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Preface

It has been an amazing experience to witness and comprehend transformation of chemistry
during the twentieth century. Since its ancient beginnings, chemistry has been considered to
be an experimental science. However, during the last  years it has been advancing through
noticeable contributions of computational methods. This transformation has its roots in both
theoretical breakthroughs (Heisenberg’s  and Schrodinger’s  first papers on quantum
mechanics) as well as development of the first computer – Electronic Numerical Integrator
and Computer (ENIAC) build in  for the USA Department of the Army. However, it took
about twenty years after creation of ENIAC computers to deliver computational chemistry tech-
niques to scientific community. Such early methods being semi-empirical in nature rely on
the number of parameters derived from experiments. Though such an approach unites exper-
imental chemistry origins with new theoretical approaches, in some cases it also produced
artificial computational results. Further, it also lacks reliable parameters for some elements.
The next, successful chapter for computational chemistry started in the s with applications
of non-empirical ab initio methods. The first ab initio computer code popular among non-
theoreticians – GAUSSIAN  – was developed in the s by John A Pople’s group. It initiated
a computational chemistry revolution that fired up in the s when supercomputers became
accessible to the general scientific community. Also during this period, the Density Functional
Theory approaches gained a prominent position among efficient computational methods. The
vital role of computational chemistry inmany research areas was convincingly acknowledged in
 when the chemical and physical community celebrated the Nobel Prize that was awarded
to two leading computational experts. Walter Kohn and John A. Pople were recognized by
the Nobel Committee for their contributions to the development of efficient computational
methods for quantum chemistry.

Over the years, different methods of theoretical chemistry have been successfully trans-
formed into useful tools that could be applied in diverse areas of scientific and technological
research. Owing to the fundamental methodological developments and continued impressive
progress in computational technologies in the last quarter of the twentieth century, several fast
and user-friendly programs have been developed and made accessible to a wide community of
scientists. These nearly automatic computer codes indicate how methods of theoretical chem-
istry could be applied as both diagnostic and predictive research tools which support efforts
and even guide directions of traditional experimental approaches. The user-friendly features
of commercial codes combined with efficient visualization methods make them accessible to
researchers with practically any educational background. Generally, only a limited knowledge
and a little formal experience in theoretical chemistry are required to use such programs and to
obtain some numerical data. This might cause unexpected outcomes. Most of the methods of
theoretical (quantum) chemistry have a limited range of applications and their use by an inexpe-
rienced amateur who performs computational studies without understanding such constraint
may lead to serious problems and spurious results. Moreover, due to the availability of a variety
of methods of different quality, a user without a good background in theoretical chemistry may
feel lost given the choices from usually rich menus of available programs.
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The three volume “HandbookofComputationalChemistry” is primarily intended as a guide
that can help to navigate among different computational methods currently in use. In order to
accomplish this goal, we collected  chapters that provide compact description of the basis of
computational chemistry techniques along with vast examples of applications of thesemethods
in various areas. The handbook is designed for researchers who are just being introduced to
computational methods, as well as for those who are searching for the best choice for solution
to specific problems involving theoretical approaches.

The first volume briefly describes different methods used in computational chemistry with-
out going into exhaustive details of theory. Basic assumptions common to the majority of
computational methods based on either quantum or statistical mechanics are outlined. Par-
ticular attention is paid to the limits of their applicability. Importantly, this volume also estab-
lishes definitions of a variety of acronyms and terminology used in the area of computational
chemistry.

Since we assumed that the readers of this book are interested in applications of computa-
tional methods, a broad range of the most important applications of computational chemistry
is provided in the second section of the first volume. The applications include descriptions of
standard chemical calculations for model molecules under various conditions. The Handbook
provides information on the prediction of variousmolecular properties as well as investigations
of chemical reactions.

There are two classes of species: biomolecules and nanomaterials that are of a vital interest
not only to chemists but also to physicists, biologists, and material scientists. Two volumes are
devoted to a description of specific computational methods that are designed to investigate such
species. Numerous examples of applications as well as descriptions of specific research problems
and their solutions for various types of biomolecules and nanoparticles are given in the second
and third volumes of the Handbook. The reviewed topics will attract the attention of all those
who are already working or planning to start research involving computational approaches.

The idea of this handbook crystallized after numerous discussionswith a dear friend and the
leading Polish quantum chemists Andrzej J. Sadlej. Andrzej was also actively involved in select-
ing the potential contributors and editing the book. Unfortunately, he passed away before the
book was published.Thought he is no longer with us, he will always be remembered. Andrzej’s
intellectual contributionswill continue to live on and thisHandbook, which is dedicated to him,
is intended as a tribute to his memory for friends, colleagues and students to remember him.

The Editors
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  From Quantum Theory to Computational Chemistry. A Brief Account of Developments

Abstract: Quantum chemical calculations rely on a few fortunate circumstances, like usu-
ally small relativistic and negligible electrodynamic (QED) corrections, and large nuclei-
to-electrons mass ratio. Unprecedented progress in computer technology has revolutionized
quantum chemistry, making it a valuable tool for experimenters. It is important for computa-
tional chemistry to elaborate methods that look at molecules in a multiscale way, provide its
global and synthetic description, and compare this description with those for other molecules.
Only such a picture can free researchers from seeing molecules as a series of case-by-case stud-
ies. Chemistry is a science of analogies and similarities, and computational chemistry should
provide the tools for seeing this.

Introduction – Exceptional Status of Chemistry

Contemporary science fails to explain the largest-scale phenomena taking place in the universe,
such as the speeding up of the galaxies (supposedly due to the undefined “black energy”) and
the nature of the lion’s share of the universe’s matter (and also unknown “dark matter”).

Quantum chemistry is in a far better position, which may be regarded even as excep-
tional in the sciences. The chemical phenomena are explainable down to individual molecules
(which represent the subject of quantum chemistry) by current theories. It turned out, by com-
paring theory and experiment, that the solution to the Schrödinger equation (Schrödinger
a, b, c, d) offers in most cases a quantitatively correct picture. Only molecules with very
heavy atoms, due to the relativistic effects becoming important, need to be treated in a special
way based on the Dirac theory (Dirac a, b). This involves an approximate Hamiltonian in
the form of the sum of Dirac Hamiltonians for individual electrons, and the electron–electron
interactions in the form of the (non-relativistic) Coulomb terms, a common and compu-
tationally successful practice ignoring, however, the resulting resonance character of all the
eigenvalues (Brown and Ravenhall ; Pestka et al. ). When, very rarely, higher accu-
racy is needed, one may eventually include the quantum electrodynamics (QED) corrections, a
procedure currently far from routine application, but still feasible for very small systems (Łach
et al. ).

This success of computational quantum chemistry is based on a few quite fortunate
circumstances (for references see, e.g., Piela ):

• Atoms and molecules are built of only two kinds of particles: nuclei and electrons.
• Although nuclei have non-zero size (electrons are regarded as point-like particles), the size

is so small that its influence is below chemical accuracy (Łach et al. ).Therefore, all the
constituents of atoms and molecules are treated routinely as point charges.

• The QED corrections are much smaller than energy changes in chemical phenomena
(e.g.,  : ) and may be safely neglected in most applications (Łach et al. ).

• The nuclei are thousands times heavier than electrons and therefore, except in some spe-
cial situations, they move thousands times slower than electrons. This makes it possible
to solve the Schrödinger equation for electrons, assuming that the nuclei do not move,
i.e., their positions are fixed in space (“clamped nuclei”). This concept is usually pre-
sented within the so called adiabatic approximation. In this approximation the motion
of the nuclei is considered in the next step, in which the electronic energy (precalculated for
any position of the nuclei), togetherwith a usually small diagonal correction for coupling the
nuclei-electrons motion, plays the role of the potential energy surface (PES).The total wave
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function is assumed to be a product of the electronic wave function and of the function
describing the motion of the nuclei. The commonly used Born–Oppenheimer (Born and
Oppenheimer ) approximation (B-O) is less accurate than the adiabatic one, because it
neglects the above-mentioned diagonal correction, making the PES independent of nuclear
masses. Using the PES concept one may introduce the crucial idea of the spatial structure
of a molecule, defined as those positions of the nuclei that assure a minimum of the PES.
This concept may be traced back to Hund (a, b, c). Moreover, this structure corre-
sponds to a certain ground-state electron density distribution that exhibits atomic cores,
atom–atom bonds, and atomic lone pairs.

It is generally believed that the exact analytical solution to the Schrödinger equation
for any atom (except the hydrogen-like atom) or molecule is not possible. Instead, some
reasonable approximate solutions can be obtained, practically always involving calculation of
a large number of molecular integrals, and some algebraic manipulations on matrices built of
these integrals. The reason for this is efficiency of what is known as algebraic approximation
(“algebraization”) of the Schrödinger equation. The algebraization is achieved by postulating a
certain finite basis set {Φi}

i=M
i= and expanding the unknown wave function as a linear com-

bination of the “known” Φi with unknown expansion coefficients. Such an expansion can be
encountered in the one-electron case (e.g., linear combination of atomic orbitals introduced
by Bloch ), or/and in the many-electron case, e.g., the total wave function expansion in
Slater determinants, related to configurations (Slater ), or in the explicitly correlated many-
electron functions (Hylleraas ). It is assumed for good quality calculations (arguments are
as a rule of numerical character only) that a finiteM chosen is large enough to produce sufficient
accuracy, with respect to what would be with M = ∞ (exact solution). The above-mentioned
integrals appear because, after the expansion is inserted into the Schrödinger equation, one
makes the scalar products (they represent the integrals, which should be easy to calculate) of
the expansion with Φ, Φ, . . . , ΦM , consecutively. In this way the task of finding the wave func-
tion by solving the Schrödinger equation is converted into an algebraic problem of finding the
expansion coefficients, usually by solving some matrix equation. It remains to take care of the
choice of the basis set {Φi}

i=M
i= . The choice represents a technical problem, but unfortunately it

contains a lot of arbitrariness and, at the same time, is one of the most important factors influ-
encing cost and quality of the computed solution. Application of functions Φi based on the
Gaussian-type one-electron orbitals (GTO) (Boys et al. ) provides a low cost/quality ratio
and this fact is considered as one of the most important factors that has made computational
chemistry so efficient.

Algebraization involves as a rule a large M and therefore the whole procedure requires fast
computing facilities. These facilities changed over time, from very modest manual mechani-
cal calculators at the beginning of the twentieth century to what we consider now as powerful
supercomputers. Almost immediately after formulation of quantum mechanics in , Dou-
glas Hartree published several papers (Hartree ) presenting his manual calculator-based
solutions for atoms of rubidium and chlorine. However amazing it looks now, these were
self-consistent ab initio computations.

 Computational chemistry contributed significantly to applied mathematics, because new methods had to be
invented in order to treat the algebraic problems of a previously unknown scale (like for M of the order of
billions), see, e.g., Roos ().

 That is, derived from the first principles of (non-relativistic) quantum mechanics.
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In ,WalterHeitler and FritzWolfgang London clarified the origin of the covalent chem-
ical bond (Heitler and London ), the concept crucial for chemistry. In the paper the authors
demonstrated, in numerical calculations, that the nature of the covalent chemical bond in H is
of quantum character, because the (semiquantitatively) correct description of H emerged only
after inclusion the exchange of electrons  and  between the nuclei in the formula a()b()
(a, b are the s atomic orbitals centered on nucleus a and nucleus b, respectively) resulting in
the wave function a()b()+a()b().Thus, taking into account also the contribution ofHund
(a, b, c),  is therefore the year of birth of computational chemistry.

Perhaps the most outstanding manual calculator calculations were performed in  by
Hubert James and Albert Coolidge for the hydrogen molecule (James and Coolidge ).
This variational result has been the best one in the literature over a period of  years.

The smarked the beginning of a new era – the time of programmable computers. Appar-
ently, just another tool for number crunching became available. In fact, however, the idea of
programming made a revolution because it

• Liberated humans from tedious manual calculations.
• Offered large speed of computation, incomparable to any manual calculator. Also, the new

data storage tools soon became of massive character.
• Resulted inmore andmore efficient programs, based on earlier versions (like staying “on the

shoulders of the giants”), offering possibilities to calculate dozens of molecular properties.
• Allowed the dispersed, parallel and remote calculations.
• Resulted in the new branch of chemistry: computational chemistry. 

• Allowed performing calculations by anyone, even those not trained in chemistry, quantum
chemistry, mathematics, etc.

The first ab initio Hartree–Fock calculations (based on ideas of Douglas Hartree ()
and Vladimir Fock (a, b)) on programmable computers for diatomic molecules were per-
formed at the Massachusetts Institute of Technology in , using a basis set of Slater-type
orbitals.The first calculations with Gaussian-type orbitals were carried out by Boys and cowork-
ers, also in  (Boys et al. ). An unprecedented spectroscopic accuracy was obtained
for the hydrogen molecule in  by Kołos and Roothaan (). In the early s the
era of gigantic programs began with the possibility to compute many physical quantities
at various levels of approximation. We currently live in an era with computational possi-
bilities growing exponentially (the notorious “Moore law” of doubling the computer power
every  years). This enormous progress revolutionized our civilization in a very short time.
The revolution in computational quantum chemistry changed chemistry in general, because
computations became feasible for molecules of interest for experimental chemists.The progress
has been accompanied by achievements in theory, however mainly of the character related to
computational needs. Today, fairly accurate computations are possible for molecules composed

 It is difficult to define what computational chemistry is. Obviously, whatever involves calculations in chem-
istry might be treated as part of it. This, however, sounds like a pure banality. The same is true with the idea
that computational chemistry means chemistry that uses computers. It is questionable whether this prob-
lem needs any solution at all. If yes, the author sticks to the opinion that computational chemistry means
quantitative description of chemical phenomena at the molecular level.

 Perhaps the best known is GAUSSIAN, elaborated by a large team headed by John Pople.
 The speed as well as the capacity of computer, memory increased about  billion times over a period of 
years. This means that what now takes an hour of computations, would require in  about , years of
computing.
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of several hundreds of atoms, spectroscopic accuracy is achievable for molecules with a dozen
atoms, while the QED calculations can be performed for the smallest molecules only (few
atoms).

AHypothetical Perfect Computer

Suppose we have at our disposal a computer that is able to solve the Schrödinger equation
exactly for any system and in negligible time. Thus, we have free access to the absolute detailed
picture of any molecule. This means we may predict with high accuracy and confidence the
value of any property of any molecule. We might be tempted to say that being able to give such
predictions is the ultimate goal of science: “We know everything about our system. If you want
to know more about the world, take other molecules and just compute, you will know.”

Let us consider a system composed of  carbon nuclei,  protons and  electrons. Sup-
pose we want to know the geometry of the system for the ground state.The computer answers
that it does not know what we mean by the term “geometry”. We are more precise now and say
that we are interested in the carbon–carbon (CC) and carbon–hydrogen (CH) distances. The
computer answers that it is possible to compute only the mean distances, and provides them
together with the proton–proton, carbon–electron, proton–electron and electron–electron dis-
tances, because it treats all the particles on an equal footing.We look at the CC andCHdistances
and see that they are much larger than we expected for the CC and CH bonds in benzene.The
reason is that in our perfect wave function the permutational symmetry is correctly included.
This means that the average carbon–proton distance takes into account all carbons and all pro-
tons.The samewith other distances. To deducemore wemay ask for computing other quantities
like angles, involving three nuclei. Here, too, we will be confronted with numbers including
averaging over identical particles. These difficulties do not necessarily mean that the molecule
has no spatial structure at all, although this can also happen. The numbers produced would be
extremely difficult to translate into a D picture even for quite small molecules, not to mention
such a floppy molecule as a protein.

In many cases we would obtain a D picture we did not expect. This is because many
molecular structures we are familiar with represent higher-energy metastable electronic states
(isomers). This is the case in our example. When solving the time-dependent Schrödinger
equation, we are confronted with this problem. Let us use as a starting wave function the one
corresponding to the benzene molecule. In time-evolution we will stay probably with a sim-
ilar geometry for a long time. However, there is a chance that after a long period the wave
function changes to that corresponding to three interacting acethylene molecules (three times
HCCH). The Born–Oppenheimer optimized ground electronic state corresponds to the ben-
zene [−.au in the Hartree–Fock approximation for the --G(d) basis set]. The three
isolated acethylene molecules (in the same approximation) have the energy −. au, and
the molecule (also with the same formula CH) HC − C ≡ C − C ≡ CH − . au.
Thus, the benzene molecule seems to be a stable ground-state, while the three acethylenes and
the diacethylene are metastable states within the same ground electronic state of the system.

 In addition, we assume the computer is so clever, that it automatically rejects those solutions, which are
not square-integrable or do not satisfy the requirements of symmetry for fermions and bosons. Thus, all
non-physical solutions are rejected.
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All the three physically observed realizations of the system C + H are separated by barriers;
this is the reason why they are observable.

What is, therefore, themost stable electronic ground state corresponding to the flask of ben-
zene?This is a quite different question, which pertains to systems larger than a single molecule.
If we multiply the number of atoms in a single molecule of benzene by a natural number N ,
we are confronted with new possibilities of combining atoms into molecules, not necessarily of
the same kind and possibly larger than CH. For a large N we are practically unable to find
all the possibilities. In some cases, when based on chemical intuition and limiting to simple
molecules, we may guess particular solutions. For example, to lower the energy for the flask of
benzene we may allow formation of the methane molecules and the graphite (the most stable
form of carbon). Therefore, the flask of benzene represents a metastable state.

Suppose we wish to know the dipole moment of, say, the HCl molecule, the quantity that
tells us important information about the charge distribution. We look up the output and we do
not find anything about dipole moment. The reason is that all molecules have the same dipole
moment in any of their stationary state Ψ, and this dipole moment equals to zero, see, e.g.,
Piela () p. . Indeed, the dipole moment is calculated as the mean value of the dipole
moment operator i.e., μ = ⟨Ψ∣μ̂Ψ⟩ = ⟨Ψ∣ (

∑i qiri)Ψ⟩, index i runs over all electrons and
nuclei. This integral can be calculated very easily: the integrand is antisymmetric with respect
to inversion and therefore μ = . Let us stress that our conclusion pertains to the total wave
function, which has to reflect the space isotropy leading to the zero dipole moment, because
all orientations in space are equally probable. If one applied the transformation r → −r only
to some particles in the molecule (e.g., electrons), and not to the other ones (e.g., the nuclei),
then the wave function will show no parity (it would be neither symmetric nor antisymmetric).
We do this in the adiabatic or Born–Oppenheimer approximation, where the electronic wave
function dependson the electronic coordinates only.This explains why the integral μ = ⟨Ψ∣μ̂Ψ⟩
(the integration is over electronic coordinates only) does not equal zero for some molecules
(which we call polar). Thus, to calculate the dipole moment we have to use the adiabatic or the
Born–Oppenheimer approximation.

Now we decide to introduce the Born–Oppenheimer approximation (we resign from the
absolute correct picture) and to focus on the most important features of the molecule.The first,
most natural one, is the molecular geometry, this one that leads to a minimum of the elec-
tronic energy.The problem is that usually we have many such minima of different energy, each
minimum corresponding to its own electronic density distribution. Each such distribution cor-
responds to some particular chemical bonds pattern. Inmost cases the user of computers does
not even think of these minima, because he or she performs the calculations for a predefined
configuration of the nuclei and forces the system (usually not being aware of it) to stay in its
vicinity. This is especially severe for large molecules, such as proteins. They have an astronomic
number of stable conformations, but often we take one of them and perform the calculations
for this one. It is difficult to say why we select this one, because we rarely even consider the
other conformations. In this situation we usually take as the starting point a crystal structure
conformation (we believe in its relevance for a free molecule).

 Bond patterns are almost the same for different conformers.
 For a dipeptide one has something like ten energy minima, counting only the backbone conformations (and
not counting the side chain conformations for simplicity). For a very small protein of, say, a hundred amino
acids, the number of conformations is therefore of the order of  , a very large number exceeding the
estimated number of atoms in the Universe.
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Moreover, usually one starts calculations by setting a starting electronic density distribution.
The choice of this density distribution may influence the final electronic density and the final
geometry of the molecule. In routine computations one guesses the starting density accord-
ing to the starting nuclear configuration chosen. This may seem to be a reasonable choice,
exceptwhen small deformation of the nuclear framework leads to large changes in the electronic
density.

In conclusion, in practice the computer gives the solution which is close to what the computing
person considers as “reasonable” and sets as the starting point.

Does Predicting Mean Understanding?

The existing commercial programs allow us to make calculations for molecules, treating each
molecule as a new task, as if every molecule represented a new world, which has nothing to do
with other molecules.Wemight not be satisfied with such a picture.Wemight be curious about
the following:

• Living in the D space, does the system have a certain shape or not?
• If yes, why the shape is of this particular kind?
• Is the shape fairly rigid or rather flexible?
• Are there some characteristic substructures in the system?
• How do they interact?
• How do they influence the calculated global properties, etc?
• Are the same substructures present in other molecules?
• Does the presence of the same substructures determine similar properties?

It is of fundamental importance for chemistry that we do not study particular cases, case
by case, but derive some general rules. Strictly speaking these rules are false because, due to
approximations made, they are valid to some extent only. However, despite this, they enable
chemists to operate, to understand, and to be efficient. If we relied uniquely on exact solu-
tions of the Schrödinger equation, there would be no chemistry at all; people would lose the
power of rationalizing chemistry, in particular to design syntheses of newmolecules. Chemists
rely on molecular spatial structure (nuclear framework), on the concepts of valence electrons,
chemical bonds, electronic lone pairs, importance of HOMO and LUMO energies, etc. All these
notions have no rigorous definition, but they still are of great importance in describing amodel
of molecule. A chemist predicts that two OH bonds have similar properties, wherever they are
in molecule. Moreover, chemists are able to predict differences in the OH bonds by consider-
ing what the neighboring atoms are in each case. It is of fundamental importance in chemistry
that a group of atoms with a certain bond pattern (functional group) represents an entity that
behaves similarly, when present in different molecules.

We have at our disposal various scales at which we can look at details of the molecule under
study. In the crudest approach we may treat the molecule as a point mass, which contributes to
the gas pressure. Next we might become interested in the shape of the molecule, and we may
approximate it first as a rigid rotator and get an estimation of rotational levels we can expect.
Then we may leave the rigid body model and allow the atoms of the molecule to vibrate about
their equilibrium positions. In such a case we need to know the corresponding force constants.
This requires either choosing the structural formula (chemical bond pattern) of the molecule
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together with taking the corresponding empirical force constants, or applying the normal
mode analysis, first solving the Schrödinger equation in the Born–Oppenheimer approximation
(we have a wide choice of the methods of solution). In the first case, we obtain an esti-
mation of the vibrational levels, in the second, we get more reliable vibrational analysis,
especially for larger atomic orbital expansions. If we wish we may consider anharmonicity of
vibrations.

At the same time we obtain the electronic density distribution from the wave function Ψ
for N electrons

ρ(r) = N
∑



σ= 


∫

dτdτ . . . dτN ∣Ψ(r, σ, r, σ, . . . , rN , σN)∣.

According to the Hellmann–Feynman theorem (Feynman ; Hellmann ), ρ is sufficient
to compute the forces acting on the nuclei.Wemay compare the resulting ρ calculated at differ-
ent levels of approximation, and evenwith the naive structural formula.The density distribution
ρ can be analyzed in the way known as Bader analysis (Bader ). First, we find all the critical
points, in which ∇ρ = . Then, one analyzes the nature of each critical point by diagonalizing
the Hessian matrix calculated at the point:

• If the three eigenvalues are negative, the critical point corresponds to a maximum of ρ.
• If two are negative and one positive, the critical point corresponds to a covalent bond.
• If one is negative and two positive, the critical point corresponds to a center of an atomic

ring.
• If all three are positive, the critical point corresponds to an atomic cavity.

The chemical bond critical points correspond to some pairs of atoms; there are other pairs
of atoms, which do not form bonds. The Bader analysis enables chemists to see molecules in
a synthetic way, nearly independent of the level of theory that has been used to describe it,
focusing on the ensemble of critical points. We may compare this density with the density of
other molecules, similar to ours, to see whether one can note some local similarities. We may
continue this, getting a more and more detailed picture down to the almost exact solution of
the Schrödinger equation.

It is important in chemistry to follow such a way, because at its beginning as well as at its end
we know very little about chemistry. We learn chemistry on the way.

 The low-frequency vibrations may be used as indicators to look at possible instabilities of the molecule,
such as dissociation channels, formation of new bonds, etc. Moving all atoms, first according to a low-
frequency normal mode vibration and continuing the atomic displacements according to the maximum
gradient decrease, we may find the saddle point, and then, sliding down, detect the products of a reaction
channel.

 The integration of ∣Ψ∣ is over the coordinates (space and spin ones) of all the electrons except one (in our
case the electron  with the coordinates r, σ ) and in addition the summation over its spin coordinate (σ).
As a result one obtains a function of the position of the electron  in space: ρ(r). The wave function Ψ
is antisymmetric with respect to exchange of the coordinates of any two electrons, and, therefore, ∣Ψ∣ is
symmetric with respect to such an exchange. Hence, the definition of ρ is independent of the label of the
electron we do not integrate over. According to this definition, ρ represents nothing else but the density of
the electron cloud carrying N electrons, and is proportional to the probability density of finding an electron
at position r.

 Strictly speaking the nuclear attractors do not represent critical points, because of the cusp condition (Kato
).

 We may also analyze ρ using a “magnifying glass” represented by −Δρ.
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Orbital Model

The wave function for identical fermions has to be antisymmetric with respect to exchange
of coordinates (space and spin ones) of any two of them. This means that two electrons
having the same spin coordinate cannot occupy the same position in space. Since wave func-
tions are continuous this means that electrons of the same spin coordinate avoid each other
(“Fermi hole” or “exchange hole” about each of them). This Pauli exclusion principle does not
pertain to two electrons of opposite spin. However, electrons repel one another (Coulombic
force) at any finite distance, i.e., have to avoid one another because of their charge (“Coulomb
hole” or “correlation hole” around each of them). It turned out, references in Piela ()
p. , that the Fermi hole is by far more important than the Coulomb hole. A high-quality
wave function has to reflect the Fermi and the Coulomb holes. The corresponding mathe-
matical expression should have the antisymmetrization operator in front, this will take care
of the Pauli principle (and introduce a Fermi hole). Besides this, it should have some parame-
ters or mathematical structure controlling somehow the distance between any pair of electrons
(this will introduce the Coulomb repulsion). Since the Fermi hole is much more impor-
tant, it is reasonable to consider first a wave function that takes care of the Fermi hole only.
The simplest way to take the Fermi hole into account is the orbital model (approximation).
Within the orbital model the most advanced is the Hartree–Fock method. In this method the
Fermi hole is taken into account by construction (antisymmetrizer). The Coulomb hole is not
present, because the Coulomb interaction is calculated through averaging the positions of the
electrons.

The orbital model is wrong, because it neglects the Coulomb hole. Being wrong, it has
however, enormous scientific power, because:

• It allows one to see the electronic structure as contributions of individual electrons, with
their own “wave functions” i.e., orbitals with a definite mathematical form, symmetry,
energy (“orbital levels”), etc.

• We take the Pauli exclusion principle into account by not allowing occupations of an orbital
by more than two electrons (if two, then of the opposite spin coordinates).The occupation
of all orbital levels is known as orbital diagram.

• The orbital energy may be interpreted as the energy needed to remove an electron from
the orbital (assuming that all the orbitals do not change during the removing, Koopmans’
theorem, Koopmaans ).

• Molecular electron excitations may often be identified with changing the electron occu-
pancy in the orbital diagram.

• We may even consider electron correlation (Coulomb hole), either by allowing different
orbitals for electrons of different spin, or considering a wave function expansion composed
of electron diagrams with various occupations.

• One may trace the molecular perturbations to changes in the orbital diagram.
• One may describe chemical reactions as a continuous change from a starting to a final

molecular diagram.Theory and computational experience bring some rules, like that only
those orbitals of the molecular constituents mix, which have similar orbital energies and
have the same symmetry. This leads to important symmetry selection rules for chemi-
cal reactions (Fukui and Fujimoto ; Woodward and Hoffmann ) and for optical
excitations (Cotton ).
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• The orbital model provides a language to communicate among chemists (including
quantum chemists).This language and the numerical experience supported by theory cre-
ate a kind of quantum mechanical intuition coupled to experiment, which allows us to
compare molecules, to classify them, and to predict their properties in a semiquantitative
way. A majority of theoretical terms in quantum chemistry stem from the orbital theory.

Power of Computer Experiments

In experiments we always see quantities averaged over all molecules in the specimen, all ori-
entations allowed, all states available for a given temperature, etc. In some experiments we are
able to specify the external conditions in such a way as to receive the signal frommolecules in a
given state. Even in such a case the results are averaged over molecular vibrations, which intro-
duce (usually quite small) uncertainty for the positions of the nuclei, close to the minimum of
the electronic energy (in the adiabatic or Born–Oppenheimer approximations).

This means that in almost all cases the experimenters investigate molecules close to the
minimumof the electronic energy (minimumof PES).What happens to the electronic structure
for other configurations of the nuclei is a natural question, sometimes of great importance (e.g.,
for chemical reactions).Only computational chemistry opens theway to seewhatwould happen
to the energy and to the electronic density distribution if

• Some internuclear distances increased, even to infinity (dissociation)
• Some internuclear distances shortened, and the shortening may correspond even to col-

lapsing the nuclei into a united nucleus, or approaching two atoms which in the minimum
of PES form or do not form a chemical bond. This allows us to investigate what happens
to the molecule under a gigantic pressure, etc

• Some nuclei changed their mass or charge (beyond what one knows from experiment)
• We apply to the system an electric field, whose character is whateverwe imagine as appro-

priate. Sometimes such a field may approximate the influence of charge distributions in
neighboring molecules

This makes out of computational chemistry a quite unique tool allowing to give the answer
about the energy and electronic density distribution (bond pattern) for any system and for any
deformation of the system we imagine. This powerful feature can be used not only to see what
happens for a particular experimental situation, but also what would happen if we were able to
set the conditions much beyond any imaginable experiment.

Conclusions

What counts in computational chemistry is looking at molecules at various scales (using var-
ious models) and comparing the results for different molecules. If one could only obtain an
exact picture of the molecule without comparing the results for other molecules, we would

 One has to be aware of a related mathematical trap. Applying even the smallest uniform electric field imme-
diately transforms the problem into one with metastable energy (the global minimum corresponding to
dissociation of the system, with the energy equal to −∞), see, e.g., Piela (), p. .
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be left with no chemistry. The power of chemistry comes from analogies and similarities,
as well as from trends rather than from the ability of predicting properties. Such ability is
certainly important for being efficient in any particular case, but predicting by computation
does not mean understanding. We need computers with their impressive speed, capacity, and
possibility to give us precise predictions, but also we need a language to speak about the com-
putations, a model that simplifies the reality, but allows us to understand what we are playing
with in chemistry.
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Abstract: Arguments are advanced to support the view that at present it is not possible to
derive molecular structure from the full quantum mechanical Coulomb Hamiltonian associ-
ated with a given molecular formula that is customarily regarded as representing the molecule
in terms of its constituent electrons and nuclei. However molecular structure may be identi-
fied provided that some additional chemically motivated assumptions that lead to the clamped
nuclei Hamiltonian are added to the quantum mechanical account.

Introduction

The traditional specification of a molecule in classical chemistry is in terms of atoms joined by
bonds, and this accounts for the central fact of chemistry that the generic molecular formula is
associatedwith the occurrence of isomers. Such an approach does not provide a useful basis for
a physical theory since we do not know the general laws of interaction between atoms. Instead
a more abstract description in terms of the particle constituents of a molecule, electrons and
nuclei, is employed. We shall confine the discussion to the nonrelativistic level of theory; with
this proviso the interactions between electrons and nuclei are assumed to be fully specified by
Coulomb’s law, and this makes possible the explicit formulation of a molecular Hamiltonian.
This so-called Coulomb Hamiltonian will be given explicitly (> Eq. .) in the next section; it
forms the starting point of the chapter.

We concentrate on two broad themes. It is obvious that the whole collection of isomers sup-
ported by a givenmolecular formula share the sameCoulomb Hamiltonian.The first part of the
chapter is concerned with how this fundamental fact has been treated in quantum chemistry
through the introduction of the clamped nuclei Hamiltonian.This involves two crucial assump-
tions: () the nuclei can be treated as fixed (“clamped”) classical particles that merely provide
a classical external potential for the electrons and () formally identical nuclei can be treated
as distinguishable. The second part of the chapter discusses in a general way the basic quan-
tum mechanical theory of the clamped nuclei Hamiltonian, concentrating particularly on its
symmetry properties.

The Clamped Nuclei Approximation

The conventional nonrelativistic Hamiltonian for a system of N electrons with position vari-
ables, xei , and a set of A nuclei with position variables xni may be written as

H(xn, xe) = −

ħ

m

N
∑

i=
∇


(xei ) +

e

πє

N
∑

i , j=

′ 
∣xei − xej ∣

−

e

πє

A
∑

i=

N
∑

j=

Zi

∣xej − xni ∣

−

ħ



A
∑

k=

∇


(xnk)
mk

+

e

πє

A
∑

i , j=

′ ZiZ j

∣xni − xnj ∣
.

(.)

This is theCoulombHamiltonian for the electrons and nuclei specified by a givenmolecular for-
mula.We use a Schrödinger representation in which the operators are simple time-independent
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multiplicative operators acting on functions of the coordinate variables (“wavefunctions”).
Kato () established that the Coulomb Hamiltonian, H, is essentially self-adjoint.

This property, which is stronger than Hermiticity, guarantees that the time evolution

Ψ(t) = exp(

−iHt
ħ

)Ψ()

of a Schrödinger wavefunction is unitary, and so conserves probability. Furthermore the eigen-
values of H are associated with a complete set of eigenfunctions. This is not necessarily true
for operators that are Hermitian but not self-adjoint. It was pretty obvious to applied mathe-
maticians that the kinetic energy operator alone is indeed self-adjoint because of their classical
mechanical experience. It was shown by Stone in the s that multiplicative operators of the
kind specified above are also self-adjoint but it was entirely unobvious that the sum of the oper-
ators would be self-adjoint because the sum of the operators is defined only on the intersection
of their domains.

What Kato showed was that for a range of potentials including Coulomb ones,
and for any function f in the domain D of the full kinetic energy operator T, the
domain of the full problem DV contains D and there are two constants a and b
such that

∣∣V f ∣∣ ≤ a∣∣T f ∣∣ + b∣∣ f ∣∣,

where a can be taken as small as is liked. This result is often summarized by saying
that the Coulomb potential is small compared to the kinetic energy. Given this result he
then proved that the usual operator is indeed, for all practical purposes, self-adjoint and
is bounded from below. Why worry about this? Well if the operator is not self-adjoint it
could support solutions interpretable as a particle falling into a singularity or getting to
infinity in a finite time and these are unacceptable as physical solutions. Such patholo-
gies occur in, for example, the classical mechanics of three bodies in a Coulomb field.
The practical significance of Kato’s proof is the guarantee that such unphysical solutions
will not arise from solving the quantum mechanical eigenvalue problem for the Coulomb
Hamiltonian.

It is easily established that the Coulomb Hamiltonian is invariant under the coordi-
nate transformations that correspond to uniform translations, rotation-reflections, and per-
mutations of particles with identical masses and charges. Because of the symmetry of the
Coulomb Hamiltonian its eigenfunctions will be basis functions for irreducible representa-
tions (irreps) of the translation group in three dimensions, the orthogonal group in three
dimensions, and for the various symmetric groups corresponding to the sets of identical
particles.

Quantum mechanical molecular structure calculations are most commonly attempted by
first clamping the nuclei at fixed positions and then performing electronic structure calculations
treating the clamped nuclei as providing a potential field for the electronic motion. With the

The work was completed in  and was actually received by the journal in October .
An elementary example is afforded by the momentum operator p̂ = −iħd/dq, which is Hermitian on an
appropriately defined class of L functions ϕ(q); for these functions it is self-adjoint on −∞ ≤ q ≤ +∞ but
this property is lost if either of the∞ limits is replaced by any finite value a – see, for example, Thirring ().
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nuclei clamped at a particular fixed geometry specified by the constant vectors xni = ai , i =

, , . . . ,A, this modified Hamiltonian takes the form

Hcn
(a, xe) = −

ħ

m

N
∑

i=
∇


(xei ) −

e

πє

A
∑

i=

N
∑

j=

Zi

∣xej − ai ∣
+

e

πє

N
∑

i , j=

′ 
∣xei − xej ∣

+

e

πє

A
∑

i , j=

′ ZiZ j

∣ai − a j ∣
. (.)

It is customary to incorporate the nuclear repulsion energy into > Eq. .; the nuclear repul-
sion term is merely an additive constant and so does not affect the form of the electronic
wavefunctions. Its inclusion modifies the spectrum of the clamped nuclei Hamiltonian only
trivially by changing the origin of the energy. The eigenvalue equation for the clamped nuclei
Hamiltonian is then

H
cn

(a, xe)ψcn
p (a, xe) = Ecn

p (a)ψcn
p (a, xe), (.)

in which the eigenvalues (“electronic energies”) have a parametric dependence on the constant
nuclear position vectors {ai}.

It is sometimes asserted that the clamped nuclei Hamiltonian can be obtained from the
Coulomb Hamiltonian by letting the nuclear masses increase without limit. The Hamiltonian
that would result if this were done would be

Hnn
(xn, xe) = −

ħ

m

N
∑

i=
∇


(xei ) −

e

πє

A
∑

i=

N
∑

j=

Zi

∣xej − xni ∣
+

e

πє

N
∑

i , j=

′ 
∣xei − xej ∣

+

e

πє

A
∑

i , j=

′ ZiZ j

∣xni − xnj ∣
, (.)

with the formal Schrödinger equation, by analogy with > Eq. .,

Hnn
(xn, xe)ψnn

p (xn, xe) = Enn
p (xn)ψnn

p (xn, xe). (.)

Given that the Coulomb Hamiltonian has eigenstates such that

H(xn, xe)ψ(xn, xe) = Eψ(xn, xe), (.)

if the solutions of > Eq. . were well defined, it would seem that the eigenstates in > Eq. .
could be expanded as a sum of products of the form

ψ(xn, xe) =
∑

p
Φp(xn)ψnn

p (xn, xe), (.)

where the {Φ} play the role of “nuclear wavefunctions.”
In the Hamiltonian (> Eq. .), the nuclear variables are free and not constant and there

are no nuclear kinetic energy operators to dominate the potential operators involving these free
nuclear variables. The Hamiltonian thus specified cannot be self-adjoint in the Kato sense.The
Hamiltonian can be made self-adjoint by clamping the nuclei because the electronic kinetic
energy operators can dominate the potential operators which involve only electronic variables.
The Hamiltonian (> Eq. .) is thus a proper one and the solutions > Eq. . are a complete
set. But since the Hamiltonian (> Eq. .) is not self-adjoint it is not at all clear that the hoped
for eigensolutions of > Eq. . form a complete set suitable for the expansion (> Eq. .).
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However that may be, it was observed more than  years ago (Woolley and Sutcliffe ) that
the arguments for an expansion (> Eq. .) are quite formal because the Coulomb Hamilto-
nian has a completely continuous spectrum arising from the possibility of uniform translational
motion and so its solutions cannot be properly approximated by a sum of this kind.This means
too that the arguments of Born and Oppenheimer (), and of Born and Huang () for
their later approach to representations of this kind, are also quite formal.

As a basis for the Born–Oppenheimer and the Born approach, it is commonly assumed that
it is possible to construct an analytic potential function V(xn) such that

Ecn
p (a) = V(a), for some p and for all a, (.)

and that this potential forms an adequate starting point for a discussion of the nuclear motion
part of the full problem. Examination of the form of > Eq. . makes it clear, however, that
Ecn
p (a) takes the same value for all choices of a that differs from a given choice merely by a

uniform translation. Similarly it remains unchanged if the a differ only by a constant orthogo-
nal transformation. Thus any potential formed according to > Eq. . will have some variables
under any change of which no change in the potential will be described. In the context of cal-
culations of molecular spectra, these variables are often referred to as redundant ones. It is also
the case that Ecn

p (a) is invariant under the permutation of any nuclei with the same charge
(nuclear mass does not enter into > Eq. .). This means that the potential in > Eq. . will
have the same value for all geometries that can be obtained from a given geometry by means
of a permutation of nuclei with the same charge. Should the potential have any minima at all,
it always has as many as there are permutations of the nuclei with the same charge. This would
seem to make the assumption of a single isolated minimum in the potential, which is essential
to the usual account of the Born–Oppenheimer approximation, a rather too restrictive one for
comfort, except perhaps in the case of the diatomic system.

It is thus not at all clear to precisely which question the clamped nuclei Hamiltonian pro-
vides the answer and a further discussion of the properties of the Coulomb Hamiltonian is
required before the clamped nuclei problem can be put into an appropriate form for yielding a
potential. There are two main ways in which such a discussion can be attempted. If it is desired
to stay with the Coulomb Hamiltonian in its laboratory-fixed form then the solutions must
be expressed in coherent state (wave-packet) form to allow for their continuum nature. If the
solutions are required as L-normalizable wavefunctions, then the translational motion must
be separated from the Coulomb Hamiltonian and the solutions of the remaining translationally
invariant part must be sought. It is in this second approach that it is easiest to make contact
with the standard arguments and this will be considered in the following section.

The Separation of Translational Motion

All that is needed to remove the center-of-mass motion from the molecular Coulomb Hamil-
tonian is a linear point transformation symbolized by

(t ξ) = xV. (.)

In > Eq. ., t is a  × NT −  matrix (NT = N+A) and ξ is a  ×  matrix, so that the combined
(bracketed) matrix on the left of > Eq. . is  × NT . V is an NT × NT matrix which, from the
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structure of the left side of > Eq. ., has a special last column whose elements are

ViNT = MT
−mi , MT =

NT

∑

i=
mi . (.)

Hence ξ is the standard center-of-mass coordinate

ξ = MT
−

NT

∑

i=
mixi . (.)

As the coordinates t j, j = , , ....NT −  are to be translationally invariant we require the
condition,

NT

∑

i=
Vi j = , j = , , ....NT −  (.)

on each remaining column ofV and it is easy to see that > Eq. . forces t j → t j as xi → xi +a,
all i.

The ti are independent if the inverse transformation

x = (t ξ)V− (.)

exists. The structure of the right side of > Eq. . shows that the bottom row of V− is special
and, without loss of generality, its elements may be required to be

(V−
)NT i = , i = , .....NT . (.)

The inverse requirement on the remainder of V− implies that

NT

∑

i=
(V−

) jimi = , j = , , ....NT − . (.)

The Coulomb Hamiltonian (> Eq. .) in the new coordinates becomes

H(t, ξ) = −

ħ



NT−

∑

i=


μii

∇


(ti) −

ħ



NT−

∑

i , j=

′ 
μi j

⃗

∇(ti) ⋅

⃗

∇(t j) +

e

πєo

NT

∑

i , j=

′ ZiZ j

ri j(t)

−

ħ

MT
∇


(ξ)

= H′

(t) −

ħ

MT
∇


(ξ). (.)

Here the positive constants /μi j are given by:


μi j

=

NT

∑

k=
mk

−VkiVk j, i, j = , , ...NT − . (.)

The operator ri j is the interparticle distance operator expressed as a function of the ti . Thus

ri j(t) =

⎛

⎝

∑

α
(

NT−

∑

k=
((V−

)k j − (V−
)ki)tαk)


⎞

⎠

/

. (.)
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In > Eq. ., the ⃗

∇(ti) are gradient operators expressed in the Cartesian components of the
ti and the last term represents the center-of-mass kinetic energy operator. Since the center-of-
mass coordinate does not enter the potential energy term, the center-of-mass motion may be
separated off completely so that the eigenfunctions of H are of the form

T(ξ)Ψ(t), (.)

where Ψ(t) is a wavefunction for the Hamiltonian H′

(t), > Eq. ., which will be referred
to as the translationally invariant Hamiltonian. The eigenfunctions of this Hamiltonian will
be basis functions for irreps of the orthogonal group in three dimensions and for the various
symmetric groups of the sets of identical particles.

It should be emphasized that different choices ofV are unitarily equivalent so that the spec-
trum of the translationally invariant Hamiltonian is independent of the particular form chosen
for V, provided that it is consistent with > Eqs. . and > .. In particular it is perfectly
possible to put the kinetic energy operator into diagonal form by choosing an orthogonalmatrix
U that diagonalizes the positive definite symmetric matrix of dimension NT −  formed from
the /μi j and then replacing elements of the originally chosen V according to

Vi j →

NT−

∑

k=
VikUk j, j = ,  . . .NT−.

As can be seen from > Eq. ., the practical problem with any choice of V is the complicated
form given to the potential operator.

Choosing Electronic and Nuclear Variables in the Translationally
Invariant Hamiltonian

In order to identify the electrons, let the translationally invariant electronic coordinates be
chosen with respect to the center-of-nuclear mass

tei = xei − X, X = M−
∑

i=
mixni , M =

A
∑

i=
mi .

In the case of the atomA =  and the origin is the nucleus.Other coordinate choices are possible,
but this is the only choice that avoids a term in the kinetic energy operator coupling the elec-
tronic and nuclear variables and which allows the electronic part of the potential to be written
in terms of the electronic variables and the clamped nuclei positions (see Mohallem and Tostes
; Sutcliffe ).

There is no need to specify the proposed A−  translationally invariant nuclear variables tn

other than to say that they are expressed entirely in terms of the laboratory nuclear coordinates
by means of a matrixVn exactly likeV in > Eq. ., but with side A and with M in place ofMT

andX in place of ξ. It is also sometimes useful to define a set of redundant Cartesian coordinates

xni = xni − X, i = , , . . .A, so that
A

∑

i=
mixni = . (.)

Of course the laboratory nuclear variable xni cannot be completely written in terms of the
A −  translationally invariant coordinates arising from the nuclei, but in the electron-nucleus
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attraction and in the nuclear repulsion terms the center-of-nuclear mass X cancels out.
For ease of writing xni will continue to be used in those terms but it should be remembered
that the nuclear potentials are functions of the translationally invariant coordinates defined by
the nuclear coordinates.

On making this choice of electronic coordinates the electronic part of > Eq. . is

H
′e

(xn, te) = −

ħ

m

N
∑

i=
∇


(tei ) −

ħ

M

N
∑

i , j=

⃗

∇(tei ) ⋅

⃗

∇(tej) −

e

πє

A
∑

i=

N
∑

j=

Zi

∣tej − xni ∣

+

e

πє

N
∑

i , j=

′ 
∣tei − tej ∣

+

A
∑

i , j=

′ ZiZ j

∣xni − xnj ∣
. (.)

This electronic Hamiltonian is translationally invariant and would yield the usual form were
the nuclear masses to increase without limit. It has been noted (Kutzelnigg ) that to take
(> Eq. .) as the electronic Hamiltonian is inconsistent with a consideration of the solution
to the full problem being expressed in a series in terms of powers of the inverse total nuclear
mass, since this Hamiltonian already contains a term involving the inverse of this mass to the
first power.There is, however, no need to consider this term at the first stage of developmentof a
solution to the full problem and it can be included at the point where terms of similarmagnitude
are considered.The remaining part of > Eq. . is then exactly the same as the clamped nuclei
form. The clamped nuclei form can be deployed consistently in an account of solutions to the
full problem only if a uniform translational factor is included in the full solution. In the work
of Nakai et al. () (see also Sutcliffe ) the translational motion of the center-of-mass
is subtracted to yield a Schrödinger eigenvalue problem from which the translational part of
any continuous spectrum has been removed. Of course the spectrum of the resulting operator
can have a continuous spectral range, as can the translationally invariant form itself, for reasons
quite other than translational motion.

The nuclear part of > Eq. . involves only kinetic energy operators and has the form:

Kn
(tn) = −

ħ



A−
∑

i , j=


μni j

⃗

∇(tni ).⃗∇(tnj ), (.)

with the inverse mass matrix defined as a special case of > Eq. . involving only the original
nuclear variables.

Both (> Eqs. . and > .) are invariant under any orthogonal transformation of both
the electronic and nuclear variables. If the nuclei are clamped in > Eq. . then invariance
remains only under those orthogonal transformations of the electronic variables that can be
reexpressed as changes in the positions of nuclei with identical charges while maintaining
the same nuclear geometry. The form (> Eq. .) remains invariant under all permutations
of the electronic variables and is invariant under permutations of the variables of those nuclei
with the same charge. Thus if an electronic energy minimum is found at some clamped nuclei
geometry there will be as manyminima as there are permutations of identically charged nuclei.
The kinetic energy operator (> Eq. .) is invariant under all orthogonal transformations of
the nuclear variables and under all permutations of the variables of nuclei with the same mass.

The splitting of the translationally invariant Hamiltonian H′

(t) into two parts breaks its
symmetry, since each part exhibits only a sub-symmetry of the full problem. If wavefunctions
derived from approximate solutions to > Eq. . are to be used to construct solutions to the
full problem (> Eq. .) utilizing (> Eq. .) care will be needed to couple the sub-symmetries
to yield solutions with full symmetry.
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Atoms

For the atom there is no nuclear kinetic energy part and, denoting the nuclear mass by mn, the
full Hamiltonian is simply the electronic Hamiltonian

H
′e

(te) = −

ħ

m

N

∑

i=
∇


(tei ) −

ħ

mn

N

∑

i , j=

⃗

∇(tei ) ⋅

⃗

∇(tej) −

e

πє

N

∑

j=

Zi

∣tej ∣

+

e

πє

N

∑

i , j=

′ 
∣tei − tej ∣

. (.)

The electronic problem for the atom (> Eq. .) has exactly the same form and symmetry
as the full problem and meets the requirements for Kato self-adjointness, for there is a kinetic
energy operator in all of the variables that are used to specify the potential terms. This would
continue to be the case were the nuclear mass to increase without limit.

The atom is sometimes used as an illustration when considering the original form of the
Born–Oppenheimer approximation (as in Deshpande and Mahanty ), but the only aspect
of the approximation that can be thus illustrated is the translational motion part and that is eas-
ily considered in first order by treating the second term in > Eq. . as a perturbation to the
solution obtained using an infinite nuclear mass.The inclusion of this term in this way is anal-
ogous to making the usual diagonal Born–Oppenheimer correction and it can be made exactly
in the case of any one-electron atom (see Handy and Lee ). As noted in Hinze et al. ()
it is usually made approximately simply by including the diagonal part of the mass polarization
term (the second term in > Eq. . above) to produce an electronic reduced mass


μe

=


mn

+


m

in place of /m.
The Hamiltonian (> Eq. .) maintains full symmetry and is invariant under electronic

permutations and under rotation-reflections of the electronic coordinates. Trial functions are
usually constructed from atomic orbitals and from their spin-orbitals. Permutational antisym-
metry is achieved by forming Slater determinants from the spin-orbitals. Rotational symmetry
is usually realized by vector coupling of orbitals that form bases for representations of the
rotation group SO(). Spin-eigenfunctions too are achieved by vector coupling.

Molecules

Even after separating the translational motion, for amolecule there is always at least one nuclear
variable in the kinetic energy part of the operator, and self-adjointness cannot be achieved if
such terms are neglected while the potential terms involving the nuclear variables are included
except by clamping the nuclei. The treatment of molecules is, thus, technically much more
difficult than is the treatment of atoms.

Although the discussion that follows is, for the most part, quite general, explicit consid-
eration is confined to the diatomic case in order to avoid overburdening the exposition with

Some specifics of the implementation of permutational and rotational symmetry in quantum mechanics are
discussed in > section “The Symmetries of the Clamped Nuclei Electronic Hamiltonian.”
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details. However here too, there are certain technical features which simplify the diatomic case
and which cannot be transferred to the polyatomic case so care will be taken in the following
discussion not to make the diatomic the general case. For a system with two nuclei the natu-
ral nuclear coordinate is the internuclear vector which will be denoted here simply as t. When
needed to express the electron-nuclei attraction terms, xni is simply of the form αit where αi is
a signed ratio of the nuclear mass to the total nuclearmass. In the case of a homonuclear system
αi = ±


 . The di-nuclear electronic Hamiltonian is

H
′e
(te) = −

ħ

m

N
∑

i=
∇


(tei ) −

ħ

(m + m)

N
∑

i , j=

⃗

∇(tei ) ⋅

⃗

∇(tej)

−

e

πє

N
∑

j=

⎛

⎝

Z

∣tej + αt∣
+

Z

∣tej + αt∣
⎞

⎠

+

e

πє

N
∑

i , j=

′ 
∣tei − tej ∣

+

ZZ

R
, R = ∣t∣, (.)

while the nuclear kinetic energy part is:

−

ħ


(


m

+


m

)∇


(t) ≡ −

ħ

μ
∇


(t). (.)

The electronic part is not self-adjoint in the manner prescribed by Kato because it contains
no kinetic energy terms involving the nuclear variable which would dominate the potential
energy terms. The full Hamiltonian would not be Kato self-adjoint if both nuclear masses were
to increase without limit either. It is seen from > Eq. ., however, that if only one nuclear
mass increases without limit then the kinetic energy term in the nuclear variable remains in the
full problem and so the Hamiltonian remains self-adjoint in the Kato sense.

The di-nuclear case has been considered numerically by Frolov () in a study of the
hydrogen molecular ion. In extremely accurate calculations on the discrete states of this sys-
tem, he investigated what happened when first one and then two nuclear masses are increased
without limit. He showed that when one mass increased without limit, any discrete spectrum
persisted but when two masses were allowed to increase without limit, the Hamiltonian ceased
to be well-defined and this failure led to what he called adiabatic divergence in attempts to com-
pute discrete eigenstates.This sort of behavior would certainly be anticipated from the present
discussion.

Irrespective of any choices made for the nuclear masses, the electronic Hamiltonian
(> Eq. .) becomes self-adjoint in the Kato sense if the nuclei are clamped for then the nuclear
variables in the potential terms become constants and the only variables are the electronic ones.
So the clamped nuclei potential is dominated by the electronic kinetic energy. Thus the usual
practice of clamped nuclei electronic structure calculations is a consistent one.

Writing the variable t in spherical polar coordinates, R, β, and α where tz = R cos β, were
the clamped nuclei Hamiltonian to be used to define a potential it is easily seen that for t = a,
R = a then

Ecn
(a) = V(a), (.)

so that the potential would have the form V(R). But the potential is not just a curve, it is a
series of spherical shells of rotation swept out by the curve by all choices of β and α. It is thus
a genuine central-field potential. If the internuclear distance is fixed but a allowed to rotate
or invert, then Ecn

(a) is a sphere of constant energy as swept out by the variables β and α
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at radius a. If a is oriented so as to define a z-axis then Ecn
(a) will take the same value at

+az and −az so that if there is a minimum at +az there will be another at −az . The electronic
Hamiltonian is not invariant under inversion of the nuclear variables alone unless the two nuclei
have identical charges in which case inversion and permutation will have identical effects. In
differential geometry terms, the potential is homeomorphic to S.

The Hamiltonian (> Eq. .) is invariant under all rotations of the electronic coordinates
about the internuclear axis and all reflections in a plane containing the internuclear axis. The
electronic states can be labeled by a quantum number m which takes the values , ±, ± . . .
corresponding to the eigenvalues of the z- component of the electronic angular momentum
about the internuclear axis.

It is easily seen that the potential will tend to increasewithout limit asR →  but the behavior
as R → ∞ presents a problem. To see this consider the asymptotic behavior of the electron-
nucleus potential terms in the case of the one-electron homonuclear di-hydrogen molecule ion.
The electronic coordinate is

te = x −



(xn + xn), (.)

where x is the laboratory coordinate of the electron. As the internuclear distance becomes
very large, the nuclear repulsion term becomes very small and one would expect the trial
wavefunction to approach the wavefunction for a one-electron ion corresponding to one of
the atoms. Thus one might expect the lowest energy wavefunction to be of the form

Ne−cr , r = x − xn , r = ∣r∣,

for instance. However working in the chosen coordinate set

r = te −



t,

so that the expected asymptotic electronic solution could be expressed only in terms of both
the electronic and nuclear variables. This does not, of course, mean that the potential cannot
approach the required value. It simply means that it cannot do so in any calculation in which
the trial functions are confined to electronic functions whose variable origin is at the center-of-
nuclear mass.

This sort of difficulty is a general one and obviously not confined simply to one-electron
diatomic molecules. It would clearly be unwise to attempt to approximate solutions for
molecules at energies close to their dissociation limits in terms of electronic coordinates with
the origin at the center-of-nuclearmass. A trial function for the general case of the Born–Huang
form

ψ(tn, te) =
∑

p
Φp(tn)ψnn

p (tn, te), (.)

where the te have an origin at the center-of-nuclear mass, could, therefore, approximate only a
limited region of the spectrum of the full problem.

This difficulty cannot be got round by working in the laboratory frame.The solution to the
full problem would be defined in terms of a three-dimensional subspace expressed in terms of a
translation variable and a (NT−)-dimensional subspace expressible in terms of translationally
invariant variables. Translationally invariant variables must involve at least a pair of variables
and so there must be at least one such variable which involves a laboratory frame electron and
a laboratory frame nuclear variable. All this can be easily illustrated by considering the exact
ground-state wavefunction of the hydrogen atom, as is seen in Kutzelnigg ().
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This point is developed in more detail by Hunter () in a paper considering to what
extent a separation of electronic and nuclear motion would be possible if the exact solution
to the Schrödinger equation for the Coulomb Hamiltonian was actually known.Were the exact
solution known Hunter argues () that it could be written in the form

ψ(tn, te) = χ(tn)ϕ(tn, te), (.)

with a nuclear wavefunction defined by means of

∣χ(tn)∣ =

∫

ψ(tn, te)∗ψ(tn, te)dte.

Then, providing this function has no nodes, an “exact” electronic wavefunction could be
constructed as

ϕ(tn, te) =

ψ(tn, te)
χ(tn)

, (.)

if the normalization choice
∫

ϕ(tn, te)∗ϕ(tn, te)dte = 

ismade. In fact it is possible (Hunter ) to show that χmust be nodeless even though the usual
approximate nuclear wavefunctions for vibrationally excited states do have nodes. The elec-
tronic wavefunction (> Eq. .) is, therefore, properly defined and a potential energy surface
could be defined in terms of it as

U(tn) =

∫

ϕ(tn, te)∗H′

(tn, te)ϕ(tn, te)dte. (.)

Although no exact solutions to the full problem are known for a molecule, some extremely
good approximate solutions for excited vibrational states of H have been computed and Czub
and Wolniewicz () took such an accurate approximation for an excited vibrational state in
the J =  rotational state of H and computed U(R). They found strong spikes in the potential
at close to two positions at which the usual wavefunction would have nodes. To quote Czub and
Wolniewicz ():

� This destroys completely the concept of a single internuclear potential in diatomicmolecules

because it is not possible to introduce on the basis of non-adiabatic potentials a single,

approximate, mean potential that would describe well more than one vibrational level.

It is obvious that in the case of rotations the situation is even more complex.

Bright Wilson suggested () that using the clamped nuclei Hamiltonian instead of the
full one in > Eq. . to define the potential might avoid the spikes but Hunter () showed
why this was unlikely to be the case and Cassam-Chenai () repeated the work of Czub and
Wolniewicz using an electronic Hamiltonian and showed that exactly the same spiky behav-
ior occurred. However Cassam-Chenai showed, as Hunter had anticipated, that if one simply
ignored the spikes, the potential was almost exactly the same as would be obtained by deploying
the electronic Hamiltonian in the usual way.

Although the spiky nature of an “exact” potential has been demonstrated explicitly only for
J =  states of a small diatomic molecule, there is no reason to suppose that its occurrence is

A similar requirement must be placed on the denominator in > Eq.  of Kutzelnigg () for the equation
to provide a secure definition.



The Position of the Clamped Nuclei Electronic Hamiltonian in QuantumMechanics  

not general.Matterswould be further complicated by rotational motion.Thus the demonstrably
smooth potentials generated by solving an electronic problem cannot be approximations to any
exact form but are simply computationally useful intermediates in a solution to the full prob-
lem. It would therefore seem unwise to assign too much weight to them in explaining chemical
structure.

In the standard approach to solving the nuclear motion part of the diatomic problem, the
potential V(R) is specified and the nuclear motion Hamiltonian becomes

−

ħ

μ
∇


(t) + V(R). (.)

Expressing this Hamiltonian in spherical polar coordinates one obtains the usual form

−

ħ

μ
(


R

∂
∂R

R ∂
∂R

) +


μR L


+V(R), (.)

where L is the operator for the angular momentum of the nuclear motion. The angular part
of the solution is known analytically and the solution of the nuclear motion problem can be
reduced to one in the single variable R.

The eigensolutions to this problem are quite naturally eigenfunctions of the nuclear angular
momentumand can easily be chosenwith the required permutational symmetry. But things are
not quite so clear for the electronic part of the problem because one does not in practice have a
form which is explicit in the nuclear variables as it is computed only at fixed nuclear geometries.
It is easy to achieve the correct permutational symmetry for the electronic part of the function
at each and every nuclear geometry, but it would be not at all easy to make each function an
eigenfunction of the electronic angular momentum.

To try to dealwith the rotationalmotion it is possible to reformulate the diatomic problem to
exhibit explicitly the angular symmetry of the Hamiltonian. As shown in Kołos andWolniewicz
() and, in a somewhatmore general way in Sutcliffe (), it is possible to define an internal
coordinate system by a transformation that makes the internuclear vector t the z-axis in a right-
handed coordinate system and in this system the electronic Hamiltonian (> Eq. .) becomes

−

ħ

m

N
∑

i=
∇


(ri) −

ħ

(m + m)

N
∑

i , j=

⃗

∇(ri) ⋅

⃗

∇(r j) +V(R, r), (.)

with

V(R, r) =

e

πє

N

∑

i , j=

′ 
ri j

+

e

πє
ZZ

R
−

e

πє

N

∑

j=
(

Z

ri(R)

+

Z

ri(R)

) , (.)

where the ri are the electronic variables expressed in the transformed system. In this formula-
tion the vector t orients freely and “clamping the nuclei” comes down to simply choosing R = a.
A clamped nuclei solution of > Eq. . would lead to a clamped nuclei energy

Ecn
(a) = V(a), (.)

rather than the form given by > Eq. .. Thus any minima in V(a) would not be duplicated
by the requirement of rotational invariance. Inversion is achieved by means of

β → π − β, α → π + α,

and thus involves just the angular part of the formulation. An identical operation achieves the
nuclear permutation. The electronic Hamiltonian is invariant under neither operation unless
the nuclei have identical charge.
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The nuclear kinetic energy operator (> Eq. .) becomes

−

ħ

μR
∂
∂R

R ∂
∂R

+


μRD(α, β, r), (.)

with
D(α, β, r) = [(Jx − lx)


+ (Jy − ly)


+

ħ
i
cot β(Jy − ly)] ,

where the electronic angular momentum is

l =
N

∑

i=
l(i) =

ħ
i

N

∑

i=
ri ×

∂
∂ri

, (.)

and the total angular momentum operator is denoted J and involves both the electronic and
nuclear variables in such a way that Jz = lz . The Jacobian for this transformation is

R sin β.

It is seen that in this formulation any solution of the clamped nuclei form of the electronic
Hamiltonian (> Eq. .) will give rise to a potential which is simply a curve and not a surface
of rotation. However the angular part of the nuclear kinetic energy operator now involves the
electronic angular momentum so that the electronic motion and the overall rotational motion
are coupled.

The electronic wavefunction in this case has the same axial symmetry as in the previous case
and is characterized by the quantum number m. However the states can no longer be regarded
as occurring in degenerate pairs for m >  since lz is the z-component of the total angular
momentum so m can take integer values lying between J and −J, where J is the total angular
momentum.The coupling of the electronic and nuclear angularmomenta lifts themdegeneracy
as the Hamiltonian becomes a system of J +  coupled partial differential equations.

In the first of the two possible ways of looking at the diatomic, one remains in the Carte-
sian product space R

× RN and it is thus necessary to give some explicit consideration to the
angular properties of solutions to the electronic part of the problem. If the usual approach were
taken to approximating solutions to the nuclear motion Hamiltonian using sums of products
of electronic and nuclear parts, a typical term in the sum used as trial function for the form
(> Eq. .) would be

ϕpm(te,R)

LΦpm(R)ΘLm(β, α), (.)

where p denotes an electronic state and L the nuclear angular momentum quantum num-
ber. There are no operators in the nuclear motion part of the problem which explicitly couple
the electronic and nuclear motions. It is thus possible to represent for any electronic state,
any number of rotational states specified by values of L, without considering any coupling. L
in > Eq. . is not the total angular momentum operator and so a description of rotational
motion given in these terms yields only an approximate quantum number.

If one transforms to the manifold R
+

× S × RN then one can consider explicitly the rota-
tional coupling of electronic and angular motions. The fact that the transformation is to a
manifold rather than a vector space means that any operator built using coordinates defined
on the manifold will be well defined only where the Jacobian for the transformation does not
vanish. This does not cause great problems here because the only places where the Jacobian
vanishes are when R =  and where β =  and β = π. The region around R =  is inaccessi-
ble because of the nuclear repulsion term and the exact angular wavefunctions take care of the
problem with β.
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It would not be consistent to use only a single term in a product approximation for a trial
for the form (> Eq. .) with a potential V(R) except in considering a J =  state. Here the
minimum consistent product approximation is

J

∑

m=−J

J ϕpm(r,R)

JΦpm(R)Θ Jm(β, α). (.)

It is only for J =  states that the forms (> Eqs. . and > .) are the same.
Of course the angular momentum coupling in > Eq. . implies a coupling of different

electronic states, between Σ and Π states or Σ and Δ states, for example. To allow explicitly for
that possibility (> Eq. .) should really be extended to

J

∑

m=−J
∑

pm

Jϕpm(r,R)

JΦpm(R)Θ Jm(β, α), (.)

where the electronic state is denoted pm to indicate that the state must have quantum
numberm. Thus for J =  one would need at least five electronic states.

Which Is the “Correct”Clamped Nuclei Hamiltonian?

There is clearly a choice between the form (> Eqs. . and > .) and although in the
clamped nuclei approximation both would yield the same energies for any chosen internuclear
separation a, the resulting energy would be a potential for two quite different situations.

To generalize from the diatomic case, if the usual approach were taken to approximating
solutions to the nuclear motion Hamiltonian using sums of products of electronic and nuclear
parts a typical term in the sum used as trial function for the form (> Eq. .) would be

ϕp(te, tn)Φp(tn), (.)

where p denotes an electronic state. The solutions are on the Cartesian product space
RA−

× RN . There is again no explicit coupling of the nuclear motion and electronic motions
and it is thus possible to represent for any electronic state, any number of rotational states. It is
only in the diatomic case that the nuclear angularmomentumcanbe realized explicitly as part of
the nuclear kinetic energy so it is not generally possible to chooseΦ directly as an eigenfunction
of the nuclear angular momentum,neither is it possible to choose ϕ directly as an eigenfunction
of the electronic angular momentum. ϕ as usually computed belongs to the totally symmetric
representation of the symmetric group of each set of nuclei with identical charges. Φ could then
be a basis function for an irreducible representation of the symmetric group for each set of par-
ticles with identical masses if the permutational symmetry were properly considered in solving
the nuclear motion problem.

Clamped nuclei calculations are usually undertaken so as to yield a potential that
involves no redundant coordinates.Thus a translationally invariant electronic Hamiltonian like
(> Eq. .) would actually generate a more general potential than this. A clamped nuclei
potential is, therefore, more properly associatedwith the electronic Hamiltonian after the sepa-
ration of rotational motion like (> Eq. .) than with the merely translationally invariant one.
With this choice again, the minimum consistent product approximation is

J

∑

m=−J

Jϕpm(r,R)

JΦpm(R)∣JMm⟩, (.)



  The Position of the Clamped Nuclei Electronic Hamiltonian in QuantumMechanics

where R represents the A−  internal coordinates invariant under all orthogonal transforma-
tions of the tn and ∣JMm⟩ is an angular momentum eigenfunction. The general solutions are
on the manifold RA−

× S × RN though for triatomic molecules the internal coordinate part
of the manifold is confined to R

+
× R because the three nuclear positions define a plane. It

is only in the diatomic case that the electronic variables play a direct part in the specification
of the angular momentum eigenfunctions and where there is therefore only one internal coor-
dinate. However the Coriolis coupling terms in the angular part of the Hamiltonian contain
terms in the electronic angular momentum so coupling of the electronic motion to the angular
motion would still be anticipated, see Sections V andVI of Sutcliffe (). Although the angu-
larmomentumcoupling could imply a coupling of different electronic states, as it certainly does
in a diatomic, it is not obviously implied in the general case. To achieve permutational symme-
try in the nuclear motion part of the wavefunction would in the general case be very tricky.
The nuclei are identified in the process of defining a body-fixed frame to describe the rotational
motion, even if they are identical. If only a subset of a set of identical nuclei were used in such a
definition, some permutation of the nuclear variables would induce a change in the definition
of the body-fixed frame and thus spoil the rotational separation.Thus permutations of identical
nuclei are considered usually only if such permutations correspond to point group operations
which leave the body-fixing choices invariant.

If one considers the clamped nuclei Hamiltonian as providing input for the full Hamilto-
nian in which the rotational motion is made explicit, the basic nuclear motion problem should
be treated as a J +  dimensional problem. If this is done then the translational and rotational
symmetries of the full problem are properly dealt with. However the solutions are not generally
basis functions for irreps of the symmetric groups of sets of identical nuclei except for such sub-
groups as constitute the point groups used in frame fixing. This restriction of the permutations
is usually assumed justified by appealing to the properties of the potential surface. The idea
here was introduced by Longuet-Higgins () and is widely used in interpreting molecular
spectra.

As noted earlier, the original attempts to justify the Born–Oppenheimer and the Born
approaches from the full Coulomb Hamiltonian lack rigorous mathematical foundations. So
far there have been no attempts to make the foundations of the Born approach mathematically
secure. However the coherent states approach has been used to give mathematically rigorous
accounts of surface crossings and a review of this work can be found in Hagedorn and Joye
(). It seems very unlikely that it would be possible to provide a secure foundation for the
Born approach in anything like the manner in which it is usually presented.

The Born–Oppenheimer approximation, whose validity depends on there being a deep
enough localized potential well in the electronic energy, has, however, been extensively treated.
The mathematical approaches depend upon the theory of fiber bundles and the electronic
Hamiltonian in these approaches is defined in terms of a fiber bundle. It is central to these
approaches, however, that the fiber bundle should be trivial, that is that the base manifold and
the basis for the fibers be describable as a direct product of Cartesian spaces. This is obviously
possible with the decomposition choice made for > Eq. . but not obviously so in the choice
made for > Eq. ..

TheBorn–Oppenheimer approachhas beenput on a rigorous foundation for diatomicswith
solutions of the form (> Eq. .) in work which is described in a helpful context in Combes
and Seiler (). For solutions like (> Eq. .), it is possible that more than one vector (coor-
dinate) space can be constructed on it because the transformation is to a manifold. In fact two
coordinate spaces are possible on S a trivial one and a twisted one, the latter associated with
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the possibility of an electronic wavefunction with a Berry phase and the “twisted” solutions are
accounted for in Herrin and Howland ().

A mathematically satisfactory account of the Born–Oppenheimer approximation for poly-
atomics in an approach based on > Eq. . has not yet beenprovided but it has proved possible
to provide one based on > Eq. . (see Klein et al. ). Because the nuclear kinetic energy
operator in the space RA− cannot be expressed in terms of the nuclear angular momentum,
it is not possible in this formulation to separate the rotational motion from the other internal
motions. This work also considers the possibility that there are two minima in the potential as
indeed there would be because of inversion symmetry if the potential minimum were at other
than a planar geometry. It does not, however, consider the possibility of such multiple minima
asmight be induced by permutational symmetry. It might be possible to extend the twominima
arguments to the multiple minima case and perhaps provide a mathematically secure account
of the Longuet-Higgins approach to ignoring some of the inconvenient permutations. This has
not so far been attempted.

For a secure account to be given in terms of the separation (> Eq. .), which is what is
really required if one is to use the clamped nuclei electronic Hamiltonian, it would be necessary
to consider more than one coordinate space. On the manifold S at least two coordinate spaces
are required to span the whole manifold. The internal coordinates within any coordinate space
are such that it is possible to construct two distinct molecular geometries at the same internal
coordinate specification, so that a potential expressed in the internal coordinates cannot be
analytic everywhere (Collins and Parsons ). It would therefore seem to be a very tricky job.
But even if it were to be accomplished it seems very unlikely that a multiple minima argument
could be constructed to account for point group symmetry in this context. It is possible to show
(see Section IV of Sutcliffe ()) that in the usual Eckart form of the Hamiltonian for nuclear
motion, permutations can be such as to cause the body-fixed frame definition to fail completely.

If it is wished to perform a clamped nuclei calculation on a molecule containing three or
more nuclei, avoiding translations and rigid rotations, it is necessary to fix the values of six of
the A nuclear variables. In practice this is usually done by choosing one nucleus, xn , at the ori-
gin, one nucleus, xn , defining an axis and a third, xn , defining a plane. Every possible geometry
of the molecule, except where the three particles become collinear, can be specified with this
choice but not every component of the A variables will appear in the clamped nuclei electronic
energy as six of them have been chosen to be zero. This means that even though the clamped
nuclei electronic energy can be specified in terms of a molecular geometry in which the posi-
tions of A points can be given, the energy itself is a function of only the relative positions of a
subset of the nuclei. Thus performing clamped nuclei calculations will not make possible the
expression of the electronic energy in anything other than internal coordinates and the elec-
tronic energy when expressed in any set of internal coordinates cannot be analytic everywhere.
Thus there cannot really be a “global” potential energy surface. In any case, as has been seen,
the potential, even locally, cannot be regarded as an approximation to anything in particular
and thus should be treated simply as a convenient peg on which to hang further calculations.
From this perspective, the further calculations should properly be ones in which the electronic
Hamiltonian results from the full Hamiltonian in which the rotational motion has been made
explicit. Such Hamiltonians have only a local validity and can be defined only where the Jaco-
bian for the transformation to the rotational variables does not vanish.However at present there
is no satisfactory account of how nuclear permutational symmetry should be treated from this
perspective, neither is there any secure mathematical justification of the Born–Oppenheimer
approximation or of the Born approach.
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Naturally any extension of the trial wavefunction for the full Coulomb Hamiltonian prob-
lem from a single term to a many term form must be welcomed as an advance; it is, however,
simply a technical advance and it might prove premature to load that technical advance with
too much physical import.

At present it is not possible to place properly the clamped nuclei electronic Hamiltonian in
the context of the full problem, including nuclear motion. However if the nuclei were treated as
distinguishable particles, even when formally identical, then some of difficulties that arise from
the consideration of nuclear permutations would not occur. But it would still be necessary to
be able to justify the choice of subsets of permutations among identical particles when such
seem to be required to explain experimental results. A particular difficulty arises here for it is
not possible to distinguish between isomers nor is it possible to specify a molecular geometry,
unless it is possible to distinguish between formally identical particles.

But regarding the nuclei as distinguishable would not avoid the difficulty of constructing
total angular momentum eigenfunctions from the nuclear and electronic parts. Such treatment
of the nuclei would not make the traditional demonstrations of the Born–Oppenheimer or the
Born approximations mathematically sound either. However it would ensure that the math-
ematically sound presentations of the Born–Oppenheimer approximation mentioned earlier
need no further extension to include permutations of identical nuclei. There is, unfortunately,
little good to be said, from a mathematical point of view, of the traditional Born argument.
This is troubling because the Born approach is assumed to provide the basis for the consider-
ation of chemical reactions on and between potential energy surfaces. However it is clear that
the clamped nuclei electronic Hamiltonian can be usefully deployed in nuclear motion calcula-
tions if the nuclei are considered identifiable and in the next sections this Hamiltonian will be
considered in detail.

The Symmetries of the ClampedNuclei Electronic Hamiltonian

Before considering the symmetry under permutations of identical particles it is necessary first
to say a little about the spin of particles. Each particle is specified not only by space variables but
also by spin variables.These have not been considered so far because there are no spin operators
in the Hamiltonians discussed in the previous sections. Nevertheless spin is, indirectly, very
important in the construction of approximate wavefunctions.

Spin ideas are usually developed in terms of a vector operator S with three components
Sα , α = x, y, z and functions ΘN

S ,Ms ,k such that

SΘN
S ,Ms ,k = ħS(S + )ΘN

S ,Ms ,k , S
= S

x + S
y + S

z ,

and
SzΘN

S ,Ms ,k = ħMΘN
S ,Ms ,k ,

with,
S = , , , ..., − S ≤ Ms ≤ S. (.)

The ΘN
S ,Ms ,k are called spin eigenfunctions and the k index denotes a particular member of

a possible set. In the simple case of a single electron, S =


 ,Ms = ±


 , and k =  so usually Θ


 ,


 ,

is written as α and Θ

 ,−


 ,

as β.
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It can be shown that under the operations of the full rotation-reflection group in three
dimensions, O():

(SxSySz) → (SxSySz)∣R∣R, (.)

whereR is the matrix representation of the rotation inversion and is thus an orthogonal matrix
with determinant ∣R∣ which is + for a rotation and − for a reflection. Clearly S is an invari-
ant operator. Thus, its eigenfunctions provide a basis for irreducible representations of O()
and in general we label these representations by the S value to which they correspond, using
k to distinguish between different basis functions for the same representation. Obviously the
dimension of these is S +  since the S +  functions with Ms = S, S − , . . . ,−S are degenerate
in the sense of having the same S eigenvalue.

It is useful to treat the spin functions as having variables si though these can take only
discrete values and from now on to label the Cartesian space variables as ri so that xi can be
used to denote the totality of variables. To construct a many-particle function to describe space
and spin for a collection of N identical particles it is apparently simply necessary to form the
products:

Ψn(x, x . . . , xN) = Ψn(r, r, . . . rN)ΘN
S ,Ms ,k(sl , s, . . . , sN) (.)

at will, and the generalization to groups of sets of identical particles is obvious. However there is
a snag. It turns out that there is an extra rule that must be obeyed.The Hamiltonian is invariant
under the operators that permute the variable designations (space and spin) of sets of identical
particles. For any one set, these operators form a group and the full invariance group of H is
the direct product of the groups for all the sets of identical particles. This means that the eigen-
functions ofH are a basis for the irreps of this group.The extra rule is related to what irreps can
actually occur and it is usually called the Pauli principle. If the set of identical particles individ-
ually have spin S = , , , , etc., then the only irreps that can arise are the totally symmetric
ones.Thus everywavefunctionmust be invariant under permutations that interchange the vari-
able designations of particles with integer spins (bosons). If the particles individually have spin
S =


 ,


 ,


 , . . . etc., then the only irreps are the antisymmetric ones. Thus every wavefunction

must change sign if the permutation is odd or be invariant if the permutation is even for per-
mutations that interchange the variable designations of particles with odd half-integer spin
(fermions).

What this means is that not every function of the form (> Eq. .) actually corresponds to
a physical state, but it can be shown that in any given problem there are enough eigenfunctions
of S with any given Ms value (i.e., k is sufficiently large) to form a basis for irreps of the per-
mutation group of N particles. Similarly it can be shown that there are enough space functions
to provide irreps of the same group. It is then possible to derive rules for combinations of the
space and spin functions such that the resulting function obeys the Pauli principle.

Since in this and the following sections only the clamped nuclei Hamiltonian will be con-
sidered, it will be convenient to simplify the notation somewhat and to drop the superscripts on
the electronic variables because, from now on, these will be the only variables to be considered.
Thus > Eq. . is rewritten as

H(a, r) = −

ħ

m

N
∑

i=
∇


(ri) −

e

πє

A
∑

j=

N
∑

i=

Zj

∣ri − a j ∣
+

e

πє

N
∑

i , j=

′ 
∣ri − r j ∣

+

e

πє

A
∑

i , j=

′ ZiZ j

∣ai − a j ∣
, (.)
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while > Eq. . is rewritten as

H(a, r)ψp(a, r) = Ep(a)ψp(a, r). (.)

For later purposes it is useful to group the first two terms by writing

h(i) = −

ħ

m
∇


(ri) −

e

πє

A
∑

j=

Zj

∣ri − a j∣
≡ k(i) +V(i), (.)

and to express the third term with

g(i, j) =

e

πє


∣ri − r j ∣
. (.)

The electronic part of theHamiltonian for any given set of nuclear positionsmay then bewritten
as

H =

N
∑

i=
h(i) +




N
∑

i , j=

′

g(i, j). (.)

The operator h is self-adjoint and a mathematically simple extension of the hydrogen atom
operator. It therefore has some discrete one-particle eigenfunctions

h(i)ϕ(ri) = єϕ(ri). (.)

Such one-particle functions are called orbitals and the associated energies є are orbital energies.
If there is only one nucleus, they are called atomic orbitals (AOs) and in the many nuclei case,
molecular orbitals (MOs). The orbitals may be extended to become spin-orbitals by multiplying
themwith an α or β spin function and the resulting spin-orbitals are therefore denoted as ϕ(xi)
to indicate the inclusion of spin. Clearly every orbital can generate two spin-orbitals.

It is usual in the case of electrons to work with functions that obey the Pauli principle from
the start. This is possible when using an orbital basis through the use of Slater determinants of
spin-orbitals which, by definition, change sign under odd permutations but are invariant under
even permutations as is required for fermions. These will be explicitly considered later; first the
permutational symmetry will be considered more generally.

Permutational Symmetry

The clamped nuclei Hamiltonian is invariant under the permutation of electrons so that its
eigenfunctions must be basis functions for irreducible representations (irreps) of the symmetric
group of degree N . However, because of the Pauli principle, not all irreducible representations
of this group are allowed.

As noted above for electrons there are only two kinds of spin functions so that in any
product of spin functions for N spin variables, only a limited set of permutations of the spin
variables will lead to distinct product functions. Since there are no spin terms in the elec-
tronic Hamiltonian, the operators for total spin commute with the Hamiltonian and so its
eigenfunctionsmust be spin eigenfunctions aswell as basis functions for an irrep of the symmet-
ric group. To see how these two requirements can be combined consider permutations rather
generally.



The Position of the Clamped Nuclei Electronic Hamiltonian in QuantumMechanics  

The abstract permutation operator on N objects , , .....N is always denoted by

P = (

   ... N
i i i ... iN

) , (.)

where the ir are the set of objects , , .....N atmost in some new order.The effect of the operator
on the original set of objects is

P(, , ....N) = (i i.....iN). (.)

Clearly the product of any two permutations is a permutation, the products are associative,
and there is an identity permutation, and every permutation possesses a unique inverse so the
permutations form a group as required. The order of the group is obviously N !, because there
are N ! distinct permutations of N objects. This is the symmetric group of degree N , usually
denoted as SN .

A permutation like

(

  
   ) is often written as (  ), (.)

on the interpretation that  replaces ,  replaces , and  replaces . The right-hand expression
in > Eq. . is said to be in a cycle form and is a cycle of length . Any permutation can be
decomposed uniquely into cycles of disjoint elements, thus for example:

(

     
      ) = (    ) (   ) (  ) , (.)

where the order in which the individual cycles are written down does not matter and where, of
course, each cycle is invariant under cyclic permutations of its elements. A cycle of length two
is called a transposition and is an involutary operation, that is:

(i i) = (i i)−. (.)

A cycle can always be written as a product of transpositions, thus

(    ) = (   ) (   ) , (.)

where the transposition on the right operates first, but the decomposition is obviously not
unique nor are the transpositions always of disjoint elements. However the number of trans-
positions into which a cycle can be decomposed is obviously unique and this number is said to
be the parity of the permutation, even if the number is even and odd if the number is odd. It fol-
lows, therefore, that we can classify the permutation operators themselves as either even or odd.
Parity is usually indicated as (−)p where p is the number of transpositions. The product of two
even permutations is an even permutation so that the even permutations constitute a subgroup
(counting the identity permutation as even) of the symmetric group of order N !.This subgroup
is called the alternating group. It is obvious then that the set of all distinct transpositions are the
generators of the symmetric group.

It is reasonably easy to show that all permutations in the same class have the same cycle
structure. Thus if the possible cycle structuresare known, then the number of classes and

This means that the permutation and its inverse are always in the same class. A group with this property is
said to be an ambivalent group.
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hence the number of irreducible representations is known. But the number of cycle structures
is obviously the number of possible ways that there is of dividing N objects in integer partitions.
Thus for four objects the possible cycle structures are

(i i i i),

(i i i)(i),

(i i)(i i),

(i i)(i)(i),

(i)(i)(i)(i). (.)

If there are m cycles in any partition, the cycle lengths are usually written symbolically as λi ,
where

λ + λ + λ + ..... + λm = N , (.)

and by convention
λ ≥ λ ≥ λ ≥ ..... ≥ λm ≥ . (.)

Thus in > Eq. . above in the first decomposition there is only one cycle and λ = ,
in the second there are only two cycles λ =  and λ = . It is a custom to denote the totality
of λ for any partition by the vector [λ] ≡ [λ, λ....λm] and to indicate r repeats of a cycle of
given length λ by λr . Thus in > Eq. . above the partitions should be denoted as [], [ ],
[], [ ], and [].

The notation (> Eq. .) is not especially well adapted for present purposes and instead
a notation invented by Young, the so-called Young diagram, is used. The Young diagrams
equivalent to > Eq. . are

[] [ ] [] [ ] [] (.)

where the boxes in each row stand for a cycle and different cycles form different rows in the
diagram.

Since there are as many irreducible representations of a group as it has classes and there is
one Young diagram for each class, Young diagrams can obviously be used to label each of the
different irreducible representations.The dimensionality of the irreducible representationmust
pretty clearly be associated with the number of ways it is possible to put the objects , ....N
into the boxes in the Young diagram, in a unique way. In fact it turns out that if the numbers
, ....N are put into the boxes in a diagram so that when they are read across any row they are
increasing and when they are read down any column they are also increasing, the totality of all
such assignments is the dimension of the irreducible representation.

Thus the first diagram in > Eq. . can only yield

    (.)
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A Young diagram with numbers in it like (> Eq. .) is called a Young tableau and it is seen at
once that there is only one tableau for the last Young diagram in > Eq. ., namely:






(.)

so that both [] and [] correspond to one-dimensional irreducible representations.
The representation [ ] yields

  


  


  


(.)

and in these circumstances it is clearly nice to have some sort of standard order; the one often
adopted is to read the tableau across each row as if it were an ordinary number and then to
arrange the tableaux in ascending order of these numbers, but other orders are used. Thus the
numbers in > Eq. . are

   (.)

so that the standard order for the tableaux would be

  


  


  


(.)

This representation is therefore three-dimensional.
One can obviously get the tableaux for [ ] simply by transposing the tableaux for [ ]

and a little reflection will show that this is generally the case, simply because of the structure of
the Young diagrams.The representations [ ] and [ ] are said to be conjugate representations
(or sometimes adjoint, or dual or associated). In the present case the representation [] is self-
conjugate. Generally if the representation is denoted by [λ] then the conjugate representation
is denoted by [λ̃], and of course both representations are of the same dimension.

Since there is obviously freedom inwhich is associatedwith which, the choice is made in the
two one-dimensional cases that [N] is associated with the symmetric representation and [N]
with the antisymmetric representation.Thus if one has a representation [λ], then the conjugate
representation [λ̃] is just [λ] × [N].

The [λ] symbols are also used to denote classes from time to time and in that context the
correspondences established between > Eqs. . and > . are appropriate.Thus [] repre-
sents the last partition in > Eq. .which is clearly the class that just contains the unit operator,
[ ] stands for the class containing all operators involving only one transposition and so on.

Now it can be shown that if one can find a basis for a representation [λ] for the symmetric
group and another basis which is a representation for [λ̃] then the direct product of these two
bases is a basis for the antisymmetric representation [N ]. So to construct antisymmetric wave-
functions from space-spin products, as in constructing electronic wavefunctions, one can do so
as

Ψ[N]
=

∑

i
Φ[λ̃]

i (r)Θ[λ]
S ,MS ,i(s), (.)

where the sum goes over all functions in the basis for the irrep and N identical particles are
assumed involved. They can have any spins at all and although in the expression above they are
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assumed to be spin eigenfunctions this is obviously not necessary just as long as a suitable set of
spin products is used.However if they are spin-  particles then the only possible representations
that can be constructed in the spin space are of the form [λ,λ]. No other irreps are possible.
Furthermore in the case of N electrons properly coupled to a spin state S then

λ + λ = N , λ − λ = S, (.)

so that
λ =

N


+ S, λ =

N


− S, (.)

where

∼

∼

∼

∼

∼

∼

λ

λ

←�

←�

�→

�→

Thus any allowed space wavefunctions, such as those formed from orbital products, must form
a basis for [λ̃].

This result arises basically because there are only two kinds of spin functions for spin-  par-
ticles. Thus lots of permutations that could arise do not arise in practice because they are the
same if they involve only, say, α spin particles. However it can also be shown that if the spin basis
consists of spin eigenfunctions then the reps provided of SN are actually irreps and that they
are the same irreps for any value of MS . That is, there are exactly as many spin eigenfunctions
with the same S value as the dimension of the irrep [λ, λ] of SN . This is an enormous blessing
and makes life much easier in electronic structure calculations than it might otherwise be. For
fermions of spin greater than 

 it is not the case and it makes, for example, the problem of cal-
culating statistical weights in molecular spectroscopy, or nuclear spin states in nuclear physics,
much more complicated.

Point Groups and Transformations

In the Cartesian coordinate system, the Laplacian operator for the ith electron is written as

∇


(i) =

∂

∂rx i
+

∂

∂ryi
+

∂

∂rz i
, (.)

and the inter-electron distance as

ri j = (
∑

α
(rα j − rαi))

/

, (.)

where here and hereafter sums over α run over x, y, and z. The electron-nucleus distance will
be written as

rai = (
∑

α
(rai − aα))

/

, (.)

where the αth coordinate of the nucleus a is written as aα to emphasize that it is a pure number
and not a variable, since the nuclear positions are assumed to be fixed.
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It is easy to show that
ri j = (r j − ri)T(r j − ri), (.)

and
rai = (ri − a)T(ri − a), (.)

where the superscript T denotes the matrix transpose.
Now let it be supposed that r is subject to positive rotation about the z-axis through an

angle ϕ to yield the vector r′. Positive rotations are in the direction of a right-handed screw-
twist when the point of the screw is moving in the axis direction. It is then easy to show that the
new and old vectors are related by an orthogonal matrix

r′ = R(ϕ) r, (.)

with

R(ϕ) =

⎛

⎜

⎝

cos ϕ − sin ϕ 
sin ϕ cos ϕ 
  

⎞

⎟

⎠

. (.)

In this section we shall be concerned only with transformations like (> Eq. .), that is,
with point transformations and, in the case of the clamped nuclei Hamiltonian, consideration
may be confined to finite point groups, specifically the crystallographic point groups. However
from time to time it will be convenient to think a bit more generally and to recognize, for
example, that the full rotation-reflection group in three dimensions is a point group, though
an infinite one, and that some Hamiltonians are invariant under the operators of this group.

Now it should be understood quite clearly as to what happens in a transformation of vari-
ables in a fixed basis. It is supposed that every point in space goes over into its image according
to the appropriate transformation rule

r′ = Rr, (.)

where R is a constant orthogonal matrix.

Thus imagining the situation appropriate to the Schrödinger equation with Hamiltonian
(> Eq. .), the assertion of a transformation of variables realized by R would imply

r′i = Rri , i = , , . . . ,N . (.)

However, in the fixed nuclei approximation, it would not imply that

a′ = Ra, a = any nucleus. (.)

This is not for any sinister reason but simply because of the definition chosen of the clamped
nuclei approximation. In this approximation the nuclear positions are triplets of numbers which
take particular but fixed values once a particular basis is chosen.

It is now very easy to show that the Laplacian and the inter-electronic distance are invariant
under any constant orthogonal transformation of variables but that in general the electron-
nucleus distances are not invariant. It is perhaps sensible to show how this comes about for it
illustrates one or two points and makes the idea of invariance a bit clearer.

By “constant” here is meant simply that the elements of the matrix are not themselves dependent on the
variables.
It is sometimes convenient to think of the nuclear positions as defining a particular embedding for the basis
vectors or coordinate frame.
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First the Laplacian. Using the chain rule for differentiation

∂
∂rαi

=
∑

β

∂r′βi
∂rαi

∂
∂r′βi

, (.)

since the transformation does not “mix” ri and r j so that

∂
∂rαi

=
∑

β
Rβα

∂
∂r′βi

, (.)

and hence
∂

∂rαi
=

∑

γβ
RγβRβα

∂

∂r′γi ∂r
′

βi
, (.)

but

∇


(i) =

∑

α

∂

∂rαi
,

and
∑

α
RγαRβα = δγβ (RTR = E), (.)

therefore

∇


(i) =

∑

γβ
δγβ

∂

∂r′γi ∂r
′

βi
=

∑

β

∂

∂r′βi
 = ∇


(i′). (.)

But clearly if
∇


(i) f (ri) = g(ri), (.)

then
∇


(i′) f (r′i) = g(r′i), (.)

so that ∇


(i) is an invariant operator under the transformation since its effect on an arbitrary

function is unchanged (except for the variable names which, in this context, are irrelevant).
Notice that if ∇

 had been set up in the primed system as ∇


(i′) the same argument would

have shown that ∇


(i′) = ∇


(i), as required.

Next ri j . From > Eq. . it follows that

r′i = Rri and ri = RTr′i . (.)

Combining the form (> Eqs. . with > .) we get

ri j = (RT
(r′j − r′i))

T
(RT

(r′j − r′i))

= (r′j − r′i)
TRRT

(r′j − r′i)

= (r′j − r′i)
T
(r′j − r′i),

so that
ri j = r′i j

, (.)

showing that ri j and hence ri j is invariant in the same sense as above.
For the electron-nucleus distance one gets

rai = (RTr′i − a)T(RTr′i − a)

= (RT
(r′i −Ra))T(RT

(r′i − Ra)),
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so that
rai = (r′i − Ra)T(r′i − Ra), (.)

and this in general is obviously not r′ai . However, if the transformation R is such that

b = Ra and a = RTb, (.)

where b is the position of another nucleus in the problem with the same charge as the nucleus
whose position is a, then it is clear that even though individual terms in the electron-nucleus
attraction operator are not invariant, nevertheless the operator as a whole is invariant.

The generalization of this result is obvious. If the nuclear positions are divided into sets
corresponding to nuclei of the same charge, the clamped nuclei Hamiltonian is invariant under
all operators represented by orthogonal matrices R such that if

b = Ra, (.)

b is to be found in the same set as a was found.

To look at it another way, were the coordinates of a set of equivalent nuclei to be written
as a row matrix of the coordinates a a…ap (so that the “row” is actually a × p matrix), the
effect of an invariance preserving operator (a symmetry operator) could be symbolized in the
partitioned matrix form

(bb . . .bp) = (aa . . . ap)P, (.)

where P is a p × p permutation matrix, that is, one of the form

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

    . . . 
    . . . 
. . . .
. . . .
    . . . 

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (.)

where the permutation corresponds to the effective rearrangement of the nuclei in the electron-
nucleus attraction operator. Permutation matrices have just one nonzero entry in any row or
column and that entry is always  so that such matrices are always orthogonal matrices. Their
determinant can, however, be ± depending on the parity of the permutation.

Thus, to all intents and purposes, when considering the symmetry of a molecule to be rep-
resented by a clamped nuclei Hamiltonian, all we need to look at is those orthogonal operators
that let equivalent nuclear positions carry a permutation representation of the operator in ques-
tion. Any such operator is a symmetry operator of the problem. We thus never need to think
about the electrons and it is usual in elementary books to start from the point reached here, as
if the operations were carried out on the nuclear positions. From here one can go on to show,
in the usual way, that the collection of symmetry operators form a group and that the group is a
point group essentially corresponding to the geometrical figure formed by the equivalent nuclei
in the nuclear framework.

Functions can always be visualized in terms of a fixed Cartesian basis and under the change
(assumed orthogonal) r′ = Rr or r = RTr′ the change induced in a function f (r) is

OR f (r) = f̄ (r) ≡ f (RTr), (.)

Notice that in this approximation the mass of the nucleus is of no consequence, only the charge matters.
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meaning that f̄ (r) is constructed from f (r) by substituting (RTr)α for rα wherever it occurs
in the prescription for f (r).OR symbolizes the operation in function space.

Considering the transformation of operators again, assuming that one specifies the operator
form in a fixed basis, consider an operator A (assumed linear and Hermitian) such that

A f (r) = g(r), (.)

and by formal operator algebra we can rewrite this to exhibit the effect of the operatorOR as

ORA f (r) = OR g(r),
ORA f (r) = ORAO

−
R OR f (r) = OR g(r),

ORA f (r) = ORAO
−
R f̄ (r) = ḡ(r), (.)

so that we can say that if R induces OR then it induces a change in the operators acting on the
original function space such that

Ā = ORAO
−
R , (.)

where the functions on which the operators act are implicit in the formalism.
Furthermore if the induced change is such that A = Ā, that is, A is an invariant operator,

then
A = ORAO

−
R , (.)

or
ORA = AOR ,

or
ORA − AOR ≡ [OR , A] = ,

and we say that the OR commute with A. We can thus characterize the symmetry operators in
the function space that constitutes the domain of A as those operators which commute with A.
In particular we are interested in the case when A is the Hamiltonian for the problem.

Now, in practice, (> Eq. .) is not ofmuchuse for actually checking on the transformation
properties of operators since it does not actually provide a specific rule for the construction of Ā.
However as seen before, the actual variable names in an operator relation do not matter, so that
if we regardRTr as just a newvariable name, say y, then it follows immediately from > Eqs. .
and > . that Ā is just the operatorAmade up in the same basis asAbutwith (RTr)α for every
occurrence of rα in the operator.This prescription is usable in an obvious way for multiplicative
terms in the operator and, for derivative terms, a little thought shows that the replacement

∂
∂rα

→
∑

γ
(RT

)αγ
∂
∂rγ

=
∑

γ
Rγα

∂
∂rγ

(.)

is the appropriate one for the new operator set up on the original basis. (Compare
with > Eqs. . and > ..)

Thuswe see that themomentumoperator, for example, is not generally an invariant operator
since from (> Eq. .)

p̄α =

ħ
i ∑

γ
Rγα

∂
∂rγ

=
∑

γ
Rγα pγ ,

p̄α = (RTp)α , (.)
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and (> Eq. .) is the equation that relates the elements of the transformed operator to those
of the untransformed operator on a fixed basis. In fact it is easy to see from (> Eq. .) that
in this case the operators actually provide a basis for the representation of R by R as

p̄ = pR, (.)

where the operators are written as a row matrix. The transformation of operators is a matter
to which we shall return later, but for the moment let it simply be noted that the arguments
presented earlier in this section show that the clamped nuclei Hamiltonian is an invariant oper-
ator if R is a point group operation and we shall now look at the behavior of its eigenfunctions
underOR .

Any set of degenerate eigenfunctions of H carry a matrix representation of OR . Thus if we
denote the set of degenerate eigenfunctions as f, f,... fn and treat these as a rowmatrix f , then
we can write

ORf = fOR , (.)

and we say that OR provides a matrix representation of OR in the basis fi so that a set of such
functions in a function space play exactly the same role as do the unit vectors in a coordinate
space and are, therefore, sometimes called basis functions of the representation.

The representations provided in the basis of degenerate eigenfunctions are usually irre-
ducible and can be chosen to be unitary matrices (in fact usually orthogonal matrices if the
functions are real functions). In practice, what one is usually faced with is a collection of func-
tions which have arbitrary (but known) transformation properties and what one actually wants
to do is to adapt these functions so that they actually transform like the true eigenfunctions of
the problem. This can be done by means of the group theoretical projection operator.

If the unitary matrix irreducible representation of the point group is known and denoted by
D(μ)(R), where μ labels the irreducible representation, then the projection operator is

P
(μ)
i j =

nμ

g ∑

R
(D(μ)

(R))

∗

i jOR , (.)

where g is the order of the group and nμ the dimension ofD(μ)
(R). This projection operator

is such that
P
(μ)
i j f = f (μ)i or a null result, (.)

where f is an arbitrary function and f (μ)i is the ith function in the row matrix f(μ) such that

ORf(μ) = f(μ)D(μ)
(R). (.)

The null result occurs in > Eq. . if the arbitrary function has no component that lies in the
subspace defined by the f (μ).

In practice one often makes do with the character projection operator based on the
characters χ(μ) of the irreducible representation,

χ(μ)(R) =
∑

i
(D(μ)

(R))

∗

i i , (.)

so that the character projection operator P(μ) is

P(μ)
=

nμ

g ∑

R
(χ(μ)(R))

∗OR , (.)

