, of
negligible magnitude.

Decomposing (2.42) into normal and tangential components, we obtain the dy-
namic boundary conditions

�p C˙33 D �pa C˙a
33 (2.43)

j̇ 3 D ˙a
j3 D �aj ; j D 1; 2 (2.44)

where �a is the tangential force (windstress) and pa the pressure at the lower bound-
ary of the atmosphere, and n has been taken vertically for simplicity. Remember,
however, that the stresses considered here are of molecular character, and the implied
molecular boundary layers at the interfaces contain extremely large velocity shears
to carry e. g. the flux of momentum imparted by the surface wind field. Usually the
viscous part in (2.43) is small, so that the pressure field is very nearly continuous at
the surface, p � pa.

At the bottom of the ocean, the pressure within the solid earth is not constrained
by the oceanic pressure, and the relation (2.43) does not apply. In fluid mechanics
two possibilities for the dynamic boundary conditions are popular at solid interfaces:
† � n D 0, representing the case of no stress or free slip, and u D 0, requiring
a vanishing flow speed, termed no slip. Figure 2.6 displays the structure of the near-
bottom velocity for the two conditions. These conditions then require a certain stress
at the bottom which is determined from the solution of the respective hydrodynam-
ical problem. A parameterization which is intermediate between the limiting forms

Fig. 2.6 Sketch of no-slip (a) and free-slip (b) conditions at the ocean bottom
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of free slip and no slip is given by

† � n D ru � t (2.45)

where t is the tangential unit vector in the bottom surface. The coefficient r is em-
pirical, frequently expressed as r D r�ju � tj which makes the parameterization
nonlinear. Clearly, for small r we regain the free-slip condition and for large r the
no-slip condition, because additionally to u � t D 0 we also have u � n D 0 from the
the kinematic condition at the sea floor.

2.3.3 Conservation Equations on the Rotating Earth

So far we have used the field variables without any reference to a particular co-
ordinate system. We have introduced scalar fields  and vector fields v (not nec-
essarily velocity) and implicitly used the notion of a Cartesian coordinate system.
However, whereas two observers with their orientation in two different coordinate
frames would certainly agree on the value of a scalar property .t/ of a fluid parcel
at all times and its temporal change D=Dt , they would not necessarily agree on
vector properties v.t/. A vector is characterized by a length and direction, and both
depend on a predefined frame of reference. In particular, the two observers might get
different values for v.t/ and its material rate of change Dv=Dt .

Rotating Coordinate System

The Earth is turning itself but also rotating around the Sun. It is, therefore, conve-
nient to consider a rotating coordinate system. An inertial frame is characterized by
constant unit vectors ei ? in the coordinate direction i D 1; 2; 3, while for a rotat-
ing frame of reference the unit vectors ei .t/ are time dependent and rotate with the
angular velocity ˝ . Figure 2.7 outlines the situation in a two-dimensional sketch.
The magnitude of ˝ denotes the angular rotation speed of ˝ D d
=dt , where 
.t/
denotes the angle between the individual unit vectors ei .t/ and ei ? of the two co-
ordinate systems. The direction of ˝ defines the rotation axis, which points out of
the plane in the scheme of Figure 2.7. While the rotating frame has time-dependent
unit vectors ei .t/ when viewed from the inertial frame, an observer in the rotating
system would, of course, see ‘his’ ei as vectors which are constant in time. In the
following we assume that the coordinate systems have the same origin; the situation
of the Earth is a bit more complicated and discussed in the box on p. 41.

It is worth mentioning that though D=Dt is the same for the two observers,
they obtain different local rates of change and different advective rates of change,
i. e. expanding D=Dt in the inertial and the rotating system into the Eulerian form,

D

Dt
D @

@t
C u? � r? and

D

Dt
D @

@t
C u � r

the @=@t are different in the two expressions because different Eulerian spatial co-
ordinates are held fixed. These are x?i D e?i � x and xi D ei � x, respectively.

We will now compare the material rate of change Dv=Dt of a vector, measured
in the inertial frame, to the rate of change which an observer in the rotating frame
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Fig. 2.7 A sketch outlining the rotating coordinate system. The inertial frame is given by e1
? and

e2
?. The frame given by e1 and e2 is rotating with an angular velocity˝ D d�=dt

obtains. We will first consider the arbitrary vector v.t/, afterward the result will be
evaluated for the position vector and the velocity of a fluid parcel. Because e1.t C
�t/ D e1.t/ C �
e2.t/ for a unit base vector which is normal to rotation axis
(see Figure 2.7), we obtain de1=dt D ˝e2 and similarly de2=dt D �˝e1 where
˝ D d
=dt . Hence, in general

dei
dt

D ˝ � ei
is observed in the inertial frame. Consider now an arbitrary time-dependent vec-
tor v.t/ with components v�

i .t/ D v.t/ � ei� in the inertial frame and components
vi .t/ D v.t/ � ei .t/ in the rotating frame. The temporal rate of change of v.t/ is thus

dv

dt
D dv�

i

dt
ei

� D dvi
dt
ei C vi

dei
dt

The first term in the second expression is the change which a corotating observer
measures. We use the notation .d=dt/rotv to write this term in vector form. The sec-
ond term is just ˝ � v, hence

dv

dt
D
�

d

dt

�rot

vC˝ � v

Application to the position vector X.t/ of a fluid parcel, now a material property,
yields

DX

Dt
D u D

�
d

dt

�rot

X C˝ �X D urot C˝ �X

The first term, urot D .d=dt/rotX , is the velocity vector measured by the corotating
observer. Further, for the acceleration, we find

Du

Dt
D d

dt

�
d

dt

�rot

X C˝ � dX

dt

D
 

d2

dt2

!rot

X C˝ �
�

d

dt

�rot

X C˝ �
��

d

dt

�rot

X C˝ �X
	

D
�

d

dt

�rot

urot C 2˝ � urot C˝ � .˝ �X/ (2.46)
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8. A Rotating Coordinate
System for the Earth

A natural coordinate system attached to the Earth is the geocentric Cartesian frame with its
origin in the Earth’s center. However, the Earth rotates around the Sun and also around itself.
Further, the solar system and the whole galaxy might rotate, which, however, should add only
small contributions. We first consider the rotation of the Earth around the Sun using a Cartesian
system in the center of the Sun, rotating with a period of 365:24 days. We assume a constant
angular velocity of˝sun D 2 =.365:24 � 86400 s/ D 0:02 � 10�5 s�1 and a circular path
of the Earth around the Sun, such that the Earth remains now at a fixed position in the rotating
frame. In this coordinate system a corresponding Coriolis and centrifugal force in the momentum
budget (2.47) will appear.
Next, we consider the rotation of the Earth itself. First we move the center of the coordinate
system into the center of the Earth and we also rotate the system (once) from the ecliptic into
the equatorial plane of the Earth (which has an angle with the ecliptic of about 23ı). Note
that this simple transformation will have no consequences in the momentum budget, except that
˝ sun will be rotated by about �23ı with respect to the equatorial plane. Since the Earth is still
rotating, we finally switch to a rotating coordinate system with rotation vector ˝earth pointing
towards the North Pole with magnitude ˝earth D 2 86400 s D 7:272 � 10�5 s�1. This last
transformation will add another Coriolis and centrifugal force, such that the momentum budget
becomes

�
Du

Dt
D �2�˝ � u � r pC r �†� �˝earth � .˝earth � X/

� �˝ sun � .˝sun � X/C f v

with ˝ D ˝earth C˝ sun with magnitude˝ � 7:292�10�5 s�1 and direction almost parallel
to ˝earth. Note that the centrifugal forces can be written as potentials which then both add to the
geopotential discussed in Section 2.3.4. The contribution of the centrifugal potential of the Sun
will be much smaller than the one of the Earth.

The left-hand side is the acceleration of the fluid element as seen in the absolute
frame, and the first term on the right-hand side is the acceleration which the corotat-
ing observer measures for the same parcel. Note that if ˝ is time-dependent, a term
d˝=dt �X will appear on the right-hand side of (2.46).

Momentum Budget in a Rotating System

The equations of motion in the preceding sections hold for an absolute coordinate
system (inertial system). In a rotating frame, the left hand side of the momentum
equation (2.39) must hence be replaced by the right hand side of (2.46). Dropping
the index rot, this yields

�
Du

Dt
D �2�˝ � u� rp C r �† � �˝ � .˝ �X/C f v (2.47)

where u now denotes the velocity seen by the corotating observer. Two additional
forces appear in the rotating frame which are entirely due to the coordinate transfor-
mation and, therefore, have a virtual character:

� The CORIOLIS10–force
�2�˝�u (or Coriolis acceleration 2˝�u) depends on the flow velocity, always
trying to bend the parcel’s path normal to the direction of ˝ and to u. In other

10 GASPARD GUSTAVE DE CORIOLIS, *1792 in Paris, †1843 in Paris, engineer and mathematician.
Coriolis published his work in 1835, but almost 60 years earlier, in 1768, PIERRE-SIMON LAPLACE

correctly posed the problem of forces on the rotating Earth in his work on tides.
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words: looking down with the North Pole in view, we see a counterclockwise ro-
tation of the Earth and thus a deviation of the motion on the northern hemisphere
to the right. With the South Pole in view, we see a clockwise rotation, and the
motion on the southern hemisphere is seen to deviate to the left. The Coriolis
force is fundamental for all large-scale motions in ocean and atmosphere.

� The centrifugal force
��˝ � .˝ �X/ is independent of the flow variables; it will be discussed in the
next section.

Both forces are also referred to as apparent forces as they are apparent only to a coro-
tating observer.

2.3.4 The Force of Gravity on the Earth

According to Newton’s law of gravitation a point mass M attracts another point
mass m with the force

F.r/ D �GN
mM

r2
r

r
(2.48)

Here r denotes the distance vector from M to m, and GN D 6:673 �
10�11 m3 kg�1 s�2 is the universal constant of gravitation. The force F=m per
unit mass can be derived from the gravity potential according to

F
m

D �r˚? D rGN
M

r
(2.49)

The force per mass is �r˚?, and the force per volume is ��r˚?. Since forces
are additive, the potentials from different masses add as well, and the attraction
of a fluid parcel by different masses can hence be treated separately. The volume
force exerted by gravity can thus be represented by a potential ˚?. In oceanography
and meteorology the gravity potentials of the Earth, Moon, and Sun are relevant,
i. e. ˚? D ˚E C ˚m C ˚s. We discuss how to treat the contributions from the Earth
and the Moon. The contribution of the Sun is analogous to the Moon.

Gravity Potential of the Earth

Newton’s law of attraction holds if both m and M can be considered as mass points
with negligible spatial extent. A result of potential theory is that Newton’s law also
holds for a body of finite extent, provided that its mass distribution is spherically
symmetric, i. e. only dependent on the distance from the center of mass. The Earth’s
surface has, however, no spherical symmetry but is more accurately described as
oblate spheroidal ellipsoid. Moreover, the mass distribution in the interior is also not
spherically symmetric. Outside the Earth, the gravity potential is, therefore, more
accurately given by an expansion of the potential in spherical harmonics with the
leading terms

˚E.r; 
; '/ D �GN
ME

r

�
1 � "1 a

2
e

r2

�
3 sin2 ' � 1�C "?.r; 
; '/

	
(2.50)
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(see e.g. Stacey, 1992). Here r denotes the distance from the mass center of the Earth,

 is the geographical longitude and ' the geographical latitude. The mass of the
Earth is ME D 5:97� 1024 kg, the equatorial radius of the Earth is ae D 6378:1 km,
and "1 D 0:541 � 10�3 is a dimensionless coefficient. The residual term "?.r; 
; '/

(see Figure 2.9 below) has a magnitude of � 10�5 and can be neglected for all
dynamical purposes. Likewise, corrections to (2.50) resulting from the atmospheric
mass distribution (see e. g. Rummel and Rapp, 1976) can be neglected.

Geopotential

Similar to the gravity force, the centrifugal force in the momentum budget (2.47)
can be rewritten in terms of a potential as shown in this section. Note that we only
consider here the centrifugal force resulting from the Earth rotation since this is the
most important (compare the box on p. 41). Only the componentX? of the position
vector which is perpendicular to the axis of rotation contributes to the centrifugal
force. This is because of˝ �X D ˝ �X?. With the vector identity a� .b� c/ D
.a � c/b� .a � b/c one finds˝ � .˝ �X?/ D �˝2X?. Assuming that the axis of
rotation is the z–direction, we haveX? D .x; y; 0/ D 1

2
r.x2Cy2/ D 1

2
rr2 cos2 '

where ' is the latitude coordinate and r the length of the vector X . The centrifugal
acceleration can thus be derived from a potential according to

˝ � .˝ �X/ D �r
�
1

2
˝2r2 cos2 '

�

and hence be combined with the gravity, arising for the Earth’s attraction, to the
geopotential˚ D ˚E�1

2
˝2r2 cos2 ' (frequently called ‘apparent’ gravity potential)

so that

˚.r; 
; '/ D �GN
ME

r

"
1 � "1 a

2
e

r2

�
3 sin2 ' � 1�

C 1

2
"2

�
r

ae

�3
cos2 ' C "?.r; 
; '/

#
(2.51)

where "2 D ˝2a3e =.GNME/ � 3:47 � 10�3 is a dimensionless constant. The com-
bined force in the equation of motion is thus ��˝ � .˝ �X/ � �r˚E D ��r˚ .
The geometric condition of the gravitational and geopotential surfaces with associ-
ated accelerations is depicted in Figure 2.8.

Surfaces of constant geopotential rg D rg.
; '/ are defined by ˚.rg; 
; '/ D
const: With (2.51), and neglecting the residual "?.r; 
; '/, one has

�GN
ME

rg

"
1 � "1

�
ae

rg

�2 �
3 sin2 ' � 1

�C 1

2
"2

�
rg

ae

�3
cos2 '

#
D const (2.52)

The geopotential surface corresponding to the mean sea level is called the geoid. It
can be derived from (2.52) to a first approximation by replacing rg � ae in the small
terms, with the result

rg � ae
�
1 � "3 sin2 '

�
(2.53)
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Fig. 2.8 Gravity as sum of the Earth attraction and the centrifugal acceleration. Surfaces of equal
height (solid lines) and equal geopotential (dashed lines) are schematically displayed, i. e. the dif-
ference between both is exaggerated

with "3 � 3"1 C "2=2 D 3:36 � 10�3. In this approximation, the geoid hence
has the shape of an oblate ellipsoid: its height increases from the pole (polar radius
ap D 6356:8 km) to the equator by "3ae � 21:4 km as demonstrated in Figure 2.8.

Deviations of the geoid from the reference ellipsoid (shown in Figure 2.9) are
related to the residual term "?.r; 
; '/ in (2.51). These deviations reflect the non-
spherical mass distribution in the Earth, and have the form of irregular undulations
with a maximum amplitude of about 100m. The exact form of the geoid is of great
importance in various contexts, in particular in connection with satellite altimetry.

Fig. 2.9 Deviation of the geoid from the reference ellipsoid, related to the residual term "?.r; �; '/
in (2.50) (in m). Data are taken from the official Earth Gravitational Model EGM2008 released by
the US National Geospatial-Intelligence Agency. Black lines denote the continental shape
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The gravitational acceleration (in short gravity) g D �r˚ is perpendicular to
the geopotential surfaces. It follows from (2.52) that g is very nearly parallel to
the radius vector r (the ratio of horizontal to vertical component is at most "3).
With (2.51) and (2.53), the magnitude of gravity g D jr˚ j � @˚=@r at the Earth’s
surface r D rg.'/ is hence approximately given by

g D GNME

a2e
�
1 � "3 sin2 '

� �1 � 3"1
�
3 sin2 ' � 1

�� "2 cos2 '
� � ge

�
1C "4 sin2 '

�

(2.54)

with ge D .GNME=a
2
e /.1 C 3"1 � "2/ and "4 D 2"2 � 3"1 � 5:3 � 10�3. The

gravitational acceleration is thus not constant on geopotential surfaces but increases
from the equatorial value ge � 9:78m s�2 to ge.1C"4/ � 9:83m s�2 at the poles. It
is customary to ignore these changes and to apply a constant value of g D 9:81m s�2,
causing a relative error of 3 � 10�3.

The component of gravity in the horizontal directions (normal to r) is at most
around "3g � 0:03m s�2. While this is very small compared to the vertical compo-
nent, it is not small in comparison to other acceleration terms in the same (horizontal)
direction. It is hence very convenient and useful to use a coordinate system which
has ˚ D const as one coordinate surface. For orthogonal coordinates, gravity must
thus coincide exactly with one coordinate direction, i. e. g D .0; 0;�g/. The geopo-
tential is then dependent on the vertical coordinate z. Referring the potential to the
mean surface, i. e. ˚.z D 0/ D 0, we have

˚.z/ D
zZ

0

dz0g.z0/ � gz (2.55)

The geopotential is thus the work which must be applied to lift a unit mass from
z D 0 to the height z.

Tidal Potential

By far the largest part of the attraction from the Moon and the Sun is compensated
by the centrifugal force arising from the orbital motion. The compensation is not
complete, however, and a residual tidal force remains. As example let us consider
the tidal potential of the Moon. The distance between the centers of mass of Earth
and Moon is rm D 384;000 km, approximately 60 times the Earth’s radius, and
the mass ratio is ME=Mm � 81:5. To a good approximation, both bodies rotate
on circular orbits around their joint center of mass which is located at a distance
s D rmMm=.ME C Mm/ � 4;600 km from the Earth’s center of mass, still within
the Earth. It is sufficient to consider the Earth as a sphere with radius a D 6;371 km.

The motion of the Earth around the joint center of mass is a revolution without
rotation rather than a rigid rotation, i. e. each mass point within the Earth follows
a circle with the same radius s but a different origin, as shown in Figure 2.10. Hence
the centrifugal force !2s is identical for all points. In order for the Earth–Moon
system to remain in equilibrium, mass attraction by the Moon and centrifugal force
must compensate exactly in the Earth’s center of mass,

!2s �GN
Mm

r2m

rm

rm
D 0 (2.56)
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Fig. 2.10 a shows a rigid rotation of the large blue body, where all points (red dot) on the body
move on circles with a common center but different radii. For a revolution without rotation, shown
in b, the points rotate on circles with identical radii but different origin

At any point r which is in a distance r? from the Moon so that rm C r D r?
(see Figure 2.11), the total force per mass (i. e. the acceleration) is thus

f D �GN
Mm

r2?

r?

r?
C !2s D �GNMm

�
r?

r3?
� rm

r3m

�

where (2.56) has been used for the second form. The acceleration can be expressed
as gradient of a potential, i. e. f D �r˚m, with

˚m D �GNMm

�
1

r?
� 1

rm
� r

r2m
cos#

�
(2.57)

For convenience, the constant GNMm=rm has been added here. For the distance r?
it follows geometrically (law of cosines, see Figure 2.11) that r2? D r2m C r2 �
2rrm cos# (here # is the angle between r and rm). As r=rm � 0:017 at the Earth’s
surface, a Taylor expansion for r=rm � 1 yields

rm

r?
D
�
1 � 2 r

rm
cos# C r2

r2m

�� 1
2

D 1C r

rm
cos# � 1

2

r2

r2m
C 3

2

r2

r2m
cos2 # C o

�
r3

r3m

�

Fig. 2.11 Configuration of the Earth–Moon system. C is the center of mass of the two bodies
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Hence the Moon’s potential follows from (2.57), up to second order in r=rm, as

˚m.r; #/ D �GNMm
r2

r3m

1

2

�
3 cos2 # � 1� (2.58)

The magnitude of the tidal force F r D @˚m=@r in the radial direction compared to
the gravity force at the Earth’s surface is very small,

F r

g?
D GNMma=r

3
m

GNME=a2
D Mm

ME

�
a

rm

�3
� 10�7

The vertical component of the tidal force hence is always negligible. For the hori-
zontal component it suffices to set r D a in (2.58).

The angle # depends on the astronomical variables describing the Moon’s orbit
relative to the position r, and can be expressed as a function of geographic longitude
and latitude as well as time, # D #.
; '; t/. The details are not given here, see
e. g. Pugh (1987). However, it is easy to see that because of the Earth rotation and
the rotation of the Moon, # will contain a near-daily and a near-monthly period, and
that the potential will be dominated by approximately half-daily and half-monthly
periods (note that due to the relation cos2 # D .1 C cos 2#/=2 the forcing period
in (2.58) is halved). Such periods can in fact be seen in many tidal records.

For the Sun the situation is completely analogous. Both potentials are of nearly
comparable magnitude, ˚s=˚m 	 .Ms=Mm/ � .rm=rs/

3 � 0:45. The sum of the po-
tentials of the Moon and the Sun,˚tide.
; '; t/ D ˚m C˚s, is the full tidal potential,
and ˚ C˚tide combines the attraction by the Earth, Moon, and Sun and includes the
effect of the centrifugal force. With this, the momentum budget finally takes the form

�
Du

Dt
D �2�˝ � u� rp C r �† � �r .˚ C ˚tide/ (2.59)

Remember that the geopotential ˚ can be considered time-independent whereas the
tidal potential ˚tide is time-varying.

In the remainder of this book, tidal phenomena will not be considered, except for
the energy budgets in Section 2.4 where tidal forcing will be included by redefining
˚ ! ˚ C ˚tide.

2.4 Energy Conservation

In this section, we look at various forms of energy in a moving fluid and the corre-
sponding energy budgets. In Section 1.2, the internal energy E has been introduced
which contains, among other contributions, the kinetic energy of molecular motion.
In a moving fluid, one has to include the kinetic energy of the macroscopic hydrody-
namic motion, described in terms of the flow velocity u, as there may be exchanges
between both forms of energy. Motion in the presence of gravity readily leads to the
concept of potential energy. Finally, a budget combining all relevant forms of energy
is presented. All energy budgets are based on the first law of thermodynamics dis-
cussed in Section 1.2 and on the equations discussed in the previous sections of this
chapter.
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2.4.1 Contributions to the Change of Energy in aMaterial Volume

The kinetic energy of a parcel with mass m moving with the flow velocity u is
mu2=2. Hence the sum of both internal and macroscopic kinetic energies per mass
is E C u2=2. In analogy to the first law of thermodynamics (1.22) we formulate the
conservation for the energy

R
V
�.E C u2=2/dV in a material volume moving with

the flow velocity. Note that we could also consider a volume fixed in space as done
for the general conservation law in Section 2.1 (for which we would have to include
an advective flux of energy in addition to the contributions considered below in this
section). We will also derive in the following Section 2.4.2 an individual budget for
the macroscopic kinetic energy u2=2 from the momentum budget, which we then
subtract from the budget for internal and kinetic energy, which finally yields a bud-
get for the internal energy only. Note that we have to take this route, since it appears
cumbersome to directly derive a budget for the internal energy from the first law of
thermodynamics given by (1.23).

Changes of energy within the material volume can occur through external fluxes,
work on the volume which has been discussed in Section 2.3, and change of the
mass composition due to the different enthalpy of the constituents. The individual
contributions to the energy budget, i. e. the respective change of energy per volume
and time, are as follows:

� External fluxes
Energy can be brought into or out of a volume through molecular heat conduc-
tion, resulting in a flux J T (in W m�2), and also through radiation by the fluxJ rad.
The combined flux J T CJ rad will be referred to as heat flux. The energy flux per
unit time through dA is .J T C J rad/ � dA, and the transport out of the volume is

I

A

.J T C J rad/ � dA (2.60)

where the surface element dA is directed outward.
� Work on the volume I: surface forces

As shown in Section 2.3.1, the net surface force on a surface element is … � dA.
Within a time ıt , the boundary of a material fluid element is displaced by u ıt .
Hence the work on the volume per unit time is given by

I

A

u �… � dA (2.61)

� Work on the volume II: volume forces
The force of gravity (per volume) is ��r˚ , the work per unit time hence is

�
Z

V

�u � r˚dV (2.62)

� Energy exchange through diffusion of partial masses
According to (1.23), a change of dS in salt concentration causes an energy
change of .@H=@S/dS . The diffusive flux J S transports the amount J S � dA and
hence the energy .@H=@S/J S � dA through a surface element. The total energy
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transport out of the volume is thus
I

A

@H

@S
J S � dA D

I

A

J chem � dA (2.63)

where the flux of ‘chemical’ energy (also in W m�2) is given by

J chem D @H

@S
J S (2.64)

Adding all terms of the energy budget and applying the Gaussian theorem, we obtain
the local energy conservation in the form

�
D

Dt
.E CEk/ D �r � J tot � �u � r˚ (2.65)

with the macroscopic kinetic energy (per mass) Ek D u2=2. Here J tot is given by

J tot D J T C J rad C J chem � u �… (2.66)

and denotes the sum of all nonadvective energy fluxes. The last contribution �u �…
will be identified below as flux of mechanical energy. The flux form of (2.66) is

@

@t
�.E C Ek/ D �r � �� .E C Ek/uC J tot

� � �u � r˚ (2.67)

The sum of internal and kinetic energy hence can be changed locally not only through
a divergent flux of total energy, but also through the gravity force. In the ocean phase
changes occur mainly at the surface (by freezing and melting of sea ice) and, there-
fore, are generally considered in boundary conditions only. Otherwise a local volume
term, describing the conversion, would enter (2.67).

2.4.2 Mechanical Energy

On the rotating Earth we have found the momentum budget (2.59), written as

�
Du

Dt
C 2�˝ � u D r �… � �r˚ (2.68)

Scalar multiplication with u yields

�
DEk

Dt
D u � .r �…/ � �u � r˚
D �u � rp C u � .r �†/� �u � r˚ (2.69)

as budget for the macroscopic kinetic energy (per mass) Ek D u2=2. Note that the
Coriolis term does not contribute. In the second relation we have used the splitting
of the stress according to (2.34), revealing �u � rp as the amount of kinetic energy
produced by the work of the pressure force, and u � r � † as the amount of kinetic
energy produced by viscous effects.

The geopotential˚ satisfies the (trivial) conservation equation

�
D˚

Dt
D �

@˚

@t
C �u � r˚ (2.70)
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Here local changes can only be caused by tidal forces (cf. Section 2.3.4),
i. e. @˚=@t D @˚tide=@t . The advection term in (2.70) occurs, with opposite
sign, also in (2.69). We identify the geopotential ˚ with a potential energy; hence
the advection term describes a conversion between potential and kinetic energy. It is
common to use a coordinate system with z normal to geopotential surfaces. Then,
with u D .u; v; w/, we obtain �u � r˚ � �gw.

The first term in (2.69) can be split as u � .r �…/ D r � .u �…/� .… � r / � u and
the last term in this relation can be rewritten as

.… � r/ � u D ˘ij
@ui

@xj
D ˘ijDij D ��pıij C˙ij

�
Dij

with the deformation tensor Dij as defined by (1.6). Separating Dij D D``ıij=3 C
D?

ij into the deviator D�
ij and the remainder, we find ˙ijDij D ˙ijD

�
ij because the

frictional stress tensor has zero trace,˙ii D 0. With the definition

�� D ˙ijD
�
ij (2.71)

we then obtain u � .r �…/ D r � .u �…/ C pr �u���. Inserting this result into (2.69)
yields the kinetic energy conservation as

�
DEk

Dt
D �r � .�u �…/C pr � u � �� � �u � r˚ (2.72)

Addition of (2.69) and (2.70) yields the conservation of mechanical energy, i. e. the
sum of kinetic and potential energies, as

�
D

Dt
.Ek C ˚/ D �r � .�u �…/C pr � u� �� C �

@˚tide

@t
(2.73)

The work terms for pressure and viscous forces is separated into a flux divergence
and a remainder. The flux of mechanical energy is �u �… D pu � u � †. The role
of the remaining terms will be discussed in the next section.

2.4.3 Internal Energy and Enthalpy

Subtracting the kinetic energy budget (2.72) from (2.65) leads to the conservation of
internal energy,

�
DE

Dt
D �r � JH � pr � uC �� (2.74)

Here the flux JH of internal energy (and also of enthalpy, see below) is given as

JH D J T C J rad C J chem (2.75)

Two source/sink terms in (2.74) appear which constitute a conversion between inter-
nal and mechanical energy because they appear with opposite sign in the mechanical
energy budget (2.73). The term �� is the rate of energy dissipation (also known as
Joule heating) (per volume, in kg m�1 s�3). As will be shown in Section 2.5.1, � is
always positive, and hence constitutes an irreversible transformation of mechanical
into internal energy caused by friction. The term pr � u is the amount of internal
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energy converted to mechanical energy, which occurs also in reversible systems, and
is usually denoted the reversible exchange. This interpretation is, however, strictly
correct only in the absence of heat conduction and diffusion.

It is often convenient to formulate (2.74) in terms of the enthalpy H D E C pv.
Using the mass conservation (2.18) one obtains

�
DH

Dt
D Dp

Dt
� r � JH C �� (2.76)

We have discussed �u � r˚ � �gw as exchange term between kinetic and potential
energy. Note that the reversible term in (2.76) is approximately of the same form,
Dp=Dt � w@p=@z � ��wg, for hydrostatic conditions.

2.4.4 Total Energy and Total Enthalpy

The sum of internal, kinetic and potential energy

E tot D E C Ek C ˚ (2.77)

is referred to as total energy. Adding (2.65) and (2.70) yields

�
DE tot

Dt
D �r � J tot C �

@˚tide

@t
(2.78)

where the total energy flux is given by (2.66). The flux form of (2.78) is

@

@t
�E tot D �r � ��E totuC J tot�C �

@˚tide

@t
(2.79)

Only the fluxes J tot at the boundaries change the integrated total energy, otherwise
the fluxes can only redistribute this quantity. In the diagram of Figure 2.12 and the
box on p. 52 we summarize the energy compartments with the exchange terms and
external fluxes.

Fig. 2.12 Local source terms for the various energy compartments
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9. Fluxes and Source
Terms in Energy Budgets Variable Symbol Flux Source/sink

(per volume)

Pot. energy ˚ 0 g�w C �
@˚tide

@t

Kin. energy Ek J mech D pu �† � u �g�w���Cpr �u

Mech. energy Ek C˚ J mech D pu �† � u
���C pr � u

C@˚tide

@t

Int. energy E
J H D J rad C J T

C@H
@S

J S
�� � pr � u

Enthalpy H
J H D J rad C J T

C@H
@S

J S
��C Dp

Dt

Total energy E tot D E CEk C˚ J tot D J H C J mech �
@˚tide

@t

Total enthalpy H CEk C˚ J tot D J H �† � u
@p

@t
C �

@˚tide

@t

Decomposing the mechanical energy flux in (2.66) according to u �… D �puC
u �†, the total energy flux may be represented as

J tot D pu� u �†C JH (2.80)

Invoking the identity

�
D

Dt
.pv/ D @p

@t
C r � pu

which can be derived by means of the continuity equation, one obtains from (2.78)

�
D

Dt
.H C Ek C ˚/ D �r � J tot� C @p

@t
C �

@˚tide

@t
(2.81)

where the reduced energy flux J tot� D J tot � pu D �u �†C JH contains the fluxes
due to molecular friction, diffusion, heat conduction and radiation. In many cases,
especially when considering large-scale motions, the pressure is mainly determined
by depth, and its local rate of change is negligible. If, in addition, the conditions
are adiabatic so that the reduced energy flux J tot� can be neglected, we obtain the
BERNOULLI11-equation

D

Dt
.H C Ek C ˚/ � 0 (2.82)

The quantity

B D H C Ek C ˚ D E C Ek C ˚ C pv (2.83)

11 JOHANN BERNOULLI, *1667 in Basel, †1748 in Basel, mathematician, and his son DANIEL

BERNOULLI, *1700 in Groningen, †1782 in Basel, are the most prominent members of the scientist
family Bernoulli. The above theorem is due to Daniel B. whose most famous work ‘Hydrodynamics’
appeared in 1738.
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is the Bernoulli function in its most general form. Under the above-mentioned con-
ditions, the Bernoulli function of a fluid element is approximately constant. In such
situations (2.82) can be more convenient than energy conservation. The Bernoulli
function can also be viewed as total enthalpy.

2.4.5 Boundary Condition for the Enthalpy Flux

A boundary condition is conveniently formulated in terms of the enthalpyH of sea-
water because boundary processes take place at (approximately) constant pressure.
From the conservation equation (2.76) it follows that the appropriate flux of enthalpy
is JH which is defined in (2.75) as sum of (sensible) heat flux, radiative heat flux and
a flux related to the chemical potential (the latter will later be shown to be small,
cf. Section 2.6). Application of (2.7), with  D H and J� D JH, yields for the
ocean-atmosphere boundary

HJmass C JH � n D J atm
H (2.84)

10. Alternative
Derivation of the Budget
for Internal Energy

An alternative derivation of the budget for internal energy can be found using the Gibbs rela-
tion (1.47), for which the differentials dE , d
, etc are written as material derivatives DE=Dt ,
D
=Dt , etc.

DE

Dt
D �

DS

Dt
C T

D


Dt
C p=�2

D�

Dt

where �pdv D p=�2d� was used. Combing this particle form of the Gibbs relation with the
budgets for salt and total mass and assuming the standard form for the entropy budget with
a nonadvective flux of entropy J � and a source or sink of entropy C� given by �D
=Dt D
�r � J� CC� yields

�
DE

Dt
D ��r � J S � Tr � J� C TC� � pr � u

We rewrite this budget for the internal energy again in the standard form including a nonadvec-
tive flux and a source or sink term of internal energy, as

�
DE

Dt
D �r � ��J S C TJ �

�C J S � r �C J� � r T C TC� � pr � u

Combining this budget for internal energy with the kinetic and potential energy budgets yields
as budget for total energy

�
@

@t
.E CEk C˚/ D �r � ��J S C TJ� � u �…�C J S � r �

C J� � r T C TC� � ��C �
@˚

@t

Now we assume that the total energy is conserved (except for tidal forcing). It follows for the
source term of entropy that

TC� D �J S � r �� J� � r T C ��

must hold, which is identical to (2.91). From the internal energy budget, we also see that the
enthalpy flux is given by J H D �J S CTJ�. With @H=@S D �CT @
=@S and the entropy
flux from (2.90) we recover the form (2.75) for the enthalpy flux.
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Here J atm
H is the net enthalpy flux and Jmass D E � P the net mass flux, both nor-

mal to the surface and pointing into the atmosphere. On the atmospheric side of the
boundary, water is transported as water vapor (with enthalpyHq) due to evaporation,
and as liquid water (with enthalpyHp) due to precipitation. Therefore, (2.84) can be
written asH.E �P/CJH � n D HqE �HpP CJ aH � n where J aH is the atmospheric
sensible plus radiative heat flux. The latent heat of condensation Lq is defined as

Lq D Hq �Hf (2.85)

and has the value ofLq � 2:5�106 J kg�1 at 0ıC and atmospheric standard pressure.
Here Hf is the enthalpy of pure water. Since with (2.85) one has Hq � H D Lq C
Hf �H , the boundary condition finally takes the form

JH � n D J aH � nCLqE C .Hf �H/E � .Hp �H/P (2.86)

Sensible and radiative heat fluxes on both sides of the boundary hence differ by three
terms associated with the air-sea mass flux, of which the first term (latent heat flux)
is by far the most important. The enthalpy differences between pure water and sea
water, and between precipitating water and sea water, are much smaller so that the
last two terms in (2.86) can usually be ignored.

The exchange of enthalpy between ocean and atmosphere is an important driv-
ing mechanism for the ocean circulation. We continue with a detailed discussion
in Chapter 13. The exchange at the sea floor is comparatively small, and usually ig-
nored, i. e. JH � n D 0 is assumed. Locally it may however be necessary to include
geothermal heating at places such as hydrothermal vents. Furthermore, geothermal
heating may play a certain role for the large-scale circulation over long time scales
(see e.g. Adcroft et al., 2001; Emile-Geay and Madec, 2009).

2.5 Entropy Budget

The entropy �.S; T; p/ can be computed numerically as a derivative of the known
Gibbs function according to (1.49). Therefore, a consideration of the entropy budget
is not in itself necessary to obtain a closed system of equations which allows deter-
mination of all state variables. The second law, however, allows conclusions on the
direction of frictional/diffusive molecular fluxes.

2.5.1 Entropy Sources and Flux–Gradient Relations

Starting from the Gibbs relation (1.28) in the form

T
D�

Dt
D DH

Dt
� �Dp

Dt
� �

DS

Dt
(2.87)

one obtains with (2.76) and (2.20)

�
D�

Dt
D 1

T

�
�r �

�
J rad C J T C @H

@S
J S

�
C �� C �r � J S

	
(2.88)
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After some algebra (expansion of r�, and use of (1.50)) one obtains the entropy
conservation in the standard form

�
D�

Dt
D �r � J 
 C C
 (2.89)

where the entropy flux is defined by

J 
 D J rad C J T

T
C @�

@S
J S (2.90)

The entropy source in (2.89) consists of external and internal contributions, C
 D
C ext

 C C int


 . The external source

C ext

 D �J rad

T 2
� rT

is due to radiation, and the internal sources, summarized by

C int

 D 1

T
�� � J T

T 2
� rT � J S

T
�
�
@�

@S
rS C @�

@p
rp

�
(2.91)

are due to a suite of irreversible processes within the fluid. The second law of thermo-
dynamics requires the internal entropy source to be positive, C int


 > 0. This require-
ment is certainly satisfied when all individual contributions in (2.91) are positive,
i. e.

� > 0 ; �J T � rT > 0 ; �J S �
�
@�

@S
rS C @�

@p
rp

�
> 0 (2.92)

These inequalities lead to the following restrictions for the direction of molecular
transports, as discussed in the following.

� Mechanical dissipation
From (2.71), the definition of the viscous stress tensor (2.36), and the stress–strain
relation (2.35) one finds

�� D ˙ijD
?
ij D 2�D?

ijD
?
ij D 1

2
�
X
i;j

�
@ui

@xj
C @uj

@xi
� 2

3

@u`

@x`
ıij

�2
(2.93)

Hence the energy dissipation rate � (per mass, in m2 s�3) is positive if the molec-
ular viscosity � is positive. Instead of � one frequently uses the kinematical vis-
cosity 	m D �=�. For water at 10ıC temperature, the kinematic viscosity is
	m � 1:3 � 10�6 m2 s�1. It decreases with temperature and varies by ˙25%
under oceanic conditions.

� Heat Flux
For molecular heat conduction FOURIER’S12 law states that the diffusive heat
flux is opposite to the gradient of temperature,

J T D �
rT (2.94)

with the heat conductivity 
. Hence we have �J T � rT > 0 provided that 
 is
positive, i. e. that the heat flux is directed from warm to cold regions. Normally,
instead of 
, the temperature conductivity 	T D 
=�cp is preferred. In the ocean,
typical values are 	T � 1:4 � 10�7 m2 s�1.

12 JEAN BAPTIST JOSEPH FOURIER, *1768 near Auxerre, †1830 in Paris, mathematician and
physicist.
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� Salinity Flux
The FICKIAN13 law relates the salinity flux to the gradient by

J S � ��	SrS (2.95)

However, from the last expression in (2.92) we see that (2.95) is not sufficient to
guarantee positivity of the entropy production. Including the salinity flux due to
the pressure gradient according to

J S D ��	S

�
rS C @�=@p

@�=@S
rp

�
(2.96)

leads, however, to a positive entropy production term provided that the salt dif-
fusivity 	S is positive. Typical values for seawater are 	S � 1:2 � 10�9 m2 s�1.
A consequence of (2.96) is carried out in the box on p. 57.

2.5.2 Onsager Relations

A generalization of the phenomenological relations (2.94) and (2.96) follows from
the irreversible thermodynamics developed by ONSAGER14 in 1931 (Onsager,
1931a,b). The positivity of entropy production (2.91) can also be satisfied by the
weaker condition that only the sum, rather than the individual contributions, be pos-
itive. We consider here only heat and salt fluxes, and obtain the requirement that

C ?
 D �J T

T 2
� rT � �SJ S

T
�
�

rS C @�=@p

@�=@S
rp

�
> 0

A more general linear and isotropic relation between the fluxes J T and J S and the
vectors on the right-hand side of (2.94) and (2.96) can be written as

J T D ��cp	TrT � �	TS

�
rS C @�=@p

@�=@S
rp

�
(2.97)

J S D ��	S

�
rS C @�=@p

@�=@S
rp

�
� �	STrT (2.98)

The last term in (2.97) leads to a heat flux in the presence of a combined salin-
ity/pressure gradient (DUFOUR15-effect), the last term in (2.98) to a salinity flux due
to a temperature gradient (SORET16-effect). The entropy production due to heat and
salt fluxes then follows as
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 =� D cp	T

T 2
.rT /2 C 	S
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�
rS C @�=@p

@�=@S
rp

�
(2.99)

13 ADOLF FICK, *1829 in Kassel, †1901 in Blankenberge/Flanders. Interestingly, he was not
a physicist but a physiologist. He formulated in 1855 the three Fickian diffusion laws.
14 LARS ONSAGER, *1903 in Oslo, †1976 in Coral Gables/Florida, chemist and physicist.
15 LOUIS DUFOUR, *1832 in Veytaux, †1892 in Lausanne, physicist.
16 CHARLES SORET, *1854 in Geneva, †1904 in Geneva, physicist and chemist.
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From arguments based on statistical mechanics, Onsager has deduced that the two
off-diagonal coefficients must be related by reciprocity relations which for 	TS

and 	ST read

@�

@S
	ST D 	TS

T
(2.100)

As a consequence, both additional terms contribute equally to entropy production.
Positivity of (2.99) then requires that

	T > 0 ; 	S > 0 ; and j	TSj2 < 	T	ScpT
@�

@S

More details are given in Kamenkovich (1977) where also the general case with
inclusion of the mechanical dissipation is discussed. However, since experiments
show that both 	ST, the Soret-coefficient, and 	TS, the Dufour coefficient, are very
small for seawater, they are usually neglected.

2.6 Temperature Equations

With the conservation of internal energy (2.74) and with the relevant thermodynamic
relations considered in Section 1.2, we now have all basic conservation laws which in
principle are sufficient to determine the state variables u, �, S , p, and E. In the fol-
lowing we use the enthalpyH instead ofE. The temperature T which is e. g. needed
to evaluate the state equation, could in principle be determined through inversion of
the known thermodynamic relationship H D H.S; T; p/. The more familiar proce-
dure is, however, to use that relationship to eliminateH from the system of conserva-
tion laws, and to derive an equation directly for the temperature. This elimination is
useful because (1) temperature is an independent state variable and more convenient
than H to evaluate thermodynamic expressions, (2) in contrast to internal energy or
enthalpy, temperature can be easily observed, and (3) in this way one can achieve
a reduction in the number of variables.

In a second step, the temperature will be replaced by a conservative temperature
variable which is closer to conservation than in-situ temperature. The price to be paid
is an increase in algebraic complexity in the respective conservation equations. The
conservative temperature replaces the historically used potential temperature, since

11. Diffusive EquilibriumA pressure gradient can cause a diffusive salt flux. Note that @�=@p D @�=@S D �	� < 0
while @�=@S > 0. Therefore, the pressure-related component of salt flux is directed towards
higher pressure, i. e. downward in the ocean. As an example, consider a state of rest which is
in hydrostatic equilibrium (cf. Section 2.9 below) and assume a vanishing diffusive salt flux
J S D 0, i. e. a diffusive equilibrium. For the vertical component of (2.96) one finds

@S

@z
D � @�=@p

@�=@S

@p

@z
� @�=@p

@�=@S
g� � �3 .g kg�1/=km

a value which is far above observed salinity gradients in the ocean. It follows that the observed
oceanic state is far from its diffusive equilibrium state. In fact, small-scale turbulent mixing as
discussed in Chapter 11 and advection by the large-scale ocean circulation prevents a diffusive
equilibrium of the ocean.
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the former has the best conservation properties of all variables measuring ocean heat
content. It is hence the preferred temperature variable. The potential temperature
budget is derived here for comparison and for historical reasons.

2.6.1 In-situ Temperature

The enthalpy conservation (2.76) can be written, by expanding the total derivative of
H D H.S; T; p/, as

�

�
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@S

DS

Dt
C @H

@T

DT

Dt
C @H

@p

Dp

Dt

�
D Dp

Dt
� r � JH C ��

The derivatives of the enthalpy, appearing in this relation, are evaluated as

@H

@T
D cp and

@H

@p
D � C T

@�

@p
D � � T @v

@T
D �.1 � ˛T /

with the help of (1.50) and (1.57). Use of the salt conservation (2.20) then results in
the in-situ temperature equation

�cp
DT

Dt
D �r � JH C ˛T

Dp

Dt
CQT (2.101)

Hence temperature can be changed not only by heat-flux convergence, but also by
a change of pressure or by the temperature source QT which is given by

QT D �� C @H

@S
r � J S (2.102)

Note that the contributions from the dissipation �� and from the salt fluxes J S for
the temperature source termQT are small and usually neglected, as discussed below.
The in-situ temperature budget (2.101) can also be written as

�cp

�
DT

Dt
� � Dp

Dt

�
D �r � JH CQT with � .S; T; p/ D ˛T

�cp
D �@

2G=@T @p

@2G=@T 2

(2.103)

using the relations in Table 1.1. Under adiabatic conditions (and without mass ex-
change) we have JH D 0 and QT D 0, and then changes in in-situ temperature
and pressure are related by dT D � dp. The quantity � is, therefore, called adi-
abatic temperature gradient or lapse rate. The gradient is meant here with respect
to pressure, in fact the adiabatic lapse rate can also be written as � D .@T=@p/ad,
defining the adiabatic temperature gradient. A typical value for the ocean is � �
10�8 K=Pa D 10�4 K=dbar which corresponds about to 	 0:1K=km.

2.6.2 Conservative Temperature

The in-situ temperature equation (2.101) with the source terms (2.102) for the ocean
is preferred to the balances of internal energy or enthalpy because T is measurable.
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However, the in-situ temperature is not conserved even under adiabatic conditions
because changes of pressure always lead to changes in temperature of a fluid parcel,
manifested by the nonvanishing lapse rate � . Therefore, the budget (2.101) is in
practice not very useful. The concept of the conservative temperature introduces
a new temperature variable which takes care of the pressure effects and which is
conserved under adiabatic conditions.

Consider the enthalpy H of a fluid parcel in terms of its canonical independent
variables (see Figure 1.4) salinity, entropy, and pressure, H D H.S; �; p/. The en-
thalpy conservation (2.76) takes the form

�
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(2.104)

From Maxwell’s relations in Section 1.2.5 one has�
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S;p

D T ;

�
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@p

�
S;


D � (2.105)

and with �� D 1 it is found that both terms with Dp=Dt in (2.104) cancel exactly
(in contrast to the in-situ temperature budget (2.103)). The potential enthalpyH 0 is
defined by

H.S; �; p0/ � H 0.S; �/ (2.106)

and is the heat content of a parcel which is brought adiabatically from the local pres-
sure p to a reference pressure p0, i. e. without mass (constant S ) and energy (con-
stant �) exchange. The reference pressure is usually chosen as the surface pressure,
which means that the water parcel is brought adiabatically from its local depth to
the surface. Note that the in-situ temperature of the water parcel will change because
of the change in pressure according to (2.103). Note also that the index 0 means
that the quantity is evaluated at the pressure p0. From the definition of potential
enthalpy (2.106) we obtain

�
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(2.107)

From the Maxwell relations (2.105) it follows that the quantity

� D
�
@H 0

@�

�
S;p

(2.108)

is the temperature of the water parcel brought adiabatically to the reference pres-
sure p0, therefore, � is called the potential temperature. Using the salt budget
�DS=Dt D �r � J S to replace DS=Dt and the entropy budget in the form (2.88) to
replace D�=Dt in (2.107) we obtain

�
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@S
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@S

�
r � J S C �

T
.�r � JH C ��/ (2.109)

Following McDougall (2003), the conservative temperature �? is introduced as

�? D H 0=c?p (2.110)
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where the constant reference value of the specific heat c?p D 3991:868 J kg�1 K�1

was chosen such that the numerical value of conservative temperature �? and poten-
tial temperature � become identical at S D 35 g kg�1. This definition for �? allows
to write the heat balance in the form

�c?p
D�?

Dt
D
�
�

T

@H

@S
� @H 0

@S

�
r � J S C �

T
.�r � JH C ��/ (2.111)

For adiabatic conditions, i. e. for JH D 0, J S D 0 and � D 0, the conservative
temperature is a conserved quantity, in contrast to the in-situ temperature which is
not conserved under adiabatic conditions. Conservative temperature is thus more
convenient as a state variable than in-situ temperature, since adiabatic processes
can be characterized by S D const and �? D const, instead of S D const and
� D const. We will, therefore, use �? instead of T in the following as state vari-
able (see also Section 2.6.4). The difference between �? and T is, however, small
(see Figure 2.13).

The equation (2.111) for the conservative temperature is exact. The local sources
and sinks arise not only from the physical heat sources �� � r � JH (modified by
a factor �=T ) but also from an additional term related to the salinity flux divergence.
A substantial simplification is, however, possible by considering the magnitude of
various source terms in (2.111):

� A first approximation involves the first term on the right-hand side of (2.111)
which describes the change in conservative temperature due to a salinity flux di-
vergence. Near the surface where �=T ! 1 and H 0 ! H this term vanishes.
At depth its magnitude remains small, and a salinity flux that changes the salin-
ity of a fluid parcel by as much as 1 g kg�1 leads to a change in conservative
temperature of less than 0:05K. For all practical purposes, the direct influence
of the salt flux divergence on conservative temperature can, therefore, be ne-
glected (see McDougall, 2003, for a detailed analysis). Note that the contribution
of the flux J chem to the heat flux JH D J T C J rad C J chem defined in (2.75) is
also small and can be neglected.

� A second approximation involves the magnitude of �=T . In the ocean, the dif-
ference between conservative and in-situ temperature rarely exceeds 0:5ıC. Both

Fig. 2.13 a Differences of conservative temperature �? and in-situ temperature T as function of T
and p at S D 35 g kg�1. b The difference of �? and � is shown as function of S and T for
p D 1;000 dbar
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temperatures are defined in K, and hence the approximation �=T � 1 in (2.111)
has a relative error of no more than 2 � 10�3, and is even better near the surface
where the flux divergence term is most important.

� A third approximation concerns the mechanical dissipation �. As seen
from (2.71), the dissipation rate depends on the deformation, respec-
tively shear, of the flow. For a shear of @u=@x D 0:1 s�1 (which is al-
ready unrealistically high for ocean conditions) one would have �� �
10�6 m2s�1 � 103 kg m�3 � .0:1/2 s�2 � 10�4 W m�3. According to (2.101),
such a value corresponds to a temperature increase of 	 10�6 K=d. In the deep
ocean, typical values of the dissipation are around 10�9 W m�3, so that the
corresponding dissipative heating is five orders of magnitude smaller. Note,
however, that while mechanical dissipation is negligible for the heat budget, its
existence is fundamental for the mechanical energy budget.

With these approximation, it follows that

�c?p
D�?

Dt
D �r � JH (2.112)

Note that this equation is used in most ocean models. Boundary conditions follow
from (2.86). For a more detailed discussion of the approximations involved in (2.112)
see IOC, SCOR and IAPSO (2010). We show in Figure 2.13 the difference of the
conservative temperature �? with respect to the in-situ temperature T (left panel)
and to the potential temperature � as function of T , S and p. Significant deviations
only occur for pressures exceeding 1,000 dbar.

2.6.3 Potential Temperature

We derive in this section a budget for the potential temperature � . This is done
because potential temperature has long been in use in physical oceanography as
the ‘best’ temperature variable, until it became clear that conservative temperature is
the superior choice. It is convenient to start from the entropy � D �.S; T; p/which is
a known function of its arguments, as discussed in Section 1.2.5. The potential tem-
perature � , referred to a fixed reference pressure p0, is implicitly defined through the
relation

�.S; T; p/ D �.S; �; p0/ � �0.S; �/ (2.113)

which states that the potential temperature � is the temperature which a particle of
temperature T and pressure p will assume when it is brought adiabatically (i. e. at
constant � and S ) to a location with pressure p0 (usually the surface pressure).
Note that the definition (2.113) agrees with (2.108), and also with the more in-
tuitive definition �.S; T; p/ D T � R p

p0
� .S; T .S; �; p0/; p0/dp0 as can be seen

from (2.118) below. Here S and � remain constant during the integration, and the
function T D T .S; �; p/ can be obtained by solving (2.113) for the in-situ tempera-
ture.

Solving (2.113) for � results in

� D �.S; T; p/ (2.114)
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and a prognostic equation for � can be derived in terms of the time rates of change
of S , T , and p,

D�
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Dt
C @�

@T
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Dt
C @�

@p

Dp

Dt
(2.115)

The functional form of (2.114) is not explicitly known, but the partial derivatives can
be inferred by considering the total differential of (2.113), i. e.
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Here the index 0 indicates that the function of .S; T; p/ is evaluated at temperature �
and pressure p0. From (1.57) it follows that @�=@T D cp.S; T; p/=T and @�0=@� D
cp.S; �; p0/=� � c0p=� . Using (2.116), the derivatives in (2.115) may be expressed
as
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In particular one finds, using (1.50) and (1.54),
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�cp
� �� .S; T; p/ (2.118)

From (2.118) we see that the term containing Dp=Dt in (2.115) exactly cancels with
the corresponding term from (2.103) when eliminating DT=Dt . Invoking (2.20) to
eliminate DS=Dt from (2.115) as well as (2.102) and the first relation in (1.49),
a prognostic equation for potential temperature is obtained as (Bacon and Fofonoff,
1996)
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� � T
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@T

�
r � J S (2.119)

Similar to the conservative temperature �?, given by (2.111), the potential temper-
ature � is also conserved for adiabatic processes, i. e. for �� D 0, JH D 0, and
J S D 0. With the same approximations which lead from (2.111) to (2.112), we
obtain for the potential temperature

�c0p
D�

Dt
D �r � .J T C J rad/ or �

D�

Dt
D �r � J � C c0pJ � � r 1

c0p
(2.120)

with J � D .J T CJ rad/=c
0
p . It becomes obvious that it is not a reference value c?p for

specific heat as for the budget for conservative temperature (2.109), but the specific
heat c0p at the reference pressure p0 which enters the balance for potential tempera-
ture (2.120). Variations of c0p hence lead to a source or sink of potential temperature.
In the relevant oceanic interval of salinities 34–36 g kg�1, values of c0p range from
3850 to 4050 J=kg, i. e. within 1% at most (see Figure 1.7). As an (admittedly ex-
treme) example for this effect, the mixture of two water masses with 0ıC tempera-
ture, 0 g kg�1 salinity and 30 ıC, 40 g kg�1 at surface pressure results in a potential
temperature of 14:6ıC, and not 15 ıC. Neglecting the source term in (2.120), there-
fore, causes a small error, which is, however, much larger than the approximations
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discussed above for the conservative temperature. Using conservative temperature
completely avoids this error and conservation properties of �? are, therefore, better
by two orders of magnitude.

On the other hand, the differences between �? and � are in general small (see
right panel of Figure 2.13). They can reach maximum values of 0:15K at the surface
comparing one ocean basin with another, but there are also comparable differences
in regions of strong fronts at the surface, like the Gulf Stream. Differences at depth
are much smaller and can in general be neglected, in particular in the light of the
various approximations which will be introduced in Part II. Note that we will use
conservative temperature as variable, but we will drop the index ? for convenience in
the remainder of the book (except for the next section). Note also that when referring
to potential temperature, either �? is meant, or differences between �? and � are
simply neglected.

2.6.4 Conservative Temperature as a State Variable

We now introduce the conservative temperature �? instead of the in-situ tempera-
ture T as state variable, since �? is conserved under adiabatic conditions, while T
is not conserved. Using T D T .S; �?; p/ for the state equation � D �.S; T; p/, we
obtain the density as function of the new set of state variables S , �?, and p, i. e. by

� D �.S; T .S; �?; p/; p/ D F ?.S; �?; p/ (2.121)

An explicit numerical approximation of the function F ?.S; �?; p/ can be found
in IOC, SCOR and IAPSO (2010). For practical applications of the equations of
motion (2.121) is the most convenient state equation, whereas for thermodynamic
considerations the original form (1.52) of the state equation is preferred.

We will need below the expansion coefficients for density with respect to the
new state variables. The coefficients are given by the first derivatives of the rela-
tion (2.121) and denoted by
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adiabatic compressibility (2.124)

Note that the coefficients ˛? and �? are similar in magnitude but not identi-
cal to the corresponding coefficients in (1.54)–(1.56) using in-situ temperature T
as state variable. To express the modified thermal expansion coefficient ˛? D
�.1=�/.@�=@�?/S;p D ˛.@T=@�?/S;p in terms of known quantities, we need to
know @T=@�?. Using �.S; T; p/ D �0.S; �?; p0/, thus
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and combining with @�=@T D cp=T and @�?=@�0 D �=c?p and with the defini-
tion (2.110) for �?, for the modified thermal expansion coefficient

˛? D ˛
c?pT

cp�
(2.125)

The modified haline contraction coefficient �? is related to � by
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To find @�?=@S , use again �.S; T; p/ D �0.S; �?; p0/, thus
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since @�0=@�? D c?p=� . Thus with (2.125) we find
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For the adiabatic compressibility 	? analogous arguments lead to
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(2.127)

Since it has a clear physical meaning, we will use in the following the speed of
sound cs instead of the modified adiabatic compressibility 	?. The sound velocity is
related to 	? by
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@p
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(2.128)

Fig. 2.14 Velocity of sound in seawater, cs (a, in m s�1), difference of the modified thermal expan-
sion coefficient to Figure 1.6, ˛?�˛ (b, in 10�4 1=K) as well as difference of the modified haline
contraction coefficient to Figure 1.6, 	? � 	 (c, in 10�4 .g kg�1/�1), all as a function of T and p
at S D 35 g kg�1
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The sound speed cs and the differences in expansion coefficients ˛? � ˛ and �? � �
for the different state variables are shown in Figure 2.14. Relative differences are for
the thermal expansion coefficient significant on the order of 5%, but for the haline
contraction coefficient smaller.

Note that from now on, we shall drop the ? for the coefficients and use the nota-
tion ˛ and � for the coefficients defined in (2.122) and (2.123). As mentioned above,
we shall also drop the ? for the conservative temperature (which will be also called
occasionally potential temperature, when differences between both are unimportant).
Likewise, the notation F.S; �; p/ will denote the state equation (2.121) whenever
conservative temperature is used as independent variable.

2.7 Density Variables

The in-situ density � is not conserved for constant S and � , i. e. for adiabatic condi-
tions. However, since molecular and turbulent transports divergences (see also next
section) acting on the salinity and conservative temperature budgets are often rather
small in the interior of the ocean, a “conserved” density is a useful quantity in par-
ticular to trace the spreading of water masses in the ocean or the construction of
isopycnal models. Similar to the definition of a “conserved” temperature, we intro-
duce the concept of a potential density in this section. On the other hand, it will
turn out that water masses spread along potential density surfaces only under certain
conditions, which will be clarified by the concept of neutral surface elements.

2.7.1 Potential Density

In analogy to the concept of conservative temperature a density variable can be intro-
duced which is conserved for adiabatic conditions. The potential density is a useful
concept more alike the in-situ density than either temperature or salinity alone. It is
defined by

�p.S; �/ D F.S; �; p?/ (2.129)

with the fixed reference pressure p? D const. For practical use, 1,000 kg m�3 is sub-
tracted from the values of potential density. The potential density �p equals the in-situ
density of a particle (except for the constant removed in (2.129)), when the particle
is moved adiabatically from its in-situ pressure p to the reference pressure p? as
sketched in Figure 2.15. Note that the reference pressure p? is in principle unre-
lated to the reference pressure p0 used in the definition of conservative tempera-
ture (2.106). It is, in fact, common to define potential densities not only with ref-
erence to the surface but also to deeper levels in the ocean. The reason is that iso-
surfaces of �p are close to surfaces of adiabatic spreading of water masses when the
in-situ pressure is close to p?, as discussed below. The common notation is as fol-
lows: �0.�� /, �1, �4 for p? D 0, 1,000, 4;000 dbar etc. The conservation of potential
density is described by

D�p

Dt
D �p

�
�?

DS

Dt
� ˛?D�

Dt

�
(2.130)
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Fig. 2.15 Sketch of adiabatic displacement of a fluid parcel from p to p? with respective temper-
atures, salinities, and densities

where �?; ˛? denote the expansion coefficients given by (2.123) and (2.122), respec-
tively, evaluated for the reference pressure p?. Hence potential density is always
conserved for adiabatic motions, for any choice of the reference pressure. Surfaces
of constant potential density are called isopycnal surfaces. Note, however, that it is
the in-situ density which appears in the equations of motion. Only near the reference
pressure, the potential density is similar to the (dynamically relevant) in-situ density.
Later in Section 4.1.3 we will derive the balance of in-situ density � and find that
any suitable density variable containing the compressibility is not conserved, even
for adiabatic motions.

2.7.2 Neutral Surface Elements

Under adiabatic conditions the advection of water masses occurs along isopycnals,
however, only if the pressure changes are not substantial, as shown in this section. To
derive a more general concept, that of a so-called neutral surface, we start with the
equation of state (2.121) and consider a small change of density over the distance dx.
It is given by

d� D ��rS � dx � ˛�r� � dx C 1

c2s
rp � dx

Likewise, the change due to an adiabatic motion of a parcel (i. e. with constant S , �)
over distance dx is

.d�/ad D 1

c2s
dp D 1

c2s
rp � dx (2.131)

and we thus obtain

d� � .d�/ad D ��rS � dx � ˛�r� � dx D e � dx

for the difference of density between the background and the parcel. Here the vector

e D ��rS � ˛�r� � r� � 1

c2s
rp (2.132)
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is introduced. The difference in density between the parcel and the environment van-
ishes if

e � dx D 0 (2.133)

Considering all possible dx that satisfy this condition, a neutral surface element is
constructed. The vector e is normal to the element and also normal to the isopycnal
�p D const defined for the local pressure p D p?, i. e. at the reference point we have
e D r�p (see Figure 2.16). Note that since the pressure gradient is almost vertical,
the vectors e and r� differ by an almost vertical vector.

The condition (2.133), however, defines a surface only locally. A continuous sur-
face of global extent is given by a condition .x/ D const with some scalar func-
tion .x/ and (2.133) is then replaced by r � dx D 0. This implies that only
if e D 'r would hold with some arbitrary function ', an entire neutral sur-
face exists. A sufficient condition is the vanishing of the helicity H D e � r � e.
This can be seen by using the condition e D 'r for the helicity, which yields
H D 'r � .'r � rC r' � r/ D 0. Using the equation of state, the helicity is
given by

H D �˛�r.��/ � rS � r� � ��r.˛�/ � r� � rS
D �2 .˛r� � �r˛/ � r� � rS D ��2�2r ˛

�
� r� � rS

Since the function ˛=� depends not only on � and S but also on pressure, the
helicity H does not vanish in general. Note that the � or S dependencies of ˛=�
yield corresponding components of r˛=� which are orthogonal to r� � rS . Since
H ¤ 0 there are no neutral surfaces in general. Only for an equation of state in which
@.˛=�/=@p D 0 would hold (which is not the case), neutral surfaces exists in gen-
eral. On the other hand, for regions of the ocean with constant � or S , or for a fixed
functional relation �.S/ or S.�/, i. e. for a fixed water mass relationship which is of-
ten found for rather large regions of the ocean, neutral surfaces can be approximately
defined.

In any case, however, there are neutral trajectories, i. e. pathways s in the ocean
for which e � s D 0 holds, such that no buoyant forces would act on water parcels
moved along those pathways. McDougall (1987) considers a neutral trajectory in
a large circle around the subtropical gyre in the North Atlantic, and finds that the

Fig. 2.16 Sketch showing the neutral surface element, the density surface �.S; �; p/D const, and
the local isopycnal �.S; �; p0/D const
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neutral trajectory of the water parcel would form a large helix, with a change in
height in one circle to the other of about 5 m.

12. Approximate
Neutral Density

A more restrictive constraint on the vector e is given by e D r �, for which the quantity �
is called the neutral density, denoted by 	n. Surfaces of � D const would then form neutral
surfaces. It is obvious that there is no neutral density in general, but approximate forms can be
given, for instance by the condition

r2� D r � e

which was used by Eden and Willebrand (1999) to estimate � for the North Atlantic. A differ-
ent method for construction of a neutral density variable 	n has been suggested by Jackett and
McDougall (1997), however with an equation of state relating 	n to S; �; p which includes an
explicit spatial dependence.

2.8 Molecular and Turbulent Transports

The conservation equations for mass (2.18), momentum (2.59), salt (2.20), and
heat (2.120), in combination with the equation of state (2.121), form a complete
system of differential equations for the variables �, S , � , p, and u which we use to
represent the oceanic motion. In principle, they can be solved if initial conditions
and boundary fluxes of mass, momentum, freshwater, and heat are prescribed.

To understand large-scale properties of the ocean and its interactions with the
atmosphere, it is necessary to consider averages over suitable temporal and/or spa-
tial scales. A possible filtering method is discussed below. However, a fundamental
property of oceanic dynamics is that the motions at smaller scales influence those at
larger scales. That influence occurs through turbulent transports which arise from the
nonlinear nature of the equations of motion, as shown below. In contrast to molecular
transports, which are generally very small, turbulent transports of momentum, heat,
and salt are at the heart of ocean dynamics. In this section we review the size of the
molecular transports and then derive the mathematical form of the turbulent trans-
ports by the commonly used averaging methods. Further treatment of these eddy-
driven transports is postponed to Part IV.

2.8.1 Magnitude ofMolecular Transports

The nonadvective transports of momentum, salt, and heat are the result of molec-
ular processes. They are usually described by the empirical laws discussed in Sec-
tion 2.5.1. Ignoring the cross-transports of heat and salt discussed in Section 2.5.2,
these laws are (2.36) for the stress in Newtonian fluids, Fourier’s law (2.94) for the
heat conduction, and the modified Fickian law (2.96) for the salt diffusion.

In order to estimate the role of the molecular fluxes, we assume that typical ve-
locities are of magnitude U , and typical length scales of magnitude L. Specifically,
we consider two limiting cases: (1) small-scale motions with U D 1m s�1 and
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L D 10m which are e. g. typical of ocean surface waves, and (2) large-scale mo-
tions with U D 0:1m s�1 and L D 1;000 km typical for the ocean circulation. In the
equations for momentum, salt, and heat we then have the following balances:

� Friction
The order of magnitude of the momentum advection, the Coriolis and the friction
terms in (2.59) are given by

�u � ru 	 �U
U

L
(2.134)

2�˝ � u 	 2�˝U (2.135)

	M�r2u 	 �	M
U

L2
(2.136)

The ratio of the momentum advection (2.134) to the friction term (2.136) is
the REYNOLDS17-number Re D UL=	M. With a kinematic viscosity of 	M �
1:3 � 10�6 m2 s�1 , we obtain for small-scale motions Re � 107 and for large-
scale motions even Re � 1011. In both cases it follows that the molecular
momentum transport is negligible compared to the momentum advection. The
same conclusion arises from the consideration of the ratio of the friction term
and the Coriolis term which is the EKMAN18-number Ek D 	M=.2˝L

2/. With
˝ � 7 � 10�5 s�1, we obtain Ek � 10�14 for L D 1;000 km.

� Salt diffusion
The order of magnitude of the salt advection and diffusion terms in (2.20) is given
by

�u � rS 	 �U
�S

L
(2.137)

�	Sr2S 	 	S�
�S

L2
(2.138)

The ratio of salt advection (2.137) to salt diffusion (2.138) is the PECLET19-
number Pe which has a magnitude of Pe D UL=	S. With 	S � 1:2�10�9 m2 s�1,
the Peclet-number varies between Pe � 1010 (small scales) and Pe � 1014

(large scales) for the above examples, and salt diffusion is negligible compared
to advection.

� Heat conduction
The situation is analogous to the salt budget. The ratio of salt and temperature
coefficients for molecular diffusion is 	T=	S � 102. It follows that the heat con-
duction term in (2.120) is of relative order 10�8–10�12 compared to temperature
advection and hence negligible.

For almost all oceanographic problems the direct influence of molecular transports
is thus very small. However, the very existence of molecular transports is of funda-
mental importance, in particular for turbulent energy cascades but also for specific
processes such as double diffusion. Moreover, in boundary layers molecular fluxes
are always important. Those boundary layers are, however, very thin and hence usu-
ally neglected or – more precisely – included in parameterizations for turbulent fluxes
in thicker turbulent boundary layers.
17 OSBORNE REYNOLDS, *1842 in Belfast, †1912 in Watchet/Somerset, mechanical engineer and
physicist.
18 VAGN WALFRID EKMAN, *1874 in Stockholm, †1954 in Gostad, oceanographer and physicist.
19 JEAN CLAUDE EUGÈNE PÈCLET, *1793 in Besançon, †1857 in Paris, physicist.
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2.8.2 Reynolds and Hesselberg Averaging

The equations of motion are valid for all scales larger than, say, 1 µm. But we are
normally interested only in the oceanic state averaged over much larger temporal
and/or spatial scales. Denoting such an average by .::/, the most simple temporal
mean of a variable  could e. g. be defined by

 .t/ D 1

�

tC�=2Z

t��=2
 .t 0/dt 0 (2.139)

with an averaging interval of length � . The average (2.139) is sometimes also called
a running mean. Likewise, a spatial or a combined spatial-temporal average could
be considered. A disadvantage of any average as (2.139) is, however, that it does not
satisfy

 D  (2.140)

which we will assume nevertheless because it is a rather desirable property, as we
see below. Some other averaging operations which satisfy (2.140), but which are
more complicated, are discussed in the box on p. 70. For a Boussinesq fluid (which
we will introduce in Section 4.1.2), the averaging attributed to Osborn Reynolds is
most commonly performed, which is sometimes called Reynolds averaging. This
procedure will be extensively used and discussed in Chapters 11 and 12. With a non-
constant density entering the conservation laws, however, another procedure is more
appropriate: the HESSELBERG20 average (Hesselberg, 1926), which we discuss now.

13. Weighted and
Statistical Averages

In principle, one could define an average by

 D
1Z

�1

W.t; t 0/ .t 0/dt 0 (B13.1)

which satisfies (2.140) provided that
R
W.t; t 0/dt 0 D 1 and

R
W.t; t 00/W.t 00; t 0/dt 00 D

W.t; t 0/. The kernel W.t; t 0/, of course, must contain the appropriate scales corresponding
to temporal/spatial averaging. If the motions at smaller scales are described statistically, a statis-
tical average arises which would likewise satisfy (2.140).
To simplify the work arising from the noncommutativity of averaging and differential operators,
the averaging procedure is frequently formulated in terms of an ensemble of states  .x; t I�/
such that  .x; t/ D R

dP.�/ .x; t I�/ is the expectation with respect to a probability mea-
sure dP.�/ and  0 D  � is the deviation of a particular realization. We will assume that
the averaging operation obeys (2.140) although in practice this may be difficult to achieve.

In an Eulerian framework, it is most straightforward to consider averages of the
state variables per volume, not per mass. We thus define the mean state variables by
mass-weighted averages according to

�m D � ; Sm D �S

�m
; �m D ��

�m
; um D �u

�m
(2.141)

20 THEODOR HESSELBERG, *1885 in Lierne, †1966 in Oslo, meteorologist.
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In this way the mean concentrations per volume are preserved since we have
e. g. �mSm D �S etc. As an example, we will explicitly discuss the salt conser-
vation (2.19), the average of which is

@�S

@t
C r � �Su D �r � J S (2.142)

Decomposing the variables according to

� D �m C �0 ; S D Sm C S 0 ; u D um C u0 etc. (2.143)

we obtain

@�mSm

@t
C r � �mSmum D �r �



J S C J turb

S

�
(2.144)

The mean salinity hence satisfies a conservation equation completely identical
to (2.19), except for the addition of a turbulent salinity flux J turb

S which is given
by

J turb
S D �Su� �mSmum D .�m C �0/ .Sm C S 0/ .um C u0/� �mSmum

D �0Smum C um
�
�mS 0 C �0S 0�C Sm

�
�mu0 C �u0�C �mS 0u0 C �0S 0u0

(2.145)

From (2.141) and (2.140) we have �0 D 0. Furthermore, from (2.141) it follows that

Sm D .�m C �0/ .Sm C S 0/
�m

D �mSm C �mS 0 C �0S 0
�m

D Sm C S 0 C �0S 0
�m

and thus

S 0 D ��
0S 0
�m

; u0 D ��
0u0
�m

etc.

Hence only the last two terms in (2.145) remain, and we obtain

J turb
S D �mS 0u0 C �0u0S 0 (2.146)

Even when the turbulent fluctuations are strong, the density fluctuations in the ocean
are always small, with a typical magnitude of �0=� 	 10�3. To a good approxima-
tion, the triple-correlations in (2.146) can hence be neglected, and one obtains the
more common form

J turb
S D �mS 0u0 (2.147)

It is, however, largely irrelevant whether (2.146) or (2.147) is used because, in any
case, the turbulent flux ultimately has to be parameterized in terms of the mean state.
Analogous considerations can be made for the temperature and momentum equa-
tions.

Jturb
� D �m� 0u0 C �0u0� 0 � �m� 0u0 (2.148)

†turb D � ��mu0u0 C �0u0u0� � ��mu0u0 (2.149)
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Note, however, that the definitions in (2.141) are such that no additional terms appear
in the continuity equation (2.15). In fact, a term of turbulent density diffusion would
be awkward in view of the absence of molecular density diffusion.

The equation of state (2.121) is nonlinear, and the outcome of averaging as defined
in (2.141) is not immediately evident. We perform a Taylor expansion around the
mean variables and subsequently average the result to obtain

� D �m D F.Sm; �m; pm/C @F

@�
� 0 C � � � C @2F

@�2
� 02 C � � � (2.150)

where many further terms of first and second order occur. The derivatives are taken
at .Sm; �m; pm/. Of all contributions to (2.150), the last term is by far the largest
one. With @2F=@�2 � �010

�5 K�2, its magnitude depends on the strength of the
temperature fluctuations. For .� 02/1=2 D 1K, the relative contribution of that term is
5 � 10�6, which is of same order as the accuracy of the approximations used for the
state equation and hence negligible.

It follows that the equations for the mean state variables according to (2.141) are
to a good approximation given by (omitting the indexm from all variables)

D�

Dt
D ��r � u (2.151)

�
Du

Dt
D �2�˝ � u � rp � �r˚ C F (2.152)

�
DS

Dt
D GS (2.153)

�
D�

Dt
D G� (2.154)

� D F.S; �; p/ (2.155)

with the flux divergencies

F D r � �†turb C†
�

GS D �r � �J turb
S C J S

�
G� D �r � �J turb

� C �
J rad C J T

�
=c?p

�

as the divergences of the overall (turbulent plus mean molecular) fluxes; the latter are
very small as discussed above. All following considerations in this book are based on
the filtered system (2.151) to (2.155), if not explicitly stated otherwise. However, for
a complete description, expressions, i. e. parameterizations, for F , GS and G� have
to be provided, based on the known averaged quantities. These parameterizations,
typically diffusive closures, will be discussed in the Chapters 11 and 12.

2.9 The State of Rest

The first application of the governing equations derived in the previous sections is
for a state of rest without any forcing except the force of gravity. Due to the pres-
ence of gravity, pressure and density variations are closely related. Furthermore, it is
discussed under which condition a density stratification caused by temperature and
salinity is stable against small perturbations.
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2.9.1 Hydrostatic Balance

Consider a motionless steady state which is defined by the state variables ur � 0, pr,
�r, �r and Sr and vanishing turbulent fluxes, i. e. F D GS D G� D 0. The equations
of motion (2.152) then reduce to

0 D �rpr � �rr˚ (2.156)

which can only be satisfied if both conditions r�r � r˚ D 0 and r�r � rpr D 0

hold. It follows that �r D �r.˚/ and also pr D pr.˚/, and, therefore, dpr=d˚ D ��r

or with ˚ D gz

dpr

dz
D �g�r (2.157)

Equation (2.157) is the hydrostatic relation. In the state of rest there are no forces in
the surfaces ˚ D const to accelerate the fluid. The equation of state (2.121) takes

Fig. 2.17 Profiles of in-situ temperature (blue) and potential temperature (red) (a) and salinity (b)
in the subtropical North Atlantic near Bermuda. a also shows the difference between in-situ and
conservative temperature (green, amplified by a factor of 10). A profile of density (in kg m�3;
a reference value of 1;000 kg m�3 is subtracted), taken at the in-situ pressure is shown in the blue
curve in c. The straight red line in c is the in-situ density for constant temperature and salinity (the
values are those at the surface). It demonstrates the pressure dependence of the density. In d, the
density is evaluated at the surface pressure. e shows the Brunt–Väisälä frequency (in 10�3 s�1) at
the station, f shows the profile of the sound velocity (in m s�1)
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the form

�r.z/ D F.Sr; �r; pr.z// (2.158)

As the equation of state is nonlinear, it follows that both potential temperature �r

and salinity Sr can only depend on z but not on x; y; t . For given profiles of Sr.z/

and �r.z/, the vertical distribution of density and pressure can be calculated by com-
bining (2.157) and the equation of state. By vertical differentiation of (2.158), and
invoking (2.125) to (2.128), one obtains

1

�r

d�r

dz
D �

dSr

dz
� ˛

d�r

dz
� g

c2r
(2.159)

where cr.z/ is the sound velocity for the hydrostatic state21. For typical oceanic
conditions, the density changes due to the compressibility of sea water (last term
in (2.159)) are approximately an order of magnitude larger than those due to the
salinity/temperature variations, as demonstrated in Figure 2.17 where profiles of
temperature, salinity and appropriate density variables are shown for a CTD cast
near Bermuda in the subtropical North Atlantic.

As shown in the box on p. 74, the density variations in the ocean do not exceed
2–3%. Inserting (B14.1) into the hydrostatic balance (2.157), we obtain the depth

14. Scale Depth According to (2.159), the density profile can be calculated in a situation without the stratification
of temperature and salinity so that Sr; �r D const. It is convenient to introduce instead of the
sound velocity the scale depth D by

D.z/D c2r .z/=g

where cr D cs.Sr; �r; pr.z// is the reference state of the sound speed. It follows from (2.159)
that d�r=dz D ��r=D which has the solution

�r.z/D �r.0/ exp

0Z

z

1

D.z0/
dz0

The scale depth increases with temperature and pressure and is almost independent of salinity.
Typical oceanic values are around 210 km in the upper ocean and 240 km at 5;000m depth.
Ignoring the weak dependency of the scale depth on z, we may write

�r.z/D �r.0/e
�z=D � �r.0/.1� z=D/ (B14.1)

The last approximation holds because the water depth is always much smaller than the scale
depth. In the state of rest, the relative variations of density hence do not exceedH=D 	 2�3%.
Most oceanic densities range between � � 1025�1050 kg m�3.
Note the analogy of the oceanic scale depth to the atmospheric scale height Hs which for an
isothermal atmosphere of mean temperature Tm is given as Hs D RmTc=g � 7:4 km (Rm is
the gas constant). Thus, while in the ocean the scale depth is much larger than the ocean depth,
in the atmosphere the scale height is of similar magnitude as the height of the troposphere (see
also Section 2.10).

21 In the following, ˛; 	 and � are the modified coefficients (2.122)–(2.124). They are to be evalu-
ated at the local values of �r; Sr and pr.
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dependence of the reference pressure

pr.z/ D pr.0/C gD�r.0/ Œexp .�z=D/ � 1� � pr.0/� gz�r.0/


1 � z

2D

�

(2.160)

which can be further approximated (to an accuracy of 2–3%) to the commonly used
form

pr.z/ � pr.0/� gz�0 (2.161)

where �0 D �r.0/. Hence the pressure of 1 bar corresponds approximately to a water
column of 9:81m (see also the box on p. 20).

2.9.2 Static Stability

The state of rest as described in the previous section constitutes an equilibrium state
of the ocean. As we have seen, the stratification of temperature and salinity has only
a minor influence on the overall density. Nevertheless, the stratification is fundamen-
tal for ocean dynamics as it controls the vertical stability.

Consider a fluid particle which is displaced adiabatically by a small amount �
in the vertical direction from its level z to z C �. If the displacement is upwards,
and the particle at its new position is denser than the surrounding fluid, the force of
gravity will act to bring the particle back towards its previous level, and the strat-
ification is said to be stable. If, on the other hand, the particle at its new position
is less dense than the surrounding fluid, gravity will force the particle to continue
moving upwards, and the stratification is said to be unstable. If, on the other hand,
the displacement is downwards, the situation is reversed, and a less dense particle
will return to its previous position.

Since the particle is displaced adiabatically, its salinity and potential temperature
remain constant, and its density can only change due to the different pressure at the
new position z C �. The pressure at the new position is pr.z C �/ � pr.z/ � g�r�.
The density change��ad of the particle hence follows from (2.158) as

��ad D �r 	�p D �g�r

c2r
� (2.162)

In the surrounding fluid, not only the pressure but also salinity and potential temper-
ature change, and its density change��env is hence given by

��env � @�r

@z
� D �r

�
� g

c2r
� ˛

@�r

@z
C �

@Sr

@z

�
�

The density difference of the particle and the surrounding fluid at the new position is
thus

��ad ���env D
�
˛
@�r

@z
� �

@Sr

@z

�
�� (2.163)

For � > 0, stability requires that the particle is denser than its new environment.
Therefore, the stratification is stable provided that ��ad > ��env, and unstable for
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��ad < ��env. Conversely, for negative � the stratification is stable for ��ad <

��env, and unstable for��ad > ��env. In both cases, stability therefore requires that
the sign of ��ad � ��env is the same as the sign of �. From (2.163) it follows then
that a stability criterion can be conveniently formulated in terms of

N 2 D g

�
˛
@�r

@z
� �

@Sr

@z

�
(2.164)

The stratification is stable if N 2 > 0, unstable if N 2 < 0, and neutrally stable
if N 2 D 0. The variable N has the dimension of an inverse time, and is called
BRUNT–VÄISÄLÄ22–frequency (also stability or buoyancy frequency). The momen-
tum balance for the particle is given by � R� D g.��env ���ad/, or

R� D �N 2� with the solution � D �0eiNt

For stable stratification, the particle undergoes stability oscillations with a pe-
riod 2 =N . In the ocean, the stability period varies approximately between 10 min
(upper ocean) and 2 h (in the deep ocean).

15. Other Forms of the
Brunt–Väisälä frequency

For an adiabatic displacement, the in-situ temperature is obviously not constant, and its changes
are given by

.�T /ad D ��p D �g�� � (B15.1)

with the lapse-rate � . The stability frequency can be expressed in terms of T and � as

N 2 D g

�
Q̨
�
@T

@z
C g��

�
� Q	 @S

@z

	
(B15.2)

which is, of course, equivalent to the formulation (2.164). The tilde is used here to indicate the
use of the conventional density equation � D �.S; T; p/ using the in-situ temperature instead
of the conservative temperature as state variable. Another equivalent form for N 2 is given by

N 2 D �g
�

�
@�

@z
�
�
@�

@z

�
ad

	
D �g

�

@�

@z
� g2

c2s
(B15.3)

2.10 * SomeDifferences to Atmospheric Thermodynamics

In this section, we briefly discuss some differences of the previous results of ocean
thermodynamics to the atmospheric case, in particular with respect to thermodynam-
ics. The lesson from atmospheric thermodynamics is illuminating since the phase
transition between vapor and liquid water (or ice) occurs in principle in seawater in
the form of the transition between freshwater and sea ice. Such phase transitions have
been neglected for the oceanic case; however, they can easily be incorporated when
necessary. The way to do so can be learned from the atmospheric thermodynamics.

22 SIR DAVID BRUNT, *1886 at Staylittle/Wales, †1965, meteorologist. VILHO VÄISÄLÄ, *1889
in Kontiolahti, †1969 in Helsinki, meteorologist and physicist.
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2.10.1 Differences in Thermodynamics

Besides phase transitions, which are of great importance for the circulation of the at-
mosphere, the thermodynamics of the atmosphere is interesting with respect to a fur-
ther aspect. Some of the thermodynamic properties like the equation of state can be
given for the atmospheric case in an (approximate) closed analytical form, since air
can be treated approximately as an ideal gas. We briefly review the thermodynamics
of the atmosphere in this section.

Atmospheric Fields

The air of the Earth’s atmosphere is here considered simply as a mixture of dry air
(basically oxygen and nitrogen) and water vapor with concentration q. The partial
masses are described by

q specific humidity in kg water vapor/kg moist air
�q density of vapor in kg water vapor/m3

a content of dry air in kg dry air/kg moist air
�a density of dry air in kg dry air/m3

f liquid water concentration kg water/kg moist air

Particularly for the specification of the water vapor there are various other concepts
such as the mixing ratio r D q=.1�q/. For the atmospheric partial masses we define
the density variables

�q D q� ; �a D a� D .1 � q/� ; � D �q C �a

The water vapor is highly variable in the atmosphere. As a total it accounts for about
0.25% of the mass of the atmosphere, but local concentrations range from a few
parts per million by volume in the cold high regions of the Earth’s atmosphere up to
as much as 5% by volume in hot, humid air masses.

Partial Masses

Air is a mixture of dry air (78% N2; 21% O2; 1% Ar and further trace gases), wa-
ter vapor, liquid water and ice. It is normally sufficient to consider only water vapor
(concentrationmq D q) and dry air (concentrationma D 1�q) explicitly, and regard
liquid water and ice as external components. Formally, counting the number of rele-
vant partial masses, the situation corresponds thus to that in the ocean, with specific
humidity q replacing salinity S . The independent state variables of the atmospheric
flow are thus q; T; p. The atmospheric equation of state is thus � D �.q; T; p/, and
we obtain the condition

@�

@q
D �q � �a (2.165)

and corresponding relations for all additive variables. As before, � D 1=�.
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First Law

The internal energy of moist air – i. e. the mixture of dry air and water vapor – con-
tains thermal energy of dry air and water vapor. For the first law we may hence use
an analogous expression to that in the ocean, given in (1.23). In addition, however,
we have to account for energy transfer during phase transitions as the enthalpyHf of
liquid water differs from the enthalpyHq of water vapor. Since we do not account for
the enthalpy stored in liquid water, that process has to be considered as an external
source/sink. If a net amount ıe�cq of water vapor is added (through evaporation of
liquid water) to or removed (through condensation) from a fluid element, the energy
necessary to vaporize the water is given by �Lqı

e�cq (positive when condensation
is dominant) where the enthalpy difference liquid water–water vaporHf �Hq D Lq

as defined in (2.85) is the latent heat of condensation. Hence the first law has the
form

dE D ıQ � pd� C @H

@q
dq � Lqı

e�cq (2.166)

where ıQ is the total energy exchange that is not connected to diffusive exchange of
mass and to phase transitions.

Second Law

In the atmospheric case of the second law we have to include the difference of the
entropies of vapor and liquid water if condensation/evaporation occurs. Hence we
have from (1.26)

d� D ıQ

T
C @�

@q
dq C �

�q � �f
�
ıe�cq (2.167)

Equation of State

For an ideal gas, the state equation is a consequence of the empirical laws of BOYLE–
MARIOTTE, GAY–LUSSAC, and AVOGADRO23. In retrospect of the corresponding
laws and hypotheses, which bear their names, we can define a mole of a substance as
the weight in grams of NA D 6:022� 1023 of its molecules,NA being the Avogadro
number. For example, a mole of pure water is 18.016 g and the molar weight is
M D 18:016 (dimensionless). For a mole of any (ideal) gas, the equation of state is
pV D R?T where V is the occupied volume and R? D 8314:36 J kmol�1 K�1 is
the universal gas constant. For n moles with massm D nM the volume increases by
the factor n (keeping pressure and temperature constant) and the relation becomes

pV D nR?T D m

M
R?T or

p

�
D R?

M
T D RT

where R D R?=M is now specific for the particular gas.

23 ROBERT BOYLE, *1627 in Lismore, †1691 in London, physicist and chemist. One of the founders
of the Royal Society of London. EDME MARIOTTE, *1620 in Dijon, †1684 in Paris, physicist.
LORENZO ROMANO AMEDEO CARLO AVOGADRO, *1776 in Turin, †1858 in Turin, physicist.
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We thus define the respective gas constants of water vapor and dry air, Rq D
R?=M ?

q and Ra D R?=M ?
a , with the molar weights M ?

q D 18:016 and M ?
a D

28:966. The equations of state of the individual constituents are then pq=�q D RqT

and pa=�a D RaT , wherepq andpa are the respective partial pressures. The equation
of state of the mixture of dry air and water vapor follows from the additivity of the
partial pressures to obtain the total pressure, p D pq C pa (DALTON’s24 law), and
the additivity of partial mass or densities to the total density, � D �q C�a. It becomes

�.q; T; p/ D 1

�.q; T; p/
D p

RmT
(2.168)

which is identical to the state equation for an ideal gas except for the q-dependence
of the gas constant Rm of the mixture,

Rm D Rm.q/ D Ra C �
Rq � Ra

�
q D Ra

h
1C



M ?

a =M
?
q � 1

�
q
i

(2.169)

Gibbs Function

An advantage of atmospheric thermodynamics is that moist air can be treated as
an ideal gas, at least away from conditions where phase transitions occur. Both con-
stituents, dry air and vapor, behave approximately as ideal gases because intermolec-
ular forces as well as the finite volume of molecules can be neglected, and both com-
ponents behave as if no other component were present. For an ideal gas, the Gibbs
function can be derived in closed form, based on the results of kinetic gas theory, as

G id.T; p/ D RT

�
lnp � 1

	
lnT

�
(2.170)

where R is the gas constant and 	 D 1=.1C �=2/, with � being the number of
degrees of freedom for the molecular kinetic energy (	a D 2=7 for the two-atomic
dry air and 	q D 2=8 for the three-atomic water vapor). The Gibbs function for moist
air, by additivity, can then be constructed as

G.q; T; p/ D .1 � q/G id.T; pa/C qGid.T; pq/ (2.171)

We express the partial pressures in terms of the total pressure as pa D p.1�q/Ra=Rm

respectively pq D pqRq=Rm with Rm D .1 � q/Ra C qRq, and introduce the mass-
weighted ratio 	m for the mixture according to

	m D 	m.q/ D Ra C �
Rq � Ra

�
q

Ra=	a C �
Rq=	q � Ra=	a

�
q

(2.172)

This equation uses Dalton’s law p D pq Cpa and the atmospheric equation of state.
The general form (2.171) results in

G.q; T; p/ D Rm T

�
lnp � 1

	m
ln T

�
� T�m (2.173)

24 JOHN DALTON, *1766 in Eaglesfield/Cumberland, †1844 in Manchester, chemist, meteorologist
and physicist.
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The expression for the Gibbs function of humid air hence corresponds to the ideal
gas form (2.170), except for the last term in (2.173) which is

�m D �m.q/ D �qRq ln
�
qRq

�CRm.q/ lnRm.q/� .1 � q/Ra ln Œ.1 � q/Ra�

(2.174)

It is always positive, �m.q/ 
 0, and specifically �m.q/ � �qRq ln q for q � 1.
The entropy of moist air follows through differentiation according to (1.49) as

�.q; T; p/ D Rm

	m
.1C lnT � 	m lnp/C�m (2.175)

and corresponds to the entropy of an ideal gas with ‘constants’Rm.q/ and 	m.q/, ex-
cept for�m.q/ which is the additional entropy due to mixing of the two gases. Other
thermodynamic potentials can likewise be derived through differentiation according
to (1.49). In particular one obtains the enthalpy, internal energy and the ‘chemical
potential’ as

H.q; T; p/ D Rm

	m
T (2.176)

E.q; T; p/ D Rm

	m
.1 � 	m/T (2.177)

�.q; T; p/ D .Rq �Ra/T lnp �
�
Rq

	q
� Ra

	a

�
T lnT � T @�m

@q
(2.178)

For q D 0 one recovers the corresponding relations for dry air. For typical values of
q D O.0:01/ in the atmosphere, Rm.q/ � Ra with an error of approximately 1%,
and likewise 	m.q/ � 	a D 2=7. Hence for many problems the effect of q on the
thermodynamics can be ignored (except when phase transitions are involved where
the above consideration of ideal gas behavior is not valid).

Specific Heat

The specific heat of moist air is evaluated from (1.57) and (1.58),

cp D @H

@T
D Rm

	m
D 7

2

�
Ra C

�
8

7
Rq � Ra

�
q

	
(2.179)

cv D
�
@E

@T

�
v

D 5

2

�
Ra C

�
6

5
Rq � Ra

�
q

	
(2.180)

Both specific heats are strictly independent of temperature and pressure, as to be
expected for a mixture of two ideal gases. Their dependence on specific humidity is
very weak, and their ratio is to a very good approximation given as cp=cv � 7=5,
i. e. its value for dry air.

2.10.2 Differences in Conservation Laws

The differences in the thermodynamics of the atmosphere with respect to the ocean
have consequences for the conservation laws for water vapor (replacing salt conser-
vation), energy and the temperature equations. These budgets are discussed in this
section.
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Water Vapor Balance

For the atmospheric counterpart, the water vapor q must satisfy a conservation law
corresponding to (2.17), with a diffusive water vapor flux J q and a source term
Cq D e � c, accounting for the phase transition (evaporation and condensation),
where e is the rate of evaporation and c the rate of condensation (both in kg m�3 s�1

of liquid water). Hence

�
Dq

Dt
D �r � J q C Cq (2.181)

The diffusive flux J q of water vapor can be expressed in a similar form as outlined
above for salt, with a diffusivity 	q � 2:4 � 10�5 m2 s�1 (at 8ıC).

Dry air satisfies a sourceless balance, and strictly speaking, the ‘total’ mass with
density � D �a C �q would then not be conserved: there is a loss of moist air to the
liquid or ice phase. This loss is small and generally ignored in the total mass balance.
Strictly, however, two more partial mass compartments must be included, the liquid
and the frozen phase of water. Equivalently, an ice phase could be considered for
seawater with corresponding source terms in the balances of freshwater and ice.

Energy Changes by Phase Transitions

Writing Cq D e � c for the difference between evaporations and condensation
(i. e. the source of vapor) per volume and time, we obtain �LqCq as an additional
source term in the enthalpy budget as compared to the oceanic case (2.76) (positive
if condensation prevails, i. e. Cq < 0). Similar contributions arise from freezing of
melting processes.

Latent Energy

The conversion term �LqCq, representing the energy exchange due to phase transi-
tions, has no equivalent in the ocean energetics because ice freezing/melting occurs
only very localized at the surface and is usually treated in the boundary conditions
and not in the interior balances. It is, however, quite important in the atmosphere.
With a minor assumption (taking Lq as constant, i. e. neglecting its temperature de-
pendence), this term can be brought to a flux form as well. The latent energy is
defined as E lat D Lqq, and is that part of internal energy of the liquid phase which
is lost in the phase transition and gained by the internal energy of the vapor. From
the conservation of water vapor we then obtain

�
DE lat

Dt
� �Lq

Dq

Dt
D �Lqr � J q C LqCq � �r � .LqJ q/C LqCq (2.182)

where LqJ v is defined as latent heat flux. The combined energy E tot C E lat is then
governed by

�
D

Dt

�
E tot C E lat

� � �r � �J tot C LqJ q
�C �

@˚tide

@t
(2.183)

which reveals a total energy flux J tot C LqJ q for this energy variable. Only the
external tidal forces and the radiative flux at the outer rim of the atmosphere remain
to change this form of energy.
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Temperature Equation

The temperature equation for the atmosphere is derived in complete analogy, starting
with (2.76) and incorporating the energy transfer expressions for phase transitions
and evaporation/condensation terms in the conservation of water vapor. Again, the
dissipation of energy and the ‘chemical’ terms are small and one finds

QT � �r � .J T C J rad/ �LqCq (2.184)

Potential Temperature

Using the form of entropy (2.175) for a moist atmosphere, we obtain an implicit
definition of the potential temperature from the entropy relation (2.113), i. e.

�.q; T; p/ D R

�
1

	m

�
1C ln

T

T0

�
� ln

p

p0

	
C �.q/

D R

�
1

	m

�
1C ln

�

T0

�	
C �.q/

where �.q/ is easily computed from �m.q/. Evaluating for � yields

� D T

�
p0

p

��m

(2.185)

which is in accordance with the considerations of the ideal gas physics as discussed
above. The only difference is that here 	m D 	m.q/ refers to the mixture of dry
air and water vapor. For the definition of 	m.q/ we refer to (2.172). In fact, the
dependence on q is weak. In contrast to the ocean case, however, � and T differ
quite substantially in the atmosphere. Following (2.179), the specific heat is almost
constant, c0p D cp. Neglecting the ‘chemical’ terms here as well we hence find

�cp
D�

Dt
D � �

T

�r � JH C LqCq
�

(2.186)

This form is usually applied. The equivalent form

�
D�

Dt
D �r �

�
�

cpT
JH

�
C JH

cp
� r �

T
� �

cpT
LqCq (2.187)

oriented at the general form of the conservation equation, is less customary.
The potential temperature is not conserved in the moist atmosphere, not only be-

cause of the evaporation/precipitation term, but also because �=T is significantly
not constant. The use of � instead of T , therefore, has less advantages than for the
ocean. In atmospheric models one thus usually applies the in-situ temperature equa-
tion (2.101) with the source term (2.184).

Potential Density

For a mixture of ideal gases, as we treat the atmosphere, the use of � instead of T
as a variable in the equation of state is straightforward. By combination of (2.185)
and (2.168) one obtains

�.q; T; p/ D p

Rm.q/�

�
p0

p

��m.q/
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Hesselberg Average

For the atmosphere, the mass-weighted average (see Section 2.8.2) has the advan-
tage of exact validity of the ideal gas law for the averaged fields: indeed, from the
equation p D �RT we obtain p D �mRTm with the mass-averaged temperature
Tm D �T =�m. This can be used for each partial mass (dry air and water vapor) and
then transferred to the equation of state.

State of Rest

It is also interesting to compare the oceanic state of rest with the atmospheric one.
With the state equation (2.168), the hydrostatic equation (2.157) takes the form

1

p

dp

dz
D � g

RmT
(2.188)

which can be used to determine the pressure distribution for a given temperature
profile. A simple form is obtained when the atmosphere is assumed isothermal
i. e. T � Tc D 250K (the error is < 15%). It follows that

p.z/ D p.0/ exp.�z=Hs/ (2.189)

where Hs D RmTc=g � 7:4 km is the atmospheric scale height. In this approxima-
tion, the density decreases exponentially with increasing height but more substan-
tially than the oceanic counterpart because Hs is of the order of the tropospheric
height.

2.11 Vorticity

We have seen in the previous sections that salinity and potential temperature are ma-
terially conserved under the restrictive conditions of an adiabatic flow. The quantities
keep their value in a moving fluid parcel and the corresponding conservation laws
are trivially solved. For momentum such a situation does not occur, even when all
external forces vanish and adiabatic conditions apply. The reason is the ubiquitous
presence of the pressure force. However, there are materially conserved quantities
which relate to momentum.

Forming the curl of the momentum balance, gradient forces cancel out and the
balance of vorticity is derived. The concept of vorticity leads to associated quanti-
ties which are materially conserved – or very approximately so – in many nontrivial
and interesting dynamical situations. In Section 1.1.2 we have shown the similarity
of vorticity and angular momentum, and indeed there is some analogy between the
vorticity-related conservation theorems introduced in this section and the conserva-
tion of angular momentum of a solid body. The name ‘vorticity’ was introduced by
LAMB25 in 1916.

The vorticity theorems apply to locally defined quantities relating the vorticity
vector to integral properties of closed material loops of fluid. In Cartesian coordinates

25 SIR HORACE LAMB, *1849 in Stockport, †1934 in Cambridge, fluid dynamicist.
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the vorticity vector is written as (cf. (1.12))

! D .!1; !2; !3/ D
�
@u3

@x2
� @u2

@x3
;

@u1

@x3
� @u3

@x1
;

@u2

@x1
� @u1

@x2

�
(2.190)

In Section 1.1.2 we have related the vorticity vector ! D r � u to the angular
velocity .1=2/! � n of an infinitesimally small disk with normal vector n. In fact, for
a rigid body rotation where u D !0 � r with angular velocity!0 we find! D 2!0.
Here, parcel trajectories are clearly curved, but this property is not mandatory for
nonzero vorticity: in a simple unidirectional shear flow u D .0; 	x; 0/ the vorticity
is nonzero,! D .0; 0; 	/ (see Figure 2.18 for the shape of the shear flow).

The circulation C around a closed curve � in the fluid is defined by the line
integral of the tangential velocity vector,

C D
I

�

u � ds (2.191)

The closed curve � can be defined at any initial time anywhere in the fluid. Fol-
lowing the fluid motion of the individual fluid parcels on � for subsequent times,
C D C.t/ becomes a material property of the parcel group � D � .t/. The circu-
lation around a rectangle of dimension L � B with above specified velocity field is
C D 	LB , in this case equal to vorticity times the enclosed area. In the course of
time the rectangle will be deformed to a parallelogram, but the area and the circula-
tion will remain constant. These properties are, of course, more general, as will be
investigated in this chapter.

On the other hand, curved trajectories do not imply nonzero vorticity, as can be
seen in the two-dimensional point vortex (see right panel of Figure 2.18) described
by the stream function (in cylindrical coordinates) �.r; '/ D �.	=2 / ln r . Here,
the velocity is tangential, u' D 	=.2 r/, and the vorticity ! D k.1=r/@.ru'/=@r

is vertical to the two-dimensional motion. It vanishes everywhere except in the center
where it is infinite. The circulation around any loop enclosing the center equals 	,
and it vanishes for loops that do not contain the center. Again, C.t/ is conserved
since material loops cannot cross the center. In these examples we find, with 	 > 0,
a counterclockwise local rotation (!3 > 0) about the vertical. A vorticity and the
corresponding flow is called cyclonic (cum sole) if the rotation is the same as the
Earth rotation (i. e. positive in the northern hemisphere). An anticyclone rotates the
other way.

Fig. 2.18 Sketch of linear shear flow with vorticity (a) and a point vortex with zero vorticity (b)
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2.11.1 Kinematical Properties

There is a number of simple theorems which relate the circulation C of a loop � at
a certain instant of time to other physical quantities related to the same loop or to
other loops. The theorems derived below require that at any instant � is reducible to
a point by subsequent shrinking, without leaving the fluid. Thus there always exists
a simply connected surface A in the fluid with the rim � . Then, for any such A we
may use Stokes’ theorem (see Appendix A) to express C in terms of the vorticity
vector,

C D
I

�

u � ds D
Z

A

dAn �! (2.192)

The latter integral is referred to as the vortex flux through the area A. Notice that
the vortex flux is a kinematic concept; it should not be confused with the dynamical
concept of the flux of vorticity (by advection or diffusion) considered later in this
chapter.

The vortex flux has the same value for any surface attached to � . This follows
immediately from (2.192), but it also may be inferred from Gauss’ theorem applied
to the vorticity vector. Since it is nondivergent by construction, i. e. r �! D 0, there
are no sources of vorticity inside the fluid, and we find

Z

V

d3xr �! D
I

A

dAn �! D 0 (2.193)

where A is now the surface surrounding the entire volume V . Hence circulation and
vortex flux through a loop are synonymous concepts.

The quantities! and C use the relative velocity u referenced to the rotating Earth
whereas the absolute velocity ua D u C ˝ � r is seldom of interest in dynamical
considerations. It is for some purposes useful to consider the vorticity and circulation
referred to an inertial system. We thus define

!a D r � ua D r � .uC˝ � r/ D !C 2˝

and

Ca D C C
I

�

˝ � r � ds

correspondingly. We refer to !a and ! as absolute and relative vorticity vectors,
respectively. As 2˝ is the vorticity of the planetary rotation, it is referred to as plan-
etary vorticity. In the same way we speak of absolute and relative circulation.

There is a simple measure which classifies the importance of the relative and
planetary vorticity in the sum, the absolute vorticity. Consider the vertical component
of the vorticity vectors,

!.z/a D �C f ; � D k �! D @v

@x
� @u

@y
; f D 2k �˝ D 2˝ sin'

where ' is the geographic latitude and the vertical k is defined as the radial direction.
Notice that with � D O.U=L/ the ratio of the relative and planetary contribution to
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the absolute vorticity !.z/a ,

�

f
D O

�
U

fL

�
D O.Ro/

is found to be of order of the ROSSBY26-number Ro D U=.2˝L/. In a large-scale
oceanic flow we have U D 0:1m s�1, L D 103 km so that with f D 10�4 s�1

(corresponding to 30ı latitude) we find Ro D 10�3. In the atmosphere larger values
occur (� 	 10�5 s�1, Ro 	 10�2 : : :�10�1). In any case, in a large-scale flow the
relative vorticity is small compared to the planetary vorticity, and thus the sign of the
absolute vorticity corresponds to the sign of the Coriolis parameter f .

The above kinematic properties of relative vorticity and circulation are carried
over to the absolute quantities since r �!a D 0 as well. These properties are cast into
a similar phrasing by use of the concepts of the vortex line or filament and the vortex
tube. A vortex line is a continuous line of fluid parcels which is everywhere tangent to
the instantaneous local vorticity vector. A vortex tube, sketched in Figure 2.19, is the
ensemble of vortex lines passing through a given loop � at a certain instant. These
groups of fluid parcels may be defined for the absolute or relative vorticity vectors
but, of course, the ensembles differ. Notice, moreover, that neither vortex lines nor
vortex tubes are material in general. It is only under rather restricted conditions that
a vortex line remains intact in the course of the fluid motion. This will be investigated
in the next section.

It is clear, however, that the vortex flux is the same through any intersection of
a vortex tube (first Helmholtz theorem), i. e.

Ca D
Z

A1

dAn1 �!a D
Z

A2

dAn2 �!a (2.194)

whereAi and ni are two intersecting surfaces with the corresponding normal vectors
oriented towards the same side of the tube. The spatial constancy of Ca in a given
tube follows directly from (2.193) since the contribution from the tube mantle is

Fig. 2.19 Illustration of a vortex tube. The configuration is restricted to have the form of a simple
‘tube’, i. e. cross sections shall be simple closed curves. Redrawn after Vallis (2006)

26 CARL-GUSTAV ARVID ROSSBY, *1898 in Stockholm, †1957 in Stockholm, meteorologist. The
dimensionless number named after Rossby was used earlier by the Russian fluid dynamicist I.A. Ki-
bel.
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Fig. 2.20 Schematic showing the projection onto the equatorial plane. Redrawn after Vallis (2006)

identical to zero. This theorem may as well be formulated for the relative vortex flux
(with a different tube, however). An immediate consequence of the constant strength
of the vortex flux is that vortex lines and tubes cannot end somewhere in the fluid;
they must close on themselves, extend to infinity or end at boundaries.

The flux of planetary vorticity
Z

A

dA2˝ � n D 2˝ �
Z

A

dAn

through an intersection A of a vortex tube may expressed in terms of the area A?
which is the projection ofA onto the plane perpendicular to˝ which is the equatorial
plane (see Figure 2.20). We thus may express the absolute vortex flux or circulation
in the form

Ca D C C 2˝A?

Notice that while Ca is spatially constant along the absolute vortex tube, the individ-
ual contributions C and 2˝A? vary in general. Remember also that all terms may
vary in the course of time.

2.11.2 Dynamical Properties

The kinematic theorems discussed above are quite general but not very powerful
since they do not say anything about the temporal evolution. The vorticity and the
circulation (following a material loop) change in the course of time. There is a se-
quence of vorticity and circulation theorems due to HELMHOLTZ (1858), KELVIN27

(Thomson, W. (Lord Kelvin), 1869) and BJERKNES28 (Bjerknes, 1898). For a his-
torical perspective see Thorpe et al. (2003). The physics revealed in these theorems
is reflected in the complete evolution equation of the vorticity vector but is not im-
mediately evident from the underlying balance of momentum.

27 WILLIAM THOMSON, LORD KELVIN, *1824 in Belfast, †1907 in Netherhall near Largs, math-
ematician and physicist.
28 VILHELM BJERKNES, *1862 in Kristiania, †1951 in Oslo, physicist and hydrodynamicist.
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Barotropic Fluid

Helmholtz’ dynamical vorticity theorem applies to a homogeneous fluid (i. e. con-
stant density �) and a strictly nondivergent motion or, more general, to a flow in
which pressure surfaces and density surfaces coincide. This may be an inherent prop-
erty of the fluid, as e. g. for an equation of state � D �.p/, or a property of the flow
in a certain area of the fluid. This latter case is called a barotropic state of flow. If,
moreover, the external forces are derivable from a potential (implying that the fluid
is frictionless), the acceleration is the gradient of a potential,

Du

Dt
C 2˝ � u D �r

�
p

�
C ˚

�
(2.195)

and – after some mathematical manipulations outlined in more detail later in a more
general setting (page 91) – the curl of the momentum balance becomes

D

Dt

�
!a

�

�
D
�
!a

�
� r
�
u (2.196)

This is the Helmholtz equation, here written for the absolute vorticity !a. In this
specific set-up the equation is identical to the evolution equation of a material line
element ` derived in (1.7) and repeated here,

D

Dt
` D .` � r /u (2.197)

If we choose ` parallel to a vortex filament at a certain position at some initial time,
we conclude from (2.196) and (2.197) that this vortex line coincides with the ma-
terial line element defined by ` at all later times (second Helmholtz theorem). Evi-
dently, vortex tubes are material, and the strength of a vortex tube is an integral of the
motion (third Helmholtz theorem), i. e. the circulation and vortex flux are not only
constant along a specified vortex tube but also constant in time. Notice that (2.196)
also implies that a line element which is free of vorticity will never acquire vortic-
ity (Lagrange–Cauchy theorem). The generalization of these Helmholtz’ theorems is
considered further below.

It is worth mentioning that (2.196) (or (2.197)) may be integrated exactly as
shown first by Cauchy in 1815. Using the Lagrangian framework where X.a; t/
denotes the particle position with initial value a and raX is the JACOBIAN29, it is
easily verified that

` D c � raX

with a materially conserved vector c D c.a/ is the solution of (2.197) for which
`.t D 0/ D c. Hence!a D .�=�0/!0 �raX solves the Helmholtz equation (2.196).
Here !0 and �0 are the initial values.

Circulation Theorems

The temporal change

DC

Dt
D D

Dt

I

�

u � ds D
I

�

�
Du

Dt
� dsC u � Dds

Dt

�
(2.198)

29 CARL JACOBI, *1804 in Potsdam, †1851 in Berlin, mathematician.
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of the circulation around a material loop is readily evaluated. Since ds is a material
line element, we may use (2.197) to convert the last term on the right hand side
of (2.198) as follows,

I

�

u � Dds

Dt
D
I

�

u � .ds � r/u D
I

�

ds � r
�
1

2
u2
�

D 0

The change of the circulation is thus determined by the line integral of the accelera-
tion,

DC

Dt
D
I

�

ds � Du

Dt
(2.199)

and if the acceleration is derivable from a potential as under conditions leading
to (2.195), we find that C remains constant; the circulation is materially conserved
for frictionless, barotropic flow in case of no rotation (Kelvin’s theorem).

In general, however, we have a conservation of momentum of the form (2.47),
written here as

�
Du

Dt
D �2�˝ � u� rp � �r˚ C F (2.200)

where the effect of friction is contained in the force term F . Then

DC

Dt
D �

I

�

ds �
�
2˝ � uC 1

�
rp C r˚ � 1

�
F
�

(2.201)

There are three forces that may lead to a change in the circulation (notice that gravity
does not contribute). The Coriolis term may be expressed in terms of the rate of
change of the area A? introduced above,

�
I

�

ds � .2˝ � u/ D �2˝DA?
Dt

(2.202)

The pressure term is conveniently rewritten in either of the following forms: since
ds � rp D dp, we have

�
I

�

ds � 1
�

rp D �
I

�

dp

�
D �

I

�

�dp D
I

�

pd� (2.203)

or, using Stokes’ theorem, we find

�
I

�

ds � 1
�

rp D �
Z

A

dAn � r �
�rp
�

�
D
Z

A

dAn �B (2.204)

where

B D 1

�2
r� � rp
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is called the baroclinic vector, also solenoidal vector, of the flow field. Both formu-
lations are, of course, equivalent. In (2.203) the pressure term is found equal to the
expansion work which the ensemble of fluid parcels along the material loop have to
perform against the pressure field. In (2.204) it appears that the ‘torque’ induced by
the pressure forces, acting on mass distribution in the surface which is normal to the
pressure force, spins up the circulation. It is easy to see that either term vanishes for
a barotropic state where the surfaces of constant density and constant pressure co-
incide and the baroclinic vector B vanishes everywhere. The complementary, more
general state with pressure changing on density surfaces is called a baroclinic state,
sketched in Figure 2.21.

The rate of change of the circulation is then written as

DC

Dt
C 2˝

DA?
Dt

D DCa

Dt
D
I

�

pd� C
I

�

ds � F
�

(2.205)

This is the famous circulation theorem of Bjerknes (1898) which shows that the
absolute circulation is only changed by the baroclinic torque and friction.

There are various other equivalent forms of the baroclinic torque. As an example,
with the first law of thermodynamics, (1.16), in the form �pd� D dE � T d�, we
have

�
I

�

�dp D
I

�

T d� D
Z

A

dArT � r� (2.206)

A perfect (ideal and frictionless) gas where � D �.T / would thus follow Helmholtz
theorems. Plotting the loop � in the .�; p/-plane, the torque is found equal to the
surrounded area (which evidently contracts to a curve for a barotropic state). Plotting
in this plane grid lines of � D n�� , p D m�p with n;m D 0;˙1;˙2 : : :, we find
that the torque is evaluated as the number of elementary .�; p/-cells times the area
���p. The grid and cells appear and may be counted as well on any surface A
spanned by � . Corresponding cells may be defined in the .T; �/-plane.

Fig. 2.21 Baroclinic conditions and direction of gradients. Whereas r � and r p are constant in
this example, the vector �.1=�/r p is increasing from left to right
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Vorticity Equation

The local form of the vorticity balance is derived by applying the curl to the momen-
tum balance. This operation is simplified by using the vector identities

! � u D .u � r/u � ru2=2
r � .! � u/ D !.r � u/C .u � r/! � .! � r /u

The first uses ! D r � u, the second r �! D 0. The momentum balance thus takes
the equivalent form

@u

@t
C!a � u D �r

�
1

2
u2 C ˚

�
� 1

�
rp C F

�
(2.207)

and the vorticity balance becomes

D!a

Dt
D .!a � r /u� !a.r � u/CB C r � F

�
(2.208)

For barotropic steady flows, (2.208) leads to the TAYLOR–PROUDMAN30 theorem
discussed in the box on p. 91.

The divergence term (second on the right-hand side of (2.208)) describes changes
of vorticity which arise when the volume and thus density of a parcel changes. Thus,

16. Taylor–Proudman
Theorem

If the flow is frictionless, barotropic, and steady, the vorticity equation (2.208) takes the simple
form

r � .!a � u/D r � Œ.! C 2˝/� u�D 0

and if, in addition, the flow is slow, in the sense that the relative vorticity is small compared to
the planetary part, we find

˝.r � u/� .˝ � r /u D 0

Evaluating this in a Cartesian coordinate system where ˝ D .0; 0;˝/ it is found that

@u

@z
D @v

@z
D 0 ;

@u

@x
C @v

@y
D 0 (B16.1)

In a barotropic steady, slow, and frictionless motion, the normal velocity thus cannot vary in
the direction of the planetary rotation vector, which is the celebrated Taylor–Proudman theorem.
Fluid parcels lying on a line which is parallel to ˝ will always remain in such a state. In addition,
the normal velocity vector .u; v/ is nondivergent. The fluid moves in a column-like way and we
speak of Taylor columns. It is customary to consider the first condition in (B16.1) as a definition
or at least a necessary prerequisite of a barotropic flow, though it is a mere consequence in
a rather restrictive situation.
Notice that (B16.1) does not imply a two-dimensional flow since the vertical velocity is not
constrained at all. If, however, the three-dimensional velocity is nondivergent, r � u D 0, this
requires a vertically constantw , and fluid parcels oriented along ˝ cannot change their distance.
Still,w D w.x; y/may vary laterally. An example is the barotropic motion over a fast rotating
terrain with topography.

30 GEOFFREY INGRAM TAYLOR, *1886 in St. John’s Wood, †1975 in Cambridge, physicist.
JOSEPH PROUDMAN, *1888 in Unsworth near Bury (Lancashire), †1975 in Fordingbridge, Hamp-
shire, mathematician and oceanographer.
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if the flow is for instance divergent (r � u > 0), the volume expands, the density
decreases, and mass is moved away from the center of mass. Consequently the local
rate of rotation must diminish. In general, this effect is small in oceanic and even
atmospheric flows. It is anyhow an easy matter to eliminate the divergence term by
use of the mass conservation, which casts the balance of vorticity into the form of
BELTRAMI’S31 equation

D

Dt

�
!a

�

�
D
�
!a

�
� r
�
uC 1

�

�
B C r � 1

�
F
�

(2.209)

We are already familiar with the terms which act here as sources of vorticity, and
for B D 0 and F D 0, (2.209) is identical to (2.196). The baroclinic vector B
and the curl of the frictional force appear in the local balance as they appear in
the circulation theorem (2.205) in the integrated form. The first term on the right-
hand side is identified with the tilting and stretching of the infinitesimal material
line element ` which is oriented as the local absolute vorticity vector, as explained
below. In contrast to the other sources it cannot generate vorticity in a nonrotating
state, i. e. only the presence of a nonzero vector !a may lead to a change in the
components of !a.

Consider a particular component of the vorticity balance (2.209) in a Cartesian
frame of reference, say the balance of the vertical component !.z/a D @v=@x �
@u=@y C˝.z/,

D

Dt

!
.z/
a

�
D !

.x/
a

�

@w

@x
C !

.y/
a

�

@w

@y
C !

.z/
a

�

@w

@z

C 1

�

�
B.z/ C @

@x
.F .y/=�/� @

@y
.F .x/=�/

	
(2.210)

Apparently, if the fluid expands (or shrinks) in the vertical direction, i. e. @w=@z ¤ 0,
a nonzero !.z/a of a fluid parcel will be changed. This mechanism is accordingly
called vortex stretching, and the corresponding term in (2.210) is the stretching term.
In contrast, the first two terms on the right-hand side act even if !.z/a vanishes; they
describe the generation of vertical vorticity of the parcel by tilting of vorticity com-
ponents of other coordinate directions into the vertical direction. This is induced by
lateral changes of the vertical velocity. These terms are called the tilting terms. This
concept is applied accordingly to the other components of the vorticity balance. We
will see, however, in later chapters, that for a large-scale geophysical flow on the
rotating Earth, the vertical component (i. e. radial with respect to the Earth geome-
try) of vorticity plays a particularly important role, and the stretching term in turn
is the most important term. The three sources of vorticity – stretching, tilting and
solenoidal production – are illustrated in Figure 2.22.

2.11.3 Ertel’s Potential Vorticity

The most complete form of potential vorticity conservation has been found by ER-
TEL32. It is based on the same principle, the vorticity balance (2.209), now written

31 EUGENIO BELTRAMI, *1835 in Cremona, †1900 in Rome, mathematician.
32 HANS ERTEL, *1904 in Berlin, †1971 in Berlin, meteorologist and geophysicist.
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Fig. 2.22 Sketch showing the change of vorticity by stretching, tilting, and solenoidal production
by the baroclinic vector. Redrawn after Vallis (2006) and Dutton (1976)

with an expanded baroclinic vector,

D

Dt

�
!a

�

�
D
�
!a

�
� r
�
uC 1

�3
r� � rp C 1

�
r � F (2.211)

with the mass conservation being incorporated already. In addition, consider
a tracer  which satisfies the conservation �D=Dt D G�. In practical applications,
 is usually taken as potential density, leading to the name ‘potential vorticity’. We
will, however, retain the diabatic terms F and G�. Projection of (2.211) onto r is

r � D

Dt

�
!a

�

�
D
��
!a

�

�
� ru

	
� rC r � r� � rp

�3
C 1

�
r � .r � F/

Using the fairly complicated and nonobvious vector identity
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Dt
r D

�
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�
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it is then easy to derive Ertel’s theorem (Ertel, 1942)

�
D

Dt

�
!a

�
� r

�
D !a � r �

G�=�
�C 1

�2
r � r� � rp C r � .r � F / (2.212)

The theorem states that a frictionless (i. e. F D 0) and barotropic (i. e. r��rp D 0)
flow which conserves the tracer  (i. e. G� D 0) also conserves Ertel’s potential
vorticity Q given by

Q D 1

�
!a � r D 1

�
.!C 2˝/ � r

The condition of barotropicity may be relaxed for a tracer which is a function of �
and p only, i. e.  D .�; p/ because for any such tracer the triple product of gradi-
ents in (2.212) vanishes as well.

An illustrative proof of Ertel’s theorem can be obtained by direct use of
Helmholtz’s vorticity equation (2.196) which applies to a frictionless barotropic
fluid. Consider two particles with trajectories X i .t/; i D 1; 2 such that the ` D
X2 � X1 is oriented along the local vorticity vector !a=� at X1 at the initial time
t D 0. According to Helmholtz’ theorem this continues to be true when the parti-
cles proceed on their paths. Thus ` D �!a=� with a constant �. Consider the time
evolution of the tracer difference over the separation `,

�
D

Dt
Œ.X2.t/; t/ � .X1.t/; t/� D G�.X2.t/; t/ � G�.X1.t/; t/

which takes the form

�
D

Dt
` � r D ` � rG�

for infinitesimal separation. By this we have indeed derived (2.212) for the case that
the baroclinic vector and the friction vanish.

It becomes obvious that the vorticity and circulation theorems are closely con-
nected. In fact, Ertel’s theorem is a local formulation of Kelvin’s theorem, including
the effect of rotation. To see this, consider an infinitesimal closed curve C on a sur-
face where  D const. From Kelvin’s theorem we find that !a � nıA is materially
conserved. Because the normal vector is n D r=jrj and the mass in the volume
between neighboring -surfaces and C � is conserved, ım D �ıA � h D const,
with h D �=jrj, we immediately find

! � nıA D !a � r
jrj

ım

�h
D Q

ım

�

Hence Q must be conserved as well.

2.12 * Lagrangian Concepts in FluidMechanics

So far we have considered the governing equations of motion in Eulerian coordinates.
It is instructive to consider the principal form of these equations also in Lagrangian
coordinates, which we will do in this section. As well known from classical mechan-
ics, the use of a variational principle greatly simplifies the derivation of conservation
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17. Impermeability
Theorem for Potential
Vorticity

As noted by Obukhov (1962), the terms on the right-hand side of (2.212) may be cast into the
form of a divergence and Ertel’s theorem takes the form

�
DQ

Dt
D �r � J Q (B17.1)

with flux vector of potential vorticity

J Q D 1

�
r p � r �� !aG� � F � r � (B17.2)

The proof is easy: !a � r G� D r � !aG� because !a is solenoidal, r � � r � F D r �
.F � r �/ because r � r � D 0, and r � � r 1=� � r p D r � 1=�.r p � r �/ because
r � .r a � r b/ D 0 for any a; b. Then (B17.1) has the form of the general conservation
equation discussed in Chapter 2. In flux form we have

@

@t
�QC r � �J Q C �uQ

� D 0 (B17.3)

The result is a bit surprising because there is no restriction as usual for a sourceless conservation
equation. In fact, (B17.3) is valid for a diabatic flow in the presence of friction and baroclinicity.
The rate of change of theQ-content in an arbitrary volume is obtained by integration and use of
Gauss’ theorem. We find

@

@t

Z

V

�QdV D �
I �

J Q C �uQ � �Q dn

dt

�
� dA (B17.4)

where dn=dt denotes the velocity of the boundary (positive for the outward direction), and
dA D ndA is the surface element. For a volume which is bounded by surfaces � D �1 (the
‘bottom’) and � D �2 (the ‘top’) this integral budget attains a simpler form because all fluxes
through the top and bottom boundaries vanish. The proof uses the fact that the normal vector at
the top and the bottom is aligned along the gradient of the tracer, i. e. n D r �=jr �j, and

dn

dt
D �@�=@tjr �j

which follows because d� D .@�=@n/dn C .@�=@t/dt vanishes on the bounding surfaces
� D const. Furthermore,

n � u D u � r �
jr �j D G� � @�=@t

jr �j and n � J Q D �G�!a � r �
jr �j D �G��Q

jr �j
by use of the tracer balance equation, the definition of J Q and the potential vorticity. Hence

n � .J Q C �uQ/ D ��Q@�=@tjr �j D �Q
dn

dt

for the top and bottom surfaces in the integral (B17.4). It follows that the content of potential
vorticity in a volume bounded by surfaces � D const is conserved, except for fluxes through
lateral boundaries (in the oceanic case, with� taken as potential density, the potential vorticity is
then controlled by mixing at continental boundaries, which is unfortunately an area of major ig-
norance). This important theorem (impermeability theorem) was found by Haynes and McIntyre
(1990). Notice that this includes all effects of friction, mixing and baroclinicity. In particular, the
surfaces � D const do not need to be material surfaces.

equations and is always possible with Lagrangian coordinates. Furthermore, the use
of a variational principle can also be useful in the context of Eulerian coordinates.
While not generally possible, it is shown in the following that the complete set of
equations of motion – in their adiabatic form – can indeed be derived from a varia-
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tional principle. Note that we return to the Lagrangian concepts in Chapter 9, where
the procedure is used to obtain wave solutions.

We begin with a discussion of the variational principle for discrete systems, which
we then extend to continuous systems. Consider a discrete system with n degrees of
freedom and which is described by coordinates qi .t/; i D 1; : : : ; n where t is the
time. In classical mechanics the action is defined by

AŒqi � D
t2Z

t1

Ldt with L D Ek �Ep

where L is called Lagrangian and Ek and Ep are kinetic and potential energy of
the system, respectively. The coordinates do not need to be the physical coordinates
of the system and, therefore, are usually called generalized coordinates. In general,
L D L. Pqi ; qi ; t/ is a function of the Pqi ; qi and the time t . The system is Lagrangian
if its equations of motion can be derived from HAMILTON’S33 variational principle

ıAŒqi � D lim
�!0

AŒqi C �ıqi � �AŒqi �
�

D 0 (2.213)

involving the action AŒqi � which is a functional of the coordinates qi . The varia-
tion in (2.213) is performed with ıqi .t1/ D ıqi .t2/ D 0 and yields the Lagrange
equations

d

dt

@L

@ Pqi � @L

@qi
D 0 (2.214)

in terms of the Lagrangian. These are the n equations of motion of the system. As
a simple example, take the one-dimensional harmonic oscillator where K D m Pq2=2
and V D kq2=2. The Lagrangian formalism then yields via (2.214) the familiar
oscillator equation m Rq C kq D 0. When dealing with systems having many degrees
of freedom, the handling by the one scalar functionalL is clearly of advantage.

An extension of the discrete Lagrange–Hamilton formalism (outlined above and
in the box on p. 98), which is important for our purposes of describing fluid sys-
tems, concerns the step from discrete to continuous systems, i. e. instead of vari-
ables qi characterized by a discrete index i the system is now described by func-
tions �.x; t/ of a continuous variable x (usually the position coordinate). The func-
tional L in (2.215) is now a Lagrangian density in x-space. The appropriate action
is

AŒ�� D
t2Z

t1

dt
Z

D

dxL

�
@�

@t
;
@�

@x
; �; x; t

�
(2.215)

and variations ı�.x; t/ are considered which vanish at limits of the time interval
and on the boundary D of the spatial domain. Then, the so-called Euler–Lagrange
equation results,

@

@t

@L

@�t
C @

@x

@L

@�x
� @L

@�
D 0 (2.216)

33 SIR WILLIAM ROWAN HAMILTON, *1805 in Dublin, †1865 in Dunsink near Dublin, mathe-
matician and physicist.
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with shorthand notation �t D @�=@t etc. Worth mentioning is that higher order
derivatives �tt; �tx ; �xx; : : : may be considered in the Lagrange function, resulting
then in corresponding higher derivatives in the Euler–Lagrange equations. We may
actually deal with a vector field �˛.x; t/; ˛ D 1; : : : ; m of dimension m defined in
two- or three-dimensional space which yields

@

@t

@L

@�˛;t
C @

@xj

@L

@�˛;j
� @L

@�˛
D 0 ; ˛ D 1; : : : ; m (2.217)

where the comma notation abbreviates the spatial derivative, and the sum convention
is used for the index j .

A Hamiltonian theory may be developed for continuous systems as well. In fact,
a complete set of balance equations for energy and momentum conservation may be
formulated,

@T00

@t
C @T0i

@xi
D �@L

@t

@Ti0

@t
C @Tij

@xj
D � @L

@xi

(2.218)

where

T00 D
X
˛

�˛;t
@L

@�˛;t
�L energy density (2.219)

T0i D
X
˛

�˛;t
@L

@�˛;i
energy flux density (2.220)

Ti0 D
X
˛

�˛;i
@L

@�˛;t
momentum density (2.221)

Tij D
X
˛

�˛;i
@L

@�˛;j
� ıijL stress tensor (2.222)

Note that the meaning of ‘energy’ and ‘momentum’ coincides with the physical en-
ergy and momentum only if the Lagrangian is built from physical energies.

Following (2.218), energy is conserved if the Lagrangian does not explicitly de-
pend on time, and momentum is conserved if no explicit spatial dependence occurs.
There is a deeper reason for these conservation laws: according to NOETHER’s34

theorem a (sourceless) conservation law exists for each symmetry in the Lagrange
function L. A symmetry exists if L is invariant to a continuous transformation of its
dependent or independent variables. In the above cases (2.218), these are translations
in time or space.

In the following we present some examples of fluid mechanical systems which
can be treated by a Lagrangian.

2.12.1 Incompressible Fluid

In the Lagrangian representation, outlined in Section 1.1, the position of a fluid
parcel at time t was denoted by X.a; t/ where the initial position a D X.a; t D 0/

34 AMALIE EMMY NOETHER, *1882 in Erlangen, †1935 in Bryn Mawr in Pennsylvania, mathe-
matician.
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18. Discrete
Systems – Hamilton’s
Equations

From the Lagrangian L we may proceed to the HamiltonianH defined by

H D X
i

pi Pqi �L with pi D @L

@ Pqi (B18.1)

The pi is the momentum conjugate to the coordinate qi . To obtain the correct form of the
Hamiltonian, the last relation must be inverted to get Pqi in terms of thepi . Then,H is a function
of the pi , qi and t , and inserting L from (B18.1) into (2.213) and varying now qi and pi
yields 2n first-order equations

Pqi D @H

@pi
and Ppi D �@H

@qi

Two implications are immediately evident: (1) the value ofH is conserved if the Hamiltonian is
time-independent because the sum in

dH

dt
D @H

@t
CX

i

�
Ppi @H
@pi

C Pqi @H
@qi

�
D @H

@t
(B18.2)

is identical to zero; and (2) for the classical kinetic energy K D 1=2
P
mi Pq2

i
we find that H

is the total energy because Pqi D pi=mi and

H D X
i

p2
i

2mi
C V D K C V

Considering again the harmonic oscillator, we find from the Hamiltonian formalism p D
@L=@ Pq D m Pq and thus H D p2=2m C kq2=2 and then the two coupled equations
Pq D @H=@p D p=m; Pp D �@H=@q D �kq.

is used as particle label. As u.x; t/ D @X=@t is the Eulerian velocity at the posi-
tion x D X.a; t/, the equations of motion are – in a mixed Lagrangian-Eulerian
expression – given by

� RXi D � @p

@xi
; i D 1; 2; 3

where �.x; t/ and p.x; t/ are Eulerian fields. To simplify the notation, we use the
dot for the partial derivative with respect to time. When the initial value �0.a/ D
�.a; t D 0/ is taken as Lagrangian variable for the density (which is constant in
time), conservation of mass requires �0d3a D �d3x where the volume elements
d3a and d3x are mapped onto each other by corresponding parcel trajectories.
Write d3a D da1da2da3 for the volume of a small cube at the initial time. With
the transformation Xi .a; t/ we find for the small increment da1 the displacement
dXi .a; t/ D .@Xi=@a1/da1 and write this as a vector dX .1/, similarly for dX .2/

and dX .3/. These span the volume at the time t

dX .1/ � .dX .2/ � dX .3// D �ijk
@Xi

@a1
da1

@Xj

@a2
da2

@Xk

@a3
da3 D J.a; t/da1da2da3

evaluated by the familiar triple product, with

�ijk D

8̂
<
:̂

C1 if ijk is an even permutation of 1,2,3

�1 if ijk is an uneven permutation of 1,2,3

0 otherwise
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This defines the Jacobian determinant J of the transformation from the initial state
a D X.a; t D 0/ to the state X.a; t/ at time t . Hence

�0.a/ D �.X ; t/J.a; t/ with J.a; t/ D @.X1; X2; X3/

@.a1; a2; a3/

Introducing a Lagrangian pressure variable  .a; t/ D p.x; t/ by use of the in-
verse trajectory mapping a D a.X ; t/ D A.x; t/ (see (1.2)), we find for the pressure
gradient

@p

@xi
D @Aj

@xi

@ 

@aj

and the equations of motion are completely expressed in the Lagrangian variables by

�0 RXi D �J @Aj
@xi

@ 

@aj
D �Cij

@ 

@aj
(2.223)

Cij is the cofactor of @Xi=@aj in the expansion of the determinant J D Cij@Xi=@aj .
To arrive at the last relation, we have used the identity @Ai=@xj D Cij=J .

As shown in the box on p. 119 below, the volume is conserved for an incompress-
ible flow, J D 1, hence �0 D �. The above equations of motion (2.223) follow for
this incompressible state from the Lagrangian density (in a-space)

L D 1

2
�0 PX2i C  .J � 1/ (2.224)

Variation with respect to the Lagrangian multiplier   for the incompressibility con-
straint J D 1 trivially recovers this constraint, and variation with respect toXi yields

�0 RXi C @

@aj

�
 
@J

@Xi;j

�
D 0 (2.225)

Since each element occurs only once in J , we have @J=@Xi;j D Cij, and @Cij=@aj D
0 is used to equate (2.225) with (2.223).

2.12.2 Compressible Isentropic Fluid

Note that (2.223) is valid for compressible flow as well, but replacing the constraint
J �1 D 0 in the Lagrangian by the compressible version �J ��0 D 0 does not lead
to these equations. An adequate Lagrangian for isentropic (adiabatic) conditions may
be constructed by utilization of the internal energy E D E.�; �/ where � D 1=� is
the specific volume and � the specific entropy. In Section 1.2 it was shown that the
derivatives of E yield the pressure and the temperature, respectively,

@E

@�
D �p ; @E

@�
D T (2.226)

As � is conserved, it enters as �.x; t/ D �0.a/. This constraint as well as the con-
straint of mass conservation is implemented by Lagrangian multipliers,

L D 1

2
�0 PX2i � �0E.v; �/C 
1.�� �0/C 
2.� � J�0/ (2.227)
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and variations of Xi ; 
1; 
2; v and � yield

�0 RXi C @

@aj

�
�0
2

@J

@Xi;j

�
D 0

� D �0

� D J�0

�0
@E

@v
D 
2

�0
@E

@�
D 
1

Use of (2.226) and elimination of 
2 D ��0p lead to the momentum balance in its
proper form. The other multiplier is found to relate to the temperature, 
1 D �0T .
With a given thermodynamic potential E D E.�; �/, the equation of state follows
from (2.226). Note that it is straightforward to include other conserved quantities
such as salinity S : add 
3.S � S0/ to the Lagrangian and use E D E.�; �; S/ with
� D �@E=@S as chemical potential (see (1.47)).

2.12.3 Rotating Fluid with Gravity

The Lagrangians (2.224) for an incompressible fluid or (2.227) for an isentropic fluid
are readily extended to include gravity and rotation. We proceed with (2.224) and
take coordinates relative to the rotating frame with a rotation vector ˝i ; i D 1; 2; 3.
The coordinate transformation to the rotating frame follows the same route outlined
in Section 2.3.3. The appropriate equations of motion are

�
� RXi C 2�ijk j̋

PXk
� D � @p

@xi
� � @˚

@xi
(2.228)

where ˚.xi / is the apparent gravitational potential (including the centrifugal part as
described in Section 2.3.4). The Lagrangian form of (2.228) is

�0

�
RXi C 2�ijk j̋

PXk C @˚

@Xi

�
D �Cij

@ 

@aj

It follows from varying the Lagrangian

L D 1

2
�0
� PX2i C 2�ijk˝iXj PXk

� � �0˚.Xi /C  .J � 1/ (2.229)

with respect to Xi and  . The inertial part can be obtained be replacing PXi in the
Lagrangian (2.224) for the nonrotating frame by PXi C �ijk j̋Xk; the term which is
quadratic in ˝i is contained in the apparent gravity potential.

2.12.4 Rotating Stratified Fluid

Next we consider waves residing on a given background stratification on an f -plane
with ˝i D ıi3f=2 with a constant f and gravity acting along the vertical direction,
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i. e. ˚ D gX3. We transform from the field variables xi ;   to perturbations � of
displacement and $ of pressure about a state of rest,

�i .a; t/ D Xi .a; t/ � ai

$.a; t/ D  .a; t/ � p0.a3/

where p0 is hydrostatically balanced with a stratification �0.a3/,

dp0
da3

D ��0.a3/

The effect of p0.a3/.J � 1/ in the transformed Lagrangian is identical to a term
p0.X3/ in the Lagrangian, and hence, omitting terms with no effect on the equations
of motion, we arrive at

L D 1

2
�0

h P�2i C f .�1 P�2 � P�1�2/
i

� U.�3/C$.J � 1/ (2.230)

with a potential U and Jacobian determinant J , given by

U.�3/ D p0.�3 C a3/C �0g�3

J D 1C @�i

@ai
C�ii C @.�1; �2; �3/

@.a1; a2; a3/

Here, �ij is the cofactor of @�i=@aj in the Jacobian determinant j@�=@aj. The equa-
tions of motion in the new coordinates are obtained by varying with respect to �i
and $ . The potential may be expanded as

U.�3/ D p0.a3/C 1

2
�0N

2.a3/�
2
3 C 1

3Š
�33

d3p0
da33

C � � �

with the squared Brunt-Väisälä frequencyN 2 D �.g=�0/d�0=da3. The p0-term can
be omitted. This form reveals the ordinary quadratic potential energyN 2�23=2 result-
ing from a displacement in stratified environment. Note that U leads to nonlineari-
ties in the equations of motion in addition to those arising from the incompressibility
constraint.

2.12.5 A Variational Principle for Eulerian Coordinates

Lagrangian variables have the disadvantage that local interactions, as e. g. accel-
eration by the local pressure gradient force, are not immediately reflected in the
governing equations. The Eulerian representation appears, therefore, more useful as
it corresponds to a local field theory35. Various attempts have been made to con-
struct a Lagrangian theory in Eulerian coordinates (pioneering papers are Lin (1963)
and Seliger and Whitham (1968)). A simple-minded translation of the ingredients of
the above Lagrangian is given by

L1 D 1

2
�u2 � �E.�; �/C �
1

�
@�

@t
C u � r�

�
C 
2

�
@�

@t
C r � �u

�

35 The transformation from Eulerian to Lagrangian variables is not canonical. Therefore, it is not
immediately evident that the Eulerian equations are derivable from a variational principle.
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which takes mass conservation and material conservation of entropy as side con-
straints into account. Because there is no dependence on @u=@t , the evolution equa-
tion of u does not follow directly by variation. Instead, variation with respect to u
yields a Clebsch representation of the velocity field,

u D r
2 � 
1r� (2.231)

which seems at first general enough but, in fact, is rather restrictive: the circulationH
u � ds for any closed loop in an isentropic surface � D const vanishes according

to (2.231). This dilemma is mediated by introduction of additional constraints, so-
called Lin constraints. Lin used the initial position A.x; t/ of a parcel as additional
variable: it is materially conserved, and

L2 D L1 C �˛ �
�
@A

@t
C u � rA

�

yields a representation for the velocity field

u D r
2 � 
1r� �
X
j

j̨rAj (2.232)

Actually, using one additional coordinate as constraint is already sufficiently gen-
eral (Bretherton, 1970) because three scalar fields are only needed to guarantee ar-
bitrary initial conditions for the velocity field. Instead of singling out a particular
coordinate it seems thus reasonable to look for an additional scalar field which is
conserved.

For a binary fluid like seawater salinity S is such a variable. Consider material
salinity conservation as constraint; hence we use

L D L1 C �
3

�
@S

@t
C u � rS

�

Variation of the Lagrangian with respect to all fields yields the equations

ıu W u D r
2 � 
1r�� 
3rS (2.233)

ı
1 W @�
@t

C u � r� D D�

Dt
D 0 (2.234)

ı
3 W @S
@t

C u � rS D DS

Dt
D 0 (2.235)

ı
2 W @�
@t

C r � �u D 0 (2.236)

ıS W @
3
@t

C u � r
3 D D
3
Dt

D � (2.237)

ı� W @
1
@t

C u � r
1 D D
1
Dt

D �T (2.238)

ı� W 1
2
u2 � E � p� C 
1

D�

Dt
C 
3

DS

Dt
� D
2

Dt
D 0 (2.239)

where � D �@E=@S is the chemical potential (see (1.47)). The last equation may be
written as

D
2
Dt

D 1

2
u2 �H (2.240)
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whereH D ECp� is the enthalpy. It remains to show that in the realm of the above
set of equations the conventional momentum balance is valid. After some nontrivial
eliminations (see the box on p. 103) we indeed arrive at

Du

Dt
D ��rp (2.241)

The set of Eulerian balances (2.234)–(2.236) and (2.241) must be supplemented by
the equation of state in the form � D F.S; �; p/. It may be derived from (2.226)
with salinity as additional variable.

19. Derivation of (2.241)Applying D=Dt to (2.233) yields

Du

Dt
D Dr �2

Dt
� �1Dr 


Dt
� �3Dr S

Dt
C Tr 
 ��r S (B19.1)

where (2.237) and (2.238) has been used. The last two terms will be replaced by the relation for
gradient of the enthalpy

rH D Tr 
 ��r S C �r p
The first three terms in (B19.1) are evaluated according to the identity

Dr �2
Dt

D r D�2
Dt

� @�2

@x
r u� @�2

@y
r v � @�2

@z
r w

and correspondingly for 
 and S . Implementing the result into (B19.1), collecting then the term
proportional to r u, and using the first component of (2.233), and proceeding similarly with r v
and r w , we find

Du

Dt
D ��r pC r D�2

Dt
C rH � ur u� vr v �wr w (B19.2)

where (2.234) and (2.235) was used. Finally, (2.241) results by implementing (2.240).

Further Reading

The manual International Thermodynamic Equation of Seawater–2010 (IOC, SCOR
and IAPSO, 2010) contains the currently most accurate and comprehensive informa-
tion on all relevant aspects of the thermodynamics of seawater, including the algo-
rithms for the practical computation of thermodynamic parameters.

The principles of ocean thermodynamics is treated in an accurate though rather
condensed way in the first chapters of Fundamentals of Ocean Dynamics by Ka-
menkovich (1977).

Thermodynamics of Atmospheres and Oceans by Curry and Webster (1999) cov-
ers the subject for both ocean and atmosphere.

Classical textbooks on fluid mechanics are An Introduction to Fluid Dynamics
by Batchelor (1977) and Fluid Mechanics by Landau and Lifshitz (1987). More easy
for the beginner is Fluid Mechanics by Kundu et al. (2004) which gives an overview
on basic conservation laws of fluids and discusses many applications for irrotational,
laminar, turbulent and compressible flows.
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An overview on the Hamiltonian formulation of fluid dynamics can be found in
the Lectures on Geophysical Fluid Dynamics by Salmon (1998).

The mathematical tools for the description of hydrodynamic fields are described
e. g. in Mathematical Principles of Classical Fluid Mechanics by Serrin (1959), Vec-
tors, Tensors, and the Basic Equations of Fluid Mechanics by Aris (1989), and at
a more elementary level in Fundamentals of Atmospheric Dynamics and Thermody-
namics by Riegel (1992).

The article The First Law of Thermodynamics in a Salty Ocean by Warren (2006)
is an excellent review of the first law from an oceanic perspective.

For a historical review of fluid dynamics see Worlds of Flow: a History of Hydro-
dynamics from the Bernoullis to Prandtl by Darrigol (2009).



Part IICommon Approximations

In Part I we combined the Navier–Stokes equations and the first and second law of
thermodynamics to find the governing equations of motion for the ocean. In prin-
ciple, the equations (2.151)–(2.155) describe the full spectrum of oceanic motions,
from sound waves with time-scales of milliseconds to the thermohaline circulation
with periods of up to thousands of years. Although the governing equations have
not been derived rigorously from first principles but more in a heuristic or empirical
way, there is no reason to question their validity. However, the broad spectrum of
scales involved in oceanic motions leads to difficulties when one attempts to solve
the equations. As an example, when the wind sets on at the ocean’s surface, it si-
multaneously generates responses at all time-scales in the ocean, namely planetary
waves, gravity waves, but also sound waves and capillary surface waves. Due to the
very different temporal and spatial scales of these processes, one is usually only in-
terested in the response of only one kind of waves. The presence of the other kinds of
waves complicates the structure of analytical solutions, and the different scales lead
to formidable practical difficulties when one applies numerical solution techniques.

In this chapter we will look at a number of common approximations to the sys-
tem (2.151)–(2.155). The purpose of these approximations is to modify the system
in such a way that the manifold of solutions is reduced, in order that the system can
be solved or analyzed more easily, and that one can focus on specific processes while
ignoring others. In particular, for considering motions with large scales related to the
general circulation of the oceans, it is almost mandatory to eliminate from the sys-
tem those processes occurring at very small spatial and/or temporal scales. Note that
these approximations will generally restrict the validity of the resulting relations and
may not always reduce (in fact, occasionally even increase) the algebraic complexity
of the system.

There are different methods to approximate the system and to reduce its com-
plexity. We have already met an important method in Section 2.8, i. e. the Reynolds
average of the equation of motions. The simplest Reynolds filter is a time-mean;
other possibilities are spatial, ensemble or zonal means or a combination of them.
By looking at the Reynolds averaged (filtered) equations one considers only that part
of the spectrum of possible motions above the cut-off frequency of the Reynolds fil-
ter. However, a drawback of the method is given by the appearance of the turbulent
fluxes containing the effect of the filtered motions on the larger (unfiltered) scales.



106

Overview of spatial and time-scales of oceanic waves. The horizontal axis denotes the horizontal
wave number and the vertical axis angular frequency !. The dispersion relation of sound waves
is shown by black lines, gravity waves by blue lines and planetary waves by red lines. Several
branching dispersion relations for a certain kind of wave regime are related to the impact of vertical
boundaries (the figure shows the first four modes) as discussed in Part III. The parameters are:
Sound velocity cs D 1;500m s�1 (see Section 6.1), Brunt–Väisälä frequency N D 5�10�3 s�1

defined in (5.9), Coriolis frequency f D 10�4 s�1 and ˇ D 2 � 10�11m�1 s�1 as defined
in (5.18), water depth h D 4;000m, vertical wave number k3 D n =h, baroclinic Rossby radius
Ri D N=.f k3/ and barotropic Rossby radius Rb D 2� 106 m (see Section 8.1.1).

Part IV of this book is devoted to a detailed discussion of these turbulent fluxes and
methods how to deal with them.

Another way to approximate the system is given by mode filtering of the system,
eliminating certain wave branches from all possible wave solutions of the system.
This procedure is described in Chapter 3 and gives a first overview of the possible
wave solutions and the possible approximations to the system. However, the most
practical way to approximate the system is achieved by neglecting certain terms
since they might be identified to be small under certain circumstances, or by other
direct manipulations in the equations of motions. Various approximations which are
common in oceanography are discussed in detail in Chapters 4 and 5. Chapter 4 deals
with basic approximations which will lead to the primitive equations representing the
fundamental description of the large-scale oceanic circulation while Chapter 5 deals
with more restrictive approximations which will be suited for geostrophically bal-
anced systems. For all approximations we will monitor the important consequences
for the energy cycle and potential vorticity.



Approximations Derived
fromMode Filtering 3

In this chapter we will give a first preliminary account of the dif-
ferent time-scales that are contained in the system (2.151) to (2.155)
of oceanic motions, and of practical ways to eliminate certain modes
without substantially modifying those that remain. Note that this chap-
ter is directed to the more advanced reader and not meant to be studied
in detail since many of the issues, which are only touched here, are cov-
ered in more detail later. References to the more detailed discussions
are given in the respective context.

The system (2.151)–(2.155) is complete with respect to these seven variables, in the
sense that the temporal evolution of the system is completely determined, provided
that suitable initial and boundary conditions are specified, and that the forcing terms
F , GS, G� are prescribed in terms of known quantities. Although complete, the sys-
tem is however not immediately suitable to actually compute the evolution of the
system. This can be seen when one attempts to calculate the evolution of all fields
from a given initial state. While it is obvious that (2.151)–(2.154) allow to deter-
mine the variables �, u, S and � , respectively, for a small time interval ıt ahead,
there is no equation to directly determine the pressure p. Instead, there is in addition
to (2.151) another equation, namely the state equation (2.155), which also allows to
determine �, provided that S; �; p are known. It might seem obvious to resolve this
difficulty by determining the pressure diagnostically from the state equation (2.155)
by solving for p D p.S; �; �/. However, the very small compressibility of seawater
(which, as we shall see, is in fact often neglected altogether) precludes this option.
A much better alternative is to use the state equation to derive a prognostic differen-
tial equation for the pressure. The set of equations, achieved by this reorganization,
allows to derive and filter wave modes in a straightforward and consistent way.

3.1 A Prognostic Equation for the Pressure

Forming the substantial derivative of the state equation (2.155) and using the con-
tinuity equation (2.151), the salt conservation (2.153) and the temperature equa-

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 107
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tion (2.154), one obtains

1

c2s

Dp

Dt
D ��r � u � G� (3.1)

Here cs denotes sound velocity as given by (2.128), and G� is defined as

G� D �GS � ˛G� (3.2)

and is associated with diapycnal processes resulting from turbulent salt and heat
fluxes which affect the density of a water parcel and vanish in case of adiabatic
motions. In this relation, ˛ and � denote the modified thermal and haline expansion
coefficients, respectively, as introduced in Section 2.6.4. While less common, the use
of (3.1) instead of the continuity equation (2.151) in connection with (2.152)–(2.155)
is conceptually preferable because the full system now consists of six prognostic
equations for the variables u; v;w; p; S and � , with differential equations that are of
first order in time. The variable � can in principle be eliminated from the system by
invoking the diagnostic algebraic relation given by the state equation (2.155).

3.2 LinearWaves

A simple view of the time-scales and the types of motion exhibited by the sys-
tem (3.1) and (2.152) to (2.155) can be obtained by a linear wave analysis. Wave
solutions of the system will be discussed in detail in Part III while here the essen-
tial results from the more complete discussion are used to motivate the separation of
the system into different wave regimes. An overview of the different wave branches
existing in the ocean is given in the figure on page 106.

Consider small adiabatic perturbations from a state of rest, the latter being char-
acterized by a vertical stratification of salinity and temperature as in Section 2.9. Adi-
abatic in this context means zero turbulent or molecular fluxes, i. e. GS D G� D 0.
All prognostic variables are expanded according to  D r C0 (where  can be one
of u, v, w, p, S and �) around a basic reference state which is defined as

ur D vr D wr D 0 ; Sr D Sr.z/ ; �r D �r.z/

@pr

@z
D �g�r ; N 2

� D g˛
@�r

@z
; N 2

S D �g� @Sr

@z

Neglecting for the moment all terms which are quadratic or of higher order in the
perturbation quantities (refer to Section 6.1 for a more detailed and mathematically
more rigorous derivation of this assumption), one obtains

@u

@t

0
� f v0 C 1

�r

@p

@x

0
D 0 (3.3)

@v

@t

0
C f u0 C 1

�r

@p

@y

0
D 0 (3.4)
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@w

@t

0
C 1

�r

�
@p

@z

0
C g

c2s
p0
�

C g
�
�S 0 � ˛� 0� D 0 (3.5)

1

c2s �r

@p

@t

0
C r � u0 D 0 (3.6)

@S

@t

0
� N 2

S

�g
w0 D 0 (3.7)

@�

@t

0
C N 2

�

˛g
w0 D 0 (3.8)

Instead of the horizontal velocity components, we now introduce the horizontal
stream function and velocity potential � (see also Appendix A.1.4 which are given
by

u0 D @�

@x
� @ 

@y
; v0 D @�

@y
C @ 

@x

so that @v0=@x�@u0=@y D r2
h and @u0=@xC@v0=@y D r2h�. Furthermore, instead

of S 0 and � 0, we introduce the scalar variables �0 and �0 as

�0 D �S 0 � ˛� 0 ; �0 D �N 2
� S

0 C ˛N 2
S �

0

From (3.3)–(3.8) one can derive the following equations (dropping all primes from
now on):

�1r2
h
@ 

@t
C f r2

h� C ˇ x D 0 (3.9)

�2r2
h
@�

@t
� f r2h C 1

�r
r2

hp D 0 (3.10)

�3
@w

@t
C 1

�r

�
@p

@z
C g�

�
D 0 (3.11)

�4
1

c2s �r

@p

@t
C
�

r2h� C @w

@z

�
D 0 (3.12)

�5
@�

@t
� N 2

g
w D 0 (3.13)

�6
@�

@t
D 0 (3.14)

The definition N 2 D N 2
�

C N 2
S for the Brunt–Vaisälä frequency (cf. Section 2.9.2)

has been used. The dimensionless factors �1 : : : �6 have been attached to the time
derivatives for later use; they all should be set to 1 to represent the correct system.
A number of approximations have been made in deriving (3.9)–(3.14). The Earth’s
rotation has been replaced by 2˝ � .0; 0; f /, and ˇ D @f=@y describes the lateral
variation of the Coriolis parameter. The first two equations are derived by taking the
horizontal curl and divergence of (3.3) and (3.4), but a term ˇu in (3.10) was ne-
glected for reasons discussed in Section 5.2. Furthermore, some subtleties regarding
the state equation have been ignored. For maximum simplicity, all coefficients in the
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system (3.3)–(3.8) are now assumed to be constant and positive, an approximation
which greatly facilitates the identification of the basic modes of motion. The valid-
ity range of these approximations will not be considered at this point because only
some qualitative properties of the system are discussed. A more complete treatment
of linear wave systems is given in Part III.

As for any linear system with constant coefficients, linear wave solutions can be
found. Combining the dependent variables into a vector b, a plane wave ansatz with
wave number k D .k1; k2; k3/ and frequency1 ! according to

. ; �;w; p=�r; �=�r; �/
T D b.x; y; z; t/ D b0ei.k1xCk2yCk3z�!t/ (3.15)

leads to a standard eigenvalue problem (for eigenvalue problems see the box on p. 9)
of the form

Ab0 D i!b0 (3.16)

with the matrix (here with all �i D 1)

A D

0
BBBBBBBBBBB@

�iˇk1=k2h f 0 0 0 0

�f 0 0 1 0 0

0 0 0 ik3 g 0

0 �c2s k2h ic2s k3 0 0 0

0 0 �N 2=g 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCA

Here the notation k2h D k21 C k22 , and k2 D k21 C k22 C k23 has been used. The
eigenfrequencies ! are given as roots of the characteristic equation

!6 C !5
ˇk1

k2h
� !4 �f 2 CN 2 C c2s k

2
� � !3ˇk1

k2h

�
c2s k

2 CN 2
�

C !2
�
c2s k

2
hN

2 C c2s k
2
3f

2 C f 2N 2
�C !ˇk1c

2
s N

2 D 0 (3.17)

which has six solutions !i ; i D 1; : : : ; 6. One of these solutions corresponds to zero
frequency, say !6 D 0, reflecting the fact that the variable � is dynamically passive
and does not occur in any of the equations (3.9)–(3.13). The other roots of (3.17)
refer to more interesting wave branches, as discussed below. Note, however, that in
certain less simplified situations the variable � may actually become active. This can
occur when changes of salinity and temperature have different time-scales, e. g. as
a consequence of differences in mixing or in the exchange with the atmosphere, but
also as a consequence of nonlinearities in the equation of state.

Hence effectively a polynomial of order 5 remains in (3.17). Note that the form
with inclusion of the �-factors is displayed in the box on p. 111. Several (inverse)
time-scales appear which under typical oceanic conditions have very different mag-
nitudes:

1 Throughout this book, we refer to ! defined as in (3.15) as frequency. Strictly speaking, however,
! is the circular frequency, and the frequency is !=2 .
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� The planetary frequency scale ˇ=kh, with magnitude of 2� 10�11�2� 10�6 s�1

where the former number holds for a wave length of k�1 	 1m , the latter for
k�1 	 100 km.

� The Coriolis frequency with a magnitude of f 	 10�4 s�1 for midlatitudes.
� The buoyancy frequencyN 	 2 � 10�3 s�1 for a typical situation in the interior

of the ocean (compare with Figure 2.17).
� The frequency of sound waves csk, with magnitude 1:5�10�2 s�1�1:5�103 s�1

for a wave lengths of k�1 	 1m to k�1 	 100 km.

Under normal oceanic situations one can assume that

ˇ

kh
� f . N � csk (3.18)

where the � sign is understood to denote a difference in magnitude by a factor

ı 	 ˇ

f kh
	 N

csk
� 10�6�10�1

depending on the scale of motion. Because the relevant time scales are so different,
approximate values for the roots of (3.17) can be found. It is straightforward to show
that for ı � 1, (3.17) can be approximated by

!5 � !3c2s k
2 C !

�
c2s k

2
hN

2 C c2s k
2
3f

2
�C ˇk1c

2
s N

2 � 0 (3.19)

For the smallest root, say !5, the main contribution must come from the two last
terms in (3.19), and we have

!5 D � ˇk1

k2h C k23f
2=N 2

CO
�
ı2
�

(3.20)

which is identified as the dispersion relation of planetary or Rossby waves (see Sec-
tion 8.2). On the other hand, for the bigger roots of order f;N or csk, the term
in (3.19) containing ˇk1=k2h must be small, and we obtain

!4 � !2c2s k2 C c2s
�
k2hN

2 C k23f
2
� � 0

which can be readily solved. Of the two pairs of solution, the bigger one is approxi-
mated by

!21;2 D c2s k
2 CO

�
ı2
�

(3.21)

20. Dispersion Relation
including the �i

When all �-factors are included in the eigenvalue problem (3.16), the dispersion rela-
tion (3.17) changes to

!6�1�2�3�4�5�6 C !5
ˇk1

k2h
�2�3�4�5�6

� !4 �f 2�3�4�5�6 CN 2�1�2�4�6 C c2s k
2
h �1�3�5�6 C c2s k

2
3�1�2�5�6

�

� !3 ˇk1
k2h

�
c2s k

2
h �3�5�6 C c2s k

2
3�2�5�6 CN 2�2�4�6

�

C !2
�
c2s k

2
hN

2�1�6 C c2s k
2
3f

2�5�6 C f 2N 2�4�6
�

C !ˇk1c
2
s N

2�6 D 0
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and constitutes the dispersion relation for sound waves (see Chapter 6). The smaller
pair is given by

!23;4 D k2hN
2 C k23f

2

k2
CO

�
ı2
�

(3.22)

and constitutes the dispersion of internal gravity waves (see Chapter 7). Both for
sound waves and gravity waves there exist two solutions each because along any
coordinate, waves can propagate into both positive and negative directions. Rossby
waves, on the other hand, have a phase propagation to the west only.

3.3 Filtering of Modes

We have seen that the full system (3.3) to (3.8) has five nontrivial modes of motion
which correspond to three wave processes with very different time-scales. We will
now demonstrate that certain approximations to the full system can change this be-
havior, and in fact it is possible to single out any of the above modes. In a linear
system, such a reduction to a single mode could most effectively be achieved by
projecting the equations of motion onto the eigenvector of the particular mode of
interest (this procedure is explained in Section 10.1). In a general nonlinear system,
a convenient method which is particularly useful to eliminate fast modes is to con-
sider the diagnostic limit of certain equations that may be associated with those fast
modes. The argument for this is not that the time rate of change of the corresponding
variable is generally small, but rather that the (fast) adjustment process has already
taken place and has reached its steady state limit. For the system (3.9)–(3.14), this
is equivalent to setting some of the �i to zero. The consequences for the dispersion
relation are then easily found from the box on p. 111.

Removing soundwaves, �4 D 0

The neglect of the time dependence in (3.12) is the most common of all possible
approximations in this context. The dispersion relation is then given by

!

�
!3k2 C !2

ˇk1

k2h
k2 � !

�
k2hN

2 C k23f
2
� � ˇk1N

2

	
D 0 (3.23)

We note that the order of the polynomial has changed, and though the approximated
system (3.9)–(3.14) still has 6 variables, we have only four eigenfrequencies. One
is again identified as the trivial root ! D 0 which must always appear. For the
smallest of the remaining three solutions, the main balance is between the last two
terms in the bracket, yielding the Rossby wave frequency !5 from (3.20). For the
other two solutions, the first two terms balance, and we obtain the gravity wave
frequencies !3;4 from (3.22). Hence the neglect of the time dependence in (3.12) is
indeed sufficient to remove the sound waves completely from the system, without
significant distortion of either the gravity or the Rossby modes. This approximation
will be discussed in Sections 4.1.1 and 4.1.2.
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Hydrostatic approximation, �3 D 0

The neglect of the time dependence in (3.11) will be related in Section 4.2 to the
hydrostatic approximation. The dispersion is found to be

!

"�
!3 C !2

ˇk1

k2h

� �
c2s k

2
3 CN 2

�� !
�
c2s k

2
hN

2 C c2s k
2
3f

2 C f 2N 2
�

� ˇk1c
2
s N

2

#
D 0

Invoking (3.18), this may be approximated as

!
�
!3
�
c2s k

2
3 CN 2

� � !c2s
�
k2hN

2 C k23f
2
� � ˇk1c2s N 2

� D 0 (3.24)

Again the trivial root and the Rossby mode from (3.20) remain unchanged. For the
fast waves we obtain

!2 D k2hN
2 C k23f

2

k23 CN 2=c2s
CO

�
ı2
�

(3.25)

If csk3 � N , we obtain a relation similar to (3.22), with k2 in the denominator
replaced by k23 , which coincides with the gravity wave frequency provided that also
k3 � kh, i. e. for long gravity waves (see Section 8.1.2). If, however, csk3 � N , we
obtain instead

!2 D c2s k
2
h CO

�
ı2
�

(3.26)

and thus obtain the sound wave relation (3.21), provided that the waves propagate
horizontally (i. e. k3 � kh). The waves described by (3.24) are referred to as LAMB2

waves.
Without further approximations, the hydrostatic approximation hence leaves

a combination of long gravity waves and horizontal sound waves in the system and
is usually not advisable unless specific precautions are taken (e. g. through suitable
boundary conditions which can eliminate the Lamb waves).

Shallowwater approximation, �3 D �4 D 0

The combination of the two previous approximations is straightforward, and is at the
heart of the shallow water approximation to be discussed in Section 4.2. We find

!c2s

�
!3k23 C !2

ˇk1

k2h
k23 � !

�
k2hN

2 C k23f
2
� � ˇk1N

2

	
D 0

Hence Rossby waves remain unchanged in the system, but only the long part of the
gravity waves as in (3.25) is left.

2 SIR HORACE LAMB, *1849 in Stockport, †1934 in Cambridge, fluid dynamicist.
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Quasi-geostrophic approximation, �2 D �3 D �4 D 0

We find in this limit

!c2s
�
!
�
k2hN

2 C k23f
2
�C ˇk1N

2
� D 0

and hence recover the Rossby wave dispersion (3.20) without distortion but no grav-
ity modes. This is the essential property of the quasi-geostrophic equations which
will be discussed in Section 5.2 below.

Planetary geostrophic approximation, �1 D �2 D �3 D �4 D 0

We find

!c2s
�
!k23f

2 C ˇk1N
2
� D 0

and thus have

! D �ˇk1N
2

k23f
2

CO
�
ı2
�

(3.27)

which agrees with the relation (3.20) for Rossby waves provided that kh � k3f=N ,
i. e. long Rossby waves. This is the basis for the (planetary) geostrophic approxima-
tion discussed in Section 5.3.

Short barotropic Rossby wave, �3 D �4 D �5 D 0

No vertical motions are allowed in this case, and we find

!N 2c2s
�
!k2h C ˇk1

� D 0

Hence only one mode exists, with

! D �ˇk1
k2h

CO
�
ı2
�

which is the short barotropic Rossby wave (see Section 8.2).
Many further wave types exist when the existence of vertical or lateral boundaries

is taken into account which is, however, not our concern here. On the other hand,
we have seen how the most important wave solutions of the linearized system can be
found, and how they relate to certain time-scales. The aim of our discussion was to
illustrate how these wave solutions are related to different approximations which are
detailed in the following sections.



Approximations Relating to Density
Changes and Geometric Conditions 4

This chapter explains various approximations which are commonly
used for the discussion of the large scale ocean circulation. These
approximations are based on the smallness of oceanic density varia-
tions – which will lead to the inelastic and ultimately to the Boussi-
nesq approximation, the geometry of the Earth, in particular its almost
spherical shape, and the scales of ocean circulation – which lead to
the hydrostatic approximation. The combination of all approximations
form the so-called primitive equations, which represent the basis of
current numerical ocean general circulation models.

In most situations, sound waves are not of interest for the discussion of the circu-
lation of the ocean. It appears, therefore, of benefit to filter out sound waves from
the governing equations, by using an approximated set of equations. Such approx-
imations are all based on the fact that the density variations in the ocean are very
small compared the mean value of density of seawater. However, although small, the
density variations are nevertheless dynamically crucial, and the approximation of the
equations of motion requires thus some care.

4.1 Approximations Involving Density

We first define a reference state, which is a state of rest, as introduced in Section 2.9,
but now with constant values for potential temperature and salinity which may be
chosen e. g. as �c D 0ıC, Sc D 35. All fields are now decomposed into reference
value and derivation thereof, i. e.

p D pc.z/C Qp ; S D Sc C QS ; � D �c C Q� ; � D �c.z/C Q�
but u D Qu since uc D 0. It is emphasized that the reference state (labeled with
the index ‘c’ and used for all the approximations that follow in the present chapter)
has no stratification of temperature and salinity. This choice avoids remnants of the
reference state gradients in the evolution equations for temperature and salinity so
that these equations remain unchanged when formulated with QS; Q� instead of S; � .
Note that pressure and density of the reference state are not constant, and that the
depth dependence of its density reflects the compressibility of the water. As discussed

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 115
DOI 10.1007/978-3-642-23450-7_4, © Springer-Verlag Berlin Heidelberg 2012
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in Section 2.9, any state of rest is hydrostatically balanced, and equations (2.157) and
also (2.158) must hold. For that reason we may use the identity

�rp � �r˚ � �r Qp � Q�r˚ (4.1)

in the momentum balance (2.152). In other words, for pressure gradient force and
gravity force, only deviations from reference pressure, respectively density, are dy-
namically relevant. We will, therefore, refer to Qp and Q� as the dynamically relevant
parts of pressure, respectively density. Note, however, that the full density still ap-
pears as a coefficient in the equations for momentum, salt and heat (2.152)–(2.154),
and in the pressure equation (3.1), and likewise the full pressure appears in the state
equation (2.155).

4.1.1 Anelastic Approximation

The dynamically relevant part of the density in the ocean is very small compared to
the complete density. It follows from the state equation (2.155) as the difference

Q� D F.Sc C QS; �c C Q�; pc C Qp/ � F.Sc; �c; pc/ (4.2)

Variations of salinity, temperature and pressure cause variations of Q� which have
a magnitude of j Q�j=�c . 2�10�3 (cf. Figure 2.17). Furthermore, the reference den-
sity �c.z/ D F.Sc; �c; pc/ itself varies by only a few percent. The relative smallness
of Q� and the fact that �c.z/ is nearly constant are the basis for the approximations
considered in the following.

Elimination of soundwaves

Consider first (3.1) in the form

@ Qp
@t

C u � r Qp Cw
@pc

@z
D �c2s

�
�r � uC G�

�
(4.3)

So far, no approximation has been made. Equation (4.3) describes the response of
the dynamically relevant part of the pressure to the flow divergence r �u and the dia-
batic terms contained in G� . As will be shown in Chapter 6, these changes in pressure
propagate through the water with the sound velocity cs � 1;500m s�1 which is much
faster than any other velocity in the system, and the time-scale of sound waves is typi-
cally a fraction of a second. On the much longer time-scales of interest in dynamical
oceanography, after the passage of sound waves, the balance (4.3) effectively has
reached its steady-state limit. Hence by dropping the term @ Qp=@t in (4.3), the sound
waves are filtered out of the system.

Assuming further that the gravity force is always important (i. e. not negligible
compared to the pressure gradient), the magnitude of Qp cannot exceed O.gH Q�/
where H is the maximum length scale of the system in the direction of gravity,
i. e. the water depth. It follows that the relative magnitude of the advection term u�r Qp
to the individual contributions of the r � u–term on the right hand side in (4.3) is

UgH Q�
Lc2s �U=L

	 Q�
�

H

c2s =g
	 4 � 10�5 � 1
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and, therefore, the advection term can also be neglected. It follows that (4.3) is no
longer a prognostic differential equation to calculate Qp but now a diagnostic relation
which allows to compute r � u. It takes the form

�r � u D �w
c2s

@pc

@z
� G� (4.4)

Together with the momentum budget (2.152) in combination with (4.1), the heat
and salt budgets and the state equation (4.2), equation (4.4) constitutes a complete
system, with a relative accuracy of 4 � 10�5. That system is, however, rarely used.

Approximation of volume

In a second step where a relative error level of 	 10�3 is accepted, we now use the
fact that Q� � �c and neglect Q� whenever it is compared to �c, which is tantamount
to replacing � by the reference density �c.z/. At this level of accuracy the right-hand
side of (4.4) can also be further simplified. Using the state equation (2.158) for the
reference state, we obtain for the first term on the right-hand side of (4.4) the identity

w

c2s

@pc

@z
D w

c2c
c2s

@�c

@z
D w

@�c

@z
�w@�c

@z

c2s � c2c
c2s

(4.5)

where cc is the sound speed for the reference state. While the relative magnitude of
the first term on the right-hand side of (4.5) compared to the left-hand side of (4.4)
is gH=c2c 	 0:02, which is not negligible in this approximation, the second term has
the relative magnitude is .gH=c2c / � 2�c=cs 	 0:001 which is negligible.

The magnitude of the diapycnal fluxes G� cannot be given in general without fur-
ther knowledge about the processes that are involved. However, nearly all interesting
situations in the ocean are such that in the heat and the salt balance the advective
terms dominate, i. e. that the Peclet-number is Pe & 1 (see Section 2.8). It follows
that G� . Pe�1 Q�U=L, and hence one finds for the relative magnitude of the diapyc-
nal flux in (4.4) compared to the left-hand side

G�
�U=L

	 1

Pe

Q�
�

. 2 � 10�3

Hence the G�-term in (4.4) can be neglected in this approximation, and we finally
obtain

�c.z/
Du

Dt
D �2�c.z/˝ � u � r Qp � Q�r˚ C F (4.6)

r � .�c.z/u/ D 0 (4.7)

�c.z/
D

Dt

 QS
Q�

!
D
 
GS
G�

!
(4.8)

which, together with the full equation of state (4.2), constitute the anelastic approx-
imation to the equations of motion which was first developed by Ogura and Phillips
(1962) for the atmosphere. The main effect of this approximation is that sound waves
are filtered out of the system. Moreover, the terms involving �c in (4.6)–(4.8) are now
linear in the respective field variables (except nonlinearities resulting from a mate-
rial derivative), though with a variable coefficient. The anelastic approximation has
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an error of about 2� 10�3 and is mainly used in numerical models of the large-scale
atmospheric circulation. In the ocean it is less useful since the density changes are
smaller than in the atmosphere.

Note that the neglect in (4.7) of all terms depending on Q� means that changes in
the ocean volume resulting e. g. from thermal expansion cannot be computed from
the system (4.6)–(4.8).

4.1.2 Boussinesq Approximation

It is customary to introduce a further step of approximation which takes into account
that the variations of �c.z/ are at most 2–3%, as was shown in Section 2.9. Fre-
quently, one can afford to ignore errors of this magnitude and replace the reference
density �c.z/ by �0 D const in (4.6)–(4.8). With the same accuracy, the reference
pressure pc.z/ � p0.z/ is linear with depth, @p0.z/=@z D �g�0. A further approx-
imation concerns the equation of state (4.2). The magnitude of density changes due
to small changes in QS; Q�; Qp is

� Q� D ��� QS � �˛� Q� C 1

c2s
� Qp (4.9)

It is shown in Section 4.2.4 below that in many situations not only the reference
pressure but also the dynamically relevant pressure Qp follows a hydrostatic scaling,
so that � Qp 	 gh� Q� with a vertical length scale h. The relative contribution of the
last term in (4.9) is thus of order gh=c2s and hence does not exceed 2–3% even for
a maximum scale of h D 5 km. With this accuracy, the dependence of (4.2) on Qp can
be ignored, and we obtain the equations in the BOUSSINESQ1 approximation

�0
Du

Dt
D �2�0˝ � u� r Qp � Q�r˚ C F (4.10)

r � u D 0 (4.11)

�0
D

Dt

 QS
Q�

!
D
 
GS
G�

!
(4.12)

Q� D F.Sc C QS; �c C Q�; p0.z// � F.Sc; �c; p0.z// (4.13)

with a constant �0. The system (4.10)–(4.13) is the starting point for most oceano-
graphic applications. Neither the exact form (2.151)–(2.155) nor the inelastic form
of the equations of motions are frequently used. The error in the Boussinesq approx-
imation is of order 0:02�0:03, roughly a factor of 10 higher than the error in the
inelastic approximation. Many numerical models for the large-scale oceanic circula-
tion are based on the Boussinesq approximation.

Determination of pressure in the Boussinesq system

The system (4.10)–(4.13) has an analogous problem as the complete set (2.151)–
(2.155). Again there is no equation to determine the pressure (but now there are four

1 VALENTIN JOSEPH BOUSSINESQ, *1842 in Saint-André-de-Sangonis, †1929 in Paris, mathe-
matician and physicist. His work was published in 1903. Similar approximations were considered
earlier by A. OBERBECK in 1879 and 1888.
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21. TwoDefinitions
of Incompressibility

Equation (4.11) is usually called the incompressibility condition, a somewhat unfortunate
name because the notion of incompressibility is commonly used in two slightly different
ways. A fluid is called incompressible when its (adiabatic) compressibility vanishes, i. e. when
cs ! 1 holds. On the other hand, a flow is said to be incompressible when it satisfies
equation (4.11), i. e. when the continuity equation – which was originally derived from mass
conservation – formally states volume conservation (cf. (1.9)).

As seen from (3.1), both definitions agree only if the fluid motion is also adiabatic which is not
generally true for the system (4.10)–(4.13). Note also that the Boussinesq system indeed contains
an effect of the finite compressibility of sea water through the pressure dependence in (4.13).

equations for the three velocity components). Hence in this form, the system is again
not directly suitable for the solution of initial value problems. It is possible, however,
to derive a diagnostic equation for the pressure. Taking the divergence of (4.10), and
using (4.11), leads to

r2 Qp D r � .��0u � ru � 2�0˝ � u� Q�r˚ C F/ (4.14)

which constitutes a POISSON2 equation for the pressure. Equation (4.14) can be
solved with the appropriate boundary conditions which will not be discussed here.
Analogous forms can be derived based on (4.7) or (4.4). Equation (4.14) is the basis
for all numerical models which explicitly simulate convection processes (nonhydro-
static models). Further approximations, such as e. g. the hydrostatic approximation
discussed below, make the use of (4.14) unnecessary.

4.1.3 Dynamical Role of SeaWater Compressibility

In the Boussinesq approximation the dynamical influence of finite compressibility is
not completely eliminated and occurs through the equation of state (4.13). Using the
salt and heat budgets (4.12) and the hydrostatic relation (2.157) from Section 2.9, it
is easily shown that the material derivative of the density perturbation Q� D �� �c.z/

is given by

D Q�
Dt

D G� � g�0w
�
1

c2s
� 1

c2c

�
(4.15)

where G� is the diapycnal density flux as defined as in (3.2).
The last term on the right hand side of (4.15) shows that it is the dependence of

the sound velocity (i. e. compressibility) on � and S that may cause a dynamically
relevant change of density. This can be understood as follows: Two water bodies
(marked A and B in Figure 4.1), which have different �; S but the same (in-situ)
density at pressure p0, have different densities at another pressure p4. At higher
pressure (p4) the more salty water body (B) is less dense, and a dynamical pressure
gradient results.

The relative importance of this last term can be estimated as follows. Let �cs D
cc � cs be the change in sound velocity due to differences in S or � . The magnitude

2 SIMEON DENIS POISSON, *1781 in Pithiviers, †1840 in Paris, physicist and mathematician.
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Fig. 4.1 Density for two different pressures in the ��S -diagram. Two water masses A,B have the
same density at pressure p0 (full line) but different densities at higher pressure p4 (thin line)

of the compressibility term in (4.15) is then of order .2�cs=cs/w�0=c
2
s . The verti-

cal advection term in (4.15) scales as w��=H . Typical values are �cs=cs . 0:05,
H=D . 0:02; �0=�� � 500. Hence the ratio of both terms is given by

.2�cs=cs/w�0=c
2
s

w��=H
D 2

�cs

cs

H

D

�0

��
. 1 (4.16)

and may locally reach O.1/, although it is usually much smaller. The dynamical ef-
fect is related to a vertical motion, more precisely to differences in sound velocity,
respectively compressibility in regions of upwelling and downwelling. The com-
pressibility effect is not dominating, but may not always be neglected altogether.

Note also that according to (4.15) only deviations of the sound velocity from the
reference state are dynamically relevant. As the state of rest is not uniquely defined,
the last term in (4.15) cannot have a unique interpretation. However, when integrat-
ing e. g. along a horizontal surface, the contribution of the reference term drops out
completely.

4.1.4 Energetics in the Boussinesq Approximation

Scalar multiplication of the momentum equation (4.10) with u, in combination
with (4.11) yields the kinetic energy budget of the Boussinesq approximation,

D

Dt

�
1

2
�0u

2

�
D �r � u Qp � g Q�w C u � F (4.17)

Note that in this approximation the energy per volume is given by �0u2=2 rather
than the exact form �u2=2. The terms on the right-hand side of (4.17) have an ob-
vious meaning. The term u � F describes the mechanical work on the system due to
Reynolds stresses (or molecular stress in case that we have not applied a Reynolds
filter yet). The term �r � u Qp is the divergence of a mechanical energy flux with
respect to the dynamic pressure Qp. The term �g Q�w is the rate of work against the
gravity force.
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The first two terms contain Qp; Q� rather than the full variables p; � as in (2.69). Due
to the identity r � u Qp C gw Q� � r � up C gw�, however, this has no consequences
for the kinetic energy but has the advantage that two very large terms which are
connected to the reference state cancel exactly.

Previously, in Section 2.4.2, we have interpreted ˚ D gz as a potential energy
(per mass) and shown that the work against gravity can be interpreted as an ex-
change between kinetic and potential energy. In the Boussinesq approximation this
interpretation is no longer useful. The reason is that the replacement of mass conser-
vation (2.151) by volume conservation (4.11) means that mass is no longer strictly
conserved. Hence all conservation laws now must be formulated for properties per
volume, not per mass. The identification of a potential energy Ep to close (4.17) in
a conservation of some total energy variable is nevertheless fairly straightforward.
With the definition Ep D gz Q�=�0 and (4.15) one finds

�0
DEp

Dt
D g Q�w C gz

D Q�
Dt

(4.18)

Compared to (4.17), the work against gravity appears with the opposite sign, showing
that Ep is indeed an appropriate definition for the potential energy relative to the
reference state.

However, on the right-hand side of (4.18) a new term gz D Q�=Dt appears which
is related to changes of the dynamically relevant density and is not present in the
exact potential energy budget (2.70). Its interpretation is facilitated by noting that
the energy exchange �p�D�=Dt between kinetic and internal energy appears in the
exact kinetic energy budget (2.69) but is absent from (4.17). Obviously,

�p�D�

Dt
D p

�

D .�c C Q�/
Dt

� �gzD Q�
Dt

(here we have ignored a term �gz D�c=Dt on the right-hand side which applies to
the background state). We see that the term gz D Q�=Dt appears with opposite sign in
the budget of internal energy and hence can be interpreted as an exchange between
mechanical and internal energy. As a consequence of the Boussinesq approximation,
the exchange occurs, however, with the potential rather than the kinetic energy.

By expressing D Q�=Dt by (4.18) with (4.15), this exchange is seen to consist of
two contributions. The term gzG� arises from diapycnal processes resulting from
turbulent salt and heat fluxes which according to (3.2) affect the density of a water
parcel and hence its potential energy. The term �g2z�0w.c�2

s � c�2
c / describes the

(reversible) exchange with the internal energy due to the compressibility of sea wa-
ter, more precisely the dynamically relevant fraction of the exchange with internal
energy. Its relative magnitude, compared to the exchange between kinetic and po-
tential energy in (4.17), is given by the same ratio as in (4.16) and is indeed usually
small, although it can reach locally O.1/.

4.1.5 Potential Vorticity in the Boussinesq Approximation

The derivation of an equation for absolute and potential vorticity from (4.10)–(4.12)
follows the same line as in Section 2.11 and will not be repeated here. The potential
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vorticity budget is found to be

D

Dt

�
!a

�0
� r

�
D !a

�0
� rG� C 1

�0
r � .r � F/C r˚ � r

� Q�
�0

�
� r (4.19)

and is readily identified as the Boussinesq approximation to Ertel’s theorem (2.212).
It differs from the original mainly because the last term in (4.19) – the baroclinicity
term – takes a different form. As r˚ is a vertical vector (cf. Section 4.2.2), this term
may also be written as

B D r˚ � r
� Q�
�0

�
� r D g

�0
rh Q� � r h (4.20)

where the index h denotes the horizontal vector. A special form for this term is ob-
tained when  is chosen as potential density �p according to (2.129). Evaluating the
cross-product in (4.20) yields

B D g�0 .�?˛ � �˛?/rhS � r h� (4.21)

where ˛?; �? denote the expansion coefficients at the reference pressure of the poten-
tial density. Hence the baroclinicity term vanishes always at the reference pressure
and in addition also if the horizontal gradients of S and � are parallel (which is often
approximately the case when both follow a close ��S relation in a region). For those
reasons, �p is usually the preferred scalar for defining potential vorticity.

Furthermore, a constant factor �0 instead of � appears in the denominator of all
terms in (4.19). It is hence possible (and often customary) to drop that factor in the
definition of potential vorticity.

4.1.6 Full Incompressibility and Combination of Salt and Heat
Budgets

The ultimate approximation with respect to density is the complete neglect of com-
pressibility effects in (4.15), which is equivalent to the use of a pressure-independent
equation of state. In other words, in this approximation the difference between po-
tential density and in-situ density is ignored, and the density balance is taken as

D Q�
Dt

D G� (4.22)

Frequently, this approximation is combined with a linearized equation of state, i. e.

Q� D �0



�0 QS � ˛0 Q�

�
(4.23)

with constant coefficients ˛0 and �0, implying that QS , Q� vary only in a sufficiently
small range. If, in addition, the source term G� can be expressed in terms of Q� instead
of QS and Q� individually (including the relevant boundary conditions), then (4.22) may
replace equations (4.12) and (4.13). Hence the temperature and salinity need not be
considered individually, or in other words: salinity on isopycnal surfaces is consid-
ered as a passive tracer. Note that because the difference between in-situ density and
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potential density is ignored in this approximation, it follows that the baroclinicity
term in the potential vorticity budget (4.21) can also be neglected.

Quite frequently, the terminus Boussinesq approximation is understood to include
the approximation of full incompressibility. An even further approximation is that of
an ideal fluid where all diabatic terms are neglected. An ideal Boussinesq fluid thus
satisfies

�0
Du

Dt
D �2�0˝ � u� r Qp � Q�r˚ (4.24)

r � u D 0 (4.25)

D Q�
Dt

D 0 (4.26)

The constant factor �0 frequently is eliminated by redefining density and pressure.
When specifying the geopotential ˚ D gz (see next chapter), it is convenient to
introduce the buoyancy b D �g Q�=�0 replacing the density Q�.

4.2 ShallowWater Approximation

The equations in the Boussinesq approximation, (4.10)–(4.13), are the common start-
ing point for many problems in oceanography. We proceed in this section to introduce
a coordinate system for (4.10)–(4.13), which is more useful than Cartesian coordi-
nates for large-scale motions in the ocean. It is obvious that at horizontal scales larger
than a few tens of kilometers, it becomes important to use a coordinate system that
takes into account the Earth’s geometry.

4.2.1 Oblate Spheroidal Coordinates

Due to the overriding magnitude of the gravity force in the equations of motion, it is
most useful to choose a coordinate system where surfaces of constant geopotential
coincide with a constant coordinate, which we will call the vertical coordinate. With-
out such a choice, the gravity force would not only dominate the vertical momentum
balance but would also appear in the horizontal directions, thus making the physi-
cal interpretation of the horizontal momentum balance very difficult. As discussed
in Section 2.3.4, geopotential surfaces are to a very good approximation given by
an oblate ellipsoid. The deviations of geopotential surfaces from a perfect (best fit)
ellipsoid vary for instance at maximum only between �110m in the Indian Ocean to
C90m over southeast Asia (see Figure 2.9).

Therefore, oblate spheroidal coordinates represent the best-suited coordinate sys-
tem to describe oceanic motions. They are defined as

x1 D �
�2 C c2

� 1
2 cos cos
 ; x2 D �

�2 C c2
� 1
2 cos sin
 ; x3 D � sin 

(4.27)
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Here 
 is the eastward longitude, and the geometric meaning of the coordinates 
and � follows from Figure 4.2. The angle  and the length � are related to the
geographical latitude ' and the distance from the origin r D .x21 C x22 C x23/

1
2 by

r2 D �2 C c2 cos2  and sin2 ' D sin2  

1C .c2=�2/ cos2  
(4.28)

The constant c is given by c2 D a2e � a2p where ae � 6;378:1 km and ap �
6;356:8 km are the equatorial and polar Earth radii, respectively (cf. Section 2.3.4).
The geoid surface is given by� D ap, and the coordinate� is strictly along the direc-
tion of the local gravity force. Note that other definitions of ellipsoidal coordinates
exist which differ from (4.27) by the scaling of the coordinates (see e.g. Morse and
Feshbach, 1953). Furthermore, as noted by White et al. (2008), while confocal oblate
spheroidal coordinates such as defined by (4.27) describe the Earth’s shape correctly,
the relation g D jr˚ j based on these coordinates does not imply the correct vari-
ation of gravity according to (2.54). To also implement the correct variation, White
et al. (2008) propose a different system which is also based on oblate spheroids but
is defined by a numerical coordinate transformation. However, this approach is not
further discussed here, and the following discussion is restricted to the analytical
system defined by (4.27).

The transformation of the equations of motion to oblate spheroidal coordinates
is in principle straightforward, and has been discussed e. g. by Veronis (1973) and
Gates (2004). As shown in Appendix A.4.2, the momentum equations (4.10) for the
velocity components .u�; u ; u�/ � .u; v; w/ and the mass conservation (4.11) in

Fig. 4.2 Geometry of oblate spheroidal coordinates
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22. Angular MomentumThe angular momentum (per mass) of a fluid element at a distance r from the Earth’ center
is given as r � u relative to a rotating coordinate system, and as r � .u C ˝ � r/ in an
absolute frame. The balance of angular momentum is obtained by vectorial multiplication of the
momentum equation (4.10) with r . Using the identity u D Dr=Dt , one obtains

�0
D

Dt
.r � u/C 2�0r � .˝ � u/D r � .�r Qp � Q�r ˚ C F/

The axial componentM of the absolute angular momentum is given asM D e3 �Œr �.uC˝ �
r/�where e3 is the (constant) unit vector parallel to the Earth’ rotation axis. Scalar multiplication
of the angular momentum balance with e3, using the fact that e3 � r � r ˚ D 0, yields

�0
DM

Dt
D e3 � Œr � .�r QpC F/� (B22.1)

Hence the axial angular momentum M is conserved in the absence of pressure gradients and
forcing.
For large-scale motions, consideration of the axial angular momentum balance can be useful,
even though the balance follows directly from the momentum equations and hence is not inde-
pendent. Note that further approximations in the momentum equations must also be reflected
in the definition of M . In principle, the angular momentum conservation places a constraint on
possible approximations, since approximations which do not imply a conservation law analo-
gously to (B22.1) lack an important property and can be considered as physically inconsistent
(see e. g. Section 4.2.3 below).

the Boussinesq approximation take the form

�0

�
D

Dt
u�uv

A
tan C �

AB
uw�2B

A
˝v sin C2�

A
˝w cos 

�
D � 1

B cos 

@ Qp
@


CFu
(4.29)
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Here the material advection operator is given as

D

Dt
D @

@t
C u

B cos 

@

@

C v

A

@

@ 
C w

AB�1
@

@�
(4.33)

and the coefficients A;B;C are defined as

A. ;�/ D .�2 C c2 sin2  /
1
2 ; B.�/ D .�2 C c2/

1
2 ;

C. ;�/ D c2 sin cos 

BA2
(4.34)

Temperature and salinity budgets in the Boussinesq system (4.12) remain formally
unchanged if one remembers the transformed material advection operator (4.33).
Likewise, the budgets of kinetic and potential energies remain as in (4.17) and (4.18),
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with the divergence operator defined as in (A.57) in Appendix A.4.2. Note the ap-
pearance of metric terms in (4.29)–(4.31) which appear in any curvilinear coordinate
system (cf. Appendix A.4.1). Like the Coriolis terms, these terms do not contribute
to the budget of kinetic energy.

The conservation of axial angular momentum (cf. the box on p. 125) can be de-
rived directly by multiplication of (4.29) withB cos , using the identities D =Dt D
v=A and D�=Dt D wB=A. The results is

�0
D

Dt
Œ.uC˝B cos /B cos � D �@ Qp

@

C FuB cos (4.35)

Note that the metric terms do not appear explicitly in (4.35) which also could be
derived from the general form discussed in the box on p. 125.

4.2.2 Spherical Approximation

The use of ellipsoidal coordinates in (4.29)–(4.32) – while not very common – is
straightforward and causes no difficulties e. g. for the formulation of a numerical
model. For many purposes, however, such a coordinate system is not a practical
choice. In particular, the algebraic complexity connected to the nonconstant coeffi-
cients A;B;C is often inconvenient.

Now the shape of the Earth is very close to that of a sphere. The deviation from
the spherical shape is measured by the ellipticity3 (or flattening parameter) e D 1 �
ap=ae � 1=298. It hence follows that c2=a2e � c2=a2p � 2e � 1. Expanding now
the coefficients in (4.34) for small e, and replacing � by ap in the small terms, one
obtains

A � �.1C e sin2  / ; B � �.1C e/ ; C � e

�
sin cos (4.36)

up to terms of quadratic and higher order in e. From (4.28) one likewise obtains

r � �.1C e cos2 '/ and sin � .1C e cos2 '/ sin' (4.37)

Specifically, the geoid is given as

rg D .a2p C c2 cos2  /
1
2 D ae

�
1 � c2

a2e
sin2  

� 1
2

� ae.1 � e sin2 '/

which agrees with (2.53), with e � "3 D 3:36 � 10�3.
In the spherical approximation, the differences between the ellipsoid and a sphere

of mean radius a D .ae C ap/=2 � 6;367:4 km are ignored. Formally, the approx-
imation is obtained by taking the limit e ! 0 in (4.36) and (4.37), so that A � �,
B � �, C � 0 and also r � � and  � '. The error incurred in the spherical
approximation is indeed of order e, as to be expected. The spherical geometry is dis-
played in Figure 4.3. Introducing for abbreviation the locally vertical component f
(referred to as Coriolis parameter) and the horizontal component fh of the rotation
vector˝ by

f D 2˝ sin' ; fh D 2˝ cos'

3 The ellipticity is related to the eccentricity " by 1� "2 D .1� e/2.



4.2 ShallowWater Approximation 127

Fig. 4.3 Cartesian and spherical coordinates of the Earth. Redrawn after Vallis (2006)

equations (4.29)–(4.32) then take the form
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with the material advection operator
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(4.42)

The system (4.38)–(4.41) can be interpreted as still being expressed in ellipsoidal
coordinates, in the limit of small e. In this view, the geopotential surfaces still form an
ellipsoid, so that the coordinate r � � is still along the direction of the gravity force.
Alternatively, (4.38)–(4.42) can be obtained directly by transforming the equations
of motion into spherical coordinates (see Appendix A.4.3), provided, however, that
the geopotential surfaces are approximated by spherical surfaces, so that again the
gravity force does not appear in the locally horizontal directions.
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As shown in Section 2.3.4, the gravity g D jr˚ j at the Earth’s surface depends
on latitude ' (cf. (2.54)). However, the relative changes of g.'/ are of order 3 �
10�3, and within the accuracy of the spherical approximation we can assume g D
9:81m s�2 D const. Furthermore, as pointed out by White et al. (2005), keeping
the variation of g in this approximation would be inconsistent and lead to spurious
vorticity sources.

The conservation of axial angular momentum (cf. the box on p. 125) can again
be derived directly by multiplication of (4.38) with r cos', using the identities
D'=Dt D v=r and Dr=Dt D w, and results in

�0
D

Dt
Œ.uC˝r cos'/r cos'� D �@ Qp

@

C Fur cos'

4.2.3 Thin-Shell Approximation

Equations (4.38)–(4.41) are somewhat simpler than the equations in spheroidal co-
ordinates but still have variable coefficients (all terms with r). It is convenient to
introduce the locally vertical coordinate z D r � a, so that @=@r � @=@z.

Now the ocean only extends over a thin shell with a vertical range up to a depth
H � 5 km, which is a factor of 1,000 smaller than the Earth’s mean radius. It is,
therefore, very suggestive to approximate r D aCz � a in all terms in (4.38)–(4.42)
since the error involved is a most H=a � 10�3. Furthermore, those metric terms
containing the vertical velocity w are smaller by a factor H=a than the respective
vertical advection terms and can likewise be neglected. This applies to the terms
uw=r in (4.38) and vw=r in (4.39). In this thin-shell approximation, (4.38)–(4.41)
then take the form
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with the substantial derivative
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At first sight it appears that we have achieved a useful form with a small error . 10�3
and constant coefficients a instead of r . However, it turns out that the system (4.43)–
(4.46) does not lead to a consistent angular momentum budget, a fact which was
already noted by Phillips (1966). This can e. g. be seen by multiplication of (4.43)
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23. Components
of Coriolis Vector

Components of the Earth rotation vector ˝ ,
shown on a section through the Earth.

The rotation vector has the two components
f D 2˝ sin' and fh D 2˝ cos', as seen
from the adjacent figure. The Coriolis force
in the momentum equations (4.38)–(4.40) ap-
pears in four terms, two related to f and
two to fh. Following Gerkema et al. (2008),
all four terms can be derived from elemen-
tary mechanical principles, alternatively to
the straightforward algebra. While the equa-
tions hold in a coordinate system rotating
with the Earth, it is useful to take the perspec-
tive of an observer in a nonrotating system.
A fluid parcel is at rest when all forces acting
on it are balanced. Viewed from a nonrotat-
ing observer, the parcel moves along a latitu-
dinal circle of radius R.'/ D a cos' at an
eastward velocity U D ˝a cos'. Consider
now the case when the parcel is not at rest but
has a velocity in one of the three coordinate
directions (for the Northern Hemisphere, the
situation in the Southern Hemisphere is equivalent):
Eastward: A parcel moving eastward with velocity u has a total velocityUCu, where u 
 U
can be assumed. Hence the required centripetal force increases by 2Uu=R.'/ D 2˝u. This
increment tends to push the parcel outward in the latitudinal plane. This outward accelera-
tion can be decomposed into a radial component 2˝u cos ' D fhu and a southward one,
�2˝u sin ' D �f u, terms which indeed appear in (4.40) respectively (4.39).
Northward: When moving northward to the latitude '0 D ' C ı', the parcels new circle of
latitude is smaller by approximately �a sin'ı'. Conservation of angular momentum requires
UR.'/ D .UCu/R.'0/, so that the parcel will obtain an eastward velocity uD ˝ sin'aı'.
Now resting parcels at latitude '0 rotate at U 0 D ˝R.'0/ � U �˝ sin'aı'. Relative to
those ambient parcels, the initially northward moving parcel will thus have an eastward velocity
difference of 2˝ sin'aı' D faı'. This corresponds to an eastward acceleration f v, which
indeed appears in (4.38).
Upward: For a parcel moving initially upward (i. e. , radially outward) to a0 D a C ıa, con-
servation of angular momentum Ua cos' D .U C u/a0 cos' requires that the parcels east-
ward velocity will become smaller by u D �˝ cos'ıa. At this higher altitude, parcels at
rest have an eastward velocity U 0 D ˝a0 cos', differing from U by ˝ cos'ıa. Relative
to those parcels, the initially upward moving parcel thus has an excess of westward velocity
of �2˝ cos'ıa D �fhıa, corresponding to a westward acceleration �fhw , as appearing
in (4.38).

with a cos', and proceeding as in the previous section. The result is

�0
D

Dt
Œ.uC˝a cos'/a cos'�C fhaw cos' D �@ Qp

@

C r cos'Fu

This form does not agree with the general form discussed in the box on p. 125, due
to an extra term which originates from the Coriolis acceleration due to the horizontal
component of the rotation vector in (4.43). For this reason, the system (4.43)–(4.47)
is not fully consistent and should be used with care.

4.2.4 Small Aspect Ratio

For a further simplification of the system, we now use the fact that the horizontal
dimensions of ocean basins are much larger than the ocean depth. We assume that
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similar to the horizontal dimension, the horizontal scale L for motions of large scale
is also much larger than the vertical scale H . It is useful to define the aspect ra-
tio ı D H=L. The restriction to scales H � L, i. e. ı � 1, leads now to a further
simplification of the equations of motion. To determine the order of magnitude of
individual terms in these equations, scales are introduced as described in Table 4.1.

All variables are scaled according to .u; v/ D U.u�; v�/, w D Ww�, Qp D
QPp�, Q� D QR��, z D Zz�, t D T t�, etc. where the variables with asterisk are

dimensionless and are assumed to be of order one. Only the scales L, H , etc. carry
the dimension and relevant magnitude for the motions we want to consider now.
From the continuity equation (4.46) one obtains as relative orders of magnitude (or
scaling)

1

a cos'
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@

	 @w

@z
or

U
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	 W

H
or W 	 H

L
U D ıU (4.48)

We see that the aspect ratio ı equals the ratio of vertical to horizontal velocity and
describes the slope of particle trajectories in a vertical plane. It should be noted that
this scaling is revised later in Section 5.1 since although ı is small, the relation (4.48)
still overestimates the magnitude of the vertical velocity in many situations.

Under oceanic conditions, the mechanical forcing in the horizontal momentum
budget (4.43) and (4.44) is rarely the dominant term in the horizontal momentum
balance. Hence the pressure gradient has to be balanced by either the Coriolis force
or by the acceleration term. This leads to the scaling relation

QP 	 �0UL˝max

�
1;

1

˝T

�
(4.49)

For ˝T � 1 the acceleration terms are small, which is the case for the large-scale
ocean circulation. On the other hand, for ˝T � 1 the acceleration terms dominate,
which occurs e. g. for tidal currents.

We now consider the individual terms in the horizontal momentum balance (4.43).
In Table 4.2 the magnitude relative to the horizontal pressure gradient is evaluated,

Table 4.1 Characteristic scales for large-scale oceanic motions and some resulting dimensionless
(small) numbers

L Horizontal length scale Ro D U=2˝L Rossby number
H Vertical length scale Ek D Fu=˝U Ekman number
U Horizontal velocity scale ı D H=L Aspect ratio
W Vertical velocity scale ` D L=a Metric ratio
T Time (L=U orH=W ) scale
QP Scale of pressure perturbation
QR Scale of density perturbation
a Earth radius

Table 4.2 Scaling of the terms in the horizontal momentum balance, with � D min.1;˝T /

Term Scaling Relative to pressure gradient

@u=@t U=T �

u � r u U 2=L .U=2˝L/� � Ro
2˝v sin' ˝U �
2˝w cos' ˝W ı� � ı

.uv=a/ tan' U 2=a .U=L˝/L=a� � Ro`

.�0a cos'/�1@ Qp=@� QP=�0L 1
Fu Ek˝U Ek�
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with the help of (4.48) and (4.49). A corresponding analysis can be applied to the
vertical momentum balance (4.40) where the magnitudes relative to the vertical pres-
sure gradient are computed. This is shown in Table 4.3. In addition to the aspect ratio,
three additional dimensionless numbers appear. The Rossby number Ro D U=˝L is
the ratio of the inertial (momentum advection) terms to Coriolis terms in the horizon-
tal momentum equation. The Ekman number Ek is the ratio of mechanical forcing
(friction) to the Coriolis term in the horizontal momentum equation. Both numbers
are usually small but may approach O.1/ in certain situations. We will assume that
Ro . 1 and Ek . 1. Furthermore, ` D L=a denotes the ratio of the length scale
and Earth radius. It is usually O.0:1/ or smaller and measures the importance of the
metric terms compared to the advection. The scaling assumes sin ', tan ' 	 1 and
must thus be modified when approaching the equator or the poles.

The assumption ı � 1 now allows to identify small and thus unimportant terms in
the momentum budget. As seen in Table 4.3, in the vertical momentum budget (4.45),
all inertial terms and the mechanical friction term are by a factor ı2 smaller, and the
term containing fh in (4.45) is by a factor of ı smaller than the vertical pressure
gradient. It follows that only the buoyancy term can balance the pressure gradient,
and that flows of small aspect ratio are hydrostatically balanced. The neglect of all
terms except pressure gradient and gravity force in the vertical momentum equation
is called the hydrostatic approximation. Accordingly, the density must scale as

QR D
QP
gH

The term containing fh D ˝ cos' in the horizontal momentum balance (4.43) is
of order ı. Formally, neglecting both terms with fh is equivalent to ignoring the lo-
cally horizontal component of the vector˝ , an approach which is called traditional
approximation (see e. g. Gerkema et al. (2008) for an extensive discussion on the
validity of this approximation). Note that this conclusion is valid both for ˝T � 1

as well as for˝T � 1.
Note that once the hydrostatic approximation is made, the conservation of ki-

netic energy applies to the horizontal part .u2 C v2/=2 only as shown below in Sec-
tion 4.2.6. Consequently, neglection of the Coriolis term in (4.45) requires to neglect
the ˝ cos'-term in (4.43) as well (which may introduce work in the energy bud-
get otherwise). We note that dropping this term may lead to problems close to the
equator where sin' � 1.

Table 4.3 Scaling of the terms in the vertical momentum balance, with � D min.1;˝T /

Term Scaling Relative to Pressure Gradient

@w=@t W=T .H2=L2/� � ı2

u � r w UW=L .U=L˝/.H2=L2/� � Roı2

.u2 C
v2/=a

U 2=a .U=L˝/.H=a/� � Ro`ı

2˝u cos ' ˝U .H=L/� � ı

.1=�0/@ Qp=@z QP=�0H 1
g Q�=�0 g QR=�0 gH QR= QP
Fw Ek˝W Ek.H2=L2/� � Ekı2
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4.2.5 Primitive Equations

We now have completed all steps for the shallow water approximation which in-
volves transformation to spherical coordinates, thin-shell approximation and assum-
ing a small aspect ratio for relevant motions. The combination with the Boussinesq
approximation yields the set of equations most frequently used for ocean circulation
models, which are often called the primitive equations. One obtains

�0

�
Du

Dt
� uv

a
tan ' � f v

�
D � 1

a cos'

@ Qp
@


C Fu (4.50)
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@ Qp
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D �g Q� (4.52)
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a cos'
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C @v cos'
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(4.53)

�0
D QS
Dt

D GS (4.54)

�0
D Q�
Dt

D G� (4.55)

Q� D F. QS; Q�; pc/ (4.56)

where the operator D=Dt is defined as in (4.47). The primitive equations describe
many problems in large-scale oceanography. They are the preferred set for ocean
general circulation models. However, they also can be used to describe tidal motions
when the appropriate forcing potential is included.

Note that the neglect of the Dw=Dt-term in the vertical momentum equation also
changes the character of the system, and the pressure can directly be obtained by
integration of (4.52), instead of solving the Poisson-equation (4.14).

4.2.6 Energetics and Potential Vorticity
in the ShallowWater Approximation

Scalar multiplication of (4.50)–(4.52) with the respective velocity components and
subsequent addition, in combination with (4.53), yields the kinetic energy budget

D

Dt

1

2
�0u

2
h D �

�
rh � Qpuh C @ Qpw

@z

�
� g Q�w C uh � Fh (4.57)

Compared to the general Boussinesq form of kinetic energy (4.17), we see that only
the horizontal velocity components contribute to the kinetic energy and also to the
mechanical forcing term, i. e. the contribution of the respective vertical terms is small
and neglected. The general Boussinesq form of potential energy (4.18) remains un-
changed.

A theorem of conservation for potential vorticity may again be derived in the
usual way outlined in Section 4.1.5, by considering the budget of absolute vorticity
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based on (4.50)–(4.52) and combining with a passive tracer budget. The somewhat
lengthy derivation is omitted here, and we just give the result
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where !SW
a and QSW are the shallow water forms of absolute vorticity and potential

vorticity
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respectively, and B is the baroclinicity term as in (4.20).

Rossby’s Potential Vorticity

Earlier than Ertel’s concept of potential vorticity a simpler version was found by
Rossby. Consider a homogeneous layer of fluid with a height h.xh; t/ along the ver-
tical direction z, where xh denoting the horizontal coordinates. Assume a friction-
less flow so that the vorticity is governed by Helmholtz’ equation (2.196). Further
assume that the horizontal velocity is independent of depth. The motion occurs thus
in the form of Taylor columns (see also Section 2.11.2 and Figure 4.4). Using the
notation � and f for the vertical components of relative and planetary vorticity, as
in Section 2.11.1, the vertical component of (2.196) becomes

D

Dt
.�C f / D .�C f /

@w

@z
(4.59)

Mass conservation requires a nondivergent velocity field,

@w

@z
D �

�
@u

@x
C @v

@y

�
(4.60)

which integrates to

Dh

Dt
D wtop � wbottom D �h

�
@u

@x
C @v

@y

�
(4.61)

Fig. 4.4 Sketch illustrating the change of relative vorticity by stretching of the water column
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Eliminating the divergence between (4.59) and (4.61), we obtain a conservation
equation for Rossby’s form of the potential vorticity,

D

Dt

�
�C f

h

�
D 0 (4.62)

In a frictionless, barotropic fluid the quantity .� C f /=h is conserved following
the motion of the Taylor columns. For instance, if h increases, the column must
increase its counterclockwise spin or move to a place where the planetary vorticity
is larger, i. e. to higher latitudes. This statement is easily understood if the Taylor
column is considered as a cylinder of height h and radius R in solid rotation. Then,
because pressure forces cannot affect any torque on an infinitesimally thin cylinder,
conservation of its angular momentum is simply I! D const where I D  R2h�=2 is
the moment of inertia and ! the angular velocity. If the cylinder changes its height h
while conserving mass,  R2h� D const, the quantity !=h is thus conserved. With
! D .�C f /=2, we find indeed (4.62).



Geostrophic
and Quasi-Geostrophic Motions 5

In this chapter, further approximations to the primitive equations de-
rived in Section 4.2.5 are considered, which are valid for situations
characterized by a small Rossby number. Geostrophic balance is as-
sumed to dominate for lateral scales comparable to the Rossby radius –
leading to the quasi-geostrophic approximation – or on scales compa-
rable to Earth’s radius – the planetary geostrophic approximation. The
latter set of equations can be reformulated for an explicit expression
for the absolute velocity.

From the scaling introduced in Section 4.2.4, it became evident that large-scale mo-
tions with small Rossby number Ro D U=˝L, small aspect ratio ı D H=L and
small Ekman number Ek are geostrophic, i. e. the horizontal pressure force is nearly
in balance with the Coriolis force. Employing, for a moment, Cartesian coordinates,
the horizontal momentum budget in geostrophic balance becomes

�f�v D �@p=@x CO.U 2=L;˝LEk/ ; f�u D �@p=@y CO.U 2=L;˝LEk/
(5.1)

So far we have used the continuity equation to infer a scale for the vertical velocity,
with the result W D Uı. However, as we shall see in the following, the geostrophic
balance implies a different and much smaller size of W .

5.1 Geostrophic Scaling

More information on the scale of the vertical velocity can be obtained by eliminating
the pressure by cross-differentiating and subtracting both equations (5.1). With the
continuity equation, and ˇ D @f=@y, one obtains

f
@w

@z
� ˇv D O.U 2=L2;˝Ek/ (5.2)

which is referred to as the planetary vorticity equation. It is now in a form that can
be used to infer the magnitude W . If the balance occurs between the terms of the
left-hand side of (5.2), one finds a scale W D ˇU=˝ D .ˇL=˝/Uı which is
smaller by the factor ˇL=˝ 	 L=a (assuming that f varies on the Earth radius a,

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 135
DOI 10.1007/978-3-642-23450-7_5, © Springer-Verlag Berlin Heidelberg 2012
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i. e. ˇ 	 ˝=a) than the scaling inferred from the continuity equation only. Other
regimes result if the stretching term (f @w=@z) in (5.2) is in balance with one or
several of the terms on the right-hand side as detailed below. However, the fact that
for geostrophically balanced motions the magnitude of the vertical velocity appears
to be smaller than the scaling used in Chapter 4.2, implies the possibility of fur-
ther approximations which will be explained below. Such approximations include
the quasi-geostrophic approximation (cf. Section 5.2) and the planetary-geostrophic
approximation (cf. Section 5.3).

A more detailed classification of geostrophically balanced motions can be ob-
tained by considering a scale analysis of the complete vorticity equation which was
discussed in Section 2.11.2. The vertical component of Beltrami’s equation (2.209),
resembling the complete version of (5.2), reads

�
@
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�
�

�

�
„ ƒ‚ …
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C �u � r
�
�

�

�
„ ƒ‚ …

II

C ˇv„ƒ‚…
III

D .�C f /
@w

@z„ ƒ‚ …
IV

C
�
!.x/a

@w

@x
C !.y/a

@w

@y

�
„ ƒ‚ …

V

CB.z/ C fric (5.3)

where � D !
.z/
a D @v=@x � @u=@y denotes the vertical component of the relative

vorticity, and fric denotes frictional contributions. Only the terms labeled I to V mat-
ter in the following scaling analysis since the vertical component of the baroclinicity
vector B and of the frictional term remain small in (5.3). The dominant terms are
given by

I: the tendency term, with magnitude U=LT ,
II: the advection of relative vorticity, with magnitude U 2=L2,
III: the advection of planetary vorticity, with magnitude ˇU ,
IV: the stretching term, with magnitude˝W=H since �=f 	 Ro, and
V: the tilting term, with magnitude UW=HL.

The vertical velocity scale W can be inferred from this balance, provided that
the stretching term plays a dominant role compared with some of the other terms.
Since V/IV 	 Ro, the tilting term V is always small compared to the stretching term
and can be discarded. Thus we can differentiate between three different regimes:
IV 	 III, which yields the planetary geostrophic scaling, IV 	 II which yields the
quasi-geostrophic scaling, and finally IV 	 I, which we will call the Rossby wave
regime.

For the following discussion it is useful to introduce a length scale and a dimen-
sionless number, the RHINES1 scale Lˇ (Rhines, 1975) and the ˇ-Rossby number or
Rhines number Rˇ as

Lˇ D
�
U

ˇ

� 1
2

and Rˇ D U

ˇL2
D L2

ˇ

L2
D a

L
Ro (5.4)

Note that the ratio III/II divides the range of possible length scales: for II 
 III we
find L 
 Lˇ . A typical oceanic value for Lˇ is 100 km. The Rhines scale separates
motions with respect to their transport of relative or planetary vorticity: if L 
 Lˇ
the transport of planetary vorticity exceeds that of relative vorticity, and vice versa.
In terms of the ˇ-Rossby number, the threshold dividing the regimes of predominant

1 PETER RHINES, *1942 in Hartford, Connecticut, fluid dynamicist.



5.1 Geostrophic Scaling 137

transport of planetary or relative vorticity is defined by Rˇ D 1. For Rˇ > 1 the
advection of relative vorticity dominates and for Rˇ < 1 the transport of planetary
vorticity dominates, where the former regime might be called the mesoscale flow and
the latter the gyre-scale flow. Typical values of the relevant scales for mesoscale and
gyre-scale flow are given in Table 5.1.

Next consider the role of the time tendency term in (5.3). We first note that in
addition to the Rhines scale Lˇ , two more length scales can be formed in the scaling
analysis of (5.3) by comparing the relative importance of the time tendency term (I)
with the advection of relative (II) and planetary vorticity (III): II 
 I yields L �
UT D Lad, the advective length scale (which we leave out of the discussion), and
III 
 I yields L 
 1=ˇT D Lw which can be viewed as the wave length scale.

In the Rossby wave regime where the stretching term IV in (5.3) is balanced by the
time tendency term (I), it follows thatW 	 UH=L˝T . The magnitude of the appro-
priate time-scale T must however be estimated from further relations. Restricting the
analysis to the hydrostatic and geostrophic regime leads to a scaling of pressure as
P 	 UL˝ and of density as R 	 P=gH , respectively, as introduced in Section 4.2.
Anticipating the equation for the density perturbation (5.15) (with zero source term)
which is derived in Section 5.2 below (see also Section 3.2), one finds the scaling
T 	 LU˝=.HN 2W /, and hence L D NH=˝ D Ri which will later be identified
as the (first) internal Rossby radius for constantN (cf. Section 5.2.1). Finally, setting
Lw 	 Ri yields the time-scale T D 1=ˇRi of the (baroclinic) Rossby waves.

To summarize, the scale analysis of Beltrami’s equation (5.3) has identified three
important dynamical regimes. The quasi-geostrophic regime is characterized by
IV 	 II 
 III, i. e. W˝=H � U 2=L2 
 ˇU . Hence

W � RoUH=L and L � Lˇ (5.5)

For L D Lˇ we find W D UH=a. The quasi-geostrophic regime is relevant
for mesoscale flow and is discussed in more detail in Section 5.2. The planetary
geostrophic regime is characterized by IV 	 III 
 II, i. e. W˝=H � ˇU 

.U=L/2. Hence

W � ˇ

˝
UH � .L=a/UH=L D UH=a and L 
 Lˇ (5.6)

The planetary-geostrophic regime is relevant for gyre-scale flow and is discussed in
more detail in Section 5.3. The Rossby wave regime is characterized by IV 	 I,
hence

W � UH=a and L 	 Ri and T D 1=ˇRi

Table 5.1 Typical magnitudes of velocity and length scales and dimensionless numbers for
mesoscale and gyre-scale oceanic flows (for H D 4;000m, ˇ D 2 � 10�11 m�1 s�1, ˝ D
7:3 � 10�5 s�1 and a D 6; 371 km). For mesoscale W is estimated from (5.5), for gyre-scale
from (5.6)

Mesoscale Gyre-scale

U Œm s�1� 0.2 0.05
W Œm s�1� 2� 10�4 3� 10�5

L Œm� 105 106

` D L=a 0.015 0.15
Ro D U=.˝L/ 0:03 7� 10�4

Rˇ D U=.ˇL2/ 1 0.003
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The wave regime is relevant for the adjustment of the circulation to changes in the
forcing, and is discussed in more detail in Section 8.2.

The tilting term (V) in the scale analysis of (5.3) has been neglected from the
beginning since its size is small, both in the planetary geostrophic regime where
V=IV D L2

ˇ
=aL � 1 and in the quasi-geostrophic regime where V=III D Ro � 1.

This means that in either case, the vertical vorticity component � cannot be altered
with any significance by tilting, i. e. the motion tends to occur in columnar form, ex-
pressing a vertical stiffness of the flow. For this reason, the vertical vorticity balance
and the potential vorticity are dominant in geophysical flows.

We finally note that the corresponding scaling of the equations of the horizontal
vorticity components does not reveal new insight into the different regimes. Advec-
tion, stretching and tilting are all of order U 2=LH , except the planetary part of the
tilting, f uz D O.˝U=H/. As their ratio is O.Ro/, the planetary term must be
balanced by the baroclinic vector, i. e.
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and using the hydrostatic equation @p=@z D �g� we find
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The term on the left-hand side and the first term on the right-hand side are of the
same order in our scaling, but the second term on the right-hand side scales as
Ro.L˝/2=.gH/ � 1 compared to both terms. Thus, to orderO.Ro/, the horizontal
vorticity equations result in the thermal wind balance (see Section 5.3).

5.2 Quasi-Geostrophic Approximation

The quasi-geostrophic regime is characterized by a set of small dimensionless num-
bers: as we have worked out in the previous section, the conditions are summa-
rized by Ro D U=˝L � 1; ` D L=a � 1 and Ek D F=˝U � 1. All
these numbers are assumed to be roughly of the same order; in particular we have
Ro=` D U=ˇL2 D Rˇ D O.1/ or L 	 Lˇ . A further important restriction is
made with respect to the thermohaline state of the fluid: temperature and salinity
are combined into a density variable perturbed about a stratified background state
while all effects of compressibility are neglected. The resulting equations describe
small perturbations of this stratified background state, like Rossby waves and other
quasi-geostrophic mesoscale motions.

To start with a proper definition of the background stratification, we consider the
thermohaline equation (4.15) of the Boussinesq approximation. Remember that this
balance is written for the perturbation density Q� D � � �c.z/, defined relative to the
reference state �c with constant temperature and salinity (cf. Section 4.1, see List of
Symbols for a list of all density variables). For the quasi-geostrophic approximation
we need to consider perturbations with respect to a specified background state which
reflects the basic stratification of temperature, salinity and density in the area of
interest. The background state, denoted by the index b, could be defined as the areal
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average Sb.z/; �b.z/ of the stratification of temperature and salinity, depending only
on the vertical coordinate. The background density is defined by

�b.z/ D F.Sb.z/; �b.z/; pc/ (5.7)

with the hydrostatic pressure counterpart pb.z/ governed by @pb=@z D �g�b, and
the Boussinesq reference pressure pc D �g�0z. Hence we define a density pertur-
bation O� with associated pressure perturbation Op relative to the stratified background
state by

O� D � � �b.z/ and Op D p � pb.z/

With the equation of state in the form O� D F.S; �; pc/�F.Sb.z/; �b.z/; pc/ we find

D O�
Dt

� w
�bN
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g
D G� � g�0w

�
1

c2s
� 1

c2b

�
(5.8)

where the density source G� is defined by (3.2), and the (squared) Brunt–Väisälä
frequency associated with the background state is

N 2.z/ D g

�
˛
@�b

@z
� �

@Sb

@z

�
(5.9)

The difference in compressibility between the in-situ state and the background state,
given by the last terms in (5.8), will be neglected, so that in-situ density and potential
density become identical. Furthermore, the density factor in the second term on the
left-hand side will be replaced by the constant �0. The Brunt–Väisälä frequency
N.z/ is then the only manifestation of the background state in the equation.

In quasi-geostrophic theory the equations of motion are expanded about a fixed
latitude '0 which could be in principle anywhere except at the equator where f ! 0

so that the geostrophic balance breaks down. To facilitate the notation, we introduce
new coordinates x; y defined by

x D 
a cos'0 ; y D a.' � '0/

Note that these coordinates should not be considered as Cartesian coordinates al-
though they resemble Cartesian coordinates near the latitude '0. Furthermore, to
simplify notation, the equations will be written in this section in terms of scaled
pressure and density variables,

p D Op
�0
; � D O�

�0
(5.10)

so that the constant factor �0 is eliminated, � is dimensionless, and the pressure p
is measured in m2 s�2. The friction term F is rescaled appropriately as well. The
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primitive equations then take the form
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The approximations in the density equation (5.15) with respect to effects of com-
pressibility are the only approximations made so far.

5.2.1 Expansion for Small Parameters

Remember from Section 4.2.4 that the magnitudes of the terms in the momentum
balances (5.11) and (5.12) are Ro W `Ro W 1 W 1 W Ek, in the order as they appear. The
scaling of the density equation (5.15) has been considered previously in Section 5.1.
With the geostrophic and hydrodynamic scaling introduced in Section 4.2.4, i. e. p 	
P D ˝UL and � 	 R D ˝UL=gH , respectively, and the magnitude of the vertical
velocity for the quasi-geostrophic regime, W D RoUH=L, the ratio of the second
to the first term on the left-hand side of (5.15) becomes2

WN 2=g

UR=L
D N 2H 2

˝2L2
D Bu D .Ri=L/

2 (5.17)

which defines the BURGER3 number Bu (Burger, 1958). It is the squared ratio of
two length scales, the internal Rossby radius Ri D NH=˝ (for constant N ) and
the length scale L. Typical oceanic magnitudes for Ri range between 10 km (in po-
lar latitudes) to about 30–50 km in midlatitudes. As long as Bu 
 O.1/, the time
rate of change of density is of similar size as the heaving of mass associated with
the background stratification. Usually the source of density G� is small compared
to the other terms, say of order Ek. Then, the terms in the density balance scale as
Ro W RoBu W Ek. Notice that as long as Bu 	 O.1/, the entire density equation is of
first order in the small parameters; it will not contribute to zero order. A proper ex-
pansion, however, must also consider the smallness of ` in the trigonometric expres-
sions involving ' � '0 D y=a D O.`/ � 1. Taylor expansion of these expressions

2 In this scaling analysis N is a typical constant magnitude ofN.z/.
3 ALEWYN P. BURGER, *1927 in Middelburg, †2003 in Pretoria, mathematician and fluid dynam-
icist.
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about ' D '0 becomes

sin ' D sin '0 C y

a
cos'0 CO.`2/ ;

cos'

cos'0
D 1 � y

a
tan'0 CO.`2/ ;

cos'0
cos'

D 1C y

a
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which implies a linear dependence of the Coriolis parameter on the meridional coor-
dinate to order `2,

f D 2˝ sin ' D 2˝ sin'0 C ˇy � f0 C ˇy (5.18)

with f0 D 2˝ sin '0 and ˇ D .2˝=a/ cos'0.
Now a rigorous expansion of all fields can be performed. Assuming for simplicity

that all small parameters are of the same order � � 1, all variables are now written
as a series in powers of the small parameter �, starting with a zero order contribution
indicated by the subscript 0, etc.

u D u.0/ C �u.1/ C � � � ; v D v.0/ C �v.1/ C � � � ; w D �w.1/ C � � �
� D �.0/ C ��.1/ C � � � ; p D p.0/ C �p.1/ C � � �

Note that the zero order contribution of w vanishes since it has a leading term of
order Ro. Indeed, we will see below that the zero order horizontal velocities are free
of divergence. Inserting this expansion into (5.11)–(5.16), we collect the terms of
same order in � and require that the equations are satisfied for each order. Fortunately,
only the two lowest orders will be of interest here.

Equations of 0-order

The 0-order momentum equations
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0 D �@p
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@z
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express the geostrophic and hydrostatic balance of the basic state. Since f0, the value
of the Coriolis parameter at the reference latitude, is constant, a geostrophic stream
function  D p.0/=f0 can be defined such that
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; v.0/ D @ 

@x

The horizontal geostrophic velocity is obviously free of divergence
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@y
D 0 (5.22)
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which is in agreement with the 0-order continuity equation, i. e. the continuity equa-
tion (5.14) does not constrain the lowest order at all. The density balance does not
have a 0-order contribution, and thus, counting the number of zero-order field vari-
ables (there are four: u.0/; v.0/; �.0/ and p.0/) and the number of equations to deter-
mine them (there are only three: (5.19)–(5.21)), it becomes obvious that the 0-order
problem is incomplete, and it is necessary to consider higher orders of the governing
equations.

Equations of 1-order

The 1-order equations read
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The substantial derivative D0=Dt D @=@t C u.0/@=@x C v.0/@=@y is based on the
0-order geostrophic velocities, there is thus no vertical advection. The first-order
momentum balances are clearly not geostrophic since now all forces and the inertial
term are present. The above first order balances and the 1-order fields are, therefore,
called ageostrophic.

Of course, also the 1-order problem yields only five equations and brings in five
new unknown fields4, so it seems hopeless to close the problem at this – or any
higher – order. But a closer inspection of (5.23)–(5.27) shows some peculiarities of
the expansion.

The 1-order density equation (5.27) does not predict the 1-order density, instead
it determines the 1-order vertical velocity w.1/ in terms of 0-order fields (�.0/, u.0/

and v.0/). The 1-order continuity equation (5.14) can then be used to evaluate the
divergence of the horizontal 1-order velocities, and, finally, forming the vorticity of
the 1-order momentum balances, the 1-order pressure field can be eliminated, and
the only other 1-order contribution comes from the divergence of the ageostrophic
velocity. The ageostrophic vorticity balance thus yields a condition on the flow which
involves only 0-order fields, which we shall show in the next section.

4 Some derivations of quasi-geostrophic equations do not make a rigorous asymptotic expansion of
all field variables. They do not expand the pressure and density to first order. Then the equations
are trivially closed at the first order: u.1/; v.1/; w.1/ follow as functional of p.0/ from (5.23),
(5.24) and (5.27). They have to satisfy continuity (5.26) which yields the quasi-geostrophic potential
vorticity equation in the identical form as given below.
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5.2.2 Quasi-Geostrophic Vorticity Equation

The derivation of the ageostrophic vorticity equation from (5.23)–(5.26) is straight-
forward but somewhat lengthy, and we drop the mathematics here (for further details
we refer to Pedlosky, 1987). The result is

D0

Dt
.�.0/ C ˇy/ D f0

@w.1/

@z
C curlF (5.28)

Here the vertical vorticity �.0/ of the geostrophic flow is defined as

�.0/ D @v.0/

@x
� @u.0/

@y
D r2

h 

and the frictional vorticity source is

curlF D @Fv
@x

� @Fu
@y

(5.29)

(remember that F is horizontal in the shallow water approximation). The bal-
ance (5.28) considers advection of relative and planetary vorticity, the stretching term
and the curl of the frictional forces. There is no tilting effect in this order, consistent
with the scaling we have discussed in Section 5.1.

With w.1/ determined by the 0-order density equation (5.27),

w.1/ D g

N 2
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we express the stretching term f0@w=@z in (5.28) by the 0-order pressure field and
obtain
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(5.30)

The vertical derivative and the substantial advection operator in fact commute here
so that
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The proof of (5.31) is, however, not entirely trivial, it uses the 0-order balances.
Then, finally, with �.0/ D r2

h and p.0/ D f0 , we arrive at the quasi-geostrophic
vorticity balance in the form
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(5.32)

The index 0 of the advective operator is omitted from now on, but it should be re-
membered that it involves only the two-dimensional advection by the geostrophic
velocities,
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where J is the Jacobian differential operator with respect to x and y. The stream
function  is the only prognostic variable which determines the entire flow at any
instant, as seen in the relations

u D �@ 
@y

(5.33)

v D @ 

@x
(5.34)

w D � f0

N 2

D

Dt

@ 

@z
� gG�
N 2

(5.35)

� D �f0
g

@ 

@z
(5.36)

Notice that w is here first order but the other fields are zero order. In fact, the
vertical velocity is the only first order field which is uniquely determined by
quasi-geostrophic theory, in particular the ageostrophic horizontal velocities and the
ageostrophic density and pressure fields remain unknown at this level of approxima-
tion.

The quasi-geostrophic vorticity balance (5.32) is valid for Ro D U=˝L � 1; ` D
L=a � 1 and Ek D F=˝U � 1 and Bu D .Ri=L/

2 D O.1/ and is of fundamental
importance in geophysical fluid dynamics. It describes the kinematic and dynamic
properties of planetary waves, barotropic and baroclinic instabilities, the dynamics
of geophysical turbulence and mesoscale eddies, and – with some straining of the
scaling which we have applied – even most features of the large-scale wind-driven
circulation.

5.2.3 Quasi-Geostrophic Potential Vorticity

We have supplemented the approximations of the complete equations of motions,
described previously in this chapter, with the appropriate theorems of potential vor-
ticity and energy conservation. The derivation of (5.32) made it clear already that
this basic prognostic equation of quasi-geostrophic theory is a balance of potential
vorticity. In the quasi-geostrophic form of potential vorticity,

Qqg D r2
h C @

@z

f 20
N 2

@ 

@z
C f

relative and planetary vorticity and the stretching part appear additive (note that
f D f0 C ˇy, and that the constant value f0 of planetary vorticity has been added
since it has no effect in (5.32)). The quantityQqg is materially conserved in adiabatic
condition, following however the projection of the fluid parcel’s path onto the hori-
zontal plane, as outlined by the geostrophic velocities, and not the three-dimensional
path.

The derivation of this theorem from the complete set of equations of motion is
somewhat elaborate (as demonstrated above where we even have left out much of
the mathematics). On the other hand, with the aim known and the scaling and ex-
pansion in mind it is, in fact, easy to derive the conservation of Qqg from Ertel’s
theorem (2.212) in a few steps. The appropriate tracer in Ertel’s potential vorticity

Q D .2˝ C!/ � r
�
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is the density  D Q� D �b C O� which is conserved according to (5.15) if the diabatic
source G� is absent. Implementing the Boussinesq and shallow water approxima-
tions, Ertel’s theorem becomes

�
D

Dt

�
3�d

�
.f C !3/

�
@�b

@z
C @�

@z

�	
D !3
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C
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@z
C @�

@z

�
curlF

because the baroclinicity term vanishes identically for  D �. Expanding this equa-
tion with respect to all small parameters so that f D f0 C ˇy, ˇy � f0, !3 � f0,
� � �b and taking w small as well, we find, retaining all terms up to the second
order,
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With !3 D r2
h , @�b=@z D �N 2=g, using the hydrostatic balance (5.13) and

eliminating the vertical velocity using (5.15), this becomes

D

Dt
Qqg D curlF � f0g @

@z

G�
N 2

(5.37)

i. e. the same result as in (5.32). Notice that a purely geostrophic approximation of
Ertel’s potential vorticity does not yield the correct form of the quasi-geostrophic
potential vorticity.

5.2.4 Boundary Conditions

The quasi-geostrophic potential vorticity equation (5.32) is second order in the verti-
cal derivative and thus needs two boundary conditions. They naturally arise by con-
sidering the kinematic conditions of zero mass flux through the surface z D �.x; t/

and the bottom z D �h.x/. These are (see Chapter 2)

D�

Dt
� w D 0 at z D � ; uh � rhC w D 0 at z D �h (5.38)

The bottom boundary condition is easily translated into the quasi-geostrophic frame-
work by use of (5.33) to (5.35) which yields

D

Dt
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@z
D N 2

f0
J . ; h/ at z D �h

Note that the density source G� is assumed to vanish at the bottom. To exploit the
upper kinematic boundary condition, we must relate the sea surface elevation to the
geostrophic pressure. This is done by expanding (5.38) about the mean sea surface
height z D 0 (then to lowest order in � all quantities in (5.38) are taken at z D 0),
and also expanding the total pressure5 p.0/ C pb C p about z D 0, we find to lowest
order in �

p.0/.0/C pb.0/C p.x; 0/C �

 
@p.0/

@z

!

zD0
C � � � D patm

5 For simplicity of notation, all pressures are scaled according to (5.10).
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because the reference state gives the largest contribution to the vertical pressure gra-
dient. Then, with p.0/.0/ D f0 .0/, we obtain

D�

Dt
D f0

g

D .0/

Dt
� 1

g

Dpatm

Dt

and use this to write the boundary condition at the upper surface
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N 2
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@z
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Dt
D � g2G�

f0N 2
at z D 0 (5.39)

Here we have neglected the contribution from the atmospheric pressure, which is
generally small compared with the frictional effect of the surface wind (in approxi-
mate geostrophic balance with the surface pressure) on the flow.

Both boundary conditions must be in accordance with the quasi-geostrophic scal-
ing, i. e.W D O.RoUH=L/. While this is no problem for the surface velocity, there
may occur too strong vertical velocities at the bottom. If a horizontal current crosses
a ridge with slope �h=L, it produces at maximum vertical velocities of the size
W 	 U�h=L D .�h=h/Uh=L. We thus must require that the relative height does
not exceed the Rossby number,�h=h D O.Ro/. This condition represents a severe
limit for the applicability of the quasi-geostrophic approach since it inhibits strong
(realistic) variations in bottom topography.

5.2.5 Energetics of Quasi-Geostrophic Motions

The conservation theorem of kinetic energy is derived by multiplying the first or-
der momentum balances (5.23) and (5.24) by u and v, respectively, and adding the
results, which yields
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� y tan'0
a

u
@p

@x
C uh � F

We have abandoned the index 0 such that uh D .u; v/ denotes here the zero-order
geostrophic velocity,p the zero-order geostrophic pressure and � the zero-order den-
sity in hydrostatic balance with p, but we keep the index 1 for ageostrophic compo-
nents. Some tedious mathematical manipulations cast this balance into a form which
separates between flux and exchange terms,

@

@t
Ek C r h � J h C @

@z
.pw.1// D w.1/

@p

@z
C uh � F (5.40)

whereEk D .u2Cv2/=2 is the quasi-geostrophic kinetic energy. The horizontal flux
of kinetic energy is found as the complicated expression

J h D uh



Ek C p.1/

�
C u1hp � j y tan'0

a
vp

and the vertical flux is simply w.1/p. The term w.1/@p=@z D �g�w.1/ describes the
production of kinetic energy by lifting mass. As we will see below, it is exchanging
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this amount per unit time with the potential energy. The last term of the right-hand
side of (5.40) is the sink/source due to friction and external stresses. A further con-
servation theorem is obtained from the first order density balance (5.27). Multiplying
by �, we find
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(5.41)

as a potential energy (per mass) of the quasi-geostrophic system. The above equation
is then written in the form
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and adding the conservation equation of kinetic energy and the conservation theorem
for the total quasi-geostrophic energy, we obtain
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with an energy flux vector and sink/source term
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Apart from flux divergences only the diabatic forcing terms remain as source/sink
of total energy, which proves that we have identified the correct form for the quasi-
geostrophic potential energy. A few words of caution and interpretation are, however,
needed to put the results into perspective. An alternative derivation of the energy
balance is given in the box on p. 148.

An examination of the quasi-geostrophic potential energy Ea
p is required. The

quadratic form emanating from the above analysis is certainly not the conventional
potential energy introduced in Section 2.4. We postpone this question to the next Sec-
tion 5.2.6.

5.2.6 Available Potential Energy

In the quasi-geostrophic framework a potential energy variable was defined
by (5.41). Another form of this quantity is found by considering the vertical
displacement � of an isopycnal6 represented by % D �b C � from its unperturbed

6 Remember that densities are here potential densities.
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24. Quasi-Geostrophic
Energy Balance

As we have pointed out above, there is no access to the ageostrophic velocities u1h and the
ageostrophic pressure p.1/ (unless higher order equations are considered). Hence the flux J h

cannot be evaluated: Although the conservation theorems are physically meaningful and closed,
they are not of much value because the quasi-geostrophic potential vorticity equation only yields
the geostrophic flow field and not the ageostrophic horizontal velocities and pressures.
There is, however, a form of energy conservation equation which is free of these shortcomings.
In fact, if the potential vorticity balance (5.32) is multiplied by  , we obtain after some trivial
mathematical transformations
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Apparently, Eqg is a quadratic invariant with its associated flux vector J qg and adiabatic source
term Sqg. While it is easy to see, using (5.33)–(5.36), that the quadratic invariant is the total
energy of the previous conservation theorem, Eqg D Ek CE a

p , the fluxes and source terms do
not agree individually, i. e. J ¤ J qg;S ¤ Sqg. But evidently, we must have r � J � S D
r � J qg � Sqg which, in fact, can be proven (see e. g. Pedlosky, 1987).

background state �b (the constant contribution �c is ignored). From a truncated Tay-
lor expansion of � one finds � � ��=.@�b=@z/ D g�=N 2 and

Ea
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2

g2�2

N 2
D 1

2
�2N 2 (5.42)

showing a similarity to the potential energy of a harmonic oscillator with fre-
quency N in a Lagrangian view of the fluid displacement. Though (5.42) is a well-
defined local variable of the state of the flow, its relation to the total potential en-
ergy g%z can only be understood when considering the entire system in an integral
sense. We integrate g%z over a piece of the fluid which is bounded at the bottom and
the top by two isopycnals %1 and %2 and obtain by partial integration
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The integral has been transformed from the vertical coordinate z to the density co-
ordinate by inverting % D %.xh; z; t/ to z D z.xh; %; t/ which gives the height of
the isopycnal %. Note that we have assumed stable stratification for the coordinate
transformation to work. Now we define the height of the unperturbed isopycnals in
the same manner, zb D z.�b/. Then we use z D zb C �, or

�.�/ D z.�b C O�/� zb.�b/ � g�

N 2
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Suppose that the reference state �b has been defined such that the positive and neg-
ative displacements of each isopycnal averaged out in an integral over the whole
system. We consider the horizontal mean of (5.43) and concentrate on the part rep-
resenting the interior contribution. The mean of z2 becomes

z2 D z2b C 2zb
N� C �2 D z2b C �2

and thus, apart from boundary contributions and constants deriving from the back-
ground state, we have

Z
dxh

z.%2/Z

z.%1/

g%zdz D g

Z
dxh

%2Z

%1

1

2
�2d%C const D

Z
dxh

z.%2/Z

z.%1/

1

2
�2N 2dz C const

The rephrasing of the conventional potential energy in the above indicated integral
sense sorts out the quasi-geostrophic potential energy as a part associated with adi-
abatic displacements of the fluid elements. The part stored in the background strat-
ification is not touched. Lorenz (1955) has introduced the concept of available po-
tential energy (APE) as the part of total potential energy which can be converted to
kinetic energy solely by adiabatic processes. More precisely, APE is the difference
between the total potential energy and the minimum potential energy one can ob-
tain from an adiabatic rearrangement of the fluid particles. Defined in this way, APE
cannot be associated with a single fluid element or position in the fluid. Nonethe-
less, in the quasi-geostrophic framework it is the integral of what we have called
quasi-geostrophic potential energy which is a well-defined local quantity.

To further elucidate the concept of APE in a simple setting, we consider a box of
height H and length L filled by two fluids of different density, a lighter fluid with
density %1 on top of a heavier fluid with density %2, the interface being tilted such
that the depth of the heavier fluid is h D H=2 C ˛x, with coordinates .x; z/ such
that x D 0 at the center and z D 0 at the bottom (see the sketch in Figure 5.1). The
total potential energy (per unit width) is

Ep D g

L=2Z

�L=2

HZ

0

%zdzdx D 1

8
gH 2L.%2 C 3%1/C 1

24
g.%2 � %1/˛

2L3 (5.44)

Fig. 5.1 Illustrating the redistribution of water to define APE. The state in b is obtained by adiabatic
rearrangements, the state in c by mixing the state in a horizontally
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The minimum is apparently achieved for zero displacement of the interface, i. e. ˛ D
0. It is easy to show that the displacement � D ˛.x � L=2/ of the interface has
a mean square value �2 D .˛L/2=12, and thus the potential energy is

Ep D Ep;min C 1

2
g.%2 � %1/L�2

Dividing by the mass .%1C%2/LH=2 per unit width, the amount of available poten-
tial energy per unit mass is found as

Ea
p D 1

2
g
�%

%H
�2

with �% D %2 � %1, % D .%1 C %2/=2. This expression is in close agreement with
the definition (5.42).

We have interpreted the available potential energy Ea
p as the difference of the ac-

tual potential energy Ep to a state of minimum total potential energy Ep;min with
respect to adiabatic rearrangements of the fluid particles. In contrast, density mix-
ing, by molecular or subgrid scale (turbulent) processes, is a diabatic process. Note
that mixing in the depth range of the tilted interface of the above example (instead
of flattening the layer interface by adiabatic rearrangements) results in a higher po-
tential energy (the second term in (5.44) is increased by a factor 3). This additional
amount of energy must be transferred from some unspecified process (subgrid scale
turbulence) into the mean stratification to achieve the mixing.

We finally note in this section that in a quasi-geostrophic flow the available po-
tential energy Ea

p is in a relatively fixed proportion to the kinetic energy. Using the
scaling ˝UL=.gH/ for density perturbations, we can give an estimate for the ratio
of the kinetic and potential energies

Ek

Ea
p

	 N 2.u2 C v2/

.g�/2
	 N 2H 2

˝2L2
D R2i
L2

D Bu

Available potential energy thus exceeds kinetic energy when the scale of the flow is
larger than the internal Rossby radius and vice versa. Since Bu D O.1/ within the
quasi-geostrophic approximation, both forms of energy give similar contributions to
the total mechanical energy.

5.3 Planetary-Scale Geostrophic Motions

The scaling outlined in Section 5.1 has revealed two regimes with a geostrophic
momentum balance but different balance conditions in the vorticity equation. We
are now concerned with a geostrophic flow on a large scale L 
 .U=ˇ/1=2, named
the planetary geostrophic regime. The vertical velocity in this regime is larger than
in the quasi-geostrophic case and is, therefore, retained in the substantial derivative
operator D=Dt (here again the full three-dimensional). The equations are obtained
from the primitive equations in Section 4.2.5 by ignoring the terms of order Ro in
the horizontal momentum equations. They read
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C Fv (5.46)
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Although the forcing terms are small, they have been retained so that external stresses
can act through boundary layers at the top and the bottom. Together with the remain-
ing equations (4.52)–(4.56), this set of (viscous) planetary-geostrophic equations
forms the basis of some simplified ocean circulation models, with forcing by wind
stress and buoyancy flux included.

It is instructive to compute the horizontal divergence r h � uh and the vertical
component of the relative vorticity !.z/ of a geostrophic flow of planetary scale.
One finds

rh � uh D 1
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which reveals that rh � uh is controlled by variations of the Coriolis parameter
whereas !.z/ is controlled by variations of the pressure field because the pressure
terms exceed the ˇ-term by a=L.

From the horizontal divergence equation (5.47), with friction neglected, and the
full continuity equation r h � uh C @w=@z D 0 we immediately find the planetary
vorticity balance in the form

f
@w

@z
D ˇv (5.49)

which is used at various places throughout this book and frequently referred to as the
local SVERDRUP7 balance. As external sources of momentum can only be applied
through frictional terms, the frictionless form of the planetary-geostrophic equations
can be valid only in the interior of the fluid away from boundaries. A prominent ex-
ample is the oceanic thermo- or pycnocline where it is customary to combine (4.54)
and (4.55) to a density balance

D�

Dt
D G� D @

@z
Kv
@�

@z
(5.50)

where the diabatic term is written here for simplicity as vertical diffusion of density,
and compressibility effects are ignored (see Section 4.1.3).

Two further important equations follow from (5.45), (5.46), and (5.50) for the
frictionless case. The potential vorticity of the planetary-geostrophic equations is
Qpg D f @�=@z. One finds

DQpg

Dt
D f

@G�
@z

(5.51)

A further useful quantity is the appropriate Bernoulli function B D p C g�z which
is governed by

DB

Dt
D @p

@t
C gzG� (5.52)

It is conserved in the stationary and adiabatic case. Note the resemblance of B=� D
p�Cgz D p�C˚ (in these expressions � is the specific volume) with the Bernoulli
function (2.83) in its general form.

7 HARALD ULRIK SVERDRUP, *1888 in Sogndal, †1957 in Oslo, oceanographer and meteorolo-
gist.
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5.3.1 TheM-Representation

As noted by Needler (1967), these equations may be reduced to a single nonlinear
differential equation for the pressure. A simpler form was found by Welander (1971),
defining the M -function

M.
; '; z/ D
zZ

z0
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; '; z0/dz0 CM0.
; '/

which allows to express all fields as partial derivatives of the one variableM ,
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(5.53)

The vertical velocity may as well be expressed by M : from (5.49), we find by inte-
gration
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2˝a2 sin2 '

@

@

.M �M0/C w0 D 1

2˝a2 sin2 '

@M

@


(5.54)

where w0.
; '/ D w.
; '; z0/, and the last relation holds for the choice M0 D
2˝a2 sin2 '

R �
0
w0d
0. Obviously, M is the state variable of the system, in a simi-

lar way as  for the quasi-geostrophic case. With the above density equation, one
obtains a single nonlinear partial differential equation of second degree and fourth
order for M ,

a2˝ sin 2'
@3M

@z2@t
C @.@M=@z; @2M=@z2/

@.
; '/
C cot'

@M

@


@3M

@z3

D a2˝ sin 2'
@

@z

�
Kv
@3M

@z3

�
(5.55)

This so-called M -equation has been a starting point for finding certain analytic so-
lutions describing the oceanic pycnocline, which will be discussed below in Sec-
tion 14.3.2.

5.3.2 ThermalWind-Equations

A consequence of the frictionless geostrophic momentum equations (with the hydro-
static equation (4.52)) are the thermal-wind equations

�f @v
@z

D g
@�

@x
and f

@u

@z
D g

@�

@y
(5.56)

using for simplicity now Cartesian coordinates. The name originates from meteo-
rology where density depends mostly on temperature. The thermal-wind equations
relate the vertical shear of the horizontal current to the lateral density gradients. They



5.3 Planetary-Scale Geostrophic Motions 153

are the basis of the geostrophic method (or dynamical method) which allows to de-
termine the horizontal geostrophic current relative to a reference level z0 by the ob-
served gradients of temperature and salinity: the hydrographic data �.y; z/; S.y; z/
along a section with coordinate y yields the relative velocity u.y; z/ normal to the
section, involving, however, the reference velocity u0 D u.y; z0/. Finding u0 has
for long been a classical problem of oceanography.

5.3.3 Planetary Ideal Fluid Equations

The ideal fluid equations for motions of planetary scale are the adiabatic form
of (4.24)–(4.26), given there for a Boussinesq fluid. In steady state, they have some
remarkable properties which we will discuss in the following. Let us consider these
equations with usual approximations of the planetary-scale motion,

f k � u D �rp � g�k (5.57)

u � r� D 0 (5.58)

r � u D 0 (5.59)

where u D .u; v; w/ is the three-dimensional velocity and k the vertical unit vec-
tor. As stated above, the equation imply the validity of the planetary vorticity bal-
ance (5.49). Furthermore, in addition to the density, two more conserved quantities
exist: the potential vorticityQ D f @�=@z and the Bernoulli function B D p C g�z

(see also previous section). Hence

u � rQ D 0 and u � rB D 0 (5.60)

The three-dimensional velocity vector u must lie in all three surfaces � D
const;Q D const and B D const. Therefore, the iso-surfaces of density, poten-
tial vorticity, and Bernoulli function must intersect in lines which are streamlines.
Hence there is a functional relation ˚.�;Q;B/ D 0 for each ideal fluid system. The
function ˚ is usually determined by conditions on the boundaries. It can be quite
complicated and solutions for one of the variables, e. g. Q D F.�;B/, might be
multivalued and not continuous. Solving ˚.�;Q;B/ D 0 for B D G.�;Q/ a sec-
ond order differential equation for density is achieved,

�
gz � @G

@�

�
@�

@z
� @G

@Q
f
@2�

@z2
D 0 (5.61)

provided that the derivatives of G exist. Solutions for the case of the oceanic pyc-
nocline will be discussed in Section 14.3.3. Here, our concern is to investigate the
potential of the ideal fluid approach to represent the velocity in terms of the density
field.

As a first step, we useB D pCg�z D G.�;Q/ to eliminate the pressure from the
geostrophic balances in (5.57). This determines u and v as functional of the density
field. Computing the vertical velocity from the density equation (5.58) yields

u D � 1

f

��
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@�
� gz

�
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C @G
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; v D 1
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w D @G=@Q
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@x

@Q
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� @�
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�
(5.62)
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Note that the continuity equation (5.59) is satisfied by these relations. Combin-
ing (5.62) with (5.61), the first of the NEEDLER’s8 formulae (Needler, 1985) is ob-
tained,

u D ˛r� � rQ with ˛ D .@G=@Q/=Q (5.63)

It involves derivatives of the density field up to the second order and suffers, of
course, from the dependence of u on the unknown functionG. Note that the factor ˛
is a conserved quantity as well, u � r˛ D 0.

Needler’s second formula avoids to fall back on the unknown G. It may be ob-
tained in two steps. Differentiate the conservation equation of the potential vorticity
with respect to z to find

u � rf @Q
@z

D g

�
@�

@x

@Q

@y
� @�

@y

@Q

@x

�
D gk � .r� � rQ/ (5.64)

Here, the thermal-wind equations (5.56) and the planetary vorticity equation (5.49)
have been used. Multiplication of (5.63) with rf @Q=@z and insertion of (5.64) then
yields

˛ D g
k � .r� � rQ/

rf @Q=@z � .r� � rQ/ (5.65)

which involves now up to third-order derivatives of the density field. With this repre-
sentation, Needler (1985) was the first who formally solved the classical problem of
oceanography, the determination of the absolute velocity from the density field. The
relation (5.65) is exact for ideal fluids, but unfortunately it is practically useless for
the following reasons:

1. The derivatives of the density field are of high order, and severe noise problems
may occur if the density field is taken from observations.

2. u D ˛r��rQ from (5.65) does only fulfill all equations (especially continuity)
if the density satisfies the equation u � r� D 0. This is generally not the case if �
is taken from data.

3. The expression degenerates if r� � rQ D 0, i. e. when the potential vorticity
is constant on isopycnals. This state is actually found in many ocean areas. It is
a consequence of isopycnal mixing which is ignored in the ideal fluid approach.

Further representations (in fact infinitely many) with increasingly higher deriva-
tions are possible (see Olbers et al., 1985). Note also the derivation by McDougall
(1995) of a related representation which includes diffusion.

Eliminating .@G=@Q/=Q between the horizontal components of (5.63) or the cor-
responding factor in (5.65), the ˇ-spiral equation

u
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� @�
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�
C v

�
@�
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@Q
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� @�
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�
D 0 (5.66)

is derived for an ideal fluid. It is usual rewritten as

u
@

@z

�
@�=@x

@�=@z

�
C v

�
@

@z

�
@�=@y

@�=@z

�
C ˇ

f

	
D 0 (5.67)

8 GEORGE TREGLOHAN NEEDLER, *1935 in Summerside, Prince Edward Island, †2002 Dart-
mouth, Nova Scotia, oceanographer.
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in terms of the density gradients alone. The coefficients of u and v in this equation
can be determined from the density field at the cross point of two hydrographic sec-
tions; hence (5.67) has been involved in many applications to estimate the absolute
horizontal velocity from hydrographic data (Olbers et al., 1985; Stommel and Schott,
1977). Note that only the slope of the isopycnals appears in (5.67). The slope and the
velocity turns with depth on account of a nonzero ˇ (therefore, the name ‘ˇ-spiral’),
as immediately can be inferred from

@

@z

u

v
D v@u=@z � u@v=@z

v2
D g

f v2

�
u
@�

@x
C v

@�

@y

�
D �g@�=@z

f v2
w (5.68)

and w 	 ˇ from (5.49). If friction and diabatic processes are included, these terms
also contribute to the spiraling of the current.

Further Reading

The textbooks by Pedlosky (1987) and Gill (1982) have defined the standard for a de-
scription of the dynamics of the large-scale ocean circulation. Geophysical Fluid Dy-
namics by Pedlosky provides a detailed derivation of the relevant equations for both
ocean and atmosphere, with great mathematical rigor. Atmosphere-Ocean Dynamics
by Gill contains an excellent description of the physics of large-scale circulation,
with a particular focus on geostrophic adjustment and equatorial dynamics.

Shorter and easily accessible is the Introduction to Geophysical Fluid Dynamics
by Cushman-Roisin (1994).

To be recommended is also Atmospheric and Oceanic Fluid Dynamics by Vallis
(2006) which treats the large-scale atmospheric and oceanic dynamics in a profound
and uniform way.

The equations of geophysical motions are derived and discussed in many text
books. A recent, very concise view of the various approximations is found in White
(2002), however, in an atmospheric context.



Part IIIOceanWaves

Ocean waves can be considered as the most basic form of oceanic motions. They
cover temporal scales from fractions of a second up to many years, and spatial scales
from millimeters up to thousands of kilometers. Ocean waves can be grouped into
three types which have very different physics. Sound waves cause the adjustment
of the pressure field to velocity divergences, with compression as the main restor-
ing force, and propagate at speeds around 1;500m s�1. Inertial-gravity waves bring
about the adjustment towards geostrophic momentum balance, with gravity as the
main restoring force. They propagate at speeds around 1m s�1 (baroclinic) and up to
200m s�1 (barotropic). Rossby waves mediate changes in ocean circulation due to
changes of the forcing, and propagate at speeds of a few cm=s. The spatial and tem-
poral scales of free unbounded ocean waves are displayed in the figure on page 106.
Note that wave types that depend on specific aspects of geometry (e. g. coastlines,
equator) or topography (e. g. seamounts, continental shelf) are not included in the
figure.

In the following chapters an overview over the various wave motions is given,
and the physical processes governing their motion are discussed. The focus is on the
characteristics of free waves which – once excited – can propagate over large regions
and for a long time. Finally, in Chapter 10 we outline a conceptual framework for
how to treat forced wave problems with a few applications.

The theoretical description of ocean waves starts with the general equations that
were derived earlier, e. g. in (2.151)–(2.155). It is however convenient to replace the
continuity equation (2.151) with the equivalent equation (3.1) for the pressure, and
use (3.2). One obtains the system

@p

@t
C u � rp D �c2s .�r � uC �GS � ˛G� / (5.69)

@u

@t
C u � ru D �1

�
rp � r˚ � 2˝ � uC F (5.70)

@�

@t
C u � r� D 1

�
G� (5.71)

@S

@t
C u � rS D 1

�
GS (5.72)

� D F.S; �; p/ (5.73)
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Wave generation, reflection and interference, exemplified by an illustration by the Weber brothers
in their book of 1825 (Weber and Weber, 1825, page 583). Mercury was arranged dropping through
a paper funnel on the surface of a circular disk of mercury. By controlling the rate of the falling
drops, the Webers produced this picture by hand drawing.

where � and ˛ are the usual haline contraction and thermal expansion coefficients
(see Section 2.6.4). To a very good approximation, these equations are valid for any
form of oceanic motions, including all waves. The turbulent fluxes contained in the
divergence terms F ;G� and GS are important for the generation and dissipation of
waves; they do not play any significant role for the balance and propagation of free
waves. We will, therefore, assume in most of this part that F ;GS;G� D 0, and only
include the fluxes where necessary (e. g. when considering forced waves in Sec-
tion 10.1).



SoundWaves 6

Sound waves play an important role for the transmission of information
in the ocean. This property is used in various measurement methods,
such as, e. g. echo-sounding, acoustic floats, ADCP’s, and acoustic to-
mography. As will become clear below, the mathematical description
of sound waves is relatively simple in comparison with other types of
waves. Therefore, some of the concepts which are useful for describing
all wave processes, such as, e. g. plane wave propagation, dispersion
and group velocity, propagation in waveguides and in inhomogeneous
media, can be introduced most easily for sound waves.

Sound waves spread over a wide range of time-scales, about 10�6�10�1 s, i. e. over
many decades. Compared to the period of the Earth’s rotation these time-scales are
all very short, so that the Earth’s rotation in (5.70) can be neglected to a very good
approximation. Likewise, the gravity force which fundamentally influences oceanic
motions is unimportant for sound waves.

6.1 Approximations and Perturbation Expansion

There are no general methods of solution for the equations (5.69)–(5.73). As for
all wave processes, the most useful approximation results from a perturbation ex-
pansion, where small oscillations around an arbitrarily chosen and often idealized
background state are considered. The aim is to obtain a set of linear differential
equations, if possible even with constant coefficients because such equations can be
solved easily. The solutions of the linearized equations, of course, deviate from the
exact solutions, but they usually form a good starting point for learning about the
system’s physics.

The system (5.69)–(5.73) has several nonlinearities. The advective nonlinearity,
such as the term u �r� in the temperature equation, is by far the most important form
of nonlinearity. Products of state variables involving density, such as �r � u in the
pressure equation, are usually less important because � only varies within 2–3% in
the ocean. The nonlinearity of the equation of state � D F.S; �; p/ is important for
some aspects of the circulation but usually less so for waves. The related nonlinearity
in the sound velocity cs D cs.S; �; p/ is, however, important for the propagation of

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 159
DOI 10.1007/978-3-642-23450-7_6, © Springer-Verlag Berlin Heidelberg 2012



160 6 SoundWaves

sound waves in inhomogeneous environments, especially through the dependence on
temperature and pressure.

To derive the simplest case of sound waves, we choose a rather idealized back-
ground state defined by �0; p0; �0; S0 D const and u0 D 0. In analogy to the pre-
viously discussed perturbation approach (see Section 5.2.1) we expand all variables
as

� D �0 C ��1 C : : : ; p D p0 C �p1 C : : : ; u D 0C �u1 C : : : (6.1)

The background state (with index 0) automatically satisfies all equations of mo-
tion (5.69)–(5.72) exactly, provided that �0 D F.S0; �0; p0/. After insertion of the
above expansion, we obtain from (5.69)–(5.73)

�
@p1

@t
C �u1 � r.p0 C � � � /C � � � D �.�0 C � � � /c2s .S; �; p/r � �u1

(6.2)

.�0 C ��1 C � � � /
�
�
@u1

@t
C �u1 � r.�u1/

	
C � � � D �r.p0 C �p1 C � � � / (6.3)

�
@S1

@t
C �u1 � r .S0 C � � � /C � � � D 0 (6.4)

�
@�1

@t
C �u1 � r.�0 C � � � /C � � � D 0 (6.5)

�0 C ��1 C � � � D F.S; �; p/ (6.6)

The perturbation parameter is small, i. e. � � 1. The equation of state and the sound
velocity are expanded in a Taylor series which yields

F.S; �; p/ D F.S0; �0; p0/C �
@F

@p
p1 C : : : and

cs.S; �; p/ D cs.S0; �0; p0/C : : : (6.7)

The terms 	 S1 and 	 �1 are irrelevant as they become constant, as shown below.
Equation (6.6) then results in

�0 D F.S0; �0; p0/ (6.8)

and we shall use the abbreviation cs;0 D cs.S0; �0; p0/, which is a constant. To the
lowest order (�0) the equations (6.2)–(6.5) are identically satisfied. The equations of
first order then become

@�p1

@t
D ��0c2s;0r � �u1 (6.9)

@�u1

@t
D � 1

�0
r�p1 (6.10)

@�S1

@t
D 0 (6.11)

@��1

@t
D 0 (6.12)

��1 D 1

c2s;0
�p1 (6.13)
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These are the equations for linear sound waves in a homogeneous medium (cs;0 is
constant). The equations are linear with constant coefficients and can, therefore, be
solved quite easily. The perturbation density �1 does not appear in the first two equa-
tions and can be determined diagnostically from p1. Furthermore, S1; �1 D const is
found. Therefore, it suffices to consider (6.9) and (6.10).

To simplify the notation, from now � is incorporated in the first order fields and
the index 1 omitted so that �p1 ! p etc. , and the index 0 of cs;0 is dropped as well.

6.2 PlaneWaves

Forming the time derivative @=@t of equation (6.9) and the divergence r � of (6.10),
and the elimination of u leads to the wave equation

@2p

@t2
� c2s r2p D 0 respectively

@2p

@t2
� c2s

�
@2p

@x2
C @2p

@y2
C @2p

@z2

�
D 0

(6.14)

This linear partial differential equation of second order in space and time is one
of the best-studied equations in physics. It occurs in many different fields and has
a multitude of solutions. For one-dimensional situations, the solutions must be of the
form

p.x; t/ D F.x � cst/CG.x C cst/ (6.15)

with arbitrary functionsF andG. This solution can be found by transforming to two
new independent variables according to

� D x � cst ;
@

@t
D �cs

@

@�
C cs

@

@�

� D x C cst ;
@

@x
D @

@�
C @

@�

with derivatives as indicated. Insertion into (6.14) results, after a brief calculation,
in @2p.�; �/=@�@� D 0 with the integrals @p.�; �/=@� D g.�/ and hence p.�; �/ D
G.�/C F.�/. In particular, for G � 0, we obtain the solution

p.x; t/ D F.x � cst/ (6.16)

which corresponds to a signal propagating in positive x-direction with the speed cs

while preserving its shape (see the sketch in Figure 6.1). For F.�/ D cos.k�/ the
normal harmonic wave results. Analogously, F � 0 in (6.15) corresponds to a wave
proceeding in negative x-direction.

In three dimensions there is no general solution of (6.14). As can be confirmed by
insertion, however, a solution analogous to (6.15) is given by

p.x; y; z; t/ D F.e � x � cst/ (6.17)

with an arbitrary unit vector e, and the coordinate vector x D .x; y; z/. For a har-
monic wave, F.�/ 	 cos.�/, we thus obtain for the pressure

p.x; y; z; t/ D P cos.k � x � !t/ D P cos.k1x C k2y C k3z � !t/ (6.18)
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0 0.5 1 1.5 2
Direction x

Fig. 6.1 Preservation of form during the propagation of plane sound waves in positive x-direction.
Full line: t D 0, dashed line: t D 1

Here, the wave number vector (henceforth wave vector) k D .k1; k2; k3/ D ke and
the angular frequency ! D kcs have been introduced as well as the pressure ampli-
tude P . Inserting (6.18) in the wave equation (6.14) yields the dispersion relation

!2 D c2s k
2 ) ! D ˙csjkj D ˙cs

�
k21 C k22 C k23

� 1
2 (6.19)

which associates a frequency to each wave number, or equivalently the wave period
T D 2 =! with the wavelength 
 D 2 =jkj according to T D 
=cs. For a typical
sound speed of 1;500m s�1, a wavelength 
 D 1m corresponds to a period T D
0:7 � 10�3 s.

The existence of a dispersion relation is a characteristic property of all wave pro-
cesses. For a given k, the two roots in (6.19) are physically not different since the
properties of the solution (6.18) do not change when ! ! �! and k ! �k. There-
fore, we restrict ourselves to the case ! > 0 and write

! D ˝.k/ (6.20)

with a positive function ˝ as the general form of a dispersion relation. Note, how-
ever, that the wave vector k can take all possible values.

Equation (6.18) represents a plane wave in space and time (the situation is dis-
played in Figure 6.2). It describes propagation in the positive k-direction, with the
constant phase speed c D !=jkj D cs. As the phase speed is the same for all wave
numbers, the waves are called nondispersive; this very property is the reason why
the wave form is always preserved.

Note that the phase velocity is always a scalar. The propagation velocity in the
direction of k is c D !=k, with k D jkj. The propagation velocity, e. g. along the
x1-axis, however, is ck=k1 and not ck1=k. Therefore, c D ck=k would not serve
as a meaningful vector1.

With (6.10), the solution for u corresponding to (6.18) is found to be

u D U cos.k � x � !t/ (6.21)

1 The slowness s D k=! is a sensibly defined vector but will not be used here.
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Fig. 6.2 Propagation of a wave front and direction of the phase velocity

where U D Pk=�0!. As U is parallel to k, the velocity and thus the particle dis-
placement are always in the direction of the phase propagation. Therefore, sound
waves are always longitudinal waves. The particle displacement is governed by

dx.t/

dt
D u.x; t/ D U cos.k � x � !t/ ; x.t0/ D x0 (6.22)

For small excursions around the initial point x0, i. e. k.x � x0/ � 1, the cosine can
be developed in a Taylor expansion dx.t/=dt D U cos.k � x0 � !t/ C : : : with the
solution

x.t/ D x0 � U

!
sin.k � x0 � !t/ (6.23)

Note that k.x � x0/ � 1 is equivalent to the condition U=! � 
 or kU � !

for the velocity amplitude, or likewise U=cs � 1, i. e. the particle velocity is much
smaller than the phase speed.

Further remarks (without proof):

1. The ratioU=cs D kU=! � 1 corresponds to ju�ruj=jut j � 1 in the momentum
balance (6.3) and can, therefore, be considered as a dimensionless measure for
the amplitude, respectively the expansion parameter � used in Section 6.1.

2. Gravity can be neglected as long as the wavelength 
 satisfies the inequality

 � c2s =g � 150�200 km.

3. The Earth’s rotation can be neglected as long as the wavelength 
 satisfies the
inequality 
 � cs=˝ � 15;000 km (i. e. always).

6.2.1 Group Velocity I: Interference ofWaves

The sum of two or more solutions of a linear homogeneous system is itself a solution.
Specifically, the superposition of two waves of identical amplitudeP but with differ-
ent wave numbers results in the solution p D P cos.k �x�!t/CP cos.k0 �x�!0t/
which by trigonometric identities is equivalent to

p D 2P cos

�
k0 � k
2

� x � !0 � !

2
t

�
cos

�
k0 C k

2
� x � !0 C !

2
t

�
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Note that the dispersion relation must be satisfied for both waves, i. e. ! D ˝.k/

and !0 D ˝.k0/. If both wave numbers are not very different, i. e. if k0 D kC�k

with small �k, then a Taylor expansion yields

!0 D ˝.k0/ D ˝.kC�k/ D ˝.k/C
3X
iD1

@˝

@ki
��ki C � � � D ! C cg ��kC � � �

with the vector

cg D
�
@˝

@k1
;
@˝

@k2
;
@˝

@k3

�
D @˝

@k
(6.24)

The solution, therefore, has the approximate form, with kg D �k=2,

p D 2P cos
�
kg � �x � cgt

��
cos .k � x � !t/

and consists of a product of two plane waves with rather different wavelengths (as
depicted in Figure 6.3). The short wave (wavelength 2 =jkj) has the usual propaga-
tion speed !=jkj D cs. The long wave (wavelength 2 =jkgj) describes the envelope
(that is the shape of the wave group) and propagates with the velocity cg which,
therefore, is called group velocity. From (6.20) it follows

cg D cs
k

k
(6.25)

for sound waves. In contrast to the scalar (and positive) phase speed, the group veloc-
ity cg is always a vector. For sound waves it has the magnitude of the phase speed and
the direction of the wave-number vector. Note that the latter is always the case when
the dispersion relation only depends on the magnitude jkj but not on the direction
of k. Other important waves in the ocean do not share this property.

The above description refers to free waves far from boundaries. The vertical
boundary of the ocean is generally not far away, but it often only plays a minor
role (due to the sound channel, see below). It is not in principle difficult to take the
boundaries into account, at least in case of simple geometry, as long as the boundary
conditions are known (e. g. zero normal velocity; at the seafloor, however, one has
to take into account that sound can also propagate into the solid earth). We will not
deal with this issue further.

−100 −50 0 50 100
Direction x

Fig. 6.3 Superposition of 2 waves with similar wave numbers
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6.2.2 Energy Conservation I: Kinetic and Elastic Energy

The conservation of energy can be directly derived from the linearized form of the
sound wave equations. Multiplying (6.9) with p=�0c2s , and (6.10) with �0u (note
that p1 ! p, etc. ), addition of the resulting equations yields

�0
@

@t

�
1

2
u2 C 1

2

p2

�20c
2
s

�
D �pr � u � u � rp � �r � up (6.26)

The first term on the left-hand side of (6.26) corresponds to the change of kinetic
energyEk D u2=2 � u2=2 (energy per mass). In the linear approximation, �0Ek is,
therefore, the kinetic energy per volume.

According to the first law of thermodynamics (1.22), under adiabatic conditions
a small change d� in specific volume � D 1=� at pressure p corresponds to work
done on the volume and causes a change dE in internal energyE (per mass) of

dE D �pd� D �pd
1

�
D C p

�2
d� D p

�2c2s
dp � d

�
1

2

p2

�20c
2
s

�
(6.27)

Here we have used (2.128), and for the last relation assumed that � � �0 and cs �
const. It is, therefore, plausible that the change of

Ee D 1

2

p2

�20c
2
s

(6.28)

is the contribution of the (reversible) volume work to the internal energy in the linear
approximation. Note that the pressure in (6.27) and (6.28) has to be replaced by
p0 C p according to (6.1), however since p20 D const and p0p vanishes on average,
(6.28) remains valid as well for the perturbation pressure p. The quantityEe is called
elastic energy. From (6.26) we obtain the energy conservation for sound waves in the
form

@

@t
�0 .Ek C Ee/ D �r � pu (6.29)

with the (mechanical) energy flux pu (in W m�2) as discussed in (2.73). The sum of
elastic and kinetic energy is conserved, except for the divergence of the energy flux
term which vanishes in the integral over a domain when there is no flux of energy
into the volume. With the wave solution (6.18), and using cos2.: : :/ D 1=2we obtain
as average over a wavelength/period

Ee D 1

2

1

�20c
2
s

P 2 cos2.: : :/ D 1

4

1

�20c
2
s

P 2 D Ek (6.30)

and thus an equal distribution between both energy forms. As mean total energy per
volume we can define

Ew D �0
�
Ee C Ek

� D 1

2

P 2

�0c2s
(6.31)

To give an idea of the orders of magnitude involved: a pressure amplitude P D
10�6 Pa corresponds to an energy Ew 	 10�18 J=kg, and an rms particle velocity
U 	 10�9 m s�1. An energy flux of J0 D 10�12 W m�2 is the smallest intensity that
the human ear can perceive (at 1000Hz in the air). Intensities are frequently given in
dB (decibel), defined as 10 logJ=J0.
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6.2.3 SoundWaves in aMean Current

The analysis in Section 6.1 can easily be generalized for a reference state which is
moving with the constant velocity u0. The only change is in the substantial deriva-
tive D=Dt which is now linearized as

D

Dt
D @

@t
C u0 � r

Therefore, one only has to replace @=@t by @=@t C u0 � r in the equations. In case of

a wave ansatz of the form ei.k � x � !t/ it follows that in all previous formulae one
has to make the replacement of ! by !i D ! �u0 �k. The dispersion relation (6.20)
thus becomes .! � u0 � k/2 D c2s k

2 or

! D u0 � kC !i D ˝.k/ (6.32)

The part !i D ˝ i .k/ D csk is referred to as intrinsic frequency, i. e. the frequency
seen by an observer who is moving along with the current u0. The frequency !,
on the other hand, is noted by a stationary observer. The frequency shifts by the
amount u0 � k, called DOPPLER2 shift. The group velocity

cg D @˝

@k
D u0 C cs

k

k
(6.33)

is a vectorial addition of the mean current u0 and the (intrinsic) group velocity cig D
csk=k seen by a moving observer.

6.3 Propagation in a Variable Environment:
WKBJ Approximation

So far we have assumed that � , S ,p0, �0 D const and also cs D const. As can be seen
from Figure 2.14, the sound velocity varies with temperature and pressure in a range
of about 1;460�1;540m s�1 (the dependence on the salinity is negligible). This vari-
ation, while small, is crucial for the propagation of sound waves in the ocean. Sound
velocity increases with pressure, and it generally increases towards the seafloor. Of-
ten it also increases toward the surface because of higher temperature, and frequently
there is a zone of minimum sound velocity in the upper 1,000 m. A typical profile
of cs (at Bermuda) with the above described features is shown in Figure 2.17. Hor-
izontal temperature gradients also may cause corresponding gradients of the sound
velocity.

In the linear approximation, the sound wave equations (6.9)–(6.13) remain valid
for a variable sound velocity cs.x; t/ and lead to the modified wave equation

@

@t

�
1

c2s .x; t/

@p

@t

�
D r2p (6.34)

In practice, the dependence of sound velocity on location rather than time is of par-
ticular importance, but it is no problem to deal with the general case. Analytical

2 CHRISTIAN ANDREAS DOPPLER, *1803 in Salzburg, †1853 in Venice, mathematician and physi-
cist.
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solutions of (6.34), however, are no longer possible offhand, and we have to search
for methods of approach. The WKBJ method, named after WENTZEL, KRAMERS,
BRILLOUIN and JEFFREYS3 is the best-known approximation in case that wave
lengths and periods are short compared to the scales of the mean environmental
fields. The method is widespread for many wave processes and often useful for or-
dinary as well as partial differential equations. We will derive the approximation for
the sound wave equation (6.34); its validity and applicability, however, extend much
further.

For cs D const, the solution (6.18) to the wave equation can be written as
p.x; t/ D a cos� D <faei�g, with constant amplitude a, and the phase � D
k � x � !t which is linear in x and t . In the following we will use the complex
representation; when necessary, squares can be formed with the complex conjugate.
To allow for variable sound velocity, an approximate solution to (6.34) is written as

p.x; t/ D a.x; t/ei�.x; t/ (6.35)

For the derivatives of � we introduce the abbreviations

!.x; t/ D �@�
@t

; k.x; t/ D r� (6.36)

and ! and k are interpreted as local frequency, respectively wave number. The
derivatives of p thus can be expressed as

@p

@t
D
�
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@t
� i!a

�
ei� ; rp D .ra C ika/ei�

r2p D �r2aC 2ik � ra � k2a C iar � k� ei�
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� 2i! @a

@t
� !2a � ia @!

@t

�
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�
@a

@t
� i!a

�
@c�2

s

@t

	
ei�

(6.37)

So far, nothing has been gained, and instead of one unknown functionp we now have
two, namely a and �. To proceed, we now require that the amplitude, frequency, and
wave number are approximately constant over a wavelength and period, and hence
that the phase �.x; t/ is approximately linear in x and t . These requirements can be
expressed with the inequalities

@a

@t
� !a ; jraj � jkja ; @!

@t
� ! � ! ; @k

@t
� !k etc. (6.38)

or abbreviated @=@t � !, jr j � jkj. Physically, the request (6.38) means that the
solution (6.35) locally has the character of a plane wave. Formally, we introduce
a parameter � which measures the deviation from constancy of the amplitude over
a wavelength/period, i. e.

� D o

�
1

!a

@a

@t

�
or likewise � D o

�
1

jkja jraj
�

3 GREGOR WENTZEL, *1898 in Düsseldorf, †1978 in Ascona, physicist; HENDRIK KRAMERS,
*1894 in Rotterdam, †1952 in Oegstgeest, physicist; LEON BRILLOUIN, *1889 in Sèvres, †1969 in
New York, physicist; HAROLD JEFFREYS, *1891 in Fatfield/Durham, †1989 in Cambridge, mathe-
matician, statistician, geophysicist and astronomer.
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It follows from (6.38) that � � 1, and this allows a perturbation expansion in powers
of �. The expansion is not based on the smallness of amplitudes but on the smallness
of the scale ratio, and it is often referred to as multiple-scale expansion. Note that
one cannot in general expect convergence of the series. Usually, however, asymptotic
series are obtained which are such that for � ! 0 a finite number of terms in the
series (in practice the lowest order term) is a very good approximation to the true
solution. A brief introduction to asymptotic series can be found e. g. in Gradshteyn
and Ryzhik (2000).

Inserting (6.37)–(6.36) into the wave equation (6.34) and rearranging for orders
of �, one obtains

��0 �!2 � c2s k2
�
aC i�1

�
�2! @a

@t
� a

@!

@t
� !ac2s

@c�2
s

@t
� 2c2s k � ra � ac2s r � k

�

C �2
�
@2a

@t2
C c2s

@c�2
s

@t

@a

@t
� c2s r2a

�
D 0 (6.39)

Here the common factor ei� has been dropped.

6.3.1 GeneralWave Kinematics

To the order �0 one finds

!2.x; t/ D c2s .x; t/k
2.x; t/ (6.40)

from (6.39). This is the dispersion relation (6.20), but now (6.40) is locally valid.
Accordingly, !.x; t/ and k.x; t/ represent the local frequency and wave number.
From (6.40) it follows that the derivatives of the phase �.x; t/ are algebraically cou-
pled according to

�
@�

@t

�2
D c2s .x; t/ .r�/2 (6.41)

This equation is called Eikonal equation. It is a partial differential equation for the
phase �.x; t/. Due to its strongly nonlinear structure, a direct solution of (6.41) is,
however, very difficult and will not be attempted. As will be seen, an alternative way
to proceed which is based on the determination of k.x; t/ is mathematically easier
and also physically more illustrative.

Note that from the definition of k in (6.36) it follows that

@kj

@x`
� @k`

@xj
(6.42)

a relation which may also be written as r � k D 0. The integral
R
k � ds along

some path from point A to B equals the 2  times the number crests. Because the
vector field k is free of rotation, this number is independent of the connecting path
(a consequence of the Stokes theorem, see Appendix A.1). Furthermore, from (6.36)
we find the relation

@k

@t
C r! D 0 (6.43)
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In the direction of k, the magnitude jkj is the number of wave crests per unit length
at a fixed time, and ! is the number of wave crests passing a fixed location per unit
time (wave crest flux). Therefore, (6.43) can be interpreted as the conservation of the
number of wave crests.

According to the dispersion relation (6.40), the dependence of frequency on space
and time results from the wave number k.x; t/, and also explicitly from the varying
sound velocity, i. e.

!.x; t/ D cs.x; t/jk.x; t/j D ˝.kIx; t/ (6.44)

In the last relation only the .x; t/-dependence of cs is written as argument of the
function˝ . In the following, only the existence of the dispersion relation (6.44) but
not its specific form for sound waves will be used. Therefore, the conclusions will be
valid for all wave processes that have a dispersion relation. From (6.44) we obtain
(in tensor notation) the relation

@!

@x`
D @˝

@kj

@kj

@x`
C @˝

@x`
(6.45)

Note that although! D ˝ according to (6.44), one has to distinguish between spatial
derivatives of ! and ˝ because in the first case only t is kept constant while in the
second both k.x; t/ and t are kept constant. This is analogously valid for temporal
derivatives. With the group velocity cg as defined in (6.25), (6.43) finally results in

@k

@t
C cg � rk D �@˝

@x
(6.46)

The derivative @=@x on the right-hand side refers to the explicit dependence of fre-
quency˝ on the spatial coordinate via the sound velocity according to (6.44) (there-
fore, we are not using the gradient symbol). Equation (6.46) is a quasi-linear partial
differential equation for k.x; t/. Its physical significance will be discussed, along
with a practical solution method, in the next section. With the solution k.x; t/ of
(6.46), the local frequency !.x; t/ follows from the dispersion (6.40). If needed,
the phase �.x; t/ can be obtained by simple integration of (6.36). It is often use-
ful to consider the relation corresponding to (6.46) for the frequency !. In analogy
to (6.45) one has

@!

@t
D @˝

@kj

@kj

@t
C @˝

@t

and with (6.43) it follows that

@!

@t
C cg � r! D @˝

@t
(6.47)

As the dispersion relation (6.40) relates wave number and frequency, (6.46)
and (6.47) are not independent of each other; however, there can be practical
advantages to use both simultaneously (cf. Section 6.3.4).

6.3.2 Group Velocity II: Rays andWave Packages

Equation (6.46) is a quasi-linear partial differential equation of first order for k.x; t/
(linear, because the derivatives of k appear linearly, and quasi, because cg and ˝
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algebraically depend on k). A straightforward solution can be obtained from the
method of characteristics, a mathematical procedure which is conceptually analo-
gous to using Lagrangian rather than Eulerian coordinates in the equations of motion
(see Section 2.12). The equations (6.46) for the wave number, respectively (6.47) for
the frequency, have the general form

@ 

@t
C cg.k;x; t/ � r D Q 

where cg D cg.k;x; t/. As an analogy, the propagation of a substance  is governed
by

@

@t
C u � r D Q (6.48)

Here all sources and sinks (including diffusion) are contained in Q. Instead of solv-
ing the partial differential equation (6.48), one may consider in the Lagrangian de-
scription the movement of material elements along the particle paths which are given
by

dx

dt
D u.x; t/ (6.49)

Along the particle path one then has

d

dt
D Q (6.50)

Note that equations (6.49) and (6.50) are ordinary differential equations. From each
particle’s concentration .x; 0/ D 0.x/ at an initial time t D 0, the value .x; t/
along each trajectory can be determined, given Q (assuming that Q only depends
on the values of  on the respective trajectory). In principle, this allows construction
of the solution for every point in the region that is reached by a trajectory (see the
sketch in Figure 6.4).

Similar considerations can be used for (6.46) and (6.47) since mathematically
it does not matter that cg is a group velocity rather than a particle velocity. One

Fig. 6.4 Rays starting from initial points x
.i/

0 at time t D 0. For sound waves k and cg are aligned
parallel. Most other waves do not have this property. A perpendicular orientation, as depicted here,
is realized in internal gravity waves (see Chapter 7)
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can define a wave group that is described by its location x and its wave number k
and moves with its specific group velocity cg.x; t/. The wave group is analogous to
a substance particle which propagates along a particle path defined by the particle
velocity. The ‘group path’ is defined by the group velocity here, i. e.

Px D cg D @˝

@k
(6.51)

Changes in time of a property  along the motion of a wave packet are governed by

P D @ 

@t
C cg � r D Q (6.52)

The left side of the equation (6.46) is the ‘substantial’ derivative of k, hence

Pk D �@˝
@x

(6.53)

If the dispersion relation is dependent on the position, the wave number k for the
propagating wave group will change, generally both in magnitude and in direction.
This is called refraction. It is often useful to also consider the changes in frequency!
along the characteristics. According to (6.47)

P! D @˝

@t
(6.54)

In the frequent case that the dispersion relation does not explicitly depend on time,
the frequency of a wave group remains constant.

6.3.3 Energy Conservation II: Energy Flux andGroup Velocity

To complete the (approximate) solution of (6.34), the amplitude a.x; t/ still needs to
be determined. The terms of the order �1 in (6.39) are
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With the relation cg D c2s k=! for sound waves, which follows from (6.25) and
the dispersion relation, one can replace the term containing r � k in (6.55) with the
identity

r � k D r �
�
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c2s
cg

�
D c�2

s cg � r! C !cg � rc�2
s C !

c2s
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and obtains, after some reordering,
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This complicated equation can be rewritten as
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As the period of sound waves is very short compared to time-scales of changes in the
environment, the time dependence of the sound velocity is of little importance, and
we can assume cs D cs.x/, i. e. time-constant sound velocity. With this assumption, it
follows from (6.54) that the term in brackets in (6.56) vanishes. After multiplication
by a�=�0cs, adding the complex conjugate equation, averaging over a wave period
and identification of the mean total energy according to (6.31), i. e.

Ew D 1

2

aa�
�0c2s

one finally obtains the energy conservation in the common form

@Ew

@t
D �r � cgEw (6.57)

The total energy is thus conserved in the spatial integral, as can be seen by integration
of (6.57) over the total volume and using the Gaussian theorem (A.6). We identify

J E D cgEw (6.58)

as total energy flux (in W m�2). The relation (6.58) is valid for most wave processes
under general conditions, as remarked earlier.

As discussed in Section 6.3.2, the most convenient solution of (6.57) is obtained
by using the characteristics. The change in total energy along the wave group path is
given by

PEw D �Ewr � cg (6.59)

and can be solved together with (6.51), (6.53) and (6.54). Equation (6.59) indicates
that the energy of a wave group can change locally through convergence/divergence
of the groups.

As mentioned above, the time dependence of the sound velocity is not very im-
portant, but the problem is interesting for educational purposes. Obviously, if we
retain the term in the brackets of equation (6.56), we find that the energy Ew is not
conserved, and (6.57) must be replaced by

@Ew

@t
C r � cgEw D �Ew

!

@˝

@t
D �Ew

@cs=@t

cs
(6.60)

which is found using (6.54). We note, that while a spatial dependence of the back-
ground (in a WKBJ sense) does not spoil the energy conservation, the time depen-
dence leads to a source/sink term associated with change of frequency along the wave
path. In Chapter 9 we will show that the relation (6.60) has a more general validity.
Here we just mention that a conserved quantity still can be found: it is the wave
action which for this particular system reads A D !Ew. In fact, (6.60) transforms to

@A
@t

C r � cgA D 0 (6.61)

A summary of the WKBJ analysis and the resulting ray equations is given in the box
on p. 173.
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25. Ray EquationsIn summary of the WKBJ analysis, we have obtained the relations

Px D @˝

@k
(B25.1)

Pk D �@˝
@x

(B25.2)

P! D @˝

@t
(B25.3)

PA D �Ar � cg (B25.4)

The ray equations (B25.1)–(B25.4) are ordinary differential equations, and the first three are the
characteristic equations of the partial differential equation (6.46). Equation (B25.4) determines
the wave action. Their solution is straightforward. The solution of the Eikonal equation (6.41)
can then be constructed from all possible characteristics. The equations (B25.1) to (B25.3) re-
semble the Hamiltonian equations of the canonical variables x and k with Hamiltonian and
energy ˝ (see Section 2.12 and the box on p. 98). We thus can view the rays either as trajec-
tories in the physical space, with k as property changing along the path, or in the phase space
spanned by the six (or correspondingly less in a less dimensional physical space) variables x

and k. The latter has the advantage to use the Liouville theorem, stating that the phase space
volume dx3 � dk3 is conserved in the phase space flow.
The equation (B25.3) for ! also follows directly from the dispersion relation (6.44) together
with (B25.1) and (B25.2) and is, therefore, redundant. Nevertheless, it can often conveniently be
used to replace one of the equations (B25.2).
One might ask why the Lagrangian representation is not preferred to the Eulerian form in fluid
dynamics. The reason is that through the equation of motion, specifically by the pressure gra-
dient, different particle paths are coupled and cannot be calculated independently. A further
coupling may arise through frictional or diffusive processes. This can be physically understood
since different particles cannot occupy the same volume element. In contrast, ray paths may pass
the same volume at the same time. It may, however, happen that the underlying assumption of
the WKBJ approach – the high wave-number asymptotic – breaks down for crossing rays, e. g. in
focal points or more complicated caustic lines.
Note that in derivation of (B25.1)–(B25.3), only the existence of a dispersion relation but not the
specific dispersion relation of the sound waves has been used. Therefore, the relations are valid
for all wave processes with a dispersion relation.

6.3.4 Pathways of SoundWave Propagation in the Ocean

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105 x [m]

1500 1550 1600 1650
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−1000
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a b

Fig. 6.5 Sound wave rays along a sound channel given by the c-profile in a. All rays (b) start at
a depth of 800 m but have different initial angles '? D �15, �5, 0, 5, 15ı
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In the ocean, the speed of sound varies mainly with depth, due to the dependence
of pressure and temperature on depth. For an approximate determination of the sound
wave pathways, we thus consider the specific case cs D cs.z/. The dispersion rela-
tion (6.44) then is ! D cs.z/.k

2
1 C k22 C k23/

1=2, and the characteristic pathway of
wave groups is given by

Px` D cs
k`

jkj ; ` D 1; 2; 3 (6.62)

i. e. the propagation always proceeds in the direction of k. Equations (B25.2)
and (B25.3) now read

Pk1 D � @˝
@x1

� 0 ) k1 D const D kh (6.63)

Pk2 D � @˝
@x2

� 0 ) k2 D const D 0 (6.64)

Pk3 D � @˝
@x3

D �@cs

@z
jkj (6.65)

P! D @˝

@t
D 0 ) ! D cs

�
k2h C k23

�1=2 D const (6.66)

with some immediate consequences indicated. Let the minimum of the sound veloc-
ity c0 D cs.z0/ be at z D z0. The vertical wave number k3 decreases with time
above the minimum of cs, and increases below the minimum. A wave group starting
at the level z0 with initially upwards propagation hence undergoes refraction, and
unless it reaches the surface where it will be reflected, eventually it will propagate
downward. Hence the path effectively oscillates around the level z D z0 and remains
within a certain range of depth, the maximum/minimum depth zmax=min of which is
reached at k3 D 0 respectively cs.zmax=min/kh D !. In between, we find the SO-
FAR4 channel. Because of the constancy of kh and with cs.zmax=min/ D cm, (6.66) is
equivalent to

cm

cs.z/

�
kh

k2h C k23.z/

�1=2
D n cos' D const (6.67)

Here we have introduced the angle ' betweenk and the horizontal, and the refraction
index n.z/ D cm=cs.z/ as ratio of the maximum propagation velocity to its actual
value. In its second form, (6.67) directly corresponds to SNELLIUS’5 law of refrac-
tion in optics. Figure 6.5 displays the propagation of sound rays in a realistic sound
channel.

4 SOund Fixing And Ranging
5 WILLEBRORD SNELLIUS, *1580 and †1626 in Leiden, astronomer and mathematician.
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26. Analytical solution
for sound propagation

An approximative analytical solution of the equation of sound rays can be obtained for small
vertical excursions around the sound velocity minimum (i. e. ' 
 1, or jk3j 
 kh), whereas
the 3-d wave-number varies only slightly. With the parabolic sound velocity profile

c.z/D c0 C 1

2
	.z � z0/2

we find the simple equation for the horizontal component of the ray

Pxh D cs.z/
kh

k.z/
� cs.z0/

kh

k.z0/
� c0

from (6.62) (remember that kh D const). For the vertical component of the wave path

Pz D cs.z/
k3

k.z/
� c0

k3

k.z0/
(B26.1)

also follows from (6.62). From the refraction equation (6.65)

Pk3 D �@cs

@z
k.z/� �@cs

@z
k.z0/ � �	k.z0/.z � z0/ (B26.2)

results. A further differentiation of (B26.1) and insertion of (B26.2), using � D z � z0, then
leads to

R� C 	c0� D 0

We thus obtain an oscillatory path with the oscillation period T D 2 =.	c0/
1=2 . As the hori-

zontal propagation velocity is approximately given by c0, this corresponds to a horizontal length
scale

L D c0T D 2 
p
c0=	

With the value 	 � 2 � 30m s�1=.1;000m/2 � 0:6 � 10�4 m�1 s�1, one obtains L �
30 km for the distance between e. g. two maxima of the ray curve which has the right order of
magnitude compared to Figure 6.5.
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Gravity waves play an important role in the adjustment of ocean cur-
rents towards geostrophic equilibrium. Internal gravity waves con-
tribute by breaking to mixing processes in the ocean interior, espe-
cially to diapycnal mixing. Surface gravity waves are effective in the
exchange of momentum, heat, water, and gases between the ocean and
the atmosphere, in addition to their practical significance for shipping.

The force of gravity is fundamental for the existence of gravity waves and indeed
for nearly all oceanic motions with the exception of sound waves. Earth’s rotation
is also important and leads to significant modifications. For internal gravity waves,
the existence of a density stratification caused by temperature and salinity variations
with depth is crucial.

The density stratification is described by a background density �b.z/ or equiva-
lently the Brunt–Väisälä frequency N.z/ defined in Equation (5.9). The role of N
for the stability of the water column and frequency of particle oscillations about
a reference level was discussed in Section 2.9.2. In the ocean, the period of stability
oscillations normally is between 10 and 20 min (upper ocean) and a few hours at
great depths. Close to the surface very large values of N may occur in the seasonal
thermocline. A typical profile of N.z/ in midlatitudes is shown in Figure 2.17.

7.1 Governing Equations

The equations of motion (5.69)–(5.73) remain valid for gravity waves. Equa-
tion (5.69) describes the adjustment of the pressure field as a consequence of a di-
vergent velocity field. As shown in Chapter 6, the adjustment occurs with the time-
scales of sound waves which are much shorter than for all other ocean processes.
On the much longer time-scale of gravity waves, it is, therefore, possible to approx-
imate (5.69) by assuming that the sound waves are infinitely fast so that in effect
the adjustment has already been accomplished. Formally, this approximation can be
achieved by taking the limit cs ! 1 in (5.69), thereby eliminating sound waves
from the system.

Equivalently, as the starting point one can use the Boussinesq system (4.10)–
(4.11) and (4.22) derived in Section 4.1. It is, however, preferable to formulate these

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 177
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equations for the density variable O� D �� �b.z/ which is the deviation of the in-situ
density from the stationary background state. The background state is characterized
by the Brunt–Väisälä frequency N.z/ as in the quasi-geostrophic theory discussed
in Section 5.2. Hence

�0

�
Du

Dt
C 2˝ � u

�
D �r Op � O�r˚ C F (7.1)

r � u D 0 (7.2)

D O�
Dt

� �0N
2

g
w D G� : (7.3)

The treatment of the forcing terms F and G� is postponed to Chapter 10.1. Here we
will assume that both are zero.

In the traditional approximation for the Coriolis force, the vector ˝ is approxi-
mated by its locally vertical component, i. e. 2˝ � f with f D .0; 0; 2˝ sin'/ D
.0; 0; f /. As shown in Section 4.2.4, this approximation holds if the aspect ratio (ra-
tio of vertical to horizontal length scales of motion) is small. It will become apparent
that for short gravity waves where the aspect ratio is not necessarily small, rotation
is altogether insignificant. Therefore, this approximation is used in the following; for
a detailed discussion on the consequences of the traditional approximation for grav-
ity waves see Gerkema and Shrira (2005). Furthermore, in the present chapter the
Coriolis frequency f will be treated as constant.

Consider now small deviations from the background state. Instead of a formal
expansion of the variables in terms of a small expansion parameter such as in Sec-
tion 6.1, it suffices for the linear approximation to neglect all products of the field
variables (the validity of this approach can be considered a posteriori). One obtains
the linear system

@uh

@t
C f � uh D � 1

�0
rhp (7.4)

@w

@t
D � 1

�0

@p

@z
� g

�

�0
(7.5)

@�

@t
� �0N

2

g
w D 0 (7.6)

r h � uh C @w

@z
D 0 : (7.7)

Note that we have explicitly distinguished between horizontal and vertical vector
components, and simplified the notation for the density variable, replacing O� by �.

Boundary conditions:

The condition that no mass flux crosses the boundary (kinematic boundary con-
dition) follows from (2.22) and (2.23). At the bottom z D �h it takes the form
w D �uh � r hh. For a free surface located at z D �.xh; t/, and ignoring the term
uh � rh� which is small in accordance with linear wave theory, that condition is ex-
pressed as w D @�=@t at z D �. In the absence of atmospheric pressure changes, the
surface elevation � is related to pressure by � D p=g�0 at z D 0 (cf. Section 5.2.4).
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Therefore, the boundary condition at the surface is given as

w D 1

g�0

@p

@t
at z D 0 : (7.8)

In many situations, (7.8) is approximated by the simpler condition

w D 0 at z D 0 : (7.9)

For gravity waves, the accuracy of the rigid-lid condition (7.9) is discussed in Sec-
tion 7.4.4 below.

7.2 Plane GravityWaves

The set of equations (7.4)–(7.7) is the starting point for all wave problems discussed
in this chapter. Since all coefficients are independent of xh and t , a solution describ-
ing plane waves in the horizontal directions can be found by a separation ansatz of
the form

8̂
<̂
ˆ̂:

u

p

w

�

9>>=
>>;

D

8̂
<̂
ˆ̂:

U 0dW=dz
P0dW=dz
W.z/

R0N
2.z/W.z/

9>>=
>>;

ei.kh�xh�!t/ (7.10)

with an educated guess of the vertical dependence. Here U 0; P0; R0 are constants,
and W.z/ is the vertical structure function which will be determined below. Insert-
ing (7.10) in equations (7.4), (7.6) and (7.7) yields the algebraic relations

U 0 D i .!kh � if � kh/ =!k
2
h (7.11)

P0 D i�0.!
2 � f 2/=!k2h (7.12)

R0 D i�0=g! (7.13)

for the coefficients U 0; P0; R0. Note that all physical fields in equations (7.4)–
(7.7) have the proper physical dimensions, however, the dimensions of the factors
U 0; P0; R0 differ from those of the fields u; p; �. Inserting of (7.10) in (7.5), us-
ing (7.12) and (7.13), then results in

d2W

dz2
C k2h

N 2.z/ � !2

!2 � f 2
W D 0 (7.14)

as a differential equation for the functionW.z/ representing the vertical dependence
which will be extensively used in the following.

7.2.1 Propagation Characteristics

In this section, the density changes are idealized to be linear with depth so thatN D
const. While this idealization does not well reflect the typical stratification in the
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ocean, it facilitates to obtain a first view of internal wave propagation characteristics.
For constant N , (7.14) is solved by

W.z/ D W0eik3z with k23 D k2h
N 2 � !2

!2 � f 2 (7.15)

and leads to the dispersion relation

!2 D N 2k2h C f 2k23
k2h C k23

� f 2 C N 2 � f 2

1C k23=k
2
h

(7.16)

The period of the internal gravity waves is limited by the stability period 2 =N 	
20min in the upper ocean, increasing to a few hours in the deep water column, and
by the inertial period 2 =f 
 12 h. In general, N > f , hence f < ! < N

holds. With (7.15), the solution describes plane waves with a phase proceeding in
the direction of the three-dimensional wave vector .k1; k2; k3/, with phase speed
c D !=k where k D .k2h C k23/

1=2 is the total wave number. Other useful forms of
the dispersion relation are

k23 D k2
N 2 � !2

N 2 � f 2 and k2h D k2
!2 � f 2

N 2 � f 2 :

Let ' be the angle of the wave vector to the horizontal plane so that cos2 ' D
k2h =k

2; sin2 ' D k23=k
2. Then, the dispersion relation (7.16) can be written in the

useful form

!2 D N 2 cos2 ' C f 2 sin2 ' (7.17)

which shows that the frequency ! only depends on the angle ' but not on the mag-
nitude jkj of the three-dimensional wave vector. This property of internal gravity
waves is very different from e. g. sound waves where the frequency only depends on
the magnitude but not on the direction of the wave vector.

In a .kh; k3/ plane, the lines of a constant ! are straight lines through the origin.
AsN � f the frequency is almost a cosine of '. We have ! ' N if the wave vector
is close to horizontal (' ' 0), and ! ' f if it is almost vertical (' ' ˙ =2). The
frequency ! is shown in Figure 7.1 (left panels) as function of kh and k3. In the
logarithmic view the dependence of ! on kh or k3 is expressed as a mere shift of
the profile along the respective wave number. This is so because ! is a function of
k3=kh and log kh=k3 D log kh � log k3.

Since the group velocity cg is given as cg D @!=@k, i. e. as the gradient of !
in k-space, and ! only depends on the direction of k, the group velocity must be
orthogonal to the wave-number vector, cg ? k or cg � k D 0. For k3 > 0 it follows
that cg3 < 0, and vice versa. Hence the case k3 > 0 (k3 < 0) corresponds to
the upward (downward) phase propagation and downward (upward) propagation of
wave groups and thus also of energy. The situation is visualized in Figure 7.2 where
the energy propagation is directed to the upper right whereas the phase propagates to
the lower right. This behavior can be algebraically verified by direct calculation of
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Fig. 7.1 Dispersion relation (a,d, in the the scaled form !=N ), horizontal (b,e) and vertical (c,f)
components of the group velocity of internal waves, for f D 10�4 s�1 and N D 5 � 10�3 s�1.
a–c show these quantities as function of the horizontal wave number kh for 4 vertical wavelengths
2 =k3 D 1; 10; 100; 1;000m, d–f as function of the vertical wave number k3 for 4 horizontal
wavelengths 2 =kh D 10; 102; 103; 104 m (colors are for both in the order black, blue, red,
green). Note that the wave-number axes and the scales for group velocity are logarithmic (the neg-
ative of c3 is displayed, because c3 < 0 for k3 > 0)

a cb

Fig. 7.2 Propagation of internal waves in the x�z-plane, as simulated by a numerical model.
At time t D 0, an oscillatory forcing with period T is switched on which is concentrated in the
bottom left corner. Shown are the density anomaly (in color) and the velocity vectors, at times 4T
(a), 4:25T (b) and 4:5T (c). The numerical experiment is a replica of the classical laboratory
experiment by Mowbray and Rarity (1967) in which an internal wave is generated by a small disk
oscillating in a stratified fluid

the group velocities, resulting in

cgh D @!

@kh
D N 2 � f 2

!

k23�
k2h C k23

�2kh D .N 2 � !2/.!2 � f 2/
!.N 2 � f 2/

kh

k2h
(7.18)

cg3 D @!

@k3
D �N

2 � f 2
!

k2h�
k2h C k23

�2 k3 D  .!2 � f 2/3=2.N 2 � !2/1=2
!.N 2 � f 2/

1

kh

(7.19)
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Fig. 7.3 Horizontal (ac) and vertical (bd) components of the group velocity of internal waves for
f D 10�4 s�1 and N D 5 � 10�3 s�1. a,b show these quantities as function of the scaled
frequency !=N for 4 horizontal wavelengths 2 =kh D 10; 102; 103; 104m, c,d as function of
horizontal wave number kh for 4 frequencies ! D 1:01f; 1:05f; 0:5N; 0:99N (colors are for
both in the order black, blue, red, green). Note that the wave-number axes and the scales for group
velocity are logarithmic (c3 is displayed for k3 < 0)

The components of the group velocity are displayed in Figure 7.1 (middle and right
panels) as function of the wave vector. They have a very large variation of the mag-
nitudes. A useful presentation of the group velocities is given by the above shown
functions of frequency and horizontal wave number because in a horizontally homo-
geneous background these wave parameters stay constant (see Section 7.3 below).
These forms are displayed in Figure 7.3. We note that there is no group propagation
for the limiting frequencies ! D f and ! D N . Here internal waves degenerate to
nonpropagating oscillations, called inertial and buoyancy oscillations, respectively.

7.2.2 Energy Conservation

The mechanical energy conservation is derived in the usual way (cf. Section 2.4.2).
Multiplying (7.4) with �0uh, (7.5) with �0w, and the density conservation (7.6) with
g2�=�0N

2, one obtains after addition

�0
@

@t

�
1

2
u2h C 1

2
w2 C 1

2

g2

�20N
2
�2
�

D �uh � r hp �w@p
@z

(7.20)

which describes the energy conservation for free linear gravity waves. The kinetic
energy (per volume) is

Ek D 1

2
�0u

2
h C 1

2
�0w

2 D Eh
k C Ev

k
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27. Particle OrbitsThe displacement of particles by the wave motion follows from the vector X.t/ D
.X.t/; Y.t/;Z.t//, determined by PX D u. To derive their shape, it is useful to transform
from the coordinates .x; y; z/ to a particular coordinate system .x0; y0; z0/ in which the
wave vector is oriented along the z0-axis and has zero component in the x0-direction. We
thus express the wave vector as k D .0;� cos'; sin'/, which implies the transformation
x0 D x; y0 D y sin'Cz cos'; z0 D �y cos'Cz sin', as sketched in the figure below. The
orbit X.t/ D .X 0.t/; Y 0.t/;Z0.t// in the new coordinates is transformed accordingly. Note,
however, that the incompressibility constraint (7.7) yields � PY cos' C PZ sin' D 0 and hence
PZ0 � 0 and consequently Z0 � 0. The orbits is thus in the .x; y0/ plane perpendicular to k.

a Sketch of the coordinate systems .x; y; z/ and .x; y0; z0/ (x is pointing into the page). b
A three-dimension view: the .x; y0/-plane has the inclination ' with respect to the .x; y/-
plane and the wave vector k D .0� cos'; sin'/ is normal to the .x; y0/-plane. The orbit is
elliptical with the major axis along the line of maximum slope. The displacement vector X and
the particle velocity u is indicated, the latter for the northern hemisphere. Note that the group
velocity (not shown) is pointing down-slope in this configuration (along the negative y0-axis).
Transforming (7.4)–(7.6) to the new coordinates yields

RX D PY 0f sin' and RY 0 D � PXf sin' � Y 0N 2 cos2 '

In fact, the component of the Coriolis vector perpendicular to the orbit plane is f sin', which
enters in the Coriolis force. Furthermore, the motion feels the density change along the plane,
leading to cos' times the vertical density gradient, and g cos' is the component of the gravity
vector in the plane. Their product enters in the buoyancy force.
The system is solved by

X.t/ D f sin'

!
Y0 sin!t and Y 0.t/ D Y0 cos!t

and ! given by the dispersion relation (7.17). The orbit is thus an ellipse with the ratio of
along-slope to up-slope axes of .f=!/ sin'. It is sketched in the above figure. For near-inertial
frequencies we have k almost vertical (sin' � 1) and an almost circular orbit and almost hori-
zontal motion. At higher frequencies, the wave vector tends to the horizontal, the ellipse towards
the vertical, and it becomes more and more elongated in the y0-direction, pointing almost in the
z-direction. Hence, an almost vertical motion is found approaching ! D N (where sin' D 0).
The motion along the orbit is anticyclonic, i. e. clockwise in the northern hemisphere.

where Eh
k and Ev

k are horizontal and vertical kinetic energy, respectively. The last
term in the bracket on the left-hand side of (7.20) is identified as potential energy per
volume,

Ep D 1

2
�0

g2

�20N
2
�2
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(cf. Section 5.2.6). With the definitions Emech D Ek C Ep for the total mechanical
energy and J h D uhp respectively J3 D wp for the horizontal and vertical com-
ponents of the mechanical energy flux vector, and with the continuity equation (7.7)
one obtains the energy conservation in the standard form

@Emech

@t
D �r h � J h � @J3

@z
(7.21)

It is illuminating to evaluate energy and energy flux with the harmonic wave solu-
tion (7.10) and (7.15). The ratio of vertical and horizontal kinetic energies is

Ev
k

Eh
k

D !2

!2 C f 2
!2 � f 2
N 2 � !2

The horizontal kinetic energy dominates near the inertial frequency ! ! f , the
vertical at ! ! N . The ratio between potential and kinetic energy is given by

Ep

Ek
D N 2.!2 � f 2/
!2.N 2 � f 2/C f 2.N 2 � !2/

� 1

The potential energy is always smaller than the kinetic energy and becomes very
small near the inertial frequency. The Earth’s rotation prevents an equi-distribution
between both energy forms which prevailed for the sound waves. Only for ! ! N ,
or for f ! 0, both energy forms have similar size. For the total energy one obtains

Emech D 1

2
�0jW0j22N

2 � f 2

!2 � f 2 (7.22)

With the harmonic wave solution, the energy flux components pu and pw in (7.21)
can also be expressed1 in terms of W0 as

J h D .pu�
h C p�uh/=2 D 1

2
�0jW0j2N

2 � !2

!2k2h
2!kh D N 2 � !2

N 2 � f 2
!2 � f 2
!kh

kh

kh
Emech

(7.23)

For the last identity the relation (7.22) has been used. From the dispersion rela-
tion (7.16), we obtain after a brief calculation J h D cghEmech and J3 D cg3Emech,
and the energy conservation (7.20) has again the canonical form

@Emech

@t
D �r � cgEmech (7.24)

which is formally identical with equation (6.57) for sound waves, with potential
energy replacing elastic energy.

7.3 Propagation in Variable Stratification

The wave solutions derived in the previous sections are valid for the idealized case
of constant environmental conditions, in particular constant buoyancy frequency. For
a variable stratification, N D N.z/, one can expect refraction and a corresponding
modification of the propagation characteristics. Variations on the meridional direc-
tion of the Coriolis parameter can also lead to refraction; these are mainly relevant
for long gravity waves and will be dealt with in Section 8.3.1.

1 Since the field variables are complex but physical quantities are real, the real part of products is to
be taken, e. g. for the horizontal energy flux <.uhp/ D .pu�

h C p�uh/=2.
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7.3.1 WKBJ Approximation for InternalWaves

Approximate solutions can be found with the WKBJ technique discussed in Sec-
tion 6.3, provided that the vertical wavelength is short compared with the scale
of variation of N.z/. Analogous to (6.35), the approximate solution is written as
w D W.xh; z; t/ei�.xh;z;t/. Wave number and frequency are related to the phase �
by

kh D r h� ; k3 D @�

@z
; ! D �@�

@t

The kinematic treatment of internal gravity waves is completely analogous to the
sound waves in Chapter 6.3.1 and yields the local dispersion relation

! D ˝.kh; k3;xh; z; t/ D
�
N 2.z/k2h C f 2k23

k2h C k23

� 1
2

(7.25)

In the dispersion relation the environmental parameters f (constant on the f -plane)
and N D N.z/ appear. Therefore, only the explicit dependence on z needs to be
considered. The evaluation of the characteristic equations leads to

Pxh D @˝

@kh
D cgh (7.26)

Pz D @˝

@k3
D cg3 (7.27)

Pkh D � @˝
@xh

D 0 (7.28)

Pk3 D �@˝
@z

D �@˝
@N

@N

@z
D � k2h�

k2h C k23
� N
!

@N

@z
(7.29)

P! D @˝

@t
D 0 (7.30)

Note that (7.30) is redundant, but nevertheless often quite convenient. According
to (7.29), the sign of Pk3 is always opposite to that of @N=@z. The stratification N.z/
has a maximum in the main thermocline. Below the thermocline Pk3 < 0, above Pk3 >
0. Therefore, the path of the wave groups must have a form as outlined in Figure 7.4.
It is, however, not necessary to explicitly solve (7.29) since from (7.28) and (7.30)
the integrals kh D const and ! D const follow, and, therefore, k3 can be determined
algebraically from (7.25) as

k3.z/ D ˙
�
N 2.z/ � !2
!2 � f 2

� 1
2

kh (7.31)

Equations (7.26) and (7.27) reflect the fact that wave groups propagate with the group
velocity which is orthogonal to the wave-number vector. With (7.18) and (7.19), they
can now be solved since the wave numbers are known.

At a rigid boundary, we can expect reflection of the wave group so that frequency
and the wave-number component parallel to the boundary are unchanged. To the
extent that the boundaries (air-sea interface and bottom) can be idealized as a plane
surfaces, it follows that the horizontal wave number kh as well as the frequency !
remain constant while the vertical component k3 from (7.31) changes its sign. This
occurs for two of the waves in Figure 7.4.
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28. WKBJ Solution In order to find an approximate solution for the amplitudeW.z/, equation (7.14) is rewritten as

d2W

dz2
C q.z/W D 0 with q.z/D N 2.z/� !2

!2 � f 2 k2h (B28.1)

We transform the independent and dependent variables according to � D 	.z/ and H D
	 0

1
2W.z/ with a yet unspecified, monotonous function 	.z/, and 	 0 D d	=dz. It follows

that

d2H

d�2
C q

	 0

2
H D
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� 3
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!
H (B28.2)

The specific choice 	 0

2 � q, or 	.z/ D
zZ

z0

q1=2.z0/dz0 with arbitrary z0 yields

d2H

d�2
CH D

 
1

4

q00

q2
� 5

16

q0

2

q3

!
H D r.�/H (B28.3)

So far no approximations have been made. For q D const the right-hand side of (B28.3) would
vanish. If q.z/ changes slowly, the right side is small and can be neglected, yielding the approx-
imate solutionH.�/ � const e˙i� , or in the original variables

W.z/ � const

Œq.z/�1=4
exp

0
@˙i

zZ

z0

q1=2.z0/dz0

1
A (B28.4)

This is the standard WKBJ solution of (B28.1) which in many situations is an excellent
approximation.
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Fig. 7.4 b Example of ray propagation in a variable N -profile for three frequencies with initially
positive vertical wave numbers. All the waves, therefore, propagate downward at the initial time.
For each case the horizontal wave length is 1,000 m, the source in 800 m depth. a shows the Brunt–
Väisälä frequency (red) and the three frequencies marked by straight lines

7.3.2 Turning Points

Analytical solutions of the general wave equation (7.14) along a WKBJ approxi-
mation are discussed in the box on p. 186. The solution breaks down when k3.z/
becomes very small, thus violating the WKBJ condition of a small wavelength in
comparison with the background variations. It is interesting to consider what hap-
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pens at a depth level z? where k3.z?/ D 0. From (7.14) it follows that in regions
where N.z/ < ! the exact solution W.z/ is no longer oscillatory but exponen-
tially decaying, and has a turning point at N.z?/ D !. From (7.31) it follows that
k3 	 .N 2 � !2/1=2 ! 0. According to (7.18), respectively (7.19), cg ! 0 is valid
for all components of the group velocity. Note that although the vertical group ve-
locity becomes small, the wave group still reaches the level z? in a finite time as
cg3 	 .N 2 � !2/1=2 	 jz � z?j1=2 implies t? � t0 	 jz0 � z?j1=2 for the time to
proceed from z0 to z?.

The failure of the WKBJ solution (B28.4) at turning points can also be seen from
the energy equation (7.24) which for @=@t D 0 (stationarity) and r h D 0 (horizontal
homogeneity) leads to

@cg3Emech

@z
D 0 or cg3Emech D const for z ! z?

i. e. the energy density would become singular because cg3 ! 0. The reason for
the failure of the WKBJ solution is that the precondition @=@z � jk3j is no longer
satisfied because k3 vanishes at z D z?. Physically it is clear that waves cannot
propagate into the region where N.z/ < !. As dissipation is unlikely to play any
role because the vertical scale is large (k3 ! 0), the only plausible continuation of
the characteristic at the turning point is, therefore, obtained by reflection at z D z?.
All three waves in Figure 7.4 have turning points on their way downward and the one
with the highest frequency also on the way up. The latter is trapped in the channel
by the depth-varyingN -profile.

The wave form in the vicinity of a turning point can be determined analytically
and expressed in terms of AIRY2-functions, as shown in the box on p. 188.

7.4 The Influence of Boundaries

Typical length scales of internal waves are 10 m to 10 km in the horizontal and 10 m
to 1 km in the vertical. Therefore, it is of interest to consider what happens when the
waves approach the boundaries at the sea floor and/or the air-sea interface.

7.4.1 Reflection at a Plane Interface

Consider a wave of the form (7.15) which propagates toward the sea floor at z D
�H D const. A solution can be found by superposition of two solutions in the form

W.z/ D ACeik3z C A�e�ik3z

One of the two solutions is the incident wave, the other one the reflected wave.
Physically, only the wave with a group velocity directed toward the reflecting
interface can be the incident wave. For reflection at the bottom boundary this is the
wave with negative cg3 and hence positive k3. The other wave with negative k3 is the

2 GEORGE B. AIRY, *1801 in Alnwick, †1892 in Greenwich, mathematician and astronomer.
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29. Turning Point
Solution
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−1

−0.5

0

0.5

1

z
Airy functions Ai.z/ [blue] and Bi.z/ [green].

It is possible to find an approximate solu-
tion for the amplitudeW.z/which remains
valid near a turning point. In (B28.2) we
now choose the transformation

� D 	.z/ D 3

2
i

2
4
zZ

z?

q1=2.z0/dz0

3
5
2=3

and obtain

d2H

d�2
� �H D r.�/H

with r.�/ as in (B28.3). If the right side
can again be neglected, we obtainH.�/ �
c1Ai.�/ C c2Bi.�/ with Ai.�/ and Bi.�/ being the Airy functions which exponentially de-
crease for a positive argument (the Ai term), respectively increase (the Bi term, this term is thus
discarded), and oscillate for a negative argument. In the original variables, the solution then is

W.z/� const

�
	.z/

q.z/

�1=4
Ai .	.z//

This approximation which was derived by Langer (1949) is regular at z D z? and has a turning
point like the exact solution. At a large distance from the turning point, it merges into the WKBJ
solution.

reflected wave. With the choice A� D �ACe�2ik3H , the boundary conditionw D 0

at z D �H is satisfied. The solution is then of the form

W.z/ D AC



eik3z � e�ik3ze�2ik3H
�

� A sin k3.z CH/ (7.32)

withA D 2iACe�ik3H , and has the form of a standing wave in the vertical direction.
It can be interpreted as the superposition of two propagating waves which have the
same amplitude and a phase difference of 180ı.

7.4.2 Reflection at a Sloping Bottom

The reflection problem can be generalized to a plane bottom sloping by an angle ˛
against the horizontal, i. e. h D H0 � x1 tan˛. For simplicity, consider the case
k2 D 0 and assume again a constant buoyancy frequency N.z/ D const D Nb,
representative for the stratification at the bottom. It is convenient to introduce new
coordinates xk, x? which are parallel, respectively vertical, to the bottom (see
Fig. 7.5). In the new coordinates, a harmonic wave solution can be written as
 D  0 exp i.ki

kxk Cki?x? �!it/ for all field variables including the velocity com-
ponents. Consider an incoming wave (index i ) propagating in positive x1-direction
toward shallower waters, so that its group velocity has a downward component. The
solution for the velocity component u? is written as a sum of incident and reflected
wave,

u? D ui? exp i


ki

kxk C ki?x? � !it
�

C ur? exp i


kr

kxk C kr?x? � !rt
�
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Fig. 7.5 a Reflection of an internal gravity wave in the wavenumber plane. b Sketch of the incident
and reflected waves in the wavenumber plane. See text

Mass conservation at the bottom requiresw D �uh�rh or u? D 0 at x? D 0 at all xk
and t . This condition can be satisfied only if kr

k D ki
k and !r D !i. Therefore, the

wave number kr
? of the reflected wave can be determined algebraically by rewriting

the dispersion relation (7.16) in terms of kk and k?. It is, however, illuminating
to determine the reflected wave number graphically by considering the situation in
a .k1; k3/ respectively .kk; k?/ diagram (see Figure 7.5). The wave number of the
incident wave has a magnitude ki and an angle ' i D ' against the horizontal. The
reflected wave must have the same frequency, and, therefore, 'r D �' must hold.
Geometrically, we see that ki

k=k
i D cos.' � ˛/ and kr

k=k
r D cos.' C ˛/. With

kr
k D ki

k, one obtains for the reflected wave number

kr

ki
D cos.˛ � '/

cos.˛ C '/
and also

kr?
ki

?
D tan.˛ C '/

tan.˛ � '/
(7.33)

Since normally ˛ � 1 in the ocean, the case 'C˛ <  =2 is most common for wave
vectors which are not nearly vertical. Consider a situation where the group velocity
of the incoming wave is directed downward and to regions of shallower water, such
as sketched in the left panel of Figure 7.5, so that ki

3 > 0 and ki
1 > 0. For the reflected

wave one has kr
3 < 0 and kr

1 > 0 so that the wave continues to propagate toward
shallower water. For the magnitude one finds kr > ki. Qualitatively, the situation
resembles the flat-bottom reflection.

Of special interest is the situation when ' C ˛ !  =2. In this case the reflected
wave number becomes orthogonal to the bottom and very large, kr ! 1, and its
group velocity vanishes. For a given !, respectively ', the critical angle ˛c for the
bottom slope (critical slope) is given by

!2 D N 2 sin2 ˛c C f 2 cos2 ˛c , ˛c.!/ D arctan

�
!2 � f 2

N 2 � !2
� 1
2

(7.34)

(note that cos˛c D sin '). In the vicinity of the critical angle kr � ki is valid.
Hence the process of near-critical reflection moves wave energy toward small scales.
Here one can expect enhanced nonlinearity and enhanced dissipation since the group
velocity of the reflected wave is very slow. This process is thought to play a role for
near-bottom diapycnal mixing in the ocean (St. Laurent and Garrett, 2002).
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If the incoming wave number is nearly vertical so that ' C ˛ >  =2, one has
kr
3 > 0 but kr

1 < 0 for the reflected wave. The reflected wave now propagates back
toward deeper water, and qualitatively the situation resembles reflection at a vertical
boundary.

In the general case, with k2 ¤ 0, the right diagram in Figure 7.5 and also equa-
tion (7.33) have to be modified because the lines of constant frequency in the .k1; k3/
diagram are hyperbolae rather than straight lines (for a full analysis see e. g. Eriksen,
1982). However, the main conclusion regarding the transport of wave energy toward
small scales remains valid, and the critical slope is still given by (7.34).

7.4.3 VerticalModes

The solution (7.32) describes, for constantN , a wave reflected at the bottom bound-
ary. The inclusion of a second boundary will lead to a further reflection. For the sea
surface, consider for now the simplified condition (7.9). Obviously, the only way to
satisfy W.z/ D 0 both at z D 0 and z D �H with (7.32) is to permit only discrete
vertical wave numbers, i. e. k3 D n =H with the solutions

Wn.z/ D an sin
n z

H
; n D 1; 2; : : : (7.35)

which describes standing modes in the vertical direction. When the length scale

Rn D NH=.f n / (7.36)

is introduced, the frequency is given by

!2n D f 2
1C k2hR

2
n

1C k2hH
2=.n /2

(7.37)

which relates, for each value of n, the frequency to the horizontal wave number kh

(see Figure 7.6). The length scale Rn can be interpreted as Rossby radius for N D
const (see Section 8.1.1).

Since usuallyN � f and thus alsoRn � H=.n /, one can identify three ranges
in the dispersion diagram in Figure 7.6 with different dynamical balances. In the long
wavelength range with k . 1=Rn and thus also kh � n =H , the dispersion relation
can be approximated as

!2n � f 2 C N 2k2h
.n =H/2

D f 2
�
1C k2hR

2
n

�
(7.38)

In this range, the waves are dispersive, rotation is crucial, and the motion is in hydro-
static balance (compare with Chapter 8). In the intermediate range 1=Rn � kh �
n =H , the motion still is in hydrostatic balance but rotation is now insignificant.
The dispersion relation is approximately

!2n � N 2k2h
.n =H/2

(7.39)
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Fig. 7.6 Dispersion relation of internal waves in the wave guide for the first 5 modes, as function of
the horizontal wave number kh for f D 10�4 s�1 and constantN D 5�10�3 s�1. The complete
dispersion relation (black) reflects the approximations for long (blue dashed), intermediate and short
(red dashed) wavelengths. The frequency is displayed in the scaled form !=N

so that wave propagation in this range is nondispersive. For short wavelengths kh &
n =H and hence kh � 1=Rn, the dispersion is approximated by

!2n � N 2k2h
k2h C .n =H/2

(7.40)

The vertical momentum balance in this range is not hydrostatic. Rotation is unim-
portant, and wave propagation is again dispersive.

The sinusoidal vertical structure (7.35) and the dispersion relation (7.37) are only
valid for N D const which does not well represent oceanic conditions. For arbitrary
N D N.z/, an analytical solution cannot be obtained; however, it is possible to
derive important properties of the solution. With the definition


 D k2h
!2 � f 2 and r.z/ D N 2.z/ � !2 (7.41)

one obtains from (7.42)

d2W

dz2
C 
r.z/W D 0 with W D 0 at z D 0 ; �H (7.42)

Note that 
 > 0. Equation (7.42) is an eigenvalue problem of the STURM–
LIOUVILLE3 type (see the box on p. 192) which can only be solved for certain
discrete values of 
, the eigenvalues 
n, n D 1; 2; : : :, which belong to the eigen-
functions (modes)Wn.z/ so that

d2Wn
dz2

D �
nr.z/Wn ; n D 1; 2; : : :

3 CHARLES FRANÇOIS STURM, *1803 in Geneva, †1900 in Paris, mathematician. JOSEPH LIOU-
VILLE, *1809 in Saint-Omer, †1882 in Paris, mathematician.
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30. The Sturm–Liouville
Eigenvalue Problem

The Sturm–Liouville problem is of the form

d

dz

�
p.z/

d�

dz

�
C q.z/� D ��r.z/�

with homogeneous boundary conditions

� CB
d�

dz
D 0 at z D a and C� CD

d�

dz
D 0 at z D b

Here p.z/; q.z/ and r.z/ are given functions, A;B and C;D are given constants, �.z/ is the
eigenfunction and � the eigenvalue. In general, p.z/ > 0 is assumed in order that the term with
the higher derivative does not become singular in the interval. If, in addition r.z/ > 0; q.z/ �
0, the solutions have the following properties:

1. there is an infinite countable number of solutions �n.z/; �n; n D 0; 1; : : :with 0 < �0 <
�1 < : : :. The eigenfunction �n.z/ has n zeros in the open interval .a; b/.

2. the set f�ng is orthogonal, expressed by

bZ

a

r.z/�n.z/�m.z/dz D ınm

3. the set f�ng is complete, expressed by

1X
nD0

r.z/�n.z/�n.z
0/dz D ı.z � z0/

so that any function g.z/ can be represented as an infinite sum g.z/ D P
1

nD0 gn�n.z/

where gn D R b
a r.z/�n.z/g.z/dz.

As discussed in Section 7.3.2, the solutions have an oscillating character where
N.z/ > !, i. e. r.z/ > 0, an exponential character where r.z/ < 0 and a turn-
ing point for r.z/ D 0.

Since r.z/ D N 2.z/ � !2, the eigenfunctions and eigenvalues depend on the
value of !, and hence a more accurate notation would be 
n D 
n.!/ for the eigen-
values and Wn.z; !/ for the eigenfunctions. Only if everywhere N 2 � !2, that
dependence can be ignored (see Section 8.1 below). For a given !, the horizontal
wave number follows from (7.41) as k2h D k2h .!/ D .!2 � f 2/
n.!/ which can be
inverted to yield the dispersion relation

! D ˝n.kh/ ; n D 1; 2; : : : (7.43)

which depends on the index n. Relation (7.43) is generally not available in a closed
analytical form and has to be constructed by numerical solution of (7.42). The form
of the dispersion curve depends on the details of N.z/ and can show a complex
behavior. Examples for a typical N.z/ profile of the subtropical North Atlantic are
presented in Figure 7.7. For N D const we obtain the previous relations (7.35)
and (7.37).
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Fig. 7.7 Dispersion relation and vertical eigenmodes for an example of the Brunt-Väisälä frequency
profile and f D 10�4 s�1. The profile of the Brunt–Väisälä frequency, the dispersion relation of
the first 5 modes and the first 3 eigenfunctions at three selected frequencies are displayed

7.4.4 Accuracy of the Rigid-Lid Condition

So far, the boundary condition at the sea surface has been approximated by the rigid-
lid condition (7.9). The accuracy of this approximation is investigated in the follow-
ing. With the plane wave solution (7.10), the exact surface condition (7.8) takes the
form

W D !2 � f 2
gk2h

dW

dz
at z D 0 (7.44)

It is sufficient to consider only the case N D const, so we insert expression (7.32)
which already satisfies the boundary condition at z D �H into (7.44). It follows that
the upper boundary condition can be satisfied only if

!2 D f 2 C k2h
k23
gk3 tan k3H (7.45)

Using (7.45) to replace ! in (7.31) leads to

H
�
N 2 � f 2�
g

D ��
k2h C k23

�
H 2

� tan k3H

k3H
(7.46)

which can be used to determine the vertical wave number k3 for any given kh. The
left side of (7.46) has the magnitude

� D H
N 2 � f 2

g
� N 2H

g
	 H

g

g

�0

��

H
	 ��

�0
� 2 � 10�3 � 1
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Therefore, the right side of (7.46) also must be � 1, and thus at least one of the
two dimensionless factors in (7.46) must be � 1. The case tan.k3H/=k3H � 1

requires

k3H D n CO.�/ ; n D 1; 2; : : : (but not n D 0!) (7.47)

Up to terms of order �, this corresponds exactly to the solutions (7.35) obtained with
the rigid-lid condition. Therefore, the error caused by the rigid-lid approximation is
small, approximately 0.2% for internal gravity waves, and the solutions derived in
the previous sections remain valid.

7.5 SurfaceWaves

As stated before, the restoring force of gravity can be effective only in the presence
of vertical density gradients. The largest possible density gradient occurs at the air-
sea interface where the density changes by three orders of magnitude. Therefore, one
can expect a wave mode associated with excursions of the free surface.

As starting point consider (7.46) which implicitly relates vertical to horizontal
wave number, and is based on the exact surface boundary condition (7.8). We already
have found (7.47) as one possibility to satisfy (7.46). The only alternative possibility
is that the other dimensionless factor in (7.46) is small, i. e. .k2h C k23/H

2 � 1.
For arbitrary values of kh this cannot be satisfied with a real k3. Allowing, however,
imaginary values for k3, one has

k3 D ikh CO.�/ (7.48)

The vertical structure becomes now exponentially decreasing from the surface.
With (7.48) and the identity ix tan ix D �x tanhx, from (7.45) one obtains

!2 D f 2 C gkh tanh khH CO.�/ (7.49)

which is dispersion relation of surface gravity waves, shown in Figure 7.8 for various
values of the water depth H .With (7.48) and (7.32), the vertical profiles of all field
variables are given as hyperbolic functions. With (7.11), the solution for the velocity
field is given in real form as

w D a!
sinh kh.z CH/

sinh khH
sin � D W.z/ sin � (7.50)

u D a!
cosh kh.z CH/

sinh khH

�
kh

kh
cos � � f � kh

!kh
sin �

�
D U c.z/ cos � C U s.z/ sin �

(7.51)

with � D kh �xh �!t . Here the amplitude a is chosen such that the surface elevation
is � D a cos � . With (7.12) and (7.13), solutions for the other field variables can be
obtained. The solutions correspond to those of internal gravity waves, except for the
imaginary vertical wave number. Note that to order �, both the solution (7.50) and
(7.51) and the dispersion relation (7.49) are independent of stratification.

Two limiting cases can be distinguished. For long waves with khH � 1, one has
tanh khH � khH , and pressure as well as horizontal velocity do no longer depend
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Fig. 7.8 Dispersion relation (7.49) of surface gravity waves for f D 10�4 s�1 and various depths
H D 100; 300; 1;000; 3;000; 10;000m (colors in the order black to magenta), as function of
the horizontal wave number kh. Units: frequency in s�1, wave number in m�1

on depth while w decreases linearly from surface to bottom. The dispersion rela-
tion becomes !2 D f 2 C gHk2h , and rotation is only significant on scales of order
p
gH=f 	 2;000 km, such as e. g. for tides. The phase speed c D

q
f 2=k2h C gH

approaches c � p
gH , and exceeds this value only for very long waves. The am-

plitudes of the horizontal velocity are vertically constant, and the vertical velocity
decreases linearly to the bottom. On the other hand, for short waves with khH � 1,
tanh khH ! 1 applies. Since gkh � g=H � f 2, the dispersion relation is
!2 D gkh so that in the dispersion diagram Figure 7.8 eventually (on the far right
side) all curves fall together. From (7.50) it further follows that pressure and thus all
other fields decrease exponentially in the vertical direction.

Particle motion

The motion of particles can be determined from the velocity field in (7.50)–(7.51).
Consider specifically the case that ! � f so that in (7.51) jU sj � jU c j and hence
uhjjkh. For convenience we choose the orientation of the coordinate system such that
wave propagation is in the x1-direction, i. e. k2 D 0.

With x D x1, the particle path is described by the ordinary differential equations
Px D u.x; z; t/ and Pz D w.x; z; t/. Since the velocity amplitude is small, the particle
excursions are also small, and one can attempt the iterative solution

PxnC1 D u.xn; zn; t/ (7.52)

and likewise for z, with x0; z0 as constant initial values. With (7.50) and (7.51) and
�0 D khx0 � !t , the first approximation is obtained as

Px1 D Uc.z0/ cos �0 and Pz1 D W.z0/ sin �0

which can immediately be integrated to

x1 D x0 � Uc.z0/

!
sin �0 and z1 D z0 C W.z0/

!
cos �0
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Fig. 7.9 Sketch of particle paths in a surface wave in deep water

and describes elliptical orbits in the vertical plane, centered around .x0; z0/ and with
half axes

A D Uc.z0/

!
D a

cosh kh.z0 CH/

sinh khH
and B D W.z0/

!
D a

sinh kh.z0 CH/

sinh khH
(7.53)

For khH � 1, it follows from (7.53) that A D a=khH , B D a.1C z0=H/, and the
particle paths are ellipses with the axis ratioB=A D khH.1Cz0=H/ � 1, i. e. nearly
horizontal. On the other hand, for khH � 1 (deep water) one has A D aekhz0 ,
B D aekhz0 , and the particle paths are circles with the radius A D B D aekhz0

which vanishes exponentially for jkhz0j � 1. This case is sketched in Figure 7.9.
In the general case when rotation cannot be neglected, the orientation of the el-

liptical path is no longer vertical but tilted in the direction orthogonal to kh, and the
half-axes in (7.53) describe the projection to the vertical plane. The next iteration
of (7.52) is discussed in the box on p. 197 on the Stokes drift.

7.6 Group Velocity III: Initial Value Problems
and Stationary Phase Method

In this section we will look from a different angle at the group velocity in a dispersive
wave system. Consider a one-dimensional wave solution

 .x; t/ D aei.kx�!t/ with ! D ˝.k/

for any dependent variable  . According to the principle of superposition, which
is valid for all linear wave processes, a finite or infinite sum of solutions is also
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a solution, i. e.

 .x; t/ D
X
n

aneiŒknx�˝.kn/t �

or likewise

 .x; t/ D
1Z

�1
a.k/eiŒkx�˝.k/t�dk (7.54)

for an arbitrary amplitude distribution a.k/. The representation (7.54) can now be
used to find a wave solution to a given initial condition  .x; 0/ D  0.x/ at the time
t D 0. The initial pattern  0.x/ must satisfy

 .x; 0/ D  0.x/ D
1Z

�1
a.k/eikxdk (7.55)

so that from the inversion of the Fourier transformation the amplitude function can
be determined according to

a.k/ D 1

2 

1Z

�1
 0.x

0/e�ikx0

dx0 (7.56)

Insertion into (7.54) results in the solution of the initial value problem in the form

 .x; t/ D
1Z

�1
e�i˝.k/t

0
@ 1

2 

1Z

�1
 0.x

0/eik.x�x0/dx0
1
A dk (7.57)

31. Stokes DriftIt is interesting to consider the next approximation of (7.52) which is

Px2 D u.x1; z0; t/� u.x0; z0; t/C @u

@x
� .x1 � x0/C : : :

D U cos.kh � x0 � !t/CU 2
kh

!
sin2.kh � x0 � !t/C : : :

Averaging over the phase, a nonvanishing part results

ust D h Px2i D kh

2!
U 2 D U

2

U

c

Due to

U

c
D
(
akh; khH � 1

a=H; khH 
 1

we find ust W U W c D .kha/
2 W kha W 1. The velocity ust is called Stokes drift and causes

a transport into the direction of kh. Although its amplitude is proportional to the square of the
wave amplitude and thus is rather small, it is important for momentum and mass transport of
waves. Note, however, that the Stokes term might not be the only second order contribution in
an expansion of a specific problem.
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Of particular interest is the specific case a.k/ D const D 1 which corresponds to
a very localized initial distribution at x D 0, i. e.  0.x/ D 2 ı.x/ (see the box on
p. 199). The solution (7.54) is then

 .x; t/ D
1Z

�1
ei�.k;x;t/dk (7.58)

with the phase �.k; x; t/ D kx � !t D xŒk �˝.k/t=x�. Consider now very large
values of x and t but a fixed ratio t=x. The phase �.k; x; t/ is very large, and the
integrand will generally oscillate quite rapidly as a function of k and thus have very
small contributions to the integral. The situation changes when there is a wave num-
ber k0 where the phase becomes stationary, i. e. when

@�.k; x; t/

@k
D 0 D x � t @˝

@k
(7.59)

for k D k0 D k0.x; t/. In the vicinity of k0, the exponent is still large but does not
lead to strong oscillations of the integrand because near-independence of k. Hence
we can expect considerable contributions to the integral which can be determined as
follows. Expansion of the phase into a Taylor series at k D k0, with

@˝

@k

ˇ̌
ˇ̌
kDk0

D cg D x

t

leads to

� D �0 C @�

@k

ˇ̌
ˇ̌
0

.k � k0/C 1

2

@2�

@k2

ˇ̌
ˇ̌
0

.k � k0/
2 D �0 � t @cg

@k0
.k � k0/

2 C : : :

because the linear term vanishes by (7.59).
With the new integration variable k0 D k � k0 and the abbreviation D.k/ D

@cg=@k, we obtain for the integral (7.57)

 .x; t/ � ei�0

1Z

�1
e�i tD.k0/2 k02

dk0 C � � � D
s

2 

jtD.k0/jei Œ�0˙ =4� C � � � (7.60)

The ˙ sign in the exponent corresponds to the sign of �tD.k0/. For an arbitrary
amplitude spectrum a.k/ which is weakly dependent on k, the wave amplitude is
thus proportional to

 .x; t/ 	 a.k0/

jtD.k0/j 12
eiŒk0x�!0t � (7.61)

The originally broad spectrum is now constricted to a wave of a single fre-
quency !0.x; t/ and wave number k0.x; t/. The ratio x=t exactly matches the corre-
sponding group velocity, a fact that shows directly that the group velocity is indeed
governing the propagation of wave energy.

As the denominator of (7.61) shows, the stationary phase method only works as
long as D.k0/ D @cg=@kjk0 ¤ 0. This is physically evident because only in the
presence of dispersion, where different wave components have different velocities,
one component can be expected to dominate at a large distance/time. The stationary
phase method can, therefore, be used in all wave processes with dispersion, also in
the case of internal gravity waves but not in the case of e. g. long surface gravity
waves or sound waves. The generalization to more than one dimension is straight-
forward (Lighthill, 1978).
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32. The ı-functionThe delta-function ı.x/ is an often useful idealization which can be viewed as a limiting case
of a property distribution concentrated at a single point x D 0 with total “mass” 1, e. g.

ı.x/ Š lim
�!0

1

�
p
2 

e�

1
2
.x=�/2

(cf. the figure in the box on p. 349). The delta-function is not a function in the usual sense but
rather a “generalized function” which is only suitable for use under an integral (Lighthill, 1958).
It can be implicitly defined by

f.x/ D
1Z

�1

ı.x � x0/f .x0/dx0

for any suitable function f.x/. Another equivalent definition is

ı.x/ D 0 if x ¤ 0 and

1Z

�1

ı.x/dx D 1

7.7 Influence of aMean Flow

So far, our treatment of internal oceanic waves has considered a motionless back-
ground, manifesting itself in the Brunt-Väisälä frequency N.z/. A more realistic
scenario is the inclusion of a mean current on which the waves are superimposed,
as discussed for sound waves in Section 6.2.3. Such a current is mainly horizontal
and usually has large spatial and time-scales compared to the wavelength and pe-
riod of the wave. To examine the impact of a mean current on the waves, consider
a background state with a mean horizontal velocity vector

U D .U1.z/; U2.z/; 0/ (7.62)

Instead of (7.4)–(7.7), the following linearized equations for the perturbation values
(leave out the tilde) result from the perturbation expansion of (7.1)–(7.3),

@uh

@t
C U � r huh C w � @U

@z
C f � uh D � 1

�0
rhp (7.63)

@w

@t
C U � rhw D � 1

�0

@p

@z
� g

�

�0
(7.64)

@�

@t
C U � r h� � �0N

2

g
w D 0 (7.65)

r h � uh C @w

@z
D 0 (7.66)

For the case U D const, the wave ansatz (7.15) remains valid to solve (7.63)–(7.66),
but one has to replace ! by ! �U �kh in the dispersion relation (7.16), as discussed
in Section 6.2.3. Hence

.! �U � kh/
2 D N 2k2h C f 2k23

k2h C k23
D �

˝ i.k/
�2

(7.67)

for the intrinsic frequency, with frequency ! D U � kh C˝ i.k/ and group velocity

cg D @!

@k
D U C c i

g (7.68)
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7.7.1 Critical Layer Absorption

If U .z/ and N.z/ are changing slowly with regard to z, the propagation in a vertical
plane can be examined with the help of the WKBJ approximation. From the ray
equations (7.26)–(7.30) we obtain

Pxh D U C @˝ i

@kh
(7.69)

Pz D @˝ i

@k3
(7.70)

Pk3 D �kh � @U
@z

� @˝ i

@z
(7.71)

The equations (7.69) and (7.70) state that the paths move in the direction of the group
velocity which is, however, no longer necessarily vertical to the wave-number vector.
Since the environmental variables U and N are independent of xh and t , it follows
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Fig. 7.10 The two row contrast the situations of the ray propagation for zero mean flow (a, b) and
the critical layer case c, d, occurring with mean flow present. In a, c, kh � U is the magenta curve,
the Brunt–Väisälä frequency is red, ! is black, !i is blue, and f is green). For both cases the
wave starts with identical initial conditions (horizontal wavelength 1,000 m) and proceeds initially
downward. For zero mean flow the wave experiences a turning point and then propagates to the
surface where it is reflected. In the case with mean flow the wave also runs into a turning point and
then proceeds into a critical layer well below the surface (at the depth where the blue curve (!i)
and the green curve (f ) in a and c intersect)
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that kh D const and ! D const. Solving the dispersion relation (7.67) for k3, one
obtains

k23 D k2h
N 2.z/ � .! � U � kh/

2

.! �U � kh/
2 � f 2

(7.72)

At a depth where the numerator of (7.72) vanishes, i. e. where Œ! � U .z/ � kh�
2 D

N 2.z/, we expect a turning point. The situation is analogous to that of a turning
point without mean flow which has been analyzed in Section 7.3.2 and needs no
further discussion. However, the denominator of (7.72) can also vanish, this occurs
at a depth where

Œ! � U .z/ � kh�
2 D f 2 (7.73)

The depth z D zc at which this occurs is called critical layer. Here, k3 ! 1 and
cg3 ! 0 are valid (after (7.19) cg3 is proportional to 1=k23). Because of the mean
flow, however, the horizontal group velocity remains finite with the value cgh D
U .zc/, i. e. the waves have the same propagation velocity as the mean flow so that
the path of a wave packet becomes horizontal near the critical layer.

The wave packet asymptotically approaches the critical layer but cannot leave it
anymore. Because of k3 ! 1 the vertical scale near the critical layer will become
small, and it is plausible that eventually dissipation may occur. If the waves steepen,
there may also be nonlinear effects and an energy exchange with the mean flow. The
process is called critical layer absorption.

In contrast to turning points (cf. Section 7.3.2) where the WKBJ approximation
is singular but the actual solution is regular, the singularity at the critical layer at
z D zc is real and indicates that the waves can exchange energy with the background
state. The behavior of a ray entering a critical layer is shown in Figure 7.10.

7.7.2 Propagation in a Geostrophic Current

The mean flow (7.62) satisfies the continuity equation. The conservation of momen-
tum, however, is only satisfied if the thermal-wind relations (5.56) govern the verti-
cal shear, i. e. f �U z D gr�b=�0. Hence horizontal gradients of the mean density
field �b must exist. The simplest system with such a geostrophic balance is one in
which all mean fields are independent of one coordinate, say y, and vary in the
.x; z/-plane only in the direction of a constant vector .a; b/ (dimension m�1). Thus
we assume �b D �0 C��.ax C bz/ with an arbitrary function .�/, implying

N 2.x; z/ D �gb��
�0
0.ax C bz/ ; V .x; z/ D � ga

f b

��

�0
.ax C bz/C const

(7.74)

for the Brunt–Väisälä frequency and the mean current V , respectively. For realistic
conditions we must have 0 < 0 if b > 0. Furthermore, the vector .a; b/ should be
almost vertical, i. e. a � b.

The propagation of rays in this system can be treated completely in analytical
form (cf. Olbers, 1981). We consider the simplified case where .�/ is linear (i. e. we
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take .�/ D ��). ThenN D gb��=�0 is constant and V.x; z/ D V0.axCbz/ with
V0 D aN 2=.f b2/ and shear components Vx D aV0 and Vz D bV0 which are
constant. The corresponding ray equations are

Px D k

kh

�
N 2 � !20

� �
!20 � f 2

�
kh!0.N 2 � f 2/

(7.75)

Py D `

kh

�
N 2 � !20

� �
!20 � f 2

�
kh!0.N 2 � f 2/

C V0.ax C bz/ (7.76)

Pz D �m
kh

�
!20 � f 2�2

kh!0.N 2 � f 2/
(7.77)

Pk D �a`V0 (7.78)

Pm D �b`V0 (7.79)

where k D .k; `;m/ is the wave vector, k2h D k2 C `2, and !0 D ! � `V is the
intrinsic frequency. The intrinsic part of the group velocity is identical to our previous
problem. Note that ! and ` remain constant, and thus, for prescribed ! and `,

!0 D !0.x; z/ D ! � `V0.ax C bz/ (7.80)

is a given linear field in the .x; z/-plane. Furthermore, the component k? of .k;m/
normal to the orientation vector .a; b/ obviously stays constant as well. Only the
parallel component kk is varying on account of the current shear. We define the unit
vector .˛; ˇ/ D .a; b/=

p
a2 C b2 so that k? D �ˇk C ˛m, kk D ˛k C ˇm,

k D ˛kk � ˇk?. Indeed, we find Pk? D 0, Pkk D �`V0
p
a2 C b2. The dispersion

relation may be expressed in the wave numbers k?, kk and the intrinsic frequency!0
as

�
L2 � !20

�
k2k C �

M 2 � !20
�
k2? C �

N 2 � !20
�
`2 C 2ab.N 2 � f 2/k?kk D 0

(7.81)

where we have introduced the frequencies L andM by

L2 D ˛2N 2 C ˇ2f 2 ; M 2 D ˇ2N 2 C ˛2f 2 (7.82)

for convenience, which are constant for our set-up. Note that f 2 � .L2;M 2/ � N 2.
A third constant frequency, defined by

!2C D L2`2 C f 2k2?
`2 C k2?

(7.83)

enters the problem to characterize the wave guide in the .x; z/-plane. Waves can only
exist (i. e. a real kk results from the above dispersion relation (7.81)) within the strip
given by !2C � !20 .x; z/ � N 2. There may be two such strips, associated with the
˙-solutions. The lines !0 D ˙L, lying inside the strips, are of particular interest,
as explained below, while the corresponding lines for !0 D ˙M , also lying inside,
have no particular impact.

The analysis of the dispersion relation and the group velocity, not given here in
detail, reveals that a ray approaching !0 D ˙N gets m ! 0 and zero intrinsic
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Fig. 7.11 An example of ray progression in a geostrophic shear current. The line !0 D N is
red, !0 D f is black, !0 D L is cyan, !0 D M is magenta, and !0 D !C is green. The
ray (blue) starts at x D 0, z D �990m, first approaches a turning point at !0 D N , and
then proceeds (from below) into a critical layer. The wave is shown to pass the line !0 D L
and is reflected at the wave guide boundary !0 D !C. Then it gets captured in a critical layer at
!0 D L, approaching now from above. The values of the Coriolis and Brunt–Väisälä frequency are
f D 10�4 s�1;N D 3:1�10�3 s�1. In order to display this valve-type behavior the parameters
of shear flow a D 3 � 10�5 m�1, b D 10�4 m�1 are chosen unrealistically such that V0 D
285m s�1 is extremely large

group velocity (all three components) if ˇ ¤ 0. A turning point results. At the other
boundary, !0 D ˙!C, internal reflection occurs. At the lines !0 D ˙L inside the
wave guide, waves approaching from one side run into a critical layer while those
approaching from the other side just pass through (note that there are always two
solutions for kk from (7.81)).

The behavior of rays in the discussed regimes is illustrated in Figure 7.11. Note
that the cusp-like reflection at !0 D ˙N does not appear so in three dimensions
because the wave generally progresses in the y-direction at this layer with the mean
flow speed V.x; z/. This behavior applies as well to the critical layer at !0 D L.
In the above described figure we use ˛ D 0:29; ˇ D 0:95. It should be emphasized
that this mathematically interesting valve effect is of little importance in realistic
situations because then ˛ � ˇ, and the domain between !20 D !2C and !20 D L2

collapses to very thin strips of ocean close to !20 D f 2.

7.7.3 Stability of Shear Flows

The WKBJ approximation is not suitable for a more exact treatment of the stability
of shear currents, and we proceed from (7.63)–(7.66). We will ignore the Earth’s
rotation in this section; its inclusion does not bring completely new aspects. With the
wave ansatz

fu; w; p; �g D fOu.z/; Ow.z/; Op.z/; O�.z/g exp i .kh � x � !t/
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with the horizontal wave number kh, we obtain

�i .! �U � kh/ OuC OwUz D � i

�0
kh Op (7.84)

�i .! �U � kh/ Ow D � 1

�0
Opz � g

O�
�0

(7.85)

�i .! � U � kh/ O� � �0N
2

g
Ow D 0 (7.86)

ikh � OuC Owz D 0 (7.87)

In this section Owz D @ Ow=@z etc. is used as a shorthand notation for the derivative.
The mean flow U D U .z/ does not necessarily have the same direction everywhere.
It is convenient to introduce its component parallel to the wave number,

Uk.z/ D U .z/ � kh

kh

In the following, for convenience we write U instead of Uk. Scalar multiplication
of (7.84) with k and taking the vertical derivative leads to

.! � Uk/ Owzz C OwkUzz D � i

�0
k2 Opz (7.88)

Elimination of O� from (7.85) and (7.86) results in

� .! � Uk/2 Ow D i .! � Uk/
1

�0
Opz �N 2 Ow (7.89)

and elimination of Opz from (7.88) and (7.89) yields

Owzz C
"
k2
N 2 � .! � Uk/2

.! � Uk/2
C kUzz

! � Uk

#
Ow D 0 (7.90)

For U � 0 this corresponds to the previously derived relation (7.14) (with f D 0).
With the phase velocity c D !=k, the above equation can be rewritten as

Owzz C
�

N 2

.U � c/2
� Uzz

U � c
� k2

	
Ow D 0 (7.91)

which is often called TAYLOR–GOLDSTEIN4 equation (Goldstein, 1931; Taylor,
1931). Note that this name is sometimes reserved for the inelastic form of (7.91).

With the boundary conditions Ow.0/ D Ow.�H/ D 0, we obtain an eigenvalue
problem with the eigenvalue c. However, since the eigenvalue appears nonlinearly
in (7.91), the problem is not of the Sturm-Liouville type (see the box on p. 192).
Therefore, it is not certain that the solutions for !, respectively c and Ow.z/, are real.
Note that (7.91) can have a singularity only for real c, i. e. ci D 0 since otherwise
U � c ¤ 0 is valid everywhere. A necessary condition for instability can be derived
from the Taylor–Goldstein equation (7.91). With the definition a.z/ D U.z/ � c

(note that az � Uz), (7.91) can be written as

.a Owz/z � .az Ow/z C
�
N 2

a
� k2a

�
Ow D 0 (7.92)

4 SYDNEY GOLDSTEIN, *1903 in Hull, †1989 in Belmont (Mass.), mathematician.
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after multiplication with a D U � c, and introducing the new dependent variable
G D Owa� 12 , we find

.aGz/z �
 
1

2
Uzz C k2a C

1
4
U 2z �N 2

a

!
G D 0 (7.93)

Multiplication of with G� and integration leads to the integral constraint

0Z

�H

"
a
�jGzj2 C k2jGj2�C 1

2
UzzjGj2 C a�

ˇ̌
ˇ̌G
a

ˇ̌
ˇ̌2
�
1

4
U 2z �N 2

�#
dz D 0 (7.94)

Both the real and the imaginary part of (7.94) must vanish. The imaginary part is

ci

0Z

�H

"
jGzj2 C k2jGj2 C

ˇ̌
ˇ̌G
a

ˇ̌
ˇ̌2
�
N 2 � 1

4
U 2z

�#
dz D 0 (7.95)

which shows that a solution with ci ¤ 0 is possible only if the integral vanishes. In
this case the integrand must be negative over some depth range, i. e. N 2 � 1

4
U 2z < 0.

This condition can be expressed in terms of the local RICHARDSON5 number Ri D
Ri.z/ defined as

Ri D N 2

U 2z
(7.96)

Instability can occur only if at least in certain regions Ri < 1=4 is valid. We distin-
guish between 2 cases:

1. If Ri > 1=4 everywhere, the mean flow is stable.
2. If Ri < 1=4 in certain areas (or everywhere), the current does not necessarily

need to be unstable, but in practice this is often the case.

Consider a situation with two layers of different densities, rather than a continuous
stratification, e. g. � and �C��, and different mean flow U , respectively U C�U .
A corresponding investigation leads to the stability condition (without proof)

g��=�0

.�U /2
>
kh

2

For perturbations with sufficiently large kh, this condition is always violated. In con-
trast to the continuous case leading to (7.95), the situation in this two-layer case
is always unstable to perturbations at a small scale. This is the Kelvin–Helmholtz
instability. The occurrence is not surprising because both layers can be viewed as
separated by a thin thermocline (depth d ) where the shear is very large and, there-
fore, the Richardson number becomes very small,

Ri D g��

�0d

d 2

.�U /2
D g��

�0 .�U /
2
d ! 0 for d ! 0

5 LEWIS F. RICHARDSON, *1881 in Newcastle upon Tyne, †1953 in Kilmun, Argyll, physicist and
meteorologist.
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Fig. 7.12 Numerical simulation of Kelvin–Helmholtz instability in a two-layer system with verti-
cally sheared flow. The upper layer is moving to the right while the lower layer is moving to the
left. The density is shown for four different times, with an increasing stage of the instability. Red
colors denote lower density. At the layer interface a rapidly growing instability is observed, with
subsequent wave breaking

A numerical solution of the Kelvin–Helmholtz instability in a two-layer fluid is
shown in Figure 7.12.

A geometric condition for unstable solutions can be derived from (7.92). With
F D Ow=a, this equation changes into

Œa.aF /z �z � .aza F /z C
�
N 2

a
� k2a

�
aF D 0

or with Œa.aF /z �z � .azaF C a2Fz/z, we obtain

�
a2Fz

�
z

C �
N 2 � k2a2

�
F D 0 (7.97)

Multiplication with F � (complex conjugate) and integration over the depth results in

0 D a2FzF
�ˇ̌0

�H �
0Z

�H

˚
a2jFzj2 � �

N 2 � k2a2
� jF j2� dz (7.98)

The boundary terms vanish. Furthermore, a2 D .U�c/2 D .U�cr/
2�c2i �2ici .U�

cr/. The real and the imaginary part of the integrals in (7.98) both must vanish, so
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that

0Z

�H

˚�
U 2 � 2Ucr C c2r � c2i

�
Q2 �N 2jF j2� dz D 0 (7.99)

�2ici

0Z

�H
.U � cr /Q2dz D 0 (7.100)

with Q2 D Q2.z/ D jFzj2 C k2jF j2. If ci ¤ 0, it follows from (7.100) that
U.z/�cr must be zero somewhere: otherwise the integrand would have the same sign
everywhere. Therefore, Umin < cr < Umax is a necessary condition for instability.
Furthermore, it follows from (7.100) that

cr

0Z

�H
Q2dz D

0Z

�H
UQ2dz (7.101)

Using this result to replace crU in the corresponding term in (7.99), we obtain

0Z

�H

�
U 2 � �

c2r C c2i
��
Q2dz D

0Z

�H
N 2jF j2dz (7.102)

Now, .U � Umin/.U � Umax/ D U 2 � ŒUmin C Umax�U C UminUmax < 0, and thus
with (7.102) and using once more (7.101), we finally obtain

�
c2r C c2i � .Umin C Umax/ cr C UminUmax

� 0Z

�H
Q2dz < 0

Hence one has c2r C c2i � cr.Umin C Umax/C UminUmax < 0 or

�
cr � 1

2
.Umin C Umax/

	2
C c2i <

�
Umin � Umax

2

�2
(7.103)

Fig. 7.13 Sketch of the semicircle theorem in the plane formed by real and complex parts of the
phase velocity c
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This condition, which limits the possible eigenvalues, can easily be interpreted geo-
metrically. All solutions with ci ¤ 0 lie within a circle in the cr-ci -plane, as sketched
in Figure 7.13. The eigenvalues with ci > 0 corresponding to unstable mean flow
lie in a semicircle above the abscissa. The stability condition (7.103) is the famous
semicircle theorem, first derived by HOWARD6 (Howard, 1961).

6 LOUIS NORBERG HOWARD, *1929, applied mathematician and fluid dynamicist.
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As shown in Section 4.2.4, motions with horizontal scales much larger
than the water depth are in hydrostatic balance. Waves in hydrostatic
balance (generally called long waves) are of particular importance in
the ocean. We have already encountered the hydrostatic limit for grav-
ity waves in Sections 7.4.1 and 7.5. In addition to long gravity waves,
planetary and topographic waves are in hydrostatic balance and hence
also are long waves. Near the equator, both long gravity and planetary
waves have a specific form. In the present chapter, some aspects of long
waves will be discussed. We also present the influence of a mean flow
on long waves including the important forms of instabilities.

As discussed in Chapter 7, the hydrostatic limit is achieved for !2 � N 2. From
(7.14) it follows that in this limit, the vertical vertical structure of the eigenfunc-
tionsWn.z/ no longer depends on frequency. Furthermore, for long waves it is more
convenient to use the vertical structure of the horizontal velocities rather than that
of the vertical velocity. Therefore, the vertical structure is rederived in the follow-
ing, starting from the linearized equations of motion (7.4)–(7.7) (neglecting the time
derivative in the vertical momentum equation (7.5)), i. e.

@u

@t
� f v D � 1

�0

@p

@x
C Fu (8.1)

@v

@t
C f u D � 1

�0

@p

@y
C Fv (8.2)

0 D �@p
@z

� g� (8.3)

@�

@t
� �0N

2

g
w D G� (8.4)

@u

@x
C @v

@y
C @w

@z
D 0 (8.5)

For later reference we have included forcing terms, which are now abandoned but
will be used in the treatment of forced waves in Section 10.3. The Coriolis parame-
ter f is assumed constant. Later, for the equatorial wave guide, this assumption will
be abandoned. Likewise, the ocean is assumed constant, except when topographic
waves are studied. All equations are derived in Cartesian form to show the basic

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 209
DOI 10.1007/978-3-642-23450-7_8, © Springer-Verlag Berlin Heidelberg 2012
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concepts in the most simple conditions. Note, however, that for very long waves
(such as e. g. tides) the use of spherical coordinates is required.

8.1 Long GravityWaves

The variables w and � can be eliminated from (8.3)–(8.5), either by multiple differ-
entiations or by multiple integrations. The latter way is preferred since solutions may
be lost during differentiation, and also the boundary conditions are immediately ac-
counted for. Vertical integration of (8.5) from �H to z, using the boundary condition
w D 0 at z D �H , results in

w D �
zZ

�H
rh � u.z00/dz00 (8.6)

Integration of (8.3), with the linearized dynamical boundary condition pjzD0 D
g�0� (cf. Section 7.1), yields

p D �0g� C g

0Z

z

�.z0/dz0 (8.7)

Temporal differentiation of (8.7), using @�=@t D wjzD0 and (8.4), results in

@p

@t
D �0gwjzD0 C �0

0Z

z

N 2.z0/w.z0/dz0 (8.8)

Inserting now the expression (8.6) for the vertical velocity, one obtains

@p

@t
D ��0g

0Z

�H
rh � u.z00/dz00 � �0

0Z

z

N 2.z0/
z0Z

�H
rh � u.z00/dz00dz0

D ��0Mrh � u (8.9)

where the integral operatorM is defined as

M D g

0Z

�H
dz00 C

0Z

z

dz0N 2.z0/
z0Z

�H
dz00 (8.10)

In the momentum equations (8.1)–(8.3), the rotation vector is assumed to be parallel
to the direction of gravity. Since also the boundaries are perpendicular to gravity, it is
possible to separate the vertical structure from horizontal and time dependence with
the ansatz

0
@u; v; p.x; y; z; t/w.x; y; z; t/

�.x; y; z; t/

1
A D

0
@ Qu; Qv; �0 Qp.x; y; t/ ˚.z/

Qw.x; y; t/ N�2.z/@˚.z/=@z
�0 Q�.x; y; t/ @˚.z/=@z

1
A (8.11)
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33. Rayleigh
Approximation
for the Eigenvalue

The Rayleigh quotient, obtained by multiplication of (8.15) with˚n and integration, represents
the eigenvalues �n in terms of the eigenfunctions ˚n.z/ in the form

�n D ˚2n.0/C R 0
�H

g

N2 .
d˚n
dz
/2dz

g
R 0

�H ˚
2
ndz

(B33.1)

The Rayleigh quotient is particularly useful in situations when the eigenfunctions are only ap-
proximately known since the eigenvalue computed from (B33.1) may still be fairly accurate.

Note that the physical dimensions of the tilde variables Qu; Qv : : : depend on the dimen-
sion of ˚ which has not yet been specified, and are generally different from those of
the corresponding variables u; v : : : which do have the proper physical dimensions.
Insertion of (8.11) into (8.9), and division by ˚rh � Qu, results in

@ Qp=@t
rh � Qu D �M˚

˚
(8.12)

Here the left-hand side is a function of x; y; t , the right-hand side a function of
only z. To be equal, both sides can neither depend on x; y; t nor on z but must both
be equal to a constant, say �1=
. Hence (8.9) results in two relations, namely

@ Qp
@t

D � 1



�
@ Qu
@x

C @ Qv
@y

�
(8.13)

M˚ D 1



˚ (8.14)

with the operatorM given by (8.10), and a yet unknown constant 
. Equation (8.13)
will be further discussed in Section 8.1.2. Equation (8.14) is an integral equation gov-
erning the vertical structure ˚.z/ of horizontal velocity and pressure. Note that the
more common differential formulation is obtained by application of @=@z.N�2@=@z/
to (8.14), and leads to

d

dz

�
1

N 2

d˚

dz

�
D �
˚ (8.15)

d˚

dz
C .N 2=g/˚ D 0 ; z D 0 (8.16)

d˚

dz
D 0 ; z D �H (8.17)

Equation (8.14), or equivalently (8.15)–(8.17), constitute a Sturm–Liouville problem
(see the box on p. 192). A solution ˚ D ˚n.z/ exists only for discrete eigenvalues

n, n D 0; 1; 2; : : : which are real and positive and can be sorted in ascending order.
Note that ˚n.z/ and 
n are independent of ! which contrasts the long-wave eigen-
value problem with the one for internal gravity waves discussed in Section 7.4.3.

8.1.1 Barotropic and Baroclinic Modes

As shown in Section 7.4.4, N 2H=g 	 ��=�0 � 2 � 10�3 D � � 1 is valid in the
ocean. The second term in (8.16) is of the order O.�/ and can be neglected in the
lowest approximation. We then distinguish between two types of solutions:
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Fig. 8.1 Eigenmodes for long waves for the Brunt-Väisälä frequency profile shown in Figure 7.7.
The modal speed (a) of the first ten modes in m s�1 and the first three eigenfunctions of the verti-
cal (b) and horizontal (c) velocity are displayed

Barotropic solution

With the approximate boundary condition ˚z � 0 at z D 0, a nontrivial solution
of (B33.1) is given by ˚0.z/ � const, with the corresponding eigenvalue 
0 � 0.
Here the index n D 0 is set arbitrarily. The approximation 
0 D 0 is formally correct
to order � but nevertheless insufficient since the true eigenvalues are always positive.
An approximation accurate to order �2 can be found with the help of the RAYLEIGH1

coefficient in the box on p. 211. With ˚0 D const, one obtains


0 D 1

gH
(8.18)

Baroclinic solutions

Neglecting the term O.�/ in the boundary condition for baroclinic modes leads to
˚z D 0 at z D 0;�H , which corresponds to w D 0. For arbitrary profiles of
N.z/, the eigenfunctions have to be calculated numerically. Some analytical and
numerical solutions of the eigenvalue problem of long waves are shown below (see
Figure 8.1 and the box on p. 214). With the normalization

R
˚2ndz D 1, one obtains

from (B33.1) for the baroclinic eigenvalues


n �
Z

1

N 2

�
d˚n

dz

�2
dz ; n D 1; 2 : : : (8.19)

The separation parameter 
n characterizes the stratification in the baroclinic case and
the water depth in the barotropic case. In both cases, it has the dimension [s2 m�2]. It
is convenient to replace 
n by one of the following parameters which are physically
more intuitive:

1. The equivalent depth

hn D 1

g
n

1 JOHN WILLIAM STRUTT, LORD RAYLEIGH, *1842 in Maldon, Essex, †1919 in Witham, Essex,
physicist.
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Fig. 8.2 Global distribution of a, the baroclinic eigenvalue c1, and b, the associated Rossby ra-
dius R1, according to the analysis of Chelton et al. (1998). In c, d we show the resulting c1 from
the WKBJ in c and the Rayleigh approximation in d (see text), using the WOA05 climatology. All
data have been smoothed over three grid points of the 1ı � 1ı resolution

has the dimension of a length. The suggestive name is due to the fact that h0 D
1=g
0 � H . For n > 1, however, hn has no immediate physical significance.

2. The gravity wave speed

cn D 1



1=2
n

� p
ghn

has the dimension [m s�1]. For both barotropic and baroclinic modes, cn is the
phase speed of long gravity waves without rotation. Note, however, that cn is not
identical to the phase speed of waves in a rotating system.

3. The Rossby radius

Rn D 1

f 

1=2
n

D cn

f

again has the dimension of a length. For gravity waves it is the length scale above
which rotation effects are significant.

For f D 10�4 s�1 we roughly obtain the values in Table 8.1; they depend on the
stratification.

Table 8.1 Typical oceanic ranges of equivalent depth hn, phase speed cn and Rossby radius Rn
for the barotropic and the first two baroclinic modes

n hn Œm� cn Œm s�1� Rn Œkm�

0 4;000 200 2;000

1 0:1–1 1:0–3:0 10–30
2 0:004–0:04 0:2–0:6 2–6
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34. Eigenmodes for
Constant and
Exponential
Brunt-Väisälä
Frequency

We introduce two frequently used models of the Brunt–Väisälä frequency and the associated
long-wave eigenmodes determined by (8.15)–(8.17). The eigenfunctions are normalized as

0Z

�H0

dz˚n.z/˚m.z/D ınm

1. Constant N : For N D N0 D const the eigenvalue problem is solved by

˚0.z/D p
1=H0 �0 D 0

˚m.z/D p
2=H0 cos.m z=H0/ �m D .m /2=.N0H0/

2

2. ExponentialN : For an exponential Brunt–Väisälä frequencyN.z/D N0ez=b with b > 0
we find an analytical solution for the baroclinic modes in the terms of Bessel functions (the
box on p. 247, see also e.g. Abramowitz and Stegun, 1984)

Jn.�/D Jn.�/Y0.˛m/� Yn.�/J0.˛m/ ; n D 0; 1

with ˛m D N0b
p
�m. The eigenfunctions are

˚m.z/D Dmez=bJ1.˛mez=b/

with the normalization constantDm D p
2=bfJ 21 .˛m/�J 21 .˛me�H=b/g�1=2 , and the

˛m follows from the dispersion relation

J0.˛me�H=b/ D 0

Some estimates of the wave speed c1 and the Rossby radius R1 of the first baro-
clinic mode are displayed in Figure 8.2. The upper panel uses the data of analysis of
Chelton et al. (1998) who have solved the eigenvalue problem locally for the Brunt–
Väisälä frequency derived from the WOA05 hydrographic climatology2. The Rossby
radius R1 D c1=jf j becomes singular at the equator. Here, R1 is replaced by the
equatorial value Re D p

c1=ˇ (see Section 8.3.2). The result for c1 is compared in
the lower panels with WKBJ estimate c1 	 R

N.z/dz=  and the estimate obtained
from the Rayleigh formula in the box on p. 211. For the latter we have approximated
the eigenfunction with the eigenfunction of an exponential Brunt–Väisälä frequency,
see the box on p. 214. The better accuracy of the Rayleigh approximation becomes
obvious.

8.1.2 Dispersion Relation and GroupVelocity

From (8.1), (8.2), (8.9) and (8.14), equations for the Qu; Qv; Qp.x; y; t/ follow. With
c2n D 1=
n, one obtains

@ Qu
@t

� f Qv C @ Qp
@x

D 0 (8.20)

2 Chelton et al. (1998) solve the eigenvalue problem for vertical velocity. This isWzzC�N 2W D 0
with boundary conditionsW D 0 at z D 0;�H . Note thatW D N�2˚z .



8.1 Long Gravity Waves 215

@ Qv
@t

C f QuC @ Qp
@y

D 0 (8.21)

@ Qp
@t

C c2n

�
@ Qu
@x

C @ Qv
@y

�
D 0 (8.22)

These equations are often referred to as long-wave equations. All variables refer to
the respective vertical eigenfunction with the index n which from now on is sup-
pressed for convenience. The wave ansatz . Qu; Qv; Qp/ D . OU ; OV ; OP /ei.k1xCk2y�!t/
leads us (with f D const) directly to the dispersion relation

!2 D f 2 C c2n k
2 D f 2.1CR2nk

2/ (8.23)

which is the long-wave limit of the gravity waves, previously considered in Sec-
tion 7.4.3.

Long gravity waves in the presence of rotation are also called POINCARÉ3 waves.
From the dispersion relation (8.23) we obtain their phase speed as

c D !

k
D .f 2 C c2nk

2/

k

1
2

�
�
f 2

k2
C c2n

� 1
2

� cn

�
1C 1

k2R2n

� 1
2

It follows that always c > cn, and in the limit kRn � 1 one finds c � cn. As the
frequency depends only on the magnitude of the wave-number vector, the group ve-
locity has the direction of k; its magnitude cg is obtained by differentiation of (8.23)
as 2!@!=@k � 2!cg D 2c2nk or

cg D c2n
!
k D cn�

k2 CR�2
n

� 1
2

k (8.24)

in vectorial form. Note that the relation ccg � c2n holds at all frequencies.
The amplitudes OU ; OV can be expressed by OP according to

 OU
OV

!
D 1

!2 � f 2
�
!k1 C if k2
!k2 � if k1

�
OP (8.25)

In particular, the ratio of velocity amplitudes OV and OU is given as

OV
OU D !k2 � if k1

!k1 C if k2
(8.26)

a relation that will be needed below (cf. Section 8.1.4).

8.1.3 Geostrophic Adjustment

In this section, the role of long gravity waves for the adjustment from a non-
geostrophic initial distribution to the geostrophic balance will be considered.