The operator in this form is clearly only possible for finite groups but similar operators are constructible for
most infinite groups of interest.
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and produces from an arbitrary function (if not a null result) then a function which is said
to belong to the μth irreducible representation but which in general transforms like a linear
combination of the basis functions for D(μ).

In practice, therefore, everything depends on knowing the representations of the group in
question (and the irreducible representations are usually tabulated) and on knowing how the
chosen functions actually transform under the operations of the group.

It is helpful at this stage to think of constructing MOs as a linear combination of atomic
orbitals (LCAOs) and as a preliminary to this the idea of an MO and of an AO need to be
developed a bit further.

It might be thought that orbitals could be best determined by solving the relevant one-
electron problem specified by h, (> Eq. .), for each molecule.This is not so easily done and
if a wavefunction is constructed as a determinant of spin-orbitals so constructed it yields a very
poor approximation to the electronic energy. This is because the electron interaction term is
large and has not been considered in constructing the orbital. Thus to get useful orbitals the
fact that the electrons interact strongly must somehow be incorporated into the single particle
potential through some sort of effective field process. This was first attempted for atoms in the
s byW.Hartree andD. R.Hartree (, ) but without considering antisymmetry.Their
method was developed by Fock () and by Slater () in a properly antisymmetric form.
Molecules resisted this approach because it was extremely difficult to solve the one-electron
problem with a potential that was not centrosymmetric. However since it was possible to get
atomic orbitals, two approaches using them developed, one at the hands of Pauling () using
atomic orbitals directly and the other at the hands of Mulliken () by writing molecular
orbitals as a linear combination of atomic orbitals.The Pauling approach was called the Valence
Bond (VB) method and the Mulliken one the Linear Combination of Atomic Orbitals Molec-
ular Orbital (LCAO MO) method. Although it was the VB method that was used in the first
successful molecular electronic structure calculation, on H by Heitler and London (), it
was the LCAO MO method that became standard in quantum chemical calculations following
the work of Roothaan () in the s. Although these methods will be considered in great
detail elsewhere in this volume, their basis can best be considered here.

The most familiar atomic orbitals are those for the hydrogen atom which are usually desig-
nated according to their angular parts as s for l = , p for l = , d for l = , and so on where
there are l +  orbitals of each type. For calculational purposes Slater proposed that the radial
part of the orbital, while still centered upon the nucleus, should be of the form

Nrn− exp−ξr, n = , , . . . , (.)

where N is a normalizing factor, and ξmay be chosen at will or used as a variational parameter.
It is customary to use a real form for the angular parts of the orbital so that, for example,

the three p orbitals are specified as

x exp−ξr, y exp−ξr, z exp−ξr. (.)

Themost widespread atomic orbital form in use at present is the Gaussian which has the radial
part

Nrn− exp−ξr, n = , , . . . . (.)

When it is not necessary to specify atomic orbitals in detail they will be denoted ηi(r).
In elementary books it is often assumed that you can “eye-ball” the transformation prop-

erties from the “pictures” of the orbitals stuck on the nuclei. (Such pictures usually look a bit
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like twisted sausages and doughnuts.) Such an approach is a bit risky and knowing how to do
this sort of thing algebraically avoids getting into the nasty mess that often happens if one relies
on the pictures. Indeed, it is clear that it is quite impossible to draw a picture of an orbital. The
sausages and doughnuts, therefore, must be atmost projection representations in three (or two)
dimensions and it is not clear that the transformation of the picture in three (or two) dimen-
sions really corresponds correctly to the induced transformation of the orbital in the function
space.

If the atomic orbital η(r) is situated at the origin of coordinates and the origin is the invari-
ant point of the point group operators, then any orbital constructed about this origin simply
transforms underOR to a new functional form in the space

ORη(r) = η̄(r) = η(RTr). (.)

If, however, the orbital is developed about another origin, say a, so that the functional form
is

η((r − a)), (.)

then the situation is a little more involved. The coordinate point a is not a variable of the prob-
lem, but a parameter in the function construction. It does not change under the transformation
so that

ORη((r − a)) = η((RTr − a))
= η(RT

(r −Ra)), (.)

but clearly Ra is some other fixed parameter point in the problem b, say, so that

η(RT
(r −Ra) = η(RT

(r − b))

= η(RTrb). (.)

Effectively the origin of the function is changed, but about that new origin, the transformed
function is constructed by the usual rules in terms of the variable rb = (r−b). Clearly if η(RTr)
is η̄(r) then η(RTrb)will be η̄(rb) so that if one has worked out the transformation properties
of an orbital at the origin (a = ) then the functional form of the transformed orbital carries
over immediately to an orbital at arbitrary origin a given that b = Ra is known.

Thus if one chooses a set of AOs which are identical but on different centers then they carry
a permutation representation of the operation, much like (> Eq. .) but with appropriate
transformation matrices in place of the s and s there. So if, for example, one had a set of
identical s-orbitals with one on each center, the transformation matrices under any point group
operation would just be , so that the matrix would remain just as in > Eq. .. But if one had
a set of three equivalent p-functions on each center the s would become  ×  null matrices
and the s would become those three-dimensional transformation matrices which represent the
operation on a set of three equivalent p-functions at the origin and so on.

Once these transformation properties have been determined it is an easymatter to apply the
projection operator either to construct functions that transform like irreducible representations
or like a “special” representation.

Thus in practice we can always get one-particle symmetry functions relatively easily, but
the symmetry problem is clearly more involved when it comes to considering many-particle
functions.
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The paradigm for an approximate many-particle function is a product of one-particle
functions (orbitals)

Φ(r, r, r....rN) = ϕ(r)ϕ(r) .... ϕN(rN). (.)

In thinking of approximate solutions to the clamped nuclei problem it is natural to think of the
ϕr as molecular-orbitals and the ri as the electron variables, but the discussion that follows is
quite general and it need not even be the case that the variables are those of identical particles.
Now from what has been said before it can always be supposed that the orbitals are adapted to
particular irreducible representations of the invariance group of the Hamiltonian and that one
desires an approximate solution which is also adapted to a particular irreducible representation.
The variable-space for the product function on the right-hand side of > Eq. . is the direct
sum of each of the variable-spaces for the particles, that is r ⊕r ⊕r⊕....⊕rN .The functions ϕr

built on each of these variable-spaces individually constitute a separate function space for each
variable and the total function space is, therefore, the direct product of all these function spaces.
If, for the moment, we restrict each of these function spaces to sufficient functions to carry
irreducible representations of the invariance group, then the direct product function space is
just

ϕ()
⊗ ϕ()

⊗ ..... ⊗ ϕ(N), (.)

where the row matrix ϕ() contains ϕ and is a basis for the representationD(), of dimension
n, and so on, so that the total dimension of the space is n × n × .... × nN = P.

The symmetry operationR has an orthogonal representativeR in each of the variable-spaces
and it has a representative in the total variable-space which is the direct sum of N repeats of R.

Thus the effect of OR on the product function (> Eq. .) is to produce

ϕ()D()
(R) ⊗ ϕ()D()

(R)....ϕ(N)D(N)

(R), (.)

which, by the ordinary rules of manipulation for direct products, is

ϕ()
⊗ ϕ()

⊗ ....⊗ ϕ(N)D()
(R) ⊗D()

(R)....⊗D(N)

(R). (.)

The elements of the row matrix arising from the direct product of the orbitals can obviously be
written (with suitable reordering if necessary) as a row matrix of functions like (> Eq. .)
but involving such other partner orbitals as are necessary.

Now if it happens that all the original orbitals belong to one-dimensional irreducible rep-
resentations of the invariance group, then the matrix of direct products of representations
in > Eq. . is just a scalar, generally speaking ±, so that, in this case, Φ obviously belongs to
an irreducible representation of the invariance group of the problem. Otherwise the matrix of
direct products of representations generally constitutes a reducible representation of the invari-
ance group and in this case the product function (> Eq. .) and its partners do not, generally,
carry an irreducible representation of the point group and must be suitably adapted to do so.

There are clearly two possible ways in which this might be done. One could start off from
Φ and project out the required components, or one could recognize that there is a matrix
relationship between the unadapted set and the adapted set and try to determine thematrix ele-
ments from group theoretical arguments. Both approaches have their uses but since the second
approach has not yet been considered, it is appropriate to speak of it now.

If, for the moment, we consider the direct product of just two irreducible representations,
then it follows at once, from the character orthogonality theorem, that we can write down the
number of times that any irreducible representation occurs in the reduction of the direct prod-
uct representation. If we are thinking of representations μ and ν in the direct product and σ as
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the resulting representation, let us call this number (μνσ). It is zero or an integer and of course
it is known once the character table for all the irreducible representations of a group are known.
This means that we can find a transformation U such that

U†D(μ)
⊗D(ν)U =

∑

σ

(μνσ)D(σ), (.)

where a direct sum is implied on the right-hand side, which runs over all the representations in
the group. In > Eq. . it is assumed that the representations D(μ), etc., are unitary so that
from the definition of the direct product,D(μ)

⊗D(ν) is unitary and can, therefore, be reduced
to irreducible form by means of a unitary transformation.

Now if we denote by ϕ(σ) the row of nμ basis functions forD(μ), then the set of nσ = nμnν

product functions ϕ(μ)
⊗ ϕ(ν) are a basis for the direct product representations and clearly the

set of product functions ϕ(σ)

s , s = , …n defined by

ϕ(σ)

= ϕ(μ)
⊗ ϕ(ν)U (.)

are a basis for the reduced representation on the right-hand side of > Eq. .. It is usual to
rewrite (> Eq. .) in the form

ϕ(σ)

s =
∑

i , j
ϕ(μ)
i ϕ(ν)

j (μi, ν j ∣ σs), (.)

and refer to the elements of the unitary matrix in > Eq. . as vector-coupling or Clebsch–
Gordan coefficients.

Care is needed here, because if (μνσ) is zero then clearly (> Eq. .) makes no sense,
but this can be taken care of at the formal level by defining the vector-coupling coefficient as
zero if (μνσ) is zero. There is also obviously some ambiguity if (μνσ) is greater than one and it
will then be necessary to define some standard ordering. But nevertheless, the ideas are clear
enough. The point is that if the irreducible representations of the groups are known then it
is always possible to discover the vector coupling coefficients and hence to synthesize product
functions that carry irreducible representations.This process is often called vector-coupling and
obviously having coupled a pair of functions one can then couple another one to that pair and
so on. This technique finds its principal use in dealing with the construction of eigenfunctions
of the rotation group, but it is a quite general procedure.

There are many different notations for the vector-coupling coefficients and great care must
be exercised in determining just which convention a particular book is using, but it is perhaps
appropriate to note that there is a common, pretty standard, notation in terms of the Wigner
–j symbol defined, in our particular notation, so that (with theWigner symbol as the object in
brackets on the right-hand side)

(μi, ν j ∣ σs)∗ = [σ]

/
(

μ ν σ

i j s ) , (.)

where [σ] is the dimensionality of the σth irreducible representation. There are, obviously,
different sets of – j symbols for every group, but the ones most commonly tabulated are
those for the three-dimensional rotation group; they are also available for the crystallographic
point groups. Whether one chooses synthetic or projective methods to construct many-particle
symmetry functions is a matter of choice in any given problem.

Having considered the transformation properties of functions, consider how these proper-
ties may be used in the construction of matrix elements of operators and, from this, consider
again how operators themselves transform.
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Consider the matrix elements of an arbitrary operator A between two functions. We
symbolize the matrix element A by

A =

∫

ϕ∗

 (x)Aϕ(x)dx, (.)

where the integral is a definite one over all space and over all coordinates and where dx sym-
bolizes the appropriate volume element. Since the variables of integration are dummy we may
also write

A =

∫

ϕ∗

 (y)A′ϕ(y)dy, (.)

whereA′ symbolizesAmade up with y just asAwasmade up with x. But now let it be supposed
that y corresponds to a variable change induced by a transformation so that y = RTx. Then

A =

∫

ϕ̄∗

 (x)Āϕ̄(x) ∣ R ∣ dx, (.)

where Ā is the transformed operator as in > Eq. . and ϕ̄i the transformed function as
in > Eq. .. ∣ R ∣ is the Jacobian of the transformation and since the matrix R is orthogo-
nal, ∣ R ∣ is ±. If it is − then it can be shown that the signs of the limits change also so that
the integral is unchanged and thus ∣R∣ can always be treated as +. Thus (> Eq. .) may be
rewritten as

A =

∫

ϕ̄∗

 (x)Āϕ̄(x)dx. (.)

Now assume for amoment thatA isH then of course Ā is alsoH ifR is a symmetry operator
of the problem; thus it is the case that

∫

ϕ∗

 Hϕdx =

∫

ϕ̄∗

 Hϕ̄dx. (.)

But suppose it turned out that

ϕ̄ ≡ ORϕ = −ϕ, (.)

and

ϕ̄ ≡ ORϕ = ϕ,

then one would have proved that

∫

ϕ∗

 Hϕdx = −

∫

ϕ∗

 Hϕdx, (.)

and clearly the only way for this to happen is for the integral to vanish. This is a familiar result
as is its generalization, namely, that if ϕ is a basis function for a particular irreducible represen-
tation and ϕ is one for another irreducible representation, then the matrix element vanishes
unless the direct product of these two representations is reducible to a direct sumof representa-
tions which includes the totally symmetric (unit) representation. It should be remembered that
although the integral certainly vanishes if the totally symmetric representation is absent, even
if this representation is present, the integral could also vanish, for reasons other than the sym-
metry considered. Thus in the context of the selection rules based on the matrix elements one
can say that a particular transition is forbidden by symmetry, one cannot say that it is allowed
by symmetry.
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Spin and Point Group Symmetry

So far spin has not been considered explicitly. It is usual to ignore it in discussions of point
group symmetry because the total spin operator is invariant under all point group transforma-
tions and the axis orientation is defined by the fixed frame choice so there is a fixed internal
choice for the z-axis. Thus it is regarded as sufficient to require that the spatial part of any trial
function has the correct point group symmetry and then to form properly antisymmetric func-
tions from the spatial parts and the spin eigenfunctions in themanner outlined earlier. If orbitals
are used to construct the spatial part, then it is usual simply to extend the symmetry orbitals
to become symmetry spin-orbitals. Returning to the functional form used in > Eq. . this
would become

Φ(x, x, x....xN) = Aϕ(x)ϕ(x) .... ϕN(xN), (.)

whereA is the projection operator for the antisymmetric representation of the symmetric group
of the electrons. It is usually just called the antisymmetrizer:

A =


N ! ∑

P
єPOP ,

whereOP is the permutation operator and єP is the parity of the permutation. OP operates on
the electronic variables and should thus be associated with the inverse of a particular permu-
tation. However since the symmetric group is ambivalent and the representation of interest is
one-dimensional this is a distinction without a difference. In the case above where the initial
function is an orbital product, the operator can equally well be treated as if it operated on the
orbital index.

The space parts of the spin-orbitals ϕi and ϕ j can be the same if the spin parts are different.
If any two spin-orbitals are the same the projected function simply vanishes. This vanishing is
the basis of what is usually called the “Pauli exclusion principle.” The function (> Eq. .) is
clearly a determinant of spin-orbitals with the spin-orbital index designating a row (column)
and the electron numbering designating a column (row).This was first recognized by Slater and
so such determinants are called Slater determinants and often denoted by the shorthand

M∣ϕ(x)ϕ(x) . . .ϕN(xN)∣,

whereM is a normalizing factor.
Such Slater determinants are not themselves always spin eigenfunctions but they are eigen-

functions of Sz . They can be either coupled or projected to yield spin eigenfunctions for a
particular Ms value and the resulting functions can then be further projected by the step-up
operator

S
+

= Sx + iSy

to produce functions with Ms +  or the step-down operator

S
−

= Sx − iSy

to produce functions with Ms − .
The presence of spin in the trial function does not modify the previous point group sym-

metry discussion. However the requirements of spin and permutational symmetry may mean
that a trial function is constrained so that it might not be possible to have a trial function with
a particular point group symmetry and a specified spin symmetry. As an example consider a
determinant of doubly occupied orbitals for four electrons symbolized as

M∣ϕ(r)α(s)ϕ(r)β(s)ϕ(r)α(s)ϕ(r)β(s)∣.
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This determinant is a spin eigenfunction with S = . If the orbitals are point group symmetry
orbitals, the only possible symmetry of themany particle function is that generatedby the direct
product of each orbital symmetry with itself followed by the direct product of the resulting
symmetries. If the orbitals belong to one-dimensional irreps then the many particle function
must belong to the totally symmetric representation of the point group. It is not possible to
represent other symmetries with a function of this form.

The Construction of Approximate Eigenfunctions of the Clamped
Nuclei Hamiltonian

Thebasic mathematical tool used in the construction of approximate eigenfunctions is the vari-
ation theorem. This theorem asserts that for any square integrable function Φ which is of a
definite and allowed symmetry for the Hamiltonian, the quotient

∫

Φ∗HΦdx

∫

Φ∗Φdx
= E ≥ E f , (.)

where E f is the lowest energy of the particular symmetry. The function Φ is chosen to contain
parameters which can be varied to minimize E to make it as close as possible to E f . The func-
tion is usually scaled so that the denominator in the quotient is unity and the function with
this scaling is said to be normalized to unity or just to be normalized. If Φ is chosen as a linear
combination of functions with the coefficients as the parameters then minimizing E leads to a
secular problem the roots of which are upper bounds not only to the lowest states of the partic-
ular symmetry, but to excited states of increasing energy. At this stage the secular problem can
be approximated and approximations to the eigenfunctions can be developed by perturbation
theory.

It is usual to construct approximate solutions to the electronic Schrödinger equation in
terms of functions composed of spin-orbitals ϕr(x). In general it is supposed that we have
available a set of m(≥ N) orbitals ϕ(r) and to each of these we attach an α(s) or β(s) spin
factor function to form the spin-orbitals. When we write x as a variable designation we shall in
future mean space and spin variables collectively. We can write formally

(ϕ . . .ϕm) = (α β) × (ϕ . . .ϕm) ≡ ϕ = σ × ϕ, (.)

where × denotes the standard direct (or Kronecker) product of matrices.
The N-electron functions Φk are composed of Slater determinants of N spin-orbitals or

perhaps as a fixed linear combination of a number of such determinants. The matrix elements
of H between such functions can be written in terms of one- and two-electron integrals over
the spin-orbitals thus

Hkl ≡ ⟨Φk ∣H∣Φ l ⟩ =
∑

rs

k l Q 
rs⟨ϕr ∣h∣ϕs⟩ +


 ∑

rstu

k l Q
rs , tu⟨ϕrϕs ∣g∣ϕtϕu⟩, (.)

where the sums go over all spin-orbitals and where k l Q 
rs and the k l Q

rs ,tu are simple coeffi-
cients sometimes called projective reduction coefficients or coupling coefficients or alternatively
one- and two-particle density matrix elements. These coefficients will of course be zero if any
of the spin-orbitals shown in their indices do not occur in the pair of functions considered.
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The notation for the one and two-electron integrals is conventional,

⟨ϕr ∣h∣ϕs⟩ =

∫

ϕ∗

r (r)hϕs(r)dr, (.)

and
⟨ϕrϕs ∣g∣ϕtϕu⟩ =

∫

ϕ∗

r (r)ϕ∗

s (r)g()ϕt(r)ϕu(r)drdr. (.)

Similarly the overlap matrix elements can be written as

Mkl ≡ ⟨Φk ∣Φ l ⟩ = N−
∑

rs

k l Q 
rs⟨ϕr ∣ϕs⟩. (.)

Now let it be supposed that from a given set of spin-orbitals all possible functions Φk are
constructed and that the resulting set has M members. The best wavefunctions that could be
obtained from such a set would be a linear combination of these M terms with coefficients
determined using the variation theorem. Use of the variation theorem on such a set leads to the
familiar secular problem

∣H − EM∣ = , (.)

whose solutions give M eigenvalues E ≤ E ≤ E . . . ≤ EM each of which is an upper bound to
the first, second, third, and so on exact solution of the electronic Schrödinger problem.

In the special case where the spin-orbitals are orthonormal and the trial functions are Slater
determinants the expressions for the projective reduction coefficients are both simple and lim-
ited, given by Slater’s rules to be discussed in detail in later chapters in this work. With such
a choice there are Hamiltonian matrix elements between functions that differ from each other
only in two or fewer orbitals and Mkl = δkl . The expressions for these coefficients when the
orbitals are not orthogonal involve the overlap integrals Si j between all the orbitals in the func-
tions and there is no limitation on orbital differences between the functions and Mkl is not
the unit matrix. Every electronic permutation must be considered in their evaluation. For non-
orthogonal orbitals it is thus much more difficult to consider systems with more than a few
electrons and, because atomic orbitals on different centers are not orthogonal, this difficulty
has hindered the development of VB theory in a quantitative manner until very recently. An
account of modern VB developments forms a later part of this handbook. Usually LCAO MOs
are developed so as to be orthogonal so that given

ϕi =

m
∑

p=
ηpCpi i = , ,  . . . ,m, (.)

to evaluate the two-electron integral ⟨ϕiϕ j∣g∣ϕkϕl⟩ involves evaluating all the two-electron
integrals ⟨ηrηs ∣g∣ηtηu⟩ and summing. To transform all the two-electron integrals would seem
at first sight to involve m multiplications and additions and thus put it beyond computa-
tional possibility for anything other than a small number of orbitals. However it actually needs
operations only of the order of m, which is bad enough, but can be dealt with.

Although it proved possible to develop the LCAO method with Slater orbitals for diatomic
molecules, the evaluation of two-electron integrals when the atomic orbitals were centered on
three or four distinct nuclei proved very difficult and is not, even now, commonly undertaken.
However it proved possible by the use of Gaussian functions, as pioneered by McWeeny ()
and developed by Boys () in the s to evaluate the two-electron integrals swiftly and
to high precision. Tests on atoms and diatoms showed that although many more Gaussian
functions were required to obtain results comparable with a given set of Slater orbitals, the
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computational time involved was not much longer. Results using Gaussian functions are now
regarded as standard for polyatomic systems.

For ease of exposition we shall for the moment assume that the orbitals ϕr are orthonor-
mal so that the spin-orbitals are also orthonormal. If the Φk are then chosen as normalized
Slater determinants or proper linear combinations of them, they too may be chosen to be an
orthonormal set so that Mkl = δkl . The secular problem then simplifies to

∣H − E M ∣ = , (.)

and this is the form that is typically taken in a CI calculation with orthonormal MOs ϕr and
orthonormal configuration functions Φk , while > Eq. . is the form typically taken in a VB
calculation where, in general, neither the orbitals nor the structure functions are orthonormal.

Let us consider what happens if we subject the spin functions to the transformations

σ → σU(), (.)

and the orbitals to the transformations

ϕ → ϕU(m), (.)

where U(n) is an n × n unitary matrix. In this case the spin-orbitals change

ϕ → ϕ′

= σU() × ϕU(m)

= (σ × ϕ)(U() × U(m)), (.)

and it is easy to show that the ϕ′ form an orthonormal set still.
If we nowmake up theM functions Φk but using the spin-orbitals ϕ′

k rather than the ϕk , it is
easy to show that the Φ′

k continue to form an orthonormal set because the ϕr are orthonormal.
Since the set Φk is complete, this means that the Φ′

k are at most a unitary transformation of the
Φk , that is:

Φ′

k =

M

∑

n=
ΦnUnk(M), (.)

whereU(M) is anM × M unitary matrix.This in turn implies that thematrixH is transformed
as

H → H′

= U†(M)HU(M). (.)

The new secular problem is, therefore,

∣H′

− E M ∣ = , (.)

which can be rewritten as
∣U†(M)(H − E M)U(M)∣ = , (.)

and using the property
∣AB∣ = ∣A∣∣B∣

of determinants of square matrix products it follows at once that the secular problem
(> Eq. .) is identical with the secular problem (> Eq. .). Thus the energies are
completely unchanged by this unitary transformation.

All possible unitary matrices of a given dimension, say n, form a group under matrix mul-
tiplication, a group that is usually written asU(n) and thus we can say that the secular problem
is invariant under the operations that constitute the group U() ×U(m).
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It is wrong to think of this group as a transformation group in the same way as a point
group. There is no coordinate transformation that corresponds to the unitary transformation
on the orbital space. In this case the transformation on the function space is all that there is,
the unitary matrices do not “correspond” to anything though of course, one can assert that
each matrix formally represents a particular unitary operator if one wishes. If one does think
in this way then we can regard the result that has just been shown as a very weak form of a
fundamental result due toWigner who showed that unitary invariance is a very deep invariance
in any quantum mechanics based on square integrable eigenfunctions.

At one level the result just shown is quite useless because for m reasonably large M is astro-
nomical. One can refine the result a little to make M less big, for one can show that if one
starts off with a set of determinants each containing Nα α-spin-orbitals and Nβ β-spin-orbitals
(Nα +Nβ = N) so thatMs = (Nα −Nβ)/ for every determinant, then it is sufficient to include
only transformed functions with the sameMs value. Further one can show that if one starts off
with functions which are fixed linear combinations of determinants which are spin eigenfunc-
tions (i.e., have a particular expectation value S say, of S), then again one only need consider
the transformed functions that preserve S. But to give some idea of how big the M can be, the
following figures are relevant. For a system where the number of electrons, N , is equal to 
(as in HO) and the number of orbitals, m, is equal to , the total number of determinants
M is . × . If the process is restricted to those functions for which Ms = , M drops to
. ×  and if the process is further restricted to those functions for which S =  then
M becomes . × .

Clearly it is not possible to compute all the matrix elements and then to solve the secular
problem. However it is possible to utilize the group theoretical results in the design of com-
putational methods that yield tractable problems. The key to the connection between matrix
element evaluation and the unitary group U(m) is because the Hamiltonian can be expressed
in terms of the generators of this group. The spatial parts of the trial functions can be chosen
to provide a basis for irreducible representations ofU(m) corresponding to a particular choice
of S and of Ms for spin symmetry by the use of Weyl tableaux. The required Young diagram
for the particular choice of S and of Ms is constructed and then the conjugate diagram written
down. Into this diagram the orbital indices are put in such a way that across any row the indices
are nondecreasing and down any column they are strictly increasing. The resulting tableaux
are the Weyl tableaux and each tableau labels a basis function for an irreducible representa-
tion of the group U(m) of dimension equal to the total number of tableaux. Thus for a three
electron problem using four orbitals, choosing the Young diagram [ ] would yield  distinct
Weyl tableaux. Rather convenient rulesmay then be specified for matrix elements between such
functions. This approach will be considered more fully later in this work.

There is, however, one particularly simple and commonly useful case that is appropriate to
consider here. That is the case where the trial wavefunction is simply a single Slater determi-
nant of doubly occupied orbitals and it is a commonly useful form because many molecules
have an even number of electrons and their electronic ground states are, in many cases, totally
symmetric singlet states.The expected value of the Hamiltonian for such a trial function is

E = 
∑

r
⟨ϕr ∣h∣ϕr⟩ +

∑

rs
(⟨ϕrϕs ∣g∣ϕrϕs⟩ − ⟨ϕrϕs ∣g∣ϕsϕr⟩), (.)

where the sum is over orbitals, the spin having been integrated out leaving only the spatial
integrations to be performed. Using the form (> Eq. .) for the orbitals E may be written as

E = trhR + trGR,
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where
hi j = ⟨ηi ∣h∣η j⟩,

Ri j =
∑

r
CirC jr ,

Gi j = Ji j − Ki j, Ji j =
∑

k l
Rkl⟨ηiηk ∣g∣η jϕl ⟩, Ki j =

∑

k l
Rkl⟨ηiηk ∣g∣ηl ϕ j⟩.

It can then be shown that the elements ofC thatminimize the energy can be obtained by solving
the generalized eigenvalue problem

hFC = sCє,

where
hF

= h +G, Si j = ⟨ηi ∣η j⟩,

and є is a diagonal matrix with the orbital energies єr along the diagonal.
Because the construction of hF involves a knowledge of C the construction of eigenvalues

must startwith a first guess atC too, obtain an improved guess, and be continued until no further
improvement occurs.There are a number ofways inwhich thismay be done but a popularway is
simply to solve the generalized eigenvalue problem iteratively.This scheme has given the name
self-consistent field (SCF) to the method generally.The contributions of Hartree and of Fock to
its development are sometimes acknowledged by denoting it the HF SCF method.

The SCF method is, at present, the most widely used method in computational chemistry
and forms a central feature of all the commonly available computer packages for computational
chemistry. Provided that the basis of AOs is full enough, the resulting functions yield energies
that are often sufficiently good to enablemeaningful distinctions to bemade betweenmolecules
with different nuclear geometries and so to aid the interpretation of spectroscopic results and
reaction mechanisms. However the basis of AOs cannot be made too large because of the num-
ber of electron repulsion integrals that must be computed and the difficulties of storing and
manipulating these.

It is seen, however, that the distinctive feature in the calculation of the electronic energy
is the potential term V(i), all the other terms being of precisely the same form whatever the
geometry of a given molecule and between molecules. The potential depends only upon the
coordinates of a single particle and thus can be realized in terms of one-particle integrals. This
is usually expressed by saying that the potential depends only upon the one-particle density
functional. It was shownbyHohenberg andKohn () that the electronic energy depended on
the density functional in a uniqueway and that, if the density functional was known, then sowas
the energy.This result has led to the development of variants on the SCF method which involve
approximations to the density functional form and requiremany fewer integral evaluations than
does the direct use of an LCAO MO SCF method. Thus much larger molecules can be tackled
in this approach than would otherwise be possible.

Conclusions

It seems fair to say that if one treats the nuclei as distinguishable particles and takes the sum
of the electronic energy obtained as an eigenvalue of the clamped nuclei Hamiltonian and the
classical nuclear repulsion energy as a potential, the geometrical structure of the minimum in
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such a potential can be identified as the equilibriummolecular geometry.This can be donewith-
out appeal to the chemical bond, and without recognition of functional groups. Certain aspects
of the transition state theory of chemical reactions can be rationalized in terms of structures
anticipated using the potential at geometries away from the equilibrium one. If the occurrence
of polar molecules is considered to be an aspect of molecular structure, polar molecules can be
recognized from fixed nuclei electronic structure calculations bymeans of a dipole moment cal-
culated as the sum of the electronic dipole and the classical nuclear dipole. And there are many
other ways in which quantum mechanics formulated with the requirement that the nuclei may
be treated as distinguishable clampable particles has been effectively used to illuminate chemical
behavior.

However, even if this approach is regarded as giving a satisfactory account of chemical struc-
ture, it still remains to justify by full quantummechanicalmeans the treatment of the nuclei that
it involves. But at present such a justification still eludes us. It may be in the future that the mul-
tiple well approach to nuclear permutational symmetry will be shown to be properly founded
and thus the eigenvalues of the molecular Hamiltonian to be just those anticipated from the
previous approach; even so one will still be left with eigenfunctions which exhibit full permuta-
tion and rotation-inversion symmetry and it seems impossible to anticipate anything at all like
classical chemical structure from these using the standard quantum mechanical machinery.

An obvious objection to this discussion is that the full symmetries of the Coulomb Hamil-
tonian we have been discussing are manifested necessarily by its stationary states, whereas
chemists are concerned with time-dependent states that may exhibit less symmetry. The time-
dependent Schrödinger equation simply describes unitary time evolution of a prior state and
will not change symmetries; any given initial state is the result of some previous time evolu-
tion so what is required is a quantummechanical theory of initial states that are consistent with
chemistry; about that nothing is known. The most that it seems possible to say is that chemical
structure can be teased out in terms of a chosen ansatz (the imposition of fixed, distinguishable
nuclei) if one has a good idea of what one is looking for. It seems unlikely that one would ever
guess that it was there in the full Coulomb Hamiltonian for a molecular formula unless one had
decided on its presence in advance.
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Department of Chemistry, Nicolaus Copernicus University, Toruń,
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Abstract: Methods of computational chemistry seem to often be simply a melange of undeci-
pherable acronyms. Frequently, the ability to characterize methods with respect to their quality
and applied approximations or to ascribe the propermethodology to the physicochemical prop-
erty of interest is sufficient to perform research. However, it is worth knowing the fundamental
ideas underlying the computational techniques so that one may exploit the approximations
intentionally and efficiently. This chapter is an introduction to quantum chemistry methods
based on the wave function search in one-electron approximation.

Introduction –What andWhy?

Quantum chemistry is a branch of science originating from quantum mechanics that focuses
on investigations of chemical systems. The mathematical roots of quantum chemistry allow
it to be treated as a methodology for solving an eigenvalue equation for operators or – even
simpler – finding solutions for some differential equations. We cannot totally escape this way
of thinking, since this is how things really are. However, a chemist will comprehend quantum
chemistry more as a helping tool in experimental work, supporting description of chemical
reactions. A tool that plays a role similar to a spectrophotometer or a chromatographic column.
A tool that can provide information about the system under consideration. A powerful tool,
the popularization of which was achieved thanks to the fast progress of computer power and
the hard work of people whomade the transformation from pure theory to computer programs
possible.Their efforts were appreciated – in , the Nobel Prize was awarded toWalter Kohn
“for his development of the density functional theory” and John Pople “for his development of
computational methods.”

From the point of view of the experimentalist, the apparatus of quantum chemistry can
be perceived similarly as the NMR spectrometer. One knows that the quality of the obtained
NMR spectrum depends not only on the magnetic field of the magnet but also on the signal-
processing capabilities. To successfully use NMR spectroscopy in experimental work, detailed
knowledge about the technology of production and preparation of the magnets and electronic
equipment is not a requisite. It is enough to keep inmind that with the given frequency one gets
corresponding accuracy and information. All the rest is simply skill in sample preparation and
expertise in spectrum interpretation. For effective usage of computational techniques of quan-
tum chemistry, onemust be aware of applied approximation to tune the accuracy of calculations
and possess knowledge of the physicochemical phenomenon one wants to describe.

The aim of the present chapter is to provide a gentle introduction to basic quantum chem-
istry methods – the methods of solving the electronic Schrödinger equation. The chapter is
intended for people starting their adventure with computational chemistry and wanting it to
become the tool, not the aim itself.

When discussing quantum chemistry, we cannot totally avoid quantum mechanics. How-
ever, let us use another comparison: Traveling abroad it is good to know some basic expressions
in the local language of the country you go to. It makes life easier and gives pleasure in interper-
sonal contacts. Still, no one expects a tourist to speak a language as fluently as a native speaker.
Therefore, to efficiently apply computational techniques in experimental research one has to
learn some basic quantum mechanical terms that will help during the journey through the
remainder of this chapter.
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QuantumMechanics for Dummies

We will begin with the basic terms of quantum mechanics. In this section, they will be intro-
duced in an intuitive manner, to enable understanding of the next sections’ content, even by
beginners.

We consider a system of N electrons in the field produced by the potentials arising from
nuclei (the nuclei are not treated as particles consisting of nucleons but just as a point source of
the electrostatic potential). We are interested only in one particular case:

• The probability of finding the electrons of the considered system on the infinite distance
from the nuclei is equal to zero. In other words, we want our system to constitute the whole
entirety, not breaking into separate and independent parts (this would be the case of the
interaction of two electrons with no attraction – two negative charges would repel each
other to infinity).

• The energies of this system constitute the discrete spectrum.
• We want to know only the lowest value of energy (the wider approach can be found in the

next volume of the present book).

With such limitations, we do not need to consider all of the different general cases and can
simply concentrate on the bound state chemistry.

A central notion in quantum chemistry is a wave function. This is a function character-
izing a state of the system. Therefore, it depends on the variables that are adequate for the
given system.This means that the wave function has to depend, at least, on spatial coordinates
describing motions of the particles in the investigated system. Moreover, the wave function
depends on so-called spin variables (spin is an additional degree of freedom included a poste-
riori in nonrelativistic quantum mechanics). This spin dependency can be built into the wave
function by introducing a spin function. For instance, for the electron with a label  its wave
function depends on the spatial coordinates x, y, and z and is multiplied by the spin func-
tion α(σ) or β(σ), where σ is a spin variable. The spin functions must fulfill the following
requirements:

∫

α∗

(σ)α(σ)dσ =
∫

β∗(σ)β(σ)dσ = , (.)

∫

α∗

(σ)β(σ)dσ =
∫

β∗(σ)α(σ)dσ = , (.)

where the integration is carried out over the spin variable, which can be treated as the
integration variable only. Such a construction may seem to be somehow unnatural; how-
ever, it is a convenient way of ascribing spins to the electrons without dealing with its
origins.

In general, the wave functionmust dependon time to reproduce information about the time
evolution of the system. However, since we are interested only in the ground state of the system,
we can neglect the time dependency. Considering the bound state is equivalent to imposing the
condition of the square integrability of the wave function. The integral over all variables in the
full range must exist,

∫ ∫

. . .
∫

f ∗ f dτ = q, (.)

where q is a finite real number. An asterisk under the integral denotes the complex conjugate; it
comes from the fact that the wave function can be complex in general.The square-integrability
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condition ensures that the wave function vanishes for the infinite values of all spatial vari-
ables, and, therefore, that ourmolecule is kept together. In the above expression, the integration
intervals and the integration variables are not stated explicitly. For the investigated N-electron
system, the wave function depends on the N spatial variables (for each particle i we have xi ,
yi , and zi coordinates) and additionally N spin variables (σi for the particle i):

f = f (x, y, z,σ, x, y, z,σ, . . . , xN , yN , zN ,σN). (.)

The volume element in this N-dimensional space is

dτ = dV ⋅ dσ, (.)

where the spatial part can be written as

dV = dxdydzdxdydz . . .dxNdyNdzN , (.)

and the spin part is
dσ = dσdσ . . . dσN . (.)

The spatial variables change from −∞ to∞ and spin variables can take allowed values. One can
see that writing all of the integrals, variables, and volume elements explicitly takes time and a
lot of paper, even for relatively small systems. Therefore, one usually keeps them in mind, not
writing them down.

The wave function contains all of the information about the state of the system. In order to
extract it, operators are applied. An operator can be understood by an analogy to a function.
The function ascribes a number to a number and the operator ascribes a function to another
function. In other words, the operator is a recipe for how to obtain one function from another:

Â f = g. (.)

We will denote operators by hats above the symbol to distinguish them from functions and
numbers. One of the particularly interesting cases is when the function g is proportional to the
function f ,

g = a f , (.)

where a is a number. Then > Eq. . takes the form

Â f = a f . (.)

> Equation . is called an eigenvalue equation of the operator Â.The function f fulfilling this
equation is called an eigenfunction and a is an eigenvalue of the operator Â. The Schrödinger
equation,

̂HΨ = EΨ, (.)

is a typical eigenvalue equation in which the Hamilton operator ̂H extracts the information
about the energy E of the system from the wave function Ψ.

Like in the case of the wave function, we will not consider operators in general. Let us
concentrate on the Hamilton operator and its properties to simplify our discussion. We need
our operators ascribed to observables (Hamiltonian among others) to satisfy the following
requirements:

• Linearity – the operators must fulfill the condition

Â(α f + βg) = αÂ f + βÂg, (.)
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where now α and β are numbers. This seems simple and obvious, however, it is not the
property of all operators. For instance, the square root is not a linear operator, since the
square root of the sum is not equal to the sum of the square roots.

• Real eigenvalues – only real values can be measured in a laboratory.

For these reasons, we will be interested in so-called Hermitian operators that can be defined by
the relation

∫ ∫

. . .
∫

f ∗ (Â f)dτ =
∫ ∫

. . .
∫

f(Â f)∗dτ. (.)

All the functions, variables, and integration intervals remain the same as in > Eq. .. Writing
of all these things in the expressions was already troublesome enough, and things become even
more complicated when operators appear. In order to make life easier, Dirac notation can be
applied. In this notation > Eq. . has the form

⟨ f∣Â f⟩ = ⟨Â f∣ f⟩, (.)

where the left-hand side can be equivalently written as ⟨ f∣Â∣ f⟩, and the integral of > Eq. .
becomes simply

⟨ f ∣ f ⟩ = q. (.)

In this very convenient notation it is also assumed that the integration intervals and variables
flow from the context.

Let us look at Hermitian operators more carefully, considering them in the example of
Hamiltonian. It has already beenmentioned that such operators have real eigenvalues. Further-
more, the eigenfunctions of the Hermitian operator that correspond to different eigenvalues are
orthogonal. In other words, for

̂H f = E f and ̂H f = E f, (.)

where E ≠ E one has
⟨ f∣ f⟩ = ⟨ f∣ f⟩ = . (.)

Thiswill be a very useful property, since it will cause various terms in complicated expressions to
vanish. In the case of degeneration, or, in other words, when one of the eigenvalues corresponds
to two or more eigenfunctions, the eigenfunctions f and f can be orthogonalized.

It is worth considering the integral

⟨ f∣ ̂H∣ f⟩. (.)

Since f is the eigenfunction of ̂H with the eigenvalue E, it is obvious that

⟨ f∣ ̂H∣ f⟩ = ⟨ f∣E f⟩ = E⟨ f∣ f⟩. (.)

It would be certainly more convenient if the result was a single number – the eigenvalue E.This
would be the case if ⟨ f∣ f⟩ = , or if we say the function f was normalized to unity. It would be
consistent with the interpretation of the integral ⟨ f∣ f⟩ as the probability of finding the system
in the whole space – it should be surely equal .This is a very handy requirement. Any function
that does not possess this property can be normalized by multiplying by the normalization
factorN = /

√

⟨ f∣ f⟩. Then, the new function f̃ will be given as

f̃ = N f. (.)
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This new function f̃ is also an eigenfunction of the Hamiltonian, since f was only divided by
the number

√

⟨ f∣ f⟩ and Hamiltonian is linear:

̂H f̃ = ̂HN f = N ̂H f = N E f = EN f = E f̃. (.)

In the case of unnormalized functions, the expression for the eigenvalue E can be obtained
from > Eq. .:

E =
⟨ f∣ ̂H∣ f⟩
⟨ f∣ f⟩

. (.)

However, many of the applied functions are not the eigenfunctions of the Hamiltonian.
Therefore, let us investigate another interesting integral,

⟨g∣ ̂H∣g⟩, (.)

where g is not an eigenfunction of ̂H. In order to calculate this integral, an alternate important
property of the Hermitian operators needs to be exploited: the fact that their eigenfunctions
constitute a complete basis set. Each function depending on the same variables as the eigen-
functions can be expressed as the linear combination of the basis functions. Now, this concept
seems to be hard-core mathematics, however, anybody using computational techniques knows
well that the two things onemust input to the ab initio program are themethod and the basis set.
Hence, let usmake a break from the general considerations of operators and abstract space func-
tions and concentrate for a while on the basis set concept in the example of simple trigonometric
functions.

In a calculus course, one learns how to express a function using a set of other functions. For
example, consider sin x function and expand it in the Taylor series around :

sin x =
∞

∑

i=

(−)i−

(i − )!
xi− = x −

x

!
+

x

!
− . . . . (.)

In > Eq. ., sin x function is expressed in the basis set of monomials:

sin x =
∞

∑

k=
ckx

k , (.)

where ck are the expansion coefficients that need to be determined. In our case it is simple, since
ck result directly from the Taylor expansion and are equal:

ck = {
(−)(k−)/

k! for odd k,
 for even k.

(.)

The summation in > Eqs. . and > . goes from  to∞. In practice, finite and possibly
short expansions are applied:

Fn(x) =
n
∑

i=
ci x i . (.)

This truncation of the series introduces an approximation to our function.
Let us analyze the sin x function in the range x ∈ ⟨−π

 ;
π
 ⟩. The standard deviation works

well as the accuracy measure:

σn =

�

�

��

∫

π


−

π


(sin x − Fn(x)) dx. (.)



Remarks on Wave Function Theory and Methods  

⊡ Table -
Taylor expansion of sin x function and standard deviation for various expansion lengths

n Fn σn

 x . ⋅ -

 x − 

x . ⋅ -

 x − 

x + 


x . ⋅ -

 x − 

x + 


x − 

,
x . ⋅ -

> Table - summarizes data for small n values. Increasing the number of expansion terms
causes a decrease of the standard deviation values andmore accurate representation of the orig-
inal sin x function. Given the required accuracy of the calculation, the necessary value length
of the expansion, n, can be found.

The following question arises: why use Taylor expansion instead of sin x function itself,
if one needs to worry about the expansion accuracy? The answer is straightforward: sim-
plifications and savings. It is much easier to operate on the polynomials than on the
trigonometric functions (for instance, the integral

∫

(xi
)

dx is much easier to handle than
∫

sin xdx). Moreover, the required accuracy can often be obtained with a relatively short
expansion.

Let us nowmake the considerationsmore general. Aswas stated before, the set of eigenfunc-
tions of the Hermitian operator ̂H is complete and orthonormal – functions are orthogonal and
normalized:

∀i , j⟨ fi ∣ f j⟩ = δi j , (.)

where δi j is a Kronecker symbol that takes value  for i = j and  otherwise. The basis set
completenessmeans that each function depending on the same set of variables can be expressed
by the basis functions:

g =
∞

∑

i=
ci fi , (.)

where coefficients ci need to be found. Knowing the normalized g function makes this task
simple, because of the orthonormality of the { fi} set, the coefficients will be equal:

ci = ⟨ fi ∣g⟩, (.)

since

⟨ fi ∣g⟩ =
∞

∑

j=
c j⟨ fi ∣ f j⟩ =

∞

∑

j=
c jδi j = ci . (.)

(Only one term for i = j, ci , remains, all other vanish for the Kronecker delta equals zero if
i ≠ j.) Similarly,

⟨g∣g⟩ =
∞

∑

j=
c∗j c j. (.)

However, things are not that easy, since we usually apply the expansion (> Eq. .) when we
do not know the g function. Thus, the integrals (> Eqs. . and > .) should be perceived
rather as the interpretation of the ci coefficients than the direct recipe for the calculations. From
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> Eq. ., the g function can be treated as the linear combination of the fi functions.Moreover
(see > Eq. .), the probability that a system described by the function g is in the state f j is
given by c∗j c j.

Now let us consider the expression

⟨g∣ ̂H∣g⟩ ≡ ⟨ ̂H⟩g , (.)

when g is not the Hamiltonian eigenfunction. Using the expansion > Eq. . and the fact that
fi are the Hamiltonian eigenfunctions (> Eq. .), one obtains

⟨g∣ ̂H∣g⟩ =
∞

∑

j=
c∗j c jE j. (.)

The above integral is called an average (expectation) value, and > Eq. . for Hamiltonian
carries the information about the average energy of the system in the state described by the
g function. Looking closer at > Eq. . shows that this average energy is simply a weighted
average of all possible E j energies of the system.The weights are determined by the c∗j c j prod-
ucts – the probability of finding the system in the f j state. It should be noticed that we used the
linearity of the Hamiltonian operator to achieve this result.

Conclusion? Very optimistic: we can say something about the sought energy value not
knowing the eigenfunctions of the operator of interest, since for calculations of > Eq. .
we do not need f j functions. Strange? Not at all, if we recall some linear algebra: using
three basis vectors we can describe each and every point in the D space. Likewise, the
wave function can be perceived as a vector, the Hermitian operator as the symmetric
transformation matrix, an integral ⟨ f ∣g⟩ as the dot product, orthogonality of functions
as orthogonality of vectors, and normalization as dividing the vector components by its
length.

Now, when the “linear algebra” term has already appeared, let us see how it is applied for
solving the eigenequation. Almost all calculations are performed by applying the basis func-
tions. This means that the unknown function Ψ describing the investigated system is expressed
in the basis of known functions χi (see > Eq. .):

Ψ ≈

n
∑

i=
ci χi = Φ, (.)

where Ψ is the eigenfunction of the Hamiltonian corresponding to a given eigenvalue E
(> Eq. .).The task is to find such ci coefficients that the function Φwould be the best approx-
imation to Ψ. Since Φ is an approximation to the wave function, the corresponding energy
will also be only approximated. Let us call the approximation EΦ. Basis functions χi are not
the Hamiltonian eigenfunctions, therefore, to estimate the energy, an average value must be
calculated.Therefore, substituting > Eq. . for > Eq. . andmultiplying by Ψ∗

= ⟨
∑i ci χi ∣
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on both sides gives

LHS = ⟨
∑

i
ci χi ∣ ̂H∣∑

j
c j χ j⟩ = ∑

i
∑

j
c∗i c j⟨χi ∣ ̂H∣χ j⟩, (.)

RHS = EΦ∑
i
∑

j
c∗i c j⟨χi ∣χ j⟩. (.)

In order to further simplify the notation, let us denote ⟨χi ∣ ̂H∣χ j⟩ byHi j and ⟨χi ∣χ j⟩ by Si j.Then,

∑

i
∑

j
c∗i c jHi j = EΦ∑

i
∑

j
c∗i c jSi j. (.)

Equivalently, in the matrix form
Hc = ScEΦ, (.)

whereH is the Hamiltonian matrix with the elementsHi j, S is called the overlap matrix and is
built of the overlap integrals Si j, and c denotes the vector of the ci coefficients. The basis sets
applied in practice are usually non-orthogonal, which causes the off-diagonal terms in the S
matrix to not vanish.

Such a method of finding approximate eigenvalues and eigenvectors of the Hamiltonian is
known as the Ritz method and is frequently applied in quantum chemistry.

This simple introduction of basic terms of quantum mechanics is obviously far from
complete. One can notice the lack of further discussion of the degeneration, the continuum
spectrum, and many other topics. For these we encourage the reader to dive into the following
excellent books on quantum mechanics and chemistry: (Atkins and Friedman ; Griffiths
; Levine ; Lowe and Peterson ; McQuarrie and Simon ; Piela ; Ratner
and Schatz ; Szabo and Ostlund ).

On theWay toQuantum Chemistry

For the sake of simplification, we assume that the energy of the ground state of our system dif-
fers from other energy values. This allows one to avoid embroilment in technical details that
are unnecessary at this point. Our system is described by the wave function Ψ fulfilling the
Schrödinger > Eq. .. It is important to notice that this eigenvalue equation can be solved
exactly only for hydrogen atoms. Any more complicated system requires approximate tech-
niques. In order to explain this complication, let us look into the Hamilton operator. For the
system of N electrons and M nuclei the full Hamiltonian is a sum of the following terms:

 Here, different subscripts appear on the both sides of the integral. The sum does not depend on the name of
the summation index, thus any subscript can be applied. However, one should not apply the same index on
both sides of the integral, since it can cause the erroneous omission of the off-diagonal terms. Compare the
overlap integral

⟨Ψ∣Ψ⟩ = ⟨∑
i
c i χ i ∣∑

j
c j χ j⟩ = ⟨c χ + c χ + c χ + . . . ∣c χ + c χ + c χ + . . .⟩

= c∗ c⟨χ ∣χ⟩ + c∗ c⟨χ ∣χ⟩ + c∗ c⟨χ ∣χ⟩ + . . . .

The explicit writing of all terms shows that not only the integrals ⟨χi ∣χi ⟩ with the same function on both
sides are present, but also the contributions ⟨χi ∣χ j⟩ with i ≠ j. Therefore, the diversification of the subscripts
prevents mistakes.
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• Kinetic energy of electrons, ̂Te

• Kinetic energy of nuclei, ̂Tn

• Energy of interactions between electrons, ̂Vee

• Energy of interactions between nuclei, ̂Vnn

• Energy of interactions between a nucleus and an electron, ̂Vne

In the atomic units, these terms have the following form:

̂Te = −



N
∑

i=
▽


r i , (.)

̂Tn = −
M
∑

i=


mi

▽


Ri , (.)

̂Vee =
N

∑

i=

N

∑

j>i


ri j

, (.)

̂Vnn =
M

∑

i=

M

∑

j>i

Zi Z j

Ri j
, (.)

̂Vne = −
N

∑

i=

M

∑

j=

Zj

∣ri − R j ∣
, (.)

where mi is the mass of the nucleus i, Zi stands for the nuclear charge, and ri j denotes the
distance between the electrons i and j, ri j = ∣ri − r j ∣. Likewise, Ri j refers to the internuclear
distance, Ri j = ∣Ri − R j∣. The presence of the mutual distances between the particles causes a
serious problem when solving the Schrodinger equation, it does not allow one to decouple the
equations.

Fortunately, from the chemist’s point of view, such a Hamiltonian is not very useful. The
chemist is not interested in each and every bit of information one can get about any N-electron
M-nuclei system, however, she or he is focused on the given molecule, its conformations,
interactions with the environment, and properties (spectroscopic, magnetic, electric, and so
on). What makes quantum mechanics a valuable tool for chemists is the Born–Oppenheimer
approximation, discussed in detail in the previous chapter of this volume. Let us briefly
summarize it to maintain consistent notation throughout the chapter.

The chemist is concerned with the relative positions of the nuclei in the molecule and with
the internal energy, but not with the motions of the molecule as a whole. This motion can be
excluded from our consideration, for example, by elimination of the center-of-mass transla-
tion. Moreover, the intermolecular (electrostatic) forces acting on electrons and nuclei would
be similar. This would causemuch slower internal motion of the heavy nuclei in comparison to
light electrons. For this reason, the approximate description of electron motion with paramet-
ric dependence on the static positions of nuclei is justified. Such reasoning leads to adiabatic
approximation and finally to Born-Oppenheimer approximation.

According to this approximation, the Hamiltonian can be written as

̂H =

̂Tn + ̂He + ̂Vnn, (.)

where ̂Tn now has a meaning of nuclear kinetic energy of the molecule for which the center-of-
mass is stopped (however, there are still oscillations and rotations), and

̂He = ̂Te + ̂Vee + ̂Ven. (.)
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is called an electronic Hamiltonian, and it represents the energy of the system after omitting the
nuclear kinetic energy term and nuclear repulsion. One can now focus on the solution of the
equation of the form

[

̂Tn(R) + ̂He(r;R) + ̂Vnn(R)]Ψ(r,R) = EΨ(r,R). (.)

Here, the dependence on the electronic spatial variables r = (x, y , z, . . . , xN , yN , zN) and the
nuclear spatial variables R = (X,Y, Z, . . . ,XM ,YM , ZM) is written explicitly. The semicolon
sign in the ̂He term denotes the parametric dependence – for various R the various electronic
equations are obtained.

With such a Hamiltonian, it seems reliable to distinguish also the nuclear f (R) and
electronic Ψe(r;R) part in the wave function

Ψ(r,R) ≈ Ψe(r;R) f (R), (.)

which leads to a significant reduction of the problem.
Now > Eq. . can be separated into three equations:

̂He(r;R)Ψe(r;R) = Ee(R)Ψe(r;R), (.)
(

̂He(r;R) + ̂Vnn(R))Ψe(r;R) = U(R)Ψe(r;R), (.)
(

̂Tn(R) + ̂U(R)) f (R) = E f (R). (.)

The first two describe electronic motion for a given position of nuclei. The difference
between Ee(R) andU(R) is that inU(R) nuclear repulsion energy is taken into account.These
equations are milestones in our considerations for two reasons. First, since we are now talking
about “fixed positions of the nuclei,” finally we have got molecules instead of an unspecified
system containing some electrons and some nuclei. The second is hidden in > Eq. .: elec-
tronic energy and nuclear repulsion energy constitute the potential, in which nuclei are moving.
That is why the proper description of electronic movement in a molecule is so important: The
electrons glue the whole molecule together.

Our attention in the rest of the chapterwill be focused only on > Eq. .; hence, to simplify
notation, all the subscripts denoting the electronic case will be omitted:

̂He → ̂H, (.)
Ψe → Ψ, (.)

̂HeΨe(r;R) = EeΨe(r;R) → ̂HΨ = EΨ. (.)

The electronic wave function Ψ satisfies all the requirements discussed in the previous sections,
depends on the coordinates ofN electrons, and additionallymust be antisymmetricwith respect
to the exchange of coordinates of two electrons.

It should be noted that the analytic solution of > Eq. . is not known even for the small-
est molecule, i.e., H. Therefore, the approximate techniques must be applied to extract the
necessary information about molecules of interest. Quantum mechanics provides two tools:

• Variational principle
• Perturbation theory

 In order to explain the antisymmetry requirement, we have to refer again to theory that is beyond the scope
of the present chapter. Let us simply state here that wave functions must be antisymmetric without belaboring
the point. This will mean that the exchange of the coordinates of the two electrons causes the wave function to
change the sign: Ψ(τ , τ) = −Ψ(τ , τ).



  Remarks on Wave Function Theory and Methods

Variational Principle – An Indicator

The variational principle allows one to judge the quality of the obtained solutions. It can be
formulated as follows: For the arbitrary trial function χ that is square-integrable, differentiable,
antisymmetric, and depends on the same set of variables as a sought ground state Ψ function,
we have

E ≤
⟨χ∣ ̂H∣χ⟩
⟨χ∣χ⟩

, (.)

where E is the ground state energy corresponding to Ψ (> Eq. .). The important conse-
quence of the variational principle is that, to estimate the energy of the system one does not
need to solve the eigenequation (this we already know, see > Eq. .), and moreover – what
is crucial – the estimated energy value will always not be lower than the exact eigenvalue E.

The proof of the inequality (> Eq. .) is straightforward and can be derived from
> Eqs. . and > .. The function χ that satisfies the above requirements can be expanded
on the basis of the Hamiltonian eigenfunctions:

χ =
∞

∑

i=
ci fi , (.)

where fi fulfill the eigenproblem ̂H fi = Ei fi . Thus,

⟨χ∣ ̂H∣χ⟩
⟨χ∣χ⟩

=

∑

∞

i= c
∗

i ci Ei

∑

∞

i= c∗i ci
≥

∑

∞

i= c
∗

i ci E

∑

∞

i= c∗i ci
= E, (.)

with the assumption that E is the lowest of all Hamiltonian eigenvalues (Atkins and Friedman
; Levine ; Lowe and Peterson ; McQuarrie and Simon ; Piela ; Szabo and
Ostlund ).

Perturbation Calculus – The Art of Estimation

Due to the variational principle that is satisfied for the electronic Hamiltonian, the group of
methods of searching for parameters optimizing the energy value can be constructed. The way
of verification of the given wave function is the corresponding energy value: the lower, the bet-
ter. Besides this “quality control,” the variational principle does not give the prescription for
the choice of the trial wave functions. Here comes the perturbation calculus – the method fre-
quently applied in physics for the estimation of the functions or values on the basis of partial
knowledge about the solutions of the investigated problem.Wewill consider here the Rayleigh–
Schrödinger variant of the perturbation calculus (Atkins and Friedman ; Levine ;
Lowe and Peterson ; McQuarrie and Simon ; Piela ; Ratner and Schatz ).

Let us assume that the total electronicHamiltonian of the investigated system can be divided
into

̂H =

̂H
+

̂H, (.)

in such a fashion that we know the exact solutions of

̂HΨ()
k = E()

k Ψ()
k , (.)
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where the subscript k enumerates the eigenvalues of the ̂H operator in such a way that E()
 is

the lowest energy. Now, one can say that the operator ̂H describes the system for which ̂H is
an unperturbed operator and ̂H denotes a perturbation. We can assume that if the change in
the system represented by ̂H is minor, then the functions Ψ()

k would be a good approximation
to Ψk . Considering ̂H, one postulates its Hermicity and that its eigenvalues are not degenerate
(in our case, for the ground state at least E()

 must not be equal to any other eigenvalue). This
condition will become clear in a moment.

Knowing only the unperturbed solutions (> Eq. .), we would like to say some-
thing more about the ground state energy of the investigated system. Nothing is easier –
we can calculate the average value of the full electronic Hamiltonian with the Ψ()

 func-
tion. The variational principle states that the resulting energy will be not lower than the exact
energy:

E ≤ ⟨Ψ()
 ∣

̂H
+

̂H
∣Ψ()

 ⟩ = E()
 + E()

 . (.)

The term modifying E()
 is simply

E()
 = ⟨Ψ()

 ∣

̂H
∣Ψ()

 ⟩. (.)

So far, the only new thing is the manner of partitioning the total energy into the energy of the
unperturbed system and the corrections (where E()

 is not the only term):

E = E()
 + E()

 + E()
 + . . . . (.)

Likewise, the wave function can be written as

Ψ = Ψ()
 + Ψ()

 + Ψ()
 + . . . , (.)

where Ψ()
 , Ψ()

 and so forth are the corrections to the wave function of the unperturbed
system, Ψ()

 . Now, the electronic Schrödinger > Eq. . becomes

(

̂H
+

̂H
) (Ψ()

 + Ψ()
 + Ψ()

 + . . .)

= (E()
 + E()

 + E()
 + . . .)(Ψ()

 + Ψ()
 + Ψ()

 + . . .) . (.)

Introducing the expansions (> Eqs. . and > .) does not increase our knowledge
about the energy or the wave function; it is only a different way of expressing the
unknowns by other unknowns. However, now we have a starting point for further
investigations.

The comparison of the terms on the left- and right-hand side of the above expression is
instructive. Let us regard as similar the terms with the same sum of the superscripts (so-called
perturbation order, by analogy to the multiplication and ordering of polynomials). Simple
multiplication in > Eq. . and directing the terms of the same order to separate equations
gives

̂HΨ()
 = E()

 Ψ()
 , (.)

̂HΨ()
 +

̂HΨ()
 = E()

 Ψ()
 + E()

 Ψ()
 , (.)

̂HΨ()
 +

̂HΨ()
 = E()

 Ψ()
 + E()

 Ψ()
 + E()

 Ψ()
 , (.)

⋮
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These equations link the corrections to the wave function and to the energy. Before detailed
investigation of the subsequent corrections, one more thing should be underlined. Up to now,
the function Ψ is not normalized; only Ψ()

k are normalized. Until the corrections to Ψ

were found, we would not be able to normalize it. We can only write the normalization con-
stant as N =


√

⟨Ψ ∣Ψ⟩
. However, it is not necessary at this moment. Now the intermediate

normalization condition is more useful:

⟨Ψ()
 ∣Ψ⟩ = . (.)

Such a concept is based on the information that the eigenfunctions of ̂H form an orthonormal
complete set of functions (that is one of the reasons why the Hermicity of ̂H was required) and
they can be applied to express any other function, for instance, Ψ as

Ψ =
∞

∑

k=
ckΨ

()
k = Ψ()

 +

∞

∑

k≠
ckΨ

()
k . (.)

In this linear combination, the function Ψ()
 has a distinguished meaning (c = ); this is the

approximation of the wave function of the considered system. Therefore, one can require that
Ψ()
 does not have a contribution to the higher corrections: Ψ()

 , Ψ()
 , and so on:

∞

∑

k≠
ckΨ

()
k = Ψ()

 + Ψ()
 + . . . . (.)

Here, the benefits from the intermediate normalization are obvious: the functionΨ()
 is orthog-

onal to each of the corrections (or, in other words, the corrections are defined in such a way that
they are orthogonal to Ψ()

 ).
Therefore, there is an additional set of equations to be satisfied:

⟨Ψ()
 ∣Ψ(n)

 ⟩ = δn , (.)

where the superscript n denotes the n-th order correction to the ground state wave function
Ψ. Now we can go back to the > Eqs. .–. and extract the corrections to energy. For
this purpose, each of the equations must be multiplied from the left-hand side by Ψ()

 and
integrated:

E()
 = ⟨Ψ()

 ∣

̂H
∣Ψ()

 ⟩, (.)

E()
 = ⟨Ψ()

 ∣

̂H
∣Ψ()

 ⟩, (.)

E()
 = ⟨Ψ()

 ∣

̂H
∣Ψ()

 ⟩, (.)
⋮

The integrals ⟨Ψ()
 ∣

̂H
∣Ψ(n)

 ⟩ vanish, since

⟨Ψ()
 ∣

̂H
∣Ψ(n)

 ⟩ = ⟨

̂HΨ()
 ∣Ψ(n)

 ⟩ = E()
 ⟨Ψ()

 ∣Ψ(n)
 ⟩ = . (.)

Thus, obtaining the energy corrections of any order is straightforward. The general expression
for the n-th order correction can be written as

E(n)
 = ⟨Ψ()

 ∣

̂H
∣Ψ(n−)

 ⟩ for n > . (.)

The problem is that to obtain the corrections to the energy in the second or higher orders, the
corrections to the wave function are necessary. Then, let us try to find Ψ()

 . This function can
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be expressed as the linear combination of the functions from the orthonormal set {Ψ()
k } for

k ≠ :

Ψ()
 =

∞

∑

k≠
c()k Ψ()

k , (.)

where c()k are the expansion coefficients in the first-order correction. Again, the whole thing
reduces to finding the coefficients ck . Substituting > Eq. . to > Eq. . gives

(

̂H
− E()

 )

∞

∑

k≠
c()k Ψ()

k = (E()
 −

̂H
)Ψ()

 . (.)

Integrating this equation with the Ψ()
l function leads to

LHS = ⟨Ψ()
l ∣

̂H
− E()

 ∣

∞

∑

k≠
ckΨ

()
k ⟩ =

∞

∑

k≠
ck⟨Ψ

()
l ∣

̂H
− E()

 ∣Ψ()
k ⟩

=

∞

∑

k≠
ck(E

()
l − E()

 )⟨Ψ()
l ∣Ψ()

k ⟩ =

∞

∑

k≠
ck(E

()
l − E()

 )δl k

= cl(E
()
l − E()

 ) (.)

and

RHS = ⟨Ψ()
l ∣E()

 −

̂H
∣Ψ()

 ⟩ = E()
 ⟨Ψ()

l ∣Ψ()
 ⟩ − ⟨Ψ()

l ∣

̂H
∣Ψ()

 ⟩

= −⟨Ψ()
l ∣

̂H
∣Ψ()

 ⟩. (.)

Altogether, these allow one to write the coefficients of the expansion (> Eq. .) as

cl =
⟨Ψ()

l ∣

̂H
∣Ψ()

 ⟩

E()
 − E()

l

. (.)

Hence, the first correction to the wave function is already known:

Ψ()
 =

∞

∑

k≠

⟨Ψ()
k ∣

̂H
∣Ψ()

 ⟩

E()
 − E()

k

Ψ()
k , (.)

and, thereby, the second-order correction to the energy can be calculated as

E()
 =

∞

∑

k≠

⟨Ψ()
k ∣

̂H
∣Ψ()

 ⟩

E()
 − E()

k

⟨Ψ()
 ∣

̂H
∣Ψ()

k ⟩. (.)

This is also equivalently written as

E()
 =

∞

∑

k≠

∣⟨Ψ()
k ∣

̂H
∣Ψ()

 ⟩∣



E()
 − E()

k

. (.)

The energy difference in the denominator of the above expression cannot be equal to zero, and
for this reason the non-degenerated ground state was assumed. The higher-order corrections
are sought in a similar manner, which just requires more operations.

One of the interesting issues is the problem of variationality of the perturbation calculus
built upon the variational Hamiltonian. This is, however, a sophisticated problem for advanced
readers and will not be discussed here. It should be added, in summary, that the manner of
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partitioning of the Hamilton operator was arbitrary. The only prerequisites were the Hermi-
tian character of the operators (for the eigenfunctions to form the orthonormal set) and the
non-degenerated ground state eigenenergy. Nothing more. One should also remember that, in
practice, even solving the unperturbed problem cannot be performed exactly and the approx-
imations must be applied. The consequence could be the loss of accuracy for higher-order
corrections. Moreover, good convergence of the perturbation expansion can be expected when
the consecutive corrections are small in comparison to the total estimated value. However,
in such a case, the low orders of the series would reproduce the sought value with rela-
tively good accuracy. Thus, application of the low orders of perturbation calculus is highly
recommended.

One-Electron Approximation – Describe One and Say Something
About All

Equipped with general knowledge about the tools for the Schrödinger equation solution, one
can move to many-electron systems.

The electronic Hamiltonian for any many-electron system in atomic units has the following
form (compare > Eqs. .–.):

̂H = −




N

∑

i=
Δr i +

N

∑

i=

M

∑

j=

Zj

∣ri − R j∣
+

N

∑

i=

N

∑

j=i+


∣ri − r j ∣

. (.)

Let us look more closely. In the first term, we sum up over the number of electrons N ; in the
second term, the summations run over the number of electrons N and number of nucleiM; and
the third term contains the double sum over the number of electrons N .Thus, one can simplify
the notation of the first two terms:

−




N

∑

i=
Δr i +

N

∑

i=

M

∑

j=

Zj

∣ri − R j∣
=

N

∑

i=

⎛

⎝

−



Δr i +

M

∑

j=

Zj

∣ri −R j ∣

⎞

⎠

. (.)

Now, denoting the term in parenthesis by ĥ(i),

ĥ(i) = −


Δr i +

M
∑

j=

Zj

∣ri −R j ∣
, (.)

we get the part of the Hamiltonian depending only on the coordinates of one electron, i
(and nuclear coordinates, but it does not bother us). Hence, the total electronic Hamiltonian
(> Eq. .) can be rewritten as the sum of one-electron and two-electron contributions:

̂H =

N
∑

i=
ĥ(i) +

N
∑

i=

N
∑

j=i+
ĝ(i, j), (.)

where we introduced a symbol:

ĝ(i, j) =


∣ri − r j∣
. (.)

It should be noticed that each of the one-electronHamiltonians ĥ(i) describes a single electron
in the field of some potentials.Therefore, the exact solutions of the eigenvalue problem for these
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one-electron operators are available. The problem lies in the ĝ(i, j) operator that couples two
electrons together: It is not possible to separate their coordinates exactly.

All electronic Hamiltonians have the same general form; they differ only in the number
of electrons N and the nuclear potential hidden in ĥ(i). One can choose any possible chem-
ical compounds and try to write the corresponding equations; however, one would soon note
the similarity of all of them. Therefore, we will not invest time in describing the procedure
for a polypeptide or a nanotube, but for simplicity we will start from the two-electron helium
atom (the simplestmany-electron system) and later try to generalize the considerations. For the
helium atom:

• N =  – two electrons
• M =  – one nucleus

The generalization of the helium discussion into the larger (N-electron) systems should be
straightforward:

ĥ() + ĥ() =

∑

i=
ĥ(i) $→

N
∑

i=
ĥ(i), (.)

ĝ(, ) =

∑

i=


∑

j=i+
ĝ(i, j) $→

N
∑

i=

N
∑

j=i+
ĝ(i, j), (.)

and finally:

ĥ(i) = −


Δr i +

Z

∣ri −R∣
$→ −



Δr i +

M

∑

j=

Zj

∣ri −R j ∣
. (.)

Recall that the exact solutions of the one-electron problem are known, and the task is to
solve the full problem. The ideas of the perturbation theory were explained in the previous
section. Now it is the time to apply the knowledge. The one-electron part can be treated as the
unperturbed Hamiltonian and the rest as the perturbation:

̂H
= ĥ() + ĥ(), ̂H

= ĝ(, ), (.)

where the normalized solutions for the one-electron part are known:

ĥ()ϕi() = єiϕi(), (.)
ĥ()ϕ j() = є jϕ j(). (.)

These functions require more attention. Although the electronic Hamiltonian – and thereby the
one-electron operators – do not act on the spin variables, the wave functions ϕk must carry on
the spin dependence.Therefore, the function ϕk(l) is a product of the spatial part depending on
the three spatial coordinates of the electron l and on the spin part, and is called a spin-orbital.
For simplicity, the set of coordinates τl is written as a label of the electron, i.e., l . Such convention
will be applied from now on, with an exception where the τl labeling is really needed.

If an operator can be written as a sum of contributions acting on different variables, its
eigenfunction takes a form of the product of the eigenfunctions of the subsequent operators in
the summation. In the case of the helium atom, where ̂H is a sum of ĥ() and ĥ(), the wave
function Ψ(, ) can be denoted as the product of one-electron functions:

Ψ(, ) = ϕi()ϕ j(). (.)
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The eigenproblem for such a function gives the eigenvalue that is simply the sum of the one-
electron eigenvalues:

[ĥ() + ĥ()] ϕi()ϕ j() = ĥ()ϕi()ϕ j() + ĥ()ϕi()ϕ j()

= [ĥ()ϕi()] ϕ j() + [ĥ()ϕ j()] ϕi()

= [єiϕi()] ϕ j() + [є jϕ j()] ϕi()

= [єi + є j] ϕi()ϕ j(). (.)

However, here the antisymmetry requirement should also be taken into account. The many-
electron function must change the sign with respect to the exchange of labels of any two
electrons:

Ψ(, ) = −Ψ(, ). (.)

The product (> Eq. .) is not antisymmetric; the interchange of the electron labels leads to

Ψ(, ) = ϕi()ϕ j() ≠ −Ψ(, ), (.)

and the result is a function different from the original Ψ(, ). But another function,

Ψ(, ) ∼ [ϕi()ϕ j() − ϕi()ϕ j()] , (.)

satisfies the antisymmetry condition.
Moreover, the wave function Ψ(, ) has to be normalized. This can be achieved by

calculating the following (overlap) integral:

⟨Ψ(, )∣Ψ(, )⟩ = ⟨N(ϕi()ϕ j() − ϕ j()ϕi())∣N(ϕi()ϕ j() − ϕ j()ϕi())⟩

= N


(⟨ϕi()ϕ j()∣ϕi()ϕ j()⟩ − ⟨ϕi()ϕ j()∣ϕ j()ϕi()⟩

− ⟨ϕ j()ϕi()∣ϕi()ϕ j()⟩ + ⟨ϕ j()ϕi()∣ϕ j()ϕi()⟩). (.)

The spin-orbitals of electrons  and  are mutually independent, thus,

⟨ϕi()ϕ j()∣ϕk()ϕl()⟩ = ⟨ϕi()∣ϕk()⟩⟨ϕ j()∣ϕl()⟩ = δikδ jl , (.)

where ⟨ϕi()∣ϕk()⟩ = δik arises from the fact that the eigenfunctions of theHermitian operator
ĥ() form the orthonormal set. Hence, in > Eq. . only the first and last integral will be
non-vanishing, and, finally,

⟨Ψ(, )∣Ψ(, )⟩ = N 
= , (.)

and, therefore, the normalization constant N must equal /
√

. In order to fulfill the normal-
ization and the antisymmetry request, the trial wave function can be written as

Ψ(, ) =

√


(ϕi()ϕ j() − ϕ j()ϕi()) =


√


ϕi() ϕi()
ϕ j() ϕ j()

. (.)
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Thereafter, the expectation value of the Hamiltonian can be calculated using the same tricks
as in > Eq. .:

⟨

̂H(, )⟩Ψ(,) = ⟨Ψ(, )∣ ̂H(, )∣Ψ(, )⟩

= ⟨ϕi()∣ĥ()∣ϕi()⟩ + ⟨ϕ j()∣ĥ()∣ϕ j()⟩

+ ⟨ϕi()ϕ j()∣

r
∣ϕi()ϕ j()⟩

− ⟨ϕi()ϕ j()∣

r
∣ϕ j()ϕi()⟩. (.)

The only difference with respect to the overlap integral is that the integrals containing /r
cannot be separated.

In the spirit of perturbation calculus, the expectation value (> Eq. .) can be treated as
the energy corrected up to the first order of perturbation expansion. According to the varia-
tional principle, this integral is an upper bound of the exact energy of the two-electron system
under consideration. The recipe for correcting the trial function is given by the perturbation
theory: Apply functions corresponding to the remaining states of the unperturbed system in
the expansion. In other words, in order to improve the wave function, the expansion built from
products of the remaining states of the systems should be used.

Let us summarize.The many-electron function of the system can be approximately written
as the antisymmetrized product of the one-electron functions being the solutions for the one-
electron eigenvalue problem.This is the idea of the popular one-electron approximation (Atkins
and Friedman ; Lowe and Peterson ; McQuarrie and Simon ; Ratner and Schatz
). In the N-electron case, one obtains the trial function as the antisymmetrized product of
N one-electron functions that can be written in the form of the Slater determinant:

Ψ(, , . . . ,N) =


√

N !

ϕ() ϕ() . . . ϕ(N)
ϕ() ϕ() . . . ϕ(N)
⋮ ⋮ ⋱ ⋮

ϕN() ϕN() . . . ϕN(N)

. (.)

/
√

N ! factor ensures the normalization of the wave function. Often, instead of writing the
whole determinant, only the diagonal is written down:

ϕ() ϕ() . . . ϕ(N)
ϕ() ϕ() . . . ϕ(N)
⋮ ⋮ ⋱ ⋮

ϕN() ϕN() . . . ϕN(N)

= ∣ϕ()ϕ() . . .ϕN(N)∣. (.)

It is important to realize that the many-electron function in the form of the Slater determinant
is only an approximation. Intuition tells us that describing the many-electron systemusing only
one-electron functions cannot be exact. One needs to be aware of the fact that such an approach

 Since the value of the integral does not depend on the name of the variable, the obvious equality, ∫
b
a f (x)dx =

∫
b
a f (y)d y, in the above case takes the form

⟨ϕi()ϕ j()∣

r
∣ϕ j()ϕi()⟩ = ⟨ϕi()ϕ j()∣


r
∣ϕ j()ϕi()⟩.
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causes the loss of some information included in the sought wave function. In particular, the
one-electron function cannot “see” another electron, therefore, the terms coupling the mutual
electron positions are missing in the one-electron approximation.

For example, consider the two-electron function (Piela )

F(, ) ∼ (e−ar−br−cr − e−ar−br−cr), (.)

where r, r are the electron-nucleus distances, r denotes the distance between two electrons,
and a, b, and c stand for the coefficients. F(, ) contains the factor c correlating the elec-
tron motions. In the one-electron approach, such a function would be approximated by the
antisymmetrized function

f (, ) ∼ (e−ar−br − e−ar−br), (.)

with total neglect of this correlation. From the practical point of view, this means that
the trial function written as the single determinant does not allow reproduction of the
exact electronic energy, even when using the best possible one-electron functions for its
construction.

The question arises: why use such an approach, knowing from the very beginning that it
is bad? The answer is simple. First, including the electron correlation in the wave function is
very expensive. For two electrons, one additional term appears; for three, three terms; for four,
six. In general, for N electrons there are N(N − )/ terms (the triangle of the N × N matrix
without the diagonal elements). Therefore, the number of coefficients describing the electron
correlation is much bigger than the number of one-electron terms. Calculating even the one-
electron coefficients is very time-consuming, and, moreover, calculating the overlap integrals
and Hamiltonian matrix elements becomes prohibitively complicated with the correlated func-
tions. Second, perturbation theory provides ways of improving the results. Expansion built on
a higher number of determinants will lead to better energy. Third, a chemist does not usually
need exact data, but only an appropriate accuracy (furnishing a house does not require calliper
measurements, just a quick glance to estimate the size of the door and the furniture).

Therefore, let us stick to the one-electron approximation. The next section will explain how
to find the best possible spin-orbitals.

Hartree–FockMethod – It Is Not that Sophisticated

Now we are prepared to concentrate on the methods for solving the electron equation. As
you will see, they are only an extension of the already-discussed techniques. We start with the
fundamental Hartree–Fock method.

The main goal of this approximation is to find the spin-orbitals applied for construction of
the Slater determinant that will best reproduce the exact wave function. We again begin our
considerations with the two-electron system. The problem is that the operator ĥ(i) does not
contain the part arising from the potential of the second electron, and an operator responsible
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for this missing part must be found. What we do know is that such an interaction is included
in the two-electron part of > Eq. .:

⟨


r
⟩Ψ(,) = ⟨ϕi()ϕ j()∣


r
∣ϕi()ϕ j()⟩ − ⟨ϕi()ϕ j()∣


r
∣ϕ j()ϕi()⟩. (.)

Unfortunately, > Eq. . contains the integrals that cannot be exactly separated into a product
of the simpler integrals depending only on the coordinates of one electron.Whatwe canpropose
is rewriting this equation in the following form:

⟨


r
⟩Ψ(,) = ⟨ϕi()∣v̂()∣ϕi()⟩ + ⟨ϕ j()∣v̂()∣ϕ j()⟩ + the rest, (.)

where v̂() and v̂() are introduced to extract only the terms depending on the coordinates
of a single electron from > Eq. . and “the rest” is what remains from ⟨


r
⟩Ψ(,) after this

extraction.
If such extraction were possible, the operators v̂() and v̂() could be applied to improve

our one-electron operators, which leads to the following equations:

[ĥ() + v̂()] ϕi() = єiϕi(), (.)

[ĥ() + v̂()] ϕ j() = є jϕ j(). (.)

The solutions of such equations (spin-orbitals ϕi , ϕ j) can be used to build up the Slater deter-
minant. They ensure better approximation than > Eqs. . and > ., since they somehow
provide for the influence of the second electron.

Therefore, our goal now is to utilize > Eq. . (treating ϕi and ϕ j as known functions) to
find the best form of the operators v̂() and v̂(). Adding zero, written as

 = ⟨

r
⟩Ψ(,) − ⟨


r
⟩Ψ(,), (.)

to > Eq. . allows one to ascribe, for instance,

⟨ϕi()∣v̂()∣ϕi()⟩ = ⟨ϕi()ϕ j()∣

r
∣ϕi()ϕ j() − ϕ j()ϕi()⟩,

⟨ϕ j()∣v̂()∣ϕ j()⟩ = ⟨ϕi()ϕ j()∣

r
∣ϕi()ϕ j() − ϕ j()ϕi()⟩,

the rest = −⟨ϕi()ϕ j()∣

r
∣ϕi()ϕ j() − ϕ j()ϕi()⟩.

Consider in more detail the integral containing v̂(). We want it to be expressed in such a
way that only the coordinates of the electron labeled by  are explicitlywritten under the integral:

⟨ϕi()∣v̂()∣ϕi()⟩ = ⟨ϕi()ϕ j()∣

r
∣ϕi()ϕ j() − ϕ j()ϕi()⟩

=

∫ ∫

ϕ∗

i (τ)ϕ
∗

j (τ)

r

ϕi(τ)ϕ j(τ)dτdτ

−

∫ ∫

ϕ∗

i (τ)ϕ
∗

j (τ)

r

ϕ j(τ)ϕi(τ)dτdτ
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=

∫

ϕ∗

i (τ) (∫ ϕ∗

j (τ)

r

ϕ j(τ)dτ) ϕi(τ)dτ

−

∫

ϕ∗

i (τ) (∫ ϕ∗

j (τ)

r

ϕi(τ)dτ) ϕ j(τ)dτ

=

∫

ϕ∗

i (τ) (̂J j()ϕi(τ)) dτ

−

∫

ϕ∗

i (τ) (̂Kj()ϕi(τ)) dτ

= ⟨ϕi()∣̂J j()∣ϕi()⟩ − ⟨ϕi()∣̂Kj()∣ϕi()⟩
= ⟨ϕi()∣̂J j() − ̂Kj()∣ϕi()⟩, (.)

where two operators were defined:

̂J j()ϕi() = (
∫

ϕ∗

j (τ)

r

ϕ j(τ)dτ) ϕi(), (.)

̂Kj()ϕi() = (
∫

ϕ∗

j (τ)

r

ϕi(τ)dτ) ϕ j(). (.)

Despite a slightly different way of defining, they are still ordinary operators. An operator is
a function of a function. The operators ̂J j() and ̂Kj() act on the function ϕi(), producing
another function, as was written in > Eq. .. The operator̂J j() acting on ϕi() transforms it
into the same function:

ϕi()
̂J j()
$$→ (

∫

ϕ∗

j (τ)

r

ϕ j(τ)dτ) ϕi(), (.)

and the operator ̂Kj() produces ϕ j():

ϕi()
̂K j()
$$$→ (

∫

ϕ∗

j (τ)

r

ϕi(τ)dτ) ϕ j(). (.)

The expressions on the right-hand side of the arrows are some functions of a dependent variable
τ (the integration eliminates the dependence on τ, however, its result is not a number, but
a function depending on τ). The interpretation of the ̂J j() and ̂Kj() operators by ascribing
them to observables is not straightforward.These operators appear in the equationswhenwe try
to write the interaction between two electrons as the average value of the one-electron operator
calculated with the one-electron function. However, in fact, they do appear as the difference:

v̂HF
i () = ̂J j() − ̂Kj(). (.)

And the physical sense should be sought in this difference. Here, v̂HF
i () is an operator of the

average interaction of the electron labeled as , described by a spin-orbital ϕi with the sec-
ond electron characterized by ϕ j(). It should be noticed that the potential v̂HF

i () depends on
ϕ j(), since this spin-orbital is necessary to definêJ j() and ̂Kj() operators.

Similarly,
v̂HF
j () = ̂Ji() − ̂Ki(), (.)

where the action of operatorŝJ j() and ̂Kj() on the function ϕ j() is defined by

̂Ji()ϕ j() = (
∫

ϕ∗

i (τ)

r

ϕi(τ)dτ) ϕ j() (.)

̂Ki()ϕ j() = (
∫

ϕ∗

i (τ)

r

ϕ j(τ)dτ) ϕi(). (.)
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Here, onemore important circumstance should bementioned.The electronicHamiltonian does
not depend on spin. However, the electronic wave function is spin dependent. During the con-
struction of the HF equations, this dependence is introduced to the operators ̂K since they
depend on two different spin-orbitals.

Let us briefly review. We want to have a one-electron operator that includes the interaction
between the electrons in some averaged way. Such an operator must depend on the function
describing the motion of the second, adjacent, electron. Therefore, for the two-electron case,
two coupled equations must be solved (> Eqs. . and > .). The word “coupled” that
distinguishes this set of equations from > Eqs. . and > . is crucial. Denoting

f̂ i() = ĥ() + v̂HF
i (), (.)

one can rewrite the above equations as

f̂k()ϕk() = єkϕk(), for k = i, j. (.)

f̂ i() is called the Fock operator and > Eq. . gives the Hartree–Fock equations.
It should be noted that the label of electrons determines only the name of the integration

variables, and the result of the integration does not depend on the name of the variable. There-
fore, what is really important is the label of the spin-orbital. It will be even more pronounced
in the N-electron case, when the electron labels are applied only to show that the operator acts
on one or two electron coordinates.The form of the N-electronwave function depends only on
the spin-orbitals and not on the electron labels; they are just the integration variables.

The most popular way of solving > Eq. . is the iterative procedure. It starts from the
guessed or chosen spin-orbitals ϕi() and ϕ j() applied to construct the potentials v̂HF

i () and
v̂HF
j (). Next, the obtained potentials are substituted to > Eq. . and solutions of > Eq. .

give the improved form of the ϕi() and ϕ j() spin-orbitals. These, on the other hand, are
treated as the starting point again, and the whole procedure is repeated until the starting and
final orbitals of the given iteration do not differ much. This technique is called self-consistent
field (SCF). Often the abbreviations HF for Hartree–Fock method and SCF are used inter-
changeably. They can also be joined together as SCF–HF, denoting the self-consistent way of
solving Hartree–Fock equations.

Let us assume that the spin-orbitals are already known. Concentrate on the calculations of
the average value of the Hamiltonian with the determinant build of these spin-orbitals using
the operators defined previously. Writing down the two-electron part:

⟨


r
⟩Ψ(,) = ⟨ϕi()∣̂J j() − ̂Kj()∣ϕi()⟩

= ⟨ϕ j()∣̂Ji() − ̂Ki()∣ϕ j()⟩,

one obtains the integrals that can be denoted by

Ji j = ⟨ϕi()∣̂J j()∣ϕi()⟩,
Ki j = ⟨ϕi()∣̂Kj()∣ϕi()⟩.

With this notation, the expression (> Eq. .) takes the following form:

⟨

̂H(, )⟩Ψ(,) = ⟨ϕi()∣ f̂ ()∣ϕi()⟩ + ⟨ϕ j()∣ f̂ ()∣ϕ j()⟩ − (Ji j − Ki j) ,
(.)
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or, if one wants to apply the spin-orbital energies є calculated earlier:

⟨

̂H(, )⟩Ψ(,) = єi + є j − (Ji j − Ki j) . (.)

Now it is time to generalize these considerations into the N-electron case. The recipe for
this transformation was given previously (> Eqs. .–.). For the system of N electrons, the
set of N-coupled equations of the form

f̂ i()ϕi() = єiϕi(), for i = , . . . ,N (.)

must be solved. Here,

fi() = h() +
N
∑

j≠i
(

̂J j() − ̂Kj()). (.)

The summation in the expression for the one-electron Fock operator arises from the fact that
now the given electron described by the spin-orbital i interacts with (N − ) electrons in the
states determined by the remaining spin-orbitals.

In searching for the ground state energy, one is interested in the lowest possible energy.
Therefore, the functions of choice are the spin-orbitals corresponding to the lowest values
of є. Such a set of spin-orbitals, called occupied, is opposite to any other solutions of the Fock
equations corresponding to higher energies. These are known as virtual (unoccupied) orbitals.

Finally, the average value of the Hamiltonian can be written as

⟨

̂H(, , . . . ,N)⟩Ψ()(N)

=

N
∑

i=
єi −

N
∑

i=

N
∑

j>i
(Ji j − Ki j) = EHF

 .

It should be emphasized that the energy estimated in this manner is not the simple sum of
the orbital energies. If the terms

∑

N
i=∑

N
j>i (Ji j − Ki j) are neglected, the double summation of

the electron-electron interaction would take place (Atkins and Friedman ; Cramer ;
Jensen ; Levine ; Lowe and Peterson ; McQuarrie and Simon ; Piela ;
Ratner and Schatz ; Roos and Widmark ; Szabo and Ostlund ).

Møller–Plesset Perturbation Theory – HF Is Just the Beginning

Fromhere forward,wewill treat theHartree–Fock function as the basis for the further investiga-
tions and denote it as Ψ()

 , where the subscript  indicates the ground state and the superscript
() is the reference function. We will also omit the explicit writing of the dependence of the
Hamiltonian and the wave function on the coordinates of N electrons. As a consequence,

⟨Ψ()
 ∣

̂H∣Ψ()
 ⟩ = EHF

 . (.)

One of the possible ways of improving the HF results is the application of the perturbation
theory (Atkins and Friedman ; Cramer ; Jensen ; Levine ; McQuarrie and
Simon ; Piela ; Ratner and Schatz ; Szabo and Ostlund ). The Hamiltonian
(> Eq. .) can be partitioned into the unperturbed part and the perturbation in the following
manner:

̂H
=

N
∑

i=
f̂ (i), ̂H

=

N
∑

i=

⎛

⎝

N
∑

j>i


ri j

− v̂HF
(i)

⎞

⎠

, (.)
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(compare > Eq. .). Up to the first order in the perturbation theory, the energy is

EHF
 = E()

 + E()
 = ⟨Ψ()

 ∣

̂H
+

̂H
∣Ψ()

 ⟩ = ⟨

̂H⟩Ψ()
. (.)

The correction to the HF energy appears in the second order:

E()
 =

∞

∑

k≠

∣⟨Ψ()
 ∣

̂H
∣Ψ()

k ⟩∣



E()
 − E()

k

. (.)

During calculations, the expansion of the spin-orbitals in the finite basis set is applied.This
allows identification of only the finite number of spin-orbitals. But the number of all possible
Ψ()

k functions can still be horrifyingly large. In practice, this is equivalent to the finite but long
expansion in the above summation. In quantum chemistry we are interested in the best quality
results with moderate expenses and are continuously searching for more economical methods.

Careful examination of the second-order energy correction E()
 shows that a significant

number of its terms do not contribute to the final result. Some work invested in the manipula-
tion of expressions allows one not only to learn the basic computational apparatus but also to
save a lot of effort.

In order to proceed comfortably, the notation should again be simplified. Let us drop the
superscript () denoting the zeroth-order functions (other functions will not appear in our
considerations). Additionally, we omit the subscript k from the determinants containing the
virtual spin-orbitals. In return, we explicitly specify the pattern of spin-orbital exchange. Using
> Eq. ., the Slater determinant can be written as

∣Ψ⟩ = ∣ϕ()ϕ()ϕ()ϕ() . . .ϕN(N)⟩. (.)

The numbers of the occupied spin-orbitals vary from  to N .Thus, the virtual spin-orbitals will
be labeled starting from N +  onward. Now consider the example of the determinant in which
the occupied spin-orbital ϕ is exchanged for the virtual one, ϕN+. The new determinant can
be written as

∣ΨN+
 ⟩ = ∣ϕ()ϕ()ϕN+()ϕ() . . . ϕN(N)⟩, (.)

where the subscript in ΨN+
 denotes the occupied orbital that is exchanged and the superscript

denotes the virtual one that takes its place. To generalize, one could denote the occupied orbitals
building the Ψ function by first alphabet letters a, b, c, d . . . and the virtuals by p, q, r, s . . . .
Therefore, ΨN+

 can be written as Ψp
a , where a =  and p = N + . Likewise, any determinant

can be represented.
Thereafter, the influence of the function choice on the values of the integrals appearing in

the electronic energy calculations can be investigated. Similarly, as in the case of Hamiltonian,
the integrals can also be divided into two groups with one-electron operator

ô =
N
∑

i=
ô(i), (.)

where in place of ô(i) operators ĥ, (i) or f̂ (i) will be used, and with two-electron operator,

̂O =∑
i
∑

j>i
(


ri j
) . (.)
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To get a full picture we should analyze the following types of integrals:

⟨Ψ∣ô∣Ψp
a ⟩ and ⟨Ψ∣ ̂O∣Ψp

a ⟩, (.)
⟨Ψ∣ô∣Ψpq

ab ⟩ and ⟨Ψ∣ ̂O∣Ψpq
ab ⟩, (.)

⟨Ψ∣ô∣Ψpqr
abc ⟩ and ⟨Ψ∣ ̂O∣Ψpqr

abc ⟩. (.)

Any other will be equal to zero (Levine ; Szabo and Ostlund ).
Recall that the determinant of the N × N matrix can be represented as the sum of the

N ! products of the matrix elements. According to Laplace’s formula, a determinant can be
expanded along a row or a column. Thus, calculation of the ⟨Ψ∣ô∣Ψp

a ⟩ integrals, when the
occupied orbital a in Ψ has been exchanged with the virtual orbital p in Ψp

a , can be performed
by expanding the determinant Ψ along the a-th row and the determinant Ψp

a along the p-th
row:

Ψ =


√

N !

N
∑

i=
ϕa(i)Cai , (.)

Ψp
a =


√

N !

N

∑

i=
ϕp(i)Cpi . (.)

The cofactors C can be perceived as the (N − )-electron determinants that have been obtained
from Ψ and Ψp

a via the elimination of the a-th and p-th spin-orbitals, respectively. Thus, after
elimination of what is different in the two determinants, we get both cofactors equal to each
other. Hence,

⟨Ψ∣ô∣Ψp
a ⟩ =


N !
⟨

N

∑

i=
ϕa(i)Cai ∣

N

∑

j=
ô( j)∣

N

∑

k=
ϕp(k)Cpi⟩

=


N !

N

∑

i=
⟨ϕa(i)∣ô(i)∣ϕp(i)⟩⟨Cai ∣Cpi⟩

=


N

N
∑

i=
⟨ϕp(i)∣ô(i)∣ϕp(i)⟩

= ⟨ϕa()∣ô()∣ϕp()⟩, (.)

where

⟨Cai ∣Cpi⟩ = (N − )!, (.)
N
∑

i=
⟨ϕa(i)∣ô(i)∣ϕa(i)⟩ = N⟨ϕa()∣ô()∣ϕa()⟩ (.)

was applied. If the cofactors are not the same – this would be the case when the determi-
nants differ from two or more spin-orbitals – the corresponding overlapmatrix is equal to zero
according to the orthogonality condition. Thus,

⟨Ψ∣ô∣Ψp
a ⟩ = ⟨ϕa()∣ô()∣ϕp()⟩,

⟨Ψ∣ô∣Ψpq
ab ⟩ = ,

⟨Ψ∣ô∣Ψpqr
abc ⟩ = . (.)
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Similar (but a little more time-consuming) considerations for the two-electron operators lead
to the following expressions:

⟨Ψ∣ ̂O∣Ψp
a ⟩ =

N
∑

i=
(⟨ϕa()ϕi()∣


r
∣ϕp()ϕi()⟩

− ⟨ϕa()ϕi()∣

r
∣ϕi()ϕp()⟩)

⟨Ψ∣ ̂O∣Ψpq
ab ⟩ = ⟨ϕa()ϕb()∣


r
∣ϕp()ϕq()⟩

− ⟨ϕa()ϕb()∣

r
∣ϕq()ϕp()⟩

⟨Ψ∣ ̂O∣Ψpqr
abc ⟩ = . (.)

In the first contact with these equations one can have the feeling that something is lost here.We
start from the integrals with the N-electron functions and we finish with the integral of only the
electrons labeled by  and . What happened to the rest? Again, it should be emphasized here
that the electron labels symbolize only the integration variables. What matters is the functions
of these variables, namely spin-orbitals. Thus, in the integral with the one-electron operator the
electron label  means that the integration is performed only over the variables of one electron.
Likewise, the two-electron operator integral depends on the variables of two electrons, which
is symbolized by two labels:  and .

In the integration of one-electron expressions, the electron label can be omitted without
any harm: ⟨ϕa()∣ô()∣ϕa()⟩. Likewise, in the two-electron case, we can declare that the spin-
orbitals are written in the given order. So,

⟨ϕx()ϕy()∣

r
∣ϕv()ϕz()⟩ = ⟨ϕxϕy ∣


r
∣ϕvϕz⟩. (.)

Moreover, now there is no reason to explicitly write the ϕ symbol. Thereby, the next simplifica-
tion of the notation is obvious:

⟨ϕa∣ô∣ϕa⟩ = ⟨a∣ô∣a⟩,

⟨ϕxϕy ∣

r
∣ϕvϕz⟩ = ⟨xy∣


r
∣vz⟩, (.)

and, finally, since the combination of the integrals ⟨xy∣/r∣vz⟩ − ⟨xy∣/r∣zv⟩ appears fre-
quently, the following symbol is introduced:

⟨xy∣∣zv⟩ = ⟨xy∣

r
∣vz⟩ − ⟨xy∣


r
∣zv⟩. (.)

Now > Eqs. . and > . can be rewritten as

⟨Ψ∣ô∣Ψp
a ⟩ = ⟨a∣ô∣p⟩,

⟨Ψ∣ô∣Ψpq
ab ⟩ = ,

⟨Ψ∣ô∣Ψpqr
abc ⟩ = ,

⟨Ψ∣ ̂O∣Ψp
a ⟩ =

N
∑

i=
⟨ai∣∣pi⟩,

⟨Ψ∣ ̂O∣Ψpq
ab ⟩ = ⟨ab∣∣pq⟩,

⟨Ψ∣ ̂O∣Ψpqr
abc ⟩ = . (.)
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These simple equations, known as the Slater rules, allow for the following general remark: If the
one-electron operator is integratedwith functions that differ bymore than one spin-orbital, the
corresponding integral vanishes. Similarly, the result is zero for the integration of two-electron
operators with functions differing by more than two spin-orbitals. Hitherto, only the integrals
with Ψ were considered. However, it is easy to notice that functions Ψpq

ab and Ψpqr
abc differ by

only one exchange (spin-orbital ϕc → ϕr), etc. Therefore, the above considerations can be also
applied in any other cases.

In this abundance of equations our main goal cannot be lost: All these derivations were
necessary to limit the types of the Ψk functions present in the MP energy expression. Now,
with a recognition of the above Slater rules, one can safely neglect the integrals with the pairs of
the Ψk functions differingwithmore than two spin-orbital exchanges. But this is not everything.

Let us consider the integral

⟨Ψ∣ ̂H∣Ψp
a ⟩ = ⟨a∣ĥ∣p⟩ +∑

j
(⟨a j∣


ri j
∣pj⟩ − ⟨a j∣


ri j
∣ jp⟩). (.)

Since
⟨a j∣


ri j
∣pj⟩ = ⟨a∣̂J j∣p⟩, (.)

and
⟨a j∣


ri j
∣ jp⟩ = ⟨a∣̂Kj∣p⟩, (.)

one gets
⟨Ψ∣ ̂H∣Ψp

a ⟩ = ⟨a∣ ̂H

∣p⟩, (.)

which has to vanish, because

⟨a∣ ̂H
∣p⟩ = ⟨a∣

N
∑

i=
f (i)∣p⟩ = ⟨a∣ f ∣p⟩ = єpδap = , (.)

for it was assumed that a ≠ p.
The obtained result,

⟨Ψ∣ ̂H∣Ψp
a ⟩ = , (.)

is known as the Brillouin theorem. Applying it allows one also to show that

⟨Ψ∣ ̂H
∣Ψp

a ⟩ = . (.)

Indeed, using
̂H
=

̂H −

̂H, (.)

one obtains

⟨Ψ∣ ̂H
∣Ψp

a ⟩ = ⟨Ψ∣ ̂H∣Ψp
a ⟩ − ⟨Ψ∣ ̂H

∣Ψp
a ⟩

=  − (
N
∑

i=
єi) ⟨Ψ∣Ψp

a ⟩

= . (.)