3 JULES HENRI POINCARÉ, *1854 in Nancy, †1912 in Paris, mathematician, theoretical physicist
and philosopher.
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Conservation of potential vorticity

The system (8.20)–(8.22) can be written as

@ Qu
@t

� f v C g
@�

@x
D 0 (8.27)

@ Qv
@t

C f uC g
@�

@y
D 0 (8.28)

@�

@t
C hn

�
@ Qu
@x

C @ Qv
@y

�
D 0 (8.29)

dropping the tilde and introducing the elevation � D p=g. Here hn D c2n=g is the
equivalent depth (in the following the index n will be dropped). Forming the curl
of (8.27) and (8.28) yields (note that f D const)

@

@t

�
@v

@x
� @u

@y

�
C f

�
@u

@x
C @v

@y

�
D 0 (8.30)

With (8.29), this leads to @.@v=@x � @u=@y � .f=h/�/=@t D 0, and we note that

Q D @v

@x
� @u

@y
� f

h
� D Q0 (8.31)

is always constant in time. The equation @Q=@t D 0 corresponds to the eigenfre-
quency ! D 0 of the system (8.27)–(8.29). Here Q is an approximated form of the
potential vorticity.

To obtain an equation for � alone, the divergence of (8.27) and (8.28) is taken; in
combination with (8.29) this leads to

�1
h

@2�

@t2
� f

�
@v

@x
� @u

@y

�
D �gr2� (8.32)

The relative vorticity @v=@x � @u=@y in (8.32) can be eliminated using (8.31) with
the aid of the potential vorticity, and we obtain an equation governing the evolution
of the displacement �

�@
2�

@t2
C ghr2� � f 2� D f hQ � f hQ0 (8.33)

The inhomogeneity of this equation comes about by integration of the homogeneous
system (8.27)–(8.29), and one constant of integration (Q0) has appeared.
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35. Green’s FunctionThe Green’s function is a very useful concept for the solution of linear forced boundary value
problems. Consider the problem

Lf g D q.z/

where Lf g is a linear differential operator acting on the scalar function  .z/, with linear
homogeneous boundary conditions at, say, z D a and z D b, and a forcing q.z/. The asso-
ciated Green’s function G.z; z0/ satisfies identical boundary conditions but solves a somewhat
different problem which – instead of q.z/ – has a point source of infinite strength (see box on
p. 199) located at z D z0. In other words, as function of z the Green’s function is a solution
of the unforced problem everywhere except at z D z0 where it is discontinuous. With proper
normalization it hence satisfies

LfG.z; z0/g D ı.z � z0/

For an arbitrary source q.z/ all the different contributions from the point source have to be
summed with the appropriate response G.z; z0/, and the function

 .z/ D
bZ

a

G.z; z0/q.z0/dz0

constitutes the solution to the forced problem, as can be shown easily. The solution can be
extended to nonhomogeneous boundary conditions.

Adjustment of an initial disturbance

The solution of the initial value problem and depends on the initial distribution of
the displacement field and is not pursued here. The final state after a long time can,
however, be obtained in a rather simple way. In equilibrium, the time derivative term
in (8.33) vanishes, and for the equilibrium solution �eq we obtain

ghr 2�eq � f 2�eq D f hQ0 (8.34)

Consider an initially motionless field, u0 D 0; v0 D 0 with an initial elevation
�0.y/ and hence an initial potential vorticity distribution Q0.y/ D �.f=h/�0.y/.
For symmetry reasons, the final distribution also depends only on y, and with the
Rossby radius R D p

gh=f it follows that

�R2 @
2�eq

@y2
C �eq D �0.y/ (8.35)

A solution of (8.35) is given by

�eq.y/ D
1Z

�1
�0.y

0/G.y � y0/dy0 (8.36)

with the Green’s function (see the box on p. 217)

G.y � y0/ D 1

2R
e�jy�y0 j=R (8.37)

The behavior of the equilibrium solution �eq.y/ depends on the scale, relative to the
Rossby radius, of variation of the initial distribution. For a qualitative discussion it is
sufficient to consider the limiting cases that the scale of variation is either very small
or very large compared to the Rossby radius.
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Fig. 8.3 Adjustment of an initial height disturbance with a discontinuity (blue) into geostrophic
equilibrium (red)

Small-scale initial distribution

In case that the initial distribution varies over scales much smaller than R,
i. e. j@�0=@yj � �0=R, it follows from (8.36) and (8.37) that those rapid varia-
tions will effectively be smoothed over the distance R. For example, if the initial
elevation has a jump with amplitude 2a0, i. e. �0 D a0 sign.y/, the equilibrium
distribution can be evaluated with (8.36) to be

�eq D a0.1 � e�jyj=R/ sign.y/ (8.38)

(cf. Figure 8.3). The corresponding zonal velocity follows from (8.28). According
to (8.28), the geostrophic relation

f ueq D �g@�eq

@y
(8.39)

must hold in equilibrium. For the solution (8.38) corresponding to an initial jump
this leads to

ueq D a0
g

fR
e�jyj=R (8.40)

Displacement and current only differ from their initial condition within a range of
a Rossby radius from the initial discontinuity; the adjustment only takes place here.

From (8.27)–(8.29) one obtains, in the usual way, the energy conservation as

@

@t

�
1

2
h.u2 C v2/C 1

2
g�2

	
D �r � .g�hu/ (8.41)

The potential energy per length unit is initially 1
2
ga20 , i. e. infinitely large in the total

area. Initially, there is no kinetic energy. For the difference of the respective energies,
minus the initial values, integrated over all y we find

�Ek D
1Z

�1

1

2
hŒu2eq.y/� 0�dy; and �Ep D

1Z

�1

1

2
gŒ�2eq.y/� a20�dy

Evaluation of the integrals with (8.38) and (8.40) results in �Ek D gRa20=2 and
�Ep D �3gRa20=2. The increase in kinetic energy related to the adjustment is
smaller than the loss of potential energy,

�Ek D �1
3
�Ep
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The remaining potential energy has been radiated away by gravity waves. The fac-
tor 1=3 is, however, not universally valid but specific to this example and depends
on how far the initial distribution deviates from geostrophy. If that is already in
a geostrophic balance, no energy is radiated (as long as f D const). Only a finite
part of the potential energy (which initially is infinitely large) is lost. We conclude
that the presence of rotation makes it difficult to change potential energy into kinetic
energy.

Large-scale initial distribution

On the other hand, if the initial distribution varies over scales much larger than R,
i. e. j@�0=@yj � �0=R, then under the integral in (8.36), �0.y0/ is effectively constant
over the range jy � y0j < R where the Green’s function significantly differs from
zero. Therefore, under the integral the approximation �0.y0/ � �0.y/ is valid. WithR1

�1 G.y � y0/dy0 D 1 it then follows that

�eq.y/ � �0.y/ (8.42)

The corresponding velocity field can again be found from (8.39). Since the elevation
is virtually unchanged, the potential energy is also unchanged. As will be shown later
(Section 8.2.2), the kinetic energy of near-geostrophic motions with a scale of motion
much larger than R is always small compared to potential energy. It follows that
only a small fraction of potential energy is transformed into kinetic energy during
the adjustment.

8.1.4 Influence of Horizontal Boundaries

When a horizontal boundary crosses the propagation path of a long gravity wave,
reflection can be expected. The details of reflection are, however, considerably mod-
ified by the Earth’s rotation. Furthermore, one finds a new type of waves which can
only exist near the boundary.

Reflection at a lateral wall

The situation is more complicated in the general case with rotation. Consider a wave
with wave number ki D .ki1 < 0; ki2 > 0/ (incoming wave) propagating towards
a boundary at x D 0 where Qu.0; y; t/ D 0 must be valid. We write

Qu.x; y; t/ D U iei.ki1xCki
2
y�!i t/ C U rei.kr1xCkr

2
y�!r t/

and likewise for Qv and Qp. Again, the reflection condition requires

kr1 D �ki1 D k1 ; kr2 D ki2 D k2 ; !r D !i and U r D �U i
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36. Eigenoscillations
in a nonrotating basin

If the dimensions of a basin are considerably smaller than the Rossby radius, rotation does not
play a major role. The results mentioned above in Section 8.1.2 remain valid, with f D 0. The
reflection at plane boundaries does not cause any difficulties in this case. For a rectangular basin
of the dimension L1; L2, the boundary condition of no flow normal to the boundaries can be
satisfies only for discrete horizontal wave numbers according to

k1 D ` 

L1
; k2 D m 

L2

with `;mD 0; 1; 2 : : : Pressure field and eigenfrequencies are given by

p.x; y; t/D P`m cos
` x1

L1
cos

m x2

L2
cos!n`mt

!n`m D cn

"
`2 2

L21
C m2 2

L22

# 1
2

The basic oscillation (longitudinal oscillation) ` D 1, m D 0, n D 0 in a basin with the
length L1 then has a period

T D 2 

!01;0
D 2

L1p
gH

a formula attributed to Merian (1828).

The solution for Qu is thus given by Qu D U0 sin.k1x/ exp .i.k2y � !t// with
U0 D 2iU r . A second boundary condition in x-direction (channel geometry) leads,
as usual, to a discretization of the wave number k1.

Reflection at a further boundary in y-direction causes, however, greater difficul-
ties for the analytical treatment. From (8.26), it follows that

V D �ei�U with �ei�.k1;k2/ D !k2 � if k1
!k1 C if k2

for the meridional velocity component. This relation must hold for both incident and
reflected waves, i. e.

V i D �ei�.k1;k2/U i ; V r D �ei�.�k1;k2/U r

For Qv we thus obtain the solution

Qv D �U i
�
eiŒk1xC�.k1;k2/� � eiŒ�k1xC�.�k1;k2/��ei.k2y�!t/

Except for the particular case f D 0 (where  D 0 or  ; see the box on p. 220),
the dependence of the phase  on the wave number .k1; k2/ is neither symmetric
nor antisymmetric, i. e. .k1;�k2/ ¤ ˙.k1; k2/. For this reason, it is no longer
possible to satisfy the boundary condition Qv D 0 at, e.g., y D 0 by superposition
of k2 and �k2 in the y-direction. The gravity waves in a rotating rectangular basin
can, therefore, no longer be represented by a simple superposition of standing waves.
Nevertheless, an analytical solution can be obtained by series expansion.
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8.1.5 Kelvin Waves

Consider a particular solution of (8.20)–(8.22) with Qu.x; y; t/ � 0 everywhere. Such
a solution automatically satisfies the boundary condition in the x-direction. With

� Qp
Qv
�

D
 OP .x/

OV .x/

!
ei.k2y�!t/ (8.43)

one obtains

�f OV D �@
OP

@x
(8.44)

�i! OV D �ik2 OP (8.45)

� i!

c2n

OP C ik2 OV D 0 (8.46)

From (8.44) and (8.45) it follows that OV D .k2=!/ OP and .f k2=!/ OP D @ OP=@x
with the solution

OP .x/ D P0e.f k2=!/x and OV .x/ D k2

!
P0e.f k2=!/x

Since by convention always ! > 0, k2 must have a sign that causes the solution to
decline for x ! 1. For this reason, k2 < 0 applies in the above-mentioned example.
Equation (8.46) leads to

!2 D c2nk
2
2 (8.47)

With the Rossby radius Rn D cn=f D !=jk2jf , we obtain

. Qp.x; y; t/; Qv.x; y; t// D .P0; V0/e�x=Rnei.k2y�!t/ (8.48)

which describes a wave propagating in �y direction (in the northern hemisphere,
k2 < 0, and the coast remains to the right with respect to the direction of propaga-
tion). It is called Kelvin wave. The Kelvin wave is trapped to the coast and declines
within a distance of a Rossby radius. In the southern hemisphere f < 0 applies, and
the propagation is in opposite direction.

Kelvin waves are free of dispersion. Their phase velocity c D !=jk2j � cn is
identical to that of long gravity waves without rotation. The Earth’s rotation does
not occur in the dispersion relation (8.47) but is fundamental for the existence of
Kelvin waves (the scale of decay in the x-direction depends on f ). Note that the
frequencies can be very low and are no longer bounded by the inertial frequency. For
the first baroclinic mode (cn 	 2m s�1) the period is about 1 month if the wave-
length is 6;000 km. Kelvin waves thus constitute a fast mechanism for propagating
information over large distances along coastlines (cf. Section 8.4).

8.1.6 Hydraulic Control: Wave Propagation and Nonlinearity

The characteristics of linear long gravity waves can be decisive for the dynamics of
stationary and strongly nonlinear currents. Hydraulically controlled flows constitute
a good example for this fact.
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Fig. 8.4 Sketch of the configuration assumed for the hydraulic control flow: h.x/ is the depth of
the fluid above the topographic barrier of height b.x/

The simplest case of hydraulic control occurs in an unforced flow of a homoge-
neous fluid in a nonrotating channel of constant width. When friction is small, the
current is independent of depth (cf. Section 2.11.2); if the width is small in propor-
tion to the length, the dependence on the transverse coordinate can be neglected. In
hydrostatic balance, the vertically integrated equations of motion result as follows

@u

@t
C u

@u

@x
C g

@

@x
.hC b/ D 0 (8.49)

@h

@t
C @uh

@x
D 0 (8.50)

Here x is the coordinate in longitudinal direction, u.x; t/, h.x; t/ are velocity and
height of water column, respectively; and b.x/ is the height of the bottom topography
above a reference depth (see the sketch in Figure 8.4). The linearized flat-bottom
solution would consist of long gravity waves with phase velocity c D p

gH with
a mean water depthH (propagation in both positive and negative x direction).

The equilibrium solutions of (8.49) and (8.50) obey the relations

u
@u

@x
C g

@h

@x
D �g @b

@x
(8.51)

h
@u

@x
C u

@h

@x
D 0 (8.52)

with the integrals

1

2
u2 C ghC gb D B D const (8.53)

hu D U D const (8.54)

Hence in a steady frictionless balance, both the Bernoulli function B as well as the
transport (per unit width) U are constant, i. e. they are independent of x. Therefore,
the solution h.x/ and u.x/ can be determined once B and U are known.

An important dimensionless parameter is the FROUDE4 number F 2 D u2=gh, or
equivalently F D u=

p
gh D u=c which is the ratio of the flow velocity to the speed

of long gravity waves. Equations (8.51) and (8.52) can be interpreted as a linear
system for @h=@x and @u=@x. For arbitrary @b=@x ¤ 0, the system has a unique

4 WILLIAM FROUDE, *1810 in Devon, †1879 in Simonstown/South Africa, engineer and hydrody-
namicist.
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Fig. 8.5 Steady solutions of the system (8.53)–(8.54). a–c show the free surface h.x/ C b.x/,
together with the topography b.x/, and d–f show the corresponding Froude number. a, d Flow
is subcritical everywhere. b, e Flow is supercritical everywhere. c, f Flow (from left to right) is
hydraulically controlled

solution only if the determinant u2 � gh ¤ 0, i. e. F ¤ 1. Specifically, at the sill
where @b=@x D 0, for F ¤ 1 it follows that @h=@x D 0 and @u=@x D 0. Therefore,
the character of the equilibrium solutions depends on the magnitude of F .

If F < 1 (subcritical flow, see left panel in Figure 8.5), the wave speed is larger
than the flow velocity, and wave characteristics are important for the solution. For
F � 1, in (8.53) one has u2=2 � gh, hence to first approximation hC b � const
so that in this limit the free surface is nearly level. For finite F < 1 we note that
hC b is somewhat smaller above the topography.

If F > 1 (supercritical flow, see middle panel in Figure 8.5), the flow velocity
is larger than the wave propagation speed. For this reason, no information can be
transported by waves upstream against the current. For F � 1, u2=2 � gh applies
in (8.53), and hence approximately u � const. It also follows that h � const. For
finite F > 1, u is somewhat smaller above the topography.

The case F D 1 at the sill is of particular interest. Here the solution changes
its character, from F < 1 to F > 1. Note also that @h=@x ¤ 0 and @u=@x ¤
0. Physically a transition from subcritical to supercritical can be expected in the
direction of flow when an initially subcritical flow is accelerated. The location where
F D 1 is called hydraulic control point, and the flow is hydraulically controlled
(see right panel in Figure 8.5). Note that hydraulic control can also occur at a lateral
constriction in a channel, completely analogous to a sill.

Height and velocity at the critical point xc can be related to the upstream condi-
tions. At a location x0 far upstream of the control point where the bottom is flat (i. e. ,
b0 D 0) and the Froude number is small (F � 1), it follows from the constancy of
the Bernoulli function (8.53) that

1

2
u2c C g.hc C bc/ D 1

2
u20 C g.h0 C b0/ � gh0
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With u2c D ghc, one obtains the geometrical relation

hc D 2

3
.h0 � bc/ and thus uc D

�
2

3
g.h0 � bc/

	 1
2

Hence the flow properties at the control point only depend on the upstream height
and the topography at the control point.

In the presence of weak friction, a supercritical flow must eventually become sub-
critical again, somewhere downstream of the control point. The enforced transition to
the downstream conditions occurs in a hydraulic jump. Dissipation can be expected
to be important at the location of the jump.

The previous considerations remain valid when considering the transport of a bot-
tom layer (thickness h, density � C ��) which lies under a motionless layer (den-
sity �). Then, g must be replaced by the reduced gravity g0 D g��=� 	 2� 10�3 g.
Hence the transport in a hydraulically controlled channel flow can be obtained from
thickness measurements at the control point, M D uhD D uchcD, where D is
the channel width. With u2c D g0hc, this is equivalent to M D g0 1

2 h
3=2
c D. In the

presence of rotation, one can expect that the transport depends on the relation be-
tween the basin width D and the Rossby radius R 	 p

g0h=f . If the channel is
wide (D � R), the current essentially remains within a Rossby radius of the basin’s
boundary. In that case, a simple approximation is to replaceD ! O.R/. The calcu-
lation by Whitehead (1998) results in D ! R=2 and leads to

M � 1

2

g0h2c
f

D 1

2

��

�

g

f
h2c

Further aspects occur in the case of a baroclinic current in two or more layers which
are not considered here.

Known examples for currents which are – at least temporarily – hydraulically
controlled are the outflow of Mediterranean Water and the overflow through the Den-
mark Strait between Iceland and Greenland.

8.2 PlanetaryWaves in Midlatitudes

Planetary or Rossby waves are central for the adjustment of the oceanic circula-
tion to changes in forcing. Their governing equations can in principle be derived
from the long wave equations (8.1)–(8.5), now including variations of the Coriolis
parameter f with latitude. A more convenient starting point is, however, the quasi-
geostrophic vorticity equation (5.32). Omission of the forcing terms in (5.32) and
linearization yields the linear potential vorticity equation for the stream function  
as

@

@t

�
r2
h C @

@z

�
f 20
N 2

@ 

@z

�	
C ˇ

@ 

@x
D 0 (8.55)

The vertical structure is that of long waves given by (8.14), and with  .x; y; z; t/ D
˚n.z/ Q .x; y; t/ one obtains for the horizontal structure

r2
h
@ Q 
@t

� 1

R2n

@ Q 
@t

C ˇ
@ Q 
@x

D 0 (8.56)

with the Rossby radius Rn D cn=f (the index n will be dropped in the following).
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Fig. 8.6 Dispersion relation of baroclinic Rossby waves. a Frequency as function of scaled zonal
wave number, for k2 D 0 and modes n D 1; 2; 3; 4 (colors blue to cyan). The dashed line is along
the locations of maximum frequency. b Frequency !=!max as function of the scaled wave numbers
.k1R;k2R/

8.2.1 Propagation Characteristics

Since (8.56) has constant coefficients, the exponential ansatz D  0ei.k1xCk2y�!t/
immediately yields the dispersion relation

! D � ˇk1

k21 C k22 CR�2 (8.57)

which is displayed in Figure 8.6. For positive ! the zonal wave number must be
negative, k1 < 0, i. e. the phase always propagates westward. For fixed k2, the
maximum value of ! lies at k1 D �.k22 C R�2/1=2. The maximum frequency
for k2 D 0 is !max D ˇR=2; it is reached at k1 D �1=R. For k22 � k21 and
ˇ D 2 � 10�11 m�1 s�1 we obtain for the barotropic case (R0 D 2;000 km) a max-
imum frequency !max D 2 =.3 d/, and for the baroclinic case (R1 D 30 km) the
value !max D 2 =.200 d/.

For waves with scales that are much larger than the Rossby radius (i. e. k21 ; k
2
2 �

R�2) the dispersion relation is approximately

! D �ˇR2k1 (8.58)

Hence in this limiting case the waves are nondispersive.
Wave groups are propagating with the group velocity

cg D
�
@!=@k1
@!=@k2

�
D
 
cxg

c
y
g

!
(8.59)

Using the dispersion relation (8.57), this implies for the zonal component

cxg D ˇ
k21 � k22 �R�2

.k21 C k22 CR�2/2
(8.60)

The group velocity vanishes at k1 D �k? D �
q
k22 CR�2. For long waves (k1 >

�k?) cxg < 0, and group and phase both propagate westward. For short waves (k1 <
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Fig. 8.7 Zonal (a) and meridional (b) components of the group velocity Rossby waves, according
to (8.60) and (8.61), as function of the scaled wave numbers .k1R;k2R/. Unit is m s�1

�k?) cxg > 0, and group and phase propagate in opposite directions. Maximum
values of the magnitude of cxg lie at

k1 ! 0 where cxg D � ˇ

k2?

k1 D �p
3k? where cxg D 1

8

ˇ

k2?

Short waves are thus at least by factor 8 slower in x-direction than long waves.
The group velocities are displayed in Figure 8.7. The group velocity in meridional
direction is

cyg D 2ˇk1k2

.k21 C k22 CR�2/2
(8.61)

As k1 < 0, the sign of cyg is always opposed to k2, i.e group and phase propagate in
opposite directions.

The existence of the planetary waves obviously hinges on the ˇ-effect, but how
the waves come about is not easily understood. In the box on p. 227 an elementary
explanation of the restoring mechanism is presented.

8.2.2 Energy of PlanetaryWaves

The energy balance of free Rossby waves can be derived from the general form
shown in the box on p. 148, with the appropriate approximations and linearization.
Alternatively, multiplication of (8.56) by  yields

r �
�
 
@

@t
r 

�
� r � @

@t
r �  

@

@t

 

R2
C ˇ

@

@x

1

2
 2 D 0

After reordering we obtain

@

@t

�
1

2
.r /2 C 1

2

 2

R2

	
D r �

�
 
@

@t
r 

�
C @

@x

ˇ

2
 2 (8.62)
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37. RestoringMechanism
of Planetary Waves

To understand the restoring mechanism, it is useful to consider the vorticity balance. For simplic-
ity, we restrict the discussion to the case k2 D 0, i. e. there is no meridional pressure gradient
and hence u � 0, and, furthermore, to long waves, k1 
 R�1, so that the stretching plays
no role. If stretching as well as mechanic force and baroclinic vector are neglected, the vertical
component f C 
 of the absolute vorticity is governed by

D

Dt
.f C 
/ D 0 or linearized

@


@t
� �ˇv

where D=Dt D @=@t C v@=@y has been used. Consider now a parcel that moves north-
wards, i. e. v > 0. Then f D f0 C ˇy increases and thus the planetary vorticity in-
creases as well. Hence the relative vorticity 
 must decrease. Consider the initial distribution
v0.x/ D V sin.x=L/, with a relative vorticity 
0.x/ D @v0=@x D V=L cos.x=L/. This
results in

@
0

@t
D �ˇv0 D �ˇV sin

x

L

and integration over a short period yields


 D 
0.x/� t ˇV sin
x

L
D V

L
cos

x

L
� t ˇV sin

x

L
� V

L
cos


 x
L

C ˇLt
�

As discussed in the treatment of planetary waves, westward propagation is the result.

Here Ekin D .1=2/.r /2 is the horizontal kinetic energy (per unit mass). With
similar arguments as in Section 5.2.5, Epot D .1=2/. 2=R2/ can be identified as
available potential energy of the waves. Note that integration of (8.62) over all x; y
gives no contribution from the right side as long as the normal velocity vanishes at
the boundary, or equivalently  D 0 holds at the boundary.

For a wave solution  D a cos.k1xCk2y�!t/ the relation between kinetic and
potential energies is found as

Ekin

Epot
D �

k21 C k22
�
R2 ' R2

L2
(8.63)

where an average over a wave period/wave length is implied. Hence for short waves
the kinetic energy dominates, for long waves the potential energy. Furthermore, the
total energy is found to be

E D 1

2

�
k21 C k22 C 1

R2

�
a2

The energy conservation (8.62) can be rewritten, in the WKBJ sense (cf. Section 6.3),
as

@E

@t
D @

@x

�
2!k C ˇ

k21 C k22 CR�2E
�

C @

@y

�
2!l

k21 C k22 CR�2E
�

D � @

@x
cxg E � @

@y
cyg E D �r � cgE (8.64)

with the group velocity cg D .cxg ; c
y
g /.
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Fig. 8.8 The slowness circle with 4 modes is displayed. For mode n D 3 an eastward (short) and
a westward propagating (long) wave is shown with wave vector and group velocity. The center of
the circle is at .�	; 0/ with 	 D ˇ=2!, the radius is 	2 � 1=R2. The wave vector is shown in
black, the group velocity in green

8.2.3 Reflection at Meridional Boundaries

Reflection at lateral boundaries can significantly change the characteristics of plan-
etary waves. A convenient way to discuss reflection is to consider the dispersion
relation (8.57) in the .k1; k2/-plane, i. e.

k21 C k22 C 1

R2
C ˇk1

!
D 0 )

�
k1 C 1

2

ˇ

!

�2
C k22 D

�
1

2

ˇ

!

�2
� 1

R2

(8.65)

Hence ! D const corresponds to a circle depicted in Figure 8.8. For given k2 and !,
equation (8.65) has two solutions ki1 and kr1 . With 1=R2? D k22 C 1=R2, these can be
written as

k
r;i
1 D �1

2

ˇ

!
˙
 �

1

2

ˇ

!

�2
� 1

R2?

! 1
2

D �1
2

ˇ

!

2
41˙

�
1 � 4!2

ˇ2R2?

� 1
2

3
5 (8.66)

For small ! (i. e. !=ˇR? � 1) both wave numbers have very different magnitudes,

kr1 � �ˇ
!
; ki1 � � !

ˇR2?

with ratio jki1j=jkr1j D !2=ˇ2R2? � 1.
Consider now the reflexion at a western boundary, situated at x D 0. To satisfy

the kinematic boundary condition u D 0 or equivalently  D const D 0, set

 D  i C  r D ai cos
�
ki1x C ki2y � !i t

�C ar cos
�
kr1x C kr2y � !r t

�
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The incoming wave ki1; k
i
2 is given, and !i follows from (8.57). Physically, this only

makes sense if cig < 0, i. e. the incoming wave must be a long wave. Note that
kr1; k

r
2; !

r also have to satisfy the dispersion relation. From  D 0 at x D 0 we
obtain

ai cos
�
ki2y � !i t�C ar cos

�
kr2y � !r t� D 0

for all y; t , and it follows that ar D �ai ; kr2 D ki2; !
r D !i . Based on the disper-

sion relation, kr is the short wave mentioned above, with an eastward (but small)
group velocity. As the reflected wave is generally short, it is more affected by (scale-
dependent) dissipation. Furthermore, since its group velocity is small, it is unlikely
to propagate eastward over very large distances.

For the same reason, the midlatitude reflection problem at the eastern boundary is
of less interest, since eastward traveling waves are short, have a slow group velocity,
and are hence more prone to dissipation. Reflexion at the northern/southern boundary
does not result in any new aspects because of the symmetry of the dispersion relation
in view of k2; it is ar D �ai ; kr D ki ; !

r D !i and thus kr2 D �ki2. A diagram like
Figure 8.8 can generally be used to obtain a graphical solution, even in cases when
the boundary is along other directions.

8.2.4 Topographic-PlanetaryWaves

The topography (called orography in meteorology) plays an important role for
Rossby waves and, more generally, for quasigeostrophic motions. The linear vor-
ticity equation (8.55) form remains a convenient starting point. The planetary gradi-
ent ˇ has been central for planetary waves, but for topographic waves, there is the
gradient rh D .hx; hy/ of ocean depth entering the problem as well. The topogra-
phy appears through the kinematic boundary condition at the bottom. The boundary
conditions are

N 2

g

@ 

@t
C @2 

@z@t
D 0 at z D 0 (8.67)

N 2

f0
r � r:hC @2 

@z@t
D 0 at z D �h (8.68)

Here the notation r:h D .�hy ; hx/ for the depth gradient rh rotated 90ı in the

counterclockwise direction has been used (compare also the box on p. 444). Note that
the rigid-lid approximation (for the condition at the surface) has not yet been made.
Consider the case of a weak bottom slope, hx=h; hy=h � 1, but at the same time
we take h � H0 D const (this approach is analogous to the ˇ-plane approximation
f D f0 C ˇy with df=dy D ˇ but f � f0 and ˇL=f0 D L=a � 1). Then ˇ as
well as rh may be treated as constant in the equations. We assume solutions of the
form

 D ˚.z/ exp i.k � x � !t/ (8.69)
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with a wave vector k D .k1; k2/ and a vertical eigenfunction ˚.z/ which must
satisfy

d

dz

�
f 20
N 2

d˚

dz

	
C b2˚ D 0 (8.70)

˚
N 2

g
C d˚

dz
D 0 at z D 0 (8.71)

˚
N 2

!f0
k � r:h � d˚

dz
D 0 at z D �h (8.72)

The parameters k; b, and ! are found to be related by b2 D �.k2 C ˇk1=!/ which
for ˇ ¤ 0 is equivalent to the dispersion relation

! D � ˇk1

k2 C b2
(8.73)

where k2 D k21 C k22 . The cases rh D 0 or ˇ D 0 are generally considered. For
rh D 0 we find the flat-bottom planetary waves with b D 1=Rn, as discussed
previously. For ˇ D 0 (with b2 D �k2 and ! as eigenvalue) we obtain the pure
topographic Rossby waves (see below). Note that k � r:h relates to the component of

k which is normal to rh, i. e. along the isolines of equal depth.

Pure Form of TopographicWaves

We will first discuss the waves existing for nonzero bottom slope without the plane-
tary effect. For ˇ D 0, only topography can provide a restoring mechanism, and we
expect to obtain ‘pure’ topographic waves. Assuming for simplicity a bottom having
only a meridional slope, h D H0 C ˛y, we obtain

d˚

dz
D 0 at z D 0 (8.74)

!
d˚

dz
C N 2

f0
˛k1˚ D 0 at z D �H0 (8.75)

with a simplified boundary condition at the bottom, now taken at the constant depth
H0. The rigid-lid approximation is assumed at the surface in (8.74). The wave ansatz
results in (8.70) with b2 D �k2, or

d

dz

�
f 20
N 2

d˚

dz

	
� k2˚ D 0 (8.76)

An analytical solution can be obtained for a density profile with constantN.z/ D N0.
With the vertical scale

d D jf0j
N0k

(8.77)

the solution of (8.76) is given by

˚ D A cosh
z

d
C B sinh

z

d
(8.78)
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Fig. 8.9 a Dispersion relation for topographic waves as function of the scaled wave number k1R
for k2R D 0:2; 1; 2; 5 (solid lines from blue to cyan), showing for k2R D 0:2 (blue) also the
short and long wave limits by the dashed curves. The frequency is displayed in scaled form as
!=.˛N0/. In b the dispersion relation is displayed as function of both components of the scaled
wave vector kR

The condition (8.74) leads to B D 0 while condition (8.75) results in

!

d
sinh

H0

d
D ˛

N 2
0

f
k1 cosh

H0

d
(8.79)

and with d from (8.77) we obtain the dispersion relation in the form

! D !.k1; k2/ D sign.f /
˛N0k1

k tanhRk
(8.80)

with the baroclinic Rossby radius R D N0H0=jf j. Dispersion curves are displayed
in Figure 8.9. For f > 0 and k1 > 0 we must have ˛ > 0 to obtain a positive
!. Therefore, in the northern hemisphere the shallower water always is to the right
from the direction of phase propagation. The group velocity may apparently attain
large values close to the origin of the wave-number space. For large wave numbers,
however, the frequency flattens to a plateau and waves do not propagate (see below).

The ratio H0=d can be expressed in terms of the Rossby radius R. With (8.77),
one obtains

H0

d
D H0N0k

f
D kR � R

L

where L D 1=k. Note that because of the intensification of the eigenfunction to-
wards the bottom the Rossby radius can now be defined with the near-bottom value
N D N0 of the Brunt–Väisälä frequency. With N0 D 10�3 s�1 andH0 D 4 km, one
obtains R 	 40 km. Depending on the horizontal scale L, there are 2 limiting cases:

Short waves

where L � R. Hence the vertical scale is small compared to the water depth,
i. e. d � H0 and

˚.z/ D A cosh
z

d
D 1

2
A eH0=d .e.z�H0/=d C e�.zCH0/=d / 	 e�.zCH0/=d
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These waves are bottom-trapped and are also called fast baroclinic waves (see
Rhines, 1977). With tanhH0=d � 1, we obtain the dispersion relation

! D sign.f /
˛N0k1

k
(8.81)

Note that in the short wave limit ! does not depend on the value of f but the solu-
tion via the scale d does, in analogy to Kelvin waves. Obviously, rotation remains
decisive for the existence of topographic waves. For k21 � k22 , the dispersion turns
into

! D ˛N0 (8.82)

For these pure topographic waves ! does not depend on the wave number at all (but
the limitation to k1˛ > 0 remains). Typical numerical values are N0 � 10�3 s�1,
˛ D 10�2 (continental shelf) so that ! D 10�5 s�1, 2 =! � 6 d. The group velocity
of the limiting case (8.82) vanishes identically, i. e. pure topographic waves cannot
transport energy.

Long waves

whereL � R. ForH0 � d we obtain tanh H0=d � H0=d . The dispersion relation
for this case

! D f̨

H0

k1

k2
(8.83)

is independent of N0. Comparison with barotropic planetary waves in the rigid-lid
limit shows that ˇ is replaced by the ‘topographic ˇ’ given by ˇ� D � f̨ =H0. The
vertical structure ˚.z/ is approximately constant, i. e. the wave is barotropic.

Mixed Topographic-PlanetaryWaves

Now we solve (8.70)–(8.73) for ˇ ¤ 0, again for constant N 2 D N 2
0 but with an

arbitrary direction of rh. The equations may be written in the form

˚ 00 Cm2˚ D 0 (8.84)

˚ 0 C r2˚ D 0 at z=H0 D 0 (8.85)

˚ 0 C �Œ.kR/2 Cm2�˚ D 0 at z=H0 D �1 (8.86)

where the dash denotes differentiation with respect to z=H0 and˚ is now considered
as function of z=H0. Furthermore, we use the abbreviations

R D N0H0

jf0j m2 D .bR/2 r D R

R0
� D f0

H0

k � r:h
ˇk1

(8.87)
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Fig. 8.10 The dimensionless parameter 
 as function of kR. The purple cross is oriented at r h,
the yellow cross at r .f=h/ (the dashed lines are along the gradients, the full lines are along
h D const and f=h D const, respectively). The bottom in the a is close to a northward slope
(hx D 1� 10�4, hy D 1� 10�3) where 
 becomes almost constant. The bottom in b is sloping
upward towards the north-east (hx D 2 � 10�3, hy D 1 � 10�3). For both examples we have
f0=ˇH0 D 1250. The dashed lines are: 
 D 0 magenta (r h is directed along 
 D 0 and
upward in the examples), 
 D �1 yellow (r f=h is directed along 
 D �1 and downward in the
examples)

Here R0 D p
gH0=f0 is the barotropic Rossby radius. The squared ratio of the

baroclinic and barotropic Rossby radii is small, r2 � 1. The last parameter, � D
.f0=ˇH0/Œ�hy Chxk2=k1� depends only on the direction of the wave vector: � D 0

is the line in .k1; k2/-space along rh (magenta dashed in Figure 8.10), and � D �1
is along rf=h D .ˇ=H0/Œ�.f0=ˇH0/rhC .0; 1/� (yellow dashed in Figure 8.10).
In the region close to the k2-axis the parameter � becomes very large (it approaches
˙1): here we find the regime with small effect of the ˇ-term, which was discussed
above.

The dispersion relation becomes

! D � ˇR2k1

.kR/2 Cm2
(8.88)

whenm2 is considered as the eigenvalue. There are sinusoidal solutions (form2 > 0)
and exponential solutions (for�2 D �m2 > 0). We have to findm2 as function of r2,
.kR/2 and �. Only the solutions with positive ! are of interest. The following cases
can be distinguished:

Case � D 0, planetary Rossby waves

These have been considered previously in Section 8.2. The eigenfunctions are

˚ D �r
2

m
sinm

z

H0
C cosm

z

H0
(8.89)
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and the constraint m tanm D r2 results from the bottom boundary condition, with
the approximate solutionsm0 D r , mn D n  for n D 1; 2; : : : for small r . Hence

˚0 D 1 � r2
z

H0
� 1

2

�
rz

H0

�2
C � � � !0 D � ˇk1

k2 CR�2
0

barotropic mode

˚n D cosmn
z

H0
C � � � !n D � ˇk1

k2 C .n =R/2
baroclinic mode

(8.90)

This solution applies to a flat bottom but also for waves on a sloping bottom which
have a wave vector kkrh and thus � D 0. Consideration of the barotropic Rossby
radius is seen to generate only small corrections, with exception of the barotropic
mode at very low wave numbers.

Case � ¤ 0,m2 > 0, planetary-topographic Rossby waves

The above discussed planetary waves become deformed in the presence of a slop-
ing bottom. The eigenfunction cannot remain zero at the bottom any longer, they
must satisfy the kinematic condition of zero normal velocity. Eigenfunctions and the
constraint onm become

˚ D �r
2

m
sinm

z

H0
C cosm

z

H0

m tanm D �m2 �Œ.kR/2 Cm2� � r2
r2�Œ.kR/2 Cm2�Cm2

� ��Œ.kR/2 Cm2�C r2 (8.91)

The r2-terms are only relevant for solutions with very small m. We will put r D 0

(rigid-lid approximation) in some parts of the following analysis. There are solu-
tions mn close to  =2; 3 =2; : : : ; .2n C 1/ =2; : : : , just between the modes of the
flat-bottom problem. More specific, one finds n  � mn � .2nC 1/ =2 for � > 0

and .2n � 1/ =2 � mn � n  for � < 0 with n D 1; 2; 3; : : : These are famil-
iar topographically modified baroclinic Rossby waves, the slow baroclinic waves in
Rhines’ terminology (Rhines, 1977), having a sinusoidal profile. In addition, there
is a m0-solution which exists only for � < 0 (see left panel of Figure 8.11) and
hence requires a negative k1 because we may restrict the discussion to positive !. It
is discussed below in more detail.

Case � ¤ 0,� D �m2 > 0, fast baroclinic and barotropic topographic waves

While the waves of the above case can be considered as modifications of the familiar
flat-bottom Rossby waves, the present case waves only exist due to a sloping bottom.
Eigenfunctions and the constraint on � become for this case

˚ D �r
2

�
sinh�

z

H0
C cosh�

z

H0

� tanh� D ��2 �Œ.kR/2 � �2� � r2
r2�Œ.kR/2 � �2� � �2

� �Œ.kR/2 � �2� � r2 (8.92)
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Fig. 8.11 Sketch of the constraints (8.91) and (8.92) for r2 D 0 and two values of 
 D ˙0:5. The
left-hand side of each equation is plotted as black curves, and the right-hand side as red (
 < 0) or
blue (
 > 0) curves

Relating the present form to the case of pure topographic waves, discussed above, we
must set � D H0=d . The constraint allows for only one solution �0 which is found
below kR if � > 0, k1 < 0 (denoted by �C

0 , see right panel of Figure 8.11), and
above kR if � < 0, k1 > 0 (denoted by ��

0 ). There is no solution in the remaining
sector � > 0, k1 > 0. The four sectors of the .k1; k2/-plane, where solutions m0
of the previous case, the solutions �0̇ , and the ‘no waves’ case are valid, are thus
separate and cover the whole plane (see Figures 8.10, 8.12 and 8.13).

Inserting (8.92) into (8.88) as well as assuming � � kR, we recover the pure
topographic case from the previous section,

! D � ˇR2k1

.kR/2 � �2
� � sign.f0/N0

k � r:h
k tanh kR

D sign.f0/
˛N0k1

k tanh kR
(8.93)

where rh D .0; ˛/ has been assumed in the latter relation. This branch thus yields
the fast baroclinic (bottom trapped) mode and the fast barotropic topographic mode
of Rhines (1977), as discussed previously for ˇ D 0. Obviously, they exist in identi-
cal form (with the current approximations) for ˇ ¤ 0.

The lowest mode

The m0-solution, which is possible only for � < 0, is sketched in the left panel of
Figure 8.11. For short waves, .kR/2 � 1, one finds m0 .  =2. In this regime
the mode has a half-sinusoid as vertical profile. For long waves, .kR/2 � 1, an
analytical approximation is obtained by expanding the tangent by its linear form
at small m to yield the condition m20 C � � � D ��m20 � �.kR/2 C r2 where the
approximated form of (8.91) has been used. One findsm20 D .��.kR/2Cr2/=.�C1/
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Fig. 8.12 Eigenvalues m0 and �˙

0 as function of kR and the different regimes of the lowest
planetary-topographic mode. The bottom in this example is sloping upward towards north-east.
The m0-solution applies to the sector between the positive k2-axis and the 
 D 0 line [dashed
magenta] with k1 < 0. The �C

0 -solution applies to the sector between the 
 D 0 line and the
negative k2-axis, again with k1 < 0. The ��

0 -solution applies to the sector between the 
 D 0
line and the negative k2-axis, now with k1 > 0. There are no solutions (with positive !) between
the 
 D 0 line and the positive k2-axis with k1 > 0. The vertical profile of the horizontal velocity
of the solutions is indicated. The color scale of the eigenvalues ranges linearly from 0 (dark blue)
to 5 (dark brown)

and hence

!0 D �H0
k � r:f=h
k2 CR�2

0

(8.94)

This describes the topographical modification of the barotropic Rossby wave, the fast
barotropic mode of Rhines’s terminology. The smallm0 of these long-wave solutions
yields an almost constant profile of˚ , i. e. a barotropic mode. The eigenvalues of the
lowest mode and the vertical profiles are displayed in Figure 8.12.

The �0̇ -solutions are sketched in the right panel of Figure 8.11. The assumption
� � kR, made above, does, in fact, not apply everywhere in wave-number space.
It is valid in the limit � ! ˙1, occurring for very small ˇ or in the vicinity of
the k2-axis (see Figure 8.10). Away from this regime the solutions �0̇ may be much
smaller or much larger than kR, respectively. Approximate analytical solutions for
�0̇ may be easily found for the various regions of the wave-number space. For short
waves we find an analytical form replacing tanh� by its value at infinity and hence



8.2 Planetary Waves in Midlatitudes 237

Fig. 8.13 Dispersion relation of the lowest mode for topographic-planetary waves as function of
kR. The frequency is shown in the scaled form as!=.jr hjN0/. a refers to the conditions hx D 0,
i. e. about case in Figure 8.10b, b refers to the case of a north-eastward slope, shown in Figure 8.10b.
The purple cross is oriented at r h, the yellow cross at r .f=h/, as in Figure 8.10. The solution
is patched from the three parts m0; �

C

0 and ��

0 described in the text (they are separated by white
gaps)

�0 C � � � D ���20 C �.kR/2 � r2 which yields after some computations

!0 D N0

k � r:h
k

(8.95)

in agreement with (8.81). Waves associated with this plateau are bottom trapped
(see Figure 8.12). Long waves are found by expanding tanh� � � which yields
�20 D .�.kR/2 C r2/=.�C 1/ and then again (8.94).

In Figure 8.13 we present numerical solutions of (8.91) and (8.92), using in each
case the simplified relation with r2 D 0. Then the m0-solution is separated from the
�C
0 -solution by a zero line along � D 0 (magenta dashed in the figures). To the left

of the � D 0 line we find the half-sinusoid solution form0 in the large wave-number
region and the barotropic solutions, including the particular form (8.94), at small
wave numbers. The truly topographic waves are found on the right side. We find
here the extension of the barotropic topographic wave (8.94) at low wave numbers
and the bottom trapped mode at high wave numbers. The left panel, appropriate for
small hx , are the planetary version of the pure topographic waves, discussed above
and shown in Figure 8.9.

8.2.5 Stationary RossbyWaves in a Baroclinic Flow over a Ridge

Flow over varying topography is the topic in many chapters of this book, particu-
larly in the Chapters 14 and 16. Here we address a fairly elementary situation: the
perturbation of a zonal current by a topographic feature which is a meridionally ori-
ented step in the ocean depth. In an initial value problem with a prescribed upstream
flow, waves are generated at the step and propagate up- and downstream. After this
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initial response has radiated away or died out, a steady response remains which can
be classified as Rossby waves in zonal mean flow with zero frequency (including the
Doppler shift) and perturbations trapped exponentially at the step. The problem has
relevance to zonal flows propagating across a submarine ridge, as e. g. the Antarctic
Circumpolar Current (see Chapter 16).

We consider zonal baroclinic flow in a a two-layer ocean from a higher terrain
over a step into a lower terrain (or vice versa) and apply quasi-geostrophic dynam-
ics, presented in Appendix B.1.3. For stationary conditions and without forcing and
friction, the governing equations (B.12) and (B.13) reduce to

J . j ;Qj / D 0 ; j D 1; 2 (8.96)

with the potential vorticities

Q1 D r2 1 � F1. 1 �  2/C f0 C ˇy

Q2 D r2 2 C F2. 1 �  2/C f0 C ˇy C f0b=H2

where Fj D f 20 =.g
�Hj / and g� D ��=�. The f0 contribution to the potential

vorticities is irrelevant and will abandoned in the following. Note that the ocean is
assumed infinite and thus there are no boundary conditions. Far upstream, x ! �1,
the flow is assumed zonal and eastward.

The step is assumed at x D 0, and to the west we have a depth H1, and to the
east we have H2 � b. In the examples, we shall consider a flow in the southern
hemisphere, i. e. f0 < 0. For a downward step b is negative. Note further that only
the product f0b is of relevance for the flow pattern: an upward step in the northern
hemisphere produces the same flow as downward step in the southern hemisphere.
Consider now a downward step. It is expected that the eastward flow, after entering
the deeper domain, is deflected towards the south due to the stretching of the fluid
columns: ˇv D f0@w=@z implies negative v for f0 < 0 and stretching. However,
this argument only applies to the barotropic component of the flow; the flow in the in-
dividual layers may behave differently (see e. g. the cases displayed in Figure 8.16).
The ˇ-effect will then act as a restoring force (see the box on p. 227) and a stationary
Rossby wave pattern will evolve eastward of the step. The barotropic problem, in-
cluding the initial value case, is solved by McIntyre (1968). The baroclinic problem
is discussed to some extent in Salmon (1998).

The solution of (8.96) may be expressed by a functional relation Qj D Gj . j /

between the stream function and the potential vorticity, applying to both sides of the
step. The functions Gj . j / can be evaluated from the condition on the far upstream
western part, x ! �1, where we have a strictly zonal flow,

 1 ! �u1y ;  2 ! �u2y
with constant velocities uj , assumed positive. A vertical shear U D u1 � u2 in the
upstream profile is thus allowed. As the relative vorticity is zero in the far upstream
region, we obtain

G1. 1/ D �1Uy C ˇy D �ˇ C�1U

u1
 1 D �c1 1

G2. 2/ D ��2Uy C ˇy D �ˇ ��2U

u2
 2 D �c2 2
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On the eastern part we have nonzero vorticity and have to solve the coupled system
Qj D Gj . j / of differential equations, given by

r2 1 ��1. 1 �  2/C ˇy D �c1 1
r2 2 C�2. 1 �  2/C ˇy C f0b=H2 D �c2 2

(8.97)

Note that the problem has become linear though the problem is originally governed
by the fully nonlinear conservation equation of potential vorticity. The cj are func-
tions of the upstream velocity. With mj D cj ��j and defining the matrix

M D
�
m1 �1
�2 m2

�
(8.98)

the set of equations (8.97) may be written in vector form,

r2 C M D �
�

ˇy

ˇy C f0b=H2

�
D �ˇ (8.99)

with  D . 1;  2/
T. The solution to (8.99) may then be expressed in terms of

a particular solution of the inhomogeneous system, e. g. one which independent of x,

 inh D �M�1ˇ D � det.M/�1
�
m2 ��1

��2 m1

�
ˇ

and the general solution of the homogeneous problem. The inhomogeneous part is
thus easily solved but the homogeneous part requires some consideration.

The solution of the homogeneous part

r2 C M D 0

has the form j D .1C Objy/j .x/ with arbitrary constant Obj . For the x-dependence
we consider the ansatz j .x/ D Ej exp.i
x/ which leads to the eigenvalue problem

�
2E1 Cm1E1 C�1E2 D 0 and � 
2E2 C�2E1 Cm2E2 D 0

The squared eigenvalues and the corresponding eigenvectors are easily found,


2˙ D 1

2
.m1 Cm2/˙ 1

2

q
4�1�2 C .m1 �m2/2 and

E2̇ D E1̇ .

2
˙ �m1/=�1

The eigenvalues are displayed in Figure 8.14 as function of the upstream velocities
u1 and u2. The black line in the figures is 
2� D 0, or u2 D .ˇ � �2u1/=�1 and
the blue line marks the limit U D u1 � u2 D ˇ=�2 for the condition of baroclinic
instability for the two-layer system (see Section 8.5.3). The two-layer flow is un-
stable to the right of the blue line; the solutions given below are irrelevant in this
sector. The lines intersect at u1 D ˇ=�2. We distinguish three cases: the condition

2C > 0; 
2� < 0 (case 1) seems most interesting because oscillatory and decaying
solutions are possible; the condition 
2C > 0; 
2� > 0 (case 2) has only oscillatory
solutions; and a further case, 
2C < 0, 
2� < 0 (case 3), remains which is entirely of
decaying nature.
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Fig. 8.14 a �2
C

and b �2
�

as function of u1 and u2 for H1 D 1;000m, H2 D 3;000m,
f0 D �10�4 s�1, ˇ D 2 � 10�11 m�1 s�1 and g� D 0:01m s�2. c and d same but for
g� D 0:05m s�2. The black is �2

�

D 0 and the blue line is U D ˇ=�2. Note the different axes
and color scales

38. A simple case:
u1 D u2

It is illuminating to consider the flow over the step in terms of the barotropic and baroclinic
stream functions  e D .H1 1 C H2 2/=.H1 C H2/,  i D  1 �  2, as defined in
Appendix B.1.3. To simplify further, we assume the shear to be zero, i. e. u1 D u2 D u,
because the components  e and  i decouple for this particular condition. From (8.97) we find
indeed

r2 e C ˇ

u
 e D �ˇy � f0b=.H1 CH2/

r2 i C
�
ˇ

u
�R�2

�
 i D f0b=H2

(B38.1)

where R�2 D �1 C�2 defines the internal Rossby radius R (see Appendix B.1.3). The ˇy
term in the barotropic equation can be eliminated by writing the equations for the deviation
 0

j
D  j C uy, j D 1; 2 from the upstream flow. The barotropic and baroclinic components

are then seen to be forced by the step with different signs of f0b.
The eigenvalues of the homogeneous part of the solution (see text) now take a simple form:
�2

C

D ˇ=u and �2
�

D ˇ=u � R�2. For eastward flow, u > 0, on the upstream side the

barotropic solution is thus always oscillatory: steady Rossby waves with a wave number
p
ˇ=u,

excited by the step in the topography, appear downstream. The baroclinic response, on the other
hand, may be decaying or oscillatory, depending on the sign of u � ˇR2, i. e. the sum of the
upstream flow velocity and the (westward) group velocity of the fastest long baroclinic Rossby
waves (see Section 8.2.1). If u < ˇR2 there is a wake of Rossby waves behind the step; if
u > ˇR2 the response is decaying, i. e. trapped at the step.
In the above qualitative arguments we have placed the wave response only on the downstream
side of the step. This is because steady Rossby waves have no upstream propagation of energy.
For a vanishing shear, as discussed in this box, the proof is easy. The group velocity cxg C u

comes into play, with the intrinsic component cxg given by (8.60). Take k2 D 0 for simplicity.

For steady waves one has ! D �ˇk1=.k21 CR�2/C k1u D 0 which yields k21 D ˇ=u �
R�2. Insertion into the expression for the group velocity yields cxg Cu D 2u.1�u=.ˇR2//.
Hence cxg C u > 0 if u < ˇR2: the group velocity is eastward and downstream Rossby waves

appear. Furthermore, cxg C u < 0 if u > ˇR2: the group velocity is now westward but the

response is decaying because k21 < 0. We will use this argument in the solution of the general
case as well.

Case 1: 
2C > 0, 
2� < 0

Here we have oscillatory and exponential solutions. We make the ansatz

 ju D �ujy C .1C djy/Cj ej�
�

jx

 jd D .1C bjy/ŒAj cos
Cx C Bj e�j�
�

jx �C  inh
j .y/
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for the up- and downstream stream functions. The form of the ansatz follows from
the discussion of energy propagation in the box on p. 240. These are solutions if the
eigenvector relations

A2 D A1.

2C �m1/=�1 ; B2 D B1.


2� �m1/=�1 ; C2 D C1.

2� �m1/=�1

(8.100)

are satisfied. Continuity of  j at x D 0 requires

�ujy C .1C djy/Cj D .1C bjy/ŒAj C Bj �C  inh
j .y/

In the following we write the inhomogeneous solution as sum,  inh
j .y/ D  0j �uˇj y

with  0j D  inh
j .y D 0/. Take y D 0 and find

Cj D Aj CBj C  0j and thus � uj C djCj D bj .Aj C Bj / � uˇj (8.101)

Note that continuity of the  j implies continuity of theQj because of the functional
relation. Continuity of @ j =@x at x D 0 implies

.1C djy/Cj D �.1C bjy/Bj

hence

Cj D �Bj and bj D dj (8.102)

Combining (8.101) and (8.102) we find

Aj D �2Bj �  0j and � uj D �dj 0j � uˇj
The last relation determines dj and thus also bj which are found to be zero. Finally,
the A’s and B’s follow from

A1 C 2B1 D � 01
A2 C 2B2 D � 02

�1B2 � B1.
2� �m1/ D 0

�1A2 � A1.

2C �m1/ D 0

The solution is exemplified in Figure 8.15 for two cases of stratification.

Case 2: 
2C > 0, 
2� > 0

Here we have only oscillatory solutions. We make the ansatz

 ju D �ujy
 jd D .1C bjy/ŒAj cos
Cx C Bj cos
�x�C  inh

j .y/

again with (8.100) being valid. Continuity of  at x D 0 yields

�ujy D .1C bjy/ŒAj C Bj �C  inh
j .y/
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Fig. 8.15 Case 1. Stream functions (in m2 s�1) for H1 D 1;000m, H2 D 3;000m, b D
�2;000m, f0 D �10�4 s�1 and g� D 0:01m s�2, u1 D 0:06m s�1, u2 D 0:04m s�1 a,
b and g� D 0:05m s�2, u1 D 0:10m s�1, u2 D 0:08m s�1 c, d. Note that u1 and u2 are
different for the two cases of stratification. a and c refer to the upper layer, b and d to the lower
layer. The coordinates are in units of 1;000 km

Fig. 8.16 Case 2. Stream functions (in m2 s�1) for H1 D 1;000m, H2 D 3;000m, b D
�2;000m, f0 D �10�4 s�1 and g� D 0:01m s�2, u1 D 0:01m s�1, u2 D 0:008m s�1

a, b and g� D 0:05m s�2, u1 D 0:08m s�1, u2 D 0:02m s�1 c, d. Note that u1 and u2 are
different for the two cases of stratification. a and c refer to the upper layer, b and d to the lower
layer. The coordinates are in units of 1;000 km

Take y D 0 and find

0 D Aj C Bj C  0j and thus � uj D bj .Aj C Bj /� u
ˇ
j (8.103)

Continuity of @ =@x at x D 0 is satisfied by the above ansatz. We find

Aj D �Bj �  0j ; �uj D �bj 0j � u
ˇ
j
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and hence, the A’s and B’s follow from

A1 C B1 D � 01
A2 C B2 D � 02

�1B2 � B1.
2� �m1/ D 0

�1A2 � A1.

2C �m1/ D 0

The bj are again zero. The solution is exemplified in Figure 8.16.

Case 3: 
2C < 0, 
2� < 0

Here we have only exponential solutions. We may proceed as before but the case is
less interesting because there are no wavy patterns.

8.2.6 Spin-up of theWind-Driven Basin Circulation

Planetary waves are responsible for the adjustment of large-scale disturbances, after
the flow has passed the phase to a local geostrophic balance by radiation of gravity
waves (see Section 8.1.3). Of particular interest is the response of an initially quiet
ocean to a suddenly applied forcing and the subsequent spin-up of a basin-wide circu-
lation. Forcing and boundary effects play an important role, but most of the processes
focus on wave propagation and reflection. For this reason, we discuss the spin-up of
the wind-driven ocean circulation at this point and not in Chapter 10, which is about
forced wave problems. Most of the analysis follows the work of Anderson and Gill
(1975) who have first studied the spin-up problem.

We consider an ocean in a simple rectangular configuration 0 < x < B; 0 <

y < L with a flat bottom and forcing by a zonal windstress � D .� .x/; 0/ with
a sinusoidal profile

� .x/.y/ D ��0 cos
 y

L
(8.104)

The set-up is identical to the one used later in Chapter 14 on the analysis of the
steady wind-driven ocean circulation. We add the appropriate forcing term to the
equation in Section 8.2. The potential vorticity balance (8.56) for the vertical mode n
is augmented by the forcing term due to a stress divergence F D .Fu;Fv/ in the
corresponding momentum balances (8.1) and (8.2) in the form

@

@t

�
r2 Q n � 1

R2n

Q n
�

C ˇ
@ Q n
@x

D @Fvn
@x

� @Fun
@y

(8.105)

Here, Q n and Fun;Fvn are modal amplitudes. We assume a simple body-force
model for the windstress coupling: the corresponding forcing terms in (8.105) are
written as F D .Fu;Fv/ D �dS.z/=dz, i. e. the stress � has a vertical structure
given by S.z/, which may be taken linearly decreasing from the surface value 1 to 0
at the mixed layer base at z D �d . Then dS.z/=dz D 1=d for �d < z < 0 and zero
elsewhere. The only important property is that dS.z/=dz is confined to the surface
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layer. The specific form, however, will be irrelevant, but note that dS.z/=dz ! ı.z/

approaches a ı-function for d ! 0 (see the box on p. 199). Expanding this limit of
the structure function into the vertical normal modes, dS.z/=dz D P

n sn˚n.z/, one
finds sn D ˚n.0/.

The equation governing long planetary waves of the vertical mode n in the pres-
ence of the above described forcing becomes

@

@t

�
r2 Q n � 1

R2n

Q n
�

C ˇ
@ Q n
@x

D �sn @�
.x/

@y
�.t/ (8.106)

The windstress appears as curl of the stress, and the sudden turning on of the forcing
at time t D 0 is formally expressed by the HEAVISIDE5 function �.t/. The ansatz
Q n.x; y; t/ D ��n.x; t/sn�0` sin `y with ` D  =L leads to

@

@t

�
@2�

@x2
�
�
`2 C 1

R2

�
�

�
C ˇ

@�

@x
D �.t/ (8.107)

The mode index n is omitted for the moment. The equation governs the amplitude
function �.x; t/ of a wave with meridional wave number ` to a unit force which is
suddenly switched on at time t D 0. For t � 0 we thus have � � 0. At the eastern
and western boundaries, x D 0 and x D B , the amplitude function � must vanish
at all times. Because the forcing is homogeneous in x, an x-independent (so-called
‘local’) solution

�loc.t/ D � t

`2 CR�2 D tcg

ˇ
with cg D � ˇ

`2 CR�2 (8.108)

is easily found, but it cannot prevail. The nonvanishing of �loc at the boundaries
requires that waves are excited which propagate from the specific boundary into the
interior. We thus write � D �loc C �wave where �wave is the wave response. Waves
starting at the eastern boundary x D B must possess a westward group velocity and
must hence be long planetary waves (see Section 8.2.1). For this part of the wave
response, we may approximate (8.107) by the long-wave limit

@�Ewave

@t
C cg

@�Ewave

@x
D 0 (8.109)

The long-wave limit is nondispersive. The general solution of (8.109) is of the form
�Ewave.x; t/ D F.x � cgt/ with an arbitrary function F.�/ (see Section 6.2), but the
boundary condition �wave.x D B; t/ D ��loc.t/ at the eastern rim determines this
function to F.B � cgt/ D �tcg=ˇ or F.�/ D �.B � �/=ˇ. The response is a front
which propagates with the speed cg, and the position xf.t/ of the front at time t is
given by B � xf D �cgt , likewise the time tf.x/ when the front reaches a given
position x in the interior is tf.x/ D �.B � x/=cg (note that cg is negative). Then, for
t < tf, the response at x is given by the local solution (8.108), and if t > tf, the wave
response has to be added.

Disregarding for the moment the contribution from the western boundary, the
solution is given by

�E .x; t/ D �loc.t/C �Ewave.x; t/ D
(
tcg=ˇ for t < tf
�.B � x/=ˇ for t > tf

(8.110)

5 OLIVER HEAVISIDE, *1850 in London, †1925 in Torquay, mathematician and physicist. The
Heaviside function is the step function with unit amplitude: �.t/ D 1 for t > 0 and �.t/ D 0
for t � 0.
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Fig. 8.17 a Demonstration of the Sverdrup catastrophe. The figure displays the modal sumPN
0 ˚n.0/˚n.z/ over N modes as function of z:N D 0 [blue], N D 1 [red], N D 3 [green],

N D 10 [magenta], and N D 30 [cyan]. The curves are normalized by their respective value at
z D 0. b Total response �loc C �Ewave C �Wwave, scaled by B=ˇ , as function of x=B for various
times .0:1; 0:2; : : : ; 0:9/� .�B=cg/. The dashed black line indicates the maximum distance that
a short wave can travel from the western coast at the respective time

After the wave front has passed the point x, the field is stationary from that posi-
tion to the eastern boundary. It seems that the wave response switches off the time-
dependent local response in the wake of its front. In fact, as �.B � x/=ˇ D tfcg=ˇ,
the local response is locked at the current value, when the front passes at t D tf. Note
that the steady response �.B�x/=ˇ is identical for all vertical modes n, but the time
t D tf, when it is reached, depends on n via the group velocity cg. With cg � ˇR2

and the Rossby radii from the table in Section 8.1.1, we find cg � 102 m s�1 for the
barotropic mode n D 0 and cg � 0:01m s�1 for the first baroclinic mode n D 1. The
barotropic front thus passes a basin of width 5;000 km in about a day; the baroclinic
front needs some years.

The passage of the barotropic wave leads to the vertically constant solution  D
Q 0˚0 after some days of forcing. When n D N modes have passed the basin, they

contribute the steady response

NX
nD0

Q n.x; y/˚n.z/ D B � x

ˇ
�0` sin `y

NX
nD0

sn˚n.z/ D �B � x

ˇ
curl�

NX
nD0

sn˚n.z/

(8.111)

to the complete solution, and there is still the time-dependent local response from the
modes n > N to be added. With increasing time and hence increasing N , the terms
of the local response diminish, and the modal sum in the steady response approaches
more and more the derivative of the structure function dS.z/=dz of the windstress
body force (see left panel of Figure 8.17). In other words: each passing baroclinic
mode diminishes the interior response and leads to an increasing confinement of the
vertical structure to the near-surface layer, which is directly influenced by the wind.
Remember that the baroclinic response is slow – it takes some years – but ultimately,
the ocean below the surface layer is motionless. This feature of the ocean spin-up
has been named ‘Sverdrup catastrophe’ for reason to be explained immediately (see
also Section 14.2.3).

To put the above results in a physical frame, we must anticipate some ingredients
of the wind-driven circulation which will be discussed in detail later in Chapter 14.
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We do this in brief. The steady response in (8.110) for t > tf is identical the station-
ary Sverdrup response �.B � x/=ˇ for the stream function (see the later discussion
in Chapter 14; specifically the box on p. 454). It is the solution of the steady version
of (8.106), ˇ@ =@x D curl�, the so-called Sverdrup balance, with the boundary
condition  D 0 at the eastern coast. Note that  is the barotropic stream function
( 0˚0 of the mode n D 0) in the Sverdrup model. From the above analysis, we
learn that its steady state is reached when the barotropic wave has passed across the
basin. A look, however, into the baroclinic support, appearing in a stratified ocean,
discloses the ‘Sverdrup catastrophe’.

We have so far ignored the response that comes from the waves excited at the
western boundary. These waves must propagate eastward, and hence the waves are
in the short-wave regime. As discussed in Section 8.2.1, their group velocity is much
slower (at least a factor of 8 for each vertical mode) than the long westward propa-
gating waves. Moreover, if friction is present, waves of smaller wavelength are more
likely to be affected than long waves. It may hence be assumed that the wave re-
sponse from the western boundary will not propagate far into the interior in a realis-
tic viscous ocean. Nevertheless, it is of interest to find solutions for the short-wave
response at the western boundary for the frictionless case. The western response is
governed by the short-wave approximation of (8.107)

@

@t

@2�Wwave

@x2
C ˇ

@�Wwave

@x
D 0 (8.112)

and boundary conditions are �Wwave.x D 0; t/ D ��E .x D 0; t/ and �Wwave.x D
B; t/ D 0. Here � is given by (8.110). A trivial scaling of the coordinates � D
x=B; � D tˇB cancels the ˇ-factor if �Wwave.�; �/ is expressed in the new variables.
The equation may be integrated once to the form

@

@�

@�Wwave

@�
C �Wwave D a.�/ (8.113)

where a.�/ is a yet unknown function of time. We may assume, however, that the
response is virtually confined to a boundary layer at the western side, so that �Wwave

and all of its derivatives approach zero very fast outside the layer (the boundary con-
dition at x D B is then reformulated accordingly). This leads to a � 0. A solution
of (8.113) for that case is generated by writing �Wwave in a similarity form

�Wwave.�; �/ D
�
�

�

�m=2
G.2

p
��/ (8.114)

It is found from (8.113) that G.z/ satisfies BESSEL6’s differential equation (see the
box on p. 247)

z2G00 C zG0 C .z2 �m2/G D 0 (8.115)

HenceG.z/ D A Jm.z/ equals the Bessel function Jm.z/ of degreem, which decays
for large z. Here A is an arbitrary amplitude factor that is fixed by considering the
condition at the boundary x D 0. We rescale the variables,

�Wwave.x; t/ D A

�
tˇB2

x

�m=2
Jm.2

p
xtˇ/ (8.116)

6 FRIEDRICH WILHELM BESSEL *1784 in Minden-Ravensberg, †1846 in Königsberg, mathemati-
cian and astronomer.
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39. Bessel Differential
Equation and Functions

0 5 10 15
−1

−0.5

0

0.5

1

Bessel functions of the first kind J0.x/ [blue]
and J1.x/ [green]. The corresponding func-
tions of the second kind Ym.x/, m D 0; 1 as
shown as dashed curves.

Bessel functions are defined as solutions of
the second-order differential equation

x2y00 C xy0 C .x2 � 2/y D 0 (B39.1)

for y D y.x/ with an arbitrary constant
. The equation is considered on the interval
0 � x � 1, and then x D 0 is a sin-
gular point. There are two types of Bessel
functions, J�.x/ (Bessel function of the first
kind) and Y�.x/ (Bessel function of the sec-
ond kind), which are linearly independent.
They occur as solutions in many physical
problems, frequently with integer index  D
m D 0;˙1;˙2; : : : They are studied ex-
tensively and tabulated (see Abramowitz and
Stegun, 1984) but also implemented in many mathematical tools like MATLAB or MAPLE.
For m D 0 and positive m, the Jm behave regular at the singular point, while the Ym become
singular,

Jm.x/ 	 .x=2/m=mŠ and Ym.x/ 	 .m� 1/Š
 

.x=2/�m as x ! 0

Both are of oscillatory nature and decay with increasing x,

Jm.x/D p
2=. x/ cos.x �m =2� =4/ and

Ym.x/D p
2=. x/ sin.x �m =2� =4/ as x ! 1

and use the behavior of Jm.z/ D .z=2/m=mŠ for small arguments. The choice for
the index m is different for the case t < tf , when the boundary value �E .x D 0; t/

is linearly increasing in time according to (8.110), and t > tf, where �E .x D 0; t/

is a constant. A finite nonzero value and a linear response in time at the western
boundary is obviously obtained by setting m D 1. Then �Wwave.x ! 0; t/ D AtˇB

and matching the boundary condition yields A D �cg=.ˇ
2B/. To obtain a constant

value at x D 0, the only choice is m D 0, then �Wwave.x ! 0; t/ D A, which fits the
corresponding boundary condition with A D B=ˇ.

The complete solution is the sum of the local part �loc and the two wave parts
�Ewave and �Wwave, respectively. It is displayed in the right panel of Figure 8.17 for
various times. The green curve refers to the time �B=cg and is the response after
the front of long eastward moving waves has just crossed the entire basin. The other
curves refer to times before this has taken place: the solution is then pieced together
at the collision point of the wavy part and the green part. These short westward
moving waves, occurring during the ‘local’ spin-up phase, are made by the Bessel
function part withm D 1. Note that the amplitude of the oscillations near the western
coast increases in this phase and the spatial scale decreases, as obvious from the
mathematical expression (8.116). For times longer than �B=cg, the m D 0 part
comes into play and leads to a wavy western boundary layer in the ‘green’ solution
(not shown for reasons discussed below). While the amplitude of the oscillation now
becomes locked at finite values (because jJ0j < 1), the spatial scales continue to
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decrease (the meridional velocity increases!), and eventually friction must come into
play to stop the march into a singularity.

The dashed black line in Figure 8.17 (right panel) displays the maximum distance
that information can propagate from the western coast by short planetary waves.
Apparently, there is rough agreement with J1-solution at the respective times. This
is not the case for the J0-solution, and for this reason we have not plotted the J0
response. Note that there is no feature in these solutions which could intrinsically
constrain the response appropriately such that a solution of the short-wave approxi-
mation (8.112) is in accordance with the complete wave equation. In fact, Anderson
and Gill (1975) show mostly numerical solutions of the complete equation.

8.3 Equatorial Waves

As we have seen, the velocity relevant for group propagation depends, besides on
wave number, on the wave speed parameter c which reflects stratification, and on the
Coriolis parameter f . For very long waves in the limit k � f=c, that dependency is
given by cg 	 kc2=f (gravity waves) and cg 	 ˇc2=f 2 (planetary waves). There-
fore, for a given stratification, the propagation velocity for both wave types increases
toward lower latitudes.

In deriving equations for long gravity and planetary waves in midlatitudes, it has
been assumed that either the Coriolis parameter f is constant (gravity waves), or
that both f and ˇ D df=dy are constant (planetary waves). In the tropics, these
approximations fail since f changes its sign at the equator. A better approximation
for f is obtained by expansion of f D 2˝ sin ' D 2˝ sin.y=a/ at y D 0 (here
y D ' a is the latitudinal distance from the equator, and a is Earth radius), yielding

f .y/ � ˇy with ˇ D 2˝

a
(8.117)

which is referred to as equatorial ˇ-plane approximation. With (8.117), we can ex-
pect to obtain a different view for both gravity and planetary waves valid in the
tropics which will be discussed in Section 8.3.2 and those following.

8.3.1 Refraction due to Variations of the Coriolis Parameter

Before investigating wave solutions near the equator, it is useful to consider how
the propagation of long gravity and planetary waves is modified by a varying Cori-
olis parameter. As long as that variation is gentle compared with the changes over
a wavelength, one can apply the WKBJ-technique from Section 6.3 to follow the
wave pathway, even though that technique is stretched to its limits near the equator
where f .y/ ! 0. Starting from the appropriate dispersion relations, i. e. (8.23) for
long gravity waves and (8.57) for planetary waves, the local dispersion can be written
as

! D ˝.k1; k2; y/ D
(
Œf 2.y/C c2k21 C c2k22 �

1=2

�ˇk1Œk21 C k22 C f 2.y/=c2��1
(8.118)
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where c � cn is the gravity wave speed parameter (here, as in the following ex-
pressions, the upper form applies to gravity waves, the lower to planetary waves). It
is obvious that for both wave types, both ! and k1 will remain constant along the
wave path. The evolution of k2 along the path is governed by the refraction equation
(cf. Section 6.3.2)

Pk2 D �@˝
@y

D
(

� f̌ =!

2! f̌
�
c2
�
k21 C k22

�C f 2
��1 (8.119)

Hence for the northern hemisphere it follows that Pk2 < 0 for gravity waves, and
Pk2 > 0 for planetary waves. As the meridional propagation of wave groups is in
the direction of Ck2 for gravity waves, but �k2 for planetary waves (cf. (8.61)), for
both wave types the sign of Pk2 indicates refraction of the ray path such that any wave
group will eventually propagate toward the tropics, as first shown by Anderson and
Gill (1979).

Note that the refraction equation (8.119) is not explicitly needed for a quantitative
analysis of the wave path, since with (8.118) k2.y/ can be algebraically expressed in
terms of the constants ! and k1 as

k2.y/ D
8<
:
�
!2 � c2k21 � f 2.y/

� 1
2 =c��ˇk1=! � k21 � f 2.y/=c2� 12 (8.120)

The propagation of wave groups is governed by . Px; Py/ D .cxg ; c
y
g /, with the group

velocity from (8.24) (gravity waves) and (8.60) and (8.61) (planetary waves), re-
spectively. With this approximation and (8.120) one finds for the path of the wave
groups

Py
Px D dy

dx
D
8<
:
�
!2 � c2k21 � f 2� 12 =ck1
.2!=ˇc/

h
�ˇk1c

2

!
.1C !k1=ˇ/� f 2

i 1
2

=.1C 2!k1=ˇ/

(8.121)

With the additional approximation (8.117), in both cases the solution is given by

y.x/ D y0 cos b.x � x0/ (8.122)

where b and y0 are given by

b D
(
ˇ=ck1

2.!=c/=.1C 2!k1=ˇ/
and y0 D

8<
:
�
!2 � c2k21

� 1
2 =ˇ��k1c2=ˇ!.1C !k1=ˇ/

� 1
2

(8.123)

and x0 is an integration constant. From (8.122) it follows that b describes the scale
of zonal variation of the wave path, and y0 is the maximum distance of the wave
group from the equator which is obtained where the wave number is purely zonal,
i. e. k2.y0/ D 0. Hence the pathway of long waves oscillates between ˙y0 around
the equator. For planetary waves the solutions are displayed in Figure 8.18.

The long wave limit in (8.121) and (8.123) is obtained for cjk1j � ! (gravity
waves) and !k1=ˇ � 1 (planetary waves). In this limit, the intersection of all curves
in Figure 8.18 occurs along the equator at the same longitude.

Note that these results do not hold in the presence of strong mean flows.
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Fig. 8.18 Ray pathways for planetary waves with a period of one year, starting at the eastern
boundary with an initially zero meridional wave number. Vertical and horizontal axes are latitude
and longitude (in degrees)

8.3.2 Equation for theMeridional Velocity

The results from the preceding section suggest that long waves in the tropics have
a tendency to remain within a latitude range centered at the equator. To find solutions
which are valid near the equator, one has to start from equations (8.20)–(8.22). With
the approximation (8.117), and dropping the tilde, one obtains

@u

@t
� ˇyv C @p

@x
D Fu (8.124)

@v

@t
C ˇyuC @p

@y
D Fv (8.125)

1

c2n

@p

@t
C @u

@x
C @v

@y
D Q (8.126)

For later reference we have included forcing terms (which are here projected on the
respective vertical mode). They are abandoned until the treatment of forced waves in
Section 10.3.

The above system has ˇ and c as the only dimensional constants. From these
constants, the time-scale Te D 1=

p
cnˇ and length scale Re D p

cn=ˇ can be
defined. The length scale is called equatorial Rossby radius, and it will be shown
that it is indeed analogous to the Rossby radius in midlatitudes. In the following, the
index n is omitted.

It is convenient to introduce new dependent variables according to

q D p

c
C u and r D p

c
� u (8.127)

In the new variables, the system (8.124)–(8.126) reads

@q

@t
C c

@q

@x
C c

@v

@y
� ˇyv D 0 (8.128)

@v

@t
C 1

2

�
c
@q

@y
C ˇyq C c

@r

@y
� ˇyr

�
D 0 (8.129)

@r

@t
� c

@r

@x
C c

@v

@y
C ˇyv D 0 (8.130)
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To shorten the notation, the differential operators

D˙ D @

@t
˙ c

@

@x
and L˙ D @

@y
˙ y

R2e
(8.131)

are introduced, so that the system (8.128) to (8.129) becomes

DCq C cL�v D 0 (8.132)

@v

@t
C c

2
.LCq CL�r/ D 0 (8.133)

D�r C cLCv D 0 (8.134)

A single equation for the meridional velocity can be derived by applying the operator
DCD� to (8.133), and eliminating DCq with (8.132) and D�r with (8.134). Note
that D� commutes with DC, and both commute with the L˙ operations. The result
is

DCD�
@v

@t
� c2

2
.D�LCL�v CDCL�LCv/ D 0 (8.135)

It is useful to further introduce the operator

L D @2

@y2
� y2

R4e
(8.136)

because of the convenient identities

LCL� D L � 1

R2e
and L�LC D LC 1

R2e
(8.137)

following from (8.131). With these relations, and DCD�vt D vttt � c2vxxt, (8.135)
takes the explicit form

@3v

@t3
� c2

@3v

@x2@t
� c2L

@v

@t
� ˇc2

@v

@x
D 0 (8.138)

Equation (8.138) is a convenient starting point for discussing the meridional struc-
ture. However, since the derivation of (8.138) has been obtained by differentiation, it
is likely that not all solutions can be found from (8.138) since solutions vanishing un-
der the operation DCD� are lost. We will later present an approach that guarantees
the identification of all solutions.

8.3.3 Meridional Eigenfunctions

With the ansatz v D Ov.y/ei.kx�!t/, one finds from (8.138) after division by !c2 and
reordering

L Ov D �˛2 Ov (8.139)

where for brevity the parameter

˛2 D !2

c2
� k2 � ˇk

!
(8.140)
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has been introduced. The appropriate boundary condition is that Ov vanishes at merid-
ional boundaries. If these boundaries are located many Rossby radii away from the
equator, it suffices to require that Ov ! 0 for y ! ˙1. With this boundary condi-
tion, (8.139) is an eigenvalue problem, and one expects that solutions (eigenfunctions
of the operatorL) can only exist for certain discrete values of the parameter ˛2. This
is shown in an elementary way in the following.

With y? D y=Re as dimensionless independent variable, (8.139) can be written
as

Ov00 � y2? Ov D �˛2? Ov (8.141)

with ˛? D ˛Re. The prime denotes differentiation with respect to y?. Note that the
solutions of (8.141) are oscillatory for jy?j < ˛?, and exponential outside. It follows
that equatorial waves are trapped within a distance Re from the equator.

Introducing a new dependent variable g.y?/ in (8.141) according to

Ov D g.y?/e� 12y2? ; Ov0 D .g0 � y?g/e� 12y2?

Ov00 D Œg00 � 2y?g0 C .y2? � 1/g�e� 1
2
y2?

(8.142)

one obtains

g00 � 2y?g
0 C .˛2? � 1/g D 0 (8.143)

The solution of (8.143) is found with a power series approach

g.y?/ D
1X
jD0

ajy
j
? ; g0 D

1X
jD1

jajy
j�1
?

g0 D
1X
jD2

j.j � 1/ajy
j�2
? �

1X
jD0

.j C 2/.j C 1/ajC2yj?

where, in the last form, the index j was replaced by j C2. Insertion into (8.143) and
comparison of the coefficients yields

ajC2 D 2j C 1 � ˛2?
.j C 2/.j C 1/

aj (8.144)

The even and the odd aj are independent of each other, and (8.144) has two solu-
tions corresponding to the fundamental solutions of the differential equation (8.143),
respectively (8.141), a solution which is symmetric in y? (starting with a0 D 1,
a1 D 0) and an antisymmetric solution (starting with a0 D 0, a1 D 1). The corre-
sponding aj can be calculated recursively from (8.144). All linear combinations of
the two solutions are solutions as well.

The asymptotic behavior of g.y?/ for large y? follows from the behavior of the
coefficients aj for large j which is found to be

ajC2
aj

! 2

j
(8.145)

Since for all j > .˛2? � 1/=2 all aj have the same sign, it follows that g.y?/ ! 1
for large y?. The behavior of g.y?/ for large y? can be compared with that of the



8.3 Equatorial Waves 253

exponential function

ey
2
? D

1X
mD0

y2m?
mŠ

D
1X
jD0

cjy
j
? with cj D

(
0 for j uneven
1

.j=2/Š
for j even

This leads to cjC2=cj ! 2=j , so that the cj and aj have the same asymptotic
behavior. The inverse conclusion is also valid: if there is asymptotic behavior of
the form (8.145), then for large y? asymptotically g.y?/ 	 ey

2
? is valid. Hence

Ov.y?/ D g.y?/e� 12y2? ! 1, and we have to conclude that in general (i. e. for
arbitrary values of the eigenvalue ˛2?) there is no solution satisfying the boundary
conditions.

If, however,

˛2? D 2mC 1 (8.146)

holds for any integer m, then aj D 0 is valid for all j > m, i. e. the series is termi-
nated and g.y?/ is a polynomial of orderm, written as g.y?/ D Hm.y?/. For evenm
one finds a0; a2; : : : ; am ¤ 0, all other aj vanish. Furthermore, a1; a3; : : : ; am ¤ 0

applies for odd m, and all other aj vanish. The Hm.y?/ are now determined except
for a constant. The usual normalization is

Hm.y?/ D .2y?/
m C � � �ym�2

? C � � �
which defines the HERMITE7 polynomials (see e. g. Abramowitz and Stegun, 1984,
p. 773). In particular, the first polynomials are

H0.y?/ D 1 ; H1.y?/ D 2y? ; H2.y?/ D 4y2? � 2 ; : : :

Hermite functions, defined as

 m.y?/ D Hm.y?/e� 1
2
y2? (8.147)

are displayed in Figure 8.19, and the connection to parabolic cylinder functions
Dm.x/ is given by  m.y?/ D 2m=2Dm.

p
2y?/. An orthogonality relation can be

derived from (8.139),

1Z

�1
 m.y?/ n.y?/ dy? D 2mmŠ

p
 ımn (8.148)

The following recurrence relations will be used below

LC m.y=Re/ D 2m

Re
 m�1.y=Re/

L� m.y=Re/ D � 1

Re
 mC1.y=Re/

(8.149)

Hence the operatorLC decreases andL� increases the order of the eigenfunctions by
1, in addition to a factor 	 1=Re. Specifically, form D 0 it follows that LC 0 � 0.

7 CHARLES HERMITE, *1822 in Dieuze/Lorraine, †1901 in Paris, mathematician.
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Fig. 8.19 The first three Hermite functions m D 0; 1; 2

The solution of (8.141) is then (now again in dimensioned coordinates, i. e. y? D
y=Re)

v.x; y; t/ D  m.y=Re/ei.kx�!t/ (8.150)

The solution decays exponentially for jyj 	
>
p
.2mC 1/Re, thus defining an equa-

torial wave guide (cf. Section 8.4 below). Hermite functions  m.y=Re/ are eigen-
functions of the operator L with eigenvalue �.2mC 1/=R2e .

8.3.4 Wave Solutions

With the meridional eigenfunctions  m.y=Re/ derived above, it is now possible to
find a solution of the system (8.132)–(8.134) without differentiation and the associ-
ated danger of losing solutions. From (8.132) and (8.134) it follows that q 	 L�v
and r 	 LCv. With v 	  m and the properties shown in (8.149), it follows that
q 	  mC1 and r 	  m�1. In order to have variables which all have the same index,
we introduce new dependent variables .�1; �2; �3/ according to

q D �1

v D LC�2
r D LCLC�3

(8.151)

instead of q; v; r . Here �2 and �3 have the role of potentials, only the original param-
eters are physically relevant.

For the following, it is important that the differential operator LC has a unique
inverse (the inverse of L� is not needed). The actual form of the inverse which is
important only for inhomogeneous problems is given by

L�1C  D e� 1
2
y2=R2e

yZ

�1
e
1
2
y02=R2e.y0/dy0 (8.152)

for an arbitrary function .y/ which satisfies the same boundary conditions as Ov in
the previous section, i. e. which vanishes exponentially for jyj ! 1. It is left to
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the reader to show, by partial integration, that indeed always L�1C LC D  and
LCL�1C  D  are valid. Insertion of (8.151) in (8.132)–(8.134) yields

DC�1 C cL�LC�2 D 0 (8.153)

@

@t
LC�2 C c

2
LC�1 C c

2
L�LCLC�3 D 0 (8.154)

D�LCLC�3 C cLCLC�2 D 0 (8.155)

With (8.137), equation (8.153) can be written as

DC�1 C c.LC 1=R2e /�2 D 0 (8.156)

Application of the operator L�1C to (8.154) yields

@

@t
�2 C c

2
�1 C c

2
L�1C L�LCLC�3 D 0 (8.157)

With repeated use of (8.137), the fourfold operator product in (8.157) can be simpli-
fied to

L�1C .L�LC/LC D L�1C
�
LCL� C 2

R2e

�
LC D L�LC C 2

R2e
(8.158)

From (8.156) and (8.157) with (8.158) and application of the operator L�1C L�1C
to (8.155) one obtains the system

DC�1 C c

�
LC 1

R2e

�
�2 D 0 (8.159)

@

@t
�2 C c

2
�1 C c

2

�
LC 3

R2e

�
�3 D 0 (8.160)

D��3 C c�2 D 0 (8.161)

which contains only the operator L, the eigenfunctions of which are known. A solu-
tion is found with the ansatz

.�1; �2; �3/ D .a1; a2; a3/ `.y=Re/ei.kx�!t/

with ` D 0; 1; 2; : : :. With D˙ ! �i.!  ck/ and L ! �.2`C 1/=R2e , it follows
that

�i.! � ck/a1 � 2c`

R2e
a2 D 0 (8.162)

�i!a2 C c

2
a1 C c

�`C 1

R2e
a3 D 0 (8.163)

�i.! C ck/a3 C ca2 D 0 (8.164)

which is a homogeneous system for the amplitudes a1; a2; a3. Hence the determinant
must vanish, and one obtains the characteristic equation, the dispersion relation,

!2

c2
� k2 � ˇk

!
� 2` � 1

R2e
D 0 (8.165)
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which is a third-order polynomial in terms of the frequency and quadratic in terms
of the wave number. The dispersion relation (8.165) also follows from (8.140)
and (8.146), with ` � 1 ! m. Note that (8.165) holds for ` D 0; 1; 2; : : : , corre-
sponding to m D �1; 0; 1; : : :

To determine the amplitudes a1; a2; a3 in a homogeneous system, assume a3 D
a ¤ 0. From (8.163) and (8.164) we find

a1 D �2
�
!

c


!
c

C k
�

C 1 � `

R2e

	
a (8.166)

a2 D i

!
c

C k
�
a (8.167)

Hence for all ` 
 0 the full solution is given by

Oq D �2a
�
!

c


!
c

C k
�

C 1 � `

R2e

	
 `

�
y

Re

�
(8.168)

Ov D ia

!
c

C k
�
LC `

�
y

Re

�
(8.169)

Or D aLCLC `
�
y

Re

�
(8.170)

8.3.5 Equatorial Kelvin Waves

Consider the solution for ` D 0. Since LC 0 � 0, it follows from (8.169)
and (8.170) that v � 0 and r � 0, independent of the nonzero amplitudes a2 and
a3 D a. For the amplitude a1 one has from (8.166)

a1 D �2
�
!

c


!
c

C k
�

C 1

R2e

	
a (8.171)

For ` D 0, the dispersion relation (8.165), after multiplication by !, is

!3

c2
� !k2 � ˇk C !

R2e
D .! � ck/

�
!

c


!
c

C k
�

C 1

R2e

	
D 0 (8.172)

One of the factors in (8.172) must vanish. The case that the second bracket vanishes
is, however, only of academic interest since comparison with (8.171) shows that in
this case a1 D 0; hence q D v D r D 0 so that the corresponding solutions of
the system (8.168) to (8.170) are physically meaningless. Hence the first bracket
in (8.172) has to vanish,

! D ck (8.173)

This is the dispersion curve for equatorial Kelvin waves which are nondispersive
(see Figure 8.20). The wave number k > 0 is always positive, corresponding to an
eastward propagation with constant phase speed c.

From (8.171) it follows that a1 ¤ 0. Hence the solution (8.168)–(8.170) can be
simplified to Oq D a1 0.y=Re/ or in the original variables

p

c
D u D q

2
D aKe� 1

2
y2=R2e cos.kx � !t/

and v � 0, where aK is the amplitude of the Kelvin wave.
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Fig. 8.20 Dispersion curves for equatorial waves. Kelvin wave (cyan, ` D 0), Yanai-wave (ma-
genta, ` D 1), equatorial Rossby and gravity waves for ` D 2; 3 (blue and red). The dashed line
connects minima of the gravity curves with maxima of the Rossby wave curves

8.3.6 Yanai Waves

Next consider the solution for ` D 1. Since LCLC 1 	 LC 0 � 0, it follows that
r � 0 (although a3 ¤ 0). The amplitudes a1; a2 follow from (8.166) and (8.167),

a1 D �2!
c


!
c

C k
�
a

a2 D i

!
c

C k
�
a

For ` D 1 the dispersion relation (8.165) can be factorized as

!3

c2
� !k2 � ˇk � !

R2e
D
�
!2

c2
� k!

c
� 1

R2e

�
.! C ck/ D 0 (8.174)

Again one of the factors must vanish. The case that ! D �ck is not of interest since
from (8.167) and (8.166) it follows that a1 D 0 und a2 D 0 and hence a trivial
solution in the physical variables. Vanishing of the first factor

!2

c2
� k!

c
� 1

R2e
D 0 (8.175)

results in the relation k.!/,

k D !

c
� ˇ

!
(8.176)

which is algebraically more convenient than !.k/. This is the dispersion curve for
YANAI8 waves (also called mixed planetary–gravity waves, see Figure 8.20). The
group velocity of the Yanai waves

@!

@k
D
�
@k

@!

��1
D
�
1

c
C ˇ

!2

��1
D !2c

!2 C ˇc
D c

1C ˇc=!2
> 0

8 MICHIO YANAI, *1934 in Chigasaki, †2010 in Santa Monica, meteorologist.
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is always directed eastwards and less than c. Two limiting cases can be identified:

k � .ˇ=c/1=2 W ! � ck ; and cg � c

k � �.ˇ=c/1=2 W ! � �ˇ
k

and cg � ˇ

k2
� c

Hence for large positive wave numbers, Yanai waves are approximately nondisper-
sive with the velocity of the gravity waves, whereas for large negative wave numbers
the Yanai waves behave like short Rossby waves, with westward phase speed and
slow eastward group propagation. At k D 0 we find ! D .ˇc/1=2 and cg D c=2.

The meridional structure of the Yanai waves is given by

Oq D �2a
h!
c


!
c

C k
�i
 1.y=Re/

Ov D ia

!
c

C k
� 2

Re
 0.y=Re/

and the solutions in the original variables can be written as

u D p

c
D aY

!Re

c
ye� 12y2=R2e cos.kx � !t/

v D aY e� 12y2=R2e sin.kx � !t/

8.3.7 Equatorial Rossby and GravityWaves

Before considering the solutions for ` 
 2, it is useful to look at the dispersion
relation (8.165) which is of third order in !. Algebraically, it is more convenient to
solve for k,

k˙ D � ˇ

2!
˙
"
!2

c2
C
�
ˇ

2!

�2
� ˇ

c
.2` � 1/

#1=2
(8.177)

Whether or not this equation has real solutions depends on the expression in the
square bracket which is positive for very large as well as for very small values of !.
The frequencies !0 where the bracket vanishes are given by

!20
c2

C
�
ˇ

2!0

�2
� ˇ

c
.2` � 1/ D 0 or

!40
ˇ2c2

� .2` � 1/
!20
ˇc

C 1

4
D 0 (8.178)

which is a quadratic equation in !20 and has two zeroes,

!20
ˇc

D 2` � 1

2
˙
"
.2` � 1/2

4
� 1

4

# 1
2

D ` � 1

2
˙p

.` � 1/` D
 r

`

2
˙
r
` � 1

2

!2

Hence in the intervalr
`

2
�
r
` � 1
2

<
!p
cˇ

<

r
`

2
C
r
` � 1
2

(8.179)

k˙ is not real, and no wave solutions can exist in this interval which is nontrivial for
` 
 2. Hence one has to distinguish two wave types, depending on ! being above or
below the interval given by (8.179).
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Gravity waves

If ! is above the ‘prohibited’ area, then

!

.ˇc/1=2
>

�
`

2

�1=2
C
�
` � 1
2

�1=2
�

8̂
<
:̂
1:7; ` D 2

2:2; ` D 3
:::

9>=
>;

These numbers can be used to estimate the maximum of two terms in the dispersion
relation

!2

ˇc
� .kRe/

2 � ck

!
D 2` � 1 (8.180)

The first term is always larger than 1:72, the third term always less than kRe=1:7.
Hence the term ck=! in this expression is always small, either (if kRe � 1) against
the first one or (if kRe � 1) against the second one. Therefore,

!2 � .ck/2 C cˇ.2` � 1/ D c2
�
k2 C 2.` � 1/

R2e
C 1

R2e

	
(8.181)

is a good approximation to the exact dispersion curve. The similarity with long grav-
ity waves in midlatitudes follows because (8.23) can be rewritten as

!2 D f 2 C .c?k/
2 D c2?

�
k21 C k22 C 1

R2?

	
(8.182)

with R? D c?=f , the Rossby radius in midlatitudes. A complete analogy results
by identifying the meridional wave number with

p
2.` � 1/=Re, and Re with the

midlatitude Rossby radius R?.

Rossby waves

Below the prohibited area the relation

!

.ˇc/1=2
<

�
`

2

�1=2
�
�
` � 1

2

�1=2
D

8̂
<
:̂
0:29; ` D 2

0:22; ` D 3
:::

9>=
>;

applies, and in the dispersion relation

!2

ˇc
� .kRe/

2 � ck

!
D 2` � 1 (8.183)

the first term is always small compared to the right side. Therefore,

! � � ck

R2e k
2 C 2` � 1 D � ˇk

k2 C 2.` � 1/=R2e C 1=R2e
(8.184)

holds to a good approximation. The frequency has a maximum for k D kmax Dp
2` � 1=Re. Comparison with the dispersion relation (8.57) for Rossby waves in
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midlatitudes shows again the analogy between equatorial and midlatitude waves (this
also holds for the group velocity). The phase propagation is always directed west-
wards. For the group velocity in east-west direction we obtain

cg D @!

@k
D ˇ

k2 � .2` � 1/=R2e�
k2 C .2` � 1/=R2e

�2

It vanishes at k D kmax. As in midlatitudes, this permits a division into long (k �
kmax) and short (k � kmax) planetary waves. For long planetary waves

! � � ˇk

.2` � 1/=R2e
D � ck

2` � 1
(8.185)

is valid. They are not dispersive; the group velocity is

cg D � c

2` � 1

which is e. g. �c=3 for ` D 2. The short waves’ group velocity has a maximum at
k D p

3kmax, and the short waves are at least by a factor 8 slower than long waves,
as for midlatitude Rossby waves.

Unlike the approximation (8.181), the exact dispersion (8.165) is not fully sym-
metric for positive and negative k. Hence for k > 0 the frequency is somewhat larger
and for k < 0 somewhat smaller than expected from (8.181), and the minimum fre-
quency is attained at a non-zero k.

The locations of the minima of !.k/ (i. e. cg D 0) for gravity and maxima for
Rossby waves are found by differentiation of (8.165),

2!

c2
cg � 2k � ˇ

!
C ˇk

!2
cg D 0 (8.186)

Hence cg D 0 occurs at k D �ˇ=2!. The maximum frequency!max and the smallest
frequency !min of the gravity waves are obtained to

!max

.cˇ/1=2
D 1

2.2` � 1/1=2 and
!min

.cˇ/1=2
� .2` � 1/1=2 (8.187)

For baroclinic waves with c D 2:8m s�1 and ` D 2; 3; 4, we find the minimum pe-
riod for planetary waves as Tmin D 2 =!max D 31; 41; 74 days, and the maximum
period for gravity waves as Tmax D 2 =!min D 5:5; 4; 3 days.

The meridional structure for both gravity and Rossby waves is given by

Ov D �ia2Re


!
c

� k
�
 `�1 (8.188)

Ou D a

�
 ` C 2.` � 1/ ! � kc

! C kc
 `�2

	
(8.189)

Op
c

D a

�
 ` � 2.`� 1/

! � kc
! C kc

 `�2
	

(8.190)

Thus a complete system of solutions has been obtained. Note that if ` is even, then p
an u are symmetric to the equator, but v is antisymmetric. If ` is odd, then p and u
are antisymmetric, but v is symmetric.
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8.3.8 Reflection at Meridional Boundaries

We look at an equatorial wave which meets a meridional western or eastern bound-
ary, and we limit ourselves to planetary and Kelvin waves9. According to (8.189),
one has

u.x; y; z; t/ D aŒ ` C C`.k/  `�2��n.z/ei.kx�!t/ (8.191)

for the zonal velocity where we have introduced the abbreviation

C`.k/ D 2.` � 1/ ! � kc

! C kc

The incoming wave (denoted i ) is characterized by the parameters ki ; !i ; ai , and
the meridional order `i (and, by the way, also the vertical order n which has been
implicit in all derivations). The incoming wave must have a group velocity towards
the boundary. At the boundary (at x D 0) the condition u.0; y; z; t/ � 0 (by mass
conservation) is to be achieved, and as usual we try to satisfy this condition by su-
perposition with another wave (reflected wave, index r), and obtain immediately
!r D !i D ! for the frequencies as well as nr D ni D n for the vertical index. The
further procedure depends on the fact whether the reflexion takes place at a western
or at an eastern boundary.

Western boundary

Planetary waves only have a westward group velocity if k > �ˇ=2!. Hence only
those waves can come in at the western boundary. The index of the incoming wave
must, therefore, be `i � ` 
 2. Following (8.191), we obtain

ui 	 ai Œ ` C C`.ki / `�2�

The attempt to take a reflecting wave with the same index ` and a wave number kr
according to the dispersion relation fails because of the meridional structure, in fact

ai Œ ` C C`.ki / `�2�C ar Œ ` C C`.kr / `�2� ¤ 0 (8.192)

always applies: with ar D �ai the coefficient of  ` vanishes, but then, because of
ki ¤ kr , the coefficient of  `�2 does not vanish. The solution is to add another
reflected wave with the index ` � 2. Its coefficient must be chosen in a way that
the term is balanced with  `�2 in (8.192). Then, however, the term with  `�4 is
unbalanced, and the procedure must be repeated by adding another wave with the
index ` � 4. However, the series is terminated. If ` is even, the last wave .` D 0/ is
the Kelvin wave. If ` is uneven, the last wave .` D 1/ is the Yanai wave.

To be more specific, consider an incoming long planetary wave with index ` D 2.
Then, the reflected wave consists of a short planetary wave with the wave number kr
and ` D 2 as well as a Kelvin wave with the wave number kKelvin D !=c and ` D 0.
Their amplitudes are determined from

ai Œ 2 C C2.ki / 0�C ar Œ 2 C C2.kr/ 0�C aKelvin  0 D 0

9 The reflexion of gravity waves at the edge proceeds in a mathematically analogous way but does
not offer any new aspects compared to the reflexion in midlatitudes.
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with the result ar D �ai as well as

aKelvin D ŒC2.kr /� C2.ki /�ai

Usually, the reflected planetary wave is not overly important because of its large wave
number and its small group velocity. The main contrast to reflexion in midlatitudes,
however, is the reflected Kelvin wave which has a wave number comparable to the
incoming wave and by a factor of 3 (generally 2` � 1) faster eastward propagation
velocity.

Eastern boundary

Kelvin and Yanai waves as well as planetary waves can come in here with an east-
ward group velocity. Formally, the problem is similar to that at the western boundary,
but that solution does not work here, because there is no westward group velocity in
the case of the smallest values ` D 0 and ` D 1. We can try reflecting waves with
higher indices instead.

Look at the case which is most important in practice: a Kelvin wave (index ` D 0)
comes in at the eastern boundary. The reflected solution consists of Rossby waves as
far as they exist at that frequency, i. e.

ur D
X

`D2;4;6:::
ar;`Œ ` C C`.kr / `�2�

as before, except for the factor �n.z/ei.kx�!t/. The amplitudes can now be deter-
mined successively:

ar;2C2.kr / D �aKelvin

ar;4C4.kr / D �ar;2
:::

While the series does not come to an end, convergence can be expected as C` 	
2.` � 1/ so that the amplitudes decrease with increasing index.

However, another complication occurs. The wave number of the reflected wave is
determined from the dispersion relation by (8.177),

kr D � ˇ

2!
˙
"
!2

c2
C
�
ˇ

2!

�2
� ˇ

c
.2` � 1/

#1=2
(8.193)

Only for sufficiently small `, the bracket in (8.193) is positive so that the reflected
waves have a real wave number kr . For larger values of `, eventually all further kr ,
therefore, are complex. With the notation k D <.k/ C i=.k/ for real and complex
parts of a complex variable, it then follows that

kr D � ˇ

2!
� i=.kr /

If the incoming Kelvin wave has a frequency in the interval between Rossby and
gravity waves, all reflected waves have a complex wave number. The imaginary part
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Fig. 8.21 Maximum propagation speed (for the first baroclinic mode; scaled by c) of oceanic
waves in an ocean with an idealized box shape. The vertical axis indicates the speed of the fastest
waves at the respective location. The arrows show the direction of Kelvin wave propagation which
has a scaled speed of 1. Away from the boundary regions (east and west coasts and the equatorial
band with a width of order of the Rossby radius) the surface depicts the speed of propagation of
long Rossby waves. The equatorial Rossby radius is set to 0.04 of the basin width, the midlatitude
Rossby radius is 0.008 of the basin width at y D ˙0:5

follows from

Œ=.kr /�2 C !2

c2
C
�
ˇ

2!

�2
D .2` � 1/

ˇ

c
or Œ=.kr /�2 C

�
!

c
C ˇ

2!

�2
D 2`

ˇ

c

The sign of the imaginary part is to be chosen so that there is exponential decrease
towards the west. The waves with a complex wave number are neither Rossby nor
gravity waves. Collectively, the waves declining in westward direction correspond to
Kelvin waves attached to the eastern boundary. This is plausible when considering
energy conservation: As the energy propagating towards the eastern boundary cannot
be reflected westwards, it has to be transported away from the equator along the
eastern boundary, and this is performed by coastal Kelvin waves.

8.4 The Oceanic Waveguide

The long waves discussed in the previous sections determine (in the linear approx-
imation) the ocean’s reaction to a perturbation. The wave velocity in the interior
ocean is very small compared to the speed of equatorial waves and that of Kelvin
waves at the basins’ boundaries. This fact is the basis for the concept of the oceanic
waveguide which is sketched in Figure 8.21.



264 8 LongWaves

Fig. 8.22 Aspects of oceanic wave propagation, as simulated with the BARBI model (see Ap-
pendix B.2). The wave is initiated in Drake Passage by a baroclinic perturbation and propagates in
the ocean wave guide around the globe. Left without topography, right with realistic topography.
Both simulations are for a mean state with prescribed Brunt–Väisälä frequency without any mean
flow

In an idealized ocean basin, outside the equatorial zone at the eastern and western
boundaries, there is always a boundary region of the width of the latitude-dependent
Rossby radius R D c=f D c=.2˝ sin '/, where Kelvin waves can propagate equa-
torward (in the Northern Hemisphere at the western side of the basin) or poleward (in
the Northern Hemisphere at the eastern side). Furthermore, there is the region of the
equatorial Kelvin waves within a distanceRe D p

c=ˇ from the equator. The Kelvin
waves propagate with the phase velocity c 	 1m s�1. In the interior ocean, gravity
waves propagate with the same velocity, but due to the geostrophic adjustment (see
Section 8.1.3) they are ineffective for signal propagation for scales which are consid-
erably larger than the Rossby radius. The long planetary waves in the interior ocean
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propagate with the velocity

!

jkj D ˇR2 D ˇ
c2

f 2
D c

c

f

ˇ

f
D c

c

fa
.a D Earth radius/

Outside the equatorial zone, c � jf ja and hence !=jkj � c holds. In the regions
with a high wave velocity, signals can propagate over large distances within a com-
paratively short time.

The waveguide is mainly relevant for the baroclinic reactions. Note however that
impacts like small-scale topography and strong mean currents can considerably in-
fluence the reaction. This is exemplified in Figure 8.22, which displays the ocean
wave response to a sudden change of a baroclinic property in the Drake Passage area
(the simulation is done with the BARBI model, see Section B.2). For a flat-bottom
ocean (left set of figures) we see the perturbation proceeding as Kelvin waves along
the continents and into the equatorial wave guide, followed by Rossby waves in the
later stage. All response is entirely baroclinic. With topography implemented, the
baroclinic impulse also generates barotropic Rossby waves when baroclinic waves
meet topography, and vice versa (the modes are linearly coupled, see Section B.2.6).
The evolution becomes highly complex, as shown in the right set of figures. Other
aspects are also important for the barotropic reaction: it is essentially influenced by
bottom topography, and the barotropic Rossby radius nearly has the size of the ocean
basins.

8.5 Influence of a Mean Flow on PlanetaryWaves

So far planetary waves have been considered as linear perturbations of a state of rest.
In the following, some aspects of planetary wave propagation on a mean shear flow
will be discussed. Consider the vorticity equation (5.32) in the form

�
@

@t
C u � r

��
r2
h C @

@z

f 20
N 2

@ 

@z

	
C ˇ

@ 

@x
D 0 (8.194)

Defining the quasi-geostrophic potential vorticity q D r2 C@.f 2=N 2@ =@z/=@zC
ˇy and using u D �@ =@y and v D @ =@x, one can rewrite (8.194) in the more
convenient form

@q

@t
C @ 

@x

@q

@y
� @ 

@y

@q

@x
� @q

@t
C J . ; q/ D 0 (8.195)

where the Jacobian determinant J . ; q/ D .@ =@x/.@q=@y/� .@ =@y/.@q=@x/ is
used for abbreviation.

We now define a background state which is described by a mean stream func-
tion N and which must satisfy the (time independent) equation of motion (8.194),
respectively (8.195), i. e.

@ N 
@x

@Q

@y
� @ N 
@y

@Q

@x
D 0 (8.196)
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withQ D Nq. This condition is always satisfied with the choice N D �.y; z/ and thus
also Nq D Q.y; z/. Hence we limit the discussion to a zonal shear flow as a geostroph-
ically balanced background state, i. e.

N D �.y; z/ ; Nu D �@�
@y

D U.y; z/ ; Nv D @�

@x
� 0 ; N�.y; z/ D �f

g

@�

@z

Nq D @2 N 
@y2

C @

@z

�
f

N 2

@ N 
@z

�
C ˇy D �@U

@y
� @

@z

�
gf

N 2
N�
�

C ˇy D Q.y; z/

Expanding (8.195) about the background condition, D � C 0, q D QC q0 etc. ,
results in

q0 D @2 0

@x2
C @2 0

@y2
C @

@z

�
f 2

N 2

@ 0

@z

�
(8.197)

and

@

@t
.QC q0/C J . N ;Q/C J . N ; q0/C J . 0;Q/C J . 0; q0/ D 0 (8.198)

Some of the terms trivially vanish, and the last term is of second order in the perturba-
tion field. Linearization, i. e. neglecting terms which are products of two perturbation
quantities, thus results in

@q0

@t
C U

@q0

@x
C @Q

@y

@ 0

@x
D 0 (8.199)

with
@Q

@y
D ˇ � @2U

@y2
� @

@z

�
f 2

N 2

@U

@z

�
(8.200)

We note that the mean flow has two effects, i) a Doppler shift through advection
of q0 (the U@q0=@x term in (8.199)), and ii) a change in the mean potential vorticity
gradient in ((8.200) by the terms related to mean shear). The latter may also influence
the phase velocity of the waves.

8.5.1 Modification of the Doppler Shift

Consider a mean flow U D U.z/ only depending on z, so that N D �yU.z/.
With (8.197) and (8.200), one finds from (8.199)
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(8.201)

The right-hand side of (8.201) would vanish without a mean flow. The terms related
to the mean flow correspond to i) mean flow advection of relative vorticity, ii) ad-
vection of the vorticity stretching and iii) change in background potential vorticity
through the mean current. The eigenfunctions ˚n of the system without mean flow
defined by (cf. Section 8.1)
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@z

�
f 2

N 2

@˚n

@z

�
D � 1

R2n
˚n (8.202)
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and the appropriate boundary conditions form a complete system. Therefore, both
the solution of (8.201) and the mean velocity profile can be expanded in this base,
resulting in

 0.x; y; z; t/ D
X
i

 i .x; y; t/˚i .z/ (8.203)

U.z/ D
X
j

Uj j̊ .z/ (8.204)

Insertion of (8.203) and (8.204) into (8.201)10, multiplication with˚n.z/, integration
over z, and use of (8.202) result in

L.n/ n D �
X
i;j

Cijn

"
Uj

@

@x
r2

h i � Uj

R2i

@ i

@x
C Uj

R2j

@ i

@x

#
(8.205)

where the terms on the right-hand side directly correspond to those in (8.201). Here,
L.n/ D @=@t.r2

h � 1=R2n/ C ˇ@=@x is the linear operator of the free system, and

Cijn D R 0
�H ˚i .z/ j̊ .z/˚n.z/dz is a coefficient that only depends on the indices

and implicitly on the form of the eigenfunctions.
According to (8.205), for an arbitrary profile U the propagation characteristics of

the mode with index n depend on all other modes. Compensation can occur between
advection of stretching and the change in background potential vorticity, provided
both have the same vertical scale. As an example, consider the lowest mode n D 0

and the mean flow component U0. Note that if one of the indices in the coefficient
Cijn is 0 (corresponding to a barotropic component), using orthonormality of the˚n
and ˚0.z/ � const D 1=

p
H one finds C0jn D 1=

p
Hıjn. It follows that

L.0/ 0 D � U0p
H

@

@x
r2

h 0

corresponding to a dispersion relation of the barotropic Rossby waves

! D Uk � ˇ C UR�2
0

k2 C `2 CR�2
0

k

(see e.g. Rhines, 1993). While according to (8.199) the Doppler shift acts on both the
relative vorticity and the stretching parts of q0 in (8.197), for the latter part a compen-
sation occurs through the change in the mean potential vorticity gradient. For long
waves, k; ` � 1=R0, the compensation is exact, ! � �ˇR20k (non-Doppler effect).
In general, compensation of the Doppler shift occurs when mean flow and wave have
a similar vertical structure. The compensation applies only to the stretching part of
potential vorticity, not to the relative vorticity, and is hence more important for long
planetary waves. An analogous compensation is also found in layer models.

If the vertical profiles of wave and mean flow are different, other effects can occur.
For instance, a mean zonal flow with a vertical structure resembling the 2nd vertical
mode increases the phase speed of long first-mode planetary waves (Killworth et al.,
1997).

10 Note that the individual terms in the sum in (8.203) are not a solution of (8.201), but the sum is.
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8.5.2 Energy Transfer BetweenWaves andMean Flow

From the quasi-geostrophic vorticity equation (8.199), an energy balance can be
derived which provides information on the energy transfer between waves and
mean flow. The derivation is completely analogous to Section 8.2.2. Multiplication
of (8.199) with  0 results in the energy conservation
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(8.206)

Here Ek D .r 0/2=2 denotes the kinetic energy of the perturbations, and E ip D
.f 2=N 2/.@ 0=@z/2=2 the available potential energy associated with the elevation
of density surfaces (the index i stands for the ocean interior).

Consider the energy balance in a finite volume. For simplicity, the geometry of
a channel that is periodic in the x-direction and bounded in the y-direction is chosen.
Then, an integration is performed over y and z, and averaging over x is denoted as
h� � � i. Note that always h@=@x � � � i D 0. The first term on the right side of (8.206) is
a divergence term which does not contribute to the integral since at the boundaries
 0 D const or the periodicity condition hold. Vertical integration of the second term
in (8.206) results in a contribution from the surface (at the bottom there is no contri-
bution because of the boundary condition @ 0=@z D 0). The surface displacement
is � D .f=g/ 0.z D 0/, and the boundary condition at the free surface according
to (8.16), is @ 0=@z C .N 2=g/ 0 D 0. We find
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where E0p is the potential energy associated with free surface elevations. When we
define the total energy as E D R hEk CE ipidydz C R hE0p idy, the energy budget
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is obtained. As h 0@ 0=@xi D h@=@x 02=2i D 0, the second term in (8.207) does
not contribute to the integral. According to (8.197) the first term under the integral
in (8.207) consists of three parts,
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The first term on the right-hand side of (8.208) vanishes since h 0@3 0=@x3i D
h@=@x 0@2 0=@x2i � h@=@x.@ 0=@x/2=2i D 0. The second term in (8.208) can be
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written as
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(8.209)

The first term in (8.209) vanishes in the integral over y since  0 D 0 at the boundary.
The last term vanishes because h@ 0=@y@2 0=@x@yi D h@=@x.@ 0=@y/2i D 0.
For the remaining term in (8.209) we use h 0@2 0=@x@yi D h@=@x 0@ 0=@yi �
h@ 0=@x@ 0=@yi. The last term in (8.208) can be written, with h 0@2 0=@x@zi D
�h@ 0=@x@ 0=@zi, as
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The last term in (8.210) vanishes since it can be written as h@=@x � � � i. The first term
on the right-hand side of (8.210) vanishes in the integral over z when the boundary
conditions are used.

With the above results, (8.207) takes the form
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As @ 0=@x D v0 and @ 0=@y D �u0 and @ 0=@z D �.g=f /�0, it follows that
the energy transformation is described by the ‘Reynolds’ terms hv0u0i@U=@y and
hv0�0i@U=@z which correspond to the transfer of kinetic respectively potential en-
ergy, as discussed in the energy cycle of Section 12.2.1.

An alternate form of the transfer terms can be derived from (8.211) by a further
partial integration to the form
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again except for the boundary terms. From (8.197) it follows that
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The proof is analogous to the one above. Thus, apart from the boundary terms,
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Z
U hv0q0idydz (8.213)

The energy exchange with the mean current is hence proportional to the meridional
flux of potential vorticity, which is a consequence of the quasi-geostrophic scaling
considered here.
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8.5.3 Conditions for Instability

In principle, energy exchange between waves and mean flow can take place in both
directions, and the direction of the exchange cannot be inferred from (8.211). In
Section 12.2.1, numerical estimates of the energy exchange in the Lorenz energy
cycle are shown. In that estimate, the energy exchange related to the Reynolds stress
hu0v0i takes both signs (in the general situation of nonzonal mean flow there are
further contributions), whereas the term related to the horizontal eddy density flux
hv0�0i is predominantly positive. Of particular interest is the latter case, i. e. where
the right side of (8.211) is positive so that energy is transferred from the mean flow
to the waves, which means that the mean flow is unstable to small perturbations.
Two physically different mechanisms can be distinguished, corresponding to energy
transfer by the two terms in (8.211), namely barotropic and baroclinic instability.

Barotropic Instability

Barotropic instability is associated with the transport term �.@U=@y/hu0v0i
in (8.211) and can only occur if there is a horizontal shear of the background
velocity @U=@y ¤ 0. Since no vertical shear of U is needed (in contrast to baro-
clinic instability, see next section) a barotropic background current can produce
the instability, which explains the name. An analysis of the energetics of the mean
current shows that the energy is exchanged with the kinetic energy of the mean flow,
analogous to the corresponding term in the Lorenz energy cycle in Section 12.2.1.

We can obtain a simple criterion for instability in the completely barotropic case
where both the mean flowU as well as the disturbance 0 are independent of z. With
 0 D �.y/ei.kx�!t/ one obtains from (8.200)
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� k2� C @Q
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� D 0 (8.214)

where the phase velocity c D !=k has been used. Note that with the transformation
N 2 ! 0, �z ! y, H ! L, (8.214) corresponds to the Taylor-Goldstein equa-
tion (7.91), except for the ˇ-term in @Q=@y. The examination of barotropic stability
is, therefore, mathematically very similar to the instability of gravity waves consid-
ered in Section 7.7.3, even though both processes have quite different physics (i.e.,
instability of vertically sheared flow to gravity waves vs. instability of horizontally
sheared flow to planetary waves).

Consider again a current in a zonal channel with the boundaries y D 0 and y D
L. With these boundary conditions, (8.214) poses an eigenvalue problem where the
eigenvalue c is not necessarily real. Instability (exponential growth of the waves)
occurs for a positive imaginary part of c. To derive a condition for ci , multiplication
of (8.214) with ��, and integration over the area according to partial integration with
use of the boundary conditions yields
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The real and the imaginary part of (8.215) must vanish individually. Therefore,

ci

LZ

0

@Q

@y

j�2j
jU � cj2 dy D 0 (8.216)

Instability (ci > 0) can only occur if the integral in (8.216) vanishes. As the sec-
ond factor is always positive, it is a necessary condition for instability that @Q=@y
changes its sign in the interval. According to (8.200), the gradient of the mean po-
tential vorticity is @Q=@y D ˇ � @2U=@y2. Therefore, a necessary condition for
barotropic instability is @2U=@y2 D ˇ somewhere in the domain, say at y D y0.
With the lateral scale L so that @2U=@y2 	 �U=L2, it follows that instability can
only occur if L < Lˇ D p

�U=ˇ. The length scale Lˇ was introduced in Sec-
tion 5.1 as the Rhines scale. For �U � 10 cm s�1, we obtain Lˇ � 70 km, so that
instability can occur only on scales . 70 km.

One can even prove the slightly stricter condition
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In analogy to the derivation in Section 7.7.3, a semicircle theorem can be proven,
modified through presence of the ˇ-term. The corresponding analogue to (7.103) is�
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2 . 2 C k2L2/
(8.217)

One of the important consequences of barotropic instability is that flows with
small length scales are likely to be unstable. In fact, it can be shown that interact-
ing short Rossby waves are unstable (Gill, 1974), which also explains the turbulent
nature of mesoscale motions in the ocean, as discussed in Chapter 12.

Baroclinic Instability

Baroclinic instability is related to the transport term fg=N 2.@U=@z/hv0�0i
in (8.211). The energy is exchanged with the (available) potential energy of
the basic state, analogous to the corresponding term in the Lorenz energy cycle
in Section 12.2.1. A necessary condition for baroclinic instability can be found in
a similar way as above. With the wave ansatz

 0.x; y; z; t/ D �.y; z/ei.kx�!t/ (8.218)

one obtains from (8.199), analogous to (8.216), the equation
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The boundary conditions at the top and the bottom are crucial. They are simplified
here as w.0/ D w.�H/ D 0. According to (5.35), in the quasi-geostrophic approx-
imation the vertical velocity is given as
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Linearization results in
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With (8.218) the boundary conditions w D 0 are
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� D 0 at z D 0 ; �H (8.220)

with c D !=k. Multiplication of (8.219) with �� and subsequent integration over y
and z, with (8.220) and � D 0 at y D 0;L, results (after partial integration) in
a complex expression, the imaginary part of which is given by
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For instability (ci > 0) it is necessary that the integral vanishes. As the factors of
@Q=@y and @U=@z are always positive, necessary conditions for instability are that
either

1. @Q=@y D ˇ � @2U=@y2 � @.f 20 =N
2@U=@z/=@z changes its sign somewhere in

the domain, or
2. that the sign of @Q=@y is opposite to that of @U=@z at surface or bottom.

Note that for @U=@z � 0 the condition (8.216) is recovered. When we consider the
Ertel potential vorticity (given by (4.58)) for the mean flow instead of the quasi-
geostrophic form for Q, and neglect the horizontal terms related to @u=@z, which
are small, i. e. Q 	 .@�=@z/.f � @u=@y/, and further neglect the relative vortic-
ity compared to the planetary vorticity, i. e. Q 	 f .@�=@z/, it becomes possible to
assess the necessary condition for baroclinic instability from hydrographic observa-
tions of density. It turns out that the condition @.f @�=@z/=@y D 0 approximately
holds over some areas of the world’s oceans, particularly at mid-depth in the bowl of
the subtropical gyre. Rhines and Young (1982) have argued that a uniform distribu-
tion of potential vorticity might result from a systematic stirring by the oceanic eddy
field (see Section 14.3.5). Note also that baroclinic instability is the major source
of mesoscale eddy energy in the ocean and the atmosphere, as discussed in Sec-
tion 12.2.1.

Eady’s Solution

In certain particularly simple situations, statements exceeding the general condi-
tion (8.221) can be made in analytical form (numerical solutions are discussed
in the box on p. 275). Eady (1949) considered the case ˇ D 0, N D const,
U D U0.1 C z=H/ and hence � D �U0y.1 C z=H/ (see also Figure 8.23a).
The first assumption eliminates the propagation of planetary waves but allows to
solve the problem analytically. It follows that @Q=@y � 0. Note that with vanishing
@Q=@y and constant vertical shear @U=@z D U0=H , the integral in (8.221) is always
zero, and no general conditions for instability result. In fact, it will become clear that
perturbations of the Eady problem become unstable by implementing boundary con-
ditions.
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Fig. 8.23 a The mean flow U D U0.1C z=H/ with U0 D 0:5m s�1 (red denotes positive and
blue negative values) and mean (total) buoyancy B D f @�=@z CN 2z D f U0y=H CN 2z
(white lines) with N D 0:004 s�1. b c=U0 from equation (8.228) as a function of h=d . The
dashed red line denotes the imaginary part of c for ci > 0, the solid blue line the real part of c. c
The function �F .�/ from equation (8.231)

With constant coefficients in x and y, (8.199) is solved with  0.x; y; z; t/ D
�.z/ei.k1xCk2y�!t/ and leads to
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f 2
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for the vertical dependence (actually the same equation as the one governing topo-
graphic waves, see (8.76)), with the solution

� D A cosh.z=d/C B sinh.z=d/ (8.223)

Here, the vertical scale
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(8.224)

is introduced. According to (8.220) the boundary conditions are
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with c D !=k1. From (8.223) it follows with (8.225) that
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From (8.226) and (8.227) one obtains, after a brief calculation, an equation for the
phase speed c given by
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A real solution for c can only exist if the expression under the square root is positive.
As � 
 tanh �, the sign change of the bracket occurs whereH=.2d/ D cothH=.2d/
or H=d � 2:4 (see Figure 8.23). With (8.224), we thus find that the flow is unstable
if

k D
q
k21 C k22 < 2:4

f

NH
(8.229)

For a constant N it was shown earlier (cf. Section 7.4.3) that R D NH=. f / is the
first baroclinic Rossby radius. Therefore, the instability condition (8.229) can also be
written as kR < 0:76. Hence the flow is unstable to perturbations with sufficiently
long wavelengths, and stable for perturbations with short wavelengths. For kR <

0:76, the imaginary part is given by
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For the growth rate � D k1ci and the special case k2 D 0 it follows from (8.230)
and (8.224) that

� D k1ci D f U0

Nd
F.H=d/ D f U0

NH
� H

d
F.H=d/ (8.231)

The function �F.�/ has a maximum value of � 0:3 at � � 1:6 (see Figure 8.23).
Hence the maximum growth rate becomes

�max � 0:3U0
f

NH
� 0:1

U0

R
at kmax � 1:6

f

NH
� 0:5

R

The scale of the most unstable perturbations is, therefore, comparable to the Rossby
radius, and the maximum perturbation energy can be expected at this scale. Note
that for k2 ¤ 0 the growth rates are somewhat smaller. As the mean shear @U=@z D
U0=H is related with the meridional density gradient via the thermal wind relation,
i. e. U0=H D .g=f /@ N�=@y, the maximum growth rate can be expressed as

�max � 0:3
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ˇ g
N�0

D 0:3
M 2
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(8.232)

with M 2 D gj@ N�=@yj=�0, and thus can directly be determined by hydrographic
observations. It turns out that the maximum Eady growth rates are largest in regions
of maximum mesoscale eddy kinetic energy, i. e. in western boundary currents, along
the equator and in the Antarctic Circumpolar Current, where also the largest eddy
energy production terms related to baroclinic instability show up, as discussed in
Section 12.2.1. Note that also that the introduction of nonzero ˇ does not change the
Eady solution much, as discussed in the box on p. 275.

For unstable flows with c D cr C ici , it follows from (8.228) that cr D U0=2,
i. e. the increasing perturbations propagate in x direction with half the mean zonal
particle velocity. The complete solution for the perturbation stream function  0 for
unstable flow is given by

<. 0/ 	 j�j sin.k1x C k2y � !t C ˛/ (8.233)
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40. Numerical Solution
of the Instability Problem

Solutions of (8.219) and (8.220) of the form  0 D �.y; z/ei.kx�!t/ for general U.y; z/,
N.z/, and Q.y; z/ can be found numerically: discretizing the vertical and meridional deriva-
tives in (8.219) and (8.220) leads to a linear system of algebraic equations. The eigenvalues (!)
and eigenvectors (�) of the corresponding matrix of the linear system can then be found numer-
ically and calculated as a function of the wave number. The figure below compares the solution
of the standard Eady problem and the unstable modes in the numerical solution for the modified
Eady problem with @Q=@y D ˇ .

a shows the growth rate 	 D k1ci as a function of the scaled wave number k1Nh=f in 1=d
for the standard Eady problem (ˇ D 0, dashed) and the growth rates calculated numerically
for ˇ D 2 � 10�11 .ms/�1 (solid). Also shown is the inverse of the scaled Rossby radius
Rf=.Nh/ D 1=  as the vertical solid line. All parameters are the same as in Figure 8.24,
and Figure 8.27. b shows the complete solution  0 of the most unstable mode for ˇ D 2 �
10�11 1=.ms/ as a function of depth in m and longitude in km.
It becomes clear that the introduction of the planetary vorticity does not modify the solution
much, i. e. maximum growth rates are similar and at a similar wave length, and the vertical
structure of the most unstable mode is also similar to Figure 8.24. However, in contrast to the
standard Eady problem, shorter wave lengths than the most unstable one become now all unsta-
ble while wave lengths larger as about four times the Rossby radius become stable.

with the depth-dependent phase ˛ and amplitude j�j

tan˛.z/ D ˙U0

ci

.1=2/ cosh.z=d/C .d=H/ sinh.z=d/

cosh.z=d/

j�.z/j D
s�

H

2d
cosh.z=d/C sinh.z=d/

�2
C
�
H

d

ci

U0
cosh.z=d/

�2

Figure 8.24 shows phase ˛, amplitude � and stream function 0 for the most unstable
mode and parameters listed in the caption.

Phillips’ Model

Another model of a baroclinically unstable system, that is frequently studied and
solved analytically, is the model of Phillips (1954). It studies the unstable modes
in a two-layer channel flow, governed by the conservation of the quasi-geostrophic
potential vorticity. The model is described in Appendix B.1.3 by (B.12) to (B.13)
with the definition (B.14) of the potential vorticities. The coordinates are x along
the channel and y across with a channel width B; the mean layer depths are H1
and H2 with a total depth H D H1 C H2, and the reduced gravity is denoted by
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Fig. 8.24 a The amplitude function j�.z/j (blue) and the phase ˛.z/ (green) of the unstable
mode (8.233) as a function of depth in m, for mean flow and stratification as shown in Figure 8.23a
and for k1 D 1:6f=.NH/ and k2 D 0m�1,H D 1800m and f D 10�4 s�1. b Perturbation
stream function  0 given by (8.233) as a function of depth in m and x in km. c Same as b but for
perturbation buoyancy b0 D f @ 0=@z

g�. Compared with the Eady model, the flow has a simpler (less resolved) vertical
structure, but there is advantage that now ˇ can be taken nonzero.

Perturbations, denoted by primed quantities, residing on a mean current Uj .y/,
j D 1; 2 in the two layers, satisfy (see (8.199))

�
@

@t
C Uj

@

@x

�
q0
j C @ 0

j

@x

@Qj

@y
D 0 (8.234)

with

q0
j D r2 0

j ˙�j . 
0
2 �  0

1/ and
@Qj

@y
D ˇ � @2Uj

@y2
˙�j .U1 � U2/ (8.235)

and �j D f 20 =.g
�Hj /. The upper sign refers to the upper layer i D 1, the lower

sign to the lower layer i D 2. The ansatz  0
j D �j .y/eik.x�ct/ yields the eigenvalue

problem

.Uj � c/
�
@2�j

@y2
� k2�j ˙�j .�2 � �1/

�
C �j

@Qj

@y
D 0 for j D 1; 2

(8.236)

with boundary conditions �j D 0 on both channel walls. It is, in fact, the discrete
form of (8.219), and also the condition (8.221), leading to the instability constraint,
is transferred correspondingly with a sum over the two layers replacing the vertical
integral.

We proceed now to the simplest case that the mean flow Uj is independent of y
such that Us D U1 � U2 and dQj=dy D ˇ ˙ �jUs are constants. The condition
necessary for instability, ci ¤ 0, is that the gradients of the mean potential vorticity
must have different signs. They read as follows:

� if Us > 0, then dQ1=dy D ˇ C �1Us > 0, and hence dQ2=dy D ˇ � �2Us
must be less than zero, or

Us D U1 � U2 > ˇ=�2 (8.237)
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� if Us < 0, then dQ2=dy D ˇ � �2Us > 0, and hence dQ1=dy D ˇ C �1Us
must be less than zero, or

Us D U1 � U2 < �ˇ=�1 (8.238)

Note that the shear Us relates to the tilt of the mean layer interface N� by the thermal-
wind equation Us D .g�=f0/d N�=dy. The above conditions are thus constraints on
a minimum of the available potential energy of the mean state in case of an unstable
flow.

The conditions (8.237) and (8.238) are sufficient for instability as well, as can be
proven by a solution of (8.236). The ansatz �j .y/ D Aj sin `y with constant ampli-
tudesAj and the discrete meridional wave number ` D n =B , n D 1; 2; : : : satisfies
the boundary conditions. The second order linear system for the Aj , resulting from
the equations (8.236), has a solution if the determinant of the coefficients vanishes,
leading to

c D U2 C K2Us.K
2 C 2�2/� ˇ.2K2 C�1 C�2/˙D1=2

2K2.K2 C�1 C�2/

D U1.K
2 C 2�2/C U2.K

2 C 2�1/

2.K2 C�1 C�2/
� ˇ.2K2 C�1 C�2/D1=2

2K2.K2 C�1 C�2/
(8.239)

with K2 D k2 C `2 and the discriminant

D.Us ; K/ D ˇ2.�1 C�2/
2 C 2ˇUsK

4.�1 ��2/CK4U 2s .K
4 � 4�1�2/

(8.240)

Let us first consider some limiting cases:

� Us D 0, i. e. a barotropic mean flow U1 D U2 D U . The two solutions for the
phase speed may be written as

c D U � ˇ

K2
and c D U � ˇ

K2 C�1 C�2
(8.241)

and coincide with the barotropic and baroclinic Rossby wave speed for the two-
layer system, including the Doppler shift by the barotropic current (see Sec-
tion 8.2). The flow is stable because the barotropic instability cannot operate for
a constant U .

� ˇ D 0. The solution becomes

c D U1.K
2 C 2�2/C U2.K

2 C 2�1/˙ Us.K
4 � 4�1�2/

1=2

2.K2 C�1 C�2/
(8.242)

An imaginary part of the phase speed develops, and the system becomes unstable
for all Us ¤ 0 if K4 < 4�1�2, or

.KR/2 < 2R2
p
�1�2 D 2R2

f 20

g�p
H1H2

D 2

p
H1H2

H
(8.243)

where R D .g�H1H2=f 20 H/1=2 is the baroclinic Rossby radius of the channel
configuration (see Appendix B.1.3). Perturbations with wavelengths roughly ex-
ceeding the baroclinic Rossby radius become unstable. More precisely, there is an
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interval .0; kmax/ of wave numbers for which the perturbations 	 eikx sin n y=B
are unstable. The maximum is attained for n D 1, hence .kmaxR/

2 D
2
p
H1H2=H � .R =B/2. The overall result is similar to the condition (8.229)

of the Eady model.
� U1 D �U2;H1 D H2. This symmetric case is most easily analyzed. With � D
�1 D �2, we find

c D �ˇ.K2 C�2/˙p
4ˇ2�2 CK4U 2s .K

4 � 4�2/
K2.K2 C 2�2/

(8.244)

Instability occurs if

U 2s > U
2
crit D 4ˇ2�2

K4.4�2 �K4/
(8.245)

which requires that K2 < 2�. Positive and negative shears are thus affected in
the same way. The minimum of U 2crit follows from dU 2crit=dK4 D 0; it occurs
at K4 D 2�2 and has the value U 2crit D .ˇ=�/2 in agreement with the results
of integral conditions discussed above. Note that, in contrast to the case ˇ D 0,
there is now a range of shear values �ˇ=� < Us < ˇ=� which is stable. Hence
the presence of ˇ stabilizes the flow. A further property is that (8.244) implies for
unstable modes the ordering

� ˇ

K2
< <.c/ D � ˇ.K2 C�2/

K2.K2 C 2�2/
< � ˇ

K2 C 2�2
(8.246)

i. e. unstable modes propagate westward with a speed which lies between the fast
barotropic and the slow baroclinic phase speeds of ordinary Rossby waves with
the same wave numberK .

In the general case, considering now the complete discriminant D as function
of Us and K with nonzero ˇ, we notice that the curve D.Us ; K/ D 0 separates
two regions in the .Us; K/-plane which are no longer symmetric. The curve may be
expressed as two different branches U˙.K/ given by

U˙ D ˇ

K2.4�1�2 �K4/



K2.�1 ��2/˙ 2

p
�1�2

p
..�1 C�2/2 �K4/

�

(8.247)

and displayed in Figure 8.25 where the stable and unstable regimes are laid out.
Unstable perturbations can only occur where K4 < .�1 C�2/

2, which transfers to
KR < 1. The minimum of the branch UC of positive shears is min.UC/ D ˇ=�2; it

occurs at K2 D K2C D
q
�22 C�1�2. The maximum of the branch U� of negative

shears is max.U�/ D �ˇ=�1, it occurs at K2 D K2� D
q
�21 C�1�2. These

statements fully agree with the above derived results of the integral constraints and
show that the necessary conditions are indeed sufficient. Note that

.KCR/2 D
r
H1

H
and .K�R/2 D

r
H2

H
(8.248)

For given positive shear above the critical one, perturbations in a whole range of wave
numbers, below the inverse Rossby radius, are unstable. A corresponding statement
holds for a negative shear. Hence long waves are stable and very short waves as well.



8.5 Influence of a Mean Flow on Planetary Waves 279

Fig. 8.25 Regime diagram showing the critical shearU˙, scaled by ˇ=�2, as function of .KR/2.
The parameters areH1 D 1;000m,H2 D 3;000m, ˇ D 2�10�11 m�1 s�1, f0 D 10�4 s�1,
g� D 0:02, the Rossby radius for these values isR D 39 km

Fig. 8.26 The complex phase speed c D cr C ici , scaled by ˇ=�2, as function of .KR/2

and Us=.ˇ=�2/. a shows the imaginary part ci ; b and c show the two solutions for the real part
cr � U2 relative to the deep velocity U2. The parameters are as in Figure 8.25. The values of the
� solution at very smallK are blended out

As H1 < H2 is usually taken in applications of the layer model, the marginally
unstable perturbations have a larger wavelength for positive shear compared to the
situation with negative shear.

The general dispersion relation (8.239) is shown in Figure 8.26. The figure
displays the positive imaginary part of c D cr C ici and the two real parts of cr �U2.
In the region of unstable modes, the two parts coincide, but note that the solution
cr �U2 is here strictly negative. Unstable modes thus propagate westward relative to
U2. This is not generally true for stable modes. The stable modes on the axis Us D 0

represent the ordinary barotropic (C solution) and baroclinic (� solution) Rossby
waves.
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The phase relation between the mode  1 D A1eikx sinn y=B in the upper layer
and  2 D A2eikx sin n y=B in the lower layer is similar to that observed in the
Eady model. A proof follows from the governing equations (8.236) which becomes
a relation between the amplitudes. Only one of the equations is needed,

.U2 � c/Œ�K2A2 ��2.A2 � A1/�C A2
@Q2

@y
D 0 (8.249)

the other one is satisfied by the dispersion relation (8.239). Inserting c D cr C ici
and the gradient of the potential vorticity in the lower layer, we find

A1 D A2

�
K2=�2 C 1C U � ˇ=�2

jU2 � cj2 .U2 � cr C ici /

	
D A2˛ei� (8.250)

We consider an unstable mode, i. e. ci > 0, for an eastward shear, i. e. Us > 0 and
hence Us > ˇ=�2 by the instability constraint. The real part of the factor in brackets
is positive because U2 � cr > 0. The imaginary part is positive as well. Hence the
phase � ofA1 relative toA2 is in the first quadrant, i. e. 0 < � <  =2. Thus, the wave
in the upper layer leads the wave in the lower layer by less than half a wavelength,
a pattern which looks in the continuous case like the figure in the box on p. 275. The
unstable modes are thus tilted upstream.

8.5.4 Energetics of Parcel Exchanges

We discuss in this section a different approach to look at instabilities of the mean
flow by a consideration of the energetics of parcel exchanges as in Haine and Mar-
shall (1998). We start with the changes of potential energy by vertical parcels ex-
changes, which lead in the case of an unstable stratification to growing instabilities.
By consideration of changes in the potential energy of parcel excursions in the merid-
ional/vertical plane, we revisit baroclinic instability, and by taking also the changes
in zonal kinetic energy into account we derive the condition for inertial or symmet-
ric instability, which can play an important role near the equator and for (slantwise)
convection in the weakly stratified mixed layer.

Static Instability

Consider the potential energy change of a vertical exchange of a parcel with density
�1 initially at z1 and a parcel with density �2 initially at z2 which is given by

�P D g.�1z2 C �2z1/� g.�1z1 C �2z2/ D �g.�2 � �1/.z2 � z1/ � �g���z
(8.251)

We assume that the density of the two parcels does not change during their dis-
placement, i.e. we consider adiabatic rearrangements, similar to the discussion of
available potential energy in Section 5.2.6. While they are moved vertically, the ki-
netic energy of the two parcels is given by K D .1=2/�1w

2
1 C .1=2/�2w

2
2 � �0w

2

where �0 is the mean density (equivalent to the reference density in the Boussi-
nesq approximation) of the two parcels with velocities w1 and w2 of opposite
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Fig.8.27 The change in potential energy�P by adiabatic displacements of two particles as a func-
tion of �y (horizontal axis) and �z in m. Solid black lines denote positive values of �P , while
the blue dotted lines denote negative values where potential energy can be transferred to the kinetic
energy of the particles, i.e. where an instability shows up. The red line with the largest slope denotes
the isopycnal, with a slope of sb D 2�10�3 in a and sb D 5�10�3 in b. Also shown as red lines
are the geopotential as the horizontal line and the surface with half the slope of the isopycnal, sb=2,
for which the minimum potential energy�Pmin is obtained. The vertical black lines connect values
on the isopycnal and the line for slope sb=2 with identical �y, to allow an easy identification of
the minima in�P

sign (w D w1 D �w2). Adding both energies yields .d�z=dt/2 C �b�z D 0

with w D d�z=dt and the buoyancy difference �b D �g��=�0. Rewriting
the equation as �.�b=�z/�z2 D .d�z=dt/2 yields for an unstable stratification
�b=�z D N 2 < 0 a first order differential equation in �z

p
jN 2j�z D d

dt
�z

The solution is an unstable oscillation �z 	 exp!t with the growth rate ! DpjN 2j. For N 2 > 0 we find d�z=dt D iN�z which yields a vertical oscillation
with the Brunt–Väisälä frequency (compare Section 7.2).

Baroclinic Instability

Now consider the change in potential energy when we also allow for a meridional ex-
change of two parcels, which now have their initial position at .y1; z1/ and .y2; z2/.
Since only vertical excursions matter for the change, the potential energy is still
identical to (8.251). The density or buoyancy difference has now vertical and lateral
components given by�b D M 2�yCN 2�z with N 2 D @b=@z andM 2 D @b=@y.
Note that the lateral and vertical buoyancy gradients are assumed to be constant,
and we now assume gravitationally stable conditions, i.e N 2 > 0. We consider the
isopycnal slope sb D �M 2=N 2 and the slope of the exchange direction given by
se D �z=�y. Writing�b D �N 2sb�yCN 2se�y, for the potential energy change
becomes

�P D �0N
2�y2se.se � sb/ (8.252)

Figure 8.27 shows �P as a function of �y and �z for two different values for the
isopycnal slope sb , assuming stable stratification. The sign of �P depends on the
factor se.se � sb/. Figure 8.27 shows that for most displacements, �P is positive,
i. e. energy is needed for the displacements. For horizontal displacements se D 0
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or for displacements in the isopycnal plane se D sb , there will be no change in
potential energy, i. e. those displacements are possible without doing work against
the gravity force. For slopes se between sb and zero, �P is negative and energy
is released by those displacements and can be transferred to the kinetic energy of
the parcels, which leads to a (baroclinic) instability. Since the change in potential
energy is always positive (or zero) for sb D 0, we need inclined isopycnals to release
(available) potential energy to kinetic energy.�P is at minimum for se D sb=2 and
is given by �Pmin D ��0N 2�y2s2

b
=4.

The solution for the lateral displacement is given by�y 	 exp!t and the kinetic
energy, related to the displacement, isK D �0v

2 (we count the meridional velocities
of both parcels) where v D d.�y/=dt . Adding again�Pmin and the kinetic energyK
yields

!2 D 1

4
N 2s2b D

�
1

2

M 2

N

�2
(8.253)

which is, except for a numerical factor of order one, the growth rate of the fastest
growing wave in the Eady problem discussed in 8.5.3. The fastest growing wave
thus extracts the maximum available potential energy from the system. The parcel
excursions for the fastest growing wave are along half of the isopycnal slope of the
background state. However, note that this holds for the onset of the baroclinic insta-
bility only. In the balanced state, mean parcel excursions will be along isopycnals, in
agreement with our expectation (compare also Sections 12.2.2 and 12.3.5).

Inertial Instability

If the isopycnal slopes are inclined in the meridional direction, geostrophic balance
applies to the zonal velocity, and the parcels, therefore, also have zonal velocities.
If this zonal velocity becomes large, we also have to take it into account for the
energetics of parcel exchanges. The parcels must obey the zonal momentum budget,
which we write for f D const in the form

d

dt
.u � fy/ D 0 (8.254)

where we have assumed that @p=@x D 0. Note that the quantity u� fy is the (abso-
lute) zonal momentum in the fixed (nonrotating) frame of reference, and (8.254) be-
comes the angular momentum conservation equation. As a consequence of (8.254),
u2 � u1 D �u D f�y must hold for the meridional displacements. Two parcels,
which have their initial position again at .y1; z1/ and .y2; z2/, have initially the ki-
netic energy .1=2/�0u21 C .1=2/�0u

2
2 and after the exchange the zonal velocities

change according (8.254) to u1 ! u1 C f�y and u2 ! u2 � f�y with corre-
sponding kinetic energies. The change in kinetic energy is given by

�K D 1

2
�0
�
.u1 C f�y/2 C .u2 � f�y/2 � u21 � u22

� D �0�y
2f .f ��u=�y/

(8.255)

With�uD.@u=@y/�yC.@u=@z/�z and using the geostrophic balance f .@u=@z/ D
�M 2 D N 2sb , the total change in mechanical energy�E D �P C�K becomes

�E D �0�y
2
�
N 2se.se � 2sb/C f!a

�
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with the vertical component of the absolute vorticity !a D f � @u=@y as defined in
Section 2.11 (for @=@x D 0). If�E < 0, this change in the mean mechanical energy
can be used to accelerate the parcels in the meridional direction. For given f!a ,
the function �E has a minimum �Emin at se D sb . Adding again the meridional
kinetic energy �0v2 (both parcels are counted) and �Emin, we find a growth rate of
the meridional displacement (for negative�Emin) of

!2 D
�
M 2

N

�2
� f!a D f

N 2

�
�!aN 2 � @u

@z

@b

@y

�
D �fQ

N 2
(8.256)

Here Q is the Ertel potential vorticity in the Boussinesq and hydrostatic approxima-
tions, as given in (4.58), which in Cartesian coordinates takes the form

Q D !aN
2 C @u

@z

@b

@y
(8.257)

for @=@x D 0 and  D b, ignoring the constant factor �0. For fQ < 0, we find
�Emin < 0 and, therefore, exponential growth with a rate equal to !. The process
is called inertial or symmetric instability. Note that the term !aN

2 often dominates
the Ertel potential vorticity. In that situation or for vanishing vertical shear, the con-
dition for inertial instability becomes f .f � @u=@y/ < 0. However, the condition
for inertial instability is hardly satisfied under normal conditions; inertial instability
plays a role in the ocean only close to the equator where jf j is small enough such
that jf j 	 j@u=@yj, or for weak stratification and strong vertical shear in u, as in the
mixed layer in boundary currents. We will consider the latter issue in the following
section. Note that the condition for inertial instability fQ < 0 holds for the Southern
Hemisphere as well.

Slantwise Convection

From (8.257), the potential vorticity can be written asQ D �@ .u�fy/=@y@b=@zC
@.u� fy/=@z@b=@y D �J .u� fy; �/ where the Jacobian J is applied in the y-z-
plane. The angle between surfaces of constant absolute momentum u � fy and the
isopycnals determines the sign of the potential vorticity Q. If Q < 0, there will be
inertial instability (for f > 0) which will force the system towards a state with at
least Q D 0, where isopycnals and isosurfaces of u � fy become parallel. When
the mean flow is constant we have fQ D f 2@b=@z, which is always positive for
@b=@z > 0 and negative for static instability. In this case, static and inertial instabil-
ity become identical. With a vertical shear in u, however, the isosurfaces of u � fy

are tilted. If fQ < 0, convection and inertial instability will lead to a state where
isosurfaces of u�fy and isopycnals become parallel, which is called slantwise con-
vection. Convection then does not occur in vertical direction but along isosurfaces
of u � fy. This case applies sometimes to the atmosphere where there is deep con-
vection at the equator and where large shears in the zonal flow and small f lead to
slantwise convection. In the ocean, there is no deep convection at the equator, but the
process can be noticed sometimes in the mixed layer in case of large lateral density
gradients and related geostrophic flow.

Figure 8.28 shows a numerical simulation of slantwise convection in the oceanic
mixed layer in three configurations with different vertically sheared background
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Fig. 8.28 Slantwise convection in the mixed layer: a Snapshot of absolute momentum u � fy
(color, ranging from 0 to 1m s�1) and temperature (lines in oC) in a numerical nonhydrostatic
simulation of convection in the presence of large vertical shears in the geostrophically balanced
background flow u. The vertical axis is depth in m and the horizontal axis latitude in m. The model
is two-dimensional in the y-z plane, with a constant Coriolis frequency f D 10�4 s�1, initialized
with a meridional and vertical buoyancy gradient (N0 D 7�10�3 s�1) and is forced with a surface
heat loss of 1;000W m�2. Salinity is constant and temperature proportional to buoyancy. The
snapshot shows the simulation after 5 d. b Time series of zonally averaged temperature (lines in oC)
and zonally averaged N 2.z; t/=N 2

0 (color) as function of depth and time in d. c and d Same as a)
and b) but without background flow u D 0. e and f Same as a and b but for reversed geostrophic
background flow u

flow u. A clear tendency of parallel isosurfaces of u� fy and isopycnals can be no-
ticed. In the case without vertically sheared mean flow (Figure 8.28c), the isopycnals
are predominantly vertical, but in the cases with vertically sheared u, the isopycnals
indeed clearly follow the isosurfaces of u�fy (Figure 8.28a and e). Note that while
there is no stratification in the mixed layer in the case of upright convection (Fig-
ure 8.28d), slantwise convection leads to a nonvanishing stratification in the mixed
layer (Figure 8.28b and f).
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of OceanWaves 9

In Section 2.12, we have introduced the Lagrangian formalism for fluid
mechanical equations and discussed some examples of Lagrangians,
in particular for incompressible flow, for isentropic compressible flow
and for a rotating stratified fluid system. Some of the wave equations,
derived and analyzed in the previous chapters, may be transferred
into this Lagrangian framework, including Rossby waves and grav-
ity waves. The present chapter is devoted to the description of slowly
varying wave trains and resonant wave-wave interaction, both based on
a Lagrangian formalism.

It might be questioned what use there is in a Lagrangian treatment if only the govern-
ing equations of the respective system are reproduced by the variational algorithm.
As one advantage we mentioned in Section 2.12 the immediate access to general
conservation theorems of energy and momentum in a condensed form, as introduced
by (2.218). A related issue is the conservation of ‘almost conserved’ quantities, so-
called adiabatic invariants which are energy-type variables obeying conservation
theorems in a slowly varying state of the wave-carrying background. The general
and beautiful treatment of this topic is due to WHITHAM1; further references on
this subject can be found in his monograph (Whitham, 1974). Especially the use of
Lagrangian theory leads to very powerful recipes for studying wave propagation in
a WKBJ-type environment.

9.1 SoundWaves as Example

We start with a resumption of the WKBJ analysis of the wave systems in the previous
chapters, in particular with the specific example of sound waves in (6.61), as this is
a scalar problem and a Lagrangian exists. The wave equation for sound is given in
Section 6.3),

@

@t

�
1

c2s .x; t/

@p

@t

	
� r2p D 0 (9.1)

1 GERALD BERESFORD WHITHAM, *1927 in Halifax, West Yorkshire, applied mathematician.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 285
DOI 10.1007/978-3-642-23450-7_9, © Springer-Verlag Berlin Heidelberg 2012
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and written here with a variable sound velocity cs.x; t/. It may indeed be derived by
variation of the Lagrangian

L

�
p;
@p

@t
;rp;x; t

�
D 1

2

"
1

c2s .x; t/

�
@p

@t

�2
� .rp/2

#
(9.2)

with respect to the pressure field p.x; t/. Evidently, the two terms comprising L
are not kinetic and elastic energy, found in Section 6.2.2 to be the appropriate com-
partments of the energy of sound waves. Strictly speaking, the terms in L are not
energies at all, and will be referred to as pseudoenergies. In fact, the form of the
Lagrangian (9.2) is found by an educated guess, which is a procedure that is of-
ten applied in Lagrangian theory of fluid mechanics, as shown in the examples of
this section and in Section 2.12. The ‘energy’ T00 and its flux T0i , promoted by the
Lagrangian framework according to (2.219) and (2.220), are found from (9.2) as

T00 D 1

2

�
.@p=@t/2

c2s
C .rp/2

	
and T0i D @p

@t
rp (9.3)

We insert the plane-wave solution p D a sin.k � x � !t/ and average over a wave
period or wave length (or over the phase; indicated by a bar), as done for the WKBJ
approach in Section 6.3.3, and find NT00 D .!a=cs/

2=2 and NT0i D !ka2=2, or

NT00 D !2Ew and NT0i D cg!
2Ew (9.4)

related to the physical energy Ew of sound waves, defined by (6.31) (apart from the
�0-factor). This true energy satisfies (6.60) whereas the Lagrangian form of ‘energy’,
in its phase-averaged state NT00, is governed by the phase averaged form of (2.218),
found to be

@

@t
!2Ew C r � cg!

2Ew D �@
NL
@t

D !2Ew
@cs=@t

cs
D !Ew

@˝

@t
(9.5)

The last but one relation is obtained by inserting the plane-wave solution into the
Lagrangian (9.2), performing the phase average, and taking the time derivative with
respect to the explicit time dependence of the sound velocity. The last relation fol-
lows from the dispersion relation ! D ˝.k;x; t/ D cs.x; t/k of sound waves. As
expected, we are not gaining a completely new theorem of energy conservation: it is
easily verified that (9.5) is equivalent to (6.60). Note, however, that the Lagrangian
treatment avoids the cumbersome expansion work of the WKBJ approach of Sec-
tion 6.3 (and the following ones). As explained in the following sections, the use of
Whitham’s theory makes the work even simpler than presented above. Remember
for the following that the action A D !Ew, found in Section 6.3.3 to govern the spe-
cific sound wave system in terms of the simple conservation equation (6.61), relates
to Lagrangian ‘energy’ by A D NT00=!. This latter relation and the source/sinkless
conservation (6.61) of wave action will be found to be of general validity.

9.2 Adiabatic Invariants

We briefly introduce the concept of an adiabatic invariant a for discrete system Lan-
dau and Lifshitz (see Section 2.12, and e.g. 1982). Given is a Hamilton function
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HŒp; q; 
.t/� of a dynamical system2 which depends on a slowly varying param-
eter 
.t/ and has a periodic solution p0.t/; q0.t/ for constant 
 D 
0. Slowly
varying means that 
 does not change much over the period T of p0.t/ and q0.t/,
i. e. T d
=dt � 1. According to (B18.2) the energy of the system with varying 
 is
not constant,

dE

dt
D dH

dt
D @H

@


d


dt
(9.6)

Averaging over a period yields

dE

dt
D 1

T

TZ

0

@H

@


d


dt
dt � d


dt

1

T

TZ

0

@H

@

dt D d


dt

1

T

I
@H=@


@H=@p
dq (9.7)

where the approximated form bears on the slow variation of 
. The crucial assump-
tion is a further approximating step in which the remaining integral is not evaluated
for the actual path Œp.t/; q.t/� in the phase space .p; q/ but rather for the ‘unper-
turbed’ periodic solution Œp0.t/; q0.t/�. In the integration, we take the Hamiltonian
H D H0.p0; q0; 
0/ evaluated from the periodic solution, but let 
0 take its varying
trajectory 
.t/. The above relation becomes

I
@H0Œp0; q; 
.t/�=@
0

@H0Œp0; q; 
.t/�=@p0
dq D �

I
@p0

@
0
dq (9.8)

becauseH0 D E0 D const, leading to .@H0=@p0/@p0=@
0C @H0=@
0 D 0. Comb-
ing now (9.7) and (9.8) into

T
dE

dt
C d


dt

I
@p0

@
0
dq D 0 (9.9)

and using

T D
TZ

0

dt D
I

dq

Pq0 D
I
@p0

@H0
dq (9.10)

we finally arrive at

dE

dt

I
@p0

@E0
dq C

I
d


dt

@p0

@
0
dq D d

dt

I
p0Œq; E.t/; 
.t/�dq D 0 (9.11)

proving that A D H
p0dq is an adiabatic invariant, called wave ‘action’. For linear

systems, one findsA.t/ D E.t/=!.t/, as exemplified by the harmonic oscillator with
slowly changing frequency,H D p2=2mCm!2.t/q2=2 D E.t/. UsingH D p Pq�
L. Pq; q; 
/ D E and expressing q0.t/ by a periodic function Q.�/ of the phase � ,
i. e. q0.t/ D Q.�/ with � D !t C # , we arrive at

A D
I
p0dq D 1

2 

2 Z

0

fLŒ!Q� ;Q; 
.t/�C Eg d� (9.12)

2 In this section, q and p denote the generalized coordinate and the conjugate momentum, see the
box on p. 98.
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Hence A relates to the averaged Lagrangian,

L.!;E; 
/ D 1

2 

2 Z

0

LŒ!Q� ;Q; 
.t/�d� D A

T
� E D !

2 
A �E (9.13)

The trick is now to remember that ! is the time derivative of � and to allow varia-
tions of L with respect to � and E, resulting in the Euler–Lagrange equations (see
Section 2.12)

d

dt

@L
@.@�=@t/

� @L
@�

D d

dt

@L
@!

D 0 and
@L
@E

D 0 (9.14)

The first relation corresponds to the conservation of action, (9.11), and we have
L! D A=2 . The second relation simply becomes

!

2 

I
@p

@E
dq � 1 D 0 (9.15)

or, using (9.10), one finds ! D 2 =T which corresponds to a dispersion relation.

9.3 Variational Approach toWave Trains

To begin with Whitham’s theory, we describe the recipe in the light of the sound
wave equation (9.1) with the associated Lagrangian (9.2). The solution of the wave
equation for constant background conditions cs D const is a sinusoidal pressure field

p.x; t/ D a sin � with the phase � D k � x � !t (9.16)

and a constant amplitude a and a dispersion relation ! D ˙csk; relating the pre-
scribed constant wave vector k to the frequency !. If the sound speed is slowly
changing on scales that are large compared to the wavelength 2 =k and period
2 =!, a solution is sought in the above sinusoidal form but with slowly varying a;k
and !. Following Whitham’s recipe of the averaged Lagrangian, the periodic form
(9.16) is inserted into the Lagrangian, which is then averaged over the fast-changing
phase, resulting in the ‘averaged Lagrangian’

L D 1

4
jaj2

�
!2

c2s
� k2

�
(9.17)

The adiabatic invariant and its governing equation follow by variation of L with
respect to � , as done for the discrete system in the previous section. Since L does
not depend anymore on the phase � itself but only on its derivatives �t D �! and
r� D k, we obtain

@

@t
L! � r � Lk D 0 (9.18)

with the abbreviations L! D @L=@! and Lk D .@L=@k1; @L=@k2; @L=@k3/ D
rkL. The temporal and spatial derivatives in (9.18) act on the slow variations of
cs.x; t/. We find

A D L! D 1

2
jaj2 !

c2s
and JA D �Lk D 1

2
jaj2k (9.19)
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for the ‘wave action density’ A and ‘action flux density’ JA of sound waves. Vary-
ing L with respect to the amplitude, we obtain the dispersion relation, i. e. La D 0

yields !2 D c2s k
2.

Hence for this linear system L has the value zero, implying two features. We
define, as usual, the ‘energy’ of the system by E D �t@L=@�t � L. Averaging yields
the wave energy E and its important relation to the wave action A,

E D !L! � L D !L! D !A D 1

2
jaj2!

2

c2s
(9.20)

Furthermore, as dL D L!d! C Lkdk D 0 because of L D 0, we obtain the expres-
sion

cg D d!

dk
D �Lk

L!
D JA

A D !

c2s
k (9.21)

for the group velocity. This relation enables us to rewrite the action conservation
(9.18) in the ‘standard’ form, already derived in (6.61),

@A
@t

C r � cgA D 0 (9.22)

which governs the evolution of the squared wave amplitude on the large scale varia-
tions of cs. Indeed, we have regained the results from the elementary analysis in the
preceding sections. Compared to the lengthy derivation of (6.61) in the WKBJ frame-
work of Section 6.3.3, the Lagrangian approach is rather elegant and algebraically
simpler. The difference is even more drastic when a cumbersome multiple field case
as in the internal gravity wave problem or the Rossby wave problem (see below) is
considered. Note that except for the special expressions of the sound wave problem,
the above equations are valid for any linear wave problem.

9.4 A Rigorous Derivation

The above described recipe is elegant and works well for the particular example of
sound waves. Nevertheless, why are we allowed to consider variations of the aver-
aged Lagrangian with respect to phase and amplitude? Remember that the original
Lagrangian is a functional of the field (pressure p in the above example), and the
Lagrangian framework allows variation with respect to this variable only. A proof of
the method is given here by use of the method of multiple time scales (the name of
the method is used not only for the temporal but also for the spatial variables). For
the sake of simple notation, we consider only one spatial dimension and a problem
with a single dynamical field �.

While changes of x and t are first felt on fast scales of the wavelength and period,
there are much slower variations on the scales of the background parameters (the
sound speed cs in the above example). Formally, we may introduce two time-scales t
and T D �t where � is a small parameter (do not confuse T with the previous
notation used for the period). Likewise, for the spatial domain we have x and X D
�x. When the fast variable t runs through a period (an O.1/ variation) of the wave,
the slow variable T has not changed much (there is only a O.�/ variation). The
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background hence depends on X; T , and the wave amplitude frequency and wave
number as well. An appropriate ansatz for the field is then

� D �.x; t; X; T / D ˚.�;X; T I �/ with � D �.X; T /=� (9.23)

where ˚ is assumed periodic in � (we assume a period 2  without restriction). Fre-
quency and wave number are given as derivatives of the phase function,

!.X; T / D �@�.X; T /=�
@t

D ��T

k.X; T / D @�.X; T /=�

@x
D �X

(9.24)

so that � � k.X; T /x � !.X; T /t .
The Lagrangian of a slowly varying wave field is of the form L D

L.�t; �x; �;X; T / where field gradients have the two-timing form

@�

@t
D �!˚� C �˚T

@�

@x
D k˚� C �˚X

(9.25)

reflecting the changes in both contributions due to the fast oscillations and the slow
modulations. Likewise, the Euler–Lagrange equations become

�
�! @

@�
C �

@

@T

�
@L

@˛1
C
�
k
@

@�
C �

@

@X

�
@L

@˛2
� @L

@˛3
D 0 (9.26)

where

L D L.�!˚� C �˚T; k˚� C �˚X; ˚;X; T / (9.27)

and the ˛n; n D 1; 2; 3 are the first three arguments of this function. Note that (9.26)
is the equation determining the function˚.�;X; T / with its three variables �;X and
T , now treated as independent. We cast (9.26) into the equivalent conservative form

@

@�

��
�! @L

@˛1
C k

@L

@˛2

�
˚� �L

	
C �

@

@T

�
˚�

@L

@˛1

�
C �

@

@X

�
˚�

@L

@˛2

�
D 0

(9.28)

This is obtained by multiplying (9.26) with ˚� and adding the identity

@L

@�
D @L

@˛1
.�!˚�� C �˚T � /C @L

@˛2
.k˚�� C �˚X� /C @L

@˛3
˚� (9.29)

Now, we average (9.28) over the phase � . Making use of the above assumed period-
icity in the �-variable, the first part vanishes, and we obtain

@

@T

1

2 

2 Z

0

˚�
@L

@˛1
d� C @

@X

1

2 

2 Z

0

˚�
@L

@˛2
d� D 0 (9.30)
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The most important and surprising result of this step is the fact that (9.28) and (9.30)
are just the Euler–Lagrange equations of the variational principle

ı

Z
1

2 

2 Z

0

L.�!˚� C �˚T; k˚� C �˚X; ˚;X; T /d�dXdT D 0 (9.31)

if variations of the Lagrangian with respect to the carrier function ˚ and the phase
� are considered. The first yields (9.28), using the particular form (9.27) of L, and
the second yields (9.30), using (9.24). The latter result may be expressed as

@L!
@T

� @Lk
@X

D 0 (9.32)

with averaged Lagrangian

L.!; k;X; T / D 1

2 

2 Z

0

L.�!˚� C �˚T; k˚� C �˚X; ˚;X; T /d� (9.33)

Equation (9.32) is the conservation of action density L! , which is a slowly varying
quantity. Note that we have not assumed linearity of the system (or any particular
wave system, as in the previous section). In addition, the result is correct to all orders
in �.

We summarize the results that we got so far. After the transformation (9.23) of the
field variable, the Euler–Lagrange equation (9.26) determines ˚ as function of �; T
and X . The conservative form (9.28) is a statement about the conservation of wave
energy: the lowest order of (9.28) in � indeed yields a first integral for the fast de-
pendence of carrier function ˚ .0/,

 
�! @L

.0/

@˛1
C k

@L.0/

@˛2

!
˚
.0/

�
� L.0/ D ˚

.0/

�

@L.0/

@˚
.0/

�

�L.0/ D E .0/.X; T / (9.34)

with L.0/ D L.�!˚ .0/
�
; k˚

.0/

�
; ˚ .0/; X; T /. Averaging over the phase reveals that

E .0/.X; T / is the average pseudo wave energy density to lowest order,

E .0/.X; T / D !L.0/! � L.0/ D !A.0/ � L.0/ (9.35)

For the general case of a nonlinear system, we find

@

@T



!L.0/! � L.0/

�
� @

@X
!L.0/

k
D �@L

.0/

@T
(9.36)

using (9.32), (9.35), and kT C !X D 0. The time derivative on the left-hand side
is taken with respect to the explicit slow time dependence of the Lagrangian. Note
that only for linear systems it can be shown that the Lagrangian L.0/ has the value
zero, and hence A.0/ D E .0/=!. Then, �L.0/

k
=L.0/! can be identified with the group

velocity.
The conservation (9.36) of pseudo energy E .0/ D !A can be augmented by

a corresponding conservation theorem for a pseudo momentum P .0/ D kA. The
conservation theorems (2.218), discussed in Section 2.12, carry over in the averaged
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41. Waves in aMean
Current

Whitham’s theory is easily extended to the case that a slowly varying mean flow is imposed
upon the wave motion. The frequency of encounter (see Section 6.2.3) then contains the Doppler
shift, ! D ˝.k;X; T / D ˝0.k;X; T /C k.X;T /U.X;T / where !0 D ˝0.k;X; T / is
the dispersion relation that an observer finds who is moving with the mean current U.X;T /
(notice that k0 D k). The ray equations summarized in the box on p. 173 remain valid (the
group velocity contains the intrinsic part and the mean current, cg D c0

g CU ).

The observer in the frame moving with U finds the averaged Lagrangian L0.0/ D
L0.0/.!0; k0;X 0; T / with pseudo energy E 0.0/ D !0L0.0/

!0

D !0A0, and the action A0 sat-
isfies

@A0

@T
C @

@X
c0

gA0 D 0

The observer in the nonmoving frame finds a Lagrangian L.0/ D L.0/.!; k;X; T / D
L0.0/.! � kU; k;X � UT;T /. Because of L.0/! D L0.0/

!0

the action in both frames is
identical, A D A0, but the group velocity differs by the Doppler shift which derives from
L.0/k D L0.0/

k0

� UL0.0/
!0

. Hence written in terms of the energy E 0.0/ found in the moving sys-
tem and the frequency of encounter (which is constant if ˝T D 0), the action conservation
becomes

@

@T

E 0.0/

! � kU C @

@X



c0

g CU
� E 0.0/

! � kU D 0

Lagrangian theory to a pseudo energy-momentum tensor which may be expressed in
terms of the wave action as 

E .0/ F .0/e

P .0/ F .0/p

!
D
�
! cg!

k cgk

�
A (9.37)

given here in a one-dimensional space. The conservation theorems are

@

@T
!A C @

@X
cg!A D �@L

.0/

@T

@

@T
kA C @

@X
cgkA D �@L

.0/

@X

(9.38)

These equations follow as well from the action conservation and the ray equations.
The generalization to the presence of a slowly varying mean flow is given in the box
on p. 292.

9.5 RossbyWaves and Internal GravityWaves as Examples

Two applications of Whitham’s theory are considered where a Lagrangian is explic-
itly averaged and the action function of the respective wave train solution is derived.

Action Conservation for Rossby Waves

The case of sound waves, treated as example in the previous sections, is singular
in so far as sound waves are nondispersive, and equation (9.26) leaves the carrier
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function ˚ undetermined, in agreement with (6.15). To bring Whitham’s method to
life for a more complicated problem, we consider the Rossby wave case of the box
on p. 293.

The fields  ;  and �, entering the Lagrangian (B42.2), are expressed in terms
of the slow and fast independent variables according to  D P.�;X; T /;  D
C.�;X; T / and � D M.�;X; T /. The transformed Lagrangian becomes

L.0/ D 1

2

�
k2P 2� C P 2

R2

�
� 1

2
ˇk1PC� CM .P C !C� / (9.39)

to lowest order in �, and varying with respect to P;C andM yields

k2P�� � P

R2
C 1

2
ˇk1C� �M D 0

�1
2
ˇk1P� C !M� D 0

P C !C� D 0

(9.40)

We find C� D �P=!;M� D .ˇk1=2!/P� from the last two equations, and thus

P�� � 
P D 0 with 
 D ! C ˇR2k1

.kR/2!
(9.41)

from the first equation. Solutions are required to be periodic with period 2 . Hence 

must be equal to �1, and we obtain P D a sin � and ! D �ˇk1=.k2CR�2/, which
is indeed the dispersion relation (8.57) of linear Rossby waves. Inserting the solution
for the fast time behavior of P;C and M into (9.39) and averaging over the phase,
we find

L.0/ D 1

4
a2
�
k2 CR�2 C ˇk1

!

�
(9.42)

42. A Lagrangian for
Linear RossbyWaves

Linear Rossby waves are governed by the vorticity equation

@

@t

�
r2 � 1

R2
 

�
C ˇ

@ 

@x
D 0 (B42.1)

where  is the stream function and R the Rossby radius. A Lagrangian for this equation is

L D 1

2

�
.r  /2 C  2

R2

	
� 1

2
ˇ 

@�

@x
C�

�
 � @�

@t

�
(B42.2)

where � is an auxiliary field and � a Lagrangian multiplier. Varying with respect to  ;� and �
yields

r2 �  

R2
C 1

2
ˇ
@�

@x
�� D 0

 � @�

@t
D 0

�1
2
ˇ
@ 

@x
� @�

@t
D 0

and elimination of the auxiliary variables � and � leads to (B42.1).
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and hence A D L! D �.a2=4/ˇk1=!2 D .a2=4/.k2CR�2/=! for the action den-
sity of Rossby waves. Furthermore, the group velocity components (8.60) and (8.61)
result from cg D �Lk=L! , and variation of L.0/ with respect to the amplitude a
yields the dispersion relation (8.57).

Action Conservation for Internal Gravity Waves

As a second example, we derive the action conservation for internal gravity waves,
starting with Lagrangian 2.230 from which we separate the quadratic part

L2 D 1

2
�0

h P�2i C f .�1 P�2 � P�1�2/�N 2�23

i
C$

@�i

@ai
(9.43)

to begin with linear wave motion. Higher orders in the field amplitudes and nonlinear
wave processes are considered below. Remember that Lagrangian coordinates are
used: the fields are functions of a and t where the vector a is the Lagrangian spatial
coordinate and t is time.

We consider wave propagation in a slowly varying medium; in the present case the
Brunt–Väisälä frequency would be space and time dependent with the now familiar
WKBJ conditions. The displacement �j ; j D 1; 2; 3 and the pressure variable$ are
written as a slowly varying wave train in the form

�
�j .a; t/

$.a; t/

�
D
�
Aj .X ; T /

B.X ; T /

�
ei�.X ;T /=� C c.c. (9.44)

as used before with X D �a; T D �t but assuming now a sinusoidal form from the
beginning. The time rate of change is

P�j D
�

�i!Aj C �
@Aj

@T

�
ei�.X ;T /=� C c.c. (9.45)

and correspondingly for$ and the spatial derivatives. Inserting this form into (9.43)
and averaging over the phase yields the averaged Lagrangian. To lowest order in �,
the quadratic part L2 yields (summation over j is implied)

NL.0/2 D L D �0
�
!2AjA

�
j �N 2A3A

�
3 C i!f

�
A1A

�
2 � A�

1A2
�

�ikj
�
BA�

j � B�Aj
�� (9.46)

Variation with respect to A�
j and B� yields a homogeneous set of equations for the

amplitudes which are determined as

.Aj ; B/ D A.Zj ; P / (9.47)

with an arbitrary amplitudeA.X ; T / and an eigenvector part given by

Z1 D
�

�k1 � i
f

!
k2

�
k3

k2h
; Z2 D

�
�k2 C i

f

!
k1

�
k3

k2h

Z3 D 1 ; P D i�0
�
!2 � f 2� k3

k2h

(9.48)

provided the dispersion relation (7.16) is valid. Note that not onlyA is slowly varying
but also the wave vector and frequency, as described in the previous sections. Up to
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a common factor the above eigenvector is identical to (7.11) and (7.12) (written there
for velocity instead of displacement). Inserting the eigenvector representation (9.47)
into the averaged Lagrangian yields

L D �0jAj2
�
!2 �N 2 C �

!2 � f 2� k23
k2h

	
(9.49)

The action and energy are found to be3

A D L! D 2�0jAj2!k
2

k2h
and E D !A D 2�0jAj2

�
!k

kh

�2
(9.50)

They are governed by (9.32), or more specifically by the vectorial form (9.22).
Comparison with (7.22) yields 2!2jAj2 D jW0j2 in terms of the amplitude W0 of
the vertical velocity. The group velocity components (7.18) and (7.19) result from
cg D �Lk=L! , and variation of L with respect to the amplitude A again yields the
dispersion relation (7.16).

What is to learn from the next order in � of the Lagrangian (9.43) which derives
from the slow space and time dependence of the parameters of the wave train? The
phase averaged Lagrangian of first order in �, derived from L2, is given by

NL.1/2 D �0

�
˛A

@A�

@T
C ǰA

@A�

@Xj
C ˛�A� @A

@T
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j A
� @A
@Xj

�

with ˛ D i
��!jZj j2 C f =.Z1Z�

2 /
�

and ǰ D PZ�
j

(9.51)

where the representation (9.47) was used. Variation with respect to A� yields the
equation governing the slow dependence of the amplitude,

@˛A

@T
C @̌ jA

@Xj
� ˛� @A

@T
� ˇ�

j

@A

@Xj
D 0 (9.52)

Because ˛ is imaginary, we introduce � D �i˛ and write the above equation as

2i�
@A

@T
C 2i=. ǰ /

@A

@Xj
C A

�
i
@�

@T
C @

@Xj

�<. ǰ /C i=. ǰ /
�� D 0 (9.53)

Evaluation of the coefficients leads to

� D �!k
2

k2h
and =. ǰ / D �cgj ; j D 1; 2; 3 (9.54)

The imaginary part of ˇ D . ǰ / is thus expressed by the group velocity cg of in-
ternal gravity waves (cf. (7.18) and (7.19)). If ! remains constant (i. e. no slow time
dependence according to the box on p. 173), the real part of ˇ, entering as r � <.ˇ/,
may be expressed by the curl of cg (curl is here, as usually, the vertical component
of the r� operator). Hence, the change of the amplitude along the path of the wave
train (the ray) is determined from

@A

@T
C cg � rA D �1

2

A

�

�
@�

@T
C cg � r�

�
� 1

2
A

�
r � cg C i

f k2h
!k2

curl
k2

k2h
cg

�

(9.55)

3 In later applications we will use amplitudes a D A!k=kh which are renormalized to directly
describe the energy E D 2�0jaj2.
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The vector gradient and divergence operators are meant to act on the slow spatial
dependence. The equation is consistent with the action conservation: the action is
A D ��0�AA�, and indeed, after multiplication with A� and addition of the conju-
gate equation, it is found that the right-hand side can be absorbed and (9.22) results.

9.6 Wave–Wave Interactions

In the previous sections, a Lagrangian theory was developed to understand the de-
formation of a wave train due to propagation in a nonuniform medium where, as
a consequence of the nonhomogeneity, the amplitude, wave vector, and frequency
are slowly changing. The perturbation analysis was oriented at the smallness of the
WKBJ parameter � ' k`, the ratio of the length scale ` of variation of the back-
ground medium and the wavelength 2 =k (correspondingly for the temporal con-
ditions of change). We have, however, disregarded nonlinearities so far: we have
neglected all terms in the Lagrangian which are of higher order than quadratic. To be
more specific, the Lagrangian (2.230) for internal gravity waves, treated as example
in the previous section, contains besides the quadratic part (9.43) terms which are of
third and higher order in the field amplitudes, i. e. L D ı2L2 C ı3L3 C � � � , with L2
given by (9.43) and

L3 D $
�
�jj C�

�C 1

3Š
�33

d3p0
da33

C � � � (9.56)

Here �ij is the cofactor of @�i=@aj in the Jacobian determinant � D j@�=@aj. The
parameter ı measures the size of the fields amplitudes, and for the internal wave case
one obtains ı ' $�jj= P�2j ' k�j as ratio of the third order nonlinear term and the
quadratic inertial term. The other cubic term in (9.56) yields ı ' �3=` by comparing
to �23N

2=2 in L2. A generally valid definition of ı is not possible. For systems in
which the nonlinearities arise from advection one has ı D k� D v=c where v is
a typical particle velocity and c the phase speed.

To conclude: we have to deal with two effects and two parameters, � controlling
the effect of nonhomogeneity of the medium and ı governing nonlinearity of the
dynamics. Both effects lead to slow (provided the parameters are sufficiently small)
changes of the wave amplitudes. Though a consistent perturbation analysis in � and
ı is, of course, possible, we will assume from now on that the background medium
is homogeneous and will concentrate exclusively on nonlinear effects on the wave
motion. We consider an ensemble of waves where the amplitudes – apart from the
intrinsic wave oscillation – are slowly changing due to interactions among them,
and again we shall develop a Lagrangian theory because it reveals the symmetry
properties of wave interactions to a greater deal than an approach starting directly
from the equations of motion.

We continue with the internal gravity wave case as example and go on from the
linear representation (9.44) to (9.48), written now for an ensemble of waves which
are numbered by the counter 
,

�
�j .a; t/

$.a; t/

�
D
X
�

A�.T /

(
Zj .k

�; !�/

P.k�; !�/

)
ei.k��a �!�t/ (9.57)
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The amplitude has a slow time dependence with T D ıt; ı � 1. While the con-
tributions to the sum in (9.57) are complex, the result is always real by taking
the sum over 
 ? 0 and assuming k�� D �k�; !�� D �!�; A�� D .A�/�.
Note that Zj .k

��; !��/ D Z�
j .k

�; !�/ and P.k��; !��/ D P �.k�; !�/ are sat-
isfied in accordance with (9.48). Inserting the representation into the Lagrangian
yields4

NL D
Z
.ı2L2 C ı3L3/d3a

D ı3
X
�

1

2
i��

 
A�
@A��

@T
�A�� @A�

@T

!

C ı3
X
��

A�A�AD��e�i.!�C!	C!� /t CO.ı4/

(9.58)

for the third order term in ı, arising from L2 due to the slow time dependence of
the amplitudes and from L3 from the cubic field terms. The coefficient �� is given
by (9.54). The spatial integral of Hamilton’s variational principle (2.213) has been
performed already; the temporal integration still has to be done. The first term is the
same as (9.51) (without the contributions from the spatial derivatives), the second
term follows from (9.56). In the coupling coefficient D�� , we have collected all
third order contributions from respective products of the eigenvectors.

As a major advantage of the derivation from a Lagrangian, D�� can be taken
symmetric in the index triple 
�� because the amplitude triple is symmetric: other
terms than symmetric ones drop out of the sum. Because of the spatial integral the
first is only over one index, and in the second sum only terms have survived that
satisfy k� C k� C k D 0. The constraint is taken as implemented in the definition
ofD�� (it is zero for all other combinations of the wave vectors). A further property
is D����� D �

D��
��

(reality condition for the Lagrangian). The actual form of
D�� will be irrelevant for the following discussion, but for completeness we give
its form,

D�� D ik�3

6
�
k�h
�2
�

!�
�2 � f 2

	
.k� �Z /.k �Z�/C.
 $ �/C.
 $ �/ (9.59)

which is valid on the resonance surface !� C !� C ! D 0. Only such interactions
will gain importance, as shown in the following.

The O.ı4/ contribution in (9.58) contains terms O.An/; n > 3 with similar cou-
pling coefficients of higher order, involving the interaction of quartets of waves and
higher orders. We shall confine the analysis to triplet interactions. There are also
quadratic products of PA which, due to the slow time dependence, are of fourth order
in ı.

Variation of NL with respect to the amplitude A�� yields

2�� PA� D �3i
X
�

A�AD���ei.!��!	�!� /t CO.ı/ (9.60)

4 The irrelevant factor �0 will from now on be dropped.
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The dot time derivation ofA� is now with respect to slow time T D ıt . The sum over
� and � is over all wave vectors k�;k satisfying k�Ck D k�. The resolved term
on the right-hand side presents the interaction of waves � and waves �, changing the
amplitude of wave 
.

For later purposes, it will be convenient to renormalize the amplitude such that
a D A!k=kh is directly related to the energy E D 2jAj2.!k=kh/

2 D 2jaj2 of each
wave (cf. previous section). In terms of these new amplitudes a, the equations of
motion (9.60) become

Pa� D �3i!�
X
�

a�aC���ei.!��!	�!� /t CO.ı/ (9.61)

with C �� D 1
2
D��=

�
.!�k�=k�h /.!

�k�=k
�
h /.!

k=kh /
�

which shares all es-
sential properties with the D-coefficient mentioned above.

Resonance

Averaging (9.61) over the fast phase dependence leads to annihilation of the factor
exp i.!� � !� � !/t in a two-time-scale approach if �! D !� � !� � ! is
nonzero. Then the response of wave 
 becomes negligible. This does, however, not
hold if �! is very small of order ı or less. In this case, the phase averaging leaves
the exponential term essentially unchanged. The initial value problem of three single
waves, with aj .t D 0/; j D 
;�; �, given leads to

a�.t/ D a�.0/� 3i!�C���a�.0/a.0/
tZ

0

e.!
��!	�!� /t 0dt 0 (9.62)

For resonant triads, for which

!� � !� � ! D 0 and also k� � k� � k D 0 (9.63)

a secular behavior is found in the limit �! ! 0 because

lim
�!!0

tZ

0

ei�!t 0dt D lim
�!!0

ei�!t � 1

i�!
D t (9.64)

Wave 
 thus grows linearly on the slow time-scale on account of interacting with
the duo � and � satisfying the resonance condition (9.63). Even if this condition is
satisfied only approximately, i. e. �! ¤ 0 but small compared to the natural wave
frequencies, the growth will be disastrous.

Evidently, the resonant response of wave 
 has the same frequency as the orig-
inal wave and may thus be interpreted as a slow variation of the normal mode
a� exp .�i!�t/. Note that nonresonant terms do not carry the intrinsic wave pe-
riod. It should be emphasized that the resonance condition (9.63) for triad interaction
cannot be satisfied for all kinds of dispersion relations. For internal gravity waves,
nontrivial solutions exist; for surface gravity waves, on the other hand, resonant be-
havior is only possible in quartet interactions. In such a case the Lagrangian must be
expanded to the fourth order in the amplitudes.
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9.6.1 ResonantWave Triads

We consider a single set of three specific waves 
 D 1; � D 2; � D 3 (a triad)
satisfying the resonance condition (9.63). Their amplitudes are governed by

Pa1 D �i!1�a2a3

Pa2 D �i!2��a1a�
3

Pa3 D �i!3�
�a1a�

2

(9.65)

where � D 3C�123 D 3.C�21�3/� D 3.C�31�2/�. These equalities arise because
of the reality condition of the Lagrangian and the symmetry of the coupling coeffi-
cient. There are a number of theorems following from (9.65), allowing an intuitive
interpretation in terms of conservation of a wave ‘energy’, ‘action’ and ‘momentum’.

Multiplying each equation by the respective conjugate amplitude and adding the
complex conjugate of the result, we find

1

!1

d

dt
ja1j2 D � 1

!2

d

dt
ja2j2 D � 1

!3

d

dt
ja3j2 D i��a1a�

2a
�
3 C c.c. D �2=.hint/

(9.66)

with hint D ��a1a�
2a

�
3 . The first two equalities are known as the Manley–Rowe rela-

tions (Manley and Rowe, 1956). They are independent of the coupling coefficient5.
We may interpret jaj j2=!j as the ‘action’ of the wave j . Equation (9.66) then states
that if the waves 2 and 3 each lose a quantum of action, wave 1 gains one quantum:
action is thus not conserved in the triplet interaction.

By suitable addition of the equations of (9.66), we find a form of energy conser-
vation

d

dt

�ja1j2 C ja2j2 C ja3j2
� D �2=.hint/ .!1 � !2 � !3/ D 0 (9.67)

Hence jaj j2 is proportional to the ‘energy’ of the wave j , in agreement with the
definition of the amplitudes a given above. The total energy of the triad is constant
because of the resonance condition. Likewise,

d

dt

� ja1j2
!1

k1 C ja2j2
!2

k2 C ja3j2
!3

k3

�
D �2=.hint/ .k1 � k2 � k3/ D 0 (9.68)

and thus the interacting triad conserves the total ‘momentum’ if jaj j2kj =!j is at-
tributed as momentum to a single wave. A further conserved quantity is a cubic
expression in the amplitudes. Using (9.65), it is easily confirmed that

d

dt
<.hint/ D d

dt

�
��a1a�

2a
�
3 C �a�

1a2a3
� D 0 (9.69)

The two Manley–Rowe relations in (9.66) and the constancy of <.hint/ are three
independent integrals of the triad problem (9.65), which, therefore, is completely in-
tegrable. In fact, the general solution may be expressed in terms of elliptic functions.

5 If we do not use the Lagrangian framework but start from the differential equations, the coefficients
in (9.65) generally differ. A suitable renormalization of the amplitudes then leads to the Manley–
Rowe relations as well. This, however, can only be done for one particular triplet of waves; it is not
possible if a wave from a triplet interacts with another set of waves that should be renormalized as
well.
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The behavior depends critically on the sign of the frequencies and the interaction
coefficient (for details see e. g. Craik (1988)). A great variety of types of temporal
behavior includes cases with periodic exchanges of the energies, but also explosive
solutions exist under specific conditions.

9.6.2 Interaction Theory for RandomWave Fields

The weak interaction framework was developed so far for plane waves having an
infinite extent and small amplitudes. In a realistic geophysical situation, the wave
field is more likely described by a superposition of a great number of wave trains,
each localized in the physical space and having a dominant wave vector, frequency,
and amplitude, which slowly change as a consequence of propagation and refraction
(see the WKBJ framework in the previous sections). When two wave trains occupy
the same region, they might interact resonantly for a short finite time and build up
a third component. The dominant wave numbers and frequencies of the interacting
wave are unaffected if the interaction region is small in the WKBJ sense, but their
energies and phases change. The triad members then separate again and propagate
out of the interaction region. The triad interaction (or higher order resonant interac-
tion) thus still serves as the elementary coupling process in the wave field, much like
particle collisions in a dilute gas.

We describe such a wave field by an ensemble of waves, such that we find a great
number of waves with different wave vectors k and amplitudes a.k;x; t/ at the po-
sition x and time t . A particular wave will be identified by k instead of the counter 

used before, and k will be taken continuous. Following (9.44), we represent the field
by a Fourier integral,

�.x; t/ D
X
sD˙

Z
d3k ask.x; t/Z

s
kei.k�x�!s

k
t/ (9.70)

and may regard this representation as fitting for the internal gravity wave field. How-
ever, it is appropriate for an arbitrary wave field that is described by the state vector
�.x; t/ and the associated eigenvector Z sk of its linear appearance. To make � real,
the index s D ˙ is introduced with the convention explained in the context of (9.44)
where 
 appeared with two signs. We assume that the amplitude as

k
.x; t/ is governed

by the generic equation (9.61).
The wave amplitude ask.x; t/ is regarded as a random variable (for details see Ap-

pendix A.3), such that for a particular set of amplitudes (appropriate for a particular
position and time), the field (9.70) is a particular realization taken from a statisti-
cal ensemble. We are interested in average quantities, denoted by cornered brackets,
such as second-order correlations hask.x; t/as

0

k0

.x; t/i, describing the statistical de-
pendence of a wave with wave vector k to another one with wave vector k0 at the
same position and time. The evolution equation for second-order correlations is read-
ily obtained from the equation governing the amplitude, e. g. (9.61) yields

@
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D �3i!sk
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� (9.71)
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where �! D !s
k

� !s
00

k00

� !s
000

k000

is the frequency misfit of the interacting triad. The
notation of the indices obviously becomes a bit awkward. We use from now on the
abbreviation with a lower index s to stand for s

k
as e. g. as D as

k
for the amplitude

and likewise for frequencies and coupling coefficients.
For quadratic nonlinearities, the equation thus involves triple correlations, and we

are facing the familiar problem that correlation equations of nonlinear systems are
not closed but form an infinite hierarchy: the evolution equation for triple correlations
needs in turn correlations of fourth order, and so on. As in turbulence theory (see
Part IV), a closure hypothesis is needed. There is no generally accepted scheme by
which hierarchies describing strongly nonlinear systems can be cut short, but weakly
nonlinear wave fields never depart much from a Gaussian state (see Appendix A.3).
Indeed, it has been shown by Prigogine (1962) that the nonlinear forcing terms on
the right-hand side of (9.71) can be determined under the assumption that the lowest
order amplitudes a.1/s – in a perturbation expansion with respect to the nonlinearity
parameter – are elements of a Gaussian ensemble. This implies that a correlation
ha.1/s1 � � �a.1/sn i of this lowest order state vanishes for odd n and becomes a sum of all

possible products ha.1/si a.1/sj iha.1/s` a.1/sm i for even n. We will identify the state a.1/s with
an arbitrary initial state at some time t D 0 and further assume that

D
a.1/s a

.1/
s0

E
D 1

2
E.k/ıss0ı.k� k0/ (9.72)

This means that waves with different wave vectors are statistically independent.
There is only a correlation between a.1/s and its conjugate complex a.1/�s which actu-
ally describe the same physical wave component. If the eigenvector Zs

k
is suitably

normalized, the function E.k/ D E.k;x; t/ is the local energy spectrum6, now tak-
ing the spatial and time dependence explicitly into consideration. Hence

E.x; t/ D
Z

d3kE.k;x; t/ (9.73)

is the total energy of the wave field at the position x and time t . Note thatE is still an
energy density with respect to the spatial dependence. Due to the Gaussian property,
the energy spectrum E.k;x; t/ gives a complete description of a Gaussian random
wave field.

Our aim is thus to derive the evolution equation for E.k;x; t/. Remembering
the discussion of propagation and refraction for waves in a slowly changing back-
ground medium (see Section 6.3 and the previous sections of this chapter) and the
consequent definition of wave action, it seems reasonable to use the action spectrum
N .k;x; t/ D E.k;x; t/=!.k;x; t/ instead of the energy spectrum. Because the ac-
tion is now written as function of k in addition to previous independent variables x
and t , and the wave vector is also slowly changing, the action conservation (9.22)
reads for the random case

@N
@t

C rx � . PxN /C rk � . PkN / D S (9.74)

Here, propagation and refraction are given by the ray equations Px D rk˝ (the
group velocity) and Pk D �rx˝ with the dispersion relation ! D ˝.k;x; t/, and S
6 Note that the eigenvector of the internal wave example in the previous section is not normalized
in this way.



302 9 * Lagrangian Theory of OceanWaves

is a source representing all processes that may lead to a change of the action spec-
trum, except for the slow propagation and refraction processes which are explicitly
accounted for on the left-hand side. Note that rx � Px C rk � Pk D 0, so that (9.74)
may be rephrased as

�
@

@t
C Px � rx C Pk � rk

�
N .k;x; t/ D S.k;x; t/ (9.75)

This equation (or the flux form (9.74)) is called ‘radiative transfer equation’ of the
specific wave field. The resemblance between wave groups and interacting particles
becomes obvious: the ray equations are the Hamiltonian equations (see the box on
p. 98) with ˝.k;x; t/ as Hamiltonian for a ’particle’ with the generalized coordi-
nate x, momentum k, and energy !. The radiative transfer equation is the analogue
of the transport equation governing the particle distribution function (see below).

The similarity becomes even closer when the source term Striad for resonant triad
interactions (particle collisions) in the wave field is evaluated. We briefly indicate
how this can be done. The wave amplitude is expanded in terms of the nonlinearity
parameter,

as D a.1/s C a.2/s C � � � (9.76)

and inserted into the triple moment on the right-hand side of (9.71). Because the
basic state a.1/s is Gaussian, the lowest (third) order of the rate of change of hasa�si
vanishes because a triple moment occurs on the right-hand side, and the first nonzero
contribution is of fourth order. It takes the form

@
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hasa�si D �6!s=
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s0s00

C�ss0s00ei.!s�!s0
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s00

i C ha.2/�s a
.1/
s0

a
.1/
s00

i
i (9.77)

Here, a.1/s D as.t D 0/ is the value at some initial time, and a.2/s is given by (9.62)
in the corresponding form

a.2/s .t/ D �3i!s
X
s0s00

C�sss00a.1/s0

a
.1/
s00

�.!s � !s0 � !s00/ (9.78)

with the previously defined resonance function

�.!/ D ei!t � 1

i!
(9.79)

Inserting (9.78) into (9.77), we note that fourth-order moments of a.1/s arise which
can be broken by the Gaussian assumption to three products of second-order mo-
ments. Using (9.72), we find

@

@t
hasa�si D �36!s<

X
s0s00

jC�ss0s00 j2ei.!s�!s0
�!s00

/t

� Œ2!s00hasa�sihas0a�s0i�.!s00 � !s � !s0/

�!shas0a�s0ihas00a�s00i�.!s � !s0 � !s00/�

(9.80)

after some lengthy operations during which integration over some ı functions of the
wave vectors have to be evaluated. Here, properties of the coupling coefficient come
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into play, as e. g. the symmetry in the indices and that it vanishes unless the sum of
the corresponding wave vector triple is zero (see previous section). Note the behavior
of the resonance function

<e�i!t�.!/ D <1 � e�i!t

i!
D sin!t

!
!  ı.!/ as t ! 1 (9.81)

As explained previously for the amplitudes, in the long run only resonant triads make
a noticeable contribution to the spectral development. Using the above relation and
implementing the action spectrum N .k/ D 2haCa�i=!.k/, we arrive after some
elementary manipulations at the final form

Striad D
Z

d3k0
Z

d3k00 ˚T Cı.k � k0 � k00/ı.! � !0 � !00/

� �N .k0/N .k00/ � N .k/N .k0/� N .k/N .k00/
�C 2T �ı.k� kC k00/

�ı.! � !0 C !00/
�
N .k0/N .k00/C N .k/N .k0/� N .k/N .k00/

��
(9.82)

where the transfer function (or cross section of the scattering process for triad inter-
actions)

T � D 18 !!0!00jC�C�
�kk0�k00

j2 for � D ˙ (9.83)

controls the efficiency of sum and difference interactions (compare the arguments
of the ı function in the two contributions to the scattering integral (9.82)). The gen-
eral form of the scattering integral Striad for triad interaction and also for higher
order resonant interactions has been worked out by Hasselmann (1966, 1967b),
who also pointed out the formal similarity with Boltzmann’s collision integral (see
e. g. Huang, 1987) for interacting particles in a dilute gas. Hasselmann also derived
the scattering integrals for interaction between waves of different types, e. g. surface
and internal waves, and even for scattering of waves at a stationary random field, as
e. g. random topography. The formal procedure is, of course, always similar to that
given above.

The above described procedure to derive the scattering integral as a functional
of the second moment – the action or energy spectrum – seems at first inconsistent:
the initial state has Gaussian property by assumption but it develops correlations by
the interaction of the wave groups which are certainly non-Gaussian, as can be seen
in the nonvanishing triple moment in (9.77). After evaluation in terms of quadru-
ple moments – in (9.80) – a Gaussian state is again assumed. Hence the wave field
cannot be Gaussian in the rigorous sense that the wave groups are statistically in-
dependent. The resonant interaction between two wave groups leads to a correlation
which literally would hold for an indefinite time. But leaving the interaction volume
the group propagate away from one another and eventually interact with other mem-
bers. The correlation between the groups disperses then into a fine-structure of the
distribution function. The Gaussian hypothesis assumes that this fine-structure can
be ignored in the further development. The same assumption hold for the derivation
of the Boltzmann collision integral for interacting particles (Huang, 1987).

The internal resonant interactions, described by the scattering integral Striad, con-
serve energy and momentum (but not so for action) of the wave field,

Z
d3k

�
!

k

�
Striad D 0 (9.84)
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so that the wave interactions only redistribute energy and momentum within the wave
field. Hence evaluating (9.82) for any given spectrum shows a transfer of energy from
a certain part of the k-space to another part, but sources and sinks must balance. If
the wave field is in equilibrium, the transfer induced by resonant interactions must
be balanced by external generation processes and dissipation of wave energy. These
processes generally affect the wave spectrum on vastly different scales. The transfer
by resonant interactions establishes the spectral transfer which is necessary for a bal-
ance, but unlike the situation in turbulent fields where the spectral transfer couples
neighboring regions in the wave-number space in a spectral cascade, the resonant
transfer in wave fields can strongly deviate from a local or diffusive behavior in
wave-number space.
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The equations of oceanic motions are nonlinear and contain forcing
terms, either in the boundary conditions or in the dynamical equa-
tions, all of which are neglected in the previous chapters on wave kine-
matics. The present chapter discusses the effect of prescribed forcing
functions, such as the atmospheric pressure or the wind stress which
may excite waves from a state of rest. Specifically, the generation of
long waves both in midlatitudes and in the tropics will be discussed.
Furthermore, the forcing of internal gravity waves will be considered
where the nonlinear interactions play a crucial role. Nonlinearities lead
to coupling of the waves branches and modes by which one wave may
be excited through the presence of others – waves interact and can be
created by other waves. We have discussed a general treatment in Sec-
tion 9.6, using a Lagrangian framework. We expand the treatment to a
situation where a random ensemble of waves is an adequate represen-
tation for the wave field.

The description of waves in the preceding chapters is focussed on linear, unforced
wave systems and free-wave properties (except in Section 8.2.6 and in Section 9.6):
the emphasis is on the relation of the wave frequency and the wave number and
on dispersion and refraction and changes of the wave parameters in inhomogeneous
media during propagation. The cause of the wave motion, what process has set them
into being, is left from the discussion. Any initial push on a later freely propagating
wave is a generation process involving external ‘forces’, indicated in the governing
equations (5.69)–(5.73) by the G and F terms and similarly in the later versions
(7.1)–(7.3) and (8.1)–(8.5). In fact, waves may be forced not only at an initial time
but modified continuously during their life time.

The generation of a wave by some forcing is as simple as the excitement of a lin-
ear oscillator by an external force with periodic time behavior. What makes the wave
system complicated from a mathematical point of view is the complicated structure
of the oceanic wave guide and the resonance in wave-number-frequency space, de-
riving from the dispersion relation. What make it physically attractive is the wave
propagation in concert with the forcing process.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 305
DOI 10.1007/978-3-642-23450-7_10, © Springer-Verlag Berlin Heidelberg 2012
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10.1 The Forcing Functions of LongWaves

In the next sections, we derive a formalism allowing to treat forced wave problems.
The relevant nonlinear terms and forcing function, abandoned in the previous sec-
tions, are restored in the governing equations, and their response on the wave system
is determined. We restrict the treatment, however, to long waves, starting with the
forced version of (8.1) to (8.5). Redefining the pressure as p? D .p �pa/=�0 where
pa is the atmospheric pressure, and then dropping the star, we write these equa-
tions as

@u

@t
� f v C @p

@x
D Fu (10.1)

@v

@t
C f uC @p

@y
D Fv (10.2)

@b

@t
C wN 2 D Gb (10.3)

@p

@z
� b D 0 (10.4)

r � uC @w

@z
D 0 (10.5)

Here the buoyancy b D �g�=�0 is introduced to replace density. The horizontal
momentum balances and the buoyancy balance now contain the nonlinear advec-
tion terms and other nonspecified body forces or sources or frictional/diffusive terms
F?;G?b , i. e.

F D .Fu;Fv/ D �rpa � u � ru �w@u
@z

C F? (10.6)

Gb D �u � rb � w
@b

@z
C g.˛G� � �GS/C G?b (10.7)

where ˛ and � are the coefficients of thermal and haline expansion (see Sec-
tion 2.6.4).

The ocean is a wave guide because of the vertical boundaries and the mean strat-
ification entering the theory via the Brunt–Väisälä frequency N.z/. The kinematic
boundary conditions D�=Dt � w D .P � E/=�0 at the sea surface z D �, and
w D �u � rh at the bottom z D �h, as well as the dynamic boundary condition
p D 0 (actual pressure equal to the atmospheric pressure) at z D � were introduced
before (see Sections 2.2 and 2.3). Here, the rate of precipitation minus evaporation,
P�E enters as external forcing function. We expand these conditions about the mean
sea surface z D 0 and the mean bottom z D �H and obtain

@�

@t
�w D Z and p � g� D T at z D 0 (10.8)

w D W at z D �H (10.9)



10.2 Forced MidlatitudeWaves 307

where Z; T and W contain the forcing terms and the nonlinear terms arising in this
expansion,

T D �
�
1

2
N 2�2 C � � �

�
zD0

(10.10)

Z D 1

�0
.P � E/C

�
�
@w

@z
C � � �

�
zD0

(10.11)

W D
�
�u � rh� .h�H/

@w

@z
� � � �

	
zD�H

(10.12)

Notice that h is the actual depth and H a mean constant depth.
Putting the right-hand side of the equations (10.1)–(10.3) and (10.8)–(10.9) to

zero, we regain the familiar linear wave equations, analyzed in the previous chapters.
However, not all of the terms on the right-hand side are nonlinear: we also find the
diffusive terms for momentum and buoyancy which are attached to boundary con-
ditions, introducing the surface flux of horizontal momentum (windstress) and the
surface flux of buoyancy, combining the surface heat flux and the flux of freshwater
(see e. g. Section 3.1).

Though the above system of equations contains four time derivatives, the wave
state is described by a 3-dimensional state vector. If we take .u; v; p/ as state vector,
the remaining fields follow from diagnostic equations: (10.4) determines b; (10.5)
together with the kinematic bottom boundary condition determinesw; and (10.8) de-
termines � as functionals of .u; v; p/. A prognostic equation for the pressure to sup-
plement (10.1) and (10.2) is obtained from (10.3)–(10.5), and (10.8)–(10.9). Analo-
gously to the homogeneous equation (8.9), one obtains

@p

@t
CMr � u D Q (10.13)

where

Q D @T
@t

� gZ �
0Z

z

Gbdz C W
0Z

z

N 2dz0 (10.14)

collects forcing and nonlinear terms. The integral operator

M D g

0Z

�H
dz00 C

0Z

z

dz0N 2.z0/
z0Z

�H
dz00 (10.15)

is defined as in (8.10) and acts only on the vertical structure. The properties of M ,
and of the homogeneous system (10.1)–(10.5), are discussed in Section 8.1.

10.2 ForcedMidlatitude Waves

For midlatitude waves, it is preferable to consider the budgets of horizontal diver-
gence ı and the vorticity � which are defined as

ı D @u

@x
C @v

@y
and � D @v

@x
� @u

@y
(10.16)
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These are used to replace1 u D r�2.@ı=@x � @�=@y/; v D r�2.@�=@x C @ı=@y/.
With (10.13), the evolution equations become

@ı

@t
� f �C ˇuC r2p D r � F (10.17)

@�

@t
C f ı C ˇv D curlF (10.18)

@p

@t
CMı D Q (10.19)

in terms of the new state vector .ı; �; p/. Here ˇ D df=dy arises from the differ-
ential rotation due to the change of the Coriolis parameter f .y/ with latitude. From
(10.17)–(10.19), a scalar wave equation is easily derived for the f -plane case with
uniform rotation f D f0 D const and ˇ D 0. Then, the pressure equation

@

@t

�
@2

@t2
C .f 20 �Mr2/

	
p D @2Q

@t2
C f 20 Q �Mr � @F

@t
� f0M curlF

(10.20)

is obtained. Plane wave solutions p 	 ˚.z/ exp i.k � x � !t/ with k D .k1; k2/

are found for the unforced equation with three branches (i. e. different wave types).
The dispersion relations are !.1;2/n D ˙f0Œ1 C .kRn/

2�1=2 (the gravity branches)
and !.3/n D 0 (the geostrophic branch). The latter is degenerated on the f -plane:
it describes a steady geostrophically balanced current where Coriolis and pressure
forces balance, �f0v D �@p=@x and f0u D �@p=@y.

The degeneracy is relieved on the ˇ-plane where both f and ˇ are retained and
considered constant in the above equations (10.17)–(10.19). This approximation can
be justified by a proper expansion into various small parameters (see QG approxi-
mation in Section 5.2). Here we simply assume ˇL=f � 1 where L is a typical
horizontal scale, and f=ˇ is of the order of the Earth radius, and ! � f . The
first order correction of the geostrophic branch can then be derived by extracting the
geostrophic balances from (10.1) and (10.2), evaluating the geostrophic vorticity as
� D .1=f0/r2p and using (10.17) and (10.19) to obtain

@

@t

�
f 20 �Mr2

�
p � ˇM

@p

@x
D f 20 Q � f0M curlF (10.21)

We deduce !.3/n D �ˇk1=
�
k21 C k22 CR�2

n

�
which is the dispersion relation of

linear planetary Rossby waves. Another way to filter out gravity waves is to neglect
the tendency term in the divergence equation (10.17).

The separation of the wave spectrum of motions is however not completed with
the above analysis: (10.20) describes all wave branches on the f -plane, and one of
them is degenerate while (10.21) yields the correct form of the geostrophic wave re-
sponse. A complete separation into the wave branches requires a proper diagonaliza-
tion of the linear matrix operator appearing in the system (10.17)–(10.19). With the
same approximations used above to obtain (10.21), this goal can strictly be achieved.
Consider the wave evolution equations (10.17)–(10.19), written in the form

@ 

@t
C i.H CB/ � D q (10.22)

1 The use of the inverse of the Laplace operator r2 and of other operators involving r2 in this
section is a sloppy shorthand notation. The symbolic form f D r�2g is equivalent to solving
r2f D g with the associated boundary conditions.



10.2 Forced MidlatitudeWaves 309

Here the state vector  and forcing function q are given by

 D
�
ı; �;

1

f0
r2p

�T

and q D
�

r � F ; curlF ; 1
f0

r2Q
�T

(10.23)

and the matrix operatorsH and B are defined as

H D �if0

0
@ 0 �1 1

1 0 0

Mr2 0 0

1
A B D �iˇr�2

0
@@=@x �@=@y 0
@=@y @=@x 0

0 0 0

1
A (10.24)

Note that the modified operator M D M=f 20 for the vertical eigenfunctions has
been used, and the imaginary unit i is introduced in (10.22) for convenience in the
notation. Because jjBjj=jjH jj D O.ˇL=f0/ � 1 and H is easily diagonalized, we
approach the problem by expansion in terms of ˇL=f0. To lowest order in ˇL=f0, the
eigenvalue problem of the evolution operator is H �Rs D ˝.s/Rs where s D ˙; 0
counts the three eigensolutions, and no summation over s is implied. This is solved
by

˝.s/ D s˝ D sf0
�
1 � Mr2

�1=2
and Rs D �

is˝=f0; 1; 1 � .s˝=f0/
2
�T

(10.25)

for s D ˙; 0. Note that this eigenvalue problem concerns only the algebraic aspects
in the space of dependent variables of the full problem (10.22), and both eigenvectors
and eigenvalues still contain integral/differential operators related to M and r2. The
left eigenvectors, obtained from Ps �H D ˝.s/Ps, are given by

P˙ D 1

2
.˝=f0/

�2 .i˝=f0; 1;�1/ and P0 D .˝=f0/
�2 �0; .˝=f0/2 � 1; 1�

(10.26)

We will call Rs representation vector and Ps projection vector for reasons which
will immediately become evident. Both vectors are mutually orthogonal and normal-
ized, Ps � Rs0 D ıss

0

and
P
s R

sPs D I (3 � 3 unit matrix). The branches s D ˙
with the corresponding field functions ˙, describing gravity waves, and the branch
s D 0 with field function  0, representing the steady geostrophic flow, are defined
as projections of the fields  in the form

 s D Ps � .s D C;�; 0/ and  D
X
s

Rs s (10.27)

The vectors Rs achieve thus the representation of the state vector  in terms of the
wave field function s , whereas thePs projects the state  on the field function s .
The first relation in (10.27) is explicitly given as

 0 D
�
f0

˝

�2
r2 Œ�M�C p=f0� and

 ˙ D 1

2

�
f0

˝

�2 �
i
˝

f0
ı C � � 1

f0
r2p

	 (10.28)

For gravity waves, (10.17)–(10.19) yield p D Mı=.i!/; � D f0ı=.i!/, hence 0 D
0. For planetary waves, we have ı D 0; � D r2p=f0 and hence  ˙ D 0. In general,
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however, the operation leading to  0 extracts the geostrophically balanced part from
the general state .ı; �;r2p=f0/, and  ˙ extracts the gravity wave part.

Finally, the first order correction of the eigenvalue problem is B �Rs CH � QRs D
˝.s/ QRs C Q̋ .s/Rs where the operatorB and the tilde quantities are of first order in
ˇL=f0. Since the eigenvectors are normalized, only changes in direction are relevant,
and we require that Ps � QRs D 0. It yields corrections to the representation vector
(which are not needed because the lowest order of these quantities is nonzero) and
of the eigenvalue operator Q̋ .s/ D Ps � B � Rs . For the geostrophic branch we thus
obtain

Q̋ .0/ D iˇM
�
1 � Mr2

��1 @

@x
(10.29)

as correction to the geostrophic evolution operator ˝.0/ (which is zero to lowest
order, and thus the correction is needed). We denote from now Q̋ .0/ by ˝.0/.

The wave evolution is then governed by the three independent problems

@ s

@t
C i˝.s/ s D qs D Ps � q ; s D ˙; 0 (10.30)

These abstract equations of wave evolution can be cast into a more familiar form by
expressing˝.s/ with (10.25) andPs with (10.26). Writing (10.30) separately for the
gravity branch (s D ˙) and the Rossby wave branch (s D 0), one obtains

@ ˙

@t
˙ if0.1 � Mr2/1=2 ˙ D 1

2

�
f0

˝

�2 �
i
˝

f0
r � F C curlF � 1

f0
r2Q

�

(10.31)

@

@t

�
1 � Mr2

�
 0 � ˇM@ 0

@x
D �Mr2 curlF C 1

f0
r2Q (10.32)

The gravity wave branch fields are conjugate to each other,  C D . �/�. Note
that (10.32) seems to be equivalent to (10.21) which was derived by a much simpler
procedure from the governing equations. There is, however, an important difference:
the pressure p in (10.21) is the total pressure without concern of a geostrophic bal-
ance, while  0, defined by (10.28), is the amplitude of the geostrophically balanced
branch of the motion. A similar remark applies to the equations (10.31) and (10.20).

For practical applications, the wave field functions  s should be expanded in
the eigenfunctions of M, which simply replaces M by c2n=f

2
0 D R2n and, e.g.,

the Rossby wave field  0.x; y; z; t/ by the modal amplitudes  0n.x; y; t/. For later-
ally homogeneous problems, further simplification is achieved by expansion into the
eigenfunctions exp .ik � x/ of the r2-operator which replaces r2 by �k2 and modal
amplitudes  0n.k; t/ arise.

Generation of Long Gravity Waves by Pressure Fluctuations

As a first example of the above procedure, consider the generation of long gravity
waves by a variety of mechanisms, such as variations of atmospheric surface fluxes
(i. e. windstress, air pressure, and mass fluxes) as well as tidal forcing. To be specific,
we will consider only the barotropic component of long waves. Similar considera-
tions, though different in detail, apply to baroclinic waves. For the barotropic mode,
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we have c0 D p
gH and R20 D gH=f0 where R0 D c0=f0 	 2;000 km is the

barotropic Rossby radius. The gravity wave equation (10.31) becomes

.�i! ˙ i˝/ ˙ D 1

2

�
f0

˝

�2 �
i
˝

f0
r � F C curlF � 1

f0
r2Q

�
(10.33)

for disturbances 	 exp .�i!t/. We replace˝=f0 by .1C .R0k/
2/1=2, so that  ˙ is

the response in the barotropic mode at the wave number k and frequency !. Forcing
can be easily represented in terms of atmospheric pressure variations pa and wind-
stress �. All these forcing functions are contained in F which then takes the form

F D �rpa C �=H (10.34)

The forcing terms in (10.33) allow a direct comparison of the magnitude of the dif-
ferent driving forces. For the windstress, the divergence term dominates the curl term
at time-scales of order f �1

0 or shorter, whereas at longer time-scales the windstress
curl (last term) dominates the wind forcing. We continue without wind forcing be-
cause it is interesting and particularly simple to consider the barotropic response to
forcing by air pressure and tidal forcing. With the definition �e D �pa=g where �e is
the equilibrium response to pressure in a motionless state, one obtains from (10.33)

.˝  !/ ˙ D �1
2

�
f0

˝

�
r2g�e (10.35)

and the pressure field p and displacement field � D p=g of the ocean response in
the gravity wave branch follow from the representation  3 D r2p=f0 D RC

3  
C C

R�
3  

�, hence

�.k; !/ D k2R20
1C k2R20 � !2=f 20

�e.k; !/ D rgrav.k; !/ �e.k; !/ (10.36)

The resonance function rgrav.k; !/ is displayed in Figure 10.1. Depending on the
frequency, the following limiting cases can be identified:

1. !2=f 20 � 1C k2R20, i. e. forcing period � 1 day. One finds rgrav.k; !/ < 0 and
jrgrav.k; !/j � 1; hence the ocean’s reaction is small, with a phase opposite to
that of the forcing.

2. !2=f 20 D 1C k2R20, i. e. forcing period and scale correspond exactly to those of
long gravity waves. Then, rgrav.k; !/ ! 1 applies, and resonance is present. In
this case, the amplitude has to be limited by nonlinear effects and/or dissipation.

3. ! D f0, i. e. forcing at inertial period. Here rgrav.k; !/ � 1 applies, independent
of k, and � D �e follows (equilibrium response). This case is, however, less
interesting because inertial waves are mainly generated by the wind.

4. !2=f 20 � 1C k2R20, and thus rgrav.k; !/ D k2R20=.1C k2R20/ < 1. Note that
for sufficiently small wavelengths (kR0 � 1) it follows that rgrav.k; !/ ! 1,
and thus � � �e (equilibrium response). For air-pressure forcing (�e D �pa=g),
this situation is referred to as inverse barometer response. For kR0 & 2, which is
typical for many synoptic variations in air pressure, one finds rgrav.k; !/ & 0:8.
Hence at these scales the inverse barometer is a good approximation.
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Fig. 10.1 The resonance functions rgrav (a) and r ross
n (b) as function of wave number and frequency,

defined by (10.36) and (10.39), respectively . The dashed red curve is the respective resonance line.
Values above 3 and below �3 are wiped out. For the Rossby wave case, we have taken k2Rn D 2

Generation of Baroclinic Rossby Waves by Windstress Fluctuations

We assume a simple body-force model for the windstress coupling, F D S 0.z/�0
(the stress has a vertical structure given by S.z/). Expanding the structure function
into the vertical normal modes, S 0.z/ D P

n sn˚n.z/, one finds sn � ˚n.0/ 	
1=

p
H (see also Section 8.2.6 on the use of the body-force model). Looking for

the response of the Rossby wave amplitude  0n.k; !/ of the mode n at the wave
number k and frequency !, we immediately obtain from (10.32) the result

 0n.k; !/ D � sn.Rnk/
2

1C .Rnk/2
k1�

y
0 .k; !/ � k2�

x
0 .k; !/

! � !n (10.37)

To avoid the resonant singularity when the frequency ! matches the Rossby wave
frequency !n D �ˇk1R2n=.1C .kRn/

2/, friction must be added. The amplitude  0n
relates to the vorticity and pressure via  0n D Œ.Rnk/

2�n � k2pn=f0�=Œ1C .Rnk/
2�,

which becomes  0n D �k2pn=f0 for a geostrophically balanced state. We then find

pn.k; !/ D snR
2
nf0

1C .Rnk/2
k1�

y
0 .k; !/� k2�

x
0 .k; !/

! � !n (10.38)

for the pressure variations. Restricting the analysis to a zonal windstress, the pressure
amplitude becomes

snpn.k; !/ D k2Rn

k1Rn C Œ1C .Rnk/2�!= N!n
s2nf0

ˇ
�x0 .k; !/

D r ross
n .k; !/

s2nf0

ˇ
�x0 .k; !/

(10.39)

where N!n D 2!max
n D ˇRn is twice the maximum Rossby wave frequency of

the mode n (see Section 8.2.1). Note that snpn as well �x0 have the dimension of
m2 s�2 (after scaling the pressure and stress by a reference density). Furthermore,
s2nf0=ˇ � a=H where a is the Earth radius. Here are some numbers to charac-
terize the response: for an amplitude ı� D 10�5 m2 s�2 of windstress fluctuations,
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a=H D 103 and r ross
n D 1, we find a pressure amplitude ıp D 10�3 dbar or a dis-

placement of a density interface of roughly 1 m. One has to be quite close to the
resonance (i. e. large r ross

n ) to obtain a significant response. The simple structure of
the resonance function r ross

n .k; !/ is displayed in Figure 10.1. There is a strong de-
crease of jr ross

n j away from the resonance at ! D !n. Disturbances of the pressure
are in phase with the forcing for ! > !n and out of phase for ! < !n.

10.3 Forced Equatorial Waves

The Coriolis parameter vanishes at the equator and, as presented in Section 8.3, a
special wave theory must be developed. The equatorial ˇ-plane uses f D ˇy with
constant ˇ D 2˝=a in (10.1), (10.2) and (10.13). As discussed in Section 8.3, the
system supports gravity and Rossby type waves which are trapped vertically (as in
midlatitudes) but also meridionally. Equations for the wave branches are obtained by
vertical decomposition (replacement of M by c2n; we will omit the index n). We use
the state vector .�1; �2; �3/ as defined in Section 8.3.4, �1 D p=c C u, �2 D L�1C v

and �3 D L�2C .p=c � u/ and write the forced version of (8.159)–(8.161) as

�
@

@t
C c

@

@x

�
�1 C c

�
LC 1

R2e

�
�2 D Q=c C Fu D T1 (10.40)

@�2

@t
C c

2
�1 C c

2

�
LC 3

R2e

�
�3 D L�1C Fv D T2 (10.41)

�
@

@t
� c

@

@x

�
�3 C c�2 D L�2C .Q=c � Fu/ D T3 (10.42)

and for convenience repeat the definitions (8.136) and (8.152) of the operators ap-
pearing in this representation,

L D @2

@y2
� y2

R4e
L�1C  D e� 1

2
y2=R2e

yZ

�1
e
1
2
y02=R2e .y0/dy0 (10.43)

As shown in Section 8.3, eigenfunctions of L are the Hermite functions
n` `.y=Re/; ` D 0; 1; 2; : : : with the normalization factors n` D .2``Š

p
 /.�1=2/

and eigenvalues �.2`C1/=R2e . We note that the equatorial wave problem, expressed
in the potentials �i (in contrast to .q; v; r/ or .u; v; p/), is diagonal with respect
to an expansion of the variables in Hermite functions, i. e. with L replaced by
�.2` C 1/=R2e and Ti by their amplitudes Ti` of mode `, we may consider (10.40)
to (10.42) as equations determining the amplitudes �i` of the meridional mode `.
We find

�
@

@t
C c

@

@x

�
�1` � 2ˇ`�2` D T1` (10.44)

@�2`

@t
C c

2
�1` � .` � 1/ˇ�3` D T2` (10.45)

�
@

@t
� c @

@x

�
�3` C c�2` D T3` (10.46)
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which may be simplified further by scaling time t by � D .2ˇc/�1=2, the zonal
coordinate x by � D .c=2ˇ/1=2, the potentials as �i` D .�i=�/� 0

i`
, and the forcing

terms as Ti` D .�i=�2/T 0
i`
; i D 1; 2; 3. This yields, dropping the primes,

�
@

@t
C @

@x

�
�1` � `�2` D T1` (10.47)

@�2`

@t
C 1

2
�1` � 1

2
.` � 1/�3` D T2` (10.48)

�
@

@t
� @

@x

�
�3` C �2` D T3` (10.49)

The component ` D 0 is the Kelvin wave branch, ` D 1 the Yanai wave branch, and
for ` 
 2 we have gravity and Rossby waves.

There is a simple procedure to filter out the gravity and Yanai waves from the
system: this is performed by omitting the time derivative in (10.48) leading to the
diagnostic relation �1` � .` � 1/�3` D 2T2`. Introducing the variable (an equatorial
potential vorticity)

'` D �1` C .` � 1/�3` ` D 2; 3; : : : (10.50)

one finds�
@

@t
� 1

2` � 1

@

@x

�
'` D 2

` � 1
2`� 1

T1` C 2

�
@

@t
� 1

2` � 1

@

@x

�
T2` C 2

`.`C 1/

2` � 1
T3`

(10.51)

Only long Rossby waves are retained as free solutions of (10.51) (with ! D
�k=.2` � 1/, compare with (8.185)).

By projection onto the meridional modes, various problems of trapped equato-
rial wave motion can be formulated. If the system is zonally unbounded or periodic,
the waves propagate independently. Interesting problems arise in a zonally bounded
wave guide (e. g. the Pacific Ocean) since wave reflection at zonal boundaries cou-
ples the wave branches. The reflection process is complicated, as discussed in Sec-
tion 8.3.8.

Example

As example, we consider the system of Kelvin and long Rossby waves excited by a
localized wind patch as only forcing function in (10.40)–(10.42), i. e. Fv D Q D 0

and Fu D F.x/G.y/ where F.x/ and G.y/ have a finite support of a size
which is large compared to the Rossby radius. Hence T1 D F.x/; T2 D 0; T3 D
�F.x/L�2C G.y/. So we consider

�
@

@t
C @

@x

�
�10 D ˛0F.x/ (10.52)

�
@

@t
� 1

2` � 1

@

@x

�
'` D 1

2` � 1 Œ.` � 1/˛` � `.`C 1/ˇ`� F .x/ (10.53)

The coefficients ˛` and ˇ` derive from projecting theG.y/-terms. The first equation
determines the Kelvin wave amplitude, the second is for the Rossby wave of mode
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Fig. 10.2 Kelvin wave and Rossby wave ` D 2, generated by a steady wind patch localized as
indicated by the red lines. The Kelvin wave propagates to the east out of the forcing region, the
Rossby wave to the west

` D 2; 3; : : : The solution is easily constructed because the waves have no dispersion.
For instance, the Kelvin wave solution is

�10.x; t/ D ˛0

2
4

xZ

0

F.x0/dx0 �
x�tZ

0

F.x0/dx0
3
5 (10.54)

for the initial condition �10.x; t D 0/ D 0. The forced wave system consisting of
the Kelvin wave and the long Rossby wave ` D 2 is shown for different times in
Figure 10.2.

10.4 * Energetics of a Random GravityWave Field

In Section 9.6.2 we have laid the fundament for the description of statistical wave
fields, and the weak-interaction theory was developed for the resonant energy trans-
fer a the wave spectrum as one contribution to the source function S in the radia-
tive transfer equation (9.74). We have noticed the highly complicated nature of the
nonlinear transfer, leading to scattering integrals like (9.82) for the case of triad in-
teractions. In addition to wave-wave interactions, an oceanic wave field, however, is
subject to very specific sources and sinks of energy in the wave-number space, and
thus in general, all terms of the radiative transfer equation (RTE)

@N
@t

C rx � . PxN /C rk � . PkN / D S D Sgen C Swwi C Sdiss (10.55)

must be considered. We have separated the source term S into three contributions:
Sgen describes the generation of waves by external processes, Swwi represents the
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energy in the spectrum due to resonant wave-wave interactions, and Sdiss stands for
dissipation terms which eliminate wave energy. All sources and sinks, in particular
Swwi and Sdiss, may depend on the action spectrum N .k;x; t/, and the prototype for
Swwi is the triad term Striad in (9.82). In the present section we intend to exemplify
the energetics of a random wave field, having internal gravity waves in mind, and
we choose the three-dimensionally propagating form of internal waves developed in
Section 7.3. Hence x D .xh; x3/ and k D .kh; k3/ are three-dimensional.

To simplify, we assume that the wave field is stationary and horizontally homoge-
neous, so that only a vertically varying Brunt–Väisälä frequency profile N.x3/ and
the presence of the sea surface at x3 D 0 and (flat) bottom at x3 D �H lead to
reflection and refraction of the waves. The action spectrum N D N .k; x3/ is then
governed by

@

@x3
. Px3N /C d

dk3
. Pk3N / D S D Sgen C Swwi C Sdiss (10.56)

with the vertical group velocity Px3 D cg3, given by (7.19), and the vertical refraction
Pk3, given by (7.29). Note that Pk3 � 0 for a constant Brunt–Väisälä frequencyN . We
proceed with this simpler condition in the following.

To use the radiative transfer equation (10.56), the action flux F3.k; x3/ D
cg3.k/N .k; x3/ must be specified at the boundaries x3 D 0;�H . Consider for ex-
ample the sea surface. A wave impinging from the interior has k3 < 0; cg3 > 0 and
is reflected into one with the same modulus of k3 but reversed signs for the verti-
cal wave number and group velocity, k3 > 0; cg3 < 0 (see Section 7.4). If there
is no source of action (or equivalently energy) at the surface, the spectrum must be
symmetric with respect to k3 and the flux antisymmetric: N .kh; k3; x3 D 0/ D
N .kh;�k3; x3 D 0/ and F3.kh; k3; x3 D 0/ D �F3.kh;�k3; x3 D 0/, respec-
tively. Suppose, however, that there is a wave-maker (as e. g. windstress fluctuations)
at the surface, radiating waves with horizontal wave vectors kh and frequencies !,
with the corresponding downward action flux Q̊ .kh; !/ (the unit is action per area
and time and per wave vector increment dkh and frequency increment d!). We shall
use the convention that ! > 0. The downward flux of action, associated with the
wave-maker, as density in k-space is thus ˚.k/ D ˚.kh; k3/ D Q̊ .kh; !/d!=dk3,
where ! D !.k/ is given by the dispersion relation and the flux is placed at k3 > 0.
Note that ˚.k/ is negative (downward). Then

F3.kh; k3/C F3.kh;�k3/ D ˚.k/ at x3 D 0 (10.57)

must hold. We shall demonstrate below how to obtain ˚.k/ for windstress forcing
of internal gravity waves.

The RTE framework has been successfully used to build a prediction model for
surface gravity waves (Komen et al., 1994). The source functions for generation
and dissipation have been parameterized and an efficient code was developed for
the scattering integral of the resonant transfer (which are of quadruplet nature for
surface waves), building on the work by Klaus Hasselmann. As surface waves are
on the fringe of dynamical oceanography and not in the center of this book, we will
elucidate the above described concepts of the energy balance of a wave field and the
use of (10.55) for the case of internal gravity waves. The energy balance of internal
gravity waves was formulated by Olbers (1974, 1976) and Müller and Olbers (1975),
and an overall assessment of the source, sink and transfer terms was given in Munk
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(1981) and Olbers (1983, 1986). Many questions have been clarified since then and
details worked out, but a breakthrough for a predictive use of the RTE has still to
come. Problems exist in manifold ways. First, the scattering integral, being responsi-

43. The Garrett–Munk
Spectrum

The GM model, displayed in a as E.kh; !/, and in b as E.ˇ; !/, where ˇ is the modulus of k3.
The coordinates are plotted logarithmically so that plane surfaces represent powers laws, some
of which are indicated in the graph. The partially integrated forms MS and DS of the moored and
dropped spectra, respectively, are displayed as respective projections, the moored coherences
MHC and MVC are related to the corresponding bandwidths, as indicated. We use ˛ D kh and
	 D .1� f 2=!2/1=2 in the figure. After Garrett and Munk (1975).

A unified picture of the oceanic internal wave field was developed by Garrett and Munk (GM),
first in 1972 and later extended in refined form Garrett and Munk (1975). The basic features of
the GM spectral model are: horizontal isotropy and vertical symmetry, a �2 slope as well in the
frequency continuum and the (horizontal and vertical) wave-number domain, and a bandwidth of
equivalently 10 modes at each frequency. These properties are in accordance with observations,
basically the moored spectrum MS (the frequency spectrum of the horizontal current), the towed
spectrum TS (the spectrum obtained from horizontally towed thermistors), the dropped spectrum
DS (spectrum obtained from vertically dropped thermistors), and the moored coherence spectra
for horizontal (MHC) and vertical (MVC) separation. Later more refined measurements were
used to confirm and improve the model.
The spectrum is expressed in the factorized form

E.kh; !; z/D E.z/A.kh; !/B.!/ with

A.kh; !/ D QAŒkh=k
�

h .!/�=k
�

h .!/ and

B.!/ D 2

 

f

!
.!2 � f 2/�1=2

where E.z/ is the total (kinetic plus potential) energy density in physical space (see Sec-
tion 7.2.2) and the factors QA.�/ and B.!/ are normalized, integrated over their respective
arguments. The frequency spectrum is thus given by E.z/B.!/ which has a peak at the in-
ertial frequency, followed by a continuum 	 !�2, consistent with the moored spectrum MS.
The wave-number-dependent part A.kh; !/ has the same shape at each frequency and

k�

h .!/ D n� 

bN0
.!2 � f 2/1=2

characterizes its width at each frequency. A corresponding bandwidth in .k3; !/-space follows
from the dispersion relation (7.15). It is adjusted such that a constant number n� of equivalent
WKBJ modes is present at low frequencies (the bandwidth in the mode-number domain is then
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43. (continued) n� ). To appreciate this statement consider the vertical integral of (7.31) over the ocean depth,

Z
k3.z/dz D kh

Z �
N 2.z/� !2
!2 � f 2

	1=2
dz ' bN0

.!2 � f 2/1=2
The left-hand side is approximately n  where n is the mode number, and bN0 represents the
integral ofN.z/. The wave-number dependence of the GM spectrum is specified as

A.�/ D 2

 
.1C �2/�1

which is consistent with the towed and dropped spectra TS 	 k�2
h and DS 	 k�2

3 , respectively.
The dependence on the vertical coordinate is assumed as E.z/ D E0N.z/=N0 in agreement
with a WKBJ scaling, as giving by (7.22) and the box on p. 186. The standard parameters of GM
are: E0 D 4� 103 J m�2, n�  D 10, bN0 D 6:5m s�1 for typical conditions.
The general form of the spectral density is E˙.kh; �; !/, where the index ˙ stands for the up-
and downward parts of spectral energy (k3 < 0 and k3 > 0, respectively) and � is the angle of
the horizontal wave vector kh. The symmetric and isotropic GM spectrum is embedded into this
form as E˙.kh; �; !/ D .1=2/E.kh; !/=.2 /.

ble for the transfer of energy in the wave-number domain, must face a huge range of
situations in a prediction model, from the smooth transfer in an almost equilibrium
spectrum (like the Garrett and Munk type, see the box on p. 317 and Garrett and
Munk (1975)) to the spectral adjustment of localized energy outbursts and spatially
varying monochromatic sources, occurring e. g. for the generation of internal waves
by tidal forcing. There is a lack of efficient numerical algorithms to compute the
scattering integral in such conditions far from equilibrium. Second, there is quite
a number of potential sources affecting the wave field, some of which are briefly
described in the next section. Finally, in contrast to the two-dimensional surface wave
problem, the internal wave problem is three-dimensional in space because the most
dominating sources are located at the sea surface and the ocean bottom.

Instead of showing observations we elucidate the typical internal wave activity by
presenting in the box on p. 317 a condensed model, namely the Garrett and Munk
model of the spectral energy distribution (the so-called GM spectrum). It is based, as
described in the box, on various types of measurements from current meter and ther-
mistors (as a proxy of the vertical displacement, as e. g. described in Section 2.9.2).
It represents within a factor about 3 most internal wave properties observed in the
World Ocean: the spectral form in wave-number-frequency space, the spatial co-
herence of the wave field, and the rms velocities (about 5 cm/s) and the rms verti-
cal displacement (about 7 m), but also the vertical dependence of these quantities.
Note that the energy in GM is found mainly at low frequencies and large vertical
scales while the shear spectrum is concentrated in small vertical scales. Larger de-
viations from GM are found in singular places such as in the vicinity of extreme
topographic features (seamounts, canyons). Moreover, the GM spectrum does not
represent the spectral peaks at the inertial and the tidal frequencies adequately. They
have a high time and space variability and generally also show a vertical asymmetry.
Near-inertial waves mostly propagate downwards, hinting at a likely generation by
the wind. In 1973, the experiment IWEX (Internal Wave Experiment) was performed
in the Sargasso Sea, using a very stable three-legged mooring, to test the GM model.
IWEX was found in good agreement with GM (Müller et al., 1978) though small
but significant deviations due to layered fine-structure in the temperature field was
revealed.
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10.4.1 Generation Processes

The most prominent generation processes occur very localized in the frequency do-
main, mainly close to the inertial frequency ! D f and at the tidal frequency
! D M2. Near-inertial waves are excited by windstress fluctuations and propa-
gate long distances horizontally and down from the surface layer. The second, even
more monochromatic source comes from the scattering of the barotropic tide at to-
pography, predominantly the continental shelf, mid-ocean ridges but also the more
random-type small-scale roughness of the seafloor. The energy spectrum, on the
other hand, is observed to be quite continuous in the wave-number-frequency do-
main, and the energy is also not overwhelmingly concentrated in space, which would
be the case if one or the other of the above prominent, spatially and temporally very
localized processes would dominate. More specific, the energy in the near-inertial
and in the tidal frequency bands are observed to be highly variable in space, but they
reside on a spectral continuum with a more universal strength and shape (see the
box on p. 317). There are thus very likely sources of energy in the wave-number
continuum, part of which may be attributed to nonlinear transfer contained in the
scattering integral Swwi, but other candidates are discussed. These are generation of
internal waves by geostrophic adjustment of large-scale disturbances and by interac-
tion with mesoscale eddies. Internal waves arise as lee-waves by large-scale currents
flowing over topography (see e.g. Bell Jr., 1975), and by resonantly interacting sur-
face gravity waves (see e.g. Olbers and Herterich (1979)). The associated source
terms in the RTE are quite complicated, and we elucidate the generation process by
deriving in some detail the source terms for windstress and tidal forcing of internal
waves.

Windstress Forcing

A straightforward way to derive the surface action flux ˚w .k/ due to windstress
fluctuations, prescribed at the sea surface, starts by implementing the stress diver-
gence .Fu;Fv/ D @.�x ; �y/=@z into the horizontal momentum equations (10.1) and
(10.2) and integrate vertically over the surface layer influenced by the wind (the Ek-
man layer, see Section 14.1). At the surface � equals the windstress �0.xh; t/ (scaled
as usually by a reference density; the unit is m2 s�2), and at the base of the layer and
below the stress vanishes. After Fourier transformation with respect to space and
time, e. g. for the velocity in the x-direction, integrated vertically over the surface
layer,

U.xh; t/ D
Z

dkh

Z
d!U.kh; !/ei.kh�xh�!t/

we find

U D i!�x0 � f �
y
0

!2 � f 2 and V D i!�y0 C f �x0
!2 � f 2 (10.58)

for the windstress-driven .U; V /, and

w.�d/ D ikh � .U; V / D �
!kh C if k:h

!2 � f 2
� �0 (10.59)



320 10 ForcedWaves

for the vertical velocity at the base z D �d of the directly wind-driven layer. Note
that w.�d/ is the Ekman pumping for time-dependent conditions (compare with
Section 14.1). All field quantities in (10.58) and (10.59) are Fourier components,
i. e. they are function of .kh; !/. The pumping induced by w.�d/ establishes the
above mentioned wave-maker, exciting the waves which radiate downward from the
surface layer into the interior. The appropriate vertical velocity P�3 of the interior
wave field follows from the representation (9.44) (and the following relations in that
section),

P�3 D �i
kh

k
aei.k�x�!t/ C c.c. (10.60)

where the renormalization to energy amplitudes a, described in Section 9.6, was
assumed. We equate w.kh; !;�d/ with P�3 at x3 D �d , where k3 D k3.!/ > 0 has
to be taken for a downward radiating wave, and obtain

a.kh; !/ D i
k

kh
w.kh; !;�d/eik3.!/d D �i

k

kh

!kh C if k:h

!2 � f 2
� �0.kh; !/eik3.!/d

(10.61)

which is the required relation of the wave field to the windstress fluctuations. Only
frequencies in the range f < ! < N are allowed. The remaining frequency range
in the forcing does not force internal waves. It is important to note that a.kh; !/ is
the wave amplitude in .kh; !/-space (not in .kh; k3.!//-space!). Hence

ha.kh; !/a
�.k0

h; !
0/i D 1

2
ı.kh � k0

h/ı.! � !0/E.kh; !/ (10.62)

defines the appropriate energy spectrum of the downward radiating waves, and

h P�3$i D
Z

d2kh

NZ

f

d!cg3E.kh; !/ (10.63)

is the vertical energy flux. Inserting the above relations we find

h P�3$ijx3D�d D �0

Z
d2kh

NZ

f

d!cg3
k2!2

.!2 � f 2/2
k˛k	

k2h
D˛ˇD

�
	ıF

�
ˇı.kh; !/

D ��0
Z

d2kh

NZ

f

d!
!kh.N

2 � !2/1=2
.!2 � f 2/3=2

k˛k	

k2h
D˛ˇD

�
	ıF

�
ˇı .kh; !/

(10.64)

The scalar products kh and �0 in (10.61) have been converted to a matrix notation
(˛; ˇ; : : : run over 1, 2), using

.D˛ˇ / D
�

1 if=!
�if=! 1

�

and the proper form for the vertical group velocity was inserted. The windstress
cospectrum F �

˛ˇ
.kh; !/ is defined such that its integral over kh and ! yields the
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covariance h�0˛�0ˇ i. Simplifying to a spatially isotropic spectrum (see Section 11.1)
for the windstress fluctuations,

F �˛ˇ .kh; !/ D
�
ı˛ˇ � k˛kˇ

k2h

�
F � .kh; !/

2 kh
(10.65)

we finally arrive at

h P�3$ijx3D�d D ��0
Z

dkh

NZ

f

d!
!kh.N

2 � !2/1=2

.!2 � f 2/3=2
f 2

!2
F � .kh; !/ (10.66)

The appropriate energy flux, which enters the boundary condition (10.57), can eas-
ily be identified, however, here as density in .kh; !/-space; the angular dependence
has been integrated. Note that there appears a nonintegrable singularity at the iner-
tial frequency. It derives from the pumping velocity (10.59) because the momentum
equations (10.1) and (10.2) for the upper layer show a resonance at ! D ˙f . This
can be avoided by the convenient implementation of (horizontal) friction. Adding
.�ru; rv/ to .Fu;Fv/, the singular denominator is then replaced according to

1

.!2 � f 2/3=2 ! .!2 � f 2/1=2

.!2 � f 2/2 C 2r2.!2 C f 2/C r4
(10.67)

The frequency band close to f now assumes a vanishing response, as expected for
the vanishing of the vertical group velocity for inertial waves. The maximum of this
expression is roughly at !2m � f 2 ' .2=

p
3/rf , and the function is sharply peaked

at !m for small r=f .
Nevertheless, the response comes predominantly from the near-inertial range

of the windstress fluctuations. Alford (2001) reports values up to 30mW m�2

for the global range of the flux from the wind to mixed-layer near-inertial mo-
tions, with zonal means 	 3mW m�2 in the strong west-wind zone and a global
mean of 0:98mW m�2. Some is dissipated and used to erode the mixed-layer
base, a significant fraction must penetrate into the deeper layers. A rough esti-
mate of the flux from (10.66), using ! ' !m for the frequency dependence, is
�0.N=f /.f=r/

3=2.2 =Lh/F
� .f / where Lh is the length scale and F � .f / is the

spectral density of the stress fluctuations at low synoptic frequencies. For typi-
cal conditions, values of order 1�10mW m�2 are found for h P�3$i: take N=f D
3�50; f=r D 102; Lh D 10�100 km; fF � .f / D 10�10 m2 s�2. The energy con-
tent of the Garrett–Munk spectrum is 4� 103 J m�2, leading to an ‘overturning’ time
scale of 10–100 d.

Conversion of Barotropic to Baroclinic Tides at Topography

Without proof we refer to the result of Bell Jr. (1975) who derived the vertical flux
due to scattering of the barotropic tide at topography,

h P�3$ijx3D�H D �0

Z
d2kk�1

h F top.kh/

�
X
n

n!T

2 2

��
N 2 � n2!2T

� �
n2!2T � f 2

��1=2
J 2n .ˇ/

(10.68)
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radiating upward from the bottom. Here !T is the fundamental frequency of the
tide M2, and .UT; VT/ are the amplitudes. Furthermore, ˇ2 D .k21U

2
T C k22V

2
T /=!

2
T.

The sum over the integer n is restricted to n!T < N , and Jn is the Bessel function
of order n (see the box on p. 247). Most important, the spectral density F top.kh/ of
the random topography enters the expression (the integral over the two-dimensional
wave vector yields the variance of the height fluctuations) and largely determines the
dependence on the wave number. The frequency dependence of the flux, on the other
hand, is localized in a ı-function comb at the harmonics n!T < N of the tide.

The following estimate restricts (10.68) to n D 1 and assumes khUT � !T. Then,
using J1.x/ � x=2 for small x and !2T � N 2 we find

h P�3$ijx3D�H D �0
U 2T
8 2

N

!T

�
!2T � f 2�1=2

Z
d2kkhF

top.kh/ (10.69)

for an isotropic tide where UT D VT. Typical values to estimate the factor in front
of the integral are N D 10�5 s�1 (for the near bottom part of the water column),
UT D 5�10�2 m s�1 and !T D 1:4�10�4 s�1 for the tidal parameters. The spectral
integral is bit critical: we replace it by a variance h.ıh/2i of topographic fluctuations
and a spatial scale 2 =L. With h.ıh/2i D .50m/2 and L D 100m the flux be-
comes 4mW m�2. This magnitude is confirmed by Polzin (2009) in a more detailed
evaluation of (10.68).

10.4.2 Dissipation Mechanisms

A survey of the many mechanisms, by which internal wave energy can dissipate,
has been given by Thorpe (2005). They are manifold: gravitational instability occurs
when the fluid velocity exceeds the phase speed; shear instability requires that the
local Richardson number is less that 1=4 in parts of the region (see Section 7.7.3).
This condition may be caused by the superposition of the waves themselves or, for
instance, at critical layers where the wave shear becomes large (see Section 7.7.1).
The most likely candidate for the oceanic wave field is wave breaking by shear in-
stability, handing the wave energy over to turbulence. The physics is described in
Section 11.3.3 (the mean flow in that framework is now the internal wave).

We make use of a parametrization of wave breaking for the spectral domain, pro-
posed by Natarov and Müller (2005). They argue for a quasi-linear form of the dis-
sipation source function

Sdiss.k/ D ��.k;Ri/N .k/ (10.70)

for wave action, where �.k;Ri/ is a coefficient, depending on the wave vector and the
overall Richardson number Ri supported by the wave field itself. It may be computed
from the spectrum of the vertical shear, related to the energy spectrum by

S.k/ D .!2 C f 2/k23
N .k/
!

D .!2 C f 2/k23E.k/ (10.71)

The Richardson number follows from

Ri�1 D
Z

d3k
S.k/

N 2
D
Z

d3k
!2 C f 2

N 2
k23E.k/ (10.72)
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All quantities may, of course, depend on space and time. The form of (10.71) follows
from the eigenvector (9.48), and the integral of the shear spectrum yields the variance
of the wave-induced vertical shear,

R
d3kS.k/ D h.@u1=@x3/2C .@u2=@x3/

2i. Note
that (10.72) is an implicit relation for Ri because the wave spectrum depends on Ri
via �.k;Ri/ in the RTE balance.

We have shown in Section 7.7.3 that shear flows may become unstable if Ri <
1=4, hence it is reasonable to assume that the coefficient �.k;Ri/ increases with
decreasing Ri. Equally important is the dependence on the wave number. Long waves
should be less affected than short waves, i. e. �.k;Ri/ should be increasing with the
(vertical) wave number. Natarov and Müller (2005) give specific forms for �.k3;Ri/.
Except for the above general features we will make no use of them when we use the
dissipation model in the following section.

10.4.3 SomePrototypeBalances

We will illustrate the use of the radiative transfer equation in the reduced form
(10.56) and the associated boundary condition (10.57) with some simple examples.
Of course, we cannot treat the wave-wave-interaction in a simple way, and thus we
will ignore it in the present section. Some information on the working of this process
in the spectral balance will be given in the next section.

It is useful to split the RTE explicitly in the up- and downward propagating parts.
We write it for energy instead of action, and we define upward propagating part of
the spectrum as EC.k/ D E.kh; k3 < 0/ and zero for k3 > 0, because the vertical
group velocity cg3 is upward for negative k3. The downward part E�.k/ is defined
accordingly. The source terms are split in the same way. The RTE becomes

˙c @E
˙

@x3
D !S˙ with c.EC � E�/ D F at the respective boundary (10.73)

where c D jcg3j is the modulus of the group velocity. Here F D !˚ is the flux
through the boundary, and we will use F surf < 0 and F bot > 0 for the fluxes at
the sea surface and the bottom, respectively. Remember that we have assumed a
constant Brunt–Väisälä frequency so that the refraction term is absent in (10.73) (in
addition, the group velocity is spatially constant). Of course, the above equation is
easily solved if the sources !S˙ and F are given. In the following we will use the
dissipation term (10.70) and prescribed boundary sources.

No Dissipation, no Fluxes

If there are no forcing and dissipation, we find E˙.k; x3/ D const D E0.k/. The
spectrum is thus symmetric with respect to k3 and vertically constant; the function
E0.k/ is arbitrary. The situation, envisioned here, is one in which a wave field has
been excited and then left alone without dissipation. Reflection at the surface and
bottom lead to symmetric conditions.
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With Dissipation, no Fluxes

Here we face the balance (10.73) with !S˙ D ��E˙ so that the up/down spectra
are exponentially in the vertical with the spatial scale c=� . The boundary conditions,
however, lead to E˙ � 0, as expected: with zero input of energy the dissipation
eliminates all waves.

With Dissipation, with Fluxes

Solving (10.73) with !S˙ D ��E˙ subject to forcing at the surface and the bottom,
we obtain the relations

E˙.k; x3/ D E0̇ .k/�˙.x3/ with �˙.x3/ D �
�.x3/

��1 D exp

0
@˙

0Z

x3

�=cdx0
3

1
A

EC
0 � E�

0 D F surf=c and EC
0 �

C.�H/ � E�
0 �

�.�H/ D F bot=c

(10.74)

and hence

cE0̇ .k/ D F bot.k/ � �.�H/F surf.k/

�C.�H/ � ��.�H/ (10.75)

The form and amplitude of the wave spectrum is uniquely determined by the fluxes
at the surface and the bottom. The upward spectrum EC decreases and the down-
ward spectrum E� increases with depth with the scale c=� , which is generally wave-
number-dependent. If � is, as described above, a function of the gross Richardson
number Ri supported by the wave field, the solution must be completed by determin-
ing Ri. This is achieved by the implicit condition (10.72).

Prescribed or linear interior sources/sinks can easily be incorporated into the
above solution, but it unlikely at all that it mirrors any observed state, as e. g. the
GM spectrum from the box on p. 317. In this linear model, generation and dissipa-
tion must occur at the same wave number. If the dissipation coefficient � does not
change much over the range of the horizontal wave numbers of the generated waves,
the vertical depth scale c=� becomes extremely wave-number-dependent: referring
to Figures 7.1 and 7.3, showing the vertical group velocity c as function of fre-
quency and horizontal wavelength, we note that c changes drastically as function of
the horizontal wavelength. Longer waves of say 10 km horizontal wavelengths need
about 10–100 days to reach the bottom, shorter ones of 1 km wavelength need about
100–1,000 days (for near-inertial frequencies; see Figure 7.3). Hence the exponen-
tial decrease in the linear solution (10.74) diversifies the spectrum in the vertical: we
will find considerable asymmetry in the linear solution, actually at all frequencies
and wavelengths. This is in contrast to the observations.

10.4.4 Resonant Transfer

The cross-spectral transfer by wave-wave interaction is missing in the previous lin-
ear model. This process is a main actor in the interior of the ocean. In the above
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described state, where wave energy is injected either at the sea surface or the bot-
tom leading to the asymmetric energy spectrum E˙.k/, the resonant coupling of up-
and downward propagating waves could lead to a rapid redistribution of the spectral
shape. In the present section we will discuss the spectral transfer by wave-wave inter-
actions on a rather qualitative level. For details we refer to the literature already cited
in Section 9.6.2 and in the present section. A review is given by Müller et al. (1986).

The spectral transfer due to interactions of wave triads is governed by the scatter-
ing integral (9.82). Two wave with wave vectors k0;k00 and associated frequencies
!0; !00 transfer action (energy) to a third one, characterized by !;k by either sum or
difference interaction,

! D !0 ˙ !00 and k D k0 ˙ k00 (10.76)

The essential point is that not any wave triad may interact resonantly because the
frequencies have to satisfy the dispersion relation and the above frequency condition
becomes!.k/ D !.k0/˙!.k�k0/ (eliminating k00; in writing the last term we have
used that the frequency of internal wave only depends on the modulus of the wave
vector). For given output wave vector k, this condition defines a surface in the three-
dimensional k0-space, which turns out to be highly complicated and multiconnected.
By evaluating the ı-functions, the scattering integral (9.82) for triad interactions can
then be reduced to a two-dimensional integration over this domain. Note that the
efficiency of the transfer – the magnitude of Striad.k/ – not only depends on the
range of the resonance but also on the size of the transfer function (9.83) and the
spectral power of the interacting triplets.

We discuss two examples in a qualitative way. First consider the model from
the previous section where near-inertial waves are generated at the sea surface and
reflected at the bottom. The difference interaction in (10.76) is excluded for such
waves because the difference of two near-inertial frequencies falls below the range of
the internal wave frequency band. The sum interaction of a downward propagating
wave and its bottom-reflected upward propagating partner should have a response
at about twice the inertial frequency and double the horizontal wave number. The
restriction is, however, that the opposing vertical wave numbers sum to a low value,
and it is unlikely that a resonant triad results: with the resulting k being almost
horizontal the wave frequency is rather close to N than to 2f . The near inertial band
is thus likely more stable than the wave continuum at higher frequencies.

For waves of higher frequencies (larger than 2f ) the difference interaction is
allowed, and hence two partners with opposing vertical wave numbers may interact
with a wave in the inertial band which has about double the vertical wave number
(see Figure 10.3a). Likewise we may describe the same situation as the interaction
of (say) a downward propagating wave (with k0

3 > 0) with near-inertial motion (with
k3 	 2k0

3) to excite an upward moving wave (with k00
3 D k0

3 � k3 	 �k0
3 < 0).

This is condition of elastic BRAGG2 scattering. It leads to vertically symmetric wave
field at all frequencies (with exclusion of the very low near-inertial ones) in a fairly
rapid transition process (of the order of the wave period, see the work of McComas
(1977)). Note that the GM model (see the box on p. 317) of the basic state of the
oceanic internal wave field is vertically symmetric. On the other hand, the near-

2 SIR WILLIAM LAWRENCE BRAGG, *1880 in North Adelaide, Australia, †1971 in Waldringfield
near Ipswich, Suffolk, physicist. He received the Noble Price for physics in 1915 jointly with his
father for their work X-ray diffraction.
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Fig. 10.3 Resonant triads for the a elastic Bragg scattering, b parametric subharmonic instability,
and c induced diffusion mechanisms, explained in the text. The wave vectors are sketched in the
.kh; k3/-space but as the frequency of internal waves is only dependent on the direction of the wave
vector, the sketches also include lines of constant frequency. Note that ! D f is along kh D 0 and
! D N is along k3 D 0. Note that a and c are difference interactions according to (10.76), and
b is a sum interaction

inertial band (which is assumed symmetric in GM as well) is found asymmetric in
most observations.

The spectral transfer in the GM model spectrum (and slightly perturbed versions)
has been investigated in detail by evaluating the scattering integral (9.82) by a numer-
ical code. Olbers (1974, 1976) has found that wave energy is systematically trans-
ferred in the GM spectrum from the intermediate frequency range to f < ! < 2f

and towards high vertical wave numbers with a delivery time scale of a few days.
McComas and Bretherton (1977) have identified parametric subharmonic instability
as the main contributor for this transfer. In this process a low-vertical-wave-number
component decays into two components of high vertical wave number and half the
frequency of the primary wave (see Figure 10.3b). In successive stages of having the
frequency the energy is ultimately pushed to the near-inertial band at high vertical
wave numbers.

The instability mechanism is readily understood from the triad equations (9.65):
if the amplitudes a2 and a3 in the triplet are much smaller than a1, we may treat the
latter as approximately constant, leading to

Ra2 D !2!3ja1j2a2
by elimination of a3 (a corresponding equation is valid for component 3). Remember
that the frequencies in the above notation were allowed to carry both signs (see Sec-
tion 9.6) so we conclude that it is only the sum interaction, where both frequencies
!2 and !3 are positive, which leads to an unstable growth of the components 2 and 3.
The growth is exponential with a growth rate

p
!2!3ja1j. Then j!1j D j!2j C j!3j.

The wave with the largest frequency is thus exponentially unstable if the other two
waves of a triad which have the small amplitudes. The condition is known as HAS-
SELMANN’s3 criterion (Hasselmann, 1967a). In the realm of resonant triads the con-
dition that all waves have to satisfy the dispersion relation is most easily met if
j!2j D j!3j D j!1j=2, i. e. we are facing the subharmonic situation described above.
In plasma physics the wave 1 is referred to as ‘pump wave’ because it pumps energy
into the subharmonic components 2 and 3.

3 KLAUS HASSELMANN, *1931 in Hamburg, physicist. Work on wave dynamics, climate change
and particle physics.
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Another prominent process among a resonant triad, also identified by McComas
and Bretherton (1977), is the induced diffusion mechanism. Here a high-frequency,
high-wave-number component interacts with a wave of much lower frequency and
wave number to generate another high-frequency, high-wave-number component
(see Figure 10.3c). The process has some similarity with Brownian motion leading
to a random walk of a test particle in the macroscopic physical space. It occurs here,
however, in the wave-number space and expresses a diffusion of action in the high-
wave-number region. Small-scale waves with short periods are randomly perturbed
with small excursions in the wave-number-frequency domain by interaction with
larger-scale more persistent wave motion. McComas and Bretherton (1977) show
that the scattering integral (9.82) for triads interacting in the induced diffusion limit
is approximated by a diffusion term, in the simplest case in the vertical wave-number
space,

@N .kh; k3/

@t
D Striad.kh; k3/ � @

@k3

�
D.kh; k3/

@N .kh; k3/

@k3

	

The diffusion coefficient D is given by an integral over the shear spectrum of
the large-scale low-frequency wave motion. Note that action N , but not energy
E D !N , is diffusing through the vertical wave-number space. However, both quan-
tities are in equilibrium if the action flux Ja D D@N=@k3 is constant (as function of
k3; it may still depend on kh) and no other sources or sinks occur in the respective
wave-number domain. Any flux of action across a wave number k�

3 is transferred
undiminished across any other wave number kC

3 in that domain. Knowing Ja, say
from boundary condition at k�

3 , and evaluating D as function of k3, we may easily
determine the spectral form of N and E in the constant flux region by a simple
integration (McComas and Bretherton (1977) give examples but note also that Ja is
generally unknown).

The basic physics of the induced diffusion mechanism is disclosed by the above
statements. We may, however, make matters more complicate by considering the be-
havior of energy in the constant action flux regime. Associated with the action fluxJa

there is an energy flux Je D !Ja but as ! is not constant during the diffusive march
through the domain (kh remain constant but k3 and thus ! changes), the energy flux
has a nonzero divergence. In other words, though we have @N=@t D 0 and @E=@t D
0 for Ja D const in the induced diffusion domain, we find that – in terms of energy –
the divergence of Je is locally balanced by a source/sink term Ja@!=@k3. Note,
however, that energy is lost/gained by the divergence term at corresponding rate.

10.4.5 The Link toMixing

Finally, we would like to point out that investigations of the RTE for internal grav-
ity waves are by no means an academic problem. The march of energy through the
spectrum from large to small scales ends in the dissipation range of small-scale tur-
bulence, and the aim is to relate the wave energy balance to the turbulent mixing
processes associated with the wave dissipation (see Section 11.3.3).

It was shown in Section 9.6.2 that wave-wave interactions conserve the total
energy. Hence the rest of the terms in (10.55) must balance in the overall inte-
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gral4,
Z

d3k

�
@E
@t

C !rx � . PxN /C !rk � . PkN /

	
D
Z

d3k!
�
Sgen C Sdiss

�
(10.77)

after conversion to the energy spectrum E D !N . The propagation and refraction
terms on the left-hand side may be converted to the divergence (in physical space) of
the energy flux carried by the wave field, and we obtain

@E

@t
C rx �

Z
d3k PxE D

Z
d3k!

�
Sgen C Sdiss

�
(10.78)

where E is the total energy (spatial) density. Note that surface and bottom processes
enter via boundary conditions. If (10.78) is integrated over the ocean depth, they ap-
pear explicitly. In steady state and under spatially homogeneous conditions, the gen-
eration and dissipation of wave energy must balance in the overall integral. There is
likely a large scale difference between them as function of the wave number because
generation is likely at large scales and dissipation at small scales. It is bridged by the
transfer in wave-number space due to resonant interactions, however, this process
does no longer appear in the integral balance. Other processes might contribute to
this transfer from large to small scales, such refection at sloping bottom profiles (see
Section 7.4.2).

The budget of the kinetic energy TKE, residing in the turbulence field, will be
derived in Section 11.3.1. It is of the form

@TKE

@t
D @FTKE

@z
� u0

hw
0 � @uh

@z
C b0w0 � � (10.79)

where primed quantities refer to the turbulent fields and mean quantities refer to the
wave field (only the mean shear @uh=@z appears). Furthermore, FTKE is the vertical
flux of turbulent kinetic energy and b0w0 is the vertical buoyancy flux, supported by
the turbulence, and � is the dissipation rate of TKE. The exchange of energy with
the wave field is found in the second term on the right-hand side, the so-called ‘shear
production term’ of the turbulence. Assuming that the shear production term equates
to the transfer of wave energy to high wave numbers by the resonant interactions and
neglecting the turbulent flux divergence and the tendency term in (10.79), we find

�u0
hw

0 � @uh

@z
' � 1

�0

Z

high k

d3k!Swwi ' � � b0w0 D � CKbN
2 (10.80)

In the last relation we have implemented the diffusive parametrization of the tur-
bulent buoyancy flux (see Section 11.3.3). Assuming further that the dissipation of
wave energy is dominated by the high wave-number domain and using then (10.78),
the thread from wave generation to the diapycnal diffusivity is revealed. It should be
mentioned, however, that breaking internal waves are not the only mechanism to gen-
erate small-scale mixing. For instance, large-scale geostrophic flow may be unstable
and produce small-scale turbulence directly (by Kelvin–Helmholtz instability, see
Section 7.7.3) without passing any energy through the internal wave compartment.
For a comprehensive determination of the diffusivity from (10.80), these contribu-
tions have to added on the left-hand side of (10.80).

4 Note that for simplicity the frequency ! was assumed here time-independent. Otherwise an addi-
tional source term would come up (see the discussion in Section 9.3).
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A rough estimate ofKb is obtained by equating the transfer rate from wave-wave
interactions to a typical generation rate, e. g. by the windstress. Because this process
enters via a flux through ocean surface, a vertical integral must applied to (10.78) to
find

R
dz
R

d3!Swwi ' F surf. Taking F surf D 1�10mW m�2 as estimated above for
the surface flux due to forcing by windstress, N D 3� 10�3 s�1, and an ocean depth
of H D 5;000m, we find Kb � 0:2�2 � 10�4 m2 s�2 if � is neglected in (10.80).
However, it is generally accepted that only a small fraction of the energy transfer
to high wave numbers is used to erode the mean density gradient. Anticipating the
results from Section 11.3.3 we may use

�

KbN 2
D 1 � Rif

Rif
� 5

where Rif D 0:15 has been used for the flux Richardson number. In fact, observations
yield values for � as high as 10�9 m2 s�3 in the ocean interior (see Section 11.3.3)
which is of the same magnitude as F surf=.�0H/. The above range of values for Kb

is thus overestimated and values of a sixth of the range result if the above ratio is im-
plemented. Note that the reasoning in this section differs from that in Section 11.3.3,
where Kb is inferred from � measurements and the flux Richardson number.

Further Reading

A comprehensive account of ocean waves is given in Waves in the Ocean by LeBlond
and Mysak (1980).

An introduction in the dynamics of both oceanic and atmospheric waves is pro-
vided in Waves in the Ocean and Atmosphere by Pedlosky (2003).

More on sound waves in the ocean can be found e. g. in Fundamentals of Ocean
Acoustics by Brekhovskikh and Lysanov (2003), and in Chapter 7 of Principles of
Ocean Physics by Apel (1987).

Ocean Acoustic Tomography by Munk et al. (1995) provides an exhaustive treat-
ment of the use of sound waves to infer ocean temperature and other fields.

The Dynamics of the Upper Ocean by Philipps (1977) has for long been a standard
text on small-scale waves and turbulent motions in the upper ocean.

An in-depth discussion of the interactions between waves and mean flow can be
found in the monograph Waves and Mean Flows by Bühler (2009).

Atmosphere-Ocean Dynamics by Gill (1982) contains many aspects of large-scale
dynamics in ocean and atmosphere. In particular the forcing of equatorial motions is
discussed here extensively, and also in El Niño, La Niña, and the Southern Oscillation
by Philander (1990).

The theory of linear and nonlinear internal gravity waves is presented in Dynamics
of Internal Gravity Waves in the Ocean by Miropolsky (2001), including a Hamilto-
nian description.

In The Turbulent Ocean, Thorpe (2005) gives an extensive account of internal
waves, instability of stratified shear flows and the transition to turbulence. Further-
more, the physics and observations of mixing and turbulence in different ocean en-
vironments is discussed.

The linear forcing of various wave types in terms of the corresponding Green’s
function is discussed in Analytical Theory of Forced Oceanic Waves by Fennel and
Lass (1989).



Part IVOceanic Turbulence and Eddies

Many flows in the ocean and the atmosphere are turbulent. Turbulent flows are char-
acterized by large fluctuations in space and time and occur on many space and time-
scales, from the large-scale oceanic and atmospheric circulation down to small-scale
processes such as in the planetary boundary layer of the atmosphere or the surface
mixed layer of the ocean. The figure on p. 333 shows the population of oceanic en-
ergy of the dominating motion in a space-time scale diagram, namely the general
circulation, the wave compartments, and the turbulence (two-dimensional mesoscale
eddies and three-dimensional isotropic turbulence). Turbulent flows are governed by
the Navier-Stokes equations derived in Chapter 2. The ultimate cause of turbulence
lies in the instability of flows, which tends to occur when inertial forces become large
compared to other forces in the momentum balance. This circumstance can often be
expressed by the Reynolds number, which compares the magnitude of inertial to
frictional forces and is always very large in turbulent flows. Associated is a high sen-
sitivity to small changes in initial and boundary conditions. Therefore, the evolution
of turbulent flows is not predictable in detail, although certain average features of the
flow are well predictable. Note that, to some extent, the characterization of a flow as
“turbulent” can depend on which scale the observer is interested in. For example,
on time-scales of a few days, the evolution of mesoscale eddies in the ocean is of
a fairly deterministic nature and can be predicted with considerable success. How-
ever, on time-scales relevant to ocean climate change, only certain mean features of
the eddying system are relevant and eventually predictable.

An important feature of turbulence is its diffusive nature. In a turbulent flow, the
separation of two particles that are initially close together will on average increase
with time. Although turbulent mixing is almost always much larger than molecular
mixing, both are linked together, and the existence of the latter is a prerequisite for
the former. To describe this linkage is one task of turbulence theory.

The starting point of any theory of turbulence is to accept the impossibility of
predicting turbulent flows. A consequence is that all flow variables have to be con-
sidered as stochastic, so that only statistical parameters of the flow are meaningful.
A complete theory of turbulence does not exist so far, and only under rather restric-
tive assumptions, is it possible to derive certain aspects of turbulent flows based on
the governing equations. The prime example for this approach is Kolmogorov’s the-
ory of homogeneous turbulence discussed in Section 11.1 below. On the other hand,
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Drawing of the apparatus, which still can be seen at the University of Manchester, used by Osborne
Reynolds to study the transition from laminar to turbulent motion. In the tank, water enters the
horizontal glass tube through a conical funnel. To visualize the flow, colored water drawn into the
tube from a container seen on the left top of the tank. By controlling the flux through the tube, the
transition to turbulent flow could be observed and related to the dimensionless number which bears
Reynolds’ name. Reynolds states in his 1883 paper: “The internal motion of water assumes one
or other of two broadly distinguishable forms – either the elements of the fluid follow one another
along lines of motion which lead in the most direct manner to their destination, or they eddy about
in sinuous paths the most indirect possible” From Reynolds (1883).

it is not surprising that the lack of a comprehensive theory of turbulence has led to
a large variety of concepts, often based on heuristic arguments, to describe certain
aspects of turbulent flows. These concepts and some basic parameterizations which
rely on those concepts are discussed in Sections 11.2 and 11.3 respectively. They are
oriented toward practical applications and can have considerable skill in simulating
the effects of turbulence, although they do not necessarily provide much physical
insight into the nature of turbulent flows.

While Chapter 11 considers the basic aspects of turbulent flow for the case
of small-scale, three-dimensional turbulence, with or without effects of gravity, in
Chapter 12 some aspects of large-scale and (quasi) two-dimensional turbulence are
discussed. Section 12.1 refers to the application of Kolmogorov’s theory to the
isotropic two-dimensional case, and Section 12.2 discusses concepts to understand
mesoscale turbulence and its mixing effect in the ocean and discusses some basic
attempts for parameterizations. An important aspect of mesoscale eddy mixing is its
advective nature. Section 12.3 discusses consistent differentiations between advec-
tive and diffusive effects of turbulent mixing.



333

10−8 10−6 10−4 10−2 100

10−10

10−8

10−6

10−4

10−2

100

 [1/m] 

 [1
/s

] 

Ro R i

1 year

1 min

1 h

1 day

mean circulation

1 s

1 mon

10 ys

10³ ys

Internal wave field

f

N
Isotropic turbulence

meso−scale eddies

Space-time scales of important oceanic processes (pink areas) and scales explicitly resolved by
ocean models (grey rectangular areas). The lower left rectangle represents modern global ocean
climate models and the upper right rectangle eddy resolving basin-scale models. Also shown are
dispersion curves (solid lines) for linear gravity waves (upper set) and planetary waves (lower set)
(compare with the figure on page 106). Vertical dotted lines indicate the external (Ro) and first inter-
nal (Ri) Rossby radii and horizontal dotted lines indicate stability frequency (N ) and Earth rotation
rate (f ). The large-scale mean circulation involves spatial scales ranging from the circumference of
the Earth down to a couple of 100 kilometers, given e. g. by the width of western boundary currents,
and involves time scales of seasons to about 1,000 years, given by the time scale of a water parcel to
circulate along the entire thermohaline circulation loop. The relevant wave processes of the large-
scale mean circulation are characterized by the nondispersive long wave branch of the baroclinic
planetary waves. The mesoscale eddy field, on the other hand, involves much smaller spatial scales
of several 100 kilometers down to kilometers and time scales of days to months. The mesoscale
eddy field is characterized by the short wave branch of the baroclinic planetary waves. The time
scales of baroclinic inertio-gravity waves are rather sharply defined as being in between the stabil-
ity frequency N and Earth rotation frequency f , while spatial scales can range from global scale
in case of long barotropic gravity wave down to a couple of 10 m for the baroclinic gravity wave
branch. On even smaller time and space scales the internal wave regime approaches isotropic turbu-
lence which then connects to the regime of ultimate dissipation of energy by molecular processes.
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In this chapter, we will discuss turbulence on small spatial and tempo-
ral scales. For small scales, Earth’s rotation is not important, and the
length scales in horizontal and vertical directions are comparable, so
that the turbulence can often be idealized as isotropic in three dimen-
sions. Furthermore, we expect that the inertial forces are larger than
viscous or gravity forces. Small-scale turbulence dominates the motion
in the oceanic surface layer and is also important in other boundary lay-
ers, e. g. near the ocean floor. The theory of homogeneous turbulence
and some important results are discussed in Section 11.1, while basic
concepts of turbulent mixing are described in Section 11.2. The appli-
cation to the real, i. e. inhomogeneous, ocean in the presence of density
stratification and large gravity force and the development of basic tur-
bulence closure schemes can be found in Section 11.3.

The theory of homogeneous turbulence by KOLMOGOROV1 (Kolmogorov, 1941)
gives important insight into the nature of turbulent flows even though it is not of im-
mediate help in obtaining parameterizations for practical problems. Kolmogorov’s
statistical theory was developed more than 70 years ago and is still considered to
be robust in many respects. However, the theory has been found less successful in
predicting higher order structure functions and cannot quantitatively address the per-
vasive intermittency of turbulence, which is due to the spatial concentration of shear
in physical space. Beside this complication, Kolmogorov’s theory yields a successful
description of important properties of turbulent flows.

Note that the Boussinesq approximation is employed throughout this chapter, so
that @ui=@xi D 0, and that we will use the sum convention according to which
summation is implied if an index occurs twice within one term.

11.1 Kolmogorov’s Theory of Homogeneous Turbulence

In this section, we consider the idealized case in that all statistical properties of the
turbulent flow are independent of location, a situation referred to as homogeneous
turbulence. Consequently, all physical variables are considered as homogeneous and
stationary random variables, as detailed in Appendix A.3 which gives a description

1 ANDREY NIKOLAEVICH KOLMOGOROV, *1903 in Tambov, †1987 Moscow, mathematician.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 335
DOI 10.1007/978-3-642-23450-7_11, © Springer-Verlag Berlin Heidelberg 2012
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of basic concepts associated with stochastic variables. A further consequence of ho-
mogeneity is the absence of a mean density stratification, therefore, it is assumed that
density variations are unimportant, i. e. � � const. Furthermore, the Coriolis force is
assumed to be dominated by the inertial force and is, therefore, neglected.

Considered as a random function, the turbulent velocity u.x; t/ can be described
by its mean and its covariance tensor Rij.r; t/ D ui .x; t/uj .x C r; t/. The mean
velocity is however not of interest in homogeneous turbulence and is assumed to be
zero, since one might choose a coordinate system moving with the mean flow. The
covariance, or equivalently the spectral energy tensor Eij.k; t/, given by the Fourier
transform

Rij.r; t/ D
Z
Eij.k; t/e

ik�r dk (11.1)

contains all relevant information about the turbulent field. In particular, the scalar
energy spectrum

E.k; t/ D 1

2

Z
Eii.k; t/df .k/ (11.2)

will be of interest. Here df .k/ is the surface element of a sphere with radius k in
wave-number space, e. g. in polar coordinates df D k2 sin ' d' d
 with k D jkj.
The kinetic energy2 of turbulent motion E is given by

E � 1

2
uiui D

1Z

0

E.k/dk (11.3)

hence E is the spectral density of turbulent kinetic energy (per mass).
The turbulent velocity field has to satisfy the Navier–Stokes equations. The con-

tinuity equation @ui=@xi D 0 leads to constraints for Rij and Eij:

@Rij.r/

@rj
D ui .x/

@

@rj
uj .x C r/ D 0 and likewise

@Rij

@ri
D 0 (11.4)

Note that the time dependence of Rij and Eij is not explicitly stated in the following.

11.1.1 Isotropy

So far only homogeneity (i. e. invariance against translation) and continuity have
been invoked. It is often useful to consider the special situation that the turbulent flow
is also isotropic. Formally, isotropy means that the statistical variables are invariant
against rotation around an arbitrary axis, against reflection at an arbitrary plane and
against translation in an arbitrary direction. Isotropic turbulence, therefore, implies
that all statistical properties, including the mean and the covariance tensor, are also
invariant against any possible combination of rotation, mirroring, and translation.

2 In this chapter we will the symbol E for the turbulent kinetic energy and V for the turbulent
potential energy to avoid additional subscripts.
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An isotropic scalar statistical property 
 cannot depend on the direction of r ,
hence 
 D 
.r/. Isotropy of a vector, as for example the mean of u, implies that
u D 0. To derive the isotropic form of the covariance tensor Rij.r/, consider the
covariance Q of velocity components in the direction of two fixed vectors of unit
length, a and b, given as

Q.r ; a;b/ D .a � u.x; t//.b � u.x C r; t// � aibjRij (11.5)

To be invariant, the covarianceQ must be a function of the invariants which can be
formed from its arguments, hence Q.r; a;b/ D Q.a � b; a � r ;b � r; r2/. According
to (11.5),Q must also be bilinear in a and b, and hence must have the form

Q D a � bG.r/C a � rb � rF.r/ � aibj
�
G.r/ıij C F.r/rirj

�

where F.r/ and G.r/ are arbitrary functions. Comparing with (11.5), the form of an
isotropic velocity covariance tensor is thus given by

Rij.r/ D F.r/rirj CG.r/ıij (11.6)

A consequence of continuity in (11.4) is that

@

@rj
.F.r/rirj CG.r/ıij/ D @F

@r

rj

r
ri rj C 3F.r/ri C F.r/rj ıij C @G

@r

rj

r
ıij D 0

holds. Separating the common factor ri , one obtains that the functions F.r/ and
G.r/ are related by

@G

@r
D �

�
4rF.r/C r2

@F

@r

�
(11.7)

SpecifyingF , (11.7) determinesG; the integration constant is chosen such thatG !
0 for r ! 1. For isotropic turbulence, a single scalar function F is, therefore,
sufficient to describe the velocity covariance. Corresponding to (11.6), the isotropic
form of the energy spectral tensor has the general form

Eij.k/ D A.k/kikj CB.k/ıij D A.k/
�
kikj � k2ıij

�
(11.8)

The second form is valid since the continuity (11.4) requires that kiEij D 0 which
implies B.k/ D �k2A.k/. With (11.2), it then follows that

E.k/ D 1

2
4 k2Eii.k/ D �4 k4A.k/

and with (11.8) the energy spectral tensor can be written in terms of the func-
tion E.k/ as

Eij.k/ D E.k/

4 k4

�
k2ıij � kikj

�
(11.9)

The scalar energy spectrum E.k/ is the preferred variable for a discussion of
isotropic turbulent flows.



338 11 Small-Scale Turbulence

44. Longitudinal Velocity
Correlation and Velocity
Variance

Of interest is often the covariance of velocity components in the direction of the separation
vector, e. g. in r1 direction, which from (11.6) follows as (with r D r1)

R11.r; 0; 0/ D r2F .r/CG.r/ � u21f.r/

The longitudinal velocity correlation f.r/ is the covariance of the velocity component in the
direction of the separation vector r and is normalized as f.0/ D 1. Using (11.1), f.r/ can be
related to the energy spectrum withR11 D R

E11 cos.k1r/dk as

u21f.r/ D
Z

E

4 k4
.k2 � k21/ cos.k1r/k

2 sin� d� d� dk

D 2

1Z

0

E.k/
1

k2r2

�
sinkr

kr
� coskr

�
dk (B44.1)

with k1 D k cos�. Letting r ! 0 within the integral in (B44.1) yields again (11.3),

lim
r!0

u21f.r/ � 2

1Z

0

E.k/ lim
r!0

1

k2r2

�
kr � .kr/3=6

kr
�
�
1� .kr/2

2

��
dk

D 2

3

Z
E.k/dk (B44.2)

which will be needed below.

11.1.2 Momentumand Kinetic Energy
in Homogeneous Turbulence

In addition to the continuity equation, the dynamics of turbulent motion is governed
by the momentum equation. For small-scale motions with time-scales much shorter
than one day, the Earth’s rotation can be neglected. For constant �, the momentum
equation (4.10) can be written in tensor notation as

@ui

@t
D �@ului

@xl
� @p?

@xi
C 	m

@2ui

@x2
l

(11.10)

where F D 	mr2u was used and 	m denotes the kinematic viscosity of sea water.
Furthermore, p? D p=�C ˚ is the combined scaled pressure, and gravity potential
(the star is omitted in the following). According to (11.10), changes in momentum
are caused by inertial, pressure and frictional forces. The statistical mean of (11.10)
is given by

@ui

@t
D �@ului

@xl
� @ Np
@xi

C 	m
@2ui

@x2
l

D 0

because of homogeneity of all mean values (compare Appendix A.3). Hence the
mean velocity is constant in time and space and can be ignored (if necessary by
choosing a coordinate system moving with the mean velocity).
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Equations for Velocity Covariance

To derive an equation for the evolution of Rij.r ; t/, consider the momentum equa-
tion (11.10) at two points, x and x0 D x C r,

x W @ui
@t

D �@ului
@xl

� @p

@xi
C 	m

@2ui

@x2
l

(11.11)

x0 W @u
0
j

@t
D �@u

0
l
u0
j

@x0
l

� @p0

@x0
j

C 	m

@2u0
j

@x02
l

(11.12)

where u0
i D ui .x

0; t/ etc. Note that the covariance tensor Rij depends on the sepa-
ration r but not on the location x. Multiplication of (11.11) with u0

j and of (11.12)
with ui , adding both results and averaging yields

u0
j

@

@t
ui C ui

@

@t
u0
j D �u0

j

@

@xl
ului � ui

@

@x0
l

u0
l
u0
j � u0

j

@

@xi
p � ui @

@x0
j

p0

C 	mu
0
j

@2

@x2
l

ui C 	mui
@2

@x02
l

u0
j (11.13)

The terms on the left-hand side of (11.13) can be combined to the rate of change
of the covariance tensor @Rij=@t D @u0

jui=@t . Equation (11.13) is thus an evolution
equation for Rij and can be written as

@Rij.r/

@t
D Tij.r/C Pij.r/C 2	m

@2Rij.r/

@r`@r`
(11.14)

The three terms on the right-hand side of (11.14) correspond directly to the inertial,
pressure, and frictional terms in the momentum equation (11.11) and (11.12), respec-
tively. Two new tensors have been introduced, the inertial tensor Tij and the pressure
tensor Pij, which can be brought into the form

Tij.r/ � �u0
j

@

@xl
ului � ui

@

@x0
l

u0
l
u0
j D @

@r`



uiu

0
ju` � uiu0

ju
0
`

�
(11.15)

Pij.r/ � �u0
j

@

@xi
p � ui

@

@x0
j

p0 D @

@ri
pu0

j � @

@rj
p0ui (11.16)

since u0
j does not depend on xl and ui does not depend on x0

l
and @=@xl D �@=@rl

and @=@x0
l

D @=@rl . Note that for the inertial tensor Tij.r D 0/ D 0 holds for all
i; j , and that by summing over i D j the trace of the pressure tensor vanishes for
all r since

Pii.r; t/ D @

@ri
ui .x C r/p.x/� @

@ri
ui .x � r/p.x/

D p.x/
@

@ri
ui .x C r/� p.x/

@

@ri
ui .x � r/ D 0

as a consequence of the continuity equation @ui=@ri D 0. The results concerning
Tij.0/ and Pii will be used below.

A direct solution of (11.14) is not possible since the inertial tensor Tij is a third-
order moment, and Pij can also be expressed as a third-order moment (not shown).
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One approach is to write down equations for the necessary third-order moments
needed to predict Tij and Pij. While this is in principle possible, the approach fails
because fourth-order moments will appear in the respective equations, and so forth.
Therefore, one always will have more variables than equations. This fact – which is
referred to as ‘closure problem’ – precludes a direct solution.

Spectral Description

All tensors in (11.14) can be represented by the spectral description

(
Rij; Tij; Pij; 2	m

@2Rij

@r2
l

)
D
Z ˚

Eij.k/; �ij.k/;˘ij.k/;�2	mk
2Eij.k/

�
eik�rdk

with the inversions

Eij.k/ D 1

.2 /3

Z
Rij.r/e

�ik�r dr

and correspondingly for inertial spectral tensor �ij and pressure spectral tensor ˘ij.
The spectral balance is obtained by multiplication of (11.14) with e�ik�r and integra-
tion over r , yielding

@Eij.k/

@t
D �ij.k/C˘ij.k/� 2	mk

2Eij.k/ (11.17)

Since
R
Eij.k/dk D uiuj , the tensor Eij.k/ denotes the spectral energy density

of uiuj in the (three-dimensional) wave-number space. The last term in (11.17) rep-
resents viscous dissipation. The spectral inertial tensor �ij.k/ in (11.17) describes
the effect of inertial forces on the energy tensor Eij.k/ and it holds that

Tij.0; t/ � 0 ,
Z
�ij.k/dk D 0 (11.18)

as shown above. Inertial forces, therefore, cannot change the moment uiuj as well
as the total energy, but can redistribute energy between different wave numbers. It
is plausible for three-dimensional turbulence that the inertial forces transport energy
from regions with low wave numbers to high ones (where dissipation is mostly ac-
tive), corresponding to a down-gradient transport in wave-number space.

For the pressure tensor, it holds that

Pii.r/ � 0 , ˘ii.k/ D 0 (11.19)

as shown above. The pressure forces ˘ij.k/ in (11.17), therefore, cannot change the
kinetic energy at any wave number, but can redistribute kinetic energy between dif-
ferent velocity components. It is plausible that the transport will be directed from
components with high to components with low energy. Hence pressure forces reduce
anisotropy, and in the absence of external forces one can assume that the turbulent
flow is nearly isotropic.
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Scalar Energy Balance

The scalar form of the spectral balance can be obtained by integration of (11.17)
over a sphere with radius k in wave-number space. The scalar projection � .k/ of the
inertial tensor is given, in analogy to (11.2), as

� .k/ D 1

2

Z
�ii.k/df .k/ (11.20)

and satisfies
R
� .k/dk D 0 as in (11.18). It is convenient to define the spectral

energy transport in wave-number space as convergence of an energy flux in wave-
number space,

F.k/ D �
kZ

0

� .k0/dk0 (11.21)

which satisfies F.0/ D 0 and F.1/ D 0. With the energy spectrumE.k/ according
to (11.2) and (11.21), the energy balance can be written as

@

@t
E.k/ D �@F.k/

@k
� 2	mk

2E.k/ (11.22)

The flux F.k/ redistributes energy among different wave numbers. Since dissipation
2	mk

2E.k/ is more effective at small scales, it is plausible that energy has to be
transported by F.k/ from large scales (small k) to small scales (large k). Integration
of (11.22) over all wave numbers k yields

dE
dt

D �� (11.23)

for the budget of the total kinetic energy E D R
E.k/dk D 1

2
uiui from (11.3).

In (11.23), � D 2	m
R
k2E.k/dk denotes the energy dissipation and is a central pa-

rameter in the following discussion. Using the definition for mechanical dissipation
of Section 2.4.2 in the Boussinesq approximation and for isotropic turbulence, it can
be written as (compare also the box on p. 354)

� D 2	mD
2
ij D 	m

@uj

@xi

@uj

@xi
C 	m

@

@xi

@

@xj
ujui D 	m

@uj

@xi

@uj

@xi
(11.24)

with the deformation tensor Dij D .1=2/.@ui=@xj C @uj =@xi /. Since � is always
positive, the total kinetic energy E will decrease in time as long as no energy is
injected into the system.

11.1.3 Large and Small Length Scales

We have assumed in the proceeding section that the flux F.k/ in wave-number space
transports energy from large (small k) to small scales (large k), since dissipation is
more effective at small scales. To further discuss the concept of such an energy flux
(or cascade) we need to specify the definitions of large and small scales, which will
become the integral length scale and the micro scale, respectively.



342 11 Small-Scale Turbulence

Integral Length Scale

The longitudinal correlation defined in the box on p. 338 is suitable to discuss char-
acteristic length scales of turbulence. The integral length scale L (also called macro
scale or longitudinal scale) is defined as

L D
1Z

0

f .r/dr (11.25)

and describes the distance over which the correlation is essentially nonzero (cf. Fig-
ure 11.1). Hence L must be roughly equivalent to the scale of the largest coherent
fluctuations (i. e. to the largest eddies). Integrating (B44.1) over all r (exchanging
the integrations over k and r) and using (B44.2), the length scale can be expressed
in terms of the energy spectrum as

L D 3 

4

R
k�1E.k/dkR
E.k/dk

(11.26)

Large eddies with length scale L will predominantly contribute to the total energy E .
On the other hand, the total energy (i. e. its rate of decrease if there is no energy
input, or its forcing if there is) and thus the properties of the large eddies are directly
related to the dissipation � by (11.23). Therefore, one can assume that the dissipation
is determined by the energy and scale of the large eddies, i. e. that � D f .E ; L/.
A simple dimensional argument shows that the only possible combination between E
and L to form the dimension of � is given by

� D c�
E3=2
L

(11.27)

where c� denotes a dimensionless constant which is experimentally found as c� D
O.1/. The form (11.27) can be used with (11.23) to determine the time-scale for the
decrease of kinetic energy as

T0 D E
dE=dt

D E
c�E

3
2 =L

D 1

c�

L

E 12
D 1

c�

L

U
(11.28)

Fig. 11.1 Sketch of the longitudinal correlation and the integral length scale L, which is a measure
of the scale of the largest coherent fluctuations, i. e. to the largest eddies
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where U is a velocity scale of the large eddies and where L=U D Tadv denotes an
advective time-scale of the large eddies;, therefore, the energy content is changing
on the time-scale Tadv. As a consequence, there must be energy input on the scale L
to sustain the turbulent flow.

Micro Scale

For small r , the longitudinal correlation f .r/ (cf. the box on p. 338) can be expanded
in a Taylor series

f .r/ D 1C rf 0.0/C 1

2
r2f 00.0/C : : : D 1 � 1

2

r2


2
C � � �

since f 0.0/ D 0 for any reasonable symmetric correlation function (it is also a direct
consequence of (11.7)) and with


2 D � 1

f 00.0/
(11.29)

The length scale 
 reflects the curvature of f .r/ at r D 0 and is referred to as
TAYLOR’s3 micro scale. The micro scale can also be expressed in terms of the energy
spectrum. Differentiating (B44.1) twice with respect to r and then letting r ! 0

leads to

u21f
00.0/ D � 2

15

Z
k2E.k/dk

With (11.29) and using (B44.2), one obtains for the micro scale

1


2
D 1

5

R
k2E.k/dkR
E.k/dk

(11.30)

Replacing the integrals in (11.30) with E and � from (11.23), one finds


2 D 10	mE��1 (11.31)

It follows that the micro scale 
 is related to dissipation. However, it will turn out
that 
 is not the scale at which the viscous forcing dominates inertial forces; it is still
much larger.

Relation between Integral Length Scale andMicro Scale

To relate the integral length scale with the micro scale, we use (11.26) and (11.31)
and express the dissipation via (11.27) by the total energy and the integral length
scale. It follows that 10	mE
�2 D c�E3=2L�1 or

L2


2
D c�

E1=2L
10	m

D c�
ReL
10

(11.32)

where the Reynolds number of large eddies ReL D UL	�1
m D E1=2L	�1

m has been
introduced. If ReL � 1, which is the case for turbulent flows, it follows that the
magnitude of both length scales is very different, with L � 
. Note that for an
energy spectrum with strong (exponential) decay for k > 1=L, the length scales L
and 
 would have the same order of magnitude. We conclude that the spectral decay
for a typical turbulence spectrum is weaker than exponential, as will be seen below.

3 GEOFFREY INGRAM TAYLOR, *1886 in St. John’s Wood, †1975 in Cambridge, physicist.
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11.1.4 EquilibriumRange and Inertial Subrange

As we have seen, there has to be input of energy into the turbulent flow on the scaleL
to sustain the turbulence. At smaller scales, however, this is not necessary, and it can
be expected that in a range of wave numbers k � 1=L the spectrum E.k/ will not
change much over time. In this equilibrium range the energy balance (11.22) reduces
to

@F.k/

@k
D �2	mk

2E.k/ or in integral form F.k/ D 2	m

1Z

k

k02E.k0/dk0

(11.33)

for any wave number k in the equilibrium range. Here F.k/ > 0, i. e. energy, is
indeed transported through the spectrum toward higher wave numbers and is finally
dissipated at small scales.

We further assume that the energy is transported between wave numbers which
are close together (turbulent cascade), so that in the equilibrium range the details
of the flow at the large scale L are irrelevant. It is then clear that the spectrum E.k/

must depend on k, � and 	m in the equilibrium range. In the absence of other, e. g. ge-
ometric, constraints, that dependence must be universal, i. e. E D ˚.k; �; 	m/. The
variables in this universal relation have the dimensions ŒE� D m2 s�2, Œk� D m�1,
Œ	m� D m2 s�1, Œ�� D m2 s�3. While an infinite number of dimensionless ratios can
be built from these four variables, only two of these are independent, e. g. k	3=4m ��1=4
and E��2=3k5=3. From dimensional analysis it follows that the relation

E��2=3k5=3 D �.k	3=4m ��1=4/ D �.k
d/ (11.34)

must hold, where �.x/ is an arbitrary dimensionless function, and


d D .	3m=�/
1=4 (11.35)

The length scale 
d is given by dissipation and viscosity and is called the dissipation
length scale or Kolmogorov’s microscale. The energy spectrum has the form

E.k/ D �.k
d/�
2=3k�5=3 (11.36)

One can show that the dissipation spectrum k2E.k/ has a maximum near the wave
number 1=
d. Defining a velocity scale in the dissipation range as Ud D .�	m/

1=4,
which is the only combination of � and 	m with the correct dimension, the Reynolds
number at the dissipation length scale 
d follows as Red D Ud
d=	m D 1. Hence at
the scale 
d inertial forces no longer dominate, and the turbulent transfer of energy
ends here. Typical values of 
d are given in the box on p. 345.

To determine the relation between Taylor’s microscale 
 and the dissipation
length 
d, we use (11.31) and 
d D .	3m=�/

1=4. It follows that
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45. Dissipation
in a KitchenMixer

The magnitude of �d can be estimated for a simple kitchen experiment, where a mixer with
100 W power is used to mix 1 kg water, thereby generating turbulent flow. Assuming that the
energy input into the mixer is dissipated mechanically only in the water, the dissipation is � D
100W= 1 kg D 100m2 s�3. With �m D 10�6 m2 s�1 as kinematic molecular viscosity of
water, it follows that �d D .�3m=�/

1=4 D 0:01mm. In the ocean, the dissipation � is much
smaller, e. g. in the interior ocean measurements give typically values of � � 10�9 m2 s�3,
thus �d � 5mm. However, in the mixed layer of the ocean dissipation can reach values of
10�4 m2 s�3, thus �d � 0:3mm. In the atmosphere, a typical value is �d � 1mm.

Here (11.27) has been used to eliminate the dissipation, and ReL again denotes the
Reynolds number of large eddies. With (11.31), the orders of magnitude are related
as


d W 
 W L D 1 W p
10Re1=4L W Re3=4L � 1 W 60 W 6;000

where the numbers are given for the case ReL D 105. The three length scales L, 

and 
d are, therefore, well separated in the normal case where the Reynolds number
is large. As noted above, the micro scale 
 is (for Re � 1) much smaller than
the integral scale L, but also much larger than the dissipation scale 
d at which
viscous and inertial forces become comparable. The microscale 
 thus represents
a “geometric mean” between L and 
d somewhere in the equilibrium range.

Inertial Subrange

For wave numbers in the range

1=L � k � 1=
d

dissipation must be small, i. e. only the inertial forces are important for the flow in
the inertial subrange (see display in Figure 11.2). According to (11.33), the energy

Fig. 11.2 Conceptual sketch of the turbulent energy spectrum in the inertial subrange (logarithmic
scaling), which extents from the integral length scale of the largest eddies L given by (11.25) to
the dissipation length scale �d given by (11.35). The micro scale � given by (11.31) represented
a “geometric mean” between L and �d
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flux F.k/ is constant and equals the dissipation �, as seen from (11.33). Therefore,
one can assume that the characteristic features of the turbulence depend only on � but
not on the viscosity 	m. For the energy spectrum (11.34) this means that �.k
d/ D
const D ck, hence

E.k/ D ck�
2=3k�5=3 (11.37)

Empirically one finds that ck � 1:5. This result, in particular the spectral power
law k�5=3, is well supported by many oceanographic and meteorological observa-
tions. Prerequisite for the existence of an inertial subrange is a very large Reynolds
number on the large scale L, an assumption which often holds in the ocean and the
atmosphere. Note that this spectral law holds only for small-scale three-dimensional
and isotropic turbulence, an important restriction as shown in the next chapter.

11.2 Turbulent Mixing

In this section, some aspects of tracer diffusion in a turbulent flow will be discussed.
Consider the concentration of a substance or tracer  in a turbulent velocity field
which in the Boussinesq approximation is governed by

@ 

@t
C u � r D r � 	r (11.38)

The Fickian law has been used for the molecular tracer flux (i. e. a simplified version
of (2.96)). As discussed in Section 2.8.2, both u and  can be decomposed into
a statistical mean4 and deviation thereof, i. e.

u D NuC u0 and  D N C  0 (11.39)

where  0 D 0 and  D  (and equivalently for u). Further useful properties of the

statistical mean are . C 
�/ D  C
� and � D �  for any constant 
 and ran-
dom functions � and and that it commute with differential operators. With (11.39),
statistical averaging of (11.38) yields

@ N 
@t

C Nu � r N D r � .	r N � u0 0/ (11.40)

The averaged equation (11.40) is similar to the instantaneous equation (11.38), ex-
cept for the additional turbulent flux J turb

 D u0 0, which originates from the advec-
tive term in (11.38) and which is generally unknown but almost always much larger
than the (mean) molecular tracer flux 	r N .

In analogy to the Fickian law, it is customary to formulate the turbulent flux with
an Austauschansatz in terms of the mean gradient as

u0 0 D �Kr N (11.41)

with the turbulent diffusivity K . Since for K > 0 relation (11.41) corresponds to
down-gradient tracer transport, it is also referred to as down-gradient parameteri-
zation. The remainder of this section will be used to present some empirical mixing
formulations, to discuss the plausibility of the parameterization (11.41), and to derive
constraints for the choice of the turbulent diffusivityK .

4 The statistical mean is defined in Appendix A.3. However, often a time mean as in Section 2.8.2

is used instead for simplicity, for which the relation  D  does not hold in general.
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11.2.1 Heuristic Approaches

Heuristic considerations lead to specific forms for the parameterization (11.41). In
the following, we will discuss two classical approaches which have proven useful,
based on mixing by energy-containing eddies and the mixing-length concept. We
further discuss a practical approach to represent the effect of partially resolved ed-
dies.

Mixing by Energy-Containing Eddies

As discussed in Section 11.1, a turbulent flow is characterized by fluctuations over
a range of different length scales. A simple form of (11.41) can be obtained by as-
suming that mixing is mainly caused by eddies with maximum energy, with a length
scale L as discussed in Section 11.1.3.

Consider a tracer with the mean concentration  .x/ (one-dimensional for sim-
plicity). Let the turbulent flow be characterized by eddies with characteristic swirl
velocity U and diameter L. To estimate the transport of  by the turbulent flow, we
note that the tracer flux from x0 �L=2 towards x0 is approximatelyU .x0 �L=2/,
and likewise the flux from x0 CL=2 towards x0 is approximately �U .x0 CL=2/

(cf. Figure 11.3). The total tracer flux J summed over both cases is approximately

J D U
�
 .x0 �L=2/ �  .x0 C L=2/

� � �UL .x0 C L=2/�  .x0 �L=2/
L

Provided that the scale over which the mean tracer varies is larger than L, this can
be approximated as J � �UL@ =@x. Identifying J with the turbulent tracer flux
J D u0 0, it follows that (11.41) is recovered with the turbulent diffusivity

K D UL 	 E 12L (11.42)

Fig. 11.3 Left: Schematic of tracer transport by large eddies with diameterL and swirl velocityU .
The resulting turbulent flux of the tracer concentration  is given by u0 0 � �UL@ =@x, where
K D UL can be interpreted as a turbulent diffusivity. Right: Schematic of the mixing-length
concept in which a sheared horizontal mean flow u.z/ is subject to turbulent vertical exchange
of momentum. The vertical turbulent flux of horizontal momentum can be written as u0w 0 D
�Ku@u=@z, where the turbulent viscosity is given byKu 	 `2j@u=@zj with the mixing length `
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where E is the turbulent kinetic energy. The result (11.42) is very useful because
often the magnitudes of the characteristic velocityU and length scaleL of eddies are
approximately known so that the magnitude of K can be estimated. It is, therefore,
not surprising that (11.42) is the basis of many parameterizations.

Mixing Length

A concept which is particularly useful to describe mixing of momentum was intro-
duced by PRANDTL5 (Prandtl, 1925). Consider a horizontally homogeneous mean
shear flow u.z/ with @u=@z > 0 (cf. Figure 11.3). A turbulence element with
a vertical velocity perturbation w0 > 0 will carry a fluid element (and its mean
momentum) from the initial level z0 upward to a new level z0 C `0 before it is
mixed. Here, the velocity of the fluid element deviates from the ambient velocity
by u0 D u.z0/ � u.z0 C `0/ < 0. Likewise, if w0 < 0, then u0 > 0. In both cases, it
is clear that u0w0 < 0. Expansion in a Taylor series leads to

u0 D �u.z0 C `0/C u.z0/ � � `0 @u
@z

ˇ̌
ˇ̌
z0

C : : : (11.43)

It follows that

u0w0 D �w0`0 @u
@z

D �Ku
@u

@z
(11.44)

which corresponds to the form (11.41) for a tracer. One can expect w0 and `0

to be positively correlated, w0`0 > 0 or w0`0 D c.w02 `02/1=2 with a positive

c � 1. Assuming isotropy so that w02 � u02, this result is equivalent to w0`0 D
c.u02 `02/1=2 D c.`02.@u=@z/2`02/1=2, where (11.43) has been used. It follows that
the diffusivityKu D w0`0 can be expressed as

Ku D c`2
ˇ̌
ˇ̌@u
@z

ˇ̌
ˇ̌ (11.45)

The length scale ` D .`02/1=2 is the (mean) mixing-length. Under certain conditions
it can be comparable to the scale of the energy-containing eddies (see Section 11.3.2
below).

Note that termination of the Taylor series in (11.43) after the first term requires
that the length scale ` is small compared to the scales of the mean flow. Therefore,
the mixing-length concept (11.45) can be valid only if ` � j@u=@zj=j@2u=@z2j.

Diffusion in the Inertial Subrange

The concept (11.42) can also be modified for situations where the large eddies are ex-
plicitly resolved, and turbulent diffusion is caused by velocity fluctuations on smaller
scales. Specifically, assume that only wave numbers k 
 k? in the inertial subrange
(cf. Section 11.1.4) contribute to velocity. The energy E? of these fluctuations is

E? D
kdZ

k?

ck�
2=3k�5=3dk �

1Z

k?

ck�
2=3k�5=3dk D 3ck

5
�2=3k

�2=3
?

5 LUDWIG PRANDTL, *1875 Freising, � 1953 Göttingen, fluid dynamicist.
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46. An Aspect of
Molecular Diffusion

To discuss the plausibility of relation (11.41) for the turbulent transports, it is useful to briefly
reconsider molecular diffusion as the most familiar form of mixing. In its pure form, molecular
diffusion of tracer concentration is governed by (11.38) without mean flow, and restricting for
simplicity to one spatial dimension with constant �, one has

@ 

@t
D �

@2 

@x2
(B46.1)

For a given initial tracer distribution 0.x/D  .x; t0/ at time t0, the solution of the diffusion
equation (B46.1) at later times can be expressed with the help of a Green’s function as

 .x; t/ D
1Z

�1

P.x; x0; t; t0/ 0.x
0/dx0 (B46.2)

In an unbounded domain, the Green’s function P.x; x0; t; t0/ is given by

P.x; x0; t; t0/D 1

Œ4 �.t � t0/�1=2
e�

.x�x0/2

4
.t�t0/ (B46.3)

ψ(x,t=0)

x=0
Molecular diffusion of a tracer with concen-
tration .x; t/which initially is concentrated
at x D 0.  is shown at three subsequent
times (solid, dashed, dotted).

With (B46.2) and (B46.3) (or integrat-
ing (B46.1) in an bounded domain), it is
straightforward to show that the following
three integral relations hold:

M D
Z
 .x; t/dx D const (B46.4)

xc D 1

M

Z
x .x; t/dx D const

(B46.5)

�2.t/ D 1

M

Z
.x � xc/

2
 .x; t/dx D 2�t

(B46.6)

Hence molecular diffusion leaves both the to-
tal amount M of tracer and the center xc of
tracer mass constant. Most importantly, the
tracer “variance” �2, which is a measure of
the spread of the concentration around xc, increases linearly with time, a basic property of dif-
fusion processes.

We assume that the diffusivity Ks associated with these fluctuations is given asKs D
E1=2? `? with `? D 1=k? (in analogy to (11.42)). One obtains (up to a factor O.1/)

Ks � �1=3`
4=3
? D E 12L.`?=L/4=3 (11.46)

where the relation (11.27) has been used for the last equality. In numerical circulation
models, (11.46) is occasionally used to parameterize subgrid scale motions. It is
possible to relate the scale `? with the resolution, i. e. `? � �x, which is particularly
useful when the resolution is variable.
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11.2.2 Turbulent Diffusion in the Lagrangian Reference System

In Lagrangian coordinates, it is possible to relate the mean rate of spreading with
statistical properties of the flow field. The following description was given by Taylor
(1921).

A particle is advected by a turbulent flow u.x; t/, which for simplicity is assumed
to be one-dimensional and stationary, with u.x; t/ D 0. The particle starts from
the location x D 0 at time t D 0, and is at the time t at the location x.t/. In the
Lagrangian system one has

dx.t/

dt
D v.t/ or x.t/ D

tZ

0

v.t 0/dt 0

where v.t/ D u.x.t/; t/ denotes the Lagrangian velocity. Since v D 0, it follows
that x D 0, i. e. on average the particle does not move away from its origin. The
mean quadratic excursion of the particle x2 is given by

dx2

dt
D 2x.t/

dx.t/

dt
D 2v.t/

tZ

0

v.t 0/dt 0 D 2

tZ

0

v.t/v.t 0/dt 0

and thus leads to Taylor’s diffusion equation

dx2

dt
D 2

tZ

0

RL.�/d� (11.47)

Here RL.�/ D RL.t � t 0/ denotes the Lagrangian velocity covariance which is
characterized by its value at origin, RL.0/ D v2, and the integral time scale

Tint D 1

RL.0/

1Z

0

RL.�/d�

Of particular interest is the limiting case for which the diffusion time t is much larger
than the integral time-scale, t � Tint. In this case,

R t
0
RL.�/d� � R1

0
RL.�/d� D

v2Tint, and it follows that

x2.t/ D 2Kt with K D v2Tint (11.48)

In analogy to (B46.6) in the box on p. 349, K > 0 is referred to as turbu-
lent diffusivity. The result (11.48) can be used to infer the diffusivity in situations
where v2 and Tint are known. In three dimensions, the appropriate generalization
is Kij � R1

0
vi .t/vj .t C �/d� for t � Tint, where Kij is symmetric and positive

definite.

11.2.3 Eulerian Diffusion by Small-Scale Turbulence

In this section, we investigate under which conditions we can expect the analogy
between molecular and turbulent diffusion as expressed by (11.41). In a one dimen-
sional situation with a tracer distribution .x/, one can view  .x/�x as the number
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of particles in an interval�x around x (up to a constant factor). Turbulent diffusion
corresponds to a random transport process. Specifically, assume that a particle which
initially (at time t 0) is located at x0 is found at location x at a later time t with a prob-
ability ˚.x; x0; t; t 0/. Note that if the turbulence is homogeneous and stationary, then
the probability depend only on r D x�x0 and � D t � t 0, i. e. ˚ D ˚.x�x0; t � t 0/.
It follows that the tracer distributions at both times are related by

 .x; t/ D
1Z

�1
˚.x � x0; t � t 0/ .x0; t 0/dx0 (11.49)

While the probability distribution˚ is not known for turbulent flows, it has to satisfy
the following physical constraints:

mass conservation

1Z

�1
˚.x � x0; t � t 0/dx0 D 1 (11.50)

center of mass

1Z

�1
.x � x0/˚.x � x0; t � t 0/dx0 D 0 (11.51)

Mass conservation requires (11.50), as seen by integration of (11.49) over all x. If the
turbulent motion has no preferred direction, i. e. is isotropic, then ˚.x�x0; t � t 0/ D
˚.x0 � x; t � t 0/, and (11.51) follows. This also means that there is no movement of
the center of mass related to the random transport process. If the particle excursion
x � x0 is small compared to the scales of variation of  .x/, then  .x0; t 0/ under the
integral in (11.49) can be expanded into a Taylor series. With r D x�x0, one obtains

 .x; t/ D
1Z

�1
˚.r; t � t 0/

"
 .x; t 0/ � r @ .x; t

0/
@x

C 1

2
r2
@2 .x; t 0/
@x2

CO.r3/

#
dr

D  .x; t 0/
1Z

�1
˚.r; t � t 0/dr � @ .x; t 0/

@x

1Z

�1
r˚.r; t � t 0/dr

C @2 .x; t 0/
@x2

1Z

�1

1

2
r2˚.r; t � t 0/dr C

1Z

�1
˚.r; t � t 0/O.r3/dr (11.52)

Using (11.50) and (11.51), the first two integrals in (11.52) can be evaluated. With
� D t � t 0, one finds

 .x; t/ D  .x; t � �/CK�
@2 .x; t � �/

@x2
CO.r3/ (11.53)

with the definition
1Z

�1
r2˚.r; �/dr D 2K� (11.54)

in analogy to the case of molecular diffusion in (B46.6). Note that the second mo-
ment

R
r2˚.r; �/dr becomes also equivalent to the Lagrangian mean quadratic par-

ticle excursion which is given by (11.48). However, this holds only for time inter-
vals � � Tint, as discussed in Section 11.2.2. Provided that the tracer concentration
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changes little over the time � � Tint and the distance r , then (11.53) can be approx-
imated by

@ 

@t
D K

@2 

@x2
(11.55)

Hence one obtains the standard diffusion equation, with a down-gradient diffusiv-
ity K defined in (11.48). It is, however, important to note that (11.55) only holds
under the restrictive conditions that the tracer  varies little over the temporal and
spatial scales of the eddy field, i. e. j@ =@t j � j =� j and j@ =@xj � j =r j such
that the Taylor expansion in (11.52) rapidly converges.

11.3 Inhomogeneous Three-Dimensional Turbulence

In the presence of mean flow, stratification, forcing, and boundary conditions, tur-
bulence in the ocean cannot be expected to be homogeneous. The most important
aspect of inhomogeneity is given by stratification. However, numerical simulations
confirm that many aspects from Kolmogorov’s theory for isotropic turbulence can be
transferred to the inhomogeneous case: In particular the predicted shape of the spec-
trum in horizontal direction and the forward energy cascade in the inertial subrange
can also be found for nonisotropic turbulence in the presence of strong stratification
(e. g. Brethouwer et al., 2007). On the other hand, a closed analytical theory like
the one for isotropic turbulence is missing. In the following sections, energetic con-
straints for inhomogeneous turbulence are derived, and applications to the dynamics
of the ocean mixed layer are discussed.

Starting point are the equations of motion in the Boussinesq approxima-
tion (4.10)–(4.13), with the molecular form for the diabatic terms. In the upper
ocean, the state equation (4.13) can be approximated6 by the linear form (4.23).
With these changes, and introducing the buoyancy b D �g Q�=�0 the system

@uj

@t
C ui

@uj

@xi
C 2˝lum�lmj D �@p

�

@xj
C bıj3 C 	m

@2uj

@x2i
(11.56)

@ui

@xi
D 0 (11.57)

@b

@t
C ui

@b

@xi
D �@J

b
i

@xi
C 	

@2b

@x2i
(11.58)

is obtained from (4.10)–(4.13), written here in tensor notation. Note that we use
the sum convention as before, according to which summation is implied if an index
occurs twice within one term. The variable p� D p=�0 denotes the scaled pressure
(the star will be dropped in the following), and J b is the buoyancy flux arising from
radiation. Note that (11.58) is a shorthand notation for both the heat and salt budgets,
and is strictly valid only to the extent that variations of the expansion coefficients and
the difference between the coefficients of heat conductivity and salt diffusivity can
be ignored. Introducing the Reynolds decomposition (cf. Section 2.8) uj D uj Cu0

j ,

6 This is only needed for the diffusion term.
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b D b C b0 etc. and averaging yields

@uj

@t
C ui

@uj

@xi
C 2˝lum�lmj D � @p

@xj
C bıj3 � @

@xi



u0
iu

0
j

�
� 	m

@2uj

@x2i
(11.59)

@ui

@xi
D 0 (11.60)

@b

@t
C ui

@b

@xi
D � @

@xi

 
J b
i C u0

ib
0 � 	

@b

@xi

!
(11.61)

The equations for the mean fields hence are identical to (11.56)–(11.58), except for
the additional turbulent fluxes u0

ib
0 and u0

iu
0
j which need to be known to predict the

mean variables.

11.3.1 Energetic Constraints

Parameterization of the turbulent flux terms in (11.59) and (11.61) involves issues
similar to the parameterization of turbulent tracer fluxes discussed in Section 11.2.
However, for the turbulent momentum and buoyancy fluxes there are additional con-
straints arising from consideration of the energy budget.

Turbulent Kinetic Energy

Analogous to Section 4.1.4, a conservation equation for turbulent kinetic energy
(TKE) is obtained by multiplication of (11.56) with u0

j , averaging and summation
over all j . The derivation is straightforward and not given in detail. With the turbu-
lent kinetic energy E D 1

2
u0
iu

0
i , it follows that

@E
@t

C ui
@E
@xi

D � @

@xi

�
u0
ip

0 C 1

2
u0
iu

0
ju

0
j � 	m

@E
@xi

�

� u0
ju

0
i

@uj

@xi
C b0w0 � 	m

�
@u0
i

@xj

�2
(11.62)

The physical interpretation of the individual terms in the TKE equation (11.62) is the
following: the terms on the left-hand side describe the local change in time plus the
advection by the mean flow, i. e. the material derivative of E along the mean flow u.
The last term of the right-hand side is always negative and represents dissipation of
turbulent kinetic energy and is identical to the definition (11.24) (compare also the
box on p. 354). Three terms in (11.62) contribute to a flux divergence which redis-
tributes E . These are the turbulent flux of mechanical energy u0

ip
0, the turbulent flux

of turbulent kinetic energy u0
iu

0
ju

0
j =2, which has the form of a triple correlation, and

a diffusive flux 	m@E=@xi . It follows that F D u0p0 C u0u02=2 � 	mrE is the total
flux of turbulent kinetic energy. The remaining production terms u0

ju
0
i@uj =@xi and

b0w0 in (11.62) will be discussed below. Note that for isotropic turbulence, i. e. when
all mean fields are independent of space, (11.62) reduces to the form (11.23).
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47. Alternative
Formulation of the TKE
Equation

In Boussinesq approximation, the mechanical dissipation of Section 2.4.2, takes the form

� D 2�mD
2
ij

with the deformation tensor Dij D .1=2/.@ui=@xj C @uj =@xi/ and the kinematic viscos-
ity �m. Using the Reynolds decomposition of u and taking the mean yields

� D �m

�
@u0

i

@xj

�2
C �m

@

@xi

@

@xj
u0

i
u0

j
C �m

�
@ Nui
@xj

�2
C �m

@

@xi

@

@xj
Nui Nuj

The part of � which is related to velocity fluctuations differs from (11.24) and the dissipation
in (11.62) by an additional molecular flux �m@u

0

j
u0

i
=@xj , which vanishes in the case of isotropic

turbulence. The same holds for the part of � related to the mean velocity gradients. To be con-
sistent with the mean dissipation rate �, the TKE equation is sometimes rewritten as

@E
@t

C ui
@E
@xi

D � @

@xi

�
u0

i
p0 C 1

2
u0

i
u0

j
u0

j
� 2�mD

0

iju
0

j

�

� u0

j
u0

i

@uj

@xi
C b0w 0 � 2�m.D

0

ij/
2

with D0

ij D .1=2/.@u0

i
=@xj C @u0

j
=@xi/, and similar for the mean kinetic energy equation.

This modified form and (11.62) differ only by the interpretation of a molecular flux term, which
does not figure in an integral budget over a closed domain.

Exchange withMean Kinetic Energy

The term u0
ju

0
i@uj =@xi in (11.62) describes the interaction of turbulence with a mean

shear. Further insight into its meaning can be gained by considering the conserva-
tion equation for mean kinetic energy (MKE) which is obtained by multiplication
of (11.59) with uj . With the mean kinetic energy 1

2
uiui one finds

�
@

@t
C ui

@

@xi

�
1

2
uiui D � @

@xi

�
uip C 1

2
uju

0
iu

0
j � 	m

@

@xi

1

2
uiui

�
C

C u0
iu

0
j

@uj

@xi
C bw � 	m

�
@uj

@xi

�2
(11.63)

All terms in (11.63) are analogous to those in (11.62) and will not be discussed in
detail. The term u0

ju
0
i@uj =@xi , however, appears both in (11.62) and (11.63), but

with opposite signs, and hence constitutes an exchange between mean and turbu-
lent kinetic energies. The direction of this exchange is normally such that energy
flows from mean to turbulent kinetic energy. This is consistent with a parametriza-
tion u0

iu
0
j D �Ku@uj =@xi which forKu > 0 leads to

u0
iu

0
j

@uj

@xi
D �Ku

�
@uj

@xi

�2
< 0

For small-amplitude fluctuations, this energy transfer is related to the process of
Kelvin-Helmholtz instability discussed in Section 7.7.3. Note, however, that the per-
turbation analysis from that section does not apply to fully developed turbulence.
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Exchange withMean Potential Energy

A term of the form bw D �g�w=�0 describes work against gravity and can be
interpreted as exchange between kinetic and potential energy, as discussed in Sec-
tion 4.1.4. In the Boussinesq approximation employed here, a useful potential en-
ergy is given by V D gz�=�0 D �zb. From (4.18), with the simplified state equa-
tion (4.23), the conservation equation for mean potential energy V follows as

DV
Dt

D �bw � b0w0 � @u0
jV 0

@xj
C z

 
@J b
i

@xi
� 	

@b

@xi

!
(11.64)

The vertical buoyancy fluxes bw and b0w0 also occur in the kinetic energy equa-
tions (11.63) and (11.62), respectively, and hence constitute exchanges of mean and
turbulent kinetic energy with mean potential energy. Note that the definition of V
agrees with the definition (4.18), but differs from the quadratic form (5.41) for avail-
able potential energy. The exchange term bw with kinetic energy and its physical
interpretation, however, remains identical for both formulations.

It is easy to see that in a stably stratified environment, i. e. with @b=@z > 0,
the term b0w0 will lead to a transfer from TKE to potential energy. When turbulent
velocity moves a particle upward or downward from its mean position, buoyancy
forces will tend to bring the particle back to its mean position. Hence the particle
will decelerate, and its turbulent kinetic energy will be reduced. For the turbulent
buoyancy flux it follows that b0w0 < 0, hence this leads to a decreasing tendency
@E=@t < 0. Conversely, in case of an unstable stratification, the particle will be
further accelerated, and the energy transfer is in the opposite direction. Note that in
both cases, an Austauschansatz b0w0 D �Kb@b=@z with Kb > 0 leads to the correct
sign for the energy transfer.

11.3.2 TurbulenceModels for the Surface Boundary Layer

Models of ocean mixed layer turbulence are based on (11.59) and (11.61) and face
the need to express the fluxes u0

iu
0
j and b0u0

j in terms of the mean fields. For a qual-
itative discussion, it is sufficient to consider a simplification based on the fact that
the horizontal scales in the mixed layer are much larger than the vertical scales.
The approximation of horizontal homogeneity neglects horizontal gradients of all
mean quantities. From the mean continuity equation (11.60), it then follows that
@w=@z D 0 and hence also w D 0; and, therefore, in this approximation the advec-
tion of mean fields through the mean flow is neglected. Accordingly, the mean field
equations (11.59) and (11.61) simplify to

@uh

@t
� f � uh D � @

@z
u0

hw
0 (11.65)

@b

@t
D � @

@z



J b
3 C b0w0

�
(11.66)

Closures for b0w0 and u0
hw

0 are needed. Furthermore, the TKE equation (11.62) is –
in various forms – a central element of nearly all models of the oceanic mixed layer.
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48. Richardson Flux
Number

As discussed above, of the two production terms in the TKE equation (11.62) the buoyancy flux
normally leads to a decrease in TKE (for stable mean stratification) whereas the interaction with
mean shear leads to an increase in TKE. Hence the ratio of both terms

Rif D b0w 0

u0

i
u0

j
@uj =@xi

� b0w 0

w 0u0

j
@uj =@z

(B48.1)

is a dimensionless measure for the net production of TKE and referred to as flux Richardson
number Rif (the second expression holds for the typical situation of a horizontal mean flow
that is vertically sheared). For Rif > 1, the buoyancy flux dominates and the net production
of TKE is negative, whereas for Rif < 1 the shear term dominates and the net production
(except dissipation) is positive. If both b0w 0 and w 0u0

j
can be described by exchange laws with

coefficients Kb respectively Ku, one has

Rif D Kb@b=@z

Km

�
@uj =@z

�2 D Kb

Km

N 2

�
@uj =@z

�2 D Kb

Ku
Ri

Thus under these assumptions the flux Richardson number is proportional to the gradient
Richardson number Ri as defined in (7.96). The ratio of turbulent viscosity and diffusivity is
called the turbulent Prandtl number

Pr D Ku

Kb
D Ri

Rif

The Prandtl number is frequently expressed as a function of the Richardson number Ri. Experi-
ence suggests that Pr � 1 for Ri 
 1, i. e. for weak stratification and/or strong shear, and that
the Prandtl number increases for larger values of Ri (Anderson, 2009; Webster, 1964).

With horizontal homogeneity, (11.62) takes the form

@E
@t

D @F

@z
� u0

hw � @uh

@z
C b0w0 � � (11.67)

Here the vertical transportF D w0.p0 C u0
ju

0
j =2/ (defined as positive into the ocean)

and the dissipation � are two more variables for which closures are needed. We have
neglected the molecular TKE flux which is very small. In the following, several
approaches for closing the system (11.65)–(11.67) will be briefly discussed.

Bulk Models

In bulk mixed layer models, which were pioneered by Kraus and Turner (1966,
1967), the observed buoyancy structure within the mixed layer is taken as given,
and no attempt is made to model the causes of this structure. Specifically, it is as-
sumed that the buoyancy has a constant value within a well-mixed layer of depth h,
so that the buoyancy profile is given by b D b0.t/ for 0 
 z 
 �h.t/, and by a lin-
ear function of depth from b0 to b? between z D �h.t/ and z D �h? representing
a thin pycnocline (see Figure 11.4). The deep buoyancy b? has to be specified in
this model. The parameter � D h? � h characterizes the pycnocline thickness and
is assumed to be constant and small, � � h, so that effectively the pycnocline is
modeled as a discontinuity at the mixed layer base.

Only the integral budgets of buoyancy and TKE over the mixed layer are
considered. Integration of the momentum balance (11.65) leads to an equation for
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49. Seasonal Cycle of the
Oceanic Mixed Layer

The structure of the oceanic near-surface layer is characterized by a layer of nearly constant
density, residing over a thin sharp pycnocline (a layer with a strong vertical gradient of density),
followed by a more gradual increase of density down to the abyss. The turbulence in the mixed
layer which leads to almost complete mixing is caused by a combination of wind and buoyancy
forcing at the surface. In a typical summer mixed layer (30–50 m thick), wind-induced turbulence
normally dominates; in winter, the mixed layer can deepen to several hundred meters through
buoyancy loss.

ba

dc

Time series during 1961 at Ocean Weather Ship PAPA (145ı W, 50ı N). a Turbulent kinetic
energy input at the sea surface F .z D 0/ in (11.67) in 10�5 m3 s�3, b surface heat flux

Q.z D 0/ D �.J b
3 C b0w 0/jzD0 in (11.66) in W m�2, c potential density (anomaly) in

kg m�3 and d potential temperature in ıC at station PAPA. Data was taken from GOTM (www.
gotm.net). Note that since station PAPA is located in a region where the horizontal advection of
heat and salt is assumed to be small, the seasonal cycle of the mean buoyancy is given to a good
approximation by (11.66).

the Ekman transport which is not discussed further (see Section 14.1). The physics
of the mixed layer model should determine both b0.t/ and h.t/ from the specified
surface buoyancy flux and the characteristics of the turbulence in that layer.

Fig. 11.4 Sketch of profiles of buoyancy (blue line) and buoyancy flux (red line) in bulk mixed layer
models. The buoyancy b is constant (b0) in the mixed layer which extends from z D �h to the
surface. The buoyancy decreases linearly from b0 to the prescribed value b? in the thin pycnocline
between z D �h and z D �h?. The vertical (radiative plus turbulent) buoyancy flux Q enters at
the surface (with the prescribed valueQ0) and decreases linearly towards its valueQh at the mixed
layer base at z D �h. The fluxQ? at the base of the pycnocline at z D �h? is given by the small
interior diffusive flux and might be set to zero
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It is useful to define Q D �.J b
3 C b0w0/ as the vertical (radiative plus turbulent)

buoyancy flux (positive downwards into the ocean). As evident from (11.66), for b
to be constant in the mixed layer,Q.z/ must be a linear function of depth,

Q.z/ D Q0 C z

h
.Q0 �Qh/ (11.68)

HereQ0 is the net surface buoyancy flux which is considered as a prescribed forcing,
and Qh D Q.z D �h/ the flux at the mixed layer base. Parameterization of the
turbulent component is achieved in a somewhat indirect way as shown below (the
radiative component of Qh can normally be neglected, except in certain situations
with very shallow mixed layers where its inclusion poses no difficulties). Integration
of (11.66) from z D �h to z D 0 and from z D �h? to z D �h, respectively, now
leads to

h
@b0

@t
D Q0 �Qh and .b0 � b?/@h

@t
D Qh �Q? (11.69)

Normally, Q? D Q.z D �h?/ is small and is, therefore, neglected, though it could
easily be retained e. g. as a diffusive flux below the mixed layer. Since b0 � b? will
always be positive in a stable stratification, the mixed layer will deepen if the buoy-
ancy flux Qh is positive according to (11.69), i. e. it is downward. In this case, fluid
of buoyancy b? from below the mixed layer is mixed (‘entrained’) into the mixed
layer and brought to b0. As discussed below, this mixing consumes turbulent energy
and hence can only take place if sufficient turbulent kinetic energy is available for
mixing fluid from below into the mixed layer.

The basic assumption of mixed layer physics is that Qh originates from turbulent
processes within the mixed layer and, therefore, cannot become negative since there
is no ‘unmixing’ of fluid from the mixed layer. Instead, whenQh drops to zero, there
is insufficient turbulent energy to continue mixing at the mixed layer base. Mixing
and deepening of the mixed layer then stops, and a new mixed layer is established at
a shallower depth.

The mixed layer depth is determined from the budget of turbulent kinetic energy,
which usually equilibrates within a few minutes. Ignoring, for simplicity, the shear
term in (11.67), integration from �h to 0 with (11.68) then yields

0 D F0 � Fh � h

2
.Q0 CQh/ �

0Z

�h
�dz (11.70)

A few further assumptions (parameterizations) close the problem. The turbulent en-
ergy input F0 is related to the wind stress �0 (by exciting surface waves, which by
breaking create TKE). From dimensional arguments, one postulates F0 D cj�0j3=2
with a dimensionless coefficient c D O.1/, whileFh is assumed small and neglected.
To close the positive dissipation term, it is simply assumed that a fraction r1 of the
(positive) wind input F0 is dissipated. In situations when buoyancy is lost at the sur-
face, i. e. whenQ0 < 0, which occurs mainly by cooling, the potential energy of the
heavier fluid is converted to TKE, and it is likewise assumed that a fraction r2 of this
TKE gain is dissipated. Hence the dissipation term is expressed as

0Z

�h
�dz D r1F0 C r2

h

4
.jQ0j �Q0/
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with 0 < r1; r2 < 1. This relation, together with (11.70), finally leads to the required
parameterization of Qh in the form7

h

2
Qh D .1 � r1/cj�0j3=2 � h

2

h

1 � r2

2

�
Q0 C r2

2
jQ0j

i
(11.71)

With specified forcing terms �0 and Q0, the recipe to calculate the mixed layer
depth h.t/ is now as follows. IfQh from (11.71) is positive, it is used to compute h.t/
from the prognostic equation (11.69). If Qh from (11.71) becomes negative (which
can happen only when Q0 > 0), then h is determined from the diagnostic equa-
tion (11.71) as balance between mechanical forcing and buoyancy gain by setting
Qh D 0, i. e.

h D 2.1� r1/cj�0j3=2=Q0 (11.72)

The algorithm reflects the fundamental difference between the processes of deepen-
ing and shallowing of the mixed layer. The physics of the model is straightforward,
and in this approximation there are only two adjustable parameters, .1� r1/c and r2.
Typical parameter values are r1 � 0:1, r2 � 0:9, and c � 1.

Bulk mixed layer models have been commonly used as part of ocean circulation
models. On the positive side is their conceptual (and computational) simplicity. In
particular, the wind-induced deepening of the mixed layer is usually well described
by these models. On the other hand, bulk models perform less well in convective sit-
uations and are unable to resolve any structures within the boundary layer. Further-
more, a discontinuity at the mixed layer base – an essential part of the models – is
not generally observed.

Models based on Parameterization of Vertical Buoyancy
andMomentum Fluxes

The standard closure for the turbulent buoyancy and momentum fluxes in (11.65)
and (11.66) is the down-gradient parameterization

w0 0 D �K @ 
@z

(11.73)

where  stands for u or b, and the coefficientK can be different for buoyancy and
momentum. It follows from (11.66) that this specification of constant or slowly vary-
ing values of K will completely fail to reproduce the observed property structure
in the mixed layer.

Various parameterizations have been proposed which express K as function of
the local Richardson number Ri. Specifically, Pacanowski and Philander (1981) have
proposed functional relations for Ku.Ri/ and Kb.Ri/, which permit variation of the
coefficients over two (for Ku) or even three (for Kb) orders of magnitude, with the
highest values obtained for Ri ! 0. The parameterization works well in regions
of strong shear, such as in the tropical oceans. However, in a situation where the
buoyancy is vertically well mixed so that everywhere in the mixed layer Ri D 0,
these methods are less suited since effectively they imply constant coefficients.

7 Note that we used here a scaled stress variable �0 (divided by the reference density) in units
m2 s�2.
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The parameterization (11.73) fails in situations where an unstable stratification
induces convective transport independent of the local gradient. The generalization

w0 0 D �K 
 
@ 

@z
� � 

!
(11.74)

includes a nonlocal contribution � which is modeled as an empirical function of
stratification and forcing, and applies only in convective situations. The parameter-
ization (11.74) was originally developed for convection in the planetary boundary
layer of the atmosphere (Deardorff, 1966). In the KPP (K-profile parameterization)
formulation of ocean mixed layer turbulence, (11.74) is used together with a spec-
ification of mixed layer depth h by a bulk Richardson number criterion and with
specified profiles of both the coefficients Ku; Kb and the nonlocal parameters �u; �b

based on empirical results (Large et al., 1994).

Models Based on the TKE Equation

TKE models are based on the parameterization (11.73) and link the diffusivity with
TKE and a characteristic length scale with the heuristic relation (11.42) as

K D c E1=2L (11.75)

Here c is an empirical dimensionless coefficient (or ‘stability function’), either cho-
sen as constant or as function of other variables such as stability, normally with
c D O.1/. The turbulent kinetic energy E can in principle be determined from
the TKE equation (11.62). The dissipation is expressed as � D c�E3=2=L according
to (11.27), again with c� D O.1/. The vertical transport term in (11.67) has been
modeled (Gaspar et al., 1990) as a diffusive flux of TKE, i. e.

F D cEE1=2L
@E
@z

(11.76)

with cE D O.1/, but note that the flux of TKE can take complicated forms in partic-
ular for convective situations. With (11.73), (11.75), (11.76), and (11.27), the TKE
equation (11.67) can be written as

@E
@t

D @

@z

�
cEE1=2L

@E
@z

�
C cuE1=2L

�
@u

@z

�2
� cbE1=2L

@b

@z
� c� E

3=2

L
(11.77)

For a qualitative discussion of (11.77), the dimensionless coefficients will be ignored
in the following, i. e. cE; cu; cb; c� ! 1. Note, however, that modifications may occur
in practical applications, due to different choices for the dimensionless coefficients.

As discussed earlier in (11.28), the time-scale of adjustment of TKE to changes in
the forcing is T D L=

p
E , which typically is much shorter than 1 h. On longer time-

scales, the energy equation, therefore, is effectively in equilibrium so that the terms
on the right-hand side of (11.77) must balance. Since dissipation is a central aspect
of turbulence, any term balances not involving dissipation are not very plausible.

Note that a principal difficulty remains, namely the parameterization of the length
scale L, which often can be interpreted as scale of the large eddies (see Sec-
tion 11.2.1). Several plausible limits for L can, however, be derived from consid-
erations of stratification, shear, and geometrical factors:
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� In the presence of a stable mean stratification @b=@z D N 2 > 0, consider a par-
ticle that is vertically displaced from its mean position by a turbulent eddy with
the length scale L. In this way, the particle gains potential energy (per mass)
Ep D L2N 2=2 (see e. g. Section 7.2.2). The potential energy which is gained
cannot be larger than the eddy TKE, i. e. Ep � E . It follows that

L . Lb �
p
2E=N 2 (11.78)

In an unstable mean stratification, the buoyancy term in (11.77) is positive, and
TKE is produced. However, the convective TKE production cannot be larger than
dissipation, i. e. E1=2Lj@b=@zj . E3=2=L, if one assumes for simplicity that the
first two terms on the right-hand side of (11.77) are also positive (note that the flux
of TKE in (11.77) takes complicated form in convective situations). It follows for
that case that

L . L�
b D

q
E=j@b=@zj (11.79)

which is formally similar to (11.78).
� In the presence of mean shear, consider variations of the mean flow u over the

eddy length scale L. For the concept of the parameterization (11.73) with (11.75)
to be valid, u should not change over the eddy length scale by more than urms D
E1=2, i. e. ju.z C L/ � u.z/j � jL@u=@zj . E1=2, and hence

L . Lu D E1=2=j@u=@zj (11.80)

Another interpretation of the condition (11.80) is that the shear term in (11.77)
cannot be much larger than the dissipation term. Note that for L D Lu,
with (11.75) it follows thatK D j@u=@zjL2, a relation which was derived in Sec-
tion 11.2.1 based on the mixing length concept.

� In the absence of stratification and mean shear, observations suggest that tur-
bulent mixing rarely extends deeper than Lmax � 50�100m. This situation is
described by a balance between diffusion of energy and dissipation in (11.77),
i. e.

@

@z

�
E1=2L@E

@z

�
D E3=2

L

which can be solved analytically with the approximation of constant L. The so-
lution is given as E D E0ez=d with d D p

3=2 L 	 L. Hence the TKE decreases
exponentially with z in the oceanic mixed layer, which is to be expected since
only dissipation is acting in the interior. Since L is not very different from the
mixed layer depth scale d in this case, one finds the further condition L . Lmax.
Note that the magnitude of TKE is determined by the surface flux F0 of TKE into
the ocean which appeared in (11.70) as E0 D ..3=2/F0/

2=3.
� For geometrical reasons, eddies cannot be larger than their distance from a bound-

ary. In particular, near the surface z D 0 it follows that L . Lr D jzj.
In summary, from the preceding considerations it follows that L . Lmin D

min.Lb; L
�
b ; Lu; Lmax; Lr/. A very simple choice for L would be to assume L D

Lmin. Other models have used L � Lb or an integral variant thereof as a closure
for L, but there is no consensus which model is best. This variety of possibilities
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also includes the choice for the stability functions and dimensionless parameters in
the closure. Turbulence models based on the TKE equation (11.77) and a diagnostic
specification of L succeed in general in simulating the large variations in diffusiv-
ity/viscosity required for a simulation of a well-mixed surface layer. However, the
parameterization of the combined TKE flux and pressure correlation as TKE dif-
fusion in (11.76), which is central for TKE models, is not supported by numerical
simulations of boundary layer turbulence; it appears instead that buoyancy effects
dominate that flux (Mironov et al., 2000).

k-� and SecondOrder TurbulenceModels

To avoid a diagnostic specification of the length scale L, prognostic equa-
tions have been used for the dissipation �. From (11.56), an equation for
� D 	m.@ui=@xj /.@ui=@xj / can be derived in a straightforward way. The terms in
the resulting equation somewhat resemble those in the energy equation (11.62), but
are of higher order of differentiation and have a less direct physical interpretation.
These terms have been modeled in analogy to the TKE equation, and the resulting
equation is often of the form

@�

@t
D @

@z
c4E1=2L

@�

@z
C �

E

"
c1E1=2L

�
@u

@z

�2
� c3E1=2L@b

@z
� c2 E

3=2

L

#
(11.81)

which can in principle be solved together with the TKE equation (11.77), by express-
ing the length scale L through (11.27). Here c1 : : : c4 D O.1/ denote additional di-
mensionless stability functions which need to be specified. It can be shown that c2
determines the free turbulence decay time scale and c3 the steady-state Richardson
number and mixing efficiency for homogeneous shear layers (Umlauf and Burchard,
2005). Using (11.81) together with the TKE equation is often referred to as k-�-
model (k stands for TKE). Mellor and Yamada (1982) have used a similar equation
for the variable EL instead of �.

Another possibility for the construction of a turbulence model is to consider equa-
tions for all second order moments. These equations can be obtained in a straightfor-
ward way, by multiplication of (11.56) and (11.58) with u0

i respectively b0, adding
and averaging. With further assumptions (assuming that the turbulent length scale is
smaller than a mean length scale and that isotropy prevails at high wave numbers, ne-
glecting the radiative component in (11.58) and assuming horizontal homogeneity),
the result is given by
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C .b0u0

iıj;3 C b0u0
j ıi;3/� 2

3
�ıij (11.82)

@b0u0
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D b0w0 @ui
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C w0u0
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� f b0u0
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0
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(11.83)

@b02=2
@t

D �b0w0 @b
@z

� @b02w=2
@z

� �b (11.84)
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ba

Fig. 11.5 Mixed layer simulation using a standard k-�-model at Ocean Weather Ship PAPA for the
same year as in the box on p. 357. a Temperature in ı C, b vertical turbulent diffusivity in m2 s�1

(colors) and temperature (contours). Model and forcing was taken from GOTM (www.gotm.net).
Since station PAPA is located in a region where the horizontal advection of heat and salt is assumed
to be small, it is often used for validating turbulence closure schemes. Comparing the simulation
with the observations in the box on p. 357 shows indeed a good agreement

where �b D 	.@b=@xi /2. Note that summation of (11.82) over the diagonal terms
i D j yields the TKE equation (11.67). A main advantage of (11.82)–(11.84) is
that parameterizations of the type (11.73) are no longer needed since the fluxes are
now modeled explicitly. However, parameterizations are now needed for the pressure
correlation terms p0@b0=@xi and p0.@u0

j =@xi C @u0
i=@xj / and, as before, for the dis-

sipation and the moments of third order. Equations (11.82)–(11.84) are often used in
their equilibrium version (equating right hand sides to zero).

Both k � � and second order turbulence models are frequently used in practical
engineering and have also successfully been applied to the ocean boundary layer
modeling; an example is given in Figure 11.5. It is probably fair to say that the de-
velopment of these models is guided more by the results than by the physical insight.
The number of adjustable parameters in these models is fairly large, and it remains
to be shown that the results justify the increase in complexity and computational
efforts.

11.3.3 Turbulence in the Ocean Interior

Turbulent mixing in the stratified interior of the ocean is small compared to the
boundary layers, but nevertheless of high interest. Among other aspects, interior
mixing can influence the global meridional overturning circulation (see Chapter 15
and the box on p. 364) in important ways, in particular its upwelling branch, by
mixing of the cold dense water with warmer and lighter water masses above them.

Mixing through surfaces of constant density (isopycnals) is called diapycnal mix-
ing (in contrast to mixing along isopycnals, referred to as isopycnal mixing). Since
the slopes of isopycnals in the ocean are very small (a consequence of j@�=@zj �
max.j@�=@xj; j@�=@yj/) the diapycnal mixing is almost identical to vertical mixing.

A relation between diffusivity and dissipation can be obtained by consideration of
the TKE equation (11.67). Neglecting the transport term and assuming stationarity
leads to a local balance between the production terms and the dissipation. With the
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definition of the flux Richardson number Rif from (B48.1), one obtains

0 D �w0u0
j

@uj

@z
C b0w0 � � D b0w0.1 � 1=Rif/� �

which is equivalent to

�b0w0 D �� (11.85)

with the mixing efficiency � D Rif=.1 � Rif/. From observations and numerical
simulations, one finds for stratified flows like the ocean that Rif � 0:15, thus for the
mixing efficiency � � 0:2 (Osborn, 1980). Using the Austauschansatz (11.75) for
b0w0 yields

Kb D ��N�2

Therefore, the turbulent diffusivity is related to the local dissipation, a consequence
of the assumption of a local balance between production and dissipation of TKE.
Hence the turbulent diffusivity can be inferred from measurements of the dissipation
rate �. From microstructure observations in the interior ocean, one typically estimates
� � 10�10�10�9 m2 s�3 and thus Kb � 10�5 m2 s�1 for the typical stratification
in the interior of the ocean. Note that there is an order of magnitude discrepancy
between this local estimate of Kb and the global mean value inferred from (B50.1)
to balance the meridional overturning (cf. also Section 15.3). Further, observations
indicate that mixing in the ocean is not uniformly distributed but rather concentrated
in certain regions associated with rough bottom topography (Polzin et al., 1997).

The TKE, which is dissipated by � and used to change the potential energy by the
transfer term b0w0, is supplied by the shear instability transfer term w0u0

j @ Nuj =@xj .
The mean velocity Nuj , whose shear is responsible for the mixing, needs some con-
sideration. The vertical shear of the large-scale flow, e. g. related to the meridional
overturning, is much weaker than the shear related to the internal wave field, since the
latter has vertical scales much smaller than the large-scale or mesoscale ocean circu-
lation. The way how the internal waves are generated and how they transfer energy
from source to the dissipation, which is then related to mixing described by (11.85),
is discussed in Section 10.4.5.

50. Munk’s Abyssal
Recipe

In equilibrium, the diffusive vertical flux of tracers has to be balanced by an advective vertical
flux. Munk (1966) assumed a balance

w
@b

@z
D Kb

@2b

@z2
(B50.1)

which shall hold everywhere below the permanent thermocline of the oceans. Additionally,
he assumed that w and b are horizontally constant to first order. As a solution one obtains
b D b0ez=H with H D Kb=w . Actually, the observed vertical profiles of b are often almost
exponential, such that H can be easily determined from data (� 800m). Assuming a value of
25�30Sv for the global overturning in the ocean, one obtains w � 1 cm=d as vertical veloc-
ity (assuming equally distributed upwelling) and Kb � 10�4m2 s�1. This simple discussion
shows that global overturning and the vertical diffusivity are roughly proportional to each other.
Increasing Kb by an order of magnitude, the global overturning also has to be increased by one
order of magnitude, i. e. from 25 to 250Sv. The order of magnitude of Kb appears, therefore,
important. It should be kept in mind that Munk’s value for Kb is applicable to the large-scale
global mean. LocallyKb may be much smaller.



11.3 Inhomogeneous Three-Dimensional Turbulence 365

Another possibility to infer Kb from data follows from the buoyancy variance
equation (11.84). Again assuming stationarity and neglecting the transport terms
yields

b0w0 @b
@z

D ��b (11.86)

With b0w0 D �KbN
2 and �b D 	.@b=@xi /2, the Osborn–Cox relation

Kb

	
D C D .@b0=@xi /2


@b=@z
�2 (11.87)

is obtained where the Cox number C denotes the ratio between the variance of the
vertical buoyancy (or temperature) gradient and the square of the mean vertical gra-
dient (Osborn and Cox, 1972). For a more detailed discussion of the Osborn–Cox
relation and its underlying assumptions we refer to Section 12.3.3. The Cox num-
ber also gives the ratio between turbulent and molecular diffusivity and is normally
much larger than 1. The relation (11.87) demonstrates how the turbulence enhances
the effect of molecular diffusivity by increasing the instantaneous gradients relative
to the gradients of the mean buoyancy.

As shown e. g. in Section 7.2.2, the buoyancy variance is related to the turbu-
lent potential energy Ep by Ep D 1

2
b02=N 2. Therefore, the dissipation of buoyancy

variance �b in (11.84) must be related to the dissipation of potential energy �p by
�p D �b=N

2. Eliminating the flux b0w0 from (11.86) and (11.85) leads to

�p D ��

Hence the dissipation of turbulent potential energy is a fraction (around 25%) com-
pared to the dissipation of TKE.
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In this chapter, we will discuss aspects of turbulent flows on spatial
scales around and larger than the (first baroclinic) Rossby radius, which
are ubiquitous and important for many aspects of the large-scale ocean
circulation and often are referred to as mesoscale ocean eddies. As
discussed in Section 5.1, motions on these scales are strongly con-
strained by rotation and stratification and have a very small aspect ra-
tio and hence are nearly two-dimensional. Turbulent motions in two
dimensions differ in important aspects from the three-dimensional mo-
tions considered in Chapter 11. Therefore, this chapter could also be
called two-dimensional turbulence. Idealized two-dimensional turbu-
lence will be discussed in the following section, while Section 12.2
is devoted to the more realistic inhomogeneous situation of the real
ocean. In Section 12.3 we discuss alternative averaging frameworks
to differentiate between advective and diffusive effects of turbulent
mixing.

Mesoscale fluctuations are almost always and anywhere present in the ocean and can
be conceptually distinguished from the large-scale circulation by their smaller time
and space scales. Mesoscale fluctuations (in the following referred to as mesoscale
eddies, although all kinds of fluctuations in space and time and not just the coherent
eddies are meant here) have spatial scales around (i. e. not more than several times
and not less than a substantial fraction of) the first internal Rossby radius and time-
scales ranging from the inertial period to several weeks or at most months and are,
therefore, dynamically well described by the quasi-geostrophic approximation (com-
pare Section 5.2). The large-scale circulation of the ocean, on the other hand, refers
in general to larger space and time-scales, in fact often referring to the time-mean and
basin-scale circulation. Since the flow related to the mesoscale eddies is often of tur-
bulent nature, it is therefore sometimes also convenient to refer to mesoscale eddies
as deviations from the time mean. On the other hand, it is clear that the large-scale
circulation may also change and includes – for instance in the western boundary cur-
rent – also spatial scales comparable to the mesoscale eddies. Therefore, it should be
kept in mind that the distinction between large-scale and mesoscale (and small-scale)
circulation of the ocean is in practice often not very sharp.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 367
DOI 10.1007/978-3-642-23450-7_12, © Springer-Verlag Berlin Heidelberg 2012
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12.1 Homogeneous Turbulence in TwoDimensions

We start the discussion of geostrophic turbulence considering the idealized case of
homogeneous two-dimensional turbulence similar to the discussion in Section 11.1
for three dimensions. The results obtained there, in particular the scalar energy bal-
ance (11.22), remain valid, with modifications where appropriate.

As discussed in Section 5.2, oceanic flows at the scale of the internal Rossby ra-
dius are almost two-dimensional and nearly in geostrophic balance and, therefore,
are well represented by the quasi-geostrophic approximation, which is expressed by
the quasi-geostrophic potential vorticity equation (5.37). A most simplified form of
(5.37) is obtained by neglecting both the ˇ-effect and effects of the stratification.
While this seems not a good approximation for oceanic mesoscale eddies, it suffices
for the moment to discuss some basic aspects of homogeneous two-dimensional tur-
bulence. Neglecting, furthermore, the diapycnal forcing and specifying the horizontal
mechanical forcing as F D Ahr2u results in

@�

@t
C u � r� D Ahr2� (12.1)

for the relative vorticity � D @v=@x � @u=@y. Note that (12.1) could also be derived
directly, i. e. without reference to the QG approximation, from the momentum equa-
tion (4.10) in two dimensions. As will be shown below, the existence of the vorticity
equation (12.1) leads to substantial differences in the physics of two-dimensional
turbulence, compared to turbulence on three dimensions.

Multiplication of (12.1) by � and averaging, noting that spatial derivatives of mean
quantities vanish due to homogeneity, yields

@

@t

1

2
�2 D �Ah.r�/2 (12.2)

as an equation for the “enstrophy” �2=2. Spectral decomposition of u; v and � is now
analogous to Section 11.1.2, and the details are not repeated here. It is again sufficient
to consider the scalar energy spectrumE.k/ and the enstrophy spectrumG.k/ which
satisfy

1

2
.u2 C v2/ D E0 D

Z
E.k/dk and

1

2
�2 D G0 D

Z
G.k/dk

The derivation of the scalar energy balance from the momentum equation in Sec-
tion 11.1.2 remains valid in two dimensions. Additionally, from the vorticity equa-
tion (12.1) a conservation equation for the scalar enstrophy spectrum G.k/ can be
derived in a similar way, resulting in

@

@t
E.k/ D � .k/ � 2Ahk

2E.k/ and
@

@t
G.k/ D �G.k/ � 2Ahk

2G.k/ (12.3)

where the term � .k/ is the scalar projection of the inertial forces defined in analogy
to (11.20) (but for two dimensions), and �G.k/ denotes the spectral form of the
inertial term r � .u��0 C u0��0/ following from (12.1). Since � D @v=@x � @u=@y,
both spectra are related by G.k/ D k2E.k/. Multiplication of (12.3) with k2 then
shows that also �G.k/ D k2� .k/. The inertial forces can change neither the total
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energyE0 nor the total enstrophyG0, i. e.
1Z

0

� .k/dk D 0 and

1Z

0

k2� .k/dk D 0

In analogy to (11.21), the spectral transports of energy and entropy are given as

F.k/ D �
kZ

0

� .k0/dk0 and FG.k/ D �
kZ

0

k02� .k0/dk0

Compared to the three-dimensional case, there are now two constraints given by
(12.3) for the energy transport F.k/ by the inertial forces in wave-number space.
The consequence of the additional constraint is that in two dimensions the situation
changes completely with respect to the direction of the energy transport, as shown
below.

12.1.1 Inverse Energy Cascade

In analogy to the statistical moments, the “moment” of order n in wave-number space
can be defined as

kn D E�1
0

1Z

0

knE.k/dk ; n D 0; 1; : : : (12.4)

In this section, the symbol ./ is used to indicate the spectral moment according to
(12.4) (thereafter the usual definition as statistical or time average will hold again).
Of particular interest are the “mean” wave number k, which indicates the region

where most energy is concentrated, and the “variance” .k � k/2 as a measure of the
spread of the energy spectrum around k. Note that all moments depend on time,
as a consequence of the time dependence of the energy spectrum. From definition
(12.4), it follows that

.k � k/2 D E�1
0

Z
.k � k/2E.k/dk D k2 � .k/2 (12.5)

If the spectrum is initially concentrated around a certain wave number, it is plausible
to assume that the inertial forces will tend to widen the maximum in analogy to

molecular diffusion, as indicated in Figure 12.1. From @.k � k/2=@t > 0 and (12.5),
one finds

@k2

@t
� @.k/2

@t
D @k2

@t
� 2k

@k

@t
> 0 (12.6)

To infer the sign of @k=@t , we have to know the sign of @k2=@t . Integration of (12.3)
over all wave numbers, together with the definition (12.4), yields the integral budgets
of kinetic energy and enstrophy in the form

@E0

@t
D �2Ahk2E0 (12.7)

@G0

@t
D @.k2E0/

@t
D k2

@E0

@t
C E0

@k2

@t
D �2Ahk4E0 (12.8)
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Fig. 12.1 An initially narrow spectrum (full line) with the energy centering around k will widen in
time, and the center will move toward lower wave numbers. The dashed line shows the spectrum at
a later time

Multiplying (12.7) with k2, and subtracting the result from (12.8), results in

E0
@k2

@t
D �2AhE0

h
k4 � .k2/2

i

Since k4 � .k2/2 > 0, as shown from

0 <

Z 

k2 � k2

�2
E.k/dk D E0

h
k4 � 2k2k2 C .k2/2

i
D E0

h
k4 � .k2/2

i

it follows that @k2=@t < 0. Finally, with (12.6), we have @k=@t < 0. Therefore,
the main energy concentration in time will move toward smaller wave numbers, as
indicated in Figure 12.1. This characteristic behavior of two-dimensional turbulence
is referred to as red or inverse energy cascade because energy moves to larger scales,
in contrast to three dimensions where the energy is transferred to smaller scales.

12.1.2 ANumerical Example of Two-Dimensional Turbulence

As an example of two-dimensional turbulence, we consider a numerical solution
of the vorticity equation (12.1) on a periodic domain. The temporal evolution of the
stream function from the (specified) initial condition is shown in Figure 12.2. Note
that u D �@ =@y and v D @ =@x and thus � D r2 . The initial conditions for  
and � (Figure 12.2 upper and lower left panel) are dominated by a prescribed high
wave number on which a small background noise with randomly chosen wave num-
bers is superimposed. After several days of integration, the flow becomes unstable
due to shear instability (Figure 12.2 middle and right panels). The temporal evolution
of the stream function illustrates the red cascade discussed in the previous section,
i. e. the shift of kinetic energy from initially small scales, as prescribed in the initial
conditions, toward larger scales. This red kinetic energy cascade is responsible for
the fact that the stream function becomes dominated by lower and lower wave num-
bers in the subsequent integration. The final result is that the computational domain
is filled with only a few large eddies.
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Fig. 12.2 Illustration of two-dimensional turbulence, as described by numerical solutions of the
vorticity equation (12.1). The stream function  (a–c, with u D �@ =@y and v D @ =@x) is
shown at the initial time (a) and for two later times (b and c) after the shear instability sets in.
Also shown is the vorticity 
 (d–f). The domain shown here is 5;000 � 5;000 km, but the actual
computational domain is larger with periodic boundary conditions. The grid resolution is 10 km,
and we have used hyperviscosity instead of lateral friction term in (12.1), i. e. we have added the
term �Ahyr4
 to the right-hand side of (12.1) with hyperviscosity of Ahy D 3:9 � 109 m4 s�1

while we have set Ah D 0

Figure 12.2 also shows the vorticity �. In contrast to the stream function, it does
not show a dominance of lower wave numbers in the subsequent integration. In fact, �
is dominated by small-scale features with high wave numbers in the subsequent in-
tegration, i. e. it is much noisier than in the prescribed initial conditions. While the
kinetic energy shows a red (or inverse) cascade in wave-number space, the enstrophy
features a direct cascade, i. e. enstrophy is transported towards smaller scales and
higher wave numbers.

Figure 12.3 shows the spectral characteristics of the solutions in terms of the
energy spectrum E.k/ and the energy flux F.k/ in wave-number space. Since the
mechanical forcing in (12.1) only consists of a frictional term, the total kinetic en-
ergy E0 associated with the initial conditions decreases with time. The energy spec-
trum E.k/ is initially dominated by the high wave number ki associated with the
initial distribution (Figure 12.3a). At the time when the instability indicated in Fig-
ure 12.2 sets in, an energy flux shows up, which continues at later times, growing
in time, and rapidly changes the energy spectrum E.k/. As seen in Figure 12.3d the
energy flux F.k/ is initially directed in both directions, i. e. it is positive and directed
towards larger k for k > ki and negative towards smaller k for the part of the spec-
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Fig. 12.3 Spectral properties of numerical solutions of equation (12.1). The left column shows the
evolution of the wave-number spectrum of the kinetic energy, logE.k/, at subsequent times as
a function of wave number logk. The vertical and horizontal red lines denotes the mean wave

number k and its standard deviation k˙ .k2 � k2/1=2 respectively. The kn are defined by (12.4).
The right column shows the evolution of the energy flux F.k/ as a function of logk at the corre-
sponding times. The upper row shows the initial time, where the spectrum is dominated by a sharp
peak in wave-number space also seen in Figure 12.2. Lower rows correspond to later times when
the instability seen in Figure 12.2 sets in and progresses

trum with k < ki . Note that this flux is induced by the inertial term in (12.1) related
to the growing instabilities. As a manifestation of the red (inverse) energy cascade,
the negative flux towards smaller k is much larger than the positive one such that
the mean wave number k, also shown in Figure 12.3, decreases in the subsequent

integration, while the wave-number variance k2 � k
2

increases due to the nonlin-
ear interactions. At later times, the positive part of energy flux F.k/ becomes small
(Figure 12.3d), such that a red energy cascade is found. In contrast to the energy
flux F.k/, the enstrophy flux FG.k/ (not shown) is positive at large scales, i. e. to-
wards higher k and smaller scales.
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51. The ˇ-Effect
and the Rhines Scale

In the vorticity equation (12.1), we have neglected so far variations in the planetary vorticity. If
we consider instead

@


@t
C u � r 
C ˇv D Ahr2
 (B51.1)

with ˇ D @f=@y, the flow will feature (short barotropic) Rossby waves (cf. Section 8.2). In the
numerical solutions shown in Figures 12.2 and 12.3, using the vorticity equation (B51.1) instead
of (12.1), the ˇ -effect manifests itself in a distinct anisotropy, i. e. in the appearance of preferred
zonal flow in the simulation with ˇ ¤ 0 which features, in fact, quasi-stationary zonal jets.

ba

The above figure shows a simulation using (B51.1) (a) and (12.1) (b). The difference to the sim-
ulation shown in Figure 12.2 is that we have also included a forcing term on the right-hand side
of (B51.1) and (12.1) and a linear damping term (in addition to the hyperviscosity to allow for
a more effective dissipation on larger scales). The figure shows a snapshot of stream function  
and vorticity 
 (contours) after the system is equilibrated for the energy input by the forcing and
removal by dissipation by hyperviscosity and linear damping.
In both experiments, kinetic energy is injected on a small scale ki , identical to the initial condi-
tions in the simulation shown in Figure 12.2. The red energy cascade leads to a transport of that
energy to larger scales as seen before, where it is then dissipated by the linear damping term.
However, it turns out that when the turbulent scales become larger, Rossby wave dynamics –
present for the case ˇ ¤ 0 – become important for the turbulent flow. The dispersion relation
for Rossby waves of the form  	 exp i.kx � !t/ from (a linearized version of) (B51.1) is
given by ! D �ˇ=k. Suppose that an eddy of scale L transfers its energy to larger scales dur-
ing the time T D L=U , where U is the (turnover) velocity scale of the eddy which is usually
taken simply as the rms velocity of the turbulent flow. When T is smaller than the Rossby wave
period Tr D 1=j!j, the eddy will not be much affected by the wave propagation, but at the scale
L 	 p

U=ˇ where T 	 Tr D ˇL, the red cascade will be effected, i. e. the flow will become
anisotropic for scales � L as seen in the simulation. Note that the red cascade will eventually
be stopped by friction as in the simulation with ˇ D 0 (Danilov and Gurarie, 2002).
The scale

p
U=ˇ is called the Rhines scale (Rhines, 1977) (see also Section 5.1) and can be

related with the meridional spacing of the zonal jets appearing in the simulation for ˇ ¤ 0.
Zonal jets related to the ˇ -effect in geostrophic turbulence are often met in the ocean and the
atmosphere (the jet stream), but also in the atmosphere of giant planets like Jupiter. Compare
also the numerical model solution in the box on p. 380.

12.1.3 EquilibriumRange

In contrast to energy, the spectral transport of enstrophy (and passive tracers) towards
larger scales is expected to be in the “normal” direction, i. e. from large to small
scales. In analogy to Section 11.1.4, it is possible to define again an equilibrium range
in the enstrophy conservation equation (12.3) where inertial and frictional terms are
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in balance. The dissipation of enstrophy is given as �G D 2Ah
R1
0
k4E.k/dk. In the

equilibrium range, both enstrophy and energy spectra will depend on �G, k andAh. If
an inertial subrange exists where the inertial terms are dominating over dissipation,
then E D E.k; �G/ is expected to be again a universal function. On dimensional
arguments, the only possible functional form is given by

E.k/ D const �2=3G k�3 (12.9)

and describes a somewhat steeper decay of E.k/ with wave number compared to
three-dimensional turbulence. This spectral law holds for scales larger than the dissi-
pation length scale 
d, which in this case is given by 
d D A

3=6
h �

�1=6
G . It is interesting

to note that the form of the wave-number spectrum shown in Figure 12.3g is, in fact,
close to a k�3 law for large wavenumbers.

However, another equilibrium range appears possible. Assume that energy and
enstrophy are injected at a scale k�1

i � 
d. From the preceding argument it follows
that enstrophy will be transported to larger k where it will be dissipated around
kd D 1=
d. On the other hand, energy will be transported to smaller k. To achieve
equilibrium, energy has to be removed by some process at a smaller wave number
k�, at a rate of, say, ��. Provided now that k� � ki � kd, one can expect two
separate equilibrium ranges: In the range ki < k < kd, the spectral form is governed
by enstrophy transport and follows the k�3–law from (12.9). In the range k� < k <
ki , a similar dimensional argument as in the three-dimensional case can be made,
although the direction of the energy transport is now reversed. In analogy to (11.37),
the spectral form is, therefore, given by E D const �2=3� k�5=3.

The resulting conceptual spectrum is sketched in Figure 12.4, which might help
to understand energy fluxes in ocean and atmosphere: At the scale ki which can be
identified as the internal Rossby radius, mean kinetic and potential energy is con-
verted to fluctuating energy by barotropic and baroclinic instability. Kinetic energy
is then transported to larger scales where it has to be dissipated. The energy dissipa-
tion at large scales by linear damping is often interpreted as bottom friction (cf. Sec-
tion 14.1). Note that on very large scales comparable to the Rhines scale, the ˇ-effect
may become important, as discussed in the box on p. 373.

Fig. 12.4 Conceptual diagram showing the form of the energy spectrum for 2-d turbulence when
energy and enstrophy are injected at a scale ki . See text for further explanation
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However, in numerical experiments of two-dimensional turbulence (observations
are sparse in this respect), the spectral laws discussed above are often not found.
This is because the scales are not very different (for instance the wave numbers
in Figure 12.3 extend only over a single decade), the energy input is spread over
a wide vicinity of ki , and dissipation (by linear damping, whose effect is independent
of wave number) is present in both equilibrium ranges, which is inconsistent with
our assumptions. Furthermore, it seems that wave interaction can extend over large
distances in wave-number space such that both equilibrium ranges can be coupled.

12.2 Mesoscale Eddies and Their Impact on theMean Flow

Although some aspects of mesoscale ocean eddies seem consistent with the results of
homogeneous two-dimensional turbulence as discussed in the preceding section, the
complex situation in the real ocean including all other interacting dynamical regimes
often hampers the application of the idealized homogeneous theory. This section is,
therefore, devoted to the description of some important aspect of mesoscale eddies,
and in particular to the interpretation of mixing effects by mesoscale eddies in the
ocean. This mixing is strongly anisotropic and, therefore, differs in interesting ways
from the mixing concepts met in the previous sections.

Oceanic eddies derive their energy mainly through the (barotropic and baroclinic)
instability processes considered in Section 8.5.3. This energy transport has an impor-
tant influence on the large-scale circulation. It needs to be parameterized in circula-
tion models when the mesoscale eddies are not explicitly resolved. In the following,
some aspects of the energy exchange between large-scale circulation and mesoscale
eddies are discussed, and concepts for the parameterization of eddies are introduced.

12.2.1 Energetics ofMesoscale Eddies and the Lorenz Cycle

The equations of motion in the Boussinesq approximation (4.50) can be written as

@uh

@t
C u � ruh C f � uh D �r hp C Fh (12.10)

together with the hydrostatic relation b D @p=@z and the continuity equation r �u D
0. Here p denotes pressure divided by the reference density �0, and b D �g Q�=�0
denotes the buoyancy, where Q� denotes the density perturbation with respect to the
constant reference density �0. The symbols uh and r h denote the horizontal velocity
and the horizontal gradient operator, respectively (note that both are simultaneously
used also in their three-dimensional forms, u and r ).

For small excursions of the isopycnals around a background stratification bb.z/,
we can use quasi-geostrophic theory as discussed in Section 5.2. According to (5.8),
small perturbations b.x; y; z; t/ of the background state are governed by

@b

@t
C uh � r hb C wN 2 D Gb (12.11)

where N 2.z/ D @bb=@z is the buoyancy frequency. Note that the vertical advection
is ignored since it is small compared to the term wN 2, and that the small com-
pressibility terms in (5.8) have been neglected as well. When averaging (12.10) and
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(12.11) to obtain equations for u and b, turbulent eddy fluxes u0u0 and u0b0 appear
again, which have to be known in order to describe the mean variables.

For the energy cycle considered in the following, it will be important to specify
the viscous and diffusive closures in the underlying equations, i. e. the terms Fh

in (12.10) and Gb in (12.11). Conceptually, these equations are based on a Reynolds
average of the full equations of motions. This Reynolds filter, implicit to the primitive
equations, averages over the temporal and/or spatial range of valid motions within
the most restrictive approximation, which has led to the primitive equations. The
most restrictive approximation is given by the hydrostatic approximation. Therefore,
we assume that the terms Fh and Gb contain the divergence of turbulent fluxes given
by small-scale nonhydrostatic motions of the type considered in Chapter 11.3.

The effect of the small-scale turbulence in the stratified ocean and atmosphere,
with its small aspect ratio, is predominantly given by vertical processes. We, there-
fore, specify the mechanical forcing Fh D @�=@z in (12.10) as a divergence of
a vertical turbulent flux � of horizontal momentum, and the diabatic buoyancy source
term in (12.11) as Gb D �@J=@z, i. e. as a divergence of a vertical turbulent flux of
buoyancy.

Mean and Eddy Kinetic Energy

As discussed in Section 4.2.6, only the horizontal velocity components contribute to
kinetic energy in the hydrostatic approximation. With this difference, conservation
equations for the mean kinetic energy (MKE,Emk D 1

2
Œu2Cv2�) and the eddy kinetic

energy (EKE,Eek D 1
2
Œu02 C v02�) can be derived as in Section 11.3.1, i. e. by taking

the mean of (12.10) and multiplication with uh and multiplication of (12.10) with u0
h

and taking the mean, respectively, resulting in
�
@

@t
C u � r

�
Emk C r � F mk D �S C bw C uh � @�

@z
(12.12)

�
@

@t
C u � r

�
Eek C r � F ek D CS C b0w0 C u0

h � @�
@z

0
(12.13)

Here F mk D uh �u0u0
h Cup and F ek D u0ju0

hj2=2Cu0p0 are the fluxes of mean and
eddy kinetic energy, respectively. The mean might be a statistical or a time mean.
The physical interpretation of the individual terms is analogous to the conservation
equations considered in Section 11.3.1. The terms uh � @�=@z and u0

h � @� 0=@z con-
stitute the input of mean and eddy energy by mechanical forcing. The production
term S D �u0

hu
0 W ruh D �u0u0 � r Nu � v0u0 � r Nv (here the colon-symbol denotes

the double-scalar product, see Appendix A.1.6) is the exchange between EKE and
MKE, which is related to barotropic instability considered in Section 8.5.3.

Mean and Eddy Available Potential Energy

In Section 11.3.1, we have shown that the terms bw in (12.12) and b0w0 in (12.13)
can be interpreted as exchange between mean or turbulent kinetic energy with po-
tential energy. However, the conservation equation of potential energy defined as
Ep D �zb, i. e. relative to a completely mixed state with constant density, is not very
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useful when considering ocean eddies. Most of Ep describes the energy necessary to
homogenize the strongly stratified state. However, such a complete homogenization
never occurs since motions associated with ocean eddies are nearly adiabatic, and
potential energy is changed mainly by reversible vertical excursions of the isopyc-
nals.

As shown in Section 5.2.5, a useful measure of the adiabatic exchange of po-
tential energy is the available potential energy (per mass) Eap D b2=.2N 2/. With

b D b C b0, it is now possible to define mean available potential energy (MPE,

Eamp D b
2
=.2N 2/) and eddy available potential energy (EPE, Eaep D b02=.2N 2/).

Conservation equations forEamp andEaep are obtained in the usual way. Multiplication

of (12.11) with b and b0, respectively, and division by N 2 results in

�
@

@t
C uh � r h

�
Eamp C r h � F mp D �P � Nbw � Nb @

NJ
@z

.
N 2 (12.14)

�
@

@t
C uh � r h

�
Eaep C rh � F ep D CP � b0w0 � b0 @J

0
@z

.
N 2 (12.15)

The interpretation of the individual terms is as before, with F mp D Nbu0
hb

0=N 2 and

F ep D 1
2
u0

hb
02=N 2 describing transports of MPE and EPE, respectively, by the ed-

dies. The term Nbw which appears with opposite sign in (12.12) is an exchange be-
tween MPE and MKE, and likewise b0w0 is an exchange between EPE and EKE.
The production term P D �u0

hb
0 � rhb=N

2, which appears with opposite sign in
both equations, describes the exchange between MPE and EPE, and is related to
baroclinic instability.

Lorenz Energy Cycle

In the previous section, the conservation equations (12.12)–(12.15) for the four vari-
ables MKE, EKE, MPE, and EPE have been derived. We have seen that the different
forms of mean and eddy mechanical energy of the large-scale circulation are ulti-
mately linked by exchange terms appearing with opposite signs in the respective
conservation equations. These exchanges describe a cycle of energy, which is often
called the LORENZ1 energy cycle (Lorenz, 1955).

When integrating the conservation equations of EKE, MKE, EPE, and MPE over
a volume V , assumed closed, all advective flux terms in the equations vanish since
the normal component of the velocity vanishes at the boundary. The volume in-
tegral can be split in integrals over the horizontal area ˝ and the vertical direc-
tion,

R
V

dV D R
˝

d˝
R 0

�h dz. When the standard down-gradient parameterization
� D Av@uh=@z is used, with the turbulent vertical viscosity Av, integration of the
viscous term in (12.12) from surface z D 0 to bottom at z D �h (assuming a rigid
lid) yields

0Z

�h
uh � @�

@z
dz D uh � �j0�h �

0Z

�h
Av

ˇ̌
ˇ̌@uh

@z

ˇ̌
ˇ̌2 dz (12.16)

1 EDWARD NORTON LORENZ, *1917 in West Hartford (USA) †2008 in Cambridge (USA), math-
ematician and meteorologist.



378 12 Geostrophic Turbulence

Relations similar to (12.16) are obtained for the EKE conservation equation and for
the MPE and EPE conservation equation for J D �Kv@b=@z with the turbulent
vertical diffusivityKv. Note that the surface windstress �j0, bottom stress �j�h, and
the surface buoyancy flux J j0 (the buoyancy flux across the bottom is assumed to
be zero here) enter the integral balances. Note also that the second term in (12.16) is
sign definite and resembles dissipation. The integral budgets become

@

@t

Z

V

EmkdV D
Z

V

.�S C Nbw � �mk/dV �
Z

˝

uh � �j0�hd˝ (12.17)

@

@t

Z

V

EekdV D
Z

V

.CS C b0w0 � �ek/dV �
Z

˝

u0
h � �0j0�hd˝ (12.18)

@

@t

Z

V

EampdV D
Z

V

.�P � Nbw � �mp/dV �
Z

˝

N�2 NbJ j0d˝ (12.19)

@

@t

Z

V

EaepdV D
Z

V

.CP � b0w0 � �ep/dV �
Z

˝

N�2b0J 0j0d˝ (12.20)

Here �mk D Avj@uh=@zj2, �ek D Avj@u0
h=@zj2, �mp D KvN

�2.@b=@z/2, and �ep D
KvN

�2.@b0=@z/2 denote the dissipation of MKE, EKE, MPE, and EPE, respectively,
by small-scale turbulence. The relations (12.17)–(12.20) are the integral form of the
Lorenz energy cycle. A schematic representation of the energy cycle is shown in
Figure 12.5 (left panel).

Lorenz Cycle in the Atmosphere

Figure 12.5 (right panel) shows a recent estimate of the Lorenz energy cycle of the at-
mosphere based on a standard reanalysis dataset (ERA40) of the atmosphere. There
is a large reservoir of MPE which is almost an order of magnitude larger than the
other forms of mechanical energy, which are similar in magnitude. There is a large
energy transfer from MPE to EPE and an even larger one from EPE to EKE. Notice
also the energy exchange directed from EKE to MKE, which is in both hemispheres
larger than the transfer from MPE to MKE, which means that the mean flow is pre-
dominantly driven by the eddy activity. One can infer from the residuals that the
differential heating by radiative heat fluxes generates a large reservoir of MPE from
which EPE and EKE is generated by baroclinic instability. Mechanical energy is
apparently dissipated predominantly by dissipation of EKE. the box on p. 380 illus-
trates a numerical example similar to the atmospheric situation.