Now is the time for an important conclusion: In order to calculate the correction to the
energy in MP, the functions arising from Ψ only by the exchange of precisely two spin-
orbitals need to be applied. Not more, not less. Life becomes easier when not calculating zero
contributions in a complicated way.
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Let us exploit the above knowledge to transform > Eq. ..The integral on the right-hand
side will be calculated with the functions Ψpq

ab . Assuming b > a and q > p allows avoidance of
the integration with the same functions. The upper limit for the summations over a and b will
be equal to N . For the remaining spin-orbitals it should be∞; however, in practice, the finite
basis is applied and the upper limit will be determined by the basis set size. Let us look into the
numerator of > Eq. . carefully. Denoting the total Fock operator as ̂F =

∑i f̂ (i), one gets

⟨Ψ∣ ̂H
∣Ψpq

ab ⟩ = ⟨Ψ∣ ̂H∣Ψpq
ab ⟩ − ⟨Ψ∣̂F ∣Ψpq

ab ⟩

= ⟨ab∣

ri j
∣pq⟩ − ⟨ab∣


ri j
∣qp⟩, (.)

since
⟨Ψ∣̂F∣Ψpq

ab ⟩ =  (.)

(integration of the one-electron operator with the functions differing by two spin-orbitals, see
> Eq. .).

Now consider the denominator of > Eq. .. The energy of the ground state is simply a
sum of N lowest spin-orbital energies:

E()
 =

N
∑

i=
єi . (.)

The energy of the zeroth order for the function Ψpq
ab is a similar sum with єa and єb replaced by

єp and єq :
E()
(

pq
ab)

= E()
 − єa − єb + єp + єq . (.)

Thus, the final form of > Eq. . is

E()
 =

∑

b>a
∑

q>p

∣⟨ab∣∣pq⟩∣

єp + єq − єa − єb
. (.)

Why was it worth our hard work? Not only for satisfaction. These derivations are necessary
to understand the mechanisms employed in computational methods of quantum chemistry.
With the Slater rules it is straightforward to recognize the vanishing integrals. The double
exchanges appear to be most important, since these are the only exchanges that give rise to
the energy corrections in the MP method.

According to the perturbation calculus, the wave function corrected in the first order can
be written as

Ψ ≈ Ψ + ∑
k≠

ckΨk , (.)

where ck is given by

ck =
⟨Ψ∣ ̂H

∣Ψk⟩

E − Ek
. (.)

From the Slater rules it is easy to estimate that the only non-vanishing terms will arise from
the double spin-orbital exchange in the wave function. The intuitive statement that the low-
order corrections should have the larger impact and the above considerations lead to the most
important accomplishment of this section: the largest contribution to the corrections of the
Hartree–Fock function arises from the functions with the doubly exchanged spin-orbitals.
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Beyond the HFWave Function

Having done all this hard work, one can now sit comfortably in an armchair and think. The
main goal of the quantum chemistry is to find the best possible description of the state of the
system (the best possible wave function). The exact solutions of the Hamiltonian eigenproblem
are unavailable and all we have are approximations.We have become used to approximations in
everyday life.The important thing is to realize that theHartree–Fock solutions can be improved.
At the beginning of this chapter, various properties of operators were discussed.Among others,
it was stated that the eigenfunctions of the Hermitian operators constitute the complete sets and
any other function of the same variables can be represented by applying them.The one-electron
spin-orbitals that are the eigenfunctions of the Fock operator are accessible.They form the com-
plete set, but only for the one-electron functions. However, they can be applied to build up the
N-electron determinants. The set of all possible determinants is also complete and, therefore,
can be applied to express any N-electron function (Cramer ; Jensen ; Levine ;
Lowe and Peterson ; Piela ; Ratner and Schatz ; Roos and Widmark ; Szabo
and Ostlund ):

Ψ = cΨ +∑
a ,p

c paΨ
p
a + ∑

a ,b ,p,q
c pqabΨ

pq
ab + ∑

a ,b ,c ,p,q,r
c pqrabcΨ

pqr
abc + . . . . (.)

For this purpose, only the coefficients c, c pa , c
pq
ab , c

pqr
abc , . . . need to be found. In the ideal case all

the summations would be infinite and the problem must be reduced. Still, instead of using the
infinite expansions, the finite and relatively small number of terms can be sufficient. Moreover,
solving the Hartree–Fock equations in the finite basis, one possesses only the finite number of
orbitals that can be exchanged.

Anyway, it is instructive to see how large the number of terms in > Eq. . can be.
Consider the methane molecule CH. Calculations with the minimal basis set (each orbital
described by a single one-electron function; for carbon single functions for each of the orbitals,
s, s, px , py , pz , and for hydrogen a single function for s orbital) require  orbitals/ spin-
orbitals for the -electron system. From the probability theory the number of combinations
(K) of k elements from the n-element set can be calculated as

K = (

n
k ) =

n!
(n − k)!k!

. (.)

In the case of methane,  electrons can be placed in  spin-orbitals on ( 
 ) = , 

ways. This is equivalent to the , terms in the expansion (> Eq. .). Impressive. And
one needs to remember that the minimal basis set gives relatively bad Hartree–Fock solutions
and is not recommended in ab initio calculations. However, increasing the basis set size causes
the number of expansion terms to grow dramatically. For instance, in the case of the so-called
double-ζ basis set (two functions per each orbital) for methane, one has  spin-orbitals, which
makes ,, combinations! And double-ζ is still not much....

Therefore, it is necessary to find some way to reduce the size of the problem.The symmetry
of the molecules can be applied here, and the fact that the chosen determinants (or their linear
combinations) must be the given functions of the spin operators can be beneficial. Moreover,
one would like to eliminate from the expansion the determinants that are not crucial for the
quality of the wave function, and their neglect does not cause the deterioration of the descrip-
tion of the system (or causes only slight deterioration). In other words, only the determinants
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that have the significant contribution to the total energy must be chosen for the wave function
construction. Let us begin with the classification of the determinants, taking into account the
number of the spin-orbitals exchanged with respect to Ψ. For this purpose the averaged value
of Hamiltonian calculated with Ψ will be useful. We can write the wave function expansion as

Ψ = cΨ + ScS +DcD + TcT +QcQ + . . . . (.)

The symbols’ meaning can be clearly deciphered by comparison with > Eq. .: S denotes a
vector build of the determinants constructed from Ψ by single exchanges and cS is a vector of
coefficients corresponding to the functions in S:

ScS = ∑
a
∑

q
cqaΨ

q
a . (.)

In other words, S contains all the functions with the single exchanged spin-orbital. Similarly,
D would be the combination of the functions with double exchanges, T with triple exchanges,
and so forth. With such a notation, the function Ψ can be treated as the scalar product of the
basis vectors Ψ, S,D, . . . and the coefficient vector

∣Ψ⟩ = [∣Ψ⟩, ∣S⟩, ∣D⟩, ∣T⟩,Q⟩, . . .] ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c
cS
cD
cT
cQ
⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

Using this notation, the Hamiltonian ̂H of the system can be linked in an elegant way to a
matrix H. Let us apply this form of the wave function for the calculation of the Hamiltonian
average value. To simplify the expressions, let us limit ourselves to the truncated expansion:

ΨSD = [ΨSD]
⎡

⎢

⎢

⎢

⎢

⎢

⎣

c
cS
cD

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= cΨ + ScS +DcD . (.)

The average value of the Hamiltonian can now be written as

⟨H⟩ΨSD = ⟨ΨSD∣ ̂H∣ΨSD⟩ = [ccScD]†
⎡

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣

⟨S∣
⟨D∣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

̂H[∣Ψ⟩, ∣S⟩, ∣D⟩]
⎡

⎢

⎢

⎢

⎢

⎢

⎣

c
cS
cD

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

The vector multiplication leads to the following expression:

⟨H⟩ΨSD = c∗ ⟨Ψ∣ ̂H∣Ψ⟩c + c∗ ⟨Ψ∣ ̂H∣S⟩cS + c∗ ⟨Ψ∣ ̂H∣D⟩cD + cS†⟨S∣ ̂H∣Ψ⟩c

+ cS†⟨S∣ ̂H∣S⟩cS + cS†⟨S∣ ̂H∣D⟩cD + cD†⟨D∣ ̂H∣Ψ⟩c

+ cD†⟨D∣ ̂H∣S⟩cS + cD†⟨D∣ ̂H∣D⟩cD . (.)

Such an equation is not very useful, since we still do not know the c, cS and cD coefficients
determining the ΨSD function. The only thing that can be said about them so far comes from
the normalization requirement for ΨSD:

 = c∗ c + cS†cS + cD†cD . (.)
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This is not enough to uniquely determine the wave function.However, going back to> Eq. .
and multiplying only the inside vectors one obtains

HSD =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣

⟨S∣
⟨D∣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

̂H[∣Ψ⟩, ∣S⟩, ∣D⟩] =
⎡

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣ ̂H∣Ψ⟩ ⟨Ψ∣ ̂H∣S⟩ ⟨Ψ∣ ̂H∣D⟩
⟨S∣ ̂H∣Ψ⟩ ⟨S∣ ̂H∣S⟩ ⟨S∣ ̂H∣D⟩
⟨D∣ ̂H∣Ψ⟩ ⟨D∣ ̂H∣S⟩ ⟨D∣ ̂H∣D⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

We can then associate finding the approximate Hamiltonian eigenvalues with its matrix in the
ΨSD basis:

⟨H⟩ΨSD = [c
∗

 c
†
S c
†
D]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣ ̂H∣Ψ⟩ ⟨Ψ∣ ̂H∣S⟩ ⟨Ψ∣ ̂H∣D⟩
⟨S∣ ̂H∣Ψ⟩ ⟨S∣ ̂H∣S⟩ ⟨S∣ ̂H∣D⟩
⟨D∣ ̂H∣Ψ⟩ ⟨D∣ ̂H∣S⟩ ⟨D∣ ̂H∣D⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c
cS
cD

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

Because of the Hermitian character of the Hamilton operator, theHSD matrix is symmetric and
real. Its diagonalization provides the set of the eigenvalues corresponding to its eigenvectors.
We are interested in the ground state energy and, thus, we need only the lowest eigenvalue of
theHSD matrix and the respective normalized eigenvector ΨSD.

Knowing the procedure for the finite basis (only Single- and double-orbital exchanges), we
can see how it looks for the full (> Eq. .) expansion.Thematrix notation leads to the average
value of the Hamiltonian, written as

⟨H⟩Ψ = [c, cS, cD , cT , cQ, ]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣

⟨S∣
⟨D∣
⟨T∣
⟨Q∣
⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

̂H[∣Ψ⟩, ∣S⟩, ∣D⟩, ∣T⟩,Q⟩, . . .]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c
cS
cD
cT
cQ
⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

The vector multiplication permits one to perceive the average value as the eigenproblem of the
Hamiltonian matrix:

H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣ ̂H∣Ψ⟩  ⟨Ψ∣ ̂H∣D⟩   . . .
 ⟨S∣ ̂H∣S⟩ ⟨S∣ ̂H∣D⟩ ⟨S∣ ̂H∣T⟩  . . .

⟨D∣ ̂H∣Ψ⟩ ⟨D∣ ̂H∣S⟩ ⟨D∣ ̂H∣D⟩ ⟨D∣ ̂H∣T⟩ ⟨D∣ ̂H∣Q⟩ . . .
 ⟨T∣ ̂H∣S⟩ ⟨T∣ ̂H∣D⟩ ⟨T∣ ̂H∣T⟩ ⟨T∣ ̂H∣Q⟩ . . .
  ⟨Q∣ ̂H∣D⟩ ⟨Q∣ ̂H∣T⟩ ⟨Q∣ ̂H∣Q⟩ . . .
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

It can be clearly seen that some blocks in this matrix are equal to zero. This happens in two
cases:

• The integrals between Ψ and functions of the S type (single exchange of spin-orbitals)
vanish due to the Brillouin theorem, as was shown in the previous section

• The integrals between the functions that differ by more than two exchanges, for instance, S
andQ type, vanish due to the Slater rules

Even not knowing combinatorics one can expect that the number of functions in a block will
grow drastically with and increase in the number of exchanges (block S will contain less func-
tions than D etc.). A bit of thinking in the beginning would help to save a lot of time by not
calculating zero integrals. Let’s see: only in the case of ⟨Ψ∣ ̂H∣D⟩ and ⟨S∣ ̂H∣S⟩ blocks should
all the elements be calculated. The remaining matrices are sparse. For example, the ⟨D∣ ̂H∣D⟩
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block contains the integrals of the following types: ⟨Ψpq
ab ∣

̂H∣Ψpq
ab ⟩ (the same function on both

sides), ⟨Ψpq
ab ∣

̂H∣Ψpr
ab⟩ (differing by one exchange), ⟨Ψpq

ab ∣
̂H∣Ψrs

ab⟩ (differing by two exchanges),
⟨Ψpq

ab ∣
̂H∣Ψpq

ac ⟩ (differing by three exchanges), and ⟨Ψpq
ab ∣

̂H∣Ψpq
dc ⟩ (differing by four exchanges).

Obviously, the two latter cases produce zeros.
With the large number of exchanges, the size of the blocks grows abruptly, but most of

the elements would be equal to zero. The simplification in this case would be the limitation
of the H matrix size by the elimination of the functions including more than a given num-
ber of exchanges from the expansion. Let us leave only the single exchange block. Thus, the
Hamiltonian matrix has the form

HS = [
⟨Ψ∣ ̂H∣Ψ⟩ 

 ⟨S∣ ̂H∣S⟩
] . (.)

This is the block diagonal matrix. One of the properties of such matrices is that their eigen-
value set is a sum of the eigenvalues of the diagonal blocks. This means that the lowest possible
eigenvalue is E = ⟨Ψ∣ ̂H∣Ψ⟩ and, in consequence, there is no improvement in the ground state
energy with respect to the Hartree–Fock theory when taking only the single orbital exchanges.

Hence, let us also include the functions of the D type. Now the Hamilton matrix can be
written as

HSD =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⟨Ψ∣ ̂H∣Ψ⟩  ⟨Ψ∣ ̂H∣D⟩
 ⟨S∣ ̂H∣S⟩ ⟨S∣ ̂H∣D⟩

⟨D∣ ̂H∣Ψ⟩ ⟨D∣ ̂H∣S⟩ ⟨D∣ ̂H∣D⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (.)

It is no longer a block diagonal matrix – all blocks contribute to its eigenvalues and one can
count on some improvement. An interesting observation, however, is that here the functions
with the single spin-orbital exchange also have influence on the energy via the ⟨S∣ ̂H∣D⟩ and
⟨D∣ ̂H∣S⟩ blocks.

Next, subsequent groups of functions can be applied containing more than two spin-orbital
exchanges. However, the calculations become prohibitively expensive, even for moderate size of
the systems, and the consecutive corrections are smaller and smaller.The distinguished charac-
ter of the double spin-orbital exchange was already discussedwithin theMPmethod.Now one
can also expect that including double exchanges produces reasonable results with the moderate
computational cost. Then, why not save more and diagonalize only

HD = [
⟨Ψ∣ ̂H∣Ψ⟩ ⟨Ψ∣ ̂H∣D⟩
⟨D∣ ̂H∣Ψ⟩ ⟨D∣ ̂H∣D⟩

] (.)

instead of HSD? This can be done; however, savings are not that great, since the number of S
functions is significantly smaller than the number of D functions. Thus, if one can afford HD

diagonalization,HSD diagonalization is probably also within easy reach.
The above reasoning has led to the sequence of quantum chemistry methods. The best

results can be obtained within Full CI (FCI) by applying the full expansion (> Eq. .) within
the given basis set. This is certainly the most expensive variant. Cheaper – but also worse –
are, respectively, CISD based on theHSD matrix and CID neglecting single exchanges (Cramer
; Jensen ; Levine ; Lowe and Peterson ; Piela ; Ratner and Schatz ;
Szabo and Ostlund ).

So far, the reference function has been a single determinant. Such an approach is very lim-
ited. For instance, it does not allow one to describe a dissociation process. Correct description
of dissociation requires at least one determinant for each subsystem. And, even in the cases
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whenmulti-determinant reference state description is not obligatory, such an elastic wave func-
tion will provide an improved description of the system of interest (Cramer ; Jensen ;
Levine ; Piela ; Roos andWidmark ).

The multi-determinant wave function Ψ depends both on the expansion coefficients and
on the spin-orbitals building up the determinants. Both these sets of variables can be optimized
simultaneously. The particular case of this procedure, when taking only the first expansion
term, is the Hartree–Fock approximation (SCF–HF). Therefore, the optimization of the multi-
determinant wave function is called the multiconfiguration (MC) SCF method. Even without
a detailed study of the MC–SCF equations, an improvement in the results with respect to the
HF energy can be expected. However, this approach is much more expensive, since the spin-
orbitals are optimized several times. Again, a time savings is desired. Therefore, let us search
for the spin-orbitals with the highest influence on the total energy value. It has been observed
that not all doubly exchanged functions provide the same contribution to the energy. Some
improve the result more and others less. This is due to the spin-orbital energy differences. The
exchange of the spin-orbitals of significantly different energies does not contribute much to the
total energy improvement. Therefore, it can be requested that the exchange is included in cal-
culations only if the energy difference between the involved spin-orbitals is smaller than some
given value. Hence, only some groups of spin-orbitals can be exchanged.

Up to now, the spin-orbital notion was used. However, let us switch to the orbital language
that is frequently used for MC–SCF considerations.

For the N-electron system, the orbitals can be divided into three groups:

• Core orbitals, which are not varied, since they have too low orbital energies, but are applied
in the wave function expansion (doubly occupied orbitals)

• Active orbitals, which are exchanged in the expansion (partially occupied orbitals)
• Virtual orbitals, which are not varied and not applied in the expansion (unoccupied orbitals)

Instead of optimization of all the orbitals, only the active orbitals will be varied within the
Complete Active Space Self-Consistent Field approximation (CASSCF). In the acronym of this
method, the number of active orbitals and active electrons are also provided for the given sys-
tem. For instance, CASSCF(,) denotes the calculations with the expansion including all the
possible exchanges of the four electrons within the six active orbitals. The CASSCF approach
leads to all possible exchanges in the given active space, and for a moderately sized system,
the size of the active spaces can quickly exceed the computational resources. In such a case,
the solution can be the Restricted Active Space Self-Consistent Field method (RASSCF), which
supplies a way of limiting the size of the active space.

Additionally, one needs to remember that for a powerful tool such as perturbation the-
ory, there is no obstacle to applying the multi-determinant reference function as the unper-
turbed function in perturbation calculus. Thus, similar to the SCF–HF and MP approaches,
CASPT would be the second-order perturbation theory complete active space method – the
perturbationally corrected CASSCF.

Coupled Cluster Approximation – The Operator Strikes Back

It would seem that all the straightforward ways to improve wave function in the one electron
approximation have been exploited. However, we now next discuss one of the most accurate
(and simultaneously most expensive) methods applied in quantum chemistry.
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The idea is simple. Consider again the expansion (> Eq. .). Introducing an operator

̂C =

̂C + ̂C + ̂C + ̂C + ̂C + . . . , (.)

defined as

̂C∣Ψ⟩ = c∣Ψ⟩, (.)
̂C∣Ψ⟩ = ScS, (.)
̂C∣Ψ⟩ = DcD , (.)
̂C∣Ψ⟩ = TcT, (.)
̂C ∣Ψ⟩ = QcQ, (.)

⋮

allows one to write > Eq. . in a very compact form:

Ψ =

̂CΨ. (.)

Now the problem of finding the appropriate expansion can be replaced by the problem of find-
ing the adequate operator. This is the essence of the Coupled Cluster (CC) method. Here the
assumption is made that the wave function can be expressed by

Ψ = e
̂TΨ, (.)

where Ψ is a reference function (depending on the approach, this can be the one-determinant
HF function or the multi-determinant function arising from MC–SCF) and ̂T is a sought
operator. Applying the expansion of the exponential function, it can be written that

e
̂T
= ̂ + ̂T +


!
̂T
+


!
̂T
+ . . . . (.)

Such an expanded form makes the interpretation of the ̂T operators easier. Putting

̂T =

̂T + ̂T + ̂T + ̂T + . . . , (.)

one can identify the subsequent ̂Ti operators as corresponding to i-tuple exchanges of the spin-
orbitals in the reference function:

̂TΨ =∑
a ,p

t paΨ
p
a , (.)

̂TΨ = ∑

a ,b ,p,q
t pqabΨ

pq
ab , (.)

and so forth.The coefficients t (called “amplitudes”) are in general not equivalent to the c coeffi-
cients in the CI expansion (see > Eq. .). In order to find theirmutual relation, let us consider
the approximate operator:

̂T ≈

̂T + ̂T + ̂T + ̂T. (.)
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The operator (> Eq. .) takes the form

e
̂T+̂T+̂T+̂T

= ̂
+

̂T + ̂T + ̂T + ̂T

+


!
(

̂T + ̂T + ̂T + ̂T)


+


!
(

̂T + ̂T + ̂T + ̂T)


+


!
(

̂T + ̂T + ̂T + ̂T)
. (.)

Limiting ourselves to the terms corresponding to not more than four spin-orbital exchanges
and writing it in the ordered way according to the number of exchanges, one gets

e
̂T+̂T+̂T+̂T

≈ ̂
+

̂T

+

̂T +


̂T


+

̂T + ̂T̂T +


̂T


+

̂T + ̂T̂T +


̂T
 +



̂T
 ̂T + ̂T

 . (.)

Now the direct comparison can be made:

̂C = ̂T, (.)

̂C = ̂T +


̂T
 , (.)

̂C = ̂T + ̂T̂T +


̂T
 , (.)

̂C = ̂T + ̂T̂T +


̂T
 +



̂T
 ̂T + ̂T

 . (.)

We have the relation between the ̂Ci and ̂Ti operators, but still neither ̂Ci nor ̂Ti are known.
Recall from the earlier sections that the double exchanges have a significant influence on the
energy improvement with respect to the Hartree–Fock results. Taking double exchanges into
account within the coupled cluster formalism means that the operators ̂T and ̂T need to be
determined. However, as a side effect they also allow inclusion of some not negligible contri-
butions arising from the triple and higher exchanges. In the above comparison, the ̂T and ̂T

operators recover two out of three terms in ̂C and three out of five terms in ̂C. This is the
power of the CC method.

Unfortunately, the strength of this method does not go together with ease of calculations.
Obtaining the expressions for the operators ̂T is ransomed with compromises. Not only is the
operator expansion (> Eq. .) truncated, but the basis set is finite. Moreover, the variational
character of the method is sacrificed.

In order to realize the complications, let us consider step-by-step the energy calculation
within the CC formalism. We begin, as usual, with the electron Schrödinger > Eq. ..
Substituting > Eq. . gives

̂He
̂TΨ = Ee

̂TΨ. (.)
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Taking into account that, due to (> Eq. .),

⟨Ψ∣Ψ⟩ = ⟨Ψ∣e
̂T
∣Ψ⟩ = ⟨Ψ∣Ψ⟩ = , (.)

the energy can be calculated as

E = ⟨Ψ∣ ̂He
̂T
∣Ψ⟩ = ⟨Ψ∣ ̂H∣Ψ⟩. (.)

This is not the Hamiltonian average value expression. Additionally, the operator inside the
bracket is not hermitian. But, until we assume that (> Eq. .) is true, such an approach
works. We can also construct an integral:

⟨Ψpq
ab ∣

̂He
̂T
∣Ψ⟩ = E⟨Ψpq

ab ∣e
̂T
∣Ψ⟩, (.)

which is the consequence of > Eq. . and will be applied in near future.
We should now concentrate on the way of determining the form of amplitudes. To simplify

the considerations we can assume
̂T ≈

̂T, (.)

which is equivalent to the CCD variant. We are interested in finding the amplitudes t pqab . The
final result of the calculations will be the approximate energy:

ECCD = ⟨Ψ∣ ̂He
̂T
∣Ψ⟩. (.)

The information about the amplitude t pqab can be extracted from the integral

t pqab = ⟨Ψ
pq
ab ∣
̂T∣Ψ⟩ (.)

(see > Eq. .). However, the amplitudes are still not known, since we do not know the ̂T

operator. Therefore, one more equation is necessary to elicit the sought information. Let us
begin with the approximated expression > Eq. .:

⟨Ψpq
ab ∣

̂He
̂T
∣Ψ⟩ = ECCD⟨Ψ

pq
ab ∣e

̂T
∣Ψ⟩

= ⟨Ψ∣ ̂He
̂T
∣Ψ⟩⟨Ψpq

ab ∣e
̂T
∣Ψ⟩. (.)

The expansion (> Eq. .) tailored to the present case,

e
̂T
= ̂ + ̂T +



̂T
 + . . . , (.)

and substituted to the left-hand side of > Eq. . gives

⟨Ψpq
ab ∣

̂He
̂T
∣Ψ⟩ = ⟨Ψpq

ab ∣
̂H(̂ + ̂T +



̂T
 )∣Ψ⟩. (.)

Further terms are not necessary; in such a case the functions on both sides of the integral
would differ with four and more spin-orbital exchanges (and Hamiltonian is still a sum of one-
and two-electron operators). Similarly, the expansion in the integral ⟨Ψ∣ ̂HêT

∣Ψ⟩ will also be
truncated on the second term:

⟨Ψ∣ ̂He
̂T
∣Ψ⟩ = ⟨Ψ∣ ̂H(̂ + ̂T)∣Ψ⟩. (.)

Remembering that
E()
 = ⟨Ψ∣ ̂H∣Ψ⟩, (.)
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one gets
⟨Ψ∣ ̂He

̂T
∣Ψ⟩ = E()

 + ⟨Ψ∣ ̂ĤT∣Ψ⟩. (.)

The last integral on the right-hand side of > Eq. ., ⟨Ψpq
ab ∣e

̂T
∣Ψ⟩, can be non-vanishing only

if the functions on the right and left side are the same.This is possible for

⟨Ψpq
ab ∣e

̂T
∣Ψ⟩ = ⟨Ψpq

ab ∣
̂T∣Ψ⟩. (.)

This is the integral that can provide information about the desired amplitudes of > Eq. ..
Putting all these together one gets

⟨Ψpq
ab ∣

̂H(̂ + ̂T +


̂T
 )∣Ψ⟩ = (E + ⟨Ψ∣ ̂ĤT∣Ψ⟩) ⟨Ψpq

ab ∣
̂T∣Ψ⟩. (.)

Therefore, the amplitude t pqab = ⟨Ψ
pq
ab ∣
̂T∣Ψ⟩ can be expressed as

t pqab =
⟨Ψpq

ab ∣
̂H(̂ + ̂T +



̂T
 )∣Ψ⟩

E + ⟨Ψ∣ ̂ĤT∣Ψ⟩
. (.)

Unluckily, this does not mean that the amplitudes are known. Still, the above expression also
contains the t pqab amplitudes on the right-hand side in the ̂T operators. Moreover, all other
amplitudes are also present on the right-hand side.The consequence of this aggravation is that
the CC equations cannot be solved separately, one by one. All together, the complicated set
of non-linear equations must be handled. The number of equations is equal to the number of
sought amplitudes. This is the main reason for the huge computational cost of the CC calcula-
tions, even though the variationality of themethodwas abandoned (Atkins and Friedman ;
Cramer ; Jensen ; Levine ; Piela ; Roos andWidmark ).

It can be seen that solving the CC equations is quite complicated, even in the simplified case
of the CCD approach. If one wanted to use the variational Hamiltonian and apply its average
value, the following integrals would appear:

⟨Ψ∣ ̂H∣Ψ⟩ = ⟨Ψ∣e
̂T†
̂He

̂T
∣Ψ⟩ = ⟨e

̂TΨ∣ ̂H∣e
̂TΨ⟩. (.)

In order to calculate them, one needs to know the form of all the ̂Ti operators, since not only
the function on the right-hand side of the above integral will contain the exchanged spin-
orbitals but also the function on the left-hand side. Therefore, one needs to calculate terms
like ⟨̂TΨ∣ ̂H∣̂TΨ⟩ and many others.This causes the significant increase of the computational
costs of the CC method.

Like in the MPn case, the CC method is worth using for the short expansion of the ̂T
operator. Thus, relatively good accuracy is obtained with a moderate price.

Conclusions

Wehave finally reached the end of the zeroth iteration in the process of learning quantum chem-
istry methods. The beginner may feel saturated or even overwhelmed, however, we hope that
this chapter arouses interest. Our aim was to show that simple ideas underlie quantum chem-
istrymethods.The purpose is to put complicated things in a simpler andmore convenient form.
One of themost popular rules in computational chemistry is as follows: “If you cannot calculate
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something, divide it into parts in such a way that you can calculate some contribution while the
other is too difficult.” For instance, nonrelativistic energy can be divided into HF energy and
correlation energy. Correlation energy accounts for the contribution that we can not calculate
in practice, but methods such as MPn, CC, and CI allow one to find some part of it. It may
happen (and it often does!) that what we can calculate will be enough.

This chapter should be treated as the introduction to more advanced handbooks or as a
guide through the symbols and concepts applied in the later parts of this book. Thus, some of
the concepts are just touched upon, and many are omitted. If the reader noticed this and wants
to know more, it means that this chapter has met its goal.
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Abstract: Two aspects are quintessential if one seeks to successfully perform DFT cal-
culations: A basic understanding of how the concepts and models underlying the various
manifestations of DFT are built, and an essential knowledge of what can be expected from DFT
calculations and how to achieve themost appropriate results.This chapter expands on the devel-
opment and philosophy of DFT, and aims to illustrate the essentials of DFT in a manner that
is intuitively accessible. An analysis of the performance and applicability of DFT focuses on
a representative selection of chemical properties, including bond lengths, bond angles, vibra-
tional frequencies, electron affinities and ionization potentials, atomization energies, heats of
formation, energy barriers, bond energies hydrogen bonding, weak interactions, spin states,
and excited states.

Introduction

Density functional theory (DFT) is an enticing subject. It appeals to chemists and physicists
alike, and it is entrancing for those who like to work on mathematical physical aspects of prob-
lems, for those who relish computing observable properties from theory, and for those who
most enjoy developing correct qualitative descriptions of phenomena. It is this combination of
a qualitative model that at the same time furnishes quantitative reliable estimates that makes
DFT particularly attractive for chemists.

DFT is an alternative, and complementary, towave function theory (WFT). Both approaches
are variations of the basic theme of electronic structure theory, and both methods originated
during the late years of the s. WhereasWFT evolved rapidly and gained general popularity,
DFT found itself in a state of shadowy existence. It was the appearance of the key papers by
Hohenberg and Kohn () and by Kohn and Sham (), generally perceived as the begin-
ning of modern DFT, which changed the perception and level of acceptance of DFT. With the
evolution of reliable computational technologies for DFT chemistry, and with the advent of the
generalized gradient approximation (GGA) during the s, DFT emerged as powerful tool in
computational chemistry, andwithout exaggeration the s can be called the decade ofDFT in
electronic structure theory.During this time period, despite the lack of a complete development,
DFT was already competitive with the best WFT methods. Furthermore, the advancement of
computational hardware as well as software has progressed to a state where DFT calculations of
“real molecules” can be performed with high efficiency and without major technical hurdles.

Now, at the end of the first decade of the new millennium, it appears that DFT might
have become a victim of its own success. DFT has transformed into an off-the-shelf technol-
ogy and ready-to-crunch component, and often is used as such. However, it has become clear
that the happy days of black-box DFT are over, and that not all the promises of DFT came to
fruition. DFT has its own limitations and shortcomings, and the numbers obtained from DFT
calculations begin to lose some of their awe-inspiring admiration they enjoyed about  years
ago. At the same time, DFT is maturing into a standard research tool, used routinely by many
experimental chemists to support their work.

We have composed our short instruction manual for chemists in view of the ontogeny of
DFT. A chemist using DFT calculations should be aware of the fact that all approximations
and simplifications of any general theory may lead to failures in computed data. Every princi-
pally correct theory, if not executed with specific care, may produce essentially wrong results,
and therefore erroneous predictions. Two aspects are quintessential if one seeks to successfully
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perform DFT calculations: A basic understanding of how the concepts and models underlying
the variousmanifestations of DFT are built, and an essential knowledge of what can be expected
from DFT calculations and how to achieve the most appropriate results. Thus, we have divided
the main body of our directions into two parts.

In > section “DFT: A Paradigm Shift in Theoretical Chemistry,” we expand on the devel-
opment and philosophy of DFT. We do not present a course or textbook work on DFT; the
interested reader will find a selection of references to the literature for more elaborate and
detailed descriptions. Rather, we aim to illustrate the essentials of DFT in a manner that is
intuitively accessible. For this reason, we will avoid mathematical equations as much as possi-
ble, incorporate formulas into the flow of the text, and only on occasion add the odd numbered
equation to the elaboration. As a consequence, we have to abandon the rigor that unambiguous
and well-defined derivations require, and introduce a certain degree of sloppiness. We hope
that such a treatment will facilitate the flow of our arguments and emphasize what we think are
indispensable aspects of DFT.

In > section “DFT: Computational Chemistry in Action,” we present an analysis of the
performance and applicability of DFT.We focus on a representative selection of chemical prop-
erties and system types, and base our review on the most recent benchmarking studies, which
encompass several well-established density functionals together with the most recent efforts in
the field. Due to the multitude of papers that report DFT applications, our analysis is far from
complete, but we aim to present a representative snapshot of the current situation of DFT at the
end of the first decade of the new millennium.

We will close our work with two additional short > sections “DFTips” and > “A Concise
Guide to the Literature,” where we present the reader with a few tips about how to use DFT, and
with a collection of selected references as a concise guide to the by now vast literature of DFT.

DFT: A Paradigm Shift in Theoretical Chemistry

Density functional theory is primarily a theory of electronic ground state structure, which is
based on the electron density distribution ρ(r). In contrast to DFT, wave function theory is an
approach to electronic structure, which is based on the many-electron wave function Ψ(rn).
In order to put the innovation of DFT into proper perspective, we begin with a brief overview
of WFT, before we illustrate the essentials and growth of DFT.

The objective of WFT is the exact solution of the time-independent Schrödinger equation
(TISE), HΨ = EΨ, for a system of interest. (We recall that in quantum mechanics, associated
with eachmeasurable parameter in a physical system is an operator, and the operator associated
with the energy of a system is called the Hamiltonian H. The Hamiltonian contains the opera-
tions associated with the kinetic and potential energies of all particles that comprise a system.
We further note that the terms function, operator, and functional are to be understood such
that a function is a prescription whichmaps one or more numbers to another number, an oper-
ator is a prescription which maps one function to another function, and a functional takes a
function and provides a number.) The solution to the TISE yields the wave function Ψ as well
as the energy E for the system of interest. In a systematic, variational search one looks for the
wave function that produces the lowest energy, and arrives at a description for the system in its
ground state.
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If we consider a system of nuclei and N electrons, solving the TISE – within the Born–
Oppenheimer separation of slow nuclear motion from fast electronic motion – yields the
electronic molecular wave function, Ψel(r). This wave function depends explicitly on the N
coordinates of all N electrons, all of whichmight undergo positional permutation due to repul-
sive Coulomb interaction. A first approximation to the challenging task of solving the TISE is
to neglect interaction between electrons, and to reduce the function Ψel(r) of N variables to
a product of N functions ϕ each depending only on three variables, Ψel(r) = Π i=,Nϕi(ri).
Atomic orbitals are conveniently chosen to represent the functions ϕ. However, such a Hartree
product of atomic orbitals violates the Pauli exclusion principle due to the Fermion nature of
electrons, and hence the appropriate form for a system of non-interacting electrons is a sin-
gle determinant ∣ϕ(r) . . .ϕn(rn)∣, known as Slater-determinant. Such a wave function, from
the mathematical properties of determinants, is antisymmetric with respect to exchange of two
sets of electronic variables as it should be. One row of a Slater-determinant carries contribu-
tions from all atomic orbitals ϕ, and is commonly referred to as molecular orbital (MO) ψMO.
This approximate method for the determination of the ground state wave function and ground
state energy is the well-known Hartree–Fock (HF) method.

Although in the HF method the electrons obey exchange as required by the Pauli exclu-
sion principle, the electrons are non-interacting, and the movement of one electron within the
system is independent from the movement of all other electrons. However, as the presence of
Coulomb repulsion between electrons would suggest, the electrons move in a correlated fash-
ion. In order to allow for electron correlation, configuration interaction (CI) is introduced in
that the wave function is constructed as a linear combination of several Slater-determinants,
obtained from a permutation of electron occupancies among all MOs available. Increasing the
number of Slater-determinants increases the accuracy of the calculations, although the added
accuracy comes with the price of added computational cost that often becomes the limiting
factor for WFT calculations.

This brief exposition brings about two main differences between DFT and WFT. A WFT
calculation in general, and increasing the accuracy of WFT calculations in particular, is com-
putationally demanding. DFT seems to be more cost-efficient; after all, the simplest HF wave
function Ψel(r) depends on N spatial coordinates, whereas the probability distribution of
electrons in space ρ(r) depends only on three coordinates. But there exist strategies for how
the result of WFT can be systematically improved, whereas there is no methodical, standard-
ized scheme to improve DFT calculations. In the following, we will explore reasons for the
WFT–DFT differences.

InWFT, atoms andmolecules constitute the basic systems of interest. Since the distribution
and redistribution of electrons within atoms and molecules are central to chemical properties
and reactivity, we now limit ourselves to systems comprised ofN electrons inmotion, with some
two-particle interaction. The Hamiltonian of such a system reads H = T +U +V , where T and
U denote the operators for kinetic energy and for electron–electron interaction energy, respec-
tively. Whereas U results in the internal potential energy of our system, the moving electrons
might in addition interact with an external potential, and the operationV recovers the potential
energy due to this extra interaction. For systems of electrons that move in a field of fixed nuclei,
the external potential V is always just the nuclear field. Systems of electrons in combination
with fields of fixed nuclei represent the essential building blocks of matter such as molecules
or solids. For a chemist, it might appear counterintuitive that nuclei, being an essential part of
a molecule, represent an external potential, but the nuclear potential – although internal to a
molecule – is external to the density of the moving electrons.
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If we consider the external potential to be a uniformly distributed background positive
charge, we arrive at the uniform or homogeneous electron gas (UEGorHEG), also known as jel-
lium. At zero temperature, the properties of jellium depend solely upon the constant electron
density distribution, ρ(r)=const. Such a treatment of electronic density, the Thomas–Fermi
(TF) model, constitutes the origins of DFT (Parr and Yang ). The TF model is able to
describe the kinetic energy of the UEG as functional of the electronic density, and later on
Dirac added a density functional for the exchange energy as a conclusion of the Pauli principle.
The UEG-formalism itself provides the basis for the local density approximation (LDA).

Before we proceed, we take a small step back to WFT. At the beginning of the s, Slater
() described the then current situation in WFT as follows: “The Hartree–Fock equations
furnish the best set of one-electron wave functions for use in a self-consistent approximation
to the problem of the motion of electrons in the field of atomic nuclei. However, they are so
complicated to use that they have not been employed except in relatively simple cases.” Fac-
ing the decision “Do you want to calculate it, or do you want it to be accurate?” Slater decided
to replace the peculiar exchange term in the HF equations by something equivalent, yet easier
to calculate. Slater used the free-electron approximation for the exchange potential, which, as
Dirac has shown, could be expressed as a density functional. His new method, termed HFS,
“was easy enough to apply so that we can look forward to using it even for heavy atoms” (Slater
), and in order to check its applicability, he performed calculations for the transition metal
ion Cu+. The exchange potential functional derived from the exchange energy functional con-
tains one additional, scalable parameter α, which led to the development of the Xα-method.
This model enjoyed a significant amount of popularity among physicists, and is still a topic of
ongoing research activities (Zope and Dunlap ). The HFS- or the Xα-method became the
first practically used DFT-method in chemistry.

Two points that were fundamental for the progress of DFT were already anticipated within
the advancements of the HFS- or Xα-method:

. Every density functional method to some degree contains one or more empirical param-
eters. Therefore, DFT has often been regarded as “Yet another Semi-Empirical Method”
(YaSEM). The Hartree–Fock–Slater model, which can be regarded as ancestor of modern
DFT, is such an example. But whereas theHFS-method is intrinsically approximate,modern
DFT is in principle exact (Kohn et al. ).

. Transition metal chemistry has played and continues to play a major role in the progres-
sion of DFT.Work of Baerends and Ros () is representative of the transition-metal-HFS
era, and Ziegler’s contributions, summarized in his early review article (Ziegler ) have
provided the impetus that changed the perception of calculations based on densities from
YaSEM to DFT, “Das Future Tool.” A recent review article by Cramer and Truhlar () is
dedicated solely to developments and progress of DFT for transition metal chemistry.

At the heart of modern DFT is the rigorous, simple lemma of Hohenberg and Kohn (),
which states that the specification of the ground state density, ρ(r), determines the external
potential V(r) uniquely, > Eq. .:

ρ(r) → V(r)(unique). (.)

This first theorem by Hohenberg and Kohn (HK-I) is not difficult to prove (Parr and Yang
), but for a chemist, the essentials of HK-I that given a density, only one external potential
corresponds to that density, are intuitively clear. A pictorial representation of HK-I is shown



Directions for Use of Density Functional Theory: A Short InstructionManual for Chemists  

32 electrons

C3H6O

Propylene Oxide

OH

O

O

O

O

!

?

⊡ Fig. -
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in > Fig. -; we consider the density created by  electrons that move around the exter-
nal potential created by one oxygen, three carbon, and six hydrogen nuclei. By inspection of
a density map of a certain density value, it becomes obvious that of all the atomic constellations
considered, only one seems to be consistent with the shape of the density map. Such a con-
sideration reflects ideas developed in the context of “conceptual DFT” (Geerlings et al. ).
HK-I also expresses the fact that there is a one-to-onemapping between the potential V(r), the
particle density ρ(r), and the ground state wave function Ψ, > Eq. .:

ρ(r) ←→ V(r) ←→ Ψ. (.)

This implies that all properties of a system are functionals of the ground state density, since
any property may be determined as the expectation value of the corresponding operator. With
the help of this lemma, a minimal principle for the energy as functional of ρ(r) can be derived.
The secondHohenberg–Kohn theorem (HK-II) provides the necessary guidelines to obtain the
ground state energy. Following HK-II, a variational principle is established, according to which
the ground state density of a system of interest can be determined.

In order to put the promise of the HK theorems that all properties of a system can be
obtained from its ground state density, into reality, one would need a construction that is com-
putationally accessible while maintaining the formal exactness of HK-I and HK-II. To this end,
Kohn and Sham () introduced a fictitious system of N non-interacting electrons that have
for their overall ground state density the same density as some real system of interest where the
electrons do interact. Using some aspects of HF-theory, the ground state wave function Ψ of
such a non-interacting system is described by a single Slater determinant. The orbitals, which
form this Slater determinant, known as Kohn–Sham (KS) orbitals ϕKS, are solutions of N single
particle equations. Following the variational principle, the ground state energy and the ground
state density are determined from variations in ϕKS.

The essential contribution to the KS-energy comes from the so-called exchange correlation
energy EXC. It incorporates corrections to the kinetic energy due to the interacting nature of
the electrons of the real system, all non-classical corrections to the electron–electron repulsion,
as well as electron self-interaction corrections. If EXC is ignored, the physical content of the
theory becomes identical to that of the Hartree approximation.Thus, within the KS-formalism,
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the electronic energy of the ground state of a system of N electrons moving within an external
potential of nuclei is expressed – without approximations – as a functional of the ground state
density, > Eq. .:

E[ρ] = Ts[ρ] +U[ρ(), ρ()]+ Vne[ρ] + EXC[ρ]. (.)

In > Eq. ., the first term represents the kinetic energy of the system of N non-interacting
electrons, the second term corresponds to the Coulombic repulsions between the total charge
distributions at two different positions within the system, and the third term accounts for
nuclear–electron interactions, due to the presence of an external potential. It is the fourth term,
the functional for the exchange-correlation energy EXC, which is responsible for the power and
magic of DFT. What makes current DFT applications approximate is the unknown analytic
expression of EXC, for which an approximation is needed.

The KS formalism is closely related to the HF formalism. What differentiates the KS-
operator from the HF-operator is the exchange-correlation potential VXC. VXC in turn is a
functional derivative of the exchange-correlation energy EXC. Furthermore, the Hamiltonian
H operating on the wave function that is associated with the density of a fictitious system of N
non-interacting electrons can be expressed as sum of one-electron operators.

Whereas increasing the accuracy of HF calculations is accompanied with a steep increase
in computational cost, increasing the accuracy of DFT calculations apparently requires mod-
ifications in VXC, which – if at all – only lead to a moderate increase in computational cost.
However, whereas it is well known how to systematically improve the accuracy and quality of
HF calculations, no comparable strategy exists for DFT calculations within the confines of a
KS-approach. It appears that a detailed knowledge of the exchange-correlation energy EXC is
essential for designing more accurate density functionals.

Holes and Electron Pairs

The exchange-correlation energy EXC is a relatively small part of the total energy of a typical
system, although it is by far the largest part of “nature’s glue” that binds atoms together (Kurth
and Perdew ). It arises because the electrons do not move randomly through the density
but avoid one another. Ziegler () illustrates the situation as follows: An electron will try to
maximize the attraction from the nuclei and minimize the repulsion from the other electrons,
as it moves around in the molecular framework. To do so, it creates an exclusion area or “no-
fly zone” around itself into which no other electron can penetrate, as pictorially exemplified in
> Fig. -. The exclusion zone is referred to as the exchange and correlation (XC) hole, and it is
the way in which the XC-hole is modeled that distinguishes one electronic theory from another.
Each density functional has its own characteristic XC-fingerprint.

The XC-hole also determines to a large part EXC, which however contains three different
contributions. The first is the potential energy of exchange, which also should include correc-
tions for self-exchange or self-interaction.The second is the potential energy of correlation due
to the effect of Coulomb repulsion. Both potential energies are negative, and determined by the
nature of the XC-hole.The third contribution to EXC is a smaller positive kinetic energy of cor-
relation due to the extra swerving motion of the electrons as they avoid one another (Perdew
et al. ).

The XC-hole arises from an extension of the concept of the unconditional one-electron
probability density ρ()by considering pairs of electrons and a resulting conditional probability.
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⊡ Fig. -
Electrons in distress: While trying to maximize the attraction from the nuclei, an electron experi-
ences enhanced repulsion from the other electron as it moves around in the molecular framework
(top). To minimize the repulsion, each electron creates an exclusion area around itself, into which
no other electron can penetrate (bottom) (Cartoon by Lauren Bertolino)

When a reference electron is known to be at position , the conditional probability ρcond(, ) of
the other electron to be at position  can be written as the sum of the unconditional probability
ρ() of the other electron and the XC-hole density ρXC−hole(, ). Thus, the hole ρXC−hole(, )
describes how the conditional density of the other electron deviates from its unconditional
density ρ().

It is instructive to have a closer look at hole-profiles, and as simple example, we will consider
the hydrogen molecule H with only two electrons or one electron pair. In > Fig. -, hole
densities for H are shown; the two nuclei HA and HB are separated by  pm, and the reference
electron is placed  pm to the left of nucleus HB .

TheXC-hole can be split into contributions from the exchange- or X-hole, which arises from
the Fermionnature of an electron obeying the Pauli principle, and the correlation- orC-hole due
to Coulomb repulsion within the pair of electrons. (The X-hole and C-hole are often referred
to as Fermi hole and Coulomb hole, respectively).

The X-hole puts an emphasis on the reference electron. It creates a taboo zone for the other
electron with a negative ρX−hole(, ) probability density not only around the region in space
where the reference electron currently is, but also where it might be. Regions in the vicinity
of both nuclei HA and HB are declared as “no-fly zone.” The C-hole on the other hand puts
an emphasis on the other electron. It excludes regions where the other electron might expe-
rience Coulomb repulsion with the reference electron, but it also maps out regions where the
other electron can benefit from attractive Coulomb interactions with nuclei. We see a negative
ρC−hole(, ) probability density aroundHB but a positive ρC−hole(, ) probability, a build-up of
density, around HA far away from the reference electron. Whereas the X- and C-hole illustrate
exchange and correlation, only the combined XC-hole has physical meaning.

Before we continue, a short remark on the use of some language is in order. Since the terms
local and nonlocal are often recurred to in the context of DFT, and often with different mean-
ings, we briefly define how the terms local and nonlocal are used in this work. An approximation
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⊡ Fig. -
Hole densities in the hydrogen molecule: Only the full XC-hole ρXC−hole(, ) has physical meaning
(Adapted from Baerends and Gritsenko () with permission by the American Chemical Society)

is said to be local if its energy density and related properties at any position of interest depend
only on the electron density neighborhood of the given position. Otherwise, an approximation
is said to be fully nonlocal. (We note that some physicists separate local approximations into
“strictly local” and “semilocal.”)

From an inspection of > Fig. - it appears that both the C-hole and the X-hole are inher-
ently nonlocal (the same as the HF exchange energy). The XC-hole, too, must therefore be
nonlocal, but its dominant contributions arise from the region around its reference electron –
the XC-hole appears to be more local and less nonlocal than the X- or C-hole.This observation
already anticipates that local density functionals might be able to produce approximate models
for the nonlocal XC-hole.

Although it seems that there exists no systematic approach like in WFT to improve the
accuracy of DFT, the advancement of density functionals depends on more precise descrip-
tions not only of the XC-hole but also of the exchange-correlation energy EXC.This task can be
approached in methodical manner.

Climbing Jacob’s Ladder

Perdew and Schmidt () compare the development of enhanced density functionals to a
climb of Jacob’s ladder, leading the way from the Hartree world to the heaven of chemical accu-
racy, illustrated in > Fig. -. Each rung of the ladder adds a refinement to the approximation
of the exchange-correlation energy.

First Rung: The Local Density Approximation

The first rung employs only the local densities in the description of the exchange-correlation
energy.This method is known as the local density approximation (LDA). (Although vital to the
Fermion nature of electrons, so far we have treated spin rather novercal. But the issue of spin
can be treated as well in density functional theory, and the local spin density approximation
(LSDorLSDA) replaces the spin-averaged energy densitywith the energy density for a polarized
homogeneous electron gas. LDA and LSDA are now often used synonymously.)
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⊡ Fig. -
The Jacob’s ladder of density functional approximations to the exchange-correlation energy
(Reprinted from Perdew et al. (), with permission by the American Chemical Society)

LDA takes its densities from the uniform electron gas (UEG), and an analytical form of
a density functional for the exchange energy of the UEG can be derived (the same exchange
energy as used in theHFS-method). No such expression exists for the correlation energy, but the
UEG correlation energy can be calculated numerically and fit in various ways. One successful
and popular parameterization comes from the work of Vosko, Wilk, and Nussair, referred to as
VWN (Vosko et al. ).

LDAperforms surprisinglywell in predictingmolecular properties that are based on relative
energy differences within a given density. Molecular geometries for representative main group
compounds could be reproduced in close agreement to the experiment (Versluis and Ziegler
). For transition metal complexes, metal-ligand separations are slightly underestimated,
but still within acceptable conformity with X-ray data (Ziegler ). However, properties that
are based on absolute energies differences between densities, such as bond energies, are not well
described by LDA, where a clear overbinding tendency emerged. LDA is therefore a remarkably
useful structural, though not thermochemical, tool. The disappointing performance of LDA in
estimating thermochemical properties spawned the development of gradient-based methods,
the second rung on Jacob’s ladder.

Second Rung: The Generalized Gradient Approximation

The second rung or generalized gradient approximation (GGA) adds the gradients of the local
densities to the exchange-correlation picture. It became clear that the homogeneous electron
gas is only of limited use as a model of the inhomogeneous electron density within molecules,
and approximations for exchange and correlation energy were augmented by density gradi-
ents. (In the older literature,GGAs are sometimes called nonlocal (LDA/NL), since the gradient
implies a directional change within the density.) Two earlymodels for correlation (Perdew )
and exchange (Becke b) in combination resulted in the BP functional, the GGA that was
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most influential in the early developments of transition metal DFT (Ziegler ). Gradient cor-
rections are essential for a quantitative estimate of bond energies as well as metal–ligand bond
distances (Ziegler ).

Third Rung: Meta-Functionals

The third rung adds the kinetic energy density to the description of density functionals
(Tao et al. ), and addresses the smaller third contribution to EXC. Such functionals are
referred to as meta-functionals, and when built on second rung functionals, as meta-GGA
(MGGA).

The first three rungs of Jacob’s ladder all represent local functionals. They often work
because of proper accuracy for a slowly varying density or because of error cancellation between
exchange and correlation. Error cancellation can occur because the exact XC-hole is usually
more localized around its reference electron than the exact X-hole (compare > Fig. -).
Regions in which no error cancellation is expected are regions where exchange dominates
correlation (Perdew et al. ).

Climbing up the ladder, the approximations becomemore complicated,more sophisticated,
and typically more accurate. Computation times increase modestly from the first to the third
rungs andmuchmore steeply after that.The added ingredients on eachhigher rung of the ladder
can be used to satisfy more exact constraints or to achieve better agreement with experimen-
tal data (or both). These two strategies define the nonempirical and semiempirical approaches
commonly used to improve density functionals. Beginning with the fourth rung, the nature of
the density functionals changes from local to nonlocal.

Fourth Rung: Hyper-Functionals

The fourth rung, which also represents the first fully nonlocal rung, adds the exact exchange
energy density. Such a functional is termed hyper-GGA (hyper-HGGA). After reaching the
second rung, DFT progressed rapidly and took one giant step from the second to the fourth
rung, omitting meta-GGAs. Following the idea of adiabatic connection, Becke derived a func-
tional for exchange, which contained contributions from the exact HF-exchange (Becke a).
He then designed an advanced functional for the exchange-correlation contribution con-
taining three parameters for its various parts, including gradient corrections for correlation,
gradient corrections for exchange, as well as an exact exchange contribution (Becke b).
These semi-empirical coefficients have been determined by a linear least-square fit to  atom-
ization energies,  ionization potentials, eight proton affinities, and ten first-row total atomic
energies. Becke’s functional, combining HF-theory and DFT with the use of three empirical
coefficients, was the first example and initiated the evolution of so-called hybrid-functionals.
The hybrid functional BLYP, based on Becke’s parameterization, was to a large part responsible
for the meteoric ascent of DFT during the s.

While the first three rungs of Jacob’s ladder require no fitting of experimental data, empiri-
cism seems unavoidable on the fourth rung. This has caused some skepticism, and it appeared
that the success of “empirical DFT”would eventually be responsible for the death of “true DFT.”
Gill humorously described the situation at the beginning of the newmillennium in his obituary
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to DFT (Gill ). The Jacob’s letter metaphor puts the addition of exact exchange to density
functionals into proper perspective.

The step from the third rung to the fourth rung results in a new class of functionals, so-called
HMGGAs. HMGGA functionals are currently a field of active development, and appear to pro-
duce promising results. M, for example, is a HMGGA with good accuracy for a variety of
different chemical applications ranging from transition metals over main group thermochem-
istry to barrier heights of chemical reactions. Thus, HMGGAs might be considered as a class
of density functionals with broad applicability in chemistry (Zhao and Truhlar ). Whether
HMGGA is read as hybrid-meta-GGAor hyper-meta-GGA is amatter of taste; fortunately, both
specifications result in the same acronym.

Fifth Rung

The fifth rung of Jacob’s ladder adds exact correlation as new ingredient. One might think of
this as an expansion of the density space of a system by adding virtual densities into the picture.
One approach to this problem is the use of the random phase approximation (RPA). RPA in
DFT in turn is closely related to time-dependent DFT (TD-DFT). The essence of RPA might
be described as constructing the excited states of a system as a superposition of particle-hole
excitations.

When building a fifth-rung density functional for the exchange-correlation energy, the RPA
utilizes full exact exchange and constructs the correlation with the help of the unoccupied
Kohn–Sham orbitals. Like the first three rungs of Jacob’s ladder, the fifth rung requires no fit-
ting. At the time of writing, fifth-rung methods have not yet been established as essential tools
in computational chemistry.

In the early days of modern density functional theory, hazy clouds of ambiguity that
enfolded the XC-hole obscured the view of Jacob’s ladder. The existence of the third rung of
Jacob’s ladder was recognized before the fourth rung entered the Jacob’s ladder picture (Becke
and Roussel ), but at first it did not appear as a safe and secure stage for the ascent toward
the heaven of chemical accuracy. Thus, although MGGAs predate HGGAs, the computational
development of HGGAs predates that of MGGAs. Only after the clouds of ambiguity lifted,
MGGAsbecame a recognizedDFT-approach in computational chemistry, andHMGGAsbegan
to appear.

The Jacob’s ladder scheme is not the onlyway to arrive at exact functionals.When leaving the
confines of ordinary KS-DFTmethods, and using ideas fromWFT, one arrives at ab initio den-
sity functional theory, the seamless connection of DFT andWFT (Bartlett et al. ). However,
these methods have not yet established themselves as standard approaches in computational
chemistry.

Practical DFT and the Density Functional Zoo

A practical DFT-based calculation is in many ways similar to a traditional HF treatment in
that the final outcome is a set of orbitals, the Kohn–Sham orbitals ϕKS. The KS-orbitals are
often expanded in terms of a basis set as in the traditional linear combination of atomic
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orbital (LCAO) approach of traditional HF-methods. Most often, Gaussian-type basis func-
tions are used to construct atomic orbitals (GTO). Amajor exception is the AmsterdamDensity
Functional suite of programs (ADF), where Slater-type basis functions (STO) are used (ADF
). ADF constitutes one of the first programs developed essentially for applications of DFT.

The evaluation ofmatrix elements of the Kohn–Sham exchange-correlation potential always
requires at some step a D numerical integration. Solutions to the problem of carrying out D
numerical integration for polyatomic systems to arbitrary precision (Becke a) provided a
major thrust for computational DFT, and proficient improvements were made in connection
with developments of the ADF computer code (Boerrigter et al. ). The availability of eco-
nomical numerical integration schemes made the choice of STOs over GTOs computationally
compatible.

The local nature of the effective potential in the one-electron Kohn–Sham equations affords
efficient computational schemes. During the development of ADF, the remaining Coulomb
problem, the two-electron-integral “bottleneck,” has been addressed by the introduction of
auxiliary basis sets, so-called “density fitting” (Baerends et al. ).

Many of the pioneering improvements made during the development of the ADF suite of
programs have become standard tools in density functional calculations, and as a result, DFT
calculations perform compatible to, if not better than HF-methods. We note that a density
fit is not possible, when the chosen functional utilizes exact exchange. By now, a plethora of
density functionals is available for electronic structure calculations. Towards the end of the first
decade of the newmillennium, Sousa and coworkers have presented an authoritative review, in
which they evaluate the performance of over  different density functionals (Sousa et al. ).
The authors also report the percentage of occurrences of the names of different functionals in
journal titles and abstracts; we interpret these numbers as measure for usage and popularity
of the corresponding functional. Although new functionals appear every year, the popularity
rankingseemstopossess somestabilitywithina time intervalof severalyears.Thus, in > Fig. -,
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⊡ Fig. -
Most popular density functionals at the end of the first decade of the newmillennium (Data based
on results of extensive literature searches (Sousa et al. ))
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wehave compiled data for the sevenmost popular functionals, taken from thework of Sousa and
coworkers, and include a popularity pie chart as well.

The key information conveyed in > Fig. - is the fact that BLYP is by far the most pop-
ular density functional in chemistry, representing % of the total of occurrences of density
functionals in the literature, in the period – (Sousa et al. ). Other popular density
functionals such as BLYP, BPW, and BP acquire usage shares of % and less, and can only
be considered as also-rans in the functional race.

It seems advisable to briefly talk about how to decipher the density functional code. With
the advent of GGAs at the end of the s, the abbreviation for each GGA-functional usually
consisted of two parts: the first for exchange and the second for correlation. As an example,
BP takes its exchange contribution from the work of Becke (b), and correlation from
the work of Perdew (). Similarly, BLYP breaks down into B-exchange and LYP-correlation.
Later, when gradient corrections for exchange and correlation were often taken from the same
work, the functional is usually referred to by one combined code only. The GGA functional
PBE takes its gradients for exchange as well as for correlation from the work of Perdew, Burke,
and Ernzerhof. The same holds true for the MGGA TPSS. Strictly spoken, the PBE functional
should be referred to as PBEPBE. It is also possible that the individual parts are combined with
other functionals, for example, PBELYP or BPBE. HGGAs usually contain one number that
indicates the degree of parameterization when building the hybrid: BLYP refers to a three-
parameter mixing of B-exchange, LYP-correlation, and exact exchange, whereas BLYP refers
to a one-parameter hybrid density functional. As density functionals get more elaborate and
more complex, the XC-coding is not always strictly followed. The HMGGA M and its vari-
ations (M-L, M-X, M-HF), for example, refer to a set of functionals developed at the
University of Minnesota in .

The pie chart presented in > Fig. - bears a striking resemblance to Pac-Man. Like the
arcade game Pac-Man, often credited with being a landmark in video game history and vir-
tually synonymous with video games, BLYP has to be considered a landmark in electronic
structure theory, and is often used as a synonym for DFT. However, the same as there is more
to video games than just Pac-Man, there is more to density functional theory than just BLYP.
In > section “DFT: Computational Chemistry in Action,” we will explore the characteristics
and capabilities of density functional in more detail.

The reader, who would like to knowmore about the details and derivations of DFT, will find
valuable information about the basics in the “Chemist’s Guide to Density Functional Theory”
(Koch and Holthausen ) and will learn more about advanced aspects in the “Primer in
Density Functional Theory” (Fiolhais et al. ).

DFT: Computational Chemistry in Action

The breakthrough of DFT coincided with a rise of computational power at the end of the last
millennium. CPU architectures advanced from CISC- to RISC-designs, and supercomputers
transformed from single vector-processors to computing clusters. However, as the compu-
tational power increased, the problems too became more and more demanding, and the
molecules that found their way into input files for density functional programs grew bigger
and bigger. Computing time remains to be a crucial factor when assessing the performance of
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computational methods, and linear-scaling approaches are one of the great strengths of DFT
(Yang ). However, these techniques fall out of the scope of our review and assessment, and
we begin with a comparison of computational demands of representative density functionals,
following standard approaches.

Computational Performance

We start this section remarking that there is not something like “the best functional and basis
set for all properties.” Rather, the specific methodological approach to be used depends from
the specific problem at hand. Nevertheless, many functionals are robust enough to give rather
reasonable results in a large series of chemical properties, and the scope of this section is to pro-
vide an overview of the performances of typical functionals and basis sets, trying to highlight
which ones perform remarkably better or remarkably worse than the average, if this is known.
Further, as a practical vademecum, the scope of this section is to give an overview of perfor-
mances under “standard working conditions.” Thus, the focus will be on performances that can
be expected when working with real-size systems (– atoms including a transition metal),
which requires a compromise between the computer resources available and the combination of
functional and basis set used, rather than peak performances that can be reached with a sophis-
ticated last generation functional in combination with a very extended basis. On the other hand,
there are several excellent reviews that provide an accurate and critical assessment of the various
methods, with a particular focus on the best performances that can be achieved, independently
from the computational cost (Cramer and Truhlar ; Sousa et al. ). Methods that cur-
rently are computationally too expensive might become the standard computational tools in
the future.

Finally, the number of possible functionals is very large, so that it is more confusing than
enlightening to review all of them. In addition, it might well be that the best functional for
a specific problem has not been tested in the several benchmarking studies published in the
literature. As a general rule, before wasting huge amounts, computer power with the wrong
functional and/or basis set, it is wiser to invest some time to read literature to find which com-
putational method works better (or acceptably well) for a given problem, and possibly have a
feeling of the accuracy through test calculations on small selected systems.

To give an idea of the relative cost of the various functionals, the relative computational time
required by some functionals in two standard applications such as the calculations of the energy
and of the first derivatives of the energy with respect to the atomic coordinates (which must be
calculated at each geometry optimization step), and the calculation of the second derivatives
of the energy with respect to the atomic coordinates (which must be calculated for vibrational
analysis) is reported in > Table -. The system considered in these calculations is a  atom
Ru-complex whose brute formula is RuCHClN.

The data reported in > Table - clearly indicate that GGA calculations are computationally
very effective. In addition, forDFTmethods that donot rely on exact exchange, the performance
can be further improved by using an auxiliary basis set to fit the electron density (usually called
density fit or resolution of identity). Indeed, without this technical setup, the same GGA or
MGGA functional – compare the BP (density-fit) and the simple BP values in >Table - –
is roughly % slower. The same consideration applies when MGGA functionals are consid-
ered; compare the TPSS (density-fit) and the simple TPSS values in > Table -. We note that
this technical acceleration is not possible when the Hartree–Fock exchange must be evaluated,
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⊡ Table -
Relativeperformanceof various functionals, as implemented in theGaussianpackage, in thecal-
culation of energy and gradients, or second derivatives, for an organometallic complex of formula
RuCHClN

E + gradients Second derivatives E + gradients
Method SVP TZVP

BP (density fit) GGA . . .

BP GGA . . .

PBE GGA . . .

BLYP HGGA . . .

PBEPBE HGGA . . .

TPSS (density fit) MGGA . . .

TPSS MGGA . . .

TPSSh HMGGA . . .

M HMGGA . . .

and thus HGGA and HMGGA calculations cannot benefit from it. Generally speaking, there
are marginal differences within a family of functionals, and HGGA functionals are roughly two
to three times slower than GGA functionals. MGGA functionals, particularly when the resolu-
tion of identity technique is invoked, are roughly % slower than GGA functionals, and thus
are quite faster than HGGA functionals. HMGGA functionals are roughly three to four times
slower than GGA functionals. This relative speed between the different families of functionals
is maintainedwhen second derivatives are evaluated.Moving to the effect of the size of the basis
set, calculations performed with a triple-ζ plus one polarization function of main group atoms
results in an increase of the required computational time by a factor of – roughly. Thus, on
going from an accelerated GGA functional in combination with a split-valence plus one polar-
ization function basis set, to a HMGGA functional in combination with a triple-ζ plus one
polarization function basis set results in an increase of the computational time by a factor of
 roughly. In other words, a GGA/SVP calculation that would take  day would require more
than  week, roughly, if performed at the HMGGA/TZVP level. This indicates that the selec-
tion of the most appropriate computational method (both functional and basis set) must be a
trade between the accuracy needed and the computational time (or power) available. Of course,
degradation of accuracy below the level required by the specific problem at hand is not possible.

Properties of Molecular and Electronic Structure

To explore the capabilities of various density functionals, we have selected  representa-
tive properties of atoms and molecules. We begin with molecular structure (bond lengths,
bond angles vibrational frequencies) and basics of electronic structure (electron affinities and
ionization potentials). We then proceed to the energetics of transformations of molecules
(atomization energies, heats of formation, energy barriers), which will carry us to chemical
bonding.The nature of the chemical bond remains a central theme in theoretical chemistry, and
we discuss regular bonds as well as weak bonds, all being at the focus of ongoing research activ-
ities (bond energies, hydrogen bonding, weak interactions). The issue of spin in DFT deserves
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particular attention (spin states). Although DFT essentially is a ground state theory, excited
states too can be treated with density functional theory, and with our last property we briefly
touch this topic (excited states). Time-dependent density functional theory (TDDFT) is a topic
in its own right, and an appropriate coverage of TDDFT falls out of the scope of the present
work. The reader will find an entry into this excited field when studying the articles compiled
by Marques and co-workers ().

The  topics we selected in no way exhaust the capabilities of DFT, and any property that
can be treated with WFT, is in principle accessible with DFT as well. As an example, we refer
the reader to a recent review by Neese () that illustrates the capabilities of DFT in the field
of molecular spectroscopy.

When evaluating the performance of computational methods, benchmarking is an essential
procedure in which calculated properties are evaluated against accurate experimental data. By
now, a large number of problem-specific databases have been established, which cover a wide
variety of different physicochemical properties, such as proton affinities, atomization energies,
barrier heights, reaction energies, and spectroscopic properties. However, these databases are
not free from chemical biases, and often narrowed by the structural space of chemical intuition.
There is always the risk that when following established procedures, benchmark studies might
lose some of their general appeal. As to avoid the dangers of casual benchmarking, Korth and
Grimme have developed a “mindless” DFT benchmarking protocol. Here, the databases consist
of randomly generatedmolecules that rely on systematic constraints (Korth andGrimme )
rather than on what is supposed to be chemical insight.

In the following, we will make extensive reference to published benchmark studies. How-
ever, itmight well be that a particularmolecule of interest to the reader is not coveredwithin one
of the existing benchmark databases, and benchmark studies in general provide good starting
points for calculations, but no guarantee for correctness.

Bond Lengths

It is well established that almost any DFT approach, beyond LDA, is able to reproduce cor-
rectly the geometry of molecular systems composed of main group atoms. With the increase
of computer resources it is becoming customary to test the performances of various meth-
ods through calculations on a rather large set of molecules, and to report statistical values.
In one of such comparative studies,  closed-shell molecules composed by first-row atoms,
for which accurate experimental geometries determined in the gas-phase was available, con-
firmed that the performance of commonly used GGA (BLYP, BPW and BP) and HGGA
(BLYP, BPW and BP) is quite accurate, although the mean unsigned error (MUE) on
the bond length obtained with the GGA functionals, between . and .Å roughly, is
slightly larger than that calculated with the HGGA functionals, usually below .Å (Wang
and Wilson ). The convergence of the geometry was tested with respect to increasing
basis set size from cc-pVDZ to aug-cc-pVZ, and was shown to occur quickly. Convergence
is typically reached at the triple-ζ level, and beyond this levelminor fluctuations, in the order of
.Å, were observed. Thus, excellent performances require that at least a triple-ζ basis set is
used. Similar conclusions were reached in a different benchmark study on a dataset of  small
molecules (Riley et al. ). Again, GGA functionals in combination with Pople basis sets of
the –G family result in MUE between . and .Å, while HGGA functional result in
MUE below .Å. The MGGA functionals tested resulted in a minor improvement relative
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to GGA functionals, while the tested HMGGA functionals substantially reproduce the perfor-
mance of HGGA functionals. This indicates that the advantage of meta-functionals certainly is
not in bond distances.

To give an idea of the performance of some popular functionals, and also to show the effect
of the basis set, the dependence of the O–H bond length in water is reported in > Table -
as an exemplary case. The data indicate that reasonable accurate bond lengths (within .Å
from the experimental value) can be achieved with computationally cheap GGA functionals,
and that HGGA performs slightly better with modest basis sets. As a general trend, the HGGA
bond lengths are slightly shorter than the corresponding GGA value and, independent of the
computational approach; slightly shorter bond lengths are predictedwith basis sets of increasing
quality.

As final result, we remark that with the extended aug-cc-pVZ basis set the GGA values
slightly overestimate the experimental value, whereas the HGGA values slightly underesti-
mate it. Importantly, rather good results can be achieved also with relatively small basis sets,
which allow calculating geometries for fairly large systems with a reasonable accuracy.

The very good performance of almost any functional to calculate accurately bond lengths of
molecular systems composed by main group atoms is not replicated when bonds to transition
metals are considered. Focusing on an extensive benchmark of  functionals on a database
of  metal–ligand bond lengths, the MLBL/ database, all functionals provide rather good
results, with MUE normally between . and .Å when a basis set of triple-ζ quality is used
(Schultz et al. a). Extending the benchmark to a database containing the bond length of
eight metal-metal dimers, the TMBL/ databases, the situation deteriorates. GGA function-
als, including the popular BP, BLYP, and PBE functionals, still provide rather good results,
with MUE between . and .Å when a basis set of triple-ζ quality is used, while reduc-
ing the quality of the basis set to double-ζ deteriorates performances remarkably, with MUE
between . and .Å (Schultz et al. b). In the GGA family, the HTCH and OLYP func-
tionals, withMUEgreater than . Å, should be avoided.The rather good performance ofGGA
functionals is not replicated by HGGA functionals, including the popular BLYP and PBEPBE

⊡ Table -
Performance of selected functionals and basis sets in predicting the experimental value of theO–H
bond length of water, . Å

BP revPBE BLYP TPSS TPSSh M

-G . . . . . .

SVP . . . . . .

-G(d,p) . . . . . .

TZVP . . . . . .

cc-pVDZ . . . . . .

cc-pVTZ . . . . . .

cc-pVQZ . . . . . .

cc-pVZ . . . . . .

aug-cc-pVDZ . . . . . .

aug-cc-pVTZ . . . . . .

aug-cc-pVQZ . . . . . .

aug-cc-pVZ . . . . . .
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functionals, with MUE between . and .Å. In the HGGA family, the BH&HLYP and
MPWK functionals, with MUE greater than . Å, should be avoided. Interestingly, MGGA
functionals do not perform as or better than GGA functionals in predicting bond lengths,
but rather worse. Indeed, including also the popular BB and TPSS functionals, they result in
MUE greater than .Å. Introduction of HF exchange partially improves the performance of
MGGA functionals, and the tested HMGGA functionals, including the BB and the TPSSh
functionals, result in MUE between . and .Å (Schultz et al. a). Finally, the M
functional performs particularly poor, with a MUE of .Å (Zhao and Truhlar ).

To give an idea of the performance of some popular functionals in the calculation of the
M-ligand distances and of the effect of the metal on the bond distance of the ubiquitous CO
ligand, analysis of these distances in three typical binary carbonyl complexes involving first-row
transition metals is reported in > Table -.

Basically, all the functionals reproduce the experimentalM-COdistanceswell within . Å,
but many of the functionals tested underestimate the difference in the axial and equatorial Fe-
CO distances. In this respect, HGGA andHMGGA functionals seem to perform slightly better,
although there is quite a debate on the exact assignment of the Fe-CO distances in Fe(CO).
Similar good behavior is shown by all the functionals in the prediction of the CO distance when
bonded to a transition metal, although the GGA andMGGA functionals tested yield systemati-
cally longer CO distances. In this respect, HGGA andHMGGA functionals do perform slightly
better.

Bond Angles

The good performance of almost every functional to predict correctly bond lengths of molec-
ular systems composed by main group atoms is confirmed in the case of bond angles. Again, a

⊡ Table -
Performance of selected functionals, in combination with the TZVP basis set on all the atoms, in
predicting the experimental value of the M-C and C-O bond length (in Å) in three first-row M(CO)n
complexes

Ni(CO) Fe(CO) Cr(CO)
M–C C–O M–Ceq M–Cax C–Oeq C–Oax M–C C–O

Exp. . . . . . . . .

BP GGA . . . . . . . .

PW GGA . . . . . . . .

revPBE GGA . . . . . . . .

BLYP HGGA . . . . . . . .

PBEPBE HGGA . . . . . . . .

B HGGA . . . . . . . .

TPSS MGGA . . . . . . . .

mPWKCIS MGGA . . . . . . . .

BB MGGA . . . . . . . .

TPSSh HMGGA . . . . . . . .

M HMGGA . . . . . . . .
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benchmark study on  closed-shellmolecules composed by first row atoms, for which accurate
experimental geometries determined in the gas-phase was available, confirmed that the perfor-
mance of commonly used GGA (BLYP, BPW and BP) and HGGA (BLYP, BPW and
BP) functionals is quite accurate, with a MUE between .○ and .○ (Wang and Wilson
). Differently from bond lengths, GGA and HGGA methods perform rather similarly on
bond angles. Also for bond angles the convergence was tested with respect to increasing basis
set size from cc-pVDZ to aug-cc-pVZ, and was shown to occur quickly, and again convergence
is typically reached at the triple-ζ level. Similar conclusions were reached in a different bench-
mark study on a dataset of  small molecules (Riley et al. ). All the functionals considered
resulted in MUE between .○ and .○, independent of the functional used.

To give an idea of the performance of some popular GGA and HGGA functionals, and also
to show the effect of the basis set, the dependence of the H–O–H angle in water is reported
in > Table - as an exemplary case. Accurate bond angles (within .○ from the experimental
value) can be achieved with all functionals and moderate basis sets.

Vibrational Frequencies

Benchmarking various DFT methods to reproduce accurately vibrational frequencies of 
molecular systems composed by main group atoms revealed that GGA methods, with a MUE
of roughly  cm−, are among the most accurate functionals (Riley et al. ). Indeed, the
performance of several HGGAmethods was at least  cm− worse, with MUE between  and
 cm−, and meta-functionals are not an improvement. As for other geometrical properties,
accurate performance requires that a triple-ζ basis set be used. The GGA functionals also per-
formed better than HGGA functionals in the prediction of the vibrational frequency in nine
homonuclear d metal dimers, with a MUE around  cm− for BLYP and BP, and around
 cm− for BLYP and BP. Nevertheless, both families of functionals resulted in a rather
large deviation from accurate data (Barden et al. ).

⊡ Table -
Performance of selected functionals and basis sets in predicting the experimental value of the
H–O–H angle of water, .○

BP revPBE BLYP TPSS TPSSh M

-G . . . . . .

SVP . . . . . .

-G(d,p) . . . . . .

TZVP . . . . . .

cc-pVDZ . . . . . .

cc-pVTZ . . . . . .

cc-pVQZ . . . . . .

cc-pVZ . . . . . .

aug-cc-pVDZ . . . . . .

aug-cc-pVTZ . . . . . .

aug-cc-pVQZ . . . . . .

aug-cc-pVZ . . . . . .
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⊡ Table -
Performance of selected functionals, in combination with the TZVP basis set on all the atoms,
in predicting the symmetric frequency of the CO stretching mode in selected first-row transition
metal binary carbonyl complexes

Method Ni(CO) Fe(CO) Cr(CO) νNi − νCr
Exp. ,. %err ,. %err ,. %err .

BP GGA ,. . ,. . ,. . .

PW GGA ,. . ,. . ,. . .

revPBE GGA ,. . ,. . ,. . .

BLYP HGGA ,. . ,. . ,. . .

PBEPBE HGGA ,. . ,. . ,. . .

B HGGA ,. . ,. . ,. . .

TPSS MGGA ,. . ,. . ,. . .

mPWKCIS MGGA ,. . ,. . ,. . .

BB MGGA ,. . ,. . ,. . .

TPSSh HMGGA ,. . ,. . ,. . .

M HMGGA ,. . ,. . ,. . .

Next to each calculated frequency is reported the %error calculated as %err = *(νExp. /νDFT). The final column
reports the difference between the Ni(CO) and the Cr(CO) frequencies

The performance of various functionals in the prediction of the CO stretching frequency in
typical binary carbonyl complexes with first-row transitionmetals is exemplified in >Table -.
Simple GGA and also MGGA functionals perform better, and are able to capture the experi-
mental value with an accuracy of roughly – cm− , while Hartree–Fock exchange seems
to deteriorate results, since the HGGA and HMGGA functionals reproduce the experimental
value with an accuracy of roughly – cm− . In terms of percent, the GGA and MGGA
functionals overestimate the experimental values by –%, while the HGGA and HMGGA
functional by –%. While these results may seem quite accurate, almost all the function-
als considered are unable to differentiate too little between metals. In fact, the experimental
value decreases by . cm− on going from Ni(CO) to Cr(CO), but the functionals examined
are unable to capture this difference.The best performing are the B functional, with a differ-
ence of merely . cm−, and the HGGA and HMGGA with differences slightly smaller than
 cm−.

On the other hand, the simple BP GGA functional has also been tested in the predic-
tion of the CO stretching frequency in rather large organometallic complexes. For these large
and computationally demanding systems, which are displayed in > Fig. -, computationally
effective methods are needed.

The data reported in > Table - clearly show the very good performance of the BP func-
tional, which is able to reproduce the higher frequency symmetric CO stretching with an error
of roughly  cm− only, and the lower frequency asymmetric CO stretching with an error of
roughly  cm− . Further, despite the poor performances discussed above in the ability of GGA
functionals to differentiate between different binaryM(CO)n complexes, comparison of the sat-
uratedN-heterocyclic carbene complexes (SIPr and SIMes) with their unsaturated counterparts
(IPr and IMes) indicates that the DFT values reproduce the experimental finding that both CO
stretches are about  or  cm− smaller in the complexes with the unsaturated N-heterocyclic
carbene ligand (Kelly et al. ).
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⊡ Fig. -
Iridium complexes that bear N-heterocyclic carbene ligands

⊡ Table -
Experimental and DFT calculated CO stretching frequencies, in cm−, in several N-heterocyclic
carbene complexes

Method Experimental BP

(IAd)Ir(CO)Cl ,. ,. , ,

(ICy)Ir(CO)Cl ,. ,. , ,

(IPr)Ir(CO)Cl ,. ,. , ,

(SIPr)Ir(CO)Cl ,. ,. , ,

(IMes)Ir(CO)Cl ,. ,. , ,

(SIMes)Ir(CO)Cl ,. ,. , ,

Electron Affinities and Ionization Potentials

A benchmark study of  molecules from the G/ dataset, with the addition of PO, indi-
cated that, with some exceptions, DFT methods reproduce the electron affinity of molecular
systems composed by main group atoms with a MUE close to  kcal mol−. Some hybrid func-
tionals, such as the B functional, performs slightly better (MUE=. kcal mol−), whileGGA
functionals with the P correlation term usually perform rather poorly, with MUE around
 kcal mol− (Riley et al. ). Finally, meta-functionals are not an improvement. As for any
molecular system with a negative charge, the calculation of electron affinity requires that basis
set containing diffuse functions are used. Moving to ionization potentials, the performance of
the variousmethods on molecules from theG/ dataset, with the addition of PO, substan-
tially replicates that found for electron affinities, although theMUE, between  and  kcal mol−,
is slightly larger (Wang and Wilson ). The BB MHGGA functional provided the best
performance, with a MUE of . kcal mol−.

Moving to selected cases, see >Table -, the BPGGA functional seems quitemore accu-
rate than the HGGA BLYP functional in predicting the electron affinity of highly unsaturated
late transition metal M(CO)n complexes, but the HGGA functional seems to be more accurate
when the unsaturation at the metal is reduced (Zhou et al. ). These results exemplify the
difficulty to extract trends from benchmarks, if the specific case at hand has not been included
in the testing dataset.
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⊡ Table -
Calculated and experimental electron affinities, in kcalmol−, for neutral late transition-metal
M(CO)n complexes

System Experimental BP/-G(d) BLYP/-G(d)

Mn(CO) . . .

Fe(CO) . . .

Ni(CO) . . .

Fe(CO) . . –

Ni(CO) . . .

Ni(CO) . . .

Atomization Energies

Abenchmark study on  first-row closed-shellmolecules indicated that in the calculation of the
atomization energy with the Dunning correlation-consistent basis sets, the HGGA functionals,
with a MUE of roughly . kcal mol−, outperform GGA functionals, such as BLYP (MUE =
. kcal mol−), with BP performing particularly bad (MUE = . kcal mol−) (Wang and
Wilson ). In another benchmark study on the atomization energy of a dataset composed by
 main groups organic and inorganic molecules, calculated with the MGS basis set, HGGA
functionals were again confirmed to perform well, with MUE smaller than . kcal mol−, while
GGA functionals, such as the PBE, with a MUE of . kcal mol−, again performed poorly.
The peak performance of . kcal mol− was produced with the BB functional, while the
classic BLYP resulted in a MUE of . kcal mol−. Finally, HMGGA functionals were shown
to perform similarly to HGGA functionals (Zhao and Truhlar b). On the other hand, GGA
functionals perform well when the atomization energy of nine metal dimers in the TMAE/
database is calculated, with MUE in the range of – kcal mol−. HGGA functionals, instead,
resulted inMUE around – kcal mol−, with only the B-, B-, and B functionals with
MUE below  kcal mol− . MGGA and HMGGA functionals substantially replicate the results
obtained with non-meta-functionals, although the M and M functionals result in the very
low MUE of . and . kcal mol−, respectively (Zhao and Truhlar ). These results are
another indication that hybrid functionals usually perform better for molecules composed by
main group atoms, whereas GGA and MGGA functionals perform better for transition metal
chemistry.

Heats of Formation

The accurate calculation of this property, even for rather simple molecular systems composed
by main group atoms, still represents a challenge for several functionals. Indeed, the MUE on
the heat of formation in a benchmark study on  molecules from the G/ dataset, with the
addition of PO, span the rather broad range of – kcal mol−, even if basis set of rather
good quality, such as the -++G* basis set, are used. Functionals to be avoided are those
containing the P correlation term among the GGA, the BLYP and the B among the
MGGA, the PBEKCIS among the MGGA, and the BBK among the HMGGA. On the other
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side, good performances were obtained with the PBELYP, PWLYP, MPWPW and MPW-
PBEGGA functionals, the PBEPBE and BPW HGGA functionals, and finally the TPSS and
the TPSSKCIS MGGA functionals. With these functionals the MUE on the heats of formation
usually is below  kcal mol− (Riley et al. ). Augmented correlation-consistent Dunning-
type basis sets usually lead to slightly better performances. Nevertheless, recent results have cast
a shadow on the common procedure to test heats of formation on small molecules. Indeed, it
has been shown that almost all the functionals, including the popular BLYP functional, are
unable to predict correctly the heats of formation of n-alkanes (Curtiss et al. , ). Due
to the inability to describe properly long-range attractive dispersion interaction, practically all
functionals introduce a systematic error in the calculation of the isodesmic stabilization energy,
> Eq. .:

n−CH − (CH)m−CH +mCH → (m + )CH. (.)

This systematic error ranges between .kcal mol− for theHMGGAMPWBK functional and
. kcal mol− for the OLYP functional. The BP and PBE GGA functionals result in an error
of . and . kcal mol−, respectively, while theHGGA functional BLYP results in an error of
. kcal mol−. While these errors may seem to be not dramatic, they are per CH unit, so that
the errors are between  and  kcal mol− for a simple molecule such as n-decane (Wodrich
et al. ).

Energy Barriers

The performance of a series of functionals was tested to reproduce the barrier height for
a series of reactions. Starting from hydrogen transfer reactions, the forward and back-
ward barrier for the following three reactions OH● + CH → CH●

 + HO, OH● +
H●

→ O(P) + H, and H● + HS → HS● + H, which constitute the BH database
(Lynch and Truhlar ), GGA functionals systematically underestimate the barriers,
with a MUE between . and . kcal mol−. Better results were obtained with HGGA
functionals, with MUE around .–. kcal mol−. The mPWPW MGGA functional is not
a clear improvement, with a MUE of . kcal mol−, while HMGGA functionals such as the
mPWPW and the MPWK perform better, with MUE of . and . kcal mol−, respectively
(Zhao et al. ). Testing the functional on the larger BH/ database, consisting of 
transition state barrier heights of hydrogen transfer reactions in mostly open-shell systems
gave substantially similar results (Zhao and Truhlar ). The HGGA functionals under-
estimate barriers by a MUE of roughly  kcal mol−, while HMGGA functionals give better
results, with peak performances from the BBK, XBK, andMPWBK resulting inMUE around
.–. kcal mol−.

Moving to  transition state barrier heights for non-hydrogen transfer reactions consti-
tuting the NHTBH/ database, and comprising  barrier heights for heavy-atom transfer
reactions,  barrier heights for nucleophilic substitution reactions, and  barrier heights for
non-nucleophilic substitution unimolecular and association reactions, GGA functionals, such
as the PBE, still approximate barriers severely, with a MUE of . kcal mol−. HGGA func-
tionals, such as the BLYP and the PBEPBE functionals perform better, although the MUE,
around  kcal mol−, still is quite large (Zhao et al. ). MGGA functionals perform similarly
to the GGA functionals, while the performance of HMGGA is rather scattered. For example,
the TPSSh and the MPWKCIS functionals do not perform impressively, with MUE of . and
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. kcal mol− , respectively, while the MPWK and the BBK are very accurate, with MUE of
. and . kcal mol−, respectively (Zhao and Truhlar b). The breakdown of these cumu-
lative MUEs for selected functionals is reported in > Table -. Clearly, the most problematic
cases are the transfer reaction of both hydrogen and heavy atoms. With the exception of the
BBK, all the other functionals fail to a large and embarrassing extent. For the HTBH dataset
the M andM-XHMGGA functionals, with MUE of . and . kcal mol−, also perform
well (Zhao and Truhlar b). Barriers height of nucleophilic substitutions are predicted bet-
ter, although GGA functionals still result in a too large MUE. Finally, the barrier heights of
unimolecular and association reactions are predicted with reasonably accuracy by all function-
als. Again, the performance of the BBK functional is extremely good for the four classes of
reactions considered. Similarly good and well balanced performances are also obtained with
other HMGGA functionals such as the PWBK and the MPWBK functionals.

Similar extensive tests on another dataset, comprising the barrier height for  reactions
of small systems with a radical transition state, also highlighted the good performances of the
HMGGA BBK functional, with a MUE of . kcal mol−, in predicting energy barriers. How-
ever, when the same functionals were tested on a dataset of  barrier heights of larger systems
with a singlet transition state, the best performance was obtained with the simpleHGGA BLYP
functional, with a MUE of . kcal mol−, the performance of the BLYP functional, with a
MUE of . kcal mol−, was slightly worse, while all the HMGGA functionals tested, including
the BBK functional, resulted in MUE greater than  kcal mol− (Riley et al. ).

Bond Energies

Theperformance of several functionals to predict bond energies on a database of metal-ligand
bond energies, the MLBL/ database (Schultz et al. a) indicated that GGA functionals
predict metal-ligand bond energies with a MUE between  and  kcal mol−, with the BLYP,
PBE, and BP among the worst, and that performances can be quite better at the HGGA
level, with MUE normally in the – kcal mol− range. MGGA and HMGGA functionals do
not offer an improvement, as exemplified by the MUE of the TPSS and TPSSh functionals, .
and . kcal mol−, respectively, and by the recently developed M functional, with a MUE of
. kcal mol− (Zhao and Truhlar ).

⊡ Table -
Selected mean errors for HTBH and NHTBH databases

Hydrogen Heavy atom Nucleophilic Unimolecular

Method transfer transfer substitution and association

PBE GGA . . . .

BLYP GGA . . . .

BLYP HGGA . . . .

PBEPBE HGGA . . . .

TPSS MGGA . . . .

TPSSKCIS MGGA . . . .

TPSSh HMGGA . . . .

BBK HMGGA . . . .
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Taking again some selected binary carbonyl complexes of first-row transition metals as
examples, the performance of various functionals in the prediction of the first bond disso-
ciation energy is reported in > Table -. The first clean result is that the binding energy
is strongly affected by the basis set quality, and a triple-ζ basis set yields binding energies
that are roughly – kcal mol− lower. Focusing on the TZVP results, the GGA functionals
examined consistently overestimate the CO binding energy in the three complexes by roughly
– kcal mol−. The PBEPBE HGGA functional performs like the GGA functionals exam-
ined, whereas the BLYP, and particularly the B functional, are among the best performing
functionals. Meta-functionals only offer a marginal improvement.

Hydrogen Bonding

Benchmarking various DFT methods to reproduce the H-bond interaction energy of ten sys-
tems composed bymain group atoms revealed thatHGGA functionals generally perform better
than GGA functionals, with MUE around . kcal mol−, and the BLYP functional among
the best. GGA functionals, instead, result in MUE between . and . kcal mol−, with the
BLYP, MPWPW, and MPWPBE among the best performing (Riley et al. ). MGGA and
HMGGA functionals perform close to the BLYP functional. In all cases, the quality of the basis
sets had a strong impact on the quality of the results, and at least a -G(d,p) basis set should be
used. Further testswere performed on a database consisting of the binding energies of six hydro-
gen bonding dimers, the HB/ database (Zhao and Truhlar a). Also these tests indicated
that the performance of GGA functionals is generally not very impressive, with MUE normally
between . and  kcal mol−, with the exception of the very well performing PBE functional,

⊡ Table -
First metal-carbonyl dissociation energy, in kcalmol−, for selected first-row transition metal
systems

Ni(CO) Fe(CO) Cr(CO)
Exp. .± a .± b .± b

Method SVP TZVP SVP TZVP SVP TZVP

BP GGA . . . . . .

PW GGA . . . . . .

revPBE GGA . . . . . .

BLYP HGGA . . . . . .

PBEPBE HGGA . . . . . .

B HGGA . . . . . .

TPSS MGGA . . . . . .

mPWKCIS MGGA . . . . . .

BB MGGA . . . . . .

TPSSh HMGGA . . . . . .

M HMGGA . . . . . .

DFT values, calculated with the TZVP basis set on the metal, and the SVP or TZVP basis sets on CO
aStevens et al. ()
bLewis et al. ()
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with aMUE of . kcal mol− only. On the average HGGA perform better, with MUE between
. and . kcal mol−, with the PBEPBE functional, with aMUE of . kcal mol−, among the
best, while the BLYP functional, with a MUE of . kcal mol−, does not perform impres-
sively. Meta GGA andHGGA functionals are not a great improvement.These results have been
achieved with the rather large aug-cc-pVTZ basis set, using the -+G(d,p) basis set leads to
slightly lower performances.

Extensive tests of the performance of the BLYP and PW functionals in the case of H-
bonded nucleic acid–base pairs indicated that the PW GGA functional replicates with better
accuracy theMP/aug-cc-pVQZ values than the BLYPHGGA functional (Sponer et al. ).
The BLYP calculations underestimate the interaction energies by few kcal mol− with relative
error of . kcal mol−. Representative values for Watson–Crick (G-C, A-T) purine-pyrimidine
(G-U) and pyrimidine-pyrimidine (U-U) pairs are presented in > Table -.

Weak Interactions

For a long time one of the well known failures of DFT was in the description of long-range
dispersion forces, which are the glue that keeps together van der Waals complexes and are
at the basis of the well known π–π stacking interactions. Members of the former family are
the rare-gas dimers, that almost invariably are predicted to be unbound (or bound by effect of
the basis set superposition error) by many GGA and HGGA functionals. Indeed, an extensive
benchmark on the WI/ datasets, composed by four rare-gas dimers (HeNe, NeNe, HeAr,
and NeAr indicated that the BLYP functional simply does not predict a energy well for three
out of the four dimers if the basis set superposition error is corrected by the counterpoise pro-
cedure, and that even including the basis set superposition error the interaction energy are
underestimated by . kcal mol−, and equilibrium distances are overestimated by more than
 Å. On the other hand, HMGGA functionals were shown to reproduce with good accuracy
both the interaction energy and the equilibrium distance of these dimers, with MUE on the
counterpoise corrected binding energies below . kcal mol− by several functionals, such as
the XB and the MPWBK, and with MUE on the equilibrium distances as low as .Å,
which is a remarkable result for weakly interacting systems (Zhao and Truhlar ).

Enlarging the dataset to include also organic molecules, such as the CH−Ne, and the
(CH) and (CH) dimers, indicated that standard GGA functionals systematically under-
estimate the interaction energy by a MUE of roughly .–. kcal mol−, with the exception of
the PBE functional, with a MUE of . kcal mol−. MGGA functionals do not perform much
better, while a small improvement is shown by HGGA functionals, with the best results from

⊡ Table -
H-bond interaction energy, in kcalmol−, of selected nucleic acid base pairs

Base pair MP/aug-cc-pVQZ BLYP/-G(d,p) PW/-G(d,p)

G:CWatson Crick −. −. −.

A:T Watson Crick −. −. −.

G:U Wobble −. −. −.

U:U Calcutta −. −. −.
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B- with a MUE of . kcal mol−. HMGGA functionals do not offer better performances,
although the largest MUE is reduced to . kcal mol− (Zhao and Truhlar a). Finally, bet-
ter performances were shown by theM-X andM-X functionals, with aMUEof only .
and . kcal mol− , respectively, when applied to a dataset formed by the four rare-gas dimers
above, CH−Ne, CH−Ne, and the (CH) dimer. Surprisingly, on this reduced dataset the
well performing B- functional was not tested (Zhao and Truhlar a).

Moving to π–π stacking interactions, the performance of a series of functionals was
tested on the PPS/ database, which consists of binding energies of  π–π stacking com-
plexes, namely, (CH), (CH), and sandwich, T-shaped and parallel-displaced (CH)
(Zhao and Truhlar b). Basically, all the functionals tested underestimated the bind-
ing energies in the PPS/ database, with MUE in the range of .–. kcal mol−. This
is not a minor failure, since the average binding energy in the PPS/ dataset amounts
to . kcal mol− only. The PBE GGA functional, with a MUE of . kcal mol−, performs
better than the BLYP HGGA functional, which results in a MUE of . kcal mol− . The
best performances, slightly above  kcal mol−, are obtained with the PWBK, PWB, and
MPWBK. A clear improvement is obtained with the M-X functional, with a MUE of
. kcal mol− only. Reducing the amount of Hartree–Fock exchange deteriorates somewhat
performances, as evidenced by the MUE of . kcal mol− yielded by the M functional
(Zhao and Truhlar ).

Focusing on π–π stacking interactions between nucleic acid bases, which are fundamen-
tal to describe properly the base-base stacking in nucleic acids, the popular BLYP is simply
unable to find a minimum corresponding to the A⋯T as well as the G⋯C base pairs in a
stacked geometry. Of the six functionals tested, only theMPWBK and the PWBK functionals
resulted in stable stacked base pairs, with an underestimation of the stacking energy of roughly
– kcal mol− (Zhao and Truhlar c).

As a final remark, we note that a very simple cure to the failure of standard density func-
tionals to predict dispersion interactions is to include an empirical C⋅R- dispersion term.One
of these functionals – B-D – performs remarkably well for non-covalently bound systems
including many pure van der Waals complexes (Grimme ).

Spin States

The problem of a reliable prediction of the relative ordering of different spin states in tran-
sition metal complexes remains a tough challenge for DFT – not only for a quantitative
judgment (energy separation between the different spin states) but also for a qualitative assess-
ment (correct prediction of the spin ground state). There is general consensus that GGA
functionals overestimate the stability of low-spin states, whereas the inclusion of Hartree–
Fock exchange in the HGGA functionals results in an overestimation of the stability of
high-spin states (Ghosh ; Swart ). This led to the development of the BLYP*
functional, in which the amount of the Hartree–Fock exchange is reduced from % of
the original BLYP functional, to % (Reiher et al. ). Furthermore, it has been sug-
gested that results obtained with Slater-type basis sets converge rapidly with the basis set
size, while this convergence in case of Gaussian-type basis sets is much slower, and demand-
ing basis sets like Dunning’s correlation consistent basis are needed to achieve good results
(Güell et al. ).
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⊡ Table -
Singlet-quintet splitting, Esinglet − Equintet in kcalmol−, for selected Fe complexes (Swart )

Fe(HO)+ Fe(NH)+ Fe(bpy)+


MAD

CASPT . . −.

BP . . −. .

RPBE . . −. .

BLYP . . . .

PBEPBE . . . .

OPBE . . −. .

MADmean absolute deviation

Besides the above general comment, benchmark tests of the different functionals in this case
is often hampered by the problem of accurate reference data, and by the problem that function-
als that seem to behave properly for a metal or system simply fail if the system changes (Ghosh
). Focusing on Fe complexes, a benchmark study versus CASPT values, see > Table -,
indicated that the OPBE functional performs definitely better than commonly used GGA and
HGGA functionals. In a similar study, the performance of some DFT functionals to describe
CASPT results for a series of five Fe complexes indicated that the OLYP functional performed
remarkably well in these cases, whereas the success of theHGGA PBEPBE, BLYP, and BLYP*
functionals varied from case to case (Pierloot and Vancoillie ). Finally, another benchmark
study, in which various properties of Fe, Fe− , and FeO+, as obtained from a series of GGA,
HGGA, MGGA, and HMGGA functionals, were calculated, indicated that no single functional
was found to yield a satisfactory description of all characteristics for all states of these species
(Sorkin et al. ). These results clearly indicate that the spin-state problem still is an open
challenge for DFT.

Excited States

Testing the performance of several functionals in the TD-DFT prediction of  valence and
Ry excitation energies in N, O, HCOOH, and tetracene indicated that valence excitations
are easier to predict than Rydberg excitation. Indeed, valence excitations were predicted by 
functionals with a MUE of . eV, while Rydberg excitations were predicted with a MUE of
. eV. Focusing on valence excitations HMGGA functionals such as TPSSh, B, and B- are
the best performers, with MUE as small as . eV. Nevertheless, GGA andHGGA functionals,
with a MUE of . and . eV for the PBE and BLYP functionals, respectively, also perform
reasonably well. Differently, for the accurate prediction of Rydberg excitations a high amount
of Hartree–Fock exchange, as in the M-X and M-HF functionals, with MUE lower than
. eV, is beneficial. With the exception of the also well-performing BMK functional, almost
all the other functionals tested results in MUE greater than . eV, with the PBE and BLYP
functionals resulting in a MUE of . and . eV, respectively. When Rydberg and valence
excitations are combined into a single database, the best average performance is of the M-X
and BMK functionals, with a MUE around . eV (Zhao and Truhlar ).