Lorenz Cycle in the Ocean

In the ocean, such detailed reanalysis data sets as for the atmosphere are not avail-
able, which inhibits the estimation of the energy cycle based on observations. How-
ever, there are some bulk estimates of the energy cycle given by different authors
which have been summarized by Wunsch and Ferrari (2004). On the other hand,
a different way to infer information about the energy cycle in the ocean is offered
by ocean models. Here, however, one should keep in mind that dissipation and thus
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Fig. 12.5 Left: Schematic of the Lorenz energy cycle (12.17)–(12.20). Note that the local conser-
vation equations also contain flux terms. It is assumed that dissipation is due to vertical mixing and
friction only. Right: Lorenz energy cycle estimates from the ECMWF reanalysis dataset ERA40
by Li et al. (2007) for the atmosphere. Energies are given in 105 J m�2 and exchange terms in
W m�2, and the integrals are taken over the entire globe. Numbers in brackets are deduced from the
residuals; they contain forcing and dissipative terms

Fig. 12.6 Lorenz energy cycle estimates from regional eddy-permitting models of the North At-
lantic and of the Southern Ocean. Energies are given in 1012 m5 s�2 	 1015 J and exchange terms
in 106 m5 s�3 	 109 W (remind that we write energy usually as energy density, correct physical
unit is J, however). The budget for the North Atlantic is taken from 10ıS to 68ıN and 100ıW
to 0ı and for the Southern Ocean from 78ıS to 32ıS and 180ıW to 180ıE and from surface to
bottom in both cases. The background buoyancy profile is the mean over both regions weighted by
the area of the domains. Numbers and arrows in red depend on the definition of the background
buoyancy profiles; numbers and arrows in black are independent

the whole energy cycle in models depends on their subgrid-scale parameterizations,
which are known to have deficits. Figure 12.6 shows estimates of the Lorenz energy
cycle based on regional eddy-permitting models of the North Atlantic Ocean and the
Southern Ocean. The models have a lateral resolution of 1=12ı in the North Atlantic
and 1=10ı in the Southern Ocean and 45 and 43 vertical levels, respectively, and
are both based on the same z-level finite difference numerical representation of the
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52. Lorenz Cycle in an
Idealized OceanModel
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The above figure shows in a a snapshot of instantaneous pressure (divided by reference density,
in m2 s�2) and velocity in m s�1 (arrows) at 500 m depth in an idealized primitive equation
model simulation. b shows the zonally (and time) averaged zonal velocity Nu in m s�1 (colors)
and buoyancy Nb (contours). The simulation features four energetic zonal jets which can be seen
in the snapshots but are most prominent in the zonal averages. The jets are driven by strong
baroclinic forcing realized by relaxation zones at the northern and southern boundaries of the
zonally periodic domain. The relaxation, resembling large-scale forcing like the radiative forcing
in the atmosphere, generates and sustains the domain-wide meridional buoyancy gradient that
can be seen in Nb and drives the system. Note that the zonal jets and their dynamics are analogous
to the ones found in the barotropic case in the box on p. 373.
Integral mechanical energies (here for the zonally averaged quantities) in the model in
109 m4 s�2 and energy transfer terms in m4 s�3 (bold in the table) are given by

Emk ! Eamp ! Eaep ! Eek ! Emk

0.14 �6:70 30.6 108 0.27 88.6 0.26 23.0

As seen in Figures 12.5b and 12.6, Emp dominates the other energy reservoirs by far. There is
a large supply of Eamp by the relaxation zones at the northern and southern boundaries. This
energy is then transferred predominantly toEaep where a fraction is dissipated and further trans-
ferred to Eek where most of that energy is lost to dissipation. However, a significant amount
(about 20%) of the energy originally supplied by the large-scale forcing is transferred from Eek

back to the mean flow Emk, which is, to a lesser extent, also fed directly from Emp.
The transfer of eddy energy to the mean flow takes place inside the zonal jets. The above figure, c,
shows in colorsEek in 10�4 m2 s�2 while the energy transfer toEek, i. e. SCb0w 0, is denoted
by lines in 10�9m2 s�3 where the contour spacing is 5�10�9m2 s�3. Note that positive values
correspond to solid lines and denote production of Eek. Note also that in the upper 200–400 m,
SCb0w 0 is negative since here it is dominated by (negative) S related to the effect of barotropic
instability. Correspondingly the mean flow is energetic in this upper layer. Below that surface
layer, S C b0w 0 is positive and dominated by (positive) b0w 0 related to the effect of baroclinic
instability. Note that the term p0w 0 in the energy flux Fek predominantly fluxes the energy from
regions with positive b0w 0 to regions with negative S .

primitive equations. Note also that the energy budgets for both ocean basins are not
closed, i. e. there is a transport of energy in and out of the domains.

As for the atmosphere, there is a large reservoir of MPE, which is roughly two
orders of magnitude larger than the other forms of mechanical energy, which are of
similar magnitude. Note, however, that the value of MPE and the associated energy
transfer terms depend to a large extent on the definition of the background stratifica-



12.2 Mesoscale Eddies and Their Impact on the Mean Flow 381

Fig. 12.7 Upper row: Eddy kinetic energy (EKE) in regional models of the North Atlantic and the
Southern Ocean in log10.EKE=Œm2 s�2�/ at 100 m depth. Second row: Energy transfer from EPE

to EKE,
R 0

�h b
0w 0dz in 10�6 m3 s�3 	 10�3 W m�2. Positive values denote production of EKE.

Third row: Energy transfer from MKE to EKE,
R 0

�h Sdz in 10�6 m3 s�3 	 10�3 W m�2. Positive
values denote production of EKE. Lowest row: Wind forcing of MKE, �u � �, in 10�6 m3 s�3 	
10�3 W m�2. Positive values denote production of MKE
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tion, which was chosen as the mean over the mean profile of the North Atlantic and
the Southern Ocean weighted by the area of the domains. All terms of the Lorenz
energy cycle that depend on the definition of the background stratification are shown
in red in Figure 12.6.

In both oceans, EKE is more than twice as large as MKE, and EPE is larger than
EKE in both cases. In the North Atlantic, the ratio between EPE and EKE is around 2
while in the Southern Ocean this ratio is slightly smaller. Wunsch and Ferrari (2004)
estimated 13 � 1018 J for the eddy mechanical energy of the global ocean, i.e. for
the sum of EKE and EPE. The regional model estimates are consistent with this
number, i.e. they yield 3:2 � 1018 J eddy mechanical energy in the Southern Ocean
and 1:3 � 1018 J in the North Atlantic, leaving enough room for contributions to
global eddy mechanical energy from the Pacific and Indian Ocean. On the other hand,
Wunsch and Ferrari estimated 0:8�1012 W wind forcing of MKE while the regional
model estimates yield higher values of 0:9 � 1012 W wind forcing for the Southern
Ocean and 0:2� 1012W for the North Atlantic. For the exchange rate between mean
and eddy mechanical energy, Wunsch and Ferrari estimated 0:9 � 1012 W for the
global ocean, while the model estimates are lower, i.e. 0:12 � 1012 W for the North
Atlantic and 0:16 � 1012 W for the Southern Ocean.

There are large lateral and vertical variations in the different forms of energies
and the exchange terms of the energy cycle in the ocean. Figure 12.7 shows the EKE
simulated by the two regional models at 100 m depth. In the North Atlantic, EKE is
large at the equator and in the western boundary currents, in particular in the Gulf
Stream and North Atlantic Current region where the EKE peaks at around 1000 J m�3

while in the interior EKE is several orders of magnitude smaller. In the Southern
Ocean, EKE is large within the Antarctic Circumpolar Current (ACC) and also at
the east coasts of South America and Australia where western boundary currents are
located with peak values of EKE similar to those in the North Atlantic while there
are also large regions in the Southern Ocean with low values of EKE.

EPE shows a lateral and vertical structure similar to that of EKE with values
which are in general slightly higher than those of EKE, as already indicated in the
integral budgets. MKE shows large values where EKE and EPE also show maxima,
with magnitudes slightly less than EKE. The lateral structures of MKE, however,
are sharper than the ones of EKE, i. e. MKE is more concentrated within the mean
currents while EKE and EPE are more smoothed out around the mean currents. The
vertical structure of EKE, EPE, and MKE is also similar with large values near the
surface, rapidly decaying with depth.

Figure 12.7 shows the vertically integrated energy transfer terms from EPE to
EKE and from MKE to EKE. The magnitudes of the exchange terms are largest
where the EKE is also largest. The transfer from EPE to EKE is predominantly pos-
itive, denoting production of EKE while there are also limited regions in the Gulf
Stream, in the ACC, and at the equator where

R 0
�h b0w0dz is getting negative. The

lateral and vertical structure of the transfer P from MPE to EPE is similar to b0w0
and thus not shown. The transfer S from MKE to EKE, on the other hand, shows
a lateral pattern of large magnitudes but with rapidly fluctuating signs. Note that in
the atmosphere, the global integral of S is negative, i. e. representing a transfer from
EKE to MKE, while for the basin integrals of the North Atlantic and the Southern
Ocean, there is a (small) transfer from MKE to EKE. However, integrals for certain
regions in the regional models also can show transfer from EKE to MKE similar to
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the atmosphere. This is in particular the case for regions of free zonal flow such as
the Gulf Stream/North Atlantic Current system and the Antarctic Circumpolar Cur-
rent. Figure 12.7 also shows the wind forcing of the energy cycle which is in general
positive and large over the ACC and the northern and southern edges of the subtrop-
ical gyre of the North Atlantic. The wind forcing of EKE (not shown) is rather small
because of the lack of correlation between mesoscale eddies and wind fluctuations.

12.2.2 Isopycnal Mixing Tensor

Mesoscale eddies in the ocean are characterized by a small aspect ratio, i. e. their hor-
izontal scales are much larger than their vertical ones, and they have much stronger
horizontal than vertical velocities. When the mixing by eddies is represented by an
Austauschansatz, one has to expect that the magnitude of mixing will depend on the
direction in space and, in particular, that it will be different for the vertical and hori-
zontal directions. With the appropriate anisotropic form of down-gradient diffusion,
the diffusive tracer flux is given as u0 0 D �K � r with a 3 � 3 diffusion tensor
K D .Kmn/.

The simplest form of K which accounts for the small aspect ratio is given by
K11 D K22 D Kh; K33 D Kv and Kmn D 0 for m ¤ n, with horizontal and ver-
tical coefficients Kh � Kv. While commonly used, this simple form is, however,
not well founded since the transports by mesoscale eddies in the ocean are mainly
along the local isopycnal direction. Due to the stable stratification, mixing of water
masses across isopycnal surfaces decreases the available potential energy (compare
also Section 5.2.6), whereas mixing along isopycnals does not effect the potential
energy (besides small thermodynamic effects in the presence of gradients in tem-
perature and salinity on isopycnals, as discussed in the box on p. 384). Therefore,
a parametrization is preferable that explicitly distinguishes between mixing in the
directions along and across isopycnals.

As discussed in Section 2.7.2, the vector e D ��rS � ˛�r� defined in (2.132)
is normal to the local neutral surface element. One of the principal directions of the
mixing tensor should be in the direction of e. To determine the form of the mixing
tensor, we note that an arbitrary vector a can be decomposed in its components nor-
mal to the surface (diapycnal, index d) and along the surface (isopycnal, index i)
by

ad D
�
a � ejej

�
e

jej D ee

e2
� a ; ai D a � ad D



I � e e

e2

�
� a

with the unit tensor I. Note that ee denotes the dyadic or tensor product defined in
(A.15). Therefore, the simplest form2 of a mixing tensor with different diffusivities
in isopycnal and diapycnal directions is given as

K D Kd C Ki with Kd D Kd
ee

e2
and Ki D Ki



I � ee

e2

�
(12.21)

2 The form (12.21) of the mixing tensor assumes isotropic mixing in the along isopycnal direc-
tion. Other forms, i. e. isopycnally anisotropic (but symmetric) tensors, are possible but yield more
complicated representations.
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Note that the mixing tensor as defined in (12.21) is symmetric, i. e. Kmn D Knm.
According to (12.21), the (negative of the) diapycnal flux of a tracer is hence given
as

Kd � r D Kd
ee

e2
� r D Kd

eh � r h C e3@ =@z

e2h C e23
e � Kd

�
0; 0;

@ 

@z

�
(12.22)

Here the last expression holds for small aspect ratio, so that je1j; je2j � je3j, and
corresponds to the flux divergence r � .Kd �r / � @ .Kd@ =@z/ =@z. In this approx-
imation, diapycnal and vertical mixing are, therefore, equivalent.

53. Density Effects
due to Isopycnal Mixing
of Temperature
and Salinity

The form (12.21) applies to passive tracers but also to turbulent mixing of temperature and
salinity. For temperature it leads to a flux divergence G� D r �

� �Œ.K�d CK�i /�r ���, and likewise
for salinity. According to (3.2), these terms are linked to a source term G� D 	GS �˛G� in the
density conservation equation.
Isopycnal mixing of temperature and salinity by eddies has no direct effect on density since
for both the exact and the approximate forms in (12.23) the identity Ki � e � 0 holds. However,
there can be indirect effects through nonlinearities in the state equation. With (12.24), the density
forcing Gi� is

Gi� D 	�GiS � ˛�Gi� D 	�r �
� � �Kir �S

�� ˛�r �
� � �Kir ��

�
D �Ki

�r � .	�/ � r �S � r � .˛�/ � r ��
� D Ki	�r �.˛=	/ � r ��

Here the identity 	r �S � ˛r �� has been used. Expanding ˛.S; T; p/ and 	.S; T; p/with
the state equation and using @	=@� D �@˛=@S , one obtains the form

Gi� D Ki�

�
@˛

@�
C 2

˛

	

@˛

@S
� ˛2

	2
@	

@S

	 �r ��
�2 CKi�

�
˛p � ˛

	

@	

@p

	
r �� � r �p

(B53.1)

which has been discussed in detail by McDougall (1987). The first term (cabbeling) in (B53.1)
is caused by the dependence of ˛=	 on temperature and salinity along the isopycnal surface. It
is always positive and corresponds to the fact that mixing of two fluid elements with different
temperatures and salinities but initially the same potential density leads to a mixing product
with higher density, due to the nonlinearity in the state equation (cf. Figure 1.5). The second
term (thermobaricity) in (B53.1) is caused by the dependence of ˛=	 on pressure along the
isopycnal surface. It can have either sign and is normally somewhat smaller in magnitude than
the cabbeling term. To balance both terms, an upward vertical velocity of a few 10�8 m s�1

would be necessary. This indicates that the effect of isopycnal mixing on density may be small
but not altogether negligible.

The isopycnal mixing tensor follows from (12.21) as

Ki D Ki

e2

0
@ e

2
2 C e23 �e1e2 �e1e3
�e2e1 e21 C e23 �e2e3
�e3e1 �e3e2 e21 C e22

1
A � Ki

0
@ 1 0 s1
0 1 s2
s1 s2 s

2
1 C s22

1
A (12.23)

where s1; s2 are the components of a horizontal vector s D �eh=e3, which describes
the slope of the local isopycnal surface against the horizontal plane. The last approx-
imation holds again for small aspect ratio. With this approximation the isopycnal
tracer flux is given as

Ki � r D Ki

� r h C s@ =@z

s � r h C s2@ =@z

�
D Ki

� r� 

s � r� 

�
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54. Rotated Vectors
in the Zonal Mean Case

In Section 12.2.3 and following, zonally averaged buoyancy and tracer conservation equation
of the form (12.25) are discussed. The following notation is used for convenience: All vectors
and gradients are two-dimensional in the meridional-vertical plane, e. g. v D . Nv; Nw/ in (12.25).
Furthermore, the following definition of rotation for vectors (by  =2 in the counterclockwise
sense) is used

v: D .�w; v/ if v D .v;w/

This rotation will also be applied to other vectors; in particular, the vector operator
r: D .�@=@z; @=@y/ denotes the rotated gradient in the meridional-vertical plane, r D
.@=@y; @=@z/. Note that r: � r  D r � r: D 0. Compare also with the box on p. 444.

where for brevity the operator r� D r h C s@=@z has been introduced which is the
gradient along the local isopycnal surface. For the divergence of the isopycnal tracer
transport it follows that

r � .Ki � r / D r h � .Kir� /C @

@z
.Kis � r� / D r�� � .Kir� / (12.24)

with the local isopycnal divergence operator r�
� D r h C@=@zs (note that the relation

r�
� � .
a/ D 
r�� � a C a � r�
 holds for arbitrary 
 and a). The isopycnal mixing

tensor (12.23) is defined in z-coordinates. In Section 12.3.5 and the box on p. 422 it
is demonstrated how isopycnal mixing and the form (12.24) are related to mixing of
a tracer in isopycnal coordinates.

12.2.3 Transformed EulerianMean

The mixing tensor K as defined in (12.21) is anisotropic, reflecting the preferred di-
rection along the isopycnal surface. When applied to density or buoyancy, the isopy-
cnal component essentially vanishes, except for the (small) nonlinear terms consid-
ered in the box on p. 384, i. e. .Kd C Ki/ � rb � Kd � rb D Kdrb, so that only the
diapycnal component remains. Now eddies can influence the mean density structure
even in adiabatic systems, i. e. in the absence of any diapycnal mixing, which can
be better described as an advective effect as detailed below. A prominent example of
such an adiabatic process is that of baroclinic instability discussed in Section 8.5.3
and below in Section 12.2.4. To parameterize such effects, the form (12.21) is not
sufficient, and a representation beyond an isopycnal mixing tensor is needed.

To introduce the concepts, it is convenient to start the discussion with a two-
dimensional flow. The three-dimensional case is discussed in the box on p. 389. To
be specific, consider a zonally averaged flow, with zonal averaging denoted as .: : : /.
The zonally averaged buoyancy conservation equation is given by

@b

@t
C r � .vb/C r � Fb D Gb (12.25)

and is similar to the temporally (or statistically) averaged equation (hereFb D v0b0 is
the turbulent buoyancy flux). In the remainder of this section, all vectors and vector
operators are two-dimensional in the meridional plane, i. e. the zonal component
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vanishes. The notation follows the box on p. 385. In particular, the two-dimensional
current vector .v; w/ in the .y; z/-plane is denoted by v.

Andrews et al. (1987) have suggested to decompose the eddy buoyancy flux into
its components parallel and perpendicular to rb, i. e.

Fb D Br:b �Kdrb (12.26)

The coefficients B and Kd are given by

Kd D �jrbj�2Fb � rb and B D jrbj�2Fb � r:b (12.27)

The approximationB � �v0b0=.@b=@z/ holds for small aspect ratio3. With (12.26),
the buoyancy equation (12.25) can be written as

@

@t
b C .v � r:B/ � rb D Gb C r �Kdrb (12.28)

The flux component �Kdrb in (12.26) corresponds to a diffusive flux, and, there-
fore, the coefficient Kd can be identified with the diapycnal diffusivity Kd in the
diapycnal diffusivity tensor given by (12.22).

According to (12.28), the flux component along the mean gradient is equivalent
to an advection of b with an additional velocity �r:B , so that B can be viewed

as stream function for that velocity, which might be called an eddy-driven velocity.
Combining r:B and v to the residual velocity4 v� D v � r:B , the equation (12.28)

can be written as

@b

@t
C v� � rb D Gb C r �Kdrb (12.29)

It can be expected that the flux Fb is mainly directed along the lines of constant b,
and that the diapycnal diffusion term is small. It is shown below in Section 12.3.1
that Kd can be linked to Gb, i. e. it is possible to show that Kd D 0 follows from
Gb D 0. Furthermore, it follows that if Gb is small and can be neglected, then Kd

shall also be small and neglected, such that the mean buoyancy equation becomes

@b

@t
C v� � rb D 0 (12.30)

which has a form very similar to the instantaneous buoyancy equation, however
with an advection velocity v� which is different from v. In the stationary case
(@b=@t D 0), the residual velocity is directed along lines of b D const. In other
words, it is the residual velocity that corresponds to the mean particle pathways,
not the Eulerian mean velocity v. The residual velocity v� is, therefore, also called
Transformed Eulerian Mean (TEM) velocity.

3 Note that in well-mixed boundary layers of the ocean and the atmosphere the approximation
j@b=@yj � j@b=@zj is often used, such that B � w 0b0=.@b=@y/.
4 The name residual velocity derives from the fact that often r:B and v are large and of opposite

sign, such that their sum is only small. This is for instance the case for the meridional overturning
circulation in the Southern Ocean discussed in Section 16.3.
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55. Antisymmetric
Diffusivity Tensor
and SkewDiffusivity

Note that the decomposition (12.26) can also be written as

Fb D �K � r b with K D
�
Kd �B
B Kd

�
(B55.1)

The tensor K in (B55.1) is not symmetric, unlike the mixing tensor considered in the previous
section. Decomposition into its symmetric and antisymmetric parts, K D Ksymm C Kanti, yields

Ksymm D
�
Kd 0
0 Kd

�
and Kanti D

�
0 �B
B 0

�

As discussed above, the symmetric tensor in (12.26) is associated with diapycnal diffusion and
usually small. The extra advection is formally associated with an antisymmetric tensor and is
also referred to as skew diffusion.

12.2.4 Gent andMcWilliams Parameterization
and the Bolus Velocity

The TEM form of the buoyancy equation (12.28) states that the zonally averaged
buoyancy is advected by the sum of the zonally averaged mean flow v and the eddy-
driven velocity �r:B . The latter is often called the bolus velocity, but note that eddy-

driven and bolus velocity are not identical, as discussed below in Section 12.3.5 and
the box on p. 417. However, for the sake of finding a simple parameterization for the
effect, the difference is not of practical importance.

To achieve a parametrization for the eddy-driven velocity, one has to relate the
stream function B , or equivalently the eddy flux v0b0 in (12.27), with the mean field.
The standard down-gradient formulation for the horizontal component of the isopy-
cnal eddy flux is

v0b0 D �K` @b
@y

(12.31)

Assuming Kd D 0 in (12.27) (compare the discussion in the box on p. 390 concern-
ing this assumption) leads to b0w0 D sv0b0 and yields for the stream function

B D jr Nbj�2
 

�v0b0 @ Nb
@z

C b0w0 @ Nb
@y

!
D �v0b0

.@ Nb
@z

D �sK` (12.32)

where s D �.@b=@y/=.@b=@z/ denotes the mean isopycnal slope and K` a lateral
diffusivity. This parameterization forB is equivalent to the one proposed by Gent and
McWilliams (1990). Note that withKd D 0, it also followsB D b0w0=.@ Nb=@y/ such
that the boundary conditionB D 0 at z D 0;�h is satisfied. In general, however, one
has to insure that B D 0 at all boundaries. In the parameterization, this condition has
to be applied to the diffusivityK`, because the isopycnal slopes might be nonzero at
the boundaries.

The effect of the parameterization (12.32) for ocean dynamics can be illustrated
by a simple example of a sloping front. Figure 12.8 shows the zonally averaged buoy-
ancy Nb and the stream function B for the eddy-driven velocity �r:B in a simulation
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Fig. 12.8 Idealized model simulation of the effect of a simple parameterization of the eddy-driven
velocity on a narrow front. Shown is the zonally averaged buoyancy Nb (here scaled to a temperature
in ıC) in colors and the stream function B for the eddy-driven velocity v as contour lines (contour
spacing of 0:5m2 s�1) for three subsequent times as indicated in the panels

with an idealized (two-dimensional) primitive equation model, using the parameter-
ization (12.32) in a zonally periodic domain for three subsequent times. There is no
external forcing, all fields are zonally constant, and K` D 2;000m2 s�1 was chosen.
The left panel of Figure 12.8 shows the initial condition, resembling a narrow front
with a meridional scale of about 100 km. In the ocean, we expect this front to become
baroclinically unstable such that mesoscale eddies will grow, i. e. the mean available
potential energy stored in the sloping front will be released to eddy energy.

In the model, there are actually no mesoscale eddies (because of the zonal ho-
mogeneity), but the effect of the parameterization is indeed what we expect: At the
surface above the front, a northward eddy-driven velocity ofO.10 cm s�1/ develops,
compensated by a southward velocity at the bottom and by up- and downward ve-
locities at the southern and northern flanks of the front. Note that B D 0 at the upper
and lower boundary was assumed. The effect is a flattening of the sloping isopycnals,
and the final stage is motionless without any available potential energy. Using the pa-
rameterization (12.31) in the conservation equation of mean potential energy (12.15)
yields for the production term P D �v0b0.@b=@y/=N 2 (equivalent for the zonally
averaged case), indeed a sign definite energy sink P D K`.@b=@y/

2=N 2 > 0, which
reduces the mean available potential energy.

Since there is no mixing of density involved in the parameterization (Kd D 0

was assumed), the area between adjacent isolines of Nb in the entire model domain
stays constant. But at the surface and the bottom, the thickness of the uppermost
and lowermost layers is meridionally homogenized, i. e. mixed. Therefore, the effect
of the parameterization is sometimes called isopycnal thickness mixing, and K` is
accordingly called the isopycnal thickness diffusivity (cf. Section 12.3.5). Note that
a value of K` of O.1;000m2 s�1/ fits the time-scale of the flattening of isopycnals
by baroclinic instability quite well and is, therefore, chosen in numerical models.

12.2.5 Isopycnal Mixing and Transformed EulerianMean

A tracer with gradients on isopycnals will be mixed along isopycnals, which differs
from the turbulent mixing of buoyancy where this isopycnal mixing effect vanishes
(except for the small diapycnal effects discussed in the box on p. 384). Therefore, the
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56. Transformed
Eulerian Mean
in Three Dimensions

While the zonal mean case is somewhat easier to handle algebraically, all results in the previous
section can be generalized to the three-dimensional case. For a three-dimensional eddy buoyancy
flux Fb D u0b0 the decomposition (12.26) becomes

Fb D �Kdr bC B � r b (B56.1)

Note that the overbar denotes in this box a temporal mean and that all vectors are three-
dimensional. The diapycnal flux component is again neglected, with the same arguments as in
the two-dimensional case. In the mean buoyancy equation, the divergence of the eddy buoyancy
flux is given as

r � Fb D r � .B � r b/D .r � B/ � r b � v � r b (B56.2)

introducing the three-dimensional eddy-driven velocity v D r � B. The eddy effect is again
of advective nature, this time expressed by the three-dimensional eddy-driven velocity which is
given in terms of a vector stream function B for which

Fb � r b D .B � r b/� r b D �r b � .B � r b/D �B.r b � r b/C r b.B � r b/

holds and which can be determined using the gauge condition B � r b D 0, thus

B D �jr bj�2Fb � r b D �jr bj�2
0
B@
v0b0@b=@z �w 0b0@b=@y

w 0b0 @b=@x � u0b0@b=@z

u0b0@b=@y � v0b0@b=@x

1
CA

� �
 
@b

@z

!
�2

0
B@

v0b0@b=@z

�u0b0@b=@z

u0b0@b=@y � v0b0@b=@x

1
CA

For the last step, the assumption j@b=@zj >> jr hbj (small aspect ratio) was used. The standard
downgradient parameterization for the horizontal eddy flux u0

hb
0 D �K`r hb leads to the

three-dimensional version of the parameterization by Gent and McWilliams (1990) for the eddy-
driven velocity

r � B D
0
@�@.K`s1/=@z

�@.K`s2/=@z
r h � .K`s/

1
A (B56.3)

where s D .s1; s2/ denotes the isopycnal slope vector as in (12.23). The eddy-driven velocity is
added to the Eulerian mean velocity u to obtain the residual velocity u� D u C r � B, which
then advects the mean buoyancy Nb in the three-dimensional mean buoyancy equation analogous
to (12.29).

TEM concept for buoyancy is slightly extended here to account for isopycnal mixing.
Consider the zonally averaged conservation equation for a tracer concentration T ,

@T

@t
C v � rT C r � v0T 0 D NGT

where sources and sinks of the tracer are denoted by GT. Following the TEM frame-
work, the tracer eddy flux (v0T 0) is decomposed into components along and across
isolines of the mean tracer T , which yields analogous to (12.28)

@T

@t
C .v � r:BT/ � rT D r �KTrT C GT (12.33)

where BT and KT take analogous physical meaning and definitions as B and Kd

in (12.28). It is clear that the eddy-driven velocity �r:BT will not be identical to
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57. Diapycnal Mixing
by Mesoscale Eddies

In the Gent and McWilliams parameterization, discussed in Section 12.2.4, the diapycnal diffu-
sivityKd in (12.29) is set to zero, i. e. it is assumed that the eddy buoyancy fluxes Fb are always
parallel to the local isopycnal plane. Note that only the component of Fb perpendicular to the
isopycnal leads to a nonzeroKd. It will be shown in Section 12.3.1 that only vanishing diapycnal
terms, summarized in NGb in the mean buoyancy equation (12.25), will lead toKd D 0 in steady
state. Therefore, there is no real justification to set Kd D 0 in the ocean since it is known thatNGb ¤ 0 (even if one neglects the nonlinearity equation of state leading to diapycnal mixing as
discussed in the box on p. 384). In the interior of the ocean, NGb is in general rather small such
that even small diapycnal diffusivities related to mesoscale eddy mixing might be of importance
for the large-scale circulation.
It was discussed in Section 12.2.4 that the Gent and McWilliams parameterization represents
a sink of potential energy of the mean flow. This energy is transferred by baroclinic instability to
eddy energy if the system (or the model) under consideration contains mesoscale eddy dynam-
ics. If it does not contain this dynamical regime, the released energy of the parameterization is
simply lost. Tandon and Garrett (1996) noted that the further fate of the energy released by the
parameterization might be involved in mixing. In the ocean, the kinetic and potential mesoscale
eddy energy is either transferred to the mean flow, as discussed for instance in the box on p. 380,
or it is dissipated. The latter means that the energy is again transferred to the smaller-scale dy-
namical regime, i. e. that of small-scale, stratified turbulence discussed in Chapter 11.3 and the
internal wave field discussed in Section 10.4.5. When this turbulent kinetic energy (TKE) related
to small-scale turbulence is finally dissipated, there will be density (diapycnal) mixing involved.
However, the mechanism of the energetic transfer from the geostrophically balanced large-scale
and mesoscale ocean circulation to smaller scale motions, are unclear at the moment (Klein
et al., 2008).
The discussion in Section 11.3.3 shows that in the interior of the ocean about 25% of the dis-
sipated TKE is used for density mixing (this ratio is also called the mixing efficiency). Tandon
and Garrett (1996) speculated that this energy might represent, in fact, a substantial fraction of
the energy needed to sustain the global overturning circulation. Assuming an even lower mixing
efficiency and local dissipation of the mesoscale energy, Eden and Greatbatch (2008) demon-
strated that in energetic regions of the ocean, e. g. in western boundary currents, the dissipated
mesoscale energy is related to diffusivities of a greater or equal order of magnitude as the vertical
diffusivities in other small-scale mixing processes.

the eddy-driven velocity �r:B in the buoyancy equation (12.28). The same holds

for the diffusivities KT and Kd. On the other hand, it is more convenient to have
only a single residual velocity in all tracer and buoyancy equations, namely that for
buoyancy v� D v � r:B . Rewriting (12.33) accordingly yields

@T

@t
C v� � rT D r �KTrT � r:.B � BT/ � rT C GT (12.34)

In order to make the connection of the TEM framework with isopycnal mixing of
a tracer, the right-hand side of (12.34) should now be written as isopycnal and diapy-
cnal diffusion, i. e. as

@T

@t
C v� � rT D r � �KirT

�C r � �KdrT �C GT (12.35)

where Ki and Kd are the two-dimensional versions of the tensors defined in (12.21).
Comparing the right-hand sides of (12.34) and (12.35) leads to the system

�
KT �.B � BT/

B � BT KT

�
rT D Ki

1C s2

�
1 s

s s2

�
rT C Kd

1C s2

�
s2 �s
�s 1

�
rT

where Ki denotes isopycnal diffusivity, Kd diapycnal diffusivity, and s D �e2=e3
the slope of the mean isopycnals. Solving for Ki and Kd yields after some manipu-
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lation

Ki D KT � .B � BT/
1C st

s � t D KT � B � BT

tan�
(12.36)

Kd D KT C .B � BT/
s � t

1C st
D KT C .B � BT/ tan� (12.37)

where t D �.@T =@y/=.@T =@z/ denotes the slope of mean tracer contours and where
� is the angle between the gradients of NT and Nb (or the angle between isopycnals
and isolines of the mean tracer). Note that there is a singularity for t D s or � D 0,
but in that case isopycnals and tracer isolines coincide, and isopycnal diffusion is
then meaningless, i.e. the value of KI is not relevant anymore. Note also that the
result (12.36) and (12.37) carries over to the three-dimensional case as discussed by
Eden and Greatbatch (2009) although one has to account for anisotropic mixing in
the isopycnal plane, which complicates the algebra considerably.

If one assumes that slopes of tracers and buoyancy are small in the ocean interior,
specifically that jst j � 1, and that B � BT is larger than or at least of the same
order of magnitude as KT, the following expression will be a good approximation to
(12.36)

Ki � B � BT

t � s (12.38)

In other words, in the interior of the ocean, the isopycnal diffusivity is approxi-
mately given by the difference in the stream functions for eddy-induced velocities
of tracer and buoyancy divided by the difference in their slopes. In numerical mod-
els that do not resolve mesoscale eddy activity, the isopycnal diffusivity Ki has to
be parameterized, and a value identical to the thickness diffusivityK` is often used.
When the Gent and McWilliams parameterization as in Section 12.2.4 is used for
B D �v0b0=.@ Nb=@z/ D �sK` and also for BT D �tK`, using identical thickness
diffusivities for buoyancy and tracer, (12.38) indeed yieldsKi D K`.

12.2.6 *Mesoscale Eddy Effects in theMomentumEquation

In this section, we discuss the effects of mesoscale eddies in the momentum equation
and possibilities for parameterizations. The equations of motion in the Boussinesq
approximation (4.50) can be written as

@uh

@t
C uh � rhuh C f u:h D �r hp C Fh (12.39)

The vertical advection of horizontal momentum is assumed to be small and was ne-
glected in (12.39), and p denotes pressure divided by the reference density �0. In
this section, we return from the zonal mean case (compare the box on p. 385) to
a three-dimensional configuration; the symbols uh D .u; v/ and rh D .@=@x; @=@y/

denote the horizontal velocity and the horizontal gradient operator, respectively,
and the subscript ::: denote in this section rotation by 90ı in the horizontal plane,

i. e. u:h D .�v; u/. Compare also with the box on p. 444.

Taking the mean of the momentum equation as in Section 12.2.1 yields

@uh

@t
C uh � r huh C f u:h D �rhp � rh � u0

hu
0
h C Fh (12.40)
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The overbar .: : : / denotes a statistical or time mean (in contrast to the zonal mean
as used in Section 12.2.3). Note the appearance of the mesoscale eddy momen-
tum fluxes u0

hu
0
h, which have to be parameterized when mesoscale eddies are not

resolved by a model. It turns out that the straightforward parameterization of the
form u0

hu
0
h D �Kmr huh fails in the context of geostrophic turbulence, since eddy

momentum fluxes do not have a clear relation to the mean momentum gradient and
are even often upgradient, which would imply a negative lateral viscosityKm (Starr,
1968). It was often suggested (Gent and McWilliams, 1996; Marshall, 1981; Treguier
et al., 1997; Welander, 1973) that a better means to parameterize the eddy momen-
tum fluxes is given by considering eddy potential vorticity fluxes, which are excepted
to show a relation to the mean potential vorticity gradient.

Consider the quasi-geostrophic form of potential vorticity, which is, as discussed
in Section 5.2, given byQ D ˇyCr:�uh C@=@z.bf0=N 2/, with the relative vorticity

r: � uh and the perturbation buoyancy b and background stratification N 2 as defined

in Section 12.2.1. The eddy potential vorticity flux u0
hQ

0 can be written as

u0
hQ

0 D u0
hr: � u0

h C u0
h

@

@z

b0f0
N 2

D r: � u0
hu

0
h C f0

@

@z

 
u0

hb
0

N 2

!
� r:

 
b02
2N 2

!

(12.41)

where the geostrophic relation f0@u0
h=@z D r:b

0 was used in the second step – valid

within the quasi-geostrophic approximation – and where the identity r: � u0
hu

0
h D

u0
hr: � u0

h was used. The relation (12.41) between the fluxes of eddy momentum,

buoyancy and potential vorticity is sometimes called the Taylor identity (Taylor,
1915). The last term in the Taylor identity vanishes when taking the horizontal diver-
gence of the eddy potential vorticity flux, i. e. it has no effect for the mean potential
vorticity equation of the form (5.32) written here for vanishing Fh and G� as

@Q

@t
C uh � rhQ D �r h � u0

hQ
0 (12.42)

With u:
0
hr: � u0

h D rh � u0
hu

0
h � r h.ju0

hj2/=2 the Taylor identity (12.41) can also be

written as

u:
0
hQ

0 D rh � u0
hu

0
h � f0u:

e
h C rh

 
b02
2N 2

� ju0
hj2
2

!
(12.43)

where we have replaced the second term on the right-hand side of (12.41), related to
the eddy buoyancy fluxes, as the Coriolis force of the eddy-driven advection velocity
ue D r �B given by the box on p. 389. Using (12.43) to replace the divergence of
the eddy momentum flux, the mean momentum equation (12.40) becomes

@uh

@t
C uh � r huh C f u:

�
h D �rhp C r h

 
b02
2N 2

� ju0
hj2
2

!
� u:

0
hQ

0 C Fh (12.44)

Note that the Coriolis force in the momentum equation (12.44) is related to the resid-
ual momentum u� D u C r � B. It is often convenient to rewrite the momentum



12.2 Mesoscale Eddies and Their Impact on the Mean Flow 393

equation in this form, which will be further discussed for instance in Section 16.4 of
the dynamics of the Southern Ocean for an example.

58. The Eliassen–Palm
Flux and the
Non-acceleration
Theorem

Taking a zonal average of (12.44), indicated in this box by h::i, and assuming zonally periodic
boundary conditions, which is the case for the atmosphere or the zonally unbounded part of the
Southern Ocean, the zonal component of (12.44) becomes

@

@t
h Nui C @

@y
hvui � f hv�i D hv0Q0i C hFui (B58.1)

since the zonal average of all zonal derivatives vanish, e. g. h@p=@xi D 0, because of the
zonal periodicity. Since there is no zonal pressure gradient, the zonally averaged meridional
geostrophic velocity vanishes, and consequently, the advective term on the left-hand side of
(B58.1) vanishes in quasi-geostrophic approximation (in fact, only hvihui vanishes and it is
possible that there is a so-called standing eddy momentum flux, given by hvui � hvihui; this
complication is further discussed in the box on p. 563).
In steady state, the zonally averaged meridional residual velocity hv�i is thus balanced to lead-
ing order only by the meridional eddy potential vorticity flux hv0Q0i or the small-scale forcing
hFui. When the former vanishes, the residual velocity hv�i is only driven by hFui, which is also
often very small in the interior of the ocean. This situation, i. e. a vanishing residual circulation is
sometimes called the non-acceleration condition. The mesoscale eddy forcing in the zonally av-
eraged zonal momentum equation is given by hv0Q0i D �@hv0u0i=@yC @hf0v0b0=N 2i=@z,
which is the divergence of the Eliassen–Palm (EP) flux vector .�hv0u0i; hf0v0b0=N 2i/ (An-
drews and McIntyre, 1976).
The zonal average of the quasi-geostrophic potential vorticity equation (12.42) becomes

@hQi
@t

D � @

@y
hv0Q0i

Thus for steady state and vanishing small-scale forcing, the EP flux divergence is zero and in
consequence, the residual meridional circulation vanishes if the small-scale forcing hFui is ab-
sent. This statement is called the non-acceleration theorem (Andrews and McIntyre, 1976).

In the eddy potential vorticity flux, the term related to the eddy momentum flux
is often much smaller than the term related to the eddy buoyancy flux. Neglecting,
therefore, the former and using for the eddy buoyancy flux a downgradient parame-
terization as in the Gent and McWilliams (1990) parameterization, yields in (12.44)

�u:
0
hQ

0 � f0
@

@z

0
@K`r:b

N 2

1
A � @

@z

�
Kv
@uh

@z

�
(12.45)

where the geostrophic relation f0@uh=@z D r:b was used in the second step and

with Kv D K`f
2=N 2. The eddy term is converted to an apparent vertical friction

term with the apparent vertical viscosity Kv which is usually much larger than the
vertical viscosities related to small-scale mixing in the interior of the ocean. Note
that the same result as (12.46) can be obtained by adding the Coriolis force related
to the eddy-driven velocity on both sides of (12.40), neglecting the eddy momentum
fluxes and making the same replacement using the Gent and McWilliams (1990)
parameterization for the eddy-driven velocity (Greatbatch and Lamb, 1990).

For small Rossby number (or within the limits of the quasi-geostrophic approx-
imation) it is possible to replace in (12.44) the Eulerian Mean velocity uh with the
residual mean velocity u�

h . Equation (12.46) with (12.45) implemented (and the gra-
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dient force ignored),

@u�
h

@t
C u�

h � r hu
�
h C f u:

�
h D �r hp C f0

@

@z

0
@K`r:b

N 2

1
AC Fh

D �r hp C @

@z

�
Kv
@u�

h

@z

�
C Fh

(12.46)

is then called the residual mean momentum equation. This formulation is convenient
for a model, since it predicts the velocity variable which is needed in the mean buoy-
ancy equation, i. e. the residual velocity u�. It is then only necessary to implement the
parameterization for the effect of mesoscale eddy activity in the momentum equa-
tion, where it appears in this version simply as a vertical momentum flux divergence.
This form of the momentum equation will be further discussed in Section 16.4 to
construct simple dynamical models of the Southern Ocean.

In the form (12.44) of the momentum equation, the effect of mesoscale eddy
activity is given by the horizontal eddy potential vorticity flux u:

0
hQ

0 and a force

related to the horizontal gradient of eddy available potential energy b02=.2N 2/ and
eddy kinetic energy ju0

hj2=2. Formally, this gradient stands on the same footing as the
pressure gradient and consequently, it can be replaced a Coriolis-type force, defining

an additional horizontal velocity u(rot)
h by rh



b02=.2N 2/� ju0

hj2=2
�

D �f0u:
(rot)
h .

Note that u(rot)
h is divergence-free and thus has no vertical counterpart. Therefore, it

has no relevance for the quasi-geostrophic form of the buoyancy equation (12.11),
given in averaged form as

@b

@t
C uh � r hb C .w C we/N 2 D Gb (12.47)

with the vertical component of the eddy-driven velocitywe D r:�Bh D rh �u0
hb

0=N 2

(compare also the box on p. 403). The gradient force and the related velocity u(rot)
h

is also irrelevant for the mean potential vorticity equation. One might, therefore,
argue that the gradient force in the momentum equation (12.44) is irrelevant and can
be ignored. In fact we will show next, that the gradient force can be canceled by
introducing a properly chosen rotational component in the eddy potential vorticity
flux.

Let us consider the consequences of the following decomposition of the eddy
potential vorticity flux,

u0
hQ

0 D �KqrhQC �r:QC r:� (12.48)

that has a downgradient term, a component directed perpendicular to the gradient of
the mean potential vorticity, and a purely rotational flux component. It is immedi-
ately evident that the choice � D ju0

hj2=2 � b02=.2N 2/ cancels the above discussed
gradient force from the momentum balance (12.44). We consider two limiting cases.
The first case, � D 0, is presented in the box on p. 395. The second case, Kq D 0,
follows.

When the small-scale forcingFh and G� in the potential vorticity equation (12.42)
vanishes, there is good reason to assume that in steady state the component of the
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59. A Simple
Parameterization
for EddyMomentum
Fluxes

The relevant case for the ocean is where the small-scale forcing Fh and G� does not vanish in
the vorticity equation (12.42). For that case, we expect a significant downgradient component of
the eddy potential vorticity flux (compare also Section 12.3.3). We, therefore, use for the eddy
potential vorticity flux a downgradient parameterizations of the form u0

hQ
0 D �Kqr h

NQ C
r:� . We have accounted for a rotational flux component r:� , which has no effect in (12.42)

which becomes

@Q

@t
C uh � r hQ D r h �Kqr hQ

Therefore, based only on the mean potential vorticity equation, we have freedom to choose � .
However, � does figure in the momentum equation (12.40) which becomes

@uh

@t
C uh � r huh C f u:

�

h D �r hpCKqr: NQC r h

 
� C b02

2N 2
� ju0

hj2
2

!
C Fh

(B59.1)

In (B59.1) several new forces related to the mean potential vorticity gradient

Kqr:Q D Kq

"
�ˇi C r2h uh C @

@z

 
f 20
N 2

@uh

@z

!#

appear which need interpretation. For constant lateral diffusivity Kq and ˇ , the first term
�Kqˇi yields a constant westward force. This force was introduced by the parameterization
of the eddy momentum fluxes. However, in a global integral of (B59.1), the effect of the eddy
momentum fluxes vanish, and the same must hold for any parameterization of the eddy momen-
tum fluxes (Bretherton, 1966; Eden, 2010). Therefore, we have to adjust the free variable � in
the parameterization such that the integral of the force �Kqˇi is balanced, and the same for
all other forces in (B59.1) introduced by the parameterization. For constantKq and ˇ , the force
�Kqˇi thus vanishes completely, and the momentum equation (B59.1) can be formulated in
the more familiar form

@u�

h

@t
C u�

h � r hu�

h C f u:
�

h D �r hpC r �Kqr u
�

h C @

@z

 
Kv
@u

�

h

@z

!
C Fh (B59.2)

withKv DKqf
2
0 =N

2. In (B59.2) the mesoscale eddy effect is given by horizontal and vertical
friction, predominantly balanced by the mean pressure gradient and the Coriolis force related to
the residual velocity u� (assuming that the mean advection term uh �r huh remains small). Note
that the global integral of the frictional terms (except for the small-scale friction Fh) has to
vanish by the choice of � , which is not explicitly indicated in (B59.2).

eddy potential vorticity flux across isolines of mean potential vorticity, i. e. the down-
gradient component, vanishes as well, except for a purely rotational flux. This gen-
eral property of eddy fluxes will be shown analytically in Section 12.3.1. Therefore,
we assume that for the case of vanishing small-scale forcing Fh and G�, the eddy
potential vorticity fluxes can be described by (12.48) withKq D 0. The steady mean
potential vorticity equation (12.42) then becomes

r:. � �/ � rQ D 0

with the quasi-geostrophic stream function  with uh D r: . Thus � D N C&. NQ/
with some function &.x/. The steady momentum equation becomes after some ma-
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nipulations

f0

 
1 � @

@z

b

N 2

!
u:

�
h D �rh

�
p C ju�j2

2

�
(12.49)

with f D f0 C ˇy and setting � D ju0
hj2=2 � b02=.2N 2/ � Q � F. NQ/ with

F 0.x/ D &.x/. Eddy terms have disappeared from (12.49) and a nonlinear balanced
residual momentum equation results, but with a different Coriolis term. Equation
(12.49) resembles nonacceleration condition for three-dimensional flow, in which
the residual circulation does not vanish. Several other forms are also possible, but
a statement that the residual circulation takes a special form for steady state and
vanishing small-scale forcing as in the zonal mean case has not been found (Plumb,
1990).

12.3 * Alternative Averaging Frameworks

The general conservation equation for a tracer, D=Dt D G�, describes the changes
G� D G of a property  of a fluid particle during its way in a given flow5. If this
flow is turbulent, a description of the average evolution of the property is often more
useful than the instantaneous one. We have considered so far only the Eulerian Mean
N of the Eulerian quantity .x; t/, which performs the average at a fixed location. In
this section, we will discuss and compare also other averaging frameworks.

Using the Eulerian Mean framework tends to mix effects of advection and irre-
versible changes of the particle’s properties given by G, which then complicates or
even sometimes inhibits a useful physical interpretation of the averaged conservation
equation. This undesired mixing of physically different processes manifests itself in
the occurrence of the turbulent (Eulerian Mean) eddy fluxes, as seen e. g. in (12.25)
with  as buoyancy. The eddy fluxes are usually difficult to interpret. In the TEM
framework of Section 12.2.3, we have seen that the dominant part of the eddy buoy-
ancy flux was related to the eddy-driven velocity, i. e. to an advective effect, instead to
the diapycnal diffusivityKd. It will be shown below that in the TEM framework part
of the eddy flux related to Kd is still unrelated to irreversible changes of properties
(i. e. to mixing of properties) but to advective processes. The aim of the discussion
in the present section is to connect only the irreversible changes of  – which are re-
lated to G – to a turbulent diffusivity like Kd. The differentiation between advective
effects of turbulent mixing and irreversible changes becomes particularly important
when the amount of diapycnal mixing by mesoscale eddies (cf. the box on p. 390) is
to be determined. On the other hand, it is also of conceptual importance to separate
both effects.

We will discuss in Section 12.3.1 how to decipher advective and diffusive pro-
cesses in the Eulerian Mean eddy fluxes, by revisiting and modifying the TEM frame-
work. This will be done by introducing and defining rotational eddy fluxes, which
do not figure in the divergence of the eddy fluxes in the Eulerian Mean conservation
equation, but which influence the estimates of turbulent diffusivity and the eddy-
driven velocity. The physical meaning of the rotational eddy fluxes will be discussed
in Section 12.3.2. The concept is called the Temporal Residual Mean (TRM) frame-
work, and it relates the turbulent diffusivity to irreversible and temporal changes of

5 We omit the index of the source term G� in the following discussion.
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60. Summary of
Alternative Averaging
Frameworks

� Temporal Residual Mean: Transport velocity is the Residual Mean velocity u� given by
the sum of the Eulerian Mean u plus the eddy-driven velocity ue . The Residual velocity
transports the Eulerian Mean property �. The eddy-driven velocity is given by a stream
function and differs for different �.

� Generalized Lagrangian Mean: Transport velocity is the Lagrangian Mean velocity uL

given by the sum of the Eulerian Mean u plus the Stokes velocity uS. The Lagrangian Mean
velocity transports the Lagrangian Mean property �L, given by the sum of the Eulerian Mean
property � and the Stokes correction �S. The Stokes velocity is in general divergent, but it is
independent of the particular property �L under consideration. The Lagrangian Mean might
not exists for specific cases.

� Semi-Lagrangian (Isopycnal) Mean: Transport velocity is u# given by the sum of the
Eulerian Mean u plus the Quasi-Stokes velocity uC. The velocity u# transports the semi-
Lagrangian Mean (or modified) property �I. The Quasi-Stokes velocity is given by a stream
function and differs for different �I. If � is specified as density in the definition of the semi-
Lagrangian Mean, the procedure is also called Isopycnal Mean.

 and its statistical moments in a consistent way. In fact, it will be discussed in Sec-
tion 12.3.3 how the concept leads to a generalized Osborn–Cox relation, which we
met before in an approximate form in Section 11.3.3.

However, there are alternative methods for a consistent differentiation of the dif-
ferent physical processes, using a Lagrangian approach to redefine both the mean
quantity and the transport velocity. We discuss the Generalized Lagrangian Mean in
Section 12.3.4 and the semi-Lagrangian Mean in Section 12.3.5, which are compared
with each other and the Temporal Residual Mean in Section 12.3.6. In the remainder
of the present section, we briefly introduce the alternative averaging frameworks and
summarize their most important aspects.

Temporal Residual Mean

The Temporal Residual Mean (TRM) framework of Eden et al. (2007) is based on
the Eulerian Mean, i. e. taking the average at a fixed location and represents a gener-
alization of the TEM framework by Andrews et al. (1987) and the TRM6 framework
of McDougall and McIntosh (1996). The averaging operator can be a zonal aver-
age, a temporal average, or an statistical average. The TRM framework represents
a modification of the TEM framework, in which rotational fluxes are introduced in
the decomposition of the eddy fluxes which do not appear in the divergence of the
eddy fluxes in the mean conservation equation, but which affect the eddy-driven ve-
locity and the turbulent diffusivity. Furthermore, the rotational eddy fluxes show up
in the conservation equations for the variance of the property , which offers an op-
portunity for the choice of the rotational eddy fluxes as discussed in Section 12.3.1.
It turns out that for an consistent choice, fluxes of higher order moments have to be

6 Note that the name TRM was first introduced by McDougall and McIntosh (1996), where a frame-
work for the Eulerian mean density is considered. Here, we call TRM the generalization of the
concept by McDougall and McIntosh (1996) as discussed by Eden et al. (2007). In McDougall
and McIntosh (2001), however, the name TRM is also used for a framework in which the semi-
Lagrangian (isopycnal) mean density is considered. Here, we call this concept the semi-Lagrangian
Mean to differentiate it from TRM.
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considered as well, which then leads to an infinite sum of corrections to the eddy-
driven velocity and diffusivity of the TEM framework, given for the zonal average
case in (12.58) and (12.57), respectively.

Consistency implies that the resulting diffusivity is only related to dissipation
(related to G) or temporal changes of variance and higher order moments, which
was already anticipated in the approximate form in the Osborn–Cox relation of Sec-
tion 11.3.3. The TRM framework will be shown to lead to an Generalized Osborn–
Cox relation as discussed in Section 12.3.3, given by (12.71) when specifying G as
molecular diffusion. Note that the TEM framework, contrary to TRM, does not lead
to a consistent turbulent diffusivity in this respect. The eddy-driven velocity in the
TRM framework is different for each property .

LagrangianMean

The Lagrangian Mean denotes the average property following the fluid particles.
Specifying the average operator as an ensemble mean, one could imagine an ensem-
ble of particles over which the mean of a certain property is taken. This Lagrangian
Mean property applies to the mean position of the particles. The Generalized La-
grangian Mean Theory of Andrews and McIntyre (1978), discussed below in Sec-
tion 12.3.4, demonstrates that all those Lagrangian Mean properties are transported
by the same Lagrangian Mean velocity, and that the Lagrangian Mean properties
are changed or forced only by the Lagrangian Mean of the instantaneous changes or
forcing G. This result is expressed in the mean conservation equation (12.77). The
difference between the Eulerian Mean velocity u and the Lagrangian Mean velocity
is called the Stokes velocity uS and, likewise, the difference between the Eulerian
Mean property N and the Lagrangian Mean property L is called the Stokes correc-
tion NS to the property.

It is important to note that the same Lagrangian Mean velocity advects all
Lagrangian Mean properties, which is different to the TRM framework of Sec-
tion 12.3.1. However, since uS is in general divergent, there is no stream function
for the Lagrangian Mean velocity. Further, it is not guaranteed that the Lagrangian
Mean is always defined as discussed in Section 12.3.1. On the other hand, advective
and other processes in the Lagrangian Mean conservation equation are consistently
separated by the approach7.

Semi-Lagrangian (Isopycnal) Mean

A further alternative averaging framework, which is often discussed in particular in
the oceanographic community, follows by applying the average to a variable eval-
uated at the depth of a specific material surface instead at constant geopotential
height z. This material surface is usually taken as an isopycnal, but it could also
be the iso-surface of any general property . Note that instead of the vertical coordi-
nate, one could also use any other coordinate following a material surface, which is,
however, not discussed here. Since only a single coordinate is replaced by particle

7 It is worth mentioning that only the advective processes remain in the Generalized Lagrangian
Mean conservation equation (12.77) for G D 0, similar to the TRM conservation equation discussed
above.
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excursions in that direction, the procedure can be called semi-Lagrangian Mean. If
density is used as material surface, the procedure is also called Isopycnal Mean.

The semi-Lagrangian (Isopycnal) Mean with respect to the density conservation
equation is readily taken in isopycnal coordinates (compare Appendix B.1.1), in
which the vertical coordinate is replaced by (potential) density. Note that analo-
gous to isopycnal coordinates, one might replace the vertical coordinate with the
tracer  instead of density, with identical results in the thickness equation (B.6) (but
differences in the pressure gradient force in the momentum equation (B.5)). Non-
monotonic functions .z/ or �.z/ are also suitable for the coordinate transformation
as shown by Nurser and Lee (2004). In isopycnal (tracer) coordinates, the bolus
velocity corresponds to the eddy-driven or Stokes velocity in the other averaging
frameworks.

However, similar to the Lagrangian compared to the Eulerian framework, the
semi-Lagrangian (isopycnal) coordinates are more difficult to work with, such that it
is desirable to perform the semi-Lagrangian Mean in an Eulerian coordinate system.
The transformation from isopycnal coordinates back to z-coordinates yields a con-
servation equation for the semi-Lagrangian Mean density �I. It is transported by a ve-
locity given in turn by a stream function, defined by the total lateral transport below
an instantaneous isopycnal, and which is changed only by the semi-Lagrangian Mean
of the forcing G (McDougall and McIntosh, 2001). Using the general property  in-
stead of the density for the definition of the material surfaces in the semi-Lagrangian
Mean yields a conservation equation for the semi-Lagrangian Mean tracer I. It
is transported by a flow described by a stream function given by the lateral trans-
port below instantaneous isosurfaces of , and which is changed only by the semi-
Lagrangian Mean of the forcing G. The transport velocity is given by the sum of
the Eulerian Mean velocity u and the Quasi-Stokes velocity uC. The latter takes the
role of the eddy-driven velocity in the TRM framework, or the Stokes velocity in the
Generalized Lagrangian Mean, and it differs in general from the bolus velocity.

The semi-Lagrangian concept will be detailed in Section 12.3.5. Note that the
Quasi-Stokes velocity is nondivergent but in general different for each tracer, as in
the TRM framework, and thus in general different from the Stokes velocity. However,
advective and other processes are also consistently separated by the semi-Lagrangian
Mean. the box on p. 397 gives an overview of the three different averaging frame-
work, their transport velocities and mean quantities.

12.3.1 Temporal Residual Mean

In this section, the TEM framework of Section 12.2.3 is extended, and the connection
of the turbulent diffusivity to small-scale mixing, or growth/decay of buoyancy vari-
ance, is discussed. For algebraic simplicity, the zonal mean case is considered again
(compare the box on p. 385). However, all results carry over to three dimensions,
with somewhat higher algebraic complexity, as detailed in the box on p. 403.

Rotational Eddy Flux

In Section 12.2.3, the decomposition (12.26) for the eddy buoyancy flux into ad-
vective and diffusive parts has been introduced. A constant flux F? can be added to
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the eddy flux Fb since it does not affect the mean conservation equation. It is even
possible to add any divergence-free flux given by F? D r:� since Fb appears in the

mean buoyancy equation inside the divergence operator and r � r:� D 0. Note that

the symbol ::: denotes here as in Section 12.2.3 a counterclockwise rotation by 90ı

in the meridional/vertical plane since we are working with the zonal mean case as
defined in the box on p. 385. It follows that the decomposition of the eddy flux Fb is
defined only up to an arbitrary rotational flux given by the gauge potential � . In the
TEM decomposition, this gauge potential is set to zero. In the general case, instead
of (12.26) one has

Fb � F1 D B1r:b �K1rb C r:�1 (12.50)

with arbitrary �1 (the index is introduced for later use). While the choice of �1 has no
direct influence on the mean buoyancy equation, it is indirectly important since it can
affect B1 and K1, which will become different from B and Kd in (12.26). Further,
the choice of �1 affects the variance equation, which we consider next.

Eddy Variance Equation

The conservation equation of eddy variance �2 D b02=2 is derived in the usual way,
by multiplying the instantaneous buoyancy equation with the buoyancy perturbation
b0 and taking the average, resulting in

@�2

@t
C r � F2 D �F1 � rb C b0G0

b (12.51)

The interpretation of the individual terms is the following: @�2=@t denotes
growth/decay of variance, and F2 D v�2 C v0b02=2 the total variance flux,
consisting of mean and turbulent variance advection. The term b0G0

b denotes the
dissipation of variance and, depending on the form of Gb, may contain an additional
flux divergence. The term �F1 � rb in (12.51) is a variance production term, arising
from the interaction of mean and turbulent flows. With the general flux decomposi-
tion (12.50), the term becomes �F1 � rb D K1jrbj2 � r:�1 � rb. The first term is

positive for K1 > 0 and hence a source of variance while the second one can have
both signs. Note that the gauge potential �1 appears in (12.51) as part of the eddy
flux F1, a fact which is used now to obtain guidance for the choice of �1.

Setting Rotational Eddy Fluxes

By choosing �1 appropriately, the advective variance fluxes in (12.51) can be bal-
anced with the part of the variance production term related to the rotational gauge
potential �1. To do so, the total advective variance flux is again decomposed into
a flux along and a flux across contours of mean buoyancy

F2 D B2r:b �K2rb C r:�2 (12.52)

With (12.52), the variance equation (12.51) becomes

@�2

@t
C r:.�1 � B2/ � rb D b0G0

b CK1jrbj2 C r �K2rb (12.53)
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Note that the rotational flux r:�2 does not appear in the variance equation but was

introduced here for later use. With the choice �1 D B2, the advective fluxes in the
variance equation cancel. In this setting, the rotational flux potential is determined
by the flux of variance circulating along contours of mean buoyancy. The “localized”
variance equation can then be solved for the turbulent diffusivity. It follows that
the K1–term can be balanced by i) growth (or decay) of variance, ii) dissipation of
variance and iii) a flux of variance across contours of mean buoyancy (diapycnal flux
of variance related to K2).

Neglecting for a moment the diapycnal flux of variance related to K2 (it will be
discussed in the next section), the Osborn–Cox relation is recovered, as discussed in
Section 11.3.3, i. e. a local balance between production (K1jrbj2) and dissipation of
variance (b0G0

b) or growth of variance (@�2=@t), but here without assuming horizontal
homogeneity as in Section 11.3.3, but by setting �1 D B2. For the adiabatic case,
Gb D 0, the growth (decay) of variance is proportional to positive (negative) turbulent
diffusivity. For the steady case, @�2=@t D 0, the turbulent diffusivity is proportional
to the dissipation of variance.

Setting Rotational Eddy and Variance Fluxes

The physical interpretation of the turbulent diffusivity in the eddy variance equa-
tion (12.53) is hampered by the presence of the (diapycnal) flux K2rb of variance
across contours of mean buoyancy. The meaning of this term is not obvious from the
discussion so far, but it can also be related to growth of variance and dissipation as
shown in this section. Further insight is gained by considering the full hierarchy of
buoyancy moments of order n, defined as �n D b0n=n. Multiplying the instantaneous
buoyancy equation with b0n and averaging results in

@�nC1
@t

C r � FnC1 D n�nGb � n�n
@b

@t
� nFn � rb (12.54)

with the flux Fn D v�n C v0b0n=n. For n D 1, the variance equation (12.53)
is recovered. The interpretation of the terms is as before for �2: growth or decay
(@�nC1=@tCn�n@b=@t), advection (r �FnC1), dissipation (n�nGb), and production
(nFn � rb) of the .n C 1/th moment. Consistent with (12.52), the decomposition
Fn D Bnr:b �Knrb C r:�n leads to

@�nC1
@t

C r:.n�n � BnC1/ � rb D n�nGb � n�n
@b

@t
C nKnjrbj2 C r �KnC1rb

(12.55)

Again, the choice n�n D BnC1 leads to a local balance, except for the term con-
taining KnC1. Evaluating the hierarchy for successive orders n, an expression for
Kn is obtained given by growth or decay and dissipation of �nC1 and a term related
to KnC1. Starting with n D 1, one can use the next higher order moment to subse-
quently eliminate all Kn with the effect that one can relate K1 with terms involving
only growth or decay or dissipation of variance and higher order moments, i. e. all
flux terms can be eliminated from the conservation equations.

For a simpler derivation, it is convenient to consider two cases, the adiabatic case
with Gb D 0 and the steady case @=@t D 0. Writing the complete hierarchy for the
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adiabatic case yields

K1jrbj2 D @�2

@t
� r �K2rb

K2jrbj2 D 1

2

@�3

@t
C �2

@b

@t
� 1

2
r �K3rb

K3jrbj2 D 1

3

@�4

@t
C �n
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@t
� 1

3
r �K4rb

:::

Combining the full hierarchy to obtain a single equation for the turbulent diffusivity
yields
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�2 � 1

2
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(12.56)

introducing the operator D./ D r � rbjrbj�2./. The steady case (@./=@t D 0) of
(12.55) yields

K1jrbj2 D �b0G0
b C D.�2Gb/� 1

2
D2.�3Gb/C 1

3Š
D3.�4Gb/ � 1

4Š
D4.�4Gb/C � � �

(12.57)

For the general case, both forms just add. In Section 12.3.3, the steady variance
equation (12.57) will be further discussed specifying Gb as molecular diffusion,
i. e. Gb D �r2b. It is also shown, how the infinite sum in (12.57) becomes a Taylor
expansion of an exponential function.

Using Bnjrbj2 D .Fn � r:�n/ � r: Nb and the choice n�n D BnC1, the stream

function for eddy-driven flow, B1, is in both cases given by

B1jrbj D J1 � @

@m
J2 C 1

2

�
@

@m

�2
J3 � 1

3Š

�
@

@m

�3
J4 C � � � (12.58)

introducing the operator @./=@m D jrbj�1.rb/�r jrbj�1./ and the along-isopycnal
variance fluxes Jn D v�n � .r:b/jrbj�1. Note that the first term in the expansion

for B1 is identical to the stream function in the TEM formulation, i. e. B D J1
(compare with (12.27)). The remainder of the expansion is due to the introduction of
the rotational flux �1 given by

�1jrbj D J2 � 1

2

@

@m
J3 C 1

3Š

�
@

@m

�2
J4 � 1

4Š

�
@

@m

�3
J5 � : : : (12.59)

A truncated version of the definition (12.59) was called by McDougall and McIntosh
(1996) the Temporal Residual Mean, and the concept cumulating in the full version
of (12.59) was called accordingly Generalized Temporal Residual Mean by Eden
et al. (2007). Note that the acronym TRM refers here to the generalized version
only. Note also that the name, TRM, was used by McDougall and McIntosh (2001)
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later also for a framework applied to the isopycnally averaged density instead of the
Eulerian Mean density. The concept by McDougall and McIntosh (2001) is discussed
in Section 12.3.5 and is called semi-Lagrangian Mean to differentiate it from TRM.

In TRM, from (12.56) and (12.57), it is now possible to relate the turbulent diffu-
sivityK1 to either growth or decay of buoyancy variance and higher order moments,
and/or covariances between the small-scale forcing or mixing and buoyancy fluctua-
tions. In the steady and adiabatic case, the turbulent diffusivity will be zero. For the
steady case, the powerful result follows: there is no diapycnal turbulent mixing if
there is no molecular mixing (or some other form of buoyancy sink Gb). This result
applies to buoyancy and to any other tracer as well and is easily generalized to the
three-dimensional case as discussed in the box on p. 403.

61. The Temporal
Residual Mean
in Three Dimensions

TRM for the three-dimensional eddy flux Fb D u0b0 is based on the flux decomposition similar
to (B56.1) and given by

Fb D �Kdr bC B � r b � r � �

Note that within this box the overbar denotes a temporal mean and that all vectors are three-
dimensional. The rotational eddy flux is given by the vector potential � which is given by an
infinite series of along-isopycnal fluxes of variance and higher order moments

�jr bj D n � u�2 � 1

2

@

@n



n � u�3=jr bj

�

C 1
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@

@n

�
@

@n



n � u�4=jr bj

�.
jr bj

�
� : : :

with the cross-isopycnal unit vector n D .r Nb/=jr Nbj D e=jej and the derivative normal to an
isopycnal @=@n./ D �n � .r � .//. Note that u�n D u�n C u0�n and that for the vector
stream functions B and the diapycnal diffusivity Kd the relations

Bjr bj D n � Fb � @

@n
� and Kdjr bj D �Fb � n � n � r � � (B61.1)

hold. For small aspect ratio (je1j; je2j 
 je3j), the vector potential for the rotational eddy flux
becomes

�h
@b

@z
� uh:�2 � 1

2

@

@z

0
@uh:�3

 
@b

@z

!
�1
1
AC � � � ; �3 � s � �h (B61.2)

with the isopycnal slope vector s D .s1; s2/. Note that the symbol ::: denotes here counter-

clockwise rotation by 90ı in the horizontal plane, i.e. uh: D .�v; u/ for uh D .u; v/ (compare

also the box on p. 385 and the box on p. 444). The vector stream function and the diapycnal
diffusivity for the three-dimensional TRM for small aspect ratio become

Bh
@b

@z
� u0

h:b0 � @

@z
�h ; B3 � s � Bh and

Kd
@b

@z
� �b0w 0 � r h: � �h C s �

�
u0

hb
0 C @

@z
�h:
� (B61.3)

The horizontal and vertical components of the eddy-driven velocity v are given by vh �
@Bh: =@z and v3 � r h: � Bh, respectively, and become vh D �@.K`s/=@z and v3 D r h �
.K`s/ as in the box on p. 389 with the isopycnal thickness diffusivityK` D O.1;000m2 s�1/,
employing the standard downgradient closure for the horizontal eddy buoyancy fluxes (while
setting �h D 0).
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12.3.2 Rotational Eddy Fluxes

In this section, it is discussed how rotational eddy fluxes, identified by the TRM
framework, generate up- and down-gradient diapycnal turbulent fluxes. When the
rotational components are not subtracted from the eddy fluxes and the diapycnal
diffusivities then estimated from a flux-gradient relationship, the diapycnal rotational
fluxes can lead to spurious diapycnal diffusivities unrelated to irreversible changes
of the property under consideration. Furthermore, it is shown how rotational eddy
fluxes on isopycnals are able to generate spurious lateral diffusivities appropriate to
the Gent and McWilliams (1990) parameterization.

Diapycnal Rotational Eddy Fluxes

In the TEM framework, (12.27) states that the diapycnal projection of the eddy flux
Fb is proportional to the diapycnal turbulent diffusivityKd. In the TRM framework,
a rotational eddy flux F? D r:� was introduced in (12.50), which has to be removed

from Fb to obtain the diapycnal diffusivityKd, i. e.

Kdjrbj2 D �.Fb � F?/ � rb (12.60)

If the rotational eddy flux is significant, the diapycnal diffusivity estimated from the
flux-gradient relation (12.60) will be different when setting F? to zero (as in TEM)
or when using the TRM form of F?. In fact, it is often the case that F? dominates the
total flux Fb such that very different estimates for the diffusivity result.

If the diffusivityKd depends on the choice of the rotational flux potential � , how
can one decide which of the estimates of Kd (which may differ considerably) is the
“real” one? In the TRM framework, the diffusivity Kd is related either to growth or
decay of variance (and higher order moments) as stated in (12.56) or to irreversible
dissipation of variance (and high order moments) (12.57) by the diabatic sources and
sinks Gb. Since these features are regarded as essential for a diffusivity, Kd in TRM
may be regarded as “the” physically plausible one. It is, however, not possible to
proof that this feature is guaranteed only by the TRM framework. There might be
other choices for � which lead to a proper result.

Figure 12.9 shows an example for different estimates of the diapycnal diffusiv-
ity Kd in the idealized primitive equation model introduced in the box on p. 380.
Figure 12.9 a) shows the diapycnal diffusivity Ktem which results in setting the ro-
tational eddy flux to zero, i. e. the diapycnal diffusivity appropriate to the original
TEM framework given by

Ktem
@ Nb
@z

D �b0w0 � s � u0
hb

0 (12.61)

where s D .�@ Nb=@x;�@ Nb=@y/=.@ Nb=@z/. Note that small isopycnal slopes jsj �
1 are assumed in (12.61) and that the three-dimensional form of the TEM/TRM
formalism is used in the model analysis as detailed in the box on p. 389 and the
box on p. 403. Note also that uhb0 denotes the horizontal, two-dimensional eddy
buoyancy flux. Within the energetic zonal jets of the model, the diapycnal diffusivity
Ktem is much larger in magnitude than the prescribed vertical diffusivity used in
the numerical model. Further, Ktem also often takes negative values, as a result of
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Fig. 12.9 Diapycnal rotational eddy fluxes and diffusivities in the idealized model introduced in the
box on p. 380. a DiffusivityKtem from the diapycnal projection of the eddy buoyancy flux given by
(12.61) in cm2 s�1 at 500 m depth. Also shown are contours of time-mean zonal velocity. b Leading
order contribution to the diapycnal diffusivity by the rotational eddy flux, i.e.K�1 in cm2 s�1 given
by (12.62). c The sumKd D Ktem CK�1

upgradient diapycnal eddy buoyancy fluxes. It is clear that the estimated values of
Ktem contradict our belief that a diapycnal diffusivity should be small in the interior
ocean and that eddy buoyancy fluxes should be downgradient.

Accounting for rotational eddy fluxes, however, it becomes clear that most of the
large and sometimes upgradient eddy buoyancy fluxes, generating large and negative
Ktem, are rotational. Figure 12.9 b) shows the leading order contribution of the diapy-
cnal projection of the rotational eddy fluxes appropriate to TRM (compare (B61.2)
and (B61.3)) in terms of a diapycnal diffusivityK�1 given by

K�1
@ Nb
@z

D �r h �
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.@ Nb
@z

!
C s � @

@z

 
uh�2

.@ Nb
@z

!
(12.62)

The leading order term of the rotational eddy flux dominates in the model results
while the second and higher order terms in (B61.2) are much smaller (this might
not always be the case, as discussed below). Note also that uh�2 denotes the hori-
zontal, two-dimensional flux of buoyancy variance. When Ktem and K�1 are added,
many of the large and sometimes negative values in Ktem cancel, and much smaller
and predominantly positive values remain in the leading order diapycnal diffusivity
Kd D Ktem C K�1 of the TRM framework. This demonstrates the need to account
for rotational eddy fluxes when estimating diapycnal diffusivities from flux-gradient
relations as (12.60).

Equation (B61.1) in the box on p. 403 shows for the three-dimensional version of
TRM that the rotational eddy flux can be related for small aspect ratio to horizontal
fluxes of variance and higher order moments. Further, the diapycnal projection of
the rotational eddy flux is to first order given in terms of a diapycnal diffusivity by
(12.62). It turns out that in the idealized model of Figure 12.9, the vertical component
of the rotational eddy flux, given by r h �.uh�2=.@ Nb=@z//, dominates the contribution
of the second term in (12.62). Further, the vertical component is dominated by the
zonal advection of variance �2 by the mean flow, i. e.

K�1 � �r h �
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Fig. 12.10 The concept of diapycnal rotational eddy fluxes similar to a schematic by McDougall and
McIntosh (1996). Shown is a situation in which the mean flow enters a region of high variance (a).
Downgradient (upgradient) diapycnal rotational eddy fluxes, indicated by bold arrows in (b), de-
velop in the region with increasing (decreasing) variance, which dominate the divergent part of the
diapycnal downgradient eddy flux (small arrows in b). In addition to the diapycnal rotational eddy
fluxes (b), clockwise rotating isopycnal rotational eddy fluxes (bold arrows in a) develop in the
region of enhanced variance, dominating the divergent isopycnal eddy flux (small arrows in a)

The variance �2 is at maximum inside the zonal jets (compare Figure 12.11 below),
such that the mean flow across the (small) zonal variations in the variance �2 pre-
dominantly generates the diapycnal rotational eddy fluxes in the idealized model.
The schematic in Figure 12.10 generalizes this result: when the mean flow enters
a region of increased variance, downgradient diapycnal rotational eddy fluxes and
large K�1 are generated. When the flow leaves the region, upgradient rotational di-
apycnal eddy fluxes and negativeK�1 are generated. The rotational eddy fluxes dom-
inate the small residual divergent eddy fluxes, related to Kd D Ktem C K�1 . In the
schematic of Figure 12.10 it is assumed that variations in the stratification remain
small and that the advection of variance by perturbations u0

h�2 is small compared to
the advection of N�2 by the mean flow.

Isopycnal Rotational Eddy Fluxes

Although rotational eddy fluxes are important for estimates of the diapycnal diffu-
sivity Kd, it turns out in the example of the idealized primitive equation model of
the box on p. 380 that the rotational eddy flux defined in the box on p. 403 does not
much effect the vector stream functionB. On the other hand, since the vector stream
function is given by the eddy buoyancy flux parallel to the isopycnal plane (compare
(B61.1)), there might also be isopycnal rotational eddy fluxes. This is indeed the case
in the example as discussed in this section.

For the concept of isopycnal rotational eddy fluxes, it is necessary to define
a background stratification representing a mean state for which the variance of de-
viations in buoyancy is related to an available eddy potential energy, as in (12.15).
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The isopycnal rotational eddy flux will be defined such that the residual flux is then
related to the release of mean available potential energy to eddy energy (or tem-
poral changes of variance). This definition is analogous to the TRM framework in
the previous section in which the definition of the rotational flux guarantees that
the residual diapycnal eddy flux is related to irreversible mixing of buoyancy (or
temporal changes of variance). It is possible to choose an arbitrary mean state, but
for convenience a background appropriate to the quasi-geostrophic approximation as
discussed in Section 5.2 is chosen. Note that within this approximation, isopycnals
related to the background state are simply horizontal planes such that the discussion
focuses on horizontal eddy fluxes; the generalization to an arbitrary background state
is straightforward.

Consider the mean buoyancy equation (12.11)

@ Nb
@t

C uh � rh
Nb D �N 2 Nw � r h � u0

hb
0 (12.63)

in the quasi-geostrophic form. Note that here the buoyancy was decomposed into
a background bb.z/ withN 2.z/ D @bb=@z and a deviation b. The horizontal velocity
uh denotes the zero-order geostrophic velocity with rh � uh D 0 while the vertical
velocity w is of first order. The diabatic forcing Gb was neglected, and Reynolds
averaging in time was applied. For the lateral eddy buoyancy flux u0

hb
0, it is now

possible to apply the two-dimensional TRM framework as before for the zonal mean
case discussed in Section 12.3.1. Note that the vertical advection of the background
stratification (N 2 Nw) in (12.63) is considered now as the small-scale forcing. The
following decomposition is chosen

u0
hb

0 D �	rhb C �r h: b C rh: T (12.64)

where 	 D �.u0
hb

0�r h: T /�r hbjrhbj�2 denotes a lateral diffusivity and � D .u0
hb

0�
r h: T / � r h: bjrhbj�2 a lateral skew diffusivity (as in (B55.1)), and where T denotes

a stream function for a horizontal rotational eddy buoyancy flux (which will later
be added to the three-dimensional rotational flux r � � from the previous section).
Note that the subscript ::: denote in this section rotation by 90ı in the horizontal

plane, i. e. rh: D .�@=@y; @=@x/ (compare also with the box on p. 444). Using the

decomposition (12.64) in the equation for the buoyancy variance N�2 D b02=2 yields

@ N�2
@t

C rh � uh�2 C rh: T � r h
Nb D 	jrh

Nbj2 �N 2b0w0 (12.65)

which is identical to the available eddy potential energy conservation equation
(12.15). The lateral diffusivity 	 is thus related to a sink of eddy potential energy.
Using the Gent and McWilliams parameterization for the horizontal eddy buoyancy
flux u0

hb
0 D �K`r h

Nb (compare with the box on p. 403), we note that 	 becomes
identical to the thickness diffusivity K`. However, the decomposition (12.64) ac-
counts not only for the downgradient part of the eddy flux related to 	, but also for
the component of u0

hb
0 directed along isolines of Nb in the lateral plane related to the

skew diffusivity �, and for a possible rotational eddy flux component given by the
stream function T .

Following the TRM formalism, the flux of variance uh�2 in (12.65) is also de-
composed into a component across isolines of Nb in the horizontal plane, a component
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along those isolines and a rotational flux component. Consideration of the complete
hierarchy of moments �n as in Section 12.3.1 then yields the following definition of
the horizontal rotational eddy fluxes

T jr h
Nbj D Qs � uh�2 � 1

2

@

@ Qn
�Qs � uh�3

ıjr h
Nbj�C : : : (12.66)

with the derivative normal to isolines of Nb in the horizontal plane @=@ Qn./ D Qn � r h./

and with the lateral unit vectors Qs D jr h
Nbj�1rh: Nb and Qn D jrh

Nbj�1r h
Nb pointing

along and across isolines of Nb in the horizontal plane, respectively.
Marshall and Shutts (1981) consider a simplified version of the variance equation

(12.65), which yields some insight about the direction of the horizontal rotational
eddy flux. They assumed that the flux of variance in the stationary variance equation
is dominated by the mean advection, i. e. that uh�2 � uh�2. Further, they assume
that the quasi-geostrophic stream function  , which determines the geostrophic ve-
locity uh D rh:  , is a function of Nb, such that r h:  D .@ =@ Nb/r h: Nb and the approx-

imate variance equation (12.65) becomes

rh:
�
T � .d =d Nb/ N�2

� � r h
Nb � 	jrh

Nbj2 �N 2b0w0 (12.67)

Choosing T D .d =d Nb/ N�2, the thickness diffusivity becomes 	 � N 2b0w0jrh
Nbj�2,

i. e. is related to the production of eddy energy by the release of mean available
potential energy. Using the TRM framework instead of the approximations chosen
by Marshall and Shutts, the thickness diffusivity can be written, using the (steady)
hierarchy of variance equations, as

	jr h
Nbj2=N 2 D b0w0 � QD.�2w/C 1

2
QD2.�3w/ � 1

3Š
QD3.�4w/C : : :

with the operator QD./ D r h � Œ Qn./=jrh
Nbj�. Thus a very similar form is obtained as

within the approximation by Marshall and Shutts, but here with the occurrence of
higher order terms. In TRM, the definition of rotational eddy fluxes given by (12.66)
guarantees that the diffusivity 	 is related (in steady state) to the production of vari-
ance and higher order moments of perturbation buoyancy on the horizontal plane.
This variance production corresponds to leading order with release of mean avail-
able potential energy and production of eddy energy, as in the approximative form
by Marshall and Shutts. This property of (12.66) contrasts the definition of the three-
dimensional rotational eddy flux, which led to the feature that the diapycnal turbulent
diffusivity Kd is related only to irreversible density changes (or temporal changes).
In other words, the diapycnal eddy rotational flux in TRM relates the diapycnal dif-
fusivity Kd to irreversible density mixing, while the isopycnal eddy rotational flux
in TRM relates the thickness diffusivity 	 to the release of mean available potential
energy.

Since the left-hand side of (12.67) can also be written as Œr h: T � .d =d Nb/r h: N�2� �
r h

Nb, it becomes clear that within the approximations chosen by Marshall and
Shutts, the rotational eddy flux rotates along lines of constant N�2, as indicated in
the schematic Figure 12.10. Marshall and Shutts assume that the flux of variance
is entirely directed along the isolines of Nb in the horizontal plane. (12.66) shows
that in TRM, the leading order term of the potential for the rotational eddy flux is
also related to the component of flux of variance directed along isolines of Nb in the
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Fig. 12.11 a Buoyancy variance, N�2 at 500 m in the eastern part of the southernmost zonal jet in
109 m2 s�4 and horizontal eddy buoyancy flux, u0

hb
0, in m2 s�3 (arrows) in the idealized primitive

equation model introduced in the box on p. 380. b The leading term of the horizontal rotational flux
potential T1 in m3 s�3 and the related rotational eddy flux (arrows)

horizontal plane, but in TRM it is also possible to account for the perpendicular com-
ponent of the flux of variance. While in TRM, the direction of the rotational flux in
general may, therefore, deviate from isolines of constant N�2, it is often the case that
most of the rotational eddy flux in the horizontal plane indeed rotates along lines of
constant N�2.

Figure 12.11 shows the variance N�2 and the horizontal eddy flux u0
hb

0 in the south-
ernmost jet of the idealized primitive equation model introduced in the box on p. 380.
The variance is large within the zonal jets since here eddy energy is also at maximum
while �2 remains low in-between the jets. The same is true for the magnitude of the
horizontal eddy fluxes. However, a large fraction of the eddy flux is directed along
isolines of N�2, indicating that it is of rotational nature. The figure also shows the
leading term T1 D Qs � uh�2=jrh

Nbj of the rotational eddy flux of (12.66). It has in-
deed a direction and a magnitude similar to that of the eddy flux, i. e. it rotates along
isolines of buoyancy variance. Note that both the eddy flux u0

hb
0 and the rotational

eddy flux also tend to follow the small zonal variations of N�2.
The leading order term T1 of the isopycnal rotational flux component is domi-

nated by the zonal mean advection of �2, i. e. T1 � � Nu N�2=.@ Nb=@y/ and is, therefore,
large and positive (@ Nb=@y is negative) within the eastward jets and small and slightly
negative outside (because of the small westward mean flow between the eastward
jets). The related leading order rotational eddy flux, r h: T1, therefore, shares the sim-

ilar direction and magnitude of the horizontal eddy fluxes, i.e. eastward (westward)
at the northern (southern) side of the jet. Thus a large part of the zonal eddy buoy-
ancy flux is indeed rotational. In contrast to the diapycnal rotational eddy fluxes, the
higher order terms play a larger role for the isopycnal rotational potential flux T but
are not shown here. The residual divergent isopycnal eddy flux u0

hb
0 � r h: T , is much

smaller than the total eddy flux u0
hb

0 in the jets and downgradient, i. e. northward to
a large extent. Note that this implies isotropic isopycnal thickness mixing as antic-
ipated by the Gent and McWilliams parameterization while the skew diffusivity �
remains small.

The schematic in Figure 12.10 summarizes the situation: when the mean flow en-
ters a region of increased variance, an upgradient isopycnal rotational flux develops
while a downgradient isopycnal rotational flux develops when the mean flow leaves
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the region of enhanced variance. The effect is that the isopycnal rotational flux ro-
tates around the region of enhanced variance.

Combining Diapycnal and Isopycnal Rotational Eddy Fluxes

The isopycnal rotational eddy flux potential T has to be added to the vector poten-
tial � of the three-dimensional version of TRM in the box on p. 403. This has to be
done in a consistent way, i. e. it is important to insure that no diapycnal eddy flux
and thus spurious diapycnal diffusivities are introduced by the additional isopycnal
rotational flux. Since � is directed along isopycnals, it is clear that the additional
rotational vector flux potential should be directed across isopycnals. A consistent
definition for small aspect ratio is given by the modified vector potential for the ro-
tational eddy buoyancy fluxes � D � C T n with the cross-isopycnal unit vector
n D e=jej as defined in Section 12.2.2. The definition for � guarantees that the di-
apycnal diffusivity Kd is unaffected by T , while the vector stream function can be
written as

BhN
2 � uh:

0b0 C r hT ; B3 � �s �Bh

Using the decomposition (12.64), the horizontal eddy-driven velocity is then (also
for jsj � 1) given by vh � @Bh: =@z D �@.	s/=@z C @.� s:/=@z. For vanishing

skew diffusivity �, as in the example of the idealized primitive equation model, this
corresponds to the Gent and McWilliams parameterization and implies a northward
(southward) directed eddy-driven velocity at the surface (bottom) of the channel flow
in the idealized primitive equation model, very similar to the situation shown in
Figure 12.8.

Note that without the introduction of an isopycnal rotational eddy flux, the eddy-
driven velocity would be given as vh � �@.u0

hb
0=N 2/=@z, i. e. directed along the

front associated with the zonal jets. Only by the introduction of the isopycnal rota-
tional eddy fluxes, the eddy-driven velocity tends to flatten the isopycnals associated
with the jets and reduces the mean available potential energy, in agreement with the
physical interpretation of the Gent and McWilliams parameterization.

12.3.3 Generalized Osborn–Cox Relation

It is possible to utilize the TRM framework for small-scale mixing (compare Sec-
tion 11.3). Specifying the buoyancy forcing Gb as molecular diffusion, i. e. Gb D
�r2b, with the molecular8 diffusivity � � O.10�7 m2 s�1/ yields for the buoyancy
variance equation

@�2

@t
C r � .v�2 � �r�2/ D ��jrb0j2 � v0b0 � r Nb (12.68)

For simplicity, the two-dimensional framework as outlined in the box on p. 385 is
used in this section again (although the zonal mean could be replaced with a time-
mean when considering a three-dimensional flow).

8 For simplicity a linear equation of state and identical molecular diffusivities for heat and salt are
assumed.
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The first term on the right-hand side of (12.68) describes dissipation of variance
while the last term describes production of variance. In addition to the advective flux
of variance on the left-hand side of (12.68) there is another molecular flux of vari-
ance. In the original Osborn–Cox relation (Osborn and Cox, 1972), a steady state
(@./=@t D 0) and vanishing advective and molecular fluxes have been assumed,
such that production and dissipation balance locally in the variance equation (11.86),
i. e. �jrb0j2 D �v0b0 � r Nb. Assuming a downgradient closure for the turbulent eddy
flux v0b0 or using the TEM decomposition (12.26) then leads to the frequently used
Osborn–Cox relation (11.87), which relates the turbulent diapycnal diffusivity Ktem

to dissipation and to molecular diffusivity, i. e. Ktem D �jrb0j2=jr Nbj2 � � NC ,
where C denotes the Cox number which becomes very large for turbulent flows.

However, we have seen in Section 12.3.2 that large and sometimes upgradient
rotational eddy fluxes can show up in the variance equation such that the TRM de-
composition (12.50) is more appropriate than (12.26). It is, therefore, necessary to
consider the complete hierarchy of buoyancy moments (12.54), which is given (for
n > 1) in the case for molecular diffusion

@�nC1
@t

C n N�n @
@t

Nb C r � FnC1 D ��nr�n � r Nb
� �n.n � 1/�n�1jrb0j2 � n�nv � r Nb

(12.69)

All advective and molecular fluxes in the conservation equation for �n are combined
here in the flux vector Fn, which is decomposed in turn as before into isopycnal and
diapycnal components plus rotational fluxes, i. e.

Fn D v�n � �r�n � �.n � 1/�n�1r Nb D r:�n C Bnr: Nb �Knr Nb

For buoyancy moments n > 2, two parts of molecular fluxes appear in Fn. Both
are small compared to the advective flux in the numerical simulation. As before, all
advective and molecular fluxes can be eliminated from all conservation equations of
buoyancy moments (12.69) by the choice n�n D BnC1. After some manipulations,
the steady equations of the buoyancy moments (12.68) and (12.69) become

K1 D �C � D.K2/ ; Kn D �.n � 1/�n�1.1C C/� 1

n
D.KnC1/C 2�F. N�n/

(12.70)

with the operator F./ D jr Nbj�2r Nb � r ./ and D./ D jr Nbj�2r � ./r Nb. Solving
now subsequently for the turbulent diapycnal diffusivityK1, we obtain the following
generalized form of the Osborn–Cox relation

K1 C � D �

�
.1C C/ � D�1.1C C/C D2�2.1C C/� 1

2
D3�3.1C C/C : : :

C 1

3Š
D4�4.1C C/� 2DF N�2 C 2

1

2
D2F N�3 � 2 1

3Š
D3F N�4 C : : :

	

(12.71)

In contrast to the original Osborn–Cox relation, Ktem C � D �.1 C C/, the gener-
alized form (12.71) is exact using the setting n�n D BnC1 (for steady flow; a corre-
sponding relation can be written for the unsteady case). All advective and molecular
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fluxes in (12.68) and (12.69) have disappeared by the appropriate choice of the rota-
tional fluxes n�n D BnC1. The isopycnal flux of variance in (12.68) is balanced with
the rotational eddy flux r:�1 while the diapycnal flux of variance has been converted

to dissipative terms which are all proportional to the subgrid-scale diffusivity �. The
generalized Osborn–Cox relation (12.71) has now a clear physical meaning: The
turbulent diffusivity K1 is locally related to dissipation of buoyancy moments in
subsequent order;K1 is zero if there is no subgrid-scale mixing, i. e. if � D 0.

The first term on the right-hand side of (12.71) corresponds to the original
Osborn–Cox relation, Ktem C � D �.1 C C/, while the remainder shows some
resemblance with an expansion of an exponential function, although it is an opera-
tor. Formally, we might, therefore, interpret the series as an expansion of an operator
E./

K1 C � D �E.b0; Nb/
The analytical form of the operator E./ remains unknown, but the first term of an
expansion of E./ is identical to the original Osborn–Cox relation, which means that
a first order truncation to E./ is given by E.b0; Nb/ � 1C C .

However, it is possible to come closer to the unknown operator E , using the fol-
lowing slightly different expression for the conservation equation of the buoyancy
moments. The operator D./ D jr Nbj�2r � ./r Nb in (12.70) is split into two compo-
nents, i. e. D D D C F with D D .r2 Nb/=jr Nbj2 denoting an inverse Nb-scale related
to the curvature of the mean isopycnals. It is then possible to absorb the components
related to the operator F (including the term 2�F.�n/ in (12.70)) by a modification
of the rotational flux r:�n. Therefore, the choice for the rotational flux is modified

according to n�n D BnC1Cn where the additional rotational gauge potential n is
given by the condition r:n �r Nb D r.KnC1�2n� N�n/ �r Nb. Here variations inKnC1,
which can be formally interpreted as a flux, and the corresponding molecular flux are
balanced by the new rotational flux related to n. However, it is important to stress
that the introduction of n may lead to an unphysical rotational eddy flux across
the boundaries and that the definition of n becomes ill-posed for the case of closed
isopycnals.

After some manipulations, the steady hierarchy of buoyancy moments becomes
for the modified choice of �n

K1 D � NC �DK2 ; Kn D �.n� 1/�n�1.1C C/ � 1

n
DKnC1

The equation is now of algebraic form, i. e. the operator D has been turned into the
inverse buoyancy curvature scale D, and the operator F was absorbed by rotational
fluxes. Thus solving for K1 and summing up is now possible and yields an exact
expression for the turbulent diffusivity

K1 C � D �.1C C/e�Db0

in terms of the Cox number C and the dimensionless ratio Db0 relating the tracer
perturbation with the mean curvature scale D. With the modified rotational fluxes,
the operator E can be expressed in analytical form as E.b0; Nb/ D .1 C C/e�Db0

.
For D ! 0, we recover the first order approximation of the operator E and thus
the original Osborn–Cox relation. The scale D D .r2 Nb/=jr Nbj2 in relation to the

scale of b0, given by �2
1=2

, thus yields a good measure for the validity of the original
Osborn–Cox relation, i. e. forD � .�2/

�1=2, we obtain K1 ! �C .
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12.3.4 Generalized LagrangianMean

We now consider in more detail the Generalized Lagrangian Mean of Andrews and
McIntyre (1978), which was introduced above. In the Lagrangian framework of Sec-
tion 1.1, we have considered a particle with position X.a; t/ at time t and the initial
position a D X.a; t D 0/ which was used to label the particle. This concept is now
used to define an average of a particle’s property during its movement.

We have defined the Eulerian mean N of an Eulerian quantity .x; t/ in Sec-
tion 2.8.2, introducing an averaging operator with the fundamental property NN D N.
In practice, averaging procedures hardly meet this requirement. The average is usu-
ally a time (or space) mean in a system with separated time (or space) scales. A hy-
pothetical ensemble mean, of course, satisfies the requirement exactly. In contrast
to the Eulerian Mean, for which we average at a fixed position, we now introduce
the Lagrangian Mean NL as the average property following the particle. To make
the connection of Lagrangian and Eulerian variables, it is useful to introduce the
displacement vector � by

x�.t/ D y C �.y ; t/ D x�.y ; t/ (12.72)

The displacement � is a vector function of space and time and is evaluated at the
point y . The latter requirement allows to assume that the Eulerian Mean of �.y; t/
will vanish, i. e. N� D 0. The mean position of the particle is then given by x� D y and
its actual position by x� . The relation (12.72) can also be considered as a transforma-
tion rule, translating the mean position y to the actual position x� . It is a necessary
assumption for the following analysis that this transformation is invertible, i. e. that
we can uniquely relate actual particle positions to their mean position and vice versa.
It is important to note that this might not always be the case, indicating a possible
breakdown of the theory.

The Lagrangian mean operator can now be defined by

L D .x� ; t/ � � (12.73)

1

x

x3

2

y
v(y,t)

ξ
uξ

x

Fig. 12.12 Lagrangian Mean in a flow with two separated (slow and fast) time scales and time mean
as averaging operator. The solid black line denotes the mean trajectory y and the dashed line the
actual particle trajectory y C �. The mean particle position y moves (slowly) with the Lagrangian
Mean velocity v D uI, while the instantaneous particle position y C � moves (fast) with the actual
velocity u�
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where .x� ; t/ denotes the averaging operator as defined before, here applied to
the property  of all particles of the ensemble at their position x� . The notation
.x� ; t/ D � is introduced to indicate that  is evaluated at the actual position
x� D y C � during the averaging. The Lagrangian Mean property L D L.y; t/ is
defined at the mean particle position y . Figure 12.12 illustrates the Lagrangian Mean
for a time mean in a flow with two separated times scales.

We are interested in spatial and temporal changes of the particle’s property � .
We find using the chain rule for the space and time derivatives

@�

@t
D @

@t
.x� ; t/ D @

@t
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x�Dconst
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ıij C @�j

@yi
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It follows that unlike the Eulerian Mean, the Lagrangian Mean operator ./
L

does

not commute with time and space derivatives, i. e. in general @L=@x ¤ @=@x
L
.

This makes the algebra more complicated but it will turn out that the Lagrangian
Mean framework yields an averaged tracer conservation equation, where, unlike in
the Eulerian Mean tracer conservation equation, eddy fluxes do not appear anymore,
i. e. similar to what we found for the TRM framework after considerable effort.

To do so, we combine the rules for time and space differentiation to obtain the
material derivative with the velocity v D v.y ; t/ D Dy=Dt of the mean position y

�
@

@t
C vi

@

@yi

�
� D

�
@
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�
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@xj

�� "@x�j
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C vi
@x
�
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@yi

#
(12.74)

Remembering that � is defined at the mean position, it becomes clear that the last
term in brackets of (12.74) is identical to the actual velocity at x� , i. e.

u
�
j D @x

�
j

@t
C vi

@x
�
j

@yi
(12.75)

Now remember also that � is a perturbation quantity with vanishing mean and that
the mean position x� D y and thus v D Dy=Dt are mean quantities. Taking the
mean of (12.75) yields therefore

u
�
j D @x

�
j

@t
C vi

@x
�
j

@yi
D @�j

@t
C vi

�
ıij C @�j

@yi

�
D vj � uj .y; t/

L

Since on the left-hand side �j D 0 and since Dyi=Dt D vi is a mean quantity,
we find vj D uj

L. The velocity of the mean point equals the Lagrangian Mean
velocity which is equivalent to saying that y denotes the mean particle trajectory.
The point y moves with uL on mean trajectories, while x� moves with u� on the
actual trajectories.

This allows to define the Lagrangian Mean total derivative D=Dt
L D @=@t C

vi@=@yi D @=@tCuL �r with advection by the Lagrangian Mean velocity uL. Using
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the Lagrangian Mean total derivative and taking the mean of (12.74) yields
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(12.76)

This relation reveals the desired property of Lagrangian Mean variables when we
consider now the Lagrangian Mean of the evolution equation for a general tracer
(Andrews and McIntyre, 1978; Bühler, 2009)

D

Dt
D G� ! D

Dt

L

D D

Dt

L

L D G�
L

(12.77)

If G� D 0, the Lagrangian Mean property L is conserved along mean trajectories
related to the mean position y and the Lagrangian Mean velocity uL. Only the La-

grangian Mean forcing G�
L

changesL on the mean trajectories. This result is similar
to what we obtained previously in Section 12.3.3 for the TRM formulation in steady
state, where we found conservation of the Eulerian Mean property  on residual
mean trajectories given by the residual velocity u�. However, note that since in gen-
eral  ¤ L, residual velocity and Lagrangian Mean velocity will differ. Note also
that the Lagrangian Mean velocity will generally be divergent. The difference be-
tween the Eulerian Mean velocity u and the Lagrangian Mean velocity is the Stokes
velocity uS D uL � u. Since uL is divergent, the Stokes velocity is also divergent.
Note that the Stokes velocity uS is in general different from the Stokes drift discussed
in the box on p. 197.

12.3.5 Semi-Lagrangian (Isopycnal) Mean

A further alternative averaging framework is given by applying the average to a vari-
able evaluated at the depth of a material surface of some tracer instead at constant
geopotential height z. In principle, any tracer can be used for this reference, but in
practice only the potential density is of relevance. In analogy to the definition of the
Lagrangian Mean (12.72), the semi-Lagrangian Mean of a variable  is given by

I D .xh; z C �3; t/ (12.78)

where the vertical displacement �3 is defined as the deviation of the instantaneous
depth of the above mentioned material surface z.xh; t/ from its mean, i. e. �3 D z�z.

As an example of the averaging procedure involved in the definition (12.78) con-
sider a temporal average. Hence there is a time filter defined, centered at time t .
Consider an isopycnal with density value �, which at the position xh is moving up
and down with an average vertical position Nz, and define �I.xh; Nz; t/ D �.xh; Nz; t/.
During the vertical excursions with amplitude �3 D z � z of the isopycnal, a range
of values of the tracer  is met and the isopycnal average I.xh; Nz; t/ of  is the
time mean of these values and attributed to the position .xh; Nz; t/. Likewise we may
attributed I to .xh; �; t/ (in an isopycnal framework; see below). When compared
to the Lagrangian Mean (12.73), the semi-Lagrangian Mean resembles a Lagrangian
Mean in which only one space coordinate is varied during averaging.
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If potential density, i. e. isopycnals are used as the respective material surfaces, the
mean defined by (12.78) is called Isopycnal Mean. The choice of potential density as
semi-Lagrangian coordinate is motivated by the fact that density is conserved in the
conservation equation D�=Dt D G� for vanishing diapycnal forcing G� so that parti-
cles stay on the material surfaces or isopycnals during their movements; only effects
included in a nonzero G� lead to excursions from the isopycnals or material surfaces.
Note that it is assumed here for simplicity that the function �.z/ is monotonic, such
that its inverse exists. A generalization of the concept for nonmonotonic functions
can be found in Nurser and Lee (2004). In contrast to the Lagrangian Mean, the
semi-Lagrangian Mean is, therefore, always well defined, since it does not necessar-
ily rely on a transformation rule as the Lagrangian Mean, which might, therefore,
not be invertible in some special cases. Note that, in general, the special treatment
of depth z can be replaced by y or x in the definition of the semi-Lagrangian Mean
(12.78), which is, however, not considered here.

As mentioned above, any conserved tracer may be used to define the reference
material surfaces. Applying (12.78) to  and using material surfaces z.xh; ; t/ of 
itself for the definition of the semi-Lagrangian Mean, yields an average of identical
values of  and the result is simply I D . This appears trivial, but it is important
to note that this average I applies to the mean height z.xh; ; t/, i. e. I D I.Nz; t/.
In other words, I yields the value of the property , whose mean iso-surface height
z at the horizontal position xh equals the actual depth z at which I is evaluated.
Specifying  as density, and using isopycnals z.xh; �; t/ as material surfaces in the
semi-Lagrangian Mean (12.78), yields the density whose mean isopycnal height cor-
responds to the actual depth z at which �I is evaluated. This ‘isopycnally averaged
density’ �I was named modified density by McDougall and McIntosh (2001). Us-
ing isosurfaces z.xh; ; t/ of the general tracer  and also  itself in (12.78) yields
accordingly the modified property I. Note that this modified property differs in gen-
eral from the isopycnally averaged property, i. e. using z.xh; �; t/ and  in (12.78),
and that the modified density differs from �I, using z.xh; ; t/ in (12.78). However,
note that in many oceanographic applications, isopycnal surfaces are used instead
of isosurfaces z.xh; ; t/ of the general tracer  in (12.78) and we will follow this
convention here.

We will consider the isopycnally averaged tracer (property) in detail below, first,
however, we discuss the conservation equation for modified density, or, equivalently,
the modified property.

Isopycnal Coordinates and the Bolus Velocity

A convenient way to apply the Isopycnal Mean is the coordinate transformation of
the relevant equations to isopycnal coordinates as described in Appendix B.1.1. In
isopycnal coordinates, the (potential) density equation D�=Dt D G� and the con-
tinuity equation r � u are combined to the isopycnal thickness equation (see Ap-
pendix B.1)

@h�

@t

ˇ̌
ˇ
�Dconst

Cr� � .uhh�/C @

@�
G�h� D 0

with the (infinitesimal) isopycnal thickness h� D �@z.xh; �; t/=@� (note that h� ¤
z) and with r� D r j�Dconst D r hC@=@z r�z.xh; �; t/. Note that all variables
are function of .xh; �; t/.
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62. The Bolus Velocity
in z-Coordinates

To use the parameterization (12.79) for the bolus velocity in z-coordinates, it is necessary to con-

sider the modified density �I D �.xh; z; t/
I
. This ’isopycnally averaged density’ �I is a function

of depth, and is the density whose mean isopycnal height corresponds to the actual depth z at
which �I is evaluated. The mean isopycnal thickness h� D �@z=@� D �@z=@� is related to
the vertical derivative of the modified density by @�=@z D .h�/

�1. It becomes now possible to
rewrite the bolus velocity at z D z as

ub D �K`.h�/�1r �h� D K`h�r �.h�/
�1 DK`

�
@�I
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�
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r h
@�I
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�

With r �z.xh; �; t/ D �.@�=@z/�1r h� we find

ub DK`
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D �K` @sI
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Here the isopycnal slope vector sI of the modified density �I is introduced. Note that only for
vertically constantK`, the parameterized bolus velocity ub becomes identical to the eddy-driven
velocity of the parameterization of Gent and McWilliams (1990) as given e. g. by (B56.3). Note
also that the isopycnal slopes differ, i. e. given by the modified vs. Eulerian mean density.

We take the mean of the thickness equation in isopycnal coordinates (which is
equivalent to the Isopycnal Mean in Eulerian coordinates) and decompose the hori-
zontal velocity and thickness into mean uI

h and h� and deviations u0
h.xh; �; t/ � uh

0
and h0

� with vanishing means u0 D 0 and h0
� D 0, which yields

@h�

@t

ˇ̌
ˇ
�Dconst

Cr� �
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Ih� C u0
hh

0
�

I
�

C @

@�
G�h�

I D 0

It is now possible to define the thickness weighted mean velocity as

vthk D uhh�
I
=h� D uI

h C ub with ub D u0
hh

0
�

I
.
h�

and the mean thickness equation becomes

@h�

@t

ˇ̌
ˇ
�Dconst

Cr� �


vthkh�

�
C @

@�
G�h�

I D 0

By the definition of the thickness weighted velocity in isopycnal coordinates, the
eddy effect in the mean thickness equation is transferred to a redefinition of the
advection velocity – here a simple algebraic replacement – analogous to the Gen-
eralized Lagrangian Mean tracer conservation equation (12.77) or the TRM tracer
conservation equation. The thickness weighted velocity vthk is the sum of the isopyc-
nally averaged velocity uh

I and the thickness weighted correlation between thickness
and velocity. The latter, ub, was named the ’bolus velocity’ by Rhines (1982).

It was proposed by Gent and McWilliams (1990) and Gent et al. (1995) to param-

eterize the bolus velocity ub D u0
hh

0
�

I
=h� using the simple down-gradient closure

ub D u0
hh

0
�

I

h�
D �K`r�h� (12.79)
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The coefficient K` has units of a diffusivity and is accordingly called the thick-
ness diffusivity (compare also Section 12.2.4). Note that K` could also be a diffu-
sivity tensor, even with antisymmetric components. However, K` is chosen in cur-
rent applications of the Gent and McWilliams (1990) parameterization as a scalar
with values of O.1;000m2 s�1/. The way to use the parameterization (12.79) in z-
coordinates is discussed in the box on p. 417.

In isopycnal coordinates, the bolus velocity occurs in the mean isopycnal thick-
ness equation as an ’eddy-advection velocity’ of the mean isopycnal thickness, which
adds to the (isopycnal) mean velocity similar to the Stokes velocity in z-coordinates.
On the other hand, it is unclear which role the bolus velocity plays after transforma-
tion to z-coordinates (shown in the box on p. 417), i. e. which tracer – the Eulerian
Mean, the Lagrangian Mean, or some other kind of average – the bolus velocity ad-
vects. It is also unclear to which mean velocity the bolus velocity adds. These points
are getting clearer in a framework using the isopycnally averaged tracer �I evalu-
ated in z-coordinates, similar to the Generalized Lagrangian Mean framework, as
discussed in the next section.

The Quasi-Stokes Stream Function

The Quasi-Stokes velocity of McDougall and McIntosh (2001) adds to the Eulerian
Mean velocity in z-coordinates. It will be shown below in the conservation equa-
tion (12.83) that the Quasi-Stokes velocity transports the modified density �I, where
advective processes are consistently separated from the forcing G� , similar to the
TRM framework and the Generalized Lagrangian Mean. Note that it is possible to
replace the density � with the general property  in the definition for the material
surfaces in the semi-Lagrangian Mean (12.78), which yields a mean conservation
equation identical to (12.83) but for the modified property I instead of the modi-
fied density �I. Note that the Quasi-Stokes velocity which transports �I using z.�/
in (12.78) will in general be different from the Quasi-Stokes velocity transporting
I using z./ in (12.78). Here, we follow again the oceanographic convention and
discuss the isopycnal case, but note that results are identical for modified property
and modified density.

Consider the volume flux V between the bottom z D �h and a material surface
given by the isopycnal z D z.xh; �; t/, corresponding to the modified density �I, and
take the mean, which yields

V .xh; �; t/ D
z.xh;�;t/Z

�h
uh.xh; Qz; t/d Qz D

zZ

�h
uhd Qz C

zCz0Z

z

uhd Qz (12.80)

with the mean isopycnal depth z and its deviation z0 D z�z. Note that the rightmost
part of the relation (12.80) can be considered as a function of the mean depth z, while
the left-hand side is a function of modified density � D �I. The very last term on the
right-hand side of (12.80) is related to a possible correlation between isopycnal depth
and velocity fluctuations and can in fact be shown to be related to an ’eddy-driven
velocity’, such as Stokes velocity (in z-coordinates) or bolus velocity (in isopycnal
coordinates).

It is possible to express the mean component
R
uhd Qz on the right-hand side of

(12.80) by the mean stream function � .xh; z; t/ D � R z�h u:hd Qz with uh D @�:=@z.
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Note that � is here a horizontal vector, i. e. e3 � � D 0. In analogy, we may define
a stream function for the eddy component of the total transport V as

�C.xh; z; t/ D �
zCz0Z

z

u:hdQz (12.81)

which is the exact definition for the Quasi-Stokes stream function of McDougall and
McIntosh (2001). Note that also e3 ��C D 0. We will discuss below an approximate
form of the stream function as a function of Eulerian Mean variables.

We first discuss the physical meaning of the transport V . Consider two infinitesi-
mal close isopycnals �1 D const and �2 D const with depths z1 and z2, respectively,
and with z1 < z2 and �1 > �2 with �� D �1 � �2 > 0. The transport below
the isopycnals is given by V 1 and V 2, respectively. The difference in the transports
yields the transport between both isopycnals and can be written as

V 2 � V 1 D
z2Z

z1

uhd Qz D
�2Z

�1

uh
@z

@�
d� D

�1Z

�2

uhh�
I
d�

��!0D uhh�
I
�� (12.82)

Dividing by �z D z2 � z1 ! 0, it becomes clear that the velocity on the left-
hand side of (12.82) becomes for �z=�� ! h� the thickness weighted velocity
introduced above

vthk D @V

@z
D uhh�

I

h�

While the thickness weighted velocity vthk.xh; �; t/ can be decomposed into uh
I C

u0
hh

0
�

I
=h�, i. e. the isopycnally averaged velocity uh

I and the bolus velocity ub as

discussed above, we have here decomposed the total transport V into Eulerian mean
transport and an eddy component, given by the stream functions � and �C, respec-
tively, which are both function of the mean depth z. The latter takes, therefore, the
meaning of a Quasi-Stokes velocity. It also becomes clear that it is the modified den-
sity �I which is advected by the total advection velocity u# D r � .� C�C/. Note
that u# is a function of depth and vthk a function of density, but that both are identical.

To proof that u# transports the modified density �I, we first vertically integrate
the mean thickness equation from the density � to the largest density at the bottom
which yields

�.�h/Z

�

@

@t

ˇ̌
ˇ
�Dconst

h�d Q�C
�.�h/Z

�

r� � uhh�
I
d Q�C G�h�

I
ˇ̌
ˇ
�.�h/�G�h�

I
ˇ̌
ˇ
�

D @z

@t
C r� � V � G�h�

I D 0

where we have used the bottom boundary density equation (the upper boundary of
the integrals depends on time and space in isopycnal coordinates) and (12.82). Now
remember that r� D rh C @=@zr hz and use9 @z=@t D h�@�

I=@t and r hz D
9 The total differential of the iso-surface �.xh; z; t/ D const is given for xh D const by d� D
@�=@zdz C @�=@tdt D 0, which yields @z=@t D �.@�=@z/�1.@�=@t/ D h�@�=@t .
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h�rh�
I which yields

@�I

@t
� .rh � V /@�

I

@z
C @V

@z
� rh�

I D G�h�
I

h�
(12.83)

With w# D �r h � V D r: � .� C �C/ and u#
h D @.�: C �:

C
/=@z D @V =@z, this

is indeed a conservation equation for the modified density �I, where the transport
velocity u# D r �.�C�C/, i. e. the sum of the Eulerian Mean and the Quasi-Stokes
velocity, transports �I. Note that the forcing in (12.83) is given by the thickness

weighted forcing Gh�
I
=h�.

The definition of the Quasi-Stokes stream function (12.81) involves an integral
which can be difficult to evaluate. A closed analytical form as a function of Eulerian
Mean variables would be more helpful. McDougall and McIntosh (2001) suggest to
use the following approximation to �C. Using a truncated Taylor expansion of uh at
the depth z yields for �C.xh; z; t/

�C D �
zCz0Z

z
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u:h CO.a3/

(12.84)

where a denotes a perturbation quantity of z, � or u. Note that on the left-hand side
of (12.84), velocity and shear are evaluated at z such that the integrals can be be
readily evaluated. We now use the expansion at z for the density at z0

�.Nz C z0/ D �.Nz/C z0 @ N�
@z

CO.a2/

We take the mean of this expansion and subtract from the instantaneous expansion
which yields to first order approximation z0 D ��0=@ N�=@z. Replacing z0 in (12.84)
yields
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CO.a3/ (12.85)

with � D �02=2. The vertical Quasi-Stokes velocity is given by wC D r: ��C. Note

that the first term of the approximate form (12.85) is identical to the TRM stream

63. Third Order
Correction to the
Quasi-Stokes Stream
Function

The third order correction for the Quasi-Stokes stream function can be derived in a similar way
as the second order, and is given by
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with �3 D �03=3. It is, however, hard to see how this forms a systematic series in the moments
of the density as for the TRM stream function.
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function for the small isopycnal slope approximation (B61.3), but that the second
term differs. Note also that while the Quasi-Stokes stream function transports the
modified density �I, the TRM stream function transports the Eulerian Mean density.
Both stream functions should, therefore, in general be different.

Isopycnal Mixing in the Isopycnal Framework

Considering the conservation equation for a general passive tracer  in isopycnal
coordinates, it is possible to rewrite the tracer equation such that the bolus velocity
(in isopycnal coordinates) or the Quasi-Stokes velocity (in z-coordinates) transports
the mean tracer. However, additional correlations between tracer and velocity re-
main in such a conservation equation, which are usually interpreted as isopycnal and
diapycnal diffusion. The instantaneous conservation equation for the property  in
isopycnal coordinates is given by

@

@t
.h�/
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ˇ
�Dconst

C r� � .uhh�/C @

@�
.G�h�/ D G�h�

where G� D D=Dt and G� D D�=Dt denote the forcing of density and tracer
conservation equation, respectively. Taking the mean yields
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Now we decompose as before the horizontal velocity and the isopycnal thickness into
mean uI

h and h� and deviations u0
h.xh; �; t/ and h0

� with vanishing means u0
h D 0 and

h0
� D 0. We also introduce the thickness weighted mean tracer Q D h�
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=h� and

deviation from that mean Q0 D  � Q with Q0h� D 0. This decomposition yields
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or, by removing the mean thickness equation from the left-hand side
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(12.86)

with the isopycnal thickness weighted forcings QG� D G�h�
I
=h� and QG� D G�h�

I
=h�

and corresponding deviations. In the mean tracer conservation equation in isopycnal
coordinates (12.86), the isopycnal thickness weighted tracer Q is laterally advected
by the velocity u#, which is identical to the thickness weighted velocity vthk, and
which can be expressed as the sum of the Eulerian Mean velocity and the Quasi-
Stokes velocity, as shown above. Note that QG� plays the role of a mean diapycnal
advection velocity for Q in isopycnal coordinates. The first term on the right-hand
side of (12.86) is akin to an isopycnal eddy flux and usually interpreted as isopycnal
diffusion. The latter two terms on the right-hand side of (12.86) are related to direct
forcing of density and the tracer and might be interpreted as diapycnal diffusion.
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64. A Simple
Parameterization
for Isopycnal Mixing

The Isopycnal Mean tracer conservation equation (12.87) it is convenient to use in ocean models,
since it offers a simple way for parameterization of the remaining eddy flux. Parameterizing

the ‘isopycnal diffusive flux’ as u0

h Q�0h�
I D �Kih�r � Q� with the isopycnal diffusivity Ki

and expressing the last two terms in (12.87) as diapycnal diffusion @.Kd@ Q�=@z/=@z with the
diapycnal diffusivity Kd yields

@ Q�
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C r � u# Q� D 1

h�
r � � h�Kir � Q�C @

@z
Kd
@ Q�
@z

where it is usually assumed that Ki � Kd. The parameterized isopycnal diffusion becomes in
fact identical to (12.24) of Section 12.2.2, except for the weighting factor h�. The same holds for
the diapycnal diffusion term. Note, however, that in Section 12.2.2 the tracer was the Eulerian
Mean �, while here we have considered the isopycnal thickness weighted tracer �I.

We now transform the left-hand side of (12.86) from isopycnal coordinates to z-
coordinates, remembering that r� D r h C @=@zr hz, @z=@t D h�@�

I=@t and
r hz D h�r h�

I and using (12.83). We find
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It becomes clear that the transport velocity of the modified density, u#, also trans-
ports Q in the Isopycnal Mean tracer conservation equation (12.87). However, it also
becomes clear that an eddy flux term remains on the right-hand side of (12.87). Fur-
ther, there is an effect of the density forcing G� on the Isopycnal Mean conservation
equation of the general property .

The usual interpretation of the remaining eddy flux, i. e. the first term on the right-
hand side of (12.87) is mixing along isopycnals, but such isopycnal mixing of Q can-
not be directly related to the instantaneous forcing G�. In fact, we have shown in Sec-
tion 12.2.5 using the TEM framework, that most of the isopycnal mixing, when for-
mulated for the Eulerian Mean tracer , is actually related to advection, i. e. related
to the differences in the stream functions for eddy-driven advection in the density
and the tracer conservation equation. We conclude that part of the remaining eddy
flux in (12.87), could be of advective nature and not related to irreversible mixing
of the mean tracer. In this respect, (12.87) might not be a consistent mean conserva-
tion equation for , but it is still useful with respect to a simple parameterization as
detailed in the box on p. 422.

Alternatively, we could formulate a semi-Lagrangian Mean conservation equa-
tion for I by using z./ as material surfaces in (12.78), in which a (different)
Quasi-Stokes velocity occurs, but no remaining eddy flux related to isopycnal mix-
ing, i. e. in which the first two terms on the right-hand side of (12.87) will drop.
Corresponding consistent mean conservation equations can be formulated using the
TRM framework or the Generalized Lagrangian Mean, i. e. conservation equations
where advective effects are consistently separated from the irreversible changes of 
related to G. We will compare the three averaging frameworks in the next section.
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12.3.6 Relating Lagrangian, Eulerian,
and Semi-LagrangianMean

The steady conservation equation for vanishing G’s formulated for the Lagrangian,
Eulerian, and semi-Lagrangian Mean framework is given by

.uC uS/ � rL D 0 ; .uC ue/ � r D 0 ; .uC uC/ � rI D 0 (12.88)

with the Stokes velocity uS D uL �u (compare Section 12.3.4), the Quasi-Stokes ve-
locity uC given by the stream function (12.81), and the eddy-driven velocity ue given
by the stream function (B61.1). Each averaging framework defines different eddy-
related velocities, different mean tracers and thus different quasi-material trajecto-
ries10. It is only the Lagrangian Mean in which the quasi-material trajectories are in-
dependent of the tracer under consideration. This feature is unique to the Lagrangian
Mean. On the other hand, no closed analytical form exists for the Lagrangian Mean
velocity. It is, therefore, useful to connect uS to the other velocities for which (ap-
proximate) closed forms exist.

Subtracting the Lagrangian Mean and the Eulerian Mean conservation equation
in (12.88) yields

.uS � ue/ � r D �uL � rS � �u � rS (12.89)

with the Stokes correction S D L � . The last step in (12.89) approximates the
Lagrangian advection by Eulerian Mean advection, which is valid to second order in
perturbation quantities, as detailed below. The difference between Stokes and eddy-
driven velocity is thus related to the advection of the Stokes correction S. A similar
relation as (12.89) holds for the difference between Stokes and Quasi-Stokes veloc-
ities, which is related to the advection of the difference in Lagrangian and semi-
Lagrangian Mean tracer. One might argue that this difference is smaller than the
difference between Eulerian and Lagrangian Mean tracer, i. e. Stokes correction in
(12.89). However, since L ¤ I holds, the Stokes and Quasi-Stokes velocities are
not identical. This is also reflected by the fact that the Stokes velocity is divergent,
while the Quasi-Stokes velocity is given by a stream function.

To relate the Stokes velocity uS, the eddy-driven velocity ue, and the Quasi-Stokes
velocity uC, a truncated expansion of the Stokes correction S is considered. The re-
sults will, therefore, only be valid for small amplitudes of the fluctuating quantities.
Note that although (12.89) applies only to the adiabatic and steady limit, small de-
viations from that limit are possible, as long as the effect of these deviations do not
exceed the order of truncation of the expansion. Consider a Taylor expansion at the
mean position x up to second order in perturbation quantities of the instantaneous
value of the particle property �

� D C �i
@ N
@xi

C �i
@0

@xi
C 1

2
�i�j

@2 N
@xi@xj

CO.a3/ (12.90)

Taking the mean of (12.90) yields L D N C O.a2/ since the first order term
�i@ N=@xi vanishes. It follows that the Stokes correction S is of second order. It
will turn out below that the Stokes velocity (as the TRM eddy-driven and the Quasi-
Stokes velocity) is also of second order in perturbation quantities.

10 Since actual trajectories are different from the mean, quasi-material trajectories are hypothetical,
not material trajectories.
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We now assume small irreversible changes in the conservation equation for 
due to a nonzero G�, such that L D � C O.a2/ D N C O.a2/ and thus
�i@ N=@xi D �0 C O.a2/ or, formulated in two-dimensions for convenience (the
three-dimensional case is discussed below)

� D �0jr h Nj�2rh NC ˇjr h Nj�2r: NCO.a2/

with ˇ D � � r: N. It is now also assumed that ˇ is much smaller than 0, i.e. a pertur-

bation quantity of second order ˇ D O.a2/. We then have � D �0jr h Nj�2rh NC
O.a2/ and we can calculate the second order Stokes correction in (12.90) after some
manipulations as

�i
@0
@xi

C 1

2
�i�j

@2 N
@xi@xj

D �jr h Nj�1rh N � r h.�=jrhj/ (12.91)

with the Eulerian Mean variance � D 02=2. Decomposing the Eulerian Mean ve-
locity u into un D u � Qn and us D u � Qs with the unit vectors Qn D jrh Nj�1r h N and
Qs D jr h Nj�1r: N yields in (12.89) for the Stokes velocity

uS � Qn D
 
ue C jrhj�1.unr h � usr:/ Qn � rh

�

jr hj

!
� QnCO.a3/ (12.92)

Now we can infer from the Eulerian Mean conservation equation for small forcing
term G that u � rh N D �u0 � rh0 D O.a2/ and that u D r: N . N/ C O.a2/ D
N 0r: N C O.a2/, i.e. un D O.a2/ and us D N 0jrh Nj C O.a2/. This means that we

can neglect the term related to un in (12.92).
With the TRM form for the eddy-driven velocity ue D �r:.s � u00jr h Nj�1/ C

r:.s � .r:T /jr h Nj�1/ and with the definition of the rotational eddy fluxes T D
us jrhj�1� CO.a3/ from (12.66) we find

uS � Qn D
"

�r:
u0
s

0
jrh Nj C r:

Qn � r h.us�jrhj�1/
jr h Nj

� us

jrhjr: Qn � r h
�

jrhj

#
� QnCO.a3/

(12.93)

It becomes clear that the rotational component in TRM, i. e. the second term in
(12.93), is modified while the first component is identical for the Stokes velocity and
the eddy-driven velocity. It also becomes clear that the Stokes velocity might have
a divergent component given by the last term in brackets in (12.93). A divergent
transport velocity for incompressible flow is an inherent feature of the Generalized
Lagrangian Mean formulation. However, it will turn out that at second order, the
divergent part on the right-hand side of (12.93) vanishes.

By combining a part of the divergent (third) term with the second term in (12.93),
where parts cancel, the following alternative form of (12.93) is derived

uS � Qn D
"

�r:
u0
s

0
jr h Nj C r:

Qn � .rus/�jr hj�1
jr h Nj

C Qn � rh

 
�

jrhj

!
r:

us

jr hj

#
� QnCO.a3/

(12.94)
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65. Generalized
Quasi-Stokes Velocity
in Three Dimensions

For three dimensions the Stokes correction (12.91) remains valid (the nabla operator becomes
three-dimensional, i. e. r h ! r ) given that � D ��0j N�j�1r N�CO.a2/ still holds. The Eu-
lerian Mean velocity is decomposed using the three-dimensional unit vector n D jr N�j�1r N�
as u D Nunn C us � n with Nun D u � n and with us � n D 0 since then us D n � u. This
decomposition yields in (12.89)

uS � n D �
ue C jr N�j�1 . Nun � us�/r n � r �

�jr N�j�1�� � n CO.a3/

With the same argument as above, we can neglect the term related to Nun. The last term in brackets
can be decomposed into a nondivergent and divergent part,

�jr N�j�1us � r �S D r � �Susjr N�j�1 � �Sr � usjr N�j�1

for which it turns out (after some algebra) that the latter vanishes in the mean conservation
equation to O.a3/. Thus we can rewrite (12.89) with ue D r � � e , the TRM vector stream
function � ejr N�j D n � .u0�0 C r � �/, and the rotational eddy flux �jr N�j D n � u� C
O.a3/ from (B61.2) after some algebra as

uS � n D �r � �
� e C �Susjr N�j�1�� � n CO.a3/ D



r � � C

�
� n CO.a3/

� Cjr N�j D n � �
u0�0 C �jr N�j�1r � us

�

� C is the generalized three-dimensional version of the approximate Quasi-Stokes stream func-
tion (12.85). To show this we specify � as density and consider the strongly stratified case. It
follows within the small slope limit for the operator .n � a/h � a:h and thus .r � us/h �
�@uh=@z, and for the stream functions
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This form for � C is identical to (12.85).

The nondivergent part of the form (12.94), i. e. the first and second part in brackets,
is a generalized version of the approximate Quasi-Stokes stream function introduced
in Section 12.3.5. This becomes more clear in the box on p. 425, where the three-
dimensional version of the relation (12.94) within the small isopycnal slope limit is
considered, which can be directly compared to the approximate Quasi-Stokes stream
function (12.85).

It remains to be shown that the third term in brackets in (12.94) vanishes. Us-
ing again us D N 0jrh Nj C O.a2/ for N D N . N/ C O.a2/ we can rewrite
(12.93) and (12.94) with the generalized Quasi-Stokes stream function  Cjrh Nj D
�u0

s
0 C Qn � .r hus/�jrhj�1 and the TRM stream function e jrh Nj D �u0

s
0 C Qn �

r h.us�jrhj�1/CO.a3/ as

uS � Qn D


r: 

e C N 0r: NS
�

� QnCO.a3/

D


r: 

C � NS N 00r: N
�

� QnCO.a3/

Since r: N � Qn D 0, it becomes clear that in the approximate steady and adiabatic Gen-

eralized Lagrangian Mean conservation equation .uCuS/ �rh NCu �rh
S D O.a3/,

the replacement of uS by r: 
C would not introduce any error in the second order.
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Using in contrast the TRM stream function  e , would introduce an error related to
the divergent part of the Stokes velocity.

Therefore, the Quasi-Stokes stream function  C resembles a second order ap-
proximation to the divergent Stokes velocity, which is valid for weakly diabatic flow.
 C is better suited (has smaller error) for advecting the Lagrangian Mean tracer
(density) L than the TRM stream function  e. On the other hand, for the steady
and adiabatic case,  e yields a conservation equation for the Eulerian Mean den-
sity N valid to any order, similar to the Lagrangian Mean conservation equation. The
Quasi-Stokes stream function is only valid to second order, if used in the conserva-
tion equation for L instead of uL, but yields a conservation equation for the modified
tracer, as shown in Section 12.3.5. Note that the exact Stokes velocity will be diver-
gent, and thus no stream function exists in general. On the other hand, no closed
general form for the exact Stokes velocity exists which may make the approximate
Quasi-Stokes velocity useful.

Further Reading

The theory of homogeneous turbulence is based Kolmogorov’s (1941) paper, and the
classic Theory of Homogeneous Turbulence by Batchelor (1990).

Aspects of that theory are reviewed in a collection edited by Hunt et al. (1991),
and in Turbulence by Frisch (1995).

Turbulent Flows by Pope (2000) gives an account of modeling and simulation of
turbulent flows of constant density.

A wealth of material on ocean surface layer turbulence can be found in Small
Scale Processes in Geophysical Fluid Flows by Kantha and Clayson (2000).

Thorpe (2005) reviews in The Turbulent Ocean the measurement of oceanic tur-
bulence and the processes leading to turbulent motions, such as breaking internal
waves and instabilities of oceanic currents.

Modeling of turbulence in the oceanic boundary layer has initially been based on
bulk models, such as described by Niiler and Kraus (1977).

A review on the parameterization of turbulent mixing in the boundary layer was
given by Large et al. (1994), see also Large (1998).

Estimates of diapycnal mixing rates derived from observations are discussed
e. g. in Toole (1998).

Some current approaches to the theory and modeling of oceanic turbulence are
described in Marine Turbulence: Theories, Observations, and Models by Baumert
et al. (2005).

The article The Dynamics of Unsteady Currents by Rhines (1977) has provided
an early overview on ocean waves and turbulence on the beta-plane.

The Lectures on Geophysical Fluid Dynamics by Salmon (1998) contain an ac-
count of geostrophic turbulence.

The parameterization of eddies in large scale flow is discussed in an article
by Killworth (1998). In the same book, McDougall (1998) discusses the three-
dimensional residual-mean theory.

A profound discussion of the Generalized Lagrangian Mean theory is found in
Waves and Mean Flows by Bühler (2009).

Aspects of eddy dynamics in the context of a two-layer isopycnal model are dis-
cussed in the book Fundamentals of Geophysical Fluid Dynamics by McWilliams
(2006).



Part VAspects of Ocean Circulation Theory

The increasing interest in climate change has focussed the research in physical
oceanography during recent years more and more on the role of the ocean for cli-
mate variability. Feedback processes between ocean and atmosphere and the result-
ing modes of coupled variability are among the topics, as well as the potential of
the ocean circulation to contribute to past or future changes in the climate system
and the ocean’s role to extent predictability to time scales longer than those of the
atmospheric synoptic variability. Although the eminent importance of these topics
for society clearly justifies this research, the understanding of the physics of the
ocean should not move to the background. Due to the increasing performance of
modern computers, there is the danger that ocean circulation becomes a tool box
to be switched on in a numerical experiment, in which the understanding of the re-
sults and its underlying physics becomes superfluous. In fact, numerical models can
simulate today the ocean circulation in surprisingly rich details, if the resolution is
high enough. Numerical modeling is not the topic of this book; we offer instead
classical and new simplified analytical models to understand and to study the large-
scale ocean circulation for given atmospheric forcing functions. We discuss the basic
physical ingredients of ocean circulation physics, starting with the classical suite of
circulation models complemented with new extensions in most cases. Although we
restrict the presentation to the present steady state conditions, one might use the same
(or slightly modified) simplified models for the description and understanding of the
variability of the ocean and the role of the ocean in climate change as well.

Chapter 13 introduces the boundary conditions at the sea surface for practical use
by bulk formulas and presents the forcing functions, basically the components of
the surface fluxes of energy, heat and freshwater and the flux of momentum. The
wind-driven circulation is discussed in Chapter 14. Based on the simple concept
of an ‘Elementary Current System’, the classical Stommel–Munk model is derived.
The BARBI concept and the associated numerical model are developed to elucidate
the wind-driven circulation in the presence of stratification and topography. Further-
more, the theory of thermocline ventilation is reviewed. The physics of the oceanic
meridional overturning, specifically the one forced by thermohaline processes, is
discussed in Chapter 15. The Stommel-Arons overturning model and the classical
and more recent box models are presented, and an extended discussion follows on
zonally averaged models and their closure problem. Finally, Chapter 16 is devoted
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Physics is about models which try to make images of specific features of the real world. Ocean
circulation models of analytical kind are often very remote from reality. It is always the hope of
a model builder that the few coarse ingredients of his simple model mirror some processes in the
real world. The situation is remedied by today’s high-resolution numerical models of the ocean cir-
culation. Simple models, however, helped to construct these comprehensive models. They are also
valuable to train the physical intuition about the behavior of the system and guide the interpretation
of the results of numerical models

to the circulation in the Southern Ocean, in particular its two interleaving branches:
the predominantly wind-driven Antarctic Circumpolar Current and the wind- and
thermohaline-driven overturning circulation. The dynamics are elucidated by a num-
ber of analytical and numerical models which cope with the interaction of stratifica-
tion, topography and mesoscale eddy effects.

We like to emphasize that the low resolution of many of the simple models, intro-
duced in the Chapters 14–16, is far from being adequate to represent the real ocean
circulation. In fact, it is hard to judge whether a two-box system as Stommel’s ther-
mohaline model discussed in Section 15.5 is anything more than a dynamical system
loaded with interesting nonlinear mathematics, or if its bifurcation structure is to
some degree embedded as a ‘center manifold’ (see Appendix A.2) in more complete
circulation models. At least, its bifurcations have been reproduced by more com-
plex three-dimensional general circulation models. In fact, the simplified models and
their implications, as derived in the following chapters, are in most cases supported
by more advanced models. On the other hand, more complex models like numeri-
cal models based on the primitive equations, also rely on turbulence closures which
are know to often perform poor in the ocean, as discussed in the previous chapters.
The different simplified model types – isopycnal models of various configurations,
the two-layer quasi-geostrophic model, the BARBI model of a wind-driven strati-
fied ocean with topography, and the mathematics of spectral and box models – are
summarized in Appendix B.



Forcing of the Ocean 13

In this chapter, we discuss the surface forcing functions of the
large-scale ocean circulation. The exact boundary conditions derived
in Chapter 2 are approximated and replaced by the so-called ‘bulk for-
mulae’ for practical use in the ocean circulation theory. These approxi-
mated boundary conditions are discussed on the basis of observational
estimates. We also present some simplified boundary conditions which
are used to construct the models of the large-scale circulation in the
following chapters.

The boundary conditions for those surfaces where the ocean touches the other com-
ponents of the Earth system, i. e. the atmosphere, the sea ice, and the land, were
derived and discussed in detail in Chapter 2. The boundary conditions express the
physical requirement of continuity of the fluxes of momentum, partial masses, and
internal energy across (and normal to) the boundaries. They are briefly repeated here:

1. The exact kinematic boundary conditions at the sea surface and the bottom of the
ocean are given by (2.10) and (2.11), respectively. With respect to the large-scale
flow in the ocean, it is reasonable to assume small slopes of the sea surface or the
bottom, i. e. to assume that .rh�/

2 � 1, where z D �.x; y; t/ denotes either the
vertical position of the sea surface (� D �) or the ocean bottom (� D �h). Then
the kinematic boundary conditions (2.10) and (2.11) simplify to

@�=@t C uh � rh� � w D �Jmass=� at the sea surface z D �

uh � rhhC w D 0 at the ocean bottom z D �h (13.1)

Here, Jmass D E�P denotes the air-sea mass flux in kg m�2 s�1 which is given by
the difference between evaporation E and precipitation P . Note that the melting
or freezing of sea ice and continental freshwater run-off might also contribute
to Jmass, which is, however, not considered here. Furthermore, a zero mass flux
through the ocean bottom was assumed.

2. To a good approximation evaporation and precipitation exchange only pure water
such that there is zero salt flux through the surface and also through the ocean
bottom (although on very long time-scales there might be a nonzero salt flux
due to erosion on land and exchange with the Earth’s crust). Using the air-sea
freshwater flux E �P (positive upwards), the boundary condition for the salinity
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budget, (2.25), can be written in form of an equivalent salt flux

JS � n D �S.E � P/ at z D �

JS � n D 0 at z D �h (13.2)

where n denotes the unit vector normal to the boundary.
3. In Section 2.3, the dynamic boundary condition for the sea surface for the force

tangential to the interface was approximated as

˙ � n D �a at z D � (13.3)

where �a denotes the windstress tangential to the sea surface, and where˙ij rep-
resents the frictional stress tensor. The windstress �a represents a viscous vertical
flux of the horizontal momentum components, if, for simplicity, the sea surface
is taken as horizontal (and n as the vertical unit vector). The dynamic boundary
condition for the vertical momentum component was approximated as continuity
in pressures of ocean and atmosphere, i. e. pjzD� D pa.
At the bottom of the ocean, it is less clear how to proceed. Both free-slip
(˙ � n D 0) and no-slip (u D 0) boundary conditions are possible as discussed
in Section 2.3. The bottom boundary conditions for momentum are not further
discussed here but left to the specific handling in the models under investigation.

4. The fluxJH D J TCJ rad of enthalpy or internal energy has been defined in (2.75)
as the sum of sensible and radiative heat flux, up to a negligible component re-
lated to the salinity variations. We follow the convention that the energy exchange
at the bottom of the ocean is also usually neglected, but note that such energy
fluxes, although small compared to those at the surface, have the potential to gen-
erate substantial large-scale flow. The boundary condition (2.86) for the enthalpy
flux becomes under this assumption

JH � n D J a
H � nC LqE at z D �

JH � n D 0 at z D �h (13.4)

Here J a
H D J a

T C J a
rad denotes the sum of atmospheric sensible and radiative

heat fluxes, and Lq is the latent heat of condensation as defined in (2.85). Note
that the last two terms in (2.86), related to enthalpy differences of seawater to
freshwater respectively to precipitating water, are small and have been neglected.
For the normal flux components in the atmosphere the following notation is used:

LqE D JL ; J a
T � n D JT ; J a

rad � n D JSW C JLW (13.5)

Here JL, JT denote the latent and sensible heat fluxes, and the short-wave (JSW)
and long-wave (JLW) radiation components have been introduced. These will be
discussed further in the following section. The sum Jheat of these fluxes is the
normal component of the net air-sea heat flux1 given as

Jheat D JSW C JLW C JT C JL (13.6)

For the radiation inside the ocean, it is usually sufficient to explicitly consider
only the short-wave flux divergence. Then the boundary condition (13.4) takes
the form

J T � n D Jheat � JSW and J rad � n D JSW at z D � (13.7)

1 The quantity Jheat is referred to as net energy flux in the meteorological literature.



13.1 Bulk Formulae as Boundary Conditions 431

Alternatively, under conditions where the radiative flux in the ocean is completely
absorbed within the well-mixed layer, it is not necessary to consider the radiative
component at all. In this case, (13.7) can be approximated by J T � n D Jheat.

13.1 Bulk Formulae as Boundary Conditions

For practical use in analytical and numerical models of the ocean, the boundary
fluxes Jmass D E � P , �a and the contributions to the normal heat flux components
on the right-hand side of (13.6) have to be specified. It is important to acknowledge
first that with respect to the large-scale (Reynolds-averaged) flow in the ocean, the
fluxes across the boundaries are in almost any case the result of processes in turbulent
boundary layers, i. e. the boundary fluxes are often of turbulent nature and need to be
parameterized in terms of resolved (large-scale) quantities of the model. The upper

66. The Global Wind
System

The figure below (redrawn after Open University, 1989) shows the prevailing surface winds for
the situation in the northern summer (left panel) and the northern winter (right panel). Unlike
in the ocean, the circulation in the atmosphere is relatively unconstrained in zonal (east-west)
direction. The large mountain ranges deflect the winds somewhat, but to a first approximation
they are independent of longitude. There is a clear pattern of westward (easterly) blowing trade
winds on both sides of the equator, eastward blowing (westerly) winds in somewhat higher
latitudes, and also a belt of easterly winds circling the polar regions.

A convergence of the surface winds can be noticed in the ‘intertropical convergence zone’
(ITCZ) near the equator (indicated by a solid black line in the figure). At the ITCZ, moist air is
warmed by the strong solar radiation near the surface; the moist and warm air rises, condensates
when the pressure gets lower, and rises even further. This air moves polewards in the upper at-
mosphere, where it eventually sinks, establishing a ‘meridional overturning circulation’ in each
hemisphere. The equatorward branch of this global circulation is often called the ‘Hadley cell’.
High pressure regions are located over each of the subtropical gyres, where the air is circulating
anticyclonic around those highs in near geostrophic balance. Here, a fraction of the air in the
upper atmosphere is sinking and is accordingly dry such that evaporation is high and exceeds
precipitation. As a consequence, the salinity in the surface ocean is higher in the subtropics
than in tropical or high-latitude regions, where precipitation exceeds evaporation. Low pressure
regions can be seen in the North Pacific and Atlantic Ocean, with cyclonic surface circulation,
but no such clear indication in the southern hemisphere.
The ITCZ – and with it the upwelling branch of the whole global MOC in the atmosphere –
migrates seasonally towards the summer hemisphere. This migration is most pronounced in
the Indian Ocean. In the northern part of the Indian Ocean, a seasonal reversal of the surface
winds can even be seen. This reversal is related to the Indian monsoon, with south-westerly
winds during summer extending from the Indian subcontinent to and even crossing the equator,
and north-easterlies during winter. In the tropical Pacific and Atlantic Ocean, similar seasonal
changes in the surface winds can be seen, but in general with smaller seasonal signals at higher
latitudes.
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turbulent boundary layer in the ocean is called the mixed layer (see Section 11.3)
and typically of 50�200m vertical extent, while the lower turbulent layer in the
atmosphere is often called the planetary boundary layer with a typical extent of about
1;000m. Parameterizations of the turbulent air-sea fluxes have been developed over
the recent decades in terms of ‘bulk formulae’, which we briefly describe in this
section.

Observations have shown that vertical fluxes of momentum, matter, and energy
are constant within a shallow layer of a few meters above the surface, and empirical
laws, i. e. the bulk formulae, have been elaborated to relate these fluxes to the values
of velocity, partial masses, and temperature at the upper boundary of this ‘constant
flux layer’ and the corresponding sea surface properties. The standard level of this
constant flux layer is 10 m height where any sea surface elevation is ignored.

Windstress

The air-sea boundary flux of horizontal momentum is related to the activity of the
sea surface gravity waves – a complex and turbulent process which has to be pa-
rameterized by the large-scale variables (in Reynolds-averaged form). The air-sea
momentum flux is parameterized by a drag law relating the tangential surface stress,
i. e. the windstress �a, to the difference between the 10 m wind, uair, in the atmo-
sphere and the surface velocity, us, in the ocean in the form

�a D �airCDjuair � usj.uair � us/ (13.8)

where �air denotes the density of air. The stress is oriented into the direction of
uair � us and is thus positive for momentum input into the ocean. Note that this
sign convention is standard, such that we deviate here from our usual sign conven-
tion for surface fluxes (positive out of the ocean). The so-called drag coefficient
CD resembles a dimensionless proportionality constant; a rough value is given by
CD � 1:2 � 10�3. Its correct parameterization is still somewhat controversial, and
it often depends on wind speed, stratification in the atmospheric boundary layer,
etc. Note that since jusj � juairj holds over many regions of the ocean, and the us

part is often neglected for the bulk formulae forcing ocean models, although the cor-
rect formulation might become important in regions of strong ocean currents, e. g. the
equator, and for estimates of the work done by the winds on the ocean.

The windstress reflects the large-scale surface wind pattern as shown and dis-
cussed in the box on p. 431 and Figure 13.1 shows the long-term and annual mean
components of �a based on the bulk parameterization in the NCEP/NCAR reanaly-
sis data-set (Kalnay et al., 1996). Typical magnitudes of the zonal component of �a

are 0:1N m�2, positive in the midlatitude west wind region and negative in the sub-
tropical and tropical regions of prevailing trade winds. Maximum zonal windstress
shows up in the stormy Southern Ocean with values of 0:2N m�2, exceeding this
size specifically in the Indian Ocean part. The meridional component of �a is in gen-
eral smaller in magnitude and displays the equatorward direction of the trade winds
and the poleward deflection of the west winds in the eastern parts of the major ocean
basins. Note that the large magnitudes in particular of the meridional component of
�a near Greenland and Antarctica are difficult to interpret and might be too large and
biased in the reanalysis data-set due to missing observations. A similar caveat has
to be mentioned regarding the quality of the windstress from reanalysis products in
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Fig. 13.1 Long-term mean of the zonal (a) and the meridional component (b) of the windstress
�a in 10�2 N m�2. Data source is the NCEP/NCAR reanalysis (Kalnay et al., 1996). Both stress
components have been smoothed over several grid boxes to remove the grid-scale noise. The stress
is positive for input of the respective momentum component into the ocean. Also shown are the
zonal averages of the zonal (c) and meridional component (d) of the windstress �a in N m�2 as
a function of latitude. Note the different vertical axes in c and d. The global mean is denoted by
the black line, the zonally averaged components over the Atlantic, Pacific and Indian Ocean are
denoted by red, blue and green lines, respectively

equatorial regions, since here atmospheric general circulation models tend to show
also large biases.

Figure 13.1 also shows the zonally averaged annual mean zonal and the merid-
ional windstress derived from the NCEP/NCAR data-set. The globally averaged
windstress is very similar in both components compared to the windstress averaged
over individual ocean basins. The exception is the Indian Ocean which deviates in its
northern part from the global mean due to the monsoon (and also near Antarctica).
The zonal mean meridional component is smaller than the zonal component, and
from the equator polewards around 60ı, the zonal mean zonal windstress resembles
very much a (negative) cosine function in both hemispheres. Note that such a pattern,
i. e. a purely zonal windstress as negative cosine of a scaled latitude, will be used in
the following chapters to obtain an idealized (but apparently realistic to a certain
extent) forcing in the classical models of the wind-driven circulation.

Note that within the Boussinesq approximation, a factor �0 is sometimes absorbed
in the windstress for convenience. This is done for instance in Chapter 14. The units
of � D �a=�0 are then m2 s�2 instead of N m�2 for �a.
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Radiative Surface Heat Flux

Another important forcing for the large-scale circulation of the ocean is the surface
heat flux. We first consider the radiative part of this flux. The spectrum of the ra-
diative air-sea heat flux can be summarized into a short-wave component, JSW, and
a long-wave component, JLW. The short-wave component originates to a very good
approximation only from direct solar radiation and is given by JSW D �S0.1� ˛s/,
with the incoming solar radiation S0 at the sea surface and taking into account that
a fraction ˛s of the incident short-wave radiation is reflected (˛s is the sea surface
albedo). The long-wave component is dominated by infrared thermal radiation and,
for the upward part, given by the Stefan–Boltzmann law J "

LW D ��T 4s , where Ts

denotes surface temperature, � the Stefan–Boltzmann constant and � an emissivity
coefficient. The net long-wave component JLW is made up by the sum of J "

LW and

the downward part J #
LW arising by reflection and radiation within the atmosphere.

Figure 13.2 shows the long-term mean of JSW and JLW as given by the
NCEP/NCAR reanalysis data-set. Both fluxes are positive when directed out of the
ocean. Clearly, the short-wave component, dominated by the incident solar radia-
tion, is negative anywhere, i. e. it is a heating of the ocean. As expected, it is largest
in magnitude towards the tropics with maximum values of 250W m�2. Within the
ITCZ and the upwelling regions on the eastern margins of the continents, relative
minima in JSW show up, related to the almost persistent cloud cover over these re-
gions, which reduces JLW sightly.

In contrast to JSW, the long-wave component JLW is positive anywhere, i. e. it
is cooling the ocean, but smaller in magnitude with maximum values of 80W m�2.
The maxima show up in mid- to high latitudes, while minima of long-wave radiation
out of the ocean are located in the tropics – e. g. at the ITCZ and upwelling regions
where the cloud cover yields larger J #

LW – and in ice-covered regions. Due to the
strong solar radiation, however, the total radiative heat flux at the air-sea surface
is negative almost everywhere, only during winter at high-latitudes in ice-covered
regions, radiative heat fluxes out of the ocean can show up.

Fig. 13.2 Long-term mean short-wave (JSW, shown in a) and long-wave (JLW, shown in b) ra-
diative heat flux in W m�2. Data source is the NCEP/NCAR reanalysis (Kalnay et al., 1996). JLW

has been smoothed over several grid boxes to remove the grid-scale noise. Fluxes are positive when
directed into the atmosphere. Red colors denote heating and blue colors cooling of the ocean
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Turbulent Surface Heat Flux

In addition to the radiative heat fluxes, there are fluxes related to the turbulent trans-
ports in the constant flux layer. There is a heat flux associated with the turbulent flux
of water vapor in the constant flux layer related to evaporation at the sea surface, the
‘latent’ heat flux JL defined in (13.5). Further, there is a direct turbulent heat flux, the
‘sensible’ heat flux JT. The sensible heat flux JT is parameterized by the difference
of surface air and water temperature, and a similar relation is taken for the rate of
evaporation E for the latent heat flux JL, i. e.

JT D �aircpCHjuairj.Ts � Tair/ ; JL D LqE D Lq�airCEjuairj.qs � qair/ (13.9)

with dimensionless coefficients CH and CE of order 10�3 (which might be chosen
as functions of stratification, wind speed etc.) as before for the windstress in (13.8).
Furthermore, cp denotes the specific heat capacity, �air the density, and uair the veloc-
ity of the air (the wind speed). The variables Tair and qair are the air temperature and
specific humidity taken at the standard level, and qs.Ts/ is the saturation value of hu-
midity at the sea surface which is a function of the surface temperature Ts. The sign
convention is such that positive JT, JL and E express a loss of the ocean, i. e. a flux
from the sea surface to the atmosphere.

Figure 13.3 shows the long-term mean latent heat flux JL and sensible heat
flux JT from the NCEP/NCAR reanalysis data-set. The long-term mean evapora-
tion at the sea surface E from the same data-set is also shown in Figure 13.5. The
latent heat flux is positive almost anywhere, i. e. cooling the ocean. There are only
very restricted regions and times with E < 0, i. e. where water vapor condensates at
the sea surface. JL and E are largest over the midlatitude subtropical gyres, where
evaporation is strongest due to the dry sinking air related to the Hadley circulation.
Towards the equator, JL and E are smaller than their midlatitudinal maxima, since
here specific humidity is in general larger and wind speeds are smaller than in the
subtropics. Evaporation and JL is in particular large over the western boundary cur-
rents with maximum values of up to 200W m�2, where warm water is advected
within the western boundary currents polewards and underlies during winter time
dry cold air blown from the continents with the midlatitude westerlies. At higher
latitudes, the latent heat flux becomes smaller, typically on the order of 20W m�2.

Fig. 13.3 Long-term mean latent (JL, shown in a) and sensible (JT, shown in b) turbulent heat flux
in W m�2. Data source is the NCEP/NCAR reanalysis (Kalnay et al., 1996). Both data sets have
been smoothed over several grid boxes to remove the grid-scale noise. Fluxes are positive when
directed into the atmosphere. Red colors denote heating and blue colors cooling of the ocean
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The smallest contribution to the net air-sea heat flux comes from the sensible
heat flux JT, which is also shown in Figure 13.3 as a long-term mean from the
NCEP/NCAR reanalysis data-set. JT is positive, i. e. cooling the ocean almost ev-
erywhere with magnitudes of about 10�20W m�2 in midlatitudes, corresponding
to a 1�2K air-sea temperature difference. It becomes much larger in the western
boundary currents, where, during winter, cold air from the continents and warm wa-
ter, sustained by the poleward western boundary currents, lead to a much larger air-
sea temperature difference and magnitudes of JT as large as JL. The sensible heat
flux JT can also become important near the sea-ice margin in polar regions of the
North Atlantic and Pacific Ocean, where the air-sea difference stays large, with max-
imum values of 100W m�2.

Net Surface Heat Flux

All parameterized energy fluxes can be summed up to the net air-sea heat flux Jheat

according to (13.6). Figure 13.4 shows the long-term mean net air-sea heat flux Jheat

from the NCEP/NCAR reanalysis data-set as a global map and as a zonal average.
The global pattern of Jheat is dominated by regions of large heat loss by the ocean
within western boundary currents and in the polar regions of the Atlantic Ocean with
maximum values of up to 200W m�2 in the Gulf stream region. The ocean takes up
heat predominantly in the tropics with maximum magnitudes of about 100W m�2

Fig. 13.4 Long-term mean a net air-sea heat flux Jheat, in W m�2 and b air-sea freshwater flux
P � E , in mg m�2s�1. Both data sets have been smoothed over several grid boxes to remove
the grid-scale noise. Data source is the NCEP/NCAR reanalysis (Kalnay et al., 1996). Fluxes are
positive when directed out of the ocean, i. e. heating of the ocean is denoted by red colors and
freshening of the ocean by blue colors and vice versa. Also shown are zonal means of Jheat (c) and
P �E (d) in the same units as a function of latitude for the global zonal mean (black line) and zonal
averages taken over the Atlantic (red), Pacific (blue), and Indian Ocean (green)
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in the eastern tropical Pacific ocean. Clearly, the long-term mean of the global pat-
tern of Jheat mirrors the lateral heat transport within the ocean, as discussed in the
box on p. 438. This lateral heat transport is dominated on the global scale by the
meridional overturning circulation (see Chapter 15). The overturning circulation is
in particular effective in transporting heat because the temperature difference from
the sea surface to the deep ocean is in general one order of magnitude larger than the
zonal temperature differences, while the zonally integrated northward mass transport
associated with the overturning circulation is of similar strength as the vertically in-
tegrated northward transport related to the horizontal circulation.

Surface Freshwater Flux

Figure 13.4 also shows the long-term mean air-sea freshwater flux P � E from
the NCEP/NCAR data-set as a global map and zonal averages in individual basins,
while Figure 13.5 shows global maps of the individual contributions P and E . There
is freshwater loss by the ocean or an equivalent salt flux into the ocean in subtropi-
cal regions, where the sea surface salinity is correspondingly large. This freshwater
loss is driven by the large evaporation and small precipitation over the subtropical
gyres, which are dominated by the sinking dry air related to the Hadley circulation,
inhibiting cloud formation. Towards the equator in the rising branch of the Hadley
circulation, however, and in particular within the ITCZ, precipitation is very high,
while E is lower such that the ocean gains freshwater. At mid to high latitudes, the
ocean also receives freshwater, since evaporation becomes low but precipitation is
slightly increased, in particular within the atmospheric storm tracks.

Note that precipitation P is difficult to measure on a global scale. Further, atmo-
spheric general circulation models, like the one used for the NCEP/NCAR reanalysis
data-set, also have problems in the correct representation of precipitation, since the
complex processes involved in cloud formation and precipitation are not resolved but
parameterized in those models. Therefore, the observational estimates of P shown
and discussed here are biased. Note that the checker board type structure in E of Fig-
ure 13.5 in the Southern Ocean part appears to be such a model bias.

Fig. 13.5 Long-term mean a net evaporation E , and b precipitation P , both in mg m�2s�1. Both
data sets have been smoothed over several grid boxes to remove the grid-scale noise. Data source
is the NCEP/NCAR reanalysis (Kalnay et al., 1996). Freshening of the ocean is denoted by blue
colors, freshwater flux out of the ocean by red colors



438 13 Forcing of the Ocean

67. The Global Ocean
Heat and Freshwater
Balance

The most important role of the ocean in climate are storage and transport of energy. Concerning
storage, the ocean has a much larger heat capacity than the atmosphere: 10 m of water weigh
roughly as much as the entire atmosphere. Furthermore, the heat capacity of sea water is about
4 times that of air. Hence 2.5 m of water hold as much heat as the entire atmosphere (at a corre-
sponding temperature). In the long run, the net air-sea heat exchange Jheat (shown in Figure 13.4)
is nearly balanced. Local surplus, mostly received during summer, is mixed into the near-surface
upper layer of the ocean by wind generated turbulence, is stored there and transported by cur-
rents, and later, at other times and places, mostly in the midlatitudes in winter, it is available
again for the exchange with the atmosphere. At higher latitudes, the ocean has a negative energy
balance at the surface, i. e. in the sum of all exchange processes energy is given into the atmo-
sphere. The deficit is balanced by the meridional transport of the heat gained by the ocean in
tropical areas. Large-scale imbalances, which are maintained by the ocean for a long time, rep-
resent climate variations. Processes concerning heat storage and transport are, therefore, basic
components of the ocean’s role in climate.
The three major ocean basins have rather different heat transports. The Pacific and Indian Ocean
are similar to the global zonal mean: the heat transport is nearly antisymmetric about the equator,
and heat is transported poleward in both hemispheres. The most remarkable pattern of heat
transport occurs in the Atlantic: it is northward everywhere. It is up-gradient, from cold to warm,
in the South Atlantic and down-gradient in the North Atlantic. The size is typically 1PW D
1015 W, occurring at the latitude of Florida. This large northward heat transport is related to the
Meridional Overturning Circulation (see Chapter 15), which also shares the same direction in
the South and North Atlantic and provides a significant cross-equatorial heat transport.
Like the heat transport being balanced by the air-sea heat flux, the oceanic freshwater transport
balances in the long run the air-sea freshwater flux E � P at the sea surface shown in Fig-
ure 13.4. In the observational estimate, it is dominated by a large circumpolar transport, which
is, however, to a large extent of rotational nature, i. e. the dominant part of it just circles around
Antarctica – the Antarctic Circumpolar Current with a transport of 140Sv D 140�106 m3s�1

(see Chapter 16) – and features (approximately) no zonal divergence which would in steady state
correspond to a zero net air-sea freshwater flux. The values of the net meridional transport in the
oceanic basins, like the Atlantic, are considerably lower, typically 1 Sv, which is roughly the
amount entering the Atlantic from the Arctic Ocean.

Heat and Freshwater Fluxes below the Surface

Above the constant flux layer in the atmospheric planetary boundary layer and be-
low it in the ocean, all fluxes (except for the short-wave radiation which needs spe-
cial treatment) are carried further as parameterized by the diffusive approximations.
From (13.2), (13.3) and (13.7) one then has
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D Jheat � JSW (13.10)

Here, Ss is the salinity at the sea surface and P is the rate of precipitation (positive; in
kg m�2s�1). For simplicity, we have taken here the diffusive parameterization for the
oceanic fluxes with turbulent vertical diffusivityKv and vertical viscosity Av, which
might be given by some kind of turbulence closure, but note that other closures are
possible. Note that in (13.10) the term JSW only occurs if the radiation inside the
ocean is accounted for separately.

Since the short-wave radiative heat flux JSW is able to penetrate into the ocean
before it is absorbed, it is necessary to implement this flux separately from the other
fluxes, which enter the ocean directly at the sea surface. JSW then affects the tem-
perature budget in the form of an interior source term; the penetration depth of the
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short-wave radiation depends on the turbidity of the sea water, caused by the pres-
ence of phytoplankton and suspended matter, and also on wavelength: for perfectly
clear water, blue light is to 99% absorbed within the upper 200 m while red light is
almost completely absorbed within the upper 10 m. However, for models in which
the details of the processes related to surface heating in the first 10–50 m are unim-
portant, the solar radiation JSW is often simply added to the diffusive boundary flux
condition at the surface.

13.2 Simplified Boundary Conditions

A common way to force an ocean model with realistic surface boundary fluxes is to
use prescribed atmospheric parameters, uair, qair, Tair, etc. as given e. g. by a data-set
or an atmospheric model, and to use the predicted surface values of the ocean model
in the bulk formulae, i. e. us, Ts and Ss, in order to obtain the surface boundary fluxes.
However, for the net surface heat flux Jheat, a simplified alternative can be derived
using the fact that the surface heat flux components depend only on the sea surface
temperature Ts and (given) atmospheric parameters. A truncated Taylor expansion
of Jheat around a climatological mean value T clim

s yields

Jheat D Jheat.T
clim

s /C @Jheat

@Ts

ˇ̌
ˇ̌
T clim

s

.T clim
s � Ts/C : : : (13.11)

The value of @Jheat=@Ts D @JLW=@Ts C @JH=@Ts C @JL=@Ts can be analytically
derived from the respective bulk formulae using the prescribed atmospheric param-
eters. When the model simulates a Ts equal to the observed climatology T clim

s , the
surface heat flux will be given by the observed climatological heat flux Jheat.T

clim
s /.

When the simulated Ts deviates from T clim
s , e. g. due to a model bias, the flux will

change but assuming unchanged atmospheric conditions.
The surface heat flux boundary condition (13.11) can also be written as

Jheat D 
.Tapp � Ts/ (13.12)

with 
 D @Jheat=@Ts, which then takes the form of a relaxation condition towards
the target temperature Tapp D T clim

s C Jheat.T
clim

s /=
. The coefficient 
 is called the
relaxation coefficient and has values of about 50W m�2 K�1 in midlatitudes; or, with
respect to temperature instead of heat, the corresponding coefficient 
=.�cp/ is on
the order of 1m=d. Assuming that the flux Jheat heats a 50m deep mixed layer with
no other processes affecting it, the temperature in the mixed layer will be relaxed to
the target temperature Tapp on a time-scale of 50 d.

The surface freshwater flux E � P is an important forcing for the meridional
overturning circulation as discussed in Chapter 15. While evaporation is related to
the latent heat flux JL and thus on depends ocean-atmosphere parameters similar to
the surface heat flux, precipitation is not related to ocean-atmosphere parameters at
the surface. In particular, the surface freshwater flux does not at all depend on sur-
face salinity (but on Ts), and the (frequently employed) replacement by a relaxation
condition for surface salinity similar to the one for surface heat flux (13.12),

Ss.P � E/=� D 
S.S
clim
s � Ss/ (13.13)
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has, therefore, no physical justification. On the other hand, the accuracy of observed
estimates of the freshwater flux has been far from satisfactory for a long time: as the
overall salt content of the ocean is conserved on usual oceanic time-scales, system-
atic errors in the freshwater budget add up, leading to a drift in the salinity distribu-
tion and often to a large drift of the meridional overturning circulation. Therefore,
a relaxation boundary condition has often been used in many ocean models, despite
its missing physical motivation. A consequence of the relaxation condition (13.13)
is that in case of a perfect simulation, i. e. S clim D Ss, the freshwater flux vanishes,
which might not be the case. There are ways to treat this problem, but we refrain
from a further discussion here.

As formulated by the kinematic surface boundary condition (13.1), the net mass
flux P �E from the atmosphere to the ocean also leads to a rise of the local sea level
by .P � E/=� (adding to the change induced by currents). It is customary to ignore
this effect so that the total ocean volume remains constant. Moreover, the rigid lid
approximation w D 0 at z D 0 is usually applied as simplified kinematic boundary
condition, which also filters out surface gravity waves and long barotropic Rossby
waves.
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In this chapter we discuss the effects of forcing the ocean by a pre-
scribed windstress. We will start the discussion for an ocean in steady
state and constant density, followed by a consideration of the effects
of stratification and topography. Important concepts and results are the
Ekman layers, Ekman spiral and Ekman transport, the Sverdrup trans-
port and the Stommel/Munk gyre models of the large-scale circulation.
The impact of topography and stratification on the depth-averaged flow
is introduced using the concept of the JEBAR-term and the bottom
pressure torque, which are both further investigated using the model
BARBI. This model represents the interaction of barotropic and baro-
clinic fields in a minimal way. The spin-up of the wind-driven circula-
tion by wave processes was presented in Section 8.2.6.

It was discussed in Chapter 11.3 that the momentum, given to the ocean by the sur-
face wind friction, is vertically distributed by small-scale isotropic turbulent mixing.
This mixing takes place predominantly from the surface to a depth of 30–50 m –
which defines the so-called EKMAN1 layer. It will be discussed in this chapter how
this mixing generates in steady state a directly wind-driven, near-surface current,
which is in the vertical integral over the Ekman layer orthogonal to the wind direction
and proportional to the windstress magnitude. This volume transport – the so-called
the Ekman transport – can be easily calculated when the windstress is given. In the
midlatitude west-wind belt, shown for instance in Figure 13.1, the Ekman transport
is directed predominantly equatorward, while the subtropical easterly or trade winds
force a poleward Ekman transport. Therefore, the Ekman transport produces a con-
vergence in the center of the large-scale subtropical gyre system, i. e. an upwelling of
the sea surface and a downward motion of the converging water masses at the lower
boundary of the surface Ekman layer. Subtropical gyre systems can be found in each
of the major ocean basins; they are indicated in the sketch of the global near surface
circulation in Figure 14.1 as red streamlines.

As a consequence of the convergent Ekman transport and the associated down-
welling – the so-called Ekman pumping – the density layers, lying stratified upon
each other, buckle downwards and form a bowl in the subtropical gyres. The result-
ing horizontal density gradients lead to pressure forces and thus to a geostrophic
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Fig. 14.1 A schematic view of the near-surface ocean circulation (Schmitz Jr., 1996). Subtropical
gyres are represented with red, subpolar and polar gyres with blue, the equatorial gyres with ma-
genta lines. The Antarctic Circumpolar Current is also blue. The green lines represent exchange
between basins and gyres

circulation where pressure and Coriolis forces balance. This geostrophic transport
below the Ekman layer has to compensate the wind-driven Ekman pumping in steady
state. It will be discussed in detail in this chapter that in deeper layers, the pressure
gradients caused by the density field and the pressure gradients caused by the sloping
of the ocean surface mostly compensate, so that the currents strongly decrease from
the surface towards the bottom, such that the deep sea in the ocean basins is nearly
without currents compared to the surface circulation. The same wind-driven mech-
anism taking place in the subtropical gyres is also valid for the subpolar gyres –
indicated by blue streamlines in Figure 14.1 – with, however, a divergence of the
Ekman transport in the center of the subpolar gyres, and, correspondingly, down-
welling of the sea surface and upwelling at the lower boundary of the surface Ekman
layer.

The existence of the wind-driven gyres in steady state is bound to the blocking
effect of the lateral land masses in the east and west of the ocean basins. By accu-
mulating the water, a zonal pressure gradient is built up between these barriers at
each side of the basin, which mostly balances the wind input of zonal momentum
into the basin. This balance facilitates the weak interior southward branch of the
subtropical circulation cell, the so-called Sverdrup circulation, nearly frictionless via
the geostrophic balance. At the western boundary, however, other processes come
into play, to close the circulation, as discussed in this chapter.

The linear theory of the wind-driven ocean circulation in steady state, which was
sketched above, was developed in the first half of the last century in several impor-
tant studies by Ekman (1905, 1923), Sverdrup (1947), Stommel (1948), and Munk
(1950). The importance of the theory manifests itself by its success in describing
many features of the steady state ocean circulation. At the same time it is rather sim-
ple to derive and to understand since it is accessible to a large extent by analytical
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means. In particular, many aspects of the large-scale structure of the near-surface
ocean currents system, as shown in Figure 14.1, can be well described by the linear
theory. It reveals, for instance, how the interior large-scale steady state gyre circula-
tion is related to the wind forcing by Ekman transport and the Sverdrup circulation,
and why boundary currents show up at the western side of ocean basins but not at
the eastern boundary.

As detailed below in Section 14.1, the linear theory of the homogeneous wind-
driven ocean circulation will culminate in the vorticity equation (14.23) for the
barotropic stream function  of the vertically integrated current velocity. Equation
(14.23) is valid on a rotating Earth with meridionally varying Coriolis parameter f ,
and it shows how the stream function is related to the windstress forcing. Although
this simple form of the theory is in principle valid for an ocean with a flat bottom
only, the large-scale circulation is often surprisingly well described by this simple
theory even in regions with large topographic features. The reason for this agree-
ment will be discussed in Section 14.2 focussing on the effects of topography and
stratification.

While the first sections in this chapter discuss the depth-averaged flow, the last
section focusses on the three-dimensional flow in the interior of the ocean. The flow
in the main thermocline of the ocean will be explained by a simple analytical model
excluding friction and any diabatic effects in the interior, but incorporating wind-
stress forcing at the surface and the observed density structure. This model will
demonstrate how and where the thermocline is ventilated with water masses from
the surface.

14.1 The Flat-BottomWind-Driven Circulation

We start with a set of approximations forming the planetary geostrophic equations,
given in Section 5.3, which are relevant for the oceanic circulation on lateral scales
much larger than the Rossby radius as discussed in Chapter 5.1. However, here we
will specify the frictional terms in the horizontal momentum equations (5.45) and
(5.46) as divergence of a vertical viscous flux of zonal and meridional momentum.
Furthermore, we consider first a homogeneous ocean with � D �0 D const such
that the salinity balance and the temperature balance are not needed in this section.
We also consider a flat-bottom ocean with kinematic boundary conditions w D 0 at
the top z D � and the bottom z D �h. However, for simplicity, we consider the top
boundary condition to be taken at z D 0 instead of the real surface z D �. Since � �
h and moreover, since we have already linearized the equations, this approximation
is acceptable. The pressure field p may be calculated from the hydrostatic relation
and expressed in terms of the surface displacement � and the atmospheric pressure;
for � D const it becomes p D patm �g�.z��/. For simplicity, we assume patm to be
constant such that it will be dynamically inactive. Note that, as a consequence, only
the horizontal gradients of the surface displacement � will occur in the horizontal
momentum equations.

Furthermore, the notation is changed for convenience as detailed in the box on
p. 444, and the reference density �0 will now be absorbed into the pressure and also
in the turbulent stress vector � which then both have the dimension m2 s�2. After
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68. Notation The following notation is used throughout this chapter: local Cartesian-like coordinates x D
.x; y/ are introduced by dx D a cos' d�, dy D ad', and the definition of rotation for hori-
zontal vectors (by  =2 in the counterclockwise sense) is used,

u: D .�v; u/ if u D .u; v/

This will also be applied to other vectors and operators as r D .@=@x; @=@y/. Note that
‘double-hooking’ a vector a leads to �a. A little care has to be taken with this operator since
we are working on the sphere. The gradient is
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whereas divergence and curl are given by
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respectively. It is easy to see that r: � r  D r � r: � 0 and that r: � u D �r � u:.

Note also that the Jacobian differential operator J .a; b/ is given by J .a; b/ D r:a � r b D
.@a=@x/.@b=@y/� .@b=@x/.@a=@y/.

renaming p and �, we obtain (using the notation as explained in the box on p. 444)

f u: D �gr� C @�

@z
(14.1)

r � uC @w

@z
D 0 (14.2)

Friction is given here by the divergence of a turbulent vertical transport of horizon-
tal momentum represented by the turbulent stress vector � D .� .x/; � .y// with the
dynamical boundary condition � D �0 at the surface, where the windstress �0 is
prescribed (compare Chapter 13). At the bottom, a corresponding condition � D �b

is appropriate. However, whereas the windstress is prescribed as forcing, the bottom
stress �b remains unknown. Therefore, we will use the no-slip condition u D 0 at
z D �h; this condition will then determine �b from the solution.

In some applications we will augment the momentum balance (14.1) by lateral
friction of viscous form, i. e. we assume a simple down-gradient parameterization
for the turbulent stress vector,

� D Av
@u

@z
(14.3)

with a constant turbulent vertical viscosity Av (compare Chapter 11.3). A typical
value of this viscosity is Av 	 0:1m2 s�1 near the surface mixed layer or close to
the bottom. A much smaller value, i. e. Av 	 10�4 m2 s�1 is assumed in the interior.
Note that the upper boundary value for �, i. e. the surface windstress �0 over the
world’s ocean, is shown in Figure 13.1.

14.1.1 The Elementary Current System

Consider a layer in which friction dominates the pressure term. Using the scaling
f U 	 AvU=d 2, where U is the scale of the velocity, this implies a vertical scale
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Fig. 14.2 Sketch of the Elementary Current System, which might also be called an Ekman sand-
wich. The geostrophic part of the current in the interior is stacked in-between boundary layers at
the surface and bottom where friction becomes important. Direction and magnitude of the flow are
indicated by small blue arrows at the respective depth, while the large red, blue, and green arrows
indicate the direction of windstress and volume transport in the surface layer, respectively. The
transparent blue layers denote the depth of the Ekman surface and bottom layer, respectively

of the layer d 	 p
Av=f . Using f 	 10�4 s�1 and a vertical turbulent viscosity

of Av 	 0:1m2 s�1, the vertical extent of such a layer is roughly d 	 30m. Typi-
cally, there are frictionally dominated boundary layers at the top and the bottom of
the ocean where the above scaling applies, while the vertical turbulent viscosity is
much smaller in-between so that in the interior a geostrophic balance applies. The
frictionally dominated boundary layers are generally called Ekman layers.

It is convenient to split the flow into geostrophic and frictional (Ekman) compo-
nents, u D ug C ue and w D wg C we, governed by

f u:g D �gr� and f u:e D Av
@2ue

@z2
(14.4)

r � ug C @wg

@z
D 0 and r � ue C @we

@z
D 0 (14.5)

Notice that the decoupling in this form becomes possible because the equations are
linear and the (perturbation) pressure field is vertically constant in a homogeneous
ocean with � D const. It is also obvious that we must assume f ¤ 0 in the following
analysis which, therefore, is not valid near the equator.

We require that we D 0 at z D 0 and consequently have wg D 0 at z D 0 as well.
Vertical integration of (14.5) yields

wg, e.z/ D r �
0Z

z

ug, edz (14.6)
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The requirement that the total vertical velocity w D wg C we vanishes at the flat
bottom at z D �h leads to a coupling of the geostrophic and Ekman components.
This is manifested in the conservation of mass (i. e. volume) obtained by vertical
integration of (14.5) from top to bottom,

r �
0Z

�h

�
ug C ue

�
dz D 0 (14.7)

As sketched in Figure 14.2, we have set up a model which is given by a geostrophic
current in the water column and bounded by Ekman layers at top and bottom. It
is termed Elementary Current System (the name is due to Ekman) and might also
be called an Ekman sandwich. In this system, the momentum conservation (14.1)
yields ug, e in terms of r� and �0, respectively. The corresponding vertical velocity
profiles are determined by (14.6). These equations fix the profiles locally, and finally,
the mass conservation (14.7) couples them globally in a condition relating � to the
forcing �0. The latter will obviously be a second order differential equation for �
in x and y. It will be derived in Section 14.1.5.

14.1.2 Ekman Spiral

69. Derivation of Ekman
Spiral and EkmanDepth

To obtain the Ekman spiral as solutions with simple mathematical manipulations, we write the
Ekman part of (14.4) in complex form f.ue C ive/ D �iAv.ue C ive/zz where the index z
indicates vertical differentiation. The general solution is

ue C ive D ˛
C

exp
�
.if=Av/

1=2z
�C ˛

�

exp
��.if=Av/

1=2z
�

(B69.1)

with complex constants ˛
C

and ˛
�

, which will be determined from the boundary conditions.
The behavior of the exponentials depends on the sign of the Coriolis parameter f which differs
between the hemispheres. For the moment, we restrict our model to the northern hemisphere
where f is positive (the southern hemisphere is discussed in Chapter 16). Then, with the defini-
tion d D p

2Av=jf j, which is called the Ekman depth, we find

ue C ive D ˛
C

expŒ.i C 1/z=d�C ˛
�

expŒ�.i C 1/z=d� (B69.2)

with boundary conditions

Av.ue C ive/z D �x0 C i�y0 at z D 0 and ue C ive D �.ug C ivg/ at z D �h
It is apparent that the part of the solution related to ˛

C

decays away from the surface exponen-
tially with a scale d while the part related to ˛

�

decays away from the bottom with the same
scale (this equality is due to the assumption that Av is constant in the water column; it is easy to
relax this assumption to two differing values of Av). To make the mathematics simple, we step
back from the correct boundary conditions shown above and split the complete solution (describ-
ing simultaneously top and bottom Ekman layers by a complicated hyperbolic function) into the
‘classical’ separate Ekman spirals in the surface and the bottom layers. The first satisfies – with
suitable choice of ˛

C

– the stress condition at the surface (and freely decays downward), the sec-
ond satisfies the no-slip condition at the bottom with correspondingly fixing of ˛

�

(and decays
upward). As d 
 h the sum of these independent spirals is, of course, a good approximation to
the complete hyperbolic solution.
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Fig. 14.3 A schematic view of the Ekman spiral in the frictional boundary layers at the surface and
the bottom. Shown is the Ekman velocity ue in the surface Ekman layer (a) and the total velocity
u D ug C ue in the bottom Ekman layer (c) as thin blue arrows at the respective depths. Also
shown are the direction of the surface windstress (large red arrow), the Ekman transport in the
surface layer (large green arrow) and the geostrophic interior transport (large blue arrow). Thin
green arrows denote the velocity ue and u, respectively, projected into the horizontal plane. In b
and d the projected spirals are displayed by the green lines (without an arrow head). In panel b
the fat red arrow gives the direction of the windstress and the fat green arrow the direction of the
surface Ekman transport. In panel d the fat arrows indicate directions as follows: blue ug, blue
dashed �ug and u:g, black �b, green U bot

e

The geostrophically balanced horizontal current ug in the Elementary Current
System is easily expressed in terms of �,

ug D .g=f /r:� (14.8)

Apparently, ug is vertically constant and pointing at a right angle to the left (in the
northern hemisphere; the southern hemisphere is studied in Chapter 16) of the gra-
dient of the surface displacement �. The frictionally induced flow in the Elementary
Current System yields the Ekman spiral as vertical profile. The solution for the top
Ekman spiral (see also the box on p. 446 for details how to solve the equations) is
given by

ue D d=.2Av/e
z=d

h
.�0 � �0: / cos z=d C .�0 C �0: / sin z=d

i
(14.9)

with d D p
2Av=jf j. For the bottom Ekman spiral we obtain

ue D e�.zCh/=d h�ug cos.z C h/=d C u:g sin.z C h/=d
i
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Both spirals are shown in Figure 14.3. From the latter equation, we may derive the
bottom stress which is necessary to establish the amount of friction for achieving the
no-slip condition u.�h/ D 0. We find

�b D Av
@ue

@z

ˇ̌
zD�h D .d jf j=2/.ug C u:g/ (14.10)

It is thus oriented  =4 to the left of the geostrophic current (in the northern hemi-
sphere, see panel d) of Figure 14.3). Note that the expression for the bottom stress
is valid because the geostrophic current is vertically constant which in turn follows
from the homogeneity of the density.

14.1.3 Ekman Transport

We refer to the vertically integrated velocity as the transport vector or transport (di-
mension m2 s�1). It is given by

U D
0Z

�h
udz D

0Z

�h
.ug C ue/dz D U g C U e

The line integral
R B
A
U � d s: between two points A;B on a curve with line increment

ds gives the transport of volume (dimension m3 s�1) through the corresponding sec-
tion. Since the geostrophic current is vertically constant in the present configuration,
its transport is U g D hug. This is the geostrophic transport in the Ekman sandwich.

The frictionally induced transport is derived directly by integration of f u:e D
@�=@z and use of the boundary conditions for the stresses at the top and the bottom,

U e D �.�:0 � �:b/=f

It can be split into its two parts. The top Ekman layer contributes U top
e D ��:0=f .

This part is usually called the Ekman transport while the total Ekman transport also
includes the frictionally induced transport in the bottom layer. The Ekman transport
is orthogonal to the wind (to the right in the northern hemisphere, see Figure 14.3).
As the windstress is prescribed, the top Ekman transport is independent of the par-
ticular parameterization for the turbulent friction. Note that this is a powerful result
since the parameterization of turbulent momentum fluxes, which was chosen here as
(14.3), is uncertain.

In contrast to the surface layer, the transport in the bottom Ekman layer is not
independent of the turbulence closure, as seen in the bottom stress (14.10) which
was derived from the parameterization (14.3). The reason are the different bound-
ary conditions, i. e. the bottom stress depends on the turbulence closure, while the
surface stress is given. The transport of the bottom Ekman layer is (for the northern
hemisphere)

U bot
e D �:b=f D .d=2/.u:g � ug/

where the Ekman depth d depends on the turbulent vertical viscosity Av. The orien-
tation of the bottom Ekman transport relative to the geostrophic velocity is depicted
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in panel d) of Figure 14.3. The total transport of the sandwich thus becomes

U D hug � .�:0 � �:b/=f D Œh � .d=2/�ug � �:0=f C .d=2/u:g (14.11)

Note that in the first term of the last relation, d=2 may be neglected in comparison
to h. The last term is generally small as well so the total transport approximately
becomes

U � hug � �:0=f

14.1.4 Ekman Pumping

The Ekman pumping is associated with the frictionally induced vertical velocity we

which is given by (14.6). This vertical Ekman velocity starts with zero due to the
boundary condition at the surface, followed by an exponential pattern within the
top Ekman layer, and approaches a constant below. Taking for simplicity a zonal
windstress �0 D .�

.x/
0 .y/; 0/, we find

wtop
e .z/ D � @

@y

 
�
.x/
0

f

! 0Z

z

ez=d



cos
z

d
� sin

z

d

�
d

 z
d

�

D � @

@y

 
�
.x/
0

f

!

1 � cos

z

d
ez=d

�

At depths below the Ekman depth d , the profile becomes approximately constant
with the value

wtop
e .�d/ � r � U top

e D r: � .�0=f / (14.12)

representing the amount of volume pumped from below into (or from above out of)
the Ekman layer in case that the top Ekman transport is divergent (or convergent).
The value of wtop

e .�d/ below the surface layer, given by (14.12), is often called the
Ekman pumping. Below z D �d and above the bottom Ekman layer, the vertical
Ekman velocity remains constant.

Figure 14.4 shows the Ekman pumping, calculated from the long-term mean
windstress of Figure 13.1. It is negative in the subtropical regions on the order of
20–50 m per year and mostly positive over the subpolar regions. Towards the equa-
tor, f goes to zero, and Ekman pumping and Ekman transport become ill-defined
in our discussion (which could be resolved including the effect of lateral friction).
Therefore, we is not shown in an equatorial strip in Figure 14.4.

The bottom Ekman layer behaves similarly to the surface, starting at z D �hCd

with wbot
e � 0 and increasing to a nonzero value at the bottom z D �h. We find

wbot
e .z/ D r � d

0Z

z

e�.zCh/=d h�ug cos.z C h/=d C u:g sin.z C h/=d
i

d.z=d/

� r � .d=2/
h
�.ug � u:g/ cos.z C h/=d C .ug C u:g/ sin.z C h/=d

i

� e�.zCh/=d
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Fig. 14.4 Ekman pumping w top
e in m per year (a) and windstress curl in 10�12 m s�2 (b), calcu-

lated from the long-term mean windstress shown in Figure 13.1

neglecting terms 	 exp.�h=d/. At the bottom, we thus obtain

wbot
e .�h/ D r � .d=2/.u:g � ug/ D r � U bot

e D �r: � .�b=f /

Take for simplicity d D const in this relation. Then

wbot
e .�h/ � .d=2/.r � u:g � r � ug/ D .d=2/.r � u:g C .ˇ=f /vg/ (14.13)

Note that the total frictional vertical velocity at the bottom is wtop
e .�d/Cwbot

e .�h/,
and both terms are generally nonzero. Finally, the geostrophic vertical velocity is
evaluated as

wg.z/ D r �
0Z

z

ugdz D �zr � ug D zg.ˇ=f 2/
@�

@x
D z.ˇ=f / vg (14.14)

with ˇ D .2˝=a/ cos'. It is thus linear with depth and generally has also a nonzero
value �h.ˇ=f /vg at the bottom. The profiles of we and wg are depicted in Fig-
ure 14.5 for different signs of the meridional geostrophic velocity vg.
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Fig. 14.5 Sketch of the profiles of the horizontal (a,c in 10�3 m s�1) and vertical (b,d in
10�6 m s�1) velocity components. a and c geostrophic (green lines), frictional surface layer
(blue lines, u and v each), frictional bottom layer (red lines, u and v each), total v (black line).
b and d same for the vertical velocity. Panels (a) and (b) are for a negative vg, appropriate for the
Sverdrup regime in a northern hemisphere subtropical gyre. Panels (c) and (d) are for a positive
vg, appropriate for the western boundary layer regime in the northern hemisphere. Note that for
vg < 0, the bottom frictional layer is irrelevant for balancing the vertical velocities at the bottom
(panel (b)). This is not the case for vg > 0 (panel (d))
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14.1.5 EquilibriumWind-DrivenModel Regimes

Having established the solutions for the Ekman velocities in the top and bottom
Ekman layers and the geostrophic velocity in-between, we proceed now to consider
further model ingredients, i. e. a constant or varying f D f .y/ and zero or nonzero
bottom friction, to distinguish between different regimes with differing dynamical
balances. We will explain by this discussion important aspects of the circulation in
the interior of the large-scale gyre of the oceans and in particular the intensified
western recirculation in boundary currents. In the following, we again restrict the
discussion to the northern hemisphere; the main results, however, are valid for f < 0

as well.
It might be worth mentioning here that in 1923 V.W. Ekman (and some later partly

unpublished work, see Welander, 1985) had most of the equations of the ‘Ekman
sandwich’ presented above. He even had implemented the ˇ-term which leads to
the Stommel model (14.23) below, but his equations were obscured by considering
topography and stratification as well. So, oceanographic wisdom had to wait 25 years
for the celebrated explanation of the western intensification of ocean currents in the
great ocean basins, which arose from (14.23) as discussed below.

f -Plane Regime

We start our discussion of the model regimes by taking ˇ D 0. This defines the f -
plane regime where the Coriolis parameter is considered constant. From (14.14), it
follows that the vertical geostrophic velocity vanishes identically, and without a bot-
tom Ekman layer, the surface Ekman flow would pump water through the bottom
with we.�d/ ¤ 0. To avoid this unacceptable situation, we must consider bottom
friction, i. e. �b ¤ 0. In this case, the frictionally induced vertical velocity we starts
to deviate from the value of the Ekman pumping wtop

e .�d/ when entering the bot-
tom Ekman layer (roughly below z D �hCd ) by picking up contributions from the
divergence from the bottom Ekman velocity ue. At the bottom

we.�h/ D r � .U top
e C U bot

e / D wtop
e .�d/C wbot

e .�h/ D r: � .�0 � �b/=f

so that in order to obtain w.�h/ D we.�h/ D 0, the bottom Ekman transport has to
converge or diverge at the appropriate rate to balance the Ekman pumping in the top
Ekman layer. In other words, there is a pumping r � U bot

e at the bottom, induced by
the Ekman bottom velocities, which compensates the pumping induced by the wind-
stress. Note that although the divergences of the top and bottom Ekman transports
cancel, this does not imply a compensation of these transports themselves.

Note also that the condition we.�h/ D 0 requires a specific horizontal
geostrophic current for the f -plane case. Using r: ��0=f D r: ��b=f D .d=2/r:�ug

and (14.8) to replace the geostrophic velocity in terms of the surface displacement �,
we find

g.d=2/r2� D r: � �0 (14.15)

It turns out that this balance is in fact inadequate to determine anything similar to
the observed surface displacement: there is no asymmetry in the balance that could
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account for the observed east-west asymmetry in the circulation. The reason is the
neglection of the variations of the Coriolis parameter with latitude, which we will
take into account in the next section.

Sverdrup Regime

Now we consider the case ˇ ¤ 0. If there is no bottom friction and thus no bottom
Ekman layer,we.z/ stays at the value of the Ekman pumping, reaching undiminished
to the bottom. The geostrophicwg increases (for vg < 0 in the northern hemisphere;
see Figure 14.5) with depth (or decreases for vg > 0) linearly from its surface value
wg.0/ D 0 to the bottom where wg.�h/ D �h.ˇ=f /vg. It must balance the Ekman
pumping there, wg.�h/ � �we.�d/, or

gh.ˇ=f 2/
@�

@x
D h.ˇ=f /vg D .ˇ=f /Vg D r: � .�0=f / (14.16)

to avoid pumping through the bottom. These conditions describe the Sverdrup
regime. Note that downward Ekman pumping implies a southward geostrophic ve-
locity in the northern hemisphere. Adding the meridional geostrophic transport Vg,

arising in this case, to the meridional Ekman transport V top
e D �� .x/0 =f of the top

layer, we find the famous Sverdrup relation

ˇV D ˇ.Vg C V top
e / D f r: � .�0=f / � .ˇ=f /�

.x/
0 D r: � �0 (14.17)

which will be discussed in more detail further below. The total meridional transport
V given by (14.17) is called the Sverdrup transport. It can be calculated for the World
Ocean from the windstress curl, which is shown in Figure 14.4. Remember that the
validity of (14.17) only requires that w.�h/ D 0 and �.�h/ D �b D 0. In fact,
z D �h need not be the bottom but could be any level in the water column where w
and � vanish simultaneously.

As r �U D 0 according to (14.7), a stream function  may be introduced for the
total transport, so that

U D r: (14.18)

The stream function determines the total transport between two points in a direct way,
i. e.

R B
A
U � d s: D R B

A
r � ds D  .B/ �  .A/, where ds is a line element of the

section fromA toB and d s: is directed perpendicular to it (see also Appendix A.1.4).

Written in terms of the barotropic stream function, the Sverdrup equation (14.17)
becomes

ˇV D ˇ
@ 

@x
D r: � �0 (14.19)

The stream function  corresponds to the mass transport, and (14.19) gives the
meridional transport due to wind forcing of the layer between the surface and the
depth z D �h.

Using (14.19), the stream function can be calculated by integration from the east-
ern coast x D xE.y/ where  can be put to a constant (equal to zero without any
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Fig. 14.6 Stream function  in Sv D 106 m3 s�1 calculated from the Sverdrup relation (14.19)
and the windstress curl shown in Figure 14.4. Westward integration of (14.19) starts at the eastern
boundary of each basin or at 30ı E with  D 0 as boundary condition. The figure excludes the
Southern Ocean because here the Sverdrup regime breaks down as discussed in Chapter 16

restriction) because the flow normal to the coast must vanish. Hence

 .x; y/ D � 1
ˇ

xEZ

x

r: � �0dx

Figure 14.6 shows the transport stream function  calculated with realistic wind-
stress curl as shown in Figure 14.4. One finds indeed the large-scale gyre circulation
in the tropical, subtropical, and subpolar ocean basins as in the schematic circulation
shown in Figure 14.1. However, note that in the Southern Ocean, the zonal inte-
gration of the Sverdrup relation (14.19) does not apply. This issue will be further
discussed in Chapter 16. In the example in the box on p. 454, the zonal flow fol-
lows the direction of the windstress. This is because of the sinusoidal nature of the
windstress profile where �@2� .x/0 =@y2 	 �

.x/
0 . Sverdrup’s original work studied the

circulation due to the observed equatorial wind field in the Pacific, and Sverdrup was
the first to explain why the North Equatorial Counter Current (NECC) runs against
the wind. This feature can also be seen in Figure 14.6.

Stommel Regime

In the subtropical gyre of the northern hemisphere, the Ekman pumping is downward
everywhere and thus, from (14.16), vg is negative in the Sverdrup regime. Likewise,
r: � �0 is negative, and the total transport V is southward for the Sverdrup solution.

Clearly, these conditions cannot hold for the entire basin. Somewhere the bottom
Ekman layer must come into play to allow for a northward vg and a total northward
transport V . This compensation will take place in a western boundary current.

For a positive vg, the vertical geostrophic pumping, given by (14.14), is down-
ward, and the vertical Ekman velocity in the bottom layer has to compensate it.
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70. Sverdrup Solution
for a Box Ocean

A prototype of application of the above theory is the Sverdrup circulation in a rectangular ocean
(0 < x < B; 0 < y < L) forced by a zonal windstress

�
.x/

0 .y/ D ��0 cos
 y

L
; �

y

0 D 0 (B70.1)

The windstress of this simple set-up is shown for positive �0 in the Figure below (a). This
prototype set-up aims to roughly represent the midlatitude westerlies in the northern half of
the domain and the easterly trade winds in the southern half (compare also Figure 13.1). With
positive �0, negative vorticity is introduced everywhere in the basin. Assuming for simplicity
a constant ˇ , the Sverdrup transport velocities and the stream function then becomes

U D �.B � x/�0 
2

ˇL2
cos

 y

L
; V D ��0 

ˇL
sin
 y

L
;

 .x; y/ D .B � x/�0 
ˇL

sin
 y

L

representing a clockwise circulation. Note that U follows the wind direction, and that V is
directed southward over the entire domain. Note also that the return flow in the western boundary
layer is excluded in the Sverdrup regime.
In the figure below, parameters were chosen as B D 5;000 km, L D 4;000 km, �0 D
10�4 m2 s�2 and f D f0 C ˇy with f0 D 7 � 10�5 s�1 and ˇ D 2 � 10�11 m�1 s�1.
The maximum transport across the basin width is . B=L/�0=ˇ and amounts to about 20Sv
(the unit 1Sv D 106 m3 s�1 is named after H.U. Sverdrup). The maximum volume transport is
located at the center latitude because the Ekman transport Ve D �� .x/0 =f vanishes there and
the flow happens to be entirely geostrophic.
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The figure shows the windstress pattern (a), the transports due to the Ekman layer (b), the
geostrophic part (c) with Ug D U � Ue; Vg D V � Ve (note that Ue D 0) and the Sver-
drup transport (d). The Sverdrup transport stream function  is also shown in b), c), and d) as
solid lines. By comparison with the circulation scheme in Figure 14.1, it becomes clear that the
example models the Sverdrup part of the subtropical gyres occurring in the Atlantic and Pacific
oceans in the northern and southern hemisphere. Further gyres can be added, e. g. subpolar
gyres at the poleward flanks, with reversed circulation. They are separated by the line where
r: � �0 D 0.

Therefore, we consider the vertical Ekman velocity of the bottom layer, given by
(14.13), and compare it with the vertical geostrophic velocity given by (14.14). The
first term, .ˇ=f /vg, of the right-hand side of (14.13) will always be small compared
to wg.�h/ since h � d . The second term on the right-hand side of (14.13) remains
also small as long as .d=2/@vg=@x � hˇvg=f , or R=ˇ � L (originating from the
scaling @vg=@x 	 vg=L), where R D .d=2/f=h measures the bottom friction by
an inverse time scale and L denotes the length scale of the zonal variation of the
geostrophic current.

When the length scale L becomes smaller, representing now the variation of the
current in a western boundary current where vg > 0, a balance between vertical
Ekman and geostrophic velocities might hold. This means that the flow must achieve
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a scale L D O.ı/ with ı D R=ˇ. The scale ı will be found as width of a western
boundary layer where vg > 0 and V > 0, which closes the Sverdrup regime to
a globally valid solution. Note that the time-scale, associated with bottom friction,
satisfies 1=R � 1=jf j since d � h. This time-scale can be identified in the spin-
down of the circulation by bottom friction in a time-dependent mode.

The general case with nonvanishing �b and ˇ has thus contributions from both
Ekman layers and the geostrophically induced wg. It has more freedom in the bal-
ance of vertical velocity at the bottom, i. e. we.�h/ D �wg.�h/, as the previously
discussed regimes. Here

r �U D r � .U e C U g/ D r: � .�0 � �b/=f � .ˇ=f /Vg D 0 (14.20)

This balance may be rewritten in the form

ˇ.Vg C V top
e C V bot

e / D ˇV D r: � �0 � r: � �b (14.21)

since V top
e D �� .x/0 =f and V bot

e D �
.x/
b =f . We note in (14.21) the modification of

Sverdrup’s balance (14.17) by the bottom Ekman layer. Equation (14.21) can also be
derived by vertical integration and taking the curl of the momentum balance (14.1).

There are many ways to write (14.20) or (14.21) in other forms and extract further
physical insight. Expressing Vg and �b in (14.20) by the surface displacement, we
find

r: � .d=2/.g=f /.r:� � r�/C gh.ˇ=f 2/
@�

@x
D r: � �0=f

and thus, ignoring the y-dependence in d=f in the first term, the relation

Rr2� C ˇ
@�

@x
D f 2

gh
we.�d/ (14.22)

results, which combines (14.15) and (14.16). In principle, equation (14.22) may be
solved with suitable (von Neumann or Dirichlet or mixed) boundary conditions for �.
Dynamically consistent boundary conditions are derived from the condition that n �
U D 0 on solid boundaries, and thus from (14.11),

n � U D �gh@�
@s

� 1

2
Dg

@�

@n
� � .s/0 D 0

where s; n are coordinates associated with the boundary (s along the boundary,n nor-
mal to it). The above balance completes the theory of the Ekman sandwich. It shows
how the surface displacement reacts with Sverdrup dynamics and bottom friction on
the wind forcing, established in this balance via the Ekman pumping.

Expressing V in (14.21) by the barotropic stream function  , given by (14.18),
we obtain

ˇ
@ 

@x
D r: � �0 � r: � jf j.d=2/.ug C u:g/

A closed equation for  is only achieved if ug is somehow related to  , or to U D
r: . In principle, this may be done exactly from (14.11). A simplifying assumption

is, however, to neglect the frictional terms in U and set ug � U =h (only in the
friction term of the above balance) so that we arrive at

Rr2 C ˇ
@ 

@x
D r: � �0 (14.23)
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Fig. 14.7 Stream function  in Sv D 106 m3 s�1 calculated from the Stommel equation (14.23)
and the realistic windstress curl shown in Figure 14.4.  D 0Sv was used as boundary condition
and a boundary layer width of ı D 100 km

where again R was assumed constant. This is STOMMEL2’s equation. It has a much
simpler boundary condition,  D const, than the equivalent equation (14.22) for
the surface displacement. Another property of the Stommel equation concerns the
exception of the equator: whereas the Ekman and geostrophic theories, used above
to determine the current profile and sea surface height, require nonzero f , we may
abandon this restriction when considering balance equations for the total transport
(this also applies to the Sverdrup theory, see the previous section).

Figure 14.7 shows a numerical solution of the Stommel equation (14.23) for the
realistic windstress curl which was also used to display the global Sverdrup solution
in Figure 14.6. In contrast to the Sverdrup solution, the Stommel solution now sat-
isfies the boundary condition  D 0. It does not deviate much from the Sverdrup
relation outside boundary layers. However, the tropical gyres in all ocean basins are
much weaker due to the impact of the bottom friction. Again, the numerical solu-
tion of the Stommel equation (14.23) does not yield realistic results in the Southern
Ocean. This issue will be further discussed in Chapter 16. The incorporation of lat-
eral friction leads to the Stommel–Munk model. It is discussed in the box on p. 457.

14.1.6 TheWestern Boundary Current

The total transport in the Sverdrup regime occurs between the eastern edge of the
western boundary layer, x D ı, and the eastern coast, x D 0. The total transport
is there  .x D ı; y/ at the latitude y. If it is nonzero, the corresponding transport
must be returned within the boundary layer. This transport is thus prescribed by the
wind system outside the boundary layer, i. e. in the Sverdrup regime. Clearly, because
the boundary layer width is much smaller than the basin width, the currents in the
boundary layer have to be much stronger than in the Sverdrup regime.

2 HENRY MELSON STOMMEL, *1920 in Wilmington †1992 in Boston, oceanographer.
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71. The Stommel–Munk
Equation

We derive the Stommel–Munk equation by starting again with the planetary geostrophic equa-
tions (14.1) and (14.2) for a homogenous ocean (� D const) with a flat bottom. Following Munk
(1950), we add lateral friction with the lateral viscosity Ah,

f u: D �r pC @�

@z
CAhr2u

This lateral friction is meant to be a parameterization for the divergence of the lateral turbulent
momentum fluxes related to mesoscale eddies.
For simplicity, we make the rigid lid approximation, i. e. w D 0 at the mean sea surface z D 0.
Vertical integration of the horizontal momentum balance from the flat bottom to the surface
and elimination of the pressure gradient term by cross-differentiation yields the Stommel–Munk
model of the circulation in a homogeneous ocean,

Rr2 �Ahr4 C ˇ
@ 

@x
D r: � �0 (B71.1)

The bottom friction coefficient R D d jf j=2h measures the friction in the bottom Ekman
layer of depth d , while the second term on the left-hand side derives from lateral diffusion of
momentum. Only one of these processes is necessary to extract the momentum imparted by the
windstress. If lateral friction is dominant, a simple scaling shows that the boundary layer width is
given by ı D .Ah=ˇ/

1=3 while for the case in which bottom friction is dominant, the boundary
layer scale is given by ı D R=ˇ .
Compared to the original Stommel equation (14.23), a higher order derivative is involved in
(B71.1), and an additional appropriate dynamical boundary condition is needed. This could be
e. g. “no-slip”, i. e. zero flow along the boundary which means for the stream function @ =@n D
0 at the boundary, where @=@n denotes a derivative normal to the boundary. An alternative is
the so-called “free-slip” boundary condition, i. e. zero normal derivative of the flow along the
boundary, which means in fact zero vorticity or @2 =@n2 D 0 at the boundary.

In an equilibrium view, the boundary layer has a rather passive role: whatever
dynamics are present in addition to the terms of the Sverdrup balance, they have
to accomplish the return flow. A crucial point is that the new physics added in the
boundary layer must allow to satisfy the boundary condition of zero normal flow at
the western rim of the basin. In case of the Stommel equation (14.23), the additional
term stems from bottom friction.

A central feature of the Stommel solution is the western boundary layer in which
an intensification of the current occurs and a northward, strong flow develops. If the
prototype ocean forcing, as given by (B70.1), represents the North Atlantic, this flow
is the model’s Gulf Stream (see also the box on p. 458). Figure 14.7 shows that other
oceans have similar strong poleward flows attached to their western coast boundaries,
i. e. western boundary currents. The questions arises why these intensified currents
always appear on the western side of the oceans and not on the eastern side. We
could point at the exact solution (B72.2) which reveals this feature. The Sverdrup
theory, however, is built on an a priori assumption on the boundary layer’s position.
The answer has to be found in the governing differential equation (14.23). A little
mathematical treatment clearly shows this behavior. Consider (14.23) in the form

ı

�
@2 

@x2
C @2 

@y2

�
C @ 

@x
D 1

ˇ
r: � �0 D F (14.24)

and assume for the beginning a western boundary layer. We introduce a scaled coor-
dinate � D x=ı, which runs from 0 to 1 in the boundary layer, and a scaled coordinate
� D y=L for the meridional direction such that  .x; y/ D Q .�; �/ in the boundary
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72. Analytical Solution
of the Stommel Problem

The solution of (14.23) subject to the boundary condition  D 0 for the prototype windstress
(B70.1) can be found as follows. We write the solution by separating the x and y dependence,

 .x; y/ D '.x/ sin y=L

which vanishes all along the basin rim if '.x/ D 0 at x D 0;B . Note that this separation
works only because all terms in (14.23) become proportional to the sine term. Inserting it into
(14.23), we find that the scaled Q'. Qx/ D '.x/Lˇ=. B�0/ must satisfy

ı=B
� Q'00 � . B=L/2 Q'�C Q'0 D �1 (B72.1)

in the scaled range 0 < Qx D x=B < 1. The dash in (B72.1) denotes a derivative with respect
to Qx. The width of the boundary layer, ı D R=ˇ , appears in front of the highest derivative. The
term originates from the friction term in (14.23). For a typical value for R 	 10�7 s�1 (about
100 d), the width ı becomes about 100 km and thus ı=B 
 1. If we neglect the terms 	 ı in
(B72.1), the equation represents the Sverdrup regime where ' 	 B � x.
Equation (B72.1) is a second order differential equation with constant coefficients, and the exact
solution is found by straightforward analysis,

Q'. Qx/ D L2

ı 2B

�
1� .1� ek2/ek1 Qx � .1� ek1/ek2 Qx

ek1 � ek2

	
(B72.2)

where k1;2 D �B=.2ı/Œ1˙p
1C .2 ı=L/2�. The complete solution for .x; y/ is shown

below for different choices of the boundary layer width ı . All other parameters are chosen as
in the prototype example for the Sverdrup solution the box on p. 454. For small ı , the solution
is approximated by the Sverdrup solution, except close to the western boundary. But note that
a significant deviation between the true solution and the Sverdrup solution is visible everywhere,
also outside the boundary layer. In all cases, a strong northward western boundary current com-
pensates the weak interior southward Sverdrup transport.
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Stream functions of the Stommel problem for the prototype windstress (B70.1). Shown is '.x/
in Sv in (a) and the meridional transport V D @ =@x in m2 s�1 in (b) for ı D 250 km,
ı D 100 km and ı D 10 km. Also shown is the stream function  in (c) for ı D 100 km.

layer. The x-derivatives of  are large, but the �-derivatives of Q are of order unity,
as obvious in the transformation @ Q =@� D ı@ =@x and @2 Q =@�2 D ı2@ =@x2.
The boundary layer function Q is governed by

@2 Q 
@�2

C ı2

L2
@2 Q 
@�2

C @ Q 
@�

D ıF

derived from (14.24). In the limit ı ! 0,

@2 Q 
@�2

C @ Q 
@�

D 0
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with the general solution Q D C1CC2e
�� which is exponentially decaying. It must

satisfy the boundary condition Q .� D 0/ D 0 on the coast and match the Sverdrup
solution  Sv.x D 0/ as � ! 1. This can be achieved by C1 D �C2 D  Sv.0/,
and we recover our results from the previous section. A more detailed mathematical
treatment of boundary layer problems in given in Appendix A.2.2.

Can we put a boundary layer at the eastern coast? Redefine the boundary layer
coordinate 
 D .L � x/=ı appropriate to an eastern boundary layer of width ı and
repeat the corresponding analysis. We find

@ O 
@
2

C ı2

L2
@ O 
@�2

� @ O 
@


D ıF

for O .
; �/ D  .x; y/. Note the minus sign at the ˇ-term which renders the homo-
geneous solution exponentially increasing away from the coast, O D C1 C C2e

�.
For 
 ! 1, matching is impossible because the boundary layer solution becomes
infinite. We have to set C2 D 0. Then the boundary condition yields C1 D 0. Hence
there is no eastern boundary layer in this simple model.

The above considerations about the westward intensification have a firm math-
ematical basis, but there is a simple physical reason as well. It is clear by now
that the terms involving derivatives must balance there in the boundary layer,
i. e. �R@2 =@x2 D �R@V=@x � ˇ@ =@x D ˇV D V df=dy, which is a balance
between bottom friction of (relative) vorticity and advection of planetary vorticity.
As the Sverdrup transport is negative in the gyre (with the curl specified by (B70.1)),
we find a positive advection term V df=dy in the western boundary current, and
hence the friction term �R@V=@x must be positive as well: it must eliminate posi-
tive vorticity. But with a negative V in the Sverdrup regime and a positive V in the
boundary layer, we obtain @V=@x > 0 for a potential eastern boundary layer setting,
and thus a balance is not possible there. On the other hand, we find @V=@x < 0 for
a potential western boundary layer setting, and thus here is the only possibility of an
overall balance of vorticity.

14.2 The Role of Stratification and Topography

In the previous sections, we have assumed a flat ocean bottom in order to derive the
equations of the Sverdrup model, (14.19), the Stommel model (14.23), or the Stom-
mel/Munk model (B71.1) of the wind-driven circulation. This assumption was neces-
sary to eliminate the depth-integrated pressure gradient force when taking the curl of
the depth-integrated momentum budget. Although the Stommel or Stommel/Munk
model leads to a realistic global flow pattern, as shown in Figure 14.7, it is clear
that the assumption of a flat bottom is unrealistic. In this section, we will discuss the
influence of topographic variations on the wind-driven circulation. When consider-
ing the vorticity balance of the depth-averaged flow, the so-called JEBAR-term (see
below) describes the influence of the topography while in the vorticity balance of the
depth-integrated flow the so-called bottom pressure torque appears. It will be shown
that both effects are equivalent, and they will turn out to be important features in both
vorticity balances.
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14.2.1 The JEBAR Term

Consider an ocean with an arbitrary topography, given by the depth h.x; y/, and
a density � which is no longer assumed constant, i. e. we abandon form now on in
this chapter the assumption of a homogeneous ocean. Vertical integration of the hor-
izontal momentum equations in the planetary geostrophic approximation, including
the vertical friction term as in the previous section, yields

f U: D �
0Z

�h
rpdz C �0 �RU (14.25)

with the horizontal transport vectorU D R 0
�h udz, the windstress �0, and the friction

coefficient R related to the bottom Ekman layer. Note that the notation as defined in
Section 14.1 is used here, and that we will assume a rigid lid (i. e. w D 0 at the mean
sea surface z D 0). Because of the dependency of h on the horizontal position, the
integral of the pressure term needs now a bit of care. By partial integration and the
use of the hydrostatic relation one obtains

0Z

�h
rpdz D r

0Z

�h
pdz � pjzD�hrh D r

0
@�
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�h
z
@p

@z
dz C zpj0zD�h

1
A � pjzD�hrh

D hrP C rE
(14.26)

with the vertically integrated potential energy

E D g

0Z

�h
z�dz (14.27)

defined with respect to the surface, and the bottom pressure P D pjzD�h. Either of
the pressure terms in the resulting form

f U: D �hrP � rE C �0 �RU (14.28)

of the momentum balance can be eliminated by building the appropriate vorticity
balance. That way, either (14.29) or (14.32) will be derived.

If this is first by divided by h and then subjected to the curl operation, equation
(14.26) is cast into

r � .R=h/r C r: � r.f=h/C r:.1=h/ � rE D r: � .�0=h/ (14.29)

using again the stream function r: D U . Equation (14.29) still shows some resem-

blance to the Stommel equation (14.23) for which a flat bottom and constant density
was assumed: a torque on the right-hand side of both equations related to the forcing
by the curl of the windstress balances a torque introduced by bottom friction (first
term on the left-hand side of (14.23) and (14.29)) and a torque related to the change
in planetary vorticity when a fluid particle changes position (ˇ@ =@x in (14.23) and
r: � rf=h in (14.29)). However, in (14.29) a third term occurs, which is related to
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the combined effect of topographic variations and stratification, i. e. r:.1=h/ � rE.

It has been called the “JEBAR” (Joint Effect of Baroclinicity and Relief) term, as
introduced by Sarkisyan and Ivanov (1971). The JEBAR term often dominates the
windstress curl, but its physical meaning can be more difficult to interpret, as demon-
strated below. Note that for constant h, both terms related to the planetary vorticity
in (14.23) and (14.29) become identical and that the JEBAR term is zero, so that the
equation (14.29) turns into the Stommel equation (14.23). We might call (14.29) the
generalized Stommel equation. Likewise, without the friction term, the equation is
the generalized Sverdrup balance.

14.2.2 Thef=hContours

When considering (14.29) for the frictionless case (i. e. R D 0), for constant density
(r:.1=h/ � rE D 0), and without wind forcing (i. e. �0 D 0), we see that it reduces to

r: � r .f=h/ D 0 (14.30)

This is a statement about the balance between the vortex stretching by changes in
topography and change of planetary vorticity of a fluid particle representing the
depth-averaged flow. Equation (14.30) implies that  becomes a function of f=h,
i. e. streamlines  D const and contours of f=h coincide. Thus, for the frictionless
case without wind forcing and stratification, the large-scale depth-integrated oceanic
flow must follow f=h contours. In mathematical terms, the f=h contours form
the characteristics of the differential equation (14.30). The state  D  .f=h/ is
often quite loosely referred to as the ‘free mode’ (even in the presence of friction
and forcing, which, of course, must be weak) in the sense that it could somehow
be added on top of a ‘forced’ part of  . On the other hand, one should note that
 .f=h/ is not ‘free’, however small friction and forcing become since it is possible
to show that this “free” mode is, in fact, entirely determined by friction and forcing
(see Section 16.2.4).

Figure 14.8 shows f=h contours in the World Ocean. Note that for constant h,
the f=h contours would follow latitude circles. However, it is obvious that the topo-
graphic variations change this symmetry drastically and put an important constraint
on the depth-averaged flow. In general, the influence of topography on the char-
acteristics of the depth-averaged flow is small in the tropics but becomes large in
the higher latitudes. In the Atlantic Ocean, the imprint of the Mid-Atlantic ridge can
clearly be seen in the region of the subtropical gyres of the North and South Atlantic.

In the presence of windstress, the term related to the windstress curl in (14.29)
will drive flow across f=h contours, and we find as balance

r: � r.f=h/ D r: � .�0=h/ (14.31)

Here the fluid responds to the injection of vorticity by the wind such that the
barotropic flow must cross the f=h contours and give up the balance between vor-
tex stretching and change of planetary vorticity which prevails for unforced steady
motions. For constant h, we recover the Sverdrup relation (14.19) which relates the
meridional depth-integrated transport to the windstress curl forcing. Since Sverdrup
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Fig. 14.8 Contours of f=h in the World Ocean. Shown is log10.jf j=hŒ10�12 m�1 s�1�/. Note
the nonequidistant color scale

(1947) succeeded in explaining the existence of the equatorial countercurrent on the
basis of (14.19) (for a flat bottom), the Sverdrup relation became classic in physical
oceanography to represent the large-scale flow in basin circulations outside frictional
boundary layers. However, the remarkable success of the flat-bottom Sverdrup rela-
tion (14.19) is surprising noticing the strong effect of topography in (14.31), an issue
which will be resolved in the following discussion.

The previous reflections had no particular consideration of closed f=h contours.
Evidently, the left-hand side of (14.31) (divided by jrf=hj) integrates to zero around
a closed f=h contour but the forcing on the right-hand side does in general not share
this property. The oceanographic research was aware quite early (e. g. Hasselmann
1982) that the vorticity balance is severely constrained in regions where closed f=h
contours exist, as e. g. in the circumpolar region of the Southern Ocean where closed
contours occur over the midocean ridges and around Antarctica (see Figure 14.8).
Either friction and/or the JEBAR term must gain importance in the vorticity balance
(14.29). We will pick up the thread of the discussion about closed f=h contours in
Section 16.2.4.

14.2.3 Sverdrup’s Catastrophe

At first sight, the generalized Sverdrup relation (14.31) for the case with varying
topography is apparently more complicated than the flat-bottom Sverdrup relation
(14.19). Note that the f=h contours form again the characteristics of the differen-
tial equation (14.29) while the characteristics of the flat-bottom Sverdrup relation
(14.19) are simply given by latitude circles. We still might integrate the forcing,
given by r: � .�0=h/, along f=h contours to obtain the depth-integrated flow normal

to these contours. In analogy to the flat-bottom Sverdrup relation, we should start the
integration of (14.31) where the f=h contours intersect with the eastern boundary,
by setting  D 0 there.
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Fig. 14.9 a Stream function  in Sv D 106 m3 s�1 for the flat-bottom Sverdrup solution (14.19)
calculated from realistic windstress. b Stream function  for a realistic coarse resolution model of
the Atlantic Ocean. The windstress driving the model was used to calculate  from (14.19) in a

When we integrate the generalized Sverdrup relation (14.31) instead of the flat-
bottom Sverdrup relation (14.19) along the appropriate characteristics to obtain the
stream function  , we have accounted for the impact of topography, and we might,
therefore, expect to get a more realistic depth-integrated circulation. However, the
circulation obtained in this way differs very much from the one obtained by the
flat-bottom Sverdrup solution (14.19), as shown for instance in Figure 14.6, which
we found plausible because it is consistent with what is derived from observations.
Indeed, attempts to verify the flat-bottom Sverdrup relation (14.19) from observa-
tions are often fairly successful, e. g. in the subtropical North Atlantic, Leetmaa et al.
(1977) have obtained a fair agreement between the Sverdrup transport and the sum of
geostrophic and Ekman transport, surprisingly without the topographic dependence
in (14.31).

To illustrate the success of the flat-bottom Sverdrup solution, Figure 14.9 shows
the stream function  calculated from the flat-bottom Sverdrup relation (14.19) in
the North Atlantic Ocean and compares it with the stream function from a numerical
model based on primitive equations. Both  pattern were calculated using the same
windstress forcing. Although the numerical model contains realistic topography, sur-
face buoyancy forcing and stratification, the flat-bottom Sverdrup solution yields
a stream function in the subtropical gyre (except for the western boundary layer)
which is very similar to the complex numerical model. Only in the subpolar North
Atlantic, the flat-bottom Sverdrup relation overestimates the model’s circulation.

A first explanation of this phenomenon has been given by Anderson and Killworth
(1977) who considered the spin-up of a two-layer basin with simple topography.
They showed that the slowly propagating baroclinic planetary waves which emanate
from the eastern coast leave in their wake an essentially steady flat-bottom Sverdrup
solution for both the barotropic and baroclinic modes. For a flat-bottom ocean this
property is discussed in detail in Section 8.2.6. Thus there is no motion in this model
at great depth, and the topography in the steady barotropic response appears to be
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shielded by the stratification. A simple heuristic way to illustrate this argument is
to look at a simplified balance for density @�=@t C w@�=@z D 0. This approximate
balance applies to the strongly stratified situation j@�=@zj � jr�j, where effects of
horizontal advection and turbulent mixing are assumed to be small. After the spin-up
of the wind-driven circulation, i. e. when all Rossby waves have passed by, the system
is assumed to be in steady state, @�=@t D 0. In that case, eitherw D 0 or @�=@z D 0.
For a strongly stratified ocean, it follows that there is no vertical motion anymore
in the interior ocean. Proceeding with this result to the planetary vorticity equation
(5.49) we find v D 0, and then the zonal velocity must vanish as well, demonstrating
the need for a nearly motionless abyssal circulation after the spin-up of the wind-
driven circulation and the shielding of the circulation from topography. One should
keep in mind, however, that the horizontal advection and vertical mixing may also
come into play in the density balance. If one considers vertical mixing only, which
is largest near and in the surface mixed layer of the ocean, one can imagine that the
complete flow would be confined in a small layer just below the sea surface. Without
any mixing in the surface layer, however, the situation describes a singularity, which
explains why the above simple argument is sometimes referred to as “Sverdrup’s
catastrophe” (see Section 8.2.6 for the flat-bottom case).

14.2.4 The BottomPressure Torque

An alternative way to account for effects of stratification and topographic variations
in the Stommel equation is given by eliminating the vertically integrated potential
energyE instead of the bottom pressure P from the vertically integrated momentum
balance (14.28). Taking the curl of this equation yields

Rr2 C ˇ
@ 

@x
C rP � r:h D r: � �0 (14.32)

Note that (14.32) is a vorticity budget for the depth-integrated flow instead of the
depth-averaged flow in (14.29). In (14.32), the torque r: � �0 by the windstress can

drive flow across lines of constant latitudes (which are the characteristics in this
case), but there is also the torque given by the bottom pressure variation on slop-
ing topography, i. e. the bottom pressure torque rP � r:h. Its relation to JEBAR is

analyzed in the box on p. 465.
Away from boundaries, the component of the transport related to the bottom pres-

sure is generally fairly small. Figure 14.10 shows the components of the depth-
integrated vorticity balance in a realistic noneddy-resolving model of the North
Atlantic, i. e. the planetary vorticity ˇ@ =@x in Figure 14.10a, and the windstress
curl r:��0 in (b), together with the bottom pressure torque (d). Clearly, there is a close

balance between ˇ@ =@x and windstress curl in the interior of the subtropical and
tropical Atlantic, as shown in (c). In fact, it is the part of the flow that is discussed
in the Anderson–Killworth scenario of Section 14.2.3, and hence the stratified to-
pographic model (B73.1) approximately collapses to the homogeneous flat-bottom
model (14.19). A vivid demonstration of this transition has been given in Olbers and
Eden (2003) with a numerical primitive equation model and the BARBI model as
discussed below in Section 14.2.5.
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73. JEBAR and the
BottomPressure Torque

Another way to look at the compensation is the JEBAR term in the depth-averaged vorticity bud-
get (14.29), which comes into play when there is stratification. The complete Sverdrup relation
is in fact a three-term balance

r: � r .f=h/C r:.1=h/ � rE D r: � .�0=h/ (B73.1)

The JEBAR term r:.1=h/ � r E compensates to a large extent the effect of topography in

r: � r .f=h/. This can be seen by rearranging the budget (B73.1) to the form

ˇ
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@x
C 1

h
r:h � f r  � 1

h
r:h � r E D r: � �0 � 1

h
r:h � �0 (B73.2)

By comparing it with the (frictionless) depth-integrated momentum equation (14.25), rewritten
here as �f r  D �hr P � r E C �0, it becomes clear that the last two terms on the left-
hand side and the last on the right-hand side of (B73.2) sum up to the contribution by the bottom
pressure P such that we obtain

ˇ
@ 

@x
C r P � r:h D r: � �0 (B73.3)

It is because of this near cancelation of the two large terms on the left-hand side of (B73.1) that
JEBAR is often regarded as being difficult to interpret. The effect of the JEBAR term and the
cancelation will be discussed in more detail below in Section 14.2.6.
The bottom pressure torque plays the role of a vortex stretching term which can be seen
as follows: the geostrophic bottom velocity ugj

�h is given by f u:gj
�h D �r pj

�h D
�r P C g�0j

�hr h, such that the bottom pressure torque is given by the geostrophic bottom
flow directed across isobaths, i. e. r P � r:h D �f ugj

�h � r h. Using the kinematic bottom

boundary condition, i. e. u � r hCw D 0 at z D �h for the geostrophic components ug and
wg, one obtains furthermore

r P � r:h D fwgj
�h

The bottom pressure torque is thus given by the vortex stretching by the geostrophically balanced
vertical velocity at the ocean bottom. For constant h, the bottom pressure torque vanishes, but
it will also vanish when the geostrophic flow at the bottom vanishes, i. e. for the case of the
Sverdrup catastrophe in the Anderson–Killworth scenario mentioned above. Note that assuming
constant density but allowing for topographic variations, the bottom pressure torque will still
contribute in (B73.3) due to the variations in the surface pressure. On the other hand, the vorticity
equation (14.29) for the depth-average flow does not contain any pressure contribution for the
case h D const and � D const and is, therefore, sufficient to determine the flow.

However, it is also clear from Figure 14.10 a) and b) that towards the western
boundary and in the subpolar gyre, the flat-bottom Sverdrup balance breaks down.
Here the bottom pressure torque rP � r:h, shown in Figure 14.10 d), becomes im-

portant. In fact, in the tropical and subtropical North Atlantic, the dominant vorticity
balance appears to be between vortex stretching by the bottom flow and the plane-
tary vorticity ˇ@ =@x while the frictional torques play only a minor role. Note that
the torque related to the momentum advection, which we have neglected from the
beginning by the use of the planetary geostrophic approximation, plays only a minor
role on scales larger than the Rossby radius even in high-resolution mesoscale eddy-
permitting model simulations, as shown by Hughes and de Cuevas (2001) and Eden
and Olbers (2010). The fact that the bottom pressure torque can play a more domi-
nant role than the frictional torque for the vorticity balance in the western boundary
current questions the physical relevance of Stommel’s original model, which is fur-
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Fig. 14.10 a Planetary vorticity term ˇ@ =@x in 10�9 ms�2 in a realistic numerical noneddy-
resolving model of the Atlantic Ocean, which was also shown in Figure 14.9. b Wind stress curl
r: ��0 in 10�9 ms�2, driving the numerical model. c Difference ˇ@ =@x�r: ��0 in 10�9 ms�2.

d Bottom pressure torque r P � r:h evaluated in the model in 10�9 ms�2

ther discussed in the next section in the context of the BARBI model. The impact of
the bottom pressure torque on the Antarctic Circumpolar Current will be discussed
in Section 16.5.

14.2.5 A Realistic Application of the BARBIModel

The BARBI model demonstrates a way to incorporate the combined impact of topo-
graphic variations and stratification on the depth-integrated flow via the JEBAR term
in a simple model as extension of the Stommel/Munk model (B71.1). The model is
derived in Appendix B.2 in general form. Applications in this book are for a sim-
plified two-mode version, given by (B.42)–(B.44). The governing equations are re-
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74. Barotropic and
Baroclinic Velocity

Since BARBI relies on the separation between the barotropic and the baroclinic flow, the concept
of a barotropic flow needs some clarification. In Section 2.11, we have defined a barotropic
state of a flow as one in which the (three-dimensional) baroclinic vector .1=�2/r � � r p is
zero, or equivalently, in which pressure and density surfaces coincide. Furthermore, the Taylor-
Proudman theorem, (B16.1), showed that a barotropic, frictionless flow has a horizontal velocity
which is constant in the vertical direction (if the rotation vector is vertical as in the primitive
equations). This property motivates another less strict definition of a barotropic flow: a state of
flow with constant velocity profile u D u.x/ in the vertical direction. An even looser definition
is that of a fluid with constant density where the baroclinic vector is clearly zero and where,
because of the hydrostatic pressure state, r p and the geostrophic current must be independent
of z.
On the other hand, a common procedure in oceanography (and also used in BARBI) is the sepa-
ration of the velocity profile into the depth-averaged part – which is then called the “barotropic”
velocity component – and the shear-containing part – the “baroclinic” velocity component for
the definition of barotropic and baroclinic velocity in BARBI. The representation of the three-
dimensional circulation of the ocean in terms of barotropic and baroclinic variables has mainly
been introduced for time-dependent linear problems such as the spin-up of an ocean basin where
wave properties are relevant. The separation has also some advantages in numerical primitive
equation models since the boundary conditions for the barotropic stream function are particu-
larly simple (at least for single connected domains) as compared to those of the surface pressure
field.
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The variables are the barotropic stream function  , the vertically integrated poten-
tial energyE , and a baroclinic velocity u�. Furthermore,N0 characterizes the given
background stratification (remember that N is the effective stability frequency), Ah

is an eddy-induced lateral viscosity, andK` the lateral (isopycnal thickness) diffusiv-
ity (compare Section 12.1.3). In linearized form, the above equations describe long
barotropic Rossby waves, the first baroclinic Rossby waves (long and short), and the
the first baroclinic gravity waves, all with the appropriate topographic modifications.
A review of the termini “barotropic” and “baroclinic” is given in the box on p. 467.

Figure 14.11 shows a numerical application of the two-mode BARBI model with
realistic topography and windstress. The domain is the entire globe, except for the
Arctic Ocean, with a horizontal resolution of 2ı � 2ı. The horizontal viscosity for U
and u� is Ah D 4 � 104 m2 s�1. The model is forced with annual mean windstress
data from an ECMWF analysis (Barnier et al., 1995). The figure presents results of
the BARBI model from three different experiments: an experiment without back-
ground stratification (Figure 14.11a), i. e.N0 � 0 but including realistic topographic
variations, an experiment with a flat bottom (h D const, Figure 14.11b), and an ex-
periment with topography and background stratification present (N0 D 2�10�3 s�1,
Figure 14.11c,d). This suite of experiments follows the by now classical simulations
with the early GFDL (MOM) model, described by Bryan and Cox (1972) and Cox
(1975). Figure 14.11 shows the barotropic stream functions for the three BARBI ex-
periments in steady state; for the baroclinic case, the baroclinic variable E is shown
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Fig. 14.11 a Stream function  in Sv D 106 m3 s�1 in the BARBI model for the case without
stratification but realistic topography. b Same as a but for a constant depth h D 2;000m. c Same
as a but for a stratification N0 D 2 � 10�3 s�1. d Potential energy E in m2 s�2 for the model
experiment with stratification

as well. Most notably, the transport of the Antarctic Circumpolar Current (ACC)
varies enormously in the three experiments – they will be further discussed in Chap-
ter 16 – but there are also large differences in the subtropical gyres in the Pacific and
Atlantic Oceans.

The model behavior in these three configurations reveals in the North Atlantic
and the North Pacific the regimes discussed above, i. e. we find the shift from the to-
pographic Sverdrup regime to the flat-bottom one, if baroclinicity is included. How-
ever, while the subtropical gyre with maximum transports of about 30 Sv in the North
Atlantic for the baroclinic case with topography is within rough bounds of observa-
tional estimates, the subpolar North Atlantic shows only a weak cyclonic circula-
tion present in all three experiments, at maximum of 5 Sv in the flat-bottom case.
Observational estimates give higher values of about 30–50 Sv (compare also Fig-
ure 14.9). This contrast points towards the importance of thermohaline forcing for
the strength of the North Atlantic subpolar gyre which we have excluded from our
experiments. Overall, however, the experiments in this realistic set-up of topography
and stratification confirm that the BARBI model produces the important aspects of
the wind-driven large-scale baroclinic circulation over topography.

14.2.6 The Baroclinic Stommel Equation

We proceed with some analytical considerations and develop a theoretical basis of
the above discussed Sverdrup catastrophe. The discussion is based on the BARBI
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physics, using now, however, a reduced version given by the barotropic vorticity
equation (14.33) and the “baroclinic” vorticity balance (14.36) below: the model
is further simplified by filtering waves from the equations by neglecting the time
derivative of the baroclinic velocity variable. As a consequence, the equations then
contain only long barotropic Rossby waves and the first baroclinic Rossby waves
(long and short), while gravity waves are filtered. We also neglect for simplicity the
viscous terms (but not the windstress) in (B.44) and write for the divergence of the
baroclinic velocity moment

r � u� D r:Œh
2=.3f /� � rE � r: � Œh2�0=.3f /�

Note that this approximation becomes invalid near the equator. Combining now r �
u� and the budget for E and rewriting the barotropic vorticity budget, this reduced
BARBI model (B.43) is governed by the potential energy balance in the form
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and the vorticity balance (14.33). A wave analysis of this set of equations is presented
in Section B.2.6, and in Section B.2.5 it is compared to a two-layer quasi-geostrophic
model. The first two terms of (14.36) reveal that R D N0h=.

p
6jf j/ is the internal

Rossby radius of the BARBI model. In this reduced version of BARBI, two variables
remain: the barotropic stream function  and the vertically integrated potential en-
ergy E. The aim of this section is to exploit the similarity of these variables in the
full topographic and stratified simulation, shown Figure 14.11c,d.

It is convenient to rephrase the barotropic and baroclinic equations (14.33) and
(14.36) in terms of the bottom pressure torque (instead of JEBAR), as done already
the box on p. 465 for the barotropic equation, repeated here as

ˇ
@ 

@x
D r: � �0 � rP � r:hC fric (14.37)

with the (symbolic) friction term, which can stand for bottom friction or lateral vis-
cous friction. Similarly the baroclinic equation (14.36) may be converted to the form
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with the lateral (isopycnal thickness) diffusivity K`. The steady state is considered
and � D E=f is introduced which acts like a baroclinic stream function, i. e. (14.38)
may be viewed as a baroclinic vorticity balance. This nomenclature is justified by
realizing that � is related to the geostrophic transport relative to the bottom: from
the depth-integrated momentum balance (14.28) the total geostrophic transport U g

is given by f U:g D hrP C rE. Since the geostrophic bottom velocity ugj�h is

evaluated as f u:gj�h D �rpj�h D �rP C g�j�hrh, the geostrophic transport

relative to the bottom becomes

f .U:g � hu:gj�h/ D �rE � g�j�hrh

It is often called the baroclinic transport. Hence, besides a small contribution by the
perturbation density �j�h at the bottom and a small ˇ term, � D E=f is found to be
the stream function of the baroclinic transport.
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75. Cancelation of the
BottomPressure Torque

Subtracting the baroclinic vorticity budget (14.38) for the baroclinic stream function � D E=f
of the BARBI model from the barotropic vorticity budget (14.37) for in order to eliminate the
windstress curl and setting the diffusive and frictional terms to zero, one obtains

ˇ
@

@x
. � �/ D �� .x/0 ˇ=f � 3r P � r:h

Using now the vertically integrated (steady) zonal momentum budget f @ =@x D f @�=@xC
h@P=@x � � .x/0 to eliminate the stream functions, one obtains after some manipulations

r P � r:.f=h
3/ D 0

This shows that the bottom pressure P becomes constant along contours of f=h3. Together
with a boundary condition P D 0 somewhere on each such contour, one obtains P D 0
everywhere and so the bottom pressure torque is zero everywhere (except for closed contours of
f=h3 which are not considered here). Note that by implication, we can also conclude that any
deviation of wind-driven flow from the classical Sverdrup balance in steady state is introduced
by diffusion and friction. The bottom pressure torque is thus a consequence of diffusion and
friction.

It becomes obvious from (14.37) and (14.38) that the bottom pressure torque rP �
r:h is the coupling between the barotropic and baroclinic vorticities. This coupling

becomes only active for sloping topography. Note that the bottom pressure torque
in the baroclinic vorticity equation can be traced back to the effect of the lifting
of the background density by the barotropic and baroclinic flow in the budget of
the perturbation density. In the barotropic vorticity budget, we have also related the
bottom pressure term to the vortex stretching due to the geostrophically balanced
up- or downhill flow at the bottom. The bottom pressure torque plays thus the role
of a vorticity change due to stretching in both the barotropic and baroclinic vorticity
budgets.

The vorticity budgets in the form (14.37) and (14.38) have far reaching conse-
quences. First notice that within the limits of the approximations used in deriving
these equations, the bottom pressure torque vanishes without friction and diffusion.
This is proven in the box on p. 470. A vanishing bottom pressure torque, on the other
hand, implies that the barotropic and baroclinic stream functions,  and � D E=f ,
must become similar if diffusion and friction is small. This is proven as follows. With
vanishing of the pressure torque and diffusion/friction we find ˇ@ =@x D r:��0 and

ˇ@�=@x D r:��0Cˇ� .x/0 =f from the above vorticity budgets, i. e. @ =@x equals the

Sverdrup transport and @�=@x equals the difference of the Sverdrup and the Ekman
transports (which is the geostrophic transport relative to the bottom; see also (14.17)
for the homogeneous case). The difference between @ =@x and @�=@x is thus of
order L=a � 1, where L denotes (the maximum of) the scale of the lateral variation
of the windstress, stream functions, and topography, and a is the Earth radius. This
regime is appropriate for the formerly identified Sverdrup regime (away from the
western boundary region), and we find

O. � �/ 	 L

a
 �  

because both stream functions must vanish on the eastern coast. The barotropic trans-
port has to return the Sverdrup transport in the western boundary layer and the baro-
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Fig. 14.12 a Barotropic stream function  in Sv D 106 m3 s�1 in the BARBI model with realistic
topography andN0 D 2� 10�3 s�1. b Baroclinic stream function � also in Sv

clinic one has to return geostrophic transport. We conclude that the above similarity
to order L=a must hold in the boundary layer as well. Figure 14.12 shows  and �
in the realistic global BARBI model, which are indeed very similar.

On the other hand, we have seen in the simulations that the bottom pressure torque
is large in the western boundary currents, pointing towards the importance of diffu-
sion and possibly friction in the western boundary layer. We assume that friction
is small3, implying that the bottom pressure torque balances the ˇ-term in (14.37).
The analysis of the box on p. 470 can be extended to this regime. We find from the
difference equation and zonal momentum balance the relation

ˇh
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� 3rP � r:hC K`

R2
r2� D 0 (14.39)

The first term on the left-hand side isO.L=a/ so that to this order the bottom pressure
torque is given by (one third of) the diffusive term. Inserting this result into the
vorticity budgets,
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we notice that the equations become identical to orderO.L=a/.
Consider the implication for the barotropic balance, written now as
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The equation is formally similar to Stommel’s model (14.23) for a flat-bottom ocean,
where bottom friction was introduced to balance the return flow in the western

3 This can be justified a posteriori: comparing the diffusive term with a viscous friction term we
obtain .K`=3R2/=.Ah=L

2/ D O.10/, taking the parameters of the BARBI simulation.
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boundary layer. Here the parameter combinationK`=.3R2/ enters from density dif-
fusion and stratification, representing the inverse of a time-scale on the order of days,
but acting similar to bottom friction. The relation (14.42) might, therefore, be called
the “baroclinic Stommel equation”. Somehow surprisingly, we have rediscovered
Stommel’s vorticity budget with rather different physics. Equation (14.42) is valid in
a stratified-topographic regime and correct to order O.L=a/. Topography, however,
is shielded by the stratification, the latitude circles have been restored as character-
istics, and the forcing restored to the curl of the windstress, all as in a flat-bottom
ocean – in fact, the familiar flat-bottom solution is back.

In contrast to Stommel’s original model, however, the return flow is balanced in
the barotropic vorticity budget (14.37) by the effect of the bottom pressure torque.
By referring to (14.39), the bottom pressure torque was replaced to first order ap-
proximation in L=a by the effect of the bolus velocity appropriate to the Gent and
McWilliams (1990) parameterization in the baroclinic vorticity budget (originally in
the density balance, see Appendix B.2).

14.3 Main Thermocline Dynamics

While we have focussed on the depth-averaged flow in the preceding sections, we
discuss in this section some of the analytical theories of the three-dimensional struc-
ture of the wind-driven circulation. A particular feature of the subtropical gyres is the
main thermocline, which represents an intrinsic aspect of the large-scale ocean circu-
lation. It is characterized by a strong vertical gradient in temperature (see e. g. Fig-
ure 15.2) and density – it is, therefore, also called the pycnocline – at a relatively
shallow depth range of a couple of hundred meters below the seasonal mixed layer,
which can be found in all ocean basins from equatorial to subtropical regions.

A main factor determining the thermocline is the surface forcing by the wind. As
discussed specifically in Section 14.1.4, a main effect of this forcing lies in the ver-
tical transport of mass (Ekman pumping) between a frictional near-surface layer and
the ocean interior below, as consequence of convergent or divergent wind-induced
mass transports in that layer. The pumping is quantified by the Ekman pumping ve-
locity we defined in (14.12). In the subtropical gyres, the downward Ekman pumping
is responsible for the bowl-shaped structure of the main thermocline, with deepest
isopycnal depth in the center of the gyres, as seen in Figure 14.13. A second crucial
factor derives from the fluxes of heat and freshwater at the air-sea boundary. These
fluxes are important in determining temperature and salinity in the well-mixed layer.
At least in regions where the Ekman-pumping is directed downwards, such as e. g. in
the subtropical gyres in ocean basins, it is obvious that the surface mixed-layer prop-
erties are transported into the ocean interior and hence determine the density field.

The strong vertical gradients in temperature and salinity associated with the per-
manent thermocline could not exist in a motionless equilibrium state, where they
would be eroded by molecular diffusion on a time scale of H 2=	 � 106 years. Al-
though this is a very long time, the ocean has already been existing in its present
form for a much longer time, and the very existence of a thermocline constitutes
a proof for the presence of a circulation maintaining this structure. We will discuss
this circulation in the following.
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Fig. 14.13 Depth of the isopycnal �� D 25:5 kg m�3 (a) and �� D 26:7 kg m�3 (b) in m,
representative for the main thermocline. Regions where the isopycnals outcrop are shaded gray.
Data are taken from the World Ocean Atlas 2005 (Antonov et al., 2006; Locarnini et al., 2006)

14.3.1 Scaling Considerations

In Section 5.1, the scaling for large-scale motions of small Rossby-number was dis-
cussed. This scaling remains relevant for the circulation in the thermocline, the main
difference resulting from the scale for the vertical velocity. The effect of friction
causes an Ekman boundary layer of several 10 m thickness. At the bottom of the Ek-
man layer, there is a pumping velocity we with magnitude We � 10�6 m s�1 (com-
pare Figure 14.4a). In the interior ocean below the boundary layer – and outside of
the western boundary layer – friction, however, can be neglected. It follows that the
momentum balance is linear and in geostrophic balance, and (5.45) and (5.46) are
the appropriate equations of motion. For convenience, we will use (5.50) instead of
(4.54)–(4.56), so that temperature and salinity are combined into a single density
variable, and mixing is represented as vertical diffusion.

With the scaling u; v 	 U;w 	 W;p 	 P; � 	 R; x; y 	 a and z 	 H , one
finds from (5.45), (5.46) and (5.50)

P D 2˝a U ; U D Wa=H and R D P=gH

or equivalently gHR D 2˝a2W=H . The only way to allow for W D We and
R D Rs, whereWe denotes the magnitude of the Ekman pumping andRs the (given)
density variation in the surface mixed layer, is to adjust the depth scale H such that

H D Ha D
�
2˝a2We

gRs

� 1
2

(14.43)

With 2˝ D 1:4 � 10�4 s�1, g D 10m s�2, Rs D 2 � 10�3, and We D 10�6 m s�1

one obtains Ha � 500m, and hence a correct order of magnitude for the main ther-
mocline which is deeper than the surface layer, but still considerably smaller than
the water depth.

The depth scale Ha reflects an advective balance in the density equation. Diapyc-
nal diffusion of salt and temperature is small below the mixed layer and unlikely to
play a major role for the main thermocline. Observations suggest a value of typically
Kv � 10�5 m2 s�1 in the thermocline. In the density balance (5.50), the magnitude
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of the diffusion term relative to vertical advection thus is

Kv@
2�=@z2

w@�=@z
D Kv

WeHa
� 0:02

and hence is negligible in the interior.

14.3.2 Similarity Solutions

The equations governing the main thermocline circulation are nonlinear because of
the advection term in the density equation (5.50). In general, therefore, only numer-
ical solutions are possible. However, some particular stationary analytical solutions
have been found.

As shown in Section 5.3.1, the system consisting of (5.45), (5.46) and (5.50) can
be condensed in one equation for a single variableM . ThisM -equation is thought to
describe the evolution of the oceanic thermocline in response to pumping of water,
provided that appropriate boundary conditions are chosen. In steady state and with
G� D 0, it takes the form
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All other fields (u, v, p, � and w) can be determined from M.
; '; z/ as outlined
in Section 5.3.1. Equation (14.44) is valid below the turbulent layer which is im-
mediately influenced by wind and surface fluxes (roughly the upper 50–100 m). The
bottom of that layer is assumed to be at a constant depth z D �ds. Here, the condi-
tions �.
; ';�ds/ D �s.
; '/ and w.
; ';�ds/ D we.
; '/ have to be imposed. In
terms of M , the boundary conditions at z D �ds take the form

w D we ) @M

@

D 2˝a2 sin2 'we.
; '/ (14.45)

� D �s ) @2M

@z2
D �g�s.
; '/ (14.46)

If the thermocline depth is much smaller than the ocean depth, the boundary condi-
tions for M at the bottom can be approximated by requiring that the solution tends
to zero or constant values at great depth.

A particular solution of (14.44) is given by

M.
; '; z/ D A.
; '/ec.zCds/= sin' (14.47)

with constant c and arbitrary A.
; '/. The solution (14.47) was given by Needler
(1967) with the boundary condition (14.46) which requires
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With the alternative choice
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0

we.

0; '/d
0



14.3 Main Thermocline Dynamics 475

condition (14.45) is satisfied. However, it is not possible to satisfy both conditions
simultaneously. As both conditions are independent of each other and physically of
equal importance, a solution of (14.47) satisfying only one of them is rather un-
satisfactory even though it still may have some realistic aspects. A further short-
coming of (14.47) is that it permits only a latitudinal variation of the vertical scale,
i. e. z� 	 sin'. Therefore, the westward deepening of the thermocline, which is an
important aspect of the observed zonal structure, is not reproduced at all.

Note that from (14.47) it follows that

Q D .2˝ sin '/
@�

@z
� 2˝c � � D const � �

so that the large-scale potential vorticity is a function of density only and conse-
quently constant on isopycnals.

14.3.3 Ideal Fluid Solutions

A situation where all diabatic and frictional terms can be ignored has been referred
to as ideal fluid (cf. Section 4.1.6). For motions of planetary scale, the ideal fluid
equations are given by (5.45), (5.46) and the adiabatic form of (5.50). In steady
state, it then follows from (5.50)–(5.52) that the density �, the potential vorticity
Q D f @�=@z, and Bernoulli-function B D p C gz� all satisfy a conservation
equation of the form

u � rCw
@

@z
D 0

for  D �;Q and B . This remarkable property of three conserved quantities has
the consequence that the three-dimensional velocity vector .u; w/ must lie in all
three surfaces � D const;Q D const, and B D const. In fact, these iso-surfaces
of density, potential vorticity, and Bernoulli function must intersect in lines which
are streamlines. Hence a functional relation ˚.�;Q;B/ D 0 must exist for an ideal
fluid system. The function˚ is in principle determined by conditions on boundaries.
In practice, it is often assumed that this function is well behaved and that solutions
for one of the variables, e. g. Q D F.�;B/, are single-valued and continuous, al-
though this is by no means guaranteed. With a given function F.�;B/, the system
is governed by a single equation which follows from vertical differentiation of the
hydrostatic equation @p=@z D �g� as

f
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@z

�
D 0 (14.48)

Specifically, Welander (1971) has assumed a linear relation Q D F.�;B/ D a� C
bB with a; b D const. Further differentiation of (14.48) with respect to z then yields
a second-order differential equation for density

f
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For b D 0, the similarity solution (14.47) is recovered. For b ¤ 0, the solution is
given as

� D �s.x; y/C c.x; y/

zZ

�ds

exp

"
� .z

0 C z?/
2

d 2 .y/

#
dz0 (14.49)

Here, �s.x; y/ and c.x; y/ are integration constants, d 2 D �2f=.bg/ and z? D
a=.bg/. Obviously, �s.x; y/ can be chosen to reflect the density below the mixed
layer at z D �ds, and c.x; y/ such that �.x; y; z/ ! 0 as z ! �1 so that the
solution resembles a pycnocline. However, again there is no freedom to satisfy the
additional condition w D we.

The limitations of the so-called ideal fluid solutions4 (14.49) are quite analogous
to those of similarity solutions, although the derivation is rather different. The reason
is here that an appropriate choice for both �s and we would result in a particular
functional relationshipQ D F.�;B/ which cannot be determined a priori.

14.3.4 Thermocline Ventilation in an Isopycnal LayerModel

The main problem with the particular solutions considered in the previous sections is
that it was impossible to simultaneously satisfy both forcing conditionsw D we and
� D �s at z D 0. An alternative which is still approachable with analytical solution
techniques has been given by Luyten et al. (1983) and is based on discrete isopycnal
layers rather than a continuous density variable (see Appendix B.1.4 for a detailed
description of the model).

Each layer (index n) is bounded by the interfaces z D �dn below and z D �dn�1
above, and is characterized by a constant density �n (scaled by �0), thickness
hn D dn � dn�1, pressure pn D Mn � g�nz, and velocity un; wn. The equa-
tions of motion are still based on the planetary-geostrophic approximation discussed
in Section 5.3. Specifically, the relevant meridional thermal wind, hydrostatic and
Sverdrup transport relations, and the conservation of potential vorticityQn D f=hn
and the ‘Bernoulli function’ Mn (which in this approximation coincides with the
Montgomery potential, see Appendix B.1.1) take the form

f .un � unC1/ D g0r:dn (14.50)

Mn �MnC1 D g0dn (14.51)

ˇ
X
n

vnhn D f we (14.52)

un � rQn D 0 (14.53)

un � rMn D 0 (14.54)

The notation is as in the box on p. 444, with the coordinates x D a
 cos' and
y D a', which are referred to as “longitude” and “latitude”. To simplify matters,
it is assumed here that the density differences between neighboring layers are all
identical, i. e. �nC1 � �n D �� independent of n. The reduced gravity is denoted

4 Note that the similarity solutions discussed in Section 14.3.2 are also based on ideal fluid equa-
tions.
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Fig. 14.14 Sketch of the ventilated thermocline model with two moving layers

as g0 D g��. Note also that (14.53) is valid only in regions where the layer n is
unventilated, i. e. not in direct contact with the surface layer.

In the general ideal fluid case considered in the previous section, the existence
of three conserved quantities (�, B D p C g�z and Q) resulted in a relation Q D
F.�;B/. In the layer situation the corresponding variables are �n;Mn and Qn, and
therefore

Qn D F.�n;Mn/ � Fn.Mn/

In each unventilated layer,Qn is, therefore, determined byMn, and as shown below,
it is possible to explicitly construct the functional dependence Fn.Mn/.

Consider specifically a situation with at most three layers below a surface layer
of constant depth ds, as sketched in Figure 14.14. We assume that the lowest layer
(index 3) is at rest, u3 D v3 D 0. It follows that rM3 D 0, so thatM3 D const D 0.

The boundary conditions are formulated as follows: It is assumed that the surface
layer density depends only on latitude, i. e. �s D �s.y/, approximately representing
zonal mean conditions. Accordingly, the latitude yn where the interface dn reaches
the surface layer is specified. Forcing by the wind via the Ekman pumping velocity
we.x; y/ is already contained in the Sverdrup transport relation (14.52). The analysis
is restricted to regions where we.x; y/ < 0 which is assumed to hold south of a lati-
tude y0. As the number of layers in motion differs in the different regions displayed
in Figure 14.14, these regions need to be considered separately.

Region I

In the region between the latitudes y1 and y0, only layer 2 is in motion. It has the
thickness h2 � d2 � ds and is in contact with the surface layer. The Sverdrup trans-
port is

ˇv2h2 D f we.x; y/ (14.55)

Aswe < 0, the transport in the layer is directed southward. From (14.50) and u3 D 0,
one further has

u2 D .g0=f /r:h2 (14.56)
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which can be combined with (14.55) to give

h2
@h2

@x
D f 2

g0ˇ
we (14.57)

Integration from the eastern boundary at x D xE results in

h2.x; y/ D �
D2.x; y/CH 2

I .y/
� 1
2 with D2 D �2 f

2

g0ˇ

xEZ

x

we.x
0; y/dx0

(14.58)

Here,HI.y/ D h2.xE; y/ is an integration constant. The condition u2 D 0 at x D xE

requires that HI.y/ D H0 D const.
Equation (14.57) respectively (14.58) constitutes a central result of the ventila-

tion theory. The zonal change of thermocline depth is directly related to the wind
forcing and corresponds to westward deepening in case of pumping (note that
D2 > 0 if we < 0). If the Ekman pumping velocity depends only on latitude,
then D2.x; y/ 	 .xE � x/, so that the increase is linear with westerly longitude
and reaches a maximum of D2

max D 2.f 2=g0ˇ/jwej.xE � x/. With H0 D 100m,
g0 D 2 � 10�2 m s�2, we D 10�6 m s�1, and xE � x D 5;000 km, one obtains
Dmax � 250m which has the right order of magnitude. Note that the east-west
change of thermocline depth according to (14.58) is somewhat smaller than Dmax,
depending on the initial depthH0.

Region II

In the region south of y1, layers 1 and 2 are in motion. The fluid in layer 2 is sub-
ducted at the latitude y1. From (14.51), with M3 D 0 and d2 D h1 C h2 C ds, the
pressure in layer 2 is given as M2 D g0.h1 C h2 C ds/. As both Q2 D f=h2 and
M2 are conserved south of y1, there must be a relation

f=h2 D F.h1 C h2/ (14.59)

with an arbitrary F.�/. Now at the outcrop latitude y D y1, one has f .y1/ D f1
and h1 D 0, and, therefore, f1=h2 D F.h2/. As this holds for all x along y D y1,
the unknown functional form must be F.�/ D f1=�, and it follows from (14.59) that

f

h2
D f1

h1 C h2
or

h1

h2
D f1

f .y/
� 1 (14.60)

The ratio of both layer thicknesses hence depends only on latitude. From (14.50),
and with d1 D h1 C ds, one further obtains

u2 D .g0=f /r: .h1 C h2/ and u1 � u2 D .g0=f /r:h1 (14.61)

which can be used to express the layer velocities v1; v2 in the Sverdrup transport
relation ˇ.v1h1 C v2h2/ D fwe, resulting in

h1
@h1

@x
C .h1 C h2/

@

@x
.h1 C h2/ D f 2

ˇg0we
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Fig. 14.15 Streamlines in layer 2 for a basin of 50ı longitudinal width, ranging from 5�35ı N.
The dashed line indicates the latitude where layer 2 is subducted. The Ekman velocity is derived
from the windstress as defined in the box on p. 454 and is directed downward south of 32:8ı N.
The thermocline depth at the eastern boundary isH0 D 200m

which can be integrated to yield h21 C .h1 C h2/
2 D D2.x; y/ C H 2

II .y/. Here,
D.x; y/ is defined as in (14.58), andH 2

II .y/ D h21.xE; y/C Œh1.xE; y/Ch2.xE; y/�
2

is an integration constant. To satisfy the no-flow boundary condition at the eastern
boundary, both h1 and h1 C h2 must be constant at x D xE so that HII D const. As
h1.xE; y1/ D 0, it follows that h1.xE; y/ � 0 for all latitudes. From continuity at
y D y1, it then follows that HII D H0. Finally, with (14.60), one obtains

h1.x; y/C h2.x; y/ D
�
D2.x; y/CH 2

0

1C .1 � f=f1/2
	 1
2

(14.62)

With (14.62), (14.60), and (14.61), the variables u1, u1, h1 and h2 can be determined
to complete the solution. Since according to (14.60) the ratio h1=h2 depends on
latitude, it even appears that the only possibility to avoid a conflict would be to
require H0 D 0 so that both layers have zero thickness at the eastern boundary.
However, as we shall see below, south of subduction latitude the solution (14.62)
cannot be valid at the eastern boundary.

The thermocline depth can be defined as h2 in region I, and h1 C h2 in region
II. An exemplary depth distribution is shown in Fig. 14.15. Overall, the thermocline
depth increases westward. The latitudinal dependence is mainly governed by the
pumping velocity we, modified by the denominator in (14.62) in region II.

Streamlines and Unventilated Zones

It is illuminating to consider the fluid trajectories in layer 2 which can readily be
determined. In region I, according to (14.56) the streamlines are given by h2 D const,
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with h2 from (14.58). In region II where the layer is subducted, according to (14.61)
the relevant layer depth is h1Ch2. Therefore, the streamlines coincide with the lines
of constant thermocline depth such as shown in Fig. 14.15. In the west where the
streamlines are not closed, it is plausible to expect closure over a boundary current
in the west which is not described by the physics in the ventilation model.

In both regions, a streamline passing through a point x D x� on the subduction
line y D y1 is implicitly given by

D2.x; y/CH 2
0

1C .1 � min.f=f1; 1//
2

D const D D2 .x�; y1/CH 2
0 (14.63)

Consider in particular the streamline emanating from the subduction latitude right
at the eastern boundary, i. e. at x� D xE and y D y1 so that D.xE; y1/ � 0. Note
also that near the eastern boundary approximatelyD2 � 2.f 2=g0ˇ/jwej.xE �x/. In
region I, according to (14.63) it follows thatD2.x; y/ D 0, and hence the streamline
in region I coincides with the eastern boundary. In region II one has

D2.x; y/ D H 2
0 .1 � f=f1/

2

and the streamline x.y/ is hence given as

x.y/ D xE � g0ˇH 2
0

2jwej
�
1

f
� 1

f1

�2
� xE � g0ˇ3H 2

0

2f 21 jwej .y � y1/
2

The last expression holds since near the subduction latitude we have f � f1 C
ˇ.y � y1/. Hence this streamline has a parabolic shape near the eastern boundary.
The region east of this streamline has been termed shadow zone because it cannot
be reached by any streamline from the ventilated region north of y1. Therefore, the
relation (14.60) and the solution based on it cannot be valid here. To achieve a more
detailed view of the shadow zone, one has to include processes such as diffusion
which are absent from the ventilation model. In the context of the ventilation model
it is, however, plausible to assume that the shadow zone is at rest, since there is no
flow across the boundary and across the streamline.

Another streamline of particular interest passes through the westernmost point on
the subduction line. From (14.63), we obtain with x� D xW

D2.x; y/ D H 2
0 .1 � f=f1/

2 CD2.xW; y1/
h
1C .1 � f=f1/2

i

Near y D y1 where f � f1 it follows that D2.x.y/; y/ � D2.xW; y1/ � const.
NowD.x; y/ always increases westward. If it also increases southward (north of the
maximum convergence zone), the trajectoryD D const must initially go toward the
south-east. The origin of this streamline then is not in the ventilated region but rather
in the western boundary current, a region where the ventilation model does not hold.
Hence a solution for the region to the west of this streamline cannot be obtained with
the ventilation model. See Section 14.3.5 for further discussion.

The validity of the ventilation model – in the simple form discussed here – is re-
stricted to regions below the surface layer where we < 0, outside of western bound-
ary currents, and the density structure is simplified to a small number of layers which
have to be connected to ventilated regions. In spite of these limitations, the model
succeeds in describing some principal elements of the main thermocline circulation
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in regions where the surface layer circulation is convergent. It allows to relate the
zonal and meridional distribution of thermocline depth to the forcing in a physically
insightful way. In particular, the existence of nonventilated zones clearly demon-
strates the failure of similarity solutions.

It is in principle possible to apply the ventilation model – with appropriate modi-
fications – to regions where we > 0; however, less insight is gained because here the
role of lateral diffusion due to ocean eddies is more central (see Section 16.3 for the
overturning in the Southern Ocean).

14.3.5 Circulation in Unventilated Regions

In this section, the circulation in regions that are not connected to ventilated regions
is briefly discussed. Specifically, we will consider the situation where streamlines are
closed, so that the corresponding trajectory is nowhere subject to surface forcing and
remains subducted. The discussion is conveniently based on the quasi-geostrophic
approximation discussed in Section 5.2 and Appendix B.1.3. In the absence of forc-
ing, potential vorticity is conserved, and the lines of constant potential vorticity
(geostrophic contours) coincide with streamlines described by a stream function � .
In steady state, the conservation is as before

u � rQ D J.�;Q/ D 0 (14.64)

Note that (14.64) implies thatQ D F.�/. Now it is plausible that even weak forcing
can influence the motion since fluid elements are staying along closed streamlines for
a long time. Let us, therefore, add weak forcing to (14.64) due to eddy-mixing in the
form of

J.�;Q/ D �r � u0Q0 D r �KrQ (14.65)

with K > 0. The dimensionless measure for the relative size of the diffusion term
is the Peclet number Pe D UL=K . With U D 10 cm s�1, L D 1;000 km, and
K D 103 m2 s�1, one finds Pe D 102 � 1. The dominant balance in (14.65) is,
therefore, still advective, J.�;Q/ D O.�/ with � D Pe�1, and it follows that

Q D F.�/CO.�/ and hence also rQ D @F

@�
r� CO.�/ (14.66)

The functional form F.�/ can now be determined by integrating (14.65) over the
area A.�/ which is limited by a streamline � D const, i. e.

Z

A

J.�;Q/dA D
Z

A

r �KrQdA

The left-hand side vanishes because
Z

A

J.�;Q/dA D
Z

dn
I

ds

�
@�

@n

@Q

@s
� @�

@s

@Q

@n

�
D
Z

dn
@�

@n

I
ds
@Q

@s
D 0
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(note that @�=@s D 0 along a streamline). Applying the Gaussian theorem (in two
dimensions) to the right-hand side yields

Z

A

r �KrQdA D
I

dse� � .KrQ/ D 0 (14.67)

where e� D r�= jr� j is the unit vector normal to the streamline. With (14.66) one
further has

0 D
I

dsK
@F

@�
r� � r�

jr� j CO.�/

Using again the constancy of � along the streamline, this is equivalent to

0 D @F

@�

I
dsK jr� j CO.�/ (14.68)

As the integrand is always positive, (14.68) can only be satisfied if @F=@� � 0 C
O.�/, i. e.

F.�/ D const CO.�/ (14.69)

It follows that the potential vorticity is constant (homogenized) everywhere inside
the closed streamline (Rhines and Young, 1982).

Note that (14.69) holds independently of the specific form of Q; the only condi-
tion is that (14.65) holds everywhere, including the western boundary region when
the streamline passes through. The result is even valid for an arbitrary tracer that
satisfies (14.65) as long as lateral diffusion is small. It is an interesting paradox that
weak diffusion over long time can lead to complete mixing whereas strong diffusion
does not necessarily have the same effect.

The result (14.69) has been applied to the ventilation model discussed in the previ-
ous section, to close the circulation in the western unventilated zone which is reached
only by streamlines from the boundary current region.



TheMeridional Overturning
of the Oceans 15

This chapter presents a brief overview of available observations and
a more detailed discussion of the theory of the meridional overturning
circulation (MOC). It should be pointed out that the theory of the MOC
is not yet as solid as the theory of the wind-driven circulation. There
is a variety of model types – box models of various configurations and
zonally averaged models – many have imbedded severe approxima-
tions and unjustifiable assumptions which should be taken with care.
We made an attempt to discuss these shortcomings and to present better
alternatives if possible.

Let us imagine that in 985 when ERIK THE RED1 was on his way to Greenland he
whirled with his boat a small water package at the surface of the North Polar Sea
in such a way that this water was chilled by the cold winds and thus sank with its
slightly increased density into large depths. Our water package is now a part of the
oceans’ global meridional overturning circulation, an overturning motion spanning
all oceans. The package is driven deep into the Atlantic, travels along the American
continent at depths of 2,000–4,000m, crosses the equator and then flows into the
south polar area. There, it forms a part of the Antarctic Circumpolar Current, and
then, after leaving the Southern Ocean and after upwelling in the North Pacific, it
returns as part of the surface currents through the Indonesian Archipelago into the
Indian Ocean and round the Cape of Good Hope again into the Atlantic Ocean and
arrives at its origin via the Gulf Stream and the North Atlantic Current. The hypo-
thetical path of the water package is sketched in the simplified schematics of the
overturning circulation in Figure 15.1.

By the formation of deep, cold water masses at high latitudes and their subsequent
upwelling and warming elsewhere, the implied circulation leads to a continuous
ventilation of the deep ocean. It is often called the thermohaline circulation (THC),
although the term meridional overturning circulation (MOC) is also often used
(compare the box on p. 484). Another name of the same feature is global con-
veyor belt. We prefer MOC, since the name THC implies that it is the increase of
density connected with fluxes of heat and salt that actually drives the overturning,

1 ERIK “THE RED” THORVALDSSON, * about 950 in Jæren, Norway, †about 1003 in Brattahlíd,
Greenland, sailor and discoverer.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 483
DOI 10.1007/978-3-642-23450-7_15, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 15.1 A schematic of the global meridional overturning circulation and some of its recirculation
loops according to Rick Lumpkin (pers. communication; see also Richardson (2008)). The surface
currents are colored in red, while yellow, green and blue colors depict the deeper circulation (see
the inlet positioned on Asia). Directions of the currents are given by arrows. The surface currents
are basically those of Figure 14.1. Note the large eddies in the South Atlantic, indicating that the
associated transports are not achieved by continuous large-scale currents

which is not entirely true (the “driving” is the process which warms and thus heaves
the cold water to the surface again either by turbulent mixing or mechanical energy
input, as discussed in Section 15.3.3). The deep, heavy water masses are formed in
small areas in the North Atlantic, in the Greenland Sea but also in the minor seas
around the Antarctic continent, mainly in the Weddell Sea, and there they sink into
deeper layers, partly to the bottom (see also Section 15.1.1). The deep circulation

76. MOC versus THC The meridional overturning circulation (MOC) generally moves surface water poleward, where
it sinks and continues in a deep reverse flow with an equatorward direction. It leads to a renewal
of deep waters and is controlled by the density differences due to temperature (thermal) and
salinity (haline) differences, imprinted by the surface fluxes of heat and freshwater. It is thus
often also called the thermohaline circulation (THC).
Note, however, that the name THC is often incorrectly used for the entire MOC. In fact, we will
highlight in this chapter the thermohaline component of the MOC, but MOC may also include
a wind-driven component. Major current systems, which have a strong wind-driven component,
are embedded in the overturning circulation, such as the Gulf Stream and the Antarctic Circum-
polar Current. For a clearer distinction, we should address the total meridional overturning as
the MOC, i. e. the total northward or southward flow in a basin, integrated over longitude. The
THC is then only the part of the MOC that would be driven by the heat and freshwater exchange
with the atmosphere (and the water-mass transformation in the interior) only. Defined as such,
the THC is not directly observable while the MOC as a true ocean current system can be mea-
sured (at least in principle). On the other hand, the THC can be modeled by excluding the wind
forcing. Alternatively, excluding the thermohaline surface fluxes the wind-driven MOC can be
investigated. It is the aim of this chapter, to analyze several of such models for the thermohaline
part of the MOC.
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consists of intensive boundary currents at the western continental slopes and a shal-
low poleward recirculation in the single ocean basins, a structure which is caused by
the Earth’s rotation as in the wind-driven basin gyres (see also Section 15.2).

The MOC is closed by slow upwelling in all ocean basins and returns to the At-
lantic in the surface currents in narrow straits through the Indonesian Archipelago
and the Indian Ocean round the Cape of Good Hope, as indicated by Figure 15.1.
The Antarctic Circumpolar Current connects the flow of the water masses into the
other oceans. Note that a similar, lower part of the MOC is started by the outflow of
bottom water around Antarctica into the South Polar Seas. It is a complicated system
of loops, with downward branches round the Antarctic continent and deep transport
ways into all three oceans, where the water packages lose their identity by mixing
and upwelling. Hence there is actually a number of single MOCs in each ocean basin,
which is highly simplified in Figure 15.1. The picture of the global MOC which we
draw above for Erik’s water package is, therefore, handy, but extremely simplified.
A water package could follow many other less prominent paths, e. g. return from the
Pacific to the South Atlantic around Cape Horn. This path is called the cold-water
route, in contrast to the warm-water route round the Cape of Good Hope.

It is important to note that the description of the MOC in terms of a global con-
veyor is extremely oversimplified, and contradicts many known characteristics of the
oceanic circulation (see the discussion by Wunsch, 2002). The history of diagrams
of the overturning circulation is consolidated by Richardson (2008). Many of the
diagrams like those in Broecker (1991); Gordon (1986); Schmitz Jr. (1995) should
be regarded as oversimplification and sometime have only been meant as logos. The
more recent Figure 15.1 has been created by Rick Lumpkin on the basis of a global
inverse model. The circulation includes the Tasmanian leakage (flow around Tasma-
nia into the Indian Ocean) in addition to the flow through the Indonesian Seas. It also
shows that the transports in the South Atlantic are mainly carried by large-scale ed-
dies, shed off the Agulhas retroflection and from deeper western boundary currents
north and south of the equator off Brazil. Nevertheless, that concept can be useful to
describe some aspects of the large-scale meridional transports of heat and freshwater,
and will be used in this sense in the following.

An important aspect of the MOC is that it transports the substances contained in
the sea water. On the downward branch in the North Polar Sea, salt, oxygen, carbon
dioxide, and other trace substances are transported into deeper layers, thus ventilating
the deep ocean. Other examples for transported properties in the ocean are the man-
made chloro-fluoro-carbons (CFC) or nuclides, produced by nuclear bomb tests, that
have been brought into the atmosphere since the fifties of the last century, or ra-
diocarbon that is produced within the atmosphere by cosmic rays, enters the ocean
and decays while being advected. On its way through the oceans, the deep currents
also collect everything trickling from above: the excreted and dead biological mate-
rial from marine organisms populating the sun-lit surface layers of the ocean forms
a continuous shower of shells, diatoms, and other remainders. This shower can be
noticed in the decreasing oxygen and increasing nutrient concentrations like nitrate
and phosphate of the deep water on its way from the surface formation region, since
the trickling biological material is remineralized by bacteria. Of course, the global
MOC also has a prominent role to play in the meridional transport of heat because
warm surface waters and cold abyssal waters generally flow in opposite directions.
Some elementary estimates of the THC are reviewed in the box on p. 486.
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77. The Strength of the
Meridional Overturning

An ocean box used for a simple scaling of the
MOC. A north-south section is shown with
a warm pool (light blue) overlying a deep cold
ocean.

A simple calculation yields a scaling for the
strength of the MOC. Consider a box ocean as
sketched in the figure of this box. The ocean
is of size B � L with two layers, the upper
of height h1 surfaces at high latitude, and the
deep layer is of height h2, with corresponding
meridional velocities vi and temperatures Ti

(salinity is here ignored). South of the upper
layer outcrop, the ocean is warmed at the sur-
face at a rateQ and it is cooled by �Q north
of the outcrop. The heat balance of the upper
layer is

�cpB.�v1h1T1 CwLT2/D QBL

The vertical velocity is w D v1h1=L from
continuity. Using numbers typical for the
North Atlantic,B D L D 4;000 km, h1 D 1;000m,Q D 50W m�2, and a temperature dif-
ference T1 �T2 D 10ıC, the size of the required meridional velocity is v1 D 0:006m s�1 or
w D 1:2�10�6 m s�1 and implies a production of deep water of a magnitudewBL D 20Sv.
This is the strength of the overturning circulation driven by the heat flux. The meridional heat
transport in this ocean is

H D �cpB.v1h1T1 C v2h2T2/

with v1h1 C v2h2 D 0 to conserve mass. We find H D 1015 W � 1PW, which is similar
to what has been observed (Ganachaud and Wunsch, 2000). Finally, the vertical heat flux by
upwelling of cold deep water is balanced by downward diffusion of heat from the surface water
(Munk’s abyssal recipe, Munk (1966); see also the box on p. 364),

w
@T

@z
D Kv

@2T

@z2

Hence Kv D wh 	 10�4 m2 s�1, which must be seen as global mean vertical (diapycnal)
diffusivity, necessary to maintain the stratification against upwelling.

The dilution and decay of trace substances can be used to estimate how long a cer-
tain water mass has been away from the surface of the oceans and, therefore, give
information how long the overturning circulation takes for a complete renewal of the
deep water. The result is that the overturning circulation takes roundabout a thousand
years to complete a cycle. From this number, it becomes immediately evident from
a simple scaling, using the sluggish observed velocities in the deep ocean, that the
global MOC cannot be entirely advective (taking a path length of 60;000 km which
is large, and a velocity of 1 cm s�1 which is fast, yields an advective time scale of
only 200 years). Slower processes such as mixing by mesoscale eddies and small-
scale turbulence must thus also contribute. On the other hand, perturbations of the
thermohaline state may propagate much faster than the time scale of thousand years.
Advection by swift surface and deep boundary currents is faster, and the ocean wave
guide is controlled by very fast Kelvin waves along the ocean’s margins and along
the equator (see Section 8.4). This way, disturbances from remote areas, e. g. from
Labrador Sea convection, are felt in other ocean basins only after some decades. In
any case, the fate of Erik the Red’s package of water is loss of identity by mixing:
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if a thousand years later a research vessel had this package in her CTD bottles2 on
a recent expedition into the North Polar Sea, only a tiny fraction of the molecules
from the time of Erik the Red would have remained from the original water and its
content of trace substances.

15.1 Basic Ingredients of the Meridional Overturning

Before we discuss the fundamental physics and various models of the overturning,
we present some general features of water masses and thermohaline forcing.

15.1.1 WaterMasses of the Ocean

Water masses represent larger bodies of water characterized by nearly the same salin-
ity and temperature, imprinted on them during their formation process. This mostly
happens at the ocean’s surface where water is injected into deeper areas due to the
convergence of currents or when the surface heat and/or moisture loss makes it heavy
enough to sink and displace the lighter water below it. By mixing of two or more wa-
ter masses in the interior ocean, a new one can develop as well.

As an example, Figure 15.2 shows the main water masses in the Atlantic Ocean, in
terms of potential temperature and salinity. The deeper region is roughly divided into

Fig. 15.2 Potential temperature in ıC (a) and salinity in g kg�1 (b) as a function of depth in m and
latitude approximately along 30ı W in the Atlantic Ocean. Data are taken from the World Ocean
Atlas 2005 (Antonov et al., 2006; Locarnini et al., 2006). The upper part (800m) of the section is
shown enhanced at the top, showing the warm-water sphere with the shallow thermocline near the
equator and the deeper one in the subtropics. From the salinity we note the intrusion of Antarctic
Intermediate Water (AAIW) from the south in the Atlantic Ocean, while the cold temperature at
depth spreading northward represents Antarctic Bottom Water (AABW). In-between these water
masses, we find the southward spreading North Atlantic Deep Water (NADW)

2 CTD is an acronym for Conductivity Temperature Depth, meaning a device lowered from a vessel
by a cable into the ocean, continuously measuring salinity (via electric conductivity), temperature,
and pressure. During its way down, water samples are also taken at certain depth levels by so-called
Nansen bottles.
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the North Atlantic Deep Water (NADW), the Antarctic Intermediate Water (AAIW),
and the Antarctic Bottom Water (AABW). NADW is formed by cooling and evap-
oration of the warm surface water flowing to the Greenland Sea through the North
Atlantic current into the Irminger, Labrador, and Norwegian Sea. AAIW sinks at the
Antarctic Convergence zone, and AABW is formed by cooling and deposition of
salt under the sea ice and the shelf ice areas round the Antarctic continent – mainly
in the area of the Weddell and Ross Seas. AABW belongs to the heaviest water in
the ocean and spreads from its relatively small area of origin to the bottom layers
of all oceans. It is astonishing that small, apparently unimportant characteristics of
sea-water density decisively regulate this vertical layering of water masses in the
ocean. The originating NADW is e. g. even heavier than the AABW if we consider
the formation process at the surface, and only the compression caused by the pressure
during sinking reverses this relation due to the dependence of the compressibility on
temperature and salinity (compare Section 1.2.6).

The spreading of newly formed water masses occurs nearly adiabatically, i. e. by
advection, thereby conserving salinity, heat, and the concentrations of passive trac-
ers. The water masses sink into their respective density layers at depth. Diapycnal
mixing is very low, but, as we shall discuss later in this chapter, even at this very
low level it is important for the MOC. The water masses can thus be identified over
large distances as demonstrated in Figure 15.2. There is a large discrepancy in size
between the parts of the world’s ocean in which the major water masses are formed
and the water volume with their specific characteristics – besides temperature and
salinity also the content of many trace substances. That is, atmospheric and oceanic
conditions in relatively small, preferably polar areas control the characteristics of the
deeper cold water masses. About 75% of the oceans’ volume with temperatures be-
low 4ıC is in contact with about 4% of the global sea surface, water colder than 2ıC
only with 1%. This can be seen in Figure 15.2 a) showing the potential temperature
in the Atlantic Ocean. Dark blue colored water is colder than 2ıC , and only in high
latitudes it is in contact with the surface (in this section this appears only in the south,
but it also appears in the north at other longitudes than shown in this section).

15.1.2 The Thermohaline Surface Forcing

While the surface oceanic currents are influenced directly by the windstress, the
deep circulation depends mostly on horizontal density gradients, established by the
combined effect of surface thermal and haline forcing and by mixing and advection
(and by the indirect effects of wind forcing). The pole-to-equator difference of radia-
tive heating in the atmosphere and the ocean produces horizontal density differences
between the colder polar and the warmer equatorial sea surface temperature. This
forcing alone would generate denser water at higher latitudes and lighter water in
tropical regions. However, the excess of evaporation over precipitation towards the
equator causes the mean salinity to decrease with latitude so that the thermal effect
on density opposes that of salinity, i. e. temperature favors downwelling of dense wa-
ter at high latitudes and upwelling at the equator, while for salinity the opposite is
true.
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The surface flux of density is shown in Figure 15.3. It is computed from the net
heat flux Jheat and the freshwater flux P � E at the surface (see also Chapter 13) by

Jdens D � ˛

cp
Jheat � �0�Ss.P � E/

where Ss is the surface salinity. Effects of freezing and melting of sea ice are ignored.
Generally, the surface density is increased by the density flux at high latitudes and
decreased in equatorial regions. The Atlantic, however, shows an exceptional behav-
ior because most of the South Atlantic features a decrease of surface density. Note
that it is not the northern-most area of the Atlantic (where the sinking takes place)
which has the largest density increase but rather the area of the western boundary
currents (this feature can be seen as well in the North Pacific). The density flux is
here dominated by the massive loss of heat to the atmosphere due to the northward
movement of warm water into a colder environment. Evidently, it is not the pattern
of the density flux which determines the areas of sinking in the ocean, but rather
the established pattern of temperature and salinity, or density at the surface, shown
in Figure 15.4: only in the northern North Atlantic in the Labrador and Greenland
Sea and in the southern Southern Ocean near the Antarctic Continent, the surface
density is increased to its largest values, corresponding to the densities in the deep
ocean. Note, however, that the surface density is also large in the Mediterranean Sea,
indicating another sinking area.

Fig. 15.3 Total surface density flux in m g m�2 s�1 out of the ocean (a) and its haline contribution
�0	Ssq.E � P/ (b). Positive values (brown) denote regions where the surface density is decreased
by the flux, i. e. density is “leaving” the ocean. The density flux is computed from the fluxes of heat
and freshwater shown in Figure 13.4. Note that the color scales in a and b are different, i. e. heat
flux is the dominating contribution. c and d show the long-term zonal mean of the surface density
flux (c) and its haline component (d). Note also here the different vertical axes. The global mean
is denoted by a black line, the zonally averaged components over the Atlantic, Pacific and, Indian
Ocean are denoted by red, blue, and green lines, respectively
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Fig. 15.4 Annual mean temperature in ıC (a,b), salinity in g kg�1 (c,d) and potential density
(referenced to the surface) in kg m�3 (e,f) at the surface (a,c,e) and at 2;000m depth (b,d,f). Data
are taken from the World Ocean Atlas 2005 (Antonov et al., 2006; Locarnini et al., 2006). While
the surface temperatures are very similar in the Atlantic and Pacific, there is is marked difference in
the surface salinities. The Atlantic is much saltier which results from the atmospheric transport of
water vapor from the Atlantic surface waters to the Pacific by the low latitude easterlies. The deep
Atlantic is warmer than the Pacific but much saltier, partly due to outflow of salty water from the
Mediterranean but also due to salty water in the northern latitudes which at some places is heavy
enough to sink. Water in the Atlantic is thus overall much denser than in the Pacific

15.1.3 The Asymmetry of theMeridional Overturning

Cooling at the northern latitudes does not necessarily lead to a sinking of the sur-
face water. At low temperatures, roughly below 4ıC, the density hardly depends on
temperature but is predominantly controlled by salinity, and the surface salinity reg-
ulates whether winter cooling can increase the density of the water enough to sink,
or whether cooling even to the freezing point leaves surface water still too buoyant to
sink. The most conspicuous feature of the global MOC is its geographic asymmetry:
water sinks in the North Atlantic (with a rate of 15�20 Sv as discussed in the box on
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Fig. 15.5 Zonally averaged sea surface temperature (a in ıC ), salinity (b in g kg�1), and density (c
in kg=m3) as a function of latitude. Red lines denotes averages in the Atlantic Ocean, blueq Pacific
Ocean and black global averages. Data are taken from Levitus and Boyer (1994); Levitus et al.
(1994)

p. 486) to depths between 1 and 4 km, but no such deep sinking occurs in the North
Pacific. The reason for this difference lies in the different surface salt concentrations
(see Figure 15.4); the North Pacific is so low in surface salinity that not even water
cooled to the freezing point becomes dense enough for deep sinking.

Meridional profiles of the surface conditions of the temperature, salinity, and den-
sity fields are shown in Figure 15.5 for the Atlantic and the Pacific. We note that
the difference in density is mainly due to the differences in salt content in the two
oceans. According to these observations, the Atlantic Ocean has a higher salinity
and higher density than the Pacific Ocean. This arises because water vapor is trans-
ported in the atmosphere from the Atlantic to the Pacific by the westward trade winds
across the American continent and thus does not return to the Atlantic by precipita-
tion but rather by an interocean transport via the connection in the Southern Ocean.
The surface salinity is largely controlled by the difference between evaporation and
precipitation. Towards the north in the Atlantic, precipitation exceeds evaporation,
and thus the surface salinity decreases from equator to pole. Hence it very much de-
pends on the salt export from equatorial areas by advection towards the pole whether
or not a thermohaline circulation with sinking in the North Atlantic exists. We will
discuss the interplay between thermohaline forcing, strength of the MOC, and basin
geometry below in Section 15.5.

15.1.4 The Formation ofWaterMasses

The deep oceans are cold. This is true even for the deep equatorial waters. This
was not always the case: paleo-oceanographic observations suggest that the top-
to-bottom temperature difference in the equatorial ocean, which is presently about
25ıC, was reduced by almost 20ıC before the establishment of the Circumpolar Cur-
rent in the Southern Ocean, pointing towards a completely different MOC at those
times. However, the cold waters in the present ocean must have their origin at high
latitudes, where water masses come in contact with the cold atmosphere. In some
polar areas, they might also become saltier through the formation of ice and brine
rejection during ice formation. These processes lead to comparatively high densities,
which then leads eventually to static instability and deep convection, which allows
the dense water to sink to depth. These vertical sinking features, so-called plumes,
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partly reach the bottom. During their descent, they entrain lighter water from the
surroundings, and so the final depth of the sinking water body depends on mixing
processes but also on the density of the neighboring water and details of the equation
of state. An excellent overview on theory and observations of oceanic convection
has been given by Marshall and Schott (1999). An important effect is the depen-
dence of the thermal expansion coefficient on pressure (thermobaric effect; compare
also Section 1.2.6).

In the deep convecting plumes, heat (or better “coldness”), salt and other sub-
stances are transferred to great depth, as demonstrated by the plume simulation of
Figure 15.6. They occur either in the open ocean (open ocean convection) or along
continental slopes (slope convection), mainly around Antarctica and in the Arctic
Ocean where the heavy water first fills up some reservoirs on the shelves, which then
overflow and form plumes running down the continental slopes into the abyss. The
main location of Antarctic slope convection is situated in the Weddell Sea. Open
ocean convection has mainly been found in the Labrador Sea and also, but less fre-
quently, in the Greenland Sea. There is also open ocean convection in the Mediter-
ranean Sea and in other smaller basins close to the major oceans.

Ultimately, the deep cold water has to leave the region of formation to become
a source of the global MOC. There is, however, a vast separation in the scales of the
formation process (the convective plumes) and the outflow from the polar regions.
The convection cells in the open ocean have a very small lateral size, less than a few
kilometers (see e. g. Figure 15.6). Furthermore, there is no significant downwelling
of mass because the vertical mass flux is almost balanced within the plume regime,
i. e. although there is rigorous vertical movement within the plumes, there is almost
no net vertical transport when averaged over several neighboring plumes and the
area which embeds the plumes. Contrary to what is frequently reported, the global-
scale overturning is thus not directly driven by these convective sinking events of
dense surface water to the bottom. The convection does, however, set the water-mass
characteristics: it makes the deep water cold, more or less salty, and e. g. rich in
oxygen. Slope convection around Antarctica is not related to a significant net mass
flux either, but after turbulent entrainment of surrounding water masses it becomes
what finally is known as AABW. Its outflow off the Weddell Sea (see right panel of
Figure 15.7) and other areas around Antarctica has a significant contribution to the

Fig. 15.6 Deep convection with plumes in an idealized three-dimensional model forced by cooling
at the surface. The model uses nonhydrostatic, primitive equations and rotation. A box of 20 km �
20 km � 1;000m extent is considered, which is initialized with a vertical temperature gradient
of 0:04K from top to bottom. The surface is cooled with a rate of 1;000W m�2 within a disk with
a radius of 5 km. The horizontal resolution is 100 m and the vertical resolution is 20 m. The figure
shows temperature in ıC after 2 h (a), 12 h (b), 24 h (c) and 72 h (d) integration, at a section through
the center of the box. After Sander et al. (1995)
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Fig. 15.7 a Schematic of the flow of important water masses in the subpolar North Atlantic Ocean,
as compiled from many observational studies. It shows the surface flow of the North Atlantic Cur-
rent (NAC, thick red) crossing the Middle Atlantic Ridge (MAR) above the Charlie Gibbs Fracture
Zone (CGFZ), after which it turns yellow and flows either into the Norwegian Sea or recirculates
into the western subpolar North Atlantic. The deep flow including the Deep Western Boundary Cur-
rent (DWBC) is indicated in blue. The light yellow currents are cold and shallow and flow along the
shelf break. Open ocean convection (C) takes place in the Labrador Sea, where Labrador Sea Water
(LSW) is formed, while entrainment (E) is important for the overflow of Iceland Scotland Over-
flow Water (ISOW) and the Denmark Strait Overflow Water (DSOW). Note that LSW, ISOW, and
DSOW form the NADW further downstream of the lower part of the MOC in the Atlantic Ocean.
After Schott and Brandt (2007). b Spreading of WSDW (Weddell Sea Deep Water) in a numerical
model of the circulation of the Weddell and Scotia Seas. The origin of WSDW on the continental
shelf is marked by black dots, and the black curves represent the branches of the flow. Transport
rates (in Sv) are given for some branches. Abbreviations: BS – Bransfield Strait, DP – Discovery
Passage, EWIS – East Weddell Sea Shelf Ice areas, FRIS – Filchner-Ronne-Shelf Ice, GP – Georgia
Passage, HP – Hoyer Passage, LIS – Larsen Shelf Ice, OP – Orkney Passage, PP – Philip Passage,
SRP – Shag Rocks Passage. From Schodlok (2002)

MOC. The rate of AABW forming is, however, yet quite uncertain; estimates range
between 5 � 106 m3 s�1 � 5�15 Sv.

Water that has been cooled and convected in the Greenland and Norwegian Sea
partly overflows the sills in the Denmark Strait and the Faroer Bank Channel as
small-scale gravity-driven flow and then sinks, forming an initial branch of the North
Atlantic MOC (see left panel of Figure 15.7). Although these overflows themselves
have only a strength of 1�2 Sv, turbulent entrainment during the downslope flow
increases the volume transport of the overflows considerably. The overflow water
from the Denmark Strait and the Faroer Bank Channel then forms the deep part of the
western boundary current of the Labrador Sea and joins with a deep water outflow out
of the central Labrador Sea where deep open ocean convection takes place. Overflow
and Labrador convection contribute to about equal to the sum of around 10�15 Sv
poleward transport of NADW, but there is strong interannual variability in the open
ocean convection (see e. g. Schott et al., 2004).

However, in the present chapter we are neither concerned with the complicated
details of the flow of the newly formed water masses after formation and its spread-
ing into the interior ocean, nor with details of the small-scale, patchy, and sporadic
open ocean deep convection and slope convection and subsequent local mixing. In-
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stead, we are concerned here with the dynamics of the large-scale circulation after
the water-mass formation process, since the mass flow from the North and South
Polar Seas drives the abyssal circulation of the oceans to a large extent. When con-
structing models of the MOC in the subsequent sections, the water-mass formation
process either will be simply prescribed (as in Section 15.2) or it has to be parame-
terized. The latter is often done by using strong vertical mixing in case of unstable
stratification (and otherwise no or only small vertical mixing), which represents in-
deed a reasonable parameterization for the effect of open ocean deep convection on
the large-scale circulation, which is sometimes called convective adjustment.

15.2 The Stommel–Arons Overturning Model

The surface currents in ocean basins concentrate at the western boundaries, as dis-
cussed in Chapter 14. It might thus not be surprising that in the lower branch of
the MOC, an important part of the flow is also attached to the western boundary. In
fact, the Deep Western Boundary Current (DWBC) along the North American coast
in the Atlantic was predicted by the Stommel–Arons model (Stommel and Arons,
1960a,b; Stommel et al., 1958) as being part of the MOC. This a singular case where
a theoretical study predicted a major ocean current before it was actually observed.
An important aspect of the Stommel–Arons model is that it gives a view of the deep
circulation, but it is, furthermore, a full three-dimensional overturning model as dis-
cussed in this section. The strength of the MOC, however, is prescribed and not part
of the model outcome.

The concept of the Stommel–Arons model is the existence of a DWBC, which is
forced by the formation of water masses, feeding the abyss and driving an interior
recirculation. The sources of the abyssal waters are located in the northern North
Atlantic and around Antarctica. The resulting model is rather simple: an abyssal
layer of given height h is filled by pumping in water with fixed sources (in m3 s�1)
at positions in the northern/southern rim (or the equator, as a thought experiment),
whereas the return flow is equally distributed over the whole layer interface with
a uniform vertical velocity w0 upward through the thermocline into the upper ocean
(see Figure 15.8). The densities of the layers are constant (with a difference of ��
between the layers), and the bottom of the layer is assumed to be flat.

We first concentrate on the interior solution for the abyssal layer away from the
western boundary layer. The boundary layer is treated in detail in the box on p. 497.
The ocean basin is assumed to be of a box-shape, with a constant zonalB D xE �xW

and meridional extent L D yN � yS, where xE, xW, yN and yS denote the limiting
zonal and meridional coordinates of the box, respectively. As in Chapter 14, we apply
the planetary approximation given by (5.45) and (5.46) which is relevant for the
oceanic circulation on lateral scales much larger than the Rossby radius, as discussed
in Chapter 5.1. We first consider the steady momentum equations and the continuity
equation averaged over the layer depth h, written here for convenience in Cartesian
coordinates,

�f v D �@p
@x

; f u D �@p
@y

;
@u

@x
C @v

@y
C w0

h
D 0 (15.1)

where w0 denotes the uniform upwelling velocity at the upper interface of the layer.
The horizontal velocity is assumed to be constant over the layer (in agreement with
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Fig. 15.8 Illustration of the Stommel–Arons layer model with a source S0 of deep water, located at
the northern rim of a box-shaped ocean in the western boundary domain, and uniform upwellingw0

a constant density). Note that we use in fact the linearized version of a two-layer
model discussed in detail in Appendix B.1.2. The model is linearized by approxi-
mating the layer depth h D H C � by the constant mean depth H , but the pres-
sure3 p is varying due to the small interface displacement � and the surface height
displacement �, with j�j; j�j � h (see Figure 15.8).

78. Rayleigh FrictionAiming at simple models we frequently consider a particular parameterization for the turbulent
stress terms in the momentum balances. The flux divergence of the lateral turbulent eddy fluxes
of horizontal momentum is replaced by a Rayleigh friction according to

Fu D �r � u0u0 D �ru and Fv D �r � u0v0 D �rv
with a constant coefficient r . Though such a friction is often used, it should be borne in mind
that its mathematical simple form is quite unphysical because momentum is not transported but
destructed locally. Note also that viscous boundary conditions can no longer be satisfied in the
Rayleigh model.

We further assume for simplicity an equatorial ˇ-plane, i. e. f .y/ D ˇy. Taking
the curl of the momentum equation yields the planetary vorticity (or Sverdrup) rela-
tion ˇv D f w0=H , which we met before in Section 5.3 on planetary-scale motion.
Note that the Sverdrup relation fully determines the meridional velocity. The zonal
velocity then follows from a zonal integration of the continuity equation with the
kinematic boundary condition u.xE/ D 0, hence

v D w0

H
y and u D 2w0

H
.xE � x/

The pressure or the interface displacement can be calculated from either of the
geostrophic balances; the other one is then trivially satisfied. The pressure is found
to be

p D ˇw0

H
y2.x � xE/ (15.2)

3 Pressure is scaled by a constant reference density.
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Note that although the circulation is ultimately driven by the localized sources, the
interior velocity and pressure fields (away from boundary currents) are independent
of the location of the source; they only depend on the upwellingw0. Since the interior
flow is governed by the Sverdrup relation ˇv D f w0=H , it is poleward everywhere
because of w0 > 0 (stretching of water columns). The present model is similar to
the wind-driven circulation discussed in Chapter 14, where we also have derived
the Sverdrup relation given by (14.17). In the wind-driven case, w0 is the Ekman
pumping. Here, it is the imposed uniform upwelling (the constancy of w0 makes
the model even simpler than the wind-driven case). In both cases, however, there is
no flow across the equator since f vanishes there. It becomes clear that a western
boundary current must be added to the interior solution to establish flow across the
equator, which we observe for the MOC. The western boundary currents are con-
structed by closing the mass balance, as in the original Stommel–Arons model and
as detailed below, or by introducing viscous or Rayleigh-type boundary layers, as
in the wind-driven Stommel model of the box on p. 458. For the Stommel–Arons
problem, this is outlined in the box on p. 497.

The water-mass source and the interior upwelling through the interface will not
only set the abyssal layer into motion but also the surface layer. The upper layer
has a reversed circulation such that the vertically integrated (barotropic) circulation
vanishes. Suppose that the layers have a density difference ��. The upper layer
pressure is pu D g� and the lower layer pressure is p` D g�Cg���, where � is the
sea surface topography and � the interface topography. From (15.2), we obtain

� D �ˇw0
gH

y2.x � xE/ and � D 2
ˇw0

g��H
y2.x � xE/

where we have assumed for simplicity an equal mean depthH for the two layers. The
solution for the circulation is displayed in Figure 15.9. In the lower layer, the flow
enters the interior domain on the western side and leaves at the northern boundary.

Fig. 15.9 The Stommel–Arons circulation in a rectangular basin; a and c are for the lower layer
and b and d for the upper one. The left set of panels a and b uses a constant upwelling w0, while
the right set c and d has a linear w0.y/ decreasing to zero at y D yN D L. The colors represent
the displacement fields for the interface � (a,c) and the surface � (b, d) in m. The arrows represent
the flow field. Both layers have equal thickness of H D 2;000m, the zonal and meridional extent
of the domain isB D L D 5;000 km, the upper to lower layer density difference is�� D 10�3,
and the source strength is S0 D 20Sv
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79. The Boundary Layer
of the Stommel–Arons
Model

To include a frictional western boundary current in the model, we add Rayleigh-friction, �ru
and �rv, to the geostrophic equations (15.1). Rayleigh friction is explained in the box on p. 495.
We then solve the momentum equations for u and v and implement the result into the continuity
equation in (15.1). An equation for the pressure is found that way. We consider the equation for
the case of small friction only, i. e. in the limit r=f 
 1,

r
@2p

@x2
C f 2

@

@y

�
r

f 2
@p

@y

�
C ˇ

@p

@x
D f 2w0

H

which is in fact (8.2.6) from the wind-driven western boundary case discussed in Chapter 14,
with less approximations in the frictional terms. In the boundary layer, the first and third terms
on the left-hand side dominate, hence

@2p

@x2
C ˇ

r

@p

@x
D 0

As in the wind-driven case, the width of the boundary layer is found to be ı D r=ˇ . The solution
for the pressure is, therefore,

pb.x; y/ D pi.x D 0; y/CP.y/e�x=ı

where pi is the interior solution, given by (15.2), and P.y/ is the amplitude of the bound-
ary layer correction (for details on the mathematical treatment of boundary layers see Ap-
pendix A.2.2). Note that we have taken xW D 0 without restriction. The function P.y/ follows
from mass conservation: the meridional velocity in the boundary is given by f vb.y/ D @pb=@x
with the transport Tb.y/ D H

R
vbdx, integrating from x D 0 to the outer edge of the layer,

i. e. infinity in the boundary layer coordinate system. The results is

P.y/ D � f
H
Tb.y/ D �ˇy

H
Tb.y/

Note that this solution actually yields the kinematic boundary condition u D 0 at the western
coast: Using f u.x D 0/ D �@P=@y � @pi.x D 0/=@y � rv.x D 0/ and implement-
ing P.y/ D 2.ˇw0=H/By

2 (for the case of the polar source location), pi.x D 0/ D
�.ˇw0=H/By2 and v.x D 0/ D vb.x D 0/ D @pb.x D 0/=@x=f D P.y/=.f ı/, we
find indeed u.x D 0/ D 0. The pressure field is shown in the following figure for the polar and
the equatorial source locations.

Pressure distribution of the Stommel–Arons solution with a western boundary layer. For the left
two panels (a,b) the source is located at the pole, for the right two panels (c,d) it is at the equator.
The respective first panel of each set shows the boundary layer correction, and the second panel
is the total solution.

While the inflow from the west is completed by inclusion of a frictional west-
ern boundary layer, as detailed in the box on p. 497, the northern outflow from
the interior can be resolved by abandoning the assumption of uniform upwelling,
i. e. making w0 dependent on y there. If w0.yN/ D 0, the meridional velocity goes
to zero as well, according to the Sverdrup relation, and thus satisfies the boundary
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condition. The above derived solution for v and p remains the same but now with
a varying w0.y/. The solution is shown in the right two panels of Figure 15.9, using
for simplicity a linear w0.y/ 	 .1 � y=yN/. The zonal flow is changed to

u D
�
2w0 C dw0

dy
y

�
xE � x

H

In both cases, however, the northward interior flow must be balanced by a western
boundary current of small width and transport Tb.y/ (taken positive northward). Let
us place a single source S0 at the northern rim as indicated in Figure 15.8. Requiring
mass conservation for the entire basin, we find S0 D w0BL. The mass balance for
the area north of a latitude y is Tb.y/ C Ti.y/ C S0 D Tu.y/ where Ti.y/ is the
transport across the latitude y in the interior and Tu.y/ is the upwelling over the
respective interface. One finds

Ti.y/ D H

xEZ

xW

vdx D yw0B and Tu.y/ D
yNZ

y

xEZ

xW

w0dxdy D .yN � y/w0B

and hence

Tb.y/ D w0B .yN � y � y �L/ D �2yw0B

In the last relation, we have used yS D 0 for the latitude of the equator so that yN D
L. The transport in the boundary layer is negative, i. e. equatorward. At the northern
boundary y D yN D L, it is twice the strength of the source, Tb.yN/ D �2S0, and at
the equator it vanishes. The interior transport Ti vanishes at the equator and increases
to a total S0 at y D yN. Thus the amount S0 just recirculates in the basin (assuming
that the outflow at y D yN D L somehow joins the western boundary current).

The source S0 can also be placed at other locations. Pumping the water at the
equator into a northern hemisphere basin yields

Tb.y/ D S0

L
.yN � 2y/

with a transport of Tb D S0 to the north at the equator, diminishing to zero at y D
L=2. From the north a southward current starts with strength S0, which goes to zero
at y D L=2. While the first case with northern sinking is appropriate for the deep
circulation in the North Atlantic, the latter case may be regarded as the situation in
the North Pacific.

Note that the whole problem has been solved by geostrophic equations. This is
possible because the interior flow vanishes at the equator. Boundary layers must
appear at the western rim and the northern rim, which are, of course, ageostrophic
(see the box on p. 497). The model is easily written in spherical coordinates and
has been extended to a two-hemisphere basin and even to global ocean with several
sources, as shown in Figure 15.10.

The Stommel–Arons model captures some characteristics of the abyssal circula-
tion, as e. g. the existence and direction of the DWBC in some ocean basins as well
as the interior recirculation, but was never meant to give a realistic description. It
fails in many other aspects, in fact all of its ingredients can be questioned. At first,
the deep circulation is strongly influenced by submarine topography. It can easily be
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Fig. 15.10 The abyssal circulation of the World Ocean according to the Stommel–Arons model,
generated by sources of equal strength in the North Atlantic and in the Weddell Sea (indicated by
the black dots) and by uniform upwelling elsewhere. Redrawn after Stommel (1958). The strength
of the deep circumpolar branch is prescribed

incorporated, but the results would not become more realistic because of a second,
more severe, drawback of the model. The upwelling could be very localized rather
than given by the uniform distribution in the model, or, as discussed recently, it may
be very weak over most of the basin while most of it occurs along the upward sloping
isopycnals in the Southern Ocean (see Chapter 16). However, extending the model
by these aspects opens a door to all kinds of circulations in models with little value.
Many other features are entirely absent which could potentially influence the abyssal
circulation: stratification, mesoscale eddy transports and mixing.

15.3 Sandström’s Inference

The work of SANDSTRÖM4 (Sandström, 1908) has recently been revisited to ar-
gue about the driving of the MOC. Sandström tried to force a circulation in a small
water tank by placing heating and cooling sources horizontally separated and at the
same or at different depths. Turbulent mixing in the tank was avoided (actually Sand-
ström was unaware of its role in the ocean and even ignored molecular diffusion). He
found, in agreement with the circulation theorem derived below, that a fluid heated
and cooled from the surface, or cooled (compressed) at a higher pressure (or depth)
than that at which it is heated (expanded) does not develop any significant circula-
tion. Defant (1961) supported this ‘inference’ with thermodynamical arguments in

4 JOHAN WILHELM SANDSTRÖM , *1874 in Norra Degerfors, Sweden, †1947 in Sweden, oceanog-
rapher and meteorologist.
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terms of a CARNOT5 process (see Section 15.3.2), and he was the first6 to refer to
Sandström’s inference as ‘Sandström’s theorem’ (Defant, 1961).

15.3.1 Consequences fromBjerknes’ Theorem

We start with Bjerknes’ circulation theorem (see (2.205) in Section 2.11). Consider
a loop � along a streamline of the whole global MOC. The three-dimensional veloc-
ity is denoted by u, frictional force (per mass) by F , specific volume by � D 1=�,
and ds denotes the increment along the loop � . The theorem is then expressed by

D

Dt

I
u � ds D �

I
�dp C

I
F � ds (15.3)

and states a balance between the rate of change of the circulation (the integral
H
u �ds

is called the ‘circulation’), the pressure work term, and the friction term (last term in
(15.3)). Unless there is wind forcing, the friction integral acts against an increase of
the circulation and must thus be negative. In order to sustain a steady circulation, the
pressure work must drive it, i. e. we obtain the condition

�
I
�dp D

I
pd� > 0 (15.4)

and end up with the integral which also controls the Carnot process (see also Sec-
tion 15.3.2). Following (15.4), expansion (d� > 0) must take place at higher pressure
(deeper in the water column) than contraction (d� < 0) as sketched in the right panel
of Figure 15.11. It becomes obvious that there is no driving of the circulation if ex-
pansion (e. g. by heating) and contraction (e. g. by cooling) takes place at the same
pressure level. In the ocean, heating and cooling takes place at the ocean surface,
i. e. indeed at the same depth, at least if molecular and turbulent transports in the
interior are ignored (see below). We also ignore the insignificant effect that the trop-
ical sea surface is about one meter higher – and thus at lower pressure – than the sea

Fig. 15.11 Illustration of Sandström’s theorem. The red parcel is expanded by heating, the blue
compressed by cooling. The picture can be read in the physical space or in the thermodynamic
space .�; p/ with the specific volume � increasing from right to left

5 SADI CARNOT, *1796 and †1832 in Paris, physicist and engineer.
6 See Kuhlbrodt (2008) for a historical consolidation of the Sandström controversy. The controversy
is that Sandström did not wait long enough in his experiments to see that, on the long run molecular
diffusion will take the heating signal into the interior, eventually below the cooling level: hence
some kind of overturning must always develop, even if the actual forcing is applied at the same
pressure level.
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surface at high latitudes. Hence, if there is no other forcing, the MOC should come to
rest due to friction. In order to drive a circulation, heating must occur at higher pres-
sure than cooling, i. e. at greater depth. This occurs e. g. in the atmosphere, which,
therefore, is akin to a heat engine. The ocean, on the other hand, must be regarded as
a mechanical engine, a fact which will become clearer in the course of the following
discussion. Note that the above theorem also implies that neither deep convection in
high latitudes nor any other process of deep water formation can drive the MOC by
whatever mechanism or strength, since deep convection places the cooling even at
higher pressures than the pressure at the surface.

15.3.2 Thermodynamics of theMeridional Overturning

Bjerknes’ theorem (15.3) can be interpreted as a balance of the work done by the
different forces acting on a material fluid parcel along a closed loop in the fluid. Re-
member that the origin of the integral

H
�dp derives from the pressure force (per

mass) �rp causing the work �rp � ds on the parcel, when it is displaced by ds
along the circulation loop. The converted form

H
pd� , on the other hand, hints to-

wards the work involved in contraction or expansion which is a purely thermody-
namic process. Their integrals are the same but their physics is totally different.

The work ıW D �pd� appears in the first law of thermodynamics (1.23), for-
mulated for the internal energyE,

dE D ıQ � pd� C @H

@S
dS (15.5)

which is a statement of conservation of internal energy of a material fluid parcel.
Note that ıW D �pd� is the work done by the environment on the parcel (if
d� < 0 – i. e. contraction – this work increases the parcel’s internal energy). Fur-
thermore, if ıQ > 0, there is a supply of heat to the parcel and dS > 0 a supply of
salt. As shown in Section 1.2, @H=@S D Hs �Hw is the difference between the spe-
cific enthalpies of salt and pure water. However, the contribution of salinity changes
to dE is entirely negligible for realistic conditions (see e. g. the discussion in Sec-
tion 2.6.2). Likewise, the contraction/expansion work is generally as well a small
term in (15.5) in the ocean. We have shown how to combine dE and �pd� to the
change of potential temperature which then is balanced by the heating rate in form

80. Bjerknes Theorem
in Boussinesq Form

We like to add a further note to the discussion of the Sandström inference: most dynamical con-
cepts in oceanography are represented in the Boussinesq framework where the integrals

H
pd�

or
H
�dp do not appear because the contribution of the pressure gradient is multiplied by the

inverse reference density and thus integrates to zero. Instead, the buoyancy force remains and
yields the theorem

D

Dt

I
u � ds D �

I
. Q�=�0/r ˚ � ds C

I
F � ds

referring to the notation of Section 4.1.2. The integral involving the geopotential ˚ can be con-
verted to

H
˚d Q�=�0. The theorem then states that in order to allow for a circulation, expansion

(contraction) must occur at high (low) values of the geopotential, i. e. heating must occur at
greater depth than cooling.
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of the divergence of the heat flux and the mechanical dissipation, referring to (2.74)
in the appropriate form a conservation equation, and here again the heating term is
locally by far the dominating contribution (see the discussion in Section 2.6). Thus,
while �dp is a major player in the mechanical balance (15.4) all along the circula-
tion loop, the work �pd� is small in the thermodynamical balance (15.5), applied
to the same loop. Here, heating and cooling by heat flux divergences overwhelm the
contraction/expansion work and almost balance in the integral.

There is also a lesson from the second law of thermodynamics (see Sec-
tion 1.2.4). Assume that the ocean (O) is attached to two heat reservoirs, the equa-
torial/tropical (E) and polar (P) atmosphere, which exchange heat quantities QE

and QP at temperatures TE and TP, respectively, with the ocean. According to the
second law, the change of entropy d�E C d�O C d�P of the total ocean-atmosphere
system must be positive, and d�E 
 �QE=TE, d�P 
 QP=TP. Note that the amounts
of heat are treated as positive, QE > 0, QP > 0. Furthermore, the processes within
the ocean are assumed reversible, and in a complete cycle its entropy change is zero,
i. e. d�O D 0. We find

QP

TP
� QE

TE

 0 or

QP

QE

 TP

TE

The ocean does not change its internal energy in the cycle, so that the first law yields
WO D QE �QP for the work done by the ocean to sustain a circulation. This requires
WO > 0, and obviously, according to the above inequality, heating must occur at
a higher temperature than cooling, i. e. TE > TP. The system is analogous to the
classical Carnot engine7. The Carnot factor WO=QE � 1 � TP=TE measures the
efficiency to convert heating to mechanical energy. As a heat engine, the ocean is
very ineffective: with TE � TP � 15K, we find W=QE � 2%. If the processes in
the ocean are irreversible, the efficiency must be even smaller, and as a consequence
of WO=QE ! 0 we obtain the approximate conservation of heat, QE � QP. What
is not seen in these relations but outlined in Section 15.3.1 is that the heating must
occur at the expansion and cooling at the contraction of fluid parcels, i. e. at different
pressures (pE < pP), which is not satisfied if all exchange processes occur at the
ocean surface.

15.3.3 Energetics of theMeridional Overturning

A closer view on the consequences from Sandström’s inference is achieved by con-
sidering the conservation of energy. In the deep water sinking areas, potential energy
is lost and continuously converted to small-scale turbulent kinetic energy. The latter
is subsequently dissipated due to molecular friction. Hence in a steady state, there
must be a source of potential energy. Energy must be fed into the system where
the deep water returns to the surface, and this source of potential energy must be
regarded as the driver of the MOC.

7 In the Carnot engine we have isothermal expansion at the temperature TE where the heatQE is ab-
sorbed, followed by adiabatic expansion where the system cools to TP, then isothermal contraction
at TP where the heatQP is released, followed by adiabatic compression where the system becomes
warmer again. All parts of the Carnot cycle are reversible and make a closed cycle.
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To be specific, consider the energetics in the Boussinesq approximation, as de-
rived in Section 4.1.4. Integration over the whole ocean volume (denoted by an over-
bar) yields

dEk

dt
D �g Q�w C u � .F e C Fb/ � � ; dEp

dt
D g Q�w C gzG� (15.6)

with kinetic and potential energies Ek D �0u
2=2 and Ep D g Q�z=�0, respectively,

and an external (wind) stress F e, a frictional stress Fb at solid boundaries (bottom,
side walls), and an interior density source term G� due to diapycnal mixing in the in-
terior and convection in water-mass formation regions. Note that Q� is a perturbation
density in the notation of Section 4.1.4. The term u � Fb is negative, and the dissipa-
tion term � is positive. For sinking of heavy fluid, Q�w is negative, and G� is positive
for cooling. The reference level of the potential energy is at the surface z D 0, but
what follows is independent of this particular choice: one must assume G� D 0 since
otherwise there would not be a steady density balance.

In steady state where d NEk=dt D d NEp=dt D 0, the work by external and bound-
ary stresses, the work by mixing and convection, and the viscous dissipation must
balance,

u � .F e C Fb/� � D �gzG� (15.7)

We conclude from (15.7) and the steady version of (15.6):

� In the absence of wind forcing, i. e. if F e D 0, the left-hand side of (15.7) is
negative, and hence zG� must be positive. This implies that heating must be at
lower levels than cooling, as we have found before.

� From (15.6), we conclude from zG� > 0, implying �w < 0, that denser water
must sink. This generates kinetic energy which overcomes friction and dissipa-
tion.

Writing the density source explicitly as sum of a convective and a diffusive term,
G� D C� C @.Kv@ Q�=@z/=@z, we obtain

zG� D zC� �Kv
@ Q�
@z

The density flux at the bottom is assumed to be zero. The surface density flux, equal
to Kv@ Q�=@z at z D 0, does not contribute explicitly as an external source to this bal-
ance. The convective source term is negative at the top of convective plumes (density
is taken away) and positive below (the water is made denser here). Hence zC� < 0,
and we conclude that convection cannot drive an overturning circulation. However,
the diffusion term �Kv@ Q�=@z is positive in a stably stratified ocean: it can drive the
overturning against friction.

Of course, there is another mechanism that can break the Sandström constraint:
this is direct driving of a large-scale circulation by windstress. In order that an exter-
nal stress F e drives the MOC, it must play a significant role in Bjerknes’ circulation
constraint (15.3) and in the energy budgets (15.6) and (15.7). In principle, the up-
welling can also be wind-induced (Ekman pumping), but then isopycnals must out-
crop at the surface as in the Southern Ocean. But still, without mixing heavy water
with lighter water in rising areas or in the surface layers of MOC, the circulation sys-
tem cannot be closed. Since mixing consumes turbulent mechanical energy which is
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Fig. 15.12 Two extreme scenarios for the driving of the MOC. The black line is the pycnocline,
the blue are streamlines of the MOC. Mixing is indicated by the red star, which occurs either in the
interior (a) or at the surface (b). In the former case, the interior mixing drives the MOC, while in
the latter case, the windstress and breaking surface waves drive the MOC

generated by wind in the surface layer and/or by tides and breaking of internal waves
in the interior, the overturning can only work on the basis of mechanical driving: the
ocean thus is a mechanical engine.

One can envision a whole range of scenarios concerning where and how strongly
the heaving of the cold water and the mixing occurs. One extreme case that all trans-
fer is within the ocean thermo- or pycnocline is sketched in the left panel of Fig-
ure 15.12. Another extreme with minimum mixing in the interior is displayed in the
right panel: here the cold water is advected in the deep layers into the Southern Ocean
where the isopycnals rise to the surface. The water is pumped upward on isopycnals
by wind and eddy forcing (see Chapter 16). Mixing then must occur in the surface
layer to allow for a northward flow out of the Southern Ocean.

15.4 Scaling Laws for the Meridional Overturning

From a simple scaling of the relevant equations, we now try to infer the dependencies
of some important properties of the MOC on externally prescribed parameters. The
meridional density gradient and mixing have been highlighted as major constituents
controlling the overturning. How these quantities connect is not easily understood.
The following scaling analysis is based on geostrophy, i. e. on the thermal wind equa-
tion f @v=@z D �g@�=@x, and assumes @v=@z 	 v=h and @�=@x 	 ı�=B where h
is a vertical scale (normally interpreted as the depth of the thermocline), B is the
zonal extent of the basin, and ı� is the east-west difference of the density8. One finds

v 	 g

f

ı�

B
h (15.8)

8 In the present chapter, a zonal difference of a quantity � will generally be written as ı� whereas
meridional scales or differences are written as ��.
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This relation includes the east-west density difference ı� as a parameter, which is,
however, difficult to infer from external parameters or the forcing of the ocean. This
would be easier for the north-south difference ��, which could be thought as im-
printed by the surface boundary conditions. Therefore, the density difference ��
is often used as an independent parameter to assess the strength of the MOC, as
proposed for instance by Bryan (1987). Many scaling attempts and also closure
schemes for reduced models (see Section 15.5 and Section 15.6) reside on relations
as ı� 	 �� or ı�=B 	 ��=L, or v 	 u in one or the other way. Note, however,
that these are rather brute force assumptions. We will discuss an alternative, more
consistent scaling below in Section 15.4.2 based on the Stommel–Arons model.

15.4.1 Conventional Scaling Attempts

A qualitative argument of how the relation ı� 	 �� could be established was pro-
posed by Colin de Verdiere (1993). Realizing that the cold waters at high latitudes are
denser than those at low latitudes, we expect a decrease of sea level from the equa-
tor to the poles (which is actually observed). Note, however, that the wind-driven
circulation overlays the THC, and it is questionable to what degree the observed
sea surface topography is due to the THC. Associated with this pressure pattern is
a zonal geostrophic surface current towards the east, which will produce upwelling
at the western coast and downwelling at the eastern coast. The upwelling will bring
cold (dense) water from the interior to the surface layers. A secondary high (in the
east) and low (in the west) pressure system will then arise in the sea level, and then
finally a secondary northward surface circulation forms – the upper branch of the
MOC. Hence a meridional gradient �� generates a meridional flow in an indirect
way due to the basin geometry, as sketched in Figure 15.13.

The relation ı� 	 �� is also inherent to the box models of the MOC, which will
be introduced below in Section 15.5, since they only resolve the meridional gradients

Fig. 15.13 Schematic of the surface flow driven by a north-south density gradient in an ocean basin.
The primary north-south gradient – as a result of the surface forcing – is in balance with an eastward
geostrophic current which generates a secondary high and low pressure system. This, in turn, drives
a northward geostrophic current, the upper branch of the MOC circulation
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of density and pressure. A linear relation vhL D C�� between the transport and the
meridional density gradient is assumed in those models, with a constant C related to
friction. A justification may be taken from the linear meridional momentum balance,
ignoring the Coriolis force, in which the north-south pressure gradient balances some
kind of friction (see also the box on p. 507). Further, some closures for the zonal
pressure gradient in zonally averaged models, as discussed in Section 15.6, are also
based on the assumption ı� 	 �� or ıp 	 �p in one or the other way.

A further problem for the geostrophic scaling (15.8) is that the thermocline
depth h is to be determined together with the scales of v, whereas the scales for
the north-south variation L and the basin width B can be considered as prescribed.
We continue with the ‘brute force’ assumption and assume in addition to geostrophy
an advective-diffusive density budget and also the Sverdrup relation for the scaling,
i. e.

f
@u

@z
D g

@�

@y
; w

@�

@z
D Kv

@2�

@z2
and

@w

@z
D ˇv=f

This yields after some manipulations (with the Earth radius a 	 f=ˇ)

w 	 K2=3
v

�
g��

faL

�1=3
; v 	 .Kva/

1=3

�
g��

fL

�2=3
; h 	

�
faLKv

g��

�1=3

(15.9)

and for the overturning transport

vhL 	 .KvaL/
2=3

�
g��

f

�1=3
(15.10)

To obtain this result, the crucial assumption v 	 u (the above mentioned flaw)
was made, because only three relations are given for four unknowns. Nevertheless,
reasonable scales are obtained; with �� D 4 � 10�3 kg m�3, L D 5 � 106 m,
and Kv D 10�4 m2 s�1 for the vertical diffusivity, one finds a reasonable transport
vhL D 15 Sv, but a relatively high velocity v D 0:015m s�1, a too small upwelling
w D 5 � 10�7 m s�1, and a far too small h D 197m (values in the range 500–800 m
are appropriate). Note further that the transport depends with a 1/3 power on the
meridional density gradient and with a 2/3 power on the vertical diffusivity.

The resulting scaling relations (15.9) and (15.10), and also the alternative scaling
presented in the box on p. 507, suggest that a positive density difference between
pole and equator implies a poleward surface flow of the MOC, for which �� could
be considered as driver. The dependency, however, is quite weak, and the diffusiv-
ity Kv could also vary with�� (which is the north-south difference but roughly also
the surface to depth variation). A dependency Kv 	 N�2 	 1=��, as frequently
discussed, in fact would yield a reduction of the overturning with increasing density
difference. If the density flux D 	 Kv��=h is assumed to be fixed rather than the
density difference, a different scaling results,

w 	 K1=2
v

�
gD

faL

�1=4
; v 	

�
agD

fL

�1=2
; h 	 K1=2

v

�
faL

gD

�1=4
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81. An Alternative
Scaling

Ignoring the Coriolis term in the linear and steady meridional momentum balance, with vertical
friction implemented, leads, after differentiation and with the hydrostatic equation,

�g @�
@y

D Av
@3v

@z3

i. e. a balance between the vertically differentiated pressure force and vertical friction which
can be regarded as a vorticity balance in the .y; z/-plane (Marotzke et al., 1988). Using as be-
fore the advective/diffusive density balance w@�=@z D Kv@

2�=@z2 and the Sverdrup relation
@w=@z D ˇv=f for scaling, one finds

w 	 K4=5v

�
g��

LaAv

�1=5
; v 	 .Kva/

3=5

�
g��

AvL

�2=5
;

h 	
�
LaKvAv

g��

�1=5
and vhL 	 .KvaL/

4=5

�
g��

Av

�1=5

Note that in terms of the Rayleigh number Ra D h5g��=.aLKvAv/ which physically can be
viewed as the ratio of the buoyancy time scale to frictional and diffusive time scales, the third
relation is equivalent to Ra 	 1. To obtain a reasonable size for the transport, the viscosity must
be increased to a large value, e. g. Av D 10m2 s�1 yields vhL D 13Sv, v D 0:01m s�1 and
h D 240m. Again, the zonal momentum balance is ignored. In this physically questionable
approach, the transport goes with 1/5 power of the meridional density gradient which is a very
weak dependence.

and

vhL 	 K1=2
v .aL/3=4

�
gD

f

�1=4
(15.11)

which point towards a slightly stronger dependence of the MOC on the diffusiv-
ity, i. e. 	 Kv

1=2 (interestingly the meridional velocity is independent of Kv in this
model).

The above derived 1/3- and 1/2-power-laws between the overturning strength and
the diapycnal diffusivity are confirmed by many numerical experiments with sim-
ple ocean geometry (e. g. Bryan, 1987). In more realistic models, in particular those
which include a Southern Ocean, the situation is drastically different because then
the overturning can be closed by transport along isopycnals and upwelling in the cir-
cumpolar area; hence little or no mixing at all is necessary in the ocean interior (see
the discussion in Section 15.3.3 and Chapter 16). The upwelling is then driven by
windstress instead of the interior mixing and is largely counteracted by an opposing
eddy-driven overturning, with eddies arising from the baroclinic instability of the
Antarctic Circumpolar Current. Mixing is only required in the surface layer where
the northward flow crosses the outcropping isopycnals. In this scenario, processes in
the Southern Ocean control the overturning strength, as described in Chapter 16 and
in Section 15.5.5.

15.4.2 A Frictional Model of theMeridional Overturning

The scaling presented in Section 15.4 was based on the rather ad-hoc assumption
ı� 	 �� or equivalent relations and thus appears unsatisfactory. We need a better
understanding of how the zonal density difference ı� (or pressure difference) relates
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to the meridional density scale ��. The model discussed in this section allows to
compute this relation in an almost exact way. As in the Stommel–Arons model, we
consider a single ocean basin of constant zonal width B D xE � xW and meridional
extent 2L, an idealized Atlantic Ocean which is zonally closed at all latitudes. We
write the eastern boundary as x D xE and take the western one at xW D 0. The linear
and steady balance of momentum is written for simplicity with Rayleigh friction9,
as explained in the box on p. 495, to represent lateral eddy stresses,

�f v D �@p
@x

� ru and f u D �@p
@y

� rv (15.12)

Windstress effects are ignored here but can in principle be added. We define zonal
averages (across the whole basin, denoted by an overbar) of all fields, e. g. Np.y; z/ D
.1=B/

R xE
xW
p.x; y; z/dx for the pressure. The zonal averaged form of (15.12) is

�f Nv D �ıp
B

� r Nu and f Nu D �@ Np
@y

� r Nv (15.13)

The zonal pressure difference ıp.y; z/ D p.xE/�p.xW/ appears in the zonally aver-
aged zonal balance in (15.13). It can be related to the friction acting along the bound-
ary of the ocean. In fact, taking the difference of the meridional balance in (15.12)
between the eastern and western boundaries yields

@ıp

@y
D r .vW � vE/ (15.14)

where vW D v.x D xW/ and vE D v.x D xE/ and the vanishing of u on the
boundaries was used.

We proceed now as follows. As done for the Stommel–Arons model, we divide
the basin into an interior frictionless regime, with variables denoted by the index i,
and a western boundary layer, with variables marked by the index b and having
width Bb. It is given by Bb D r=ˇ for the Stommel–Arons model, see the box on
p. 497. Clearly, we expect that the contribution from the western boundary current
in (15.14) is dominating over the contribution from the eastern side, i. e. vW � vE in
accordance with the Stommel–Arons model. The idea is now to relate the velocity vW

to the basin mean Nv and the velocity vi in the interior domain. We denote by Nvi the
average of vi over the range x D Bb to x D xE D B of the interior domain, and by
Nvb the average of vb over the range x D 0 to x D Bb of the boundary layer domain.
Then

B Nv D Bb Nvb C Bi Nvi (15.15)

where Bi D B � Bb. The approximationBi ' B will be used in the following.
Assuming now vW ' Nvb D B. Nv � Nvi/=Bb according to (15.15), we obtain

from (15.14)

@ıp

@y
D ˇB. Nv � Nvi/ (15.16)

9 The analysis of zonal mean equations can be carried out for scale-dependent diffusion as well
and yields a similar result with r 	 Ah=ı

2
W, where ıW is the boundary layer width. It is worth

mentioning that (15.13) is obtained in identical form for the viscous boundary layer width ıW D
.Ah=ˇ/

1=3 .
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where Bb D r=ˇ was used explicitly. In a second step, we eliminate the interior
velocity Nvi, using the frictionless vorticity balance in the interior and its zonal mean,

@f vi

@y
C @f ui

@x
D 0 and

@.f Nvi/

@y
D f u?

B

where u?.y/ D u.x D Bb; y/ is the zonal inflow into the boundary layer at its
outer rim. Note that the kinematic condition u.x D xE/ D 0 was used at the east-
ern boundary. We assume that u? is geostrophic with respect to the local pressure
p?.y/ D p.x D Bb; y/ on the rim of the boundary layer, i. e. f u? D �@p?=@y.
Integrating the zonally averaged interior vorticity budget from the latitude y D 0

(the equator; this choice avoids an integration constant) to y yields

Nvi D �p
? � p?.y D 0/

Bf

which by implementation into (15.16) leads to the relation
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(15.17)

Note that we have not yet made use of the zonal mean form of the momentum bal-
ance (15.13). We write the zonal balance as Nv D Nvg C Nvag, i. e. we separate between
the geostrophic part Nvg D ıp=fB and the ageostrophic part Nvag. The relation (15.17)
takes then the form
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(15.18)

The two ıp-terms have been combined into one. We may interpret these fundamental
relations in two ways:

1. The equations (15.17) and (15.18) determine the total and the ageostrophic part of
the meridional mean flow by the zonal pressure difference ıp and the meridional
difference of the pressure p? in the transition region between the frictionless
interior and the frictional boundary layer.

2. If Nvag can be regarded as small (see further discussion), then (15.18) is the sought-
after relation between ıp or Nvg and the meridional pressure or density structure.
We proceed with this option below.

The ageostrophic part is given by Nvag D r Nu=f . The zonal mean velocity has con-
tributions from the interior and the boundary layer, like (15.15). Exploiting that the
interior flow is frictionless we find

f Nvag D r .Bb Nub C Bi Nui/ =B D r
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Since Npi 	 p? we note that the interior contribution is small compared to the pres-
sure difference on the right-hand side of (15.18). The contribution from the boundary
layer is also fairly small: compared to the first term on the right-hand side of (15.18)
it is of order r2=f 2 � 1.

In summary, a good approximation of (15.18) is
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(15.19)
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The validity of this relation is verified for the Stommel–Arons model in the box on
p. 510. With the continuity equation @ Nv=@y D �@ Nw=@z, the relation (15.19) states
that the upwelling is proportional to the meridional pressure or density difference
rather than the meridional velocity, as inherent in the previous inconsistent scaling
laws presented in Section 15.4 and in the box models discussed in Section 15.5. Note
that the difference of pressure or density is not related to a gradient; in fact there is
a change of sign across the equator implied by the form of (15.19).

82. Equation (15.19)
for the Stommel–Arons
Model

The solution of the Stommel–Arons model has been given in Section 15.2. We find for the
contribution from the interior
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The pressure terms have a part from the boundary layer. Here we take the source at the pole
where TB.y/ D �2w0By, hence P.y/ D �f TB=H D .ˇw0B=H/2y

2 . Then the contri-
bution from the boundary layer becomes
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With ıp D ıpi C ıpb and p?=fB D �w0y=H , it is found that the Stommel–Arons model
satisfies (15.19). This is also the case for the equatorial source.

The relation (15.19) now allows for a consistent scaling of the overturning
problem (without the assumption v 	 u or v 	 @�=@y, used in the previous
scaling attempts). We use for the scaling the advective-diffusive density balance
w@�=@z D Kv@

2�=@z2 as before, the continuity equation @ Nv=@y D �@ Nw=@z and
the relation (15.19) together with the hydrostatic relation @p=@z D �g� to replace
the pressure with density. We now find, with f=ˇ 	 a as before,
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and for the overturning transport
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g��
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(15.20)

if the scale �� of the meridional density variation is prescribed. The dependency
onKv and�� remains as before. A major distinction to the previous scaling is, how-
ever, that�� is now the difference with respect to the equator rather than a gradient-
related scale. Otherwise, the above relations differ only marginally from (15.9)
and (15.10) in the placement of the length scales L;B , and a, i. e. we would find
now deviations for long (y-direction) and narrow (x-direction) basins and vice versa.
Nevertheless, within the framework of the frictional model presented in this section,
the scaling is now physically consistent.

15.5 BoxModels of the Meridional Overturning

In the present deep circulation of the Atlantic, two prominent meridional overturning
cells appear. They are generally classified as thermally direct cells, meaning that the
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surface heat flux (and interior mixing of heat) is the dominant driving mechanism and
that the haline surface fluxes are not as important. We know that there is one merid-
ional overturning cell with sinking at the high latitudes of the northern hemisphere
associated with the southward spreading of NADW and one with sinking at the high
latitudes of the Southern Hemisphere associated with the northward spreading of
AABW. However, paleo-climatic data indicate that as recently as 11,000 years ago,
the deep circulation and the downwelling at high latitudes has been much weaker,
and that there might have been even times with a collapsed or reversed overturning
circulation. We will discuss in this section that there are processes which can in fact
give rise to the existence of multiple steady states of the system with greatly different
overturning cells and with the possibility of rapid transitions between the equilibria.

15.5.1 Motivation and Construction of BoxModels

Stommel, in his seminal paper of 1961 (Stommel, 1961), was the first to point out
that the MOC may have more than one equilibrium state, seemingly with the same
surface forcing of heat and freshwater. This feature, based on simple box models
of the MOC, has found ample interest in recent years in context with the ocean’s
role in climate change. In this section, we will present the most popular box models,
namely Stommel’s model (Stommel, 1961) and Welander’s model (Welander, 1986).
Our focus will be on the mechanisms that allow for multiple steady states in these
models and on the question how symmetric (with respect to the equator) conditions
of the driving can create asymmetric overturning cells.

The principle for the construction of box models for a tracer  is outlined in Ap-
pendix B.4. Here, we need the balances of temperature and salinity for a particular
set-up of boxes. For instance, for a two-box system, like Stommel’s model (see be-
low), we may take directly the set of equations (B.65), replacing j by Sj and Tj
for j D 1; 2, respectively. The external fluxes Fj e, appearing in (B.65), have to be
specified for the heat and freshwater exchange with the atmosphere, either by a pre-
scription of the fluxes or by a restoring type of fluxes (given by (13.12) and (13.13))
or by a combination of such choices. Both choices will be discussed below. Note that
the choice of fluxes for a box system should be oriented at the appropriate meridional
integrals of the zonally integrated fluxes presented in Chapter 13.

The most important aspect for constructing a box model is to find an expression
for the transport variable q (which has the dimension m3 s�1) in terms of the salinity
values Sj and the temperatures Tj , since these are the only variables resolved by the
box system. Usually, a relation q D C.�2��1/ with a constantC between q and the
density differences between the boxes is assumed. This relation is motivated in the
original Stommel model as follows: the deep transport is assumed to occur in a pipe
connecting the two boxes. The density difference between the boxes causes a pres-
sure drop which accelerates the fluid against friction at the sidewalls in the pipe. The
flow compensating the deep transport occurs in the upper layer and follows in its
strength from mass conservation. Note that this concept, put forward by Stommel,
has guided the physical interpretation of the MOC since then, including the identifi-
cation of scaling laws of the MOC (see Section 15.4) and the construction of zonally
averaged models. It is, however, highly problematic because of the disregard of the
Coriolis force. We have discussed in Section 15.4.2 a more consistent way to moti-
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vate the scaling laws. Further, with respect to the energetics of the MOC discussed in
Section 15.3.3, it is important to note that it is not the density difference between the
boxes which drives the overturning in the box models, but the interior mixing within
the individual boxes. In the box framework, the mixing efficiency is infinite in the
sense that each box is mixed instantaneously to a homogeneous state if advection or
fluxes transfer freshwater or heat through the interfaces.

Expressing the density in terms of temperature and salinity, the transport q in the
Stommel box model becomes

q D C Œ˛.T1 � T2/� �.S1 � S2/� (15.21)

with the constant C which takes values of about 5 � 109 m3 s�1 for a reasonably
realistic MOC, and with the typical values for the thermal expansion and haline con-
traction coefficients ˛ and � , respectively.

It will be convenient to scale the temperature and salinity budgets of the boxes,
and we will work below with the scaled equations only. Consider for example the
salt balance of box 1,

V1
dS1
dt

D jqj.S2 � S1/C .KhA12=D/.S2 � S1/C A1F1 (15.22)

as given by (B.65) from Appendix B.4 for the box configuration in Figure 15.14.
Here, V1 is the box volume, A12 the area of the interface between box 1 and box 2,
A1 the surface area of box 1, F1 the flux of salt10 into that box through the surface,
and D an appropriate meridional scale for the finite difference form of the diffusion
between the boxes. We now introduce scales for the temperature and salinity differ-
ences, T? and S?, respectively. We further redefine the salinity variable to include the
buoyancy ratio b0 D ˛T?=.�S?/, thus T 0 D T=T? and S 0 D S=.b0S?/. This scaling
yields �0 D �=.˛T?/ with a scaled density �0 D S 0 � T 0. We then take a typical hor-
izontal diffusivity QKh and consider the scaling q0 D qD=.A12 QKh/ for the transport
and obtain

q0 D C 0.�0
2 � �0

1/

with the scaled constant C 0 D CD˛T?=.A12 QKh/. It has a typical value of 10. With
V1 D D1A12 and the scaling t 0 D t QKh=D

2 for the time, (15.22) becomes in scaled
form

D0
1

dS 0
1

dt 0
D jq0j.S 0

2 � S 0
1/CK.S 0

2 � S 0
1/C F 0

1 (15.23)

with D0
1 D D1=D, K D Kh= QKh and F 0 D F1=.b

0S?/DA1=.A12 QKh/. The tempera-
ture budget for box 1 and the budgets for box 2 are scaled accordingly. We omit the
primes in the following.

15.5.2 Stommel’s BoxModel

We discuss in this section Stommel’s box model, for which the configuration of
the boxes is depicted in Figure 15.14. There are two boxes lying side by side, and

10 Here and in the following, with ‘salt flux’ the equivalent salt flux is meant, as discussed on
Section 2.2.2.
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Fig. 15.14 The box model of Stommel (1961). Box 1 represents the equatorial Atlantic and box 2
the subpolar/polar Atlantic. Arrows between boxes indicate the positive direction of the transport q,
and ı is a salt flux (a downward arrow/positive ı is a source of salt for the corresponding box)

we regard them as an equatorial box and a polar box. For simplicity, we assume
D1 D D2 D 1, i. e. identical volumes of the boxes. For a complete description
the salt balance (15.23) for box 1 has to be augmented by the one for box 2 and
by the two corresponding heat balances of the boxes. Note that to allow for steady
state solutions, the salt fluxes have to add to zero, F1 C F2 D 0, and likewise for
the heat fluxes, H1 C H2 D 0, so we use ı D F1 D �F2 and � D H1 D �H2
as surface flux variables. With this choice, a positive ı implies an increase of salt
and likewise a positive � an increase of temperature in box 1. It follows that the
total salt content is constant, S1 C S2 D S0 D const, and likewise the heat content
T1 C T2 D T0 D const. Hence to completely describe the dynamics of the model, it
is sufficient to consider the equations for �S D S1 � S2 and �T D T1 � T2, given
by

1

2

d�S

dt
D ı � jqj�S �K�S and

1

2

d�T

dt
D � � jqj�T �K�T (15.24)

with the flux relation q D �C�� D C.�T � �S/. The flux relation couples the
two equations and introduces a nonlinearity to the system. The model is driven by
a salt source (ı > 0) or sink (ı < 0) in box 1 and a compensating flux in box 2 and
corresponding heat fluxes represented by � with the same properties.

Fixed Surface Fluxes

If the salt and heat fluxes ı and � are prescribed, the model (15.24) can further be
reduced to the balance of the density difference�� D �1 � �2,

1

2

d��

dt
D ' � C j��j�� �K�� (15.25)

which is driven by the fixed density flux ' D ı � �. A positive salt flux ı > 0

makes box 1 heavier and a positive heat flux � > 0 makes it lighter; box 2 behaves
reversed. It is easy to show that under these ‘fixed flux conditions’ only a single
stationary solution exists, i. e. though the model is nonlinear we do not find any mul-
tiple steady states. Note that this property carries over to the models with more than
two boxes, considered later in this section. Only the introduction of mixed surface
boundary conditions yields multiple steady states. In terms of the transport variable
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Fig. 15.15 Steady states of the Stommel box model (15.25) as a function of ' for fixed fluxes for
C D 10 and various values of the lateral diffusivity K D 0; 2; 4; 6; 8. Blue lines denote the
branch with q < 0, black lines the branch with q > 0. The red curve is for K D 0

q D �C��, the steady solutions of (15.25) are

q D �1
2
K C

r
1

4
K2 � C' ; for q > 0 and

q D 1

2
K �

r
1

4
K2 C C' ; for q < 0 (15.26)

and are depicted for several values ofK in Figure 15.15. As expected, for a negative
density flux ' < 0, the circulation is poleward with sinking in box 2 and rising
in box 1, since box 2 is made heavier than box 1. For ' > 0, the circulation and
density difference is reversed. Increasing the lateral diffusivity K leads to weaker
overturning strength.

Mixed Surface Boundary Conditions

Mixed boundary conditions are surface boundary conditions in which the salt flux ı
is prescribed, but the surface heat flux is given by a restoring boundary condition as
in (13.12), i. e. by a restoring to an atmospheric temperature T a

1 over box 1 for which
the surface heat flux is given by H1 D �.T a

1 � T1/, and likewise H2 D �.T a
2 � T2/

for box 2. The total heat balance H1 C H2 D 0 required for a steady state, implies
that T1CT2 D T0 D T a

1 CT a
2 . FromH1 D �H2 D � D �.T a

1 �T1/ D ��.T a
2 �T2/

we infer 2� D �.T a1 � T a
2 ��T /. The thermal balance becomes

1

2

d�T

dt
D �a � jqj�T �

�
K C 1

2
�

�
�T (15.27)

with �a D �.T a
1 � T a

2 /=2. The thermal driving is thus achieved by the atmospheric
temperature gradient. Note that in the present two-box system, the restoring leads
to an increase of the effective diffusivity in the thermal balance. With the fixed flux
condition for salt as before there is no such term in the salt balance11, and the system
given by the salt balance from (15.24) and the heat balance (15.27) can no longer be

11 The original Stommel model has a restoring also in the salt balance (see the box on p. 519) and
zero lateral diffusion. This model leads to multiple steady states only if the restoring coefficients for
salt and temperature are different. We regard salt restoring (or freshwater restoring) as unphysical
for the exchange at the ocean surface and, therefore, use the fixed flux condition.
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expressed only by the density. Both variables – temperature and salinity – are needed.
The steady states of this coupled system can, of course, be found analytically but we
restrict the discussion to a numerical demonstration showing that multiple equilibria
exist. Figure 15.16 displays the trajectories in the phase space .�T;�S/ for three
conditions. With � D 0, the equations for salinity and temperature can be collapsed
to a closed density balance, and as discussed before there is only one equilibrium
solution (left panel). Taking � ¤ 0, a proper choice of the forcing �a and ı leads to
either three or one equilibrium (middle and right panels).

On the other hand, a much simpler system, showing the same principal features,
is derived if the thermal balance is replaced by prescribing the temperatures in both
boxes. Such an assumption can be justified by the relatively fast thermal response of
the ocean to the restoring surface boundary condition compared to the much slower,
entirely advective-diffusive haline response. Formally, we derive the system by let-
ting � approach a very large value such that �=jqj and �=K become large. Then we
obtain �T D T a

1 � T a
2 to lowest order in the steady state. The first order balance

yields the heat flux

�.1/ D .jqj CK/�T (15.28)

which is necessary to balance this state. The model is then governed by

1

2

d�S

dt
D ı � jqj�S �K�S and q D C.�T ��S/ (15.29)

and a fixed �T . It is characterized by the possibility of multiple equilibrium solu-
tions, which are outlined in the box on p. 520. Consider first the simpler case without
the lateral diffusion. The steady states then follow from ı � jqj.�T � q=C / D 0,
obtained by eliminating�S between the two equations in (15.29), and depending on

Fig. 15.16 Phase portrays of the Stommel box model for the mixed surface conditions in the
.�T;�S/-space. The model equations are (15.24) for salinity and (15.27) for temperature. Trajec-
tories of �T.t/ and �S.t/ are shown as blue lines; arrows show the vector .d�T=dt; d�S=dt/
and steady states by red dots. Parameters are in panel a C D 10, ı D 1, 
a D 2, K D 0 and
� D 0, in panel b the same but � D 1, and in panel c asb but 
a D 4. All steady states are
attractive (spiral sinks), except the middle one in panel b which is an unstable saddle node
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the sign of q, two parabolic equations arise,

q2 � qC�T C Cı D 0 for q > 0

q2 � qC�T � Cı D 0 for q < 0
(15.30)

The solutions q.ı/ are easily computed or simply plotted as ı D ı.q/, as done
in Figure 15.17. The magenta and green curves display the full parabolas, and the
black dashed curve reflects the restrictions to q > 0 and q < 0, respectively. The
intersections of the solution at ı D 0 occur at q D 0 and at q D C�T , the turning
point on the branch of q > 0 is at q D C�T=2, ı D C�T 2=4, and the interval
0 < ı < C�T 2=4 is obviously the one where multiple states appear. There are three
steady states in this forcing interval; they will be discussed in detail below. Note
that the window of multiple states is empty if �T D 0; the problem then collapses
on a single state as previously shown for (15.25). Note further that q > 0 requires
�T > �S : the flow is dominated by the temperature contrast. Likewise q < 0

requires �S > �T : the flow is dominated by the salinity contrast. We may thus
speak of the thermally driven branch and the haline driven branch, respectively.

The three possible steady states can be characterized as follows:

� Solutions with �T > �S , i. e. positive q, are mainly driven by the thermal con-
trast between the boxes. There is sinking in the northern box 2; this is called
the thermally driven solution and is equivalent to the solution a1 in the box on
p. 520 and the blue branch in Figure 15.18. For negative ı, where haline forc-
ing supports the thermal forcing, the thermally driven solution has the strongest
MOC (q), and it is the only possible steady state (left panels in the figure of
the box on p. 520). The thermally driven branch continues to exist for positive12

ı � C.�T C K=C/2=4. Note that the thermally driven state with strong posi-
tive q (but positive ı) resembles the presently observed state of the MOC in the
Atlantic Ocean.

� The solution with the highest salinity difference has a reversed circulation,
i. e. a negative q. It is the haline driven solution with equatorial sinking, and
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Fig. 15.17 Steady states of the Stommel model (15.29) without diffusion and C D 10, �T D 2.
b The functions ı.q/ are plotted according to (15.30). The branch with q > 0 is magenta, the
branch with q < 0 is green. The black dashed line is the solution pieced together as in (15.30).
a Here, the corresponding functions ı.�S/ are shown which are obtained by eliminating q D
C.�T ��S/ in the steady version of (15.29)

12 Here,�T > K=C is assumed; if�T is below this threshold, the limiting ı becomes K�T .
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Fig. 15.18 Steady states of the Stommel box model (15.29) as a function of ı for C D 10;�T D
2 and several values of the lateral diffusivity variable K D 0, 2, 4, 6, 8, 10. Panel a shows the
salinity difference �S between the boxes, b the overturning transport q, and c the surface heat flux
into box 1. Blue lines denote the thermally driven branch, black lines the haline driven branch, and
red lines unstable steady states. The K D 0 curve is the one the highest amplitude in �S and q
and the smallest heat flux

it is derived from the solution a3 of the box on p. 520 and the black branch in
Figure 15.18. For negative ı, it does not occur, but for large positive ı it is the
only steady state and is characterized by a relatively weak and reversed MOC
(right panels in the figure of the box on p. 520). It exists for positive ı > K�T

and features equatorial sinking and polar upwelling. The overturning of this so-
lution is driven predominantly by the haline contrast (we have �S > �T and
q < 0), since the haline (freshwater) forcing is strong enough to overcome the
thermal forcing. Note that although the present conditions in the ocean corre-
spond to a positive ı, the steady state of the MOC with equatorial sinking is not
observed, i. e. the ocean appears to be in the thermally driven steady state. There
is, however, speculation that the MOC might also take its possible steady state
with equatorial sinking after a perturbation of the present state, e. g. in a climate
change scenario.
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Fig. 15.19 Examples for the time-dependent behavior of the Stommel model. In a various initial
conditions are used to demonstrate the approach towards the respective equilibrium (red straight
lines). Here ı D 5 and C D 10, �T D 2. In b and c the forcing is made time-dependent as
shown in the black curve in b. The increasing part of ı.t/ yields the blue part of the quasi-steady
solution q.t/, the decreasing part yields the red-dashed part. For further explanation see text. The
black piece of the curve in c is the unstable branch, plotted for reference only. The arrows indicate
the direction which the time-dependent integration follows
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� At intermediate positive values of ı, when K�T < ı < C.�T C K=C/2=4

(see footnote), we find three possible steady states (middle panels in the figure of
the box on p. 520). The larger one with positive q is thermally driven (it is the
continuation of the thermal branch from the negative ı range to positive ı), while
the one with negative q is haline driven. The intermediate state is also thermally
driven but unstable (see below (15.31) and compare with Appendix A.2.1) and
related to the solution a2 of the box on p. 520. It is the red branch in Figure 15.18.
Since the state is unstable, it is not likely that we will meet the system for a longer
period in this state, assuming that there are always small perturbations which will
drive the system away from the unstable state.

� The window of multiple states shrinks to zero for K=C D �T , where only
a single stable steady state survives.

The mathematics of the general case of (15.29) with inclusion of the diffusion
term is analyzed in the box on p. 520 in terms of a generic function f .x/ which
covers the steady states of most box models. For the Stommel model, we find cor-
respondence with the function f .x/ taking d D ı=C , k D K=C and # D �T .
The variable x and the roots ai of f .x/ are identified with �S , and the strength of
the advection is given by qi D C.# � ai /. The solutions of (15.29) are plotted in
Figure 15.18. Hence, as before, there are at most three values of q and�S for a fixed
freshwater flux ı. This is an important result since it implies that for a given freshwa-
ter flux and�T , there could be different steady states of the MOC, which might have
been realized during different climates, as suggested by the paleo-oceanographic ob-
servations.

The heat flux which has to enter box 1 in order to balance the prescribed temper-
ature difference is shown in the right panel of Figure 15.18. It is evaluated according
to (15.28). If diffusion is active, the amountK�T is transferred from the warm box 1
to the cold box 2 by diffusion in addition to the advective part, i. e. with diffusion
more heat has to circulate in the system.

The stability condition for a steady state can be derived by considering the equa-
tion for a small perturbation OS about a steady state �S , governed by

d OS
dt

D 2f 0.�S/ OS (15.31)

with f 0 D df=dx. The steady state �S is stable for f 0 being negative, since then
the perturbation is getting smaller, and unstable for f 0 > 0 because perturbations
will then grow (see also the figure of the box on p. 520).

Following (15.31), the approach (or expelling) of a perturbation towards (from)
a steady state has an exponential time dependence close to the steady state. This is
demonstrated in Figure 15.19a where a range of initial conditions is integrated to
equilibrium for a fixed value of the forcing ı. Making ı time-dependent, the most
interesting behavior is that of a very slow cyclic change, leading to the hysteresis
shown in the panels b and c. The trajectory starts with ı D �15 (blue curve in
Figure 15.19b,c) with some arbitrary initial condition, is immediately (on this long
time scale) attracted to the thermally dominated equilibrium and proceeds now with
increasing ı in a quasi-steady way on this branch towards the bifurcation point at
ı D C�T=2 D 10. With still increasing ı it cannot remain on the thermal branch
but is attracted to the haline equilibrium, on a fast time scale according to (15.31),
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where it continues to stay. At ı D 15 the forcing starts decreasing, the trajec-
torynow follows the haline equilibrium (red dashed curve) to the bifurcation at ı D 0

and jumps there back to the thermal branch. After completing the cycle in the forc-
ing, the trajectory .ı.t/; q.t// forms the hysteresis shown in Figure 15.19c.

83. Stommel’s Original
BoxModel

The box model considered originally by Stommel (1961) has restoring conditions for tempera-
ture and salinity. Let us thus study

1

2

d�T

dt
D 
a � jqj�T �

�
K C 1

2
�T

�
�T and

1

2

d�S

dt
D ıa � jqj�S �

�
K C 1

2
�S

�
�S

If the salinity restoring is meaningful at all, the corresponding coefficient must be small,
i. e. �S 
 �T. With �T D x�T, �S D y�T where �T D K C �T=2, �S D K C �S=2
we obtain a scaled version of the equations, given by

Px D 
a � jx � yjx � x and Py D ıa � jx � yjy � �y
where the forcing parameters are written in the form 
a D 
a=C�2T, ıa D ıa=C�2T , � D
�S=�T and 2C�T is used as dimensionless time unit. The system leads to a cubic problem for
the steady state solution. Temperature and salinity are expressed by x D 
a=.1C jpj/ and
y D ıa=.�C jpj/, respectively, in terms of the transport (density) variable p D x � y which
follows from

p D 
a

1C jpj � ıa

�C jpj or p.1C jpj/.�C jpj/ D 
a.�C jpj/� ıa.1C jpj/

For the case � D 1 (same restoring coefficients for temperature and salinity), only one solution
is obtained for any combination of forcing values: as for the case of fixed fluxes, discussed
above, the problem collapses on a single equation for density with a unique solution. This case
and other values for � are considered in the figure below where x; y; p are plotted as function
of ıa. A window with three steady states emerges and, as before, the thermally dominated and
the haline driven state can be identified as in the case of mixed conditions. Only the branches
with negative slope in p.ıa/ are stable.

Steady state solutions of Stommel’s original box model with restoring boundary conditions. The
steady states of a x (temperature), b y (salinity), and c p (transport) are shown as a function
of ıa for 
a D 10 and several values of the coefficient � D 0; 0:5; 1:0 (the latter in black; it
refers to the right most of the curves where only a single steady state is present).
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84. A Generic
Non-linearity of Box
Models

Stommel’s model (and also Welander’s model; see next section) is governed by a unique function
of salinity contrast. It is easily extracted from the governing equations (15.29) or (15.32) and
given by

f.x/ D d � j# � xjx � kx
with constant coefficients d , # and k. The function f.x/ is important for both Stommel’s and
Welander’s box model, since it determines the time development of the respective box variables,
the roots of the function determine the steady states, and the derivative of f determines their
stability. Depending on # and d the function f.x/ has three roots, given by

a1;2 D 1

2
#

C

 
1˙

s
1� 4d

#2
C

!
; a3 D 1

2
#

�

 
1C

s
1C 4d

#2
�

!

with #
˙

D # ˙ k. It is clear that only real values a1;2 � # and a3 � # are admissi-
ble. The function f.x/ and its roots are displayed in the figure shown below. There is always
one solution, and at most there are three. Bifurcations deriving from f.x/ are of the saddle-
node type (compare Appendix A.2.1). Furthermore, the potential V.x/D � R x

f.x0/dx0 with
dV=dx D �f is shown in the figure. The roots of f correspond then to extrema of V . If the
dynamical system is governed by Px D f.x/ D �dV=dx, then PV D PxdV=dx D �. Px/2 D
�.dV=dx/2 � 0, showing that V.x.t// always decreases until x tends to a steady state where
f D �dV=dx D 0.
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a–c The function f.x/ (dashed black curve; the green and magenta curves are quadratic exten-
sions, shown for k D 0 and # D 2. a, d: d D �0:5, b, e: d D 0:5, c, f: d D 2.) d–f The
potentials V.x/ corresponding to each case of f.x/. The roots of f.x/ and minima of V.x/
are indicated by diamonds.
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15.5.3 Welander’s BoxModel

We present now a double-hemispheric box model which was designed and discussed
by WELANDER13, aiming at the overturning in a single ocean as the Atlantic (We-
lander, 1986). For simplification, the model has, as before, an inactive temperature,
i. e. the temperature differences between the boxes are prescribed as thermal forcing,
with the same reasoning as before. Furthermore, the salinity flux is assumed to be
prescribed; we are thus using mixed boundary conditions.

The set-up of the boxes is depicted in Figure 15.20. At the interfaces of the boxes,
salinity and heat are exchanged, as discussed in Appendix B.4 and the above Sec-
tion 15.5.1. The equations for the salt budgets of box 1 and box 3 are given by

D1
dS1
dt

D �F C ı C jq1j.S2 � S1/CK.S2 � S1/

D3
dS3
dt

D �F � ı C jq3j.S2 � S3/CK.S2 � S3/
(15.32)

The advective flow between the boxes is parameterized as in the relation (15.21) and
is given by

qi D C ŒT2 � Ti � .S2 � Si /� for i D 1; 3

with fixed values T2 � Ti . Note the different directions of the flow rates q1 and q3,
as indicated in Figure 15.20. The box dimensions are chosen for convenience as
D1 D D3 D 1 � 1=

p
3 D D and D2 D 2=

p
3 D 2.1 � D/. The total amount of

salt, given by 2S0, is again conserved, which allows to use

DS1 C 2.1�D/S2 CDS3 D 2S0 D const (15.33)

instead of the prognostic salt balance of box 2. The model is driven by the salt
fluxes F and ı, representing symmetric and asymmetric (with respect to the equa-
tor) contributions to the net salt flux as indicated in Figure 15.20. Furthermore, the
equatorial-to-pole temperature difference �Tep D T2 � T1 D T2 � T3 is assumed
equal for both hemispheres (implying T1 D T3). The only asymmetry in the set-up
is then given by ı. In a realistic forcing scenario, ı should be small compared to the
symmetric flux pattern given by F .

Fig. 15.20 The box model of Welander (1986). Arrows between boxes indicate the positive direc-
tion of the fluxes qi for i D 1; 3, and F and ı denote the symmetric and asymmetric components
of the salt flux

13 PIERRE WELANDER, *1925 in Nice, †1996 in Seattle, oceanographer.
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Fig. 15.21 Phase portrays for Welander’s three-box model (15.32) for symmetric forcing (ı D 0).
Steady states are denoted by red dots, trajectories of S1.t/ and S3.t/ by blue lines, and arrows
show the vector .dS1=dt; dS3=dt/. a is for K D 0:85, b for K D 3, while C D 10, S0 D 2,
F D 5 and �Tep D 2. The four outermost stable solutions in the left picture are spiral sinks, the
middle point is a spiral source, and the remaining four points are unstable saddle nodes (compare
Appendix A.2.1). For theK D 3 case, only one solution survives; it is a spiral sink

Typical phase portrays of the system (15.32) are shown in Figure 15.21, indicating
the possibility of nine steady states. To obtain the steady states for the Welander
model, we may use the roots of f .x/, introduced in the box on p. 520, and solve the
linear system of equations

S2 � S1 D ai ; i D 1; 2; 3 ; S2 � S3 D aj ; j D 1; 2; 3

together with (15.33) for � D �Tep, k D K=C . In S2�S1, we have to put d D d� D
.F � ı/=C , and in S2 � S3 we have to put d D dC D .F C ı/=C . These equations
define the nine (or less) solutions. The thin magenta straight lines in Figure 15.21 are
those given by the above linear relations.

A bifurcation diagram of the system (15.32) (see also Appendix A.2.1) is shown
in Figure 15.22, i. e. the steady states as a function of a control parameter, here taken
as the strength of the symmetric forcing F , while the asymmetric part is set for sim-
plicity to zero, ı D 0 (the impact of the asymmetric forcing ı ¤ 0 is discussed
in the box on p. 524). It becomes obvious that some of the solutions cannot be dif-
ferentiated from each other in terms of the fluxes qi and in terms of the salinity S2
of the middle box, but they can be distinguished in terms of S1 and S3, showing
a rather complicated bifurcation diagram. Note also that nine steady states are vis-
ible, four of which are stable, as found from the Jacobian of the system (compare
Appendix A.2.1).

In the symmetrically forced case, the dependencies of S1 and S3 on the forcing F
are identical and likewise the dependency of q1 and q3, but this does not mean that
the individual steady states have this correspondence (see also the discussion below):
in the range where multiple steady states exist, solutions may have e. g. a positive q1
and a negative q3. It is instructive to look at variables which show the underlying
symmetry occurring in a symmetrically forced experiment: q1 � q3 (also shown in
Figure 15.22) is zero for symmetric overturning, i. e. there is polar up- or down-
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Fig. 15.22 A bifurcation diagram for Welander’s three-box model for symmetric forcing, i. e. steady
states as a function of the symmetric freshwater forcing F , with ı D 0 and C D 10, S0 D 2,
K D 0:85 and�Tep D 2. Black lines denote stable steady states while red lines indicate unstable
ones

welling in both hemispheres and equatorial down- or upwelling, i. e. a two-cell cir-
culation; q1 C q3 (also shown in Figure 15.22), on the other hand, would be zero for
a single-cell overturning including all three boxes, with equal strength of the circu-
lation in both hemispheres. Such a single-cell circulation would correspond to the
presently observed MOC in the Atlantic Ocean. Note also that such a state cannot
be realized (as a stable state) in the present box model with symmetric tempera-
ture forcing. However, there are single-cell circulations possible with e. g. northward
flow in both hemispheres, q1 > 0, q3 < 0, but q1 > �q3. Hence there is still some
corresponding equatorial upwelling.

As before in Stommel’s box model, the steady solutions of Welander’s box model
may be classified in an obvious way as predominantly thermally or haline driven
states, but here also more complicated states appear. The four stable solutions shown
in Figure 15.22 can be classified as follows:

� A two-cell circulation with strong poleward flow in both hemispheres and equato-
rial upwelling which is thermally driven. Both qi > 0, lying on the upper branch
of q1 C q3 and on the zero branch of q1 � q3.

� A much weaker two-cell circulation with equatorward flow in both hemispheres
and equatorial downwelling which is haline driven. Both qi < 0, lying on the
lower branch of q1 C q3 and on the zero branch of q1 � q3.

� A single-cell circulation with strong northward flow in the northern hemisphere
and weak northward flow in the southern hemisphere (q1 > �q3 > 0, lying on
the upper branch of q1 � q3), and sinking in the north.

� A single-cell circulation with strong southward flow in the southern hemisphere
and weak southward flow in the northern hemisphere (q3 > �q1 > 0, lying on
the lower branch of q1 � q3), and sinking in the south.

The last two solutions are of particular interest, since they resemble the present asym-
metric configuration of the MOC in the Atlantic Ocean. In terms of .q1Cq3/, shown
in Figure 15.22, both single-cell solutions lie on the middle stable curve. They clearly
exist only for F > 0. Figure 15.23 shows the single-cell solution with northern sink-
ing (in blue) and southern sinking (in green) separately, to demonstrate that both
have asymmetric salinities and transports in a seemingly symmetrically forced state
(with respect to temperatures and salt fluxes), but the surface heat fluxes, computed
from Hi D .jqi j C K/�Tep for i D 1; 3 (also shown in Figure 15.22), differ. The
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Fig. 15.23 Single-cell solutions in Welander’s three-box model for symmetric forcing (ı D 0)
as a function of the symmetric freshwater forcing F for C D 10, S0 D 2, K D 0:85 and
�Tep D 2. Blue lines denote stable single-cell solutions with northern sinking, green lines denote
stable single-cell solutions with southern sinking, and red lines denote unstable solutions. For S2,
green and blue segments overlie each other

forcing of the respective states is thus asymmetric. In the single-cell state with north-
ern sinking, heat is transported vigorously from box 2 to box 1 (this circulation is
in the thermally driven mode) but only little heat is transported from box 2 to box 3
(this circulation is in the haline driven mode), and it needs a large heat release to the
atmosphere over box 1, much less than over box 3 (vice versa for the single-cell state
with southern sinking).

The single-cell solutions, which we consider as relevant for the present MOC in
the Atlantic Ocean, can only exist in the limited F range where the function f .x/ of
the box on p. 520 has three roots. The overlapping range depends on the diffusivityK
and the asymmetric forcing ı. The window can be diminished up to the point where
overlapping ceases, and the single-cell solutions have to break down to give way

85. Breaking the
Symmetry in Welander’s
BoxModel

The steady states of Welander’s three-box model can be deformed considerably by the imple-
mentation of lateral diffusion described by the K-terms. As for Stommel’s box model, an in-
crease of K shifts the window of multiple steady states towards larger F and shrinks it to
a smaller range up to the point where the window closes at a critical K . Multiple steady states
then do not exist any longer. On this route, the symmetry of the solutions remains valid. More
important is the influence of the asymmetric forcing ı , because it breaks the symmetry imme-
diately. Due to the ‘modulus advection’ in the box models, the fundamental bifurcations are
not generic pitchfork bifurcations (see Appendix A.2.1), but they behave similarly when asym-
metric forcing is introduced. As demonstrated in the figure below, the asymmetric forcing leads
to breaking up the bifurcations on the zero line q1 D q3, creating an isolated branch which,
moreover, shrinks to nothing, if ı exceeds a critical value.
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strength F for C D 10, S0 D 2,K D 0:85, �Tep D 2 and ı D �5;�2; 0; 2; 5 in the five
double panels from left to right, showing only q1 C q3 and q1 � q3. Black lines denote stable
steady states, red lines unstable ones.
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to a two-cell state. Increasing diffusion leads to a smaller range of the existence
for single-cell solutions. Likewise, negative ı narrows the overlapping range while
a positive ı widens the range.

There are obvious deficits in the box model approach presented so far. One prob-
lem is that of resolution: the box models discussed above are just barely resolving
the most important aspects of the global MOC, i. e. polar up/downwelling forced by
an approximately symmetric (with respect to the equator) surface freshwater flux.
Clearly, we can add more and more boxes to gain a better resolution. The Welander
model is readily expanded to a multibox model of the Atlantic- Pacific system, which
has a truly global MOC. The second deficit of the box models in general is the hy-
draulic pipe law (15.21), since it does not account for the Coriolis force, which we
know is important for the large-scale circulation of the ocean. In fact, it turns out
that the second deficit yields an inconsistency between the box models and more
dynamically complete models like the Stommel–Arons model of Section 15.2. This
inconsistency will be discussed in the next section. A third problem of Stommel’s
and Welander’s box model is absence of wind forcing. This deficit is remedied in
Section 15.5.5.

15.5.4 An Inconsistency of the BoxModels

The law (15.21), which was used as the closure for the meridional transport in the
box models, is inconsistent with the large-scale ocean dynamics. This was first noted
by Straub (1996). To demonstrate this inconsistency, Figure 15.24 shows the result
of an integration of the linearized version of the two-layer model discussed in the
box on p. 527,
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where � denotes the thickness variations of the lower layer of a two-layer ocean with
mean lower thickness H , and with a density difference between the two layers ��
represented by the reduced gravity g� D g��=�0. The velocities u and v denote the
differences between the upper and lower layer velocities.

The model is almost identical to the Stommel–Arons model discussed in Sec-
tion 15.2. The prescribed deepwater source in the lower layer is denoted by Q. The
interior upwelling is parameterized by the term �
� in the thickness balance of the
lower layer. It represents a parameterization for the effect of diapycnal diffusion on
the lower layer thickness. In the linearized momentum balance, friction by subgrid-
scale processes is represented by Rayleigh friction with coefficient r . For the ex-
periments shown in the following, we have used r D 2 � 10�6 s�1, 
 D 10�9 s�1,
g� D 0:02m s�2, andH D 400m. The system is integrated on an equatorialˇ plane
with ˇ D 2:3 � 10�11 m�1 s�1, and the horizontal resolution is 20 km in the zonal
and meridional direction. This layer model will be referred to as LM.
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Fig. 15.24 Numerical simulation of the layer model after 160 years of integration. a Layer thick-
ness � in m (contours) and velocity (arrows) in m s�1 with the deepwater source Q localized in the
north-western corner. b Same as a but with the deepwater source Q located at the equator y D 0
on the western side. c Same as a but withQ at the south-western corner. d Zonally averaged layer
thickness N� in m for the experiment shown in a. e Same as d but for the equatorial source. f Same
as e but for the southern source. g Total meridional transport in Sv (black), transport in the western
boundary layer (red) and transport in the interior (blue) for the experiment shown in a. h Same as g,
but for the equatorial source. i Same as g, but for the southern source

To demonstrate the influence of the transport and the pressure field on the
location of the deep water source, Q was placed at three different locations in
three different experiments. The results are shown in Figure 15.24a–c where the
location of the deepwater source was placed at the north-western corner of the model
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86. Linearized Reduced
Gravity Model

The layer model of Appendix B.1.2 is given in a linearized version by
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We consider a system with two layers where i D 1; 2, and where the layer thickness di was
decomposed into a large mean value Hi and a perturbation d 0

i
which was assumed to be small.

The upper layer pressure is given by p1 D g� and the lower layer pressure by p2 D g� C
g���=�0, where � is the surface elevation, � the interface elevation, and ��=�0 the (scaled)
density difference between the layers. Written in terms of the velocity difference u0 D u2 �u1
and v0 D v2 � v1, we obtain
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with the reduced gravity g� D g��=�0. The upper layer and lower layer thickness are given
by d 0

1 D � � � and d 0

2 D �, such that the two layer thickness balances are combined as
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Since the surface elevation � is much smaller than the interface displacement, the term related
to @�=@t is usually neglected.

domain, at the equator at the western boundary and at the south-western corner of the
model domain. As in the Stommel–Arons model, two dynamically different regimes
develop, i. e. a narrow western boundary layer with strong meridional flow and an
weak interior flow, which is characterized by uniform upwelling. In the interior, the
velocity field and the thickness contours are almost identical in all three cases, and
the meridional interior transport is always poleward. This is because in the interior
the Sverdrup balance
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holds to a very good approximation. We also need to know that � is related toQ only
in an integral sense, i. e.




Z
�dxdy D

Z
Qdxdy (15.34)

in the integral over the whole model domain; however, the right-hand side of (15.34)
has only contributions from the western boundary region. The meridional interior
transport is driven by the interior upwelling, which is almost identical in each case,
i. e. uniform and of similar magnitude. The differences between the experiments can
only be seen in the western boundary current which has to balance, on the one hand,
the interior flow and the upwelling (in all three cases similar) but, on the other hand,
the different inflows of the deep water sourceQ, as discussed in Section 15.2.

Figure 15.24 also shows the zonal averages of the thickness � and the meridional
transport in the lower layer, i. e. the MOC in the two-layer model. It is clear that
the location and strength of the deep water source Q in the thickness budget deter-
mines the transport in the lower layer, i. e. whenQ is located at the northern-western
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corner, the total meridional transport is southward in both hemispheres of the do-
main, see Figure 15.24g (solid line), and it is everywhere northward for a deepwater
sourceQ located at the south-western corner of the domain, see Figure 15.24i, while
the total transport is polewards in both hemispheres for an equatorial source, see Fig-
ure 15.24h. The magnitude of the source Q drives a transport of about 5 Sv in the
vicinity of the source in each case, which linearly reduces due to interior constant
upwelling into the upper layer with increasing distance to the source.

The transport in the western boundary layer, also shown in Figure 15.24, is of
similar magnitude as the total transport, although the western boundary layer is
much smaller than the total width of the basin. It is also of the same direction as
the total transport, except for the region y < �2;500 km, jyj > 2;500 km and
y > 2;500 km for the experiment with northern, equatorial, and southern source,
respectively, where it opposes the total transport. The interior meridional transport,
on the other hand, is poleward and identical in each experiment, as already discussed.

Since the western boundary layer is small compared to the width of the interior
region, the zonal integral of � is dominated by the interior profile to a large extent,
and thus the zonally integrated � becomes independent of the location of the deep
water source Q. The result is that �, and in particular the meridional gradient of �,
becomes independent of the location of Q and thus of the sign and strength of the
meridional transport. This is in contrast to Stommel’s law (15.21), where the merid-
ional transport between the two boxes is parameterized by the meridional density
difference between the boxes.

As a consequence, the parameterization in Stommel’s box model is not consis-
tent with the Stommel–Arons model. This inconsistency is transferred to the other
box models, which we have discussed in Section 15.5. Moreover, the scaling laws,
introduced earlier in Section 15.4, also suffer in this respect (but not the one in Sec-
tion 15.4.2).

The independence of the meridional gradient of the zonally averaged thickness
from the meridional transport is not specific to layered models but is also found in
a primitive equation model (PEM) with a configuration similar to that of LM. In
the present PEM, we have neglected momentum advection (as before), and, for sim-
plicity, the only tracer is temperature. The model domain is identical to the layered
model, but there are 20 vertical levels of 50 m thickness, such that the domain is
1,000 m deep. PEM is forced by relaxation of temperature in the uppermost grid box
towards a target temperature, which is zonally and meridionally uniform except for
a small region of meridional width r=ˇ (equivalent to the western boundary layer
width) at the northern or equatorial region with a 3 K smaller target temperature.
This way, a northern or equatorial deepwater formation region is introduced as in the
layered model. A case with southern source is just a mirror of the one with north-
ern source and, therefore, not further discussed. The time scale of relaxation at the
surface is 20 days. Convection in case of unstable stratification is parameterized by
setting the vertical diffusivity to very large values. As in LM, there is no wind forc-
ing, i. e. we focus here on the thermohaline circulation. Friction is identical to the
LM, except that we introduce in addition lateral and vertical friction with viscosities
of 3:2� 104m2 s�1 and 10�3 m2 s�1, respectively. Otherwise unphysical oscillations
develop on a short time scale. We use the Quicker advection scheme (Leonard, 1979)
for tracers and vertical diffusivity of 10�4 m2 s�1 in addition.

The steady solution of PEM, shown in Figure 15.25, indeed has much resem-
blance to LM. In the experiment with northern source, there is a deep temperature
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Fig. 15.25 The upper row displays in a the meridional overturning stream function  (contour
interval is 0.5 Sv) and in b the zonally averaged temperature (contour interval is 0:5ıC) of PEM
with a deepwater formation region at the northern boundary. The meridional overturning stream
function (contour interval is 2 Sv) and zonally averaged temperature (contour interval is 0:5ıC) for
an equatorial deepwater formation region is shown in c and d, respectively. The results are time
averages over the last 100 years of a 200 years integration

minimum at the equator, and isopycnals below about 500 m depth are symmetric with
respect to the equator, bending towards the bottom and towards the poles. A similar
‘hill’, symmetric around the equator, can be seen in the experiment with the equa-
torial source, although it is located more to the surface than at depth. Figure 15.25
also shows the meridional transport in both experiments with PEM by the merid-
ional stream function � with Nv D �@�=@z (see (15.47) below). The surface forcing
drives a volume transport of a couple of Sv in both cases. In case of the northern
source, there is southward flow at depth, almost uniform upwelling in the interior,
and northward return flow at the surface. Sign, magnitude and structure of the merid-
ional transport is also very similar to LM in the experiment with equatorial source
(see Figure 15.25c,d).

As for LM, the meridional gradient of the zonally averaged density (i. e. temper-
ature) or pressure (not shown) is similar in both experiments with PEM and is of
opposite sign in both hemispheres. Their depth dependence differs. The meridional
transport, on the other hand, does not show any direct dependency on @ N�=@y, with
respect to the individual hemispheres or experiments, proving the downgradient clo-
sures based on Nv 	 @ N�=@y to be wrong in primitive equation models as well. The
reason is, of course, the same as in LM, notably the zonally averaged pressure Np is
dominated by the interior zonal mean of p, which is in turn governed by the friction-
less Sverdrup relation in the interior.
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15.5.5 A BoxModel with Forcing Induced byWind and Eddies

The aforementioned inconsistency of thermohaline box models with respect to the
large-scale geostrophic dynamics is not restricted to the ‘classical’ models of Stom-
mel and Welander. Newer investigations of the global overturning with box models
mostly follow the approach of Gnanadesikan (1999). The configuration of the model
is sketched in Figure 15.26a. It aims at the overturning in the Atlantic, and – de-
spite of the mentioned inconsistent dynamics – we will use it to pick up the question
where the upwelling branch of the circulation is situated: in the tropical thermocline
or in the Southern Ocean or in both places, as sketched in Figure 15.12 and dis-
cussed in Section 15.3.3. In extension of the purely thermohaline box models, the
Gnanadesikan-like model includes the driving by wind and by eddies in the South-
ern Ocean. Concerning the parameterization of the latter process we build on the
descriptions in Sections 12.2.4 and 16.6 without further explanations in this section.

Transferred to a box configuration, as depicted in Figure 15.26b, the Gnanade-
sikan model consists of four boxes, the Southern Ocean (s), the tropical Atlantic
domain (u) above the thermocline, the region (n) of deep water formation in the
North Atlantic, and the deep ocean (d ) beneath box u. The crucial parameteriza-
tion concerns the transport qn from tropical box u to the northern box n. Gnanade-
sikan (1999) explicitly assumes a frictional closure as in the previous box models
(see Section 15.5.1; see also the comprehensive discussion in the next section). The
transport qn is placed entirely in the western boundary layer (the recirculation is ig-
nored) and a balance between friction and the overall meridional pressure gradient
(not the local one) is utilized. The argument used in Johnson et al. (2007), on the
other hand, avoids friction: the transport qn across the thermocline in the northern
hemisphere is computed from the geostrophic balance f v D g��@�=@x, where � is
the actual thermocline depth and a motionless abyss is assumed (the configuration is
presented in the box on p. 527). Note that�� is the vertical difference of the density
at northern latitudes of the tropical region of the model. We find

qn D
EZ

W

�vdx D g��

2fn

�
�2E � �2W

�
(15.35)

Fig. 15.26 A schematic view of the conceptual model by Gnanadesikan (1999). a The thermo-
cline depth D depends upon a balance between the northward Ekman transport qEk arising due
to southern ocean winds, the eddy-induced southward transport qeddy in the circumpolar current,
diapycnal upwelling qu in the interior, and northern hemisphere sinking qn. b A version with four
compartments named s, u, n and d . Redrawn after Johnson et al. (2007)
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where the indices refer to the eastern (E) and western (W ) boundary points of the
respective section. The crucial step is now to relate the E � W difference of �2

to the mean (squared) thermocline depth D2. In the model a unique value of D
is used for the entire Atlantic and �2E � �2W is equated to D2. We are thus facing
again the inconsistent relation between an east-west difference and a section mean
of the pressure field, as discussed in the previous section. The frictional approach of
Gnanadesikan (1999) yields the same dependence qn 	 ��D2 as the geostrophic
approach of Johnson et al. (2007), only the constant of proportionality differs. Both
approaches are thus affected by Straub’s dilemma. Note that fixing D to a constant
thermocline depth leads to the linear relation between qn and �� of the Stommel
model.