With regards to charge-transfer excitations, the performance of  functionals was tested in
the prediction of three charge-transfer excitation energies in tetracene and in the NH⋅⋅F and
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CH ⋅⋅CF complexes. The averageMUE over the  functionals examined, . eV, is depres-
sive. The only working functional is M-HF, with a MUE of . eV. However, the inclusion
of Hartree–Fock exchange is not the only reason for this surprisingly good performance, since
simple HF and the HFLYP functional result in MUE around  eV. With the exception of the
M-X and M-X, with a MUE around . eV, all the other functionals tested resulted in a
MUE greater than  eV (Zhao and Truhlar ). As a final note, it would be interesting to test
the performance of the M-HF on a larger database.

Moving to more complex organic molecules, the π → π∗ transitions of more than  dyes
from the major classes of chromophores have been investigated using a TD-DFT with the PBE,
PBEPBE and long-range corrected hybrid functionals. The PBEPBE and CAMBLYP were
shown to outperform all other approaches, with the latter functional especially adequate to
treat molecules with delocalized excited states. The PBEPBE functional resulted in a MUE
of  nm (. eV) with no deviation exceeding  nm (. eV), thus delivering reasonable
estimates of the color of most organic dyes of practical or industrial interest. Long-range
functionals allowed a better description of the low-lying excited-state energies than HGGA
functionals, and linearly corrected long-range approaches yield an average error of  nm
(Jacquemin et al. ).

An extended test of the performance of  functionals in the calculation of the elec-
tronic absorption spectra of Cu and Zn complexes by TD-DFTmethods indicated that HGGA
functionals outperform GGA functionals. In case of the spin-unrestricted calculations on the
CuII(thiosemicarbazonato) complex the functional best performing in the reproduction of the
experimental spectra and geometry was the BLYP, while the BLYP functional was ranked .
This order was not replicated in case of the spin-restricted ZnII(thiosemicarbazonato) complex,
where the best functional was PBEPBE, with the BLYP ranked . In both cases HGGA func-
tionals did not offer an improvement. In almost all the cases the calculations underestimated
the experimental excitation energies (Holland and Green ). Nevertheless, it maybe worth
noting that the OPBE and the OBLYP functionals, which were shown to perform well in other
cases, were not considered.

Orbitals in DFT

Since chemists long have used and continue to use orbitals as natural language to explain and
rationalize the complex reality of molecules that define the realms of inorganic and organic
chemistry, we conclude with a few remarks on orbitals obtained from density functional
calculations.

Originally, chemists have built their understanding of orbitals on constructs that resulted
from WFT-analyzes, and such an orbital is usually referred to as molecular orbital (MO). One
important aspect of an MO-analysis is the investigation of orbital-overlap. A simplified wave
function theory that emphasizes this particular feature of orbital-interaction, the Extended
Hückel-Theory (EHT), has revolutionized the general perception of molecular structure and
reaction mechanisms.

Since the Kohn–Sham orbitals, introduced and used in DFT, serve a different purpose than
creating a reasonable single determinantal wave function Ψ, chemists were seeking answers
to the question “what do the Kohn–Sham orbitals and eigenvalues mean?” as DFT moved
into the spotlight of electronic structure theory. A simple answer was based on a comparison
of orbitals of small molecules (HO, N, PdCl− ) obtained from WFT (Hartree–Fock, EHT)
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and DFT calculations: The shape and symmetry properties of the KS orbitals are very simi-
lar to those calculated by HF and EHT methods. The energy order of the occupied orbitals
is in most cases in agreement between WFT and DFT methods. Overall, the KS orbitals are
a good basis for qualitative interpretation of molecular orbitals (Stowasser and Hoffmann
). This simple conception of the meaning and use of KS orbitals by now has gained gen-
eral acceptance, and chemists often use KS orbitals in ways that are familiar to them from
MO-analysis.

Bareends and Gritsenko () have provided an answer to the same question based on
fundamental concepts of density functional theory. Among other aspects, the authors identify
the following two important characteristics of KS orbitals:

. The highest occupiedKohn–Sham orbital energy is equal to the exact first ionization energy.
This is a property that is very desirable in qualitative MO theory in general and is often
simply assumed in such theories.

. The lowest unoccupied Kohn–Sham orbital energy and all other virtual orbital energies are
solutions in exactly the same potential as the occupied orbitals.They are therefore not shifted
toward higher energies in the same way as Hartree–Fock virtual orbitals are – HF orbital
energy differences are not estimates of excitation energies. Further, it has been observed
empirically for a long time that KS-orbital energy differences are good approximations to
excitation energies, and the KS-orbital energy differences play a role as a first approxima-
tion to the excitation energy in the treatment of excitation energies using time-dependent
DFT.

The authors, therefore, recommend KS orbitals and one-electron energies as tools in the
traditional qualitative MO-considerations on which much of the rationalizations of contem-
porary chemistry are based. The Kohn–Sham one-electron model and KS orbitals provide
an ideal MO theoretical context to apply concepts such as “charge control” and “orbital con-
trol.” KS-orbitals usually follow the expected behavior, in terms of bonding and antibonding
character in terms of geometrical distortions, and in terms of interaction with other atoms or
molecules.

About  years later, Cramer and Truhlar () presented a more conservative view
of the use of KS-orbitals. One should be careful not to stretch the interpretation of KS-
orbitals beyond its limits, since KS-orbitals correspond to a fictitious non-interacting system
with the same electron density as the correct many-body function. Since the density com-
puted from KS-orbitals is an approximation to the exact density, properties that depend
on individual orbitals, with the exception of the energy of the highest occupied orbitals,
should be interpreted with care. Nonetheless, many studies published in the literature do
employ DFT molecular orbitals to interpret the electronic origins of chemical bonding and
reactivity.

The quality of the KS orbitals depends to a large part on the ability of a chosen density func-
tional to correctly represent the ground state density of a givenmolecule. Inmost cases, different
density functionals produce qualitatively identical orbitals, which also agree withWFTorbitals.
For molecules that might posses a spin-polarized ground state density, different methods of
electronic structure calculation not only produce quantitatively different results, but also lead
to qualitatively contrastive conclusions. One such case is illustrated in > Fig. -. We leave it to
the reader to decide whether or not chemically meaningful information can be extracted from
the orbital picture as displayed in > Fig. -.
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⊡ Fig. -
Energies and shapes of the two highest occupied (red-blue) and the two lowest unoccupied
(yellow-green) KS-orbitals (contour envelope: . a.u.) of Fe(SCH) extracted from an unpo-
larized ground state density according to GGA and HGGA DFT calculations. The molecule was
constructed according toDh symmetrywith a Fe-S bond length of  pm. Also shown for the sake
of comparison are orbitals obtained from an extended Hückel calculation

DFTips

The advertent reader has noticed the many technical recommendations that we have given
within the discussion of the  selected scenarios for properties of atoms and molecules. Here,
we will close our instruction manual with a few pieces of general advice.

BLYP Is No Synonym for DFT

Some researchers hold the opinion that given the fact that the BLYP functional has been
identified as the most successful DFT method in an overwhelming number of systematic
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investigations in verymany areas of chemical research, there is no persuasivemotivation to rec-
ommend its replacement by one of the other functionals. Wedo not agreewith such a judgment.
Although the BLYP functional is largely responsible for DFT becoming one of the most pop-
ular tools in computational chemistry, it does have unsatisfactory performance issues, notably
the unreliable results obtained for transition metal chemistry (Zhao and Truhlar ). One
should become aware of the capabilities and shortcomings of particular density functionals. It
might well be that BLYP is the proper approach to many chemical problems, but choosing
a functional for its previous success while ignoring its potential failures cannot be the right
strategy to approach DFT calculations.

Choose Your DFTMethod Carefully

We agree with Burke’s interpretation of “The Good, The Bad & The Ugly” (Burke ): It is
good to choose one functional of each kind and stick with it. It is bad to run several func-
tionals, and pick the “best” answer. And it is ugly to design your own functional with ,
parameters.

In view of the many functionals available, it is likely that one will find a functional
that fits one’s own particular problems. In view of possibilities offered by computational
programs that make it fairly easy to create new sets of parameterized hybrid function-
als, it is almost certain that for each chemical problem, the right functional can be
designed.

Following such an approach, density functional calculations lose their generality andmean-
ing. One should aim for consistencywithin one’s calculations, rather than for the best agreement
with experiment. If one chooses a particular functional for its characteristics and capabilities,
the results of DFT calculations gain a predictive quality.

Read the Fine Print

During the early days of HGGA development, it became clear that BLYP is not BLYP
(Hertwig and Koch ). Different programs based their implementation of the BLYP func-
tional on differentmodels of the underlying LDA, and produced slightly different results for the
same chemical problem.The same considerations apply to the gradient corrections for correla-
tion; P requires a different choice of LDA than LYP. Some computer programs automatically
make the right choice, while other programs rely on correct input instructions given by
the user.

Familiarize yourselfwith the default values and basic implementations of your favoriteDFT-
code.Default values are chosenwithmuch consideration, andmost of the time are just adequate.
However, for subtle problems you might find it necessary, for example, to change the accuracy
of the numerical integration routines.

DFT Does Not Hold the Universal Answer to All Chemical Problems

You can expect that not all of your DFT calculations will produce satisfying results. An
increasing number of problem molecules are currently identified for which standard density
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functionals fail to produce satisfactory results. Seemingly simple stereoelectronic effects in
alkane isomers provided a serious challenge for many standard functionals, such as BLYP,
BLYP, or PBE (Grimme ). However, such failures are not bad news for DFT, but rather
good news. The origin of the dissatisfying DFT performance has been carefully analyzed,
and led to the design of improved functionals (Zhao et al. ). Be honest with your DFT-
results and accept apparent failures – it might be just another small step climbing Jacob’s
ladder.

Make DFT an Integral Part of YourWork

Although in some areas of chemical research DFT is at the verge of becoming a standard
research tool, necessary for the complete characterization of newmolecules, not every chemical
problem warrants a full-fledged DFT investigation. However, if you structure your compu-
tational approach beginning with an elaboration of qualitative aspects before addressing a
problem in a quantitative way, a few quick DFT calculations might provide you with valuable
insights how to further pursue your line of work.

Follow Your Interests

As final advice we will leave you with the words of Nobel Prize laureate Harold Kroto:
Do something which interests you or which you enjoy, and do it to the absolute best
of your ability. If it interests you, however mundane it might seem on the surface, still
explore it because something unexpected often turns up just when you least expect it
Kroto ().

We hope that our work could satisfy some old interests as well as perk some new interests.
We wish that our short instruction manual serves as a valuable guide for the perplexed and
provides some food for thought for the enlightened, be it in agreement or in disagreement. If
you follow your interests, keep an open mind, and maintain a broad perspective, good things
will happen.

A Concise Guide to the Literature

The literature on DFT is large, and rich in excellent reviews and overviews. At the same time,
while thousands of papers on DFT have been published, most of them will become out of date
in the future, as the picture and perception of DFT, chemistry and science in general is in a state
of constant flux. It was necessary to make a conscious selection that of course is not unbiased –
some references represent the most recent developments in DFT, while others have been part
of our DFT folder for a long time.

The reader will find references to books, review articles, and articles that illustrate
developments and applications of DFT. In addition, we included a few references to the
worldwide web.
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  Introduction to Response Theory

Abstract: This chapter provides a concise introduction to quantum chemical response the-
ory as implemented in a number of widely used electronic structure software packages. While
avoiding technical derivations of response functions, the fundamental idea of response theory,
namely, the calculation of field-induced molecular properties through changes in expectation
values, is explained in a manner equally valid for approximate wave function and density func-
tional theories. Contrasting response theory to textbook treatments of perturbation theory, key
computational concepts such as iterative solution of response equations, and the identification
and calculation of electronic excitation energies are elucidated.The wealth of information that
can be extracted from approximate linear, quadratic, and higher-order response functions is
discussed on the basis of the corresponding exact response functions. Static response functions
and their identification and numerical calculation as energy derivatives are discussed separately.
Practical issues related to the lack of gauge and origin invariance in approximate calculations are
discussed without going into too much theoretical detail regarding the sources of these prob-
lems. Finally, the effects of nuclear motion (molecular vibrations, in particular) and how to
include them in computational studies are treated in some detail.

Introduction

The ultimate vision of computational chemistry is to provide a virtual laboratory for chemical
explorations. The goal is not to replace but rather complement the real lab. In the virtual lab, it
is easy to change “experimental” conditions and to experiment with hypothetical what-if sce-
narios. Virtual synthesis of chemical compounds can be done with a fewmouse-clicks, whereas
the virtual measurement of physical and chemical properties is the often burdensome task of
a computational engine based on the laws of classical and/or quantum physics. Most research
efforts, therefore, are aimed at improving the algorithms and approximations implemented in
the computational engines. The main role of quantum chemical response theory, which is the
subject of this chapter, is the virtual measurement of optical properties of molecules.

The scope of this chapter is to provide a rudimentary understanding of response theory as
implemented in a number of molecular electronic structure packages based on wave function
models or density functional theory. Only the general structure of response theory and its com-
puter implementation are discussed, leaving out the often complicated details of advancedwave
function and density functional models. For these details the reader is referred to the literature
mentioned in the last section and references therein. Although the discussion of this chapter is
restricted to nonrelativistic theory, it is the same line of reasoning that is applied in relativistic
response theory. In conjunction with the chapter on applications of response theory, the reader
should become sufficiently familiar with the concepts and practices of response theory to allow
educated use of quantum chemistry software packages.

As the name indicates, response theory describes the response of a molecular system to
external potentials such as electromagnetic fields.The meaning of external depends on the def-
inition of the molecular system. For example, the magnetic field due to nuclear spins would
typically be considered an external potential. The fundamental assumption is that the external
potentials are weak compared to the internal potentials of the molecule. That is, the exter-
nal potentials can be regarded as perturbations of the isolated molecule. This assumption can
be justified by noting that the electric field strength in the hydrogen atom is on the order of
 Vm− , which is well above the external field strengths applied in almost all experimental
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setups. Experimental observations are then rationalized by means of response functions, which
may be expressed entirely in terms of states and energies of the unperturbed (isolated)molecule.
Response functions are thus characteristic properties of a molecule. The objective of quantum
chemical response theory is the computation of response functions from first principles.

Response functions quantify the field-induced change in a given observable such as the
electric dipole moment. It is therefore necessary to know the state of the molecule before the
field is applied. This unperturbed state is normally taken to be the molecular ground state,
which is usually assumed to be non-degenerate. Calculation of the molecular ground state is,
however, a daunting task and approximations are invoked in practice. We will use the clamped-
nucleus Born–Oppenheimer approximation to separate the electronic degrees of freedom from
the nuclear ones. Focusing on the response of the electronic ground state, the coupling between
the nuclei and the external field is neglected. This is justified for field frequencies much larger
than vibrational and rotational frequencies.

The electronic ground state ∣⟩ is computed as an approximate solution to the time-
independent Schrödinger equation, that is,

H∣⟩ ≈ E∣⟩ (.)

where H is the electronic Hamiltonian (see below) and E is the ground state energy in the
absence of external fields. The approximate solution (energy and wave function or density)
can be obtained using standard methods such as density functional theory (DFT), Hartree–
Fock (HF) theory, multiconfigurational self-consistent field (MCSCF) theory, configuration
interaction (CI), or coupled cluster (CC) theory. For fixed nuclear positions (clamped-nucleus
approximation), the electronic Hamiltonian is given by

H =


me
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Here, Ne is the number of electrons, Nn is the number of nuclei, me is the mass of the elec-
tron, e is the elementary charge, є is the vacuum permittivity, rs and ps are the position and
momentum operators of electron s, and RK and ZK are the position and atomic number of
nucleus K . Starting from the Schrödinger equation (> Eq. .), relativistic effects as described
by the Breit–PauliHamiltonian canbe treated as perturbations on an equal footingwith external
fields. Effects of nuclear motion (vibrations and rotations) can be estimated once the electronic
response functions have been calculated.

Response functions are functions of the frequencies of the external fields, and although
response theory is based on time-dependent perturbation theory, it is more appropriate to
describe response theory as frequency-dependent rather than time-dependent. Nevertheless,
response theory for approximate quantum chemical models is sometimes referred to as time-
dependent, for example, time-dependent DFT (TDDFT) and time-dependent HF (TDHF)
theory. Related by Fourier transformation, the time and frequency domains are two sides of
the same coin. In practice, however, response functions are computed for a limited number of
perturbation frequencies without any explicit reference to the time evolution of the quantum
state.
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Response Theory

Approximate wave function and density functional theories provide information about the
electronic structure of molecules in their electronic ground state. The information includes
the electronic charge density, total energy, electric multipole moments (dipole, quadrupole,
octupole, etc.), forces on the nuclei, and vibrational frequencies, which is sufficient to model
a wide range of chemical phenomena. For example, equilibrium structures and transition states
can be calculated from the forces, and vibrational frequencies are not only useful for the inter-
pretation of vibrational spectra but also enable the calculation of thermochemical data from
first principles. These theories are sufficient to model experimental conditions where only the
electronic ground state is significantly populated.

When a molecule is subjected to external fields, however, quantum mechanics tells us that
the electronic ground state responds by becoming a superposition of many electronic states.
Response theory takes this wave function change into account and thus facilitates calcula-
tions of molecular properties beyond the reach of the ground state theory. Computation of the
ground state response allows extraction of information about transitions from the ground state
to excited states induced by one or more photons and even allows us to calculate properties of
the excited states without explicitly computing the excited state wave functions.

Response theory describes the change in observable quantities such as electric andmagnetic
multipole moments due to external fields.The starting point of response theory therefore is the
time evolution of the expectation value ⟨A⟩ of anHermitian operatorA representing the observ-
able quantity (e.g., the electric or magnetic dipole moment). In order to monitor the change in
an observable quantity, we need to know the state of the molecule before the external field is
switched on. As mentioned above, the electronic ground state ∣⟩ is the proper choice under
most experimental conditions. With this initial condition, the time evolution can be written as
the perturbation expansion

⟨A⟩ = ⟨∣A∣⟩

+

∫

∞

−∞

⟨⟨A;V(ω)⟩⟩ω exp (−iωt)dω

+


 ∫

∞

−∞

∫

∞

−∞

⟨⟨A;V(ω),V(ω′

)⟩⟩ω,ω′ exp (−i (ω + ω′

) t)dωdω′

+⋯ (.)

where the operator V(ω) describes the interaction between the electrons and the external
field of frequency ω. It should be noted that the perturbation expansion cannot generally be
guaranteed to converge. Moreover, the perturbation expansion does not make sense when the
external potential is comparable to or larger than the internal potential of the molecule. In most
cases of practical interest, including the interaction of molecular electrons with laser fields, the
perturbation expansion may be used.

Frequency-dependent response functions can only be computed within approximate
electronic structure models that allow definition of the time-dependent expectation value.
Hence, frequency-dependent response functions are not defined for approximatemethods that
provide an energy but no wave function. Such methods include Møller–Plesset (MP) pertur-
bation theory, multiconfigurational second-order perturbation theory (CASPT), and coupled
cluster singles and doubles with non-iterative perturbative triples [CCSD(T)]. As we shall see
later, it is possible to derive static response functions for such methods.
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Common methods that do allow calculation of frequency-dependent response functions
include DFT, HF, MCSCF, and members of the CC hierarchy of wave functions (CCSD(T) is
not a member of this hierarchy, as it does not provide a wave function). In these models, the
wave function (or density in the case of DFT) is written in terms of time-dependent param-
eters which are determined from the time-dependent Schrödinger equation with the initial
condition that the approximate ground state wave function (or density) is recovered in the limit
t → −∞, that is, before the external fields are switched on.The zeroth-order parameters are thus
determined in the same way as in the ground state model, and response theory calculations are
naturally performed on top of a standard ground state calculation. First-, second-, and higher-
order parameters are determined from response equations that take into account the coupling
with the external field in a manner consistent with the time-dependent Schrödinger equation.
The response equations have the general matrix form (the detailed form of these matrices and
vectors depend on the approximate theory used)

[H − ωS] λ(n)(ω) = −V

(n)
(ω) (.)

where λ(n)(ω), the unknown quantity in this equation, is a vector containing the nth-order
(n > ) wave function parameters in a suitable order. While the matricesH and S only depend
on the unperturbed ground state wave function, the vector on the right-hand side addition-
ally depends on the lower-order wave function parameters λ(), λ(), λ(),⋯, λ(n−) as well as
on one or more perturbation operators V(ω). This implies that the solution of the first-order
equations must be known before the second-order equations can be solved, and so on.The fre-
quency ω represents the sum of the frequencies corresponding to the perturbations included in
the vector on the right-hand side of > Eq. ..

Solving the response equations (> Eq. .) is formally simple, namely,

λ(n)(ω) = − [H − ωS]

−
V

(n)
(ω) (.)

where we assume that the matrix [H − ωS] is non-singular. Those frequencies ω for which
the matrix is singular have a special significance, as will be discussed below. Since the matrices
H and S only depend on the ground state wave function or density, they may in principle be
computed once and for all. For each frequency and right-hand side vector we may then cal-
culate the inverse [H − ωS]

− followed by a simple matrix-vector multiplication to obtain the
response parameters according to > Eq. .. Unfortunately, this simple solution strategy is too
computationally demanding to be useful in practice. The large number of matrix elements in
H and S makes it expensive to compute the matrices and to compute the inverse which, in
addition, needs to be done for each frequency ω.The number of matrix elements is given by the
square of the number of ground state wave function parameters. For DFT or HF, for example,
the number of ground state parameters is given by OV whereO andV are the number of occu-
pied and virtual (Kohn–Sham or HF) orbitals, respectively. For the more complicated coupled
cluster singles and doubles (CCSD) wave function, the number of ground state wave function
parameters is roughly OV 

/. To get an impression of the orders of magnitude, consider a
simple benzene molecule with the aug-cc-pVDZ basis set. In this case, there are approximately
, DFT or HF ground state parameters and over six million CCSD parameters. The num-
ber of elements in theH and S matrices would therefore be approximately  million for DFT
and HF, and  ×  for CCSD. For two benzene molecules, these numbers would increase to
approximately million matrix elements for DFT andHF, and  for CCSD. Just storing the
matrices in computer memory would quickly pose an insurmountable problem, and a different
solution strategy is needed.
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Rather than straightforward application of > Eq. ., the response equations (> Eq. .)
are solved in an iterative procedure in which thematrices and vectors are projected onto a small
subspace. In this procedure, an initial guess (a trial vector) is generated according to > Eq. .
by neglecting all off-diagonal elements of H and S such that the inverse matrix [H − ωS]

−

is readily computed. The iterations proceed by refining the trial vector until the norm of the
residual vector

R = (H − ωS) λ(n) + V

(n) (.)

falls below a specified tolerance. Although quantum chemistry software packages provide rea-
sonable default values for the tolerance, it may occasionally be necessary to lower the value to
obtain sufficient accuracy in the computed response functions.

From the perturbative corrections to the wave function parameters we obtain perturbative
corrections to the expectation value of the operator A, that is,

⟨A⟩ = ⟨A⟩() + ⟨A⟩() + ⟨A⟩() +⋯ (.)

We may then identify response functions for each of the approximate electronic structure
models by comparing with > Eq. .:

⟨A⟩() = ⟨∣A∣⟩ (.)

⟨A⟩() =
∫

∞

−∞

⟨⟨A;V(ω)⟩⟩ω exp (−iωt)dω (.)

⟨A⟩() =

 ∫

∞

−∞

∫

∞

−∞

⟨⟨A;V(ω),V(ω′

)⟩⟩ω,ω′ exp (−i (ω + ω′

) t)dωdω′ (.)

⋮

Response theory deviates in one crucial aspect from the formulation of time-dependent
perturbation theory in most textbooks on quantum mechanics: the response parameters λ(n)

are not explicitly expressed in terms of the excited states. As a consequence, knowledge of
the excited state wave functions is not needed in response theory. Instead, we must solve the
response equations (> Eq. .) for each set of perturbation operators V(ω). This is a tremen-
dous computational advantage as there are significantly fewer perturbation operators, and
hence response equations to solve, than excited states in virtually all cases of practical interest.

In order to illuminate the wealth of information that can be extracted from response func-
tions for approximate wave functions, it is instructive to study the details of the exact response
functions expressed in terms of electronic excited states.

The Linear Response Function

The linear response function describing the first-order induced electric dipole moment due to
an oscillating and spatially uniform electric field is related to the frequency-dependent electric
dipole polarizability as

αi j(−ω;ω) = −⟨⟨μi ; μ j⟩⟩ω (.)

The ith Cartesian component of the electronic electric dipole operator is given by

μi = −e
∑

s
rsi (.)
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where the sum is over all electrons in themolecule.This identification is obtained by substituting
A → μi and V(ω) → −μ ⋅ F(ω) in > Eq. .. The uniform electric field amplitude vector at
frequency ω is here represented by F(ω). In an approximate calculation, the electric dipole
polarizability is thus obtained by computing (minus) the linear response function from first-
order wave function parameters determined by > Eq. . with the three Cartesian components
of the electric dipole operator as perturbation operators. Note that the response equations must
be solved for each frequency.

More information can be extracted from the linear response function, however.This is most
easily seen by studying the exact linear response function. Unlike the approximate theories, the
exact linear response function is expressed in terms of the ground and excited states satisfying
the time-independent Schrödinger equation

H∣k⟩ = Ek ∣k⟩ (.)

where k ≥  and H is the molecular electronic Hamiltonian in the clamped-nucleus Born–
Oppenheimer approximation, > Eq. .. The exact linear response function is given by

⟨⟨A; B⟩⟩ω =


ħ ∑

k≠
(

⟨∣A∣k⟩⟨k∣B∣⟩
ω − ωk

−

⟨∣B∣k⟩⟨k∣A∣⟩
ω + ωk

) (.)

where ħωk = Ek − E is the excitation energy for the transition from the ground state to the
kth excited state. This formulation of the linear response function is often referred to as the
sum-over-states expression or spectral resolution.

The exact linear response function is singular at the molecular excitation energies, that is, it
has poles at ω = ±ωk. This is exploited in approximate theories to identify excitation energies
as those frequencies for which the approximate linear response function is singular. In princi-
ple, the search for excitation energies could be done by scanning over frequencies in a manner
analogous to measurements of absorption spectra. In practice, however, it is straightforward
to identify the poles of the approximate linear response function as the frequencies for which
the response equations (> Eq. .) are singular. As discussed above, this occurs at frequencies
where the matrix H − ωS cannot be inverted. This, in turn, occurs when ω equals one of the
eigenvalues wn of the generalized eigenvalue problem

(H − wnS)Vn =  (.)

where Vn is the eigenvector corresponding to the eigenvalue wn. The generalized eigenvalue
problem does not depend on the perturbation, and it can therefore be solved to directly obtain
the excitation energies, identifying ωk = wk, k = , , ,⋯, without explicit calculation of nei-
ther the excited state wave functions nor their energies. The eigenvectors Vn are the closest
we get to an explicit wave function representation of the excited states in response theory. In
practice, therefore, analysis of these eigenvectors is used to extract the (approximate) orbital
nature of an excitation, for example, as a π − π∗ orbital transition. Since we know the ground
state energy E from the prerequisite unperturbed calculation, the excited state energy may be
deduced from the excitation energy as

Ek = E + ħωk (.)

Solving the eigenvalue problem, > Eq. ., does not necessarily yield all excited states.
With a spin-adapted wave function, only excited states with the proper spin symmetry would
be produced. For example, only spin-singlet excited states can be found with a spin-singlet
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wave function parameterization. Triplet states require a suitable spin-triplet adaptation of the
wave function response. In unrestricted theories, the ground and excited states need not be spin
eigenfunctions and the labeling of states as spin-singlet, spin-triplet, etc., is not well defined.

It is important to realize, however, that the number of eigenvalueswn equals the number of
excited stateswithin a given approximate theory. Calculation of all eigenvalues is very computa-
tionally demanding.The number of excited states in an approximate theory equals the number
of ground state wave function parameters, which grows quickly with the size of the molecule, as
discussed above. One would most often be interested in just a few, typically on the order of ,
of the lowest excitation energies. Iterative techniques have been devised that allow the solution
of > Eq. . for a given number of eigenvalues and eigenvectors in ascending order. In order to
calculate the excitation energy ωk, it is therefore necessary to compute all excitation energies
below this one as well, that is, ω,ω,ω,⋯,ωk−,. The iterative solution of the generalized
eigenvalue problem (> Eq. .) is carried out by refining trial vectors and eigenvalues until the
norm of the residuals

Rn = (H − wnS)Vn (.)

falls below a given tolerance.
Another important piece of information can be extracted from the pole structure of the

linear response function. The residue of the linear response function at an excitation energy
provides the one-photon transition strength:

⟨∣A∣k⟩⟨k∣B∣⟩ = lim
ω→ωk

ħ(ω − ωk)⟨⟨A; B⟩⟩ω (.)

This observation allows us to identify transition moments between the ground state and the kth
excited state, ⟨∣A∣k⟩, in approximate theories by computing the residue of the linear response
function at the kth excitation energy. Again, this is achieved without explicitly computing the
excited state wave function. In practice, the transition moment is expressed in terms of the
kth eigenvector of > Eq. . and the matrix representation of the operator A in the molecular
orbital (or spin orbital) basis. It is therefore possible, in principle, to compute the linear response
function for an approximate wave function using the sum-over-states expressionwith excitation
energies calculated according to > Eq. . and transition moments from > Eq. .. If all
excitation energies and residues are included, the result is identical to the response function
computed from the response equations (> Eq. .). From a computational point of view, of
course, this approach is not advisable unless the combined number of perturbation operators
and frequencies is larger than the number of excited states.This is practically never the case.

Within approximate wave function or density functional theories, it thus becomes possible
to calculate one-photon absorption intensities such as the electric dipole oscillator strength of
a transition from the ground state to the kth excited state from the following residue of the
frequency-dependent electric dipole polarizability:

fk =
me

eħ
ωk⟨∣μ∣k⟩ ⋅ ⟨k∣μ∣⟩

= −

me

eħ
ωk ∑

i
lim

ω→ωk
ħ(ω − ωk)αii(−ω;ω) (.)

where me is the mass of the electron.

 Although techniques exist which solve an eigenvalue equation around a specific energy, these techniques are
not used for quantum chemical calculations of excitation energies, as the energy range is rarely known in
advance.



Introduction to Response Theory  

In approximate theories, the iterative solution of the response equations (> Eq. .)
becomes difficult and may even fail to converge when the frequency is too close to one of
the excitation energies. As a consequence, linear response functions should only be calcu-
lated in transparent spectral regions. In absorptive spectral regions (“close” to an excitation
energy), so-called anomalous dispersion is observed experimentally. Anomalous dispersion can
be understood theoretically by taking into account the finite lifetime of the excited electronic
states, leading to damped response theory. The exact damped linear response function is given
by:

⟨⟨A; B⟩⟩ω =


ħ ∑

k≠
(

⟨∣A∣k⟩⟨k∣B∣⟩
ω − ωk + iΓk/

−

⟨∣B∣k⟩⟨k∣A∣⟩
ω + ωk − iΓk/

) (.)

The broadening Γk is proportional to the probability of the excited state ∣k⟩ decaying into any of
the other states, and it is related to the lifetime of the excited state as τk = /Γk . For Γk = , the
lifetime is infinite and > Eq. . is recovered from > Eq. .. Unfortunately, it is not possible
to account for the finite lifetime of each individual excited state in approximate theories based
on the response equations (> Eq. .).We would be forced to use a sum-over-states expression,
which is computationally intractable. Moreover, the lifetimes cannot be adequately determined
within a semiclassical radiation theory as employed here and a fully quantized description of
the electromagnetic field is required. In addition, all decaymechanisms would have to be taken
into account, for example, radiative decay, thermal excitations, and collision-induced transi-
tions. Damped response theory for approximate electronic wave functions is therefore based
on two simplifying assumptions: () all broadening parameters are assumed to be identical,
Γ = Γ = ⋯ = Γ, and () the value of Γ is treated as an empirical parameter. With a single
empirical broadening parameter, the response equations take the same form as in > Eq. .
with the substitution ω → ω+ iΓ/, and the damped linear response function can be calculated
from first-order wave function parameters, which are now inherently complex. For absorption
spectra, this leads to a Lorentzian line-shape function which is identical for all transitions.

> Figure - shows the damped linear response function calculated from the real part of
> Eq. . with different values of the broadening. Only a section of the frequency spectrum
around the lowest excitation energy is shown.With infinite lifetime (Γ = ), the linear response
function goes to ±∞ as the frequency approaches the excitation.This is avoided when the finite
lifetime (Γ > ) is taken into account. In the absorptive region, the behavior of the damped
linear response function depends strongly on the value of the broadening. Since the broadening
parameter can be chosen freely, the results obtained in this region must be treated with great
care: changing the value of the broadening could give a very different result. Sufficiently far
from the excitation energy, on the other hand, the effect of the broadening is small and can be
neglected. In the transparent region, we may therefore safely use the undamped linear response
function.

A long list of molecular electromagnetic properties can be obtained by inserting suitable
operators in the linear response function. The electric dipole polarizability is an important
example. To further illustrate the procedure of obtaining molecular properties from linear
response functions, we now consider the induced electric dipole moment due to higher-order
multipole components of the electromagnetic field. The induced electric dipole moment due
to a time-dependent uniform magnetic field is, to first order in the field, given by the electric
dipole – magnetic dipole polarizability

G′

i j(−ω;ω) = −Im⟨⟨μi ;mj⟩⟩ω (.)
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The damped linear response function computed from the real part of > Eq. .with the indicated
values of the broadening Γ (corresponding to , , , ,, and , cm−). Electric dipole
transitionmoments and excitation energies were obtained using CCSD for the hydrogenmolecule
with the aug-cc-pVDZ basis set

where the jth Cartesian component of the magnetic dipole operator is defined as

mj = −

e
me

∑

s
Ls
j (.)

with the angular momentum operator of electron s given by Ls = rs × ps . This identification
is obtained from > Eq. . by substituting A → μi and V(ω) → −m ⋅ B(ω), where B(ω) is
the magnetic field amplitude at frequency ω. Using multipole expansions of the electric and
magnetic fields, the Maxwell equations show that a time-dependent uniform magnetic field is
always accompanied by a quadrupolar electric field, and the contribution to the induced dipole
moment from the electric dipole – electric quadrupole polarizability

ai , jk(−ω;ω) = −⟨⟨μi ; q jk⟩⟩ω (.)

is of the same order of magnitude as G′. Here, q jk = −e
∑s r

s
j r
s
k is the j, k component of the

Cartesian electric quadrupole moment operator.The electric dipole –magnetic dipole and elec-
tric dipole – electric quadrupole polarizabilities govern the optical rotation of chiral molecules.
For samples of randomly orientedmolecules, the contribution from the electric dipole – electric
quadrupole polarizability averages to zero, and only the trace (the sumof the diagonal elements)
of the electric dipole – magnetic dipole polarizability contributes to the optical rotation. The
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frequency-dependence of the linear response functions give rise to optical rotation dispersion.
The residues of the electric dipole – magnetic dipole polarizability are related to the rotatory
strength

Rk = Im [⟨∣μ∣k⟩ ⋅ ⟨k∣m∣⟩] = −
∑

i
lim

ω→ωk
ħ(ω − ωk)G

′

i i(−ω;ω) (.)

which determines the differential intensity of electronic circular dichroism spectra. If the
molecules are oriented, the rotatory strength is a tensor (since the intensity will depend on
the orientation of the molecule relative to the propagation direction of the photon) that
also includes contributions from the residues of the electric dipole – electric quadrupole
polarizability.

Finally, we note that the linear response function satisfies the permutation and conjugation
relations

⟨⟨A; B⟩⟩ω = ⟨⟨B;A⟩⟩
−ω (.)

⟨⟨A; B⟩⟩∗ω = ⟨⟨A†; B†⟩⟩
−ω (.)

where the asterisk denotes complex conjugation and A† is the adjoint of the operatorA (A† = A
for Hermitian operators, by definition). It follows from these relations that the electric dipole
polarizability is an even function of frequency, αi j(−ω;ω) = αi j(ω;−ω), and a symmetric ten-
sor, αi j(−ω;ω) = α ji(−ω;ω), which implies that only six of the nine Cartesian components of
the polarizability need to be computed.The permutation and conjugation relations are satisfied
by approximate linear response functions as well.

Quadratic and Higher-Order Response Functions

The quadratic response function describing the second-order induced electric dipole moment
due to a uniform time-dependent electric field is related to the frequency-dependent electric
dipole hyperpolarizability as

βi jk(−ω̄;ω,ω
′

) = −⟨⟨μi ; μ j , μk⟩⟩ω,ω′ (.)

where ω̄ = ω + ω′. With a procedure completely analogous to that of the linear response func-
tions, this identification is obtained by substituting A→ μi andV(ω) → −μ ⋅F(ω) in > Eq. ..
A variety of optical processes are governed by the electric hyperpolarizability depending on the
values of the frequencies, including SecondHarmonicGeneration through βi jk(−ω;ω,ω) and
Optical Rectification through βi jk(;ω,−ω). In an approximate calculation, the electric dipole
hyperpolarizability can be obtained by computing (minus) the quadratic response function
from first-order wave function parameters determined by > Eq. . with the three Cartesian
components of the electric dipole operator as perturbation operators at each set of frequencies
ω, ω′, and ω̄. In accordance with Wigner’s n +  rule, which states that the nth-order wave
function parameters determine the response functions up to order n + , second-order wave
function parameters are not needed. In this context, the order of the response function corre-
sponds to the number of operators it contains such that the ground state expectation value is of
order , the linear response function is of order , the quadratic response function is of order ,
and so on.The n+ rule is essential for efficient computer implementations of response theory.

To learn more about the information that can be extracted from the quadratic response
function in approximate calculations, we now study the exact one. Like the exact linear response
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function, the exact quadratic response function can be calculated from excitation energies and
transition matrix elements of the unperturbed molecule:

⟨⟨A; B,C⟩⟩ω,ω′ =

ħ

PBC ∑

k , l≠

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⟨∣A∣k⟩⟨k∣B̄∣l⟩⟨l ∣C∣⟩
(ω + ω′

− ωk)(ω′

− ωl)

+

⟨∣C∣k⟩⟨k∣B̄∣l⟩⟨l ∣A∣⟩
(ω + ω′

+ ωl)(ω′

+ ωk)

−

⟨∣B∣k⟩⟨k∣Ā∣l⟩⟨l ∣C∣⟩
(ω + ωk)(ω′

− ωl)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(.)

The bar signals that the operator has been shifted to a zero-point defined by its ground state
expectation value. For example,

B̄ = B − ⟨∣B∣⟩I (.)

where I is the identity operator. The operator PBC permutes the pairs (B,ω) and (C,ω′

):

PBC f (B,ω,C,ω
′

) = f (B,ω,C,ω′

) + f (C,ω′, B,ω) (.)

giving a total of six distinct terms in the quadratic response function. The quadratic response
function is singular at the molecular excitation energies, that is, when ω + ω′

= ±ωk or when
ω = ±ωk or when ω′

= ±ωk for some k > .These singularities can be avoided by taking into
account the finite lifetime of the excited molecular states, as discussed for the linear response
function in the previous section.

The quadratic response function, for exact as well as approximate states, satisfies the
permutation and conjugation relations

⟨⟨A; B,C⟩⟩ω,ω′ = ⟨⟨A;C, B⟩⟩ω′,ω
= ⟨⟨B;A,C⟩⟩

−ω−ω′ ,ω′ = ⟨⟨B;C,A⟩⟩ω′,−ω−ω′

= ⟨⟨C;A, B⟩⟩
−ω−ω′ ,ω = ⟨⟨C; B,A⟩⟩ω,−ω−ω′ (.)

⟨⟨A; B,C⟩⟩∗ω = ⟨⟨A†; B†,C†⟩⟩
−ω,−ω′ (.)

The assumption, known asKleinman symmetry, that the quadratic (and higher-order) response
function is symmetric under interchange of any pair of operators is only true at zero frequency,
as is easily verified from > Eq. .. Note that the quadratic response function is symmetric
when permuting the operators B and C at ω = ω′, which is the case for, for example, Sec-
ond Harmonic Generation: βi jk(−ω;ω,ω) = βik j(−ω;ω,ω). Kleinman symmetry is often
assumed in calculations of the electric dipole hyperpolarizability at low frequencies where it
is approximately valid. This reduces the number of independent tensor elements and thus the
computational effort.

Owing to the more complicated dependence on field frequencies, the residues of the
quadratic response function provide more information than those of the linear response
function. One of the most important residues of the quadratic response function is

lim
ω′→ωm

ħ(ω′

− ωm)⟨⟨A; B,C⟩⟩−ω,ω′

= −[


ħ ∑

k
(

⟨∣A∣k⟩⟨k∣B∣m⟩

ωk − (ωm − ω)
+

⟨∣B∣k⟩⟨k∣A∣m⟩

ωk − ω
)] ⟨m∣C∣⟩ (.)
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where the summation over k includes the ground state ∣⟩.The quantity in square brackets is an
element of the transition matrix for two-photon excitation from the ground state to the excited
statem. Another useful (double) residue is

lim
ω→−ωn

ħ(ω′

+ ωm) [ lim
ω′→ωm

ħ(ω′

− ωm)⟨⟨A; B,C⟩⟩−ω,ω′]

= δmn⟨∣A∣⟩⟨∣B∣n⟩⟨n∣C∣⟩− ⟨∣B∣n⟩⟨n∣A∣m⟩⟨m∣C∣⟩ (.)

From this expression it is possible to extract transition moments between excited states
[⟨n∣A∣m⟩]. With the specific choice n = m it thus becomes possible to compute excited state
properties such as dipole moments from the quadratic response of the ground state.

Higher-order response functions (cubic, quartic, quintic, etc.) can also bewritten in terms of
molecular excitation energies, and eigenstates.These functions possess singularities at the exci-
tation energies, and the associated residues (single, double, etc. residues) can be used to identify
a wide range of molecular properties. For example, residues of the cubic response function
provide two-photon transition strengths (the product of two-photon transition matrix ele-
ments) and three-photon transitionmatrix elements, while the three-photon transition strength
is obtained from the quintic response function. Linear response functions for the excited
states can be extracted from the cubic response function. By calculating ground state response
functions we may thus extract all molecular properties.

Static Response Functions

The interaction between a molecule and time-independent external fields is described by
frequency-independent perturbation operators. Time-independent fields are nonoscillating,
and interactions withmolecular electrons are therefore characterized by perturbation operators
at zero frequency. The limit ω →  is often referred to as the static limit and response functions
at zero frequency are called static response functions. Although static response functions can
be calculated in the same way as dynamic (frequency-dependent) ones, they are special in the
sense that they are related to changes in ground state energy. For example, the electronic ground
state energy of amolecule in the presence of a static uniform electric field,F, can be expanded as

E = E − ⟨∣μ∣⟩ ⋅ F − F ⋅ α(; ) ⋅ F +⋯ (.)

where E is the energy in the absence of the field. The expectation value of the dipole moment
operator thus determines the first-order energy due to the field, whereas the static polarizabil-
ity determines the second-order energy. Higher-order energy corrections are determined by
the static hyperpolarizability, second hyperpolarizability, etc. This explains why ground state
expectation values are often classified as first-order properties, linear response functions as
second-order properties, and so on.

The relation between static response functions and energy corrections implies that molec-
ular properties can be identified as derivatives of the total energy at zero field strength. For
example,

⟨∣μi ∣⟩ = −

∂E
∂Fi

(.)

αi j(; ) = −

∂E
∂Fi∂Fj

(.)
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where it is implicitly understood that the derivatives must be evaluated at zero field strength
(F = ). Hence, the calculation of static response functions does not require a wave function
and may therefore be computed with electronic structure theories that only provide the energy
(e.g., MP, CASPT, and CCSD(T)).

Even if a quantum chemical software package does not feature an implementation of a given
static response property, it is often possible to evaluate the property as an energy derivative by
finite difference. Most packages allow the addition of external static fields to the Hamiltonian,
making it possible to compute the energy at a specified field strength, E(F). From the definition
of the partial derivative, we may thus compute the dipole moment and polarizability from finite
difference formulas such as

∂E
∂Fi

≈

E(δi) − E(−δi)
δi

(.)

∂E
∂F

i
≈

E(δi) − E() + E(−δi)
δi

(.)

∂E
∂Fi ∂Fj

≈

E(δi , δ j) + E(−δi ,−δ j) − E(−δi , δ j) − E(δi ,−δ j)

δiδ j
(.)

where δi (δ j) is a small field strength along the ith ( jth) Cartesian direction. The error in these
numerical derivative formulas is quadratic in the field strength which should therefore be cho-
sen as small as possible. Choosing too small field strengths, however, may lead to numerical
instabilities when computing the difference between two large and almost identical numbers.
It is therefore advisable to conduct a convergence study with respect to the field strength when
computing numerical derivatives.

A number of static perturbations arise from internal interactions or fields, which are
neglected in the nonrelativistic Born–Oppenheimer electronic Hamiltonian. The relativistic
correction terms of the Breit–Pauli Hamiltonian are considered as perturbations in nonrela-
tivistic quantum chemistry, including Darwin corrections, the mass-velocity correction, and
spin–orbit and spin–spin interactions. Some properties, such as nuclear magnetic resonance
shielding tensors and shielding polarizabilities, are computed from perturbation operators that
involve both internal and external fields.

Gauge and Origin Invariance

As described above, molecular properties are identified as response functions by selecting the
observable quantity whose change is to be monitored and the external field(s) inducing the
change.The operator describing the coupling between the external field and the electrons is not
unique, however.The electric field F(r, t) can be written in terms of the vector potentialA(r, t)
and the scalar potential ϕ(r, t) as

F(r, t) = −

∂A(r, t)
∂t

−∇ϕ(r, t) (.)

while the magnetic field B(r, t) is given by

B(r, t) = ∇ ×A(r, t) (.)

Since the electric and magnetic fields are obtained by differentiation, adding a constant to
the vector and scalar potentials does not alter the physical electric and magnetic fields. More
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generally, adding the gradient of a continuous function ξ(r, t) to the vector potential, that is,
A → A+∇ξ, while subtracting the time-derivative of the same function from the scalar poten-
tial, that is, ϕ(r, t) → ϕ(r, t) − ∂ξ/∂t will not change the electric and magnetic fields. This
feature is known as gauge invariance and implies that there is a manifold of scalar and vector
potentials related by gauge transformations that describe the same physical field. This leads to
a manifold of different quantum mechanical operators describing the interaction between the
electrons and the field.The time-dependentSchrödinger equation is invariant under such gauge
transformations and the computed properties therefore also should be invariant. This is indeed
the case for exact response functions.

As an example, consider again the interaction between electrons and a uniform electric field.
In > section “The Linear Response Function,” the electric dipole polarizibality was identified
using the length gauge perturbation operator

V(ω) = −μ ⋅ F(ω) (.)

An equally valid choice would have been the velocity gauge perturbation operator

V(ω) = −

ie
ωme

p ⋅A(ω) (.)

whereA(ω) is the amplitude vector of the electromagnetic vector potential in the electric dipole
approximation, and p =

∑s p
s is the total electronic momentum operator. This operator leads

to the following expression for the electric dipole polarizability

αi j(−ω;ω) = −

ie
ωme

⟨⟨μi ; p j⟩⟩ω (.)

While > Eq. . is called the length gauge or dipole-length gauge expression, > Eq. . is
often called the mixed gauge form since it involves both the electric dipole operator and the
momentum operator. The length and mixed gauge polarizabilities are equivalent due to the
equation of motion

ħω⟨⟨A; B⟩⟩ω = ⟨⟨[A,H]; B⟩⟩ω + ⟨∣[A, B]∣⟩ (.)

which is satisfied by the exact linear response function, and due to the commutator relations

[μ j,H] = −

ieħ
me

p j (.)

[μi , μ j] =  (.)

Such relations (equation of motion and commutators) guarantee that exact linear response
functions are gauge invariant. In addition, transition moments deduced from residues of the
exact linear response function are also gauge invariant.

For approximate theories, however, different results are always obtained with different per-
turbation operators related by gauge transformations. The use of a finite basis set implies that
operators are represented as finite matrices and, consequently, the commutator relations no
longer hold. As the basis set quality is increased, the commutators converge to the exact val-
ues. Gauge invariance thus is recovered in the limit of a complete basis set, provided that the
equation of motion > Eq. ., is fulfilled. While this is the case in theories with fully vari-
ational orbitals such as DFT, HF, and MCSCF, it is not the case in approximate theories with
fixed (nonvariational) orbitals such as CI and CC.
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The exact quadratic and higher-order response functions satisfy similar equations of
motion, for example,

ħ(ω + ω′

)⟨⟨A; B,C⟩⟩ω,ω′ = ⟨⟨[A,H]; B,C⟩⟩ω,ω′

+ ⟨⟨[A, B];C⟩⟩ω′ + ⟨⟨[A,C]; B⟩⟩ω (.)

ensuring gauge invariance of higher-order molecular properties. In analogy to the case of the
linear response function, the higher-order equations of motion are satisfied in approximate
theories with variational determination of the orbitals such as DFT, HF, MCSCF, but not in
theories such as CI and CC.

It is therefore necessary to specify which gauge (typically, length or velocity) is used when
reporting computed response properties such as electric dipole (hyper-)polarizabilities and
transition moments. With reasonably flexible basis sets, each of the DFT, HF, and MCSCF
methods typically provide length and velocity gauge results that are quite close to each other,
whereasCC results occasionally show significant differences between length and velocity gauge.
For example, the specific optical rotation of (S,S)-norbornenone calculated at the CC singles
and doubles (CCSD) level is − deg dm− (g/ml)− with the length gauge and − deg dm−

(g/ml)− with the velocity gauge (corrected for an unphysical static limit, see below).The funda-
mental problem is that there is no general physical reason to trust one gauge formulation more
than another.

In some cases, however, there may be good reasons for favoring one gauge formulation over
others in approximate calculations. One such example is optical rotation which is governed by
the trace of the electric dipole –magnetic dipole polarizability, whose length gauge formulation
is given by > Eq. .. Within the clamped-nucleus Born–Oppenheimer approximation, every
electronic structure calculation is performed with fixed nuclear positions. The coordinate sys-
tem used to specify the nuclear positions can be chosen arbitrarily. In particular, the results of
the calculation should be independent of the choice of origin of the coordinate system.

Suppose that we translate the origin of the coordinate system along a vector O. As a con-
sequence, the positions of nuclei and electrons are shifted by the same vector, for example,
rs → rs −O, and the electric dipole – magnetic dipole polarizability changes according to

G′

(−ω;ω) → G′

(−ω;ω) +
e

me
Im [⟨⟨μ;p⟩⟩ω ×O] (.)

which shows that the tensor is origin-dependent. The culprit is the origin-dependence of the
magnetic dipole operator:

m → m −

e
me

p ×O (.)

This translation of the operator can also be achieved by a particular type of gauge transformation
of the magnetic vector potential, explaining why the term gauge-origin is often used for O in
the context of magnetic properties.

It can be shown that the trace of the tensor G′, and hence the computed optical rotation
of a sample of randomly oriented chiral molecules, is independent of the origin provided that
the linear response function satisfies > Eq. . and that the commutator of > Eq. . is
fulfilled. Consequently, approximate linear response calculations of the length gauge optical
rotation depend on the chosen coordinate origin. On the other hand, the trace of the velocity
gauge formulation of the electric dipole – magnetic dipole polarizability

G′

(−ω;ω) =
e

ωme
⟨⟨p;m⟩⟩ω (.)
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is unconditionally independent of the chosen origin, also in approximate theories. (Note that
> Eq. . is only valid for real wave functions.) It may thus be argued that the velocity gauge
formulation of optical rotation should be preferred over the length gauge expression. It must be
added, however, that the velocity gauge optical rotation calculated with an approximate theory
suffers from a serious artifact: it predicts a nonvanishing optical rotation at zero frequency (at
zero frequency, there is no light and the optical rotation must be zero). This can be traced back
to the lack of gauge invariance and is rectified by the modified velocity gauge where the static
limit simply is subtracted from the linear response function, that is, ⟨⟨pi ;mi⟩⟩ω is replaced by
⟨⟨pi ;mi⟩⟩ω − ⟨⟨pi ;mi⟩⟩.

Themost widely used technique for ensuring origin invariance ofmagnetic properties, how-
ever, is based on so-called Gauge Including Atomic Orbitals (GIAOs, also known as London
Atomic Orbitals [LAOs]). Belonging to the class of perturbation-dependent basis sets, GIAOs
are obtained from any conventional atomic orbital basis set by multiplying each basis function
with a complex phase factor that depends explicitly on an external uniform static magnetic
field. In a finite GIAO basis set, the magnetic dipole moment operator depends on the chosen
coordinate origin according to

m → m −

i
ħ

[μ,H] ×O (.)

which is identical to > Eq. . in the limit of a complete basis set where the commutator of
> Eq. . is fulfilled. For fully variational approximate theories (DFT, HF, MCSCF), GIAOs
thus remove the condition that the commutator must be fulfilled and the length gauge optical
rotation becomes manifestly independent of origin. For approximate theories lacking varia-
tional orbital optimization (CI, CC), GIAOs are unable to remove the origin dependence of
the length gauge optical rotation, since the equation of motion > Eq. ., is not satisfied. The
velocity gauge formulation with GIAOs is origin-dependent in all approximate theories and,
therefore, is never used.

The greatest strength of GIAOs lies in origin invariant calculation of molecular properties
involving static uniform magnetic fields, including static magnetic properties such as magneti-
zabilities and rotational g tensors, and nuclear magnetic shieldings as well as optical properties
aided by a static magnetic field such as magneto-optical activity. The use of GIAOs makes
it possible to calculate the total energy in the presence of a static uniform magnetic field in
an origin-independent manner for variational as well as nonvariational approximate theories,
implying that the molecular properties identified as energy derivatives are independent of ori-
gin as well. In addition, owing to their being atomic eigenfunctions of the angular momentum
operator correct to first order in the applied magnetic field, GIAOs provide vastly improved
basis set convergence of static magnetic properties.

Effects of NuclearMotion

Within the clamped-nucleus Born–Oppenheimer approximation, electronic response func-
tions are computed for fixed nuclear geometries. Just like the electronic ground state energy,
the excitation energies and response functions thus become parametric functions of nuclear
positions. For example, by solving the eigenvalue problem, > Eq. ., at a range of geometries,
it becomes possible to compute excited state potential energy surfaces using > Eq. . at each
point. This, in turn, allows us to optimize excited state geometries using either a simple scan of
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the excited state potential energy surface or analytic gradients derived from > Eq. .. Since the
ground state energy is required to compute the excited state energy in the response approach,
calculations of excited state potential energy surfaces should only be carried out for geometries
where the approximate wave function is valid. For single-referencemethods such asHF andCC,
one should only compute excitation energies (and thus excited state energies) for geometries not
too far from the ground state equilibrium structure. As a consequence, these single-reference
methods cannot be used to compute dissociative excited state surfaces, except at points close to
the ground state equilibrium geometry. Multiconfigurational methods are required to describe
such unbound excited states. For bound excited states, > Eq. . also provides a viable path to
excited state vibrational frequencies and wave functions. Along with those of the ground state,
it then becomes possible to calculate – transition energies rather than the vertical excitation
energies provided by the poles of the response functions. In addition, the vibrational structure
of electronic bands becomes amenable to theoretical computations.

Electronic ground state response functions are most often calculated at the (ground state)
equilibrium geometry. The geometry optimization and response function evaluation may be
performed at different levels of theory and using different basis sets. For example, it may be
sufficient to optimize the geometry of a covalently bonded molecule at the DFT level of theory
with a relatively small polarized basis set, while the response functions are evaluated at the CC
level of theory (at the DFT equilibrium geometry) with a large polarized basis set augmented
with diffuse functions to ensure the correct pole structure of the response functions. In other
cases, it may be advantageous to use different DFT functionals and basis sets for the geometry
optimization and property calculation.

If high accuracy is required, vibrational effects must be taken into account. In a proper
adiabatic Born–Oppenheimer treatment, the ground state wave function would be written
as a product of an electronic and a vibrational wave function. The response of this wave
function should then be computed and subsequently used to construct vibronic response func-
tions. The sum-over-states expressions would include contributions from vibrational states
in the electronic ground and excited states. Since each set of vibrational wave functions is
tied to a specific electronic state within the adiabatic Born–Oppenheimer approximation, this
approach is not feasible in practice. Hence, the electronic properties are considered as electronic
ground state properties and therefore, averaged in a vibrational state of the electronic ground
state.

Computing the expectation value of the electronic property P(q), whichmay be a response
function or a sum of response functions depending parametrically on the dimensionless nor-
mal coordinates q, in the vibrational state ∣v⟩ of the electronic ground state, the vibrational
correction becomes

ΔP = ⟨v∣P(q)∣v⟩ − P (.)

where P is the value of the electronic property at the equilibrium geometry. The analytic form
of the dependence of P on normal coordinates normally is not known. Even if it were known, it
would be too computationally demanding to evaluate the property on a grid of normal coordi-
nates to fit the values to the analytic form. Instead, the property is expanded in a Taylor series.
This implies that derivatives of the property with respect to the normal coordinates must be
evaluated at the expansion point of the Taylor series. The property derivatives can themselves
be expressed in terms of response functions (by considering the nuclear displacement terms
of the Hamiltonian as perturbations), or they may be computed by numerical techniques anal-
ogous to the static properties of > section “Static Response Functions.” The vibrational wave
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functions may be computed in the same manner as in the ground state theory. That is, they are
computed on the basis of the harmonic approximation and often include anharmonic effects
to first order in perturbation theory. In another approach, the vibrational problem is viewed
as so-called mode dynamics and solved in manner resembling electronic structure theory. This
approach also makes it possible to compute the vibrational expectation value directly and only
requires that an electronic structure program is available for computing energies and properties
at specified nuclear geometries.

The relatively small difference between vibrational energy levels implies that a range of
vibrational states are occupied at finite temperature. Including anharmonic effects to first order,
the temperature-dependent vibrational correction can be expressed as:

ΔP = −


ħ ∑

n


ωn

∂P
∂qn

∑

m
knmm coth (

ħωm

kBT
)

+


 ∑

n

∂P
∂qn

coth (
ħωn

kBT
) (.)

where the property derivatives are to be evaluated at the equilibrium geometry, ωn is the
harmonic vibrational frequency of normal mode n, kB is the Boltzmann constant, T is the
temperature, and the cubic (anharmonic) force constants are given by

knmm =

∂E

∂qn∂qm
(.)

which is also evaluated at the equilibrium geometry (E is the electronic ground state energy
surface, E = E(q)). The first term in > Eq. . accounts for the anharmonicity of the poten-
tial energy surface, whereas the second term is purely harmonic and arises from the curvature
of the property surface. If anharmonic effects are neglected, only the second term is included.
Anharmonic effects can be as large as the harmonic contribution and should generally be
included, in particular when the molecule contains low-frequency vibrational modes (such
as torsional motions). Most quantum chemistry programs are able to compute the harmonic
vibrational frequencies and normal coordinates, and some also provide cubic force constants (if
not, these can be computed numerically). The property derivatives are most often computed by
numerical differentiation. At zero temperature, only the vibrational ground state is populated
and the zero-point vibrational correction (ZPVC) is obtained from > Eq. . by taking the
limit T →  where the hyperbolic cotangent factors approach . Once the property and energy
derivatives have been calculated, the temperature-dependence of the vibrationally averaged
property can be easily computed, including the ZPVC.

Conformationally flexible molecules are characterized bymultiple low-lying minima on the
potential energy surface, each minimum defining a conformer of the molecule. All conformers
contribute to the experimentally observed property and must be taken into account in theo-
retical calculations. In the simplest approach, provided that the barriers separating the minima
are sufficiently large, the vibrationally corrected property can be computed along the lines dis-
cussed above for each conformer (letting the conformer structure play the role of equilibrium
geometry in each case). The total (observed) property is then obtained as a Boltzmann average
of the results for each conformer:

P̄ =

conformers
∑

i
⟨P⟩i Xi (.)
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Here, ⟨P⟩i and Xi are the vibrationally corrected property and mole fraction of conformer i,
respectively. Note that the same formula can be applied to compute the average of the purely
electronic contribution to the property (i.e., not vibrationally corrected). The mole fraction is
computed according to

Xi =
exp (−Gi/kBT)

∑

conformers
j exp (−Gj/kBT)

(.)

where Gi is Gibbs free energy of conformer i, which, assuming the ideal gas approximation, is
given by

Gi = E,i + є,i + RT − TSi (.)

where R is the universal gas constant. The electronic ground state energy of conformer i is
denoted E,i and є,i is the zero-point vibrational energy of conformer i in the harmonic oscil-
lator approximation. The entropy is computed from the electronic, vibrational, and rotational
partition functions,

Si = −kBT ln (Zel,i Zvib,i Zrot,i) (.)
Zel,i =  (.)

Zvib,i = ∑

n
gvibn,i exp (−єn,i/kBT) (.)

Zrot,i = ∑

m
grotm,i exp (−εm,i/kBT) (.)

The electronic partition function is unity, as only the electronic ground state is assumed pop-
ulated. The vibrational energies of conformer i, єn,i , are computed in the harmonic oscillator
approximation, which facilitates analytic summation over all vibrational levels. The rotational
energy of conformer i, εm,i , is calculated within the rigid rotor approximation.The factors gvibn,i

and grotm,i are the degeneracies of the vibrational and rotational energy levels, respectively. Hence,
the data needed to evaluate the Boltzmann average can be obtained from ground state cal-
culations (electronic ground state energy at the equilibrium structure, harmonic vibrational
energies, and rotational constants).

The simple Boltzmann averaging relies on a range of approximations that tend to benefit
from fortuitous cancellation of errors. In particular, the assumption that the conformers can
be treated as independent with no couplings between their vibrational states is fragile, as bar-
riers are often insufficient to warrant the assumption. A more correct description would be
obtained by solving the vibrational problem for the entire ground state potential energy sur-
face instead of using a first-order anharmonic approximation in the vicinity of the minima.
Calculation of the entire potential energy surface is, however, out of the question for all but
the smallest systems. One way out might be to compute the nuclear motion using molecular
dynamics and parametrized force fields, sampling the electronic property along the trajectory.
Also this approach, however, may easily turn out to be too demanding in terms of the number
of electronic structure calculations required.
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Further Reading

This section contains a short description of suggested references for further study of the con-
cepts and techniques described above.The list of references is highly incomplete and should be
considered as a mere starting point.

The time-independent perturbation operators describing internal molecular interactions
are taken from the Breit–Pauli Hamiltonian, which includes relativistic corrections to the
molecular electronic Hamiltonian of > Eq. .. The Breit–Pauli Hamiltonian is discussed in
more detail in the text books by Bethe and Salpeter () and by Moss (). Appro-
priate operators for the interaction between charged particles and external electromagnetic
fields are discussed in the paper by Fiutak (). The text book by Craig and Thiruna-
machandran () contains derivations of a long range of optical properties in terms of
exact molecular states, while Barron’s book (Barron ) is highly recommended for its thor-
ough discussion of optical activity phenomena. The expressions derived in these books may
be translated into response functions amenable to calculation by means of approximate wave
functions.

Olsen and Jørgensen (, ) have derived and discussed response functions for
exact, HF, and MCSCF wave functions in great detail, while Koch and Jørgensen ()
presented a derivation for CC wave functions. The latter was modified by Pedersen and
Koch () to ensure proper symmetry of the response functions. Christiansen et al. ()
have presented a derivation of dynamic response functions for variational as well as non-
variational wave functions that resembles the way in which static response functions are
deduced from energy derivatives. Linear and higher order response functions based on DFT
have been presented by Sałek et al. (). Damped response theory has been discussed
by Norman et al. () in the context of HF and MCSCF response theory. Nonpertur-
bative calculations of static magnetic properties at the HF level have been presented by
Tellgren et al. (, ).

Gauge invariance of HF andMCSCF response theory has been shown in terms of the equa-
tions of motion for the response functions by Olsen and Jørgensen (, ), whereas the
lack of gauge invariance in CC response theory was demonstrated by Pedersen et al. (Pedersen
and Koch ; Pedersen et al. ). The use of GIAOs to ensure origin invariance of static
magnetic properties has been discussed by Helgaker et al. (Helgaker and Jørgensen ; Olsen
et al. ) and for optical rotations by Bak et al. ().

Different approaches to the calculation of vibrational corrections to response properties can
be found in the work of Sauer and Pack (), Ruud et al. (), and Kongsted and Chris-
tiansen (). The Boltzmann averaging procedure for conformationally flexible molecule
has been critically reviewed by Crawford and Allen (). Mort and Autschbach () have
proposed an approach based on a decoupling of hindered rotations from the remaining (high-
frequency) vibrational modes, which allows for a separate calculation of the hindered rotations
without invoking the harmonic approximation.
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Trygve Helgaker for commenting on the manuscript.



  Introduction to Response Theory

References

Bak, K. L., Hansen, A. E., Ruud, K., Helgaker, T.,
& Olsen, J. (). Ab initio calculation of elec-
tronic circular dichroism for trans – cyclooctene
using London atomic orbitals. Theoretica Chim-
ica Acta, , –.

Barron, L. D. (). Molecular light scattering and
optical activity. Cambridge, MA: Cambridge
University Press.

Bethe, H. A., & Salpeter, E. E. (). Quantum
mechanics of one- and two-electron atoms. New
York: Academic Press.

Christiansen, O., Jørgensen, P., & Hättig, C. ().
Response functions from Fourier component
variational perturbation theory applied to a
time-averaged quasienergy. International Jour-
nal of Quantum Chemistry, , –.

Craig, D. P., & Thirunamachandran, T. (). Molec-
ular quantum electrodynamics. London: Aca-
demic Press.

Crawford, T. D., & Allen, W. D. (). Optical
activity in conformationally flexible molecules: a
theoretical study of large-amplitude vibrational
averaging in (R)--chloro--butene. Molecular
Physics, , –.

Fiutak, J. (). The multipole expansion in quan-
tum theory. Canadian Journal of Physics, , –
.

Helgaker, T., & Jørgensen, P. (). An electronic
Hamiltonian for origin independent calcula-
tions of magnetic properties. Journal of Chemical
Physics, , –.

Koch, H., & Jørgensen, P. (). Coupled cluster
response functions. Journal of Chemical Physics,
, –.

Kongsted, J., & Christiansen, O. (). Automatic
generation of force fields and property surfaces
for use in variational vibrational calculations
of anharmonic vibrational energies and zero-
point vibrational averaged properties. Journal of
Chemical Physics, , .

Mort, B. C., & Autschbach, J. (). A pragmatic
approach for the treatment of Hindered rotations
in the vibrational averaging of molecular prop-
erties. European Journal of Chemical Physics and
Physical Chemistry, , –.

Moss, R. E. (). Advanced molecular quantum
mechanics. London: Chapman and Hall.

Norman, P., Bishop, D. M., Jensen, H. J. A., & Odder-
shede, J. (). Near-resonant absorption in the

time-dependent self-consistent field and multi-
configurational self-consistent field approxima-
tions. Journal of Chemical Physics, , –
.

Olsen, J., Bak, K. L., Ruud, K., Helgaker, T., &
Jørgensen, P. (). Orbital connections for
perturbation-dependent basis sets. Theoretica
Chimica Acta, , –.

Olsen, J., & Jørgensen, P. (). Linear and nonlin-
ear response functions for an exact state and for
an MCSCF state. Journal of Chemical Physics, ,
–.

Olsen, J., & Jørgensen, P. (). Time-dependent
response theory with applications to self-
consistent field and multiconfigurational
self-consistent field wave functions. In D. R.
Yarkony (Ed.), Modern electronic structure
theory (Vol. , pp. –). Singapore/River
Edge: World Scientific.

Pedersen, T. B., & Koch, H. (). Coupled cluster
response functions revisited. Journal of Chemical
Physics, , –.

Pedersen, T. B., Fernández, B., & Koch, H. ().
Gauge invariant coupled cluster response theory
using optimized nonorthogonal orbitals. Journal
of Chemical Physics, , –.

Ruud, K., Astrand, P.-O., & Taylor, P. R. ().
An efficient approach for calculating vibra-
tional wave functions and zero-point vibrational
corrections to molecular properties of poly-
atomic molecules. Journal of Chemical Physics,
, –.

Sałek, P., Vahtras, O., Helgaker, T., & Agren, H.
(). Density-functional theory of linear and
nonlinear time-dependent molecular properties.
Journal of Chemical Physics, , –.

Sauer, S. P. A., & Packer, M. J. (). The Ab initio
calculation of molecular properties other than
the potential energy surface. In P. R. Bunker &
P. Jensen (Eds.), Computational molecular spec-
troscopy (pp. –). London: Wiley.

Tellgren, E. I., Soncini, A., & Helgaker, T. ().
Nonperturbative ab initio calculations in strong
magnetic fields using London orbitals. Journal of
Chemical Physics, , .

Tellgren, E. I., Helgaker, T., & Soncini, A. ().
Non-perturbative magnetic phenomena in
closed-shell paramagnetic molecules. Physical
Chemistry Chemical Physics, , –.



 Intermolecular Interactions
Alston J. Misquitta
TCM Group, Cambridge, UK
School of Physics, Queen Mary, University of London, UK

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Definition of the Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The Two-Body Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Practical Methods for the Two-Body Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . . 
Supermolecular Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Symmetry-Adapted PerturbationTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Symmetry-Adapted PerturbationTheory Based on DFT . . . . . . . . . . . . . . . . . . . . . . . . . 
Density-Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Higher-Order Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Basis Sets: Charge-Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Auxiliary Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Multipole Expansion for the Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Damping Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Many-Body Contributions to the Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Molecular Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Distributed Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Distributed Polarizabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Williams–Stone–Misquitta (WSM) Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Analyzing the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Distributed Dispersion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Polarization in Organic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Crystal Structure Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

J. Leszczynski (ed.), Handbook of Computational Chemistry, DOI ./----_,
© Springer Science+Business Media B.V. 



  Intermolecular Interactions

Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Annotated Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Intermolecular Interactions  

Abstract: Van der Waals interactions determine a number of phenomena in the fields of
physics, chemistry and biology. As we seek to increase our understanding of physical systems
and develop detailed and more predictive theoretical models, it becomes even more impor-
tant to provide an accurate description of the underlying molecular interactions. The goal of
this chapter is to describe recent developments in the theory of intermolecular interactions that
have revolutionised the field due to their comparatively low computational costs and high accu-
racies.These are the symmetry-adapted perturbation theory based on density functional theory
(SAPT(DFT)) for interaction energies and the Williams–Stone–Misquitta (WSM) method for
molecular properties in distributed form. These theories are applicable to systems of small
organic molecules containing as many as  atoms each and have demonstrated accuracies
comparable to the best electronic structure methods. We also discuss the numerical aspects
of these theories and recent applications which demonstrate the range of problems that can
now be approached with these accurate ab initio methods.

Introduction

Intermolecular, or van derWaals, interactions are responsible for a wide variety of phenomena
in the fields of physics, chemistry, and biology. The thermodynamic properties of gases, liq-
uids, and solids depend on these interactions. In fact, many liquids and many solids would not
exist without van der Waals forces. Amongst other properties that depend strongly on the van
der Waals interactions are microwave and infrared spectra of molecular complexes and bulk
phases. Due to their long-range nature, van der Waals forces determine the entrance channels
for chemical reactions. Some of the more exotic systems in which van der Waals interactions
play an important role are Bose–Einstein condensates (BECs) and heliumnanodroplets (Chang
et al. ; Xu et al. ). In biological systems, van der Waals interactions are particularly
important, subtle, and often hard to model.The stability of DNA and RNA arise, in part, from
the stacking energy (Hobza and Sponer ), which is determined by this interaction. One
of the important problems in which van der Waals interactions play an important role is the
problem of protein folding (Lehninger ).

This chapter is an introduction to the field of intermolecular interaction and to the modern
ab initio electronic structure methods – primarily those based on perturbation theory – that
have been developed to study them. We will be mainly concerned with applications to small
organic molecules for which accuracies of the order of a kJmol− or less are sufficient. High-
accuracy calculations on small dimers can be orders of magnitude more accurate, but these
are the subject of a specialist review (see Szalewicz et al.  for a review and references).
Nor are we concerned with empirical methods. Our focus will be on first principles methods
for the interactions of closed-shell systems in the non-relativistic limit. In the last decade, ab
initio methods have been used to successfully model the structure of liquid water. (Bukowski
et al. ) studied the interactions between DNA base tetramers (Fiethen et al. ) and
predicted the crystal structure of an organic molecule (Misquitta et al. b). The goal of this
chapter is to describe the main theoretical developments that have been responsible for these
applications.
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Definition of the Interaction Energy

The interaction energy of a cluster of N interacting rigidmolecules is defined to be

Eint = EABC . . . − EA − EB − EC −⋯. (.)

Here EABC . . . is the energy of the cluster and EX , X = A, B, C, etc., is the energy of molecule
X. Non-rigid molecules undergo a deformation in the cluster, with an associated deformation
energy cost: δEX = EX(x∗X)−EX(x

X), where x
X is the geometry of monomer X in isolation and

x∗X is the geometry in the cluster. This deformation energy cost should be included as part of
the interaction energy defined above, but since this chapter is mainly concerned with the inter-
actions of rigid molecules, we will assume that the deformation energies δEX are obtained in a
suitable manner, and concern ourselves only with the interaction energy defined by > Eq. ..

Eint can be evaluateddirectly, but for computational efficiency as well as physical interpreta-
tion it is worthwhile to partition theN-body interaction energy into contributions fromdimers,
trimers, and so on.This leads to an exact reformulation of Eint that is known as the many-body
expansion:

Eint(ABC⋯) = ∑
X<Y

Eint(XY) + ∑
X<Y<Z

ΔEint(XYZ) + ⋯, (.)

where ΔEint(XYZ) is the three-body correction, defined as

ΔEint(XYZ) = Eint(XYZ) − Eint(XY) − Eint(XZ) − Eint(YZ). (.)

In the same way, we can define four-body corrections, five-body corrections, and so on. For a
cluster of N molecules, this expansion terminates at the N-body correction.

The many-body expansion would not be of much use if we had to evaluate all terms in
> Eq. .. But experience has shown that the expansion converges quickly and terms beyond
those involving three bodies are not so important. This is fortunate as the two-body interac-
tions are well understood and can be evaluated for moderate-sized molecules using a variety
of methods, while good approximations are available for the terms involving three and more
bodies, which usually arise from the effects of polarization in the cluster.

The Two-Body Interaction Energy

The interaction energy of a pair of interacting molecules is defined as

Eint = EAB − EA − EB . (.)

If we calculate all three energies using a suitable electronic structure method – some of which
will be described later – this definition provides a simplemethod for calculating the interaction
energy of a pair of interacting molecules.This approach, known as the supermolecularmethod,
provides us with a single number: the interaction energy Eint. We gain considerable physi-
cal insight into Eint by evaluating it not as the difference in energies suggested by the above
definition, but through perturbation theory, which enables us to partition Eint into physical
components: the electrostatic, induction (or polarization), dispersion, and exchange-repulsion
energies.This breakup proves invaluable not only as an aid to interpretation, but also forms the
basis for all analytic atom–atom potentials (Stone and Misquitta ).
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Consider the dimer Hamiltonian partitioned as

H(λ) = H + λV , (.)

where H = HA + HB is the sum of the Hamiltonians of the unperturbed monomers A and B,
and V is the intermonomer interaction operator that consists of electron–electron, electron–
nuclear, and nuclear–nuclear interactions between the monomers. We may now carry out a
Rayleigh-Schrödinger perturbation theory – also knownas the polarization expansion (Jeziorski
et al. ) – using as our zeroth-order wave function the unsymmetrized product Φ = ΦA

 ΦB
 .

The zeroth-order energy is then E = EA
 +EB

 .The interaction energy appears at first and higher
orders in perturbation theory (setting λ = ):

Eint = E()
pol + E

()
pol +⋯, (.)

where we have used the subscript “pol” to indicate these are energies from the polarization
expansion and do not include any of the effects of electron exchange between monomer. The
individual terms in this series can be evaluated using the usual methods of perturbation theory
(Stone ). At firstorder we have

E()
pol = ⟨Φ

A
 Φ

B
 ∣VΦA

 Φ
B
 ⟩, (.)

which is identified as the electrostatic energy of the interacting dimer and can be written in
terms of the unperturbed total charge densities of the monomers:

E()
pol = E

()
elst = ∬ ρtot

A (r)


∣r − r∣
ρtot
B (r)drdr. (.)

Here, the total charge density of monomer X is defined as

ρtot
X = ∑

α∈X
Zαδ(r− Rα) − ρX (.)

where ρX is the unperturbed electronic charge density of themonomer and the term containing
the Dirac delta functions represents the nuclear charge density.

At second order we get

E()
pol = ∑

rs

′
∣⟨ΦA

 ΦB
 ∣VΦA

r ΦB
s ⟩∣



EA
 + EB

 − EA
r − EB

s
, (.)

where r and s label the excited states of monomers A and B respectively. The prime indicates
that at least one of r or s refer to an excited state. The above expression can be split into two
physically motivated terms: the second-order induction and second-order dispersion energies.
The second-order induction energy is obtained when the summation in > Eq. . is restricted
to those dimer states including only one excited monomer. This has two natural contributions:
the ground state of monomer A interacting with excitations on monomer B, and vice versa.
Thus,

E()
ind,pol = E

()
ind,pol(A) + E

()
ind,pol(B), (.)

where,

E()
ind,pol(A) = ∑

r

′
∣⟨ΦA

 ΦB
 ∣VΦA

r ΦB
 ⟩∣



EA
 − EA

r
. (.)

Similarly, we can define E()
ind,pol(B).
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From > Eq. ., we see that E()
ind,pol(A) may be interpreted as the second-order energy

correction arising when the monomer A is perturbed by the external field ΩB of monomer B.
Thus the second-order induction energy can be interpreted as a response to a static field, and is
therefore also called the polarization energy.

The remaining part of the second-order term E()
pol is the dispersion energy which is

defined as

E()
disp,pol = ∑

r≠
∑

s≠

∣⟨ΦA
 ΦB

 ∣VΦA
r ΦB

s ⟩∣


EA
 + EB

 − EA
r − EB

s
. (.)

The dispersion is purely quantum mechanical in origin and is the only term at second order
in λ that describes intermonomer electron correlation. The second-order dispersion energy is
long ranged, always negative, and exists between all types of molecules.

The starting wave function Φ = ΦA
 ΦB

 used in the polarization expansion is not anti-
symmetric with respect to electron interchanges between the monomers and thus cannot be
expected to be reliable when overlap effects between the monomers become important. In
this region, only a fully antisymmetric theory is valid. Various procedures exist to achieve
the complete antisymmetrization and these are discussed by Jeziorski and Szalewicz ()
and Szalewicz et al. (). The result is that corresponding to each of the three interaction
energy components discussed above we get an exchange counterpart. At first order we get
the first-order exchange-repulsion energy E()

exch, and at second order we get the second-order
exchange-induction and exchange-dispersion energies, E()

ind,exch and E()
disp,exch.

We now define the total induction and total dispersion energies as the sum of their
polarization and exchange terms:

E()
ind,tot = E

()
ind,pol + E

()
ind,exch (.)

E()
disp,tot = E

()
disp,pol + E

()
disp,exch. (.)

These sums are the physically relevant energies; the individual components are useful from the
theoretical standpoint, but are somewhat arbitrary and depend on the particular perturbation
theory used.

Therefore, the total interaction energy can be defined as

Eint = E()
elst + E

()
exch + E

()
ind,tot + E

()
disp,tot + ΔE(−∞)

int , (.)

where the last term collects all contributions of third order and higher in the interaction
operator V . We will describe the theoretical methods for calculating the interaction energy
components in > section “Perturbation Theory.” Now let us see the kind of interpretational
power perturbation theory gives us by taking a look at a few examples.

Examples

Based on the relative contributions of the interaction energy components, we can classify inter-
molecular bonds. For example, hydrogen-bonded complexes tend to be bound primarily by
the electrostatic and induction (polarization) components of the interaction energy, while van
derWaals complexes are bound primarily by the dispersion energy. Of course, most complexes
will fall in between, so it is probably better not to regard such classifications as being rigor-
ous, but they are useful as they provide us with a physical picture of the mechanisms of the
intermolecular bond.
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Interaction energies and components for three representative complexes are presented in
> Table -. We have used both approaches: perturbation theory and the supermolecular
method.

• Hydrogen bonding: At its minimum energy geometry, the water dimer shows a bonding
pattern that is typical of hydrogen-bonded complexes (Buckingham et al. ). Binding
is primarily due to the electrostatic and induction energies. In fact, this is the only one of
the three complexes which is bound at first order, that is, the sum of the first-order ener-
gies is negative. Even so, the dispersion energy is certainly non-negligible and contributes
almost % of the binding of this complex. The terms of third and higher orders contribute
significantly to the binding of these complexes.

• van der Waals bonding: The benzene dimer in the sandwich geometry is a typical example
of a van derWaals bound complex.The dimer is unbound at first order and the electrostatic
and induction energies make minor contributions to the interaction energy. Almost all the
binding arises at second order from the dispersion energy. Third- and higher-order terms
are generally small for van derWaals complexes, and in this particular case, they are positive.

• Intermediate case: As an example of an intermediate case consider the so-called halogen-
bonded complex Cl ⋅⋅⋅OH. The exchange-repulsion energy of this complex is similar to
that of the water dimer, but the electrostatic and induction energies are not as strong. The
dispersion contributes a substantial fraction of the interaction energy, but less than for the
benzene dimer. Third- and higher-order terms are quite large for this particular system.

⊡ Table -
Interaction energy components for the water dimer, benzene dimer, and the Cl⋅⋅⋅OH complex.
The water dimer is in its equilibrium geometry, the benzene dimer is in the parallel stacked geom-
etry with center-of-mass separation .Å, and the Cl ⋅⋅⋅OH complex is in a symmetrical complex
with all atoms in a plane and Cl–Cl⋅⋅⋅O collinear with r(Cl⋅⋅⋅O)= . Å. All energies are reported
in kJmol−

Energy (HO) Cl⋅⋅⋅OH (CH)
Perturbation theory [SAPT(DFT)]:

E()elst −. −. −.

E()exch . . .

E()ind,pol −. −. −.

E()ind,exch . . .

E()ind,tot −. −. −.

E()disp,pol −. −. −.

E()disp,exch . . .

E()disp,tot −. −. −.

ΔE(−∞)int −. −. +.

Eint −. −. −.

Supermolecular:

Eint [MP()] −. −. −.a

Eint [CCSD(T)] −. −. −.a

aFrom Sinnokrot et al. . These energies are close to the basis set limit
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By comparison, the supermolecular methods provide just the interaction energy: a single
number. But perturbation theory does not provide only physical interpretation; the breakup of
the interaction energy proves invaluable when constructing model interaction potentials (Stone
and Misquitta ) and semi-empirical methods, some of which we shall see later.

Practical Methods for the Two-Body Interaction Energy

Supermolecular Methods

The two-body interaction energy can be calculated directly through > Eq. . as the differ-
ence in energies of the dimer and the monomers.This approach, known as the supermolecular
method, has the advantage of allowing Eint to be calculated using a variety of electronic structure
methods.We will only briefly describe some aspects of this method below; for a more complete
description see Chalasinski and Szczesniak ().

Two of the most commonly used electronic structure methods to evaluate Eint are MP
(second-orderMoller–Plesset perturbation theory) and CCSD(T) (coupled-cluster with singles
and doubles and non-iterated triples). Interaction energies calculated using these methods are
shown in >Table -. Interaction energies calculated usingMP are usually close to those calcu-
lated using the more sophisticated and computationally expensive CCSD(T), but the exception
is the benzene dimer system for which MP overestimates the binding by almost a factor of .
This deserves some explanation.

Moller–Plesset perturbation theory starts from a Hartree–Fock description of the system
and builds in electron correlation perturbatively. In MP, electron correlation is described
using second-order perturbation theory. For a pair of interacting molecules the two orders of
perturbation theory are used to describe the dispersion interaction, and therefore cannot be
used to simultaneously describe electron correlation within each of the interacting molecules.
This seems to cause severe problems for systems with π-bonding for which MP is completely
inappropriate. Recently, this problem has been corrected using a hybrid scheme in which the
dispersion component of the MP interaction energy is replaced with the dispersion energy
calculated using SAPT(DFT) (see below) (Pitonak and Hesselmann ).

The CCSD(T) method takes a very different approach to electron correlation and is today
regarded as the referencemethod for many kinds of problems. However, the computational cost
of CCSD(T) scales as the seventh power of the system size, and therefore this method cannot
be applied to large systems.

One of the sources of error in a supermolecular calculation of the interaction energy is
the basis set superposition error (BSSE). This is the artificially enhanced binding that occurs
because of the use of finite basis sets. This problem has been discussed at length in the lit-
erature, so we will not get into details here. A simple way of correcting for this error was
suggested by Boys and Bernardi () who suggested that the BSSE could be reduced by using
the dimer basis to calculate themonomer energies.This leads to the counterpoise (CP) corrected
interaction energy defined as

Ecp
int = EAB(AB) − EA(AB) − EB(AB). (.)
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Here EA(AB) is the energy of A calculated in the dimer basis AB, and likewise for EB(AB).The
CP form of the interaction energy should always be used, except possibly when the basis set is
too poor. However, in this case, neither the CP corrected nor the uncorrected energies may be
meaningful.

There is another aspect of the BSSE worth keeping in mind: An energyminimum on the CP
corrected surface will generally occur at a different geometry from the correspondingminimum
on the uncorrected surface. Since geometry optimizations are typically performed on the latter
surface, the resulting structure will need to be re-optimized on a CP corrected surface, but this
is often rather difficult and computationally expensive.

Density Functional Theory

Density functional theory (DFT) is not presently suitable for intermolecular interactions
(Tsuzuki and Lüthi ; van Mourik and Gdanitz ). The main reason for this failure of
DFT is the highly non-local nature of the dispersion interaction which is present even when
charge densities do not overlap. Since most density functionals are local or semi-local in the
density, that is, they depend on the electron density and gradients of the density, they are unable
to account for non-local correlations, and therefore cannot describe the dispersion energy.

Recently, there have been many attempts made to include the dispersion in DFT, either
explicitly through a dispersion correction (Grimme ; Neumann and Perrin ) or
implicitly through a non-local functional (Dion et al. ). The former method is necessar-
ily empirical and makes a priori assumptions about the nature of the dispersion interaction.
Though the latter methods are promising, it is still unclear if they are accurate enough in prac-
tice. Also recently, Becke and Johnson () have proposed that the dispersion energy could
be included in DFT through correlations in the exchange-hole dipole moments evaluated using
the occupied orbitals. This method is promising and has been given a theoretical justification
by Angyan () and Hesselmann ().

In a recent development, Pernal et al. () have used SAPT(DFT) (see below) interaction
energies for a number of dimers to develop an exchange-correlation functional that does not
include the dispersion energy. They have subsequently added the dispersion energy calculated
from SAPT(DFT). This is a significant development as it is far better founded on theoretical
grounds than other dispersion-corrected DFT methods. In practice a more efficient, but less
accurate method could be to use dispersion models such as the WSMmodels described below.

Perturbation Theory

Symmetry-Adapted Perturbation Theory

Until recently, and possibly still so for certain applications, one of the most successful pertur-
bation theories for intermolecular interactions was the symmetry-adapted perturbation theory
(SAPT) (Jeziorski and Szalewicz ; Jeziorski et al. ). SAPT is a triple perturbation theory
based on a Hartree–Fock description of the interacting monomers. Intramolecular correlation
is built up using two of the perturbations, and intermolecular correlation by the third. SAPT has
been applied to a large number of systemswith very good success. See for example, applications
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to the water dimer (Mas et al. ), the carbon dioxide dimer (Bukowski et al. ), the He–
HCCCNdimer (Akin-Ojo et al. ), Ar–CO dimer (Misquitta et al. ), and theNe–HCN
dimer (Murdachaew et al. ). However, SAPT, like the CCSD(T) method, is computationally
expensive with scaling of O(N 

), where N is the size of the system (which can be taken to be
the number of electrons), and quickly become impossible to apply as this size increases, and
cannot be applied to systems of more than about ten atoms without a significant reduction to
the level of correlation.

Symmetry-Adapted Perturbation Theory Based on DFT

Fairly recently, Szalewicz, Misquitta, and Jeziorski (Misquitta and Szalewicz , ;
Misquitta et al. , b), and independently, Jansen and Hesselmann (Hesselmann and
Jansen a, b, a, b) developed a variant of SAPT based on DFT that has largely super-
seded SAPT both in terms of accuracy as well as computational efficiency. In this method,
termed SAPT(DFT) or DFT-SAPT, the interaction energy components are formulated tomake
their dependence on molecular properties like the charge density and density response func-
tions explicit. These molecular properties are then calculated using DFT and linear-response
time-dependentDFT. In some sense,DFT is used to describe intramolecular correlation effects,
thereby significantly simplifying the perturbation theory as the intramolecular perturbation
operators are no longer required.

The first-order electrostatic energy E()
elst has already been shown to arise from the Coulomb

interaction of the unperturbed total charge densities of the interacting monomers (> Eq. .).
In SAPT(DFT), these densities are obtained from DFT. To see how the second-order induction
and dispersion energies can be expressed in terms of molecular properties we need to define
the frequency-dependent density susceptibility (FDDS):

αX(r, r
′

∣ω) = 
∑

r≠

EX
r − EX



(EX
r − EX

 )

− ω ⟨Φ

X
 ∣ρ̂X(r)∣Φ

X
r ⟩⟨Φ

X
r ∣ρ̂X(r

′

)∣ΦX
 ⟩, (.)

where ω is a frequency and ρ̂X(r) = −∑i∈X δ(r−ri) is the electron density operator.The FDDS
describes the linear response of the electron density to a frequency-dependent perturbation.

E()
ind,pol (A) can be written in terms of the FDDS evaluated at zero frequency (Magnasco and

McWeeny ):

E()
ind,pol(A) = −


∬

VB(r)αA(r, r
′

∣)VB(r
′

)drdr′ (.)

where VB(r) =
∫

ρtot
B (r

′

)/∣r − r′∣dr′ is the electrostatic potential of monomer B, and similarly
for E()

ind,pol (B). We therefore see that the induction energy is a response energy of the molecule
to the potential arising from the interacting partner.

The dispersion energy involves the FDDSs of the two molecules evaluated at imaginary
frequency (Longuet-Higgins ; Zaremba and Kohn ):

E()
disp,tot = −


π ∫

∞


dω
∫

drdr′drdr′
αA(r, r′; iω)αB(r, r′; iω)

∣r − r∣∣r′ − r′∣
. (.)

There is no easyway to interpret this expression which is a coupling of the response functions of
the two molecules, but at imaginary frequency. However, see the discussion in Angyan ()
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and Hesselmann () where an approximate form of this expression is related to correlations
in fluctuating exchange-holes of the monomers.

Linear-response time-dependentDFT, also known as coupled Kohn–Sham (CKS), provides
us with a convenient framework for evaluating the FDDS. CKS theory has been used for some
time now to obtain excitation energies of small systems (Grabo et al. ;Onida et al. ) and
molecular properties like polarizabilities and hyperpolarizabilities (Adamo et al. ; Tozer
and Handy ) (see Koch  for a comprehensive summary), so it is not surprising that it
can also be used to evaluate the second-order dispersion and induction energies through the
FDDS (Hesselmann and Jansen b; Misquitta et al. ). Within CKS theory (and also
coupled Hartree–Fock (CHF) theory), the FDDS takes the form (Casida ; Colwell et al.
; Petersilka et al. ):

α(r, r′∣ω) =
∑

iv ,i′v′
Civ ,i′v′(ω)ϕi(r)ϕv(r)ϕi′(r′)ϕv′(r′), (.)

where the subscripts i and i′ (v and v′) denote occupied (virtual) molecular orbitals and ϕi

is a molecular orbital obtained from Kohn–Sham DFT. The coupling between the molecular
orbitals is contained in the coefficients Civ ,i′v′(ω) which are defined in Colwell et al. (),
Ioannou et al. (), Misquitta et al. (b), and Podeszwa et al. (b). These coefficients
involveCoulomb integrals of themolecular orbitals aswell as integrals containing the functional
derivative of the exchange-correlation potential. The method used to evaluate the coefficients
Civ ,i′v′(ω) is quite important as the dispersion energy calculated through > Eq. . varies
appreciably depending on the type of FDDS (Misquitta et al. b).

The exchange energies depend explicitly on molecular wavefunctions through the inter-
action density matrix (Jeziorski et al. ; Moszyński et al. ). In SAPT(DFT), these
energies are evaluated usingKohn–Shammolecular orbitals and, for the second-order exchange
energies, the effect of orbital relaxation is estimated by scaling:

E()
ind,exch = E

()
ind,exch(KS) ×

E()
ind,pol

E()
ind,pol(KS)

(.)

E()
disp,exch = E

()
disp,exch(KS) ×

E()
disp,pol

E()
disp,pol(KS)

(.)

where the energies calculated without orbital relaxation are indicated by “KS,” that is, they use
un-relaxed Kohn–Sham orbitals. The validity of using Kohn–Sham orbitals for the first-order
exchange-repulsion energy has been justified by an asymptotic analysis of the exact and Kohn–
Sham interaction density matrices (Misquitta and Szalewicz ) as well as extensive numer-
ical tests (Misquitta and Szalewicz ). In the DFT-SAPT formulation, the second-order
exchange energies are defined via coupled-response theory (Hesselmann et al. ).

Exchange-correlation functional: Which exchange-correlation functional should be used in
SAPT(DFT) calculations? The short answer is that while SAPT(DFT) interaction energies are
not very sensitive to the exchange-correlation functional used, it has been concluded from
extensive numerical experiments that the asymptotically corrected (Tozer ; Tozer and
Handy ) PBE (Adamo and Barone ) exchange-correlation functional results in the
most accurate interaction energies for a variety of systems. For details see Hesselmann and
Jansen (a), Misquitta and Szalewicz (), and Misquitta et al. (b). The PBE func-
tional (also called PBEPBE) is a hybrid functional with % of its exchange energy determined
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from PBE and % from the so-called exact, or Hartree–Fock exchange. This means that the
FDDS must also be constructed as the hybrid of the FDDSs from CKS and CHF theories.
This is quite important as significant errors in the dispersion energy are introduced if the
FDDS is constructed using CKS theory alone (Misquitta et al. b). For large molecules,
however, the terms in the coefficients Civ ,i′v′(ω) that depend on the functional derivative
of the exchange-correlation potential are computationally demanding to evaluate using the
PBE functional. Instead, a more practical approach is to calculate these coefficients using the
exchange-only LDA functional.Therefore, while the Kohn–Shammolecular orbitals and eigen-
values are obtained using the PBE functional, the FDDS is best constructed using the less
accurate LDA+CHF kernel. This approximation results in a small (less than %) loss in accu-
racy which is more than compensated by an order of magnitude reduction in computational
expense (Misquitta et al. b).

Asymptotic correction: The asymptotic correction is needed to correct the tails of the
exchange-correlation potential, and consequently, the density tails that are crucial for inter-
molecular interactions. In order to implement the asymptotic correction, accurate vertical
ionization potentials (IPs) are needed for the monomers. When they are not available experi-
mentally, good estimates may be obtained from the difference between the energies of the N
and N −  electron systems. The PBE functional is best suited for this calculation too as tests
on atoms, diatoms, and small organic molecules have shown that it gives IPs with mean errors
centered about . a.u. with a standard deviation of only . a.u. (Ernzerhof and Scuseria
). This correction is definitely needed if the individual interaction energy components are
required to be accurate. However, it is cumbersome to apply for large systems, when a single IP
may be questionable and local IPs are hard to define. In such cases, the asymptotic correction
is best neglected, particularly if total interactions are all that is desired.

Density-Fitting

The SAPT(DFT) interaction energy components are not evaluated directly through the expres-
sions provided in the previous section, but are formulated tomake use of a procedure known as
density-fitting (DF) or the resolution of the identity (RI) (Dunlap ; Dunlap et al. ).The
idea here is to expand pairs of molecular orbitals that appear in the energy expressions in an
auxiliary basis. For example, we may perform the DF expansion of one such pair that appears
in the FDDS defined through > Eq. . as follows:

ρiv(r) = ϕi(r)ϕv(r) ≈ ρ̃ iv(r) = ∑
k
Div ,k χk(r), (.)

where χk are the auxiliary basis functions and Div ,k are the expansion coefficients. In the stan-
dard density-fitting procedure (Dunlap et al. ), the fitted density ρ̃ is found by minimizing
the integrals

Δ iv =
∬

(ρ̃ iv(r) − ρiv(r))


∣r − r′∣
(ρ̃ iv(r′) − ρiv(r′))drdr′. (.)

With these expansions, the FDDS can be rewritten as (Misquitta et al. )

α(r, r′∣ω) =
∑

k , l
C̃k l(ω)χp(r)χq(r

′

), (.)
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where C̃k l(ω) are the transformed coefficients given by C̃k l(ω) = ∑iv ,i′v′ Div ,kCiv ,i′v′(ω)
Di′v′ , l . Now the FDDS defined through > Eq. . involves a quadruple sum over molecular
orbitals, but in > Eq. . the sum is over only two indices. This represents a huge reduction
in computational expense provided that the size of the density-fitting basis – commonly called
the auxiliary basis – is of the same order as the size of the main basis (the basis used to obtain
the molecular orbitals), which is indeed the case with optimized auxiliary basis sets.

With the density-fitted formulation of SAPT(DFT), commonly called DF-SAPT(DFT) or
DF-DFT-SAPT, the computational cost of the second-order interaction energy scales as only
O(N 

) if hybrid functionals are used (Bukowski et al. ; Podeszwa et al. b). In theDFT-
SAPT implementation the FDDS is calculated without a contribution from CHF theory. This
reduces the computational scaling for evaluating the FDDS to O(N 

), but the overall scaling
is still O(N 

) because of the -index two-electron integrals (Hesselmann et al. ). This is
the same computational scaling as MP, though DF-SAPT(DFT) calculations take a few times
longer due to the additional complexity of the method. Compare this to the O(N 

) scaling of
SAPT and CCSD(T).

Higher-Order Contributions

Contributions of third and higher order to the two-body interaction energy are often large
and cannot be neglected. In particular, for systems of polarizable molecules with large perma-
nent multipole moments terms of third and higher order can contribute as much as % of the
binding energy at equilibrium geometries. Such systems tend to have a large E()

ind,pol . Examples
are the water dimer and the Cl ⋅⋅⋅OH systems in > Table -. For dispersion-bound systems
the higher-order contributions are smaller and constitute only as much as % of the total inter-
action energy (see the benzene dimer in > Table -) and can therefore be neglected if high
accuracies are not required.

Themost commonmethod for approximating the terms of third and higher-order, E(−∞)

int ,
is the δHF

int,resp correction (Jeziorska et al. ; Moszynski et al. ):

E(−∞)

int ≈ δHF
int,resp = E

HF
int − (E

()
elst(HF) + E()

exch(HF) + E()
ind,tot(CHF)) , (.)

where the EHF
int is the counterpoise-corrected supermolecular interaction energy calculated

using Hartree–Fock theory, and the interaction energies are calculated using Hartree–Fock
orbitals (denoted by “HF”) or, for the second-order induction energy, using CHF theory.
This approximation was used to evaluate E(−∞)

int for the water dimer and Cl ⋅⋅⋅OH systems
(> Table -) for which this term contributes % and % of the total interaction energy.

There is evidence (Patkowski et al. ) that the δHF
int,resp estimate is not appropriate for

dispersion-bound systems, for which a better estimateof E(−∞)

int is (Misquitta and Stone a)

E(−∞)

int ≈ E()
ind,tot(KS) (.)

where E()
ind,tot(KS) is the total third-order induction energy evaluated without relaxation, that

is, using uncoupled Kohn–Sham theory. This estimate has been used for the benzene dimer in
> Table -.

For large systems it is quite conceivable that no clear distinction may be possible that would
justify the use of either one of these approximations. In such cases, it would probably be better
to use the δHF

int,resp approximation rather than ignore the higher-order energies altogether.
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Basis Sets: Charge-Transfer

In general, the basis sets used to calculate intermolecular interaction energies need to be large
and augmented with diffuse functions. In part, this is because of the second-order energies
which are response energies. Consequently, the basis set has to be good enough to describe not
only the charge density accurately (particularly in the region of the density tail), but also the
response of the density to perturbations. These requirements are adequately met only by basis
sets of the augmented triple-ζ kind (and larger), such as aug-cc-pVTZ (Kendall et al. ;Woon
and Dunning ) and Sadlej-pVTZ (Sadlej ; Sadlej and Urban ).