The parameterizations of the remaining transports are less questionable. The up-
welling transport qu, situated in the tropical regions, is set by the advective-diffusive
Munk balance (see the box on p. 364),

qu D KvAu

D
(15.36)

where Kv is the vertical diffusivity and Au the area of upwelling. The transports
in the Southern Ocean are discussed later in Section 16.6. We argue there for the
expressions

qEk D �0X

jfsj and qeddy D �K`XD
Y

(15.37)

for the wind-induced (Ekman) part and the eddy-induced part, respectively. Here,
X is the circumpolar length at Southern Ocean latitudes, and Y is the meridional
width of the frontal region. Furthermore, K` is the thickness diffusivity, following
Gent and McWilliams (1990), and the isopycnal slope is written as s D �D=Y . The
mass balance of the volume above the thermocline is given by qEkCqeddy Cqu �qn D
0. We proceed with the qn D .g��/=.2fn/D

2 of Johnson et al. (2007). It yields the
cubic equation

KvAu

D
C �0X

jfsj � K`X

Y
D � g��

2fn
D2 D 0 (15.38)

for the thermocline depth D.
It is not surprising that the conventional scaling relations (15.9) are recovered

from (15.38) if the contributions from the Southern Ocean are ignored – the physics
leading to these relations are identical (compare to Section 15.4.1). More specific,
the relations

D D
�
2KvfnAu

��

�1=3
and qn D KvAu

D
D .KvAu/

2=3

�
��

2fn

�1=3
(15.39)

are obtained and apply to the scenario depicted in Figure 15.12a. To achieve the value
D D 570m, estimated by Gnanadesikan (1999) from the observed density section
in the Atlantic, the vertical diffusivity must be chosen as Kv D 0:4 � 10�4 m2 s�1

which is a reasonable value14 for a large-scale mean (see e. g. Section 11.3.3). The
northward transport qn becomes 17 Sv which is also reasonable.

14 Note that the value ofKv is smaller than the one used for the estimates reported in Section 15.4.1.
On the other hand the lateral scales in that section also differ from the ones used here. We adopt the
standard values X D 30;000 km, Y D 1;500 km, Au D 2:4 � 1014 m2, �0 D 10�4 m2 s�2,
g�� D 0:01m s�2, fn D jfsj D 10�4 s�1 from Gnanadesikan (1999).
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The other interesting limit can easily be evaluated as well, the one depicted in
Figure 15.12b where all upwelling occurs in the Southern Ocean. Abandoning the
tropical upwelling (Kv ! 0), we find a quadratic equation for D,

�0X

jfsj � K`X

Y
D � g��

2fn
D2 D 0 (15.40)

If, for simplicity, the slope s D �D=Y is assumed approximately constant, a square
root behavior of the thermocline depth on the windstress in the Southern Ocean re-
sults, and, moreover, the northward transport qn becomes independent on the density
gradient. In this scenario, the water sinking in the North Atlantic is replenished by
the northward Ekman transport qEk in the Southern Ocean, and the counteracting
eddy-driven transport qeddy must be smaller than the Ekman transport (which is gen-
erally the case; see the discussion in Section 16.6). This is also the reason why only
one of the two exact solutions of (15.40)

D D K`Xfn

g��Y

 
�1˙

s
1C 2�0Y 2g��

K2
`
Xfnjfsj

!
(15.41)

is relevant (the negativeD corresponds an unphysical inversion of the slope s). The
above mentioned value of D is obtained by the choice of K` D 1;200m2 s�1 which
leads to qn D 16 Sv. The Ekman transport is qEk D 30 Sv, the eddy transport qeddy D
14 Sv (southward). All these values are reasonable and we refer to Chapter 16 on the
Southern Ocean circulation for a thorough discussion.

We conclude that the model does not distinguish between either of the two sce-
narios, i. e. upwelling in the tropics or in the Southern Ocean. Concerning the ther-
mocline depth and water-mass transports, the parameter values yield about the same
magnitudes and both scenarios are acceptable. The solution of the full (cubic) prob-
lem (15.38) is straightforward (see Gnanadesikan, 1999) but does not bring much
additional understanding (there is only one positive solution for D). Knowing then
the dependence of the transports on the density difference, a coupling to the thermo-
haline balances of salt and heat can readily be done as for above box models. As no
surprise, multiple steady states are found (see e. g. Johnson et al., 2007).

15.6 Zonally AveragedModels of the Meridional Overturning

The vertical integral of the equations of motion emphasizes the wind-driven part of
the ocean circulation. The effects of stratification appear as an integrated forcing (in
form of the bottom torque or the JEBAR term, see Section 14.2) in the equation
of the horizontal mass transport. A complementary view is gained from zonal inte-
gration, and one might hope to learn from the zonally averaged equations about the
meridional flow, the MOC, and thus about the thermohaline circulation (see also the
box on p. 484). Much work has been invested during the recent decades to study
the MOC in zonally averaged models of the ocean circulation (e. g. Marotzke et al.,
1988; Wright and Stocker, 1991; Wright et al., 1995). There are now several coupled
Earth system models of intermediate complexity including zonally averaged ocean
model components. Because of their low computational costs, such models are of-
ten used for paleo-climate simulations and long-term climate projections – several
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of them are included in the fourth (climate) Assessment Report (Solomon et al.,
2007) – while ocean-only versions are used e. g. for studies discussing the stability
of the thermohaline circulation. Zonally averaged models serve as an intermediate
step between the box models discussed in the previous section and comprehensive
three-dimensional ocean models.

15.6.1 The Zonally Averaged Systemof Equations

In this section, we will introduce and discuss the zonally averaged system of equa-
tions. We have used such equations before in Section 15.4.2. As there and as in
Section 15.2 on the Stommel–Arons model, we work within the planetary approxi-
mation, which is relevant for the oceanic circulation on lateral scales much larger
than the Rossby radius, as discussed in Chapter 5.1. As before, we consider an ocean
basin of constant15 zonal width B D xE � xW and define zonal averages (denoted
by an overbar) of all fields, e. g. NT .y; z/ D .1=B/

R xW
xE

T .x; y; z/dx for the tem-
perature. The zonally averaged equations, written here for convenience in Cartesian
coordinates, become

@ Nu
@t

� f Nv D �ıp
B

C @ N� .x/
@z

C NF .x/ (15.42)

@ Nv
@t

C f Nu D �@ Np
@y

C @ N� .y/
@z

C NF .y/ (15.43)

@ Np
@z

D �g N� (15.44)

@ Nv
@y

C @ Nw
@z

D 0 (15.45)

@ N
@t

C @ Nv N
@y

C @ Nw N
@z

D NQ� � @v00
@y

� @w00
@z

(15.46)

where  stands for any of the two active tracers salinity S or potential temperature T .
The zonally averaged density is assumed to satisfy the equation of state in the form
N� D F. NS; NT ; Np/, i. e. the impact of nonlinearity of the equation of state on the zonal
averages is ignored.

The zonal pressure difference ıp.y; z/ D p.xE/�p.xW/ between the eastern and
the western coasts appears in the zonal balance (15.42). It is unknown but cannot be
ignored because of the dominating geostrophic balance in large-scale flows. How
to find the zonal pressure difference for a Rayleigh model was already discussed in
Section 15.4.2 and is assessed further below when we derive specific model types.
The zonally averaged thermohaline balances (15.46) also contain as unknowns the
divergence of eddy fluxes .v00; w00/, arising from the zonal covariances of velocity
and , which are sometimes called standing eddies (see the box on p. 563). These
eddy fluxes are unknown as well. They have to be parameterized by zonally averaged
quantities, but are usually simply ignored, as we will do in the following.

In addition, turbulent eddy fluxes, resulting from the previous Reynolds averag-
ing over motions smaller than the Rossby radius, appear in the equations. As usual,

15 Most of our analysis can easily be generalized to a zonal basin width depending on .y; z/. The
equations, however, become cumbersome without much more to learn from them.



534 15 The Meridional Overturning of the Oceans

we have separated the vertical component N� D . N� .x/, N� .y// of the eddy-induced mo-
mentum fluxes from the horizontal ones. The terms NF .x/ and NF .y/ denote the zonal
means of the horizontal divergences of the eddy-induced fluxes of momentum. As
before in Section 15.4.2, we will eventually parameterize them as Rayleigh friction,
i. e. NF .x/ D �r Nu and NF .y/ D �r Nv, and we will use the usual downgradient clo-
sure for the vertical frictional terms, i. e. N� .x/ D Av@ Nu=@z and N� .y/ D Av@ Nv=@z
with a vertical viscosity Av. Diabatic sources and sinks in the thermohaline balance
(15.46) are summarized by NQ�. They will be expressed in the conventional diffusive
form as well, both for the lateral and the vertical direction.

The two-dimensional mass balance (15.45) allows to describe the circulation by
the Eulerian stream function� for the velocity in the meridional-vertical plane. This
stream function will be called the MOC stream function and is given by

Nv D �@�
@z

and Nw D @�

@y
(15.47)

Mass conservation requires that the stream function � is constant on solid bound-
aries.

Except for above mentioned unknown pressure difference and the standing-eddy
flux, the zonally averaged equations are complete and may be solved if appropriate
boundary conditions are specified. Boundary conditions for the vertical eddy fluxes
of momentum at the sea surface at z D 0 and the bottom at z D �h translate to
N� D �0 at z D 0 and N� D �b at z D �h, where �0 is the windstress vector
and �b the frictional stress at the bottom. The bottom stress condition, given above,
is generally replaced by a no-slip condition for . Nu; Nv/ which then determines the
frictional bottom stress �b. Free-slip models, on the other hand, use �b D 0. At the
bottom z D �h we assume zero fluxes of heat and salt. Lateral eddy fluxes of heat
and salt across lateral boundaries will be taken zero at solid meridional boundaries.

The wind forcing may, of course, be abandoned altogether to obtain a strictly
thermohaline driven model, and we will focus on such models in this section. We
would like to point out, however, that most models can be easily be supplemented by
wind-driving.

15.6.2 The Downgradient Closures

Next we discuss some prominent closures for the zonal pressure difference ıp.
A very simple case is a nonrotating ocean. Then the meridional momentum bal-
ance (15.43) is sufficient to determine the zonal mean meridional velocity Nv, and
the zonal balance and knowledge of the zonal flow Nu becomes irrelevant because it
does not enter the other equations. In steady state, the meridional pressure gradient

87. Hagen–Poiseuille
Flow

Flow in a tube under the action of a pressure drop between the ends and friction on the tube
walls was studied by Hagen in 1839 and Poiseuille in 1840. In a two-dimensional setting (with
the ‘tube’ along the y-direction), the flow is governed by Av@

2v=@z2 D @p=@y with no-slip
boundary conditions v D 0 on the bounding planes at z D 0 and z D �H . For a constant
pressure gradient, the solution is parabolic: v.z/ D .@p=@y=.2Av//.z C H/z and clearly
v < 0 for @p=@y > 0. The volume transport is

R
v.z/dz D �.@p=@y/H3=.12Av/.
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is balanced by friction,

@ N� .y/
@z

C NF .y/ D @ Np
@y

(15.48)

and parameterizing friction in one or the other conventional way (where the friction
terms depend solely on Nv), we end up with a closed set of equations. Note that in
such models Nv is downgradient with respect to the pressure field. A prototype is the
HAGEN–POISEUILLE16 flow, briefly introduced in the box on p. 534. We may refer
to the closure models, presented in this section, as Hagen–Poiseuille models.

Ignoring the Coriolis-term

Marotzke et al. (1988) proposed a closure for the zonally averaged system based on
the momentum budget (15.43), in which the Coriolis force was simply ignored (see
also the box on p. 507). In its simplest form one has the balance

0 D �@ Np
@y

� r Nv (15.49)

Note that we have assumed steady state, that we have neglected the vertical stress
term � .y/, and that we have also used Rayleigh friction for the frictional term F .y/.
Then (15.49) relates the meridional flow with the meridional pressure gradient very
similar to the hydraulic law in Stommel’s box model (15.21). Motivation for the clo-
sure comes from a two-dimensional circulation without rotation which is frictionally
controlled as discussed in the box on p. 534.

Originally, Marotzke et al. (1988) proposed to use vertical friction instead of
Rayleigh friction. However, the specific choice of the friction does not change the
fundamental relation between the meridional pressure gradient and the meridional
transport. Using vertical friction with the usual downgradient form � .y/ D Av@ Nv=@z
instead of Rayleigh friction yields accordingly

Av
@2 Nv
@z2

D @ Np
@y

(15.50)

for simplicity written here with a constant vertical viscosity Av. The horizontal mo-
mentum transport by eddies is ignored, i. e. F .y/ D 0. To obtain the meridional
transport, (15.50) has to be vertically integrated twice, using appropriate boundary
conditions at top or bottom. To achieve, however, some limited similarity with a ro-
tating three-dimensional ocean, with respect to the strength of the circulation, the
vertical viscosity has to be increased, replacing Av by a much larger effective diffu-
sivityA0

v. A formal argument for this closure is given by Wright et al. (1998) showing
that A0

v 	 AvB=ı where ı is the width of the western boundary current and B the
basin width. Hence the closure by Marotzke et al. (1988) hence effectively describes
a super-viscous Hagen–Poiseuille flow.

16 GOTTHILF HEINRICH LUDWIG HAGEN, *1797 in Königsberg, †1884 in Berlin, engineer, and
JEAN LOUIS MARIE POISEUILLE, *1797, †1869 in Paris, physiologist and physicist.
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Parameterizing the Zonal Pressure Difference

A closure with very similar results but with different reasoning was proposed
by Wright and Stocker (1991). They choose

ıp

B
D �� sin 2'

@ Np
@y

(15.51)

where ' denotes latitude and � a constant of order 1. The zonal pressure difference
is expressed in terms of the local meridional pressure gradient. The model is of the
downgradient nature: using the geostrophic approximation, Nv is found to be propor-
tional to @ Np=@y. Thus the closure is also similar to the hydraulic law of Stommel’s
box model (15.21) (with a hydraulic constant C 	 cos' dependent on latitude).
Wright and Stocker found some limited empirical support for the closure (15.51)
in numerical experiments with a three-dimensional circulation model (however, in
a highly diffusive state). Note that the closure is not based on a dynamical concept.

Parameterizing the Ageostrophic Velocity

Wright et al. (1998) avoid a direct closure for the pressure difference ıp. The zonal
momentum balance is entirely abandoned, and the zonally averaged meridional mo-
mentum balance is written as

f NuC @ Np
@y

D f . Nu � Nu.g// D �r Nv (15.52)

with the geostrophically balanced zonal mean velocity Nu.g/ D �.1=f /@ Np=@y. Note
that, for simplicity, the vertical stress term is again neglected and the horizontal stress
is parameterized as Rayleigh friction. The original model uses horizontal and vertical
viscous friction terms with no principle consequences on the closure.

To determine the meridional velocity Nv related to the frictional terms, the
ageostrophic zonal velocity Nu � Nu.g/ must be known. For this reason, Wright et al.
(1998) divide the zonal extentB of the ocean into a western frictional boundary layer
of width ı and an interior part of width Bi D B � ı � ı. They further write

B. Nu � Nu.g// D Bi. Nui � Nu.g/i /C ı. Nub � Nu.g/b / (15.53)

with the total zonal velocity averaged over the interior and the western boundary
layer, Nui and Nub, and their geostrophic counterparts Nu.g/i and Nu.g/b , respectively. The

interior flow is largely geostrophic, j Nui � Nu.g/i /j � j Nu.g/i j, and thus the first term on
the right-hand side of (15.53) is generally small. In the western boundary layer, how-
ever, the flow has both a geostrophic and an ageostrophic component, but the local
velocity u vanishes on the continental side of the layer and is largely governed by
the geostrophic balance on the offshore edge of the western boundary layer. Wright
et al. (1998) further assume that the interior geostrophic component continues only
moderately changed into the boundary layer and to the actual boundary. Hence the
magnitudes of Nub � Nu.g/b and Nu.g/b should be similar but of opposing signs in the
boundary layer, and roughly

B. Nu � Nu.g// � ı. Nub � Nu.g/b / � �ı Nu.g/i � �ı Nu.g/ (15.54)
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should hold. Inserting the parameterized ageostrophic velocity given by (15.54) into
the meridional momentum balance (15.52) yields

Nv D � ı

rB

@ Np
@y

(15.55)

which is again similar to Stommel’s hydraulic law (15.21) and a closure of Hagen–
Poiseuille type. Note that the closure (15.55) is entirely based on geometric argu-
ments: it uses the observed structure of a basin-wide circulation with a narrow west-
ern boundary current but no further dynamics.

The Inconsistency of the Downgradient Closures

All above mentioned closures express the meridional flow by the meridional pres-
sure gradient. It was shown in Section 15.5.4 that this downgradient relation does
not hold in models which contain the zonally resolved dynamics, as for instance the
Stommel–Arons model, discussed in Section 15.2, and the LM and PEM simula-
tions, discussed in Section 15.5.4. These considerations cast doubts on the validity
of the closures presented so far in this section. We, therefore, continue with two
dynamically consistent closures in the following sections.

15.6.3 A Vorticity-Based Closure

Wright et al. (1995) propose a dynamically consistent closure by splitting the ocean
basin into a western boundary layer and an interior and consider the vorticity bud-
gets averaged separately over both regions. Assuming a frictionless interior and using
specific parameterizations for friction in the western boundary layer, they derive a re-
lation between the meridional transport Nv and zonally averaged pressure Np, which is
nonlocal and not downgradient. The derivation of the closure in Wright et al. (1995)
is unnecessarily complicated. Here we give an alternative simplified derivation with
less assumptions to arrive at a similar equation. Instead of the vorticity balance and
its integration, we will use the momentum equations directly. The model, in fact,
bears on the same dynamics and arguments put forward in Section 15.4.2.

Our analysis starts with the zonal momentum balance (15.12) in the zonally aver-
aged form

�f Nvb D �.pı � pW/=Bb � r Nub (15.56)

f Nvi D �.pE � pı /=Bi � r Nui (15.57)

derived separately for the boundary layer and the interior regime. The pressure values
pE, pW, and pı refer to the eastern and western boundary and the outer eastern rim
of the boundary layer, respectively. Furthermore,B ,Bb, andBi denote the total basin
width from the western to the eastern boundary, the width of the western boundary
layer, and the width of the interior, respectively. The total meridional transport and
the zonally averaged pressure can be obtained via

B Nv D Bb Nvb C Bi Nvi and B Np D Bb Npb C Bi Npi (15.58)
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Zonal averages of variables over the whole basin are indicated with overbars without
an index; zonal averages over the boundary layer or the interior carry an additional
index b or i, respectively. The width of the interior domain is Bi, the boundary layer
width, given by ı D r=ˇ, is denoted by Bb for consistency, and the total zonal extent
of our model domain is B D Bb C Bi. Obviously, Bb � Bi.

Only a few approximations lead to the closure of Wright et al. (1995). First, the
friction term in (15.57) will be neglected. Because of the kinematic boundary con-
dition uE D 0 at the eastern boundary it follows from (15.12) that @pE=@y D 0 or
pE D const. Second, the pressure perturbation pW along the western boundary is
eliminated by the meridional velocity vW using the steady meridional momentum
balance at xW in the form

0 D �@pW

@y
� rvW (15.59)

and vW is parameterized by Nvb. Note that uW D 0 was assumed. Next, the friction
coefficient r in (15.59) is replaced by ˇBb using Bb D r=ˇ as the boundary layer
width (note that this ‘trick’ cannot be done for viscous friction, leading to some
complications in Wright et al. (1995)). Integrating (15.59) meridionally starting at
y0, (15.56) takes the form

f Nvb � ˇ

yZ

y0

Nvbdy0 D
yZ

y0

f
@ Nvb

@y
C .f Nvb/

ˇ̌
ˇ
y0

D .pı � pW.y0//=Bb C r Nub (15.60)

where integration limit y0 is arbitrary. The meridional velocities Nvi and Nvb then follow
from (15.60) and

f Nvi D .pE � pı/=Bi (15.61)

and are seen to be both determined by pı , the pressure on the interface of the two
regime domains. Note that the frictionless interior balance leads to pE D pı.y D 0/.
Wright et al. (1995) propose the closure pı D � Np in terms of Np and neglect the last
term in (15.60) related to friction. Both are quite good assumptions for the models
LM and PEM in Section 15.5.4 outside the northern and southern boundary layers
(not shown). Note, however, that (15.60) only determines the derivative of Nvb, and
thus it is necessary to set an integration constant for Nvb. One may take Nvb.y0/ which
by (15.60) is obviously related to the unknown pW.y0/. To arrive at the central equa-
tion of the model, (15.60) is derived with respect to y, divided by f and integrated
from y0 to y (in the same hemisphere to avoid the singularity at y D 0) to give Nvb.
Using (15.58), the total meridional flow is then governed by

B Nv D Bb Nvb.y0/C �

yZ

y0

f �1 @ Np
@y

dy0 � .�=f /. Np � Np.y D 0// (15.62)

involving now the unknown Nvb.y0/. As integration constant, Wright et al. (1995)
use the boundary transport at the northern and southern boundary, which they relate
to the interior flow at the respective boundary (the relation (15.62) is used twice to
circumvent the singularity at the equator).

In contrast to the dynamically inconsistent closures of the previous section, the
present closure represents a nonlocal relation between the zonally averaged pressure
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and the meridional flow, and it is based on dynamically consistent arguments. How-
ever, there is a problem associated with it: the integration constant Nvb.y0/ remains to
be specified. In the Stommel–Arons model, the interior flow Nvi is poleward and does
not depend on the location of the deepwater source. However, the total meridional
flow, Nv does depend on it and can even take a sign different from that of Nvi. It follows
that the integration constant Nvb.y0/ in (15.62) has to contain the information about
the sign of the total transport. Nevertheless, it remains unknown as long as we do
not know the location of the deep water source. This major drawback of the closure
proposed by Wright et al. (1995) is resolved by the closure which we describe in the
following section.

15.6.4 A Zonally AveragedModel with Consistent Dynamics

In this section, we discuss a closure for zonally averaged models which avoids the
specification of integration constants. We simply use separate temperature and salin-
ity and momentum budgets averaged over the interior and the western boundary
layer. We also keep all time derivatives. The system of equations averaged separately
over the western boundary layer and over the interior is given by

@ Nu˛
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� f Nv˛ D �ıp˛=B˛ C NF u
˛
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� �˛uı N˛=B˛
@ Nv˛
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C @ Nw˛
@z

D ��˛uı=B˛

with ˛ D b; i indicating the boundary or interior part, respectively, and �b D 1 and
�i D �1. Momentum advection has been neglected as before. The standing eddy
fluxes in the temperature and salinity budget (both denoted here by ) also have
been neglected. Density is given by the equation of state, applied to the averaged
temperature and salinity. The (scaled) pressure Np˛ is related to the density N�˛ by
the hydrostatic relation @ Np˛=@z D �g N�˛ . The pressure differences over the western
boundary layer and the interior, ıpb D p.Bb/ � p.xW/ and ıpi D p.xE/ � p.Bb/,
respectively, and the flow from western boundary into the interior, uı D u.Bb/, are
unknowns in the system and have to be parameterized.

For these unknowns, the parameterizations

ıpb D �1. Npi � Npb/ ; uı D �2 Nub ; ıpi D ıpi.y D 0/C
yZ

0

f uıdy0 (15.63)

will be used. The interior pressure difference at the equator, ıpi.y D 0/, is set by
the steady zonal momentum balance at the equator. All other aspects of the model
are similar to primitive equation models, e. g. the model includes a rigid lid surface
boundary condition, a diagnostic relation from the divergence of the vertically inte-
grated momentum budget to find the surface pressure, and convective adjustment to
parameterize convection by large vertical diffusivities in case of static instability.
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How can the above relations (15.63) be motivated? The pressure difference ıpb

over the western boundary layer is simply parameterized using the zonally averaged
pressure difference between interior and the western boundary layer, the only pres-
sure difference known in the model. For the zonal flow in and out of the western
boundary layer, an equally simple parameterization is chosen, i. e. it is set propor-
tional to the zonally averaged zonal velocity in the western boundary layer. The last
parameterization, the one for the interior pressure difference ıpi D pE � pı , needs
a bit more explanation. It may be motivated by the local vorticity balance

@f u

@x
C @f v

@y
D �r

�
@v

@x
� @u

@y

�

which after averaging over the interior domain yields

�f uı
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C @f Nvi

@y
D �r

�
@ Nvi

@x
� @ Nui

@y

�

Neglection of all friction terms, i. e. abandoning the right-hand side, and using f Nvi '
ıpi=Bi, and integration then yields the last relation in (15.63).

Figure 15.27 shows ıpb, ıpi, and uı diagnosed in a three-dimensionally resolved
primitive equation model (PEM) with the same configuration. The figure compares
these fields with their parameterizations given by (15.63). There is a good agreement
concerning sign and structure of the variables and their parameterizations. Only in
the southernmost part, the parameterization for ıpb does not have the correct sign. It
turns out that an important parameter is the boundary layer width Bb, which we have
chosen here asBb D 3:7 r=ˇ since this value seems to match best the boundary layer
width in PEM. In fact, the boundary layer is broader than expected from the Rayleigh
friction term alone because we also have included harmonic friction in PEM, which
leads to a wider boundary layer.

Fig. 15.27 Comparison of parameterized variables with the model result for the primitive equation
model. The upper row shows ıpb (a), ıpi (b), and uı (c) in the zonally resolved model. The lower
row shows the respective parameterizations: Npi � Npb (d),

R y
0 f uıdy0 (e), and Nub (f). The contour

intervals are 0:08m2 s�2 in (a); 0:18m2 s�2 in (d); 0:1m2 s�2 in (b); 0:05m2 s�2 in (e), and
5� 10�4 m s�1 in (c) and (f)
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15.6.5 Zonally AveragedModels Versus BoxModels

We now compare results from numerical integrations of the dynamically consistent
zonally averaged model of the previous Section 15.6.4 with the results obtained with
the downgradient closure of Marotzke et al. (1988), presented in Section 15.6.2. We
also return to the discussion of Section 15.5 on the box models of the MOC. Zonally
resolved model simulations will also be shown. Many predictions of the box models
concerning possible steady states, characterized by the dominant thermal or haline
surface forcing, are reproduced by the zonally averaged models. However, there are
also some new aspects of the numerical solutions, which are not present in the simple
box models.

Figure 15.28 shows the results of a simulation of the zonally averaged model
of Section 15.6.4 in a single-hemisphere configuration. The corresponding box
model is thus the one by Stommel (1961), see Section 15.5.2. The extent of the
domain is 5;000 km in meridional and 1;500m in vertical direction, with a reso-
lution of 320 km and 100 m, respectively. It includes salinity and temperature and
a linear equation of state with expansion coefficients ˛ D �0:2 � 10�3 K�1 and
� D 0:8 � 10�3 .g kg�1/�1. Isopycnal mixing with a diffusivity of 1;000m2 s�1 and
vertical diffusivity of 10�4 m2 s�1, lateral friction with viscosity of 8 � 105 m2 s�1,
and Rayleigh friction with parameter of 2 � 10�6 s�1 is used. The model uses an
equatorial ˇ-plane with f D ˇy with ˇ D 2:3 � 10�11 .ms/�1, such that the south-
ern boundary of the domain coincides with the equator. The model is driven by mixed
boundary conditions, i. e. by surface relaxation of temperature and a surface fresh-
water flux. The latter is slowly varied during the integration of about 20,000 years.
The maximum of the zonally averaged surface freshwater forcing strength is shown
in Figure 15.28e and can be compared with the haline contribution to the surface
density flux shown in Figure 15.3. While the subtropical values are roughly com-
parable to today’s conditions, the subpolar freshwater forcing is clearly much larger
and resembles an extreme situation.

The configuration of the zonally averaged model is chosen similar to Stommel’s
box model. In fact, much of the behavior of the numerical solution can now be in-
terpreted using the results of the discussion of the box model. At the start of the
integration with vanishing freshwater forcing, the model is in the thermally driven
state with northern sinking and a strength of the MOC of a couple of Sv. Increasing
the surface freshwater forcing to about 30–40% of its maximum value, the thermally
driven MOC eventually collapses and reaches a state of a weak reversed MOC which
switches occasionally to a state with very strong MOC, i. e. even stronger than in the
thermally driven state, on a time scale of centuries. We might interpret the weak
reversed state of the MOC as the haline dominated steady state of Stommel’s box
model. However, this state is apparently not really stable as in the box model, but it
has windows in the strength of the freshwater flux where the solution is of oscillatory
nature. This is clearly a feature of the zonally averaged model which is not present
in the box model. There might be a series of Hopf bifurcations in the zonally aver-
aged model (compare with Section A.2.1), which is actually found in a low-order
model version discussed in the next section. In fact, such oscillations of the MOC
on long time scales are often found in numerical ocean models of the MOC. Note
that because the freshwater forcing is slowly sweeping across the Hopf points, the
oscillations do not develop in a proper form.
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Fig. 15.28 A simulation over about 20,000 years with a single-hemispheric zonally averaged model
of the MOC. a Amplitude of surface freshwater forcing (positive into the subpolar ocean) as a func-
tion of time in days. b Near-surface density in kg m�3 also as a function of time in days and
meridional coordinate in km. c Haline contribution to surface density in kg m�3. d Upper layer
northward transport in Sv. e Haline surface forcing in mg m�2 s�1 (black line) at its maximum
and relaxation temperature in ıC (red line). f MOC stream function defined by (15.47) in Sv at
t D 105 d, i. e. in the thermally driven state. Also shown are contour lines of density with contour
interval of 0:2 kg m�3. g MOC stream function at t D 7:5 � 105 d in the haline driven state.
h MOC strength in Sv at y D 4;000 km as a function of freshwater forcing amplitude shown in a.
The black line shows the initial increase of freshwater forcing, the red line the decrease

Increasing the freshwater forcing further to more than 50% of its maximum value,
the MOC completely reverses and now turns completely into the stable haline driven
state, with sinking in the subtropical part of the domain. Note that the direction of
the MOC indeed follows the surface density gradient as anticipated by Stommel’s
hydraulic law (15.21) (which we do not use in the present zonally averaged model).
The reverse transition, between the oscillatory state to the thermally driven state,
occurs for the decreasing freshwater forcing at later stages of the integration. The
dependency of the MOC on the freshwater strength shows resemblance to Stommel’s
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Box model (Figure 15.28h), although we cannot assume that all possible steady states
have been reached during the course of the integration.

Figure 15.29 shows a simulation of another zonally averaged model, using now
the closure of Marotzke et al. (1988). There is also a switch from the thermally driven
state to the haline driven one around the same integration time as for the model in
Figure 15.28. However, the oscillatory state with the periodic strong events in the
MOC is only moderately present in this closure version. Only one of such events is
hit during the particular integration. The results are becoming, therefore, even more
similar to Stommel’s Box model with respect to the dependency of the MOC on the
freshwater strength shown in Figure 15.29c. As in the box model we find a hysteresis
of the MOC, i. e. there are two possible states of the MOC for a certain range of
values of the freshwater forcing.

A prominent difference between the consistent zonally averaged model of Sec-
tion 15.6.4 and the model with the downgradient closure of Marotzke et al. (1988)
is given by the MOC in the haline driven state (compare Figure 15.28g with Fig-
ure 15.29b). Not surprisingly, it turns out that the former is more realistic than the
latter, which is disclosed when comparing with a zonally resolved primitive equa-
tion model using identical configuration and forcing. Figure 15.30 shows the MOC

Fig. 15.29 A simulation with a single-hemispheric zonally averaged model using the closure of
Marotzke et al. (1988) using the same forcing as in the simulation shown in Figure 15.28. a MOC
stream function as defined in (15.47) in Sv at t D 105 d, i. e. in the thermally driven state. Also
shown are contour lines of density with contour interval of 0:2 kg m�3. b MOC stream function at
t D 7:5 � 105 d in the haline driven state. c MOC strength in Sv at y D 4;000 km as a function
of freshwater forcing amplitude shown in a. The black line shows the initial increase of freshwater
forcing, the red line the decrease

Fig. 15.30 A simulation with a single-hemispheric zonally resolved model, using the same forcing
as in the simulation shown in Figure 15.28. a MOC stream function as defined in (15.47) in Sv for
vanishing freshwater flux, i. e. in the thermally driven state of the MOC. Also shown are contour
lines of density with contour interval of 0:2 kg m�3. b MOC stream function in the haline driven
state, with freshwater forcing corresponding to t D 7:5�105 d. c Time series over about 600 years
of the upper layer transport in Sv in the haline driven state
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and density structure in the thermally driven and haline driven states of this resolved
primitive equation model, simulating only certain time slices of the long-term sim-
ulations of the zonally averaged models. The simulations use vanishing freshwater
forcing in Figure 15.30a and freshwater forcing corresponding to the haline driven
states with oscillations in the dynamically consistent zonally averaged model in Fig-
ure 15.30b. The density structure in the thermally driven state is also much closer to
the one of the dynamically consistent model than to the one with the downgradient
closure. It fact, the zonally resolved model also reveals centennial scale oscillation
similar to the dynamically consistent zonally averaged model, as shown in in Fig-
ure 15.30c. The time scale of the oscillation is similar to the dynamically consistent
zonally averaged model.

Finally, a simulation of a double-hemisphere configuration of the consistent zon-
ally averaged model is analyzed. Results are presented in Figure 15.31. The corre-
sponding box model is the one by Welander (1986), discussed in Section 15.5.3. The
temperature and freshwater forcing in the northern hemisphere are identical to Fig-
ure 15.28e, while the forcing in the southern hemisphere is chosen symmetric with
respect to the equator. The freshwater forcing is varied as in the simulation of Fig-

Fig. 15.31 A simulation with a double-hemispheric zonally averaged model with symmetric forc-
ing, which is identical to Figure 15.28e in the northern hemisphere. a shows the time series of the
freshwater forcing, b the haline contribution to the upper layer density in kg m�3, c the upper layer
transport in Sv. d shows the MOC stream function at t D 105 d, i. e. at the beginning of the sim-
ulation, where the MOC is in the thermally driven, symmetric double-cell state. e shows the MOC
stream function at t D 8�105 d, i. e. in the haline driven, symmetric, double-cell state and f show
the MOC stream function at t D 2:5� 106 d, i. e. in the asymmetric, single-cell, thermally driven
state
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ure 15.28 on a long time scale. We find a thermally driven, symmetric double-cell
state of the MOC with sinking at the northern and southern boundary, which is real-
ized in the model for vanishing freshwater flux (Figure 15.31d) at the beginning of
the simulation or for strongly negative freshwater fluxes. Increasing the freshwater
forcing from zero at the beginning of the simulation to about 10–20% of its maxi-
mum value, the symmetric double-cell structure collapses to an asymmetric single-
cell, which connects both hemispheres (Figure 15.31f). This can be either a state
with northern or southern sinking, which both occur during the simulation. How-
ever, the single-cell solution is still thermally driven in the northern hemisphere.
Increasing the freshwater further to a similar threshold as for the single-hemisphere
configuration, the MOC collapses and turns into the haline driven state, which is
symmetric with subtropical sinking (Figure 15.31e). Note that all these states are
also present in Welander’s box model. Reducing the freshwater forcing, the model
frequently turns into the symmetric, thermally driven double-cell state, but seems
to prefer the asymmetric thermally driven single-cell state. However, reducing the
freshwater forcing further to negative values, the model turns into the symmetric,
thermally driven double-cell state, in which it stays as long as the freshwater forcing
is negative.

Similar to the single-hemisphere configuration, we meet centennial oscillations
of the MOC during the transition from the haline to the thermally driven states,
which are not present in Welander’s box model. These oscillations are not present
in a model simulation using the downgradient closure in the zonally averaged model
either (not shown here). On the other hand, the model with the downgradient clo-
sure shows also a thermally driven symmetric, double-cell MOC, a thermally driven,
asymmetric single-cell state, and a symmetric, haline driven state, and is thus fully
consistent with Welander’s box model. Of course, this not surprising as the dynamics
of models are virtually identical.

15.6.6 * A Low-OrderModel of theMeridional Overturning

We finalize the chapter on the ocean’s overturning with an analytical model which
bears considerable mathematical work. It describes an analytical solution of the
MOC and is based on the zonally averaged system of equations using the down-
gradient closure of Marotzke et al. (1988) from Section 15.6.2. We have marked
this closure as being dynamically not consistent, but found in the integrations of the
previous section that it behaves in many respects very similar to the dynamically
consistent zonally averaged model of Section 15.6.4. We may consider this simi-
larity as support for the downgradient closures to simulate principle aspects of the
MOC correctly. The ultimate reason, however, for returning to the down-gradient
closure model is its simplicity: there is only one equation governing the momen-
tum development of the MOC, which is an enormous advantage over the consistent
model which has four momentum balances and two continuity equations (there is no
stream function for the two regime domains), particularly when the aim is an analyti-
cal treatment. The model equations are solved by a spectral low-order approach. The
principle procedure to construct such low-order models is outlined in Appendix B.3.

As in discussed Section 15.6.2 for the closure of Marotzke et al. (1988), the dy-
namics are based on a balance between friction and the meridional pressure gradients
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given by
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We have used vertical friction, written here for simplicity with a constant vertical
viscosity Av. The model is now time-dependent. When we use the MOC stream
function� with �@�=@z D Nv and @�=@y D Nw, the balance becomes

@2�

@t@z
� Av

@3�

@z3
D @ Np
@y

D g
@ N�
@y

C g

0Z

z

@ N�
@y

dz (15.64)

which actually is a vorticity equation. The pressure gradient has been broken into the
surface and the baroclinic parts. The vertical integral of this balance is
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Because the net transport must vanish, i. e.� D 0 at top and bottom, the time deriva-
tive in (15.65) vanishes, and the balance is between pressure driving and friction at
top and bottom of the ocean. Next, we separate the surface part from (15.64), apply-
ing a further vertical derivative, and arrive at the equations
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The problem is now split into the baroclinic (density-driven) part and the barotropic
part. Note that the surface displacement has become a diagnostic variable. Only the
baroclinic pressure, effectively the density gradient @ N�=@y, acts as prescribed forcing
whereas the surface pressure g N� is part of the response. Hence we continue with the
determination of the stream function from the first equation in (15.66).

It will be useful to scale the variables as we did for box models (see Section 15.5).
We take a typical density increment �? to scale the density according to N�0 D N�=�?.
For the stream function, we use the diffusive scaling�0 D �L=.H QKh/with a typical
lateral diffusivity QKh. Then, using the scaled coordinates � D z=H , � D y=L and
time � D t QKh=L

2 and dropping the primes, we obtain the scaled version of (15.66),
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with the Rayleigh number Ra D gH 3�?=.Av QKh/ and the Prandtl number Pr D
.Av= QKh/.L=H/

2 as dimensionless coefficients.
The above described momentum dynamics is now augmented by the thermohaline

balance (15.46) with the conventional downgradient parameterizations of the eddy
heat and salt fluxes which are contained in NQ�. However, to simplify further, we first
proceed with the density balance, i. e. N D N�, with the above described diffusive
fluxes
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@2 N�
@y2

CKv
@2 N�
@z2
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We have assumed that the diffusivities Kh and Kv are constant. Using the above
described scaling, the density N� is governed by
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(15.68)

where 	h D Kh= QKh, 	v D L2Kv=.H
2 QKh/ are the scaled lateral and vertical diffusiv-

ities. Later we will distinguish between temperature and salinity. A list of appropriate
parameter values can be found in Table 15.1. Remember that Av is tuned up to yield
a reasonable size for the overturning rate.

Table 15.1 List of parameters and standard values of the low-order model. The density scale �?
is dimensionless (equal to density divided by a reference density). The basin width L and the
scale QKhH=L of the stream function imply a scale of 4 Sv for the basin-wide transport

H;L 4,000 m, 5,000 km � scale QKhH=L 0:8m2 s�1

�? 2:4� 10�3 time scale L2= QKh 800 years
Kv 10�4 m2 s�1 �v D .L=H/2Kv= QKh 0.156
QKh 103 m2 s�1 �h D Kh= QKh 1
Av 6� 102 m2 s�1

Ra D g�?H
3=.Av

QKh/ 2:5� 103 Pr D .L=H/2Av= QKh 9� 105

In the presented form, the equations describe the overturning in a nonrotating
ocean (or a tank experiment). With the large super-viscosity implemented, as pro-
posed by the closure of Marotzke et al. (1988), the model should apply to the large-
scale ocean circulation. We have argued in this respect in Section 15.6.2.

ADiffusive Ocean

In order to correctly implement the surface boundary conditions for heat and salt in
the low-order model, it turns out to be useful to consider first a steady state in which
the advection of the thermohaline fields is neglected. The ocean is then in an entirely
diffusive balance given by

	h
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D 0 (15.69)

The model domain extends from � D �1 to � D 0 and from � D �1 to � D 1,
which should represent an ocean with two hemispheres as in Welander’s box model.
Solutions of (15.69) are conveniently constructed using the eigenfunctions Pn.�/ of
the meridional differential operator, defined by

P 00
n C �2nPn D 0

with suitable boundary conditions17. We use P 0
n D 0 as boundary conditions at the

meridional limits of our ocean, because this choice will establish there a vanishing

17 Derivatives of functions of a single independent variable, either 
 or �, are denoted by a prime,
e. g. dPn.
/=d
 D P 0

n and d�n.�/=d� D �0

n.
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flux of heat, salt, and density. There are two sets of functions which together com-
prise the complete, orthogonal, and normalized set of eigenfunctions. For n > 1

these are

Pn.�/ D sin �n� for n D 1; 3; 5; : : :

Pn.�/ D cos�n� for n D 2; 4; 6; : : :

with the eigenvalue �n D n =2. The set is augmented by P0 D 1=
p
2 with eigen-

value �0 D 0. We proceed with the expansion
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X
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�n.�/Pn.�/ for Dsurf.�/ D 	v

X
n

RnPn.�/ (15.70)

for the density and the surface density flux Dsurf.�/ and consider the boundary con-
dition 	v@ N�=@� D Dsurf at the top � D 0 and @ N�=@� D 0 at the bottom � D �1. The
forcing variable Rn for the mode n is related to the associated heat and freshwater
flux. Inserting this expansion into (15.69), we arrive at the differential equation

�00
n � �2n

	
�n D 0 with �0

n.0/ D Rn and �0
n.�1/ D 0 (15.71)

Here, 	 D 	v=	h D .Kv=Kh/.L=H/
2 is the ratio of the vertical and horizontal

diffusivities. Finally, the solution of the density state is given by

�n.�/ D Rnhn.�/ (15.72)

in terms of the forcing amplitude Rn and a vertical structure function hn.�/ of hy-
perbolic form, depending on the inverse depth scale �n D �n=

p
	 (see the box on

p. 549). The MOC stream function �.�; �/, driven by the meridional density gradi-
ent, follows from the stationary form of (15.67). Setting

�.�; �/ D Ra
X
n

Rn`n.�/P
0
n.�/ (15.73)

the solution is completed by solving the fourth order differential equation `0000
n D hn

for the vertical structure function `n.�/ of the stream function with appropriate
boundary conditions. The solution is also described in the box on p. 549 for free-slip
at the top and no-slip at the bottom. An example of the structure of the density and
stream function as function of .�; �/ is found in Figure 15.32c,f and Figure 15.35a,d,
shown below. The boundary conditions imposed on `n cause � to vanish at the
top and the bottom. The vanishing at meridional boundaries, however, results from
P 0
n D 0 at these limits, and this is a consequence of density conservation, requiring
@�=@� D 0 at meridional boundaries.
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88. Structure Functions
of the Diffusive Solution

The vertical structure of the diffusive solutions (n D 1; 2; : : :) is given by the functions

hn.�/D cosh �n.� C 1/=.�n sinh �n/

`n.�/D �
cosh �n.� C 1/C ˛0 C ˛1� C ˛2�

2 C ˛3�
3
�
=.�5n sinh �n/

for the expansion coefficients of the density field with �n D �n=
p
�. The functions hn.�/

follow from (15.71), and `n.�/ is governed by `0000

n D hn. For free-slip at the top and no-slip
at the bottom, `00

n.0/ D 0, `0

n.�1/ D 0, and mass conservation, `n.0/ D `n.�1/ D 0, the
coefficients of `n are

l l˛0 D � cosh �n ˛1 D �1
4

��
6C �2n

�
cosh �n � 6�

˛2 D �1
2
�2n cosh �n ˛3 D �1

4

��
�2n � 2� cosh �n C 2

�
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The vertical structure functions of the diffusive solution for the meridional structure n D 2 and
� D 0:15625. a h2.�/ for the density. b 103`2.�/ for the stream function. c �103`0

2.�/ for
the meridional velocity.

An Advective-Diffusive Ocean

In contrast to the diffusive balance (15.69), the real ocean has a dominance of advec-
tion compared to diffusion. According to the discussion in Section 15.3, however,
we cannot abandon mixing entirely. Furthermore, the diffusion must be present in
our low-order model to couple the fields to the forcing, which we ensure by using
the above described diffusive solution also for the complete low-order model with
advection.

For realistic conditions, the density flux Dsurf.�/ should be chosen almost sym-
metric with respect to the equator (at � D 0) with a dominatingR2-amplitude, which
must be a negative number to account for the dominating effect of heating in the den-
sity flux (making the equatorial density lighter, see e. g. Figure 15.3). Our low-order
model will thus be forced only by the R2 component of the surface density flux. Let
us denote the above derived diffusive solution by �d.�; �/ and �d.�; �/. Hence we
have

�d.�; �/ D Rh2.�/P2.�/ and �d.�; �/ D RaP`2.�/P 0
2.�/ (15.74)

with R D R2, P D R2 and P D R in the presently considered density-forced
model (later we will distinguish between density, temperature, and salinity where
these quantities will be different). This diffusive solution is not a solution of the
complete thermohaline balance (15.68), because the above density field and stream
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function yield a nonzero advective term

@�d

@�

@�d

@�
� @�d

@�

@�d

@�

D �RaRP
�
�22`2.�/h

0
2.�/P2.�/P2.�/C `0

2.�/h2.�/P
0
2.�/P

0
2.�/

�
(15.75)

which must lead to a change of the density field away from the diffusive solution.
Note that the advective term (15.75) is symmetric in the meridional coordinate �,
and thus we expect that it generates only symmetric density perturbations, leading
to a double-cell circulation according to the momentum budget (15.67). The route
towards an asymmetric density, related to a single-cell overturning as in Welander’s
box model, is possible, but it is a bit intricate as it runs via the nonlinearity of the
density balance and the formulation of the boundary conditions for heat and salt. We
proceed, however, first with the complete density equation (15.68) and a prescribed
density flux at the surface.

We express the fields of the low-order model including advection as sum of the
diffusive solution and deviations due to advection, denoted by a tilde,

N�.�; �; �/ D �d.�; �/C Q�.�; �; �/ and �.�; �; �/ D �d.�; �/C Q�.�; �; �/
Since the diffusive solution annihilates the diffusion terms in the density balance and
the viscous term the density torque in the momentum balance, the deviation density Q�
and the stream function Q� are governed by

@ Q�
@�

� @

@�
.�d C Q�/ @

@�
.�d C Q�/C @

@�
.�d C Q�/ @

@�
.�d C Q�/ D 	h

@2 Q�
@�2

C 	v
@ Q�
@�2

Pr�1 @3 Q�
@�2@�

� @4 Q�
@�4

D �Ra
@ Q�
@� (15.76)

The forcing by the surface density flux enters via the advective terms which includes
the diffusive solution. These are terms proportional to either RP (the one given
by (15.75)), to P , or to R.

A spectral low-order model is now obtained by expanding the �-dependence of the
perturbation fields into the meridional eigenfunctions Pn.�/ and the �-dependence
in a complete orthonormal eigenfunction base Hq.�/ for the density. We choose
the base defined by H 00

q C 
2qHq D 0 with H 0
q.0/ D H 0

q.�1/ D 0 (zero flux
of the perturbation density field). For the stream function, we use Fq.�/ defined
by F 0000

q D Hq with free-slip at the top and no-slip at the bottom, F 00
q .0/ D 0,

F 0
q.�1/ D 0, and mass conservation requiring Fq.0/ D Fq.�1/ D 0. Note that

the Fq are forced functions, not eigenfunctions.
If we insert the complete expansion

Q�.�; �; �/ D
X
nq

Q�nq.�/Hq.�/Pn.�/ and

Q�.�; �; �/ D Ra
X
nq

Q�nq.�/Fq.�/P 0
n.�/

into the equations (15.76) and project onto the eigenfunctions Pn.�/ and Hq.�/, the
resulting model is still exact within the framework of the approximations leading to
the zonally averaged equations. It is certainly far too complex to be solved analyti-
cally.
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We proceed, therefore, with a minimal model resulting from a very heavy trun-
cation. We retain only the modes �01, �10, �20, and �10, �20. This choice reflects
a fundamental set of nonlinear interactions among the modes. The truncated model18

is given by

Q�.�; �; �/=f1 D L.�/H1.�/P0 C 4M.�/H0P1.�/CN.�/H0P2.�/

Q�.�; �; �/=.f1Ra/ D 4U.�/F0.�/P
0
1.�/C V.�/F0.�/P

0
2.�/ (15.77)

with the redefined modal amplitudes U 	 �10, V 	 �20, L 	 �01, M 	 �10, and
N 	 �20. This yields a low-order system of five ordinary differential equations for
the time dependence of these amplitudes – the low-order model

PU D ��.U �M/ (15.78)

PV D ��.V �N/ (15.79)

PL D �4UM � VN C bNP C aVR C cRP � rvL (15.80)

4 PM D ULC dUR � rhM (15.81)

PN D VL � bLP � rhN (15.82)

where � D 21f3Pr=Ra, rv D  2f3	v=Ra, rh D  2f3	h=Ra and coupling coeffi-
cients a, b, c, and d appear19. The latter are integrals of the vertical structure func-
tions h2, `2,H0,H1, andF0, entering as triple products and depending on 	 D 	v=	h

via the inverse vertical scale �2 D  =
p
	 of mode 2 (see the box on p. 549). The

low-order model, of course, reflects the linear momentum balance (note that (15.78)
and (15.79) are balances between vertical friction and the meridional pressure gradi-
ent) and the nonlinear density balance (the balances (15.80)–(15.82) advection and
diffusion terms are evident). It is immediately obvious, as mentioned above, that the
above model with the symmetric density forcing and linear terms has M D 0 in
steady state and thus only generates a symmetric density field, here modeled by the
amplitudes L and N . As we demonstrate now, the nonlinear terms do not break this
fundamental symmetry in the density-forced model.

For the steady state, M D U and N D V must hold, and two sets of solutions
arise from the density equations. One set has U D 0 (inferred from (15.81)) and V
determined by a cubic equation (inferred from (15.80) and (15.82)); the other one
has a nonzero U determined by a quadratic equation (compute L from (15.81) and
combine it with (15.80) and (15.82)). But the latter is actually never real (U 2 is
always negative; see (15.85) below for T D 0), so the second set does not exist. We
are thus stuck to the previous case U D 0 and note that only double-cell solutions
are possible. After some mathematical manipulations, the cubic equation for V is

18 Some renormalizations have been made to put the resulting low-order model equations into
a simple form: the factors f1 D 120, f2 D . 2=1;800/=.16 �  2/, f3 D f1f2 arise
from the normalization of the spectral functions and the triple function integrals of the coupling
coefficients of the nonlinear terms. We have absorbed some factors in a new time scaling: the
dot-time derivative implies a time scaling � 0 D �Ra=f3. The structure functions in (15.74) are
found in the box on p. 549, and those in (15.77) are H0 D 1, H1 D p

2 cos �, F0 D
.1=24/.�4 C .2=3/�3 � .1=2/�/. To perform all the integrations to arrive at (15.78)–(15.82),
a tool like MAPLE is extremely helpful.
19 For �v D 0:15625, �h D 1, we find a D �6:1�10�5, b D �8:8�10�5, c D �6:2�10�9,
d D 1:4� 10�4. We use  D 811, rv D 6:6� 10�5, rh D 4:2� 10�4.
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written as20

.V=R/3 � .aC 2b/.V=R/2 C
h
b.a � b/� c C rvrh

R2

i
V=R C bc D 0 (15.83)

Note that it is easy to solve in a graphical way, plotting R2 versus V=R. Because
the discriminant is positive for the negative a; b; c obtained in the model, we arrive
at the conclusion that there is only a single double-cell solution U D 0 and V ¤ 0

for symmetric density forcing in the density-driven case. This results corresponds
to what we have learned from the box models in Section 15.5 for the case of a pre-
scribed density forcing. The equilibria are shown21 in Figure 15.32 for four values
of the Rayleigh number Ra. Note that all solutions are stable. The results show that
the diffusive solutions (Figure 15.32c,f), are strengthened by the nonlinear contribu-
tion in their equatorial upwelling and polar downwelling (for density forcing with
negative R).

Fig. 15.32 Steady states of the density-driven low-order model (15.78)–(15.82) in terms of a V and
b L (in 10�3) as a function of the forcing amplitude R and for the Rayleigh numbers Ra D 500
(black), Ra D 1;000 (blue), Ra D 2;500 (green) Ra D 5;000 (magenta). The variables U
and M are always zero, i. e. there is only the double-cell MOC state, while N is identical to V .
The solutions are stable everywhere. The starting point of the continuation integration is at the
known analytical solution U D V D M D L D N D 0 for R D 0. Panels c, d, and e show
the density structure related to the diffusive solution �d (c), the perturbation Q� (d) and the total
density (e) for Ra D 2;500 and R D �10. Panels f, g, and h show the corresponding stream
functions �d (f), Q� (g), and total� (h)

20 Remember that rv and rh are inversely proportional to the Rayleigh number Ra.
21 Figure 15.32 and also the following, are not produced from (15.83), but by use of the numerical
continuation tool bifurk.m written by Christoph Völker, AWI Bremerhaven, which evaluates also
the stability. More details on stability are given in Appendix A.2.1.
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Mixed Boundary Conditions

In this section, we discuss the implementation of mixed boundary conditions for heat
and salt in the low-order model. We have seen that mixed boundary conditions lead
in the box models to the possibility of multiple steady states, a feature which we also
expect here. This implies to consider the advective-diffusive balances of heat and
salt instead of the single density balance (15.68). The analysis is a bit lengthy, but
it is – in extension of the already discussed density-driven model – in most aspects
straightforward, as briefly outlined below.

� We replace the density balance (15.68) by independent equations for heat (tem-
perature NT ) and salt (salinity NS ). Using the scaling introduced above and in Sec-
tion 15.5, the density is N� D NS � NT which enters the momentum balance (15.67)
via the meridional gradient of N�.

� We consider the surface flux condition 	v@ NS=@� D F surf for salinity and, for
simplicity, a prescribed temperature, NT D T surf at the surface � D 0, as we did
for the box models. At the bottom, we take zero flux conditions for both fields.
The forcing functions, i. e. the surface temperature T surf and the salt flux F surf,
will be represented the eigenfunctions Pn.�/,

T surf.�/ D
X
n

TnPn.�/ ; F surf.�/ D 	v

X
n

SnPn.�/ (15.84)

The salt flux is written in terms of a salinity forcing variable Sn (which, therefore,
represents a flux and not a concentration). In the following, only the the basic
symmetric component n D 2 will be used, as before for the density flux-driven
model. Because the meridional structure function P2.�/ has a central maximum
(at the equator), we shall take T2 > 0 to establish a warm equator, and S2 > 0 to
have salt input in this region.

� Diffusive solutions Sd.�; �/ D S2h2.�/P2.�/ and T d.�; �/ D T2g2.�/P2.�/ are
constructed as we did for the density case. The salinity case is identical to the
above given density solution, because the boundary conditions are the same; the
temperature has a different structure function gn.�/ D cosh �n.� C 1/= cosh �n.
The diffusive solution for the stream function thus becomes

�d.�; �/ D Ra ŒS2 � T2�2 tanh �2� `2.�/P
0
2.�/

� We proceed to write the nonlinear solution as NS D Sd C QS , NT D T d C QT and
construct the complete low-order model, as done above for density, but now with
three salinity variables resulting from QS and three temperature variables resulting
from QT . However, as for the box models, we confine the analysis to the simplified
case of a prescribed temperature (the complete model with active temperature is
derived analyzed in Olbers and Zhang, 2008). Then the deviation field QT is set
to zero, and only T d enters via the implied advection by �d. The model is thus
identical to (15.78)–(15.82) where L;M;N are now salinity variables (using the
same notation as before) and R D S2, P D S2 � T2�2 tanh �2. We will use the
abbreviation T D T2�2 tanh �2. Note that P and R are now different.

The discussion of the steady states of the model with mixed boundary conditions
can thus be smoothly continued from what has been found for the case of a prescribed
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density flux. The set with nonzero U follows from22

4U 2 D .R � T /.dR � rh/
b

d

�
a C b

R .R � T / � b

dR2
.dR � rh/.R � T /

	

C cR.R � T / � rv.rh � dR/ (15.85)

and is no longer empty if the temperature T 	 T2 exceeds a certain critical
value which depends on the Rayleigh number Ra. The functional dependence U D
U.T ;R;Ra/ is shown in Figure 15.33 where the salt flux R D S2 is the abscissa and
various values for Ra and T are used. The solution represents a single-cell overturn-
ing, and we note that it exists in a limited interval of the salt flux R. Both limits of
this interval are pitchfork bifurcations of the model, as can be seen in the further dis-
cussion. It becomes evident in Figure 15.33 that the principal pitchfork bifurcation
(see Appendix A.2.1), which opens the two branches of a single-cell overturning, oc-
curs at ever-decreasing values of the salt flux S2 if Ra is increased. The S2-domain,
where these two solutions exist, actually shrinks, i. e. for each Ra an upper bound
of T2 exists where the single-cell overturning collapses. These properties can be eas-
ily revealed in analytical form by solving (15.85) for U D 0, and like we did for the
Welander box model, we can derive the range of existence of the single-cell solutions
for the low-order model.

The complete bifurcations of the thermohaline driven model, shown in Fig-
ure 15.34 with the continuation parameter S2, depict the well-known sequence of
a double-cell (i. e. U D 0 with nonzero V ) thermally driven branch at low fresh-
water forcing, which turns at a pitchfork bifurcation (marked by the green circle)
into two single-cell branches (i. e. U ¤ 0) with northern or southern sinking. For
very large freshwater forcing, the branches join again to a haline driven branch
with a double-cell circulation (i. e. U D 0 again). For sufficiently large Ra, the
two single-cell branches run with increasing S2 into Hopf bifurcations (marked by
a blue square; for Hopf bifurcations see Appendix A.2.1), which then open a window
where all branches are unstable. The window with three unstable branches shrinks
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Fig. 15.33 Steady states of the low-order model with mixed boundary conditions in terms of U
(in 10�3) for various values of the Rayleigh number Ra (from 500 to 5,000) and T2 D 0:3, 0.5,
1.0, 3.0, 5.0 in the colors blue, red, green, magenta, black in each panel. This result is obtained by
analytical solution of the steady state equations, and stability is not considered. This will be shown
in Figure 15.34

22 Remember that rv and rh are inversely proportional to the Rayleigh number Ra.
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Fig. 15.34 Bifurcation diagramsU;V andL as function of S2 for the low-order model with mixed
boundary conditions for Ra D 2;500 and T2 D 5:0. The diagrams have the complete information
of the bifurcation types: the initial point is indicated by a magenta star, a bifurcation point by
a green square, a Hopf bifurcation by a blue square. Black lines denote stable branches, red lines
unstable ones

with smaller Ra and eventually vanishes (not shown). Figure 15.35 shows the pat-
tern of the salinity and stream function fields on the single-cell branch close to the
first Hopf point in Figure 15.34 (right panels). The double-cell, thermally and haline
driven branches are always stable, and there are always stable single-cell solutions
in some limited S2-window. Similar to the box models (see the box on p. 519), the
symmetry of the low-order model is lost, and the pitchfork bifurcations are broken
up if asymmetric forcing components are included (not shown).

A general similarity of the present low-order model and Welander’s box model of
Section 15.5 is obvious. Both share the property of a single solution for a density-
driven overturning and the existence of multiple steady states in form of thermally
and haline driven double-cell and single-cell states, with the basic pitchfork bifur-
cations. What is unique to the low-order model are the Hopf bifurcations and the
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Fig. 15.35 Salinity (a,b,c) and stream function (d,e,f) of the low-order model with mixed boundary
conditions for Ra D 2;500, T2 D 5:0 and S2 D 5:916 corresponding to the first Hopf bifurcation
on the single-cell branch with northern sinking. Note that the state with southern sinking is a mirror
image of the northern sinking one. a and d show the diffusive part of the solutions, b and e the
perturbation and c and f the total solutions
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89. The Hopf Bifurcation
of the Low-order Model

The model, described by (15.78)–(15.82), contains in the tracer balances nonlinearities which are
typical for advective terms in spectral low-order models. They give rise to a quadratic invariant.
Because  � 1, we may assume for simplicity that the momentum balances (15.78) and (15.79)
are in steady state, thus U D M;V D N . We then obtain

d

dt

�
L2 C 16M 2 CN 2

� D .aN C cP/LR � �
rvL

2 C 4.rh � dR/M 2 C rhN
2
�

Steady states thus lie on a quadratic surface in the .L;M;N/-space, which may be ellipsoidal
or hyperbolical, depending on the forcing amplitudes R and P .
The Hopf bifurcations open the unstable window initially with a simple limit cycle (see panel
below panel for S2 D 6). With increasing forcing amplitudes S2, a number of period doubling
occurs (for S2 D 7 and S2 D 8). Eventually, the system then shows chaotic behavior (S2 D 9
and S2 D 18), however, with several interruptions for certain values of S2 (shown for S2 D 17)
where simple limit cycles again occur. The time scale of these unsteady oscillations is some
thousand years.

0
0.5

1
0.6

0.8
1

−3

−2

−1

L + dS

S=6

M2

N
 −

 b
P

−2
0

2

0
0.5

1
−4

−2

0

L + dS

S=7

M2

N
 −

 b
P

−5
0

5

0
0.5

1
−4

−2

0

L + dS

S=8

M2

N
 −

 b
P

−5
0

5

0
1

2

−4

−2

0

L + dS

S=9

M2

N
 −

 b
P

−5
0

5

0
1

2

−4

−2

0

L + dS

S=17

M2

N
 −

 b
P

−5
0

5

0
1

2

−4

−2

0

L + dS

S=18

M2

N
 −

 b
P

The attractor in .L;M;N/-space for various values of the forcing S2 (the values are given in
the title of the respective panel) and T2 D 5:0, Ra D 2;500. Note that S2 is named S in the
panels; likewise P stands for P .

windows in which only unstable, i. e. time-dependent, solutions are present (see the
box on p. 556). This feature, however, is similar to the more realistic zonally aver-
aged models of the MOC, discussed in Section 15.6.



The Circulation
of the Southern Ocean 16

In this chapter, we discuss the circulation of the Southern Ocean, which
is partly unbounded in the zonal direction around Antarctica and which
is, therefore, governed by unique dynamics. We start with a description
of the special features of the Southern Ocean and a discussion of the
dynamics of a homogeneous, wind-driven case with and without topog-
raphy. We then turn to the role of mesoscale eddies for the meridional
overturning circulation of a stratified Southern Ocean and the complete
dynamics of the Southern Ocean in a zonally and also in a vertically
averaged framework. Based on this knowledge, we construct several
simplified models of the Southern Ocean circulation, driven by wind
and surface density flux.

Roughly 75 % of the World Ocean volume has temperatures below 4 ıC, connected
with only 2 % of the ocean surface (at polar latitudes). Paleoceanographic data have
revealed that this was not always the case. Before Drake Passage opened the gate-
way between South America and the Antarctic continent due to continental drift
about 30 Myr ago, the climate of the ocean was considerably warmer. Paleo records
suggest that in the course of the establishment of the Southern Ocean1 in its present
shape, the difference between surface and bottom temperatures in equatorial regions
changed from about 7 ıC to its present value of about 26 ıC. The polar climate of
the southern hemisphere got increasingly colder by the growth of glacial ice on the
Antarctic continent and the gradual development of the sea ice cover around it, lead-
ing to the formation of deep cold water masses spreading as Antarctic Bottom Wa-
ter (AABW) to the adjacent northern ocean basins. The opening of Drake Passage
also established the strongest and longest current system in the World Ocean, the
Antarctic Circumpolar Current (ACC), extending around the globe with a length of
roughly 24,000 km. The Antarctic water ring ranges from the Antarctic continent to
about 50ı S. As the most important link between the ocean basins of the Atlantic,
Pacific, and Indian Oceans, the ACC serves as a conduit of all active and passive
oceanic tracers which affect Earth’s climate, notably heat and salt which strongly in-

1 Many oceanographers refer to the region around the continent of Antarctica as the Southern Ocean.
The International Hydrographic Organisation (IHO), which is the authority responsible for the nam-
ing of oceanic features, does not recognize a subregion of the World Ocean of that name but includes
its various parts into the other three oceans. From an oceanographic point of view, subdivisions of
the World Ocean should reflect regional differences in its dynamics. The Southern Ocean certainly
deserves its own name on that ground (Tomczak and Godfrey, 2003).

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 557
DOI 10.1007/978-3-642-23450-7_16, © Springer-Verlag Berlin Heidelberg 2012
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fluence the oceanic mass stratification, circulation, and consequently the ocean heat
transport, and the greenhouse gas carbon dioxide and other chemical and biologi-
cal components. But in contrast to this strong zonal exchange brought about by the
deep-reaching and strong zonal current, these same characteristics of the ACC act to
limit meridional exchange and tend to isolate the ocean to the south from heat and
substance sources in the rest of the World Ocean.

16.1 Basic Ingredients of Southern Ocean Dynamics

Before the detailed discussion of the physical processes and models, which are rele-
vant for the dynamics of the Southern Ocean, we start with a general overview. Most
of the dynamical features will be taken up in the later sections.

16.1.1 The Antarctic Circumpolar Current

The ACC is the World Ocean’s most intensive current system, flowing round the
Antarctic continent with a volume transport of 130˙10 Sv (that is about 1,000 times
the Amazon discharge; it would empty the Baltic Sea in three days). This is the
largest transport rate in the ocean and can largely be explained by the mostly west-
erly, very intense winds (see Figure 13.1) in the Southern Ocean. The wind-driven
dynamics of the ACC and the importance of the thermohaline surface fluxes over
the Southern Ocean will be discussed subsequently in this chapter. The schematic
of the global conveyor belt (Figure 15.1) shows that the deep structure of the ACC
has a specialty: while in all other large-scale current systems the deep current flows
against the surface current, the ACC flows completely in one direction: the surface
as well as the bottom currents are almost everywhere eastward.

In the north, the Antarctic water ring is limited by the southern extent of the Sub-
tropical Convergence which winds itself around the globe as a nearly continuous
but diffuse water belt, a broad zone of transition between the tropical/temperate and
the polar/cold oceans where the permanent thermocline reaches the surface. There
are other (and more pronounced) such fronts sketched in the upper left panel of Fig-
ure 16.1 and in more detail in the lower panel. The most important are the Subantarc-
tic Front and the Polar Front at about 60ı S. These fronts escort the ACC which is
not a single current but is composed of several filaments. The fronts are traced by the
regionally and temporally highly variable surface temperature gradient displayed in
Figure 16.1 (lower panel), which shows that the ACC is, in fact, a fragmented system
of more or less intense jet streams. The thermal fronts have a close correspondence
in density and extend to great depths, in most places to the bottom (see Figure 16.2
below), but can also be correlated with surface elevations as detected in satellite al-
timetry data. At these fronts, the ocean water masses are subject to an abrupt change
in their physical, chemical, and biological properties. We must not imagine them as
static lines; they are always shifting, extending, withdrawing, sometimes forming
convexities and shedding intensive mesoscale eddies. This mesoscale turbulence, the
ocean weather, accompanies the current and has a strong influence on it.
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Fig. 16.1 a Schematic map of major currents in the southern hemisphere oceans south of 20ı S.
Depths shallower than 3,500 m are shaded. The two major cores of the Antarctic Circumpolar Cur-
rent (ACC) encircling Antarctica are shown: the Subantarctic Front and Polar Front. F stands for
front, C for Current, and G for gyre. From (Rintoul et al., 2001). b Instantaneous sea surface height
[in meter] from the regional model of the Southern Ocean described in Figure 12.7. Notice the drop
of the mean sea surface by about 1.5 m across the ACC. c Magnitude of the mean sea surface tem-
perature gradient in mK=km from satellite observations. Superimposed are positions of (from north
to south) the Subtropical Front, Subantarctic Front, Polar Front, South ACC Front, and southern
boundary of the ACC. From Hughes and Ash (2001)

16.1.2 Mesoscale Eddies

The zonal periodicity of the Southern Ocean creates a circumpolar pathway of water
masses circling the globe and allowing the ACC to play a major part in the merid-
ional overturning circulation. But the zonality also acts as a brake. In the ocean
basins which are zonally blocked by continents, we find a meridional exchange of
heat accomplished by the time mean gyre current systems. There is no significant
transport of heat by mean currents across the latitudes of the ACC (DeSzoeke and
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90. Observational
Estimates of the ACC
Transport

The meridional momentum balance of the ACC is basically geostrophic, i. e. the zonal current
velocity (at each geopotential level) is related to the meridional pressure gradient. This gradient
results from a dip of about 1.5 m (from north to south, see Figure 16.1) of the sea surface z D
� across the current system, and the gradient of density in the fronts, which can be inferred
e. g. from the hydrographic section shown in Figure 16.2. The surface pressure gradient yields an
overall eastward geostrophic surface velocity ugjzD0 D �.g=f /@�=@y, and the stratification
yields a positive shear @ug=@z D .g=f /@�=@y of the geostrophic part of the current. The
zonal velocity thus reduces with depth but generally not as strongly as to imply a reversal of the
flow.
The above ‘thermal wind relation’ is utilized to infer from hydrographic section data the ‘baro-
clinic’ transport normal to the section and referred to a common depth. Based on six hydro-
graphic sections, Cunningham et al. (2003) estimated the average transport referred to common
deepest level of all station pairs through Drake Passage, the gateway between South America
and the Antarctic continent, as 136:7˙7:8Sv, with about equal contributions from the Polar
Front (57:5˙5:7Sv) and the Subantarctic Front (53˙10Sv). The mean transport south of
Australia is 147˙10Sv (Rintoul and Sokolov, 2001). Note that the transport south of Australia
must be larger than that at Drake Passage to balance the Indonesian throughflow and the Tas-
man leakage, which are believed to be of order 10 Sv. However, given the remaining uncertainty
in the barotropic flow at both locations, the agreement is likely to be fortuitous. Variability of
transport south of Australia has been estimated in a 6 years record of a repeated hydrographic
section (Rintoul et al., 2002) as fairly small (1–3 Sv). Note that the geostrophic transport is not
the total transport. The total volume transport through a section also contains the Ekman trans-
ports (due to the windstress and the frictional bottom stress) and other contributions induced by
nonlinearities and lateral friction.

Levine, 1981). Instead, heat and other tracers must be carried across the current by
smaller-scale and time-varying features in the current field, usually summarized as
the mesoscale eddy field.

Transient eddies with scales of tens to a hundred km – i. e. several times larger
than the baroclinic Rossby radius which is of order 10 km in the Southern Ocean,
see Figure 8.2 – are very prominent features along the path of the ACC. This is
e. g. illustrated in the numerical experiment of the Southern Ocean circulation of
Figure 12.7. The mesoscale eddy activity leaves an obvious imprint. The upper right
panel of Figure 16.1 shows an instantaneous snapshot of the sea surface height in
a model of the Southern Ocean circulation, and the lower panel displays the gradi-
ent of the sea surface temperature from satellite data. These properties of the flow
explicitly show the single branches of the Circumpolar Current; however, there are
considerable torsions with scales of several tens of kilometers, caused by and being
carried along in the mesoscale eddies. This eddy activity reaches from the surface
to great depths and is characteristic for all large current systems. In the Circumpolar
Current, however, mesoscale eddies are particularly pronounced. They are respon-
sible for the poleward heat transport across the current and the vertical transport of
momentum into the deeper layers of the ocean. Estimates of the meridional eddy
heat flux from a number of moored instruments and further analysis confirmed the
southward transfer with sufficient magnitude to close the overall heat budget.

16.1.3 TheMeridional Overturning Circulation

Figure 16.2 shows water-mass properties on a section between Australia and Antarc-
tica (roughly along 140ı E). The figure makes visible that water-mass properties do
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Fig. 16.2 a Potential temperature in ıC, b salinity in g kg�1, and c neutral density in kg m�3

versus pressure in dbar along a hydrographic section between Australia and Antarctica (roughly
at 140ı E). The section (WOCE SR3) was occupied in September 1996, and the figures are taken
from the Southern Ocean Hydrographic Atlas (Orsi and Whitworth III, 2005)

Fig. 16.3 A sketch of the ACC system showing the zonal flow (yellow lines) and the meridional
overturning circulation (dark arrows) and water masses as indicated in the figure. Antarctica is at the
left side. The east-west section displays the isopycnal and sea surface tilts in relation to submarine
ridges. The curly vertical arrows at the surface indicate the buoyancy flux; the small light arrows
attached to the isopycnals represent turbulent mixing. Redrawn from Olbers and Visbeck (2005)

penetrate across the ACC and, in fact, there is a prominent meridional overturning
circulation associated with the predominantly zonal ACC. The figure implies this
overturning circulation by the distribution of salinity and temperature which reveals
the prominent water masses: Antarctic Intermediate Water (AAIW) is seen in the
blue core of low salinity, Circumpolar Deep Water (CDW) is seen in the deeper
brown core of high salinity and AABW in the deep blue core of low potential tem-
perature. The meridional overturning circulation was described as early as 1933 by
Sverdrup (see Sverdrup, 1933; Sverdrup et al., 1942) and has later been interpreted
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91. Ekman Spiral and
Transport in the
Southern Hemisphere

The Ekman solutions for the southern hemisphere follow directly from the discussion in Chap-
ter 14 and in the box on p. 446 and are given here for reference. The horizontal flow was decom-
posed into a geostrophically balanced part and a frictional component defined as u D ug C ue,
with f u:e D Av@

2ue=@z
2, where Av denotes a vertical turbulent viscosity related to small-

scale turbulence. The latter flow component becomes important in the surface and bottom Ek-
man layers. Note that u: denotes a by 90ı (anticlockwise) rotated vector as introduced in the box

on p. 444. While (14.9) gives the solution for ue in the surface Ekman layer with f > 0, the
solution becomes

ue D d=.2Av/e
z=d

h
.�0 C �:0/ cos z=d C .�0 � �:0/ sin z=d

i

for f < 0, where d D p
2Av=jf j is the Ekman depth (which may be different for the surface

and bottom Ekman layers by taking different Av’s) and �0 the surface windstress. The bottom
Ekman spiral becomes for f < 0

ue D e�.zCh/=d
h
�ug cos.z C h/=d � u:g sin.z C h/=d

i

while for the bottom stress, (14.10) changes for f < 0 to

�b D Av
@ue

@z

ˇ̌
zD�h

D d jf j=2.ug � u:g/

The volume transport U e D R
uedz integrated over the surface Ekman layer, i. e. the Ekman

transport is given in the southern hemisphere by U top
e D ��:0=f , while the bottom Ekman

transport becomes in the southern hemisphere U bot
e D �:b=f D d jf j=.2f /.u:g C ug/ D

�d=2.u:g C ug/.

as the Southern Ocean part of the ‘global conveyor belt’ circulation (Broecker, 1991;
Gordon, 1986; Schmitz Jr., 1995, see Chapter 15). A sketch of the zonal and merid-
ional overturning circulation is shown in Figure 16.3. The core of the eastward flow-
ing ACC is associated with the Polar Front and the Subantarctic Front. An upper
meridional overturning cell is formed primarily by northward Ekman transport be-
neath the strong westerly winds and southward transport in the Upper Circumpolar
Deep Water (UCDW) layer. A lower overturning cell is driven primarily by forma-
tion of dense AABW near the Antarctic continent and inflowing Lower Circumpolar
Deep Water (LCDW or NADW). This deep, relatively saline water spreads poleward
and wells up towards the sea surface. Shallowing of the isopycnals is evident as the
deep water rises up towards the sea surface. There it is partly transported southward,
it cools and sinks, flooding the bottom layers with waters colder than 0 ıC. This cold
bottom water spreads well into the global oceans as AABW. The inflow of CDW
is balanced by a northward flow of lower salinity waters near 1,000 m (AAIW) and
by sinking of slightly lower salinity water along the continental slope of Antarctica.
This process (salty water in, fresher water out) removes the slight excess of regional
precipitation from the Southern Ocean.

16.2 HomogeneousWind-DrivenModels of the SouthernOcean

In this section, we explore the momentum balance and the flow characteristics
of a wind-driven current in simple configurations of the Southern Ocean without
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stratification for different conditions, as e. g. a flat-bottom ocean compared to an
ocean with topographic variations, or different scenarios of vertical compared to
lateral viscous momentum transport. In most of what follows, we will employ the
Elementary Current System which was introduced in Chapter 14. Now, however, it

92. Transient and
Standing Eddies

In the description of the global atmospheric circulation, it is custom to reduce the information
contained in observations by considering zonally averaged time-mean fields and deviations from
it (see e. g. Peixoto and Oort (1992)). Such averaging will also be used in the present text, but it
has to be used with care. Let us denote the time average of a field v by hvi and split v into its
time average and the deviation v� D v � hvi. The deviation will be referred to the transient
eddy component. Likewise, the zonal average of the time-mean variable may be defined by hvi
with the zonal deviations v� D hvi�hvi, called the standing eddy component. Hence we obtain
the representations

v D hvi C v� D hvi C v� C v� D hvi C v0

Only the transient component v� has the character of a turbulent (time dependent) eddy field
while the steady zonal deviation v� must be considered as part of the time-mean circulation.
Its separation from the time and zonal mean hvi is somehow artificial, since the separation
is usually not accompanied by a difference in the dynamics. Summarizing the transient and
standing eddies according to v0 D v� C v�, on the other hand, attributes to the eddying motion
a nonlocal character because it also includes in that case the deviation from the zonal mean.
The time-mean meridional flux of temperature � is hv�i D hvih�i C hv���i since hh˛iˇi D
h˛ihˇi and hˇ�i D 0 (compare Section 2.8.2). This identifies a flux by the time-mean fields
and a flux carried by the covariance of the deviation fields, the “eddy” flux hv���i induced
by the transient eddies. Note that dividing each term by �0 cp yields a mean heat flux and an

‘eddy” heat flux. Likewise, we have hv�i D hvi h�i C v���C hv���i with the total flux and
eddy-induced contributions from standing and transient eddies.
The application of this separation to the belt of latitudes passing Drake Passage reveals that
indeed standing eddy and transient eddy components arise, and that the standing eddy component
is often in fact larger than the transient one. To avoid this complication, an average oriented along
mean streamlines or the contours of the time-mean sea surface height (SSH) is sometimes used
instead. This kind of averaging often drastically reduces the standing eddy part (not completely,
however, since the current may veer with depth) and shows the true nature of the transient eddy
field to transport properties across mean streamlines.
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is used for southern hemisphere conditions where f < 0. The Ekman spiral and
transport for the southern hemisphere are detailed for reference in the box on p. 562.

For simplicity, we consider an ocean with a southern solid boundary at y D yS. It
might be open or closed (then we have a channel) at a northern latitude y D yN, we
will denote the meridional extent of the domain by Y D yN �yS. The zonal extent is
denoted byX . We assume here that the surface windstress �0 D .�

.x/
0 ; �

.y/
0 / is zonal

(i. e. � .y/0 � 0). In some examples, we will use a sinusoidal form where

�
.x/
0 .y/ D �s sin



 
y � yS

Y

�
(16.1)

and zero for y > yN. The configuration of this idealized homogeneous Southern
Ocean and the resulting circulation is sketched in Figure 16.4 below.

We start with the equations of motion and continuity equation in the Boussi-
nesq and hydrostatic approximation (the primitive equations as discussed in Chap-
ter 4.2.5), written for convenience in Cartesian notation as

@u

@t
C r � .uu/ � f v D �@p

@x
C @� .x/

@z
(16.2)

@v

@t
C r � .uv/C f u D �@p

@y
C @� .y/

@z
(16.3)

@u

@x
C @v

@y
C @w

@z
D 0 (16.4)

together with the hydrostatic relation @p=@z D �g Q�=�0. Here u D .u; v; w/ and r
are three-dimensional. Note that p denotes a scaled pressure, i. e. pressure Qp divided
by the reference density �0. We have assumed that the turbulent (and molecular)
stress transports horizontal momentum predominantly vertically. Thus, friction due
to three-dimensional small-scale turbulence (and molecular processes) is contained
in the flux divergences @� .x/=@z and @� .y/=@z. Note that � D .� .x/; � .y// connects
at the surface to the windstress �0. Rigid-lid conditions will be used for the sea
surface.

We now apply a zonal average to the equations. Zonally averaged variables are
indicated by an overbar. Note that the average could also be a combined zonal and
temporal average, which differentiates between standing and transient eddies, as de-
tailed in the box on p. 563, but for simplicity we apply a zonal average only and
consider the steady state only. The system becomes (see also Section 15.6.1)

�f Nv D �ıp
X

C @ N� .x/
@z

� @

@y
vu� @

@z
wu (16.5)

f Nu D �@ Np
@y

C @ N� .y/
@z

� @

@y
vv � @

@z
wv (16.6)

@ Nv
@y

C @ Nw
@z

D 0 (16.7)

The pressure force in the zonal momentum budget, �ıp=X , with X being the zonal
extent of the Southern Ocean, only occurs in the presence of topography. It arises
from the deep pressure difference in the valleys between topographic peaks along
the zonal path and will be explained in the box on p. 568. Integrating the hydrostatic
relation, the zonal mean pressure Np is written as sum of a part given by the surface



16.2 Homogeneous Wind-Driven Models of the Southern Ocean 565

elevation and a part related to the stratification, the baroclinic part,

Np D g N� C g

0Z

z

� Q�=�0
�

dz D g N� C pclin (16.8)

Since we have assumed a homogeneous ocean where Q� D const, there will be no
contribution by pclin, and the pressure gradients are only related to the surface height
� in this section.

The zonal average of the momentum advection on the right-hand side of (16.5)
and (16.6) is often decomposed into a momentum advection by the zonally aver-
aged flow ( Nv and Nw) and an eddy flux of momentum, e. g. as vu D Nv Nu C v0u0 and
similar for the other terms, as discussed in the box on p. 563. We will neglect the
mean advection terms of momentum. The vertical advection of momentum is small
in a geostrophic scaling (see Section 5.1), and the mean meridional advection ve-
locity, Nv, vanishes to zero order if zonal mean zonal pressure gradient is vanishing.
Likewise, we may argue with a small Rossby number appropriate for a large-scale
flow. Fluctuations of v and u, on the other hand, can play a role for the meridional
(eddy) transports of momentum on scales approaching the Rossby radius. Hence,
in some of the educational examples below, we will specify the eddy momentum
fluxes v0u0 and v0v0 as a downgradient diffusion of horizontal momentum, although
it is generally agreed that diffusion is not an appropriate representation of the lateral
eddy momentum transport.

The continuity equation implies by vertical integration that in steady state
@U=@xC@V=@y D 0 with .U; V / D R 0

�h.u; v/dz. Zonal averaging yields @ NV =@y D
0, hence NV D const. In an ocean with a southern boundary where Nv D 0 we thus
have

NV D
0Z

�h
Nvdz D 0 (16.9)

We now continue to construct several simple homogeneous models of the Southern
Ocean and discuss the predicted values of the ACC transport and other quantities.
None of these models is entirely realistic, since variations of density Q� are missing,
but they are still useful to learn about some principal aspects of the dynamics of
a circumpolar ocean.

16.2.1 A HomogeneousModel with a Flat Bottom
and BottomFriction

First we consider a flat-bottom ocean, i. e. h D const. The pressure difference term
in (16.5) vanishes for a flat bottom. We also neglect the mesoscale eddy momentum
fluxes v0u0 so that no effect of the momentum advection remains in (16.5). The zonal
current Nu is then geostrophic outside Ekman layers at the top and the bottom. Taking
the vertical integral of (16.5) from the bottom z D �h to the surface at (approxi-
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Fig. 16.4 Sketch of the solution of the homogeneous flat-bottom case. Above the frictional bottom
Ekman layer, the zonal current has no vertical shear and is in geostrophic balance with a sea surface
tilt. The meridional and vertical transports are due to the surface Ekman transport, Ekman pumping
in the interior, and a frictional bottom current in the bottom Ekman layer. Note that all fields are
independent of longitude

mately) z D 0 yields

f

0Z

�h
Nvdz D 0 D

0Z

�h

@ N� .x/
@z

dz D N� .x/0 � N� .x/b (16.10)

We notice the importance of a frictional bottom stress, �b D .�
.x/
b ; �

.y/
b / D

�.z D �h/, to balance the zonal momentum input by the wind. Although we will
work with this balance in the following analysis and also occasionally later in this
chapter for didactic purposes, it should be made clear that a frictional bottom stress
of the magnitude of the windstress is unrealistically large. Its role will later be re-
placed by the bottom formstress as detailed in the box on p. 568 and further below.

To sustain that stress, a current must be present rubbing on the floor, which can
only be a geostrophic current Nug D �.@ Np=@y/=f D �.g=f /@ N�=@y associated with
the meridional tilt of the sea surface (see Section 14.1.1 on the Elementary Current
System), while Nvg D 0. For Q� D const, Nug penetrates undiminished through the
whole water column and implies a bottom stress given by (see the box on p. 562)

�b D
�
1

�1
�
1

2
gdb

@ N�
@y

Hence we find from (16.10)

@ N�
@y

D 2 N� .x/0 =.gdb/ or ug D
 

�2 N� .x/0 =.dbf /

0

!
(16.11)

The sea surface is sloping upward to the north for westerly winds ( N� .x/0 > 0). The
geostrophic flow occurs at all depths and flows into the direction of the windstress.
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Table 16.1 List of parameters and standard values used for scale estimates in this section: X ,
Y D yN � yS are the zonal and meridional extent of the Southern Ocean, respectively, N is the
stability or Brunt–Väisälä frequency, Ri D Nh=jf j is the internal Rossby radius, Ah is a lateral
eddy-induced viscosity,K` the thickness diffusivity, de is the depth of the surface Ekman layer and
db likewise for the ocean bottom

f �1:25 � 10�4 s�1 ˇ D df=dy 1:15� 10�11 m�1 s�1 Ah 104 m2 s�1

Y 1,000 km X 20,000 km h 4,000 m
de 100 m db 100 m �

.x/
0 10�4 m2 s�2

N 1:2� 10�3 s�1 Ri 12.6 km K` 1;000m2 s�1

In addition, we have a meridional transport NVe in the surface Ekman layer and zonal
and meridional transports . NUb; NVb/ in the bottom Ekman layer, given by (from the
box on p. 562)

U e D
� NUeNVe

�
D
 

0

�N� .x/0 =f

!
and U b D

� NUbNVb

�
D
�
1

1

�
N� .x/0 =f (16.12)

Hence we find NV D NVe C NVb D 0, as required by the mass balance. The im-
plied meridional circulation is closed by Ekman pumping arising from the wind-
stress below the surface layer and from frictional bottom stress, in the same manner
as explained in Section 14.1.1. Note that the zonal geostrophic transport db Nug D
�2 N� .x/0 =f in the bottom layer is opposed to and exceeds the frictional transport
NUb. Assuming that h � db, the total transport U is thus almost identical to the

geostrophic transport hug. The zonal transports and the rest of the circulation in this

simple homogeneous model follows by specifying the zonal windstress N� .x/0 , and is
sketched for the westerly winds characteristic for the Southern Ocean in Figure 16.4.

Table 16.1 lists scales for the relevant parameters representative for the Southern
Ocean, from which we can deduce the consequences of our simple flat-bottom and
homogeneous model. The standard parameters yield indeed fairly reasonable val-
ues for some of the quantities, i. e. for ACC strength Nug 	 1:6 � 10�2 m s�1, ACC
transport Yh Nug 	 64 Sv, frictional ACC transport Y NUb 	 �0:8 Sv and meridional
overturning transport X NVe D �X NVb D 16 Sv. An exception is the surface tilt: we
find only @ N�=@y 	 2 � 10�7 which is an order of magnitude too small (we know
from satellite observations that the value of the surface slope in the ACC is roughly
1:5m=1;000 km D 1:5 � 10�6). Clearly, we can increase @ N�=@y of the model by
choosing a smaller Ekman depth for the bottom layer, but this would increase the
transport as well. We are facing here a similar dilemma as described in the next
paragraph, giving us a hint that something is missing in our model.

16.2.2 Hidaka’s Dilemmawith Lateral Friction

Next let us consider the presence of mesoscale eddies by adding the common dif-
fusive representation of eddy momentum fluxes to the zonal and meridional mo-
mentum balances (16.5) and (16.6), i. e. by assuming v0u0 D �Ah@ Nu=@y and
v0v0 D �Ah@ Nv=@y, which yields

�f Nv D �ıp
X

C @ N� .x/
@z

C Ah
@2 Nu
@y2

; f Nu D �@ Np
@y

C @ N� .y/
@z

C Ah
@2 Nv
@y2
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93. Bottom Formstress The pressure difference ıp in the zonally averaged zonal momentum balance (16.5) is a short-
hand notation of the sum over all ridges blocking the zonal path at the depth z, of the pressure
difference ıip D pW

i
.y; z/� pE

i
.y; z/ associated with the individual ridge numbered by i

(note that E=W refer to the eastern/western side of the ridge, not of the intermediate valleys).
Hence the cumulative pressure difference

ıp.y; z/D X
i

ıip.y; z/

vanishes above the highest topography, assumed to block the path at a depth z D �D.y/ and
latitude y. The vertical integral of the cumulative pressure difference is given by

F.z/D �
0Z

z

ıp

X
dz D �

0Z

z

1

X

X
i

ıip.y; z/dz D � 1

X

X
i

xE
i
.z/Z

xW
i
.z/

P
@h

@x
dx

with the total zonal extentX of the circumpolar path and the bottom pressure P D p.z D �h/.
The quantity F.z/ is zero for z > �D and accumulates at the greatest depth (occurring in the
deepest valley at the latitude y) to the total bottom formstress

Fb D F.�h/D 1

X

I
P
@h

@x
dx D P

@h

@x
D �h@P

@x

Note that the formstress becomes negative (taking eastward momentum out of the water and
transferring it to the solid earth) if on average pW > pE. In this case, the geostrophic current
within the valleys is southward.

where we have assumed a constant lateral turbulent viscosity Ah for simplicity. We
emphasize again that this diffusive assumption about the nature of the eddy momen-
tum fluxes is rather unphysical for large-scale ocean dynamics and that we introduce
lateral momentum diffusion for educational purpose only in this section. For a flat
bottom and Q� D const, the vertically integrated balances of zonal and meridional
momentum become

0 D N� .x/0 � N� .x/b CAh
@2 NU
@y2

; f NU D �gh @
N�
@y

� N� .y/b (16.13)

Momentum can now be exported in the meridional direction from the wind patch
towards the southern boundary where friction on the wall can work, or it can also
be exported towards the north. The bottom friction is no longer needed to obtain
a balance, but can we find a reasonable solution for free-slip at the bottom, i. e. for
�b � 0?

The system (16.13) with zero bottom friction seems to be straightforward, but
it turns out to be quite unphysical. From the zonal balance, we infer the scaling
NU 	 Y 2�

.x/
0 =Ah so that the zonal transport scales as Y NU 	 Y 3�

.x/
0 =Ah. With

our standard parameters of Table 16.1, this yields values exceeding 104 Sv, which
is totally unrealistic. Using the sinusoidal windstress (16.1) yields a total transportR NU dy D �

.x/
0 Y 3.4C  2/=.2 3Ah/, modifying the above large value by the small

factor .4 C  2/=.2 3/ to a somewhat smaller size which still amounts to 2240 Sv
for the parameter values of Table 16.1. The relation is obtained for the boundary
conditions NU D 0 at y D yS and @ NU=@y D 0 at y D yN.

To arrive at a realistic size of 140 Sv for the transport, we need to increase Ah

by more than a factor of 15. This is obviously an unrealistic magnitude for the
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momentum diffusivity as we can see also from the following scaling: a diffusivity
Ah relates to the mesoscale eddy size `0 and eddy velocity u0 by Ah 	 `0u0. For
Ah D 1:5 � 105 m2 s�1 and v0 	 0:1m s�1, we find a far too large mesoscale eddy
size of `0 	 1:5 � 106 m 	 1;000 km. From the geostrophic balance in the merid-
ional momentum equation of (16.13), it follows that the sea surface would increase
by 6 m across the ACC which is a factor four too large. Hidaka’s work (Hidaka and
Tsuchiya, 1953) made the dilemma obvious of either choosing a reasonable value
for the diffusivity Ah in a numerical model of the Southern Ocean, leading to an un-
realistically large simulated ACC transport, or choosing an unrealistically high value
for Ah to arrive at the correct size of about 140 Sv.

The dilemma is mitigated if we return to no-slip at the bottom. The geostrophic
current Nug D �.g=f /N@�=@y is, however, no longer the only driving of the frictional
bottom layer, but it is rather the interior velocity . Nui; Nvi/ at the top of that layer.
Assuming @�=@z D 0 for the interior, it follows

�f Nvi D Ah
@2 Nui

@y2
; f Nui D �g @

N�
@y

C Ah
@2 Nvi

@y2

We may solve the entire problem for the sinusoidal wind, but note here that the
lateral Ekman numberAh=.f Y

2/ 	 10�4 is very small, and thus the interior current
is well approximated by the geostrophic part, i. e. ui � ug. This leads to N� .x/b D
.gdb=2/@ N�=@y as before in the case considered in Section 16.2.1 and when we insert
now @ N�=@y D �f NU=.gh/, derived from (16.13) with N� .y/b D �.gdb=2/@ N�=@y and
db � h, the balance (16.13) of the zonal flow becomes

N� .x/0 C 1

2

dbf

h
NU C Ah

@ NU
@y

D 0

The second term, resulting from the frictional bottom stress, generally overcomes the
lateral momentum diffusion by one to two orders of magnitude so that the latter only
plays a minor role, except in lateral boundary layers (compare the box on p. 458).
We find NU 	 �2 N� .x/0 h=.dbf / and Y NU 	 64 Sv and @ N�=@y 	 10�7, as in the
case of Section 16.2.1, i. e. a realistic ACC transport but too small sea surface slopes
across the ACC. Note that the bottom stress implies a frictional transport U b D
�.db=2h/ NU.1; 1/. The same scaling argument used for the interior flow is also valid
for the upper layer, and we conclude that the flow in that layer is almost contained
in the Ekman transport NVe D �N�x0 =f . It balances the frictional transport NVb in the
bottom layer. In fact, the lateral momentum diffusion is of no significance in this
solution.

16.2.3 Homogenous SouthernOceanwith Topography

Though formulated as a zonal average, the flat-bottom and homogeneous models
of the ACC are valid in three dimensions as well, since in the absence of zonal
perturbations the flow must be strictly independent of longitude. The introduction
of a zonally varying topography h D h.x; y/ breaks the zonal symmetry, and it
leads to a zonally undulating current. Further, the presence of zonal deep pressure
perturbations enter the balance of the flow as bottom formstress as detailed in the
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94. A Homogeneous
Southern OceanModel

The model is based on the equations (16.2)–(16.3) where the momentum advection r � .uu/ is
neglected in agreement with the planetary geostrophic approximation (see Chapter 5.1). Lateral
friction is included by viscous diffusion. Note that in this homogeneous model the pressure
gradient force is related to the sea surface elevation � only, since the density Q� is held constant.
The model is integrated numerically to a steady state of the circulation around Antarctica (south
of 20ı S) with a horizontal resolution 2ı �1ı, the horizontal viscosity isAh D 4�104m2 s�1,
and there is no bottom friction. The model is forced with realistic annual mean windstress data
shown in the figure below. The topography is either flat with a constant depth of 5,000 m (case
FLAT) or realistic but slightly smoothed with a two-dimensional symmetric filter (case TOPO).
The Drake Passage of the model is open between 62.5 and 55:5ı S. The figure (a) below shows
the f=h contours for case TOPO (compare Section 14.2) and the zonal (b) and meridional (c)
components of the windstress driving both configurations.

Topography and forcing of the homogeneous model of the Southern Ocean. a geostrophic con-
tours f=h, contour interval is 5� 10�9 m�1 s�1 . b �.x/0 and c � .y/0 in 10�4 m2 s�2. Contour
interval for b and c is 10�4 m2 s�2.
For a rigid-lid condition, the depth-integrated flow U is divergence-free and the introduction
of a stream function  for U becomes possible. A barotropic version of the model can be
formulated which is governed by the vorticity equation

@

@t
r � 1

h
r  C r: � r f

h
D r: � �0

h
C r: � R

h

with the usual boundary kinematic and dynamic conditions, augmented by an integral constraint
which is needed to define the values of the stream function on the different continents in the
multiconnected domain of the Southern Ocean. The path integral

I

C
ds � r P D

I

C
ds � 1

h

�
�r:

@ 

@t
C f r  C �0 � �b C R

	

of the barotropic momentum balance (see (14.28)) has to vanish for any path C around Antarc-
tica. Note that if it vanishes for one particular path, then it vanishes for all paths due to the
validity of the vorticity balance. Here we use a general friction term (R is the negative verti-
cally integrated Reynolds stress divergence; see (16.14)) and augment the equation by the time
tendency term.

box on p. 568. Keeping the eddy momentum fluxes, the vertically integrated zonal
momentum balance (16.5) becomes

N� .x/0 � N� .x/b C Fb C R.x/
b D 0 (16.14)

where R.x/.z/ D � R 0z .@v0u0=@y/dz denotes the vertically integrated Reynolds

stress divergence for which R.x/
b D R.x/.�h/ is the bottom value. Note that we

still neglect vertical momentum advection and advection by Nv, which are both small
in the planetary-geostrophic approximation. The bottom formstress Fb is defined in
the box on p. 568. It depends on the zonal pressure difference ıp.y; z/, appearing
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Fig. 16.5 Stream function  in Sv for the numerical homogeneous model of the Southern Ocean
(see the box on p. 570) for the case FLAT (a) and TOPO (b). Positive contours are black, negative
red (the value  D 0 is on the South American continent). Contour intervals for FLAT are 100 Sv
for positive and 20 Sv for negative contours. The contour interval for TOPO is 10 Sv

in (16.5). Neither the bottom formstress Fb nor R.x/
b can be determined from zonal

mean equations. In order to obtain a nonzero ıp and Fb, there must be a nonvanish-
ing geostrophic current ug at depth, and thus variations in the bottom pressureP , and
hence some functional dependence ıp D ıpŒ Nu; y; z� must exist. With knowledge of
this relation the model would be closed and could be solved. We will work out exam-
ples below in Section 16.7. In general, however, the relation will be too complicated
or not even accessible.

In the remainder of this section, we discuss two simulations with a numerical
model, a flat-bottom case FLAT and a topographic case TOPO. The configuration
of both cases is summarized in the box on p. 570. The model has the realistic ge-
ometry, topography, and wind forcing of the Southern Ocean: the figures in the
box show the geostrophic contours f=h (compare Section 14.2) and the windstress
forcing over the Southern Ocean. Since the model employs the rigid-lid assump-
tion, it is convenient to introduce a stream function  for the depth-integrated flow
U D .U; V / D R 0

�h udz with U D �@ =@y and V D @ =@x. Note that  deter-

mines the volume transport between two points, i. e.
R B
A

r � ds D  .B/ �  .A/,
where ds is a line element of the section from A to B .

The stream functions for the experiments FLAT and TOPO are shown in Fig-
ure 16.5. The flat-bottom, homogeneous case (experiment FLAT) has an unrealis-
tically high ACC transport of about 1100 Sv, while the homogeneous ocean with
topography (experiment TOPO) has a transport of only 33 Sv that is far too low to
represent ACC conditions.

The flat-bottom case FLAT has an almost zonal ACC. There is a slight squeezing
of streamlines in Drake Passage and a marked northward shift in the path of the
current behind that obstacle. Since the bottom formstress cannot operate and the
bottom friction is set to zero, lateral friction is the only momentum sink: with the
unrealistically high ACC transport and the moderate lateral viscosity Ah, we are
indeed facing Hidaka’s dilemma, as discussed in the previous section.

The topographic case TOPO, on the other hand, establishes a bottom formstress
arising from the pressure being out-of-phase with the submarine barriers of the flow,
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Fig. 16.6 Zonally and vertically integrated zonal momentum balance as a function of latitude (N)
for the cases FLAT (a) and TOPO (b). Shown are windstress N�.x/0 (yellow black dashed line), bot-

tom formstress h@P=@x (black line) and lateral frictionAh@
2 NU=@y2 (green line) in 10�4 m2 s�2.

Drake Passage is indicated by the vertical purple lines

as discussed below. The depth-integrated flow is mostly parallel to the geostrophic
contours f=h D const (compare with the figure (a) in the box on p. 570). Refer-
ring the Section 14.2.2, it appears that neither the windstress forcing in the vorticity
balance (14.31) nor the lateral friction (not contained in (14.31)) is very efficient
in driving significant flow across the f=h contours. Furthermore, since there are
not many f=h contours running through Drake Passage, the ACC transport remains
weak. Embedded in the circumpolar flow, however, are huge closed circulation cells
in areas with closed f=h contours, namely above the Mid-Atlantic Ridge and around
the Kerguelen plateau, with transports exceeding 100 Sv. These features will be ana-
lyzed in the next section.

The zonally averaged zonal momentum balances of FLAT and TOPO are shown
in Figure 16.6. The balance (16.14) applies, however, there is no bottom friction
in the present experiments. In the case FLAT, the dominant balance in the belt of
latitudes passing through Drake Passage is given by lateral friction and windstress,
since there is no other balance possible. In TOPO, friction is only minor in the zon-
ally unbounded region, instead we find as dominant terms the windstress N� .x/0 and
the bottom formstress Fb, i. e. the momentum balance of TOPO reduces to

N� .x/0 � h
@P

@x
D 0 (16.15)

which is a balance between the applied windstress and transfer of zonal momentum
into the bottom, occurring independently at each latitude. The bottom formstress acts
as a ‘form drag’, avoiding Hidaka’s dilemma even for a case without bottom friction.
In a homogeneous ocean, as discussed in this section, the bottom pressure is entirely
due to a tilt of the sea surface. Note that to balance a windstress of 10�4 m2 s�2, only
a few centimeters are required across a ridge of a width of 1,000 km, with higher sea
surface on the upstream side. Munk and Palmén (1951) were the first to discuss the
balance (16.15) for the ACC, but surprisingly much of the research on the ACC after
Munk and Palmen’s article forgot the importance of the bottom formstress for some
time and tried frictional balances, e. g. Hidaka and Tsuchiya (1953) and Gill (1968).

According to the box on p. 568, the bottom formstress Fb arises from a systematic
phase shift of the bottom pressure P with respect to the topography h. The bottom
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Fig. 16.7 Bottom pressure P and depth h along two latitudes in the numerical homogeneous model
of the Southern Ocean (see the box on p. 570) for the cases FLAT (left) and TOPO (right). The
panels show the bottom pressure P (blue lines, in the scaled form P=max.jP j/ C 1) and the
topography h (red lines, in the scaled form �h=max.h/ to separate the two curves) at the latitude
59:5ı S (a,b), running through Drake Passage, and at the latitude 46:5ı S (c,d), which is located
north of Drake Passage. The passage is located roughly at the longitude 300ı E (see the gap in the
curves of the c and d)

pressure equals P D g� C g. Q�=�0/h where the baroclinic term has no formstress
effect since there are no density variations, and h and @h=@x are exactly out of phase.
To obtain a net westward acceleration of the eastward current, i. e. a brake effect on
the flow, highs of P must appear to the west and lows in P to the east of topographic
barriers in the path of the flow. In fact, the flow organizes itself such that this sink of
eastward momentum can become effective. Figure 16.7 displays the bottom pressure
at a central latitude through Drake Passage together with the corresponding ocean
depth, and in a similar way for a latitude north of Drake Passage. The shaping of the
formstress in case TOPO is apparent: in the Drake Passage belt, we notice a westward
shift of roughly 10ı of the maxima in P with respect to the maxima in h and no
such (or a much less correlated) pattern at latitudes to the north. In case FLAT, high
pressure appears as well west of Drake Passage, but in contrast to TOPO the zonal
gradients are much smaller. There is a gradual increase all around Antarctica which
is balanced by the drop in Drake Passage. The bottom formstress in FLAT is, of
course, zero as h D const. Outside the zonally unbounded belt, the balance (16.15)
is also valid in TOPO, and friction still does not play an important role. For zonally
bounded regions, the bottom formstress is mainly given by the pressure difference
h�P on the continents. This, in fact, is the principle balance of the zonal mean
zonal momentum balance2 in the basin-wide gyre circulations embedded between
continents (see Chapter 14). Considering FLAT in the zonally bounded parts of the
domain, we note that lateral friction plays a more important role than in TOPO.

Nevertheless, both simulations of the homogeneous model of the Southern Ocean
are clearly quite unrealistic for the ACC. What is missing in the homogeneous

2 Note that bottom or lateral friction is still necessary to close the energy budget because formstress
is not an energy sink. This can be seen because pressure does not show up in the basin integrated
kinetic energy budget (12.17).
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model? In the following discussion, we demonstrate that stratification puts the sys-
tem into a very different flow regime. At first, varying Q� contributes to the meridional
pressure gradient @ Np=@y such that an increasing compensation of the surface pres-
sure gradient occurs with increasing depth. The geostrophic current thus diminishes
with depth (see also the box on p. 560). The bottom formstress gets a baroclinic
component as well, acting generally against the barotropic one, and thus accelerates
the eastward flow. Most important, however, is the influence of baroclinicity on the
overturning circulation. In a stratified medium, the current cannot easily cross isopy-
cnals, and hence the zonal average, highlighted in the previous discussion, cannot
reflect the local overturning anymore. We discuss these processes in Section 16.3.

16.2.4 The Barotropic Circulation over Closed f =hContours

The occurrence of regions in the Southern Ocean with closed f=h contours was
briefly pointed out in Section 14.2.2 (see Figure 14.8 and the box on p. 570). Promi-
nent examples are the Mid-Atlantic Ridge, the Mid-Pacific Ridge, the region around
Kerguelen Island, and Antarctica as a whole, however, the latter to a lesser degree,
because only few contours completely cycle around. Problems in the vorticity bal-
ance become obvious in the particular form (14.31) where the left-hand side (di-
vided by jrf=hj) integrates to zero around a closed f=h contour, but the wind-
stress as a prescribed forcing cannot adjust to such a constraint. In this section we
develop a solution for the barotropic circulation in regions of closed f=h contours,
attempting to understand the huge circulation cells appearing in the numerical solu-
tion TOPO in the previous section (see Figures 16.5 and 16.8).

We would like to point out that the barotropic case is on the whole an academic
problem because the strong circulation cells over closed f=h contours mostly disap-
pear, when stratification is included and the circulation is simulated to higher degree
of realism. This important property of stratification was presented and explained in
Section 14.2 and will reopened specifically for the Southern Ocean in Section 16.5.

As before we will use for simplicity bottom friction in the form implemented in
the vorticity balance (14.29). We consider a barotropic condition and thus cancel the

Fig. 16.8 The figures show the region east of Drake Passage. a .˛; s/ coordinates with normal
vectors n D r ˛=jr ˛j and s, here depicted for ˛ increasing outward. b stream function  (red
curves) and f=h (black curves) in the experiment TOPO
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JEBAR term in this equation, which is then expressed by

r � .R=h/r C r: � r .f=h/ D r: � .�0=h/ (16.16)

We write this equation in a coordinate system .˛ D f=h; s/, attached to the region
with closed contours, where s is an angle-type coordinate running cyclic along ˛ D
f=h D const (see Fig. 16.8 for the Mid-Atlantic Ridge situation and Appendix A.4
for the mathematical details of curvilinear coordinates). We may assume that

H
ds D

1 without restriction. The metric coefficients are � D jr˛j and � D jrsj which are
generally functions of ˛ and s. All terms in (16.16) are proportional to the product
�� , e. g. for the curl of the windstress we find

r: � .�0=h/ D ��

�
@

@s

�?
�h

� @

@˛

�k
�h

	

where �? D n �� and �k D s �� are the components of the windstress that are normal
and parallel to the ˛ contours, respectively. Abbreviating for the moment the terms
in (16.16) by ��W D r:�.�0=h/ (the vorticity source by windstress), ��F Œ � D r �
.R=h/r (the friction), and ��BŒ � D r: � r.f=h/ (the topographic-planetary

term), their integrated values must balance for each ˛ closed contour. Hence,I

f=hDconst

.W � F Œ �/ ds D 0 (16.17)

because the contribution from the topographic-planetary term B D @ =@s cancels
exactly. We conclude that a frictionless flow over closed f=h contours cannot exist
in a homogeneous ocean, if a forcing W with

H
W ds ¤ 0 is present. The integral

of W in (16.17) is evaluated as

hW i D
I
W ds D � @

@˛

I
�k
�h

ds D � @

@˛

D �k
�h

E

and found to depend only the along-contour component of the windstress. The av-
erage over a closed ˛ contour will henceforth be denoted by the cornered brackets.
If the wind field is large-scale compared to the undulations of the ˛ contours, then
�k is more or less in one direction on one side of the contours and reverses on the
other side. This large-scale property of the windstress curl enters the closed-contour
problem (16.17).

The aim is now to define a contour mean stream function N .˛/ – in some sense
the lowest spatial mode in the .˛; s/ coordinates – which is driven by the contour-
averaged forcing hW i, while the deviation  0 D  � N , representing higher modes,
is driven by the deviation W � hW i. With N D h i this is generally not achieved
because then N and  0 are still coupled. A specific definition of the contour mean,
however, allows for a partial decoupling. We arrive at such a decomposition with
the following considerations. Writing the stream function  D  .˛; s/ in the local
coordinates .˛; s/, the vorticity balance becomes
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and integration around an ˛ contour leads to
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which is (16.17), written now in the specific coordinates. We insert  D N C  0
with a yet undefined separation of the components and obtain

R
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�I
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�h
ds

�
@ N 
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CR
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�h
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@˛

0
ds D hW i

In order to reach our goal of decoupled equations, the  0-term on the left-hand side
must vanish. The mean must thus defined by
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D
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@˛
ds
.I �

�h
ds (16.18)

Note that �@ =@˛ D s � U D Uk, hence the above definition refers to the contour
mean of Uk=h. Note further that we have to distinguish between the contour integral,
denoted by the cornered brackets, and the weighted contour mean, given above and
denoted by an overbar. The vorticity balance is now separated into the contour mean
and the deviation, governed by
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The definition of the weighted mean (16.18) allows to treat N independently from
 0 but not vice versa. Note, however, that the coupling of the mean to the deviation
stream function, given by the third term on the left-hand side of (16.19), may be
small because the specific coupling coefficient is a deviation term.

The equation for the mean N is readily solved. First notice that by integration the
momentum balance results,

R
D �
�h

E @ N 
@˛

D �
D �k
�h

E
(16.20)

which is the balance for the component parallel to and averaged around ˛ contours.
An interesting feature of (16.20) is that for constant f , where h D f=˛ D h.˛/ and
thus h and ˛ contours coincide, the actual depth profile drops out. It is a consequence
of the simple form of the bottom friction applied in the present model. Equation
(16.20) is ready for integration to give N .˛/, but we postpone the discussion to the
specific example outlined below.

The ‘closed contour dilemma’ may now be rephrased as follows. If the contour
averaged forcing hW i is nonzero, then a resonantly forced component N .˛/ exists
which necessarily requires friction to adjust: there is no free-mode solution in such
a region, referring to the discussion in Section 14.2.2. On the other hand, the devi-
ation  0 D  � N does not necessarily require friction. In fact,  0 could exist in
a Sverdrup-type balance over the region with closed contours. As explained above,
the forcing W � hW i for the f=h islands over the midocean ridges in the Southern
Ocean may become small, so that  0 is only a small perturbation compared to N : the
circulation is then mostly along the f=h contours.

The solution for the deviation field  0 for a general situation is not possible. If
friction, acting on the 0 field, is negligible the integration becomes trivial. Neverthe-
less, this approximation does not survive if boundary conditions have to be satisfied



16.2 Homogeneous Wind-Driven Models of the Southern Ocean 577

on the outmost ˛ contour, connecting the circulation over the closed-contour region
with the outside world. In this case, the friction term in the  0-equation must be
revived. Below we give an example for circulation over circular ˛ contours.

Example: Circular Geostrophic Contours

Assume polar coordinates .r; �/ and take ˛ D ˛.r/ circular. Hence with f D
f .r; �/ D f0 C ˇr sin � we find for the ocean depth h D h.r; �/ D f .r; �/=˛.r/.
Note that the �-dependence of the depth occurs for this specific case only via the
ˇ-effect. The equations are conveniently rewritten in r D r.˛/, instead of ˛.r/, and
� D 2 s (the latter is for @˛=@r > 0, e. g. a hill in the southern hemisphere; for
a valley � D �2 s). We find � D jr˛j D j@˛=@r j; � D jrsj D 1=r . In these
coordinates, the vorticity balance is of the form (the proper form of the equation in
polar coordinates),
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with .� .r/; � .�// as components of �0 in the polar coordinates (these are the �?
and �k from the general case discussed above). For simplicity, we take now a uni-
directional windstress �0 D .� .x/.y/; 0/ along the x-axis with a constant curl,
i. e. � .x/.y/ D a C cy with constants a; c. Then, with y D r sin � we have
� .x/ D a C cr sin �; � .r/ D � .x/ cos �; � .�/ D �� .x/ sin � , so that

W D rr: � .�0=h/ D � cr

h.r/
C a C cr sin �

h2.r/

�
r sin �

@h

@r
C cos �

@h

@�

�
(16.22)

Remember that @h=@� 	 ˇ arises in this configuration only through the ˇ-effect.
The basic features can be learned from a f -plane situation where ˇ D 0 and,

with ˛ being circular, we also have h D h.r/ D f0=˛.r/ with circular contours (the
general case is treated in the box on p. 579). Then
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Fig. 16.9 a The valley of ˛.r/ D f0=h.r/ for a Gaussian hill, shown in the .x=L; y=L/-plane.
Note that ˛ is scaled by the constant jf0j=H0. b The curl W=r of the windstress, c the contour
mean hW i=r , and d the deviation .W � hW i/=r
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We illustrate the pattern ofW=r and its mean hW i=r in Figure 16.9, using a Gaussian
hill, leading to the ocean depth h.r/ D H0 �H1 exp .�r2=r20 /.

For the present case, the averaging procedures for the overbar and the cornered
brackets collapse because the metric coefficients and the depth are function of only
r . Hence we average over the angle � , defining N D R

 d�=.2 / and arrive at the
equation
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which determines the contour-averaged stream function N as
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c
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�
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�
(16.23)

Here r D r0 is conveniently the location of the outer rim of the topography. As
mentioned before, the solution is independent of the specific depth profile h.r/. The
solution is displayed in Figure 16.10.

The equation for the deviation stream function  0 D  � N becomes
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Note that  0 is here strictly decoupled from the mean N . Assume now for the mo-
ment that the friction terms in this balance are small. Then  0 is determined as

 0.r; �/ D �r cos �

f

�
a C 1

2
cr sin �

�
(16.25)

Again the actual profile of h.r/ drops out. If it happens that N .r0/ C  0.r0; �/
matches continuously to the flow outside the area of closed contours, the deviation
field can remain frictionless and given by (16.25). We depict such a case in Fig-
ure 16.10. The general case, however, requires friction in the  0-balance (16.24).
Then a boundary condition at r D r0 can be posed.
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Fig. 16.10 The solution parts a N from (16.23), b  0 for the frictionless approximation (16.25),
c the sum of both, and d) the sum in background flow which matches to the flow on the rim of the
closed contour region
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The solution (16.23) for the case
ˇ D 0 [dashed] is here compared
to (B95.2) for various values of
ˇ D .0:2; 0:6; 1:0; 2:0; 6:0; 10:0/ �
10�12 m�1 s�1. Shown are the scaled
stream functions N =.cL2=R/ as function
of r=L.

We average (16.21) with the specific windstress
curl (16.22) over the angle � , denoted as before
by cornered brackets, and arrive at
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Integrating once with respect to r yields
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which determines the contour-averaged stream
function N . We have to evaluate the contour-
averaged coefficients appearing on the right-
hand side. They are found in term of elementary
square-root functions for f0 < 0; f 20 > .ˇr/

2

(not given here). The equation (B95.1) then be-
comes
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The integration constant is adjusted such that N .0/ D 0. It is interesting that the limit ˇ !
0, implying f D const and h D h.r/, leads to the simple solution N .r/ D �cr2=.4R/
discussed in the text. The above figure compares these solutions and demonstrates the agreement
in the limit ˇ ! 0. The balance of the deviation stream function  0 for case ˇ ¤ 0 can be
solved in similar way as discussed in the text.

Some Numerical Solutions

Finally we corroborate our findings with some numerical solutions (produced with
a finite-element code of the BARBI model, implemented here for homogeneous den-
sity conditions; courtesy of Sergey Danilov). The mark, that a closed contour region
leaves in the overall circulation, very much depends on details of the forcing and
the position of the mountain in the forcing field, supporting the contour-averaged
windstress curl. Also the position of the mountain relative to the upstream circula-
tion matters, finding its expression in the boundary condition of the above discussed
analytical solution on the outer rim. Figure 16.11 displays four cases of wind-driven
circulations in southern hemisphere channel (extent from 45 to 30ı S and length 60ı;
the depth is 4,000 m, perturbed by a ridge and a mountain as can be seen in the f=h
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Fig. 16.11 Wind-driven barotropic flow in a zonal channel with a ridge and a mountain, the latter
has different positions for the four cases, which can be inferred from the f=h contours shown in
the first column of panels. The second column displays the stream function, and the third column
displays the meridional profiles of the stream function west of the mountain (blue curves), along
the center of it (black curves), and their difference (red curves). Further details of the experiments
are given in the text. Units for the stream function are 100 Sv, CI D 20Sv

contours in the panels of the left column). The windstress is sinusoidal and eastward
with amplitude 2� 10�4 m2 s�2 and zero on the northern and southern channel rims.
The ridge has a height of 1,000 m and mountain is 1,500 m high with a circular
Gaussian shape. Its position in the channel changes from a northern place in the first
experiment to a central one in the second and a more southern place in the third ex-
periment. The f=h contours in these three cases are not blocked by the ridge – they
close in the southern domain of the channel, unlike the ones in the fourth case where
the ridge height is increased to 1,400 m and all f=h become blocked. Consequently,
the circulation of this case is weakest (shown in the fourth row of Figure 16.11 and
the profiles in the right column). Note that in absence of the hill, we have an eastward
flow with lobes which reverse at the northern and southern boundaries.

The case with the northern most position of the hill leads to a negative contour
averaged windstress curl hW i because the wind on the northern slope of the hill
is weaker than the one the southern slope. This forcing, therefore, drives a reversed
(counterclockwise) circulation around the closed contours of the hill (uppermost row
of Figure 16.11). The next two cases (central and southern positions, shown in the
second and third rows) yield a massive clockwise contour-averaged circulation over
the hill, which sticks out in a prominent way in the overall central eastward flow. In
the last case (blocked f=h contours, hill central; fourth row) the contour-averaged
flow is still clockwise but much weaker than in the previous cases. All these features
are clearly visible in the circulation patterns, shown in the respective second column
panels.
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The left columns of Figure 16.11 illustrate the stream function of the central lon-
gitude of the hill relative to the upstream meridional profile just outside the western
slope of the respective hills, i. e.  cent.y/ �  ups.y/ is plotted (red curves). The up-
stream profile  ups.y/ (blue) and the central profile  cent.y/ (black) are displayed
displayed as well.

16.3 TheMeridional Overturning of the Southern Ocean

Consider again the zonally averaged zonal momentum budget (16.5) and, for sim-
plicity, focus for the moment on the interior flow with ıp D 0 and neglect momen-
tum advection. Evidently, the meridional flow is only driven by the frictional vertical
stress N� .x/ which is small in the interior, and thus the meridional velocity Nv in the
interior must be small compared to the Ekman current in the surface layer. In the
idealized cases of Section 16.2, we have assumed absence of interior small-scale tur-
bulence, � .x/ D 0, and a vanishing meridional current in the interior was the conse-
quence. The interior circulation in the meridional/vertical plane, i. e. the meridional
overturning circulation, is then strictly vertical, supported by surface (and bottom)
Ekman transports and the vertical pumping Nwe D �@. N� .x/0 =f /=@y out of the sur-
face (and bottom) Ekman layer as summarized in Figure 16.4. While this picture is
certainly valid for a homogeneous ocean, the situation should change for a stratified
ocean, as sketched in Figure 16.3. Here, the interior meridional overturning circula-
tion is not vertical, but it is believed to closely follow the isopycnals. We discuss the
meridional overturning circulation in a stratified ocean in this section in more detail.

16.3.1 The EulerianMeridional Overturning Circulation

The stream function �.y; z/ for the meridional overturning circulation may be de-
fined as @�=@z D �Nv, @�=@y D Nw and�.y; z D 0/ D 0, hence

�.y; z/ D
0Z

z

Nvdz (16.26)

is vanishing also on the bottom z D �h by (16.9). The stream function � will be
called the Eulerian stream function (averaged on constant geopotentials, z D const),
in contrast to a Lagrangian one (averaged on isopycnals, Q� D const), which yields
a better description of the meridional overturning circulation in the Southern Ocean,
as discussed below in this section.

We find the balance of the meridional overturning in terms of the stream function
by vertical integration of (16.5) from the level z to the surface z D 0,

�f� D N� .x/0 � N� .x/ C F � R.x/ (16.27)

now written for a nonzero ıp. The Reynolds stress term R.x/.z/ D � R 0
z
@v0u0=@ydz

is induced by standing and transient eddies (compare the box on p. 563) and usu-
ally very small. The bottom formstress F.z/ arise through ıp and is defined in
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96. An Idealized
Southern Ocean/Atlantic
Basin Model

We use an eddy-permitting primitive equation model consisting of a zonally reentrant channel
(the Southern Ocean part) which is connected to a northern ocean basin enclosed by land at the
eastern, western and northern sides (the ‘Atlantic basin’ part, see below). The equations are for-
mulated in Cartesian coordinates. The domain of the idealized model extends over 2,500 km in
zonal and meridional direction with 20 km horizontal resolution and 20 vertical levels with 50 m
thickness (the basin depth is 900 m). The model includes only temperature, which is propor-
tional to density or buoyancy (with @�=@T D �0:2 kg m�3 K�1). The model uses a southern
hemisphere ˇ -plane. Relevant model parameters are: vertical viscosityAv D 10�3 m2 s�1, ver-
tical diffusivityKv D 10�4 m2 s�1, biharmonic viscosityAhbi D 1012 m4 s�1, bottom friction
coefficient r D 10�5 s�1. The circulation in the model is driven by a sinusoidal eastward wind-
stress over the Southern Ocean part only and a relaxation boundary condition at the surface for
temperature T similar to (13.12) with a relaxation time scale of 30 days and target buoyancy
T �, as given in the following figure.
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a Meridional structure of the target temperature T � (blue) and zonal windstress �.x/0 (red)
as a function of y in km. Amplitudes are 15 ıC for T � and 10�4 m2 s�2 for the windstress.
b Snapshot of temperature T in ıC (color) and pressure p (contour lines) at the uppermost
level of the model. Grey areas indicate land mass.

The closed region north of the reentrant channel plays the role of boundary condition for the
channel model; it is not meant as a realistic model by its own. Water-mass formation in the
closed region (the ‘North Atlantic’ part of the idealized model) takes places at low latitudes
instead of high latitudes as in the real North Atlantic (the Coriolis parameter varies from about
�0:6�10�4 s�1 at the southern boundary to about 0:1�10�4 s�1 at the northern boundary).
However, the role of water-mass formation in the closed part of the domain for the dynamics of
the Southern Ocean is well captured by the configuration.
The model produces a strong zonal current in the Southern Ocean part. This zonal flow is pre-
dominantly eastward with a strong jet slightly northward of the windstress maximum (at about
y D 800 km) and then monotonically decreasing to the north, south, and also with depth. The
zonal flow extends through the whole water depth. The model produces deep water formation
and sinking close the northern edge of the Atlantic basin part of the domain, which then wells
up in the Southern Ocean, which mimics the global conveyor belt of the World Ocean. We will
discuss simulations with a flat bottom and with an idealized ridge system. Note that the zonal
symmetry of the flat-bottom version of the model leads in general to an absence of standing
eddies, although there is a small amount due to the continents at the transition from the channel
to the basin geometry.

the box on p. 568. Vertical and meridional advection of zonal momentum by the (zero
order, geostrophic) mean flow is neglected, as explained before in Section 16.2.

With a small vertical stress N� .x/ below the mixed layer and small Reynolds
stresses R.x/, the Eulerian stream function � is generally dominated by the north-
ward Ekman transport NVe D �N� .x/0 =f in the surface layer and a deep geostrophic
return flow (associated with F ) in the valleys between the topography peaks along
the particular latitude, or a frictional return flow NVb in a bottom boundary layer if the
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Fig. 16.12 a The Eulerian stream function� in the idealized model of the box on p. 582 as a func-
tion of z in m and y in km. Contour interval is 0.5 Sv, positive values are red (note the negative cell
tightly attached to the southern boundary). b The zonal (and time) mean buoyancy Nb with a contour
interval of 0:001m s�2. The peculiar jump in buoyancy near the connection of the channel and
the closed part of the domain is related to standing eddy features. This can also be observed in the
isopycnal and residual stream function shown in Figures 16.13 and 16.15

model ocean is flat and F � 0. Note that the Eulerian stream function� above topo-
graphic features (or the bottom Ekman layer) depends on the zonal windstress N� .x/0

only, regardless of whether the ocean is homogeneous as in the previous section or
not. This is why the Eulerian stream function does not well represent the real nature
of the meridional overturning circulation in a stratified ocean, which is believed to
be directed along isopycnals, as sketched in Figure 16.3, and not vertical.

We exemplify this behavior with an idealized flat-bottom eddy-permitting numer-
ical model of the Southern Ocean (Viebahn and Eden, 2010), described in the box
on p. 582. Figure 16.12a) shows the Eulerian stream function� of the model. In the
interior of the Southern Ocean part of the model,� is indeed vertically constant and
thus has a vanishing meridional velocity, but with a meridionally varying windstress
(and f ) there is vertical (Ekman) pumping. The zonal mean buoyancy Nb is shown in
Figure 16.12b), with relatively small changes in the slopes of isolines of Nb (isopyc-
nals) in the North Atlantic. In the Southern Ocean part of the domain we find strongly
inclined isopycnals towards the southern boundary of the domain with outcrop at the
surface, similar to the situation in the Southern Ocean sketched in Figure 16.3. The
zonally averaged buoyancy budget is given by

@ Nb
@t

C Nv @
Nb
@y

C Nw@
Nb
@z

D NQ � @

@y
v0b0 � @

@z
w0b0 (16.28)

where Q denotes diabatic processes such as small-scale turbulent mixing. Ignor-
ing the eddy fluxes v0b0 and w0b0 for the moment, a mean flow across isolines of Nb
can only be balanced in steady state by NQ, i. e. by small-scale (diapycnal) mixing.
The Eulerian overturning stream function�, which implies strong vertical transports
across lines of constant Nb, i. e. across isopycnals, would therefore indicate a very
strong diapycnal mixing. This is in contrast to our belief that the circulation in the
ocean interior is more or less adiabatic with transports of active and passive tracers
predominately along isopycnals. It becomes clear that the big southern cell in Fig-
ure 16.12 (sometimes called DEACON3 cell) is a construct of the zonally averaging

3 SIR GEORGE DEACON, *1906 in Leicester, †1984 in Southampton, oceanographer and chemist.
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on z-levels, i. e. an artifact of the Eulerian stream function. Since Q in the model is
indeed much smaller than implied by �, it becomes clear that the diapycnal trans-
port by the Eulerian stream function is balanced to a large extent by the eddy fluxes
in (16.28). The eddy effect has to be added to the Eulerian stream function in some
way to obtain a meaningful picture of the meridional overturning circulation in the
Southern Ocean. This consideration leads to the Transformed Eulerian Mean formal-
ism, described in Section 12.2.3, which will be below applied to the situation in the
Southern Ocean in Section 16.3.4. However, before doing so, we will consider the
Lagrangian or isopycnal framework to understand the nature of the eddy fluxes.

16.3.2 The Isopycnal Overturning Circulation

One may view the same system from a different perspective. Because the zonally
averaged mean flow does not reflect the meridional overturning in a stratified ocean,
it turns out to be meaningful to perform the zonal average going along a longitude x
on isopycnals � D const. To capture the eddy component, we have to consider time-
dependent quantities. The meridional velocity, expressed in isopycnal coordinates
.x; y; �/ (see Appendix B.1.1), is written as v.x; y; �; t/. The transport between two
isopycnals � D �1 and � D �2 becomes

R �1
�2
v.x; y; �; t/h�d� where h� D �@z=@�

measures the infinitesimal thickness between isopycnals. The real thickness between
two infinitesimal close isopycnals �1 and �2 is � D h��� with �� D �2 � �1.
A stream function only exist for the zonal and time mean (see the mass conserva-
tion equation (B.6) for isopycnal coordinates; a detailed derivation and discussion of
different stream functions and their relations is given in Section 12.3.5). The zonal
mean transport below a certain density surface is given by

I �0Z

�

v.x; y; �0; t/h�.x; y; �0; t/d�0dx D
�0Z

�

I
v.x; y; �0; t/h�.x; y; �0; t/dxd�0

It measures the transport between an arbitrary isopycnal � and a reference isopyc-
nal �0. The isopycnal stream function .y; �/ for this configuration is defined by the
time-mean of the above transport. Note that the isopycnal stream function resembles
a zonal and temporal correlation between v and h�. The time average of the above
transport may thus be split into a part resulting from the time-mean quantities and an
eddy part (see the box on p. 563). This property distinguishes the isopycnal stream
function from the Eulerian one, but we will not discuss this issue further and will
ignore the differentiation between standing and transient eddies for simplicity.

The isopycnal stream function  .y; �/ from the idealized model of the box on
p. 582 is shown in Figure 16.13a, while Figure 16.13b shows  as a function of
a representative depth variable instead of �, i. e. the depth of the “isopycnally av-
eraged density” Q� (see the box on p. 417) for better comparison with the Eulerian
stream function �.y; z/. It becomes obvious that  captures very different physics
than the Eulerian projection �: the meridional overturning is now seen to be pre-
dominantly along isopycnals in the interior of both the Southern Ocean and the At-
lantic part of the domain (compare Figures 16.12 and 16.13). Note that in particular
the large, diapycnal overturning cell in the Southern Ocean (the Deacon cell) of the
model is absent in the isopycnal stream function, whereas the difference between the
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Fig. 16.13 Isopycnal stream function in Sv in the experiment with the idealized model of the box
on p. 582. a  as a function of y in km and � in kg m�3. Note that the � axis increases inversely.
b Interpolated  as a function of y and depth z.y; Q� / in m where Q� is the “isopycnally averaged
density”, i. e. was transformed back to a representative z coordinate (see also the box on p. 417).
Contour interval is 0.5 Sv, red color denote positive values of  , blue negative

stream functions is not so large in the North Atlantic part. At the surface, water-mass
transformation is clearly visible. The Ekman transport is now contained in a shal-
low clockwise cell in the upper mixed layer which embeds besides the Ekman flow
a counterclockwise recirculation in the surface boundary layer. Note that the isopy-
cnal stream function is very similar to the residual stream function which will be
introduced in Section 16.3.4 below. However, before discussing the residual stream
function, we focus on the zonally averaged equations of motion in isopycnal coordi-
nates and their interpretation.

16.3.3 Interfacial Formstress and Vertical Transfer ofMomentum

In Appendix B.1.1, we introduce the equation of motions in isopycnal coordinates.
The zonally averaged zonal momentum budget (B.5) becomes

�f h�v D �h� @M
@x�

C @

@�



N� .x/ C OF � OR.x/

�
(16.29)

Note that the overbar denotes in this section a zonal mean taken at constant � (instead
of constant z, as in Section 16.3.1). The bottom formstress OF and the Reynolds stress
divergence OR.x/ take the same meaning as before in Section 16.3.1, but here they
appear in isopycnal coordinates; there is, however, no need to further specify them
here. It should be kept in mind that all quantities in this section are functions of �
instead of z.

The Montgomery potentialM.x; y; �; t/ D pCg�z is derived in Appendix B.1.1.
It stands for the pressure in isopycnal coordinates, and we focus our discussion on
this quantity. Imagine a stack of well-mixed isopycnal layers (an isopycnal model)
and consider one particular layer bounded by the interfaces � D �1 at z D ��1 and
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� D �2 at z D ��2 below. We integrate (16.29) over this layer, which yields
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(16.30)

The pressure-thickness correlation, i. e. the first term on the right-hand side of
(16.30), can be cast in a simpler form:
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using the isopycnal thickness h� D �@z=@� and the hydrostatic relation @M=@� D
gz from Appendix B.1.1. The zonal average eliminates the last contribution since it
can be written as gz@z=@x� D g@.z2=2/=@x�. The other contribution yields
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where Mi D M j�D�i , �i D z.�i / and pi D pjzD
i with i D 1; 2. The right-hand
side of (16.31) may be interpreted as an integrated vertical divergence of a stress
�@p=@x, fluxing zonal momentum through the layer interfaces (remember that the
terms appear in the balance of zonal momentum). The layer of ocean gains zonal
momentum by the amount �1@p1=@x from the fluid above z D ��1.x/ and loses
�2@p2=@x to the fluid below z D ��2.x/.

It becomes clear that for infinitesimally distant isopycnals, the vertical divergence
of the interfacial formstress �@p=@x enters the zonally averaged zonal momentum
balance. The similarity of the construction of �@p=@x to the bottom formstress is
evident (see the box on p. 568), but note that here the isopycnal layer depth � and
the pressure p are also time-dependent. Evidently, only deviations of � and p from
their zonal mean � and p contribute to the correlation �@p=@x D �p@�=@x. This
latter form reveals that the isopycnal must be inclined for the stress to be nonzero.
Though frequently viewed as a vertical transport of momentum – because isopyc-
nal layers are generally stacked vertically – the process is actually associated with
a lateral transport of momentum across the inclined isopycnals. To become a vertical
transport, the injected momentum must be redistributed within the layer by small-
scale turbulence: the layer must be effectively mixed which is implicitly assumed by
the constant density within the layer.

The above described stress is called interfacial formstress4. Using the geostroph-
ically balanced velocity perturbations f v0

g D @p0=@x and approximating the layer
depth fluctuation with the density anomaly, �0 D �0=.@ N�=@z/, we obtain to leading
order

�0 @p
@x

0
� f

�0v0
@ N�=@z (16.32)

When we ignore salinity contributions in this relation, the density can be replaced
by temperature, and thus a poleward eddy flux of heat is equivalent to a downward

4 More precisely, the name interfacial formstress refers to the zonally and temporally averaged
equations, from which also a standing and a transient component may result (see the box on p. 563).
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Fig. 16.14 Schematic sketch demonstrating the interfacial formstress for an isopycnal interface
(shown is the .x; z/-section). There is higher pressure (top curve) at the depth of the density surface
where it is rising to the east compared with where it is deepening to the east. This results in an
eastward pressure force (interfacial formstress) on the water below. This is related to the fact that
the northward flow occurs where the vertical thickness of water above the density surface is small,
and southward flow occurs where the thickness is large; so there is a net southward mass flux at
lighter densities due to the geostrophic flow. The same kind of pressure force acting on the sloping
bottom topography leads to the bottom formstress. Redrawn from Rintoul et al. (2001)

eddy transport of zonal momentum by the interfacial formstress in the water column.
Both processes – eddy heat transport and eddy momentum transport – are, therefore,
strictly coupled. We will find a relation similar to (16.32), which is obtained here
in the isopycnal coordinate framework, also for z-level averages using the residual
mean framework below in Section 16.3.4.

In summary, we note that the horizontal pressure gradients can establish a trans-
fer of horizontal momentum since they transport horizontal momentum across tilted
surfaces from one isopycnal layer of the ocean to another. A layer bounded by tilted
isopycnals is thus forced by interfacial formstresses at the bounding top and bottom
surfaces, in the same way as the Ekman layer is driven by frictional stresses at top
and bottom. To obtain a nonzero interfacial formstress, the pressure must vary at the
isopycnal depth in a way that a nonzero correlation with the isopycnal depth vari-
ations occurs, as elucidated in the sketch of Figure 16.14. Note that in deriving the
relation (16.31), it was assumed that the isopycnal layer does not run into the bot-
tom nor that it touches the sea surface. If this situation occurs, additional pressure
terms arise from the bounding isopycnal outcrops. These terms represent a flux of
horizontal momentum through these boundaries into the isopycnal layer. For a layer
intersecting the bottom, the corresponding flux is part of the bottom formstress dis-
cussed in the box on p. 568.

16.3.4 The Residual Overturning Circulation

The Eulerian view of the meridional overturning discussed in Section 16.3.1 can be
extended to a close correspondence with the isopycnal framework, using the TEM
approach (Transformed Eulerian Mean, Andrews and McIntyre, 1976, introduced in
Section 12.2.3). It acknowledges that the transport (advection) of zonally averaged
tracers is not only performed by the zonal mean Eulerian stream function�, but that
the eddy fluxes also act to advect density and tracers. This property of the eddy fluxes
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Fig. 16.15 Residual mean eddy stream function �B (a) and residual mean stream function � D
��B (b) in Sv in the model of the box on p. 582. Contour interval is 0.5 Sv in each case, positive
values are red, negative ones blue

can be inferred from the projection of the eddy density flux u0�0 into the component
normal and along the mean isopycnal,

u0�0 D Br: N� �Kdr N� (16.33)

with u D .v; w/, r D .@=@y; @=@z/ and r: D .�@=@z; @=@y/ as defined in the box

on p. 385. Note that the overbar is again a zonal mean on z-levels in this section.
Taking the divergence of the decomposition (16.33) of the eddy fluxes reveals that
Kd is an eddy-induced diapycnal diffusivity (if positive), and �B is an eddy stream
function advecting the density N�.y; z/ in addition to the Eulerian flow. The advection
of N� is thus given by the residual stream function � D � � B , and the diapyc-
nal transport is represented by the diffusivity Kd. This decomposition is illustrated
in Figure 16.15 while the Eulerian stream function � is shown in Figure 16.12. It
becomes obvious that the eddy-driven overturning is partly compensating the mean
Eulerian overturning in the Southern Ocean, with the effect that the sum, i. e. the
residual stream function � is very similar to the isopycnal stream function  . Note
that the differences between � and  , most prominent at the surface, the bottom,
and the lateral boundaries, are related either to rotational eddy fluxes, for which the
original TEM framework (16.33) does not account, or to ‘real’ diapycnal eddy fluxes
related in turn to irreversible mixing of (zonally averaged) density. How to imple-
ment rotational eddy fluxes is shown in Section 12.3.1.

Adding fB on both sides of (16.27) yields the balance of the zonal residual mean
momentum, expressed in terms of the residual stream function �,

�f � D fB C N� .x/0 � N� .x/ C F � R.x/ D �f �0v0
@ N�=@z C N� .x/0 � N� .x/ C F � R.x/

(16.34)

The eddy term fB , computed from (16.33), is f u0�0 �r: N�=jr N�j2. In the second form

of the balance (16.34), the term follows from the approximation (12.27), assuming
that @ N�=@z � @ N�=@y and discussed in Section 12.2.3 on TEM. We find here a resem-
blance to the interfacial formstress (16.31) and (16.32). It shows again that the eddies
accomplish a vertical transport of zonal momentum by the meridional eddy density
flux v0�0. We shall refer to the Eulerian form f �0v0=.@ N�=@z/ of the flux also as inter-
facial formstress. Comparing (16.34) with its isopycnal counterpart (16.30), we note
that the residual stream function is constructed to resemble the isopycnal one.
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Using a downgradient parameterization for the meridional eddy density flux,
v0�0 	 �K`@ N�=@y with the isopycnal thickness diffusivity K` as discussed in Sec-
tion 16.6, and the thermal wind relation to replace @ N�=@y, we arrive at

�f @

@z

�0v0
@ N�=@z D @

@z

�
K`
f 2

N 2

@ Nu
@z

�

This term appears in the residual zonal momentum budget (@=@z of (16.34)). The
interfacial formstress, transporting momentum vertically as discussed above, is thus
also formally associated with vertical friction with an effective vertical diffusivity
K`.f=N /

2 with a typical (very large) size of 10m2 s�1 (see e. g. Olbers et al., 1985;
Rhines and Young, 1982). The value is obtained from the standard parameter values
in Table 16.1.

16.4 The Zonal Mean Dynamics

The zonal mean of the zonal momentum balance is central in the dynamics of the
ACC because the main external forcing – the windstress – is predominantly zonal
and the flow is more or less zonal as well. The balance has been written in various
forms in the preceding sections, namely in the Eulerian form (16.27), in the isopycnal
form (16.29) and in the residual form (16.34). All aspects of the zonally averaged
flow are now combined and discussed further in this section by a simple conceptual
model.

Consider a strip of ocean from Antarctica to the northern rim of the ACC and
split the water column into three layers (which may still be stratified), separated
by isopycnals (see the sketch in Figures 16.3 and 16.16). The upper layer reaches
from the sea surface z D � to some isopycnal at depth z D ��1 and includes the
surface Ekman layer. The intermediate layer lies below with its base at z D ��2
which is above the highest topography in the Drake Passage belt (this is the range
of latitudes which run through Drake Passage). These two layers are ‘unblocked’ by
topography and feel no bottom formstress. The lower layer reaches from z D ��2
to the ocean bottom at z D �h and is thus ‘blocked’ beneath the depth of the highest
topography. As before, we apply a zonal average to the balance equation (16.29) of
zonal momentum in isopycnal coordinates and integrate over the depth and the zonal
extent for the three layers to obtain

�f NV1 D ��0
1

@p0
1

@x
C N� .x/0 � N� .x/1 � R.x/

1

�f NV2 D �0
1

@p0
1

@x
� �0

2

@p0
2

@x
C N� .x/1 � N� .x/2 � R.x/

2

�f NV3 D �0
2

@p0
2

@x
� h

@P

@x
C N� .x/2 � N� .x/b � R.x/

3

(16.35)

The northward volume flux in each layer is denoted by NVi , i D 1; 2; 3 (layer 3 D b

is the bottom layer). Furthermore, pi is the pressure at the respective layer depths,
P the bottom pressure, and the overbar denotes a zonal mean. In this case, the co-
ordinate x is along the specific path. As before, N� .x/0 denotes the windstress, N� .x/i

the frictional stresses related to small-scale turbulence between the isopycnal layers,
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Fig. 16.16 A zonal section of the observed potential density � (in the form � � 1;000 kg m�3) in
the Southern Ocean at 60ı S as a function of depth in m and longitude, taken from the Hydrographic
Atlas of the Southern Ocean (Olbers et al., 1992). The section is viewed from the south

N� .x/b the frictional bottom stress, and R.x/
i the integrated divergence of the lateral

eddy momentum fluxes in the respective layers. Note that the surface term �@p0=@x

drops out in the first equation because the surface pressure is given by the surface
displacement, p0 D g�.

Dividing the zonal mean momentum balances in the three layers by f , we rec-
ognize the components of the meridional overturning circulation: eddy-driven and
windstress-driven parts as well as the geostrophic contribution associated with the
bottom formstress. The contributions from interfacial friction and Reynolds stresses
are usually small and will thus be mostly neglected in the following. The wind-driven
component �N�0=f (the Ekman transport) in the top layer and the geostrophic com-
ponent in the bottom layer, h.@P=@x/=f , also appear if the flow is averaged between
geopotential levels (constant depth) instead of isopycnals as done here. As discussed
above, these Eulerian quantities form the Deacon cell of the Southern Ocean merid-
ional overturning (see Section 16.3).

16.4.1 Complete Balance of ZonalMean Zonal Momentum

Since
P
i

NVi D 0 is valid at any latitude by mass balance (neglecting the very small
effect of precipitation and evaporation on the mass balance), the overall balance of
zonal momentum is between the applied windstress, the bottom formstress, the fric-
tional stress on the bottom, and the vertical integral of the Reynolds stress contribu-
tions,

N� .x/0 � N� .x/b � h
@P

@x
�
X
i

R.x/
i D 0 (16.36)

The frictional bottom stress is generally small in the ocean. Lateral eddy momentum
fluxes in the ACC turned out to be rather small (compared to the windstress) as well
and indifferent in sign in various investigations of observed data (e. g. Hughes and
Ash, 2001; Morrow et al., 1992; Phillips and Rintoul, 2000). Hence the momentum
put into the ACC by the windstress is transferred to the solid Earth predominantly
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97. BARBI Model
of the Southern Ocean

The BARBI model is derived in Appendix B.2 and used in a two-mode version in Section 14.2.5.
The application of this BARBI version, governed by (14.33)–(14.35), to the Southern Ocean
has realistic topography and surface windstress forcing identical to the homogeneous model
of the box on p. 570, but it includes a laterally constant prescribed background stratification
representative of the Southern Ocean (see also Olbers and Lettmann, 2007). Resolution and
horizontal friction of the BARBI model are identical homogeneous model of the box on p. 570,
further parameters are N0 D 1:5� 10�3 s�1,K` D 2� 103 m2 s�1.

The figure in this box shows the stream function  for the depth-averaged flow U D R 0
�h udz,

with U D �@ =@y and V D @ =@x, the baroclinic potential energy E D g
R 0

�h �zdz,
and the bottom pressure P . In contrast to the homogeneous simulations TOPO and FLAT of
Figure 16.5, the BARBI model now shows a considerable amount of realism. The zonal trans-
port through Drake Passage has a realistic size of 140 Sv, and a structured sized circumpolar
flow appears with little apparent influence of the underlying topography. Note that the potential
energy E follows quite closely the streamlines while the bottom pressure P has a tendency to
follow the f=h contours, as was also found for the homogeneous case TOPO (see Figure 16.5).
Nevertheless, the baroclinicity introduced by the baroclinic potential energy E – in the momen-
tum balance as a pressure gradient and in the vorticity as the JEBAR term (see Section 14.2) –
breaks the constraint for the flow to follow f=h contours.

a Stream function  for the depth-averaged flow in Sv, contour interval is 10Sv. b Baroclinic
potential energy E with contour interval of 1;000m3 s�2. c Bottom pressure P with contour
interval of 0:1m2 s�2. Positive values are black, negative ones red.

by the bottom formstress at the same latitude. We have argued for this balance in
(16.15); it has been confirmed in most numerical models which include submarine
topographic barriers in the zonal flow and have a realistic (small) magnitude of the
Reynolds stress divergence. Eddy effects appear thus rather unimportant in the ver-
tically integrated balance. It is worth mentioning that some coarse ocean circulation
models do not confirm (16.36). The reason is that such models use very large lateral
viscosities so that the parameterized Reynolds stresses become large, even though
the simulated current is broad and smooth. In models with a flat ocean bottom, either
bottom friction may become important and/or the Reynolds terms could come into
play (compare Section 16.2.2).

We illustrate the elements of the total momentum balance (16.36) of the Southern
Ocean with two rather different models. The BARBI model, described in detail in the
Appendix B.2 and in Section 14.2.5, is applied to the Southern Ocean, as discussed in
the box on p. 591. In addition we will use below the idealized model of the Southern
Ocean, introduced in the box on p. 582, but in configurations including idealized
topographic variations instead of a flat bottom.

The zonally averaged balance of zonal momentum for the BARBI model of the
Southern Ocean of the box on p. 591 is shown in Figure 16.17a and indeed reveals the
dominant balance between surface windstress and bottom formstress in the latitude
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Fig. 16.17 a: Zonally and vertically integrated momentum balance as function of latitude for the
BARBI model of the Southern Ocean the box on p. 591. The latitude band of Drake Passage is
indicated by vertical purple lines. The yellow–black dashed line denotes windstress N�.x/0 , black

line the bottom formstress h@P=@x, green line the lateral friction, and the red line the pressure
difference on the continental boundaries �E jcontinents. Units are 10�4 m2 s�2. b and c: Bottom
pressure P (blue lines, in P=max.jP j/C 1) and depth h (red lines in �h=max.h/) as a function
of longitude for 59:5ı S in the Drake Passage (b), and a more northern latitude at 46:5ı S (c)

band of Drake Passage with very little contribution from friction (notice that the
value Ah D 4 � 104 m2 s�1 of the lateral eddy viscosity is moderate but not small).
The figure presents the total meridional extent of the model, and the pressure force
acting on the continents north and south of Drake Passage latitudes comes into play.
This term is disregarded in the conceptual model (16.35) and, therefore, not present
in (16.36) which must be replaced by

N� .x/0 � N� .x/b � h@P
@x

��E ˇ̌continents �
X
i

R.x/
i D 0 (16.37)

if continents are blocking the averaging path in addition to submarine topography.
Windstress and the two pressure terms are the principle contributors to the balance of
momentum in the basin-wide gyre circulations embedded between continents. Fig-
ure 16.17b shows the bottom pressure-depth correlation for the BARBI model of the
Southern Ocean in the same manner as Figure 16.7 for the homogeneous simula-
tions FLAT and TOPO. As in TOPO, we find high pressure upstream of ridges and
low pressure downstream in the Drake Passage band, leading to a sink of eastward
momentum.

Figure 16.18 shows the zonally and vertically integrated momentum balance from
the eddy-permitting idealized model of the Southern Ocean of the box on p. 582. In
this configuration, however, the model is integrated with topographic variations in-
stead of a flat bottom, i. e. with a meridional ridge in the ‘Drake Passage’ and another
one stretching through the middle of the attached basin and the southern channel.
The depth of the domain is now 2,000 m instead of 1,000 m and the topographic
variations are below the upper 1,000 m. The figure shows that the topography drives
northward excursions of the ACC over the ridges and southward excursions down-
stream of the ridges. The zonal mean momentum balance (Figure 16.18c) is again
dominated by the input of momentum by the surface windstress and the bottom form-
stress in the Southern Ocean part of the model. Here, however, the Reynolds stress
term also becomes significant at the northward flank of the zonal jet. This is because
of the zonal excursion of the zonal flow, which yields a nonvanishing correlation
v0u0. Note that this feature can be related to the standing eddy signal and not to tran-
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Fig. 16.18 Time average of the sea surface height (a, in m) and the stream function  of the verti-
cally integrated transport (b, in Sv) of the idealized model of the Southern Ocean (the box on p. 582),
but here with topographic variations as indicated by the black contour lines (h in m, contour interval
is 200 m) with meridional ridges in “Drake passage” and in the middle of the domain. c: Zonal mean
and vertically integrated zonal momentum balance, i. e. windstress N� .x/0 (yellow–black dashed), bot-

tom formstress h@P=@x (black), bottom friction (green), pressure difference on continents (red),
Reynolds stress R.x/b (blue), and mean advection Nv@ Nu=@x (magenta) in 10�4 m2 s�2 as a function
of y in km. d: Baroclinic formstress h@P clin=@x (red), barotropic formstress gh@�=@x (green),
and total bottom formstress h@P=@x (black) in 10�4 m2 s�2

Fig. 16.19 Sketch of the zonal balance of momentum for the ACC. The system is viewed from
Antarctica. The flow establishes a high of barotropic (surface) pressure and a low of baroclinic
(density related) pressure upstream of a zonal ridge and a corresponding low/high downstream. The
associated barotropic formstress and the baroclinic bottom formstress almost balance; their residual
counteracts the windstress. The wind drives a northward Ekman transport (

N
) in the surface layer.

Corresponding to the bottom formstress there is southward geostrophic return flow (
J

) in the
valleys between the ridges which partly block the zonal path

sient eddies as discussed in the box on p. 563, i. e. can be regarded as an artifact
of the zonal averaging since the Reynolds stress due to the transient eddies remains
small.
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16.4.2 Barotropic and Baroclinic BottomFormstress

It is instructive to write the pressure p, like in (16.8), as the sum of the “baroclinic”
(density-related) part pclin D g

R 0
z �dz and the “barotropic” (surface-related) part

g�. This decomposition also applies to the bottom pressure P and to the bottom
formstress in turn as well. Figure 16.18d shows the bottom formstress h@P=@x and
its baroclinic, h@P clin=@x, and barotropic, gh@�=@x, components. The individual
components of the bottom formstress are much larger than the zonal windstress
by about an order of magnitude but of opposite sign, and thus they nearly cancel.
While the total bottom formstress h@P=@x and the barotropic component clearly take
out the momentum put in the ocean by windstress, we note that the baroclinic part
h@P clin=@x does not have the corresponding sign: the baroclinic bottom formstress
accelerates the eastward current (the center is roughly 800 km from the southern
boundary).

Such a depth-pressure correlation can in fact be seen in circumpolar hydrographic
sections passing through Drake Passage around Antarctica, e. g. as shown in Fig-
ure 16.16. From the density �, we can infer the baroclinic pressure pclin contained
in the mass stratification. It is obvious in the above section that there is more lighter
water to the west of the submarine ridges than to the east. The bottom formstress de-
rived from such a pattern accelerates the eastward current, acting thus in cooperation
with the eastward windstress. A summary of the balance of zonal momentum in the
ACC is shown in the sketch of Figure 16.19.

16.5 The Vertically AveragedDynamics of the Southern Ocean

The previous discussion in this chapter mainly dealt with zonally averaged properties
and balances of the Southern Ocean circulation. We continue in this section with
a particular view on the local balances of momentum and vorticity in the light of the
BARBI model of the Southern Ocean from Section 16.4 (the box on p. 591), which
includes topography and stratification.

16.5.1 The Vertically AveragedMomentumBudget

The vertically integrated balance of momentum can be written as

�f V D �h@P
@x

� @E

@x
C �

.x/
0 � � .x/b � R.x/ and

f U D �h@P
@y

� @E

@y
C �� .y/0 �

.y/
b � R.y/

(16.38)

Both pressure terms, the bottom pressure P and the vertically integrated potential
energy E D g

R 0
�h �zdz, originate from the vertically integrated pressure gradient

(compare with (14.26)). The other terms have the same meaning as before in this
section, but are not zonally averaged. Note that the Reynolds stress terms R.x/ and
R.y/ are parameterized in the BARBI model by lateral diffusion as in Section 16.2.2.
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Fig. 16.20 The vertically integrated momentum balance, (16.39), normal to streamlines for the
BARBI model of the Southern Ocean (see the box on p. 591). a Normal gradient of bottom pressure
and baroclinic potential energy �h@P=@n� @E=@n. The corresponding Coriolis force f U .k/ is
indistinguishable from this figure. b Normal component of windstress � .?/0 . c Normal component
of friction term R.?/. Note the different color scales. The contour lines show the stream function 
with contour interval of 25 Sv. Units: 10�2 m2 s�2

Although we know that this downgradient parameterization is unphysical, it is com-
monly used for numerical reasons. It plays, however, only a minor role in the analysis
discussed below.

The flow is, of course, predominantly in a geostrophic balance. Thus, deviations
from this state are of interest. These are revealed by writing the equations in natural
coordinates .s; n/ oriented at the flow direction with s parallel to U and n normal
to U . Since U .?/ � 0, we obtain from (16.38)

f U .k/ D �h@P
@n

� @E

@n
C �

.?/
0 � R.?/ and 0 D �h@P

@s
� @E

@s
C �

.k/
0 � R.k/

(16.39)

where bottom friction has been neglected (there is none in BARBI). Figure 16.20
shows the terms in the momentum balance normal to U . The geostrophic terms
f U .k/ and �h@=P@n�@E=@n are dominating that balance by more than two orders
of magnitude. Windstress and the lateral friction are much smaller; the latter occurs
only very localized. The complementary balance of the parallel component of mo-
mentum is dominated by the pressure gradients parallel to U and the windstress (not
shown), while the Coriolis force vanishes. Overall, there is surprisingly little effect
from the friction R.?/ and R.k/, although the lateral viscosity is not small (see the
box on p. 570 and the box on p. 591).

The partition between the two pressure gradients related to the bottom pressure
and the potential energy E is of interest. The normal gradients h@P=@n and @E=@n
are of similar size. However, the bottom pressure gradient is very localized, occur-
ring in worm-like features oriented parallel to U , whereas @E=@n shows a broad
scale structure. It has an imbedded filamented pattern which compensates the bot-
tom pressure worms, so that the total pressure force becomes smoother, as shown in
Figure 16.20a. The along-streamline pressure gradients h@P=@s and @E=@s are much
smaller than the normal components and shown in Figure 16.21. They have a similar
pattern and size but of mostly an opposing sign such that the net pressure term in
the parallel balance is an order of magnitude smaller. Note that �h@P=@s generates
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Fig. 16.21 The vertically integrated momentum balance parallel to streamlines, (16.39), for the
BARBI model of the Southern Ocean (see the box on p. 591) in 10�2 m2 s�2. a �h@P=@s.
b �@E=@s. The contour lines show the stream function  with contour interval of 25 Sv

the bottom formstress in a “zonal” mean following streamlines, balancing the along-
stream mean of the parallel windstress in the overall balance of momentum, whereas
@E=@s integrates to zero.

16.5.2 The Vertically Averaged Vorticity Budget

The pressure forces enter the balance of vorticity as torques. As discussed in the box
on p. 465, there are two forms of vorticity, i. e. the vorticity for the depth-averaged
and the one of the depth-integrated flow. The difference is the appearance of either
the bottom pressure P or the potential energy E in the vorticity budgets. However,
both forms are equivalent and discussed in detail in Section 14.2. The (steady) vor-
ticity balance of the depth integrated momentum U is given by (14.32) which we
rewrite here as

ˇ
@ 

@x
D rP � r:hC r: � �0 � r: � R (16.40)

with a general friction term. Note that we follow here the vector notation introduced
in the box on p. 444, i. e. r: D .�@=@y; @=@x/. The bottom pressure torque rP � r:h
appears here as source or sink of vorticity. In the BARBI experiment all terms in this
balance contribute with a similar overall size of magnitude but different patterns (not
shown). The planetary vorticity term ˇ@ =@x is most important after the current
leaves Drake Passage, heading northward, and at some other areas where the cur-
rent must deviate from being almost zonal due to islands or other massive changes
in the topography. The bottom pressure torque, arising from depth gradients, has
a spotty structure but has locally the highest amplitudes. Friction is again of minor
importance. Note that the ACC flow is definitely not in a Sverdrup balance (14.19)
anywhere.

The other form of vorticity equation is built from the momentum balance by elim-
ination of the bottom pressure P , resulting in (14.29), rewritten here as

r: � r f
h

D r:E � r 1
h

C r: � �0
h

� r: � R
h

(16.41)
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Fig. 16.22 Vorticity balance of the depth-averaged flow for the BARBI model of the Southern
Ocean (see the box on p. 591). a Topographic-planetary vorticity r: � r.f=h/. b JEBAR term

�r:E �r.1=h/. c Curl of windstress �r: � .�0=h/. d Frictional torque r: � .R=h/ in 10�12 s�2.

The contour lines show the stream function with contour interval of 25 Sv. Note the different color
scales

It describes the balance of vorticity of the depth-averaged velocityU =h and is forced
by another torque-like term, the JEBAR term r:E � r .1=h/. The dominant terms

in the balance (16.41) are – by at least an order of magnitude – the topographic-
planetary vorticity r: � r .f=h/ and the JEBAR term r:E � r.1=h/. They largely

oppose and cancel each other, as obvious from Figure 16.22. Wind stress and friction
are an order of magnitude smaller. The approximate compensation of the two terms
in (16.41) may be traced back to the predominance of the geostrophic terms in the
balance of momentum, or likewise to an approximate compensation of the barotropic
component (associated with the planetary vorticity) and the baroclinic component
(associated with JEBAR) of the vertical velocity.

Remember that (16.41), with the time tendency term retained, is one of the prog-
nostic equations of the BARBI model (see Appendix B.2 and Section 14.2.5). The
other dynamical equation is the balance of baroclinic potential energy, written here
in the reduced form

@E

@t
C N 2

6

�
r:E � r h

2

f
� r: � rh2

	
D �N

2

6
r: � h

2�0

f
CK`r2E (16.42)

To derive this form from the complete BARBI model, the balance of baroclinic mo-
mentum is taken for simplicity as geostrophic, and advection of the perturbation
density, buoyancy forcing, and dissipation are ignored (see also Section 14.2.6). The
terms of the balance (16.42) are shown in Figure 16.23, revealing again the dom-
inance of two terms, namely the two terms in the brackets on the left-hand side
of (16.42). Like the vorticity balance, the potential energy balance suffers from the
dominance of the geostrophic terms. While the geostrophic terms entered there as
almost compensating torques, they come into the balance of potential energy as in-
tegrals of vertical velocities which appear in (16.42) as pumping up/down the back-
ground stratification. We may rephrase the statement about the dominance of the
geostrophic terms as one about a partial compensation of the bottom-induced verti-
cal barotropic velocity and the geostrophic vertical baroclinic velocity. Both act on
the background stratification and thus generate potential energy.
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Fig. 16.23 Potential energy balance (16.42) for the BARBI model of the Southern Ocean (see the
box on p. 591). a Barotropic divergence term �.N 2=6/r:E � r.h2=f /. b Baroclinic divergence

term .N 2=6/r: � r.h2/. c Eddy diffusion term Kr2E . d Ekman pumping term .N 2=6/r: �
.�0h

2=f /. Units are 10�4 m3 s�3. The contour lines show the stream function  with contour
interval of 25 Sv. Note the different color scales

16.5.3 The Baroclinic StommelModel of the ACC

In Section 14.2.6, we have derived the baroclinic Stommel equation, using the sim-
ilarity of the barotropic stream function  and the baroclinic stream function E=f ,
and the occurrence of the bottom torque term in both BARBI balances (vorticity
and potential energy). Here we gain the same result:  � E=f derives from the
dominance of the Jacobians in (16.41) and (16.42). Expressing these balances in the
equivalent form
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to have identical Jacobians (see the notations in the box on p. 444), eliminating them
and using  � E=f , we find
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In these relations we have introduced 	 D K`=R
2 where R D Nh=.

p
6jf j/ is the

local internal Rossby radius in the BARBI framework. The viscous term is small and
may be abandoned, likewise the ˇ-term arising in the wind forcing (the topographic
terms cancel exactly). Then we arrive at the baroclinic Stommel equation5
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The relation immediately allows to derive an equation for the ACC transport. Taking
the zonal mean of it, we obtain

1

3
	
@ NU
@y

� @ N� .x/0

@y
(16.46)

5 It worth mentioning that 2/3 of the windstress forcing in this equation result from the vorticity
balance and 1=3 from the potential energy balance. The latter arises from Ekman pumping acting
on the background stratification.
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which may be integrated twice to yield the total transport, roughly Y NU 	
.1=2/Y.hN=f /2�

.x/
0 =K`. Surprisingly, this is identical to the estimate from the

adiabatic model in Section 16.6 below. However, the agreement is accidental be-
cause the last equation yields the total transport in a model which regards the
presence of standing waves and surface displacement, both of which are absent in
the baroclinic part of (16.54), introduced in the next section.

16.6 Simple Models of the Zonally Averaged Southern Ocean

Consider again the layered model of the Southern Ocean given by (16.35) and the
sketch in Figure 16.3. If the flow conserves potential density, i. e. if there is no diapy-
cnal mixing or thermohaline surface forcing anywhere, then there cannot be transport
across isopycnals and, by mass conservation, the meridional transport in each layer
must vanish, i. e. NVi D 0 in the isopycnal setting of (16.35). Neglecting all fric-
tional terms, we find that the interfacial formstress �0

i@p
0
i=@x is vertically constant

and equal to the windstress N� .x/0 ,

�0
i

@p0
i

@x
' N� .x/0 (16.47)

and to the bottom formstress (in models with a flat bottom we must replace the bot-
tom formstress by the frictional bottom stress). Then, in each layer, the meridional
mass fluxes induced by windstress and pressure gradients are compensated such that
NVi D 0. We will proceed with this scenario of “constant vertical momentum flux”

in the next Section 16.6.1 and build a simple model of the Southern Ocean on this
base. In passing, we note that many layer models with vanishing diapycnal mixing
and thermohaline forcing, even in a mesoscale eddy-permitting configuration, ap-
proximately satisfy (16.47) if the Reynolds stress divergence is small. This applies
particularly to the quasi-geostrophic models where, at eddy-permitting resolution,
Reynolds stresses are found to be small and often even upgradient.

The real ocean is diabatic, i. e. there is mixing across isopycnals by small-scale
turbulence and air-sea heat and freshwater fluxes, leading to water-mass conversions.
Note that it is still under debate if this water-mass conversion occurs predominantly
between the outcropping isopycnals at the surface or in the interior as well (see Sec-
tion 15.3). In any case, the meridional overturning transports Vi at a certain latitude
circle can be nonzero only if there is exchange of mass between the layers south of
the respective latitude — implying conversion of water masses south of the ACC.
In fact, by mass conservation, the Vi must be equal to the net exchange with the
neighboring layers over the area south of the respective latitude. At the same time,
referring to (16.35) again, the overturning transports imply a Coriolis force in the
individual isopycnal layers, which is in balance with the vertical divergence of the
interfacial formstress. Mesoscale eddy effects at the respective latitude and diabatic
interior effects of small-scale turbulence, occurring to the south, must thus adjust
according to mass and momentum requirements of the zonal current and the merid-
ional overturning. The isopycnal analysis of the zonal momentum balance in eddy-
resolving models, as e. g. the isopycnal analysis of the idealized model of the South-
ern Ocean (see the box on p. 582), exemplify the importance of diabatic processes
and the inapplicability of the adiabatic regime: there is a net meridional circulation at
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all depths in balance with a divergent interfacial formstress and the windstress. This
more realistic regime is further analyzed in Section 16.6.2, and we also build simple
models of the Southern Ocean on this scenario.

16.6.1 AModel of Vanishing Residual Overturning Circulation

The ACC is the outstanding example in the ocean circulation for diapycnal trans-
port of momentum by eddies in the form of interfacial formstresses. At intermediate
depths where the bottom formstress does not yet work and small-scale turbulence is
marginal, the residual circulation – the meridional overturning circulation – is driven
by windstress and the divergence of interfacial formstress, which is immediately
apparent from (16.34) or (16.35). In the above described adiabatic regime, these pro-
cesses are in exact balance, and the residual circulation vanishes, i. e. Nv D 0; � � 0.
Of course, this is a highly unrealistic situation, and we may weaken the condition
to the assumption that �f Nv and �f � are small in the respective balances (16.34)
or (16.35). We proceed with the level-averaged form here and neglect the Reynolds
stress term so that

�f v0�0
@ N�=@z C N� .x/0 � N� .x/ C F D 0 (16.48)

The zonal current is geostrophic, i. e. f Nu D f Nug D �@ Np=@y. A simple model of
the ACC and the meridional overturning follows from these equations. Note that
the vanishing of the interior meridional overturning circulation in this model may
be questioned. A more complete model is discussed in the next section, but it is
instructive to consider the model with vanishing overturning first.

For the intermediate layer, defined in Section 16.4, neglecting the small-scale
turbulence N� .x/ and omitting the bottom formstress term F , we obtain the Johnson–
Bryden relation (Johnson and Bryden, 1989),

v0�0
@ N�=@z D N� .x/0 (16.49)

Note that the standing eddy component will be neglected in this section6. Accord-
ing to (16.49), the northward eddy density flux v0�0 in the circumpolar belt of the
ACC is proportional to the zonal windstress N� .x/0 . In a first step, Johnson and Bryden
(1989) parameterize the transient lateral eddy flux by a down-gradient form with the
isopycnal thickness diffusivity7 K ,

v0�0 D �K @ N�
@y

(16.50)

similar to Section 16.3.4, and find that the windstress and K constrain the slope of
the isopycnals, s D �.@ N�=@y/=.@ N�=@z/ D N� .x/0 =.fK/. Such a relation is roughly

6 This is a severe assumption because the standing eddy contribution may exceed the transient
component in realistic conditions, see also the box on p. 563. We could instead interpret the mean
as the average along the current path, N� .x/0 is then not the zonal windstress but rather the path-
following component.
7 In this section the thickness diffusivity K` will be denoted byK to avoid multiple indices.
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consistent with the observed slopes in the ACC belt if the eddy diffusivity is of
order K 	 103 m2 s�1 (using s D 10�3; N� .x/0 D 10�4 m2 s�2). Replacing the lateral
density gradient using the thermal wind relation, f @ Nug=@z D g@ N�=@y, we obtain

K
f 2

N 2

@ Nug

@z
D N� .x/0 (16.51)

where the vertical density gradient is replaced by the squared Brunt–Väisälä fre-
quency frequency N 2 D �g@ N�=@z. Apparently, K.f=N/2 defines an equivalent
diffusivity for the vertical momentum transfer which is achieved by lateral density
diffusion, as mentioned earlier. We notice here the same equivalence between verti-
cal momentum transfer and horizontal heat transfer by eddies as in Sections 12.2.6
and 16.3.

The Johnson–Bryden relation (16.51) is dynamically incomplete as it does not
satisfy a closed momentum balance. Integrating the momentum balance from top
to bottom (with vanishing bottom formstress F D 0), we note that the balance
N� .x/0 D N� .x/b between windstress and frictional bottom stress must hold, as for the
homogeneous model in Section 16.2. The present model can be straightforwardly
extended to include a frictional bottom boundary layer, along the way outlined in
Section 16.2. Integrating (16.51), the current profile becomes
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The second relation is found, taking for simplicity all coefficients constant, for which
we obtain a linear profile of ug. Note that the model is easily extended with a realistic
N.z/ profile and a givenK.z/. The velocity at the top of the bottom boundary layer
at z D �hC db is used to evaluate the frictional bottom stress as
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and equating this result with � .x/0 , the associated gradient of the surface displacement
follows as
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The first term is equal to the slope resulting from the homogeneous model in Sec-
tion 16.2. A reasonable size of @ N�=@y 	 0:7 � 10�6 is found for the complete ex-
pression from our standard parameters (see Table 16.1). Note that the surface slope
relates to the isopycnal slope s D �

.x/
0 =.fK/ of the adiabatic regime roughly by

.@ N�=@y/=s 	 �hN 2=g 	 �6�10�4. The transport in this balanced model becomes
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which can be evaluated as 145 Sv using the parameters of Table 16.1. The first term
is identical to transport in the homogeneous model (see (16.11)) and yields 64 Sv;
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the second contribution results from eddy processes and yields 81 Sv. In addition to
the geostrophic transport, there is also a frictional transport arising from the bottom
stress which is identical to the one in (16.12) of the homogeneous model and thus
negligible. Note that the diffusivity K appears as K=R2i in the above expression
whereRi D hN=jf j is the internal Rossby radius, which is identical to the transport
implied by the baroclinic Stommel equation in Section 16.5.3.

A further extension of the Johnson–Bryden model is to include bottom topog-
raphy and the associated bottom formstress F . We have previously argued that in
this case, the frictional bottom stress may be abandoned, and the momentum balance
takes the form (16.15). In lack of a physical parameterization of the stress F , we
write F.z/ D F Œ Nug; z� for the stress at the depth z, accounting for a functional de-
pendence of the formstress on the current field. Simple examples will be discussed in
Section 16.7. Using the geostrophic relation (16.52), the momentum balance (16.15)
results in a condition � .x/0 C F Œ�.g=f /@ N�=@y C Nuclin

g ;�h� D 0, determining the
gradient of the surface displacement, as before in the frictional model. In general,
however, the functional dependence of the bottom formstress on the current velocity
is unknown.

16.6.2 Models Driven by SurfaceWindstress
and Thermohaline Forcing

Much of the recent perception of the circulation in the Southern Ocean is focussed
on the meridional overturning and ventilation of water masses. The classical view
(Sverdrup et al., 1942) of water-mass storage and spreading is updated in Figure 16.3,
where the role of eddies in the unblocked part of the water column is highlighted.
We have pointed out in the previous sections that eddies and turbulent mixing might
accomplish a major task in shaping and balancing the overturning circulation, and it
remains to put up some simple models to demonstrate how it might work. For this
task, we present in this section two zonally averaged models which include forcing
by windstress and by water mass conversion. They are the most realistic analytical
models presented in this chapter, although they still neglect bottom formstress and
standing eddy contributions.

We assume that all mixing and water-mass formation processes take place in an
upper layer of the ocean – basically a turbulent layer where the Ekman transport and
pumping is established by the wind. Buoyancy is imprinted on the surface waters
by heat and freshwater exchange with the overlying atmosphere. The ocean interior
is void of small-scale turbulence, but mesoscale eddies are present that transport
and mix substances along isopycnals. We regard this scenario as an extreme. The
real ocean might have substantial diapycnal mixing by small-scale turbulence in the
interior and furthermore, mesoscale eddies might contribute by a diapycnal flux to
water-mass formation as well (see also the box on p. 390). However, the simplified
view allows for an analytical treatment, which we now explore. A sketch of the
system is shown in Figure 16.24.

The dynamical part of the model is given by the zonal average of the zonal mo-
mentum balance, written as (16.34) for the residual stream function, and is aug-
mented by the zonally averaged balance of density. The zonal current is geostrophic.
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Fig. 16.24 Set-up of the zonal mean overturning model. There is an Ekman layer at the top where
the stress is modeled by a body force, spreading the windstress into a layer of constant depth d . The
stress in the interior is zero. A bottom layer is included in which either a frictional stress or a bottom
formstress becomes active. The Ekman layer coincides with the surface mixed layer in which the
density is vertically constant. The interior density field shows sloping isopycnals. The ocean system
interacts with the overlying atmosphere via the zonal windstress N�.x/0 and the density flux J0

The system is thus governed by

�f � D fB C N� .x/0 � N� .x/ C F (16.55)

@ N�
@t

C r:� � r N� D r �Kdr N�C @J

@z
(16.56)

f Nu D �@ Np
@y

(16.57)

Note that the notation in this section follows the box on p. 385, i. e. r D
.@=@y; @=@z/ and r: D .�@=@z; @=@y/. All terms take the same meaning as before

in this chapter. In particular the eddy stream function B and the residual overturning
stream function � are introduced in Section 16.3. The Reynolds stress is neglected
since we have learned that it is small. Finally, J is a vertical flux of density carried
by small-scale turbulence. It is only relevant in the upper near-surface layer where,
at the air-sea interface, it equals the surface density flux, J.y; z D 0/ D J0.y/.

The density equation, derived in Section 12.2.3 on the Transformed Eulerian
Mean (TEM) theory, will be used in its steady form. The eddy stream function B
and the diapycnal diffusivity Kd are related to the eddy density fluxes v0�0 and w0�0
by

B D �v
0�0 .@ N�=@z/ � w0�0.@ N�=@y/

jr N�j2 and Kd D �v
0�0 .@ N�=@y/C w0�0.@ N�=@z/

jr N�j2
(16.58)

Note that the approximation used in (16.34), j@ N�=@yj � j@ N�=@zj, becomes invalid in
the mixed layer. The meridional density flux is parameterized as in (16.50), with the
isopycnal thickness diffusivity K , i. e. v0�0 D �K@ N�=@y. Remember that K is the
Gent and McWilliams diffusivity (see Section 12.2.4). Using this parameterization,
one finds from (16.58)

B D .Kd �K/s and w0�0
.@ N�y
@y

D K

s
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�
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B D �Ks C Kd
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.1C s2/

(16.59)
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98. The zonally average
forcing of the Southern
Ocean

To develop our model of the mean density structure, we need the size and pattern of the surface
momentum and density fluxes. The estimates, shown in the figure below, are based on the data
discussed in Chapter 13. Wind stress and density flux data were obtained by averaging along
mean ACC streamlines, defined by finding the latitude of the 3 ıC isotherm at a depth of 200 m.
All meridional sections were then shifted by their departure from the zonally averaged ACC
position, sorted along their new “latitude circles”, and subsequently averaged. The maximum
Ekman transport in these data is about 30 Sv, occurring at 51ı S with upwelling to the south and
downwelling to the north of this latitude. The surface density loss depends on the combination of
the air-sea heat and freshwater fluxes. Consistent with other estimates, we find an oceanic heat
gain of about 10W m�2 over the core of the ACC and cooling of a similar magnitude north and
south of the stream. The freshwater flux at the surface shows a net freshening south of 50ı S of
about 10�5 kg m�2 s�1 and about a similar amount of net evaporation around 30ı S, causing
a significant modification of the surface density. Only in the most northern part is the freshwater
contribution to the density flux smaller than the air-sea heat flux. Our final estimate of air-sea
density flux yields a reduction of the surface density south of 48ı S and an increase to the north
of 48ı S. However, the expected error on the surface density flux as a difference of two not
well-known quantities could be rather large.
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a Net heat flux (black in W m�2) and evaporation minus precipitation (red in kg m�2 s�1).
The densities (surface in blue, 500m depth in green, both in kg m�3) are taken from the WOCE
climatology. b Wind stress (green in m2 s�2), Ekman transport (black in m s�1), Ekman pumping
(blue in m s�1), and surface density flux (red in kg m�2 s�1). The data are obtained by an ACC-
path following average. From Olbers and Visbeck (2005).

written in terms of the slope s D �.@ N�=@y/=.@ N�=@z/ of the isopycnals. Note that
K generally differs much from the diapycnal diffusivity Kd. Both these diffusivities
must in turn be parameterized in terms of resolved fields, but in the following we
simply assume their spatial structure as given functions of .y; z/ (for simplicity either
taken constant or taken from a numerical model).

We follow the most simple concepts which have partly been used before. The
interior ocean is assumed adiabatic with respect to small-scale mixing, i. e. J � 0.
We also assume here a vanishing diapycnal eddy flux, hence Kd � 0, so that the
density balance becomes adiabatic, r:� � r N� D 0. The consequence is that isolines

of the residual stream function and the density coincide. Furthermore, fromKd D 0,
it follows that the eddy density flux is strictly along isopycnals, i. e. v0�0.@ N�=@y/C
w0�0.@ N�=@z/ D 0. Then B D �v0�0=.@ N�=@z/ D �Ks. The stress N� .x/ is assumed
nonzero only in the surface Ekman layer, which is embedded in the upper ocean
layer. If the bottom formstress F is absent, there is also a frictional bottom layer.
Hence in the interior part of the ocean, the stream function is given by

� D Ks CM (interior for F D 0) (16.60)

with M D �N� .x/0 =f denoting henceforth the Ekman transport. Note that in this
model, the Ekman transportM equals the Eulerian overturning stream function� of
(16.26) in the interior.
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In the upper layer, the diapycnal diffusivity Kd is in general nonzero. In fact,
if the layer is vertically mixed (@ N�=@z D 0; s D 1), the diapycnal direction is
horizontal and then Kd � K . Furthermore, B D w0�0=.@ N�=@y/. We will treat the
small-scale stress in the surface Ekman layer as a body force N� .x/ D N� .x/0 E.z/ where
E.z D 0/ D 1 and zero at the mixed layer base (taken identical to the Ekman layer,
see Figure 16.24). Then

� D �w0�0
.@ N�
@y

CMT.z/ (mixed layer) (16.61)

where T .z/ D 1 � E.z/, which equals 1 in the interior. Note that � is basically un-
known unless the vertical eddy density flux is parameterized. As discussed in the pre-
vious sections, the balance of zonal momentum (16.55) requires a stress layer above
the bottom. The stress may appear either in the form of a frictional bottom stress or
a bottom formstress (or both). We treat this problem at the end of this section.

ADiagnostic Model

Marshall and Radko (2003) put forward a partly diagnostic model of the overturning
of the Southern Ocean. The upper layer between z D 0 and z D �d is assumed to be
vertically mixed, and its meridional density profile N�m.y/ is assumed to be given8.
The fields in the interior, however, are predicted.

In this diagnostic model, by vertical integration of the density balance (16.56) in
the mixed layer, the stream function �m.y/ D �.y; z D �d/ at each latitude along
the mixed layer base is found from

�m
@ N�m
@y

D J0 C @

@y

0
@

0Z

�d
Kdz

@ N�m
@y

1
A D Jeff (16.62)

and may be inferred from the local values of the air-sea flux J0, the prescribed mixed
layer density gradient @ N�m=@y and the diffusivity K . By matching to the interior
representation (16.60) at z D �d , the slope sm.y/ D .�m.y/ � M.y//=Km.y/ of
isopycnals can be computed along the mixed base.

The direction of the residual circulation is thus found to be governed by the signs
of the (modified) surface flux Jeff and the gradient @ N�m=@y of the surface density.
Following the observations, shown in the box on p. 604, the gradient is negative. We
expect a negative Jeff because J0 < 0 in the main area of interest, and because the
diffusive contribution is likely small if @ N�m=@y and K are close to being constant.
Then we find �m > 0, a northward residual circulation (remember that �.z D 0/ D 0

and the residual meridional velocity is Nvres D �@�=@z). Furthermore, with a stable
stratification the slope sm must be negative, and hence the eddy-driven circulation is
southward,Ks < 0, compensating the Ekman circulationM > 0 in parts. We return
to this compensation effect later in the prognostic model.

The depth-latitude dependence z� D z�.y
?; y/ of an isopycnal starting at a point

y D y?; z D �d on the mixed layer base, with the stream function value �m.y?/

8 The index m stands for the value of the respective quantity at the mixed layer base z D �d .
Since the density is mixed, we have N�.y; z/D N�m.y/ in the mixed layer.
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Fig. 16.25 a Idealized surface forcing for the diagnostic model as a function of y in km: wind-
stress N�.x/0 (black) in m2 s�2, surface density flux J0 (red) in kg m�2 s�1, and surface density
N�m (blue) in kg m�3. b Density � in kg m�3 of the model using a constant thickness diffusivity
K D 800m2 s�1 and idealized forcing field as in a. c Residual stream function in Sv using us-
ing the zonal path length at 60ı . d Residual vertical velocity @�=@y (blue), eddy induced vertical
velocity @.Ks/=@y (blue dashed) at the base of the mixed layer, and Ekman pumping @M=@y
(black) in 10�6 m s�1

99. Characteristics
of the Interior Problem

The density field in the interior is governed by

r:� � r N� D @�

@y

@ N�
@z

� @�

@z

@ N�
@y

D 0

The characteristic curves .y.t/; z.t// of this differential equation are determined by

dy

dt
D �@�

@z

dz

dt
D @�

@y

representing a system of ordinary differential equations of Hamiltonian form (see the box on
p. 98). The “Hamiltonian” � is conserved along the characteristics, d�=dt D Py.@�=@y/ C
Pz.@�=@z/D 0. Likewise, the density is constant on these curves: from the first equation in this
box we find d�=dt D Py.@�=@y/C Pz.@�=@z/ D 0. Hence knowledge of the characteristics is
equivalent to solving the interior problem.
To solve the second set of equations, � D KsCM must be inserted, leading to a complicated
problem. Finding the characteristics, however, is much simpler if the previous density equation
is rewritten as

@�

@y
C s

@�

@z
D 0

and the characteristic curves .y0.t/; z0.t// of this differential equation are determined by

dy0

dt
D 1

dz0

dt
D s

As before, from dy0 � sdz0 D 0, we find that density is constant along these curves, and the
derivative d�=dt of �.y0.t/; z0.t// along such a characteristic is zero, so � D Ks CM D
const on each characteristic. Integration of the last equation requires initial conditions y0.t D
0/ D y?; s.t D 0/ D sm. ThenKsCM.y/ D K.y?;�d/sm.y?/CM.y?/. Initial data
for s are required on a nonisopycnal curve, in our case the depth level z D �d . Elimination
of t from this problem yields (16.63).

attached to it, can be found by integrating the ordinary differential equation

s D �@ N�
@y

.@ N�
@z

D @

@�

�
dz

dy

�
D �m.y

?/ �M.y/
K

(16.63)

which can be performed analytically if K is constant (the problem is also easily
solved for a factorized diffusivityK.y; z/ D K1.y/K2.z/). With the isopycnal struc-
ture determined, the density field and the residual circulation are determined as well.
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Fig. 16.26 a–c Thickness diffusivity K (in m2 s�1) diagnosed from the idealized eddy-permitting
model of the Southern Ocean described in the box on p. 582 driven by three different amplitudes
of the sinusoidal windstress forcing, i. e. 0.5 (a), 0.75 (b) and 1:0� 10�4 m2 s�2 (c). The contour
intervals for the diffusivities are 200m2 s�1, and the 2;000m2 s�1 line is thick. d–f Residual mean
stream function � in Sv for the diagnostic model with K and surface fluxes identical to the eddy-
permitting model. The contour intervals are 0.2 Sv, the thick line is the zero contour. g–i Residual
mean stream function in Sv for the eddy-permitting model

We exemplify this diagnostic model in Figure 16.25, where the driving fluxes J0 and
N� .x/0 are taken as sinusoidal and the surface density gradient as constant, with ampli-
tudes and scales resembling the observed fields shown in the box on p. 604 in the
latitude range from 70 to 40ı S. The thickness diffusivity is assumed constant with
a value of K D 800m2 s�1. The figure shows a realistic density field (compare Fig-
ure 16.25b) with Figure 16.2) and upwelling of deep water (NADW) of about 10 Sv,
coming from below 1,500 m at the northern rim of the modeled domain. In the mixed
layer, the water is made lighter and descends, leaving the domain above 1,500 m
depth in the north as AAIW. The vertical velocities at the mixed layer base (right
panel) reflect the approximate compensation of the Eulerian and the eddy-induced
circulation. It should be mentioned that this solution is sensitive to changes in any of
the prescribed fields, particularly to the thickness diffusivity K . Lowering (increas-
ing)K makes the isopycnals flatter (steeper). It may occur that isopycnals cross each
other, in which case the model with zero diapycnal diffusion, of course, becomes
unrealistic. Note also that the negative cell (related to the formation of AABW) is
not reproduced in the model.

Finally, we demonstrate that the conceptual framework of the interior residual
overturning, given by the diagnostic model, is appropriate as long as the correct
eddy diffusivity structure is taken into account. We compare the application of equa-



608 16 The Circulation of the Southern Ocean

tion (16.63) with the numerical results of the idealized eddy-permitting model of the
box on p. 582. Figure 16.26 shows the residual stream function � in the Southern
Ocean part of the diagnostic model, for three different windstress amplitudes, pre-
scribing �.z D �150m/ and K.y; z/ by the results of the eddy-permitting numer-
ical model. The diagnostic model in combination with the diagnosed eddy diffusiv-
ity K reproduces the extent of the overturning cell and the slopes of the streamlines
in the eddy-permitting model well for each windstress amplitude. In particular, the
slight deepening of the zero line (thick) is captured almost perfectly. Note that the
remaining small deviations from the eddy-permitting numerical model results repre-
sent diabatic effects in this numerical model which are not included in the adiabatic
diagnostic model.

A Prognostic Model

In the prognostic model, to be discussed now, the surface density is not prescribed
but will be calculated from the equations (16.55) and (16.56). We have to solve these
balances now also for the upper layer. Then, (16.62) is still valid but cannot be used
to compute the stream function �m at the mixed layer base because it is the equation
determining N�m.y/. As the slope is infinite in the mixed layer, we must load more
physical features into the model in order to provide a slope profile at some depth to
be fed into the characteristic equation for the interior, either as described in the box
on p. 606 or via �m.y?/ in (16.63).

We derive an equation determining the slope sm at the mixed base. The mixed
layer is vertically completely mixed (hence Kd D K) and absorbs the entire small-
scale stress N� .x/ as before assumed. Immediately below the mixed layer, before en-
tering the adiabatic interior, the eddy flux can still be diapycnal in part so Kd is
nonzero and generally not equal to K . Expressing �m in the vertically integrated
density balance (16.62) of the mixed layer by the general form (16.61), this balance
is now written as

M
@ N�m
@y

�w0�0ˇ̌�d D J0 C @

@y

�
K@ N�m
@y

�
(16.64)

Here, the integral K of K over the mixed layer is introduced, appearing also in
(16.62). We divide by the density gradient @ N�=@z, appropriate just below the mixed
layer base, and evaluate the vertical density flux w0�0 just below the base using
(16.59). Then we obtain

.M CKmsm/sm �Kd.1C s2m/ D �J0
.�@ N�

@z

�
� @

@y

�
K@ N�m
@y

�.�@ N�
@z

�

(16.65)

where sm D �.@ N�m=@y/=.@ N�=@z/ and Km D K.y; z D �d/. To convert (16.65) to
an equation for the slope, a fairly “mild” assumption must be made: in the diffusion
term the y-dependence of @ N�=@z is ignored,

@

@y

�
K@ N�m
@y

�.�@ N�
@z

�
D � @

@y

�
K@ N�
@z
sm

�.�@ N�
@z

�
� � @

@y
.Ksm/

Further, in the density forcing term, @ N�=@z is replaced by a the squared Brunt–
Väisälä frequency N 2 D �g.@ N�=@z/=�0 below the mixed layer which later will
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100. Approximate
Solution of the Equation
(16.66)

To gain some insight into the behavior of (16.66) we assume all coefficients M;K;Km;Kd,
and Q D gJ0=.�0N

2/ to have an identical y-dependence, however, with different ampli-
tudes M0;K0;K0;Kd;0, and Q0. Allowing for the slight inconsistency to take the diffusion
coefficient outside the derivative, an equation with constant coefficients is obtained

K0s0 D M0sCK0s
2 �Kd;0.1C s2/�Q0

which can be solved analytically. Depending on� D M 2
0 C 4.K0 �Kd;0/.Q0 CKd;0/ the

solution is given by

s D �1
2

M0

K0 �Kd;0

8<
:

C
p

�
K0�Kd;0

tan



p

�
2K0

.y � y0/
�

for � < 0

�
p


K0�Kd;0

tanh



p


2K0

.y � y0/
�

for � > 0

For a realistic situation,Q0 must be negative. If� < 0, a ‘blow up’ develops in the tan-solution,
the slope tends to infinity at finite y, and obviously, a realistic model demands that the diapycnal
mixing increases, i. e.Kd;0 must depend on s.
For� > 0, the solution is exponential. We notice that diffusivity K0 is attached only to the scale
of the solution process but not the overall magnitude of the slope. This increases (becomes more
negative) with the increase of the Ekman transport and the diapycnal diffusion and decreases
with a larger (more negative) surface density flux.

be regarded as prescribed. We arrive at the equation

@

@y
.Ksd/ D .M CKmsm/ sm �Kd.1C s2m/� gJ0=�0

N 2
(16.66)

determining the slope at (i. e. just below) the mixed base. The eddy-induced ad-
vection (second term on the right-hand side) and the surface flux (last term) tend
to increase the slope towards positive numbers (if J0 is negative), and only the
Ekman advection (if M is positive; first term) and diapycnal mixing (third term)
can counteract this tendency. In a realistic situation where sm D �O.10�3/ and
jMsmj 	 Kms

2
m D O.10�3/, the diapycnal diffusivity must be fairly small,

i. e. Kd 	 O.10�3/ or smaller. This requirement hints at a dependence of Kd on
the slope: for the infinite slope in the mixed layer we have Kd D K , reducing to
much smaller values just below the mixed layer base where the slope becomes finite
and then approaching zero in the adiabatic interior.

In the following, we regard M and Q D gJ0=.�0N
2/ as given functions of lat-

itude y and, for simplicity, the mixing coefficients K D dKm; Km; Kd as constant.
The differential equation (16.66) for sm is of the Riccati type (see e. g. Zwillinger,
1998). Though some analytical techniques exist to reduce the nonlinear Riccati dif-
ferential equation to simpler linear equations of second order or to find the general
solution if a particular solution is known, exact analytical solutions for a reasonable
meridional dependence of the above coefficient functions could not be found. An
approximate analytical solution is discussed in the box on p. 609.

We now discuss some numerical solutions of (16.66), shown in Figure 16.27. First
consider the case J0 D Kd D 0 shown in Figure 16.27a–d so that the right-hand
side of (16.66) is given by �msm, written in terms of the residual stream function
�m D M C Kmsm. The zero line of �m is shown as the black dashed line in Fig-
ure 16.27a, e, i, and m. If sm is above this line (but negative) and �m thus northward,
sm becomes more negative until it hits �m D 0 and then turns to increase. The resid-
ual circulation reverses here to a southward direction. Depending onKm and K, this
reversion may occur at different latitudes, as demonstrated in the Figure 16.27a–d.
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Fig. 16.27 Solutions of the prognostic model (16.66) for K D 100 � 1;500m3 s�1 (blue curves)
and K D 300 � 1;500m3 s�1 (red curves). All quantities are displayed as a function of y in km.
Columns: a, e, i, and m show the isopycnal slopes sm just below the mixed layer (red and blue; in
103), and �m D M.y/ CKmsm D 0 (dashed). b, f, j, and n show the residual (blue and red
solid lines) and eddy (blue and red dashed lines) stream function in Sv, the black solid line shows
the Ekman transport in Sv. c, g, k, and o show vertical eddy (blue and red dashed) and residual
(blue and red solid) velocities at the base of the mixed layer in 10�6m s�1. The black solid line
shows the Ekman pumping. d, h, l, and p show the simulated surface density �m (blue and red
solid) inferred from the slope and the observed surface density (black dashed) in kg m�3. Rows:
a to d are for J0 D 0 and Kd D 0, e to h are for J0 D 0 and Kd D 10�4 m2 s�1, and i to l
are for J0 as shown in Figure 16.25 and Kd D 10�4 m2 s�1. m to p is the same as i to l but with
a different initial conditions as discussed in the text. The Brunt–Väisälä frequency below the mixed
layer, entering the density forcing, is chosen asN D 3� 10�3 s�1

Introduction of a small diapycnal diffusivity yields a minor modification of this be-
havior, as shown in Figure 16.27e–h. The residual stream function may thus start
from an initial value being northward or southward and then must reverse as de-
scribed above. In a southward case, the Eulerian circulation is overcompensated by
the eddy-induced component.

The model becomes meaningless if the slope proceeds towards positive numbers.
For the first two cases in Figure 16.27, this would occur north of the integration in-
terval; for the third case we find this behavior inside because the surface forcing is
turned on and overcomes the negative tendency of the �msm-term for small slope
values (see the red lines applying to the larger K). Here the blow-up singularity,
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Fig. 16.28 Solutions of the prognostic model (16.66), using the restoring flux (16.67) with QJ0 D 0,
˛s D 1:5 � 10�6 m s�1 and for N�s the ‘observed’ density depicted in d) by the black dashed
line. Two choices for the diffusivities are displayed: K D 100 � 1;500m3 s�1 (blue curves) and
K D 300 � 1;500m3 s�1 (red curves). a to d are as in Figure 16.27. f shows the diagnosed
density flux of the corresponding solutions. All other parameters are identical to the case shown
Figure 16.27m to p

explained in the box on p. 609, comes into play. With a smaller K or a larger (nega-
tive) initial value (see Figure 16.27m–p, this behavior can be avoided in the present
integration interval, but what is really required is a physically motivated parameteri-
zation in the model to counteract such a behavior. With a positive slope, the surface
density would increase towards the north, and the air-sea exchange of density would
have to react (see below).

Knowing the slope sm D �.@�m=@y/=.@�=@z/, we can determine density in
the mixed layer by approximating the vertical density gradient @ N�=@z by the given
N 2, so far only done for the forcing term in (16.66). The result is depicted in Fig-
ure 16.27d, h, l, and p, showing a reasonable success: for comparison, the approxi-
mate profile of the observed surface density (see the box on p. 604 or Figure 16.25)
is included by the black dashed line.

The above model is still unsatisfactory for two reasons. First, the model depends
on a specified Brunt–Väisälä frequency below the mixed layer, and second, as al-
ready demonstrated above, prescription of the density flux is not acceptable. It should
not be the modeler but rather the “atmosphere” to react on the ocean’s surface condi-
tion and choose the flux. To implement a feed-back in a simple way, a restoring-type
flux

J0.y/ D QJ0.y/C ˛s Œ N�s.y/ � N�m.y/� (16.67)

similar to (13.12) may be used. A tunable parameter ˛s (with dimension m s�1) and
an “atmospheric” restoring density N�s.y/ then enter the model. A prescribed climato-
logical flux QJ0 may be taken into account (e. g. as zero or the one used in the previous
examples). The performance of this model is demonstrated in Figure 16.28. For the
“blue” solution of these cases, the interior density, residual stream function, zonal
velocity (see next paragraph), and pumping velocities are shown in Figure 16.29.

Giving up to prescribe N 2 and proceeding to a fully prognostic model, i. e. re-
solving the transition layer between the mixed layer and the adiabatic interior with
appropriate parameterizations, is a fairly complicated task. The reader is referred to
Olbers and Visbeck (2005) where prognostic equations are discussed for the slope in
this transition layer.
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Fig. 16.29 Solution of the prognostic model (16.66), using the restoring flux (16.67) as in Fig-
ure 16.28 and K D 100�1;500m3 s�1. a shows the density in kg m�3 as a function of depth in m
and y in 103 km. b shows the residual stream function in Sv. c shows the zonal velocity in m s�1

and d shows the the vertical eddy (blue dashed) and residual (blue solid) velocities at the base of
the mixed layer in 10�6m s�1. The black solid line shows the Ekman pumping in 10�6 m s�1

Balance of Zonal Momentum and the Zonal Transport

The model is completed by the determination of the zonal current which has
a geostrophic balance, given by (16.57). The baroclinic pressure Npclin is determined
by the interior density field (see Figure 16.29). The gradient g@ N�=@y of the surface
pressure follows from the vertically integrated balance of zonal momentum, as in
Section 16.2. In case of a flat bottom, we have to work with the balance between the
applied windstress and the frictional bottom stress, N� .x/0 D N� .x/b , and use the equa-
tions of the bottom Ekman layer. In the presence of topography, we have the balance
between the windstress and the bottom formstress, N� .x/0 D �Fb, but we can proceed
only if a parameterization of Fb is given. Both routes result in a condition on @ N�=@y.
Given this gradient, the velocity profile Nu.z/ is determined, and the total transport
can be calculated. A “cheap” way to work around the problem of determining the
surface pressure is to assume a level of no motion at the bottom, i. e. to calculate the
transport as described in the box on p. 560. This solution is depicted in Figure 16.29c.

16.7 * SimpleModels with Bottom Formstress

The above considerations have so far missed an analytical treatment of the influ-
ence of topography (loosely speaking, the formula relating the bottom formstress
Fb to the velocity of the zonal current). The formstress in the equations (16.14) and
(16.15) contains the part of the bottom pressure which is out of phase with variations
of the topography along the zonal path of integration. Some insight into the mecha-
nism how the flow generates the bottom formstress can be obtained from a truncated
part of the full dynamics, called low-order models, where the flow fields are repre-
sented by only a few spectral components (see Appendix B.3), i. e. by only a few
“waves”, which are, of course, Rossby waves in case of the large-scale circulation of
the Southern Ocean. A prominent example of such low-order models is the one by
Charney and DeVore (1979) (CDV in the following) which resolves only one Rossby
wave. We present the CDV model in the next section and a baroclinic extension in
Section 16.7.2. This latter section can be viewed as summary of most processes dis-
cussed in the chapter on Southern Ocean dynamics, of course represented by only
very rudimentary physics.
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101. Derivation
of the Homogeneous
Charney–DeVore Model

The homogeneous Charney–DeVore (CDV) low-order model follows from the quasi-geostrophic
potential vorticity equation (5.32) for homogeneous density, supplemented by the global zonal
momentum balance,

@

@t
r2 C u � r

�
r2 C ˇy C f0b

H

	
D �r2. � � / (B101.1)

@T

@t
D �.T � � T /C f0

H
b
@ 

@x
(B101.2)

governing a two-dimensional, zonally unbounded flow over a sinusoidal topography given
by b in a zonal channel. Here,  is the stream function for the velocity u D .u; v/ with
u D �@ =@y and v D @ =@x, T is the zonally and meridionally averaged zonal velocity
(transport). Furthermore, �r2 � is the vorticity and �T � the zonal momentum imparted (per
unit of time) into the system. It represents the external forcing of the system by e. g. thermal
forcing or by windstress. � is a coefficient for linear bottom friction and f0 a constant Corio-
lis parameter. The last term in the global momentum budget (B101.2) is the bottom formstress.
Note that the overbar denotes the zonal and meridional average over the total domain (therefore
we refer to (B101.2) as a ‘global’ balance). The momentum input �T � is thus balanced by bot-
tom friction and bottom formstress. T � is usually taken as constant, so that there is no vorticity
forcing.
The total depth of the fluid is H � b, and the topography height b is taken sinusoidal, b D
b0 coskx sinky with k D 2 =X where X is the length and Y D X=2 the width of the
channel. To derive the CDV system (16.36), a truncated spectral representation of  given by

 D �Ty C 1

k
ŒTc coskxC Ts sinkx� sinky

is used, representing the flow in terms of the zonal mean U and a wave component with cosine
and sine amplitudes Tc and Ts, respectively. To derive the equation for U , the representation is
implemented into the zonal momentum balance and integrated over the whole channel domain.
To derive the equation for Tc (or Ts), insert the representation into the vorticity equation, mul-
tiply by coskx (or sinkx) and integrate over the whole channel domain (see also the general
discussion of spectral models in Appendix B.3).

16.7.1 A Homogeneous Charney–DeVoreModel

The homogeneous (or barotropic) Charney–DeVore (CDV) low-order model de-
scribes some important aspects of the dynamics of a zonal flow with homogeneous
density over topography. As discussed in the box on p. 613, the model is based on
the quasi-geostrophic potential vorticity equation on a ˇ-plane, a sinusoidal topogra-
phy and a truncated spectral representation of the flow in a channel representing the
Southern Ocean. A Rossby wave is generated with amplitude Tc, which is in phase
with the topography, i. e. a cosine component in view of the cosine-topography cho-
sen in the box on p. 613, and amplitude Ts, which is out of phase with the topography,
i. e. a sine component. The homogeneous CDV model consists of three coupled ordi-
nary differential equations for the amplitudes Tc and Ts and the horizontally averaged
zonal flow T ,

PT D �.T � � T /C 1

4
ıTs

PTc D �kTs.T � cR/ � �Tc

PTs D kTc.T � cR/� ıT � �Ts

(16.68)
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Fig. 16.30 Steady solutions of the homogeneous CDV model showing the negative bottom form-
stress �Fb=� (red and green lines) in m and T � �T (full black and dashed blue lines) versus T in
m s�1. Various values for T � are used: the black line represents the momentum balance for typical
ACC conditions (T � D 20m s�1), for the blue lines T � was increased by a factor of 2; 4; 6 : : :,
respectively. a applies to the complete CDV model, b applies to a version neglecting the relative
vorticity in (B101.1), leading to a cancelation of the TsT and TcT terms in (16.68), and c applies
to the f -plane (ˇ D 0; cR D 0). The bottom formstress Fb=� is shown for b0 D 100m (red
lines) and b0 D 150m (green lines) in a and b and in c for b0 D 500m (red) and b0 D 1;000m
(green). Other relevant parameter values are f0 D �1:1�10�4 s�1, ˇ D 1:5�10�11 m�1 s�1,
� D 10�6 s�1,H D 5 km and L D 104 km. Notice the difference in the vertical and horizontal
axes

where cR D ˇ=k2 is the speed of the planetary barotropic Rossby wave9 and ı D
f0b0=H measures the topography height. Each balance has a frictional term 	 �,
deriving from bottom friction (a lateral viscosity term yields a similar form). The
zonal current is forced by a zonal stress, written for simplicity as �T �. Note that the
zonal momentum balance in (16.68) is the time-dependent version of (16.36). In the
following we will consider steady solutions of the model (16.68).

The wave induces a pressure field which acts against the zonal acceleration. At the
upstream side of the hills, the fluid must be lifted, thus generating high pressure. At
the downstream side, a pressure low follows. The westward propagating wave gets
stationary by eastward advection in the zonal current and by friction: it is locked
in resonance with the mean flow and produces a bottom formstress which becomes
a nonlinear functional of the zonal velocity,

FbŒT � D 1

4
ıTs D �1

4

ı2�T

�2 C k2.T � cR/2
(16.69)

derived from the two ‘wave’ equations in (16.68) for steady state conditions. The
total momentum balance in (16.68), written in steady state now as

�.T � � T /C FbŒT � D 0 (16.70)

then determines the zonal transport T . Figure 16.30 displays the solution by plot-
ting T � T � and �FbŒT �=� as function of T in the left panel. Three equilibria are
found if T � is well above cR but not too large; two of them are stable circulation
regimes. For solutions in the resonant range (T close to cR), the friction in the mo-
mentum balance is negligible, these solutions are balanced by bottom formstress.
The off-resonant solutions are controlled by friction. It is remarkable that the bottom

9 The solution of the linearized form of the homogeneous CDV model (16.68) is an oscillation with
the frequency ˙p.kcR/2 C ı2=4, representing a mixed planetary-topographic wave.
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Fig. 16.31 The bifurcation of T.b0/ for the cases shown in Figure 16.30, using T � D
20; 40; 60; 80; 100m s�1. a complete CDV model. b model with cancelation of the relative vor-
ticity. c model for ˇ D 0. The black branches are stable, the red branches are unstable. Notice the
difference in the horizontal axes

formstress amplitude Ts is proportional to � (as shown in (16.69)): friction is essen-
tial to shift the pressure field out-of-phase with respect to the topography. Of course,
for zero friction the flow would not become steady. But it is important to note that
friction plays this twofold role in the balance of the mean zonal flow: there is a direct
frictional effect on T , manifested here by the bottom friction, and an indirect effect
through the feedback by the topographically induced waves where friction allows to
build up the phase shift and to generate bottom formstress.

Significant sizes of the bottom formstress can only arise if the topography is suf-
ficiently high, if Rossby waves propagation is present (i. e. ˇ ¤ 0), and if the forcing
is sufficiently strong (see left panel of Figure 16.30). The three possible steady states
which then exist can be classified according to the size of the mean flow T compared
to the wave amplitudes. The high zonal index regime is frictionally controlled, the
flow is intense and the wave amplitudes are low. The low zonal index regime is con-
trolled by bottom formstress, the mean flow is weak, and the wave is intense. The
intermediate state is transitional, it is unstable to perturbations. A small perturba-
tion T 0 is governed by

@T 0

@t
D ��T 0 C @Fb

@T
T 0

and becomes unstable if @Fb=@T > �. This “formdrag instability” obviously works
when the slope of the resonance curve �FbŒT � is negative and steeper than the one
associated with friction (see Figure 16.30) so that a perturbation must run away from
the steady state. Apparently, the criterion of instability is always satisfied for the
intermediate state whereas the other two states are always stable.

Two ingredients are important to generate a significant resonance. It weakens
when the planetary Rossby waves are filtered (which yields the f -plane approxi-
mation). In this case, only topographic waves are present, as in Figure 16.30c. If
the relative vorticity is neglected, the resonance disappears completely, and the mo-
mentum balance of this homogeneous model is linear in T , see Figure 16.30b. Then
multiple steady states do not exist. In these cases, the bottom formstress is very small
compared to the forcing, and the flow is directly controlled by the bottom friction:
we find T Š T �, hinting at the Hidaka dilemma (see Section 16.2.2).

Bifurcation diagrams of T as function of the topography height b0 are shown in
Figure 16.31 for the three cases. These plots were produced by use of a numerical
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continuation tool which evaluates the equilibrium solutions and also the stability10.
Black lines T Œb0� are stable steady states; red ones are unstable. The above discus-
sion on the type and number of solution, there based on fixed heights b0, can here be
confirmed in a more general view of a larger range of b0-values. It is evident that the
existence of planetary Rossby waves (in the left panel) is essential for the resonance
to occur at large values of the zonal current, in contrast to mere topographic waves
(in the right panel).

It is worth mentioning that much of the interesting dynamics of the CDV model –
such as the occurrence of multiple steady states – is lost by incorporation of more
and more spectral components arising for more complex topographies, e. g. a Gaus-
sian hill. The decrease of transport with increase of the topography height, however,
remains as a general feature.

Charney and DeVore (1979) have developed this model for atmospheric flow
regimes. In the ocean, the resonant solutions cannot be realized because zonal
flow (the ACC) speeds resulting for realistic forcing are much less than speeds
of barotropic Rossby waves. The forcing T � relates to the windstress by �T � D
N� .x/0 =H , and reasonable values for the windstress and the bottom friction allow only
for a frictionally controlled solution in which nonlinearities are irrelevant. The solu-
tion then becomes

FbŒT � D �1
4
�T .b0=H/

2.ak/2 HT D �x0 =�

1C 1
4
.b0=H/2.ak/2

(16.71)

where a D jf0=ˇj is the Earth radius times tangent of latitude, and �2 � .ˇ=k/2

was assumed for simplicity. The transport in this homogeneous model decays away
from the frictional solution HT D N� .x/0 =� (with hundreds of Sv transport) with
increasing height ı of the topography (see Figure 16.31c). The drag of the bottom
formstress increases quadratically with the height of the topography and, because
.ak/2 � 1, attains higher values than friction for moderately sized submarine ridges.

16.7.2 A Baroclinic Charney–DeVoreModel

In a baroclinic extension of the model, the Charney–DeVore resonance can oper-
ate in conditions more representative for the Southern Ocean than the homogeneous
CDV model. This will be discussed in the following. A two-layer zonal channel with
quasigeostrophic dynamics (see Section B.1.3) is considered in this model, however,
with a sinusoidal topography only in the zonal direction. The stream functions of the
flow in the two layers are expressed by suitably chosen sinusoidal structure func-
tions as detailed in the box on p. 618. The resulting system is written in terms of
six amplitudes representing the barotropic transport T (upper layer plus lower layer
transport), the baroclinic transport S (upper layer minus lower layer transport), and
respective barotropic and baroclinic sine and cosine components, Ts; Ss, and Tc; Sc

(more accurately, the T and S quantities are based on barotropic and baroclinic ve-
locities). The cosine variables are out of phase with respect to the topography and
thus generate the barotropic and baroclinic bottom formstress parts. The effect of
transient eddies is a downward transfer of momentum by the interfacial formstress

10 The continuation is performed with a MATLAB code bifurk.m written by Christoph Völker.
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as discussed in Section 16.3 and is parameterized by friction acting on the interface
of the two layers with a scaled coefficient 	. In addition, we have lateral diffusion of
momentum with a scaled viscosity �.

Scaling these variables, as detailed in the box on p. 618, the dimensionless form
of the governing differential equations becomes

PT D W0 C ı .Tc � hSc/ � �T (16.72)

PS D 
2W0

h
C Q0

1 � h
� 
2

1 � hı .Tc � hSc/C ` ŒTcSs � TsSc� �
�
	 C 
2�

�
S

(16.73)

PTc D ˇTs � 2ı .T � hS/ �m ŒT Ts C h .1 � h/ SSs� � �Tc (16.74)

PSc D ˇ
2Ss C 2
2

1 � hı .T � hS/ � n ŒTSs � STs� �
�
	 C 
2�

�
Sc (16.75)

PTs D �ˇTc Cm ŒT Tc C h .1 � h/ SSc� � �Ts (16.76)

PSs D �ˇ
2Sc C n ŒTSc � STc� �
�
	 C 
2�

�
Ss (16.77)

The forcing of the system is given by W0 (windstress; note that we have switched
from the �T � notation to W0) and Q0 (external heating). Terms derived from non-
linear advection are found in the cornered brackets (the factors `;m; n are numeri-
cal coupling coefficients depending only on the channel dimensions, see the box on
p. 618). The respective term in the zonal baroclinic momentum balance (16.73), the
`-term, is the interfacial formstress induced by the standing eddies. The term related
to 	 in (16.73) is the corresponding transient eddy interfacial formstress. The baro-
clinicity enters via the scaled internal Rossby radius 
, and the scaled topography
height is ı= . Lateral friction (the �-terms) operates in the barotropic equations (for
T; Tc, and Ts) and interfacial friction (the 	-terms) in addition in the baroclinic equa-
tions (for S; Sc, and Ss). Note that generally 	 � �
2. The sine and cosine equa-
tions (16.74)–(16.77) describe planetary-topographic Rossby waves with the same
zonal wave number as the topography; ˇ is the scaled planetary coefficient df=dy.
There are terms in these equations arising from nonlinearities (advection; n- and m-
terms) and diffusion. There is no direct forcing term in the wave equations because
the external heating function is assumed independent on the zonal coordinate. Note
that (16.72) is the balance of vertically integrated momentum. We can identify the
barotropic and baroclinic contributions to the bottom formstress, ıTc and �ıhSc,
respectively.

In the following discussion, steady state solutions of the model are investigated
for various regimes of the flow. The equations for the total transport T and the shear
transport S are found in (16.72) and (16.73), respectively. Adding these equations in
a suitable way to eliminate the bottom formstress parts, we find the balance of upper
layer transport hŒT C .1 � h/S�, given for steady state by

W0 C hQ0


2
� �h .T C .1 � h/S/ D h.1 � h/


2
.	S � ` ŒTcSs � TsSc�/ (16.78)

and eliminating the wind forcing between (16.72) and (16.73), we get the balance

�hQ0


2
C ı.Tc � hSc/� �.1 � h/ .T � hS/ D �h.1 � h/


2
.	S � ` ŒTcSs � TsSc�/

(16.79)
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102. Derivation
of the Baroclinic
Charney–DeVore Model

A channel of zonal length X and meridional width Y is considered with two lay-
ers of fluid with densities �1; �2, mean layer thicknesses H1;H2;H D H1 CH2,
and reduced gravity g? D g.1 � �1=�2/. The flow is governed by the quasi-geo-
strophic dynamics and given by the equations described in Appendix B.1.3.

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Windstress [blue] and heating rate
[green] of the low-order model.

We use the formulation (B.15) and (B.16) in terms
of the barotropic and baroclinic stream functions
 e and  i, respectively. Boundary conditions of
zero mass flux and no-slip at the vertical walls of
the channel are taken into consideration. Auxiliary
integral constraints are incorporated for both lay-
ers (see e. g. McWilliams, 1977, and the box on
p. 570).
The topography is taken as b.x; y/ D
b0 sin .2 x=X/. The flow is forced by the
zonal windstress � D �0 sin2. y=Y / and a local
heating rateQ D � OQ0 cos. y=Y / sin. y=Y /.
Here, � and Q are dimensioned m2 s�2 and
W m�3, respectively. The heating amplitude OQ0 enters the model equations in the form
B0 D ˛g OQ0H2=.�1cp/ (in m2 s�3) where ˛ is the thermal expansion coefficient and cp the
specific heat. The profiles of the forcing function are displayed in the following figure: �=�0
as blue curve, Q= OQ0 as green curve, both as function of y=Y . Note that the Q.y/ profile is
chosen to coincide with the profile of Ekman pumping �@.�=f0/=@y.
The truncated representation for both stream functions is given by

 e.x; y; t/D T.t/ cos . y=Y /C Tc.t/ cos .2 x=X/ sin . y=Y /

C Ts.t/ sin .2 x=X/ sin . y=Y /

 i.x; y; t/D S.t/ cos . y=Y /C Sc.t/ cos .2 x=X/ sin . y=Y /

C Ss.t/ sin .2 x=X/ sin . y=Y /

It is implemented into the equations (B.15) and (B.16) and then projected onto the modal
functions, as described in Appendix B.3. The resulting equations are then made dimen-
sionless. The scaling and coefficients are as follows: all transport variables are scaled by
.jf0jY 2/= 2 to yield dimensionless T;S; Tc; Ts; Sc; Ss. Parameters are a D Y=. X/,
� D  2Ah=.ajf0jY 2/; � D  2K=.ajf0jY 2/; � D  R=Y; ˇ D 2Y df=dy=jf0j where

R D
q
.g�=f 20 /H1H2=H is the internal Rossby radius. Furthermore, h D H1=H is a thick-

ness ratio. Coupling coefficients are ` D 3 2=8;m D 64 2a2=3; n D 16=3. The scaled
depth is 1C .ı= / sin.2 x=X/; thus ı=  is the relative height of the topography. The scaled
forcing amplitudes are W0 D .3=8/ 2�0=.aHYf

2
0 /;Q0 D .3=32/ 3B0=.ajf0j3Y 2/.

Time is scaled by 1=.jf0ja/.
�0 D 10�4m2 s�2 B0 D 7:19� 10�7

m2 s�3
Y D 1;000 km X D 4;000 km

Ah D 104 m2 s�1 Kh D 800m2 s�1 g? D 5:3� 10�3 m s�2 R D 20:0 km

f0 D �1� 10�4 s�1 df=dy D
2� 10�11 m�1 s�1

H1 D 1;000m H2 D 3;000m

W0 D 1:17� 10�4 Q0 D 1:31�10�6 � D 1:24� 10�2 � D 9:92 � 10�4

a D 7:96 � 10�2 � D 6:50� 10�2 ˇ D 0:40 h D 0:25

List of parameters and standard values for the baroclinic CDV model. The value for B0 corre-
sponds to a heat flux of 0:05W m�3. The coupling coefficients have the values ` D 3:70;m D
1:33; n D 5:33.

for the lower layer transport .1�h/.T �hS/. On the right-hand side we have put the
interfacial formstress due to transient eddies (the 	-terms) and standing eddies (the
`-terms). Quite obviously, these are the only processes which couple the two layers.
The balances (16.78) and (16.79) for the individual layers are used below.
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Considering the steady state of the above model, we recover the most important
physical mechanisms which we have outlined in the previous discussion of this chap-
ter, namely:

The Barotropic Formstress Drag

A barotropic state is obtained for 
 D Q0 D 0. Then all S -fields are identically
zero, and the barotropic solution emerges as described by the barotropic CDV model
in Section 16.7.1, in which the transport decays quadratically with increasing topog-
raphy height due to the drag of the barotropic formstress. For a flat bottom, we are
facing the Hidaka dilemma addressed in Section 16.2.2.

Johnson–Bryden Dynamics

If lateral friction is small and the influence of topography and interfacial formstress
by standing eddies are ignored, we regain from (16.73) the Johnson–Bryden state
(here we refer to Section 16.6.1),

	


2
S D W0

h
C Q0


2.1 � h/

in which the transport contained in the shear current is governed by windstress and –
in extension of the original Johnson–Bryden model – also by the external heating.
Quite obvious in the present setting is the fact that the Johnson–Bryden approach
does not lead to the total transport T . This can only be done with suitable assumption
about the lower layer transport, e. g. a vanishing of the lower layer transport.

Hidaka’s Dilemma in the Surface Layer

Suppose for the moment that the interfacial formstress components are small or the
Rossby radius is large (strong stratification). The balance (16.78) for the upper layer
turns into

W0 C hQ0


2
� �h ŒT C .1 � h/S� ' 0 (16.80)

and we arrive at the obvious statement that the transport h.T C .1 � h/S/ in the
surface layer is decoupled from the topography: it is given by the windstress and
buoyancy flux acting in the above combination against lateral friction. The surface
layer transport is then in a “Hidaka”-type state (inversely proportional to the eddy
viscosity � and thus large for a reasonably sized �). This problem was addressed
in Section 16.2.2 in a barotropic setting. This Hidaka dilemma in the surface layer,
however, must be resolved by the interfacial formstress induced by transient or/and
standing eddies. These processes couple the upper layer to the lower one and feed
momentum to the bottom formstress acting in the lower layer. Only then the verti-
cally integrated momentum balance appears in the full form (16.72). For a reasonable
size of the topography height ı, the transport may take reasonable values. We return
to this issue later in a more general frame.
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The Bottom Formstress

The formstress components ıTc and ıhSc arise by the response of the barotropic and
baroclinic wave system, described by the four wave equations (16.74)–(16.77), to the
zonal flow crossing the topography. A reasonable solution of the model should yield
transports in the range T � ˇ D 0:4 and S & ˇ
2 D 0:0016 (the numbers are for
the standard parameter values), meaning that the flow velocities are much less than
the speed of barotropic Rossby waves but supercritical with respect to the baroclinic
waves. Such conditions are representative for the Southern Ocean. Then the nonlin-
earities in the barotropic wave equations (16.74) and (16.76) are small, and these
equations represent a linear barotropic planetary-topographic wave. The barotropic
formstress ıTc can thus be explained by long linear Rossby waves generated by the
deep current, T � hS in the present model, crossing the large ridges blocking the
circumpolar path of the ACC. In contrast, the baroclinic formstress ıhSc might be
governed by a nonlinear response, according to S & ˇ
2 in the baroclinic wave
equations (16.75) and (16.77). We first discuss, however, a completely linear model.
Nonlinear consequences follow further below.

Bottom and Interfacial Formstress as Response to LinearWaves

Assuming a linear wave state, i. e. neglecting the advection terms in the wave equa-
tions (16.74) to (16.77), the wave amplitudes become

Tc D � 2ı�

ˇ2 C �2
.T � hS/ and Sc D 2ı.	=
2 C �/

ˇ2 C .	=
2 C �/2
T � hS
1 � h (16.81)

and Ts D �ˇTc=�; Ss D �ˇSs=.	=

2 C �/. The barotropic formstress ıTc is thus

supported by lateral friction (�), the baroclinic one �ıhSc by interfacial (	) and
lateral (�) friction and by stratification (
). Both formstress components extract east-
ward momentum from the flow if the deep layer is moving eastward (remember that
the barotropic formstress is ıTc and the baroclinic one is �ıSc). The waves make
a total bottom formstress

ı.Tc � hSc/ D �2ı2�.T � hS/ (16.82)

where � D �=.ˇ2 C �2/ C h0.	=
2 C �/=.ˇ2 C .	=
2 C �/2/ and h0 D h=.1 �
h/ D H1=H2. The main contribution to � comes by far from second term, in
fact � ' h0.	=
2/=.ˇ2 C .	=
2/2/ for the standard values given in the box on
p. 618. The stress is quadratic in ı and obviously overcomes the friction term in the
barotropic balance (16.72) if ı2� > � or ı2 > ı20 D �=�. To overcome interfacial
friction, it is necessary that h0ı2� > 	=
2 C � or ı2 > ı21 D .	=
2 C �/=.�h0/.
For the standard values of the model parameters (see the box on p. 618), we find
� D 0:46; ı0=  D 0:05; ı1=  D 0:42 (remember that the scaled height of the to-
pography is given by ı= ).

Note that there is still baroclinic formstress if the interfacial friction is zero,
i. e. 	 D 0. In such a state, it is found from (16.80) that the lower layer transport
vanishes unless directly forced by baroclinic processes, i. e. unless Q0 ¤ 0. It is
a simple task to compute T � hS from (16.80) and (16.81) in terms of the baroclinic
forcingQ0 and topography height ı: a quadratic decay law with ı is found as found
above for the barotropic CDV model.
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Of more concern is, of course, the state with nonzero 	. Interfacial friction carries
momentum downward if the shear S is positive. What is the condition of the term
ŒTcSs � TsSc� of the standing eddies? We evaluate it from the linear wave solution
which yields after some manipulations

TcSs � TsSc D � 1

ˇ2 C �2
	=
2

ˇ2 C .	=
2 C �/2
4ı2

1 � h.T � hS/2 (16.83)

The standing wave interfacial formstress is – in this quasi-linear approximation –
always negative: it must transfer eastward momentum downward. It requires that
topography is present and the bottom flow nonvanishing. It is worth noticing that it
is supported entirely by interfacial friction: the diffusivity 	 must be nonzero, the
viscosity � can be zero.

The Linear Model and the Baroclinic Stommel Regime

We proceed with the linearized version of the model. We thus neglect the interfa-
cial formstress by the standing eddies in (16.73) and the advection terms in the wave
equations. Using then the linear solution (16.82) for the bottom formstress, the trans-
port variables are readily evaluated as expressions of ı; �; 	; 
 and the forcing ampli-
tudesW0 and Q0. One finds

T D
�
1C 2.ı=ı1/

2
�
W0=� C 2.ı=ı0/

2
�
W0 C h0Q0=


2
�
=�

1C 2.ı=ı0/2 C 2.ı=ı1/2

hS D 2.ı=ı1/
2W0=� C �

1C 2.ı=ı0/
2
� �
W0 C h0Q0=


2
�
=�

1C 2.ı=ı0/2 C 2.ı=ı1/2

T � hS D W0=� � �
W0 C h0Q0=


2
�
=�

1C 2.ı=ı0/2 C 2.ı=ı1/2

where � D 	=
2 C � is used and the above mentioned barotropic critical heights
ı0 D p

�=� and the baroclinic one ı1 D p
�=.h0�/ are implemented. Remembering

that ı0 � ı1, we notice that the denominator of the above expressions is governed
by the ı0-term.

The transport variables T (total transport, blue), hŒT C .1 � h/S� (upper layer,
black), and .1 � h/.T � hS/ (lower layer, red) are displayed in the left panels of
Figure 16.32 as function of the height ı=  and otherwise typical parameters. For
a purely wind-driven state (upper row), the transports are all eastward (in the wind
direction). For small topography heights, ı=  < ı0= , the transport is frictionally
controlled, and the Hidaka dilemma is present with T 	 W0=�.

A purely heat-driven state (lower row), using the heating profile specified in the
box on p. 618 with heating in the north and cooling in the south, yields an eastward
moving upper layer and a reversed flow in the lower layer; the total transport is, how-
ever, also eastward. There is a fairly small effect from friction and bottom formstress,
both counteracting the westward flow in the lower layer. The pure heat-driven case
resides entirely on the balance between the heat input and the interfacial formstress
(which, as explained before, is equivalent to lateral diffusion of heat).

All transports, however, flatten out into a plateau at large topography heights well
above the critical height ı=  D ı0= . The transports in the wind-driven case attain
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Fig. 16.32 Transports and momentum balance of the linear transport model as function of the
topography height ı= . The upper panels a, b, and c are for the case of wind forcing only; the lower
panels d, e, and f are for the case of forcing by heating. The left panel (a, d) in each row shows
the transport variables: total transport T (blue), upper layer transport hŒT C .1 � h/S� (black),
and lower layer transport .1 � h/.T � hS/ (red). The middle panel (b, e) shows the balance of
momentum in the upper layer; the right panel (c, f) is the balance for the lower layer: wind forcing
(black), heating (cyan), viscous friction (green), interfacial friction (blue), bottom formstress (red
for the barotropic component, magenta for the baroclinic component). All variables are scaled and
parameters are as specified in the box on p. 618. These yield almost identical forcing amplitudes
W0 D 1:17 � 10�4 and h0Q0=�

2 D 1:11 � 10�4. The critical heights of the topography have
values ı0=  D 0:05; ı1=  D 0:42

fairly small values, and the ones in the heat-driven case approach their respective
maxima. In this large height regime, we find for the wind-driven case

T; hS ' .ı0=ı1/
2W0=� CW0=� ' W0=�

1 � h
' 
2W0=	

1 � h
The transports T and hS are thus governed by interfacial friction rather lateral vis-
cous friction. The bottom layer becomes increasingly quiescent, i. e. T � hS 	
.ı0=ı/

2. However, the bottom formstress approaches a finite value,

�2ı2�.T � hS/ ' �.W0=� �W0=�/ ' W0

which balances the interfacial stress �h.1 � h/	S=
2 ' �W0. Apparently, this
regime is the one discussed in connection with the ‘baroclinic Stommel equation’
(see Section 16.5.3).

The momentum balance of the model, given by (16.78) and (16.79) and shown
in Figure 16.32 (middle and right panels) for the two layers, reveals as well that the
wind forcing is transferred almost undiminished by interfacial friction to the lower
layer where it is taken up by bottom formstress. Viscous friction is irrelevant. For the
present parameters, the baroclinic formstress is dominating. For the Hidaka regime,
at small height values ı=  < ı0= , lateral friction is necessary, at least in the lower
layer.
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Fig. 16.33 Steady solutions of the nonlinear baroclinic CDV model as function of the topography
height ı= , obtained with the continuation tool. Standard values of the parameters are used (the
same as for the linear solution shown in Figure 16.32). a the total transport T . b and c terms of
the momentum balance for the upper and lower layers. d barotropic (blue) and baroclinic (black)
parts of the bottom formstress. Colors are as follows: wind forcing (black), viscous friction (green),
transient eddy stress (interfacial friction, blue), standing eddy stress (cyan), bottom formstress (ma-
genta). In all variables the unstable part of the solution is indicated by the red dashed segments

Nonlinear Extensions

There are two severe deficits in the linear view of the model. Firstly, evaluating the
interfacial formstress induced by standing eddies, even in the quasi-linear approxi-
mation (16.83), it is found to be not small: it may attain the same size as the transient
one and may generally even be larger than the bottom formstress. Secondly, the ne-
glected advection terms in the wave equations are not small.

The advective terms lead to the baroclinic resonance mentioned above, the exis-
tence of which can easily be disclosed: evaluating the baroclinic wave amplitudes
from (16.75) and (16.77), including now the advection terms, we find the nonlinear
version of the baroclinic bottom formstress

ıhSc D 2.ı=
/2
�X C .ˇ � nT=
2/Y
.ˇ � nT=
2/2 C �2

.T � hS/

with X D 
2h0 C nˇ

ˇ2 C �2
hS and Y D n�

ˇ2 C �2
hS

revealing immediately the ‘baroclinic formstress resonance’ at nT D ˇ
2, i. e. at
a flow speed which equals the speed of the baroclinic Rossby wave. This resonance
opens the road to multiple steady states.

We proceed and finalize this section with a numerical solution, obtained with the
continuation tool used above for the barotropic model. The complete six-dimensional
low-order model (16.72) to (16.77) is implemented, and the equilibrium solutions,
including their bifurcations and stability, are determined. A variety of regimes may
be realized by varying the basic parameters. However, we restrict the presentation
to the nonlinear counterpart to the linear wind-driven model, shown in Figure 16.32
(upper row). Figure 16.33 displays the transport T in the left panel and the terms of
the momentum balance for the upper and lower layer in the other panels. Unstable
parts of the solution branches are plotted in red; the rest of the model variables are
the colored curves as explained in the figure caption. The general dependence of the
transport T .ı/ on the topography height is similar in the linear and nonlinear models.
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The latter, however, runs with increasing ı into a multiple state regime (there is a fold
bifurcation at the right limit and a Hopf bifurcation at the left limit of the unstable
window for the standard values of the parameters). It is worth mentioning that –
varying the parameters – no regime was found in which an entirely unstable window
existed, i. e. the model has always stable solutions.

The momentum balance of the nonlinear model is more complicated that the lin-
ear one. The interfacial stress by standing eddies, the `-term in (16.78) and (16.79),
is now alive and seen to be the main process transferring eastward momentum from
the surface to the deep layer at intermediate topography heights. The transient stress,
the 	-term, has importance at low and very large heights and even changes sign at
intermediate topography. The bottom formstress is carried by the barotropic part at
low heights and by the baroclinic part at high topography. Note that ‘low’ and ‘high’
is always meant with respect to the critical height ı0= .

Further Reading

The book Ocean Circulation and Climate edited by Siedler et al. (2001) contains
a collection of review articles on observations and modeling which describe results
of the World Ocean Circulation Experiment carried out in the 1990s.

An introduction into regional aspects of the ocean circulation is given in Regional
Oceanography: an Introduction by Tomczak and Godfrey (2003).

Theories of the large-scale circulation, and in particular a thorough discussion of
thermocline ventilation issues, can be found in Ocean Circulation Theory by Ped-
losky (1998).

Nonlinear Physical Oceanography by Dijkstra (2005) focusses on nonlinear as-
pects and simple models of certain aspects of the large-scale circulation.

Part IV of Atmospheric and Oceanic Fluid Dynamics by Vallis (2006) contains
a discussion of the large-scale ocean circulation in terms of wind and buoyancy forc-
ing.

The book The Oceanic Thermohaline Circulation: an Introduction by Aken
(2007) is a good review of many aspects of the thermohaline circulation and the dom-
inating branches of the global meridional overturning. It covers the basic physics and
a wide range of observational data and develops the classical suite of THC models.

The physics of the circulation in the Southern Ocean is reviewed by Rintoul et al.
(2001) and Olbers et al. (2004).



Part VIAppendix



Mathematical Basics A

The description of oceanic motion needs some basic mathematical
tools, such as vector and tensor analysis, differential equations, statis-
tical concepts, and also consideration of certain coordinate systems. In
the following, these issues are briefly touched. More extensive material
may be found in classical textbooks such as e. g. Methods of Mathemat-
ical Physics by Courant and Hilbert (1953) and Methods of Theoretical
Physics by Morse and Feshbach (1953). Vector and tensor formalisms
are also nicely introduced e. g. in Fundamentals of Atmospheric Dy-
namics and Thermodynamics by Riegel (1992) and Vectors, tensors,
and the basic equations of fluid mechanics by Aris (1989).

A.1 Representation of Hydrodynamic Fields

In this section, the mathematical representation of scalar, vector and tensor fields for
the description of oceanic flows is discussed.

A.1.1 Scalar and Vector Fields

In the fluid dynamical context, scalar fields are single-valued variables, such as pres-
sure, density, salinity, temperature, or internal energy, depending on time and posi-
tion,

 D  .x; y; z; t/ D  .x1; x2; x3; t/ D  .x; t/

The manifold of positions where  .x; y; z; t/ D const defines a surface in the three-
dimensional space. Depending on the field type, these surfaces may have special
names, e. g. an isobaric surface (for pressure), an isopycnic surface (for density), an
isothermal surface (for temperature), or an isentropic surface (for entropy). Surfaces
with different values cannot intersect.

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 627
DOI 10.1007/978-3-642-23450-7_17, © Springer-Verlag Berlin Heidelberg 2012
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Fig. A.1 Illustration of a stack of equi-surfaces with corresponding gradient (normal to the surface)
and tangential vector

Changing from a position x to x C �x with a small �x D .�x;�y;�z/, the
value of  changes by

� D  .x C�x; y C�y; z C�z/ �  .x; y; z/

D @ 

@x
�x C @ 

@y
�y C @ 

@z
�z CO.�x2/

In vector notation, this can be expressed with the gradient- or nabla-operator r as

� D
3X
iD1

@ 

@xi
�xi � �x � r (A.1)

with r D i
@

@x
C j

@

@y
C k

@

@z
D

3X
iD1

ei
@

@xi
� ei

@

@xi
(A.2)

Here i ; j ;k D e1; e2; e3 are mutually orthogonal unit vectors in the corresponding
directions. Note that the definition (A.2) is valid only for Cartesian coordinates (for
other coordinates see Appendix A.4). We will use the sum convention according to
which summation is implied if an index occurs twice within one term. In correct
forms of this rule, an index cannot occur more than twice.

If �x remains in the surface  D const, it follows that � D r � �x D 0.
Therefore, the gradient stands normal to the equi-scalar surface. The gradient r 
always points into the direction of increasing values of  . With two scalars  and
�, we can consider the direction of both gradients r and r�. They are parallel if
r � r� D 0. If they are parallel everywhere, their equi-scalar surfaces are also
parallel, i. e. on a surface  D const the scalar � is also constant. It then follows that
there must be a functional relation � D F. / or more generally F. ; �/ D 0, and
the fields  and � are then called homotropic (barotropic, if one of them is referring
to pressure). In general, however, the gradients will not be parallel, i. e. r � r� ¤
0. Such fields are called homoclinic (resp. baroclinic; see Figure A.1). Thus the equi-
scalar surfaces of a baroclinic field are not parallel to pressure surfaces.

Vectors are marked by magnitude and direction, such as e. g. position vector, ve-
locity, force, etc. With the unit vectors i ; j ;k or e1; e2; e3 in the three coordinate
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directions, every vector field a.x; t/ can be represented by its components referred
to the particular coordinate system,

a.x; t/ D a.x; y; z; t/i C b.x; y; z; t/j C c.x; y; z; t/k D ai .x; t/ei (A.3)

As i ; j ;k are orthogonal we obviously have a D i �a etc. Here, the ei ; i D 1; : : : ; 3

constitute an orthogonal system as well.

A.1.2 Divergence and Gauss’ Integral Theorem

Consider a volume V which is bounded by a closed surfaceA. A small (infinitesimal)
element of the surface is represented by the area dA of the surface element and the
unit vector nwhich is outward normal to the surface. It is convenient to combine area
and direction of the surface element into a vector dA D ndA. The flux of a vector u
across the surface element is u � dA D u � ndA D undA. If u is the current velocity,
then this flux is the volume transport (in m3 s�1) that crosses the surface element per
unit time. The total flux out of the closed volume is given by the integral over the
surface

H
A
u�dA and describes the excess of the fluid outpouring from the volume per

time. In the limiting case of a very small volume V , the divergence (yield, volumetric
rate) of u is defined as the scalar

divu D lim
V!0

1

V

I

A

u � dA (A.4)

The dimension is s�1 if u is the velocity. Choosing the volume V as a small box
parallel to the coordinate axes, the Cartesian form

divu D @u

@x
C @v

@y
C @w

@z
D r � u (A.5)

results from (A.4). It is formally the scalar product of nabla-operator and velocity
vector. For a finite volume V , the Gaussian integral theorem1 results from (A.4),

Z

V

r � udV D
I

A

u � dA (A.6)

A proof is obtained by cutting V into infinitesimal (e. g. rectangular) boxes: inner
surface integrals cancel because of different signs of the surface normal. Of course,
the relations (A.4)–(A.6) are valid for any vector field.

A.1.3 Rotation and Stokes’ Integral Theorem

Apart from the surface integral, also the line integral of a vector field along a curve is
important. If ds is the line element (tangential to the curve), we obtain u � ds D utds

1 The theorem was first discovered by Lagrange in 1762, then later independently rediscovered by
Gauss in 1813, by Green in 1825, and by Ostrogradsky in 1831 (Darrigol, 2009).
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Fig. A.2 Illustration of the integration path in (A.7) for a shear current u D .u.y/; 0; 0/

(ut is the tangential component of the vector). Look at a closed curveC , surrounding
a surface A (not necessarily an even curve and surface). The line integral

� D
I

C

u � ds D
I

C

utds

is called circulation around the surface enclosed by C . The circulation depends on
the vector field u and the surface’s bounding curve.

For a (infinitesimally) small surface element �A with the rim given by the
curve C , the vector n D �A=j�Aj defines the normal unit vector. The component
of the rotation (curl) of u in the direction of n is defined by

n � curlu D lim
�A!0

1

j�Aj
I

C

u � ds (A.7)

For a shear current u D .u.y/; 0; 0/ (see Figure A.2), we obtain for the circulation

� D .u.y1/ � u.y2//.x2 � x1/ D �u.y2/� u.y1/

y2 � y1
.x2 � x1/.y2 � y1/

and the component of curlu vertical to considered plane is given by .curlu/3 D
�@u=@y. In general, choosing a rectangle parallel to the coordinate surfaces as a sur-
face element, we obtain the Cartesian form

curlu D i

�
@w

@y
� @v

@z

�
C j

�
@u

@z
� @w

@x

�
C k

�
@v

@x
� @u

@y

�

which is formally the vector product of nabla-operator and vector u,

curlu D r � u (A.8)

When (A.7) is integrated over a finite surface A, Stokes’ integral theorem2

Z

A

r � u � dA D
I

C

u � ds (A.9)

results. This is valid for any vector field, not only for velocity fields. A proof is
obtained by decomposingA into infinitesimal surface elements and noting that every
inside curve is passed through two times with a different sign.

2 The theorem was first discovered by William Thomson (Lord Kelvin) who communicated it to
Stokes in July 1850. Stokes set the theorem as a question on the 1854 Smith’s Prize exam, which
led to the theorem bearing his name (Darrigol, 2009).
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A.1.4 Velocity Potential and Stream Function

The description of certain flows can be simplified by the introduction of a velocity
potential and a stream function. If the flow is irrotational, i. e. r �u D 0, the vector u
can be expressed by a velocity potential � according to

u D r�
Instead of three quantities .u; v; w/ we are dealing then only with one quantity, the
velocity potential�. The proof of existence of a potential is via with Stokes’ theorem:
because I

C

u � dx D
Z
.r � u/ � ndA D 0

the path integral
R P
0
u � dx is thus independent of the path and the potential � is to

be calculated from

�.xP / D �.x0/C
PZ

0

u � dx

If the current is in addition divergence-free, i. e. r � u D 0, the potential � satisfies
the LAPLACE3 equation,

r2� D 0

The representation of flows which are two-dimensional and divergence-free can be
simplified by a stream function. If

u D .u; v; 0/ and
@u

@x
C @v

@y
D 0

the vector u; v can be expressed by a stream function  .x; y; t/ according to

u D �@ 
@y

; v D @ 

@x
or u D k � r ; k D .0; 0; 1/

u is thus parallel to the isolines of  , which represent streamlines Note that this
is only valid for divergence-free currents. u is the larger, the closer the isolines lie.
Integration results in

 .xP /�  .x0/ D
PZ

0

r � dx D �
PZ

0

.k � r / � dx D
Z
u � dn

i. e.  .xP /� .x0/ describes the volume transport (in m2 s�1) between x0 and xP .

3 PIERRE-SIMON, MARQUIS DE LAPLACE, * 1749 in Beaumont-en-Auge, Normandy, � 1827 in
Paris, mathematician and physicist.
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A.1.5 Integral Theorems in TwoDimensions

For a two-dimensional vector field u D .u; v; 0/ the Gaussian theorem remains valid
if the volume V is replaced by a surface A and the surface A is replaced by a closed
curve C with the line element dn D nds where n is normal to the curve C . Then
Gauss’ theorem becomes Z

A

r � udA D
I

C

u � dn (A.10)

Defining the rotated vectors ( =2 counterclockwise, see the box on p. 444)

u: D .�v; u; 0/ ; r: D
�

� @

@y
;
@

@x
; 0

�
(A.11)

we obtain

r � u D @u

@x
C @v

@y
and r � u D

�
0; 0;

@v

@x
� @u

@y

�
D .0; 0;�r � u:/ (A.12)

and the above Gaussian theorem applied for the vector u: becomes

Z

A

r � u:dA D
I

C

u: � dn (A.13)

or

�
Z

A

r � u � dA D �
I

C

u � dn: D �
I

C

u � ds (A.14)

i. e. in two dimensions the integral theorems by Gauss and Stokes are identical.

A.1.6 Tensor Fields

Apart from the scalar and the vector products, a further possibility to combine two
vectors a and b by multiplication is the dyadic (or tensorial) product which is given
by the 3 � 3 ordered pairs aibj in the form

ab D
0
@a1b1 a1b2 a1b3a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

1
A (A.15)

written without period (nonuniform in the literature). With (A.3), the statements a D
aiei and b D biei can be used to obtain the representation

ab D eiaibjej (A.16)

for the dyadic product. More generally, quantities consisting of 3 � 3 elements Aij,
i; j D 1; 2; 3 are called tensors of second order4. We write them in capitals, e.g.

4 Strictly speaking, not any collection of 9 elements is a tensor. This property is linked to the
behavior when a transformation to other coordinates is considered. A simple rule is the ‘quotient
rule’: if a D .ai / is a vector and the result of Aij aj is also a vector, then A D .Aij/ is a tensor.
For more details we refer to text books as e. g. Aris (1989).
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A D .Aij/. Analogously to (A.16), every tensor can be represented with the aid of
the three unit vectors ei as

A D eiAijej

It follows that scalar multiplication of two tensors is given as

C D A � B D eiAijej � emBmnen D eiAijBjnen ) Cij D AikBkj

as in case of matrices. The operation is usually not commutative. Multiplication with
a vector is accordingly given as a D A � b or ai D Aijbj . Finally, another product
combination, the so-called double-scalar product, occurs. It is the total contraction
of two tensors,

A W B D tr.A � B/ D AijBji

where tr.C/ D Cii terms the trace of a square tensor, i. e. the sum of its diagonal
elements.

Every tensor A has a transposed tensor A� defined byA�ij D Aji. A tensor is called
symmetric if Aij D Aji and antisymmetric if Aij D �Aji. For symmetric tensors,
A � b D b � A is valid, for antisymmetric tensors A � b D �b � A. Every tensor can be
depicted as the sum of a symmetric tensor As and an antisymmetric tensor Aa:

A D As C Aa with As D 1

2
.A C A�/ ; Aa D 1

2
.A � A�/ (A.17)

Symmetric tensors

are determined by 6 values (3 diagonal and 3 nondiagonal elements). The equation

x � A � x D Aijxixj � 1

2
.Aij C Aji/xixj D const

constitutes a quadratic form and defines a surface in a three-dimensional space,
the so-called tensor ellipsoid (if, as a rule, the form is positive). Here, only the
symmetric part of A is relevant. The tensor ellipsoid can be expressed in the form

1x

02
1 C 
2x

02
2 C 
3x

02
3 D const by an orthogonal transformation (principal-axis

transformation), where x0
1; : : : ; x

0
3 are the coordinates into the three principal-axis

directions.

Antisymmetric tensors

are determined by 3 nondiagonal elements (the diagonal elements vanish). The prod-
uct of an antisymmetric tensor and a vector corresponds to the product of two vectors.
Defining the vector

� D
0
@�A23
A13

�A12

1
A corresponding to the matrix A D

0
@ 0 A12 A13

�A12 0 A23
�A13 �A23 0

1
A

we obtain A � b � � � b. Note that � is strictly a pseudovector since it has different
transformation properties than a vector (e.g., under reflection it changes its sign).
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A.1.7 Gradient Formation in a Vector Field

The question how much the scalar  changes when slightly altering the position by
�x led to the gradient formulation. The analogous question for the spatial change in
a vector field u, i. e.

�u D u.x C�x; t/ � u.x; t/ or in tensor notation

�ui D ui .x C�x; t/ � ui .x; t/

leads to the concept of a vector gradient. Every component of the vector changes as
in the scalar in equation (A.1), i. e. except for terms O.�x2/ we have

�ui D �xj
@ui

@xj
(A.18)

The quantity Aij D @ui=@xj is an important example for a tensor of second order
and can be formally written as the dyadic product of the vectors r and u:

A D ei
@ui

@xj
ej D

�
ej

@

@xj

�
.eiui / D .ru/�

which is the vector gradient of u. This results in

�u D A ��x D �x � ru (A.19)

The concept of a vector gradient is fundamental in the balance of momentum.

A.1.8 SomeUseful Differential and Integral Formulas

The following identities of the gradient and divergence operators are often used in
the book. We present them without proof:

r � .r�/ D 0

r � .r � a/ D 0

r � D  r� C �r 
r �  a D  r � a C a � r 

r �  a D  r � a C r � a
r � .a � b/ D b � r � a � a � r � b

r � .a � b/ D .b � r/a � .a � r /bC ar � b� br � a
r .a � b/ D a � .r � b/C b � .r � a/C .a � r /bC .b � r/a
1

2
ra � a D a � .r � a/C .a � r/a

r � .r � a/ D r .r � a/ � r2a
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A.2 Differential Equations

The physical laws describing oceanic motions are generally formulated in terms of
differential equations (henceforth DEQs). For general systems with temporal and
spatial dependence, these equations are partial differential equations because they
contain derivatives with respect to time and the spatial coordinates. In many cases,
however, important aspects of the treatment can be reduced to one-dimensional dif-
ferential equations, with either time or a spatial coordinate as independent variable.

Throughout this book, we have implicitly assumed that the reader is familiar with
the problems arising when one is concerned with differential equations. However,
two specific aspects which may be less familiar are briefly discussed in the follow-
ing, namely i) issues related to the stability of stationary solutions, and ii) problems
leading to boundary layers. In both cases, it suffices to consider ordinary DEQs to
highlight the principal issues. For more extensive information on the mathematics
on differential equations, the reader is directed to books such as Nonlinear differ-
ential equations and dynamical systems by Verhulst (1996) (a real must!), and the
Handbook of differential equations by Zwillinger (1998). Chapter 9 of Asymptotic
methods and perturbation theory by Bender and Orszag (1978) provides an extended
discussion of boundary-layer theory. More along physical problems is From calcu-
lus to chaos by Acheson (1997). For studying the theory of dynamical systems we
recommend Drazin (1992) and Perko (2001).

A.2.1 Dynamical Systems: Fix Soints, Stability, and Bifurcations

Ordinary DEQs describing the evolution of a system in time can be written as as a set
of first-order equations,

dxi
dt

D Pxi D fi .x1; : : : ; xN / ; n D 1; : : : ; N or in vector notation Px D f .x/

(A.20)

with (real) vector functions x.t/ D .x1.t/; x2.t/; : : : ; xN .t// of time t . The DEQ
problem (A.20) is often referred to as a dynamical system. We will assume that the
problem is autonomous, i. e. that f D f .x/ is not explicitly dependent on time
which is the case for many relevant systems.

At a fixed time t the vector x.t/ may be viewed as a point in the N -dimensional
space (the phase space), and in time x.t/ traces out a trajectory in phase space.
To obtain a unique solution to (A.20), initial conditions x.t D 0/ D x0 must be
specified. The vector x0 is a constant, a given point in phase space where the trajec-
tory should start. Of course, the trajectory starting at a later time t D t0 > 0 at the
same point x0 is an identical curve in phase space: it is only followed at a lagged
time which means that autonomous DEQs are invariant under the transformation
t ! t C t0. Instead of time we may use one of the components of x as new indepen-
dent variable. Assuming that f1.x/ ¤ 0, then the N � 1 DEQs

dxk
dx1

D fk.x/

f1.x/
k D 2; : : : ; N

determine the orbit in phase space.
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It is important to know that a DEQ problem of the kind (A.20) has a unique so-
lution for quite ‘mild’ conditions imposed on the function f .x/: only one trajectory
starts at the point x0. This implies that trajectories with different initial points cannot
cross. They can, however, run into the same point x0 and stop there (or come out of
it): this point is an equilibrium point or fix point, f .x0/ D 0.

In our applications, f will be differentiable so that the Jacobian (an N � N -
matrix)

J D .Jij/ D
�
@fi

@xj

�
(A.21)

exists at each point x in the domain of interest of solution of (A.20). In the most
interesting cases, f will depend on a set of parameters p (which can be a vector
of some dimension M ), so f D f .x;p/ and the solution will also depend on p,
i. e. x D x.t;p/ and also the Jacobian J D J .x;p/.

Plotting the vector field Px D f .x/ as function of the phase space coordinates
(which is tangential to the orbits), we obtain the flow in phase space: since trajecto-
ries do not intersect, a 2d or 3d flow looks like a stationary flow of a fluid. Important
to note is the property that the phase space flow is generally compressible: a volume
consisting of points which move with the velocity f .x/ is generally not preserved,
it might shrink or expand depending on the convergence or divergence of f .x/. This
property is measured (as in case of physical flows) by the divergence

div.f / D
X
k

@fk

@xk
D tr.J /

As an example, consider the harmonic oscillator, governed by Rx C !2x C k Px D 0,
where tr.J / D �k is easily deduced (rewrite the problem as a set of first order
DEQs: Px D y, Py D �!2x � ky). Since k > 0 describes the friction of the system,
the phase flow of the oscillator is converging everywhere.

Stability of Fix Points

A point x0 satisfying f .x0/ D 0 is an equilibrium solution, or fix point, of (A.20)
which is independent of time, i. e. it will not move in phase space. Note that there
are DEQs with no stationary solutions (e. g. f .x/ D a ¤ 0). In the vicinity of a fix
point, the behavior of the nonlinear system (A.20) can be derived from the linearized
equation

P� D f .x0 C �/� f .x0/ � J .x0/ � � (A.22)

where � is the deviation from x0, and the Jacobian matrix J is defined as in (A.21).
Obviously, linear (or infinitesimal) stability of the system (A.22) at x0 is governed
by the set of eigenvalues (see box on p. 9) of J .x0/. Note that J is not necessarily
symmetric and may thus have complex eigenvalues. Clearly, if there is any eigen-
value with a positive real part, the system is unstable (an initial perturbation with
a component in the direction of the corresponding eigenvector will grow exponen-
tially). On the other hand, if Re.
i / < 0 8i , any trajectory x.t/ D x0 C �.t/ with
a small deviation from the fix point will asymptotically approach x0, and in this case
x0 is a stable fix point.



A.2 Differential Equations 637

More generally, we may ask whether a trajectory xr .t/, starting at xr.t0/ at some
time t0, is stable, meaning whether a neighboring trajectory x.t/ starting at t0 in
a small distance from xr.t0/ does not deviate too much from xr .t/. In mathematical
terms, the solution xr .t/ is uniformly stable if there exists a ı.�/ > 0 for any � > 0

such that any other solution x.t/ with jx.t0/ � xr .t0/j < ı.�/ satisfies jx.t/ �
xr .t/j < � for all t 
 t0. The solutions must thus stay close to each other for all
times. We have asymptotic stability of xr .t/ if in addition to uniform stability

lim
t!1 jx.t/ � xr.t/j D 0

for any x.t/. A further concept is that of orbital stability. Here we choose a small
pipe of radius � around the reference solution xr.t/ and must find an entire neigh-
borhood of radius ı at the initial time t0 such that all trajectories starting from there
remain in the pipe for all times but must not be close to each other at the same time.

Bifurcations in One-Dimensional Systems

One-dimensional autonomous DEQs Px D f .x/ are quite restrictive because the
trajectory x.t/ can only run along the real axis and pass a point only once. One-
dimensional systems can only have fix points as attractors, there are no periodic
solutions. Between fix points the solution runs monotonic. The one-dimensional au-
tonomous problem is solved by simple quadrature,

R
dx=f .x/ D R

dt , if the x-
integral can be expressed by elementary functions. The only equilibrium points x0
are attractive or repellant points where either df=dx is negative or positive. Hence
linear stability is not a complicated issue.

However, if f D f .x; p/ has a control parameter p, the equilibrium points are
functions of the parameter, x0 D x0.p/, and it is of interest to follow the number of
fix points and possible changes of stability properties as function of p. The fix point
is determined from f .x0; p/ D 0. Note that x0 D x0.p/ is a single-valued analytical
function of p as long as the Jacobian J .x; p/ D @f=@x ¤ 0 at x0.p/. Bifurcations
occur where J .x0; p/ becomes zero. Hence the bifurcation points x0.p0/; p0 follow
from

f .x0; p/ D 0 ;
@f .x; p/

@x

ˇ̌
ˇ
xDx0

D 0

The linear stability is evaluated by @f=@x and thus changes sign at the bifurcation
point. We illustrate this for the saddle node bifurcation (where f .x; p/ D p C ıx2;
see below): the first condition yields x0.p/ D ˙p

p for ı D �1, the second yields
�2x0.p/ D 2pp D 0, hence p D p0 D 0.

The multitude of possible bifurcations of a one-dimensional system is discussed
by generic (= ‘usually occurring’) forms for f .x; p/. In the following examples,
ı D ˙1 is fixed and not treated as a parameter. The bifurcation diagrams, show-
ing the steady states x0.p/ as function of the control parameter p, are displayed in
Figure A.3.

1. Pitchfork: f .x; p/ D px C ıx3.
For ı D �1 and p < 0 there is only one solution, x0 D 0, which branches at
p D 0 into three solutions x0 D 0 and x0 D ˙p

p for p > 0. Correspondingly,
for ı D 1 three solutions exist if p < 0, and they collapse to one which exists for



638 A Mathematical Basics

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 p

 x

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 p

 x

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 p

 x

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 p

 x

Fig. A.3 Diagrams for the pitchfork (both forms), saddle, and transcritical bifurcations (from left
to right). Black indicates stable, red unstable fix point

p > 0. The case ı D �1 is called supercritical pitchfork, the case ı D 1 is called
subcritical pitchfork.

2. Saddle node or fold: f .x; p/ D p C ıx2.
For ı D �1 solutions only exist if p > 0. These are x0.p/ D ˙p

p. Likewise,
x0.p/ D ˙p�p exists for ı D 1 and p < 0. In these cases, a pair of two
solutions ‘branches’ out of nothing.

3. Transcritical: f .x; p/ D px C ıx2.
x0 D 0 is a solution for p and ı D ˙1, likewise x0 D �p=ı.
Of the above described three bifurcation types, the saddle node bifurcation is the

most basic and most common. The pitchfork and transcritical bifurcations will only
occur in a special setting. The reason is quite clear: they need a certain symmetry
because the zero solution Px D 0, x D 0 must be present for all parameter values.
Small perturbations of the model equation would destroy this property. It is easy to
see that addition of a constant – even of infinitesimal size – to f .x; p/ would lead to
a cancelation of the pitchfork and transcritical bifurcations, but not so for the saddle
node. The latter is not affected by addition of higher order terms xn, n > 2 either,
as occurring in a Taylor expansion of a more complex model equation. Such terms
would generate a deformation away from the bifurcation point and eventually result
in more bifurcations.

Remarkably, the pitchfork bifurcation occurs in two structurally different forms.
Depending on the sign of the cubic term, a unique stable solution gives way to
a triplet of solutions with two stable ones branching off and an intermediate repelling
equilibrium, or there is a stable solution which collides with two unstable ones and
leaves only an unstable one to continue for larger parameter values (see Figure A.3).

Two-dimensional systems

The motion of the phase point .x1; x2/ of a two-dimensional system in a two-
dimensional plane allows for more complicated attractors than one-dimensional sys-
tems. Apart from fix points, we can have periodic orbits which are closed solutions
with x1.t/ D x1.tCT /, x2.t/ D x2.tCT /with a period T > 0 and all times t . Since
two-dimensional systems are easily visualized (the phase space is a two-dimensional
plane), we give them a more extensive treatment. We write the DEQ with two depen-
dent variables x1 D x; x2 D y as

Px D P.x; y/ ; Py D Q.x; y/ (A.23)
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The equilibrium (or fix) points .x0; y0/ of (A.23) follow from P.x; y/ D
Q.x; y/ D 0, and without loss of generality we consider one at x0 D 0; y0 D 0.
Linearization about this fix point yields

P.x; y/ D ax C by C u.x; y/ ; Q.x; y/ D cx C dy C v.x; y/

where u and v are at least quadratic in x; y. The behavior in the vicinity of the fix
point is described by the four parameters a; b; c; d which form the Jacobian matrix

J D
�
a b

c d

�
(A.24)

Stability depends on the two eigenvalues of J which are given by


 D 
˙ D ˛ ˙
p
˛2 � ˇ

with ˛ D .a C d/=2 D tr.J /=2, ˇ D ad � bc D det.J /. We assume that J is not
singular, i. e. an inverse must exist which is the case if ˇ ¤ 0. The eigenvalues are
real for ˛2 
 ˇ and complex conjugate if ˛2 < ˇ.

The eigenvectors of J can be used to solve the linear initial value problem with
x.0/ D x0, y.0/ D y0. If 
C ¤ 
� (which is the case for ˛2 ¤ ˇ), the solution is

x.t/ D 1


C � 
�
˚
Œ.a � 
�/x0 C by0�e�

Ct � Œ.a � 
C/x0 C by0�e�
�t
�

y.t/ D 1


C � 
�
˚
Œcx0 C .d � 
�/y0�e�

Ct � Œcx0 C .d � 
C/y0�e�
�t
�

where the real part is to be taken. Both eigenvalues are equal if ˛2 D ˇ. The solution
may then be obtained considering the corresponding limit in the above expressions:
write 
˙ D ˛ ˙ � and use .1 � e�2�t /=.2�/ ! te�2�t ! t for � ! 0. Then

x.t/ D x0e˛t C
�
1

2
.a � d/x0 C by0

	
te˛t

y.t/ D y0e˛t C
�
cx0 � 1

2
.a � d/y0

	
te˛t

In any case, if we start initially at x0 D 0, y0 D 0, the solution stays at this fix point.
It is asymptotically stable if the eigenvalues have a negative real part. The imaginary
part is nonzero for ˇ > ˛2. Then 
˙ D ˛ ˙ i

p
ˇ � ˛2, and oscillatory behavior

occurs.
The fix points .x0; y0/ can be classified according to the eigenvalues of the corre-

sponding Jacobian matrix (A.24) evaluated at .x0; y0/. Excluding zero eigenvalues,
one distinguishes the following cases:

1. Improper Node: ˛2 > ˇ > 0, two different real eigenvalues. The prototype of
a node is given by

Px D sign.A/x ; Py D Ay

Eigenvalues are 
 D sign.A/, A. Stable if A < 0 (or ˛ < 0), and unstable if
A > 0 (or ˛ > 0). The stable case is visualized in Figure A.4 (upper left).

2. Proper Node: ˛2 D ˇ, two equal real eigenvalues. See previous case with A D
˙1. Unstable if A D 1 (or ˛ > 0), stable if A D �1 (or ˛ < 0, upper middle in
Figure A.4).
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Fig. A.4 Stability of two-dimensional dynamical systems: Improper node, proper node, center (up-
per row, from left). Spiral and two versions of saddle (lower row, from left). See text for explanation

3. Center: ˛ D 0, ˇ > 0, two conjugate imaginary eigenvalues 
˙ D ˙i
p
ˇ. The

prototype of a center is given by

Px D y ; Py D �x
with eigenvalues 
˙ D ˙i (upper right in Figure A.4).

4. Spiral (focus): ˛2 < ˇ, two conjugate eigenvalues. The prototype of a spiral is
given by (A < 0)

Px D Ax C y ; Py D �x C Ay

Eigenvalues are 
˙ D A˙i. In polar coordinates this becomes Pr D Ar , P� D �1.
Stable if A < 0 (or ˛ < 0), unstable if A < 0 (or ˛ < 0). The unstable case is
displayed in Figure A.4 (lower left).

5. Saddle: ˇ < 0, two real eigenvalues of different sign, therefore, always unstable.
The prototype of a saddle is given by

Px D x ; Py D �y
with eigenvalues 
˙ D ˙1 (lower middle in Figure A.4).

Note that each of the prototype cases has been chosen such that both eigenvec-
tors are orthogonal. Orthogonality requires that the Jacobian matrix (A.24) satisfies
J � � J D J � J �, or equivalently that either b D c, or b D �c and a D d . As
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an example, Figure A.4 (lower right) shows a saddle fix point with nonorthogonal
eigenvectors.

In a two-dimensional system, a specific bifurcation may occur which adds to the
suite of generic bifurcations introduced above. This is the Hopf bifurcation where
the character of the solution changes rather than the number of solutions. Suppose
that we have dependence of P.x; y/ and Q.x; y/ on a parameter p which carries
over to p-dependent eigenvalues, 
 D 
.p/ D ˛.p/C i!.p/. Changing p, one may
arrive at a value at which the classification of the above described fix points changes.
The most important case is shift from a spiral (stable or unstable) via a center to
a new spiral with interchanged stability. Clearly, for this to occur, a pair of conjugate
eigenvalues will have to cross the imaginary axis. For instance, we have a stable
spiral fix point x0.p/ for p < p�, having thus ˛.p/ < 0. If the value of ˛ goes
through zero at p D p� but ! remains nonzero, we encounter a switch from a stable
fix point to an unstable one. For a linear system (like the examples in the above
classification), nothing more would happen. In the presence of nonlinearities a new
feature may arise. Consider thus

Px D px � !y C u.x; y/ ; Py D !x C py C v.x; y/

with eigenvalues 
 D p ˙ i! so that the bifurcation appears at p D 0. Converting
to polar coordinates, we obtain

Pr D pr C 1

r
ŒxuC yv� ; P� D ! C 1

r2
Œxv � yu�

If u and v have third-order powers in a polynomial expansion, the generic form for
a Hopf bifurcation is u 	 xr2, v 	 yr2. Then

Pr D pr C ır3 ; P� D !

so that a pitchfork bifurcation occurs in the radial component at p D 0: for ı < 0

and p < 0, only one stable fix point is present (it is the stable fix point of the
original problem), but at p > 0 there are three fix points in the radial equation
(with r D p�p=ı). Since � is spinning with frequency ! ¤ 0, the solution in
r; � and, of course, in the original x; y is not stationary: it is a periodic solution of
the original equation. The transition from a steady solution to a periodic one occurs
when p passes from negative values through zero to positive. The solution in the x; y
plane can be described as follows: for p � 0, all solutions spiral into the fix point
x D 0; y D 0 as t ! 1; for p > 0, the origin becomes an unstable focus, solutions
starting there spiral outward to a periodic solution with radius r D p�p=ı about the
origin. As this orbit is also approached when starting from outside, we have a limit
cycle.

The above scenario (for ı < 0) corresponds to a supercritical Hopf bifurcation
with a stable limit cycle. For ı > 0, we have a subcritical Hopf bifurcation branching
off at p D 0 but occurring then at p < 0. This results in an unstable limit cycle.

Higher-Dimensional Systems

So far we have discussed the bifurcation of one-dimensional and two-dimensional
systems which arise when a single parameter is changed. They are called bifur-
cations of codimension 1. Of course, dynamical systems may possess more than
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one control parameter, and the theory may thus be extended to study bifurcation
of codimension 2 or higher. Another extension concerns the dimension of the sys-
tem. A forced oscillator has already three independent variables, and many important
systems in Earth Science cannot be described adequately by one or two degrees of
freedom. New features, as e. g. chaotic behavior, are known to occur only with three
or more system variables. It is easy to understand that the one-dimensional and two-
dimensional bifurcations occur as well in higher order systems, even more impor-
tant: they are the generic cases of bifurcations in systems of all dimensions, so what
has been learned from one-dimensional and two-dimensional systems can readily be
transferred to higher order systems.

The basic concept is the center manifold of a dynamical system. Suppose we
are studying an n-dimensional system Px D f .x; p/ with a control parameter p.
The fix points x0 D x0.p/ and the Jacobian J .x0/ D J .p/ are then functions
of p, and consequently the eigenvalues and eigenvectors are p-dependent as well,

j D 
j .p/, aj D aj .p/. Remember that complex eigenvalues come in pairs, 
j D

j .p/ D j̨ .p/ C i!j .p/ and 
jC1 D 
jC1.p/ D j̨ .p/ � i!j .p/. Suppose that
for a particular value p all eigenvalues are in the negative half-plane so that the
system is stable. As p is changed, the simplest way of losing stability occurs when
one of the real eigenvalues, say 
k.p/, moves or a pair of complex ones proceed
into the positive half-plane. The value of p D p0 where 
k.p/ D 0 marks then
either a fold or a Hopf bifurcation. As p is changed, the fix point x0.p/ moves
in the n-dimensional phase space. Clearly, the bifurcation at p D p0 is found in
the components of x0 that lie along the direction of the eigenvectors of the critical
eigenvalues.

Assume that at a certain parameter value there are k eigenvalues that have a neg-
ative real part, ` have zero real part and m have a positive real part. In the k and
m dimensional subspaces, spanned by the corresponding eigenvectors, the phase
flow is stable and unstable, respectively, and bifurcations occur for the system vari-
ables in the `-dimensional subspace. The reduction of the system equations to the
`-dimensional subsystem is the aim of the center manifold theory. For most practi-
cal purposes where the bifurcation of a system is analyzed by numerical techniques,
it should be clear that the behavior must be monitored using variables which have
a nonzero projection in the `-dimensional subspace.

A.2.2 Boundary Value Problems

Boundary value problems are usually occurring in oceanographic problems for func-
tions of a spatial coordinate. We denote this coordinate by z and are then concerned
with a (vector) function '.z/. Frequently, the differential problems are advective-
diffusive DEQs, possibly with a source-sink term arising from chemical reactions or
phase transitions. A typical boundary value problem is then

d

dz
.u'/ D d

dz

�
	

d'

dz

�
C S (A.25)

where 	.z/ is a diffusivity (usually independent of '), u.z/ is a velocity which ad-
vects the property ', and S.z/ is a source term forcing the system in the interior of
the domain (S may depend on '). If the boundary is solid and u vanishes there, the
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system is driven by the source term S and the diffusive flux F D �	d'=dz through
the boundaries. The natural boundary condition for (A.25) thus prescribes the flux at
the bounding points z1; z2, i. e. F.zi / D Qi , i D 1; 2. Obviously, the fluxesQi and
the source must be consistent,

Q2 �Q1 C
z2Z

z1

Sdz D 0

to allow for a solution of (A.25). Otherwise, the boundary conditions are wrongly
formulated – or the assumption of stationarity is invalid: a rate of change term @'=@t

must be included in (A.25). It becomes clear that boundary conditions cannot be put
arbitrarily.

There are problems of nonadvective character, e. g. the equilibration of wave prop-
agation against friction or diffusion, in which case a form

A' CB
@'

@z
D d

dz

�
	

d'

dz

�
C S (A.26)

might arise where A and B are linear (matrix) operators.
If the velocity u in problem (A.25) is one of the unknown variables, i. e. part of

the vector ', the problem is inherently nonlinear. General properties and existence
theorems for nonlinear problems are difficult to obtain. Solutions of linear boundary
value problems generally exist if the conditions in the interior of the domain and at
the boundaries are consistent, as e. g. arising from considerations of physical sys-
tems. A nonlinear differential problem describing a physical system can be expected
to have a unique solution.

Boundary layers appear in solutions of DEQs if the highest derivative is multiplied
with a small parameter (denoted by � in this section). Usually, problems with spatial
dependence are considered so that y.x/ is governed by

�y.n/ D F.x; y; y0; : : : ; y.n�1/; �/ (A.27)

on an interval 0 � x � 1 with n boundary conditions on y and its derivatives. Note
that F may depend on � as well. In the solution y.xj� D 0/ of (A.27) with � D 0,
only n�1 of these conditions can be satisfied, and thus y.xj� D 0/will deviate from
y.xj�/ approaching one of the boundaries where the remaining condition should ap-
ply. A narrow region – the boundary layer – appears where the highest derivative
becomes very large in order to help �y.n/ to participate in the balance of the DEQ
and mediate between the behavior of y.xj� D 0/ and the true solution with correct
boundary conditions. Because the highest derivatives in fluid mechanical equations
arise usually from viscous or diffusive processes, the boundary layers in fluid prob-
lems are usually due to such physics.

As a simple example to elucidate this behavior, consider the first order problem
for y.x/

�
dy

dx
C y D f .x/ (A.28)

with constant � � 1, arbitrary f .x/ and the boundary condition y.0/ D y0. For
small �, it is tempting to abandon the first term in (A.28) and take

y.x/ � f .x/ (A.29)
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Fig. A.5 Solutions to boundary layer problem (A.28), for f.x/ D cosx: First approxima-
tion (A.29) (red); boundary layer approximation ya.x/ from (A.31) (blue), and exact solu-
tion (A.30) (black). a � D 0:1, b � D 0:03

as a first approximation. However, with this approximation the boundary condition
y.0/ D y0 cannot be satisfied, and only if f .0/ � y0 is accidentally zero or small,
we obtain a meaningful solution. Indeed, the form of the exact solution

y.x/ D
2
4y0 C 1

�

xZ

0

e�=�f .�/d�

3
5 e�x=� (A.30)

makes it evident that an expansion in terms of � is impossible. The difference be-
tween (A.29) and the exact solution (A.30) can be estimated by partial integration
of (A.30),

y.x/ D y0e�x=� C f .x/ � f .0/e�x=� �
xZ

0

e.��x/=�f 0.�/d�

and further
xZ

0

e.��x/=�f 0.�/d� D �e.��x/=�f 0.�/
ˇ̌
ˇx
0

� �
xZ

0

e.��x/=�f 00.�/d� D O.�/

Hence

y.x/ D f .x/C Œy0 � f .0/�e�x=� CO.�/ D ya.x/CO.�/ (A.31)

Evidently, y.x/ � f .x/ C O.�/ for x � �, but in the boundary layer 0 � x � �

the approximation (A.29) is inappropriate. The boundary layer approximation ya.x/
exactly satisfies ya.0/ D y0 and is good to order � everywhere. Notice, however,
that with increasing distance from the boundary layer, ya.x/ does not necessarily
converge toward the exact solution (see e. g. Figure A.5).

With the exponentially decaying solution of the homogeneous part �y0 C y D
0 of (A.28) the boundary layer behavior only appears on the left-hand side of the
interval. Putting the boundary condition on the right boundary, a mismatch between
f .1/ and y.1/ D y1 grows exponentially e.1�x/=� to very large values in the interior
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of the interval, overwhelming f .x/ for sufficiently small �. This demonstrates that
a DEQ with a small coefficient at the highest derivative does not naturally imply
a boundary layer behavior.

There is a collection of methods to solve boundary layer problems in case that ex-
act solutions are not available. A perturbation analysis determines the slowly varying
solution in the outer region – outside the boundary layer – by an expansion of the
DEQ in terms of �, and yields a leading-order approximation for small � within the
layer – the inner region. Here the derivatives of y.x/ are large, but the coefficients
of the DEQ vary little and can be approximated by constants. Various complica-
tions, however, may occur (but will not be treated here): the outer problem may be
nonlinear and have a number of different solutions; boundary layers may occur at
both boundaries, but also layers with strong variations may be embedded within the
outer region, i. e. not attached to the physical boundaries of the system (so-called
internal boundary layers); and finally, the width of the boundary layer may be differ-
ent from �, and layers of different decreasing widths may be embedded within each
other.

We discuss two similar methods to find an approximate solution to boundary layer
problems.

The correction method

extends the outer solution yo into the boundary layer and searches for an additive
correction yb so that the approximate solution is

y.x/ D yo.x/C yb.x/ (A.32)

everywhere. The correction must vanish in the outer region. The outer solution is
obtained from an expansion in � and usually only the lowest order is necessary.
Thus, for the above example,

yo.x/ D f .x/ (A.33)

�
dyb

dx
C yb D 0 (A.34)

with the boundary condition yb.0/ D y0 � yo.0/ D y0 � f .0/. It follows that
yb.x/ D Œy0 � f .0/�e�x=�, and hence the solution is

y.x/ D yo.x/C yb.x/ � f .x/C Œy0 � f .0/�e�x=�

which is identical to the approximation ya.x/ derived heuristically in (A.31). The
approximation is acceptable if �dyo=dx D �f 0 � yo D f is small. The correction
decays exponentially on the scale of the boundary layer, and thus no additional action
must be taken.

The matching method

considers the outer solution yo D f .x/ only in the outer region. In the boundary
layer, the complete solution yi.x/ – the inner solution – is to be determined and
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matched to the outer solution by the requirement (matching condition)

yi.x ! 1/ D yo.x ! 0/

To determine yi, the complete DEQ must be used in the interior region – the bound-
ary layer – but because of the thinness of the layer and the smoothness of all coeffi-
cients of the DEQ these may be replaced by constants. For our problem, we would
thus consider

�
dyi

dx
C yi D f .0/ (A.35)

with boundary condition yi.0/ D y0. The solution is

yi.x/ D f .0/C Œy0 � f .0/�e�x=�

and the matching in this case is trivial because yi.x ! 1/ D f .0/. More compli-
cated matching is considered below in another example.

The above case has its merits in the simplicity of a linear first-order DEQ with
constant coefficients. Let us consider a more complicated case, a second-order DEQ
with arbitrary coefficients,

�y00 C a.x/y0 C b.x/y D f .x/ (A.36)

in 0 � x � 1 with boundary conditions y.0/ D A; y.1/ D B and small �. For the
beginning, let f � 0 and a.x/ ¤ 0 and positive in the interval. The outer solution is
determined by

a.x/yo0 C b.x/yo D 0

Because of the exponential behavior of the first two terms in (A.36), we expect
a boundary layer at x D 0 for positive a.x/, and hence we satisfy the right boundary
condition y.1/ D B with the outer solution,

yo.x/ D B exp

1Z

x

b.�/

a.�/
d�

It becomes evident why we have assumed a.x/ ¤ 0: otherwise the outer solution
would become singular and would not be bounded.

Unless the outer solution incidentally meets the left boundary condition, yo.0/ D
A, a boundary layer develops at the left side x D 0 of the interval. Its thickness is
O.�/, and we determine the inner solution from (A.36) with constants ˛ D a.0/,
ˇ D b.0/ in place of the varying coefficients. As y0 is getting large in the boundary
layer, we expect ˛y0 � ˇy and hence consider

�yi00 C ˛yi0 D 0

for the inner problem. The general solution is

yi.x/ D C1 C C2e�˛x=�
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Table A.1 Types of solution for the DEQ (A.36)

Conditions on a.x/ Type of Solution

a.x/¤ 0
a.x/ > 0 boundary layer at x D 0
a.x/ < 0 boundary layer at x D 1

a.x/D 0
b.x/ < 0 boundary layers at x D 0 and x D 1
b.x/ > 0 rapid oscillating solution
b.x/ changes sign turning point behavior

a0 ¤ b, a.x0/ D 0 only at one interior point x0
a0.x0/ > 0 no boundary layers

interior layer at x0
a0.x0/ < 0 boundary layers at x D 0 and x D 1

no interior layer at x0

and the boundary condition at x D 0 requires C1 D A � C2. We thus have one
coefficient free to establish the matching yi.x ! 1/ D yo.x ! 0/ at the outer rim
of the boundary layer which yields

A� C2 D B exp

1Z

0

b.�/

a.�/
d�

which determines C2.
Note that the boundary layer is at x D 0 because a.x/ was assumed positive,

and this condition also abandons any possibility for such a layer at x D 1. Without
expanding further details, we summarize the types of boundary layers and solutions
of (A.36) in Table A.1.

A.3 Description of Random Fields

As we have seen in Part IV, turbulent flows are described in terms of random, or
stochastic, fields which are briefly introduced in the following. More information
can be found in Statistical analysis in climate research by Storch and Zwiers (2002)
and also in Chapter 3 of Turbulent flows by Pope (2000).

A.3.1 RandomVariables

A random variable �, such as e. g. the throw of a dice, cannot be assigned a numer-
ical value. Only after an experiment is made, a particular realization of � is known.
However, it is well possible to make statements about the likelihood, or probability,
for certain realizations of �. The probability is normalized as the relative frequency
of the outcome of the experiment, and hence ranges from 0 (impossible event) to 1
(certain event).

Any random variable � is completely characterized by its cumulative probability
function F.x/ which is defined as

F.x/ D P.� < x/
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and specifies the probabilityP that � is smaller as x. For the throw of a dice, one has
e. g. P.� < 1:5/ D F.1:5/ D 1=6. It is clear that F is a monotonically increasing
function, with F.�1/ D 0 and F.1/ D 1. For most practical applications, the
probability density function f .x/ defined as f .x/ D @F.x/=@x is more useful. The
probability density function (PDF) is proportional to the probability that � will take
a value in a small interval around x, i. e. that x < � < x C� since

P.� < x C�/� P.� < x/ D F.x C�/� F.x/ � F.x/C @F

@x

ˇ̌
ˇ̌
x

� � F.x/
D f .x/�

Note that
R1

�1 f .x/dx D 1.

Moments of Random Variables

The average � over many realizations �.j /; j D 1; : : : ; N of a random variable � is
referred to as its mean value, or expectation, and given as

� D lim
N!1

1

N

NX
jD1

�.j / D
1Z

�1
xf .x/dx

Likewise, the expectation for an arbitrary function g.�/ is given as

g.�/ D
1Z

�1
g.x/f .x/dx

Specifically, the expectation �n of the n-th power of � is called the moment of order n,
the first moment being the mean � . For moments of higher order, it is convenient to

consider central moments defined as .� � �/n. The second central moment is the
variance c2, with c being the standard deviation. Occasionally of importance are fur-
ther the third central moment (skewness when normalized by c3) which is a measure
for the asymmetry of the PDF around the mean, and the fourth central moment (flat-
ness when normalized by c4). A random vector variable � D .�1; �2; : : : ; �N / is asso-
ciated with the multivariate probability density function f .x/ D f .x1; x2; : : : ; xN /.
The expectation is

g.�1; �2; : : : ; �N /

D
1Z

�1

1Z

�1
: : :

1Z

�1
g.x1; x2; : : : ; xN /f .x1; x2; : : : ; xN /dx1dx2 : : : dxN

D
Z
g.x/f .x/dx

The second-order central moments constitute the covariance matrixC D .Cmn/ with
elements

Cmn D .�m � �m/.�n � �n/ ; m; n D 1; : : : ; N

The �n are independent if the PDF falls into products of the individual PDF’s, i. e. if

f .x1; x2; : : : ; xN / D f1.x1/f2.x2/ � � � � � fN .xN /
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Independence of the �n implies that the �1; �2; : : : ; �N are uncorrelated, i. e. that

.�i � � i /.�j � �j / D ıi;j .

Normal Distribution

The most important PDF is the normal or Gaussian distribution which for a scalar
random variable is defined as

f .x/ D 1

c
p
2 

e� 1
2
. x�a
c
/2

with mean a and variance c2. For a vector variable �1, �2, . . . , �N , the normal PDF
is given as

f .x/ D
�

det.W /

.2 /N

	 1
2

e� 1
2

P
i;j Wi;j .xi�ai /.xj�aj /

with mean N�i D ai and covariance matrix C D W �1. The normal distribution is
important because of the central limit theorem which states:

If the random variable 
 D PN
nD1 �n is given as the sum of many independent random

variables �n with arbitrary PDF and equal variance, then 
 is normally distributed in the
limitN ! 1.

In practice, the distribution of � is already well approximated by the normal distri-
bution for relatively small values of N (i. e. for N & 10).

A.3.2 Random Functions

A random function is a scalar or vector variable which depends on time and/or space,
such as e. g. the turbulent velocity u.x; t/. Similar to random variables, it is not
possible to assign a certain value for a fixed point in space and/or time to the random
function: there are only certain realizations and instead a probability density function
(PDF) which depends now on space and/or time. For simplicity of notation, in the
following only a random function of time �.t/ is explicitly considered.

Obviously, it is necessary to know the PDF f .xI t/ of �.t/which must depend
on time. Moreover, for different times tn; n D 1; : : : ; N the �.tn/ D �n can be
considered as a vector random variable; hence the combined PDF f .x1; x2; : : : ; xN ;
t1; t2; : : : ; tN / is necessary to describe the �n, for any value of N .

The random function �.t/ is stationary if the PDF is invariant against translation
of time, i. e. if

f .x1; x2; : : : ; xN I t1; t2; : : : ; tN / D f .x1; x2; : : : ; xN I t1 C �; t2 C �; : : : ; tN C �/

It is homogeneous if the PDF is invariant against translations in space. Therefore, sta-
tionarity or homogeneity considerably reduces the necessary statistical information
to describe a random function �.
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Moments of Random Functions

The moments of random functions are defined as above for random variables. The
mean is given by

�.t/ D a.t/

In the following, it is assumed that � is stationary so that @a=@t D 0, and it is often
convenient to redefine � so that a D 0. The second moment is then given by

�.t/�.t 0/ D R.t; t 0/ D R.t 0 � t/ D R.�/

whereR denotes the covariance function, and � D t�t 0 is the time lag. For a station-
ary vector random function � D .�1; �2; : : : ; �N / the covariance tensor is likewise
given by

�i .t/�j .t 0/ D Rij.�/

For a physical variable, one can normally assume that R.�/ ! 0 for � ! 1. The
covariance function has the properties

R.�/ D R.��/ ; R.0/ > 0 and jR.�/j � R.0/

Similarly, for vector random functions one has

Rij.�/DRji.��/;
X

ij

aiajRij.0/D 0 for any ai and jRij.�/j<
q
Rii.0/Rjj.0/

The derivative � D @�=@t of a stationary random function �.t/ with covariance
function R.�/ is also stationary with the covariance function R
 D �@2R.�/=@�2.

It is useful to define the integral time scale Tint as

Tint D R.0/�1
1Z

0

R.�/d� (A.37)

which is positive and denotes the time over which the respective random function
remains correlated with itself, i. e. after which R.�/ approaches zero (see e. g. Sec-
tion 11.2.2). Equivalently, the integral length scale Lint is defined if a spatial coordi-
nate instead of time is considered (see Section 11.1.3).

Ergodic Theorem

The analysis of stationary random functions is very much facilitated by use of the
ergodic theorem which states that a temporal average over a long time interval T will
eventually (for T ! 1) coincide with the statistical mean which is defined as the
average over many different realizations. Because of the importance of the ergodic
theorem, the proof is sketched in the following.
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Let Q�.T / D T �1 R T
0 �.t/dt denote the temporal average which obviously sat-

isfies Q�.T / D � D a. Consider now the statistical mean of the variance of �,
i. e. . Q�.T / � a/2. One finds

. Q�.T / � a/2 D
0
@T �1

TZ

0

�.t/dt � a

1
A
2

D T �2
TZ

0

TZ

0

.�.t 0/ � a/.�.t/ � a/dt 0dt

D 2T �2
TZ

0

tZ

0

R.t � t 0/dt 0dt D �2T �2
TZ

0

0Z

t

R.�/d�dt

D 2T �2
TZ

0

tZ

0

R.�/d�dt

with � D t � t 0 so that d� D �dt 0. Now for large T ,
R t
0
R.�/d� � R1

0
R.�/d� .

With (A.37), one obtains for large T the approximation

. Q�.T / � a/2 � 2T �2
TZ

0

R.0/Tintdt D 2R.0/
Tint

T
(A.38)

It follows that . Q�.T / � a/2 ! 0, and hence Q�.T / ! a, for T ! 1. Further-
more, (A.38) shows that in practice an average over a finite time interval is a good
approximation provided that T � Tint.

Spectral Description

A periodic, real function f .t/ can be expressed by a Fourier series

f .t/ D
NX
nD0

.cnei!nt C c�
ne�i!nt /

where !n D 2 n=T , T denotes the interval of periodicity and cn complex Fourier
components. c0 D 0 if the mean of f over the period T vanishes. It is clear that for
arbitrary f it follows that N ! 1, and for nonperiodic f it follows that T ! 1
and that the description converges to a Fourier integral. The following expression is
equivalent but more convenient

f .t/ D
NX

nD�N
cnei!nt

with c�n D c�
n and !�n D �!n. Random functions �.t/ can be expressed in a simi-

lar way as a Fourier series

�.t/ D
NX

nD�N
�nei!nt
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where the amplitudes �n are now random variables, but the frequencies !n remain
deterministic as before. The mean is given by

�.t/ D
NX

nD�N
�nei!nt

For a stationary random function �.t/, the mean has to be constant in time which is
the case only if �n D 0. For the covariance function

R.�/ D �.t/�.t C �/ D
X
n;m

�n�mei.!nC!m/tei!m�

holds; thus R.�/ does not depend on time if �n�m D �n�m ın;�m, thus

R.�/ D
X
n

�n��
ne�i!n�

Introducing the definition �n��
n D En and taking the limit towards a Fourier integral

(not explicitly discussed here), one obtains finally

R.�/ D
1Z

�1
E.!/e�i!�d!

E.!/ denotes the spectral density of �.t/, or energy spectrum5 and is obviously
always positive. On the other hand

E.!/ D 1

2 

1Z

�1
R.�/ei!�d�

which means that the energy spectrum can be computed from the covariance function
which is actually often the way how E.!/ is obtained numerically. If � depends on
space and if �.x/ is homogeneous, one obtains

�.x/�.x C r/ D R.r/ D
Z
E.k/eik�rdk

where the energy spectrum E.k/ with respect to the wave number k appears. Like-
wise, for homogeneous vector random functions

�i .x/�j .x C r/ D Rij.r/ D
Z

Eij.k/eik�rdk

holds, where Eij.k/ denotes the spectral tensor.

A.4 Coordinate Systems

We briefly outline the mathematics of curvilinear coordinates and exemplify them
by introducing oblate spherical and spherical coordinates.

5 In GFD applications,
R
E.!/d! is usually closely related to a form of physical energy.
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A.4.1 General Curvilinear Orthogonal Coordinates

A transformation from Cartesian coordinates .x; y; z/ to curvilinear coordinates
.
;  ; �/ is defined by

x D x.
; ;�/

y D y.
; ;�/ (A.39)

z D z.
;  ; �/

Only orthogonal coordinates are considered where the surfaces 
 D const,  D
const and � D const are locally mutually orthogonal. To relate small changes dx D
.dx; dy; dz/ to changes d� D .d
; d ; d�/, differentiation of (A.39) results in

dx D D � d� D

0
BB@
@x
@�

@x
@ 

@x
@�

@y
@�

@y
@ 

@y
@�

@z
@�

@z
@ 

@z
@�

1
CCA � d� (A.40)

From (A.40) it follows that the length of a line element is given by

.dx/2 D .dx/2 C .dy/2 C .dz/2 D d� �D� �D � d�

where D� is the transposed of D. For the transformation to be orthogonal, this ex-
pression must be of the form .dx/2 C .dy/2 C .dz/2 D h2

�
.d
/2 C h2 .d /

2 C
h2�.d�/

2. HenceD� �D must be a diagonal matrix, with the diagonal elements

h2� D
�
@x

@


�2
C
�
@y

@


�2
C
�
@z

@


�2

h2 D
�
@x

@ 

�2
C
�
@y

@ 

�2
C
�
@z

@ 

�2
(A.41)

h2� D
�
@x

@�

�2
C
�
@y

@�

�2
C
�
@z

@�

�2

The normalized matrix T is defined as

T D

0
BB@

1
h�

@x
@�

1
h 

@x
@ 

1
h	

@x
@�

1
h�

@y
@�

1
h 

@y
@ 

1
h	

@y
@�

1
h�

@z
@�

1
h 

@z
@ 

1
h	

@z
@�

1
CCA (A.42)

Obviously, T � � T is also diagonal, and its diagonal elements are unity. Hence T is
orthogonal, i. e. its inverse is identical with the transposed matrix, i. e. T �1 D T �.
The columns of T are the unit vectors e�; e ; e� in the new coordinate system. Note
that the direction of the unit vectors is not constant. Any vector can be represented
as

u D u�e� C u e C u�e�

with u� D u � e� ; u D u � e ; u� D u � e� (A.43)

The scaling factors h�; h ; h� define the length of a line element result from a small
change d� in the new coordinates. With the unit vectors, (A.40) can be written as
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dx D h�e�d
 C h e d C h�e�d�. A volume element is given as dxdydz D
h�h h�d
d d�. The gradient of a scalar  takes the form

r D e�

h�

@

@

C e 

h 

@

@ 
C e�

h�

@

@�
(A.44)

The expressions for divergence, curl, and Laplace operator are given as

r � u D 1

h�h h�

�
@u�h h�

@

C @u h�h�

@ 
C @u�h�h 

@�

	
(A.45)

r � u D e�

h h�

�
@h�u�

@ 
� @h u 

@�

	
C e 

h�h�

�
@h�u�

@�
� @h�u�

@


	

C e�

h�h 

�
@h u 

@

� @h�u�

@ 

	
(A.46)

r2 D 1

h�h h�

�
@

@


�
h h�

h�

@

@


�
C @

@ 

�
h�h�

h 

@

@ 

�
C @

@�

�
h�h 

h�

@

@�

�	

(A.47)

The substantial derivative D=Dt D @=@t C u � r as appearing in scalar equations is
easily expressed in the new coordinates. With (A.44), one obtains

D

Dt
D @

@t
C 1

h�

@

@

C 1

h 

@

@ 
C 1

h�

@

@�
(A.48)

In vector equations such as e. g. the momentum equations, the substantial derivative
involves a vector gradient which also needs to be expressed in the new coordinates.
By projection of the vector expression Du=Dt onto the new coordinate axes, one
obtains e. g. for the �–direction

e� � D

Dt
u D e� � @u

@t
C e�

h�
� @u
@


C e�

h 
� @u
@ 

C e�

h�
� @u
@�

(A.49)

The scalar products in (A.49) are evaluated by partial differentiation, e. g. the last
term in (A.49) according to

e� � @u
@


D @

@

.e� � u/� u � @e�

@


With e� � @u=@t D @.e� � u/=@t D @u�=@t , one obtains

e� � D

Dt
u D Du�

Dt
�
�
u

h�
� @e�
@


C u

h 
� @e�
@ 

C u

h�
� @e�
@�

�
(A.50)

and likewise for the other two components. The terms in brackets in (A.50) – so-
called metric terms – originate from the change in unit vectors with position. Since
the unit vectors are constructed from (A.42), the dependency e� D e�.
;  ; �/ is
known. Hence the partial derivatives of e� can easily be evaluated and expressed
again in terms of all unit vectors with (A.43). The scalar products with u can then be
expressed in terms of the components u�; u ; u�.
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A.4.2 Oblate Spheroidal Coordinates

Oblate spheroidal coordinates can be defined as

x D .c2 C �2/
1
2 cos cos


y D .c2 C �2/
1
2 cos sin
 (A.51)

z D � sin 

Here, 
 is the eastward longitude, the surfaces  D const are hyperboloids, and the
surfaces � D const are oblate spheroids (rotation ellipsoids; see Figure 4.2). It is
useful to introduce the abbreviations

A. ;�/ D .c2 sin2  C �2/
1
2

B.�/ D .c2 C �2/
1
2

C. ;�/ D c2 sin cos 

BA2
(A.52)

The matrixD of derivatives according to (A.40) is computed from (A.51) as

D D
0
@�B cos sin
 �B sin cos
 .�=B/ cos cos

B cos cos
 �B sin sin
 .�=B/ cos sin


0 � cos sin 

1
A (A.53)

The scale factors then follow from (A.53) and the definition (A.41) as h� D B cos ,
h D A, h� D A=B so that a volume element is given as A2 cos d
d d�. With
the scale factors and (A.53), the matrix T can be determined according to (A.42), and
from the columns of T one finds the unit vectors in the three coordinate directions
as

e� D
0
@� sin


cos

0

1
A ; e D

0
@�.B=A/ sin cos


�.B=A/ sin sin

.�=A/ cos 

1
A ; e� D

0
@.�=A/ cos cos

.�=A/ cos sin

.B=A/ sin 

1
A

(A.54)

The unit vectors are mutually orthogonal but change their direction in space, accord-
ing to

@

@

e� D B

A
sin e � �

A
cos e� ;

@

@ 
e� D 0 ;

@

@�
e� D 0

@

@

e D �B

A
sin e� ;

@

@ 
e D ��B

A2
e� ;

@

@�
e D C e�

@

@

e� D �

A
cos e� ;

@

@ 
e� D �B

A2
e ;

@

@�
e� D �C e 

(A.55)

where A;B;C are given by (A.52). From (A.44), the gradient differential operator
is obtained as

r D e�

B cos 

@

@

C e 

A

@

@ 
C e�

A=B

@

@�
(A.56)
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With (A.43), the vector u is expressed in terms of its components u�; u ; u�. Then,
divergence, curl, and Laplacian are obtained from (A.45)–(A.47) as

r � u D 1

B cos 

@u�

@

C 1

A2 cos 

@

@ 
.u A cos /C 1

A2
@

@�
.u�AB/ (A.57)

r � u D e�

A2=B

�
@

@ 
.u�A=B/ � @

@�
.u A/

	
(A.58)

C e 

A cos 

�
cos 

@

@�
.u�B/� A

B

@u�

@


	

C e�

AB cos 

�
A
@u 

@

� @

@ 
.u�B cos /

	

r2 D 1

B2 cos2  

@2

@
2
C 1

A2 cos 

@

@ 

�
cos 

@

@ 

�
C 1

A2
@

@�

�
B2

@

@�

�

(A.59)

The substantial derivative D=Dt D @=@t C u � r is given as

D

Dt
D @

@t
C u�

B cos 

@

@

C u 

A

@

@ 
C u�

A=B

@

@�
(A.60)

Projection of the substantial derivative in the equations of motion onto the new co-
ordinates according to (A.50) with the use of (A.55) results in

e� � D

Dt
u D D

Dt
u� � u�u 

A
tan C �u�u�

AB
(A.61)

e � D

Dt
u D D

Dt
u C u2

�

A
tan C �u u�

A2
� CBu2�

A
(A.62)

e� � D

Dt
u D D

Dt
u� � �

AB
u2� � �

A2
u2 C CB

A
u u� (A.63)

with D=Dt from (A.60). The projection of the Coriolis acceleration 2˝ � u is found
as

2˝ � u D 2

0
@e� �˝ � u
e �˝ � u
e� �˝ � u

1
A D 2˝

0
@�.B=A/u sin C .�=A/u� cos 

.B=A/u� sin 
�.�=A/u� cos 

1
A

(A.64)

A.4.3 Spherical Coordinates

Spherical coordinates are defined by

x D r cos' cos


y D r cos' sin
 (A.65)

z D r sin '

Here, 
 is the eastward positive longitude, ' D  �# the northward positive latitude
(# is the pole distance, counted from the North Pole), and r is the radial distance from
the Earth’s center (see Figure 4.3). All properties of the spherical coordinate system
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follow from the general case shown in Section A.4.1. By differentiation of (A.65),
the matrixD of derivatives according to (A.40) is obtained as

D D
0
@�r cos' sin
 �r sin' cos
 cos' cos

r cos' cos
 �r sin ' sin
 cos' sin


0 r cos' sin '

1
A

The scale factors then follow as h� D r cos', h' D r , hr D 1 so that a volume ele-
ment is r2 cos'd
d'dr . The unit vectors in the corresponding coordinate directions
are

e� D
0
@� sin


cos

0

1
A ; e' D

0
@� sin' cos


� sin' sin

cos'

1
A ; er D

0
@cos' cos


cos' sin

sin '

1
A (A.66)

Their change with coordinate direction is

@

@r
er D 0 ;

@

@r
e' D 0 ;

@

@r
e� D 0

@

@'
er D e' ;

@

@'
e' D �er ; @

@'
e� D 0

@

@

er D cos'e� ;

@

@

e' D � sin'e� ;

@

@

e� D � cos'er C sin 'e'

(A.67)

The gradient differential operator takes the form

r D er
@

@r
C 1

r
e'
@

@'
C 1

r cos'
e�
@

@


When we express the vector u by its components .u�; u' ; ur / � .u; v; w/, the vector
operators divergence and rotation and the Laplace operator are obtained as

r � u D 1

r cos'

�
@u

@

C @ cos' v

@'

�
C 1

r2
@r2w

@r

r � u D 1

r2 cos'

�
r cos'

�
@w

@'
� @vr

@r

�
e� C r

�
@ur cos'

@r
� @w

@


�
e'

C
�
@vr

@

� @ur cos'

@'

�
er

	

r2 D 1

r2 cos2 '

�
@2

@
2
C cos'

@

@'
cos'

@

@'

�
C 1

r2
@

@r
r2
@

@r

The substantial derivative D=Dt D @=@t C u � r is given as

D

Dt
D @

@t
C u

cos'

@

@

C v

r

@

@'
C w

@

@r
(A.68)

Projection of the substantial derivative in the equations of motion for u; v;w onto
spherical coordinates follows the derivation in Section A.4.1 and leads to

e� � D

Dt
u D Du

Dt
C uw

r
� uv

r
tan' (A.69)

e' � D

Dt
u D Dv

Dt
C wv

r
C u2

r
tan ' (A.70)

er � D

Dt
u D Dw

Dt
� u2 C v2

r
(A.71)
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with D=Dt from (A.68). The projection of the Coriolis acceleration 2˝ � u is found
as

2˝ � u D 2

0
@e� �˝ � u
e' �˝ � u
er �˝ � u

1
A D 2˝

0
@�v sin' Cw cos'

u sin '
�u cos'

1
A (A.72)



Models of the Ocean Circulation B

In this book, the field of numerical ocean modeling has not been
touched, and we recommend the excellent book Fundamentals of
Ocean Climate Models by Griffies (2004) for an overview on this issue.
We have, however, explicitly considered several “models”, i. e. systems
of equations based on certain approximations suitable to compute solu-
tions. Models based on isopycnal coordinates are standard in oceanog-
raphy and are discussed briefly. The BARBI model is based on a differ-
ent representation of the vertical coordinate and is introduced in more
detail. Furthermore, a brief overview about model types with a small
number of degrees of freedom is given.

B.1 Models Based on Isopycnal Coordinates

Advection in the ocean occurs mainly along density surfaces, and it is, therefore, of-
ten useful to work with a coordinate system where isopycnal surfaces are coordinate
surfaces. This coordinate can be continuous, or be represented by a series of layers
of constant density.

B.1.1 Equations ofMotion in Isopycnal Coordinates

The introduction of locally orthogonal coordinates aligned to isopycnal surfaces is
straightforward, if somewhat cumbersome (see e. g. Chapter 6 of Griffies, 2004).
However, isopycnal coordinates are traditionally obtained in a different way, by sim-
ply replacing the vertical coordinate z by the density �, and result in a coordinate
system which is not orthogonal.

Ignoring any complications due of the nonlinear equation of state, the appropriate
density variable � is the potential density which satisfies the budget

@�

@t
C u � r�C w

@�

@z
D G� (B.1)

D. Olbers, J. Willebrand, C. Eden, Ocean Dynamics, 659
DOI 10.1007/978-3-642-23450-7_18, © Springer-Verlag Berlin Heidelberg 2012
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Here u and r D .@=@x; @=@y/ are horizontal velocity and horizontal gradient, and
the diabatic term G� collects small-scale turbulent mixing and other irreversible
changes of density. When transforming from Cartesian coordinates .x; z; t/ to isopy-
cnal coordinates .x; �; t/, the isopycnal �.x; z; t/ D const is characterized by its
depth z D z.x; t; �/. The gradients (and other derivatives) of any field .x; z; t/ D
.x; z.x; �; t/; t/ D .x; �; t/, taken either on a geopotential (z D const) or on an
isopycnal (� D const), are related by

@

@t�
D @

@t
C @

@z

@

@t�
z ; r� D rC @

@z
r�z and

@

@z
D @

@�

@�

@z
(B.2)

Here the time derivative @=@t� and lateral gradient r� D .@=@x�; @=@y�/ are taken
holding � D const. For the pressure p one finds

rp D r�p � @p

@z
r�z D r�.p C g�z/ � r�M

using the hydrostatic relation @p=@z D �g�. The Montgomery potential M D p C
g�z serves as a stream function for a geostrophically balanced flow on isopycnals.
Note that @M=@� D gz replaces the hydrostatic relation in isopycnal coordinates.
Applying (B.2) to the velocity components u D .u; v/ yields

�
@

@t
C u � r

�
u D

�
@

@t�
C u � r�

�
u � @u

@z

�
@

@t�
C u � r�

�
z (B.3)

and likewise for v. Using (B.1) one further obtains

�
@

@t�
C u � r�

�
z D w � h�G� (B.4)

The quantity h� D �@z=@� (note that h� > 0 for stable stratification) is called
the (specific) isopycnal thickness since the layer between two infinitesimally close
isopycnals with densities � and � C�� has the thickness h���. With (B.3), (B.4),
(16.2) and (16.3), the momentum balance in isopycnal coordinates follows as

�
@

@t�
C u � r� C G�

@

@�

�
uC f u: D �r�M � 1

h�

@�

@�
C F (B.5)

The density budget (B.1) and the continuity equation (16.4) are combined to the
isopycnal thickness budget

@h�

@t�
C r� � .h�u/C @.h�G�/

@�
D 0 (B.6)

As remarked above, the coordinate systems .x; �/ obviously is not orthogonal, a fact
which is relevant for the interpretation of the transformed equations. In particular,
the interpretation of the density source G� as diapycnal ‘velocity’ (in physical space,
that velocity is h�G�), which is suggested by (B.5) and (B.6), is not unique since
the lateral velocity u is still along geopotentials, and, therefore, in general it has
a component across isopycnal surfaces. Only in the limiting (and mainly interesting)
case of small isopycnal slopes, jr�zj � 1, the coordinates become approximately
orthogonal.



B.1 Models Based on Isopycnal Coordinates 661

B.1.2 LayerModels

The principal idea in isopycnal layer models is to represent the density stratification
by a finite number of layers of constant density. While not necessarily a good approx-
imation to the oceanic situation, such a system can be physically realized, at least in
principle. To avoid complications, we will assume that the layers do not intersect
each other and with the ocean floor.

Each layer (index n) is bounded by the interfaces z D �dn below and z D �dn�1
above, and is characterized by a constant density �n, thickness hn D dn �dn�1, pres-
sure pn, horizontal velocity un, assumed to be vertically constant within the layer,
and vertical velocity wn (see the illustration in Figure B.1). Integration of the hydro-
static equation @pn=z D �g�n yields

pn.x; z/ D Mn.x/� g�nz (B.7)

where Mn is the discrete form of the Montgomery potential introduced in the previ-
ous section. Continuity of pressure at the interface z D �dn requires

MnC1 �Mn D �g.�nC1 � �n/dn (B.8)

Note that rpn � rMn so that Mn instead of pn can be used in the momentum
balance.

In the absence of diapycnal mixing, the isopycnals are material surfaces. More
generally, they satisfy

�
@

@t
C un � r

�
dn C wnjzD�dn

D w?n (B.9)

where w?n denotes a diapycnal velocity reflecting the term G� in the budget (B.1).
With (B.9), integration of the continuity equation r � un C @wn=@z D 0 over layer n
yields

@hn

@t
C r � hnun D w?n � w?n�1 (B.10)

h n−1

h n

ρ n+1

ρ n

ρ n−1

h n+1

z=−d n+1

z=−d n

z=−d n−1

x,yz=0

Fig. B.1 Sketch of a generic isopycnal layer model. Each layer (index n) is bounded by the in-
terfaces z D �dn below and z D �dn�1 above, and is characterized by a constant density �n,
thickness hn D dn � dn�1, pressure pn or Montgomery function Mn, and velocity un, wn. Note
that the number of layers in motion can depend on the horizontal position since density layers can
have contact to the surface
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which is referred to as layer mass conservation. Note that (B.10) physically also
reflects density (i. e. , heat and salt) conservation. Integration of (B.5) over the layer n
leads to the momentum equation

@un

@t
C un � run C f u:n D �rMn C .�n;0 � �n;b/=hn C Fn (B.11)

Here �n;0;�n;b denote the stress and top and bottom of layer n. Equations (B.10)
and (B.11) directly correspond to the continuous form (B.6) and (B.5), for G� D 0

(the effect of the diapycnal velocity on momentum advection has been neglected).

B.1.3 A Two-Layer Quasi-Geostrophic Model

We present some details of the two-layer quasi-geostrophic (QG) model used in this
book. It includes topography and diabatic forcing. Layer 1 extends from the surface
at z D � to a variable interface at z D �d1.x; y; t/ D �H1 C �.x; y; t/; layer 2
extends from the interface to the bottom at z D �d2.x; y/ D �H C b.x; y/ where
H D H1 CH2 is the total mean depth, andH1 andH2 are the mean thicknesses of
the layers (see Figure B.2). In this notation the interface displacements �; � and the
bottom displacement b are taken positive if upward.

The pressure fields follow from hydrostatics as M1 D �1g� and M2 D �1g� C
.�2 � �1/g�. Scaling the pressure by �1, we obtain M1 D g�;M2 D g� C g��
with the reduced gravity g� D g.�2 � �1/=�1. The horizontal velocities ui sat-
isfy (B.11). The friction terms refer to the stresses at the top and bottom of the re-
spective layer, and Fn denotes the divergence of lateral stresses. For frictionless
conditions, the conservation of the potential vorticity .�n C f /=hn with relative vor-
ticity �n D @vn=@x�@un=@y is easily proven from (B.10) to (B.11). Straightforward
perturbation theory yields the layered version of the quasi-geostrophic potential vor-
ticity theory.

Fig. B.2 Geometry of the quasi-geostrophic two-layer model. The dark blue area indicates the
bottom. Above are the two layers with a density difference �� D �2 � �1
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Under similar conditions as in Section 5.2 (i. e. assuming ˇ-plane, rigid-lid ap-
proximation, small Rossby number and small vertical excursions of the interface
and bottom topography so that the actual layer thicknesses h1 D H1 C � � � and
h2 D H2 C � � b are close to the mean thicknesses), analogously to (5.32) one can
derive a quasi-geostrophic vorticity equation for each layer as

@Q1

@t
C J . 1;Q1/ D f0

H1

�
wek �w?�C curlF1 (B.12)

@Q2

@t
C J . 2;Q2/ D f0

H2
w? C curlF2 (B.13)

Here  1 D M1=f0 and  2 D M2=f0 are the quasi-geostrophic stream functions of
the two layers, and the quasi-geostrophic potential vorticities are

Q1 D r2 1 C ˇy � f0

H1
.� � �/ and Q2 D r2 2 C ˇy � f0

H2
.� � b/

(B.14)

The horizontal velocities are uj D .uj ; vj / with uj D �@ j =@y; vj D @ j =@x,
j D 1; 2, and ˇ is the meridional gradient of the Coriolis frequency. The sur-
face displacement is � D .f0=g/ 1, and the interface height � can be written
as � D .f0=g

�/. 2 �  1/. The internal Rossby radius of this configuration is
R D .g�H1H2=f 20 H/1=2. The Jacobian differential operator J is used to repre-
sent the advective terms, J .a; b/ D .@a=@x/.@b=@y/ � .@b=@x/.@a=@y/.

The QG model does not have an Ekman layer. Instead, the wind forcing is repre-
sented by an Ekman pumping velocity wek at the top of layer 1,

wek D curl
�0

f0

where �0 is the surface windstress. The frictional terms are usually written as down-
gradient mixing of zonal momentum with the horizontal viscosityAh, i. e. curlFj D
Ahr4 j . In the present model, the diabatic processes, represented by w?1 D w? as
introduced in (B.9), are expressed as the sum of an external ‘heating’Q (in W m�3)
and a diffusion of the interface height � with a diffusivityK ,

w? D ˛Q

cp.�@�=@z/ �Kr2�

where ˛ is the coefficient of thermal expansion and cp the specific heat of constant
pressure. The diffusion of the interface height may be considered as being equivalent
to the diffusion of layer thickness of the GM parameterization (see Section 12.2.4):
thus mesoscale eddy processes are to some extent represented in w?. Writing the
vertical density gradient as @�=@z D �2.�2 � �1/=H and inserting the expression
for the interface height � results in

w? D 1

2

˛HQ

cp.�2 � �1/ C Kf0

g� r2 . 1 �  2/

It is sometimes useful to consider the barotropic (external) and baroclinic (internal)
stream functions defined by

 e D .H1=H/ 1 C .H2=H/ 2 and  i D  1 �  2

 1 D  e C .H2=H/ i and  2 D  e � .H1=H/ i
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They are governed by

@r2 e
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C Ahr4 e (B.15)
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r2 i C Ahr4 i (B.16)

The ‘heating’ appears are now as H2Q and may be interpreted as the vertically
integrated rate (in W m�2) for the bottom layer. The QG model is usually applied to
a zonal strip (a channel) of ˇ-plane or a closed basin away from the equator.

B.1.4 A Planetary-Geostrophic Isopycnal LayerModel

A different application of layer models is the steady-state planetary-geostrophic
model used in Section 14.3.4. A main difference to the QG model is that the isopy-
cnals are not restricted to small excursions from a mean depth but can undergo sub-
stantial changes, and in particular can intersect with the surface. Under the conditions
discussed in Section 5.3, (B.11) reduces to

�f un D �r:Mn (B.17)

Note that the layer Montgomery stream function Mn D pn C g�nz coincides with
the Bernoulli function in the planetary-geostrophic approximation (see Section 5.3).
Several flow properties follow from the geostrophic balance (B.17). Obviously, un �
rMn D 0, so thatMn is constant along streamlines, and hence a conserved variable.
From geostrophy and (B.8) one further obtains

f .un � unC1/ D g.�nC1 � �n/r:dn (B.18)

which is identified as discrete form of the thermal wind relation. Finally, the Sverdrup
relation ˇvn D f @wn=@z for each layer follows from geostrophy and continuity.
Integration over the layer, and subsequent summation over all layers results in

ˇ
X
n

vnhn D f wek (B.19)

as the discrete form of the Sverdrup transport relation (cf. Section 14.1.5).
Layers which are in contact with the surface (ventilated layers) are subject to

wind forcing through an Ekman pumping velocity wek. Assuming that no diapyc-
nal velocities other than at the surface occur, it follows from the steady state mass
budget (B.10) that

r � .hnun/ D
(

0 (unventilated layers)

�wek (ventilated layers)
(B.20)
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The potential vorticity of layer n is defined as Qn D f=hn, and its conservation
equation becomes

un � r f

hn
D ˇvn

hn
� f

h2n
un � rhn D 1

hn

�
ˇvn C f r � un � f

hn
r � hnun

�

With the Sverdrup relation ˇvn Cf r �un D 0 and the mass conservation (B.20) one
obtains the conservation of potential vorticity in unventilated layers as

un � rQn D 0 (B.21)

B.2 BARBI: A Model of theWind-Driven Circulation

In Section 14.1 we derived simple equations describing the barotropic flow. We were
lead to the Stommel–Munk equation (B71.1) which is able to describe many as-
pects of the observed large-scale depth-integrated circulation. The Stommel–Munk
model is closed in the way that it contains no other variables besides the barotropic
stream function, but it is valid for a flat-bottom ocean only. On the other hand, be-
cause there are topographic variations in the ocean, the generalized Stommel equa-
tion (14.29) appears more appropriate. However, (14.29) contains a further forcing
term – the JEBAR torque, introducing a further variable, the vertically integrated
potential densityE (referred to the surface). Alternatively, the vorticity of the depth-
integrated flow (B73.3) contains the unknown bottom pressure P . In this respect, the
generalized Stommel equation does not represent a closed model, i. e. one needs an
additional equation for E (or P ). The BARBI (BARrotopic Baroclinic Interaction)
model contains such an equation forE and generalizes Stommel’s concept for strati-
fied flow over varying topography. BARBI describes the depth-averaged circulation,
i. e. the barotropic flow, and its interaction with topography and the stratification.
In principle, BARBI could also contain thermohaline forcing, but its main purpose
is to describe the wind-driven circulation with a prescribed mean stratification. The
BARBI model was developed in Olbers and Eden (2003).

B.2.1 Derivation of BARBI

The BARBI model is intended for the oceanic circulation on scales much larger
than the Rossby radius, as discussed in Chapter 5.1. For the momentum balance the
nonlinear advection in the primitive equations (4.50) and (4.51) can be neglected. It
is, however, convenient to retain the local time derivative, so that both gravity waves
and short Rossby waves are allowed in the system. With the notation as introduced
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in Section 14.1, we thus start from the system

@u

@t
C f u: D �rp C @�

@z
C F (B.22)

@p

@z
D �g� (B.23)

r � uC @w

@z
D 0 (B.24)

@�

@t
C u � r�C w

@�

@z
D w

N 2

g
C G� (B.25)

The frictional terms are written as a vertical divergence of a stress � of horizontal
momentum and a lateral divergence F of the turbulent fluxes of horizontal momen-
tum (a factor �0 is absorbed here).

For simplification, the balances of heat and salt have been combined into a ther-
mohaline balance for the density � which here is the deviation from a background
density �b. The background density was already defined in (5.7) and represents the
mean vertical stratification. The detailed derivation of the separation from the back-
ground state is not given here; it is completely analogous to the discussion in Sec-
tion 5.2, and (B.25) is identical to (5.15), with the stability frequency N defined as
in (5.9). The density source G� is related to turbulent mesoscale mixing and stirring,
diapycnal turbulent microscale processes and the nonlinear equation of state, and
will be specified below. Note also that effects of compressibility of the perturbation
density are neglected in (B.25) which puts the thermohaline balance in BARBI on
a similar footing as that usually implemented in simplified dynamics such as quasi-
geostrophic or layered reduced gravity models.

We separate the total horizontal flow u into the depth-averaged “barotropic”
velocity U =h, and deviations (u0) which will be called the “baroclinic” velocity
(“barotropic/baroclinic” in the sense discussed in the box on p. 467) according to

u D U =hC u0 with U D
0Z

�h
udz and u0 D u �U =h (B.26)

From (B.24) and the kinematic boundary conditions for a rigid lid at the top and the
bottom we have

w D 0 at z D 0 and w C u � rh D 0 at z D �h (B.27)

and the corresponding barotropic (W ) and baroclinic (w0) vertical velocities are de-
fined by

w D W Cw0 with W D z

h2
U � rh and w0 D �r �

zZ

�h
u0dz0 (B.28)

Note that barotropic and baroclinic vertical velocities satisfy the rigid-lid condition
independently. As detailed in Section 14.2, vertical integration of the horizontal mo-
mentum equation (B.22), partial integration and use of the hydrostatic relation (B.23)
leads to

@U

@t
C f U: D �hrP � rE C �0 � �b C

0Z

�h
Fdz (B.29)
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with the windstress �0, bottom stress �b, vertically integrated potential energy E D
g
R 0

�h z�dz and bottom pressureP . The latter can be eliminated from the momentum
equation by dividing by h and taking the curl

@

@t
r �

�
1

h
r 

�
C r: � r f

h
C r:

�
1

h

�
� rE D r: � �0 � �b

h
C r: � 1

h

0Z

�h
Fdz

(B.30)

where the (barotropic) stream function  is introduced by r: D U . Knowledge

of E (and appropriate viscous closures for F and �b) would allow the computation
of the stream function  . Using the density budget (B.25), it is in fact possible to
derive a tendency equation for E, as discussed now.

The baroclinic potential energy E is defined in terms of the perturbation den-
sity because the part deriving from the background density cancels between the two
pressure terms in (B.29) and generates no contribution to the JEBAR term as well. In
analogy to statistical moments (compare Section A.3), we will now call E the first
vertical moment of density. In fact, it will turn out below that higher order vertical
moments of density are needed as well. Thus we define

En D g

0Z

�h
zn�dz and En D g

0Z

�h
zn�b.z/dz ; n D 0; 1; 2; : : : (B.31)

hence E1 � E. For convenience we have also define vertical density moments for
the background density En. Note that En depends only on the horizontal position via
the dependency on h.x; y/.

To obtain a tendency equation for the vertical density moment En, the density
budget (B.25) is multiplied with gzn and integrated over depth from bottom to top.
To distinguish between barotropic and baroclinic density advection, the total advec-
tive flow u (w) in (B.25) is split into a barotropic part U (W ) and a baroclinic part
u0 (w0) as defined in (B.26) and (B.28). Consider all terms in (B.25) separately. The
first on the left-hand side of (B.25) yields indeed the change in the vertical density
moment

g

0Z

�h
zn
@�

@t
dz D @En

@t

The second term on the left-hand side of (B.25) splits into the horizontal advection
by the barotropic flow and the horizontal advection by the baroclinic flow. Consider
the former

g

0Z

�h
znU =h � r�dz

D U =h � g
0Z

�h
rzn�dz D U =h � rEn � .�1/nghn�1�.�h/U � rh
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since r R 0�h zn�dz D R 0
�h r.zn�/dz�zn�j�hr.�h/. The third term on the left-hand

side of (B.25) splits into the vertical advection by the barotropic flow and the vertical
advection by the baroclinic flow. For the former we find by partial integration

g

0Z

�h
znW

@�

@z
dz D .�1/nghn�1�.�h/U � rh� h�2.nC 1/EnU � rh

Adding both contributions yields

g

0Z

�h
znU =h � r�dz C g

0Z

�h
znW

@�

@z
dz D hnU � r En

hnC1

It is obvious that the same result must be obtained by replacing the perturbation
density by the background density, i. e. the barotropic advection of the background
density is given by

�
0Z

�h
znWN 2dz D hnU � r En

hnC1

Collecting these results now yields for the tendency budget of the vertical density
moments

@En

@t
C hnU � r En

hnC1 D NSn C S 0
n C S 00

n C g

0Z

�h
znG�dz (B.32)

with the advective source terms

NSn D �hnU � r En
hnC1 ;

S 0
n D

0Z

�h
znw0N 2.z/dz ; S 00

n D �g
0Z

�h
zn
�

r � u0�C @w0�
@z

�
dz

According to (B.32), changes in the vertical density moments En are caused by
advection of the background density �b by the barotropic flow (which is given by NSn),
advection of �b by the baroclinic flow (S 0

n) and advection of perturbation density �
by the baroclinic flow (S 00

n ). The second term on the left-hand side of (B.32) results
from horizontal and vertical advection of � by the barotropic flow. In addition to the
advective sources, there is the diabatic source term and the rate of change.

The close the BARBI model, all advective source terms have to be evaluated or
parameterized. First, consider the effects of barotropic advection given by NSn. Sim-
ilar to the second term on the left hand side in (B.32), it is evident that the effect of
the lifting of the background mass field by the barotropic flow ( NSn) can be expressed
entirely in terms of U and the (given) background stratification �b.z/, in form of its
corresponding vertical moments En. For, e. g. a constant Brunt–Väisälä frequency
N D N0, the term takes the simple form

NSn D �.�1/nN
2
0 h

n

nC 2
U � rh
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Next consider the source term S 0
n, representing the production of En due to lifting

of the background mass field by the baroclinic flow u0. For simplicity, we assume
again a constant Brunt–Väisälä frequency. By partial integration, S 0

n is then found to
be given by

S 0
n D N 2

0

nC 1
r �

0Z

�h
znC1u0dz

The form of S 0
n suggests that the balance of the baroclinic momentum u0 should

be projected in the same way as (B.25) (on znC1) to obtain prognostic equations
for the baroclinic velocity moments. Consequently, we define the baroclinic velocity
moments as

u0
nC1 D

0Z

�h
znC1u0dz for n D 0; 1; 2; : : : and u0

0 D 0 (B.33)

and add them to the set of prognostic variables in BARBI. The baroclinic momentum
balance is the difference between the complete momentum balance (B.22) and the
barotropic one (B.29), and is given by

@u0

@t
C f u0

: D gr
zZ

�h
�dz C 1

h
rE1 C F 0 (B.34)

with the frictional force F 0 D @�=@z C F � .�0 � �b C R 0
h
Fdz/=h. Note that

the pressure gradient simplifies, since from vertical integration of the hydrostatic
relation (B.23) we find p � P D �g R z�h �dz. Multiplication of (B.34) with znC1,
vertical integration and integration by parts yields

@

@t
u0
nC1 C f u0

:nC1 D � 1

nC 2

�
.�1/nhnC1rE1 C rEnC2

�C
0Z

�h
znC1F 0dz

(B.35)

An equation for the baroclinic velocity moments u0
nC1 is thus found, with a quite

simple expression of the pressure gradient in terms of gradients of En. Note that
no further assumptions have been made to derive (B.35). The divergence of u0

nC1
allows us in turn to calculate S 0

n in the balance of En. However, at this point it turns
out that indeed all (odd) vertical density moments are needed and not just E1, since
the interaction of potential energy E1 with the baroclinic fields via S 0

1 and thus u0
2

couples the third moment E3 to the balance of E1. For E3 we need S 0
3, thus u0

4,
therefore, E5, etc. Apparently, one needs a truncation of this coupled hierarchy at
some order, which is discussed below. Note also that starting with the balance of
potential energy, only the odd momentsEn (n D 1; 3; 5; : : :) are involved.

We also have to evaluate the source term S 00
n , stemming from advection (both ver-

tical and horizontal) of perturbation density by the baroclinic flow. It is easy to show
by scaling analysis that S 00

n is small compared to S 0
n and NSn, as long as the density

perturbation � is small compared to the background density �b.z/. Therefore, the
source term S 00

n is simply neglected in BARBI. However, the term S 00
n may become

large if the density perturbation becomes large, as e. g. in configurations with strong
thermohaline forcing.
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B.2.2 Eddy Parameterization for the BARBIModel

The closures for the subgrid effects represented by G� , F , � and �b in the BARBI
model equations (B.30), (B.32) and (B.35) need to be specified. The turbulent den-
sity mixing G� in (B.32) can be split into diapycnal mixing effect due to small-scale
isotropic turbulence and an advective effect by mesoscale eddies, neglecting any ef-
fects from the nonlinear equation of state. For the advective effect of mesoscale eddy
mixing on density, we employ the Gent and McWilliams (1990) parameterization
(compare Section 12.2.4) in which the eddy advection (bolus) velocity .ve; we/ is
given by a vector stream functionB, parameterized as

B D K` s: with ve D @

@z
B: and we D r: �B

where K` is equivalent to the thickness diffusivity of the Gent and McWilliams pa-
rameterization. Here s D gr�=N 2 denotes the (approximate) vector of the isopy-
cnal slopes, and ve and we are the horizontal and vertical components of the bolus
velocity respectively. The barotropic part of the bolus velocity vanishes because of
the boundary conditions B D 0 at top and bottom. In agreement to the treatment
in (B.32), we consider the lifting of the background stratification by only the baro-
clinic vertical bolus velocity, i. e. we assume that

0Z

�h
zG�dz � �

0Z

�h
zN 2r: �Bdz � g

0Z

�h
r �K`rz�dz � K`r2E (B.36)

For simplicity, a flat bottom1 and constant K` was assumed in (B.36). It turns out
that the dominant effect of advective mesoscale eddy density mixing on vertically
integrated potential energy E is given by diffusion of E with a diffusivity identical
to the thickness diffusivity of the Gent and McWilliams parameterization.

In an integral of the potential energy balance (B.32) over a closed domain there is
no sink term due to the mesoscale eddy density mixing if vanishing gradients of E
normal to the boundaries are specified. On the other hand, we know that the net effect
of the parameterization is given by a conversion of mean (available) potential energy
to eddy energy. Indeed, it is possible to show that

Z

V

z

�
r � Œve.�C �b/�C @

@z
Œwe .� C �b/�

�
dV

� �
Z

A

0
@r �K`rE �

0Z

�h
K`s

2N 2

1
A dA D

Z

V

K`s
2N 2dV (B.37)

where V.A/ denotes a closed volume (area) and where again a flat bottom was as-
sumed and where s D jsj. The term on the right-hand side of (B.37) is sign definite
and a sink for E, resembling the conversion of mean potential energy to eddy en-
ergy, mimicking the effect of baroclinic instability. It is possible to parameterize
this exchange with eddy energy as linear damping of E. However, it turns out that
this exchange term is locally much less important than the diffusive term related to

1 Or, equivalently, vanishing diffusivityK` at top and bottom.
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the lifting of the background stratification by the vertical bolus velocity, allowing to
simply neglect the exchange term here. Note that this neglect is consistent with the
neglect of the effect of advection of perturbation density by the baroclinic flow in
BARBI, resembling a second order term when density perturbations remain small
compared to the background.

For the frictional closures it is less clear how to proceed. We assume that vertical
friction can be neglected in the interior, it is only important near the surface where
the vertical turbulent stress vector � connects to the surface windstress �0. We also
neglect the bottom stress �b, because we have already seen that in many cases the
deep flow over the bottom topography will vanish; in that case the bottom stress
would also vanish. On the other hand, our model needs some kind of dissipation
of kinetic energy which becomes clear considering the energy cycle in BARBI . The
barotropic kinetic energy is given byKb D U 2=.2h/ and by using (B.32) and (B.29),
the global domain integrals of Kb and E can be derived,

@

@t

Z
dx2Kb D �

Z
dx2Eh�2U � rhC

Z
dx2h�1U � �0

C
Z

dx2h�1U �
0Z

�h
Fdz

@

@t

Z
dx2E D

Z
dx2Eh�2U � rh

Exchange between E and Kb is given by barotropic density advection over topog-
raphy, dissipation is due to friction and energy is supplied by the wind work. Note
that baroclinic kinetic energy is not considered here, since it can be shown that it
does not exchange energy with E as long as the effect of advection of perturbation
density by the baroclinic flow is set to zero in the budget for E. This effect was
assumed and shown to be locally negligible in BARBI as long as the perturbation
density remains small compared to the background density. Note also that there is no
energy exchange with eddy energy, since we have neglected the dissipation effect by
the Gent and McWilliams parameterization of E in (B.37).

It becomes clear that in the balance of total mechanical energyKb C E, a steady
state can only be established when the wind work is balanced by some kind of me-
chanical dissipation. Therefore, we implement in BARBI harmonic lateral friction
in combination with a no-slip boundary condition, i. e. F D Ahr2u. The integrals
of F and F 0, appearing in the balance (B.30) of the barotropic vorticity and in the
balance (B.35) of the baroclinic velocity moment, are approximated as

0Z

�h
Fdz � Ahr2U and

0Z

�h
znC1F 0dz � Ahr2unC1 C .�1/n h

nC1

nC 2
.�0 C Ahr2U /

We have again neglected the spatial dependency of h for simplicity. However, it
should be mentioned again that harmonic lateral friction is problematic, since it is
well known that mean momentum is not mixing down mean momentum gradients
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in turbulent geophysical flows. On the other hand, the formulation using harmonic
friction is convenient for numerical reasons since it provides a sink for grid noise
such that we follow usual practice and use it here as well.

Finally, the diapycnal density mixing in G� needs consideration, which we param-
eterize as vertical diffusion with turbulent diffusivityKv. We find by integration

Sdia
n D g

0Z

�h
zn
@

@z

�
Kv

@

@z
.�C �b/

	
dz D �gn

0Z

�h
zn�1Kv

@

@z
.� C �b/dz

� �.�1/nKvN
2hn

assuming zero vertical turbulent density flux through the bottom and j@�=@zj �
N 2=g. Note that Kv is very small in the interior of the ocean. It becomes only large
for convective situations, which we exclude from the model. We might, therefore,
neglect Sdia

n .
To summarize, BARBI is formulated in terms of the dependent variables  ,

En and u0
nC1 which are defined by (B.26), (B.31) and (B.33), respectively, and are

determined by the equations

@

@t
r 1
h

� r C r: � r f
h

D � 1

h2
r:E1 � rhC r: � �0

h
C Ahr � 1

h
r2r (B.38)

@En

@t
C hnU � r En

hnC1 D �.�1/nN
2
0 h

n

nC 2
U � rhC N 2

0

nC 1
r � u0

nC1 CK`r2En

(B.39)

@

@t
u0
nC1 C f u0

:nC1 D � 1

nC 2

�
.�1/nhnC1rE1 C rEnC2

�

C .�1/n h
nC1

nC 2
.�0 C Ahr2U /C Ahr2unC1 (B.40)

for n D 0; 1; 2; : : : Note that E0 is the bottom pressure which not needed in the
BARBI code. All variables in BARBI depend only on the horizontal coordinates (and
time). With the projection onto the vertical moments of the baroclinic variables den-
sity and baroclinic velocity according to (B.31) and (B.33), BARBI can be viewed as
a spectral model in the vertical coordinate. This approach is a natural consequence
of the occurrence of the potential energy E1 in the barotropic vorticity equation
(JEBAR-term) and of u0

nC1 in the tendency equation for En. It was assumed that �
remains small compared to �b (such that S 00

n � S 0
n;

NSn). For convenience, it has been
assumed that the background density is given by a linear profile, i. e. N 2 D const.
BARBI with a nonconstant Brunt–Väisälä frequency is described in Olbers and Eden
(2003).

B.2.3 The Closure of the Infinite Hierarchy

In the above form, BARBI appears as a spectral model with an infinite number of
equations and moments involved. For constant N , only odd density moments are
present, and a parameterization of ELC2 in terms of En; n � Lis used, since, we
need ELC2 in the pressure gradient forcing of u0

LC1, showing up in turn in the equa-
tion for EL. Consideration of wave properties in BARBI is the guide for the closure,
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i. e. we aim to construct the parameterization such that a truncated model has the
correct gravity and geostrophic wave speeds. BARBI has barotropic and baroclinic
geostrophic waves and baroclinic gravity waves. It is in fact possible to gain the cor-
rect dispersion relations for all baroclinic (flat-bottom and topographic) waves (and
baroclinic modes) in the limit of infinite number of vertical modes (see Olbers and
Eden, 2003). For practical purposes, a truncation of the coupled hierarchy of the
vertical moments is thus needed.

We describe here how to close BARBI to represent two vertical wave modes, the
(long) barotropic Rossby wave and the baroclinic Rossby and gravity waves. For this
purpose we start with the simplest BARBI model including the barotropic vorticity
balance and only the E1 and u0

2 equations for the flat-bottom case (h D const). We
neglect horizontal advection in the budget for E1, i. e. we linearize the model for
a state of rest, and we neglect friction and diabatic sources in order to obtain the
linear wave solution. Note that for h D const baroclinic and barotropic flow become
decoupled and we first discuss the baroclinic equations which become

@u0
2

@t
C f u0

:2 D �1
3

rE1h2.� � 1/ and
@E1

@t
� N 2

0

2
r � u0

2 D 0 (B.41)

The parameterizationE3 D �h2E1 of the third order density moment in terms of the
first order one was used. We have to find a proper value for the closure parameter � . If
we restrict (B.41) to an f -plane, the dispersion relation of gravity waves is obtained,

!2 D f 20 C c2k2h with c2 D 1 � �

6
.N0h/

2

where the fields are assumed proportional to exp i.kh � x � !t/ and kh denotes
the wave vector and c the gravity wave speed. In Section 8.1 we found for con-
stant N D N0, constant h and a rigid lid the baroclinic eigenmodes are ˚.z/ D
cos � z=h with eigenvalues .� /2, Rossby radii N0h=.jf j� / and gravity wave
speedsN0h=.� /with � D 1; 2; : : : To gain the correct phase speed of the first mode
gravity wave speed in our BARBI model we must hence choose .1 � �/=6 D 1= 2

or � � 0:3921.
The wave analysis of barotropic vorticity balance for h D const simply yields

long barotropic Rossby waves. We refer to Section B.2.6 for a wave analysis of
BARBI for the two-mode version. In this book we use the BARBI model only with
the two modes described here. It is described in more detail in Section B.2.4. For
versions with a higher number of density moments we refer to Olbers and Eden
(2003).

B.2.4 The Two-Mode BARBIModel

The simplest BARBI model is based on  , E D E1 and u� D u0
2 with two modes

present, a barotropic and a baroclinic one. It can be derived in a slightly simpler
route of arguments than the complete hierarchy, presented in the preceding section:
derive (B.32) and (B.35) for n D 1, neglect E3 in the latter equation and tune the
stability frequencyN0 to obtain the correct phase speeds. For that case, N0 does not
represent the true stability frequency anymore, but an appropriate effective one. For
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this closure, the simplest model becomes

@

@t
r �

�
1

h
r 

�
C r: � r f

h
D r:E � r 1

h
C r: � �0

h
C Ahr � 1

h
r2r (B.42)

@E

@t
C hr: � r E

h2
D N 2

0

6
r: � rh2 C N 2

0

2
r � u� CK`r2E (B.43)

@u�

@t
C f u:

� D h2

3
.rE � �0 � Ahr2U /C Ahr2u� (B.44)

All numerical BARBI applications in this book are obtained with this version. In
linearized form, it describes the barotropic Rossby wave, the first baroclinic Rossby
wave, and the the first baroclinic gravity wave, all with the appropriate topographic
modifications.

B.2.5 Comparison of BARBI and QG

With some straightforward approximations, the two-layer QG equations, consid-
ered in Section B.1.3, and the BARBI model equations become similar. The low-
frequency version (B.42) and (14.36) of the two-mode BARBI’s governing equations
is the coupled set of the barotropic vorticity balance and the balance of baroclinic po-
tential energy which may be cast into the form

@

@t
r � 1

h
r C ˇ

h

@ 

@x
� f

h2
J . ; h/C 1

h2
J .E; h/ D curl

�

h
C Ahr � 1

h
r2r 

1

R2
@E

@t
C h

R2
J
�
 ;
E

h2

�
� ˇ

@E

@x
C 2

f

h
J .E; h/� 2

f 2

h
J . ; h/

D �f
2

h2
curl

h2�

f
C Q � D

R2
C K

R2
r2E

whereR D Nh=.
p
6jf j/ is the local internal Rossby radius in the BARBI frame. We

have introduced the Jacobian and curl notation as in the QG section Section B.1.3.
There is a term-wise correspondence with the QG equations (B.15) and (B.16), real-
izing, however, that in BARBI advection of vorticity is neglected. Hence we trim the
barotropic QG balance accordingly,

@r2 e

@t
C ˇ

@ e

@x
� f0

H
J . e; h/C f0H1

H 2
J . i ; h/ D f0wE

H
C Ar4 e

In the baroclinic BARBI balance there is no advection by the baroclinic field and no
effect from viscosity, hence the equivalent QG form is

1

R2
@ i

@t
C 1

R2
J . e;  i/ � ˇ@ i

@x
� f0

H2
J . e; h/C f0H1

H2H
J . i; h/

D �f0wE

H1
C 1

2

f̨0H
2Q

cp.�2 � �1/H1H2
C K

R2
r2 i

A principal difference between both models is that BARBI is valid for arbitrary
topography while QG requires infinitesimal slopes. The general form of BARBI,
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i. e. without the assumption of geostrophy in the baroclinic momentum balance used
to obtain (14.36), is valid on the entire sphere and not just a ˇ-plane away from the
equator, as inherent in the QG approximation. Furthermore, it is worth mentioning
that the deficits of BARBI concerning advection can be mediated.

B.2.6 Waves in BARBI

We look for a WKBJ solution of the equations (B.42) and (14.36) for the BARBI
model in the reduced form where gravity waves are filtered. The equations then con-
tain only long barotropic Rossby waves and the first baroclinic Rossby waves (long
and short) (see Section 14.2.6 and the previous section). For a wave solution, the
ansatz .f  ;E/ 	 R exp i.K � x � !t/ is made with wave vector K D .k; `/ and
eigenvectorR (polarization vector). A wave withR D .1; 0/T is barotropic and with
R D .0; 1/T baroclinic. The gradients ˛ D rh, ˇ D .0; ˇ/, and 	 D r.f=h/ are
assumed constant in a WKB sense. Note that 	 D �.f=h2/˛ C ˇ=h. The wave
problem is then given by the vorticity balance and the linearized balance of potential
energy in the form

�
1 � R20r2

� @f  
@t

C hR20	: � rf  C f

h
R20˛: � rE D 0 (B.45)

.1 � R2r2/
@E

@t
CR2

�
h	: � f

h
˛:
	

� rE C 2R2
f

h
˛: � rf  D 0 (B.46)

where a rotated vector notation is used as before: 	: D .��y ; �x/ is the rotated vector

of 	 D .�x; �y/ (anticlockwise by  =2). We have introduced the term with the ex-
ternal Rossby radius R0 D p

gh=f 2 for completeness whereas R D N0h=.
p
6jf j/

is the internal Rossby radius. Inserting the wave ansatz yields

�
! � !R !T

2!A ! � 2!A � !C

��
f  

E

�
D 0 (B.47)

The frequencies !T and !A describe pure topographic waves, !R is a mixed
barotropic topographic-planetary wave and !C the flat-bottom baroclinic Rossby
wave. They are given by

!T D �fR
2
0

h

K � ˛:
1CK2R20

; !A D �fR
2

h

K � ˛:
1CK2R2

!R D hR20

K � 	:
1CK2R20

; !C D � ˇR2k

1CK2R2

Note that !R D !T C !P and !L D !A C !C where

!P D � ˇR20k

1CK2R20
; !L D hR2

K � 	:
1CK2R2

(B.48)

are associated with the flat-bottom barotropic planetary wave and the mixed baro-
clinic mixed topographic-planetary wave, respectively.
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Barotropic case

For R D 0 we find E � 0 and ! D !R as the only solution. This is the barotropic
mixed topographic-planetary Rossby wave. Note that the group velocity of long
waves, .KR0/2 � 1, is along f=h contours.
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Fig. B.3 Dispersion relation and group velocity (speed). Left two panels in each row show the
Csolution, right two panels show the �solution. Upper row: for flat bottom. Lower rows: for
r h D .n;m/�10�3 for nm D 10; 11 and nm D 01. The graphs show only the functions in the
half-plane with positive wave number along f=h D const. The axes are scaled by Kmax D 2=R.
The frequency is in cpd, the maximum for Csolution is 0:5 cpd, for �solution 0:05 cpd. The loga-
rithmical of group velocity in m s�1 is displayed. The range for the Csolution is 10�6�102 m s�1,
for the �solution 10�7�10�1 m s�1. The yellow cross is oriented at r .f=h/, the purple cross at
r h (the dashed lines are along the gradients, the full lines are along f=h D const and h D const,
respectively)
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Flat-bottom case

Here the vorticity and potential energy balance are decoupled, so that we find !1 D
!P and !2 D !C with eigenvectors R1 D .1; 0/T, R2 D .0; 1/T. These are the
familiar flat-bottom barotropic and first baroclinic modes (see first row of Figure B.3
and left two panels of Figure B.4).

Topographic case

The solutions of (B.47) for the eigenfrequencies !i .K / with corresponding eigen-
vectorsRi .K / are real. One easily finds

!˙.K / D 1

2

h
!A C !L C !R ˙

p
.!R � !C/2 C 4!A.!L C !T � !P/

i

R˙.K / D
�
f  

E

�
˙

D iq
!2T C .!˙ � !R/2

�
!T

!R � !˙
�

(B.49)

Approximately, !C � !R and !� � !L C !A.!P � !T/=!R. All specific fre-
quencies !I, I D ACLPRT, are asymmetric with respect to the wave vector,
i. e. !I.K / D �!I.�K /. We thus need the eigenfrequencies and eigenvectors only
on a half-plane because!˙.K / D �!.�K / and correspondingly for the eigenvec-
tors,R˙.K / D .R.�K //�. It appears sensible to choose the half-planeK � 	: > 0

(i. e. positive component of the wave vector along the f=h contours, implying k < 0
for flat bottom). This choice is established in Figure B.3 which show dispersion rela-
tions and group velocities a few cases of gradients of topography. Figure B.4 clearly
demonstrates the mixed character of planetary-topographic wave modes: for nonzero
topographic slopes the modes are neither barotropic nor baroclinic but ‘mixed’.
A particular detailed discussion of this feature is found in Hallberg (1997) who used
a two-layer quasigeostrophic model.

A few properties of these solutions are worth mentioning for use in the main body
of the paper:

� Even for moderate slopes the topographic ˇ can be much larger than the plan-
etary one, and the periods of topographic waves are much smaller than those
of flat-bottom waves. The maximum period of the baroclinic topographic mode
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Fig. B.4 Eigenvectors of the C and �modes. The left two panels are for the flat-bottom case
(associated with the upper row of Figure B.3), the right two panels are for a topographic case (third
row of Figure B.3)
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(�wave) is about 100 days (see lower three rows of Figure B.3) compared to
about 600 days for flat bottom.

� The Cwaves propagate most rapidly for wave vectors along f=h D const. For
the -waves this occurs for wave vectors across f=h D const. The speeds of topo-
graphic waves exceed those of flat-bottom waves considerably (a factor of 10 is
easily achieved). Speeds for Cwave exceeds typically 10m s�1, for the �wave we
find values a large as 0:1m s�1 (note that the scale in Figure B.3 is logarithmic).

B.3 SpectralModels

Hydrodynamical model are described by partial differential equations, some cases
are even nonlinear. Analytical solutions are known only for the most simple, fairly
restrictive conditions. In some cases even numerical solutions are difficult to obtain.
To gain insight into the behavior of a fluid system on a more qualitative level, low-
order models are developed. They resolve the spatial structures in a truncated aspect
but allow nonlinearities to be considered in detail. The construction is simple: the
spatial structure of the fields is represented by a set of prescribed structure functions
with time dependent amplitudes. Projection of the evolution equations then yields
a set of coupled ordinary differential equations for the amplitudes. Proper selection
of these spatial functions is of course the most delicate and important problem in
the construction of a low-order model. Most of such models apply to atmospheric
systems. The oceans are embedded in rather irregular basins and even simple rect-
angular configurations develop dynamically important boundary layers (as the Gulf
Stream) which defies representation by simple structure functions. Nevertheless, we
have some oceanic low-order models in this book as well.

We start with an evolution equation for a function �.x; t/ of the form

@�

@t
C LŒ��C N Œ�; �� D F (B.50)

The spatial coordinate may be multidimensional, the field a vector function, and for
simplicity we have restricted the balance to have only quadratic nonlinearities. The
balance must equipped with boundary conditions we we loosely write asBC Œ�� D 0.

The function �.x; t/ represents the spatial (and temporal) dependence of the
field �. It may be expanded in any complete function set 'n.x/ with a orthonor-
mality condition

h'n'mi D
Z
w.x/'n.x/'m.x/dx D ınm (B.51)

We will assume, however, that the 'n are eigenfunctions of the linear operatorL, i. e.

L'n D 
n'n (B.52)

which simplifies the following equations. The weighting function w.x/ in the scalar
product (B.51) is then specific for the operator L. For simplicity, we have labeled the
set by the single index n, which may, however, be multidimensional as well and may
include continuous parameters. The expansion of the dynamical variable � in terms
of the 'n is given by

�.x; t/ D
X
n

�n.t/'n.x/ (B.53)
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and the inversion is found as

�n.t/ D h�'ni (B.54)

We refer to 'n as the n-th mode of the system and regard the �n.t/ as the modal (or
spectral) representation of the field �. Inserting now the representation (B.53) into
the governing equation (B.50) and projecting on the mode n by use of (B.51) we find

@�n

@t
C 
n�n C

X
k`

C nk`�k�` D 0 (B.55)

with coefficients

C nk` D h'n N Œ'k ; '`�i (B.56)

which are called ‘coupling coefficients’ because they couple the modes according
to (B.55). Notice that the modal or spectral model equation (B.55) is completely
equivalent to the equation (B.50) governing the field in the physical space.

The advantage of (B.55) over (B.50) is that it is an algebraic equation whereas L
and N in general contain spatial differential operators. The disadvantage of the spec-
tral model is that we are facing an infinite set of equations so that in practice trunca-
tion to a finite system is necessary. Furthermore, before arriving at (B.55) we must
find the modal set 'n.x/ which maybe very complicated in irregular physical do-
mains with complicated boundary conditions. In practice therefore, spectral models
are usual constructed only for simple domains, e. g. periodic channels or unbounded
double periodic two-dimensional domains or spherical domains.

B.4 BoxModels

Box models are constructed by considering the budget of the respective property 
(in units of  per volume2) in terms of input from external sources and transport
across the box boundaries. The aim is to find – with reasonable assumptions –
a closed set of equations for the resolved dependent variable which usually is some
measure of the total content of  in the box, e. g. the mean

N D 1

V

Z

V

dV (B.57)

We start with a conservation equation of the general form (see Section 2.1)

@

@t
C r � u D �r � F d C S (B.58)

where F d denotes a diffusive flux and S a source or sink term. For a single isolated
box the resulting equation is of course trivial because N would just increase in time
in reaction to the integrated source. Hence, we consider a ‘box’ (actually of arbitrary

2 For example, for salinity we have � D �S . If the density may be approximated by a constant �0,
the equations can be divided by �0 in which case � is a dimensionless concentration.
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shape) which is open over some part A0 of its surface area to let through the prop-
erty  by advection and diffusion, i. e. n � u ¤ 0, n � F d ¤ 0 where n is the outward
normal vector on A0. Integration then yields

V
d N
dt

C
Z

A0

n � .uC F d/dA D
Z

V

SdV D V NS (B.59)

by Gauss’ theorem. To become more specific let A0 be made up from

� a part Ae where the box opens to the external environment (for an ocean box this
could be the contact area to the overlying atmosphere). Here we assume n �u D 0

and n � F d D �Fe where Fe is a prescribed flux of the property  (positive if
inward).

� and a number of interfaces Aj where the box is in contact to other boxes of the
same kind and labeled with the index j . Let vj D n � u be the outward normal
velocity on these areas and Fjd D n � F d the normal diffusive fluxes.

We then obtain

V
d N
dt

C
X
j

Z

Aj

.vjC Fjd/dA D V NS C
Z

Ae

FedS (B.60)

Since the mean N in the box is the only resolved variable in a box system, the inte-
grated advection and diffusion terms in (B.60) must somehow be expressed in terms
of N of the specific box and the neighboring boxes.

We now denote the reference box with label i and evaluate the exchange with the
neighboring box denoted by j with the mean property Nj and the common contact
area Aij to the box j . A reasonable assumption about the diffusive flux across Aij

is a down-gradient parametrization with a diffusivity 	ij. Since only the mean value
of  of the respective boxes is known we write

Z

Aij

FjddA D �Aij	ij
Nj � Ni

�ij
(B.61)

where �ij is some appropriate distance along the outward normal n over which the
gradient is to be evaluated as a difference.

For the advection term the procedure is relatively straightforward as well. We
separate the flow velocity vij into its positive (outward from box i ) and negative
components, defining vi̇j D .vij ˙ jvijj/=2 so that vij D vC

ij C v�
ij . The volume

transports

qi̇j D
Z

Aij

vi̇j dA (B.62)

are now used to model the advective transport of  across Aij in the following up-
stream form

Z

Aij

vijdA D qC
ij Ni C q�

ij Nj (B.63)
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because qC
ij transports the property Ni out of the box i whereas q�

ij transports Nj from
the neighboring box with label j into the box i . Hence, we arrive at

Vi
d Ni

dt
D �

X
j



qC

ij Ni C q�
ij Nj

�
C
X
j

Kij
� Nj � Ni

�C Vi NSi C Aie NFie (B.64)

where Kij D 	ijAij=�ij is the coefficient governing the diffusion between box i and
box j , NFie is the integrated external flux normalized by the respective area Aie (neg-
ative outward). Note that diffusion always tends to relax Ni towards the -content in
the neighboring boxes. To close the model, the transports qi̇j , the diffusivities Kij,

the forcing terms NSi and the fluxes NFie must be specified. Note that the overall budget
for the property  is obtained by summing over i . Here, the advection and diffu-
sion terms cancel. Note, furthermore, that the matrix .Kij/ of diffusion coefficients
is symmetric. A sketch of the box system with the advective and external fluxes is
shown in Figure B.5.

For a box having only one interface to other boxes, as e. g. in a two-box system
of boxes 1 and 2, we find qC

12 D �q�
12 D jqj. A two-box system is thus governed by

V1
d N1
dt

D jqj. N2 � N1/CK. N2 � N1/C V1 NS1 C A1e NF1e

V2
d N2
dt

D jqj. N1 � N2/CK. N1 � N2/C V2 NS2 C A2e NF2e

(B.65)

Box systems are thus governed by relatively simple equations like (B.64) and (B.65).
We would like to emphasize, however, that this simplicity is gained by quite severe
and partly contradictory assumptions. Because only the mean values of the prop-
erty  in the boxes is resolved, we must express the values on the box boundaries
by its mean value N, relevant for advection and diffusion, which in essence assumes
a fast (compared to the other resolved processes) mixing process within the box,
horizontally as well as vertically. But this effective mixing is artificially stopped at
the box boundaries as otherwise the entire box system would be homogeneous (box
models often even use zero diffusion between boxes). The problem can be mitigated
by implementation of more resolution, e. g. using more boxes or more complex dy-
namics within a box. The latter concept could relax the complete mixing within the
box and imply then the need for a relation between the boundary values and the box
mean, i. e. .Aij/ and .Aie/ must be expressed by Ni.

The coefficients qC
ij and q�

ij model the advection of the properties in the system,
however, they are also demanded to reflect the conservation of mass respectively vol-
ume. The corresponding matrices are sparsely populated: only entries for box pairs

Fig. B.5 Sketch of box system with fluxes. The reference box is labeled i . a: Fluxes associated
with the conservation of the property �. b: Fluxes associated with the conservation of volume. Note
that we take the fluxes Fie and qie at the open surface as positive in the inward direction. These
fluxes may be due to input at the ocean surface or by river discharge
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with a common interface are nonzero. Furthermore, the diagonal is empty, qi̇i D 0,
and quite obviously, the volume fluxes are related by qC

ij D �q�
ji . For each box i ,

mass (volume) conservation demands that the total volume flux across its boundary
vanishes, i. e.

X
j



qC

ij C q�
ij

�
D qie (B.66)

where qie is the external flux.
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A

AAIW see Antarctic Intermediate Water
ABW see Antarctic Bottom Water
abyssal recipe 364
ACC see Antarctic Circumpolar Current
action 96
additive variable 13
additivity relation 13
adiabatic 11, 488, 604, 608

temperature gradient 58
adiabatic invariant 286, 287
ageostrophic 142, 509, 536, 537
Airy function 188
angular momentum balance 35
Antarctic Bottom Water 488, 511, 557
Antarctic Circumpolar Current 557–561,

565, 567, 569, 571, 572
Antarctic Intermediate Water 488
approximation

planetary-geostrophic 476
quasi-geostrophic 481

aspect ratio 130, 135, 178
Austauschansatz 346
autonomous (differential equation) 635

B

BARBI model 466, 591, 665
baroclinic 90, 628

torque 90
vector 90

baroclinic mode 211
baroclinic transport 469
baroclinicity term 145
barotropic 88, 94, 628
barotropic mode 211
Beltrami equation 92, 136, 137
Bernoulli function 53, 151, 475, 476
Bessel function 246, 247

beta Rossby number 136
beta-effect 238, 373
beta-plane

equatorial 248, 495
beta-spiral 154
bifurcation 519, 520, 524, 637

diagram 522
Hopf – 541, 554–556, 641
pitchfork – 554, 555, 638
point 518
saddle node – 638
transcritical – 638

Bjerknes theorem 90, 500, 501
Boltzmann postulate 35
bolus velocity 387, 417, 670
bottom formstress 566, 568, 572, 581, 585,

587, 589, 590, 594, 596, 599, 602, 604,
612, 617, 620

bottom friction 451, 571, 572
bottom pressure torque 464–466, 469–472,

596
bottom stress 566, 569, 590, 602
boundary condition

dynamic 38, 306, 430
enthalpy flux 53
general 26
heat flux 439
kinematic 30, 306, 429, 443
momentum 38

boundary conditions
mixed 514

boundary layer 445, 450, 454–459, 462, 463,
470–472, 509, 538, 643

correction method 645
matching method 645

Boussinesq approximation 118, 138, 145,
283, 503, 564

box model 511, 679
Gnanadesikan’s 530
Stommel’s 512
Welander’s 521
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Brunt-Vaisala frequency 76, 139, 567, 601,
608, 611

buoyancy frequency 76, 111
Burger number 140

C

cabbeling 384
canonical variable 19
Carnot process 500
CDV model see Charney–DeVore model
central limit theorem 649
characteristic

equation 110, 173
characteristic curve 606
characteristics

method of – 170
Charney–DeVore model 613, 616
chemical energy flux 49
chemical potential 17
circulation (around a closed curve) 84
closure problem 340
compressibility

adiabatic 63, 119
isothermal 23

concentration 12
conservation equation

flux form 30
general 26
parcel form 30

constitutive law 35
continuity equation 29, 336
continuum hypothesis 1
convection 491, 493, 503
Conveyor belt 484
coordinates

curvilinear 653
geocentric Cartesian 41
inertial frame 39
isopycnal 584, 585, 659
oblate spheroidal 123, 655
rotating frame 39, 41
spherical 127, 656

Coriolis force 41, 506, 595, 599
Coriolis frequency 111
covariance tensor 339
Cox number 365
critical layer absorption 200
cumulative probability function 647

D

Deacon cell 583, 584
Deep Western Boundary Current 494
deformation 8

tensor 7–9
density 12

dynamically relevant – 116
flux 489, 503, 514
in-situ 139

modified 416
potential 65, 139

derivative
material 6
substantial 4, 6

diffusion 482, 512, 518
diapycnal 473, 525
isopycnal 388, 421
molecular 472

diffusivity 506, 507, 514
diapycnal 486, 507, 588
Gent and McWilliams 603
isopycnal 541
isopycnal thickness 388, 467, 469, 589,

600
lateral 546
skew 387
turbulent 346, 350

dispersion relation 162, 180, 194, 215, 225,
232, 255, 256, 259

topographic waves 231
dissipation 341, 345, 502, 503
dissipation scale 344
divergence 629
Doppler shift 166, 199, 266
Drake Passage 557
DWBC see Deep Western Boundary Current
dynamical system 635

E

Eady growth rate 274
Eady problem 282
Eady solution 272
eddy

density flux 604
flux 563, 584, 600
flux, diapycnal 588
flux, rotational 588
momentum flux 565, 590
parameterization for BARBI 670
stream function 588

eddy-driven velocity 386, 389
eigenfunction 266
eigenvalue 8, 240, 275

problem 9
eigenvalue problem 110
eigenvector 9, 275
eikonal equation 168
Ekman depth 446, 562
Ekman layer 441, 445, 473, 562, 567
Ekman number 130, 135, 569
Ekman pumping 441, 449, 452, 453, 472,

473, 477, 496, 503, 567
Ekman sandwich 446
Ekman spiral 446, 562
Ekman transport 441, 448, 562, 569, 582,

585, 602, 604
Elementary Current System 444, 446, 447,

566
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Eliassen–Palm flux 393
ellipticity 126
energetics

Boussinesq approximation 120
quasi-geostrophic 146
shallow water approximation 132

energy
available potential 147, 149, 150, 280, 282,

377
conservation 47, 165, 171, 172, 182
dissipation rate 50, 55
eddy available potential 377
eddy kinetic 376
elastic 165
flux 171
internal 14, 47, 50
kinetic 47, 147, 165, 502
mean available potential 377
mean kinetic 354, 376
mean potential 355
mechanical 49
of planetary waves 226
potential 50, 121, 467, 502
pseudo 286
total 51
transfer wave-mean flow 268
turbulent kinetic 353

energy cycle 377
enstrophy 368

spectrum 368
enthalpy 14, 50, 58

free – 18
potential – 59

entropy 16, 54, 502
production 56

equation of state 539
equatorial waves 248

forced 313
equilibrium range 344
equivalent depth 212
equivalent salt flux 430, 437
Ertel theorem 94, 144
Euler–Lagrange equations 290
Eulerian

field 5
formulation 6

evaporation 30, 54, 429, 437, 488, 491
extensive variable 13

F

f=h contour 576, 579, 580
closed 574, 575

f=h–contours 461
Fickian law 56
filtering concepts 107
flow over ridge 237
fluid element 3, 4
force

centrifugal 42

Coriolis 41
gravity 42
surface 31
volume 31

Fourier law 55
free slip 38
frequency 110
freshwater flux 429, 437, 489, 511, 518
friction 69, 90, 500, 501

tensor 35
Froude number 222

G

Gauss integral theorem 629
Generalized Lagrangian Mean 413
geoid 43
geopotential 43

surface 43
geostrophic 505, 509, 536

adjustment 215
balance 135, 473, 533, 536
contour 481, 570–572
flow 150
planetary 443
scaling 135

geostrophic approximation 536
geostrophic transport 567
Gibbs function 18

for moist air 79
for seawater 20

Gibbs relation 17, 54
Gibbs–Duhem relation 18
gradient-operator 628
gravity 45

potential 42
gravity wave

speed 213
gravity waves 177, 249

action conservation 294
dissipation 322
energetics of random wave fields 315
equatorial 258
forced midlatitude 310
Garrett–Munk spectrum 317
generation of internal 319
group velocity 180
internal – 112, 180, 185
plane 179
resonant transfer 324

group velocity 163, 164, 171, 196, 257

H

Hagen–Poiseuille flow 535
haline contraction 23, 512

modified coefficient of – 63
Hamilton function 287
Hamilton principle 96
Hamiltonian equations 173
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heat
capacity 23
conduction 69
conductivity 55
latent 54, 78
specific 23, 618

heat flux 48, 55, 489, 502, 511, 513, 514, 518
latent 430, 435
latent – 54
net air-sea 430, 436
radiative 430, 434
sensible 430, 435

heat transport 558
helicity 67
Helmholtz free energy 18
Helmholtz theorem 88
Hermite polynomials 253
Hesselberg average 70
Hidaka dilemma 567, 569, 619
homotropic 628
hydraulic control 221, 223
hydrostatic

approximation 113, 131, 283
balance 73, 145
equation 475
relation 73, 443, 460, 510

hydrostatic relation 476, 564
hysteresis 519

I

ideal fluid 35
Boussinesq 123
equations 475
solution 475

ideal fluid equations
planetary 153

impermeability theorem 95
incompressibility condition 119
incompressible 99
inelastic approximation 116, 117
inertial subrange 345
initial value problems 196
instability

baroclinic 239, 271, 281
barotropic 270
conditions for – 270, 277
inertial 282
static 280
symmetric 282

integral length scale 342
integral time scale 350
intensive variable 13
interfacial formstress 585–588, 599, 600,

618, 620, 621, 623
internal waves see gravity waves
inverse barometer 311
inverse energy cascade 370
irreversible 16, 55, 502
irrotational flow 631

isentropic 17
isopycnal layer model 661

planetary-geostrophic 664
isopycnal mean 398, 415
isopycnal thickness 660
isotropy 336

J

Jacobian 444
Jacobian determinant 265, 296
Jacobian operator 144
JEBAR 459, 461, 465
Johnson–Bryden

model 602, 619
relation 600

K

Kelvin theorem 89
Kelvin waves 221, 486

equatorial 256
forced equatorial 314

Kelvin–Helmholtz instability 205
Kolmogorov micro scale 344
Kolmogorov theory 335

L

Lagrange-Cauchy theorem 88
Lagrangian 286

averaged 288
fluid mechanics 94
framework of hydrodynamics 3
multiplier 99

Lagrangian Mean 398, 413
Laplace operator 657
lapse rate 58
large eddies 347
longitudinal velocity correlation 338
Lorenz energy cycle 270, 377

M

M-equation 474
M-function 152
Manley–Rowe relation 299
mass conservation 28, 29
Maxwell relation 21
mean particle excursion 350
mechanical dissipation 55
meridional eigenfunctions 251
meridional overturning

thermodynamics 501
meridional overturning circulation 483–486,

491, 494, 496, 499, 504–507, 511, 512,
516–518, 527, 532, 534, 541, 543, 545,
546, 548, 556, 560, 581, 590

metric ratio 130
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metric terms 654
micro scale 343
midlatitude waves 307
mixed layer 283, 357, 608
mixed layer model

bulk 356
k-�-model 362
K-profile parameterization 360
Richardson number based 359
second order closure 362
TKE based 360

mixed planetary-gravity waves 257
mixing

diapycnal 583, 602, 609
efficiency 364
isopycnal 383, 384
length 347, 348

MOC see meridional overturning circulation
molecular transport 68
momentum conservation 31
momentum flux tensor 37
Montgomery potential 476, 585, 660, 661
multiple time scales 289
multiple-scale expansion 168

N

nabla-operator 628
NADW see North Atlantic Deep Water
Navier–Stokes equations 37
Needler solution 474
neutral surface 66
Newton fluid 36
Newton law of motion 31
no slip 38
Noether theorem 97
non-Doppler Effect 267
nonacceleration theorem 393
nondispersive 162
North Atlantic Deep Water 487, 511

O

oceanic waveguide 263
Onsager relations 56
Osborn–Cox relation 365

generalized 411

P

parameterization
downgradient 346, 444, 589

parcel 3
trajectory 6

parcel exchanges 280
partial mass 12
Peclet number 69, 117, 481
perturbation expansion 159
phase transition 81
Phillips model 275

planetary frequency scale 111
planetary waves see Rossby waves
planetary-geostrophic

approximation 114, 570
equations 151
regime 137, 150
scaling 136

plume 491, 503
Poincaré waves 215
Poisson equation 119
potential

flow 631
potential vorticity 94, 238, 272, 276, 475,

476, 481
Boussinesq approximation 121
Ertel – 92, 144, 283
homogenization 482
planetary geostrophic 151
quasi-geostrophic – 144, 265
Rossby – 133
shallow water approximation 132
stretching part 267

Prandtl number 356, 546
precipitation 30, 54, 429, 437, 488, 491
pressure 13, 34

dynamically relevant – 116
prognostic equation for – 107

primitive equations 132, 564
probability 647
probability density function 648
pseudovector 633

Q

quasi-geostrophic
approximation 114, 138, 150
boundary condition 145
model 599, 662
regime 137
scaling 136
vorticity equation 143

quasi-Stokes
stream function 420, 425
velocity 399, 419

R

radiation
flux 48
long-wave 430
short-wave 430

radiative heating 488
random fields 647
ray equations 173
Rayleigh friction 495, 508, 525, 534, 535,

541
Rayleigh number 507, 546, 552
Rayleigh quotient 211
rays and wave packages 169
realization (of a random variable) 648
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red energy cascade 370
reflection

at lateral wall 219
at meridional boundaries 261
at plane interface 187
at sloping bottom 188
critical – 189
of planetary waves 228

refraction 171, 248
index 174

residual mean momentum equation 394
residual stream function 585, 588, 608
residual velocity 386

three-dimensional 389
resonance 298, 311
reversible 16, 502
Reynolds average 70
Reynolds stress 570, 581, 582, 585, 590–592,

599, 600
Reynolds term 269
Rhines scale 136, 373
Richardson flux number 329
Richardson number 205, 356

flux – 356
rigid-lid approximation 194
rigid-lid condition 179, 193, 564
Rossby number 86, 130, 135, 565
Rossby radius 137, 140, 150, 213, 240, 274,

277, 278, 465, 494, 533, 560, 565, 567,
598, 602, 618, 619

equatorial 250
Rossby waves 111, 224, 249, 267, 271, 278,

467
action conservation 292
energy balance 226
equatorial 258
forced equatorial 314
forced midlatitude 310, 312
group velocity 225
stationary – 238

rotation 629
rotation tensor 7, 9
rotational eddy fluxes

diapycnal 404
isopycnal 406

S

saddle node 522
salinity 12

absolute – 12
flux 29, 56

equivalent – 31
practical – 12

salt
concentration 11
diffusion 69
diffusivity 56

Sandström Inference 499
scalar fields 627

scale depth 74
semi-Lagrangian Mean 398, 415
semicircle theorem 208, 271
shadow zone 480
shallow water approximation 113, 123, 132,

145
similarity solution 474
slantwise convection 283
Snellius law 174
SOFAR channel 174
sound velocity 64, 116, 160
sound waves 112, 159, 160

elimination of – 116
frequency 111

specific volume 13, 30
spectral energy balance 341
spectral energy tensor 340
spectral model 678
spherical approximation 126
spin-up

of wind-driven circulation 243
stability

of shear flows 203
static 75

standing eddies 563
state of rest 72
stationary phase method 196
stochastic fields 647
Stokes

correction 398
velocity 398

Stokes integral theorem 10, 629
Stommel equation 456

baroclinic 468, 598, 602
Stommel model 496
Stommel–Arons model 494, 505, 508, 510,

525, 528, 533
strain rate, principal 8
strain tensor 7
stream function 631

barotropic 467
streamline 6, 479
stress

–strain relation 35, 36
normal – 34
tangential – 34
tensor 33
viscous – 35

Sturm–Liouville problem 211
subcritical flow 223
supercritical flow 223
surface

geopotential 43
isentropic 627
isobaric 627
isopycnic 627
isothermal 627
neutral 66

surface waves see gravity waves
Sverdrup balance 527
Sverdrup catastrophe 245, 462, 464
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Sverdrup relation 452, 462, 476, 477,
495–497, 506, 507

Sverdrup transport 452

T

Taylor diffusion equation 350
Taylor identity 392
Taylor micro scale 343
Taylor–Goldstein equation 204
Taylor–Proudman theorem 91
TEM see Transformed Eulerian Mean
temperature 13

conservative – 58
equation 57
in-situ – 58
potential – 59, 61

Temporal Residual Mean 402
three-dimensional 403

tensor
antisymmetric 633
field 632
symmetric 633

THC see thermohaline circulation
thermal expansion 23, 512

coefficient 618
modified coefficient of – 63

thermal wind
equation 152, 476
relation 589, 601

thermal wind equation 504
thermobaricity 384
thermocline

depth 478, 479, 481
main 472–474
ventilation 476

thermocline depth 506
thermodynamic

equation of state 21
equilibrium 11
potential 18
system

adiabatic 11
adiabatically closed 11
closed 11
open 11

thermodynamics
first law 14, 501
second law 16, 502

thermohaline circulation 483, 484, 491, 532
thermohaline forcing 488
thickness weighted velocity 417
thin shell approximation 128
tidal potential 45, 47
topographic waves 229

fast baroclinic 232
traditional approximation 131, 178
Transformed Eulerian Mean 385, 584, 588,

603
transient eddies 563

turbulence
isotropic 335
two-dimensional 370

turbulent energy cascade 344
turning point 186

V

variational principle
continuous system 96
discrete system 96
for Eulerian coordinates 101

vector
-gradient 634
field 628

velocity
absolute 154
ageostrophic 142, 144
baroclinic 467
barotropic 467
bolus 417
depth-averaged 467
potential 631
thickness weighted 417
vector gradient 7

vertical modes 190, 191
viscosity

lateral 467, 541, 568
vertical 444, 534

vortex
flux 85, 86
line 86
stretching 92, 461, 465, 470
tube 86

vorticity
absolute 85, 283
equation 91

stretching term 92
tilting term 92

planetary 85, 459–461, 465, 596
relative 85, 459
tensor 7
vector 10, 84

W

water mass 487, 488, 494
water vapor 77
water-mass formation 491
wave

-wave interaction 296
action 172, 173, 287
action density 289
action flux density 289
equation 161
frequency 162
group 171
harmonic – 161
kinematics 168
longitudinal 163
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plane – 161
radiative transfer equation 302, 315
resonant triad 299
train 288

wave number 110, 162
waves 108
Welander solution 476
western boundary current 456
westward intensification 459
windstress 430, 441, 488, 503, 504, 507, 508,

564, 566, 590, 594, 595, 618

WKBJ approximation 166, 185

Y

Yanai waves 257

Z

zonal jets 373, 378
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