However, when the overlap of the charge densities of the interacting monomers becomes
significant (typically at around the equilibrium separation) the basis set must be flexible
enough to describe the intermolecular electron–electron cusp as well as the intermolecu-
lar charge-transfer (CT). The former effect is manifested as part of E()

disp,tot and the latter as

part of E()
ind,tot.

It is often quite difficult to converge E()
disp,tot with basis set. This is because it is hard to

describe the intermolecular electron–electron cusp in the bonding region using basis func-
tions located on atomic sites only (Burcl et al. ). In this case, fairly high-angular-momenta
functions are needed in order to do so. However, this leads to very large basis sets and a con-
sequent increase in computational requirements. An alternative is to use basis sets augmented
with the so-called mid-bond functions: a small set of basis functions located in the bonding
region (see Burcl et al. ; Williams et al.  and references therein). The dispersion energy
is not so sensitive to the exact composition of the mid-bond basis, which is usually chosen to
consist of a set of  s,  p, and  d diffuse functions (Mas et al. ). A convenient choice for
the location of the mid-bond set has been given in Akin-Ojo et al. ().

An alternative to mid-bond functions is to use the basis set extrapolation scheme of
Helgaker et al. (). For intermolecular interactions, this involves calculating E()

disp,tot using
two correlation-consistent basis sets, say the aug-cc-pVnZ and the aug-cc-pV(n + )Z Dun-
ning bases. This energy can be fitted to the form a + b/X where X = n and n +  and the
constants determined.The complete basis set (CBS) estimate of E()

disp,tot is obtained by extrapo-
lating X →∞, that is, it is the constant a. This scheme has the advantage that it applies equally
well to small as well as large molecules, for which the mid-bond scheme is potentially ambigu-
ous. However, two electronic structure calculations need to be performed, so there is an increase
in computational cost.

Charge transfer poses a very different problem. This subject is discussed more completely
in Stone and Misquitta () and Stone (). The CT energy is the part of the short-range
induction energy that involves excitations from the occupied orbitals on one molecule into the
virtual orbitals of another. Consequently, in Stone () it was suggested that the CT energy
could be calculated as the difference of E()

ind,tot calculated in the dimer andmonomer basis.The
understanding here is that the monomer basis is localized, so excitations into the virtual space
of the interacting partner should be suppressed. In any case, if CT excitations are to be correctly
included, the induction energy should be calculated using the dimer basis. In practice, this is
rather excessive, and it has been shown (Williams et al. ) that only a subset of the basis of
the interacting partner need be included. This is typically taken to be just the functions of s
and p symmetry. Thus, when calculating the induction energy of A in the presence of B, that
is, E()

ind,tot(A), we use in addition to the basis set of A, the s and p symmetry functions of B
located where the atomic sites of B would be. These ghost functions are known as the far-bond
functions.
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Thecombined basis consisting of functions on themolecule and themid-bond and far-bond
functions is referred to as the monomer-centered plus or “MC+” basis type. The “+” indicat-
ing the presence of the additional basis functions. A typical SAPT(DFT) calculation of the
interaction energy would involve two such bases; one for each of the two interacting molecules.

The additional functions are required for the second-order energies. If all that is needed
are the first-order energies, the MC basis can be used, that is, basis functions need be included
only on the monomer. First-order electrostatic and exchange-repulsion energies calculated in
such a basis are generally very close to those calculated in the larger MC+ type of basis if a
triple-ζ-quality basis is used.

Finally, if each molecule is described using the dimer basis we obtain the DC or DC+ basis
types; the latter additionally including the mid-bond set. These basis types must be used for
supermolecular calculations of the interaction energy.

Auxiliary Basis Sets

One downside of density-fitting is that the auxiliary basis used needs to be paired with the main
basis. Nevertheless, optimized auxiliary basis sets are available (Weigend et al. , ) for
most of the commonly used main basis sets. These tend to be between two and three times
larger than the main basis.

A few points should be noted when using density-fitting for intermolecular forces:

• The auxiliary basis used needs to be of the DC or DC+ type even if the main basis is of the
MC or MC+ type. It is not clear why this is the case, but a failure to do so sometimes results
in unacceptable errors in E()

elst and E()
ind,tot.

• The Sadlej-pVTZ basis does not have an optimized auxiliary basis associated with it, but
experience suggests that the aug-cc-pVTZ auxiliary basis may be used.

• When using the Dunning aug-cc-pVnZ basis sets, higher accuracies may be obtained by
using auxiliary basis sets optimized for the aug-cc-pV(n + )Z bases.

Multipole Expansion for the Interaction Energy

One of the major strengths of perturbation theory is that each of the interaction energy com-
ponents possesses a multipole expansion that allows us to evaluate the interaction energy
analytically in terms of molecular properties alone, at least when the molecular charge densities
do not overlap appreciably.

The intermolecular interaction operator V defined through > Eq. . can be written as

V =
∑

α∈A
∑

β∈B

qαqβ
rαβ

, (.)

where α (β) label all the particles (electrons and nuclei) of monomersA (B), qα is the charge (in
atomic units) of particle α, and rαβ is the inter-particle distance. If A and B are well separated so
that their charges are distinct and do not overlap (strictly this is never exactly possible), we can
expand the interaction operator in the multipole expansion to give (in the compact notation of
Stone ):

V =
∑

t ,u
Q̂A

t T
AB
tu Q̂B

u . (.)
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There is a lot compressed in this expression so it is well that we spend some time unravelling
it. First of all, the subscripts t and u label the angular momenta of the real spherical harmonics
and take the lm values , , c, s, , c, s, c, s,⋯ (the labels “c” and “s” stand for
cosine and sine respectively). Q̂A

t is the real form of the multipole moment operator of rank
t centered on A and expressed in the local-axis system of A, while TAB

tu is the so-called T-
tensor that carries the distance and angular dependence.The T-function of ranks l and l has
a distance dependence R−l−l− where R is the separation between the centers of A and B.

Using this form of the interaction energy operator, the first-order electrostatic energy can
be written as

E()
elst(MP) =

∑

t ,u
QA

t T
AB
tu QB

u , (.)

whereQA
t is now the rank tmultipole moment of the total charge density of A.This expression,

which follows directly from > Eqs. . and > ., is convenient as multipole moments are
relatively easy to calculate.Therefore, > Eq. . provides us an easymethod for calculating the
first-order electrostatic energy. But consider the following points:

• Contributions to the electrostatic energy that decay exponentially with separation R do not
contribute to the multipole expansion. Such terms arise when the charge densities overlap
and are therefore referred to as the penetration contributions to the interaction energy.

• The non-expanded electrostatic energy (> Eq. .) exhibits a R− divergence when the
nuclei of the interacting molecules approach each other, but the multipole expansion intro-
duces a higher-order divergence because it includes terms of the form R−n with n > .These
terms need to be damped out at short range. This is usually done using a damping function
fn(R) that has the property that fn(R) → Rn for small R and fn(R) →  at large R. We will
discuss specific forms of these functions later.

Therefore, we can write the electrostatic energy as

E()
elst = Ae

−αR
+
∑

t ,u
QA

t f(tu)(R)T
AB
tu QB

u , (.)

where the first term is the exponential penetration contribution (that is usually negative) and the
second is the dampedmultipole expansion of the electrostatic energy. In general, the coefficients
A and α in the penetration term will depend on orientation and possibly on distance.The exact
form is not critical, what is important is that this term exists at short separations and that it can
be large in magnitude.

This analysis also applies to the multipole expansions for the second-order induction and
dispersion energies. But before getting to these, let us ask an important question: When is the
single-center multipole expansion valid? To answer this question fully would take us beyond
the scope of this chapter. Instead we will introduce the main ideas here without proof, and refer
the reader to the detailed discussion in > Chap.  of Stone ().

A key concept is the idea of the sphere of divergence. This is defined as the sphere cen-
tered on the expansion center (typically the center-of-mass) and just enclosing all charges. For
a molecule this poses a problem as the electronic density formally extends to infinity. But it has
been shown (Stone and Alderton ) that for charge densities expressed as the sum of Gaus-
sian functions, it is sufficient that the sphere enclose all nuclear sites. The multipole expansion
is valid only if the spheres of divergence of all interacting molecules do not overlap.

This poses a problem for all but the smallest ofmolecules. For example, consider the benzene
dimer in the sandwich configuration used in > Table -. The equilibrium separation is about
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.Å, but the radius of a benzene molecule is about .Å, so the molecules would have to be
at least . Å apart before the single-center multipole expansion could be used. And even then,
the expansion would be only slowly convergent.

A solution to this problem is to use a multi-centered multipole expansion, more commonly
called a distributedmultipole expansion. In principle the centers could be arbitrarily chosen, but
it is convenient to use the atomic nuclei as centers. The distributed multipole expansion of the
intermolecular interaction operator V is

V =
∑

a∈A
∑

b∈B
∑

tu
Q̂ a

t T
ab
tu Q̂

b
u , (.)

which is similar to > Eq. . except that now Q̂a
t is the rank tmultipole moment operator for

site a. We will define the precise form of these multipole moment operators later.
We are now in a position to define the distributed multipole expansions for E()

elst, E
()
ind,tot,

and E()
disp,tot. Recall that the exchange energies decay exponentially with molecular separa-

tion and have no expansion in /R. Consequently, the multipole expansion for E()
ind,tot is the

same as that for E()
ind,pol and will be denoted simply by E()

ind (MP). Likewise for E()
disp(MP).

The damping functions have been omitted from the expansions given below. To insert them is
straightforward: for every Tab

tu include a damping function of the form f
(tu)(rab).

• Electrostatic energy: The generalization of the single-center expansion is straightforward
and we get

E()
elst(MP) =

∑

a∈A
∑

b∈B
∑

tu
Qa

t T
ab
tu Q

b
u . (.)

• Second-order induction: The second-order induction energy for molecule A is given by

E()
ind (MP)(A) = −


 ∑a ,a′∈A

∑

b ,b′∈B
∑

tut′u′
Qb

uT
ab
tu α

aa′
t t′ T

a′b′
t′u′ Q

b′
u′ , (.)

where αaa′
t t′ is the static polarizability of rank t by t′ for sites a and a′ and is defined by

αaa′
t t′ =∬ Q̂a

t (r)α(r, r
′

∣)Q̂a′
t′ (r

′

)drdr′. (.)

Likewise, we define E()
ind (MP)(B).

From > Eq. . we see that the second-order induction energy of A is a linear response
to permanent multipoles of B.

• Second-order dispersion:The second-order dispersion energy has the distributedmultipole
expansion

E()
disp(MP) = −


π ∑

a ,a′∈A
∑

b ,b′∈B
∑

tut′u′
Tab
tu T

a′b′
t′u′ ∫

∞


αaa′
t t′ (iω)α

bb′
uu′(iω)dω, (.)

where αaa′
t t′ (iω) is the frequency-dependent distributed polarizability defined analogously

to > Eq. . and evaluated at imaginary frequency.This form of the asymptotic dispersion
energy involves a quadrupole sum over sites and is too cumbersome for most applications.
Instead, very often a simplification is made by localizing the distributed polarizabilities to
obtain a polarizability description that contains terms that contain one site index only. With
this simplification, the dispersion expansion involves a double sumover sites and can be cast
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into the more familiar site–site form (Stone and Tough ):

E()
disp(MP) = −


π ∑a∈A

∑

b∈B
∑

tut′u′
Tab
tu T

ab
t′u′ ∫

∞


αa
tt′(iω)α

b
uu′(iω)dω

= −
∑

a∈A
∑

b∈B
(

Cab


R
ab
+

Cab


R
ab
+

Cab


R
ab
+⋯) . (.)

In general, the dispersion coefficients are angle dependent (Stone and Tough ), but for
the special case of spherical sites (an idealization), they are independent of angle and only
terms of even order survive.

Damping Functions

As explained above, the divergence of themultipole expansions of the interaction energiesmust
be damped out using damping functions. The exact form of the damping functions are not
known, particularly for the induction energy, but experience from high-accuracy calculations
on small dimers suggests that the damping functions from Tang and Toennies (), which
are incomplete gamma functions, are probably the most suitable. The order-n Tang–Toennies
damping function takes the form

fn(βRab) =  − exp(−βRab)
n

∑

k=

(βRab)
k

k!
(.)

where β is the damping constant which may be angle dependent, but is often assumed to be a
simple constant dependent on the pair of sites (a, b). Often, even the site dependence is dropped
and β is assumed to depend on the molecular types alone.

In general, the damping constant βwill need to be determined by comparisonwith the non-
expanded energies [from SAPT(DFT)]. For the induction energy, since themultipole expansion
does not include the charge transfer energies, the comparison should be made with E()

ind,tot cal-
culated in the MC basis.This differs from the recommendation in Misquitta and Stone (a)
where it was suggested that the damping constant be derived from the ionization energies of
the interacting molecules as

β =
√

IA +
√

IB , (.)

where IA and IB are the molecular vertical ionization energies in atomic units. There is now
evidence (Sebetci and Beran ) to suggest that this results in too small a damping when used
to evaluate the many-body induction energy through the polarization expansion, potentially
resulting in a divergence of the expansion. However, there is extensive evidence that this value
of the damping constant is appropriate for the dispersion energy (Misquitta and Stone b)
and results in accurate dispersion energies even at molecular charge-density overlap.

Many-Body Contributions to the Interaction Energy

In the condensed phase and in clusters, the two-body energy is often a poor approximation
to the total interaction energy which can contain a substantial contribution from the many-
body energies (> Eqs. . and > .). These terms contribute most strongly in systems of
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polarizable molecules with strong permanent multipole moments such as those that exhibit
strong hydrogen-bonding. For example, Milet et al. () have shown that in clusters of water
molecules, the three-body contribution to the interaction energy can be as much as % at the
equilibrium geometries and evenmore – as much as % – at the barriers. Likewise, the many-
body non-additive energies have been shown to be responsible for the structural properties of
liquid water (Bukowski et al. ). Many-body effects are also present in dispersion-bound
systems like the argon liquid (Bukowski and Szalewicz ) small trimers containing inert
gases (Ernesti and Hutson ) and the benzene crystal (Podeszwa et al. ). In all cases the
non-additive dispersion makes a small but non-negligible contribution to the total interaction
energy.

The three-body correction (> Eq. .) is the dominant source of non-additivity (Bukowski
et al. ; Mas et al. a, b). This correction may be calculated using the supermolecular
approach, but the calculation is tedious and the BSSE needs to be corrected for. Nevertheless,
this approach is possible for small clusters (Hodges et al. ). The most appropriate method
for calculating the three-body correction is through a three-body version of SAPT(DFT)
(Podeszwa and Szalewicz ). Using representative trimers of benzene, Podeszwa et al. ()
have estimated the three-body SAPT(DFT) contribution to the lattice energy of the benzene
crystal and have found the result to be in good agreement with experiment. However this can-
not be done in general as the number of trimers in the condensed phase scales as the cube of
the number of molecules. One solution is to construct an analytic representation of the three-
body correction. Though this has been successfully done for water (Mas et al. a, b), it is a
formidable task, and is likely unreasonable to perform for most systems.

There are, however, alternative, computationally feasible procedures that are based on the
(distributed) multipole forms of the induction and dispersion that are the dominant source of
non-additivity in clusters (Bukowski and Szalewicz ; Mas et al. b). The exchange non-
additivity is significant in small clusters (Hodges et al. ; Milet et al. ), but it is relatively
less important in large clusters and the condensed phase (Mas et al. b).

From a detailed examination of the three-body SAPT energies for the argon liquid,
Bukowski et al. (Bukowski and Szalewicz ) have concluded that the bulk of the three-
body dispersion energy can be estimated using the Axilrod–Teller–Muto triple dipole term.
For isotropic local distributed polarizabilities this takes the form (Stone )

ΔEμ
disp(ABC) = ∑

a∈A
∑

b∈B
∑

c∈C
C
( +  cos â coŝb cos ĉ)

R
abR


bcR


ac

, (.)

where Rab , etc., are the lengths of the sides and â,̂b, and ĉ are the angles of the triangle formed
by the three atoms, and

C =

π
∫

∞


αa
(iω)αb

(iω)αc
(iω)dω. (.)

One of the most efficient and convenient ways of approximating the many-body induction
energy is through a polarizability model based on distributed polarizabilities. The many-body
induction energy of a cluster ofmolecules can be calculated using a generalization of > Eq. .
(Stone ):

Eind(Many-body) =

∑A

∑

a∈A
∑

B≠A
∑

b∈B
∑

tu
ΔQa

t T
ab
tu Q

b
u . (.)
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Here ΔQa
t is the change in multipole moment t at a due to the self-consistent polarization of

site a in the field of all sites on other molecules and is given by

ΔQa
t = − ∑

a′∈A
∑

B≠A
∑

b∈B
∑

t′v
αaa′
t t′ T

a′b
t′v (Q

b
v + ΔQb

v ), (.)

Notice that > Eq. . must be solved iteratively for all molecules in the system, as the ΔQ
occur on both sides of the equation. The cumulative effect of the iterations is small for a dimer,
but can be substantial for a cluster. As before, each of the T-functions should be associatedwith
a suitable damping function. Mas et al. (b) have validated this model for the many-body
energies in liquid water.

Molecular Properties

In order to evaluate the distributed multipole forms of the interaction energy components we
need to calculate distributed multipoles and distributed frequency-dependent polarizabilities
of the interacting molecules.

There is no unique method for distributed molecular properties. Rather than get into a
philosophical discussion of the concept of an atom-in-a-molecule (Matta and Bader ; Parr
et al. ) (see also the discussion in Lillestolen and Wheatley ) we will adopt the more
pragmatic approach and require that whatever the method used, the distributed properties be
the most accurate possible within the constraints imposed by the model. Additionally, we also
need the methods used to be numerically robust, applicable to small organic molecules, rel-
atively easy to use, and theoretically consistent with the electronic structure method used to
calculate the non-expanded energies, which, in our case, will be SAPT(DFT).

DistributedMultipoles

The distribution of the multipole moments has been the subject of many decades of research
(see Stone  and Stone andMisquitta  for reviews).The Distributed Multipole Analysis
(DMA) of Stone and Alderton () is widely used, and a recent modification (Stone )
overcomes a shortcoming of the earlier method that arose when diffuse functions were present
in the basis.

A special case of distributed multipoles are the point charge models. Such models may be
obtained in a variety of ways. In one of the most commonly used methods the charge model
is required to reproduce (in a least-squares sense) the molecular electrostatic potential at a set
of points around the molecule (Singh and Kollman ). These points are generally chosen to
lie sufficiently far as to exclude or minimize the effects of penetration. Another possibility is to
require that the charges best reproduce some of the molecular multipole moments.

The simplicity of the point charge models comes at a price. While such models may be
adequate for systems with an insignificant contribution from the electrostatic energy, they are
clearly inadequate for others, in particular, when hydrogen bonding is present. This is because
hydrogen bonds are strongly directional (Buckingham and Fowler ; Buckingham et al.
), whereas the electrostatic interaction between two point charges is completely isotropic.
Besides the energetic importance of the hydrogen bond, the strong directionality significantly
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reduces the available configuration space.This can have important consequences in simulations
and crystal energy landscape searches (Day et al. ).

Basis set: The higher-ranking multipoles require large and more diffuse basis sets to be well
described. Experience has shown that an augmented triple-ζ basis is often adequate.

Distributed Polarizabilities

The distributed polarizability is defined through > Eq. .. This definition suggests at least
twomethods for performing the distribution: one possibility is to require that the sitemultipole
moment operator Q̂a

t is non-zero only around site a, and likewise for Q̂a′
t′ . This real-space par-

titioning scheme has been implemented using integration grids (Le Sueur and Stone ) and
Bader’s theory of atoms in a molecule (Angyan et al. ). However, the shapes of the atomic
domains in these schemes tend to be irregular, which could lead to artifacts in the higher-rank
polarizabilities. Additionally, these methods tend to result in unphysically large charge-flow
terms that are hard to localize. These terms are rank zero contributions to the polarizability
(where one or both of the subscripts t and t′ are  in > Eq. .) that describe the flow
of charge along the molecule (Stone ). The effects of the charge-flow terms can often be
described using higher-ranking polarizabilities, but in order to do so, the charge-flow terms
must be small.

Yet another possibility is to partition the FDDS that appears in > Eq. . into contributions
from pairs of atoms. These are known as the basis-space partitioning methods. Early attempts
to do so failed as the resulting polarizabilities were completely unphysical for large basis sets
(Le Sueur and Stone ).

More recent methods (Gagliardi et al. ; Lillestolen and Wheatley ; Wheatley and
Lillestolen ) have been more successful, but are either applicable only to the static polar-
izability or are too cumbersome to use routinely. Also very recently, distribution schemes were
proposed by Williams and Stone () and Misquitta and Stone (). These two methods
have been combined into the Williams–Stone–Misquitta (WSM) method which has proved to
be one of the most successful methods for obtaining distributed polarizabilities. This is what we
will describe next.

Williams–Stone–Misquitta (WSM) Distribution

The WSM method involves three stages. In the first, the constrained density-fitting scheme
(Misquitta and Stone ) is used to calculate distributed, non-local polarizabilities. These are
then localized is stage two. And subsequently, in the final stage, refined using a method based
on Ref. Williams and Stone ().

Stage : From > Eq. . we see that the density-fitted FDDS can be partitioned into atom–
atom contributions by partitioning the auxiliary basis set into contributions from individual
sites, that is, {χ} = {χ(), χ(), ...}, and then the FDDS can be written as

α(r, r′∣ω) ≈
∑

aa′
αa ,a′
(r, r′∣ω), (.)
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where the contribution from sites a and a′ is given by

αa ,a′
(r, r′∣ω) =

∑

p∈a ,p′∈a′
C̃pp′(ω)χp(r)χp′(r′). (.)

We can now insert αa ,a′
(r, r′∣ω) in > Eq. . to define the distributed polarizability for sites

(a, a′):

αaa′
t t′ (ω) = ∑

p∈a ,p′∈a′
C̃pp′(ω)N

p
t N

p′

t′ , (.)

where N p
t = ∫ Q̂t(r − a)χp(r)dr, where a is a suitable reference origin for site a that will

typically be taken to be the nucleus. Here Q̂t(r − a) ≡ Q̂a
t is the multipole moment operator of

rank t, centered on site a.
This simple idea fails when the standard density-fitting procedure is used. The resulting

distributed polarizabilities are very sensitive to the auxiliary basis used (Misquitta and Stone
) and become unphysical as the basis grows larger and more complete. This is because in
a large diffuse basis, diffuse functions on a site can be used to describe properties on another,
adjacent site. This means that the basis functions located on a site are not representative of the
site properties.

This problem can be overcome by modifying the density-fitting algorithm (> section
“Density-Fitting”) to include two additional constraints: one to impose orthogonality and the
other to remove the non-physical terms (Misquitta and Stone ). With this modification,
the density-fitted form of the FDDS leads to much more sensible values (Misquitta and Stone
) and are only weakly dependent on the basis set used.

Step : The distributed polarizabilities obtained using this constrained density-fitting pro-
cedure contain non-local terms, that is, terms involving pairs of distinct sites. In contrast to
other distribution methods, the non-local terms describing flow of charge from site to site
are very small (around − and − a.u. in magnitude) for all systems, irrespective of the
type of bonding involved. Nevertheless, non-local terms are best avoided as they complicate
the description unnecessarily. The localization methods of Le Sueur and Stone () and
Lillestolen andWheatley () can be used to transform the non-local terms into local polariz-
abilities and remove the charge-flow terms altogether.The localization by this procedure causes
a deterioration of the convergence properties of the model, because multipole expansions are
used to move the polarizabilities around. In principle, the Le Sueur and Stone procedure can
increase the radius of divergence of the description to be equal to the size of the molecule,
thereby causing significant losses in accuracy for large molecules for which the Lillestolen and
Wheatley localization method may be more appropriate. Thus, while good results have been
obtained for molecules like formamide and urea, there is already an appreciable loss in accuracy
for N-methyl propanamide (Misquitta and Stone ).

Step : The quality of the local polarizability model from the previous step can be dra-
matically improved using the method of Williams and Stone (). In this step, the local
polarizabilities are refinedby requiring them to reproduce a set of point-to-point polarizabilities
which describe the response of the electrostatic potential at a point to the frequency-dependent
potential produced by a unit oscillating point charge at another. Details of the refinement
process are given in Misquitta and Stone (a) and Misquitta et al. (a).
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Analyzing theModels

TheWSMmethod can be used to construct a variety of polarization models.These can include
terms to rank  and can even be made isotropic. The refinement step ensures that whatever the
choice of model, it will be the most accurate possible. A convenient way of assessing the accu-
racy of themodels is bymapping induction energies onto a suitable surface around themolecule
in question (Misquitta et al. a). Such a mapping can be performed using a spherical energy
probe which, for the induction energy, is best taken to be a point charge with charge qe. The
induction energy of a molecule in the field of a point charge depends quadratically on the mag-
nitude of the charge, and an appropriate value of q needs to be used in interpreting the energy
scales in these maps. Setting q =  gives the response to a unit charge, but this is larger than
typical local charges in a molecule, which are not expected to exceed .e. The surface around
the molecule is constructed using the algorithm described in Misquitta et al. (a).

In > Fig. - we show difference maps of the induction energy of the formamide molecule
in the field of a unit point charge, computed using the non-local models, local models, and
WSM local models, respectively. The large errors in the non-local rank  model, particularly
near the oxygen and the polar hydrogen atoms, are quite clearly displayed. These errors are
reduced in the rank  local model and are still smaller in the WSM rank  local model. The

non-local

local

WSM

L1, WSM L2, WSM

L1 L2

NL1 NL2 NL3

−6q2

+6q2

0

⊡ Fig. -
Difference maps of the induction energy ( kJmol−) arising from a charge q atomic units on the
vdW× surfaceof formamideusingdistributednon-local descriptionof ranks , , and , distributed
local description of ranks  and  obtained from the non-localmodels using the Le Sueur and Stone
localization technique (Le Sueur and Stone ), and WSMdistributed local descriptions of ranks
 and . The differences are taken against SAPT(DFT) second-order induction energies obtained
using amolecular description with the Sadlej/MC basis set
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largest residual errors always seem to occur in the same regions, perhaps indicating the need for
higher-ranking polarizabilities on some sites than on others. At rank , the non-local model is
in almost perfect agreementwith SAPT(DFT), but the local model obtained using the Le Sueur
and Stone localizationmethod exhibits rather large deficiencies near the polar hydrogens.These
are removed in the WSM rank  local model which is comparable in accuracy to the rank 
non-local model.

Distributed Dispersion Coefficients

Having obtained the localized frequency-dependent polarizabilities, we can now evaluate the
dispersion coefficients that appear in > Eq. .. The dispersion coefficients depend on
integrals of the form

∫

∞


αa
tt′(iν)α

b
uu′(iν)dν, (.)

where rank-l – rank-l ′ and rank-l – rank-l ′ polarizability tensors contribute to aCn coefficient
with n = l + l ′ + l + l ′ + . At present, the WSM polarizabilities can be calculated to rank , so
while we can calculateC andC terms, theywill lack the contributions from the hexadecapole
and higher-rank polarizabilities. However, this has been shown not to be a serious limitation
(Misquitta and Stone b).

Basis sets: For a good dispersionmodel the basis set needs to be large and diffuse. To be con-
sistent with SAPT(DFT) interaction energies calculated using the MC+ (or DC+) basis types,
the dispersion coefficients should be calculated using a more diffuse basis than was used for
the monomer part of the SAPT(DFT) basis. This is to compensate for the effects of the mid-
bond functions that cannot be used when calculating dispersion coefficients. For example, if
an aug-cc-pVTZ MC+ basis is used to calculate SAPT(DFT) interaction energies, the disper-
sionmodel should be constructed fromWSMpolarizabilities calculated using a d-aug-cc-pVTZ
basis (Misquitta and Stone b).

Models: Dispersion models need to be rather elaborate before they are accurate enough to
describe the dispersion energy at small separations. > Figure - shows dispersion energymaps
for benzene and N-methyl propanamide using neon as a probe atom as described in Misquitta
and Stone (b). From the error maps we see that the C dispersion models significantly
underestimate the dispersion interaction, and it is only with the C model that we get a good
representation of the dispersion. More examples are provided in Misquitta and Stone (b).

However, the C model is rather elaborate and unwieldy. For many applications sim-
pler models may suffice. Fortunately, the WSM method allows the construction of far simpler
isotropic dispersion models. Even more simplifications can be made by scaling the isotropic
C WSM model to best reproduce the SAPT(DFT) dispersion energies (Misquitta and Stone
b), and the results are quite acceptable. From > Fig. - we see that the scaled isotropic
C dispersion model (damped) is quite acceptable for the benzene dimer and is a signifi-
cant improvement over the empirical dispersion model from a popular and well parameter-
ized empirical potential. The significant failure occurs at the stacked configurations where
anisotropy is essential to describe the dispersion interaction correctly.
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⊡ Fig. -
Dispersion energy maps of benzene and N-methyl propanamide with neon as a probe. The
SAPT(DFT) dispersion energy E()

disp,pol
is displayed using an absolute scale in kJmol−. The model

dispersion energies are displayed as differences taken against E()
disp,tot

from SAPT(DFT). The mod-
els are not damped. The d-aug-cc-pVTZ basis has been used for N-methyl propanamide and the
aug-cc-pVTZ basis for benzene

Case Studies

Applications

Over the last few years, SAPT(DFT) has been used to study the interactions between a number
of small and medium-sized molecules. Initial applications tended to focus on small systems
such as dimers of rare gas atoms (Misquitta et al. a; Podeszwa and Szalewicz ) where
detailed comparisons were possible with the more established CCSD(T) method, from which
the accuracy of SAPT(DFT) was validated. The agreement was generally excellent. Consider
for example the He⋅⋅⋅CO complex (> Fig. -).The agreement of SAPT(DFT) energies with the
CCSDT energies extrapolated to the complete basis set limit (Peterson and McBane ) is
remarkable. By contrast, SAPT yields a potential energy curve that is somewhat too negative.

Subsequently, applications were made to larger systems such as the ethyne and benzene
dimers (Hesselmann et al. ; Podeszwa and Szalewicz ) where, once again, the accu-
racy of the method was demonstrated.More recently, the DFT-SAPT implementation has been
used to study the interaction of water on graphene (Jenness and Jordan ), DNA base pairs
(Hesselmann et al. ), and DNA base pair tetramers (Fiethen et al. ). Calculations of
such accuracy are simply not possible using conventional electronic structure methods in the
supermolecular approach, particularly as the only correlated ab initio method with a reason-
able computational scaling is MP, andMP is not suitable for the interactions of systems with
π-bonding (Sinnokrot et al. ).

In a truly remarkable application on water, Bukowski et al. () derived a SAPT(DFT)
two-body potential, together with a three-body potential from SAPT (Mas et al. a, b)
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and a polarization model for the many-body effects, and were able to describe not only the
vibrational-rotational tunneling spectrum of the water dimer and trimer, but also the structure
of liquid water.

Complete potential energy surfaces of a few complexes have been calculated using
SAPT(DFT). These include the CO dimer, for which ro-vibrational transitions were calculated
and found to be in good agreementwith experiment (Vissers et al. ), and the benzene dimer
(Podeszwa et al. a). Recently, an anisotropic, transferable atom–atom potential for pol-
yaromatic hydrocarbons has been parametrized from SAPT(DFT) calculations on the benzene,
naphthalene, anthracene, and pyrene dimers (Podeszwa and Szalewicz ; Totton et al. ).
Such potentials could bring a new level of accuracy to the simulations of condensed matter.

Polarization in Organic Crystals

One of the successes of theWSM polarizability models has been in describing the role of polar-
ization in organic crystals (Welch et al. ). Amongst the many crystals of organic molecules
studied by Welch et al. let us consider one here: oxalyl dihydrazide (> Fig. -). This molecule
has been found to crystallize in five polymorphic forms. In the α form, themolecular conforma-
tion is quite different from the other four, with two fewer internal hydrogen bonds. While the
experimental lattice energies of these five forms are not known, it is generally expected that they
should lie close together in energy. However, lattice energies calculated usingmethods that only
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⊡ Fig. -
Lattice energy of the five polymorphs of oxalyl dihydrazide calculatedwith andwithout an explicit
polarization contribution. Without polarization, the α form is too high in energy compared with
the others, but on calculating the polarization contribution to the lattice energy self-consistently,
the five forms are seen to be similar in energy, which is what would be expected for polymorphs
(Welch et al. )
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modeled the exchange-repulsion, dispersion, electrostatic, and conformational energies predict
the lattice energy of the α form to be between  and kJmol− higher than the others. Such
a high energy is generally considered to be out of the range of possible polymorphism.

Using a WSM polarizability model, Welch et al. showed that this difference could be
explained as arising from polarization (induction) effects that were missing in the empirical
force fields (see > Fig. -). When polarization is taken into account explicitly and added to the
lattice energy (without subsequent lattice relaxation) all five polymorphs of oxalyl dihydrazide
are seen to have a similar lattice energy. It is not hard to see why an explicit model was found
to be important here. Empirical force fields (Williams a, b) will always contain some of the
effects of polarization in an average manner. This is why they work in many cases. But when
there is a difference in the hydrogen-bonding network, such as happens in polymorphs of oxa-
lyl dihydrazide where we see a difference in the number of intra and intermolecular hydrogen
bonds, these potentials are no longer able to describe the relative energies of the systems, and
we need an explicit treatment of the polarization. See Karamertzanis et al. () for a detailed
investigation of this instance of conformational polymorphism.

These effects will undoubtedly be important in other systems which involve different
hydrogen-bonding environments such as biological molecules. It is very likely that even a sim-
ple treatment of polarization may significantly improve the predictions of the properties of such
systems.

Crystal Structure Prediction

One of the significant successes of the electronic structure methods described in this chapter is
the high level of predictive power they have brought to the field of organic crystals. Consider
that just about  years ago the inability of computational scientists to predict crystal structures
of organic molecules was considered a “scandal” (Maddox ). While we still cannot claim to
have solved the problem, we do now have a number of noteworthy successes in this field.

One of the target molecules in the  blind test of organic crystal structure prediction
organized by the Cambridge Crystallographic Data Center (CCDC) was ,-dibromo--chloro-
-fluorobenzene (CBrClFH). This molecule contains halogen atoms which are not well
represented by most empirical potentials, primarily because they are strongly anisotropic (Day
and Price ; Stone ) and empirical atom–atom potentials assume spherical atomic
shapes. Using an anisotropic atom–atom potential calculated using first-order SAPT(DFT)
energies and a dispersion model from WSM polarizabilities, Misquitta et al. (b) were able
to predict a crystal structure for this system that was later found to correspond exactly with the
experimental one (> Fig. -) (Day et al. ).Thiswas the first completely ab initio prediction
of a crystal structure of an organic molecule.

Also recently, Podeszwa et al. () have used potentials derived from SAPT(DFT) to
model the crystal structures of cyclotrimethylene trinitramine (RDX) and benzene, the latter
being arguably themore difficult of the two systems.This once again demonstrates the accuracy
of force fields derived from SAPT(DFT) energies.

Outlook

Applications such as these would have been almost unthinkable as little as a decade ago. It
is developments in the theory of intermolecular forces together with improvements in our
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⊡ Fig. -
Two views of the overlay of the experimental (black) and predicted (gray) crystal structures of
CBrClFH. The two structures are hard to separate as the overlay is nearly perfect

computational resources that have made these calculations possible. We can only speculate
where future developments will take us in the next few years. For many applications computa-
tional requirement will limit us to use atom–atom intermolecular potentials. We have already
seen examples of the success of such potentials when derived using accurate ab initio methods,
but this is only the beginning of what is possible. Accurate ab initio methods like SAPT(DFT)
and the WSM method can be the basis of a new generation of atom–atom potentials that will
surpass any empirical potential in accuracy.

While we have good reason for optimism, it is worthwhile bearing inmind that at least some
of the successes described here are fortuitous.The crystal structure predictions listed above were
successful because the observed crystal form corresponded to the global minimum in the free
energy. However, this is not always true, particularly for industrially important polymorphic
molecules for which kinetic effects can be important. If we are to fully understand the inter-
play between kinetic and thermodynamic effects, we first need to remove any uncertainty in
our ability to model molecular interactions – probably of both the intra and intermolecular
types.

This raises the question of intramolecular flexibility which has not yet been adequately
addressed. The potential energy surface involving intermolecular and intramolecular degrees
of freedom is a formidable object and so far has been constructed for only a small number of
small dimers. Methods for the inclusion of internal degrees of freedom have been suggested
(Jankowski , ; Jankowski and Ziolkowski ; Murdachaew et al. ), but so far
have been applied to dimers of small systems only.This remains one of the outstanding problems
with this approach.

Yet another outstanding problem is the correct treatment of the interactions of small gap
materials such as fullerenes. It is quite likely that second-order perturbationwill not be adequate
for such systems. Furthermore, the strong electron delocalization in these semi-conductor-like
materials means that the standard atom–atom models of interaction fail due to their inherent
assumption of locality (Misquitta et al. ).This is possibly the next hurdle to be faced by the
theory of intermolecular interactions.
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Programs

There are a large number of programs that can be used to study intermolecular interactions.
If the supermolecular method is used, practically any electronic structure program capable of
using correlatedmethods likeMP andCCSD(T) can be used.However, the following programs
are likely more suited than most for this field.

• Sapt: (free, source available, parallel) The Sapt program (Bukowski et al. )
contains implementations of both SAPT and DF-SAPT(DFT) and allows the calculation of
three-body energies through the three-body SAPT and SAPT(DFT) theories. Besides the
usual interaction energy corrections, this program also contains a variety of state-of-the-art
energy components. The Sapt program uses molecular orbitals and eigenvalues from
a variety of SCF programs, but the DF-SAPT(DFT) module works only with the DALTON
. program.

• CamCASP: (free, source available, serial) The CamCASP (Misquitta and Stone ) con-
tains implementations of DF-SAPT(DFT), theWSMmethod for molecular properties, and
a variety of modules and programs to analyze and interpret mechanisms of intermolecular
interactions in small organic molecules (through interfaces with the Orient program) and
construct analytic, polarizable atom–atompotentials for small organicmolecules. Addition-
ally, distributedmultipoles can be calculated using CamCASP through the includedGDMA
. module. This program has been used for almost all the results presented in this chap-
ter. CamCASP uses molecular orbitals and eigenvalues calculated using the DALTON .
program (Helgaker et al. ).

• Orient: (free, source available, serial) Orient (Stone et al. ) is not an electronic
structure program, but is a very versatile platform for calculating interaction energies of
clusters, performing geometry optimizations, simulations and displaying energies using the
Open-GL module. This program is used quite closely by CamCASP through a variety of
interfaces.

• Molpro : (commercial, source available, parallel)TheMolpro  program (Werner
et al. ) contains a number of state-of-the-art electronic structure methods including
DF-DFT-SAPT. This program is probably the most computationally efficient implementa-
tion of SAPT(DFT), though the FDDS cannot include any fraction of CHF (see > section
“Symmetry-Adapted Perturbation Theory”).

• DALTON .: (free, source available, parallel) The DALTON . program (Helgaker et al.
) is used by both Sapt and CamCASP as the front-end to calculate the Kohn–
Sham molecular orbitals and eigenvalues and some of the integrals needed to evaluate the
FDDS.

Annotated Bibliography

The papers highlighted in this section are meant to be the most recent or comprehensive in the
subject. This list is by no means complete.They should be a good starting point for researchers
entering the field.

• Intermolecular forces: The book by Stone () is probably the most comprehensive intro-
duction to the theory from the atomistic point of view. Israelachvili () takes a very
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different approach and is more concerned with the manifestations of these forces on sur-
faces, bulk media, and complex systems. Yet another approach is taken by Parsegian ()
who tackles the Casimir forces between extended media in various geometries. The two
volumes – (Wales a, b) – offer articles on the current status of the field.

• Types of intermolecular bonds: An excellent overview of hydrogen bonds can be found
in the article by Buckingham, Del Bene, and McDowell (Buckingham et al. ). In the
last few years interest has developed in halogen bonded systems. See Bernal-Uruchurtu
et al. () for an introduction and an analysis based on a SAPT decomposition of the
interaction energy.

• SAPT: The review articles by Jeziorski, Szalewicz, and others (Jeziorski and Szalewicz ,
; Jeziorski et al. ; Szalewicz ; Szalewicz et al. ) are probably the most com-
prehensive articles on symmetry-adapted perturbation theory. See also the discussion of
these theories in Stone (). For a detailed examination of symmetry-forcing techniques
and the convergence of intermolecular perturbation theories see Szalewicz et al. ().

• SAPT(DFT): The theory of the SAPT(DFT) method is described in Misquitta et al. (b)
and DF-SAPT(DFT) in Podeszwa et al. (b). The DF-DFT-SAPT method is described
in Hesselmann et al. ().

• Potentials: Obtaining an analytic expression for the intermolecular interaction energy in
atom–atom form is often difficult. See Misquitta et al. (b) and Stone and Misquitta
() for a discussion of how this could be done.

• Crystal structure prediction: The field of organic crystal structure prediction remains one
of the best testing grounds for intermolecular potentials. Accuracies need not be as high as
that needed for spectroscopic calculations, but the effects of molecular flexibility andmany-
body non-additivity need to be accounted for. See Price (, ) for recent reviews of
this subject. For a description of dispersion-corrected DFTmethods specially parametrized
for organic crystals see Neumann and Perrin (). For a comprehensive examination of
the role of detailed distributed multipole models in this field see Day et al. ().
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Abstract: This chapter provides an overview of different hierarchical levels of molecular
dynamics (MD) simulations spanning a wide range of time and length scales – from first prin-
ciples approaches via classical atomisticmethods to coarse graining techniques.The theoretical
background of the most widely used methods and algorithms is briefly reviewed and practi-
cal instructions are given on the choice of input parameters for an actual computer simulation.
In addition, important postprocessing procedures such as data analysis and visualization are
discussed.

Introduction

Molecular dynamics (MD) simulations in their different flavors are widely used in a large
variety of research areas of Computational Physics and Chemistry. They represent a power-
ful tool to study the motion of atoms in molecules, liquids, and solids. The term MD typically
refers to the propagation of point particles – atomic nuclei or effective particles combining sev-
eral nuclei – according to the laws of classical mechanics. In particular, the forces acting on
the particles are calculated “on the fly” only at discrete points along the trajectory. Following
this definition, we discuss in this chapter Ab Initio MD (AIMD), i.e., the atomic forces are
calculated from first principles, classical atomistic MD using analytical empirical interaction
potentials (force-fields), which sometimes is referred to as force-field molecular dynamics, and
coarse grain MD using analytical empirical potentials between effective particles representing
groups of atoms. We exclude methods which go beyond classical nuclei, such as path integral
MD (Tuckerman ; Tuckerman and Hughes ; Tuckerman et al. ) and wavepacket
dynamics (Balint-Kurti ; Worth et al. ), or beyond the Born–Oppenheimer approxi-
mation (Doltsinis and Marx a, b). This overview, furthermore, leaves out the vast area of
semi-empirical methods (see for instance Bredow and Jug [] for a recent review) includ-
ing self-consistent charge density functional tight-binding (SCC-DFTB) (Elstner et al. )
and empirical valence-bond (EVB) theory (Aqvist andWarshel ; Shurki andWarshel ;
Warshel , ).

The aim of this chapter is to offer practical guidance on how to choose the appropriate
technique for a particular physical problem, how to set up a simulation, and how to analyze
and visualize the output. In addition it should provide the theoretical background required to
become a competent user of the available simulation software packages.

Choosing the Right Method

When choosing which type of molecular dynamics simulations to perform, it is important
to understand the capabilities of each technique. The differences in the various methods are
basically dependent on the detail with which each one models a physical system.

The most detailed molecular dynamics simulation technique is the ab-initio (quantum)
molecular dynamics simulation approach that explicitly models the electrons of the particles
within the system. Whereas, force-field molecular dynamics simulations model the nuclear
interactions of the particles within the system, and therefore do not explicitly model each
electron. Then the method that incorporates the least amount of detail is that of coarse
grain molecular dynamics models where multiple particles are grouped together before being
represented by a single interaction “bead.”
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Therefore, quantum molecular dynamics simulations will generate the most detailed mod-
eling of interatomic interactions as electrons are the basis of all such interactions. Quantum
simulations allow for certain phenomena like electron transport within a system to be mod-
eled, which cannot be modeled in force-field or coarse grain molecular dynamics simulations
because they do not explicitly model electrons. Also, in order to model chemical reactions,
quantum simulations are the most accurate approach (Note: there have been force-field and
coarse-grain molecular dynamics simulations that have modeled the formation and breaking
of bonds, but some a priori knowledge must then be included in the model to allow for the
reaction to take place). The major limitations of quantum simulations is that the simulations
are very computationally intensive, which results in the capability to model only small system
sizes (∼ particles) and time (∼− s). Thus the systems that can be modeled are limited to
small molecules or portions of larger molecules (i.e., specific amino acids within a protein).

Force-field molecular dynamics simulations offer the ability to model molecules at the
particle level. Often, information from quantum simulations is used to develop the empiri-
cal equations (force-field) that are used to govern the interactions between particles. Because
force-field molecular dynamics simulations use less detail than the quantum simulations, they
are able to model systems that are significantly larger in size (∼ particles) for a longer period
of time (<− s).Therefore, measuring the structural, mechanical, and/or transport properties
of medium to large sized systems (i.e., proteins, functionalized nanoparticles, . . .) is possible.

Finally, coarse grain molecular dynamics simulations reduce the number of degrees of free-
dom within the simulated system even further by grouping several atoms into one interaction
bead.Therefore, even larger system sizes and times (on the order of seconds) are accessible via
these simulations. Several of the same properties measured via force-field molecular dynamics
simulations can bemeasuredwith coarse grainmolecular dynamics simulations (i.e., structural,
mechanical, and transport properties). However, due to the reduced detail in the models of the
molecules, it is not possible to investigate specific chemical interactions within a system, such
as hydrogen bonding.

Once you have chosen the appropriate method for the particular system and prop-
erty to be investigated, the next choice is what simulation package to use. For clas-
sical MD simulations, there are several free molecular dynamics packages that can be
found on the web including DL_POLY (Smith et al. ; Todorov and Smith ),
GROMACS (van der Spoel et al. a, b), HOOMD (Anderson et al. ; HOOMD ),
LAMMPS (LAMMPS ; Plimpton ), MOLDY (Refson , ), and NAMD (Bhandarkar
et al. ; Phillips et al. b), and there are also commercial packages including AMBER
(Case et al. , ), CHARMM (Brooks et al. ; CHARMM ), and GROMOS (GROMOS
; Scott et al. ). Generally, these codes can be divided into those that aremostly used for
simulations of biological systems (AMBER, CHARMM, GROMACS, GROMOS, NAMD) and
those that aremore general simulation packages (HOOMD, LAMMPS, MOLDY). When choos-
ing between these options, an important criterion is to choose a code that you feel comfortable
using. Outside of comfort, another aspect to take into consideration is that packages will differ
in the features they offer and the additional tools to perform analysis (usually lists of analysis
tools can be found in the packages’ documentation).

For AIMD simulations, the user may choose from a large number of codes, for instance,
ABINIT (; Aulbur et al. ), CASTEP (; Clark et al. ; Segall et al. ),
CONQUEST (; Bowler et al. ), CP2K (Hutter et al. ; VandeVondele et al. ,
), CPMD (Marx and Hutter , ; Parrinello et al. ), CP-PAW (; Blochl
; Blochl et al. ), DACAPO (), FHI98md (; Bockstedte et al. ), NWChem
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(; Kendall et al. ), ONETEP (; Skylaris et al. ), PINY (), PWscf (;
Giannozzi et al. ), QuantumEspresso (; Giannozzi et al. ), SIESTA (;
Artacho et al. ; Soler et al. ), S/PHI/nX (; Boeck ), or VASP (; Kresse
and Furthmüller ).

Theoretical Background

Born–Oppenheimer Approximation

Let us begin by introducing our nomenclature and by reviewing some well-known basic rela-
tions within the Schrödinger formulation of quantum mechanics. A complete, nonrelativistic,
description of a dynamic system of N atoms having the positions R = {R,R, . . . ,RI , . . . ,RN}

with n electrons located at r = {r, r, . . . , ri , . . . , rn}would involve solving the time-dependent
Schrödinger equation

HΦ(r,R; t) = iħ
∂
∂t

Φ(r,R; t), (.)

with the total Hamiltonian

H(r,R) = T (R) + T (r) + Vnn(R) + Vne(r,R) + Vee(r), (.)

being the sum of kinetic energy of the atomic nuclei,

T (R) = −
ħ



N
∑

I=

∇

I

MI
, (.)

kinetic energy of the electrons,

T (r) = −
ħ

me

n
∑

i=
∇


i , (.)

internuclear repulsion,

Vnn(R) =
e

πє

N−
∑

I=

N
∑

J>I

ZIZJ

∣RI − RJ ∣
, (.)

electronic–nuclear attraction,

Vne(r,R) = −
e

πє

N
∑

I=

n
∑

i=

ZI

∣ri −RI ∣
, (.)

and interelectronic repulsion,

Vee(r) =
e

πє

n−

∑

i=

n

∑

j>i


∣ri − r j ∣

. (.)

Here, MI and ZI denote the mass and atomic number of nucleus I; me and e are the elec-
tronic mass and elementary charge, and є is the permittivity of vacuum. The nabla operators
∇I and∇i act on the coordinates of nucleus I and electron i, respectively.The totalwavefunction
Φ(r,R; t) simultaneously describes the motion of both electrons and nuclei.

The Born–Oppenheimer approximation (Doltsinis and Marx b; Kołos ; Kutzel-
nigg ) separates nuclear and electronic motion based on the assumption that the much
faster electrons adjust their positions instantaneously to the comparatively slow changes in
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nuclear positions. The electronic problem is then reduced to the time-independent (electronic)
Schrödinger equation for clamped nuclei,

Hel(r;R)Ψk(r;R) = Ek(R)Ψk(r;R), (.)

whereHel(r;R) is the electronic hamiltonian,

Hel(r,R) = T (r) + Vnn(R) + Vne(r,R) + Vee(r), (.)

and Ψk(r;R) is the electronic wavefunction of state k. Meanwhile, nuclear motion is
described by

[T (R) + Ek(R)] χk = iħ
∂
∂t

χk (.)

with the nuclear wavefunction χk(R, t) evolving on the potential energy surface Ek(R) of the
electronic state k. The total wavefunction is then the direct product of the electronic and the
nuclear wavefunction,

Φ(r,R; t) = Ψk(r,R)χk(R, t) (.)

In the classical limit (Doltsinis and Marx b), the nuclear wave equation (> .) is
replaced by Newton’s equation of motion

MIR̈I = −∇IEk (.)

For a great number of physical situations, the Born–Oppenheimer approximation can be
safely applied. On the other hand, there are many important chemical phenomena such as
charge transfer and photoisomerization reactions, whose very existence is due to the insepa-
rability of electronic and nuclear motion. Inclusion of nonadiabatic effects is beyond the scope
of this chapter and the reader is referred to the literature (e.g., Doltsinis ; Doltsinis and
Marx b) for more details.

The above approximations form the basis of conventional molecular dynamics, > Eqs. .
together with > . being the working equations. Thus, in principle, a classical trajectory cal-
culation merely amounts to integrating Newton’s equations of motion (> .). In practice,
however, this deceptively simple task is complicated by the fact that the stationary Schrödinger
equation (> .) cannot be solved exactly for any many-electron system. The potential energy
surface therefore has to be approximated using ab initio electronic structuremethods or empir-
ical interaction potentials (so-called force-field molecular dynamics Sutmann [] and Allen
and Tildesley []).The former approach, usually referred to as ab initio molecular dynamics
(AIMD), will be the subject of section “Ab Initio Molecular Dynamics,” while the latter –
force-field molecular dynamics – will be discussed in section “Classical Molecular Dynamics.”

Ab Initio Molecular Dynamics

In the following, we shall focus on first principlesmolecular dynamicsmethods. Due to the high
computational cost associatedwith ab initio electronic structure calculations of largemolecules,
computation of the entire potential energy surface prior to the molecular dynamics simulation
is best avoided. A more efficient alternative is the evaluation of electronic energy and nuclear
forces “on the fly” at each step along the trajectory.
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Born–OppenheimerMolecular Dynamics

In the so-called Born–Oppenheimer implementation of such a scheme (Marx andHutter ),
the nuclei are propagated by integration of > Eq. ., where the exact energy Ek is replaced
with the eigenvalue, Ẽk , of some approximate electronic Hamiltonian, H̃el , which is calculated
at each time step. For the electronic ground state, i.e., k = , the use of Kohn–Sham (KS) den-
sity functional theory (Dreizler and Gross ; Parr and Yang ) has become increasingly
popular.

Car–Parrinello Molecular Dynamics

In order to further increase computational efficiency, Car and Parrinello have introduced a
technique to bypass the need for wavefunction optimization at each molecular dynamics step
(Car and Parrinello ; Marx and Hutter ). Instead, the molecular wavefunction is
dynamically propagated along with the atomic nuclei according to the equations of motion

MIR̈I = −∇I⟨Ψk∣H̃el ∣Ψk⟩ (.)

μi ψ̈i = −
δ

δψ⋆

i
⟨Ψk ∣H̃el∣Ψk⟩ +∑

j
λi jψ j, (.)

where the KS one-electron orbitals ψi are kept orthonormal by the Lagrange multipliers λi j.
These are the Euler–Lagrange equations

d
dt

∂L
∂q̇

=

∂L
∂q

, (q = RI , ψ
⋆

i ) (.)

for the Car–Parrinello Lagrangian (Car and Parrinello )

L =
∑

I



MIṘ

I +∑
i



μi⟨ψ̇i ∣ψ̇i⟩ − ⟨Ψk∣H̃el ∣Ψk⟩ +∑

i j
λi j(⟨ψi ∣ψj⟩ − δi j) (.)

that is formulated here for an arbitrary electronic state Ψk , an arbitrary electronic Hamiltonian
H̃el, and an arbitrary basis (i.e., without invoking the Hellmann–Feynman theorem).

Classical Molecular Dynamics

While first-principles molecular dynamics simulations deal with the electrons in a system,
this results in a large number of particles that must be considered and therefore the calculations
become significantly time-consuming. Classical molecular dynamics ignore electronic motions
and calculate the energy of a system as a function of the nuclear positions only, and therefore
are used to simulate larger, less detailed systems for larger timescales.The successive configura-
tions of the system are generated by solving the differential equations that constitute Newton’s
second law (> Eq. .):

dXI

dt
=

FXI

MI
(.)

This equation describes the motion of a particle of mass MI along one dimension (XI), where
FXI is the force on the particle in that dimension. The solution of these differential equations
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results in a trajectory that specifies how the positions and velocities of the particles in the system
vary with time.

In realistic models of intermolecular interactions, the force on particle I changes whenever
particle I changes its position or whenever another atomwith which particle I interacts changes
its position. Therefore the motions of all the particles are coupled together, which results in a
many-body problem that cannot be solved analytically. Therefore finite difference methods are
used to integrate the equations of motion.

Generally, the integration of > Eq. . is broken into consecutive steps that are conducted
at different times t that are separated by increments of δt, which is generally referred to as the
time step. First, the total force on each particle in the system at time t is calculated as the vector
sum of its interactions with other particles.

Then, assuming the force is constant over the course of the time step, the accelerations of the
particles are calculated,which are then combined with positions and velocities of the particles at
time t to determine the positions and velocities at time t+ δt. Finally, the forces on the particles
in their new positions are determined, and then new accelerations, positions, and velocities are
determined at t + δt and so on.

A common approach in the various finite differencemethods used to integrate the equations
of motions for classical molecular dynamics simulations is that it is assumed that the positions,
velocities, and accelerations (as well as all other dynamic properties) can be approximated using
Taylor series expansions:

R(t + δt) = R(t) + δtV(t)+


δtA(t) +



δtB(t) +




δtC(t) + . . . (.)

V(t + δt) = V(t) + δtA(t)+


δtB(t) +



δtC(t) + . . . (.)

A(t + δt) = A(t) + δtB(t)+


δtC(t) + . . . (.)

where R is the position, V is the velocity, A is the acceleration, and B and C are the third and
fourth derivatives of the positions with respect to time, respectively.

Verlet Algorithm

One of the most widely used finite difference methods in classical molecular dynamics sim-
ulations is the Verlet algorithm (Verlet ). In the Verlet algorithm, the positions and
accelerations at time t and the positions from the previous time step R(t − δt) are used to
calculate the updated positions R(t + δt) using the equation:

R(t + δt) = R(t) −R(t − δt) + δtA(t). (.)

While the velocities do not explicitly appear in > Eq. ., they can be calculated from the
difference in position over the entire time step:

V(t) =
∣R(t + δt) − R(t − δt)∣

δt
(.)

or the difference in position over a half time step (t + 
 δt):

V(t +


δt) =

∣R(t + δt) − R(t)∣
δt

(.)
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The fact that the velocities are not explicitly represented in the Verlet algorithm is one of
the drawbacks to this method in that no velocities are available until the positions have been
determined at the next time step. Also, in order to calculate the position of particles at t = δt, it
is necessary to determine the positions at t = −δt since the algorithm requires the position at
time t − δt to calculate the position at time t + δt. Often, this drawback is overcome by using
the Taylor series to calculate R(−δt) = R() − δtV() + 

 δt
A(t)∣ + . . .. A final drawback

of the Verlet algorithm is that there may be a loss of precision in the resulting trajectories that
result from the fact that the positions are calculated by adding a small term (δtA(t), to the
difference of two larger terms (R(t) and R(t − δt)) in > Eq. ..

“Leap-Frog”Algorithm

In an attempt to improve upon the original Verlet algorithm, several variations have been devel-
oped. The leap-frog algorithm (Hockney ) is one of the variations that uses the following
equations to update the positions:

R(t + δt) = R(t) + δtV(t +


δt), (.)

and the velocities:

V(t +


δt) = V(t −



δt) + δtA(t). (.)

In the leap-frog algorithm, the velocities V(t + 
 δt) are first calculated from the velocities at

time t − 
 δt and the accelerations at time t using > Eq. .. Then the positions R(t + δt) are

calculated from the velocitiesV(t+ 
 δt) and the positionsR(t) using > Eq. ..The algorithm

gets its name from the fact that the velocities are calculated inmanner such that they “leap-frog”
over the positions to give their values t − 

 δt. Then the positions are calculated such that they
“leap-frog” over the velocities, and then the algorithm continues.

The “leap-frog” algorithm improves upon the standard Verlet algorithm in that the velocity
is explicitly included in the calculations and also the “leap-frog” algorithm does not require
the calculation of the differences of large numbers so the precision of the calculation should be
improved. However, the fact that the calculated velocities and positions are not synchronized
in time results in the fact that the kinetic energy contribution to the total energy cannot be
calculated for the time at which the positions are defined. In response to this shortcoming in
the “leap-frog” algorithm, a formalism to calculate the velocities at time t has been developed
that follows

V(t) =
[V(t + δt

 ) +V(t − δt
 )]


(.)

Velocity Verlet Algorithm

The velocity Verlet method (Swope et al. ), which is a variation of the standard Verlet
method, calculates the positions, velocities, and accelerations at the same time by using the
following equations:

R(t + δt) = R(t) + δtV(t)+


δtA(t) (.)
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V(t + δt) = V(t) +


δt[A(t)+A(t + δt)]. (.)

The velocity Verlet method is a three-stage algorithm because the calculation of the new veloc-
ities (> Eq. .) requires both the acceleration at time t and at time t + δt.Therefore, first, the
positions at t + δt are calculated using > Eq. . and the velocities and accelerations at time t.
The velocities at time t + 

 δt are then calculated using

V(t +


δt) = V(t) +



δtA(t). (.)

Then the forces are computed from the current positions, which results in being able to calculate
A(t + δt).Then the final step consists of calculating the velocities at time t + δt using

V(t + δt) = V(t +


δt) +



δtA(t + δt). (.)

Therefore, the velocity Verlet allows for the velocities and positions to be calculated in a
time-synchronized manner, and thus allows for the kinetic energy contribution of the total
energy. Also, the precision of the results will be improved upon those from the standard Verlet
algorithm as there are no differences of large numbers within the formalism of the method.

The selection of the best time integration method for a given problem and the size of the
time step to use will be discussed in section “Setting the Time Step.”

Hybrid Quantum/Classical (QM/MM) Molecular Dynamics

The ab initio and classical simulation techniques discussed in the previous sections can be
viewed as complementary. While AIMD is capable of dealing with electronic processes such
as chemical reactions, charge transfer, and electronic excitations, its applicability is limited to
systems ofmodest size, precluding its use in complex, large-scale biochemical simulations. Clas-
sical MD, on the other hand, can describemuch larger systems on longer timescales, but misses
any of the above-mentioned electronic effects, e.g., bond breaking and formation. The basic
idea of the QM/MM approach is to combine the strengths of the twomethods treating a chemi-
cally active region at the quantum level and the environment usingmolecular mechanics (i.e., a
force-field).There are several excellent review articles on the QM/MMmethod in the literature
(Senn andThiel ; Thiel ).

Partitioning Schemes

The entire system, S, is partitioned into a chemically active inner region, I, and a chemically
inert outer region, O. If the border between these regions cuts through chemical bonds, so-
called link atoms, L, are usually introduced to cap the inner region (see section “Bonds Across
the QM/MM Boundary”).

Subtractive Scheme

In a subtractive scheme, the total energy, ES
QM/MM, of the entire system,

ES
QM/MM = ES

MM + EI,L
QM − EI,L

MM (.)
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is calculated from three separate energy contributions: () the MM energy of the entire system,
ES
MM, () the QM energy of the active region (including any link atoms), EI,L

QM, () the MM
energy of the active region EI,L

MM.
The role of the third term in > Eq. . is to avoid double counting and to correct for any

artifacts caused by the link atoms. For the latter to be effective, the force-field has to reproduce
the quantum mechanical forces reasonably well in the link region.

Additive Scheme
In an additive scheme, the total energy of the system is given by

ES
QM/MM = EO

MM + EI,L
QM + EI,O

QM−MM (.)

The difference to the subtractive scheme is that here a pure MM calculation is performed for
only the outer region and the interaction betweenQMandMMregions is achieved by an explicit
coupling term,

EI,O
QM−MM = Ebond

QM−MM + EvdW
QM−MM + Eel

QM−MM (.)

where Ebond
QM−MM, E

vdW
QM−MM, E

el
QM−MM, are bonded, van der Waals, and electrostatic interaction

energies, respectively.
The simplest way to treat electrostatic interactions between the I and O subsystems is to

assign fixed electric charges to all I atoms (mechanical embedding). In this case the QMproblem
is solved for the isolated subsystem Iwithout taking into account the effects of the surrounding
atomic charges inO. Themajority of implementations use an electrostatic embedding scheme in
which the MM point charges of region O are incorporated in the QM Hamiltonian through a
QM-MM coupling term,

Ĥel
QM−MM = −

n
∑

i
∑

α∈O

qα
∣ri −Rα ∣

+
∑

I∈I+L
∑

α∈O

qαZI

∣RI − Rα ∣
(.)

where qα are the MM point charges at positions Rα (all other symbols as defined in section
“Born–Oppenheimer Approximation”). In this way, the electronic structure of the QM region
adjusts to themovingMMcharge distribution. A problem that arises when anMMpoint charge
is in close proximity to the QM electron cloud is overpolarization of the latter, sometimes
referred to as “spill-out” effect. This can be avoided by modifying the Coulomb potential in
the first term of > Eq. . at short range (see for instance Laio et al. ).

At present, in all commonly used partitioning schemes, the partitions remain fixed over
time, i.e., an MM atom cannot turn into a QM atom and vice versa. This can present a serious
limitation, for instance, in the case of solvent diffusion through the chemically active region.
A number of adaptive partitioning methods have been proposed to remedy this problem (Bulo
et al. ; Heyden et al. ; Hofer et al. ; Kerdcharoen et al. ; Kerdcharoen and
Morokuma ); however the computational overhead is enormous.

Bonds Across the QM/MMBoundary

Partitioning the total system into QM and MM regions in such a way that cuts chemical bonds
is best avoided. However, in many cases this is inevitable. Then one has to make sure that
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any atoms participating in chemical reactions are at least three bonds away from boundary.
Furthermore it is preferable to cut a bond that is unpolar and not part of a conjugated chain.

Link Atoms

Cutting a single covalent bond will create a dangling bond which must be capped by a so-called
link atom; in most applications a hydrogen atom is chosen. In the QM calculation, the atoms
of region I together with the link atoms L are treated as an isolated molecule in the presence of
the point charges of the environmentO. The original QM–MM bond, cut by the partitioning,
is only treated at the MM level.

Boundary Atoms

Boundary atom schemes have been developed to avoid the artifacts introduced by a link atom.
The boundary atom appears as a normal MM atom in the MM calculation, while carrying QM
features to saturate the QM–MM bond and to mimic the electronic properties of the MM side.
The QM interactions are achieved by placing a pseudopotential at the position of the boundary
atom, parameterized to reproduce electronic properties of certain chemical end group, e.g., a
methyl group in the case of a cut C–Cbond. Among the various flavors that have been proposed,
the pseudobond method for first principles QM calculations (Zhang , ; Zhang et al.
) and the pseudopotential approach for plane-wave DFT (Laio et al. ) are the most
relevant in the present context.

Frozen Localized Orbitals
The basic idea behind the various frozen orbital methods (Amara et al. ; Assfeld and Rivail
; Assfeld et al. ; Day et al. ; Ferré et al. ; Fornili et al. , a, b; Gao et al.
; Garcia-Viloca and Gao ; Gordon et al. ; Grigorenko et al. ; Jensen et al. ;
Jung et al. ; Kairys and Jensen ; Loos and Assfeld ; Monard et al. ; Murphy
et al. ;Nemukhin et al. , ; Philipp and Friesner ; Pu et al. a, b, ; Sironi
et al. ; Théry et al. ; Warshel and Levitt ) is to saturate the cut QM–MM bond by
placing on either the MM or the QM atom at the boundary localized orbitals that have been
determined in a prior quantum-mechanical SCF calculation on a model molecule containing
the bond under consideration. To preserve the properties of the bond, the localized orbitals
are then kept fixed in the subsequent QM/MM calculation. Different flavors are the Local SCF
(LSCF) method (Assfeld and Rivail ; Assfeld et al. ; Ferré et al. ; Monard et al.
; Théry et al. ), extremely localized molecular orbitals (ELMOs) (Fornili et al. ,
b; Sironi et al. ), frozen core orbitals (Fornili et al. a), optimized LSCF (Loos
and Assfeld ), frozen orbitals (Murphy et al. ; Philipp and Friesner ), generalized
hybrid orbitals (Amara et al. ; Gao et al. ; Garcia-Viloca andGao ; Jung et al. ;
Pu et al. a, b, ), and effective fragment potentials (EFP) (Day et al. ; Gordon et al.
; Grigorenko et al. ; Jensen et al. ; Kairys and Jensen ; Nemukhin et al. ,
).

Of the three types of boundary treatment, the link atommethod is the simplest both concep-
tually and in practice, and is hence the most widely used.The boundary atom and in particular
the frozen orbital methods can potentially achieve higher accuracy but require careful a priori
parametrization and bear limitations on transferability (Senn andThiel ).
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Coarse GrainMolecular Dynamics

A large number of important problems in fields that are often studied using molecular dynam-
ics simulations (i.e. soft condensed matter physics, structural biology, chemistry and materials
science) take place over a time span of microseconds to seconds and distances of few hun-
dred nanometers to a few microns. However, these time and length scales are still unattainable
via quantum or force-field molecular dynamics methods despite significant computational
hardware advances (Mervis ; Reed ; Shirts and Pande ) and the development of
increasingly powerful software (Lindahl et al. ; MacKerell et al. ; Phillips et al. a;
Wang et al. ). Therefore one approach that has been utilized in order to be able to study
these complex problems is to reduce the computational demand of the simulation by reducing
the number of atoms represented and therefore the degrees of freedom of the simulated system.
This procedure of reducing the number of atoms represented in a system is done by grouping
atoms together and representing them as a single interaction site and is generally referred to as
“coarse graining” of the system. > Figure - shows a comparison of the atomistic, united-atom
and coarse grain representation.

The “bead-spring” coarse grain model of polymer chains that was created by Kremer and
Grest in  has served as the foundation for many of the coarse grain models that have been
developed for a wide range of phenomena (at the current date this paper has been cited over
 times) including various studies of polymers and biomolecules including DNA solutions.
Many of the more recent coarse grain models have been developed for biological macro-
molecules since there are many examples of interesting biophysical phenomena that occur at
large length and timescales. The most widely used coarse grain models for biological systems
include the generic model of Lipowsky et al. (Goetz et al. ; Shillcock and Lipowsky ),
the solvent-free model of Deserno et al. (Cooke et al. ), and the specific models of the
Klein group (Shelley et al. ), the Voth group (which is called the Multi-Scale Coarse Grain
model) (Izvekov and Voth , ), and the Marrink group (called the MARTINI force-
field) (Marrink et al. ). The above coarse grain models have generally been developed for
lipid membranes, however there are also coarse grain force-fields for proteins (as reviewed in
Tozzini [] and somemore recent examples Betancourt andOmovie [] and Bereau and
Deserno []) and DNA (Khalid et al. ; Tepper and Voth ).

All-atom representation United-atom representation

Coarse-grain representation

⊡ Fig. -
Atomistic, united-atom, and coarse grain representations of organic molecules
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Whendeveloping a coarse grainmodel for a system, there are two important decisions to be
made: () how many atoms to combine (coarse grain) into a single interaction site and () how
to parameterize the coarse grain force-field. In deciding the number of atoms to combine into
a single interaction site, one must consider the obvious trade-off of how much detail are you
able to sacrifice in order to simulate larger length and/or timescale phenomena and still be able
to actually accurately model the phenomena of interest. The least amount of coarse graining
that has been used is represented by what is called a “united-atom” representation of amolecule
where all “heavy” atoms (generally all non-hydrogen elements in a molecule) are represented
and the “light” (i.e., hydrogen) atoms are groupedwith the heavy atom towhich they are bonded
into one interaction site.United atomversions ofmanyof the popular all-atom force-fields listed
in section “Classical Force Fields” exist and have been successfully used in several studies. In
addition to united-atom models, there are several existing coarse graining methods that will
combine different number of atoms together into one interaction site.

In general, coarse grain systems are governed by similar potential terms as are found in
atomistic models such as nonbond terms (both pair-wise interactions and electrostatic interac-
tions), bond stretching terms, and then in more sophisticated models even angle and dihedral
terms will be included as well. Generally, all specific models are parameterized based on com-
parison to atomistic simulations and/or detailed experimental data. Effective coarse grain
potentials have been extracted from atomistic simulations using inverse Monte Carlo schemes
(Elezgaray and Laguerre ; Lyubartsev ) or force matching approaches (Izvekov and
Voth , ). Another approach is to develop standard potential functions that are cal-
ibrated using thermodynamic data (Marrink et al. ). The advantage of the using either
the inverse Monte Carlo or force matching schemes is that the resulting force-field will pro-
duce a higher level of accuracy and closer resemblance to atomistic simulations. However, these
schemes produce force-fields that are useful for a given statepoint and therefore are not trans-
ferable. Whereas the advantages of the thermodynamic approach include that it produces a
potential that has a broader range of applicability and also the thermodynamic approach does
not require atomistic simulations to be done in the first place.

Interaction Potentials/Force Fields

Classical Force Fields

Classical, or empirical, force-fields are generally used to calculate the energy of a system as a
function of the nuclear positions of the particles within the system, while ignoring the behav-
ior of the individual electrons. As stated in the section “Born–Oppenheimer Approximation,”
the Born–Oppenheimer approximation makes it possible to write the energy as a function of
the nuclear coordinates. Another approximation that is key to the implementation of classical
force-fields is that it is possible to model the relatively complex motion of particles within the
systemwith fairly simple analytical models of inter and intra-molecular interactions. Generally,
an empirical force-field consists of terms that model the nonbonded interactions (Enonbond),
which include both the van der Waals and Coulombic interactions, the bonded interactions
(Ebond), the angle bending interactions (Eangle), and the dihedral (bond rotations) interactions
(Edihedral ):

E(R) = Enonbond + Ebond + Eangle + Edihedral . (.)
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⊡ Fig. -
Intramolecular terms of classical force-fields: bond, angle, and dihedral interactions

> Figure - presents representative cartoons of the bond, angle, and dihedral interactions from
amolecular perspective.The form that each of these individual terms takes is dependent on the
force-field that you are using. There are several different force-field options available for vari-
ous systems. The best way to find the most suitable force-field for your specific problem is to
conduct a literature and/or internet search in order to find which force-field has the capabil-
ity to model the molecules you are interested in studying. However, if you are interested in
modeling organic/biological molecules, there are several large force-fields that may be a good
place to start, including Charmm (MacKerell et al. ), OPLS (Jørgensen et al. ), Amber
(Cornell et al. ), and COMPASS (Sun et al. ). Likewise, there are several well-known
large force-fields that can be used for solids like the BKS potential (van Beest et al. ) for
oxides and the Embedded Atom Method (EAM) (Daw and Baskes , ; Finnis and Sin-
clair ) and Modified Embedded Atom Method (MEAM) (Baskes ) force-fields, which
are primarily used to model metals. In addition to defining the functional forms used for the
various terms in the general potential formulation, a force-field will also define the variables
used in the potential which are derived from a combination of quantum simulation results and
experimental observations.

In the following sections, each of the terms in > Eq. . will be discussed further and
typical functional forms that are used in the previously mentioned force-fields and others to
represent each term will be shown.

We limit the discussion to simple non-polarizable force fields in which the individual atoms
carry fixed charges. They capture many-body-effects such as electronic polarization only in an
effective way. More sophisticated polarizable force fields have been developed over the past
two decades (see for instance Ponder et al. [] and references therein) however they are
computationally substantially more demanding.

Nonbonded Interactions

There are two general forms of nonbonded interactions that need to be accounted for by a clas-
sical force-field: () the van der Waals (vdw) interactions and () the electrostatic interactions.
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van der Waals Interactions
In order to model the van derWaals interactions, we need a simple empirical expression that is
not computationally intensive and that models both the dispersion and repulsive interactions
that are known to act upon atoms and molecules. The most commonly used functional form
of van der Waals energy (EvdW) in classical force-fields is the Lennard-Jones - function that
has the form:

EvdW(R) = ∑
I>J

єIJ
⎡

⎢

⎢

⎢

⎣

(

σIJ
RIJ

)



− (

σIJ
RIJ

)


⎤

⎥

⎥

⎥

⎦

, (.)

where σIJ is the collision diameter and єIJ is the well depth of the interaction between
atoms I and J. Both σIJ and єIJ are adjustable parameters that will have different values
to describe the interactions between different pairs of particles (i.e., the values of σ and є used to
describe the interaction between two carbon atoms are different than the values of σ and є used
to describe the interaction between a carbon and an oxygen).

> Equation . models both the attractive part (the R− term) and the repulsive part (the
R− term) of the nonbonded interaction. Other formulations of the Lennard-Jones nonbond
potential commonly have the same power law description of the attractive part of the potential,
but will have different power law dependence for the repulsive part of the interaction, such as
the Lennard-Jones - function:

EvdW(R) = ∑
I>J

єIJ
⎡

⎢

⎢

⎢

⎣

(

σIJ
RIJ

)



− (

σIJ
RIJ

)


⎤

⎥

⎥

⎥

⎦

. (.)

When the nonbond interactions of a system that contains multiple particle types andmulti-
ple molecules are modeled using a Lennard-Jones type nonbond potential, it is necessary to be
able to define the values of σ and є that apply to the interaction between particles of type I and J.
The parameters for these cross interactions are generally found using one of the two following
mixing rules. One common mixing rule is the Lorentz-Berthelot rule where the value of σIJ is
found from the arithmetic mean of the two pure values and the value of єIJ is the geometric
mean of the two pure values:

σIJ =
(σI + σJ)


(.)

єIJ =
√

єIєJ (.)

The other commonly used mixing rule is the one that defines both σIJ and єIJ as the geometric
mean of the values for the pure species:

σIJ =
√

σIσJ (.)
єIJ =

√

єIєJ (.)

Most force-fields use the Lorentz-Berthelot mixing rule, however the OPLS force-field is one
force-field that utilizes the geometric mixing rule.

In other nonbond pairwise potentials, the repulsive portion of the interaction is modeled
with an exponential term, which is in better agreementwith the functional form of the repulsive
term determined fromquantummechanics. One example of such a potential is the Buckingham
potential (Buckingham ):

EvdW(R) = ∑
I<J

AIJ exp(−BIJRIJ) − (
CIJ

R
I J
)] , (.)
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whereAIJ , BIJ , andCIJ are adjustable parameters that will have unique values for different types
of particles. Another form of the nonbond interaction is the Born–Mayer–Huggins potential
(Fumi and Tosi ; Tosi and Fumi ):

EvdW(R) = ∑
I<J

AIJ exp(BIJ(σIJ − RIJ)) −
CIJ

R
I J
+

DIJ

R
I J
, (.)

where AIJ , BIJ , CIJ , DIJ and σIJ are adjustable parameters that will have unique values for dif-
ferent types of particles. The Born–Mayer–Huggins potential (> Eq. .) is identical to the
Buckingham potential (> Eq. .) when σ = D = .

All of the nonbond potential functional forms that have been presented to this point take
into account the effect that one particle has on another particle based solely on the distance
between the two particles. However, in some systems like metals and alloys as well as some
covalently bonded materials like silicon and carbon, the nonbonded potential is a function
of more than just the distance between two particles. In order to model these systems, the
embedded-atom method (EAM) (Daw and Baskes , ; Finnis and Sinclair ) and
modified embedded-atom method (MEAM) (Baskes ) utilize an embedding energy, FI ,
which is a function of the atomic electronic density ρI of the embedded atom I and a pair
potential interaction ϕIJ such that

EI(R) = FI
⎛

⎝

∑

J≠I
ρI(RIJ)

⎞

⎠

+


 ∑J≠I

ϕIJ(RIJ). (.)

The multi-body nature of the EAM potential is a result of the embedding energy term.
Sowhile the EAMandMEAMpotentials have a term to account formulti-body interactions

they are still only pair-wise potential, as are all the other nonbond potentials presented to this
point. However, there aremulti-body potentials that will explicitly account for how the presence
of a third, fourth, …atom affects the nonbond energy felt by any given atom. One example of a
three-body potential is the Stillinger-Weber potential (Stillinger andWeber ):

E(R) =
∑

I
∑

J>I
ϕ(RIJ) +∑

I
∑

J≠I
∑

K>J
ϕ(RIJ ,RIK , θIJK), (.)

where there is a two-body term ϕ:

ϕ(RIJ) = AIJєIJ[BIJ(
σIJ
RIJ

)

pIJ

− (

σIJ
RIJ

)

qIJ

] exp(
σIJ

RIJ − aIJσIJ
) (.)

and a three-body term ϕ:

ϕ(RIJ ,RIK , θIJK) = λIJKєIJK[ cos θIJK − cos θ,IJK]


× exp(
γIJ σIJ

RIJ − aIJσIJ
)

× exp(
γIK σIK

RIK − aIKσIK
). (.)

The Stillinger-Weber potential has generally been used for modeling crystalline silicon; how-
ever, more recently it has also been used for organic molecules as well. Another example of a
three-body interatomic potential is the Tersoff potential (Tersoff , ), which also was
created initially in an attempt to accurately model silicon solids.
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Electrostatic Interactions
Due to the fact that not all particles in a molecule have the same electronegativity, different
particles will have stronger attractions to electrons than others. However, since classical force-
fields do not model the flow of electrons, the different particles within a molecule are assigned
a partial charge that remains constant during the course of a simulation. Generally these par-
tial charges qi are assigned to the nuclear centers of the particles. The electrostatic interaction
between particles in different molecules or particles that are separated by at least two other
atoms in a given molecule is calculated as the sum of the contributions between pairs of these
partial charges using Coulomb’s law:

Ecoul =∑
I
∑

J

qIqJ

πєRIJ
(.)

where the charges of each particle are qI and qJ and є is the dielectric constant.
In practice, an Ewald sum (Ewald ) is generally used to evaluate the electrostatic inter-

actions within a classical MD simulation. However, this is a very computationally expensive
algorithm to implement and it results in a computational cost of N /, where N is the number
of particles in the system. In order to obtain better computational scaling, fast Fourier trans-
forms (FFTs) have been used to calculate the reciprocal space summation required within the
Ewald sum. By using the FFT algorithm, one can reduce the cost of the electrostatic algorithm
to N logN .Themost popular FFT algorithm that has been adopted for use in classicalMD sim-
ulations is the particle-particle particle-mesh (pppm) approach (Hockney and Eastwood ;
Luty et al. , ).

Bonded Interactions

The bonded interactions are needed to model the energetic penalty that will result from two
covalently bonded atomsmoving too close or too far away fromone another.Themost common
functional form that is used tomodel the bond bending interactions is that of a harmonic term:

Ebond = ∑

bonds
kb(ℓb − ℓ()b )

 (.)

where kb is commonly referred to as the bond constant and is a measure of the bond stiffness
and ℓ()b is the reference length or often referred to the equilibrium bond length. Each of these
parameters will vary depending on the types of particles that the bond is joining.

Angle Bending Interactions

Theangle bending interactions are alsomodeled in order to determine the energetic penalties of
angles containing three different particles compressing or overextending such that they distort
the geometry of a portion of a molecule away from its desired structure.

Again, the most common functional form to model the angle interactions is a harmonic
expression:

Eangle = ∑

angles
ka(θa − θ()a )

 (.)

where ka is the angle constant and is a measure of the rigidity of the angle, and θ()a is the
equilibrium or reference angle.
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Torsional Interactions

The torsional interactions are generally modeled using some form of a cosine series. The OPLS
force-field uses the following expression for its torsional term:

Edihed = ∑

dihedrals



K()

d [ + cos(ϕ)] +


K()

d [ − cos(ϕ)] +


K()

d [ + cos(ϕ)]

+



K()

d [ − cos(ϕ)] (.)

where K(i)
d are the force constants for each cosine term and ϕ is the measured dihedral angle.

The Charmm force-field uses the following expression:

Edihed = ∑

dihedrals
Kd[ + cos(nϕ − dd)], (.)

where Kd is the force constant, n is the multiplicity of the dihedral angle ϕ, and dd is the shift
of the cosine that allows one to more easily move the minimum of the dihedral energy.

First Principles Electronic StructureMethods

For the electronic ground state, i.e., k = , Kohn–Sham (KS) density functional theory is
commonly used. In this case, the energy is given by

E ≈ EKS
[ρ] = Ts[ρ] +

∫

drvext(r)ρ(r) +

 ∫

drvH(r)ρ(r) + Exc (.)

with the kinetic energy of noninteracting electrons, i.e., using a Slater determinant as a wave-
function ansatz,
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
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Ts[ρ] = −



n
∑

i
fi
∫

drψi(r)∇ψi(r) (.)

where fi is the number of electrons occupying orbital ψi , the external potential including
nucleus–nucleus repulsion and electron–nucleus attraction,

vext(r) =
N−

∑

I=

N

∑

J>I

ZIZJ

∣RI − RJ ∣
−

N

∑

I=

ZI

∣r − RI ∣
(.)

the Hartree potential (electron–electron interaction)

vH(r) =
∫

dr′
ρ(r′)
∣r − r′∣

(.)

the exchange-correlation energy, Exc, and the electron density

ρ(r) =
n
∑

i
fi ∣ψi(r)∣ (.)
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The orbitals which minimize the total, many-electron energy (> Eq. .) are obtained by
solving self-consistently the one-electron Kohn–Sham equations,

[−



∇


+ vext(r) + vH(r) +

δExc[ρ]
δρ(r)

]ψi(r) = єiψi(r) (.)

DFT is exact in principle, provided that Exc[ρ] is known, in which case EKS (see > Eq. .)
is an exact representation of the ground state energy E (see > Eq. .). In practice, how-
ever, Exc[ρ] is not – and presumably never will be – known exactly; therefore (semiempirical)
approximations are used.

The starting point for most density functionals is the local density approximation (LDA),
which is based on the assumption that one deals with a homogeneous electron gas. Exc is split
into an exchange term Ex and a correlation term Ec . Within the LDA, the exchange functional
is given exactly by Dirac ():

ELDA
x [ρ] =

∫

ρ(r)єLDAx (ρ(r))dr (.)

where

єLDAx (ρ) = −


(


π
)



ρ(r)


 (.)

The LDA correlation functional, on the other hand, can only be approximated.We give here
themost commonly used expression byVosko et al. [], derived fromQuantumMonte Carlo
calculations:

ELDA
c [ρ] =

∫

ρ(r)єLDAc (ρ(r))dr (.)

where

єLDAc (ρ) = A{ln(
x

X
) +

b
Q

tan− (
Q

x + b
) −

bx
X(x)

[ln(
(x − x)

X
)

+

(bx)
Q

tan− (
Q

x + b
)]} (.)

with X = x + bx + c, x =
√

rs , rs = 
√


πρ(r) , Q =

√

c − b, x = −., A = .,
b = ., c = ..

This simplest approximation, LDA, is often too inaccurate for chemically relevant problems.
Anotable improvement is usually offered by so-called semilocal or gradient corrected functionals
(generalized gradient approximation (GGA)), in which Ex and Ec are expressed as functionals
of ρ and the first variation of the density, ∇ρ:

EGGA
x [ρ,∇ρ] =

∫

ρ(r)єGGAx (ρ(r),∇ρ)dr (.)

EGGA
c [ρ,∇ρ] =

∫

ρ(r)єGGAc (ρ(r),∇ρ)dr (.)

Popular examples are the BLYP (Becke ; Lee et al. ), BP (Becke ; Polák ),
and BPW (Becke ; Perdew et al. ) functionals. The expressions for єGGAx ,c (ρ(r),∇ρ)
are complex and shall not be discussed here.
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In many cases, accuracy can be further increased by using so-called hybrid functionals,
which contain an admixture of Hartree–Fock exchange to KS exchange. Probably the most
widely used hybrid functional is the three-parameter BLYP functional (Becke ),

EBLYP
xc = aELDA

x + ( − a)EHF
x + bΔEB

x + ( − c)ELDA
c + cELYP

c (.)

where a = ., b = ., c = ., and EHF
x is the Hartree-Fock exchange energy evaluated

using KS orbitals.
New functionals are constantly proposed in search of better approximations to the exact Exc .

Often functionals are designed to remedy a particular shortcoming of previous functionals, for
instance, for dispersion interactions.

Building the System/Collecting the Ingredients

Setting Up an AIMD Simulation

Building aMolecule

In many cases, the coordinates of a molecular structure are available for download on the web,
from crystallographic databases (CCDC ; ICSD ; PDB ; Reciprocal Net ; Toth
) or journal supplements. For relatively small molecules, an initial guess structure can be
built using molecular graphics software packages such as molden ().

PlaneWaves and Pseudopotentials

The most common form of AIMD simulation employs DFT (see section “First Principles
Electronic StructureMethods”) to calculate atomic forces, in conjunction with periodic bound-
ary conditions and a plane wave basis set. Using a plane wave basis has two major advantages
over atom-centered basis functions: () there is no basis set superposition error (Boys and
Bernardi ; Marx and Hutter ) and () the Pulay correction (Pulay , ) to the
Hellmann–Feynman force, due to basis set incompleteness, vanishes (Marx and Hutter ,
).

Plane Wave Basis Set
As a consequence of Bloch’s theorem, in a periodic lattice, the Kohn–Sham orbitals (see
> Eq. .) can be expanded in a set of plane waves (Ashcroft and Mermin ; Meyer ),

ψk, j(r) = ∑
G

ck, jG ei(k+G)r (.)

where k is a wavevector within the Brillouin zone, satisfying Bloch’s theorem,

ψ(r+ T) = eikTψ(r) (.)

for any lattice vector T,
T = Na + Na + Na (.)

N,N,N being integer numbers, and a, a, a the vectors defining the periodically repeated
simulation box.
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In > Eq. ., the summation is over all reciprocal lattice vectors G which fulfill the con-
dition G ⋅ T = πM, M being an integer number. In practice, this plane-wave expansion of the
Kohn-Sham orbitals is truncated such that the individual terms all yield kinetic energies lower
than a specified cutoff value, Ecut ,

ħ

m
∣k +G∣ ≤ Ecut (.)

The plane-wave basis set thus has the advantage over other basis sets that convergence can be
controlled by a single parameter, namely Ecut .

In this periodic setup, the electron density (see > Eq. .) can be approximated by a sum
over amesh ofNkpt k-points in the Brillouin zone (Chadi andCohen ;Monkhorst and Pack
; Moreno and Soler ),

ρ(r) ≈


Nkpt
∑

k
fk, j ∣ψk, j(r)∣

 (.)

Since the volume of the Brillouin zone, VBZ = (π)/Vbox, decreases with increasing volume of
the simulation supercell, Vbox , only a small number of k-points need to be sampled for large
supercells. For insulating materials (i.e., large bandgap), a single k-point is often sufficient,
typically taken to be k =  (Γ-point approximation).

Pseudopotentials

While plane waves are a good representation of delocalized Kohn–Sham orbitals in metals, a
huge number of themwould be required in the expansion (> Eq. .) to obtain a good approx-
imation of atomic orbitals, in particular near the nucleuswhere they oscillate rapidly.Therefore,
in order to reduce the size of the basis set, only the valence electrons are treated explicitly, while
the core electrons (i.e., the inner shells) are taken into account implicitly through pseudopo-
tentials combining their effect on the valence electrons with the nuclear Coulomb potential.
This frozen core approximation is justified as typically only the valence electrons participate
in chemical interactions. To minimize the number of basis functions the pseudopotentials are
constructed in such away as to produce nodeless atomic valencewavefunctions. Beyond a spec-
ified cutoff distance from the nucleus, Rcut the nodeless pseudo-wavefunctions are required to
be identical to the reference all-electron wavefunctions.

Normconserving Pseudopotentials
Normconserving pseudopotentials are generated subject to the condition that the pseudo-
wavefunctionhas the samenormas the all-electronwavefunction and thus gives rise to the same
electron density. Although normconserving pseudopotentials have to fulfill a (small) number
of mathematical conditions, there remains considerable freedom in how to create them. Hence
several different recipes exist (Bachelet et al. ; Goedecker et al. ; Hamann et al. ;
Hartwigsen et al. ; Kerker ; Troullier and Martins , ; Vanderbilt ).

Since pseudopotentials are generated using atomic orbitals as a reference, it is not guaran-
teed that they are transferable to any chemical environment. Generally, transferability is the
better the smaller the cutoff radius Rcut is chosen. However, the reduction in the number of
plane waves required to represent a particular pseudo-wavefunction – i.e., the softness of the
corresponding pseudopotential – increases as Rcut gets larger. So Rcut has to be chosen care-
fully and there is always a trade-off between transferability and softness. An upper limit for



Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”  

Rcut is given by the shortest interatomic distances in the molecule or crystal the pseudopoten-
tial will be used for: one needs to make sure that the sum of the two cutoff radii of any two
neighboring atoms is smaller than their actual spatial separation.

For each angular momentum l , a separate pseudopotentialV PS
l (r) is constructed.The total

pseudopotential operator is written as

V̂ PS
= VPS

loc(r) +∑
l
VPS
nl, l(r)P̂l (.)

where the nonlocal part is defined as

V PS
nl, l(r) = VPS

l (r) − VPS
loc(r) (.)

and the local part VPS
loc(r) is taken to be the pseudopotential VPS

l (r) for one specific value
of l , typically the highest one for which a pseudopotential was created. The pseudopotential
(> Eq. .) is called semi-local, since the projector P̂l only acts on the l-th angular momen-
tum component of the wavefunction, but not on the radius r. (Note: a pseudopotential is called
nonlocal if it is l-dependent.)

To achieve higher numerical efficiency, it is common practice to transform the semi-local
pseudopotential (> Eq. .) to a fully nonlocal form,

V̂ PS
= VPS

loc(r) +∑
i j
∣βi > Bi j < β j∣ (.)

using the Kleinman-Bylander prescription (Kleinman and Bylander ).

Vanderbilt Ultrasoft Pseudopotentials
An ultrasoft type of pseudopotential was introduced by Vanderbilt () and Laasonen et al.
[] to deal with nodeless valence states which are strongly localized in the core region.
In this scheme the normconserving condition is lifted and only a small portion of the electron
density inside the cutoff radius is recovered by the pseudo-wavefunction, the remainder is
added in the form of so-called augmentation charges. Complications arising from this scheme
are the nonorthogonality of Kohn–Sham orbitals, the density dependence of the nonlocal
pseudopotential, and need to evaluate additional terms in atomic force calculations.

How to Obtain Pseudopotentials?
There are extensive pseudopotential libraries available for download with the simulation pack-
ages CPMD (Parrinello et al. ), CPK (Hutter et al. ) or online (Vanderbilt Ultra-Soft
Pseudopotential Site ). However, before applying any pseudopotentials, they should
always be tested against all-electron calculations. Pseudopotentials used in conjunction with
a particular density functional should have been generated using the same functional.

In many cases, the required pseudopotential will not be available in any accessible library;
in this case it may be generated using freely downloadable programs (Vanderbilt Ultra-Soft
Pseudopotential Site ).

Setting Up a Classical MD Simulation

There are two general stages that make up the preparation to conduct force-field molecular
dynamics simulations: () gathering preliminary information and () building the actual system.
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Gathering Preliminary Information

Gathering the preliminary information before conducting the simulation is mostly focussed
on making sure that the simulation is possible. First, it is important to identify the type and
number of molecules that you wish to model. Then, it is necessary to find the force-field that
will allow you to most accurately model the molecules and physical system that you want to
simulate. A brief synopsis of some of the larger classical force-field parameter sets is given in
section “Classical Force Fields”.These force-fields and referencesmay be good starting points in
searching for the correct classical force-field to use for a given system, but the best way to find a
specific force-field is to just conduct a search for research articles thatmay have been conducted
on the same system. If no force-field parameters exist for the system of interest, then you can
use configurations and energies from quantum simulations to parameterize a given force-field
for your system.Amethodology for how a force-field was parameterized originally is presented
in the relevant paper; however, this is a complicated exercise and is probably best left to the
experts.

Building the System

After identifying that a force-field exists for the system you wish to model, the next step is to
build the initial configuration of the molecules within the system.The initial configuration will
consist of initial spatial coordinates of each atom in each givenmolecule.When building a large
system consisting of several molecules of various types, it is easiest to write a computer code
that contain the molecular structure and coordinates of each molecule present in the system,
and then have the code replicate each molecule how ever many times is necessary in order
to build the entire system. Alternatively, most of the molecular dynamics simulation packages
previouslymentioned have capabilities to build systems from a pdb file; however, these tools are
often useful for only certain systems and force-fields. There is unfortunately no one tool which
can be used to build any system with any force-field.

These initial configurations can represent a minimum energy structure either from another
simulation (i.e., a final structure from a energy minimization in a quantum or classical Monte
Carlo simulation can be used as the starting state for classical simulations), from experimental
observation (i.e., the pdb database for crystallographic structures of proteins) or building the
initial coordinates based upon the equilibrium bond distances and bond angles from the force-
field.

The placement of the molecules within the simulation box can be done in a number of
different ways as well. The molecules can be placed on the vertices of a regular lattice, or in any
other regularly defined geometry that may be useful for conducting your simulation (i.e., in
simulating the structural properties ofmicelles often times the surfactantmoleculeswill initially
be placed on the vertices of a buckey ball such that they are in a spherical configuration). Also,
molecules can be placed at random positions within the simulation box. The one advantage
of placing molecules at regularly spaced positions is that it is easier to insure that there is no
overlapping of molecules, whereas with the randomly placed molecules it can be quite difficult
to ensure that a placedmolecule does not overlapwith anothermolecule in the box (particularly
for large or highly branched molecules).

In addition to containing the initial spatial coordinates of all of the molecules in the system,
the initial configuration must also contain some additional information about the atoms and
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molecules in the systems. Each atom in the configuration must contain a label of what atomic
species (i.e., carbon, nitrogen, …) it represents. This label will be different for each simulation
code used but all of themwill have some type of label as it will inform the simulation code what
force-field values to use to represent the interactions of that atom. A list of all of the covalent
bonds, the bond angles, and the dihedrals in the system will also need to be included in the
initial configuration. The lists of the bonds, angles, and dihedrals contain an identifier for each
atom that make up the bond, angle, or dihedral and then an identifier for the type that informs
the simulation package which parameters to use in calculating the energy of the bond, angle,
or dihedral. The final component of the initial configuration of a classical simulation is a list
of all of the various types of atoms, bonds, angles, and dihedrals in the system along with their
corresponding force-field parameters (i.e., є and σ for atom types to describe their nonbond
interactions, force constants, and equilibrium values for bond, angle, and dihedral types).

Finally, after building the initial configuration, the simulation is about ready to be per-
formed.The last step is to choose the simulation variables and set up the input to the simulation
package in order to convey these selections.

These options and the decision process behind choosing from the various options will be
presented in the following sections.

Preparing an Input File

Optimization Algorithms

Optimization algorithms are often used to find stationary points on a potential energy surface,
i.e., local and global minima and saddle points. The only place where they directly enter MD is
in the case of Born–Oppenheimer AIMD, in order to converge the SCF wavefunction for each
MD step. It is immediately obvious that the choice of optimization algorithm crucially affects
the speed of the simulation.

Steepest Descent

TheSteepest Descentmethod is the simplest optimization algorithm.The initial energy E[Ψ] =

E(c), which depends on the plane wave expansion coefficients c (see > Eq. .), is lowered
by altering c in the direction of the negative gradient,

dn = −
∂E(cn)

∂c
≡ −gn (.)

cn+ = cn + Δndn (.)

where Δn >  is a variable step size chosen such that the energy always decreases, and n is the
optimization step index.The steepest descentmethod is very robust; it is guaranteed to approach
the minimum. However, the rate of convergence ever decreases as the energy gets closer to the
minimum, making this algorithm rather slow.
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Conjugate Gradient Methods

The Conjugate Gradient method generally converges faster than the steepest descent method
due to the fact that it avoids moving in a previous search direction. This is achieved by linearly
combining the gradient vector and the last search vector,

cn+ = cn + Δndn (.)

where
dn = −gn + βndn− (.)

Different recipes exist to determine the coefficient βn (Jensen ) among which the Polak–
Ribière formula usually performs best for non-quadratic functions,

βn =
gn(gn − gn−)

gn−gn−
(.)

In the case of a general non-quadratic function, such as theDFT energy, conjugacy is not strictly
fulfilled and the optimizer may search in completely inefficient directions after a few steps. It is
then recommended to restart the optimizer (setting β = ). Convergence can be improved
by multiplying gn with a preconditioner matrix, e.g., an approximate inverse of the second
derivatives matrix (Hessian in the case of geometry optimization) H̃. Themethod is then called
Preconditioned Conjugate Gradient (PCG). In theCPMD code, thematrix H̃ is approximated by

H̃ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

HKS
GG′ for G ≥ Gcut

HKS
GcutGcut

for G < Gcut

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(.)

where HKS
GG′ is the Kohn–Sham matrix is the plane-wave basis and Gcut is a cutoff value for the

reciprocal lattice vectorG (set to a default value of . a.u.).

Direct Inversion of the Iterative Subspace

Having generated a sequence of optimization steps ci , the Direct Inversion of the Iterative Sub-
space (DIIS) method (Császár and Pulay ; Hutter et al. ; Pulay , ) is designed
to accelerate convergence by finding the best linear combination of stored ci vectors,

cn+ =
n
∑

i=
aici (.)

Ideally, of course, cn+ is equal to the optimum vector copt . Defining the error vector ei for each
iteration as

ei = ci − copt (.)

> Eq. . becomes
n
∑

i=
aicopt +

n
∑

i=
aiei = copt (.)

> Equation . is satisfied if
n
∑

i=
ai =  (.)
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and
n

∑

i=
aiei =  (.)

Instead of the ideal case > Eq. ., in practice one minimizes the quantity

⟨

n
∑

i=
aiei ∣

n
∑

j=
a je j⟩ (.)

subject to the constraint (> Eq. .), which is equivalent to solving the system of linear
equations
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(.)

where

bi j = ⟨ei ∣e j⟩ (.)

and the error vectors are approximated by

ei = −H̃−
(copt)gi (.)

using an approximate Hessian matrix H̃, e.g., > Eq. ..

Controlling Temperature: Thermostats

If understanding the behavior of the system as a function of temperature is the aim of your
study, then it is important to be able to control the temperature of your system. The tempera-
ture of the system is related to the time average of the kinetic energy, which generally can be
calculated by

< H >NVT=


NkBT . (.)

Below we introduce specific thermostatting techniques for MD simulations at thermody-
namic equilibrium, e.g., for calculating equilibrium spatial distribution and time-correlation
functions. However, when MD simulations are performed on a system undergoing some non-
equilibrium process involving exchange of energy between different parts of the system, e.g.,
when an energetic particle, such as an atom or a molecule, hits a crystal surface, or there is a
temperature gradient across the system, one has to resort to specially developed techniques, see
for example Kantorovich [], Kantorovich and Rompotis []and Toton et al. []. In
these methods, based on the so-called Generalized Langevin Equation, the actual system on
which MD simulations are performed is considered in contact with one (or more) heat bath(s)
kept at constant temperature(s), and the dynamics of the system of interest reflects the fact that
there is an interaction and energy transfer between the system and the surrounding heat bath(s).
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Rescale Thermostat

One obvious way to control the temperature of a system is to rescale the velocities of the atoms
within the system (Woodcock ). The rescaling factor λ is determined from λ

√

Ttarget/T,
where Ttarget and T are the target and initial temperatures, respectively. Then, the velocity of
each atom is rescaled such that Vf = λVi . In practice, the inputs generally required to use a
rescale thermostat include:

• T – Initial temperature
• Ttarget – Target temperature
• τ – Damping constant (i.e., frequency with which to apply the thermostat)
• δT – Maximum allowable temperature difference from Ttarget before thermostat is applied
• frescale – Fraction of temperature difference between current temperature and Ttarget is

corrected during each application of thermostat

If it is desired to have a strict thermostat (i.e., when first starting a simulation that might have
particles very near one another), then δT and τ should have values of ∼.Ttarget and  time
step, respectively, and frescale should be near .. However, if you wish to allow a more lenient
thermostat, then the value of δT should be of the same order of magnitude as Ttarget, τ should
be ∼– time steps, and frescale ∼ .–..

Berendsen Thermostat

Another way to control the temperature is to couple the system to an external heat bath, which
is fixed at a desired temperature.This is referred to as a Berendsen thermostat (Berendsen et al.
). In this thermostat, the heat bath acts as a reservoir of thermal energy that supplies or
removes temperature as necessary. The velocities are rescaled each time step, where the rate of
change in temperature is proportional to the difference in the temperature in the system T(t)
and the temperature of the external bath Tbath:

dT(t)
dt

=


τ
(Tbath − T(t)) (.)

which when integrated results in the change in temperature each time step:

ΔT =

δt
τ
(Tbath − T(t)). (.)

In > Eqs. . and > ., τ is the damping constant for the thermostat. In practice, the
necessary inputs when using the Berendsen thermostat include:

• Tbath – temperature of the external heat bath
• τ – damping constant for the thermostat

Obviously the amount of control that the thermostat imposes on the simulation is controlled
by the value of τ. If τ is large, then the coupling will be weak and the temperature will fluctuate
significantly during the course of the simulation. While if τ is small, then the coupling will be
strong and the thermal fluctuations will be small. If τ = δt, then the result will be the same as
the rescale thermostat, in general.
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Nosé–Hoover Thermostat

While the Berendsen thermostat is efficient for achieving a target temperature within your sys-
tem, the use of a thermostat that represents a canonical ensemble once the system has reached
a thermal equilibrium. The extended systemmethod, which was originally introduced by Nosé
[a, b] and then further developed by Hoover (), introduces additional degrees of free-
dom into the Hamiltonian that describes the system, from which equations of motion can be
determined.

The extended system method considers the external heat bath as an integral part of the
system by including an additional degree of freedom in the Hamiltonian of the system that is
represented by the variable s. As a result, the potential energy of the reservoir is

Epot = ( f + )kBT ln s, (.)

where f is the number of degrees of freedom in the physical system and T is the target
temperature.The kinetic energy of the reservoir is calculated by

Ekin =
Q

(

ds
dt
)



, (.)

where Q is a parameter with dimensions of energy × (time) and is generally referred to as the
“virtual” mass of the extra degree of freedom s. The magnitude of Q determines the coupling
between the heat bath and the real system, thus influencing the temperature fluctuations.

Utilizing > Eqs. . and > ., and substituting the real variables for the corresponding
Nosé variables, the equations of motion are found to be as follows:

R̈I =
FI

MI
− γRI , (.)

γ̇ = −


τNH
(

f + 
f

Ttarget

T
− ), (.)

where γ = ṡ
s and τNH =

Q
f kBTtarget

The variable τNH is an effective relaxation time, or damping
constant.

In practice, the inputs that are necessarywhenutilizing theNosé–Hoover thermostat during
a molecular dynamics simulation include

• Ttarget – Target temperature
• τNH – Damping constant
• Q – Fictitious mass of the additional degree of freedom s

The most significant variable in the above list is Q. Large values of Q may cause poor temper-
ature control, with the infinite limit resulting in no energy exchange between the temperature
bath and the real system, which is the case of conventional molecular dynamics simulations
resulting in the microcanonical ensemble. However, if Q is too small then the energy oscillates
and the system will take longer in order to reach a thermal equilibrium.

Controlling Pressure: Barostats

It may be desired to study the behavior of the simulated system while the pressure is held con-
stant (i.e., pressure-induced phase transitions). Many experimental measurements are made
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in conditions where the pressure and temperature are held constant and so it is of utmost
importance to be able to accurately replicate these conditions in simulations.

One thing of note is that the pressure often fluctuates more than other quantities such as
the temperature in an NVT molecular dynamics simulation or the energy in a NVEmolecular
dynamics simulation.This is due to the fact that the pressure is related to the virial term, which
is the product of the positions of the particles in the system and the derivative of the potential
energy function. These fluctuations will be observed in the instantaneous values of the sys-
tem pressure during the course of the simulation, but the average pressure should approach
the desired pressure. Since generally the temperature and number of atoms will also be held
constant during constant pressure simulations, and the volume of the system will be allowed to
change in order to arrive at the desired pressure, therefore, less compressible systems will show
larger fluctuations in the pressure than the systems that are more easily compressed.

Berendsen Barostat

Many of the approaches used for controlling the pressure are similar to those that are used for
controlling the temperature.One approach is tomaintain constant pressure by coupling the sys-
tem to a constant pressure reservoir as is done in the Berendsen barostat (Berendsen et al. ),
which is analogous to the way temperature is controlled in the Berendsen thermostat. The
pressure change in the system is determined by

dP(t)
dt

=


τP
(P − P(t)), (.)

where τP is time constant of the barostat, P is the desired pressure and P(t) is the system
pressure at any time t. In order to accommodate this change in pressure, the volume of the box
is scaled by a factor of μ each time step, therefore the coordinates of each particle in the system
are scaled by a factor of μ (i.e., RI(t + δt) = μ/RI(t), where

μ = [ −
δt
τP
(P − P)]




. (.)

In practice, the inputs for the Berendsen barostat will include:

• P – Desired pressure
• τP – Time constant of the barostat

One other input that may be included in the use of the Berendsen barostat is to define which
dimensions are coupled during the pressure relaxation. For example, you could define that the
pressure is relaxed in a way that the changes in all three dimensions are coupled and therefore
all of the dimensions change at the same rate. On the other hand, the pressure relaxation can
be handled in an anisotropic manner, such that none of the dimensions are coupled and each
dimensionwill have its own scaling factor that results from the individual pressure components.

Nosé–Hoover Barostat

Similar to theNosé–Hoover thermostat, the extended systemmethodhas been applied to create
a barostat (Hoover ) that is coupled with a Nosé–Hoover thermostat. In this case, the extra
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degree freedom η corresponds to a “piston,” and it is added to the Hamiltonian of the system,
which results in the following equations of motion:

dR(t)
dt

= V(t) + η(t)(R(t) −RCOM), (.)

dV(t)
dt

=

F(t)
M

− [χ(t) + η(t)]V(t), (.)

d χ(t)
dt

=


τT
(

T
T

− ), (.)

dη(t)
dt

=


NkBTτP

V(t)(P − P), (.)

dV(t)
dt

= η(t)V(t) (.)

where RCOM are the coordinates of the center of mass of the system, η is the thermostat extra
degree of freedom and can be thought of as a friction coefficient, τT is the thermostat time
constant, χ is barostat extra degree of freedom and is considered a volume scaling factor and τP
is the barostat time constant. > Equations . and > . explicitly contain the volume of
the simulation box, V(t). Generally, this barostat is implementedusing the approach described
in Melchionna et al. [].

In addition to the variables that are a part of the equations of motion, there is a variable
Q that represents the “mass” of the “piston.” This is analogous to the “mass” variable in the
Nosé–Hoover thermostat. In practice, the required input for the Nosé–Hoover barostat will
include:

• P – Desired pressure
• T – Desired temperature
• τP – Time constant of the barostat
• τT – Time constant of the thermostat
• Q –The “mass” of the piston

Like in the case of the Nosé–Hoover thermostat, care must be taken when selecting the value
of the variable Q. A small value of Q is representative of a piston with small mass, and thus will
have rapid oscillations of the box size and pressure, whereas a large value of Q will have the
opposite effect. The infinite limit of Q results in normal molecular dynamics behavior.

Setting the Time Step

Born–OppenheimerMD

Since BO-MD is classical MD in the sense that the nuclei are classical particles, the same rules
concerning the choice of time step apply to both BO-MD and atomistic force-field MD. The
largest possible time step, δt, is determined by the fastest oscillation in the system – in many
molecules this would be a bond stretching vibration involving hydrogen, e.g., CH,NH, orOH. It
is immediately plausible that δtmust be smaller than the shortest vibrational period in order to
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resolve that motion and for the numerical integrator (see section “Classical Molecular Dynam-
ics”) to be stable. Let us assume a particular molecule has an OH vibration at , cm−,
corresponding to a period of about  fs. Then the time step has to be chosen smaller than
 fs. Using a harmonic approximation it can be shown that the Verlet algorithm is stable for
ωδt <  (Sutmann ). In the present example this would dictate a maximum time step of
 fs.However, although such a choice guarantees numerical stability, it results in deviations from
the exact answer.Therefore, in practice smaller time steps – typically around  fs – are oftenused.

Car–Parrinello MD

Although in CP-MD the nuclei are still treated as classical particles, the choice of time step can
no longer be based solely on the highest nuclear frequency ωmax

n . We also need to consider the
fictitious dynamics of the electronic degrees of freedom. In fact, the optimum simulation time
step is closely linked to the value of the fictitious electron mass μ as we will see in the following.

The fictitious mass μ has to be chosen small enough to guarantee adiabatic separation
of electronic and nuclear motion. This means that the frequency spectrum of the electronic
degrees of freedom (Marx and Hutter ; Pastore et al. )

ωph =

4

5

56

(єp − єh)
μ

(.)

must not overlap with the vibrational spectrum of the nuclear system. The lowest electronic
frequency according to > Eq. . is

ωmin
=

4

5

56

(єLUMO − єHOMO)

μ
(.)

The highest electronic frequency is determined by the plane-wave cutoff energy Ecut ,

ωmax
≈

√

Ecut

μ
(.)

Thus the maximum simulation time step, which is inversely proportional to ωmax, thus obeys
the relation

Δtmax
∝

√

μ
Ecut

(.)

According to > Eq. . the maximum time step can be increased by simply increasing μ.
However, this would also result in a lowering of ωmin

e (see > Eq. .) and therefore in a smaller
separation ωmin

e − ωmax
n between the nuclear and electronic spectra.

Let us discuss the above using some realistic numbers. In the case of the HOmolecule, for
example, the HOMO-LUMO gap with the BLYP functional is about . eV. Assuming a typi-
cal value of  a.u. for μ, the minimum electronic frequency (> Eq. .) is ca. , cm−.
The highest energy molecular vibrational mode in a CP-MD simulation using these parameter
values is the asymmetric stretch at about , cm−. This means that electronic and nuclear
spectra are well separated. A basis set cutoff of Ecut = Ry (=  a.u.) leads to a maximum
electronic frequency (> Eq. .) of ≈, cm− corresponding to a vibrational period of
 a.u.. Hence the CP-MD time step has to be smaller than this number. For water, a time
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step/fictitious mass combination of  a.u./ a.u. has been shown to be a good compromise
between efficiency and accuracy (Kuo et al. ).

If we were to increase μ to , a.u., we could afford a larger time step of about  a.u.
(according to > Eq. .). However, ωmin

e (> Eq. .) would become ca. , cm−, dan-
gerously close to ωmax

n . A simple trick that is often used to be able to afford larger time steps is
to replace all hydrogen atoms by deuterium atoms thus downshifting ωmax

n . For systems with a
small or even vanishing (e.g., metals) bandgap it is increasingly difficult or impossible to achieve
adiabatic separation of electronic and nuclear degrees of freedom following the above consid-
erations. A solution to this problem is the use of separate thermostats for the two subsystems
(Marx and Hutter ; Sprik )

Postprocessing

Data Analysis

Spatial Distribution Functions

For a system of N particles in a volume V at temperature T , the probability of molecule  being
in the volume element dR around the position R, molecule  being in dR, …, molecule N
being in dRN is given by McQuarrie []

P(N)

(R)dR = P(N)

(R, . . . ,RN)dR, . . . , dRN =

e−E(R)/kT

ZN
(.)

with the configuration integral
ZN =

∫

V
e−E(R)/kTdR (.)

where E(R) is the potential energy of the system at configuration R (cf. > Eqs. . and > .).
For a subset of nmolecules, the probability of molecule  being in dR,…,molecule n being

in dRn is

P(n)
(R, . . . ,Rn) =

∫

⋯

∫

e−E(R)/kTdRn+ . . . dRN

ZN
(.)

The probability of anymolecule being in dR, …, anymolecule n being in dRn is

ρ(n)(R, . . . ,Rn) =
N !

(N − n)!
P(n)

(R, . . . ,Rn) (.)

In a liquid the probability of finding any one molecule in dR, ρ()(R)dR, is independent of
R. Therefore


V ∫

ρ()(R)dR = ρ() =
N
V
= ρ (.)

The dependence of the molecules of a liquid on all the other molecules, in other words, their
correlation, is captured by the correlation function g(n)(R, . . . ,Rn), which is defined by

ρ(n)(R, . . . ,Rn) = ρng(n)(R, . . . ,Rn) (.)

Using > Eq. . we can thus write

g(n)(R, . . . ,Rn) =
VnN !

Nn
(N − n)!

∫

⋯

∫

e−E(R)/kTdRn+ . . . dRN

ZN
(.)
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The two-body correlation function g()(R,R) is of particular interest as it can be deter-
mined in X-ray diffraction experiments. In the following we shall only consider the dependence
of g() on the interparticle distance R = R = ∣R −R∣, i.e., we have averaged over any angular
dependence, and call g()(R) = g(R) the radial distribution function.The quantity ρg(R)dRI
is proportional to the probability of finding another particle, I, in dRI if the reference particle
is at the origin. Spherical integration yields

∫

ρg(R)πRdR = N −  ≈ N (.)

showing that ρg(R)πR dR is the number of particles in the spherical volume element
between R and R + dR about the central particle. The radial distribution function g(R) is pro-
portional to the local density ρ(R) = ρg(R) about a certain molecule. In a fluid, g(R) →  as
R →∞, i.e., there is no long-range order and we “see” only the average particle density. At very
short range, i.e., R → , g(R) → , due to the repulsiveness of the molecules. Examples from a
CP-MD simulation of liquid water are shown in > Fig. -.

The radial distribution function g(R) provides a useful measure of the quality of a simula-
tion as it can be compared to experimental – X-ray or neutron diffraction – data obtained by
Fourier transform of the structure factor

h(k) = ρ
∫

[g(R) − ]eikRdR (.)

where k is the wave vector.
In addition to characterizing the structure of a liquid, the radial distribution function may

also be used to calculate thermodynamic properties such as the total energy,

E =


NkT + πNρ

∫

∞


u(R)g(R)RdR (.)
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⊡ Fig. -
Radial distribution functionof liquidwater fromCP-MDsimulations at  and ,K, respectively



Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”  

the pressure,

p = ρkT −


πρ

∫

∞



du(R)
dR

g(R)RdR (.)

and the chemical potential,

μ = kT ln(ρΛ
) + πρ

∫




dξ

∫

∞


u(R)g(R, ξ)RdR (.)

where

Λ =

√

h

πmkT
(.)

is the thermal de Broglie wavelength. By varying the coupling parameter ξ between  and , one
can effectively take a molecule in and out of the system. It should be stressed that > Eqs. .–
. have been derived assuming a pairwise additive intermolecular potential u(R).

We now define the potential of mean force, i.e., the interaction between n fixed molecules
averaged over the configurations of the remaining molecules n + , . . . ,N , as

w(n)
(R, . . . ,Rn) = −kT ln g(n)(R, . . . ,Rn) (.)

The mean force acting on molecule J is then obtained from

f (n)J = −∇Jw(n) (.)

Time Correlation Functions

The classical time autocorrelation function of some vectorial function

A(t) = A(P(t),Q(t)) = A(P,Q; t) (.)

where Q(t) and P(t) are the generalized coordinate and momentum, respectively, is defined
as

C(t) =< A()A(t) >=
∫

⋯

∫

dP dQA(P,Q; )A(P,Q; t) f (P,Q) (.)

where f (P,Q) is the equilibrium phase space distribution function.
From the velocity autocorrelation function, for example, one can calculate the diffusion

coefficient as
D =


 ∫

∞


< VI()VI(t) > dt (.)

where VI is the velocity of particle I. Alternatively, one can obtain the diffusion coefficient for
long times from the associated Einstein relation,

tD =< ∣RI(t) − RI()∣ > (.)

In practice, D is then determined from a linear fit to the mean square displacement (rhs of
> Eq. .) as one sixth of the slope. An example is shown in > Fig. -.

Another common application of correlation functions is the calculation of IR absorption
spectra. The lineshape function, I(ω), is given by the Fourier transform of the autocorrelation
function of the electric dipole momentM,

I(ω) =

π ∫

∞

−∞

<M()M(t) > e−iωt dt (.)
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⊡ Fig. -
Mean square displacement of liquid water from CP-MD simulations at K and linear fit to
determine the diffusion constant D using > Eq. .

⊡ Fig. -
A snapshot of a micelle formed from DDAO molecules and oil molecules formed using the VMD
software package (VMD )

Visualization

Due to the nature of MD simulations, one of the most productive forms of analysis of a simula-
tion is to be able to visualize the trajectory of themolecules of interest.This is particularly useful
since experimental techniques are not able to produce visual pictures of atomistic interactions
and therefore it is something that only simulations (at this point) are able to provide. In order
to visualize a simulation trajectory there are several different very powerful computer packages
that are commonly used.These software packages include VMD (), PyMol (), RasMol
(), and several others (Free Molecular Visualization Software ). > Figure - shows
an example of the type of pictures that can be made using the visualization software.
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Each of these codes will generally accept the trajectory in any number of standard inputs
(i.e., pdb, xyz,…) and then will generate snapshots which can be rendered individually or as a
movie. In addition to providing the visualization, these codes have become progressively power-
ful analysis codes in their own right.They now have the ability to measure bond lengths, angles,
and dihedrals as a function of time, determine the solvent accessible surface area, hydrogen
bond network, and many other useful structural related properties of the system.
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Abstract: Single molecule force spectroscopy constitutes a robust method for probing the
unfolding of biomolecules. Knowledge gained from statistical mechanics is helping to build
our understanding about more complex structure and function of biopolymers. Here, we
have review some of the models and techniques that have been employed to study force-
induced transitions in biopolymers. We briefly describe the merit and limitation of these
models and techniques. In this context, we discuss statistical models of polymer along with
numerical techniques, which may provide enhanced insight in understanding the unfolding of
biomolecules.

Introduction

Recent technological developments of experimental techniques, for example, optical tweezers,
atomic force microscope, etc., made it possible to apply a force of the order of pN to manip-
ulate the single biomolecules (Kumar and Li ; Rief et al. , ; Tskhovrebova et al.
). Many interesting results, for example, structural, functional, and elastic properties of
biomolecules, information about the kinetics of biomolecular reactions, and detection ofmolec-
ular intermediates have been obtained (Bustamante et al. ; Cecconi et al. ; Smith et al.
, ). Moreover, these experiments also provided a platform to verify theoretical predic-
tions based on the models developed in the framework of statistical mechanics (Bhattacharjee
; Giri and Kumar ; Kumar ; Kumar and Giri ; Kumar et al. ; Lubensky
and Nelson ; Marenduzzo et al. a; Zhou et al. ).

Many biological reactions involve large conformational changes which provide well-defined
mechanical reaction coordinates, for example, the end-to-end distance of a polymer, that can
be used to follow the progress of the reaction (Bustamante et al. ; Kumar et al. ).
Such processes have been modeled by a simple two-state model (Bustamante et al. ). The
applied force “tilts” the free energy surface along the reaction coordinate by an amount lin-
early dependent on the end-to-end distance. The kind of transitions induced by the applied
force are the folding–unfolding transition of proteins, the stretching and unzipping transi-
tion of double-stranded DNA, or the ball–string transition of a polymer (Kumar and Li ).
From thermodynamics point of view, the change in energy of system can be categorized into
components related to the heat exchanged and the work done on or performed by the sys-
tem. If the change in energy of the system is quite low then the system remains in quasi-static
equilibrium. The aim of this chapter is to provide the concepts from statistical mechanics
to describe the force-induced transitions of biopolymers. In > section “Models”, we discuss
some of the models of polymers, which have been used to study biopolymers in the presence
of a force f . > Section “Methods and Techniques” dwells with few techniques used in sta-
tistical mechanics for polymers. Among these techniques, we choose an exact enumeration
technique to study force-induced desorption of polymer adsorbed on the surface in > sec-
tion “Applications”. The method developed for homo-polymers can also be extended to study
the protein unfolding and DNA unzipping in quasi static equilibrium. The chapter ends with
some results based on model studies which are interesting for future experiments in > section
“Conclusions”.
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Models

Macromolecules from living organisms are called biopolymers which vary in their size, shape,
and function. Polymers including biopolymers are made up of long chains of “monomer” units
(de Gennes ; des Cloizeaux and Jannink ; Grosberg and Khokhlov ; Vanderzande
). Themonomers can be of different natures. In DNA and RNA they are called nucleotides,
and amino acids in proteins. Building blocks of simple artificial polymers can be group of
just a few atoms, for example, CH in polyethylene or a complex structure in amino acids.
The difference between polymers and biopolymers is in their structure. Biopolymers have
generally well-defined structures. The most intensive theoretical study related to biomolecules
can be performed with the help of all-atom simulations. All-atom models, which provide the
most detailed description on the atomistic level, include the local interaction and interaction
involved in non-bonded monomers. The later include the (–) Lennard-Jones potential, the
electrostatic interaction, and the interaction with environment (Kumar and Li ). However,
such study for a long chain is computationally demanding and is difficult to handle analytically.
In order to get the key features, physicists attempt to simplify complex structures of biopolymers
as much as possible. Such process is termed as coarse graining. They model polymer chains
as threads or necklaces made of beads on a string which describes some essential properties
of biopolymers (de Gennes ; des Cloizeaux and Jannink ; Grosberg and Khokhlov
; Vanderzande ) but not always. In the literature, coarse-grained models are divided
into two broad categories: () Continuum models and () Lattice models, which are briefly
discussed below.

ContinuumModels

We briefly describe three models, namely, the Gaussian Chain model, Freely Jointed Chain
(FJC) model, and Worm Like Chain (WLC) model, which have been extensively used to
describe the force-extension curves of biopolymers.The advantages of thesemodels come from
their simplicity and allowing one to derive analytical expressions in a simple form. In these
models a polymer chain consists of N beads (monomers) of contour length L. A point in
d-dimensional space represents each monomer and the distance between two consecutive
monomers is Ri−−Ri (see > Fig. -).The energy with force f (along x-direction) in Gaussian
model is expressed as (Doi and Edwards )

F =

kBT
b ∫

L=Nb


ds(

∂r(s)
∂s

)


− f x̂ ⋅

∫

Nb


ds

∂r(s)
∂s

, (.)

where b is the effective bond length known as the Kuhn length and r(s) describes the local
state at arc-length point s. For example, in the case of a flexible Gaussian chain, r is a three-
dimensional position vector, whereas for WLC case it represents the unit tangent vector. kB is
the Boltzmann constant and T the temperature of the system.Using the path integral technique
(Doi and Edwards ; Kleinert ), the end-to-enddistance distribution function of a chain
under the force can be written as

PN(R, f ) = (


πNb

)

(/)
exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−


Nb

(R −

Nb f x̂
kBT

)

⎫
⎪

⎪

⎬

⎪

⎪

⎭

. (.)
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(a) Schematic of a freely jointedchain. (b) Freely rotatingchainwithfixedbondangle. Thesemodels
do not incorporate excluded volume effects in their description

The x-component of R can be expressed as

PN(Rx , f ) =

∫

dRydRzPN(R, f )

= (


πNb

)

(/)
exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−


Nb

(Rx −

Nb f
kBT

)

⎫
⎪

⎪

⎬

⎪

⎪

⎭

, (.)

which gives the expression for the extension x in the presence of applied force f (Dai et al. )

x( f ) =

Nb


f b
kBT

. (.)

This is a linear force relation.Themodel describes the response of a single polymer chain under
low force. The major limitation of the model is the property that the distance between two
monomers can be extended without any limit. This shortcoming of Gaussian chain is removed
in the FJCmodel, where the distance between two consecutive monomers (bond length) is kept
fixed while the rotational angle occurs with equal probability (> Fig. -b). The free energy of
the system can be written as

F = − f x̂ ⋅
N
∑

n=
rn , (.)

where rn are bond vectors with constant length ∣ rn ∣= b.
The distribution function of end-to-end vector R in the presence of force f is defined as

PN(R, f ) =

exp[β f x̂ ⋅ R]PN(R, )
∫

dR exp[β f x̂ ⋅ R]PN(R, )
, (.)

where β = /kBT and PN(R, ) is the end-to-end distance distribution function in the absence
of force f , which is given as

PN(R, ) =


N+

(N − )!πbR

[(N−R/b)/]

∑

n=
(−)n (

N
n )

× (N − n − R/b)N−. (.)
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Thecomponent of end-to-end distance along the x-directionmaybe obtained by integrating
> Eq. . with respect to Ry and Rz as (Dai et al. )

PN(Rx , f ) =

exp(β f Rx)

[π sinh(β f b)/β f b]N
PN(Rx , ), (.)

where the value of PN(Rx , ) can be obtained from > Eq. ..
The average extension along the force direction is

x( f ) = bN [−


β f b

+ coth(β f b)] . (.)

One of the important characteristics of biopolymers not described by the FJC model is the
stiffness of the chain. A more realistic model for many systems is that of the Freely Rotating
Chain, or Worm Like Chain (WLC), which includes stiffness in its description. This model
builds an extension of the FJC model with the assumptions that the bond angles are fixed at
certain angle, but are free to rotate. This gives rise to a uniform distribution of dihedral angles.
The end-to-end distance within the WLC model can be calculated by transfer matrix meth-
ods, numerical simulations, etc. One can find variational expressions for x as a function of f
(Chatney et al. ; Marko and Siggia ; Rosa et al. a).The one used extensively in the
literature is (Marko and Siggia )

f =

kBT
b

[


( − x/L)

−  +
x
L

] . (.)

This equation also reduces to the Gaussian chain result in the small force regime i.e., f < kBT/b
and for large force f > kBT/b, it acquires the form

x = L
⎛

⎝

 −
√

kBT
 f b

⎞

⎠

. (.)

One can see from this equation that the difference between the contour length L and the exten-
sion x varies as f −.. The force-extension curves for the Gaussian chain, FJC and WLC are
shown in > Fig. -. The behavior of a biopolymer subjected to a large force as described by
theWLCmodel is contrary to the behavior as described by the FJCmodel, whereas at low force
all models show identical behavior. The Kuhn length of the WLC model corresponds to twice
the persistence length. One of the important shortcomings is that all these models have only
one free parameter, known as the persistence length or Kuhn length, and hence are not suitable
when it comes to describing the entire force-extension curve involving many intermediates.

It is important to recall that all these models ignore crucial excluded volume effect, i.e., the
space occupied by a monomer is not available to other monomers (de Gennes ). Apart
from these, in a polymer solution three types of interactions may be present (de Gennes ):
() monomer–monomer interactions, () monomer–solvent interaction, () solvent–solvent
interaction.

If monomer–monomer (or solvent–solvent) interaction ismore than themonomer–solvent
interaction in the solution, such solvent is known as a poor solvent. However, if monomer–
solvent interaction favors in the solution, the solvent is referred as a good solvent. It is possible
by lowering the temperature, one can go from the expanded coil state to a compact globule state
and such transition is known as a coil–globule transition and transition point is called θ-point.
Generally, force-induced transitions have been studied by thesemodelswhere excluded volume
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Force-extension curves for the Gaussian chain, FJC, and WLC models

effects and attractive interactions between chain segments have been ignored and is thus well
suited only for modeling the stretching of polymers in a good solvent (Kumar and Li ).

LatticeModels

Any model designed to represent a polymer chain over a full range of physical conditions must
include important effects such as excluded volume and attractive interactions as a starting point.
In a simplified assumption, a linear biopolymer chain in a solvent can be described by a walk
on a lattice in which a step or vertex of the walk represents a monomer. If the walk is allowed to
cross itself without restriction such walk is referred as Random Walk, which is same as that of
the Gaussian chain (de Gennes ; Vanderzande ). The excluded volume effect has been
incorporated in the RandomWalk model of polymer with a constraint that a lattice site cannot
be visited more than once. This kind of walk is known as Self-Avoiding Walks (SAWs), which
simulates a linear polymer chain in a good solvent (> Fig. -a). A polymer chain in a poor sol-
vent is modeled by Self-Attracting Self-Avoiding Walks (SASAWs) by including self-attraction
among non-bondedmonomers.This model exhibits collapse transition including the existence
of θ-point (de Gennes ; Vanderzande ). Various kinds of underlying lattices have been
proposed in the literature to study the conformational properties of linear polymer chains.
The choice of the lattice depends on the mathematical convenience, nature of the system, and
the interactions present in the system. As far as universality is concerned, the nature of under-
lying lattice and the detail of interactions do not matter much and many important properties
associated with polymers can be derived, which are in qualitative agreement with the experi-
ments. Sometimes quantitative agreement has also been achieved particularly in determining
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x-axis) keeping other end fixed. In order to study the role of anisotropy, onemay apply force along
y-direction (> Fig. -c)

the critical exponents (deGennes ;Vanderzande ).Therefore, SAWswith suitable inter-
actions on lattice has been studied extensively in describing the various properties of polymers
and biopolymers.

In addition to self-avoidance, one can also introduce additional constraint on the walks, for
example, certain direction(s) is (are) not accessible to the walker, such walks are called Directed
Walks (DWs) (Privman and Svrakic ; Vanderzande ). To define a directed walk, a pre-
ferred direction n̂ on the lattice is assigned. Walkers are allowed to take only those steps in
the non-negative direction of n̂. The directed walk can be seen as a model of polymer that is
subject to some external force in the direction of n̂, for example, flow in which the polymer
is immersed or an electric field acting on electrically charged polymers. If the direction n̂ is
assigned as shown in > Fig. -b and walks in the non-negative projection of n̂ are not allowed
then suchwalks are called FullyDirectedWalks (FDWs). If the direction n̂ is assigned, say, along
the x-axis (> Fig. -c), then the walks are said to be the Partial Directed Walks (PDSAWs).
For example in two dimensions, the walker can take step in ±y directions but only in +x
direction. The major advantage of the directed walk model of polymer is that it can be solved
analytically and many important results may be derived exactly. The drawback is that it is too
far from the real chain.

Polymer and Critical Phenomena

It is known that the certain quantities associated with polymers modeled by SAWs for, exam-
ple, number of distinct conformation (CN), number of closed polygons (PN), and end-to-end
distance of chain (Re) of N monomers scale as (de Gennes )

CN ∼ μNNγ−,
PN ∼ μNNα−,
Re ∼ Nν, (.)

where μ is the connectivity constant giving the number of choices per step for an infinitely long
walk. From the phase transition and critical phenomena, we also know that certain physical
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quantities like susceptibility (χ), specific heat (C), and correlation length (ξ) near the transition
point TC scale as

χ ∼ χ ∣

T − Tc

Tc
∣

−γ ,

C ∼ C ∣

T − Tc

Tc
∣

−α ,

ξ ∼ ξ ∣

T − Tc

Tc
∣

−ν . (.)

A relation between polymer statistics and phase transition was established by de Gennes
() and des Cloiseaux () showing a correspondence between the polymer chain mod-
eled by SAWs and the n-vector spin model of magnetization in the limit n → . Similarities
between correlation length (ξ) and the end-to-end distance (Re) can be noticed by compar-
ing > Eqs. . and > .. Correspondence between /N and T−Tc

Tc
is viewed as T−Tc

Tc
→  and

N → ∞.This equivalence allowed polymer science to benefit from the vast knowledge accumu-
lated in the study of critical phenomena. For example, the following relations, which are quite
non-trivial to derive directly, are also valid here (de Gennes ):

α + β + γ = ,
 − α = dν,

γ = ν( − η). (.)

Here, α, β, γ, and η are the critical exponents and d represents the dimensionality of the system.
The above equivalence may serve an important role in describing the long range behavior of the
polymers.

Methods and Techniques

Methods and techniques used in critical phenomena can also be applied to polymers and
biopolymers to gain further insight of the system. In the following, we discuss some of the tech-
niques of statistical mechanics which have been used in analyzing the results of single molecule
force spectroscopy.

Generating Function Technique

The generating function technique is a very powerful technique, whichmay be adapted to study
the conformational properties of biopolymers (Forgacs et al. ; Privman and Svrakic ).
Here, we use a simple example to illustrate how the generating function approach can be applied
and exact results can be derived. Let us consider a directed walk model of a polymer chain
(Privman and Svrakic ; Vanderzande ). For simplicity, we consider partial directed
walks (PDWs) in which the walker is allowed to move along x- and± y-axes only (> Fig. -c).
As discussed above biopolymers are in general semi-flexible. Stiffness is introduced into the
polymer chain by putting an energy cost єb on every bend of the walk thus giving rise to an

associated Boltzmann weight, k = e−
єb
kBT . For k =  (єb = ) the chain is said to be flexible,
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⊡ Fig. -
The diagrammatic representations of the recursion relations > Eqs. . and > . for PDWs.
The thick arrows X and Y denote all possible walks with the initial step (fugacity) along +x and ±y

directions

while for  < k < , ( < єb < ∞) the chain is said to be semi-flexible. The grand canonical
partition function of such a chain can be written as (Mishra et al. ; Privman and Svrakic
)

Z(z, k) =

∞

∑

N=
∑

all walks
zN kNb . (.)

Here, z is the fugacity of the walk and Nb is the number of bends in a given configuration. In
two dimensions, the grand canonical partition function defined by > Eq. .may be expressed
as a sum of two components of PDWs. The recursion relations for the case of a semi-flexible
polymer chain are

X = z + z(X + kY), (.)

and
Y = z + z(kX + Y). (.)

Schematic representations of the above equations (for D) have been shown in > Fig. -. It
may be noted that the first term of > Eqs. . and > . is the fugacity of the walk and remain
constant as z. Solving > Eqs. . and > . we get

X =

z + (k − )z

 − z + z − zk
, (.)

Y =

z + (k − )z

 − z + z − zk
. (.)

The partition function of the system can, therefore, be written as

Z(z, k) = X + Y =

(k − )z + z
 − z + z − zk

. (.)

The critical point for polymerization of an infinite chain is found from the relation

 − z + z − zk = . (.)

This leads to an expression for the critical value of the step fugacity as a function of k, zc =


(+

√

k)
. In the limit k → , it reduces to the well-known value for the flexible polymer chain in

D (Privman and Svrakic ). The approach has been successfully applied to study the DNA
unzipping and unfolding of collapse polymer (Marenduzzo et al. a, b; Rosa et al. a, b).
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Exact Enumeration Technique

The conformational properties of a polymer chain and phase transition phenomena can be
understood if one has the complete information about the partition function of the chain. In the
lattice model, the canonical partition function of a polymer chain is calculated (Domb and
Lebowitz ) by enumerating all possible walks of a given length. For example, we show total
number of conformations (CN) for N step walk in > Table -. The grand canonical partition
function defined in > Eq. . can be written as

Z(z) =
∑

N
CNzN , (.)

where z is the fugacity associated with each step of the walk. As the singularity of the partition
function is associated with critical phenomena, the partition function defined in > Eq. .
will followZ(z) ∼ (− μz)−γ in the thermodynamic limit. In most of the cases, wheremodel is
not analytically solvable, one uses numerical techniques (Domb and Lebowitz ) to calculate
the partition function. Once the partition function is known, other thermodynamic variables
can be calculated.

Since in a system of finite size the true phase transition cannot take place, therefore, one
has to use suitable extrapolation scheme to calculate CN in the limit N → ∞. For this purpose
suitable techniques, for example, ratio method, Pade approximants, differential approximation,
etc. (Domb and Lebowitz ) can be used. In ratio method, the approximate value of μ for
N → ∞ can be calculated by taking the ratios of consecutive terms of the series.These quantities
should, for large N , be a linear function of /N

log
CN+

CN
≃ log μ + (γ − )O(/N), (.)

⊡ Table -
Values of CN for different N for the square lattice. The value of CN can be obtained numerically or
one may see the following webpage: http://www.ms.unimelb.edu.au/iwan/saw/series/sqsaw.ser

N CN N CN

   

   

   

   

   

  ... ...

  ... ...

  ... ...

  ... ...

  ... ...

  ... ...

  ... ...

   

   

   

http://www.ms.unimelb.edu.au/iwan/saw/series/sqsaw.ser
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⊡ Fig. -
Variation of connectivity constant (μ) with /N for SAW on square lattice. The linear extrapolation
gives μ = . which is quite close to the best estimated value

whereO(/N) lower order correction. A simple fit then gives estimates for μ and γ (Domb and
Lebowitz ). However, there is an odd-even effect in CN+

CN
. One can avoid this by using the

square root of the successive ratios of CN as μ =

√

CN+
CN

and extrapolate it to N → ∞. Linear
extrapolation of μ with 

N is shown in > Fig. -.

Monte Carlo Simulation

The Monte Carlo (MC) technique is extremely simple in principle and has been greatly
expanded and applied to a wide variety of problems (Binder ; Grassberger et al. ; Lan-
dau and Binder ).The typical goal ofMonte Carlo simulations is first to find out the ground
state of a given system (optimization problem) and then calculate ensemble averages through
random sampling (equilibrium problem).The core of this approach is a set of predefinedmoves,
which are traditionally on the lattice but may be defined in free space. At each time step a move
is selected and may be accepted or rejected based on some criterion, for example, Metropolis
method (Binder ), which has been used extensively, is defined as follows:

. Start with some initial configuration I at a given temperature T
. Define some rule to go from the present configuration to a new one
. Compute the energy difference ΔE = Enew − Eold, where Enew and Eold are energies of the

system after and before the move
. If ΔE < , accept the move with new configuration. Otherwise, generate a random number

r between  and  and accept the trial configuration if exp(−βΔE) > r. Such choice of
acceptance of move is known as Metropolis method

. Repeat Steps – till enough configurations have been sampled
. Repeat Steps – for different temperatures
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The way in which temperature is decreased is known as the cooling process. Ideally one
should try to devise an optimal way to find the annealing schedule, as the decrease rate and
the number of MC steps per T can be varied during the numerical simulation. An important
parameter to monitor during the annealing is the number of accepted moves that do not vio-
late physical constrains. At high T , this number is very high but at low temperatures almost all
moves may be rejected, and therefore, caution should be taken in sampling. One of the biggest
advantages of the MC is that it can be very fast especially if the moves are selected carefully.
The disadvantage is that it is not generally suitable for studying the dynamics since it is depen-
dent on the move set, andmethod fails at low temperature.There are a number of good reviews
and books available, and serious readers are advised to go through them (Binder ; Leckband
and Israelachvili ; Muller et al. ; Muller-Plathe ).

Molecular Dynamics

One of the important tools that has been employed in statistical mechanics is the molec-
ular dynamics (MD) simulations (Allen and Tildesley ; Frenkel and Smit ). Quite
frequently, this technique has been used to study the biomolecules (Kumar and Li ).
Before studying the structural and dynamical properties of biomolecules, it is important to
note that these molecules exhibit a wide range of time scales over which specific processes take
place. For example, local motion, which involves atomic fluctuation, side chain motion, and
loop motion occurs in the length scale of .–Å and the time involved in such process is of
the order of − to − s. The motion of a helix, protein domain, or subunit falls under the
rigid body motion whose typical length scales are in between  Å and Å and time involved
in such motion is in between − and  s. Large-scale motion consists of helix–coil transition
or folding–unfolding transition, which is more than Å in length and, time involved is about
− to − s. Hence the basic goal of molecular dynamics is to understand the role of different
length and time scales involved in describing the physical phenomena. Since MD simulation
provides information at microscopic level, it is desirable to use the basic concepts of statistical
mechanics to derive the macroscopic observable like pressure, energy, heat capacity, etc.

InMD one generates a sequence of points in phase space Ω(pi , qi)where pi is the momen-
tum of the ith particle and qi is the position as a function of time. These points belong
to the same ensemble and correspond to different conformations (Allen and Tildesley ;
Frenkel and Smit ).The ergodic hypothesis states that the ensemble average is equivalent to
time average. Hence if one allows system to evolve in time indefinitely then system will pass
through all possible states and thus corresponds to the time average. Therefore, the goal is to
generate enough representative point such that equality is satisfied.

The method is based on Newton’s second law of motion, that is, Frenkel and Smit (),
Allen and Tildesley ()

Fi = mi
dr
dt

= −

dEp

dri
, (.)

where Fi is the applied force on the i-th particle of mass mi and Ep is the potential energy of
the system.The potential energy, in general, is a complicated function and there is no analytic
solution to the equation of motion and therefore, one has to solve these equations numerically.

There are various algorithms/numeric schemes for integrating Newton’s equations of
motion (Allen and Tildesley ; Frenkel and Smit ). They are generally derived from
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the Taylor expansion. The expansion for the positions (r), velocity (v), and acceleration (a) of
the particles around some moment of time t are

r(t + Δt) = r(t) + v(t)Δt +


a(t)Δt + ..., (.)

v(t + Δt) = v(t) + a(t)Δt +


b(t)Δt + ..., (.)

a(t + Δt) = a(t) + b(t)Δt + ...., (.)

where Δt is the time step used in the simulation. In the following, we will discuss some of the
common schemes of integration algorithm, which have been extensively used in literature.

• Verlet algorithm:
The Verlet algorithm uses positions and accelerations at time t and the positions from time
t − Δt to calculate new positions at time t + Δt. In order to derive the Verlet algorithm one
can write

r(t + Δt) = r(t) + v(t)Δt +


a(t)Δt, (.)

r(t − Δt) = r(t) − v(t)Δt +


a(t)Δt. (.)

The sum of these equations gives

r(t + Δt) = r(t) − r(t − Δt) + a(t)Δt. (.)

The algorithmdoes not use the explicit formof velocities.Theusefulness of the algorithmare
it is simple to implement, and does not require large memory.The algorithm is of moderate
precision.

• Leap Frog algorithm:
In this algorithm, the velocities are first computed at time t + Δt

 and then used to calculate
the positions, r, at time t + Δt. The velocities leap over the positions and subsequently the
positions leap over the velocities.

r(t + Δt) = r(t) + v(t +
Δt


)Δt, (.)

v(t + Δt) = v(t −
Δt


) + a(t)Δt. (.)

The approximate form of velocities at time t is given by

v(t) =



[v(t +

Δt


) + v(t −
Δt


)]. (.)

The major gain in this process is that the velocities are explicitly calculated, however, the
shortcoming of the algorithm is that velocities are not calculated at the same time as the
positions.

• TheVelocity Verlet algorithm:
It may be noted that in the Leap Frog algorithm, velocities are not defined at the same time
as the positions. As a consequence kinetic and potential energies are also not defined at
the same time, and hence one cannot directly compute the total energy in the Leap Frog
algorithm. It is, however, possible to implement in the Verlet algorithm a form that uses
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positions and velocities computed at same instant of times.

r(t + Δt) = r(t) + v(t)Δt +


a(t)Δt, (.)

v(t + Δt) = v(t) +



[a(t) + a(t + Δt)]Δt. (.)

It has to be emphasized here that the Velocity Verlet algorithm is not memory consuming,
because it is not required to keep track of the velocity at every time step during the simula-
tion. Moreover, the long-term results of Velocity Verlet are equivalent to the Semi-implicit
Euler method, and there is no compromise on precision.

• Beeman’s algorithm:
This algorithm is related to the Verlet algorithm and yields the same trajectories. However,
it provides better estimate of the velocities and looks different than the Verlet algorithm.

r(t + Δt) = r(t) + v(t)Δt +


a(t)Δt −



a(t − Δt)Δt, (.)

v(t + Δt) = v(t) + v(t)Δt +


a(t)Δt +



a(t)Δt −



a(t − Δt)Δt. (.)

The advantage of this algorithm is that it gives accurate expression for the velocities and
better energy conservation. The disadvantage is that because of the complex expressions
computation is much more time-consuming.

The procedure for a molecular dynamics simulation is subject to many user-defined vari-
ables. However, one should consider certain criteria in choosing these algorithms. It should
conserve energy, momentum and computationally efficient so that long time step integration
can be performed. Because the evaluation of the atomic positions is not performed on a contin-
uous basis, but at intervals of a femtosecond (fs). Since this is the time-scale of stretches of the
bonds with hydrogen atoms, these stretches should be constrained in order to permit time steps
of  fs. The algorithm that permits this increase in simulation speed is called SHAKE (Frenkel
and Smit ). Application of constraints on all bond lengths and bond angles would increase
the permitted time step even more, without too much loss of information. Since most of the
computational time is spent on evaluating the non-bonded interactions between atoms, the
evaluation time step for non-bonded atom pairs can be increased to a small extent. Using a cut-
off distance beyond which atoms are no longer considered to interact can significantly reduce
the amount of non-bonded atom pairs.

It may be noted that MD is a scheme for studying the time evolution of a classical system
of N particles in volume V , where total energy is a constant of motion. As pointed out earlier,
time averages are equivalent to ensemble averages, the observables, say A evolves according to
constant energy simulation and hence,

⟨A⟩N ,V ,E = lim
τ→∞

∫

τ


A(t)dt. (.)

It is possible to run many NVE simulations with different energies and result could be used
in a Boltzmann-weighted average as

⟨A⟩NVT =
∑

E
⟨A⟩NVE e−βE . (.)

However, such process is not very practical, because simulations are quite expensive in terms
of time. Moreover, we require a lot of E values to have enough statistics, and to conserve energy
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during simulation is a tough task. Thus, it is more appropriate to run simulation in constant
temperature ensemble, that is, NVT. In the following, we will discuss some popular temperature
control schemes (Allen and Tildesley ; Frenkel and Smit ).

. Scaling velocities (Berendsen thermostat):
Since in the beginning, the system is not equilibrated and hence remains in the incorrect
state. The potential energy is converted to thermal energy or thermal energy is being con-
sumed during equilibration. In order to stop the temperature from drifting, one of the
possible ways is to constrain instantaneous velocities scaled by a factor at each step

v′i =
√

Td

Ti
vi , (.)

where Td is desired temperature and Ti is instantaneous temperature given by Ti =


NkB ∑

N
i

pi
mi

after i-th step. This influences the dynamics severely and does not give cor-
rect canonical ensemble because it does not generate fluctuations in temperature which are
also present in the canonical ensemble. The method is good for initialization of phase.
A weaker formulation of this approach is the Berendsen thermostat where to keep tempera-
ture constant, system is coupled to an external heat bath of temperature T.The velocities are
scaled in such a way that the rate of change of temperature is proportional to the difference
in temperature between system and bath, that is,

dT
dt

=

T − T(t)
c

, (.)

where c is coupling parameter of the system with a bath. The scaling factor for velocities is
given by

λ =

√

 +
Δt
c

(

T

T(t − Δt/)
− ). (.)

. Adding stochastic forces and/or velocities (Langevin thermostat):
This thermostat models the influence of a heat bath by adding to the velocity of each particle
a small random (white) noise and a frictional force directly proportional to the velocity
of that particle. These two factors are balanced to give a constant temperature. Since each
particle is coupled to a local heat bath, the heat trapped in localized modes can be removed
by using this model.

ma = −ξv + f (r) + f ′. (.)

Here f (r) and f ′ are conservative force and random force respectively. ξ is the friction
coefficient. The drawback of this thermostat is that momentum transfer is destroyed. So, it
is not advisable to use Langevin thermostat in the simulations where one wishes to study
the diffusion processes.

. Nosé–Hoover thermostat:
The Berendsen thermostat is quite efficient for relaxing a system to the target tempera-
ture. However, once your system has reached equilibrium, it is important to probe a correct
canonical ensemble. The Nosé–Hoover thermostat is an extended-systemmethod for con-
trolling the temperature of simulated system (Huenenberger ; Thijssen ). It allows
temperatures to fluctuate about an average value, and uses a friction factor to control parti-
cle velocities. This particular thermostat can oscillate when a system is not in equilibrium.
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Therefore, it is recommended to use a weak-coupling method for initial system prepa-
ration (e.g., Berendsen thermostat), followed by data collection under the Nosé–Hoover
thermostat. This thermostat produces a correct kinetic ensemble.

In this context, molecular dynamics simulation of nucleic acids have been considered as
a bigger challenge because of the negative backbone charge and the poly-electrolytes behav-
ior. In oligonucleotide dynamics simulations, particular attention should be paid to the atomic
charges. The negatively charged phosphate groups may very well influence the trajectory. In
contrast with molecular mechanics where a structural minimum is the end result, molecular
dynamics offers so much information that is hard to quantify. Excellent reviews on molecu-
lar dynamics and its use in biochemistry and biophysics are numerous(see, e.g., Adcock and
McCammon  and references therein).

Applications

FJC and WLC models have been used in analyzing the force-extension curve obtained from
SMFS experiments. In this context, molecular dynamics and Monte Carlo simulations have
been found to be quite useful in understanding the phenomena. Since there is a lot of good
literature available in this subject, we are not going to discuss them here again. In this section,
we shall illustrate that latticemodel alongwith exact enumeration techniquewhichmay provide
enhanced insight in the mechanism involved in the force-induced transitions because exact
density of states are available and the entire phase diagram can be probed exactly for small
chains.

We consider SAWs that start from a point on an impenetrable surface and experience a
force f in a direction perpendicular to the surface at the other end as shown in > Fig. -.
The applied force, because of its direction, favors desorption and one expects a critical force
( fc) for the desorption. At a given temperature (T) when the applied force f is less than fc(T)

the polymer will be adsorbed, while for f > fc(T) the polymer will be desorbed. The curve
fc(T), therefore, gives the boundary that separates the desorbed phase from the adsorbed phase
in the force–temperature ( f ,T) plane (Mishra et al. ). Here, CN(Ns , h) corresponds to
the number of SAWs of N steps having Ns number of monomers on the surface and h, the

h

f

⊡ Fig. -
Schematic diagramof thepolymer chain adsorbedon the surfaceunder the applicationof external
force
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⊡ Fig. -
The dependence of critical force fc(T) on T in (a) D and (b) D. The star corresponds to results
obtained from the extrapolated values of the reduced free energy, and cross corresponds to the
value obtained from finite size data of a step N =  (D) and N =  (D) respectively

height of the end-monomer away from the surface. In this case, the partition function may be
defined as

ZN(ω,u) =
∑

Ns ,h
CN(Ns , h)ωNsuh , (.)

where ω = e−єs/kBT and u = e f /kBT are the Boltzmann weights for the surface interaction
(єs < ) and the applied force respectively. In the following, we set the Boltzmann constant
kB =  and єs = −. For a fixed force f , we locate the adsorption–desorption transition temper-
ature from the maximum of fluctuation in number of adsorbed monomers (i.e., ⟨N 

s ⟩ − ⟨Ns⟩
)

(see > Fig. -), where ⟨Ns⟩ and ⟨N 
s ⟩ are defined as:

⟨Ns⟩ =


ZN(ω,u) ∑

Ns ,h
NsCN(Ns , h)ωNsuh , (.)

and

⟨N 
s ⟩ =


ZN(ω,u) ∑

Ns ,h
N 

s CN(Ns , h)ωNsuh . (.)

The force–temperature phase diagram is shown in > Fig. -. The occurrence of two max-
ima in fluctuation curve gives the signature of re-entrance in D, but absent in D (Mishra et al.
). Using the phenomenological argument and the probability distribution analysis, it was
shown that the ground state entropy is responsible for the re-entrance which is absent in D
(Mishra et al. ).

It is possible to obtain better estimates of phase boundaries by extrapolating μ for the large
N . The reduced free energy per monomer in this case is defined as

G(ω,u) = lim
N→∞


N

log ZN(ω,u) = log μN(ω,u). (.)
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The dependence of critical force fc(T) on T in (a) D and (b) D. The star corresponds to results
obtained from the extrapolated values of the reduced free energy, and cross corresponds to the
value obtained from finite size data of a step N =  (D) and N =  (D) respectively

μN(ω,u) can be estimated from the partition functions found from the data of exact enumer-
ations for finite N by extrapolating to large N . The fluctuation in terms of reduced free energy
is given as ∂G

∂(log ω) .
The method described above has been applied to protein unfolding (Kumar and Giri ,

; Kumar et al. ), stretching of DNA (Kumar andMishra ; Mishra et al. ), and
unzipping of DNA (Giri and Kumar ; Kumar et al. ) and, many useful information
about biomolecules have been derived which are in qualitative agreement with experiments.

Conclusions

We have discussed some basic models of biopolymers and few techniques which have been
used extensively in the past to understand themechanism involved in force-induced transitions.
In particular, we showed that latticemodel alongwith exact enumeration techniquemaybe used
to interpret the results of SMFS. It is important to point out here that all the single molecule
experiments have been performed to understand the structure and function of biopolymers in
vivo by analyzing it in vitro. As a result, the effect of cellular environment has been ignored in
all these studies. It is known that the interior of the cell contains different kinds of biomolecules
like sugar, nucleic acids, lipids, etc. These macromolecules occupy about % of the total vol-
ume with steric repulsion among themselves. This confined environment induces phenomena
like “molecular confinement” and “molecular crowding” and has major thermodynamic and
kinetic consequences on the cellular processes. Recently Singh et al. (a, b) have used exact
enumeration technique and showed that the molecular crowding has significant impact on the
force-induced transitions. In order to have better understanding of force-induced transitions,
it is advisable to perform SMFS experiments in the environment similar to a cell.
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Abstract: This chapter deals with two very important aspects of modern ab initio com-
putational chemistry: the determination of molecular structure and the calculation, and
visualization, of vibrational spectra. It deals primarily with the practical aspects of determin-
ing molecular structure and vibrational spectra computationally. Both minima (i.e., stable
molecules) and transition states are discussed, as well as infrared (IR), Raman, and vibrational
circular dichroism (VCD) spectra, all of which can now be computed theoretically.

Introduction

This chapter deals with two very important aspects of modern ab initio computational chem-
istry: the determination of molecular structure and the calculation, and visualization, of vibra-
tional spectra. The two things are intimately related as, once a molecular geometry has been
found (as a stationary point on a potential energy surface at whatever level of theory is being
used) it has to be characterized, which usually means that it has to be confirmed that the struc-
ture is a genuine minimum. This of course is done by vibrational analysis, i.e., by computing
the vibrational frequencies and checking that they are all real.

A large percentage of the total expenditure in CPU cycles devoted to computational chem-
istry (variously estimated at between % and %) is spent optimizing geometries. In order
to calculate various molecular properties, one first needs a reliable molecular structure so this
is perhaps not surprising. Algorithms for geometry optimization are now highly advanced and
usually very efficient and most of the quantum chemistry programs available for general use
have solid and reliable geometry optimization modules.They also nearly all have analytical sec-
ond derivatives, at least for the most common theoretical methods, which makes it relatively
straightforward to compute vibrational frequencies once a structure has been found.

In this chapter I deal primarily with the practical aspects of determiningmolecular structure
and vibrational spectra computationally. I consider both minima (i.e., stable molecules) and
transition states, as well as infrared (IR), Raman, and vibrational circular dichroism (VCD)
spectra, all of which can now be computed theoretically. The program used to carry out the
calculations presented here is the PQS package developed by Parallel Quantum Solutions (PQS
), although any modern general purpose package (e.g. Gaussian, Turbomole, GAMESS)
would do just as well. As the name implies, all the major ab initio functionality of this package
is fully parallel, including energies, gradients, and second derivatives. PQS was chosen because
(a) it is the package I actually use in all my application work; and (b) I am one of its principal
authors. A review of the capabilities and parallel efficiency of the PQS package was published
recently (Baker et al. ).

I have elected to use a standard level of ab initio theory for all of the examples presented
in this chapter, namely, density functional theory (Hohenberg and Kohn ; Kohn and Sham
) (DFT) using the BLYP (Becke ) (see also Hertwig and Koch ()) functional and
the -G∗ (Ditchfield et al. ) basis set (BLYP/-G∗). DFT is now the method of choice
for routine chemical applications, and BLYP – despite the large number of functionals devel-
oped since – is still one of the most popular. Many of the techniques and pitfalls in locating
stable geometries are essentially independent of method, although DFT has its own issues as
a result of the numerical quadrature required to handle many of the integrals; this will be dis-
cussed in some detail later. DFT is so popular that Hartree–Fock theory, which used to be the
standard approach throughout the s, has now almost disappeared other than as a precursor
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for higher level post-SCF calculations. At the time of writing, the latter are beginning to make
a bit of a comeback as the limitations of DFT are being reached, in particular its inability to
systematically improve the wavefunction (and hence the results). A good introduction to DFT
for those, like me, whose background is in traditional quantum chemistry is the now classic
 paper from (Johnson et al. ).

TheBorn–Oppenheimer approximation (Born andOppenheimer ) (see alsoWikipedia
()) is used throughout. This extremely important approximation, namely that electrons,
being so much less massive, respond instantaneously to the motion of the nuclei, underpins
the whole concept of the potential energy surface (PES). Stable arrangements of nuclei (sta-
ble or meta-stable molecules) correspond to local minima on the PES, first-order saddle points
connecting two differentminima correspond to transition states, and the “valleys” joining tran-
sition states to minima correspond to “reaction paths.” Electronic excitation is represented by
a “jump” from one potential energy surface to another. We will be spending all of our time on
the lowest energy (ground-state) PES.

Molecular Structure

From a theoretical point of view the determination of a “molecular structure” means determin-
ing the geometry (i.e., the positions of atoms relative to one another) at aminimum (the bottom
of a well) on the ground-state potential energy surface. Although a prerequisite, locating a min-
imum does not automatically mean that you have found the structure of a stable molecule; this
depends on the barrier height, i.e., the energy required to get out of the well. The barrier height
can be determined by locating the transition state, which for our purposes is defined as the
highest energy point on the lowest energy path between reactants and products. (In a barrier-
less reaction, this will effectively be the energy of the products, assuming the reactant is taken
to have the lower energy.) As a rough rule of thumb, if the barrier height is less than about
– kcal mol−, the system is kinetically unstable at room temperature.

Determining the geometry of a stable molecule therefore requires knowledge of both the
minimum itself and the barrier height (i.e., effectively locating the transition state) for all possi-
ble decomposition reactions. Of course, the structures of many stable molecules can be derived
from “chemical intuition” based on preexisting knowledge, but for new structures in particular
the transition state is equally important and the practicing theoretician must be able to find
both. In this section we discuss the methods available to do so.

He+ : An Illustrative Example

The simplest possiblemolecular orbital approach to the bonding in the hydrogenmolecule (H)
would consider the overlap between two s atomic orbitals on each hydrogen producing two
molecular orbitals (MOs), one of which is bonding (the in-phase combination) and the other
antibonding (the out-of-phase combination). H is stable because its two electrons occupy the
bonding orbital, giving an overall energy lowering compared to two separate H atoms.

Similar considerations applied to heliumwould suggest, quite rightly, thatHe would not be
stable, since both the bonding and antibondingMOswould be occupied, giving no net bonding.
(In fact, as is well known, the antibonding MO is more antibonding than the bonding MO is
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bonding.)What happens if the electrons in the antibondingMO are removed?On the one hand,
there should be a strong bonding interaction, while on the other the resultant positive charge
should cause the two nuclei to repel one another.

> Figure - shows the ground-state PES of He+ . This was obtained via a potential scan,
varying the He–He distance from . to . Å in steps of . Å and computing the energy
at each scanned distance. (An optimized potential scan – scanning one particular variable
or combination of variables while optimizing all remaining degrees of freedom – is a useful
tool for locating transition states, as will be seen later.) The upper curve shows the energy
at the restricted RBLYP/-G∗ level, while the lower curve is the unrestricted equivalent
(UBLYP/-G∗). The two curves coalesce at He–He distances less than about . Å; at dis-
tances greater than this the restricted wavefunction is energetically unstable, i.e., a lower energy
can be obtained by switching to the unrestricted formalism.

During the restricted (upper) scan full symmetry (D
∞h) was maintained and the system

is a pure singlet. For the unrestricted scan, symmetry was turned off and the highest occupied
(HOMO) and lowest unoccupied (LUMO)MOs, both alpha and beta spin, were allowed tomix;
this results – as can be seen – in an ultimately much lower energy, but the spin symmetry is lost
and the system wavefunction is no longer a pure singlet. (Spin contamination gradually rises
with increasing He–He distance until at . Å ⟨S⟩ is . and the multiplicity is ., i.e., the
system is somewhat “greater” than a doublet.)

At BLYP/-G∗ the energy of two separateHe+ ions is−. Eh and so, despite the spin
contamination, the unrestricted curve gives a far better description of the dissociation of He+
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than the restricted one. This is a general feature of the dissociation of essentially all diatomic
molecules and is well known.

The interesting feature from our point of view is that this simple, one-dimensional PES
contains both a (local) minimum and a transition state, and both types of stationary point can
be examined and discussed in relation to the same potential energy curve.This is the only one-
dimensional potential energy curve that I am aware of that has this feature.

The gradient is zero at both turning points – minimum and transition state – on the poten-
tial energy curve. The key difference between them is of course the sign of the energy second
derivative (the rate of change of the gradient) which is positive for a minimum and negative for
a transition state.

In this example, we have the complete energy curve between He–He distances of .–.Å
available to us, but in general of course (in particular for anything more complicated than a
diatomic molecule) this would not be the case, and if we wanted to search for, say, a local min-
imum we would have to provide an initial approximation for the geometry, i.e., a guess for the
minimum structure. We would then calculate the energy, the gradient and either calculate, or
provide a reliable estimate for, the second derivative and use this information to predict: (a) how
far away we are on the PES from the nearest local minimum, and (b) the step to take (length
and direction) in order to get there. Note that only in the one-dimensional case are the first
and second derivatives single numbers; typically they would be vectors (with elements dE/dvi ,
where vi is the i-th variable) and matrices (with elements dE/dvidv j), respectively.

Predicting the next step, i.e., how to change the current geometry to get to a new geometry
that is closer to the desired stationary point than the old geometry was, is the job of the geome-
try optimization algorithm. For ab initiomethods these algorithms can be very sophisticated as
both the energy and the gradient are relatively expensive to compute (the second derivative is
usually even more expensive), and so additional manipulations in the optimization algorithm
in order to reduce the number of optimization cycles (i.e., the number of costly energy and gra-
dient calculations) is more than justified. Not so in molecular mechanics where the energy and
gradient cost very little and a highly efficient – in terms of CPU time – optimization algorithm
is required.

It is obvious that one of the factors that determines how quickly a given geometry opti-
mization will converge is the starting geometry. In our He+ example, in order to locate the
metastable minimum, which occurs at a He–He distance of around . Å (shorter than in H,
making this the shortest bond distance known), any initial starting bond length greater than
ca. .Å – the distance in the transition state on the lower, unrestricted, curve – will almost
inevitably lead to dissociation (see > Fig. -). If you want to find the transition state then the
closer you start to a He–He distance of around . Å the better off you will be.

The Newton–Raphson Step

Consider a starting He–He distance of about . Å, i.e., midway between the bound minimum
and the transition state. This could probably go either way, toward the minimum or the tran-
sition state. Which way it does go is guided by the curvature of the surface around the local
region, i.e., by the nature of the second derivative. If we do a standard Taylor series expansion
about the current point, then we have

E(x + h) = E(x) + h
dE
dx
+

h


dE
dx

+

h


dE
dx

+ . . . . (.)
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In the region about a local minimum (or maximum) the potential energy curve is more-or-less
parabolic, so assuming we are in or close to this region we can ignore all terms in the Taylor
series expansion (> Eq. .) beyond the quadratic. Taking the derivative with respect to the
displacement h gives

dE(x + h)
dh

=

dE
dx
+ h

dE
dx

. (.)

At a stationary point dE(x+h)
dh =  and so the displacement h that achieves this is

h = −
dE
dx
dE
dx

or h = −
g
H
, (.)

where g is of course the gradient and H is the energy second derivative.
> Equation . is the well-known Newton–Raphson step in one dimension. The multidi-

mensional equivalent of this is
h = −H−g, (.)

where h is now a vector (a set of displacements for all variables), g is the gradient vector, andH
is the second derivative matrix, commonly known as the Hessian matrix.

Going back to our He+ example we see that the Newton–Raphson step is normally in the
direction of minus the gradient (just like a steepest descent step) with a step length determined
by the magnitude of the second derivative. If the second derivative is positive, the step will be
downhill (opposite to the gradient) whereas if the second derivative is negative, the step will be
uphill (in the same direction as the gradient).Thus at a He–He distance of .Å (see > Fig. -)
the step taken will be uphill toward the transition state if the surface curvature is negative and
downhill toward the minimum if it is positive.

In themultidimensional case, we can always find a unitary transformation that diagonalizes
the Hessian matrix (which is symmetric about its diagonal), i.e.,

D = UHUT , (.)

whereD is a diagonalmatrix and the superscriptT represents amatrix transpose.The vectors in
U are known as eigenvectors and the diagonal elements ofD are the corresponding eigenvalues.
Both the displacement vector h and the gradient g can be transformed into this new (diagonal)
representation as

g′ = UTg; h′ = UTh. (.)

Substituting > Eq. . into > Eq. . gives

h = −(UD−UT
)g. (.)

Multiplying both sides by UT and rearranging gives

UTh = (UTU)D−
(UTg), (.)

h′ = D−g′. (.)

Diagonalizing the Hessian matrix results in a set of mutually orthogonal directions on the
PES (the vectors in U) with the gradient along each direction given by the corresponding ele-
ment in the vector g′ and the second derivative given by the corresponding diagonal matrix
element in D. Thus we see that the N-dimensional Newton–Raphson step is equivalent to N
separate one-dimensional Newton–Raphson steps along the orthogonal directions given by
the vectors in U. If all the eigenvalues of the Hessian matrix (all the diagonal entries in D)
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are positive, then the step taken will attempt to minimize along all directions on the PES (all
degrees of freedom) and will head downhill to the nearest minimum. If one (and only one)
of the Hessian eigenvalues is negative, then the Newton–Raphson step will attempt to maxi-
mize (head uphill in energy) along that direction, while simultaneously minimizing along all
the other directions, i.e., it will move toward a transition state. If the Hessian has two or more
negative eigenvalues, then, left to its own devices, the optimization will head toward a second
(or higher) order stationary point. As these are usually of much less interest than minima or
transition states, the problem in these cases is normally how to take a decent optimization step
when the Hessian signature (number of negative eigenvalues) is inappropriate for the stationary
point being sought.

I have spent a lot of time on theNewton–Raphson step as it, or amodification thereof, forms
the heart of virtually all advanced geometry optimization algorithms. It is usually a good step
to take, particularly in the immediate region around the stationary point, and from a practical
point of view it utilizes all the information that is likely to be available at the current point
on the PES, i.e., first and second derivatives; there are very few codes that routinely compute
derivatives higher than the second, and they would be prohibitively expensive in any case.

The HessianMatrix and Hessian Updates

As I hope the above discussion has shown, the Hessian matrix plays a very important role in
determining the step direction, which depends on the surface curvature in the local region of
the PES. However, care must be taken with the step length. Hessian information is only local
and only applies in the region immediately surrounding the current point. If the predicted step
length is small, then you are probably near to a stationary point, in which case the step is best
taken “as is”; however too large steps are usually not wise and you can easily get lost. Conse-
quently it is a good idea to impose a limit on the step size – either an overall limit on the total
step length or limits on the size of individual step components (or indeed both). Some algo-
rithms attempt to define a “trust radius” which limits the step size dynamically depending on
the local nature of the PES (usually determined by comparing the actual energy change from
that predicted from the Hessian assuming quadratic behavior). In PQS a simple user-defined
maximum step length is imposed (default . au).

Calculation of the exact Hessian for ab initiowavefunctions is expensive and in many cases
it can be replaced by an approximation with little effect on the optimization itself, i.e., on the
number of optimization cycles required to reach convergence. In some cases having the exact
Hessian is a definite disadvantage. If you are fairly close on the PES to the stationary point
being sought then, although an exact Hessian will likely get you there faster, the reduction in
the number of optimization cycles will probably not be enough to offset the extra computa-
tional time required to compute the Hessian in the first place. (The exception is if the surface
if fairly flat – long, weak bonds, or, especially, floppy systems with flat torsional potentials – in
which case an exact Hessian will be a tremendous help.) A good quality Hessian will usually
help the most when you are not really close to a stationary point, but within the region where
the surface curvature is still appropriate, i.e., the Hessian matrix still has the correct signature
(all positive eigenvalues for a minimum and one, and only one, negative eigenvalue for a tran-
sition state). Computing an exact Hessian will almost certainly be a waste of time if you are
a long way from where you finally end up; under these circumstances an exact Hessian will
almost inevitably havemore negative eigenvalues than required and the Newton–Raphson step
alone will clearly be inappropriate. If you are searching for a minimum you will be far better off
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using an alternative for the Hessian matrix which has all positive eigenvalues (such a matrix is
known as positive-definite) which should keep the energy going down until you get closer to
the stationary point. If the gradient is large, then a few steepest descent steps, possibly with a
line search, might be in order, simply to lower the energy and get to a more appropriate region
of the PES.

In fact, other than in exceptional circumstances, when searching for aminimum you do not
normally need to compute a full Hessian matrix at all. In most cases reasonably good starting
geometries can be derived simply from “chemical intuition,” for example, C–H bond lengths
(except in the rare cases of bridging hydrogens) are likely to be of the order of  Å, so there is
no point in using a starting geometry with C–H distances differing much from this value. Very
reasonable estimatesof stretching, bending and also torsional force constants (diagonal Hessian
elements) are readily available – for example, stretching force constants via Badgers rule (Badger
, ) (see also Schlegel ) – which are perfectly adequate in the vast majority of cases.
Consequently you can normally come up with an approximate estimate for at least the diagonal
elements of the Hessian matrix at the starting geometry using some simple empirical rules.

Once you have taken a step from one point on the PES to another (hopefully closer to the
final stationary point), then you can compute an energy and a gradient at the newgeometry.This
information can be utilized, together with the energy, gradient, and anything else that might
be to hand from the old point (or points), not only to work out a new step (the job of the
geometry optimization algorithm) but also to improve (update) the original approximation for
the Hessian matrix. You can think of this as similar to determining the surface curvature by
finite difference on the gradient; you know the gradient where you started, you take a small
step, calculate a new gradient, and determine the curvature by forward differences. Of course,
updating a Hessian matrix on a multidimensional energy surface is a lot more approximate
than this as typically the step taken is fairly large and you are attempting to get an update for
the whole Hessian from a step in just one direction.

There are a number of different Hessian updating formulae, e.g., Murtagh and Sargeant
() and Powell (), Broyden-Fletcher-Goldfarb-Shannon (BFGS) (Broyden ; Fletcher
, ; Goldfarb ; Shanno ), which can be used where appropriate depending on
the nature of the stationary point being sought. (The exact details are not important.) For min-
imization the BFGS update is a popular one as, if you start out with a positive-definite Hessian
matrix (with all positive eigenvalues), as needed for a minimum search, you are more likely to
retain this desirable feature with BFGS than with the other updates. (You may see statements
to the effect than the BFGS update guarantees retention of a positive-definite Hessian. This is
not true. However, on those occasions – not too common, but they do occur – when the update
fails in this regard, you can tell in advance that it is going to fail and either skip the update on
that step or take a different one.)

Transition State Searches

For a minimum search then, computing an exact Hessian matrix is rarely required. Things are
unfortunately not so straightforward for transition state searches. First of all transition state
geometries are not as obvious as are the geometries of stable minima and so it is often quite
difficult to come up with good starting structures. This can be a major problem in itself. Sec-
ondly, the correct Hessian eigenvalue structure is much more important for a transition state
than it is for aminimum. For a transition state search, the Hessianmust have one, and only one,
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negative eigenvalue, and furthermore the direction of negative curvature must correspond to
that for the structure being sought; to the reaction coordinate if youwill. Difficult transition state
searches can be plagued with additional small negative Hessian eigenvalues continually reap-
pearing which correspond to rotation of, e.g., methyl groups, way off the reaction path, i.e., on
some side chain or other nowhere near the reaction center.These additional negative eigenval-
ues often interfere with the search algorithm making the final structure difficult to locate. And
thirdly, there are no simple empirical rules generally available for estimating a reliable starting
Hessian for transition state searches as there are for minima. All these factors make transition
state searchesmore difficult thanminimizations and in all but the simplest cases a good estimate
of the Hessian for at least the region round the active center is essentially mandatory.

As is the case with minimization, once you are “on the right track,” it is not necessary to
calculate fresh second derivative data at every optimization cycle, the Hessian matrix can be
updated. Currently the best update for a transition state search is probably that proposed by
Bofill ()which is a linear combination of the Powell () andMurtagh and Sargeant ()
updates.This is amore flexible update thanBFGSand allows the eigenvalue structure of theHes-
sian to change, which is obviously important if you get too close to a minimum. Unfortunately,
unlike the case with minimization, there is no update that preserves the negative eigenvalue
once you have it, and it is all to easy to find that the updated Hessian has either too few (zero)
or too many (two or more) negative eigenvalues.

There are transition state search algorithms that do not require an initial starting structure;
instead they take as input the two minima that you wish to connect and attempt to derive some
kind of “reaction path” connecting the two. Depending on the nature of the algorithm, themax-
imum energy structure on this path is either the transition state itself, or a pretty good estimate
for it which is subsequently refined. The original algorithm of this type was the Linear Syn-
chronous Transit (LST) approach of Halgren and Lipscomb () whichmapped each atom in
the reactant to a corresponding atom in the product and derived the best linear path between
them in a least-squares sense.The maximum energy structure along this path provided an esti-
mate (unfortunately often not a particularly good one) of the transition state geometry which
was subsequently used as input into a standard search algorithm.

An improvement over this was Quadratic Synchronous Transit (QST) (Bell and Crighton
; Bell et al. ), which attempted to maximize along the line joining reactant and product
while minimizing in all directions “orthogonal” (or conjugate) to this. One can easily see the
rationale behind this approach: if the direction to be maximized could be reliably isolated from
all other directions (imagine a Hessian matrix with what will become the direction of negative
curvature having all zero off-diagonal matrix elements, i.e., Hii ; all Hi j = ) then it would be
straightforward tomaximize along the one direction whileminimizing in the subspace of all the
other variables.Unfortunatelymaintaining the orthogonality between the isolated direction and
the rest of the space (i.e., keepingHi j = , j ≠ i) is rather difficult, and so the algorithm can often
get lost. Nonetheless, there are several more modern algorithms based on these approaches, for
example from Peng and Schlegel () and Ionova and Carter ().

If the “reaction coordinate” can be reliably confined to just a couple of (ideally one) vari-
ables, then a very good starting geometry for a transition state search can be obtained from an
optimized potential scan. Here the variable in question is scanned over a range of values (hope-
fully including the value the variable has in the transition state) and at each scanned value all
other degrees of freedom areminimized. In effect this involves a series of constrained optimiza-
tions over the scanned variable. Once again, the transition state is taken to be the geometry at
the highest energy found during the scan. (If the highest energy occurs at either of the scan
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endpoints then either the scan range needs to be extended or there is no transition state in the
region of the PES that is being explored.) An optimized potential scan is easy to set up with
PQS and is normally a very reliable method, albeit potentially time consuming, of obtaining an
excellent transition state starting geometry provided that the principal reaction coordinate can
be successfully identified.

Choice of Coordinates

In the discussion so far the choice of coordinates in which to carry out minimizations or transi-
tion state searches has not been specifically mentioned, although in certain cases – for example,
when considering a potential scan – it is implicitly assumed that variables familiar to chemists,
such as bond lengths and angles, have been employed. Virtually all quantities of interest that
are actually computed in ab initio quantum chemistry, such as first (gradient) and second (Hes-
sian) derivatives are calculated in terms of Cartesian coordinates and the molecular geometry,
regardless of how it may be input, is stored and manipulated internally as a set of Cartesians.
However, Cartesian coordinates are usually not the best choice when it comes to actually carry-
ing out a geometry optimization, because they are generally too coupled. The only case where
they are regularly used in the actual geometry optimization itself is in molecular mechanics.

In the late s and early s the so-called Z-matrix was widely used in quantum chem-
istry, initially simply as a means of inputting the molecular geometry, but later as a means of
defining a set of internal coordinates in which to carry out the optimization. With a Z-matrix,
the geometry can be defined in terms familiar to a chemist using individual (primitive) bond
lengths, bond angles, and torsions.The first atom defined in the Z-matrix is placed at the origin
of a standard Cartesian axis system (i.e., at ., ., .), the second is placed along the Z axis
at a distance R, say, and the third in the XZ plane at a distance, R, from the second atom and
making an angle,A, with the first atom (or vice versa).Thereafter the position of all subsequent
atoms is given in terms of a bond distance, a bond angle and, say, a torsion, relative to three pre-
viously defined atoms. In the days before graphical user interfaces (GUI) and model builders,
the Z-matrix became a regular way of defining and reading a molecular geometry into the pro-
gram doing the actual calculation. Dummy atoms could be included in the Z-matrix (and were
needed to help define linear arrangements of three or more atoms for which the torsion was
undefined) and, once geometry optimizations were regularly performed in Z-matrix coordi-
nates, the writing of a successful Z-matrix became almost an art form, with the aim of defining
the Z-matrix variables so that the value of any one of them could be changed without changing
the values of any of the others, the idea being to reduce the coupling between the variables to a
minimum.

A well-defined set of internal coordinates usually performs better in a geometry optimiza-
tion, i.e., converges in less optimization cycles, than the same optimization carried out in Carte-
sian coordinates. The playing field can be leveled, particularly for standard organic molecules,
if the geometry is preoptimized in advance using a molecular mechanics forcefield (ensuring a
reliable starting geometry) and if second derivative information – computed very cheaply dur-
ing the mechanics minimization – is transferred to the ab initio optimization (Baker and Hehre
). However, as the system to be optimized gets larger and/or more complicated, Cartesian
coordinates become less and less competitive with respect to a good set of internal coordinates.

The Z-matrix is rarely used today. With the increasing popularity of GUIs and model
builders it is no longer needed as a means of geometry input, and Z-matrix coordinates have



Molecular Structure and Vibrational Spectra  

been superseded as a coordinate set for optimization, first by natural internal coordinates
(Fogarasi et al. ; Pulay et al. ) and then by delocalized internal coordinates (Baker et al.
). The latter, which are linear combinations of stretches, bends, and torsions (as opposed
to the individual primitive internals in a Z-matrix), are readily generated from an underly-
ing set of Cartesian coordinates and decouple the coordinate set (in a linearized sense) to the
maximumextent possible (Baker et al. ). In large systems, reductions in the number of opti-
mization cycles to reach convergence by an order ofmagnitude ormore compared to Cartesians
can be readily achieved.There is an additional computational cost is using delocalized internal
coordinates however, as the transformations required to convert the Cartesian gradient into
the gradient over delocalized internals, and – in particular – to convert the new geometry in
internals back into Cartesians for the next optimization step (the back-transformation), are
expensive and increasingly so with increasing system size.They scale formally asO(N 

), where
N is a rough measure of the system size, although this can readily be reduced to O(N 

) (Baker
et al. ). There have been attempts to reduce the scaling to O(N) (Farkas and Schlegel ;
Paizs et al. ), but I think it is fair to say that these have not been entirely successful. It is
principally because of the unfavorable scaling in the coordinate transformations that internal
coordinates have not been adopted in molecular mechanics.

The cost of the coordinate transformations and the overall complexity of the algorithm is
not really a factor in ab initiomethods and the majority of geometry optimizations in modern
quantum chemistry packages are carried out in delocalized internals (Baker et al. ) or in
some other set of redundant internal coordinates (Peng et al. ; Pulay and Fogarasi ).

TheModified Newton–Raphson Step

We have already seen that the Newton–Raphson step is a pretty good one provided that the
eigenvalue structure of the Hessian matrix is appropriate to the stationary point being sought.
What should you do if it is not? An early effort to take remedial action under these circum-
stances was due to Poppinger () who proposed that, when searching for a transition state,
if the negative eigenvalue was lost then take a step uphill in the direction of the lowest posi-
tive eigenvector, while if an additional (unwanted) negative eigenvalue appeared, then take a
step downhill in the direction of the least negative eigenvector. While this approach should
lead you back into the right region of the PES, it has at least two drawbacks. Firstly, unlike the
Newton–Raphson step which, when appropriate, minimizes/maximizes along all directions on
the PES (all Hessian modes) simultaneously, here you are minimizing/maximizing essentially
along one direction only. Secondly, successive such steps following a particular Hessian mode
tend to become linearly dependent, which degrades many of the standard Hessian updating
procedures.

A much better step was subsequently proposed by Cerjan andMiller () which involved
modifying the standard Newton–Raphson step with a so-called shift parameter, λ. In terms
of a diagonal Hessian representation, the Newton–Raphson step given by > Eq. . can be
written as

h = Σ i −
FiUi

di
, (.)

where Ui is the i-th eigenvector, di is the corresponding eigenvalue, and Fi = UT
i g is the

component of the gradient along the local eigenmodeUi .
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Themodified Newton–Raphson step is given by

h = Σ i −
FiUi

di − λ
, (.)

where λ can be regarded as a shift parameter on the Hessian eigenvalues. A suitable choice of λ
can guide the step in a particular direction; for example if λ is close to a particular eigenvalue
di , then the step taken will be predominantly in the direction of the corresponding eigenvector.
In the early to mid-s, several groups were working on this topic, and several alternative
transition state search algorithms were proposed differing only in the recipe used to determine
the value of λ (Banerjee et al. ; Cerjan and Miller ; Simons et al. ).

The principal optimization algorithm in PQS, both for minima and transition states, is the
eigenvector following (EF) algorithm developed in  (Baker ). It is based on the Rational
Functional Optimization (RFO) approach of Simons and coworkers (Banerjee et al. ) which
was found at the time to provide the best recipe for determining the shift parameter, λ. In this
approach, the energy on the PES following a step h is written as (see > Eq. .):

E(x + h) = E(x) +
gTh + 

h
THh

 + hTSh
. (.)

In the original formalism, the matrix S was a diagonal scaling matrix but in most practical
implementations (certainly in the EF algorithm) it is taken as a unit matrix.

Applying the stationary condition dE/dh =  to > Eq. . gives the RFO eigenvalue
equation (Banerjee et al. ):

(

H g
gT 

)(

h
 ) = λ( S 

  )(
h
 ) . (.)

The dimensionality of > Eq. . is one more than the number of variables (n). As it is an
eigenvalue equation, there are (n+ ) eigenvalues, λ; normally the lowest one, λ, is the one you
need. Expanding out > Eq. . gives

(H − λS)h+ g = , (.)
gTh = λ. (.)

In terms of a diagonal Hessian representation, and with S a unit matrix, > Eq. . rearranges
to > Eq. ., and substitution of > Eq. . into the diagonal form of > Eq. . gives

Σ i −
F
i

λ − bi
= λ, (.)

which can be used to iteratively evaluate λ.
The eigenvalues, λ, of > Eq. . have the following properties (Banerjee et al. ):

. The (n + ) eigenvalues of > Eq. . bracket the n eigenvalues of the Hessian: λi ≤ di ≤

λi+.
. At convergence to a minimum both g and h are . The lowest eigenvalue, λ, of > Eq. .

is also zero and the other n eigenvalues are those of the Hessian at the minimum point,
i.e., λi+ = di for all i. Thus, near a local minimum, λ is negative and approaches zero at
convergence.

. For a saddle-point of order μ (i.e., a stationary point with μ negative eigenvalues) the zero
eigenvalue of > Eq. . at convergence separates the μ negative and (n − μ) positive
Hessian eigenvalues.
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The separability of the positive and negative Hessian eigenvalues led Simons and cowork-
ers to suggest that the problem be reformulated into μ principal modes to be maximized and
(n − μ)modes to beminimized.There would be two shift parameters, λp and λn , one formodes
along which the energy is to be maximized and the other for which it is minimized. The RFO
eigenvalue equation (> Eq. .) could thus be partitioned into two smaller P-RFO equations,
and each one solved separately.

For a transition state, in terms of a diagonal Hessian representation, this gives rise to the
two matrix equations:

(

d F
F  )(

h
 ) = λp (

h
 ) , (.)

⎛

⎜

⎜

⎜

⎝

d  F
 ⋱ ⋮

dn Fn
F ⋯ Fn 

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

h
⋮

hn


⎞

⎟

⎟

⎟

⎠

= λn

⎛

⎜

⎜

⎜

⎝
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⋮
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⎞

⎟

⎟

⎟

⎠

. (.)

λp is the highest eigenvalue of > Eq. .; it is always positive and approaches zero at conver-
gence. λn is the lowest eigenvalue of > Eq. .; it is always negative and again approaches zero
at convergence.

The above discussion assumes that, for a transition state search, the energy is to be maxi-
mized along the lowest Hessianmode, d, andminimized along all the highermodes. However,
as first pointed out by Cerjan and Miller (), it is possible to maximize along modes other
than the lowest and in this way obtain transition states for alternative reactions and rear-
rangements from the same starting point. The ability of the algorithm to “walk” on the PES,
maximizing along different Hessian eigenmodes, is why the algorithm is known as Eigenvector
Following. For maximization along the k-th mode, instead of the lowest, > Eq. . would be
replaced by

(

dk Fk
Fk  )(

hk
 ) = λp (

hk
 ) , (.)

and > Eq. . would now exclude the k-th mode but include the lowest. Since what was
originally the k-th mode is the mode along which the negative eigenvalue is required, if the
search is to be successful this mode must eventually become the lowest mode. The mode that
is actually followed during each optimization cycle is the mode which has the largest overlap
with the mode followed on the previous cycle. In this way the same mode should hopefully be
followed from cycle to cycle as it makes its way through the ranks from k-th position to first
(lowest). Once the mode being followed has become the lowest, mode-following is switched off
and it is always the lowest mode that is followed.

Although it was developed primarily for transition states, the EF algorithm is also a very
powerful minimizer. For minimization the standard RFO-step is taken (requiring a single shift
parameter) using > Eq. .. Mode following for transition state searches is useful if you want
to explore the PES in detail, but it is likely to be expensive and requires reliable Hessian infor-
mation to be effective. There will almost certainly be more variables, and hence more Hessian
modes, for a given system than there are different transition structures associatedwith that sys-
tem; furthermore it is not always obvious which mode to follow at any given point in order to
locate a transition state of a desired type. Beware of low energy modes which if followed will
lead to rotational barriers for torsions in side chains rather than to the transition state for the
main reaction being sought.
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GDIIS

As well as the EF algorithm, the PQS package has another algorithm for structure minimiza-
tion: GDIIS (Csaszar and Pulay ). This is an extension of Pulay’s ubiquitous DIIS (Direct
Inversion in the Iterative Subspace) procedure for accelerating SCF convergence (Pulay ,
), only applied instead to geometry optimization.

The essence of the DIIS approach is that parameter vectors (in this case the geometry) gen-
erated in previous iterations x, x, . . . , xm are linearly combined to find the best geometry in
the current iteration. We can express each parameter vector in terms of its deviation from the
final solution, xf : xi = xf + ei . If the conditions Σ i ciei =  and Σ i ci =  are satisfied, then it is
also the case that Σ i cixi = xf . The true error vectors, ei , are of course unknown. However, they
can be approximated by ei = −H−gi (i.e., by the Newton–Raphson step). Minimization of the
norm of the residuum vector Σ i ciei taking into account the constraint equation Σ i ci =  leads
to a system of m equations (Csaszar and Pulay ):
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, (.)

where Bi j = ⟨ei ∣ej⟩, the scalar product of the error vectors ei and ej, and λ is a Lagrange
multiplier.

The coefficients, ci , obtained from > Eq. . are used to calculate an intermediate
interpolated geometry:

x′m+ = Σ i cixi , (.)

and a corresponding interpolated gradient vector

g′m+ = Σ i cigi . (.)

A new, independent geometry is generated from the interpolated geometry by acting on the
interpolated gradient with the (approximate) Hessian,

xm+ = x′m+ −H
−g′m+. (.)

> Equation .–. constitute a complete cycle of the GDIIS method. Convergence can be
tested for in the usual way (based on the gradient and the displacement from the previous step)
or on the norm of the GDIIS residuum vector.

The size of the GDIIS subspace, m, increases by one after each optimization cycle. Experi-
ence with themethod suggests thatm should not be allowed to grow too large; once a predefined
maximum size has been reached (say , the current default in PQS), the earliest vectors are
dropped out as new vectors are added. Intermediate quantities (geometries and error vectors)
within the GDIIS subspace need to be stored, so limiting the subspace size also limits the stor-
age requirements of the method. (This is not really an issue with GDIIS, but is more important
with DIIS, where potentially large-dimension Fock and possibly density matrices are stored.)

GDIIS was originally used in what is termed “static” mode, in which the original estimate
for the Hessian matrix was used throughout the optimization procedure. In fact GDIIS per-
forms very well with a simple unit matrix approximation for the Hessian. However, it certainly
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performs better if the Hessian matrix is updated. It is particularly important that the Hessian
approximation remain positive definite, and so the BFGS update is strongly recommendedwith
the update skipped if it is determined that this property is in danger of being lost.

GeometryOptimization and Symmetry

Many molecules have symmetry and it is definitely advantageous to utilize as much symmetry
as possible during the calculation of the energy, the gradient and, if it is being computed, the
Hessian. Various quantities, particularly the geometry and the gradient, can be symmetrized
during the optimization step itself, thus removing numerical round-off error and resulting in a
cleaner, and occasionally faster, optimization. Most programs can utilize at least Abelian point-
group symmetry, resulting in savings in computational time by up to a factor of , depending
on the molecular symmetry.

If symmetry is utilized during a geometry optimization it obviously restricts the search on
the PES to structures that retain the molecular symmetry, i.e., it excludes symmetry-breaking
geometries. This can be particularly useful during a transition state search as, if it is known
that the motion in the transition state breaks symmetry, then the transition state search can
be replaced by a minimization within a symmetry-restricted subspace, usually a much simpler
prospect. For example, consider ethane. The minimum, lowest energy structure has staggered
C–H bonds and Dd symmetry. The transition state for rotation about the C–C bond has
eclipsed C–H bonds and Dh symmetry. The latter can in fact be found by a simple minimiza-
tion utilizing Dh point-group symmetry as the path to the Dd minimum is unavailable under
the symmetry constraint.Theminimumunder Dh symmetry is actually a transition state once
the symmetry constraint is removed.

This illustrates another pitfall that occasionally catches out the novice: A structure that has
beenminimized under a symmetry constraint is not necessarily a trueminimum and its identity
should be confirmed by a full vibrational analysis. As a corollary to this, a transition state located
under a symmetry constraint may not be a true transition state either; it could have one (or
more) symmetry breaking modes with negative curvature.

Performance for Minimization

We have had a lot of theory. How well, for example, does the standard eigenvector following
(EF) algorithm perform in practice? This is illustrated in > Table - for a selection of ten
organicmolecules, selected at random from the fragments library in the graphical user interface
PQSMol available for use with PQS ().These systems were all optimized using a molecular
mechanics force field (it is not important which one) and symmetrized prior to being stored.

There have of course been a number of previous comparisons of the performance of vari-
ous optimization algorithms. I mention two in particular, as I was involved in them myself. In
 Baker and Hehre compared the performance of the EF and GDIIS minimization algo-
rithms, as implemented in the version of Spartan available at that time, on a test set of 
organic molecules with a variety of structural motifs (Baker and Hehre ). The two algo-
rithms performed similarly, but the main focus of this paper was to demonstrate that, provided
reliable second derivative informationwas available, i.e., a good startingHessian, thenCartesian
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⊡ Table -
Number of optimization cycles required to reach convergence for ten average-sized organic
molecules under a range of starting conditionsa

Cartesians Delocalized internals
Molecule Formula Atoms Symm. Unitb PMc Unitb Defaultd PMc

Alanine CHNO  C     

Indole CHN  Cs     

Cycloheptane CH  C     

Bicyclo-,,-octane CH  D e    

Adamantane CH  Td     

cis-decalin CH  C     

amp- CHNOP  C e    

Porphine CHN  Dh     

Sucrose CHO  C     

Cyclohexadecane CH  S     

aStandard EF algorithm used with a maximum allowed stepsize in the optimization space of . au and a BFGS
Hessian update; convergence criteria were the standard PQS defaults – maximum component of the gradient vec-
tor less than . au and either a maximum predicted displacement of . au or an energy change from the
previous cycle of less than − Eh
bStarting Hessian was a unit matrix
cStarting Hessian was computed using PM by central-differences on the Cartesian gradient
dDiagonal elements of the starting Hessian were estimated using simple empirical rules
eConverged to higher energy local minimum

coordinates were just as efficient as Z-matrix coordinates for routine geometry optimization.
A later paper Baker () did the same thing for Cartesians versus natural internal coordi-
nates on a larger test set of  mainly organic molecules. This latter test set became a kind of
“standard” for checking improved optimization algorithms and several papers showing minor
enhancements in performance (as would be expected with the passage of time) for these
 molecules were published subsequently (Bakken and Helgaker ; Eckert et al. ;
Lindh et al. ; Swart and Bickelhaupt ). A similar test set is also available for transition
structures (Baker and Chan ).

The conclusion in Baker () was that with a reasonable starting geometry and a good
initial Hessian, optimizations in Cartesian coordinates were as efficient as those employ-
ing natural internal coordinates. However, there were certainly signs that, as the system
size increased, the use of natural internals became more and more advantageous even if
a reliable starting Hessian was available, and it was further concluded that with no ini-
tial Hessian information, natural internals (for which read also delocalized internals which
have more-or-less replaced them) were in general superior to both Cartesian and Z-
matrix coordinates, and for unconstrained optimization were therefore the coordinates of
first choice.

One of the issues with the published studies (Baker ; Baker and Hehre ) is that the
size of the systems in both test suites (all molecules had less than  atoms, and most much
less), although typical for the time (the early s), is pretty small by today’s standards. The
molecules in > Table - are about % larger on the average, four of them have more than
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 atoms, with the largest having . The level of theory used, BLYP/-G∗, is also more
typical of today. They are still only average-sized molecules, but nonetheless are representative
as far as performance is concerned.

All the conclusions reached in the previous studies are fully supported by the results shown
in >Table -.The use of a decentHessian, even just an approximate one at the starting geome-
try (in this case computed by central differences using the semiempirical PMmethod (Stewart
)), improves the performance of minimizations in Cartesian coordinates substantially, by
up to a factor of almost  (cis-decalin) and by an average over all  molecules of around
.. Despite this, Cartesian coordinates are not really competitive with delocalized internals
under the same conditions, taking about %more cycles on the average to reach convergence.
The performance of Cartesians is notably worse for large, floppy molecules with no symme-
try (amp- and sucrose). Perhaps surprisingly, the performance of delocalized internals using
the standard default Hessian (estimating diagonal matrix elements only using simple empirical
rules) is even better, with the number of optimization cycles being the same or less than with
the PM starting Hessian for all systems except one (alanine).

Of some surprise, at least to me, is the relatively poor performance of internal coordi-
nates when no Hessian information (a unit matrix) is used. They are certainly better than
Cartesian coordinates under the same conditions, which require about % more cycles on
the average to converge, but perform over three times worse than when the default diagonal
Hessian is used, showing the advantages of even rudimentary information about the surface
curvature.

One of the molecules in > Table -, bicyclo-,,-octane, took significantly less optimiza-
tion cycles to converge in Cartesian coordinates with a unit Hessian () than with the same
optimization in delocalized internal coordinates (); the reverse is the case for all of the other
systems. This apparent anomaly is due to the fact that the Cartesian unit Hessian optimization
converged to a higher energy local minimum than the other optimizations. This was not the
only occasion when this occurred: higher energy local minima were also found for amp- and
to a lesser extent for sucrose and alanine (although in the latter case the difference was only
μH and may well be simply due to premature convergence, a fairly common occurrence for
unit Hessian Cartesian optimizations (Baker et al. )).

These results support another assertion made in Baker (), namely, that Cartesian opti-
mizations tend to converge to the nearest local minimum whereas optimizations in natural (or
delocalized) internals tend to converge more globally. This global tendency, and that is really
all it is, with the internal coordinate optimizations is principally due to the fact that relatively
small displacements in internal coordinates can lead to large changes when the geometry is con-
verted back to Cartesian coordinates. For example a small change in a central bond angle can
lead to a large Cartesian displacement at the end of a lengthy attached side chain; such large
displacements enable internal coordinate optimizations to “jump over” local minima. (This
phenomenon was first observed in the days of the Z-matrix.)

This is an appropriate point to emphasize that all the optimization algorithms discussed
so far in this chapter are local methods, aimed at locating a single stationary point. Whether
this is the lowest energy structure on the entire PES, i.e., the global minimum, is quite another
matter. The number of (mainly conformational) minima a molecule has increases dramati-
cally with system size and the problem of locating the one with the lowest energy quite quickly
becomes almost insurmountable. Additionally, of course, unless the global minimum is notice-
ably lower in energy than other low-lying local minima, there will be a Boltzmann distribution
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at room temperature with several different minima having appreciable population; under these
circumstances to talk about a well-defined structure does not make a lot of sense.

Problems in locating global minima have only recently become an issue in ab initio cal-
culations as the size of the systems that can be handled using these techniques has increased
significantly in recent years. A number of global search algorithms are available, although none
of them are bulletproof (i.e., absolutely guaranteed to locate the global minimum in a finite
time).The problem of globalminimization is outside the scope of this chapter and the interested
reader is referred to the existing literature for more detail (Pardalos et al. ).

Minimization: An Example

> Figure - shows the optimization output at each cycle in the standard default EFminimiza-
tion of indole. There is more printout than normal for the first and last cycles as I have used a
higher print flag in order to showmore detail.The output is of course specific to PQS but would
be similar – at least in terms of the quantities printed – in other programs.

At the beginning of each optimization cycle the current geometry is printed in Cartesian
coordinates together with the point group (Cs) and the number of degrees of freedom ().
Indole is planar and is oriented in the XY plane; consequently all Z-coordinates are zero. Next
comes the SCF energy at that geometry and the Cartesian forces (the gradient – not normally
printed). The latter should fully reflect the symmetry of the system, which it does in this case,
and so all Z-gradient components are zero.

This is followed by a symmetry analysis of the set of delocalized internal coordinates gen-
erated for indole which results in the elimination of all primitive torsions, all of which are
fixed by symmetry. This analysis is typically done once only as thereafter the delocalized inter-
nal coordinates formed and used on the first cycle are retained unaltered throughout the
optimization. One does not have to do this; several algorithms (e.g., Schlegel and coworkers
(Peng et al. )) effectively regenerate a set of active delocalized internals on each opti-
mization cycle although in most cases this is not necessary and does not improve the overall
performance.

There is then a statement as to how many Hessian modes (eigenvectors) are used during
the construction of the optimization step – this does not have to be all of them, but is usually
most, and cannot bemore than the total number of degrees of freedom – followed by a listing of
the corresponding Hessian eigenvalues (the curvature along each of the eigenvector directions).
In this particular optimization, a diagonal Hessian in the underlying space of primitive inter-
nals (individual stretches, bends and torsions) is estimated using empirical rules, and is then
transformed into the space of selected delocalized internal coordinates,U, viaH = UTHprimU
(Baker et al. ).The simple RFO step is then computed and taken, appropriate for minimiza-
tion, resulting in a single shift parameter, λ (see > Eq. .), with a value of −..The
resulting step length of . is below the default maximum of . and so no scaling of the
step is required.

The parameter values, and their gradients and displacements are then printed out. As with
the Cartesian forces, these are not normally printed, and are not particularly informative given
that each coordinate is potentially a linear combination of all underlying primitive internals
(minus the torsions in the case of indole). A persistently large gradient for a particular coor-
dinate would suggest some problems with the overall coordinate set, suggesting that either the
delocalized internals, the underlying primitives or likely both, should be regenerated.
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** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Minimum

Optimization Cycle: 1

Coordinates (Angstroms)

ATOM X Y Z

1 c -1.128517 1.256320 0.000000

2 c -2.175159 0.350932 0.000000

3 c -1.944638 -1.056645 0.000000

4 c -0.661806 -1.575795 0.000000

5 c 0.418576 -0.654407 0.000000

6 c 0.193566 0.736550 0.000000

7 n 1.801059 -0.848856 0.000000

8 c 1.464739 1.385216 0.000000

9 c 2.431380 0.400066 0.000000

10 h -1.307547 2.344176 0.000000

11 h -3.212371 0.726200 0.000000

12 h -2.806900 -1.744633 0.000000

13 h -0.476805 -2.662311 0.000000

14 h 2.242590 -1.695842 0.000000

15 h 1.641099 2.472979 0.000000

16 h 3.520733 0.566050 0.000000

Point Group: Cs Number of degrees of freedom: 29

Energy is -363.810295355

Cartesian Forces (au)

ATOM X Y Z

1 c 0.0055736 -0.0029170 0.0000000

2 c -0.0116662 -0.0021539 0.0000000

3 c -0.0102295 0.0028293 0.0000000

4 c 0.0158848 -0.0032863 0.0000000

5 c -0.0012122 -0.0121078 0.0000000

6 c -0.0098733 0.0169732 0.0000000

7 n -0.0277428 0.0598278 0.0000000

8 c 0.0127970 0.0051731 0.0000000

9 c -0.0032541 0.0095309 0.0000000

10 h 0.0020479 -0.0106104 0.0000000

11 h 0.0092568 -0.0048346 0.0000000

12 h 0.0083209 0.0070569 0.0000000

13 h -0.0025071 0.0095819 0.0000000

14 h 0.0262691 -0.0500248 0.0000000

15 h -0.0010053 -0.0136614 0.0000000

16 h -0.0126474 -0.0113918 0.0000000

⊡ Fig. -
(Continued)
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Iterative generation of Internal Gradient

Eliminated 13 Coordinates due to Symmetry

Setting Up Default Hessian

Eliminating Redundant Primitive Internals from Space

Removed 40 Torsions

There are now 44 Primitive Internals

29 Hessian modes will be used to form the next step

Hessian Eigenvalues:

0.160000 0.160000 0.160000 0.160000 0.160000 0.160000

0.160000 0.220000 0.221923 0.226566 0.240305 0.246612

0.333419 0.333513 0.334083 0.334451 0.334655 0.334700

0.371362 0.386468 0.401879 0.411214 0.422264 0.441836

0.450459 0.468353 0.478270 0.480256 0.565271

Minimum Search -- Taking Simple RFO Step

Searching for Lambda that Minimizes Along All modes

Value Taken Lambda = -0.01172058

Step Taken. Stepsize is 0.174879

Parameter Values and Displacements in Internal Coordinates

Coordinate Current Value Gradient Displacement New Value

1 0.101253 -0.014349 0.053801 0.155053

2 5.456291 0.008615 -0.016785 5.439506

3 0.217497 -0.007632 0.010903 0.228400

4 -3.211789 -0.009303 0.024794 -3.186995

5 -0.012152 -0.000858 0.006348 -0.005803

6 1.909226 0.003986 -0.024340 1.884886

7 -3.105834 -0.009981 0.008840 -3.096993

8 2.478733 0.002437 0.009541 2.488274

9 -6.023465 -0.014279 0.061052 -5.962413

10 1.567775 -0.024103 0.052225 1.620000

11 0.120409 0.004716 -0.000988 0.119421

12 0.470803 -0.006865 0.010435 0.481238

13 0.108849 0.029674 -0.072756 0.036093

14 -0.084456 -0.000889 -0.005425 -0.089881

15 -0.019703 -0.018787 0.045992 0.026288

16 -0.655038 -0.006993 0.018148 -0.636890

17 0.053151 0.028830 -0.077571 -0.024421

18 -0.542248 -0.008997 0.031837 -0.510411

19 0.418788 -0.009691 0.003553 0.422341

20 0.027192 -0.012413 0.020235 0.047427

21 -0.521699 -0.020982 0.035801 -0.485898

22 0.026544 0.014739 -0.036257 -0.009713

⊡ Fig. -
(Continued)
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23 0.025617 0.012415 -0.020628 0.004989

24 0.106965 -0.014751 0.019131 0.126096

25 0.010931 0.000862 0.003784 0.014715

26 0.078250 0.014521 -0.003008 0.075242

27 -0.017986 0.002536 0.000400 -0.017586

28 -0.036740 0.005844 -0.010000 -0.046740

29 0.059767 -0.010038 0.023970 0.083736

Maximum Tolerance Cnvgd?

Gradient 0.029674 0.000300 NO

Displacement 0.077571 0.000300 NO

Energy change ********* 0.000001 NO

New Cartesian Coordinates Obtained by Inverse Iteration

Cycle: 1 Maximum deviation: 0.07757147 RMS deviation: 0.03247425

Cycle: 2 Maximum deviation: 0.00251062 RMS deviation: 0.00103769

Cycle: 3 Maximum deviation: 0.00000221 RMS deviation: 0.00000090

Cycle: 4 Maximum deviation: 0.00000000 RMS deviation: 0.00000000

Full backtransformation converged in 4 cycles

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Minimum

Optimization Cycle: 2

Energy is -363.816456941

Hessian Updated using BFGS Update

24 Hessian modes will be used to form the next step

Hessian Eigenvalues:

0.151802 0.160279 0.220081 0.222573 0.225149 0.238697

0.243289 0.333210 0.333512 0.334201 0.334467 0.334607

0.343195 0.364439 0.384434 0.402067 0.410203 0.415618

0.442013 0.451793 0.468281 0.475225 0.483089 0.592272

Minimum Search -- Taking Simple RFO Step

Searching for Lambda that Minimizes Along All modes

Value Taken Lambda = -0.00036212

Step Taken. Stepsize is 0.041360

Maximum Tolerance Cnvgd?

Gradient 0.004782 0.000300 NO

Displacement 0.016892 0.000300 NO

Energy change -0.006162 0.000001 NO

⊡ Fig. -
(Continued)
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** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Minimum

Optimization Cycle: 3

Energy is -363.816671150

Hessian Updated using BFGS Update

25 Hessian modes will be used to form the next step

Hessian Eigenvalues:

0.130519 0.160040 0.163016 0.220115 0.222415 0.225439

0.237352 0.243655 0.333380 0.333585 0.334086 0.334518

0.334959 0.343578 0.347729 0.392411 0.400153 0.404240

0.415041 0.441905 0.448922 0.467657 0.472002 0.481316

0.592359

Minimum Search -- Taking Simple RFO Step

Searching for Lambda that Minimizes Along All modes

Value Taken Lambda = -0.00002978

Step Taken. Stepsize is 0.012738

Maximum Tolerance Cnvgd?

Gradient 0.001411 0.000300 NO

Displacement 0.005681 0.000300 NO

Energy change -0.000214 0.000001 NO

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Minimum

Optimization Cycle: 4

Energy is -363.816687350

Hessian Updated using BFGS Update

26 Hessian modes will be used to form the next step

Hessian Eigenvalues:

0.125429 0.160015 0.160339 0.163176 0.219075 0.222406

0.225145 0.240033 0.248037 0.333477 0.333628 0.334164

0.334523 0.335030 0.340061 0.343940 0.388531 0.394562

0.402733 0.413258 0.443109 0.446921 0.466923 0.472407

0.484096 0.575065

⊡ Fig. -
(Continued)
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Minimum Search -- Taking Simple RFO Step

Searching for Lambda that Minimizes Along All modes

Value Taken Lambda = -0.00000167

Step Taken. Stepsize is 0.002748

Maximum Tolerance Cnvgd?

Gradient 0.000329 0.000300 NO

Displacement 0.001530 0.000300 NO

Energy change -0.000016 0.000001 NO

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Minimum

Optimization Cycle: 5

Coordinates (Angstroms)

ATOM X Y Z

1 c -1.139936 1.251805 0.000000

2 c -2.184123 0.336460 0.000000

3 c -1.936378 -1.052260 0.000000

4 c -0.639460 -1.552003 0.000000

5 c 0.409411 -0.626076 0.000000

6 c 0.184879 0.779966 0.000000

7 n 1.776536 -0.819763 0.000000

8 c 1.477261 1.408786 0.000000

9 c 2.412786 0.408513 0.000000

10 h -1.341534 2.320123 0.000000

11 h -3.211059 0.691818 0.000000

12 h -2.774412 -1.743982 0.000000

13 h -0.449126 -2.622400 0.000000

14 h 2.239283 -1.715056 0.000000

15 h 1.683185 2.470391 0.000000

16 h 3.492686 0.463678 0.000000

Point Group: Cs Number of degrees of freedom: 29

Energy is -363.816688224

Cartesian Forces (au)

ATOM X Y Z

1 c 0.0000584 0.0000769 0.0000000

2 c -0.0000324 -0.0000754 0.0000000

3 c -0.0000236 0.0000544 0.0000000

4 c 0.0000253 0.0000010 0.0000000

5 c 0.0000447 0.0000047 0.0000000

6 c -0.0000126 -0.0000224 0.0000000

⊡ Fig. -
(Continued)
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7 n 0.0000101 -0.0000947 0.0000000

8 c -0.0000175 0.0000305 0.0000000

9 c -0.0000117 -0.0000575 0.0000000

10 h -0.0000167 -0.0000124 0.0000000

11 h 0.0000098 0.0000222 0.0000000

12 h 0.0000205 -0.0000148 0.0000000

13 h -0.0000036 -0.0000004 0.0000000

14 h -0.0000063 0.0000234 0.0000000

15 h -0.0000125 0.0000115 0.0000000

16 h -0.0000212 0.0000385 0.0000000

Iterative generation of Internal Gradient

Cycle: 1 Maximum deviation: 0.00000045 RMS deviation: 0.00000017

Cycle: 2 Maximum deviation: 0.00000002 RMS deviation: 0.00000000

Cycle: 3 Maximum deviation: 0.00000000 RMS deviation: 0.00000000

Gradient converged in 3 cycles

Hessian Updated using BFGS Update

27 Hessian modes will be used to form the next step

Hessian Eigenvalues:

0.123423 0.145668 0.160015 0.160222 0.160354 0.219732

0.223230 0.234867 0.238794 0.266437 0.329579 0.333566

0.333688 0.334223 0.334658 0.336381 0.344207 0.373478

0.394783 0.402322 0.411472 0.445584 0.447885 0.466973

0.472563 0.490846 0.574440

Minimum Search -- Taking Simple RFO Step

Searching for Lambda that Minimizes Along All modes

Value Taken Lambda = -0.00000011

Step Taken. Stepsize is 0.000794

Parameter Values and Displacements in Internal Coordinates

Coordinate Current Value Gradient Displacement New Value

1 0.174852 0.000041 -0.000220 0.174632

2 5.446165 0.000048 -0.000143 5.446022

3 0.220440 -0.000048 0.000192 0.220632

4 -3.186512 -0.000013 0.000045 -3.186467

5 0.005499 0.000019 -0.000053 0.005447

6 1.881035 -0.000030 0.000240 1.881275

7 -3.115511 -0.000001 -0.000056 -3.115567

8 2.497738 0.000031 -0.000321 2.497417

9 -5.949299 0.000024 -0.000100 -5.949400

10 1.621591 -0.000050 0.000147 1.621738

11 0.121225 0.000010 -0.000072 0.121153

12 0.483100 0.000032 -0.000143 0.482958

13 0.028700 -0.000023 0.000133 0.028833

⊡ Fig. -
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14 -0.091955 -0.000001 0.000091 -0.091864

15 0.036701 0.000029 -0.000142 0.036559

16 -0.640073 0.000000 0.000031 -0.640042

17 -0.040582 -0.000043 0.000238 -0.040343

18 -0.513581 0.000025 -0.000128 -0.513709

19 0.416043 0.000048 -0.000159 0.415884

20 0.049659 0.000005 0.000034 0.049693

21 -0.490411 0.000020 -0.000080 -0.490491

22 -0.031165 0.000042 -0.000214 -0.031380

23 0.006415 -0.000016 0.000033 0.006449

24 0.139909 -0.000005 0.000087 0.139996

25 0.020428 0.000004 -0.000045 0.020383

26 0.091251 0.000013 -0.000090 0.091161

27 -0.014788 0.000006 -0.000093 -0.014881

28 -0.049225 -0.000002 -0.000010 -0.049236

29 0.094109 0.000053 -0.000269 0.093840

Maximum Tolerance Cnvgd?

Gradient 0.000053 0.000300 YES

Displacement 0.000321 0.000300 NO

Energy change -0.000001 0.000001 YES

⊡ Fig. -
PQS output for the minimization of indole

The convergence criteria – current value, tolerance, and whether or not convergence is sat-
isfied – are then printed, together with details of the back-transformation (conversion of the
current geometry in internal coordinates back into Cartesians, again not normally printed).
This constitutes a complete optimization cycle.

On subsequent optimization cycles, assuming that the system is converging, the energy, the
gradient components (both Cartesian and internal) and the step size should all decrease, with
the latter two tending to zero. This is exactly what occurs for indole (see > Fig. -) which
converges smoothly to the minimum energy structure. Another quantity that should tend to
zero is the shift parameter, λ, which again clearly does so; its magnitude on the last cycle is
.. Note that, as previously stated (see the comments under > Eq. .) λ is always
negative and so approaches zero from below.The closer λ is to zero, the closer is the step taken
to the simple Newton–Raphson step.

After the initial estimate, the Hessian matrix is updated at the beginning of each new opti-
mization step. This is done using the BFGS update, as appropriate for a minimization. Indole
is a planar, rigid molecule and so, not surprisingly, convergence is achieved quickly taking just
five optimization cycles. At final convergence the displacement criteria is not fully satisfied; this
is not an error as the default convergence criteria in PQS allow for just one of the displace-
ment and energy change criteria to be satisfied (see the footnotes under > Table -); this is
to prevent wasteful cycles near the end of the optimization for excessively floppy molecules for
which relatively large displacements result in only small changes in energy. If it is desired that
the displacement criterion be rigorously satisfied, then the energy criterion should be reduced
so that it is almost impossible to satisfy (for example to − Eh); Convergence can then only be
achieved by satisfying the displacement criterion.
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Transition State Searches: An Example

> Figure - shows the optimization output at each cycle (truncated for the intermediate
cycles) in the standard default EF transition state search for the reaction HCN↔ HNC. This
is a very simple reaction but is still instructive. Both reactant and product are linear. Reaction
can be considered to occur essentially by motion of the hydrogen atom in a semicircle centered
about the midpoint of the C–N bond, with the∠HCN angle going from ○ in HCN to ○ in
HNC (CNH).

Consider the starting geometry. A first approximation to the transition state (TS) geometry
might be to position the hydrogen atomdirectly vertically above themidpoint of the C–N bond.
(The H–C distance of course has to be decided.)This corresponds to∠HCN a bit less than ○.
However, knowing the relative energetics (HNC is less stable than HCN, the reaction as writ-
ten is endothermic), the Hammond postulate (Hammond ) suggests that the TS is likely to
resemble HNC more than HCN, in which case ∠HCN will very likely be noticeably less than
○, i.e., relative to HCN we have a late transition state. Now this is only a simple consideration,
but the use of “chemical intuition” in this way can potentially save several optimization cycles.
In this particular example, it does not save much because the system as a whole only has three
atoms and the transition state is fairly easy to locate, but starting with ∠HCN=○ instead of
○ costs an extra optimization cycle, and starting with∠HCN= ○ takes three more cycles.
(Theother starting parameterswere rC−N= . Åand rH−C= . Å.)As has already beenmen-
tioned, a good initial Hessian is almost mandatory for a TS search and a full Hessian at the
starting geometry was computed at the semiempirical PM level (Stewart ) for the HCN↔
HNC reaction.

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Transition State

Optimization Cycle: 1

Coordinates (Angstroms)

ATOM X Y Z

1 c -0.469846 0.571010 0.000000

2 n -0.469846 -0.628990 0.000000

3 h 0.939693 0.057980 0.000000

Point Group: Cs Number of degrees of freedom: 3

Energy is -93.319741527

Cartesian Forces (au)

ATOM X Y Z

1 c 0.0404791 -0.0073674 0.0000000

2 n 0.0272344 0.0058884 0.0000000

3 h -0.0677118 0.0014596 0.0000000

Iterative generation of Internal Gradient

Transforming Cartesian Hessian to Internal Coordinates

⊡ Fig. -
(Continued)
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Hessian Transformation does not Include Derivative of B-matrix

3 Hessian modes will be used to form the next step

Hessian Eigenvalues:

-0.187665 0.238971 1.173533

Transition State Search -- Taking P-RFO Step

Searching for Lambda that Maximizes Along the Lowest mode

Value Taken Lambda = 0.00189009

Searching for Lambda that Minimizes Along All other modes

Value Taken Lambda = -0.02788347

Calculated Step too Large. Step scaled by 0.888690

Step Taken. Stepsize is 0.300000

Parameter Values and Displacements in Internal Coordinates

Coordinate Current Value Gradient Displacement New Value

1 2.134802 0.074274 -0.131560 2.003242

2 -0.247567 -0.037317 0.203494 -0.044073

3 -3.170360 -0.032424 0.176868 -2.993492

Maximum Tolerance Cnvgd?

Gradient 0.074274 0.000300 NO

Displacement 0.203494 0.000300 NO

Energy change ********* 0.000001 NO

New Cartesian Coordinates Obtained by Inverse Iteration

Cycle: 1 Maximum deviation: 0.20349400 RMS deviation: 0.17320508

Cycle: 2 Maximum deviation: 0.00532215 RMS deviation: 0.00463403

Cycle: 3 Maximum deviation: 0.00001577 RMS deviation: 0.00001192

Cycle: 4 Maximum deviation: 0.00000000 RMS deviation: 0.00000000

Full backtransformation converged in 4 cycles

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Transition State

Optimization Cycle: 2

Energy is -93.339112477

Hessian Updated using Powell/Murtagh-Sargent Update

Mixing factors: 0.645582 Powell

0.354418 Murtagh-Sargent

⊡ Fig. -
(Continued)
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3 Hessian modes will be used to form the next step

Hessian Eigenvalues:

-0.196173 0.099238 1.154056

Transition State Search -- Taking P-RFO Step

Searching for Lambda that Maximizes Along the Lowest mode

Value Taken Lambda = 0.00827163

Searching for Lambda that Minimizes Along All other modes

Value Taken Lambda = -0.02009120

Calculated Step too Large. Step scaled by 0.661233

Step Taken. Stepsize is 0.300000

Maximum Tolerance Cnvgd?

Gradient 0.062199 0.000300 NO

Displacement 0.233225 0.000300 NO

Energy change -0.019371 0.000001 NO

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Transition State

Optimization Cycle: 3

Energy is -93.342916439

Hessian Updated using Powell/Murtagh-Sargent Update

Mixing factors: 0.556632 Powell

0.443368 Murtagh-Sargent

3 Hessian modes will be used to form the next step

Hessian Eigenvalues:

-0.214546 0.216669 1.155709

Transition State Search -- Taking P-RFO Step

Searching for Lambda that Maximizes Along the Lowest mode

Value Taken Lambda = 0.00009941

Searching for Lambda that Minimizes Along All other modes

Value Taken Lambda = -0.00011765

Step Taken. Stepsize is 0.030919

Maximum Tolerance Cnvgd?

Gradient 0.006976 0.000300 NO

Displacement 0.028637 0.000300 NO

Energy change -0.003804 0.000001 NO

⊡ Fig. -
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** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Transition State

Optimization Cycle: 4

Energy is -93.342897201

Hessian Updated using Powell/Murtagh-Sargent Update

Mixing factors: 0.111685 Powell

0.888315 Murtagh-Sargent

3 Hessian modes will be used to form the next step

Hessian Eigenvalues:

-0.203277 0.258806 1.161986

Transition State Search -- Taking P-RFO Step

Searching for Lambda that Maximizes Along the Lowest mode

Value Taken Lambda = 0.00000265

Searching for Lambda that Minimizes Along All other modes

Value Taken Lambda = -0.00000882

Step Taken. Stepsize is 0.006795

Maximum Tolerance Cnvgd?

Gradient 0.001321 0.000300 NO

Displacement 0.004864 0.000300 NO

Energy change 0.000019 0.000001 NO

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Transition State

Optimization Cycle: 5

Energy is -93.342899327

Hessian Updated using Powell/Murtagh-Sargent Update

Mixing factors: 0.377168 Powell

0.622832 Murtagh-Sargent

3 Hessian modes will be used to form the next step

Hessian Eigenvalues:

-0.177469 0.279946 1.171011

Transition State Search -- Taking P-RFO Step

Searching for Lambda that Maximizes Along the Lowest mode

⊡ Fig. -
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Value Taken Lambda = 0.00000027

Searching for Lambda that Minimizes Along All other modes

Value Taken Lambda = -0.00000018

Step Taken. Stepsize is 0.001445

Maximum Tolerance Cnvgd?

Gradient 0.000343 0.000300 NO

Displacement 0.001440 0.000300 NO

Energy change -0.000002 0.000001 NO

** GEOMETRY OPTIMIZATION IN DELOCALIZED INTERNAL COORDINATES **

Searching for a Transition State

Optimization Cycle: 6

Coordinates (Angstroms)

ATOM X Y Z

1 c -0.341598 0.551098 0.000000

2 n -0.417301 -0.638152 0.000000

3 h 0.758898 0.087054 0.000000

Point Group: Cs Number of degrees of freedom: 3

Energy is -93.342899294

Cartesian Forces (au)

ATOM X Y Z

1 c 0.0000015 0.0000201 0.0000000

2 n -0.0000112 -0.0000468 0.0000000

3 h 0.0000097 0.0000043 0.0000000

Iterative generation of Internal Gradient

Cycle: 1 Maximum deviation: 0.00000053 RMS deviation: 0.00000036

Cycle: 2 Maximum deviation: 0.00000000 RMS deviation: 0.00000000

Gradient converged in 2 cycles

Hessian Updated using Powell/Murtagh-Sargent Update

Mixing factors: 0.600156 Powell

0.399844 Murtagh-Sargent

3 Hessian modes will be used to form the next step

Hessian Eigenvalues:

-0.188567 0.275416 1.153882

⊡ Fig. -
(Continued)
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Transition State Search -- Taking P-RFO Step

Searching for Lambda that Maximizes Along the Lowest mode

Value Taken Lambda = 0.00000000

Searching for Lambda that Minimizes Along All other modes

Value Taken Lambda = 0.00000000

Step Taken. Stepsize is 0.000133

Parameter Values and Displacements in Internal Coordinates

Coordinate Current Value Gradient Displacement New Value

1 2.021093 -0.000032 -0.000069 2.021024

2 0.137423 -0.000025 -0.000037 0.137386

3 -2.754498 0.000023 -0.000108 -2.754606

Maximum Tolerance Cnvgd?

Gradient 0.000032 0.000300 YES

Displacement 0.000108 0.000300 YES

Energy change 0.000000 0.000001 YES

⊡ Fig. -
PQS output for the HCN↔ HNC Transition State Search

The output for a transition state search is of course similar to that for a minimization.
Quantities such as the Cartesian geometry, the SCF energy, the forces, parameter values, and
displacements are common to both TS searches and minimizations and are printed out in the
same way. The first difference occurs in the treatment of the starting Hessian: for the indole
minimization (> Fig. -) a default Hessian, diagonal in the underlying space of primitive
internals, is used whereas the TS search started with a full, albeit approximate, Cartesian Hes-
sian which needs to be transformed into internal coordinates.This transformation is done once
only, on the first optimization cycle, as thereafter the Hessian will be updated.

Note the comment printed on cycle  that the Hessian transformation does not include the
derivative of the B-matrix. The B-matrix (Wilson et al. ) formally relates a displacement
in internal coordinates (q) to one in Cartesian coordinates (X), Δq = BΔX, and it turns out
that a full transformation of the Hessian to internal coordinates requires the derivative of the
B-matrix; the precise equation is Pulay ():

Hint
= Binv

(Hcart
− gint

dB
dX
)(Binv

)

T , (.)

where

Binv
= (BBT

)

−B, (.)

and a superscript T represents a matrix transpose.
If you require an exact transformation of all quantities from Cartesian to internal coordi-

nates, then the dB/dX term must be included; however it is usually advantageous to leave it
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out as its inclusion often changes the Hessian eigenvalue structure. In general, Cartesian Hes-
sian matrices with a known eigenvalue structure will retain that structure if the dB/dX term is
omitted; this is far from guaranteedwhen it is included.When starting off a geometry optimiza-
tion (either a minimization or a TS search) using an optimized geometry and starting Hessian
obtained from a previous calculation at a lower level of theory – a common occurance – then
the dB/dX term should almost certainly be omitted. Note that for a Hessian transformation at
a stationary point, the gradient is zero in any case and so the dB/dX term will also be zero. For
the HCN↔ HNC TS search the starting Hessian has the correct eigenvalue structure, i.e., one
negative eigenvalue, so our initial geometry was at least reasonable.

The other major difference from the indole minimization is with the shift parameter(s). A
TS search uses the P-RFO step, as opposed to the simple RFO step used for minimization (see
> Eqs. .–.), and so there are two shift parameters instead of just one. As explained pre-
viously, one shift parameter maximizes along the TS mode (the eigenvector with the negative
eigenvalue), while the other minimizes along all the other Hessianmodes.The first shift param-
eter is positive while the other is negative. On the first cycle the computed step length is initially
greater than the default maximum of . and so the step is scaled down (by .).

As with a minimization, on subsequent optimization cycles the gradient components and
the step size should both decrease, tending to zero if the structure is converging. The two shift
parameters, λ, also both tend to zero, one from above and the other frombelow.On the last cycle
they are both zero to all eight decimal places printed out. The energy may increase or decrease,
depending on whether the increase in energy from maximization along the TSmode is greater
or smaller than the decrease in energy fromminimization along all the othermodes; the change
in energy however should of course again tend to zero. (Overall a decrease in energy is the
more likely, especially as the system gets larger, as the number of modes which are minimized
becomes far greater than the single mode along which the energy is maximized.)

TheHessian update, at the beginning of each new optimization step, is done using the Bofill
formula (Bofill ), which is the default for a TS search. This is a linear combination of the
Powell () and Murtagh and Sargent () updates, and the two mixing coefficients are
printed out.They vary from cycle to cycle, as can be seen (> Fig. -).The final TS geometry is
well converged (in six cycles), with the three convergence criteria all well below their respective
tolerances.

Using Optimized Potential Scans in Transition State Searches

We turn now to a somewhatmore complicated example, namely, a search for the transition state
for the parent Diels–Alder reaction between cis-,-dibutadiene and ethylene to give cyclo-
hexene. Here we use an optimized potential scan to obtain an initial approximation to the
TS geometry. The starting geometry for the potential scan is shown in > Fig. -. This was
obtained by building cyclohexene using PQSMol, the graphical user interface for PQS (),
and then stretching the appropriate C–C bonds (C−C and C−C as shown in > Fig. -)
to separate off an ethylene fragment. The overall system symmetry (Cs) was maintained using
the symmetrization tools available in PQSMol. The∠HCH angles in the ethylene fragment are
likely to be too acute, but this will be rectified during the potential scan.

The C−C and C−C distances in the starting geometry (see > Fig. -; the two dis-
tances are equivalent by symmetry) are .Å. What we are going to do is scan this distance
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⊡ Fig. -
Starting structure for potential scan for Diels–Alder TS search

over a range of (increasing) values, at each scanned value optimizing all the remaining degrees
of freedom. If the scanned variable(s) is a good approximation to the reaction coordinate, and
if the value of the variable at the transition state geometry lies within the scanned range, then
what we should see is a maximum in the energy somewhere along the scan. The (optimized)
geometry at this energy maximum should be a very good approximation to the transition
state.

An optimized potential scan is effectively a series of constrained geometry optimizations,
with the constraint being the scanned variable. PQS has powerful algorithms for constrained
optimization using the method of Lagrange multipliers (Baker , ; Baker and Bergeron
). Because of the symmetry of the system, the scanned variable is not a single distance
but rather a linear combination (with equal weights) of the C−C and C−C distances.
The requested linear combination is normalized by the program and so the actual parameter
scanned is 

√


[(rC −C)+(rC−C)].The potential energy scan module in PQS is capable

of scanning any linear combination of primitive internal coordinates selected by the user.
The optimized energies at C−C and C−C distances from .Å to about .Å are

shown in > Table -. Note that, although the final level of theory used in this chapter for
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⊡ Table -
Optimized BLYP/-G energies (Eh) for theDiels–Alder Potential Scan at combined scandistances
(in bohr) from . to . in steps of .

Current value: 6.5000 Energy is -233.352945649

Current value: 6.7500 Energy is -233.341556134
Current value: 7.0000 Energy is -233.328803153

Current value: 7.2500 Energy is -233.315693812

Current value: 7.5000 Energy is -233.303165136
Current value: 7.7500 Energy is -233.292127679

Current value: 8.0000 Energy is -233.283459373
Current value: 8.2500 Energy is -233.277798713

Current value: 8.5000 Energy is -233.275148592

Current value: 8.7500 Energy is -233.274846534
Current value: 9.0000 Energy is -233.276044729

Current value: 9.2500 Energy is -233.278051315
Current value: 9.5000 Energy is -233.280392073

Current value: 9.7500 Energy is -233.282767273

Current value: 10.0000 Energy is -233.285004883

all examples given is BLYP/-G∗, the scan was actually carried out using the smaller -G
(Binkley et al. ) basis set. This is simply to save computer time. I expect the BLYP/-G
energy surface to be very similar to the BLYP/-G∗ one in this system, and since we are using
the optimized scan to obtain a good, but still approximate, starting geometry for the proper TS
search, there is no point using the larger basis set for the scan.

As can be seen in > Table -, there is a clear energymaximum at a parameter value some-
where around .. The parameter printed out is the sum of the two scanned C–C distances
(unnormalized) given in atomic units (bohr); the maximum is equivalent to a C–C distance
of .Å. During the scan, the first energy (from the starting geometry) took the most opti-
mization cycles () to converge; thereafter each subsequent point typically converged in five to
seven steps. Note that if the scanned range is insufficient to locate the maximum, it can simply
be extended. For example, if the initial scan only went as far as . bohr (for the combined
C–C distances), then it can be repeated for distances greater than this starting from the last
optimized geometry found.That the scan needs to go to greater C–C distances is clear from the
energy, which is increasing over the initial scan range; if it had been decreasing then one would
need to go to shorter C–C distances.

The full BLYP/-G∗ TS search commenced using the optimized geometry at the scan
maximum with a full Hessian matrix computed at this geometry using the -G basis (the
same basis as used in the scan). Not surprisingly this starting Hessian had the desired one neg-
ative eigenvalue, and the search converged in just four optimization cycles, indicating just how
good the geometry resulting from the scan was. A full vibrational analysis at the BLYP/-G∗

level on the converged transition state structure indicated that it was indeed a genuine TS. The
C−C and C−C distances in the final TS were .Å, very close to those in the structure
at the scan maximum.
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Comparison of Experimental and Theoretical Geometries

Before turning to the second part of this chapter, the computational simulation of vibrational
spectra, I want to make a few comments on the accuracy of theoretically computed geometries.
Direct comparison with reliable experimental data shows that theoretical geometries are now
really very accurate indeed, particularly for “normal” organic molecules. The level of theory
used here, BLYP/-G∗, is typically accurate for, say, bond angles to within a few degrees and
bond lengths to within .Å at worst, and if any experimental bond distance differs by much
more than this from the theoretical value, it is more likely in my opinion for experiment to be
in error rather than theory. One needs to bear in mind that none of the experimental meth-
ods commonly used in molecular structure determination, X-ray crystallography, microwave
spectroscopy, nuclearmagnetic resonance (NMR) etc., measure a bond distance directly; rather
some kind of spectrum (or pattern) is obtained which has to be interpreted, and bond distances
are extracted indirectly from this. It was fairly typical in the early s (and even into the s)
for X-ray diffraction structures to be published, as a set of Cartesian coordinates, which resulted
in quite ridiculous bond distances involving hydrogen.This was due principally of course to the
difficulty in locating hydrogen atoms because of the much lower electron density surrounding
hydrogen nuclei compared to heavier elements, and the fact that this density could easily be dis-
placed in bonds involving more electronegative atoms. From the mid-s onward it became
increasingly more common for theoretically computed bond distances involving hydrogen to
be used in the fitting of X-ray data; this also resulted inmuch better agreementwith heavy atom
bond distances as well (Schäfer ).

Another factor to be considered is that theory and experiment do not quite measure the
same thing. Within the Born–Oppenheimer approximation (Born and Oppenheimer ;
Wikipedia ), theory ideally determines the geometry at the bottom of the well, at the
energy minimum, whereas this geometry is inaccessible to experiment due to the existence
of zero-point vibrational energy. Such differences, however, are usually minor.

> Table - provides a comparison between optimized BLYP/-G∗ and experimental
geometrical parameters for a number of small, organicmolecules.These results were taken from
twopapers published in themid-s; aDFT study of some organic reactions (Baker et al. )
and a systematic DFT study of fluorination in methane, ethane, and ethylene (Muir and Baker
).The focus wasmainly on the energetics, butmany computed and experimental geometri-
cal parameters were provided.The theoretical approaches did not include BLYP, using instead
a related functional (Becke’s original ACM (Becke ; see alsoHertwig and Koch ), better
known today as BPW), but I have reoptimized all the geometries at the BLYP/-G∗ level
for compatibility with this chapter.

As can be seen from > Table -, the agreement between the computed and experimental
geometrical parameters is excellent. The mean average deviation between the BLYP/-G∗

and experimental bond lengths is just .Å, with a maximum error (for the C–N triple bond
in HCN) of .Å. The mean average deviation for bond angles is only .○. Such results are
typical.

Included in > Table - is the series of fluorine-substitutedmethanes:mono-, di-, tri-, and
tetra-fluoromethane. These compounds exhibit a well-known substituent effect (the geminal
effect) of decreasing C–F bond length (and increasing bond strength) with increasing fluo-
rine substitution on the same carbon atom. This effect of fluorine (not seen with any of the
other halogens) has been known for a long time (although there are still arguments about the
explanation for it) and is very accurately reproduced by the theoretical calculations.
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⊡ Table -
Optimized BLYP/-G∗ and experimental geometrical parameters for a number of small organic
molecules

Parameter BLYP Experiment Parameter BLYP Experiment

Vinyl alcohol (CH=CHOH) trans-,,,-tetrafluoroethane (CHFCHF)

rC−O . . rC−C . .

rC=C . . rC−F . .

rO−H . . rC−H . .

rC−H . . ∠CCF . .

∠CCO . . ∠CCH . .

∠COH . . ∠FCF . .

Acetaldehyde (CHCHO) Carbonyl fluoride (CFO)

rC=O . . rC=O . .

rC−C . . rC−F . .

rC−H . . ∠FCF . .

∠CCO . . Hydrogen fluoride (HF)

trans-butadiene (CH=CHCH=CH) rH−F . .

rC=C . . Hydrogen (H)

rC−C . . rH−H . .

∠C=CH . . Water (HO)

∠CCC . . rO−H . .

Ethylene (CH=CH) ∠HOH . .

rC=C . . Formaldehyde (CHO)

rC−H . . rC=O . .

∠CCH . . rC−H . .

Cyclohexene (CH) ∠HCH . .

rC=C . . Acetylene (CH)

rC−C . . rC−C . .

rC−C . . rC−H . .

rC−C . . Ethane (CHCH)

∠CC=C . . rC−C . .

∠CCC . . rC−H . .

∠CCC . . ∠CCH . .

Tetrazine (CNH) Fluoromethane (CHF)

rN−N . . rC−F . .

rC−N . . rC−H . .

∠NCH . . ∠HCH . .

Hydrogen cyanide (HCN) Difluoromethane (CHF)

rC−N . . rC−F . .

rC−H . . rC−H . .

Nitrogen (N) ∠HCH . .

rN−N . . ∠FCF . .

(Continued)
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⊡ Table -
(Continued)

Parameter BLYP Experiment Parameter BLYP Experiment

Cyclobutene (CH) Trifluoromethane (CHF)

rC=C . . rC−F . .

rC−C . . rC−H . .

rC−C . . ∠FCF . .

∠CCC . . Tetrafluoromethane (CF)

∠C=CC . . rC−F . .

GeometryOptimization of Molecular Clusters

The situation at the time of writing is that molecular structures for stable or metastable min-
ima are readily located theoretically using powerful optimization algorithms usually carried out
in natural, delocalized or redundant internal coordinates. The resulting structural parameters
(computed using BLYP or better with a decent basis set) are typically in excellent agreement
with experimental results where these are available.The location of transition states can bemore
difficult, but perseverance usually brings its reward.Theoretical calculations are essentially the
only means for providing structural data on transition states as they are extremely difficult to
study experimentally.

One area where standard natural or delocalized internal coordinates are not the best choice
is for optimizing the geometry of molecular clusters. For larger clusters the problem of global
versus local minimization becomes an issue, but even for relatively small clusters (containing
half-a-dozen or somolecules) deriving a set of coordinates suitable for an efficient optimization
from stretches, bends, and torsions alone usually results in poor optimizationperformance.One
reason for this is that there are really two different types of forces involved in determining the
structure of a molecular cluster: the normal, fairly strong intramolecular forces that determine
the geometry of each individual molecule, and the weak intermolecular forces that determine
the arrangement of eachmolecule relative to the others.The latter are best described in terms of
scaled inverse distance coordinates (not standard distances) and an efficient algorithm which
uses normal primitive internal coordinates to describe the geometry of each molecule in the
cluster, and scaled inverse distances (with a cutoff) to describe the relative position of the cluster
molecules with respect to each other (Baker and Pulay ) is available in PQS. The resulting
set of coordinates, which are linear combinations of standard primitive internals and scaled
inverse distances, are known as cluster coordinates.

Examples of geometry optimization of some small molecular clusters are shown in
> Table -. Optimization performance using cluster coordinates (/R with a Å cutoff) is
compared with Cartesian coordinates. A modest level of theory was used (Hartree–Fock with
the -G basis set) and all optimizations were started with a unit Hessianmatrix. Inmost cases
the starting geometry was poor, and very far from the final converged structure. No compar-
isons with natural or delocalized internal coordinates are included in > Table -; with such
poor starting geometries this is usually a waste of time as the large changes that occur in the
relative positions of molecules in the cluster often result in individual bond angles, as defined,
exceeding ○ causing problems with the various transformations, particularly the Cartesian
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a b c

⊡ Fig. -
Starting and final structures for optimization of the (HO) cluster from > Table -: (a) starting
geometry, (b) final geometry cluster coords, (c) final geometry Cartesians

backtransformation. This is yet another reason why standard internal coordinates are inappro-
priate for optimizing the geometry of molecular clusters. This is not a problem with inverse
distance (or simple distance) coordinates as these are defined essentially from zero to infinity.

As shown in > Table -, cluster coordinates typically converge much faster than Carte-
sians (on average for the seven clusters shown by a factor of almost ) and usually – but not
always – to lower energy structures. (Five out of the seven converged to lower energies than the
corresponding Cartesian optimizations, two to higher.) The starting and final geometries are
shown for the eight water molecule cluster in > Fig. -.

GeometryOptimization in the Presence of External Forces

I want to end this section by briefly mentioning a simple but relatively new technique which
has proven to be very useful in deriving potentially new molecular structures. It was originally
developed to study the geometrical changes inferred in atomic force microscopy and simi-
lar experiments (known collectively as mechano-chemistry) (Beyer and Clausen-Schaumann
), but can be applied as a general optimization tool which also has potential for the location

⊡ Table -
Comparison of the performance of cluster coordinates andCartesian coordinates for the optimiza-
tion of some small molecular clusters

Cluster coordinates Cartesian coordinates

Clusters Cycles Energy Cycles Energy

 × benzene  −.  −.

 × DMSO  −, .  −, .

formamide +  ×water  −.  −.

 ×methanol  −.  −.

 × pyridine  −, .  −, .

 × THF  −.  −.

 ×water  −.  −.

Average cycles  
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of transition states. This is geometry optimization in the presence of external forces (Wolinski
and Baker ) known as enforced geometry optimization (EGO). The force is applied along
a straight line joining any two atoms in the molecule under study, either to push the two atoms
together or to pull them apart. Whatever force is applied to one atom of the pair, an equal and
opposite force is applied to the other. This ensures that there is no tendency for the molecule
to translate or rotate; in essence it remains in place under simulated pressure. Forces can be
applied between as many pairs of atoms as desired, although calculations to date have typically
involved only a single pair of atoms.

If you are applying an external force to, say, push two atoms together in a stable molecule
there will be a tendency for a bond to form between the two atoms. If the applied force is insuf-
ficient to form a bond (or if a bond won’t form anyway), there will be some minor geometrical
changes as the system endeavors to compensate for the excess force. If the applied force is suffi-
cient, then what you should see is the energy rise as the two atoms are pushed together, then fall
as the bond forms and additionalmolecular rearrangement occurs.Thefinal “optimized” geom-
etry will still involve a structural arrangement under considerable strain, but if this structure
is allowed to relax (by reoptimizing with the additional force removed) it could well converge
to a new, stable geometry, different from the initial structure. If it does so, then the maximum
energy structure found as the two atoms were pushed together is often a reasonable estimate
for the transition state joining the original and the new structure.

The method as described above has been used to find seven previously unknown geomet-
rical isomers of CNH, starting from the ground-state geometry of cis-azobenzene, at the
BLYP/-G∗ level by pushing together various pairs of atoms, one from each of the two ben-
zene rings (Wolinski and Baker ). All of the new structures were classified by vibrational
analysis, and all were found to be minima. Transition states between each of the new structures
and cis-azobenzene were also located and characterized. Additional calculations were carried
out atMP/-G∗∗ to ensure that the energetics remained stable.The technique overall shows
considerable promise for the discovery of new chemistry and new chemical structures.

Molecular Vibrations

A molecular system containing N atoms nominally has N degrees of freedom. In Cartesian
coordinates, one can consider each degree of freedom as separate X, Y , or Z displacements
of each atom about its equilibrium position. This atomic motion can be induced for example
by heat or by interaction with light or other electromagnetic radiation. Because the atoms in
a molecule are connected by chemical bonds, the various atomic motions are coupled. In a
classical treatment, it turns out that three of these motions involve overall translation of the
system as a whole (along the X, Y , and Z directions of a standard Cartesian axis system), and
three of them involve overall rotation of the system as a whole (about the same axes).These are
known as rigid-body motions. The Cartesian axes pass through (they have their origin at) the
center of mass of the system and the X, Y , and Z axes coincide with the principal axes of inertia
of the undistorted molecule. Under these rigid-body motions the positions of the atoms in the
molecule relative to each other remain unchanged, and so the potential energy of the system
in a vacuum is also unchanged. The remaining N −  coupled motions, which do affect the
relative atomic positions and hence the potential energy, are classified as molecular vibrations.
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(Note that a linear molecule has N −  vibrations, not N − , as one of the rotations – that
about its own axis – cannot be observed, and is effectively ignored.)

To a reasonable approximation, at least for small displacements, the vibrations in a poly-
atomic molecule can be described as a kind of simple harmonic motion. This is essentially
equivalent to considering a chemical bond between two atoms as a weightless spring that obeys
Hooke’s law (i.e., the force is proportional to the displacement).The simplest vibration is that in
a diatomic molecule, and we can refer back to the potential energy curve for He+ (> Fig. -)
as an example. At the minimum, near the bottom of the well, the potential energy curve is
indeed parabolic to a very good approximation.

The force/displacement equation for a diatomic molecule obeying Hooke’s law is

F = −kq, (.)

where F is the applied force, k is the so-called force constant, and q is the displacement from
equilibrium. The negative sign indicates that the force exerted by the spring is in a direction
opposite to that of the displacement. The potential energy stored in the spring (the integral of
force over distance) is

E =


kq. (.)

By Newton’s second law of motion, the force can also be given by mass times acceleration

F = m
dq
dt

. (.)

The two forces in > Eqs. . and > . are one and the same, and so the differential equation
relating displacement, q, with time, t, for the harmonic oscillator is

m
dq
dt

+ kq = . (.)

The solution to > Eq. . is

q(t) = Acos (πνt); ν =

π

√

k
m
, (.)

where A is the amplitude of the vibrational coordinate q and ν is the fundamental frequency
of the vibration. The “mass,”m, is actually the so-called reduced mass, μ, which for a diatomic
molecule A–B, with atomic massesmA and mB , respectively, is given by


μ
=


mA
+


mB

. (.)

Using the reduced mass ensures that the center of mass of A–B remains unchanged during the
vibrational motion.

From > Eq. . the force constant, k, is given by

k =
dE
dq

. (.)

The force constant in a one-dimensional system (a systemwith a single degree of vibrational
freedom) is thus directly related to the curvature of the potential energy surface, i.e., the shape
of the well. From the force constant, one can directly determine the fundamental frequency
(via > Eq. .). In a polyatomic molecule the single dE/dq term is replaced by the Hessian
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matrix, H (often called the force constant matrix). In Cartesian coordinates this is the same
Hessian matrix introduced in > Eq. . when discussing the Newton–Raphson step during
a geometry optimization, and a classical treatment of molecular vibrations and the Newton–
Raphson step both assume the same thing about the potential energy surface, namely that it is
quadratic. The only major difference is that a vibrational analysis involves the atomic masses,
whereas the potential energy surface is independent of mass. The fundamental vibrational fre-
quencies for a polyatomic molecule can be extracted from the mass-weighted Hessian matrix,
and the normal modes (the coupled motion of the atoms during the vibration) can be obtained
by a suitable treatment of the Hessian eigenvectors. The precise steps involved are as follows:

. Mass-weight the Cartesian Hessian matrix.

HMW
ij =

Hij
√mimj

. (.)

. Project out the translations and rotations from the mass-weighted Hessian.
As discussed briefly above, the translational and rotational degrees of freedom can be

separated out from the vibrations for a rigid body. This requires shifting the origin of the
coordinate system to the center of mass, determining the principal moments and the rota-
tion generators, setting up orthogonal coordinate vectors for translation and rotation about
the principal axes of inertia, setting up a projection matrix P from these vectors and using
it to “remove” the translations and rotations from the Hessian matrix, leaving only the
vibrational modes.

If the orthogonal set of vectors representing translation and rotation (there are six of
them, each of length N , whereN is the number of atoms) are given byR, then the projection
matrix P is formed by

Pij(i ≠ j) = −
∑

k
RikRjk ; Pii =  −∑

k
RikRik, (.)

and the projected Hessian is given by

HP
= PHMWPT . (.)

. Diagonalize the projected, mass-weighted Hessian matrix.
The effect of the projection leaves the eigenvectors of the Hessian corresponding to

translations and rotations with exactly zero eigenvalues (or at least zero within numerical
round-off error), allowing the N− nonzero vibrations to be separated out.These are con-
verted to cm− prior to print out, and the corresponding eigenvectors aremass-weighted and
normalized to become the normal modes. The mass-weighting uses isotopically averaged
atomic masses based on the average isotopic abundance for each atom.

At first sight it might be surprising that the Hessian matrix, which after all in ab initio
molecular orbital theory is inherently quantum mechanical, is amenable to a purely classical
treatment. This is because the Born–Oppenheimer approximation (Born and Oppenheimer
; Wikipedia ) allows for a pretty good separation of the electronic and nuclear motion,
allowing the latter to be treated classically. A quantum mechanical description of the simple
harmonic oscillator leads to quantized energy levels given by

En = hν(n +


); ν =


π

√

k
m
, (.)
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where the fundamental vibrational frequency, ν, is exactly the same as in a classical description
(> Eq. .).The quantum number, n, takes integer values , , ,. . . and so even in the vibra-
tional ground-state (n = ) there is a residual energy, 

 hν, known as the zero-point energy.
This is a fundamental quantum mechanical property of all oscillators at the absolute zero of
temperature (Einstein and Stern ).

A molecular vibration is excited when the system absorbs a quantum of energy, hν, cor-
responding to the vibrational frequency, ν, of one of its normal modes. This is commonly
accomplished under standard conditions by interaction with infrared (IR) radiation. An IR
spectrum can be recorded by passing a beam of infrared light covering a range of frequen-
cies through the sample. This can be done by using a monochromatic beam which changes in
wavelength over time, or by using a Fourier Transform instrument which effectively measures
all wavelengths at once. From this a transmission (or absorbance) spectrum can be produced
showing at which frequencies/wavelengths the sample absorbs.

Not all normal modes are IR active, i.e., result in the absorption of energy at the normal
mode frequency. In order for a normal mode to be IR active, its motion must result in a change
in the dipolemoment of the vibratingmolecule. For example, the totally symmetric C–H stretch
in methane (in which all four C–H bonds are vibrating in the same way simultaneously) does
not change the molecular dipole moment (which is zero in any case), and so this mode is IR
inactive. Change one of the hydrogen atoms for a fluorine, however, and it is a different picture.
In general, molecules with a permanent dipole moment in their ground-state geometries give
rise to more intense signals in the IR spectrum (i.e., greater absorbance) than molecules in
which a dipole moment is induced by the vibration itself.

Vibrational excitation can occur, and usually does, in conjuction with rotational excita-
tions, resulting in vibration-rotation spectra. For straightforward IR vibrational spectra, the
simultaneous rotational excitations result in broardening of the vibrational bands. Bands are
additionally broadened if two (or more) normal modes have frequencies close to one another,
as well as by instrument resolution and other experimental artifacts. Additional bands, other
than those caused by vibrational fundamentals, can arise in the spectrum by the absorption of
two or more quanta of energy simultaneously, giving rise to combination and overtone bands,
and by further excitations from already vibrationally excited states which give rise to what are
called hot bands.

It is worth noting at this point that although our analysis of vibrational motion derives from
consideration of the simple harmonic oscillator,many common features observed in vibrational
spectra are present precisely because the potential energy surface is not harmonic. For exam-
ple, transitions between vibrational energy levels in the quantum harmonic oscillator formally
allow the quantum number, n, to change only by  (Δn = ±). As the vibrational energy lev-
els are equally spaced (see > Eq. .), this means that light of only one frequency can be
absorbed, that of the vibrational fundamental for each normal mode, and there are no over-
tone bands. The Δn = ± selection rule does not apply to an anharmonic oscillator and the
observation of overtones is only possible because vibrations are anharmonic. A further conse-
quence of anharmoniticity is that the spacing between the vibrational energy levels decreases
with increasing quantum number (eventually reaching a continuum allowing for vibrational
dissociation) which results in the frequency of the first overtone being slightly less than twice
the frequency of the vibrational fundamental.

IR spectroscopy is a very important method in molecular structure determination. Even
though the normal modes depend on the whole molecule, certain structural motifs have very
similar motions regardless of how many atoms the molecule contains. For example, virtually
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all molecules containing a carbonyl group give rise to an intense (because of the bond polarity)
signal in the IR spectrum around , cm− due to excitation of the C=O stretch, thus allowing
for the identification of this group.Theory can not only determine the fundamental frequencies
and normal modes of a molecule, but by computing the dipole moment derivatives, it can reli-
ably estimate the resulting band intensities as well, enabling the IR spectrum for the vibrational
fundamentals to be predicted a priori.

Another technique used in vibrational spectroscopy is Raman scattering (Raman and
Krishnan ). This normally uses visible light, which is typically scattered by the molecule.
Most of the light is scattered elastically at the same frequency as the initial radiation (Rayleigh
scattering), but a small amount interactswith the system, excites a vibrationalmode, and is scat-
tered inelastically at a lower frequency. If the system is already in a vibrationally excited state,
then the scattered radiation can have a higher frequency than the initial radiation. These are
known as Stokes and anti-Stokes Raman scattering, respectively. Raman scattering constitutes
only a very small component of the total scattered radiation (only about one part in ) and a
major difficulty in Raman spectroscopy is to separate out the weak, inelastic scattering from the
intense Rayleigh scattered light.The frequency difference corresponds to, e.g., the frequency of
one of the molecules normal modes.

As with IR spectroscopy, not all of a molecules vibrations are active in the Raman spec-
trum. In order for a vibrational mode to be Raman active, the motion must result in a change in
the polarizability of the electron charge cloud surrounding the molecule. The degree of change
determines the intensity of the band.Whether or not a band is Raman, or indeed IR, active can
be determined in advance by a symmetry analysis of the normal modes. In molecules with no
symmetry, all bands are potentially both IR and Raman active, but if the molecule has sym-
metry then vibrations of certain symmetry types may be inactive in either the Raman or the
IR spectrum, or both. For example, in a molecule with a center of symmetry (such as trans-,-
dichloroethylene; point group Ch), the symmetric modes (ag and bg for Ch) are Raman active
but IR inactive, and vice versa for the unsymmetric modes.The intensity of a Raman band can
be determined theoretically by calculating the molecule’s polarizability derivatives.

The polarization of Raman scattered light also contains useful structural information. This
property can be measured by using plane polarized light and a polarization analyzer. Spectra
recorded with the analyzer set both parallel and perpendicular to the excitation plane can be
used to calculate the depolarization ratio of each vibrational mode. This provides insight into
molecular orientation and the symmetry of the vibrational modes, as well as information about
molecular shape. It is often used to determine macromolecular orientation in crystal lattices,
liquid crystals, or polymer samples.

Yet another spectroscopic method that can be used to help determine molecular structure
is vibrational circular dichroism (VCD). This technique detects differences in attenuation of
left and right circularly polarized light passing through the sample. VCD is sensitive to the
mutual orientation of groups of atoms in a molecule and provides three-dimensional structural
information. It is especially important in the study of chirality and molecular conformation.
Only chiral molecules have a VCD spectrum. In particular, molecules that have either a plane
of symmetry or a center of symmetry are VCD inactive.

The differential absorption of polarized light in vibrational circular dichroism is propor-
tional to the rotational strength, a quantity that depends on both the electric and magnetic
dipole transition moments. For a vibrational transition from the ground (g) to an excited
vibrational state (e), this is given by

R(g → e) = Im(⟨g∣μel∣e⟩⟨e∣μmag ∣g⟩), (.)
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where μel and μmag are the electric andmagnetic dipole operators, respectively.These quantities
can be calculated theoretically, enabling VCD intensities to be computed. For details see the
review by Stephens and Lowe (). Modern computational approaches use so-called gauge-
invariant atomic orbitals (GIAOs) for the magnetic component (Bak et al. ) (as does PQS)
which are particularly efficient, and the computation of VCD rotational strengths as part of a
vibrational analysis is now almost routine.

IR, Raman, andVCD spectroscopy all excite the same vibrational fundamentals.The respec-
tive vibrational spectra are different because the mechanism by which light is absorbed is
different in each case, the amount of absorption depending on changes in the dipole moment,
the polarizability and the rotational strength, respectively. All these quantities are amenable to
computation, and modern ab initio theory can reliably predict the frequencies of a molecule’s
vibrational fundamentals as well as the intensity of the signal in IR, Raman, and VCD spec-
tra. The latter in particular are greatly assisted by electronic structure calculations; comparison
of experimental and theoretical VCD spectra enable absolute molecular conformations to be
determined.

,-Dichloroethane: An Illustrative Example

> Figure - shows the PQS output for a full vibrational and thermodynamic analysis of
trans (anti) ,-dichloroethane following a geometry optimization under Ch symmetry at the
BLYP/-G∗ level of theory. It includes IR and Raman intensities obtained from the dipole
moment and polarizability derivatives, respectively. (Because of its symmetry the system is
not VCD active.) In PQS, dipole moment derivatives are computed analytically along with the
Hessian matrix and atomic axial tensors (for VCD rotational strengths) (Bak et al. ) are
computed in the same module that calculates NMR chemical shifts. Polarizability derivatives
are obtained numerically by finite difference on the force (gradient) in the presence of a series
of external electric fields.The number of applied fields varies with the molecular symmetry but
requires a maximum of  separate single-point energy plus gradient calculations in the worst
case (when the system is C).

=========================================================================

Vibrational Frequency & Thermodynamics Module

Hessian read from file C2H4Cl2.hess

Translations and Rotations Projected Out of Hessian

Vibrational Frequencies in atomic units

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.023226 0.041718 0.057471 0.137739 0.146736 0.153218

0.199410 0.207432 0.225626 0.248960 0.255115 0.264838

0.295409 0.295559 0.606973 0.608510 0.617940 0.622129

There are 4 real representations: ag bg au bu

⊡ Fig. -
(Continued)
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** VIBRATIONAL FREQUENCIES (CM**-1) AND NORMAL MODES **

Label: 1 2 3

Symmetry: au bu ag

Frequency: 119.40 214.45 295.43

IR Active: YES YES NO

IR Inten: 7.534 10.811 0.000

dmux/dQ: 0.00000 -0.10225 0.00000

dmuy/dQ: 0.00000 0.02513 0.00000

dmuz/dQ: 0.08790 0.00000 0.00000

Raman Active: NO NO YES

Raman Inten: 0.000 0.000 5.558

Depolar: 0.000 0.000 0.384

Rot.Strength: 0.654 0.635 0.000

X Y Z X Y Z X Y Z

c 0.000 0.000 0.301 -0.357 -0.019 0.000 0.023 0.223 0.000

cl 0.000 0.000 -0.125 0.144 0.001 0.000 -0.194 0.426 0.000

h 0.043 0.191 0.399 -0.409 0.090 0.011 0.050 -0.336 0.004

h 0.043 0.191 0.399 -0.409 0.090 0.011 -0.050 0.336 -0.004

h -0.043 -0.191 0.399 -0.409 0.090 -0.011 -0.050 0.336 0.004

c 0.000 0.000 0.301 -0.357 -0.019 0.000 -0.023 -0.223 0.000

h -0.043 -0.191 0.399 -0.409 0.090 -0.011 0.050 -0.336 -0.004

cl 0.000 0.000 -0.125 0.144 0.001 0.000 0.194 -0.426 0.000

Label: 4 5 6

Symmetry: bu ag au

Frequency: 708.05 754.30 787.62

IR Active: YES NO YES

IR Inten: 108.720 0.000 3.168

dmux/dQ: -0.06593 0.00000 0.00000

dmuy/dQ: 0.32733 0.00000 0.00000

dmuz/dQ: 0.00000 0.00000 0.05700

Raman Active: NO YES NO

Raman Inten: 0.000 51.557 0.000

Depolar: 0.000 0.305 0.000

Rot.Strength: -4.191 0.005 -0.313

X Y Z X Y Z X Y Z

c -0.017 0.495 0.000 0.086 0.390 0.000 0.000 0.000 -0.065

cl 0.004 -0.187 0.000 -0.027 -0.101 0.000 0.000 0.000 0.009

h 0.031 0.329 -0.031 0.016 -0.403 0.050 0.422 0.123 0.234

h 0.031 0.328 -0.031 -0.017 0.403 -0.050 0.422 0.123 0.234

h 0.031 0.328 0.031 -0.016 0.403 0.050 -0.422 -0.123 0.234

c -0.017 0.496 0.000 -0.086 -0.390 0.000 0.000 0.000 -0.065

h 0.031 0.328 0.031 0.017 -0.402 -0.050 -0.422 -0.123 0.234

cl 0.004 -0.187 0.000 0.027 0.101 0.000 0.000 0.000 0.009

Label: 7 8 9

⊡ Fig. -
(Continued)
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Symmetry: bg ag au

Frequency: 1025.07 1066.31 1159.83

IR Active: NO NO YES

IR Inten: 0.000 0.000 1.739

dmux/dQ: 0.00000 0.00000 0.00000

dmuy/dQ: 0.00000 0.00000 0.00000

dmuz/dQ: 0.00000 0.00000 -0.04223

Raman Active: YES YES NO

Raman Inten: 10.492 6.766 0.000

Depolar: 0.750 0.746 0.000

Rot.Strength: 0.002 -0.001 2.024

X Y Z X Y Z X Y Z

c 0.000 0.000 -0.124 -0.371 0.060 0.000 0.000 0.000 0.035

cl 0.000 0.000 0.016 0.006 -0.008 0.000 0.000 0.000 -0.011

h -0.170 -0.442 -0.135 0.415 -0.087 0.002 0.181 -0.465 -0.017

h 0.170 0.442 0.135 -0.415 0.087 -0.002 0.181 -0.465 -0.017

h -0.170 -0.442 0.135 -0.414 0.087 0.002 -0.181 0.465 -0.017

c 0.000 0.000 0.124 0.371 -0.060 0.000 0.000 0.000 0.035

h 0.170 0.442 -0.135 0.414 -0.087 -0.002 -0.181 0.465 -0.017

cl 0.000 0.000 -0.016 -0.006 0.008 0.000 0.000 0.000 -0.011

Label: 10 11 12

Symmetry: bu bg ag

Frequency: 1279.78 1311.42 1361.40

IR Active: YES NO NO

IR Inten: 43.117 0.000 0.000

dmux/dQ: -0.01423 0.00000 0.00000

dmuy/dQ: -0.20980 0.00000 0.00000

dmuz/dQ: 0.00000 0.00000 0.00000

Raman Active: NO YES YES

Raman Inten: 0.000 11.740 11.310

Depolar: 0.000 0.750 0.678

Rot.Strength: -13.415 -0.004 -0.002

X Y Z X Y Z X Y Z

c 0.056 -0.053 0.000 0.000 0.000 -0.082 -0.040 0.094 0.000

cl -0.006 -0.007 0.000 0.000 0.000 -0.004 0.004 0.007 0.000

h -0.222 0.444 0.008 -0.393 0.300 -0.045 -0.198 0.451 0.046

h -0.222 0.444 0.008 0.393 -0.300 0.045 0.198 -0.451 -0.046

h -0.222 0.444 -0.008 -0.393 0.300 0.045 0.198 -0.451 0.046

c 0.056 -0.053 0.000 0.000 0.000 0.082 0.040 -0.094 0.000

h -0.222 0.444 -0.008 0.393 -0.300 -0.045 -0.198 0.451 -0.046

cl -0.006 -0.007 0.000 0.000 0.000 0.004 -0.004 -0.007 0.000

Label: 13 14 15

Symmetry: ag bu ag

⊡ Fig. -
(Continued)
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Frequency: 1518.55 1519.32 3120.15

IR Active: NO YES NO

IR Inten: 0.000 6.293 0.000

dmux/dQ: 0.00000 -0.07728 0.00000

dmuy/dQ: 0.00000 0.02192 0.00000

dmuz/dQ: 0.00000 0.00000 0.00000

Raman Active: YES NO YES

Raman Inten: 20.486 0.000 160.189

Depolar: 0.743 0.000 0.085

Rot.Strength: -0.006 3.532 0.000

X Y Z X Y Z X Y Z

c 0.064 0.006 0.000 0.056 0.026 0.000 0.042 0.022 0.000

cl 0.000 0.002 0.000 0.001 0.002 0.000 0.000 0.000 0.000

h 0.365 0.155 0.300 -0.346 -0.191 -0.305 0.236 0.140 -0.416

h -0.366 -0.156 -0.301 -0.345 -0.190 -0.303 -0.236 -0.140 0.416

h -0.366 -0.156 0.301 -0.345 -0.190 0.303 -0.236 -0.140 -0.416

c -0.063 -0.006 0.000 0.056 0.026 0.000 -0.042 -0.022 0.000

h 0.365 0.155 -0.300 -0.346 -0.191 0.305 0.236 0.140 0.416

cl 0.000 -0.002 0.000 0.001 0.002 0.000 0.000 0.000 0.000

Label: 16 17 18

Symmetry: bu bg au

Frequency: 3128.05 3176.52 3198.06

IR Active: YES NO YES

IR Inten: 16.489 0.000 5.976

dmux/dQ: 0.08192 0.00000 0.00000

dmuy/dQ: 0.10099 0.00000 0.00000

dmuz/dQ: 0.00000 0.00000 -0.07828

Raman Active: NO YES NO

Raman Inten: 0.000 106.923 0.000

Depolar: 0.000 0.750 0.000

Rot.Strength: 0.708 0.000 0.266

X Y Z X Y Z X Y Z

c 0.040 0.024 0.000 0.000 0.000 0.069 0.000 0.000 -0.069

cl 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

h -0.238 -0.140 0.415 -0.245 -0.146 0.408 -0.248 -0.143 0.407

h -0.238 -0.140 0.415 0.245 0.146 -0.408 -0.248 -0.143 0.407

h -0.238 -0.140 -0.415 -0.245 -0.146 -0.408 0.248 0.143 0.407

c 0.040 0.024 0.000 0.000 0.000 -0.069 0.000 0.000 -0.069

h -0.238 -0.140 -0.415 0.245 0.146 0.408 0.248 0.143 0.407

cl 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

STANDARD THERMODYNAMIC QUANTITIES AT 298.180 K AND 1.000 ATM

This Molecule has 0 Imaginary Frequencies

Zero point vibrational energy: 36.802 kcal/mol

⊡ Fig. -
(Continued)
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Atom 1 Element c Has Mass 12.01115

Atom 2 Element cl Has Mass 35.45270

Atom 3 Element h Has Mass 1.00794

Atom 4 Element h Has Mass 1.00794

Atom 5 Element h Has Mass 1.00794

Atom 6 Element c Has Mass 12.01115

Atom 7 Element h Has Mass 1.00794

Atom 8 Element cl Has Mass 35.45270

Molecular Mass: 98.959460 amu

Principal axes and moments of inertia in atomic units:

1 2 3

Eigenvalues -- 62.16074 1242.14322 1281.43626

X 0.36607 -0.93059 0.00000

Y -0.93059 -0.36607 0.00000

Z 0.00000 0.00000 1.00000

Rotational Symmetry Number is 2

The Molecule is an Asymmetric Top

Translational Enthalpy: 0.889 kcal/mol

Rotational Enthalpy: 0.889 kcal/mol

Vibrational Enthalpy: 38.101 kcal/mol

gas constant (RT): 0.593 kcal/mol

Translational Entropy: 39.687 cal/mol.K

Rotational Entropy: 24.718 cal/mol.K

Vibrational Entropy: 7.625 cal/mol.K

Total Enthalpy: 40.471 kcal/mol

Total Entropy: 72.030 cal/mol.K

=========================================================================

⊡ Fig. -
PQS vibrational frequency output for trans-,-dichloroethane

The first thing printed out is the name of the file containing the Hessian matrix. In PQS
a vibrational and thermodynamic analysis is done independently of the Hessian computation
enabling a full vibrational analysis of isotopomers to be carried out from the same Hessian
matrix simply by changing the atomic masses. Analysis is done on any matrix read from the
Hessian file, including partial and/or approximate Hessians (e.g., an updated Hessian left over
from a geometry optimization), so care must be taken that the source of the Hessian matrix is
known. A vibrational analysis of an approximateHessian will of course, at best, be only approx-
imate; in particular an analysis based on a geometry optimized at one level of theory and a
Hessian matrix computed at another (lower) level of theory is, strictly speaking, invalid.

Then comes a list of the vibrational frequencies in atomic units after the translations and
rotations have been projected out. This is simply a printout of the eigenvalues of the projected
mass-weighted Hessian (see > Eq. .); as can be seen, the six eigenvalues corresponding to
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the translations and rotations are all zero. The remaining eigenvalues are all positive, showing
that the optimized structure of trans-,-dichloroethane is a genuine minimum. As any decent
chemist should know, ,-dichloroethane has two stable conformations, trans and gauche; the
former is the more stable by around . kcal mol− (El Youssoufi et al. a, b). This energy
difference is sufficiently small that both conformers will be present, certainly at room temper-
ature, and experimental vibrational spectra of ,-dichloroethane, unless recorded at very low
temperature,will contain bands from the gauche as well as themore abundant trans conformer.
This will be discussed in more detail later in this chapter.

This is followed by a list of all symmetry types possible for the vibrational modes. This is
simply a list of the irreducible representations present in the character table for the molecule’s
symmetry point group; for trans-,-dichloroethane, having Ch symmetry, this is ag , bg
(symmetric motions) and au , bu (antisymmetric).

All N −  normal modes (Cartesian displacements for each atom) are then listed, together
with as much information for each mode as is available, depending on which, if any, of the
dipole derivatives, the polarizability derivatives or the rotational strengths have been computed
for the molecule in question. For trans-,-dichloroethane all these quantities are available
except the latter, so listed for each mode is its symmetry type, its frequency in wavenumbers
(cm−), whether or not the mode is IR active, the corresponding IR intensity, the X, Y and Z
dipole derivatives with respect to themotion in each normalmode,whether themode is Raman
active, its corresponding Raman intensity and its Raman depolarization ratio. If the molecule
were VCD active, its rotational strength (relative intensity in a VCD spectrum) would also be
printed.

As already noted, whether a mode is IR or Raman active can be determined in advance
(although its intensity cannot) by group theoretical considerations and depends on its symme-
try type. For trans-,-dichloroethane (because of its point group symmetry) eachmode is either
IR active or Raman active, but not both, and so IR and Raman spectroscopy excite completely
different vibrational fundamentals. In the Raman spectrum, only bands of ag and bg symmetry
will appear. These can be distinguished experimentally by measuring the depolarization ratio;
according to theory (Wilson et al. ), the depolarization ratio of totally symmetricmodes (ag

underCh) is less than . (these are called polarized bands) whereas that of all other modes is
. (depolarized bands). (See the depolarization ratios calculated for trans-,-dichloroethane
in > Fig. -.)

The vibrational analysis is followed by a standard, classical statistical thermodynamic anal-
ysis at .K (○C) and  atm pressure. (For details, see McQuarrie ()). Computed
quantities include the principal axes and moments of inertia, the rotational symmetry number
and symmetry classification, and the translational, rotational, vibrational, and total enthalpy
and entropy, respectively. Both the temperature and pressure can be altered from standard con-
ditions and/or scanned across a requested range of values. The total zero-point energy at  K is
given by

∑ν

 hν, summed over all real frequencies (converted to kcal mol−; see > Eq. .).

The predicted IR and Raman spectra, based on the data printed out from the vibrational
analysis in > Fig. - are shown in > Fig. -. These are direct “screen captures” from
PQSView, which is the job output and visualization component of the PQSMolGUI (PQS ).
For each spectrum, the frequency range (horizontal axis), the intensity range (vertical axis), and
the band half-width (fitted using a Lorentzian band profile) can be varied; it is also possible to
“zoom in” on selected regions of the spectrum.

So how good are the results? First of all it should be noted that we would not expect the-
ory to be able to exactly reproduce experimental vibrational spectra as factors such as intensity
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⊡ Fig. -
Simulated IR and Raman spectra using data derived from > Fig. -: (a) IR Spectrum, (b) Raman
Spectrum

and bandwidth depend strongly on experimental conditions (as to some extent do the frequen-
cies themselves). Also, most importantly, the theoretical analysis assumes harmonic behavior,
whereas the real spectrum is of course anharmonic. So we would expect the calculated vibra-
tional fundamentals to deviate from experiment simply because they are harmonic, without
even considering other sources of error (such as incomplete basis set and approximate treatment
of electron correlation). For the level of theory used here, BLYP/-G∗, the average (mean)
error between computed (harmonic) vibrational fundamentals and experimentally observed
(anharmonic) values is around  cm−. For example, in a study of  individual vibrational
fundamentals from  different small molecules using BLYP and a polarized-valence triple-
zeta basis, Schlegel and coworkers (Halls et al. ) found an average absolute deviation
between theory and experiment of . cm− .

Agreementwith experiment can bemuch improved by scaling.This has been done since the
early days of Hartree–Fock theory, when all computed HF/-G∗ frequencies were regularly
scaled by a factor of around .. Optimized Hartree–Fock bond lengths are typically too short
compared with experiment; hence computed frequencies are almost uniformly too high. Single
scale factors, applied directly to computed vibrational fundamentals, have since been derived
for a range of other wavefunctions, including post-HF and DFT. A recent paper from Radom
and coworkers derived least-squares fitted scale factors for more than  different levels of
theory (varying both the methodology and the basis set) (Merrick et al. ). Scale factors for
DFT-based methods are much closer to unity than scale factors derived using Hartree–Fock
(which completely neglects electron correlation) showing that the raw (unscaled) results are
simply better. The scale factor for BLYP/-G∗ is . (Merrick et al. ).

Scaled QuantumMechanical Force Fields

Although scaling of the computed vibrational frequencies using a single, global, scale factor is
common, the first scaling methods applied to ab initio force constants used several different
scale factors to correct for systematic errors in different types of molecular deformations, e.g.,
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stretches, bends, or torsions.This procedure requires the transformation of the molecular force
field (theHessianmatrix) into chemicallymeaningful internal coordinates and scales the result-
ing Hessian elements themselves. It cannot be applied directly to the calculated frequencies. It
is thus less convenient than global scaling using a single scaling factor. Largely because of its
simplicity, global scaling became popular, but using multiple scale factors yields much better
results as was convincingly demonstrated by Blom and Altona in a series of papers starting in
themid-s (Blom andAltona , a, b; Blom et al. ).Their method forms the basis
of the scaled quantummechanical (SQM) procedure which has been in widespread use for over
 years (Pulay et al. ).

In the original SQM procedure, the molecular geometry was expressed in terms of a full
set of nonredundant natural internal coordinates (Fogarasi et al. ; Pulay et al. ). On the
basis of chemical intuition, the natural internal coordinates of allmolecules under consideration
(there can be more than one) are sorted into groups sharing a common scale factor, and factors
for each group are determined by a least-squares fit to experimental vibrational frequencies.
Force constants, originally calculated inCartesian coordinates, are transformed into the internal
coordinate representation, and scaling is applied to the elements of the internal force constant
matrix (not to the individual vibrational frequencies) according to

Fij(scaled) =
√si s jFij, (.)

where si and s j are scaling factors for internal coordinates i and j, respectively.
The accuracy obtained by selective scaling in this way is naturally greater than if just a single

global scaling factor were used. Additionally, scaling the force constant matrix also affects the
resultant normal modes, and hence the calculated intensities (which are unaffected if only the
frequencies are scaled), leading to better agreementwith experimental intensities. Furthermore
the vibrational frequencies derive directly from the (scaled) Hessian matrix, and are thus fully
consistent with it; not the case at all if the frequencies are scaled directly.

The SQM procedure has been widely used in the interpretation of vibrational spectra. A
further important role is the development of transferable scale factors which can be used to
modify calculated force constants and so predict the vibrational spectrum a priori.

The SQM module in PQS uses a modified scaling procedure involving the scaling of indi-
vidual valence coordinates (Baker et al. ) (not the linear combinations present in natural
internal coordinates).This has immediate advantages in terms of ease of use, as no natural inter-
nals need to be generated (a procedure which may fail for complicated molecular topologies),
and it simplifies the classification and presorting of the coordinates. In addition, the extra flex-
ibility involved in the scaling of individual primitive internals generally leads to an increase in
accuracy and to more transferable scale factors. On typical organic molecules one can expect
average differences between predicted SQM and experimental fundamentals of around  cm−

with maximum errors of about  cm− or so (Baker and Pulay ). In my experience, if dif-
ferences greatly exceed this maximum, it is more likely that the observed experimental peaks
have been misassigned than the predicted SQM frequency is wrong.

,-Dichloroethane: A Further Analysis

We are going to apply the SQM method to the existing Hessian matrix for trans-,-
dichloroethane in order to improve the agreement with experiment; furthermore, we will
also need to consider the gauche conformer which will almost certainly contribute to the
experimental vibrational spectra at room temperature.
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The results of a vibrational analysis of gauche-,-dichloroethane, optimized at the
BLYP/-G∗ level, are shown in > Fig. -. This is direct printout from the correspond-
ing PQS log file (not the output file). In addition to the full output, PQS produces a summary
output – the log file – which contains only data that is of direct interest to the user and omits all
intermediate printout (such as integral and timing data, intermediate steps in an optimization
etc.). As can be seen, the log file reproduces the thermodynamic analysis that is printed in the
full output file, but provides only a summary of the vibrational analysis and completely omits
the normal modes.

Vibrational frequencies and intensities

No. Symm. Freq. IR Raman IR int. Raman int. Depol. Rot.Str.
18 b 3172.85 YES YES 6.495 21.936 0.7500 1.306
17 a 3159.99 YES YES 0.688 107.324 0.7427 -1.162
16 a 3103.37 YES YES 22.911 190.623 0.0225 -3.727
15 b 3094.75 YES YES 3.074 48.934 0.7500 -2.061
14 a 1500.18 YES YES 0.172 6.079 0.6749 -0.632
13 b 1495.96 YES YES 10.565 19.427 0.7500 0.851
12 a 1364.60 YES YES 25.618 6.217 0.7390 -18.289
11 b 1342.07 YES YES 49.651 0.508 0.7500 -4.220
10 a 1246.88 YES YES 1.274 19.900 0.7301 5.497
9 b 1178.97 YES YES 1.164 7.360 0.7500 -4.560
8 a 1054.50 YES YES 0.629 3.929 0.7451 2.522
7 a 960.62 YES YES 13.324 6.693 0.4295 -5.248
6 b 904.47 YES YES 19.675 1.655 0.7500 16.416
5 b 679.03 YES YES 30.638 10.525 0.7500 -29.476
4 a 654.31 YES YES 21.755 13.678 0.1022 19.772
3 b 409.09 YES YES 9.479 2.353 0.7500 7.781
2 a 261.37 YES YES 1.042 1.127 0.3706 -4.698
1 a 112.97 YES YES 1.019 1.793 0.7446 -0.892

STANDARD THERMODYNAMIC QUANTITIES AT 298.180 K AND 1.000 ATM

This Molecule has 0 Imaginary Frequencies
Zero point vibrational energy: 36.734 kcal/mol

Atom 1 Element c Has Mass 12.01115
Atom 2 Element cl Has Mass 35.45270
Atom 3 Element h Has Mass 1.00794
Atom 4 Element h Has Mass 1.00794
Atom 5 Element h Has Mass 1.00794
Atom 6 Element c Has Mass 12.01115
Atom 7 Element h Has Mass 1.00794
Atom 8 Element cl Has Mass 35.45270
Molecular Mass: 98.959460 amu
Principal axes and moments of inertia in atomic units:

1 2 3
Eigenvalues -- 181.49676 849.35170 971.53423

X -0.75466 0.00000 0.65612
Y 0.65612 0.00000 0.75466
Z 0.00000 1.00000 0.00000

⊡ Fig. -
(Continued)
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Rotational Symmetry Number is 2

The Molecule is an Asymmetric Top

Translational Enthalpy: 0.889 kcal/mol

Rotational Enthalpy: 0.889 kcal/mol

Vibrational Enthalpy: 37.940 kcal/mol

gas constant (RT): 0.593 kcal/mol

Translational Entropy: 39.687 cal/mol.K

Rotational Entropy: 25.130 cal/mol.K

Vibrational Entropy: 6.966 cal/mol.K

Total Enthalpy: 40.310 kcal/mol

Total Entropy: 71.783 cal/mol.K

⊡ Fig. -
PQS vibrational frequency summary from the log file for gauche-,-dichloroethane

⊡ Table -
Standard BLYP/-G∗ SQM scale factors relevant to ,-dichloroethane

Type Scale factor

Stretch rC−C .

Stretch rC−H .

Stretch rC−Cl .

Bend ∠CCCl .

Bend ∠CCH;∠ClCH .

Bend ∠HCH .

Torsion all .

Gauche-,-dichloroethane has C symmetry and formally all of its vibrational fundamen-
tals are both IR andRaman active. (Additionally, unlike the trans conformer, it is also potentially
VCD active.) However, several modes have only relatively low intensity and may therefore be
difficult to see in the experimental spectrum, especially given that the gauche is the higher
energy conformer and is only expected to comprise about –% of the total at room tem-
perature (El Youssoufi et al. a, b). The computed BLYP/-G∗ energy difference between
the gauche and trans conformers is . kcal mol−, including (minor) zero-point energy effects.

In the paper that introduced the scaling of individual primitive internals into the SQM
method (Baker et al. ), a set of  scale factors were derived from a test set of  molecules
containing C, H, O, N and Cl at the BLYP/-G∗ level. These scale factors will be used “as
is” to scale the raw Hessian data for both trans and gauche-,-dichloroethane. The seven scale
factors appropriate for use with ,-dichloroethane as shown in > Table -.

There have been several experimental studies of the vibrational spectra of ,-
dichloroethane. Of note are the  IR and Raman measurements on the solid, liquid, and
gaseous trans and gauche conformers from Mizushima and coworkers (), and the com-
bined theoretical and FT-IR study of El Youssoufi et al. already referred to (El Youssoufi et al.
a, b). These results are summarized, together with the unscaled, scaled using a single scale
factor (Merrick et al. ), and the SQM predicted fundamentals in > Table -.

The first thing to note from > Table - is that the order and the symmetry assignments of
the fundamentals is predicted to be exactly the same theoretically as found experimentally. The
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⊡ Table -
Comparison of experimental and theoretical (BLYP/-G∗) vibrational fundamentals for gas-
phase ,-dichloroethane and their assignments

Experiment

Aa Bb Scaled (SQM) Scaled (.) Unscaled Assignment

trans conformer

 (au)   (au)  (au)  (au) Torsion

 (bu)   (bu)  (bu)  (bu) CCCl def.

 (ag)  (ag)  (ag)  (ag) CCCl def.

 (bu)   (bu)  (bu)  (bu) C–Cl str.

 (ag)  (ag)  (ag)  (ag) C–Cl str.

 (au)   (au)  (au)  (au) CH rock

 (bg)  (bg)  (bg) , (bg) CH rock

, (ag) , (ag) , (ag) , (ag) C–C str.

, (au) , , (au) , (au) , (au) CH twist

, (bu) , , (bu) , (bu) , (bu) CH wag.

, (bg) , (bg) , (bg) , (bg) CH twist

, (ag) , (ag) , (ag) , (ag) CH wag.

, (ag) , (ag) , (ag) , (ag) CH scissor

, (bu) , , (bu) , (bu) , (bu) CH scissor

, (ag) , (ag) , (ag) , (ag) CH sym. str.

, (bu) , , (bu) , (bu) , (bu) CH sym. str.

, (bg) , (bg) , (bg) , (bg) CH antisym. str.

, (au)c , , (au) , (au) , (au) CH antisym. str.

Mean errord (cm−) . () . () . ()

gauche conformer

 (a)  (a)  (a)  (a) torsion

 (a)  (a)  (a)  (a) CCCl def.

 (b)  (b)  (b)  (b) CCCl def.

 (a)   (a)  (a)  (a) C–Cl str.

 (b)   (b)  (b)  (b) C–Cl str.

 (b)   (b)  (b)  (b) CH rock

 (a)   (a)  (a)  (a) CH rock

, (a) , , (a) , (a) , (a) C–C str.

, (b) , , (b) , (b) , (b) CH twist

, (a) , , (a) , (a) , (a) CH twist

, (b) , , (b) , (b) , (b) CH wag.

, (a) , , (a) , (a) , (a) CH wag.

, (b) , , (b) , (b) , (b) CH sissor

, (a) , (a) , (a) , (a) CH sissor

, (b) , , (b) , (b) , (b) CH sym. str.

(Continued)
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⊡ Table -
(Continued)

Experiment
Aa Bb Scaled (SQM) Scaled (.) Unscaled Assignment

, (a) , , (a) , (a) , (a) CH sym. str.

, (a) , (a) , (a) , (a) CH antisym. str.

, (b) , , (b) , (b) , (b) CH antisym. str.

Mean errord (cm−) . () . () . ()
aRef. Mizushima et al. ()
bRef. El Youssoufi et al. (a, b)
cReported as , cm− in the solid
dOmitting the two highest fundamentals, maximum deviation in parentheses (see text)

actual assignments as to the type of motion for each vibrational mode can be readily checked
by animating the mode and observing it visually. In this regard, theory is far easier to inter-
pret than experiment. When you determine a vibrational fundamental computationally you
automatically get its normal mode, its symmetry type, its IR and Raman intensities, its depo-
larization ratio, indeed the whole vibrational analysis, so there is absolutely no dispute as to the
bands assignment. Additionally, it is possible to do an energy distribution analysis (Pulay and
Torok ) of the normal modes which determines which primitive internals have more than
a given weight (typically %) to each mode, often enabling the principal motion in the mode
(assuming there is one) to be found without having to animate it.

The two sets of experimental fundamentals are for the most part in excellent agreement
with each other and typically differ by – cm− only. However, there are more serious dis-
crepancies for the two highest frequencies. These are C–H stretches which, primarily due to
tunneling, often show large differences from harmonic behavior, and both the position and
the intensity of these bands in the experimental spectrum can deviate significantly from the-
oretical predictions. They are also often difficult to determine experimentally. In this case the
highest frequency for the gauche conformer differs by  cm− between the two sets of exper-
imental values: , and , cm−. Additionally, although the agreement in this region for
the trans conformer looks fine, Mizushima and coworkers () report a value for the au C–H
antisymmetric stretch in the solid of , cm−, compared to , cm− in the gas phase,
a substantial difference. Because of these experimental differences, we have omitted the two
highest frequency C–H stretches from our error analysis, and the mean average (unsigned) and
maximum errors between theory and experiment is reported over  vibrational fundamentals
(not ).

The largest errors are of course found for the raw, unscaled frequencies, which show average
differences from experiment for the two conformers of around  cm− (and maximum errors
of about  cm−). These are in line with the average errors reported by Schlegel (Halls et al.
) previously mentioned. Despite the large average differences, even the unscaled BLYP/-
G∗ frequencies are helpful in assigning the experimental spectrum as the order is the same as
that found experimentally, even if the positions are off.

Scaling even using just a single scaling factor significantly improves the comparison with
experiment, reducing the average error by well over %. However, the SQM results are by
far the best and are genuinely predictive. Results for the trans conformer are typical for this
approach (average error . cm−, maximum error  cm−) and those for the gauche are even
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⊡ Fig. -
Predicted SQM IR spectra for ,-difluoroethane: (a) IR spectrum for trans-,-dichloroethane,
(b) IR spectrum for gauche-,-dichloroethane, (c) IR spectrum for ,-dichloroethane at room
temperature

better (average error . cm−, maximum error  cm−). In the latter case, they are three times
better than using a single scaling factor, both on the average and for the maximum deviation.

A recently published SQM reappraisal of the vibrational spectrum of toluene (Baker )
showed a similar average deviation from the  experimental study of Keefe and coworkers
(Bertie et al. ) of . cm− (maximum error  cm−) and convincingly proposed that three
observed bands either unassigned or assigned as combination bands were in fact fundamen-
tals. In their  SQM study of the vibrational spectra of several small fluorocarbons, Baker
and Pulay () proposed several reassignments to previously published experimental spectra
and predicted the fundamental frequencies and IR intensities of nine other fluorocarbons for
which there was, at that time, no experimental data. A subsequent jet-cooled FT-IR investiga-
tion byMcNaughton and coworkers (Jiang et al. ) essentially confirmed all of the theoretical
predictions.

The final SQM-predicted IR and Raman Spectra for ,-dichloroethane are shown in
> Fig. - and > Fig. -, respectively. In each case individual spectra for the trans and
gauche conformers are given followed by a combined spectrum assuming a room-temperature
distribution of % trans and % gauche.

Not surprisingly, because of its dominance at room temperature, the observed IR spec-
trum of ,-dichloroethane is predicted to look very much like that for the trans-conformer
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⊡ Fig. -
Predicted SQM Raman spectra for ,-dichloroethane: (a) Raman spectrum for trans-,-
dichloroethane, (b) Raman spectrum for gauche-,-dichloroethane, (c) Raman spectrum for
,-dichloroethane at room temperature

alone. However there are some peaks due to the gauche form that should be visible in room-
temperature spectra and their intensity should increase at higher temperature. In particular, the
CH wag. at ∼, cm− should have sufficient intensity to be seen in the IR spectrum and the
CH twist at , cm− should be visible in the Raman spectrum.

In addition to their results for normal ,-dichloroethane, Mizushima et al. also reported
the experimental vibrational fundamentals for the fully deuterated isotopomer (CDClCDCl)
(Mizushima et al. ). These are compared with the SQM scaled frequencies (using the same
scaling factors as for CHClCHCl) in > Table -. (As the Hessian matrix is independent
of mass, the vibrational fundamentals for all possible isotopomers can be derived from a sin-
gle Hessian matrix simply by changing the mass weighting.) The agreement is again excellent,
with average errors (mean average deviation) of just over  cm− and maximum errors around
 cm− for both deuterated conformers.There is one frequency for the gauche conformerwhere
there is significant disagreement between theory and experiment (see > Table -); this is a b
mode observed experimentally at  cm− but predicted theoretically at  cm−. In Table  in
Mizushima et al. () this frequency is in parentheses (the only one to be thus treated) which
suggests that its value is uncertain. The trans conformer shows an intense band at precisely this
frequency ( cm−) which is predicted to be the most intense band in the entire IR spectrum
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⊡ Table -
Comparison of experimental and theoretical (BLYP/-G∗) vibrational fundamentals for fully
deuterated ,-dichloroethane and their assignments

Experimenta SQM Assignment Experimenta SQM Assignment

trans conformer gauche conformer

 (au)  (au) torsion  (a)  (a) torsion

 (bu)  (bu) CCCl def.  (a)  (a) CCCl def.

 (ag)  (ag) CCCl def.  (b)  (b) CCCl def.

 (au)  (au) CD rock  (a)  (a) C–Cl str.

 (bu)  (bu) C–Cl str.  (b)  (b) C–Cl str.

 (ag)  (ag) C–Cl str. ()(b)  (b) CD rock

 (bg)  (bg) CD rock  (a)  (a) CD rock

 (au)  (au) CD twist  (a)  (a) CD twist

 (ag)  (ag) C–C str.  (b)  (b) C–C str.

 (bu)  (bu) CD wag.  (a)  (a) CD twist

 (bg)  (bg) CD twist , (b) , (b) CD wag.

, (ag) , (ag) CD wag. , (a) , (a) CD wag.

, (bu) , (bu) CD sissor , (b) , (b) CD sissor

, (ag) , (ag) CD sissor , (a) , (a) CD sissor

, (ag) , (ag) CD sym. str. , (b) , (b) CD sym. str.

, (bu) , (bu) CD sym. str. , (a) , (a) CD sym. str.

, (bg) , (bg) CD antisym. str. , (a) , (a) CD antisym. str.

, (au) , (au) CD antisym. str. , (b) , (b) CD antisym. str.

MAD (cm−) . () . ()b

aFrom Ref. Mizushima et al. (); gas-phase where given, otherwise liquid
bOmittingmode in parentheses ()

of deuterated ,-dichloroethane, and it may well be that a gauche mode was assumed to lie
hidden under this intense band. The prediction here is that this is not the case, and there is an
unassigned feature in the IR spectrum around  cm− which should be assigned as a gauche
fundamental. Because of the possible experimental misinterpretation, this mode was omitted
from the error analysis.

As noted, gauche-,-dichloroethane is potentially VCD active. The two chiral forms of
this molecule are shown in > Fig. - together with their simulated VCD spectra. (They are
denoted by gauche and gauche, respectively; the rotational strengths given in > Fig. - cor-
respond to gauche.)The VCD spectra for the two chiral conformers are precisely the opposite
of each other; where one form has a positive rotational strength, the other has exactly the same
magnitude but with a negative sign. In any real mixture of gauche-,-dichloroethane, however,
both forms will be present in equal amounts, i.e., it will be a racemic mixture, and so over-
all there will be no observable VCD spectrum as everything will cancel. However, this clearly
shows the potential of VCD spectroscopy to determine the absolute molecular configuration of
a pure, chiral conformer.

Finally > Table - compares optimized geometrical parameters for trans-,-
dichloroethane with experimental electron diffraction data from Kvesethi as reported in El
Youssoufi et al. (a, b).
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⊡ Fig. -
Predicted VCD spectra for the two chiral forms of gauche-,-dichloroethane: (a) gauche,
(b) gauche, (c) simulated VCD spectrum of gauche, (d) simulated VCD spectrum of gauche

⊡ Table -
Comparison of experimental and theoretical (BLYP/-G∗) geometrical parameters for trans-,-
dichloroethane

Parametera BLYP/-G∗ Experimentb

rC−C . .()

rC−Cl . .()

rC−H . .()

∠CCCl . .(.)

∠CCH . .(.)

τClCCCl . .

aDistances in Å and angles in degrees
bFrom Ref. Kveseth (), standard deviation in parentheses

I hope that the above has demonstrated just howusefulmodern theory can be for the predic-
tion and interpretation of molecular vibrational spectra and the identification and assignment
of vibrational fundamentals. I have attempted to show this with a fairly extensive theoretical
study (carried out especially for this chapter) on one particular molecule, ,-dichloroethane,
rather than merely summarizing the results of previous studies.
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Density Functional Theory andWeight Derivatives

Before concluding, I would like to comment on the use of weight derivatives in DFT calcula-
tions. As will be discussed, this has important ramifications for the reliable computation of DFT
vibrational frequencies. Following Pople and coworkers (Johnson et al. ), we can write the
DFT exchange-correlation energy as

EXC =
∫

f (ρ)dr, (.)

where ρ represents all the density dependence, of whatever form, in the density functional
f (ρ). This integral is too complicated to be evaluated analytically and numerical intgra-
tion has to be used. Virtually all DFT programs employ an atomic partitioning scheme
pioneered by Becke () to evaluate this integral, which separates the molecular inte-
gral into atomic contributions which may then be individually treated using single-center
techniques.

If this is done, we can replace > Eq. . by

EXC = ∑
A
∑

i
ωAi f (ρ; rAi), (.)

where the first summation is over all atoms, A, and the second is over the numerical quadrature
grid points, i, for the current atom. The ωAi are quadrature weights and the grid points, rAi
are given by rAi = RA + ri, where RA is the position of nucleus A and ri represents a suitable
quadrature grid centered on A.

Because the grid points are atom-centered they are not fixed in space, but “move with” the
atom. This means that the derivative of > Eq. . (needed for the DFT contribution to the
gradient) formally has two parts:

▽AEXC = ∑
B
∑

i
[ωBi ▽A f (ρ; rBi) + (▽AωBi) f (ρ; rBi)] . (.)

The first term in > Eq. . looks like the numerical integral of the exchange-correlation con-
tribution to the total energy gradient, and is the only term in a fixed grid, but the second term
is formally needed and the implementation in Johnson et al. () was the first time that this
term – the weight derivative – was properly included.

The error in neglecting the weight-derivative term can be reduced to virtually zero by
taking a large enough number of grid points, but for smaller grids its omission is not justi-
fied (Johnson et al. ). I suspect that the hope was that if the second term in > Eq. .
were properly included, then small grids would no longer give unreliable results, but if this
was indeed the hope, it was quickly dashed when it was shown that small grids which included
weight derivatives often gave worse results than calculations in which they were omitted (Baker
et al. ). Basically you have to have a decent quadrature grid to get reliable gradients; if
the grid is not good enough using weight derivatives will not save you, if it is good enough
then you probably do not need weight derivatives. At least this is typically the case for the
gradient.

One clear advantage of including weight derivatives is that the gradient zero coincides
essentially exactly (for minimization) with the energy minimum. If the weight derivative
term is omitted and grid quality is poor then there is a strong tendency for the energy to
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⊡ Table -
Optimized BLYP/-G∗ geometrical parameters for hydrogen peroxide using numerical quadra-
ture grids of decreasing quality with and without weight derivativesa

Geometrical parametersc

Grid qualityb Weight derivs rO−O rO−H ∠HOO τHOOH
Conv. yes . . . .

 yes . . . .

 no . . . .

 yes . . . .

 no . . . .

 yes . . . .

 no . . . .

 yes . . . .

 no . . . .

 yes . . . .

 no . . . .

aFrom Ref. Baker et al. ()
b = best grid,  =worst; Conv. represents converged results
cin Å and degrees

rise near the end of a geometry optimization as the gradient supposedly decreases. This was
a common occurance with many early DFT codes almost entirely due to sloppy numerical
integration.

The kind of errors in geometries seenwhen theDFT integration grid gets increasingly worse
is shown in > Table - which gives geometrical parameters for BLYP/-G∗ optimizations
of hydrogen peroxide with a range of decreasing quality grids. The table is taken from Baker
et al. () for which see for more details. Results are shown with and without inclusion of
the weight derivative term. As can be seen from > Table -, the HOOH torsion changes
substantially with grid quality, as do some of the other parameters with the poorest quality
grid. If anything, results with weight derivatives are worse than those without as grid qual-
ity worsens. The actual optimization for the poorest quality grid (grid ) converged smoothly
when weight derivatives were included, with the energy decreasing on every optimization
cycle; it was only when examining the final geometry that one realizes that something is badly
wrong.

The situation as far as the first energy derivative (the gradient) is concerned is that for reli-
able results you need a good quality grid, but if you have that then you don’t really need to
include weight derivatives (although there is no harm in doing so of course). For the second
energy derivative (the Hessian matrix and hence vibrational frequencies) things are somewhat
different. As convincingly demonstrated by Malagoli and Baker (), weight derivatives are
essentially de rigueur for the reliable computation of vibrational frequencies, particularly if
heavier elements (beyond the first row) are involved. However, the reason for this is not what
you might think.

It turns out that there is a potential, major difficulty in integrating derivatives of basis func-
tions that represent core electrons on their own atomic grid. Such basis functions have large
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exponents and their contribution to the electron density consequently dies off very rapidly with
increasing distance from the nucleus. Exponents of the order of a million or more are not at all
uncommon, especially if the core – as is often the case – is represented by a contracted func-
tion, and such exponents only increase in magnitude with increasing atomic number. In order
to accurately integrate a Gaussian function that dies off so rapidly a high density of points are
needed near the nucleus. The numerical inaccuracy does not matter very much at all for the
exchange-correlation energy, but for the gradient and especially for the second derivative, then
a basis function exp (−ωr) which has a small value at some grid point near the nucleus, has a
magnitude ω exp (−ωr) for its gradient and ω exp (−ωr) for its second derivative. With
ω of the order of , then the contribution of this function to the second derivative has a mag-
nitude four trillion r times its contribution to the energy at that particular grid point, i.e., it
has changed from something fairly small to something potentially large, as well as having a
greater radial extent. Consequently it requires a far more accurate numerical integration than
it previously had.

It is possible to ameliorate this inaccuracy by increasing the grid quality, but eventually
with a large enough exponent, you will simply be swamped and it will not be possible to accu-
rately integrate the function on any viable radial grid. The tremendous advantage of including
the weight derivative term (as opposed to ignoring it and in effect assuming a fixed grid) is
that, when considering any derivative term, because a grid “moves with” its atom there is no
need to take the derivative of any basis function centered on that atom.Thus the highly inaccu-
rate integration of basis functions with large exponents on their own atomic center no longer
needs to be carried out. In other words, the inclusion of weight derivatives is so important for
reliable frequencies with DFT, not because of anything inherent in the weight derivative term
itself, but because, by including them, one can completely avoid a highly inaccurate numerical
integration.

If you are using DFT code which does not have weight derivatives, then consider carrying
out any vibrational analysis with a Hessian matrix computed numerically. As noted above, the
gradient is normally reliable even without weight derivatives provided the quadrature grid is
of sufficient quality. The calculation will almost certainly take longer compared to computing a
fully analytical Hessian, but at least it should give reasonable results.

> Table - shows the effects of not including weight derivatives in analytical Hessian
matrices on the computed BLYP/m-G∗ harmonic vibrational frequencies for Fe(CO).
(The m-G∗ basis (Mitin et al. ) is a modified version of the -G∗ basis for first-
row transition metals (Rassalov et al. ) that corrects deficiencies in the latter due to the
lack of a sufficiently diffuse d-function in the d-shell.) This Table, taken from Malagoli and
Baker (), shows analytical frequencies computed both with and without weight deriva-
tives using the standard grid in PQS (which is perfectly adequate for DFT energies and
gradients) as well as a much better quality grid; additionally it gives numerical frequencies
derived from a Hessian obtained via central differences on the (analytical) gradient using the
standard grid.

As can be seen, all computed frequencies are in excellent agreement with one another
(all agreeing within  cm−) except for those computed with the standard grid without weight
derivatives. These results are terrible. Apart from the high frequency C–O stretches (above
, cm−), all the e′ modes show significant errors, as do the a′′ . The low frequencies are
completely wrong, the order of the fundamentals is incorrect, and there are two imaginary
frequencies even though the geometry was minimized. All this is solely due to integration
error.
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⊡ Table -
Computed BLYP/m-G∗ harmonic vibrational frequencies (cm−) for Fe(CO)a

Vib. mode Standard grid Better grid Numerical

Symmetry No weight Weight No weight Weight Hessian

e′ .i . . . .

e′′ . . . . .

e′ . . . . .

a′′ .i . . . .

a′ . . . . .

e′′ . . . . .

a′ . . . . .

e′ . . . . .

a′ . . . . .

a′′ . . . . .

e′ . . . . .

e′′ . . . . .

a′′ . . . . .

e′ . . . . .

e′ ,. ,. ,. ,. , .

a′ ,. ,. ,. ,. , .

a′′ ,. ,. ,. ,. , .

a′ ,. ,. ,. ,. , .

aFrom Malagoli and Baker ()

Conclusions

Modern ab initio theory can compute a large number ofmolecular properties, particularly those
for individual molecules – such as geometries and spectroscopic data – that are of direct rel-
evance for experimental studies. This chapter has concentrated on molecular structure and
vibrational spectroscopy where theory can be tremendously helpful to experimentalists. The-
oretical data – for example, bond lengths involving hydrogen – are now regularly used as
an aid when fitting X-ray and microwave data in order to extract geometrical parameters.
IR, Raman and VCD spectra can readily be simulated theoretically, with reliable estimates
of both band positions and intensities, especially if the raw data is scaled via an SQM treat-
ment. I have tried to illustrate the latter in particular by concentrating for the most part on an
extensive study of a single system using a standard level of theory (BLYP/-G∗) rather than
attempting to summarize results on a large number of molecules using a variety of theoretical
methods.

Thirty years ago I was attending scientificmeetings and conferences inwhich the theoretical
chemists in the audience were often attempting to justify their existence to their experimen-
tal colleagues. At that time calculations were not especially helpful to the experimentalist. The
standard level of theory for most applications was Hartree–Fock, with perhaps some higher
level post-HF single-point energies to hopefully improve the energetics. Computed geometries
were not particularly good, computed frequencies were typically much too high (indeed, the
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paper introducing one of the first useable analytical Hartree–Fock second derivative
codes (Pople et al. ) had only just been published), reaction energetics were fairly poor
and barrier heights were simply not reliable. All that has changed. Today the experimentalist
who refuses to consider any input from theory is justmaking things harder for him/herself.This
is especially the case in the field covered by this chapter.

References

Badger, R. M. (). A relation between internuclear
distances and bond force constants. Journal of
Chemical Physics, , .

Badger, R. M. (). The relation between the
internuclear distances and force constants of
molecules and its application to polyatomic
molecules. Journal of Chemical Physics, , .

Bak, K. L., Devlin, F. J., Ashvar, C. S., Taylor, P. R.,
Frisch, M. J., & Stephens, P. J. (). Ab ini-
tio calculation of vibrational circular dichroism
spectra using gauge-invariant atomic orbitals.
Journal of Physical Chemistry, , .

Baker, J. (). An algorithm for the location of tran-
sition states. Journal of Computational Chem-
istry, , .

Baker, J. (). Geometry optimization in Cartesian
coordinates: Constrained optimization. Journal
of Computational Chemistry, , .

Baker, J. (). Techniques for Geometry Optimiza-
tion: A Comparison of Cartesian and Natural
Internal Coordinates. Journal of Computational
Chemistry, , .

Baker, J. (). Constrained optimization in delo-
calized internal coordinates. Journal of Compu-
tational Chemistry, , .

Baker, J. (). A scaled quantum mechani-
cal reinvestigation of the vibrational spec-
trum of toluene. Journal of Molecular Structure
THEOCHEM, , .

Baker, J., & Bergeron, D. (). Constrained opti-
mization in cartesian coordinates. Journal of
Computational Chemistry, , .

Baker, J., & Chan, F. (). The location of transition
states: A comparison of Cartesian, Z-matrix, and
natural internal coordinates. Journal of Compu-
tational Chemistry, , .

Baker, J., & Hehre, W. J. (). Geometry optimiza-
tion in cartesian coordinates: The end of the
Z-matrix? Journal of Computational Chemistry,
, .

Baker, J., & Pulay, P. (). Predicting the vibra-
tional spectra of some simple fluorocarbons by
direct scaling of primitive valence force con-
stants. Journal of Computational Chemistry, ,
.

Baker, J., & Pulay, P. (). Efficient geometry opti-
mization of molecular clusters. Journal of Com-
putational Chemistry, , .

Baker, J., Muir, M., & Andzelm, J. (). A
study of some organic reactions using density
functional theory. Journal of Chemical Physics,
, .

Baker, J., Andzelm, J., Scheiner, A., & Delley, B.
(). The effect of grid quality and weight
derivatives in density functional calculations.
Journal of Chemical Physics, , .

Baker, J., Kessi, A., & Delley, B. (). The genera-
tion and use of delocalized internal coordinates
in geometry optimization. Journal of Chemical
Physics, , .

Baker, J., Jarzecki, A. A., & Pulay, P. (). Direct
scaling of primitive valence force constants: An
alternative approach to scaled quantum mechan-
ical force fields. Journal of Physical Chemistry A,
, .

Baker, J., Kinghorn, D., & Pulay, P. (). Geom-
etry optimization in delocalized internal coor-
dinates: An efficient quadratically scaling algo-
rithm for large molecules. Journal of Chemical
Physics, , .

Baker, J., Wolinski, K., Malagoli, M., Kinghorn, D.,
Wolinski, P., Magyarfalvi, G., Saebo, S.,
Janowski, T., & Pulay, P. (). Quantum
chemistry in parallel with PQS. Journal of
Computational Chemistry, , .

Bakken, V., & Helgaker, T. (). The efficient opti-
mization of molecular geometries using redun-
dant internal coordinates. Journal of Chemical
Physics, , .

Banerjee, A., Adams, N., Simons, J., & Shepard, R.
(). Search for stationary points on surfaces.
Journal of Physical Chemistry, , .

Becke, A. D. (). A multicenter numerical integra-
tion scheme for polyatomic molecules. Journal of
Chemical Physics, , .

Becke, A. D. (). Density-functional thermo-
chemistry. III. The role of exact exchange. Jour-
nal of Chemical Physics, , .

Bell, S., & Crighton, J. S. (). Locating transition
states. Journal of Chemical Physics, , .



Molecular Structure and Vibrational Spectra  

Bell, S., Crighton, J. S., & Fletcher, R. (). A
new efficient method for locating saddle points.
Chemical Physics Letters, , .

Bertie, J. E., Apelblat, V., & Keefe, C. D. ().
Infrared intensities of liquids XXV: Dielectric
constants, molar polarizabilities and integrated
intensities of liquid toluene at ○C between
 and  cm− . Journal of Molecular Struc-
ture, , .

Beyer, M., & Clausen-Schaumann, H. ().
Mechanochemistry: The mechanical activa-
tion of covalent bonds. Chemical Review, ,
.

Binkley, J. S., Pople, J. A., & Hehre, W. J. (). Self-
consistent molecular orbital methods. . Small
split-valence basis sets for first-row elements.
Journal of the American Chemical Society, ,
.

Blom, C. E., & Altona, C. (). Application of self-
consistent-field ab initio calculations to organic
molecules II. Scale factor method for the cal-
culation of vibrational frequencies from ab ini-
tio force constants: Ethane, propane and cyclo-
propane. Molecular Physics, , .

Blom, C. E., & Altona, C. (a). Application of self-
consistent-field ab initio calculations to organic
molecules IV. Force constants of propene scaled
on experimental frequencies. Molecular Physics,
, .

Blom, C. E., & Altona, C. (b). Application of self-
consistent-field ab initio calculations to organic
molecules V. Ethene: General valence force field
scaled on harmonic and anharmonic data, infra-
red and Raman intensities. Molecular Physics, ,
.

Blom, C. E., Otto, L. P., & Altona, C. (). Applica-
tion of self-consistent-field ab initio calculations
to organic molecules III. Equilibrium structure
of water, methanol and dimethyl ether, general
valence force field of water and methanol scaled
on experimental frequencies. Molecular Physics,
, .

Bofill, J. M. (). Updated Hessian matrix and the
restricted step method for locating transition
structures. Journal of Computational Chemistry,
, .

Born, M., & Oppenheimer, R. (). Zur Quanten-
theorie der Molekeln. Annalen der Physik, ,
.

Broyden, C. G. (). The convergence of a class of
double-rank minimization algorithms. I: Gen-
eral considerations. Journal of the Institute of
Mathematics and Its Applications, , .

Cerjan, C. J., & Miller, W. H. (). On finding
transition states. Journal of Chemical Physics, ,
.

Csaszar, P., & Pulay, P. (). Geometry optimiza-
tion by direct inversion in the iterative subspace.
Journal of Molecular Structure THEOCHEM,
, .

Ditchfield, R., Hehre, W. J., & Pople, J. A. ().
Self-consistent molecular-orbital methods. IX.
An extended Gaussian-type basis for molecular-
orbital studies of organic molecules. Journal of
Chemical Physics, , .

Eckert, F., Pulay, P., & Werner, H.-J. (). Ab ini-
tio geometry optimization for large molecules.
Journal of Computational Chemistry, , .

Einstein, A., & Stern, O. (). Einige Argumente für
die Annahme einer molekularen Agitation beim
absoluten Nullpunkt. Annals of Physics, , .

El Youssoufi, Y., Herman, M., & Liévin, J. (a). The
ground electronic state of ,-dichloroethane I.
Ab initio investigation of the geometrical, vibra-
tional and torsional structure. Molecular Physics,
, .

El Youssoufi, Y., Liévin, J., van der Auwera, J.,
Herman, M., Federov, A., & Snavely, D. L.
(b). The ground electronic state of ,-
dichloroethane II. Experimental investigation of
the fundamental and overtone vibrations. Molec-
ular Physics, , .

Farkas, O., & Schlegel, H. B. (). Methods for
geometry optimization of large molecules. I. An
O(N) algorithm for solving systems of linear
equations for the transformation of coordinates
and forces. Journal of Chemical Physics, , .

Fletcher, R. (). A new approach to variable metric
algorithms. The Computer Journal, , .

Fletcher, R. (). Practical methods of optimization
(Vol. ). New York: Wiley.

Fogarasi, G., Zhou, X., Taylor, P. W., & Pulay, P.
(). The calculation of ab initio molecular
geometries: Efficient optimization by natural
internal coordinates and empirical correction by
offset forces. Journal of the American Chemical
Society, , .

Goldfarb, D. (). A family of variable-metric
methods derived by variational means. Mathe-
matics of Computation, , .

Halgren, T. A., & Lipscomb, W. N. (). The
synchronous-transit method for determining
reaction pathways and locating molecular tran-
sition states. Chemical Physics Letters, , .

Halls, M. D., Velkovski, J., & Schlegel, H. B. ().
Harmonic frequency scaling factors for Hartree-
Fock, S-VWN, B-LYP, B-LYP, B-PW and
MP with the Sadlej pVTZ electric property basis
set. Theoretical Chemistry Accounts, , .

Hammond, G. S. (). A correlation of reaction
rates. Journal of the American Chemical Society,
, .



  Molecular Structure and Vibrational Spectra

Hertwig, R. H., & Koch, W. (). On the parameter-
ization of the local correlation functional. What
is Becke--LYP? Chemical Physics Letters, ,
.

Hohenberg, P., & Kohn, W. (). Inhomogeneous
electron gas. Physical Review B, , .

Ionova, I. V., & Carter, E. A. (). Ridge method
for finding saddle points on potential energy
surfaces. Journal of Chemical Physics, , .

Jiang, H., Appadoo, D., Robertson, E., &
McNaughton, D. (). A comparison of
predicted and experimental vibrational spec-
tra in some small fluorocarbons. Journal of
Computational Chemistry, , .

Johnson, B. G., Gill, P. M. W., & Pople, J. A. ().
The performance of a family of density func-
tional methods. Journal of Chemical Physics, ,
.

Kohn, W., & Sham, L. J. (). Self-consistent equa-
tions including exchange and correlation effects.
Physical Review A, , .

Kveseth, K. (). Conformational analysis. .
The temperature effect on the structure and
composition of the rotational conformers of
,-Dichloroethane as studied by gas electron
diffraction. Acta Chemica Scandinavica A, ,
.

Lindh, R., Bernhardsson, A., Karlström, G., &
Malmquist, P.-A. (). On the use of a Hes-
sian model function in molecular geometry opti-
mizations. Chemical Physics Letters, , .

Malagoli, M., & Baker, J. (). The effect of grid
quality and weight derivatives in density func-
tional calculations of harmonic vibrational fre-
quencies. Journal of Chemical Physics, , .

McQuarrie, D. A. (). Statistical mechanics. Cali-
fornia: University Science Books.

Merrick, J. P., Moran, D., & Radom, L. (). An
evaluation of harmonic vibrational frequency
scale factors. Journal of Physical Chemistry A, ,
.

Mitin, A. V., Baker, J., & Pulay, P. (). An improved
-G∗ basis set for first-row transition metals.
Journal of Chemical Physics, , .

Mizushima, S., Shimanouchi, T., Harada, I., Abe, Y., &
Takeuchi, H. (). Infrared and Raman Spectra
of ,-Dichloroethane and its deuterium com-
pound in the gaseous, liquid, and solid states.
Canadian Journal of Physics, , .

Muir, M. & Baker, J. (). A systematic density
functional study of fluorination in methane,
ethane and ethylene. Molecular Physics, , .

Murtagh, B. A., & Sargent, R. W. H. (). Com-
putational experience with quadratically conver-
gent minimisation methods. Computer Journal,
, .

Paizs, B., Baker, J., Suhai, S., & Pulay, P. ().
Geometry optimization of large biomolecules
in redundant internal coordinates. Journal of
Chemical Physics, , .

Pardalos, P. M., Shalloway, D., & Xue, G. (Eds.).
(). Global minimization of nonconvex
functions: Molecular conformation and protein
folding. Providence: American Mathematical
Society.

Peng, C., & Schlegel, H. B. (). Combining syn-
chronous transit and quasi-newton methods to
find transition states. Israel Journal of Chemistry,
, .

Peng, C., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J.
(). Using redundant internal coordinates
to optimize equilibrium geometries and transi-
tion states. Journal of Computational Chemistry,
, .

Pople, J. A., Krishnan, R., Schlegel, H. B., &
Binkley, J. S. (). Derivative studies in
Hartree-Fock and Møller-Plesset theories.
International Journal of Quantum Chemistry:
Symposium, , .

Poppinger, D. (). On the calculation of tran-
sition states. Chemical Physics Letters, ,
.

Powell, M. J. D. (). Recent advances in uncon-
strained optimization. Mathematical Program-
ming, , .

PQS (). PQS version .. Parallel Quantum Solu-
tions  Green Acres Road, Suite A, Fayet-
teville, AR . Email: sales@pqs-chem.com;
URL: http://www.pqs-chem.com.

Pulay, P. (). Direct use of the gradient for inves-
tigating molecular energy surfaces. New York:
Plenum.

Pulay, P. (). Convergence acceleration of iterative
sequences. The case of SCF iteration. Chemical
Physics Letters, , .

Pulay, P. (). Improved SCF convergence accel-
eration. Journal of Computational Chemistry, ,
.

Pulay, P., & Fogarasi, G. (). Geometry optimiza-
tion in redundant internal coordinates. Journal
of Chemical Physics, , .

Pulay, P., & Torok, F. (). On the parameter form
of the force constant matrix II. Investigation
of the assignment with the aid of the parame-
ter form. Acta Chimica Academiae Scientarium
Hungaricae, , .

Pulay, P., Fogarasi, G., Pang, F., & Boggs, J. E.
(). Systematic ab initio gradient cal-
culation of molecular geometries, force
constants, and dipole moment derivatives.
Journal of the American Chemical Society,
, .

http://www.pqs-chem.com


Molecular Structure and Vibrational Spectra  

Pulay, P., Fogarasi, G., Pongor, G., Boggs, J. E., &
Vargha, A. (). Combination of theoretical
ab initio and experimental information to obtain
reliable harmonic force constants. Scaled quan-
tum mechanical (QM) force fields for glyoxal,
acrolein, butadiene, formaldehyde, and ethylene.
Journal of the American Chemical Society, ,
.

Raman, C. V., & Krishnan, K. S. (). A new type of
secondary radiation. Nature, , .

Rassalov, V. A., Pople, J. A., Ratner, M. A., & Win-
dus, T. L. (). -G∗ basis set for atoms K
through Zn. Journal of Chemical Physics, ,
.

Schäfer, L. (). The ab initio gradient revolution
in structural chemistry: The importance of local
molecular geometries and the efficacy of joint
quantum mechanical and experimental proce-
dures. Journal of Molecular Structure, , .

Schlegel, H. B. (). Estimating the hessian for
gradient-type geometry optimizations. Theoret-
ica Chimica Acta, , .

Shanno, D. F. (). Conditioning of quasi-Newton
methods for function minimization. Mathemat-
ics of Computation, , .

Simons, J., Jorgensen, P., Taylor, H., & Ozment, J.
(). Walking on potential energy surfaces.
Journal of Physical Chemistry, , .

Stephens, P. J., & Lowe, M. A. (). Vibrational
circular dichroism. Annual Review of Physical
Chemistry, , .

Stewart, J. J. P. (). Optimization of parameters
for semiempirical methods I. Method. Journal of
Computational Chemistry, , .

Swart, M., & Bickelhaupt, F. M. (). Optimization
of strong and weak coordinates. International
Journal of Quantum Chemistry, , .

Wikipedia (). The article “Born–Oppenheimer
approximation.”

Wilson, E. B., Decius, J. C., & Cross, P. C. ().
Molecular vibrations. New York: McGraw-Hill.

Wolinski, K., & Baker, J. (). Theoretical pre-
dictions of enforced structural changes in
molecules. Molecular Physics, , .





 Molecular Mechanics: Method
and Applications
Valeri Poltev
Autonomous University of Puebla, Mexico

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Foundations and General Scheme of Molecular Mechanics. Atoms as Elementary
Units of the Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

General Expression and Terms of Molecular System Energy . . . . . . . . . . . . . . . . . . . . . 
Intramolecular Contributions to Molecular System Energy . . . . . . . . . . . . . . . . . . . . . . 
Intermolecular and Non-bonded Intramolecular Interactions . . . . . . . . . . . . . . . . . . . 
General Remarks on Molecular Mechanics, its Accuracy, and Applicability . . . . . . . . . 

A Bit of History. The “Precomputer” and Early Computer-Aided MMCalculations . . . . 
First MM Applications toThree-Dimensional Structure andThermodynamics

of Organic Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The Role of Molecular Crystal Study on the First Steps of Molecular Mechanics . . . . . 
Molecular Mechanics on the First Steps of Molecular Biology. Molecular

Mechanics and Protein Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Molecular Mechanics on the First Steps of the Biophysics of Nucleic Acids . . . . . . . . . 

The Problems and Doubts of Further Development of the MM Approach . . . . . . . . . . . . 
Two Hypothetical Approaches to Choice of MM Formulae and Parameters . . . . . . . . 
Various Schemes of Water Molecules in MM Calculations . . . . . . . . . . . . . . . . . . . . . . . 

Modern Molecular Mechanics Force Fields andTheir Applications . . . . . . . . . . . . . . . . . 
Allinger’s Force Fields and Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Merck Molecular Force Field (MMFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The Force Fields and Programs Designed by Scheraga and Coauthors . . . . . . . . . . . . . 
Force Fields and Programs Developed by Kollman and Coauthors . . . . . . . . . . . . . . . . 
Other Popular Force Fields and MM Software. CHARMM, OPLS, and GROMOS . . . 

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

J. Leszczynski (ed.), Handbook of Computational Chemistry, DOI ./----_,
© Springer Science+Business Media B.V. 



  Molecular Mechanics: Method and Applications

The ultimate justification for the many severe approximations and assumptions made
in the present work comes from the fact that the agreement between the simple
calculations and the available experimental data is as good as it is.

N. L. Allinger, J. Am. Chem. Soc., , , 

Abstract: A short survey of the general principles and various applications of molecular
mechanics (MM) is presented.The origin of molecular mechanics and its evolution is followed
starting from “pre-computer” and the first computer-aided estimations of the structure and
potential energy of simple molecular systems to the modern force fields and the large system
computations. The problem of “classic mechanics” description of essentially quantum proper-
ties and processes is considered. Various approaches to a selection of force field mathematical
expressions and parameters are reviewed. The relation between MM simplicity and “physi-
cal nature” of the properties and events is examined. The possibility of a priori predictions of
the properties of large systems is discussed in view of modern improvements of MM scheme.
Quantum chemistry contributions to MM description of complex molecular and biomolecular
systems are considered.

Introduction

Molecular mechanics (MM) deals with a classical (“mechanistic,” i.e., Newtonian mechanics)
description of molecular and supramolecular systems.The simplified assumptions and approx-
imations enable one to use MM for wide applications to various systems, starting from simple
low molecular weight molecules (such as numerous hydrocarbons) to large biomolecular
complexes (such as those of proteins, nucleic acids, and membrane fragments) or material
assemblies of many thousands of atoms. During a period of a bit longer than a half of a century
the number of publications using this approach grew bymany orders ofmagnitude. It was rather
easy to follow nearly all the works related toMM calculations in the s and in the early s
(and the author of this chapter tried to do so); today it is very difficult to follow all the papers
related to the MM approach, even in a rather restricted area of application (e.g., to biopolymer
structure and function). Thus it is impossible to consider all the applications of MM in a short
survey, and the choice of the material for this chapter is “a matter of taste” of the author, who
refers readers to other monographs and chapters for more general descriptions of the modern
state and some of extended applications of MM; for recent references see, e.g., (Allinger ;
Cramer ; Leach ; Ramachandran et al. ).

TheMMmethod is used now not only in theoretical and computational works but also as a
part of experimental studies (e.g., many X-ray andNMR-derived structures of proteins, nucleic
acids, and their complexes with other molecules deposited in Protein Data Bank (Berman et al.
) and Nucleic Acid Data Bank (Berman et al. ) are the results of MM refinements).
The MM semiempirical terms are used in some quantum mechanics computations, e.g., in the
DFT-D method (Antony and Grimme ; Jurecka et al. ). We will follow the evolution
of MM from the first “precomputer” and early computer-aided (i.e., before the era of personal
computers) works to modern complex simulations impossible without supercomputers.

The rapid extension ofMMsimulations is a result of development of newbranches of natural
science related tomolecular biologywith its numerous applications, to directed synthesis of new
substances with desirable properties (including new drugs and newmaterials for the industry),
and many other areas of so-called nanoscience. The MM simulations enable one to perform a
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preliminary selection of the compounds with desirable properties before experimental testing,
and even before chemical synthesis itself. Sometimes it is impossible to rationalize completely
experimental results without the construction of atom-level mechanistic model. In many cases
themodel cannot be derived from experimental data only, e.g., the accuracy of X-ray diffraction
patterns for biopolymer fragments is not sufficient for the extraction of precise atomcoordinates
due to a complexity of the system and inherent irregularities of atom positions (e.g., delocaliza-
tion of water molecules). In other cases the complex molecular system cannot be characterized
by a single three-dimensional structure but by a set of conformations. MM simulations enable
one to construct habitual atom-level molecular models of sufficiently complex systems favor-
able from an energy viewpoint.Thesemodels can be visualized by computer graphics programs
and are ready to use for further investigations and refinements.

Foundations and General Scheme of Molecular Mechanics. Atoms
as Elementary Units of theMatter

Themodern MM can be considered as an extension of the simple atom-and-bond representa-
tion of molecules and their complexes in chemistry. Scaled paper images, hand-made primitive
models of atoms and bonds from wood and wire enabled subtle scientists to construct in s
the first successful models of proteins andDNA.The pioneering papers of Nobel Prize–winning
authors can bementioned in this relation (Pauling et al. ;Watson and Crick ). Ball-and-
stick and space-filling plastic models as well as their computer images are widely used until for
both teaching and investigation.

General Expression and Terms of Molecular System Energy

The MM approach is a generalization and quantitative representation of these models via
mathematic expressions (a set of such expressions together with numerical coefficients usu-
ally referred to as the force field). The modern mathematical expressions common in the MM
method and for most force fields are the result of nearly a half of century of efforts of many
researchers, trials and errors of both well-known and widely cited authors, as well as of those
who contributed to specific parts of the computations of nonbonded energy for selected classes
ofmolecules. In this sectionwewill describe the general scheme and themain commonassump-
tions of the MM method, leaving any references to specific papers for later sections. In the
framework of the simple scheme (the so-called “Class I” model, the main subject of this sur-
vey), the systems (molecules or their complexes) are considered to consist of atoms, each atom
being simulated as a single point particle. Molecular mechanics describesmolecules in terms of
“bonded atoms” (atoms in molecule), their positions are distorted from some idealized (equi-
librium) geometry due to nonbonded interactions with the atoms of the samemolecule or other
molecules. Some papers consider not only atoms but lone pairs of electrons, chemical bonds,
and other points as centers of interactions.

The first principal approximation of MM method is the additivity for several levels of cal-
culations, namely, the additivity of energy terms responsible for the contributions of different
physical nature, and the additivity of contributions of the atoms.The simple (“minimalist”) rep-
resentation of the potential energy of a molecule or molecular complex as a function of atom
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coordinates,R, can be represented by a sum of four main terms each term being a sum of many
contributions (> Eq. .).

ΔE(R) =
∑

Eb +
∑

Ea +
∑

Et +
∑

Enb (.)

The summing up in the terms is over all the chemical bonds (the first term), valence angles
(the second term), torsion angles (the third term), and all the pairs of atoms non-bonded to
each other or to a common third atom (the last term). The energy terms depend on mutual
positions of atoms and on the adjustable constants (parameters); the parameters are suggested
to be transferable between atoms and molecules of the same type. The transferability of the
force field parameters is the second important assumption of MM, and the number of atom
types depends on particular force field.

Intramolecular Contributions toMolecular System Energy

The first and the second terms (sums of > Eq. .) refer to the energy changes due to variations
of bond lengths, stretching (> Eq. .), and bond angles, bending (> Eq. .). These terms are
usually modeled as harmonic potentials centered on equilibrium values of bond lengths and
bond angles, respectively, i.e., “simple Hook’s law” dependences are used.

Ebi = kbi(li − li )
 (.)

Eai = kai(αi − α
i )

 (.)

In these equations, li and αi , the current values of bond lengths and angles; parameters
li and α

i , equilibrium values for bond lengths and angles of this type; kbi and kai, stretch and
bend force constants, respectively.These adjustable parameters depend on types of atoms form-
ing the bond or the valence angle. Some force fields may also contain cubic and higher-order
contributions to these terms, or sometimes more flexible Morse potential can be used instead;
additionally, “cross terms” can be included to account for correlations between stretch and bend
components. In the latter case the terms depending on both bond length and angle variations
are added.The third sum of the expression > Eq. . refers to the changes of torsion energy; it
is responsible for interactions of electron shells of two atoms, A and D (and of two bonds A–B
and C–D), which are connected through an intermediate chemical bond B–C.

Eti = kti( + cos(niϕi − δi)) (.)

This periodic function (integer ni being the periodicity) contains the current value φi of the
angle i of the rotation around B–C chemical bond (the angle between the two planes defined by
atoms A, B, and C and by B, C, and D), and three parameters (kti , ni , and δi; ni is multiplicity
and δi is the phase angle) for each type of torsion (for each combination of four neighbor atoms
of the molecule). These parameters can be estimated from experimental data on the structure
and properties of the molecule considered and of related molecules, then they (as well as li , α


i ,

kbi, and kai of > Eqs. . and > .) should be adjusted by trial computations.Many force fields
include terms responsible for “improper” torsions or out-of-plane bending, i.e., terms related to
four atoms not forming consecutive chemical bonds, which function as correction factors for
out-of-plane deviations (for example, they can be used to keep aromatic rings planar). These
terms can be expressed via harmonic potentials like those for bond stretching and valence angle
bending. Cross terms depending on both torsion angle and bond length or valence angle are
added in some force fields.
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Intermolecular and Non-bonded Intramolecular Interactions

The last sum of the > Eq. . refers to so-called non-bonded interactions, Enb, of all the atom
pairs not bonding to each other or to the same third atom, > Eq. .. Each atom–atom term
is usually represented by a sum of electrostatic, Coulomb (the first term of > Eq. .) and van
der Waals (the second and the third terms of > Eq. .) interactions.

Eij(rij) = Kqiqj/rij −Aij/rij + Bij/rij (.)

This equation contains ri j , the current distance between i and j atoms; qi and qj, effective atom
charges; Aij and Bij, adjustable parameters responsible for dispersion (London) attraction and
short-range repulsion interactions, respectively. The atomic charges are usually derived using
calculations via various quantum chemistry methods; effective dielectric constant implicitly
accounting for surrounding can be used (this value may be distant dependent). The Aij and
Bij coefficient can be preliminarily estimated via equilibrium inter-atomic distance and energy
values at equilibrium for neutral pairs of atoms (ρij and εij, respectively), and followed by the
adjustment to reference experimental data. Most of the early force fields used for description
of van der Waals interactions Buckingham (-exp) potential instead of Lennard–Jones (-)
as in > Eq. .. The total expression for nonbonded interaction term are usually referred as
(--) or (--exp) potential relating to the dependency of the terms on the inter-atom dis-
tance. The Buckingham potential is more flexible (it has three adjustable parameters instead
of two for - potentials for each atom pair type) and has more physics basis for really exis-
tent distances (due to exponential dependence of electron wave functions on the distance from
nuclei), but it is less convenient for computations. It has a maximum at short distance, and then
trends to negative infinite value. A majority of the modern force fields utilize - expressions
for description of van der Waals interactions, the total atom-atom potential being referred as
-- one. Some force fields substitute - potential with - for the interactions of hydro-
gen atoms of hydrogen bonds in order to describemore sharp distance dependence in the most
important area of energy minimum corresponding to H-bond formation (referred as --
potential). More complex expressions (including those dependent on the angles between two
straight lines connected three atoms of H-bond) were used for H-bond description in some
early potential sets. The nonbonded terms of the intramolecular energy related to – interac-
tions (i.e., the interactions between atoms in a molecule separated by three chemical bonds)
are frequently accounted for with a coefficient less than  (– scaling) as these interactions are
already included into torsion term (> Eq. .). To reduce the number of adjustable Aij and Bij

parameters of Lennard–Jones potential (and corresponding parameters of other potentials), the
combination rules for ρ and ε values for pairs of different atoms are usually applied.

ρij = ρi + ρj; εij = (εiεj)/ (.)

Some force fields apply the combination rules directly to the coefficients of van derWaals terms.
The calculations of potential energy via > Eq. . are used to search for local energy min-

ima (mutual atom positions corresponding to possible stable configurations), to construct and
analyzemultidimensional energy surfaces, to follow trajectory of movement (inMD,molecular
dynamics simulations), or to study averaged thermodynamic and geometry characteristics (via
MC, Monte Carlo sampling) of the systems.
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General Remarks onMolecular Mechanics, its Accuracy, and
Applicability

The first computer (and all “precomputer”) applications of mechanistic approach to molecule
conformations and interactions ignored certain energy terms (e.g., stretching, bending, torsion,
or electrostatic ones). Some modern works ignore certain terms in order to reduce the num-
ber of variables of energy function, e.g., considering the bond lengths as the constants (their
changes in many cases are very small and have no influence on energy and geometry of min-
imal energy structures). The simplest of such approaches considers bond lengths and valence
angles as constants, ignores torsion energy (the contributions of the first three terms of > Eq. .
being zeros), and utilizes “hard sphere approach” to nonbonded interactions. This approach is
a mathematical representation of plastic (or wood, iron, etc.) space-filling mechanical mod-
els or their computer images. The configurations are forbidden when any two non-bonded
atoms are closer to each other than a sum of van der Waals radii (these configurations have
infinite positive energy), all other being allowed (with zero energy). Already this oversimplified
approach enables one to obtain some important results, e.g., to reject certain configurations
and even possibly to synthesize the molecule with inevitably too close positions of non-bonded
atoms.The first “Ramachandranmaps” for proteins (whichwill be discussed in the next section)
have demonstrated allowed and forbidden regions on two-dimensional plots of the fragment of
polypeptide chain.Thesemapswere subsequently improved usingmore realisticMM functions
or quantum mechanics calculations.

Most modern MM computations include additional terms besides those already men-
tioned.These terms refer to direct imposition of experimental data (e.g., NMR-derived restrains
on inter-atom distances or global characteristics of the macromolecule) and describe specific
quantum effects not accounted for by standard MM force field formulae.

The complexity of mathematic expressions and the number of parameters depend on the
systems considered. The problem of “which atoms pertain to the same type and which ones
are of different types” is considered by the authors of specific force fields and software depend-
ing on the tasks and computer resources. The atom type may depend not only on the chemical
element and electron shell configuration, but on neighbor atoms and on the structure of the
whole molecular fragment (e.g., the carbons of six-member and five-member aromatic rings
having the same three bonded atoms may be considered as pertaining to different atom types).
The more broad the applications that are planned for the force field, the greater the number of
atom types that should be involved, and the more complex force field formulae that should be
constructed.The first works that deal with the tasks related to specific systems (e.g., the confor-
mations of saturated hydrocarbons or peptide fragments) usually contained a few parameters;
the modern force fields may contain thousands of parameters (in spite of use of combination
rules mentioned above).

Various physical considerations can be used for preliminary estimation of mathe-
matic expressions and parameter values (rather simplified considerations were used in
> Eqs. .–.). It is important to emphasize that neither dependencesnor values of parameters
can be “derived” (directly calculated) from universal principles or measured by any experimen-
tal method. The stretch and bend constants (of > Eqs. . and > .) can be evaluated using
infra-red spectra; equilibrium bond lengths and valence angles can be estimated from X-ray
data for simple molecules. The Aij coefficients of the attraction part of van der Waals inter-
actions can be evaluated (and really were calculated and used without refinement in the first
MM works) via approximate formulae for dispersion interactions; however, their exact values
for the certain class of the systems should be adjusted by comparison with experimental data
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or with the most exact quantum chemistry results after trial computations for reference set of
related systems.The same is valid for other terms and their parameters. Some parameters have
rather simple physical meaning and restricted areas of possible values (e.g., equilibrium dis-
tances between bonded atoms or barriers to rotation about the bonds), other parameters have
only approximate relation to physical values (atom charges, Bij coefficients of Lennard–Jones
potential). As all the parameters are adjustable ones, only the values of total energy and the
equilibrium geometry of the molecular system can be compared with experimental data, and
consequently have the strict physical meaning, not the individual contributions or the values of
the individual parameters. As various force fields utilize different reference sets of data, the indi-
vidual parameters are not transferable between different force fields even in caseswhere they use
the same mathematical expressions. Different force fields may result in the nearly equal energy
and geometry of local minima configurations but rather different values of the individual term
contributions. Thus individual terms of the energy may have very approximate physical inter-
pretation, although in some cases it is interesting to evaluate the certain energy contributions
and to follow their changes for different molecular complexes and different configurations (and
many researchers include these evaluations in their publications).

It is worth mentioning that preliminary consideration of MM scheme has resulted already
in some doubts and objections. Generally speaking, the classical description of the essentially
quantummolecular systems cannot be exact and full. Most of the terms in > Eqs. .–. refer
to the first approximation or to the first term of expansion of the corresponding interaction
energy.The atoms are not points, they have dipole and quadrupole moments (not only charges),
charge distribution in a molecule is continuous, the polarization or electron delocalization
interactions are not considered in the classical “minimalist” MM approach, the contributions
of three-body and four-body interactions can be essential ones. Many attempts have been
undertaken to overcome these inherent difficulties of the MM method as well as to justify the
assumptions and simplifications; we will consider some of these attempts below. Few remarks
for justification of the main principles of MMmethod are described here.

The possibility of consideration of atoms as elementary subunits of the molecular systems is
a consequence of Born-Oppenheimer or adiabatic approximation (“separation” of electron and
nuclear movements); all quantum chemistry approaches start from this assumption. Additivity
(or linear combination) is a common approach to construction of complex functions for phys-
ical description of the systems of various levels of complexity (cf. orbital approximation, MO
LCAO approximation, basis sets of wave functions, and some other approximations in quan-
tum mechanics). The final justification of the method is good correlation of the results of its
applications with the available experimental data and the potential to predict the characteris-
tics of molecular systems before experimental data become available. It can be achieved after
careful parameter adjustment and proper use of the force field in the area of its validity. The
contributions not considered explicitly in the force field formulae are included implicitly into
parameter values of the energy terms considered.

A Bit of History. The “Precomputer”and Early Computer-AidedMM
Calculations

Thequantitative estimations ofmolecular properties via simple atom-levelmechanics represen-
tations originate from the communications of Hill (, ), Westheimer andMayer (),
and Barton (, ). All these papers refer to conformations of organic molecules. It is
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interesting to mention that mathematic expression of potential energy suggested in the pio-
neering work of Hill () contains common for all the modern force fields stretch and bend
components (> Eqs. . and > . of previous section) as well as the Lennard–Jones terms
of non-bonded interaction energy. Westheimer and Mayer () suggested use of exponen-
tial terms for description of steric repulsion.The first calculations for selected conformations of
rather simple (“medium size”)molecules (such as diphenil derivatives) (Westheimer andMayer
), cis-decalin, and steroids in the papers of Barton (, ) were performed manually
or using desk calculators. Some researchers constructed “hand-made” models of steel or wood
(e.g., of cyclic saturated hydrocarbons in the papers ofAllinger ()) for carefulmeasurements
of geometry parameters.The importance of quantitative estimations of nonbonded interactions
for considerations of three-dimensional structure of organicmolecules was emphasized starting
from the first mechanical considerations, as was clearly shown by Bartell (). He illustrated
the preference of the “soft sphere” over “hard sphere” approach to the analysis of hydrocarbon
structures, and suggested one of the first (-) parameters for hydrocarbons (Bartell ).
Already mentioned above, rather approximate calculations clearly demonstrated the utility of
MM approach to the problems of organic chemistry as well as the need for further extensive
computations and searching for more reliable parameters.We will refer to all these quantitative
theoretical considerations of molecular properties as MM, not depending on use of this term
by the authors, and on methods of estimation of different types of interactions.

Rapid expansion of MMmethod starting from the s was provoked by an introduction
of computers into all the branches of natural science. In this section we will briefly consider
some examples of the first computer-aided applications of the MM method to three research
areas, namely, physical organic chemistry (these works can be considered as a continuation of
the “precomputer” papersmentioned above), the structure and properties ofmolecular crystals,
and the interactions and conformations of biopolymers.

First MMApplications to Three-Dimensional Structure and
Thermodynamics of Organic Molecules

The first paper on a computer study of organic molecule conformations was related to satu-
rated hydrocarbons (Hendrickson ).The angle bending, torsion, and (-exp) van derWaals
contributions to the conformation energy were taken into account, while constant values were
assigned to bond lengths. The computer calculations of cyclo-alkanes containing , , and 
carbon atoms enabled the author to consider various conformers and to reproduce and ratio-
nalize the experimental data. During s and the beginning of s, such computations
were performed by several groups of investigators. Hendrickson (, , and references
therein) and Allinger and Sprague ( and references therein) extended the MM approach
to more complex hydrocarbons, including those with delocalized electronic systems. Allinger’s
computations took into account bond stretching in addition to terms used by Hendrickson.
The electrostatic term has not been included in these papers as hydrocarbons are non-polar
molecules; it was introduced later whenmore broad sets of molecules became to be considered.

The most important results of early MM computations of organic compounds can be illus-
trated by the Engler et al. paper () titled “Critical Evaluation of Molecular Mechanics.” The
calculations for various hydrocarbons have been performed using two rather different force
fields, their own and that ofAllinger et al.The two force fields have substantially different param-
eters as different sets of experimental characteristics were used for parameter adjustment. It
results in significant difference of separate terms of the energy, whichmay vary by several times
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or even be positive for one force field and negative for another one. Nevertheless, total energies
and relative values for various conformations calculated by two force fields are close to each
other for most of compounds considered. Some disagreements between the results obtained
via two parameter sets are discussed, and a need for their further refinement was mentioned;
two phrases of the paper abstract can be considered as characteristics of whole situation with
MM approach for that time: “Most of the available data are reproduced with an accuracy rivaling
that achieved by the experimental methods” and “The molecular mechanics method, in princi-
ple, must be considered to be competitive with experimental determination of the structures and
enthalpies of molecules.”

Since the publication of above mentioned papers, the theoretical conformational analysis
using MM force fields has become an inherent part of physical studies of organic molecules. It
became clear that, in spite of difficulties with the parameter choice, theMM calculations are not
only a useful tool in rationalizing experimental observations, and in reproducing and predicting
the structure and energy characteristics of “medium size” organic molecules with experimen-
tal accuracy, they can also help in the elaboration of pathways of chemical synthesis. Separate
mathematical expressions and parameters are transformed into force fields, i.e., to complete and
verified sets of the formulae and constants, and ready-to-use computer programs. One of the
first such force fields and programs was the MM program based on the paper by Allinger and
Sprague (), which then was followed by MM, MM, and MM force fields and software
for broad class of organic molecules.The inclusion of new atom types and new terms of energy,
as well as parameter refinement continued for years, and we will discuss these program sets in
the following sections, together with other force fields and software.

The Role of Molecular Crystal Study on the First Steps of Molecular
Mechanics

The first publications on the MM approach to molecule conformations mentioned above deal
with intramolecular interactions. The first works on such an approach to intermolecular inter-
actions belong to one of the pioneers and founders of MM, A. I. Kitaigorodsky (other spellings,
Kitaigorodskii, Kitajgorodskij, Kitaygorodsky), though he did not use the term “Molecular
Mechanics.” Nearly at the same period (the s) as Hill and Westheimer, usually mentioned
as initiators of MM approach, he suggested to considering mechanic models of molecular sys-
tems quantitatively via mathematical expressions. In the s he foresaw the applications of
the method to various problems of physics and physical chemistry of organic and biological
molecules, including the problems of crystal structure, adsorption, and conformational tran-
sitions. We refer to the most frequently cited works of Kitaigorodsky (, ), although
his first publications and congress presentations on the subject date from the s (many
of them were not published in English). Kitaigorodsky used structure and thermodynamic
data on the crystals of organic molecules for adjustment of parameters of atom–atom poten-
tial functions for calculations of nonbonded interaction energy. This term of the total energy
is dominant for molecular crystals. The method of atom–atom potentials was suggested as a
generalization of the “principle of close packing” of molecules in molecular crystals he dis-
covered earlier; his book (Kitaigorodski ) describing this principle is still widely cited.
Later he demonstrated that this principle is a consequence of a more general atom–atom
approach to potential energy of molecular crystals. Kitaigorodsky was the first researcher to
suggest considering the interactions of non-bonded atoms in a molecule and of such atoms
of different molecules via the same mathematic expressions and parameters (applications of
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MM approach to biopolymers would be impossible without this suggestion). The studies of
molecular crystals via the MM approach were important not only for the intrinsic problems
of crystallography, but they enabled one to derive potential functions for nonbonded interac-
tions and to test the fidelity and accuracy of the approach itself using extensive sets of available
quantitative data on structure and energy of molecular crystals. Such justification was impor-
tant for the first steps of the MM approach and for its extension to various branches of natural
science.

Some energy terms were ignored in the first MM works on conformations of organic
molecules, but it is impossible to predict a priori what types of contributions to intramolec-
ular interactions energy (sums in > Eq. .) can be reasonably neglected for specific types of
molecules. Considering crystal structure of nearly rigid molecules (e.g., aromatic rings) it is
possible to ignore (at least in the first approximation) all the terms but the last one in > Eq. ..
This assumption is just a consequence of examination of the geometry of series of related
molecules in crystals (e.g., aromatic hydrocarbons consisting of six-atom rings); all of them
have nearly equal values of bond lengths and angles not depending on molecular complexity
and the type of crystal packing. For hydrocarbons it is possible (again at least for the initial
studies) to ignore electrostatic contributions as well (the molecules have no dipole moment,
and all the estimations of atom charges result in small values, less than . of electron charge).
Kitaigorodsky suggested step-by-step selection of potential functions starting from molecules
of nearly neutral atoms of two types (hydrocarbons) and introducing next atom types one-by-
one for selecting next parameters. His pioneering works onmolecular crystals were followed by
more extensive computations by other authors. Some of these works were inspired by his ideas
and followed his methodology (e.g., first papers of Williams (, )) other researchers
performed computations using different expressions for nonbonded potentials and additional
terms of the energy (e.g., Lifson andWarshel ; Warshel and Lifson ). The common set
of (-exp) parameters for C…C, C…H, and H…H intermolecular interactions was obtained
by Williams () from energy and structure calculations for crystals of both aromatic and
aliphatic hydrocarbons. Warshel and Lifson () derived “consistent force field” parameters
for description of both intermolecular and intramolecular interactions in crystals.This set con-
tains both parameters for vanderWaals interactions and other terms of energymentioned in the
previous section.Mason and coauthors (e.g., Craig et al. ; Rae andMason ;Mason )
used a combined approach to calculations of intermolecular interactions in crystals, namely,
repulsive terms were calculated at an atom–atom level while attractive ones were considered on
a bond–bond level. Such an approach and other changes of simple atom–atom scheme are not
convenient for computations, and we would like to cite a phrase from Mason’s paper compar-
ing his and Kitaigorodsky’s methods: “Although the representation of the attractive potential
by spherically symmetric atom–atom interactions cannot be justified theoretically, it has been
outstandingly successful in predicting the properties of crystals” (Mason ). We will not
cite later publications on the crystal studies via MM approach, but we would like to mention
that early papers (of the s and s) enabled the researchers to suggest potential functions
for calculations of nonbonded interactions and to demonstrate a possibility to predict energy
and structure characteristics of the crystals via this computational approach. The calculations
for molecular crystals became a part of the selection and test of the parameters during elabo-
ration of nearly all modern force field. Later MM calculations for molecular crystals enabled
researchers to examine the approximations accepted in force field elaboration and to derive
force field versions with additional terms of energy (including polarization and additional to
atom centers, e.g., Williams and Weller ()).



Molecular Mechanics: Method and Applications  

Molecular Mechanics on the First Steps of Molecular Biology.
Molecular Mechanics and Protein Physics

Development of molecular biology and biophysics in the s required a quantitative con-
sideration of the conformations and interactions of proteins, nucleic acids, and biomolecules in
general.The problems of biological importance were to rationalize the structure and conforma-
tional properties of the proteins and nucleic acids, namely to understand the contributions of
the subunits and to construct the models of themost favorable conformations of the fragments.
We alreadymentioned in a previous section that the first successful models of regular structures
of proteins and DNA duplex were constructed using “hand-made” fragments of paper, wood,
wire in s. For understanding, explanation, and prediction of molecular level mechanisms
of biopolymer functions, it was necessary to work out the method of quantitative simulation of
the three-dimensional structure and properties of biomolecules.The first molecular mechanics
considerations of biopolymer fragments were performed in s. We will follow briefly such
studies for proteins and DNA in a few paragraphs below.

The general problems on proteins that can be in principle solved via MM simulations are
() the construction of three-dimensional structure of the macromolecule and prediction of the
pathways of “protein folding” using restricted experimental data (ideally, the primary structure
only); () the refinement of experimental structure (X-ray diffraction patterns usually do not
supply us with information sufficient for precise atom coordinate assignment).Thewhole prob-
lemof the proteins functioning as enzymes cannot be solved viaMMonly, as chemical reactions
are beyond theMMapproach, quantummechanics considerations are indispensable.Neverthe-
less, the MM approach is useful for the problems of enzyme-substrate complex formation and
of molecular recognition, which are crucial for protein functions.

First of all, two important results on protein structure obtained before classical MM com-
putations should be mentioned. The atom-level structures of α-helical and β-sheet fragments
of polypeptide chains were designed by Linus Pauling and Robert Corey in () using hand-
made models of wood (Pauling and Corey ; Pauling et al. ). Such regular structures are
the intrinsic parts of the majority of the proteins. The success in the construction of these first
models of the regular protein fragments (as well as of the DNA duplex) primarily depended on
correct subunits geometry and a potential to predict the correct scheme of hydrogen-bond for-
mation, all other contributions to intramolecular interactions being of secondary importance.
The regular structures imply H-bond formation between N–H donors and C=O acceptors of
the peptide groups of the same chain for α-helix, and of other chain or of distant parts of the
same chain for β-sheet. As was pointed out more than half of century ago (Eisenberg ), “In
major respects, the Pauling-Corey-Branson models were astoundingly correct, including bond
lengths that were not surpassed in accuracy for > years”.

The second important “precomputer” result refers to construction via hard-sphere models
of a two-dimensionalmap for possible (and impossible) conformations of the dipeptide unit, the
so-called Ramachandran plot (Ramachandran et al. ). The polypeptide backbone consists
of repeating peptide groups connected via Cα atoms, the latter being connected to hydrogen
atoms and amino-acid residue (the first atom of the residue is designated as the Cβ atom). The
peptide group is practically planar, and the only single bonds in the peptide chain are those
between the Cα atom and two neighbor peptide groups (Cα–N–H of one group, the torsion
angle for rotation about this bond is designated as Φ, and Cα–C=O of the next group, the tor-
sion angle for rotation about this bond is designated as Ψ). Using mathematical expressions for
atom coordinates suggesting fixed bond lengths and bond angles, Ramachandran et al. ()
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constructed the two-dimensional Φ − Ψ maps with two sets of van der Waals atom radii,
“normally allowed” and “outer limit,” i.e., normal and shortened radii. The main part of the
maps for all the amino-acid residues except glycyl corresponds to the conformations forbidden
due to shortened atom-atom contacts, while α-helix and β-sheet fall into the allowed regions.
For glycyl residue the allowed regions were considerably more extended. It took about half a
year to construct these maps using a desk calculator (Ramachandran ); later such maps
were computationally constructed using various force fields and quantummechanics methods;
superposition of Φ−Ψ combinations corresponding to experimentally or computationally con-
structed three-dimensional structure of proteins and peptides on a Ramachandran plot helps to
check and rationalize the protein models nearly a half of century. The consideration of depen-
dence of a Ramachandran plot on amino acid residue via a hard sphere approach enabled (Leach
et al. a) to evaluate semi-quantitatively the parts of a two-dimensional map corresponding
to allowed conformations for different amino-acid residues (from about % of all conceivable
conformations for glycyl to only % for valyl). The evaluation of steric restrictions emphasizes
their important role as a determinant in protein conformation; the consideration of α-helices
demonstrated that the preference of the right-handed ones in comparison to left-handed helices
is due essentially to interactions of the Cβ atomof the side chains with atoms in adjacent peptide
units of the backbone (Leach et al. b). The “hard sphere” approach was applied to search
for allowed conformations of cyclic oligopeptides, e.g., Némethy and Scheraga ().

The main conclusion of the “hard sphere” works was that steric effects are one of the
most important factors in determining polypeptide conformations. “Many conformations of a
polypeptide can be classed as energetically unfavorable without consideration of other kinds
of interactions; however, the method breaks down to the extent that it cannot discriminate
between those conformations that are sterically allowed. The contribution that this method
made is that more than half of all the conceivable polypeptide conformations are now known
to be ruled out by steric criteria alone (Scott and Scheraga a). Nearly at the same time
(the middle of s) as the above mentioned hard sphere considerations of peptides, the
first applications of MM formulae to protein structure were started using “soft atoms”; and
the first parameters of potential functions suitable for peptide subunits calculations were sug-
gested. The first such works were published by three groups of researchers, namely those of
De Santis and Liquori (De Santis et al. ), Flory (Brant and Flory ), and Scheraga
(Scott and Scheraga a). All these works were preceded by the publications of the authors
related to synthetic polymers, and various contributions to the potential functions were pri-
marily studied by them when considering synthetic polymers and their fragments. The bond
lengths, valence angles, and planar peptide group in the all the early studies of polypeptides were
fixed.

De Santis et al. () have carried out the calculations of the van der Waals term of the
energy using different potentials for regular conformations of linear polymers as functions of
torsion angles of monomer units. The deepest minima of the conformational diagrams were
found very near to the experimental structures, as obtained by X-ray fiber diffraction meth-
ods, for a series of polymers investigated including polyethylene, poly(tetrafluoroethylene),
poly(oxy-methylene), and polyisobutylene. When the calculations were extended to the
polypeptides (polyglicine, poly-l-alanine, and poly-l-proline),good agreement with the exper-
iments was obtained as well (De Santis et al. ). After nearly  years De Santis wrote, “While
other contributions to the conformational energy are included in the calculations, the dominant
role of the van der Waals interactions remains well established as the main determinant of the
conformational stability of macromolecules” (De Santis ).
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Brant and Flory () have carried out the calculations on peptide unit energy in which
they included torsion potentials, van der Waals (-exp) interactions, and dipole-dipole inter-
actions between the permanent dipole moments of near-neighbor peptide groups. The con-
formational energies were used by Brant and Flory in statistical mechanical calculations of
the mean-square unperturbed end-to-end distance of various polypeptide chains. They con-
cluded that it was necessary to include the dipole-dipole electrostatic interactions in the
energy calculations to obtain agreementbetween the calculated and experimentally determined
chain dimensions, and thus that these interactions are important in determining polypeptide
conformations.

The first publication of Scheraga’s group related to “soft atoms,” MM simulations related to
proteins (on helical structures of polyglycine and poly-l-alanine (Scott and Scheraga a)
included, besides contributions considered in the paper of Brant and Flory (), explicit
accounting of hydrogen bonds and interactions of atom charges of peptide group. Rather com-
plex expression for dipole-dipole energy of interactions between peptide groups used by Brant
and Flory () was substituted by Coulomb atom–atom terms, and (-exp) expressions for
van derWaals interactions were substituted in this paper and subsequent publications by (-)
potentials, but an additional complicated expression for description of hydrogen bond energy
was added. The method and parameters for calculation of torsion and van der Waals energies
were earlier developed by Scott and Scheraga (b) for normal hydrocarbons and polyethy-
lene; for these systems other contributions to the energy dependence on conformation can be
neglected. These parameters were used then for proteins calculations. It is interesting to note
that both groups of authors (those of Flory and of Scheraga) applied without further refinement
the approximate Slater-Kirkwood equation for calculation of coefficient for attractive term of
van derWaals energy (the coefficients were expressed via polarizabilities and effective numbers
of electrons of the interacting atoms) and van der Waals radii for calculation of repulsion term
parameters.The approximate character of such parameters is evident, but good agreementwith
experimental results was obtained in the both publications (Brant and Flory ; Scott and
Scheraga a). The existence of polyglycine and poly-l-alanine regular α-helices was ratio-
nalized as a consequence of favorable bothH-bond and vanderWaals interactions, while helices
of other possible types (ω and ) lie in relatively high-energy regions, and for isolated helices
these structures have been excluded (Scott and Scheraga a).

The above mentioned calculations of Sheraga et al. on protein simulations were followed by
a series of publications related to both improvements of the method (both parameter adjust-
ments and new term additions) and of simplifications of computations. Such changes in the
methods enable them to obtain preliminary results on peptides of up to  amino-acid residues
already in  (Gibson and Scheraga a, b). The improvements to the method relate to
enlarging the equilibrium radii of atoms, assigning partial charges to each atom (but neglect-
ing the electrostatic contribution when the atoms are not close together), and introduction of
orientation-dependent term forH-bonddescription instead of complicated formulae of the pre-
vious paper (Scott and Scheraga a). Additional terms were introduced to account for the
presence of disulfide bridges (Gibson and Scheraga b). The simplified account for solvent
contribution to the energy has been included, considering the effect of removing the nearest-
neighbor to peptide water molecules (Gibson and Scheraga a). The simplification of the
model refers to introducing “extended atom,” i.e., CH, CH, and CH groups were considered
as the single atom to reduce the number of interactions that had to be computed (this approach
was used later in many force fields and such potential functions are commonly referred as
“united atom” potentials). Scheraga’s group continued the improvement of the parameters and
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the method continuously until recent years. It resulted in the release of ECEPP (Empirical
Conformational Energy Program for Peptides) (Momany et al. ), ECEPP/ (Sippl et al.
), ECEPP/ (Némethy et al. ), and the next versions of the force fields and software.
We will discuss these studies below, however, first we will mention some improvements per-
formed in the first half of s. The most important improvements relate to description of
H-bond potential by (-) expression (McGuire et al. ) (some other force fields adopted
such dependence for description of interaction between hydrogen atom capable to participate
in H-bond and atom-acceptor of H-bond), to calculation of partial charges via semi-empirical
CNDO/ method (Yan et al. ), and to adjustment of repulsion part of van der Waals inter-
actions to crystal data for extensive set of molecules including amino acid crystals (Momany
et al. , ). The results of the crystal calculations led to an internally self-consistent set of
interatomic potential energies for interactions between all types of atoms found in polypeptides
(ECEPP force field (Momany et al. )). The bond lengths and bond angles were obtained
from a survey of the crystal structures and were considered as fixed for each of amino acid
residue (Scheraga’s force fields differ in this feature from the most of other widely used force
fields). The authors mentioned that the potential functions can be improved further, but the
long time is required to develop new ones, and the present ones will be very useful for calcu-
lations on polypeptides and proteins in the foreseeable future (Momany et al. ). They used
the preliminary set of potential functions to refine X-ray structures of some proteins, lysozyme,
α-lactalbumin, and rubredoxin (Rasse et al. ; Warme et al. ).

We will not consider details of these papers; instead we will mention the first publication
on MM refinement of X-ray protein structure of Levitt and Lifson (). The refinements of
protein structures (myoglobin and lysozyme) have been performed via two steps by minimiza-
tion of the energy function containing all the MM terms and an additional term describing
deviation of the atom coordinates from their values obtained from X-ray diffraction studies
(penalty functions). The initial co-ordinates of a protein molecule have been obtained from
measurements on a rigid wire model, built according to electron density maps derived from X-
ray diffraction measurements.Three energy terms (corresponding bond stretching, bond angle
bending, and torsion potentials) supplemented by penalty functions were used at the first step.
In the second step, non-bonded and hydrogen-bonded interactions were included, and penalty
functions were omitted. The authors mentioned that energy function parameters are prelimi-
nary, intended for protein simulation in aqueous solution, differing significantly from those of
Scheraga, and subject to further improvement.The nonbonded potentials were strongly attrac-
tive between non-polar, hydrophobic groups and those polar groups that can form hydrogen
bonds. Other interactions between polar groups unable to form hydrogen bonds, and those
between polar and non-polar groups, are made entirely repulsive (Levitt and Lifson ). The
refined structures are close to X-ray diffraction ones and do not contain short atom–atom con-
tacts or unusual bond lengths and valence angles. Starting from rough model coordinates, the
method minimizes the assumed total potential energy of the protein molecule to give a refined
conformation (Levitt and Lifson ).

Molecular Mechanics on the First Steps of the Biophysics of Nucleic
Acids

Theproblems related to theMMapproach to nucleic acid structure and functions differ in some
aspects from those for proteins. The main computational tasks in the s in the area of the
nucleic acids were to rationalize the structure of native and modified DNA duplexes, t-RNAs,



Molecular Mechanics: Method and Applications  

synthetic polynucleotides, i.e., to understand the contribution of the subunits (the bases, sugars,
ionized phosphate groups, counter-ions, and surrounding water) to three-dimensional struc-
ture, and to evaluate the contributions of interactions of different physical nature to structure
and functions of nucleic acids. The extensive applications of the MM approach to nucleic acids
commenced a few years after those for proteins. The same is true for the adjustment of MM
parameters for calculations of nucleic acids. Such a situation can be explained by “special role”
of DNA in cells as a heredity material as well as by expectations of “specific” forces between
the bases as conjugated molecules with delocalized electron system. Many researchers con-
sidered the electron exchange via H-bonds in base pairs and exchange interactions between
stacked bases as the crucial contributions to nucleic acid functioning. It took some years before
pioneers of a quantum mechanics approach to biochemical problems would write: “The possi-
ble contributions of resonance energy stabilization through electronic delocalization across the
hydrogen bond for horizontal interactions and of overlapping of their π-electronic cloud or of
charge-transfer complexation for the vertical interactions appear to be of much smaller order
themagnitude than the stabilization increments due to van derWaals-London forces” (Pullman
and Pullman ).

The author of this survey was the first researcher since the application of MM formulae in
 to consider the interactions of nucleic acids subunits. We will now briefly follow the route
of investigations of nucleic acid interactions to the “classic”MM approach.The first quantitative
estimation of interactions of bases in DNA duplex via formulae of intermolecular interactions
was performed by De Voe and Tinoco (). They used so-called molecule dipole approxima-
tion, i.e., permanent and induced electric point dipoles were placed into the center of each base.
The energy of interaction between two paired or stacked bases was suggested to be a sum of the
interactions of permanent dipoles, permanent dipole–induced dipole, and of induced dipoles
(London dispersion interaction). Such an approximation does not enable them to obtain qual-
itatively correct results (e.g., the energy of interaction between the bases in Watson-Crick A:T
pair was positive), but the computational problem of evaluation of interaction energy changes
on the formation of the specific nucleic acid conformation was defined in this paper. That is
why it is cited in hundreds of publications over nearly a half of century; many of them, includ-
ing those of the author of this survey, were inspired by the paper of De Voe and Tinoco ().
Shortly it became clear that such an approximation is invalid for this system, not depending on
dipole location, as well as after replacement of point dipoles by “real” ones, i.e., by dipoles of def-
inite size. Bradley et al. () suggested that the main contribution into base–base interaction
energy is of a Coulomb electrostatic nature, which can be calculated in “monopole approxima-
tion.”The point charges were calculated via semi-empirical methods of quantum chemistry and
placed on each atom of the bases. This paper was followed by the papers of Nash and Bradley
related to calculations of base–base interactions. One of their papers should be mentioned
in relation to the general progress and development of MM approach. Starting from various
mutual in-plane positions for all the combinations of RNAbases, the calculations and search for
minima of electrostatic energy was performed (Nash and Bradley ). Van derWaals energy
was taken into account in “hard sphere” approximation, i.e., anynon-hydrogen atompair should
not be closer than sum of van der Waals radii. As a result of the calculations,  energy min-
ima were obtained that have two or more short N–H⋅ ⋅ ⋅O or N–H⋅ ⋅ ⋅N contacts (with N…N or
N…O distances about  Å) corresponding to nearly linear or bifurcated hydrogen bonds. The
results enabled Nash and Bradley to rationalize the available experimental data on base crys-
tals data, as well as base-base complex formation in solutions and polynucleotides. It appeared
that the observed base pairings with two H-bonds in crystals always correspond to one of the
computed geometries of lowest energy (Nash and Bradley ). Some additional regularities
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of base pairing obtained later using more rigorous approaches could be derived from the results
of this paper. We will not discuss this and other interesting works of Bradley and coauthors in
more detail, but it is important to emphasize that Bradley and co-workers’ () “monopole”
approach to calculations of the base interaction was the first attempt to consider the electro-
static energy in the framework of the modern MM scheme.The above mentioned calculations
of Scheraga’s group with inclusion of point charges of peptide group were started  years after
the Bradley’s publication.

The subsequent studies on the quantitative evaluation of the interactions and three-
dimensional structure of nucleic acid fragments were continued via two routes. One of the
approaches suggested construction of a MM force field parameterized to nucleic acids inter-
actions; another way implied calculations using more rigorous physics concepts and molecular
characteristics in a hope to understand physical nature of interactions. The first such works
were performed by Pullman’s group and referred to interactions of the bases in fixed posi-
tions (e.g., Pullman et al. ). Considering the energy of interactions as a sum of electrostatic,
polarization, and dispersion terms, two approximations were applied, “dipole” and “monopole,”
mentioning that “it may be preferable to treat the problem in the ‘monopole’ approximation
because of the shortage of the intermolecular distances, with respect to the molecular dimen-
sions” (Pullman et al. ).The so-called monopole approximation assumed representation of
charge distribution of the molecule by point atom charges and it was applied to electrostatic
energy only (following Bradley et al. ), while two other terms were actually calculated
in dipole approximation, considering the total dipole of one molecule placed into its center
induced by the charge distribution of the second one (Pullman et al. ). This approach
was later augmented by inclusion of the short-range repulsion term and representation of the
molecule as a set of “many-centeredmultipole distributions obtained from ab initio SCF calcu-
lations (charges, dipoles, and quadrupoles located on the atoms and the middles of segments
joining pairs of atoms)” (Langlet et al. ). We will not consider subsequent progress in this
way of nucleic acid computations because new schemes (e.g., Gresh et al.  and references
herein) do not correspond to the MM approach. Nevertheless, it is worth mentioning that the
sophisticated schemes of base-base computations had no advantage for rationalization and pre-
diction of experimental results in comparison to the “standard” MM scheme reviewed in the
next paragraph.

In the middle of s the author of this survey proposed the first atom-atom scheme
and numerical parameters (Poltev and Sukhorukov ) for the calculation of interactions
of nucleic acid bases (the terms “force field” and “molecular mechanics” were not widely used
those years).This scheme had three source points, namely, idea of De Voe and Tinoco () on
quantitative estimations of interactions of nucleic acid subunits, “monopole” approximation of
Bradley et al. () for electrostatic interactions of the bases, and Kitaygorodsky () atom-
atom approach to calculations of van der Waals interactions in molecular crystals. That time
there was no calculation scheme suitable for quantitative considerations of nucleic acid interac-
tions and structure, and some “molecular-mechanics type” computations for other molecular
systems can be used for approximate comparison only. We refer here only to later papers
summarizing some preliminary adjustments and applications of the approach (Poltev and Shu-
lyupina ; Poltev and Sukhorukov ). When calculating the interactions of nucleic acid
bases or other conjugated heterocyclic molecules, only the term

∑
Enb of > Eq. . was con-

sidered, corresponding to all the pair-wise interactions of atoms not pertaining to the same
molecule.The bond lengths and valence angles were fixed and corresponded to averaged experi-
mental geometry for each of the bases (like those for amino-acid residues and peptide backbone
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in Sheraga’s force field (Momany et al. )). The atom-atom terms contained electrostatic,
London attraction, and short-range repulsion contributions. This scheme was the first one
assigning different parameters of van der Waals terms to the atoms of the same chemical ele-
ment but different electron shell configuration (e.g., aromatic and aliphatic carbons, pyridine
and pyrrole nitrogens, keto and enol oxygens). These parameters were preliminarily evaluated
with approximate London formulae (for Aij of > Eq. .) and enlarged van der Waals radii
of atoms (for Bij of > Eq. . or corresponded values for the firstly used -exp potentials).
The final values of the parameters were selected after step-by-step calculations and compari-
son with experimental data for crystals containing the atoms of some types only (starting from
graphite, then aromatic hydrocarbones, pyrazine, and benzoquinone, and finally the bases).
The effective charges of atoms were calculated via a simple semi-empirical quantum chemistry
method (of Huckel and Del Re for π-electrons and σ-electrons, respectively) with the param-
eters adjusted to reproduce experimental values of dipole moments for related molecules. The
primary scheme (Poltev and Sukhorukov , ) contained a polarization term as well, but
it was shortly eliminated due to its small value for many cases and to avoid difficulties related to
non-additivity of atom–atom and molecule–molecule interactions.The parameter set was then
amplified by consistent parameters for the sugar-phosphate backbone (Zhurkin et al. ) and
for water-DNA interactions (Poltev et al. ). This simple MM scheme, specially adjusted to
nucleic acid interactions, enables us to rationalize an extended set of experimental data and to
forecast some nucleic acid properties before experimental evidence. Variability of DNA helix
parameters (Khutorsky and Poltev ), dependence of mutual base positions on nucleotide
sequence (Polozov et al. ), pathways for all the base-substitution errors (Poltev and Bruskov
), and DNA duplexes with mispairs (Chuprina and Poltev ) were predicted by such
calculations before experimental data became available. The parameters of this simple scheme
were later refined several times (like any other force field schemediscussed above and below) via
adjustment to new experimental data and quantum mechanical considerations. We will men-
tion here only one more series of early MM calculations related to nucleic acids performed
by Indian scientists Renugopalakrishnan, Lakshminarayanan, and Sasisekharan (coauthor of
Ramachandran () paper on Φ − Ψ plot for proteins). They suggested the first complete set
of parameters for calculations of the conformations of nucleic acid fragments (Renugopalakr-
ishnan et al. , and references herein). The atom charges crucial for the base interactions
was calculated via the same procedure as in our earlier papers (e.g., Poltev and Sukhorukov
).

The Problems and Doubts of Further Development of the MM
Approach

As follows from the previous section, the usefulness of the MM approach had already been
demonstrated in the first decade of its extensive applications and modifications. At the same
time, the problems of justification and of pathways for future development of the approach
had arisen. From the very beginning it was clear that the method could not provide the exact
description of the structures and processes due to its semi-empirical nature. The interesting
problem of the method is the relative extent of empiricism and physical meaning of the scheme
and its parameters.
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TwoHypothetical Approaches to Choice of MM Formulae
and Parameters

Two opposite approaches can be considered. In the framework of the first one it is necessary to
describe the physical nature of the system in themost exactway, e.g., to employmore exact equa-
tions for description of the interaction energy or/andmore detailed representation of the system
considering not only point atoms but other centers of interactions, not restricting the scheme
with scalar values but introducing vectors (e.g., dipole moments) or tensors (e.g., anisotropic
polarizability). In the framework of the second approach it would be possible to consider energy
expressions as entirely empirical ones and to adjust the parameters to experimental data (or,
later, to reliable quantum mechanical results) until the closest coincidence (e.g., via the least
squares method). Unsuccessful attempts at consistent and strict use of both approaches were
undertaken during the first two decades of the MM computer simulations.

The second approach mentioned above is practically impossible to realize; usually there
is neither sufficient quantitative experimental data to derive the form of dependences of the
energy on inter-atomic distances nor to obtain the coefficients of already accepted potential
form (e.g., of Lennard–Jones). Even in a case where we have a sufficient number of experimen-
tal values, the equations for parameter calculations have no single definite solution. This was
demonstrated in the paper of Momany et al. (). These authors tried to adjust the coeffi-
cient of (-) potentials for C–C, C–H, and H–H interactions for benzene molecule to the
energy and structure data on benzene crystal. Using three sets of experimental data for different
temperatures, they obtained entirely repulsive contribution from C–C interactions.This means
that qualitative estimations (relative values of attraction terms for various atoms, of equilibrium
radii, of atom charges in the same or similar molecules, etc.) should be taken into account in
adjustment the parameters of the force field. Most modern force fields originate from previous
sets of expressions and parameters derived from simple qualitative considerations (e.g., simpli-
fied formulae of dispersion term, van der Waals radii of atoms), and take into account these
considerations automatically (e.g., using previous approximate parameters values as starting
points).

As for the first approach, the more complex expressions of the energy have been suggested
since the end of s; such expressions are used in somemodern force fields, i.e., the next terms
in the expansions of the energy are incorporated into stretching, bending, and van der Waals
contributions. The inclusion of additional terms requires new parameters. Usually the number
of reliable quantitative values is not sufficient, and such an approach becomes useful in cases
where the area of applications of the force field is restricted to a certain type of similarmolecules
(e.g., hydrocarbons). In any case, the expressions for each term remain the approximate ones,
and more coefficients should be adjusted according to experimental data. The more complex
representation of the molecular system as compared to a set of point atoms was proposed by
several researchers (including the author of this survey). Such a representation seems the most
natural for atoms with lone pairs of electrons (inclusion of additional points for electrostatic
interactions of pyridine nitrogen or keto oxygen located at the centers of lone-pair orbitals)
or for atoms with π-orbitals (additional points for aromatic heterocycles located above and
below the ring planes). Additional lone pair centers for electrostatic interactions are included
in some modern force fields for better reproduction of electric field around the molecules and
the directionality of hydrogen bonds.

Although the introduction of such centers seems physically based, an inconsistency in such
an approach can be detected rather easily. When assigning the negative charged interaction
centers to some electron orbitals (and hence positively charged centers to nuclei locations),
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it seems natural to assign additional centers to chemical bonds (sites of the highest electron
density between the nuclei). As a result, we have several times more centers (more computer
resources are needed), and several times more adjustable parameters. Such an approach was
consistently implemented into force field suggested by Scheraga and coauthors. The first ver-
sion was titled EPEN (empirical potential using electrons and nuclei, Shipman et al. ), and
an improved version, EPEN/, was released  years later (Snir et al. ). In this model, the
molecular interactions are modeled through distributed interaction sites, which account for
the nuclei and electronic clouds. The positive charges are located at the atomic nuclei, and the
negative charge centers are located off the nuclei. The bonding electrons are located along the
bonds, while the lone-pair andπ-electrons are located off the bonds.The energy of interaction is
approximated by the sumof the coulomb interactions between all point charge centers, an expo-
nential repulsion to represent electron–electron overlap repulsion, and an R−(R = distance)
attraction to simulate attractive energies between the nuclei. The distances between the charge
locations are the method parameters; they are fixed in the molecule fragments.The parameteri-
zationwas optimized by least square fits to spectroscopic, crystallographic, and thermodynamic
data. This approach (as well as other approaches considering many additional to atom centers
of interactions) is not widely used in MM calculations. The situation can be accounted for by
restrictions imposed by fixed geometry of the molecule fragments, as well as by need for the
parameter adjustment for molecules other than considered by the approach authors.

Various Schemes of WaterMolecules in MM Calculations

Theonlymolecule frequently represented bymore interaction centers than the number of atoms
is thewatermolecule. In viewof importance ofwater for life and for description of the biomolec-
ular interactions, as well as of “anomalous” physical properties of water in liquid and solid states,
hundreds of models and their modifications of water molecule have been proposed. We will
mention here only few of most frequently used and cited rigid models with , , , and  sites
of interactions. The first water molecule model (frequently referred as the BF model) was pro-
posed by Bernal and Fowler ().This modelmay be considered the earliest molecular model
suitable for MM calculations, and it was used for Monte Carlo calculations of liquid water per-
formed over nearly a half of century for comparison with some later models (Jorgensen et al.
).Themodel contains four interaction sites, three charged sites (two positive centers located
at the hydrogen atoms and one negative center displaced by .Å from oxygen atom in the
direction of H–O–H bisector), and one center for van derWaals interactions located on oxygen
atom. It is interesting to note that Bernal and Fowler () performed approximate evalua-
tions of intermolecular interaction energy by the (--) potential functions. Jorgensen et al.
() used nearly the same position of centers and slightly modified charges in TIPP four-
site water model (one of their popular Transferable Intermolecular Potentials). Matsuoka et al.
() derivedmore complex four-site model from potential surface of water dimer constructed
via ab initio quantum mechanics calculations with configuration interactions. The analytical
expression for interaction potential function between two watermolecules consists of pair-wise
Coulomb interactions of three charges located similar to BF or TIPP models and exponential
interactions of all the three atoms of one molecule with the atoms of the other one. This model
(the so-called MCYmodel) was widely used during the first decade of liquid water simulations.

We will not consider many models, including the earliest ones, that consist of three, five,
or more centers, but only briefly mention some of rigid models cited up to the present time
and widely used in modern force fields. Stillinger and Rahman () suggested the five-site
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model with two positive centers (hydrogen atoms), two negative centers (located at oxygen
lone pairs), and one center (oxygen atom) for Lennard–Jones interactions.The model has been
used successfully to study a wide variety of properties of liquid water. Mahoney and Jorgensen
(), after extensive Monte Carlo simulations and parameter adjustments, suggested a five-
site model TIPP, which enabled them to describe the density anomaly of liquid water better
than previously existing models. Nada and Van der Eerden () designed a six-site model of
a watermolecule.Three of these sites are the three atoms of the molecule (they interact through
a Lennard–Jones potential), and the three other sites are negative point charges (O atom is
electrically neutral; the two H atoms carry positive charges). The model can be considered a
combination of TIPP and TIPP models of Jorgensen. The Monte Carlo simulations of ice
and water show that the six-site model reproduces well the real structural and thermodynamic
properties of ice and water near the melting point.

Further progress in the study of water properties and its interactions with other molecules
is related to newmodels introducing flexibility to the molecule (incorporating bond stretching
and angle bending terms into interaction energy) and with the inclusion of electronic polariza-
tion. These effects are important for the quantitative description of water properties in liquid
and solid states as well as of phase transitions. We will not consider these attempts here, as
most modern force fields continue using three-site rigid water models for computations of
the systems containing organic and bioorganic molecules. Two such models, namely TIPP
of Jorgensen et al. () and SPC of Berendsen et al. () should be mentioned. They have
three interaction sites centered on the nuclei. Each site has a partial charge for computing the
Coulomb energy, and the only one site (oxygen atom) for Lennard–Jones interactions. The
TIPP model demonstrates better reproduction of experimental water properties (Jorgensen
et al. ); and this model or its modifications is frequently used in biomolecular computa-
tions. Most modern force fields enable users to employ both simple rigid water models (TIPP,
SPC, TIPP) and flexible and polarizable ones.

ModernMolecular Mechanics Force Fields and Their Applications

TheMMcomputations during the first twodecadesweremainly performed by researchers using
their own force fields and homemade computer programs. Most modern publications refer to
standard, ready-to-use software with implemented (or sometimes slightly modified) force field
parameters. The number of program and parameter packages is great and new or newly mod-
ernized software and force fields appear every year. We will present below a short overview of
the selected program sets and the force fields most frequently used for study of biomolecular
systems. Some of them have already been mentioned in previous sections.

Allinger’s Force Fields and Programs

TheMM family of force fields designed byAllinger and coauthors is widely used for calculations
on small and medium-size organic molecules. The first parameter set (MM) was described in
 (Allinger and Sprague ); and the MM program was released through the Quantum
Chemistry Program Exchange in .The force field and the program were followed by a series
of improved and extended for various classes of organic molecules versions MM, MM, MM
(see Lii et al.  for references to previous papers).These force fields have been parameterized
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based on the most comprehensive and highest quality experimental data, including the elec-
tron diffraction, vibrational spectra, heats of formation, and crystal structures. The results of
calculations were verified via comparison with high level ab initio quantum chemistry compu-
tations, and the parameters were additionally adjusted.The last program versionMM includes
complex force field equations (including additional terms to harmonic potentials for stretching
and bending, and cross-terms) and various calculation options (e.g., prediction of frequencies
and intensities of vibrational spectra; and calculating the entropy and heat of formation for
a molecule at various temperatures). MM’s molecular dynamics option creates a description
of the vibrational and conformational motion of molecules as a function of time.The program
examines the atoms of amolecule and their environment, and decides which atom type is appro-
priate. The program includes more energy terms and more complicated expressions for some
terms thanmost of the other popular MM force fields.The force field contains a greater number
of the constants that are adjusted to an extended set of experimental data. The stretching and
bending energy terms include higher order contributions, several cross-terms are inserted, the
electrostatic contribution includes interactions of bond dipoles. It is interesting to note that the
MM version, after adjustment to amides and peptides, provided the authors (Lii and Allinger
) with the structural results for cyclic peptides and the protein Crambin comparable with
the better specialized protein force fields including ECEPP and AMBER.

MerckMolecular Force Field (MMFF)

This force field was developed for a broad range of molecules, primarily of importance for drug
design. It differs from Allinger’s and many other popular force fields in several aspects. The
core portion of MMFF was primarily derived from high-quality computational quantum
chemistry data (up to MPSDQ/TZP level of theory) for a wide variety of chemical systems of
interest to organic andmedical chemists (Halgren , b). Nearly all MMFF parameters
were determined in a mutually consistent fashion from the full set of available computational
data. The force field reproduces well both computational and experimental data, including
experimental bond lengths (.Å rms), bond angles (.○ rms), vibrational frequencies, con-
formational energies, and rotational barriers. The mathematics expressions of the force field
differ from many other force fields. The expressions for stretching and bending energies (like
Allinger’s force fields) contain additional to harmonic terms, stretch-bend cross terms, and out-
of-plane terms. The van der Waals energy is expressed by buffered (-) potentials (> Eq. .,
the designations are the same as in > Eqs. .–.)

EvdW = εij(.ρij/rij + .ρij)

((rij/ρ


ij + .ρ


ij) − ) (.)

The electrostatic term contains buffering constant as well.TheMMFF version was developed
for molecular dynamics simulations; the MMFFs version (Halgren a) was modified for
energyminimization studies (s in the titlemeans static). Both versions provide users with nearly
the same results for majority of molecules and complexes. Additional parameters of the force
field and careful adjustment to high-level reference data appeared after force field’s publication,
resulting in good reproduction of an extended set of experimental data on conformational ener-
gies of themolecules (Halgren b).Nevertheless Bordner et al. () revealed thatMMFF
values of sublimation energy for a set of compounds are systematically –% lower than
experimental data. It can be explained by “computational nature” of MMFF parameters when
non-additive contributions do not accounted for implicitly.
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The Force Fields and Programs Designed by Scheraga
and Coauthors

As already mentioned, the first MM parameter set for the simulation of proteins was described
in  by Scheraga and coauthors (Momany et al. ); their ECEPP program (Empirical
Conformational Energy Program for Peptides) was released through the Quantum Chemistry
Program Exchange in the same year. This force field family has been refined continuously up
until the last few years. We will briefly describe two versions of Scheraga’s force field used for
studies of protein three-dimensional structure and protein folding up to recent time, ECEPP/
(Némethy et al. ) and ECEPP- (Arnautova et al. ). The ECEPP/ force field in turn
is a modified version of ECEPP/; it contains updated parameters for proline and oxyproline
residues. The ECEPP force fields utilize fixed bond lengths and bond angles obtained from a
survey of the crystal structures for each of amino acid residue.The peptide energy is calculated
and minimized as a function of torsion angles only, and it is a significant advantage for min-
imization approaches as it drastically reduces the variable space that must be considered. The
energy function of the ECEPP/ force field consists of torsion and non-bonded (Coulomb and
van der Waals) terms (> Eq. . and > .). The partial charges of atoms are calculated by the
molecular orbital CNDO/ method, the parameters of (-) term are adjusted by comparison
with crystal data. The (-) terms are substituted by (-) terms for the interactions of the
hydrogen atoms capable of participating in H bonds with H-bond acceptor atoms. In spite of
the appearance of new improved and augmented versions of ECEPP force field, the ECEPP/ is
used until recently for protein simulations (e.g., McAllister and Floudas ).

The ECEPP- force field (Arnautova et al.  and references therein) is adjusted to
both new experimental data and quantummechanical results. Like previous ECEPP force fields
ECEPP- utilizes the fixed bond lengths and bond angles but has some distinctive features as
compared to both ECEPP/ version and many other popular force fields. The van der Waals
term of the energy is modeled by using the “-exp” potential function

Eij = −Aijr−ij + Bijexp(−Cijrij) (.)

where rij is the distance between atoms i and j of different molecules (or monomers); Aij , Bij,
and Cij are parameters of the potential.The combination rules for these parameters are used for
describing heteroatomic interactions.

Aij = (AiiAjj)
/; Bij = (BiiBjj)

/; Cij = (Cii + Cjj)/ (.)

The parameters of (-exp) potentials were derived using the so-called global-optimization-
based method consisting of two steps. An initial set of parameters is derived from quantum
mechanical interaction energies (at MP/-G∗ level of ab initio theory) of dimers of selected
molecules; in the second step the initial set is refined to satisfy the following criteria: the param-
eters should reproduce the observed crystal structures and sublimation enthalpies of related
compounds, and the experimental crystal structure should correspond to the global minimum
of the potential energy.

The atomic charges were fitted to reproduce the molecular ab initio electrostatic poten-
tial, calculated at HF/-G∗ level; the fitting was carried out using the restrained electro-
static potential (RESP) method taken from the AMBER program. The method was applied to
obtain a single set of charges using several conformations of a given molecule (the multiple-
conformation-derived charges). An additional point charge (with zero nonbonded parameters)
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is used to model the lone-pair electrons of sp nitrogen. The torsional parameters of the side
chains of the  naturally occurring amino acids were computed by fitting to rotational energy
profiles obtained from ab initio MP/-G∗∗ calculations. The peptide backbone torsional
parameters were obtained by fitting the energies to the Φ − Ψ energy maps of terminally
blocked glycine and alanine amino acids constructed at MP/-G∗∗//HF/-G∗∗ level of
theory.Theperformance of the force fieldwas evaluated by simulating crystal structures of small
peptides.

As the important problems of protein structure and function as well as of natural science as
a whole refer to prediction of three-dimensional structure and pathways of folding of proteins,
Scheraga and coauthors have modified and augmented the force fields mentioned above with
some theoretical approaches and concepts. We will note a few of them related directly to MM
calculations. The all-atom ECEPP force field was coupled with an implicit solvent-accessible
surface area model (ECEPP/SA, Arnautova and Scheraga ). Recognizing the impossi-
bility of searching enormous conformational space of a real protein with an all-atom potential
function, a hierarchical procedure was developed whose two main features are the initial use
of a united-residue, UNRES, potential function and an efficient procedure, and conformational
space annealing, CSA (Scheraga et al. , and references therein). The protein is first opti-
mized with the low-resolution UNRES model (Liwo et al. ). In the UNRES force field, the
backbone is represented as a virtual-bond chain of Cα atoms, and the side chains are depicted as
ellipsoids. The interaction sites are the united-atom side chains, and the centers of the peptide
groups between Cα atoms. The lowest-energy UNRES conformation, as well as a set of distinct
low-energy conformations, are then converted to all-atommodels. Finally, the all-atommodels
are refined with the EDMC method, with inclusion of continuum hydration model.

The search for low-energy “native-like” structures includes severalminimization andMonte
Carlo procedures. The simplest of the MC methods is Monte Carlo with minimization, MCM,
i.e., a Metropolis Monte Carlo algorithm in which every trial state is first energy-minimized
before the Boltzmann acceptance criterion is applied. The EDMC (Electrostatically Driven
Monte Carlo) method employs a move set in which individual peptide groups are selected
at random and rotated “in place” (i.e., the conformational change is localized to the peptide
group as much as possible) so as to optimize the alignment of its dipole moment with the local
electric field. The methodology assumes that a protein molecule is driven toward the native
structure by the combined action of electrostatic interactions and stochastic conformational
changes associated with thermal movements (Ripoll and Scheraga ). The use of force fields
andmethods enabled Scheraga and coauthors not only to rationalize but to predict some inter-
esting features of protein three-dimensional structure and pathways of folding. “With increasing
refinement of the computational procedures, the computed results are coming closer to experi-
mental observations, providing an understanding as to how physics directs the folding process”
(Scheraga ).

Force Fields and Programs Developed by Kollman and Coauthors

The computer software and force fields referred to as “AMBER” (Assisted Model Building with
Energy Refinement) are the most popular of those designed for a wide class of biomolecules,
including proteins and nucleic acids. The first description of the computer program AMBER
appeared in  (Weiner andKollman ), and the first detailed specification of the force field
was published  years later (Weiner et al. ).The force field contained the usual “minimalist”
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set of energy terms (> Eqs. .–. of this survey), the parameters being adjusted to both exper-
imental and quantum mechanics data. Although preliminary parameters and calculations for
the fragments of nucleic acids and proteins have been published by the authors since , the
set of parameters of  was carefully reviewed and presented as a consistent force field for
both proteins and nucleic acids. The parameters of their previous publications and those of
other authors were used as starting points for the adjustment. Preliminary estimations of equi-
librium bond lengths and angles were adopted frommicrowave and neutron diffraction studies,
and atomic charges are obtained by fitting a partial charge model to electrostatic potentials cal-
culated by ab initio quantum mechanical calculations (with minimal STO G basis set). The
(-) potential was included for description of H-bonding (this term was deleted in new ver-
sions of AMBER force fields and software). The force field accounted for implicit solvent by
using distance dependent dielectric constant (ε = Rij); a united atom approach enabled one to
perform calculations of sufficiently extended systems (such as fragments of DNA double helix
of a few nucleotide pairs or peptides of dozens of amino acid residues). In spite of several defi-
ciencies of the first AMBER force field (e.g., too short distances in stacking complexes due to
short equilibrium radii for van der Waals interactions, defects in atomic charges due to very
approximate quantummechanics data), hundreds of papers were published with this force field
and the program. In , even after release of several new and improved AMBER force field
versions, the paper (Weiner et al. ) was the tenthmost-cited one in the history of the Journal
of the American Chemical Society (Case et al. ).

Since publication of these papers, new versions of both force fields and program sets have
been released. Cornell et al. () published the “second generation” AMBER force field for
simulating the structures, conformational energies, and interaction energies of proteins, nucleic
acids, and many related organic molecules in condensed phases. The charges were determined
using the calculations with -G∗ basis set and restrained electrostatic potential (RESP) fitting,
and were shown to reproduce interaction energies, free energies of solvation, and confor-
mational energies of small molecules to a good degree of accuracy. The new van der Waals
parameters were derived to account for liquid properties. Retaining most of the torsion param-
eters of “the previous generation” of force field, the improvement of potentials for peptide
backbone were performed for Φ and Ψ dihedrals, as well as for the nucleoside χ dihedrals
by adding extra Fourier terms. This “second generation” force field is usually referred as ff
(parameter set parm).

There are a number of AMBER parameter sets, with names beginning with “ff” and fol-
lowed by a two-digit year number, such as “ff” We will briefly mention some new features
of these force fields. Some of versions differ from ff by minor (but important for some prob-
lems)modifications.The ff force field differs from ff one only in the peptide Φ−Ψ torsional
potential, and parm was developed because it was clear that parm overstabilized α helices
relative to β sheets. Thus, parm seems adequate for comparing structures with similar sec-
ondary structures, but parm seems to more accurately represent the relative stability of α
and β secondary structures.The improved version ff (Wang et al. ) was developed using
the restrained electrostatic potential (RESP) approach to derive the partial charges.The adjust-
ment of point charges and torsion constants for the set of  molecules to the highest level ab
initio model (GVB/LMP) and experimental data enabled the authors to reproduce data for
a -molecule set with better accuracy than MM, MMFF, and CHARMM force fields. It was
demonstrated that “a well-parameterized harmonic force field with a reliable chargemethod can
describe the structure and intramolecular energies for organic systems very well” (Wang et al.
).The authors tried to use the adjusted parameters (parm) in nonadditivemodels (which
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include polarization), and obtained “reasonable results using the same parameters derived for
the additive model, although additional torsional parameterization is required to achieve the
same high level of accuracy as that found using the additive model” (Wang et al. ). This
force field has been widely used for more than  years. The other AMBER force field, “a third-
generation point-charge all-atom force field for proteins” (referred as ff) was developed by
Duan et al. (). The main difference from previous force fields is that all quantum mechan-
ical calculations were done in the condensed phase with continuum solvent models and an
effective dielectric constant of ε = . Initial tests on peptides demonstrated a high-degree
of similarity between the calculated and the statistically measured Ramanchandran maps for
glycine and alanine peptide fragments. One more AMBER force field, referred as GAFF (Gen-
eral Amber Force Field), should be mentioned (Wang et al. ). GAFF was designed as an
extension of the AMBER force fields to be compatible with existing versions for proteins and
nucleic acids, and has parameters for most organic molecules of pharmaceutical importance
that are composed of H, C, N, O, S, P, and halogens. The parameterization is based the on more
than , MP/-G∗ optimizations and , MP/-G(d,p) single-point calculations.
Unlike most conventional force fields, parameters for all combinations of atom types are not
contained in an exhaustive table, but are determined algorithmically for each input molecule,
based on the bonding topology (which determines the atom types) and the geometry. A com-
pletely automated, table-driven procedure (called antechamber, a part of the late versions of
AMBER program set) was developed to assign atom types, charges, and force field parameters
to almost any organic molecule (Wang et al. ). New versions of AMBER software work
with several force fields. The newest AMBER  version (Case et al. ) supports CHARMM
fixed-charge force fields as well.

The initial AMBER force fields and program packages (due to the state of the theory and
computer facilities) were generally aimed at the search for energyminima of separatemolecular
systems in vacuum. The current Amber versions are strongly aimed at simulations (molec-
ular dynamics, evaluations of free energy changes) of biomolecules in water solutions. Both
explicit solvent models (using TIPP, TIPP, TIPP, and SPC water models as well as models
of some organic solvents) and implicit ones are supported. By default, explicit solvation mod-
els involve electrostatic interactions handled by a particle-mesh Ewald (PME) procedure, and
long-range Lennard–Jones attractions are treated by a continuum model. The PME is a mod-
ified form of Ewald summation, a method to efficiently calculate the infinite range Coulomb
interaction under periodic boundary conditions, and PME is a modification to accelerate the
Ewald reciprocal sum to near linear scaling, using the three-dimensional fast Fourier transform
(DFFT).

An accurate description of the aqueous environment is essential for atom-level biomolec-
ular simulations, but may become very expensive computationally. An implicit model replaces
the discrete water molecules by an infinite continuum medium with some of the dielectric and
“hydrophobic” properties of water.The continuum implicit solvent models have several advan-
tages over the explicit water representation, especially in molecular dynamics simulations (e.g.,
they are often less expensive, and generally scale better on parallel machines; they correspond
to instantaneous solvent dielectric response; the continuummodel corresponds to solvation in
an infinite volume of solvent, there are no artifacts of periodic boundary conditions; estimating
free energies of solvated structures is muchmore straightforward than with explicit watermod-
els). Despite the fact that the methodology represents an approximation at a fundamental level,
it has in many cases been successful in calculating various macromolecular properties (Case
et al. ).
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The total energy of a solvated molecule can be written as a sum of molecule’s energy
in vacuum (gas phase), and the free energy of transferring the molecule from vacuum into
solvent, that is, it is typically assumed that solvation free energy can be decomposed into
electrostatic and nonelectrostatic parts. The above decomposition is the basis of the widely
used PB/SA (Poisson-Boltzman solvent accessible surface area) scheme. Amber follows this
way to compute the nonelectrostatic part of the energy. The most time-consuming part of
solvation energy estimations is the computation of the electrostatic contribution. Amber
employs one of the most popular for biomolecular applications the finite-difference method
(FDPB) and analytic generalized Born (GB) method. In the GB model, a molecule in solu-
tion is represented as a set of spherical cavities of dielectric constant of  with charges at
their centers embedded in a polarizable dielectric continuum solvent of a higher dielectric
constant.

New versions of AMBER software support the option of allowing part of the system to
be described quantum mechanically in an approach known as a hybrid (or coupled poten-
tial) QM/MMsimulation. Both semi-empirical and theDensity FunctionalTheory-based Tight
Binding (DFTB)Hamiltonian can be used.The systemmay contain both two non-bonded parts
and covalently bonded QM and MM sub-systems (Case et al. ).

The AMBER software and AMBER force fields are widely used for the simulation of various
systems of biological and material science importance. Some researchers develop proper addi-
tions and corrections to “standard” parameters for better description of specific systems. We
refer to only two of many such examples. Perez et al. () reparameterized the parm force
field for nucleic acid simulations, improving the representation of the α/γconformational space,
which seems to be poorly represented in very longDNAMDsimulationswith available AMBER
force fields. Song et al. () adjusted the AMBER force field to reproduce conformational
properties of an oxidative DNA lesion, ,-diamino--hydroxy--formamidopyrimidine.

Other Popular Force Fields andMM Software. CHARMM, OPLS,
and GROMOS

The force fields and program packages listed below are used for nearly the same type of simula-
tions as those considered above.Themain differences relate to the organization of the programs
and to the role of experimental data and quantum mechanics results in force field parameter
adjustment. The first versions of force fields and programs as well as the whole research pro-
grams were initiated by such pioneers of MM applications as Karplus (CHARMM, Chemistry
at HARvard Molecular Mechanics), Jorgensen (OPLS, Optimized Potentials for Liquid Simu-
lations), Gunsteren and Berendsen (GROMOS (GROningen MOlecular Simulation package),
and GROMACS (GROningen MAchine for Chemical Simulation). The progress and improve-
ment of the force fields and programs are connected to comparison with the approaches and
results of other programs. The parameterization of a second-generation AMBER force field
(Cornell et al. ) was influenced by Jorgensen OPLS potentials for proteins (Jorgensen
and Tirado-Rives ), whereas these OPLS united atom potentials adopted bond stretch,
angle bend, and torsional terms from the AMBER united-atom force field (Weiner et al. ).
The OPLS parameters for the  neutral peptide residues were obtained primarily via Monte
Carlo simulations for the  organic liquids, and the parameterization for the charged pro-
tein residues was performed via comparisons with ab initio results for ion-molecule complexes
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(-G(d) basis set) and on Monte Carlo simulations for hydrated ions (Jorgensen and Tirado-
Rives ). The OPLS-AA (all atom) force field (Jorgensen et al. ) retain most of bond
stretch and angle bending parameters from AMBER all atom force fields, but torsion and non-
bonding constants are reparameterized utilizing both experimental and ab initio (RHF/-G∗

level) data.This force field was improved for peptides by means of refitting the key Fourier tor-
sional coefficients using accurate ab initio data (LMP/cc-pVTZ(-f)//HF/-G∗∗ level) as the
target (Kaminski et al. ).

Most popular program sets utilize various force fields, not only those developed in the
research groups of the authors of the program with the same title. The software suite GRO-
MACS (Groningen MAchine for Chemical Simulation) was developed by the Berendsen group
at the University of Groningen, The Netherlands, starting in the early s. This fast program
for molecular dynamics simulation does not have a force field of its own, but is compatible with
the GROMOS, OPLS, and AMBER force fields. The GROMACS (Van der Spoel et al. )
was developed and optimized especially for use on PC-clusters. It originated from the Fortran
package GROMOS developed by van Gunsteren and Berendsen (Van Gunsteren et al. ).
The GROMOS force fields are united atom force fields, i.e., without explicit aliphatic (non-
polar) hydrogens.The latest version, GROMOS (Christen et al. ), utilizes new versions of
GROMOS force field sets (A and A) based on extensive reparameterization of the previ-
ous GROMOS force field (Oostenbrink et al. ). In contrast to the parameterization of most
of other biomolecular force fields, this parameterization of the GROMOS force field is based
primarily on reproducing the free enthalpies of hydration and apolar solvation for a range of
organic compounds.

Very popular for the computations of wide range of macromolecular systems are the
CHARMM (Chemistry at HARvard Macromolecular Mechanics) program and force field sets.
The computations include energy minimization, molecular dynamics, and Monte Carlo sim-
ulations. CHARMM originated with Martin Karplus’s group at Harvard University; the first
publication of the CHARMM program and force field was in  (Brooks et al. ). Sev-
eral versions of both software and force field have since been released. Improvement to the
programs and force fields have progressed to date. The mathematical expressions for calcu-
lation of CHARMM energy are nearly the same as “minimalist” ones for other force fields
(MacKerell ). The minor differences with, e.g., AMBER or OPLS force fields relate to
inclusion of harmonic improper and Urey-Bradley terms. The parameters of various versions
of force field are consistently adjusted with emphasis to specific molecules to be applied.
The first versions of CHARMM force fields were aimed primary towards protein molecu-
lar dynamics simulations. Then, the special adjustments were performed for the simulations
of the nucleic acids (Foloppe and MacKerell ), and for lipids (Klauda et al. ).
The improvement of parameters for specific molecules has continued, while other param-
eters can be used from the previous versions. Raman et al. () recently extended the
CHARMM additive carbohydrate all-atom force field to enable modeling glycosidic linkages
in carbohydrates involving furanoses. As in most of popular modern force fields, both the
ab initio quantum mechanics computations and experimental data for solid and liquid states
are used in adjustment of the parameters of CHARMM force fields. The distinct feature of
this adjustment relates to charge adscription. Like OPLS force fields (Jorgensen et al. ),
CHARMM utilizes the so-called supramolecular approach. The partial atomic charges are
adjusted to reproduce ab initio (HF/-G∗ level) minimum interaction energies and geome-
tries ofmodel compoundswith water or formodel compound dimers (with energy and distance
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corrections for reproducing the correct experimental densities). On the other hand, the use
of ab initio data on small clusters to optimize the van der Waals parameters leads to poorly
condensed phase properties. This requires that the optimization of these parameters be per-
formed by empirical fitting to reproduce thermodynamics properties from condensed phase
simulations, taking into account the relative values of the parameters obtained from high-
level ab initio data on interactions of the model compounds with rare gases (Klauda et al.
).

It is interesting to mention that multiple adjustments of different force fields mentioned
above resulted in an increase of similarity in both corresponding parameters values and
the results of applications to complex molecular systems (such as protein and nucleic acid
fragments), but many differences remain.

Conclusions

TheMMcomputation approach to the study of the molecular systems arose about a half of cen-
tury ago and today has become a useful and powerful research tool for many branches of natural
science. During this period of development, the number of publications utilizing this approach
increased by a few orders of magnitude. This increase continues up to present, followed by
the appearance of new journals and a flow of MM publications into the journals of a wide
area of coverage. The MM considers the molecular systems via a classic Newtonian mechanics
approach, i.e., using classical approximation to essentially quantum systems.The MM suggests
representation of the system energy as a sum of terms responsible for interactions of various
physical nature.

The minimalist MM approach involves the simple expressions for chemical bond stretch-
ing, bond angle bending, rotation about the bond, and nonbonded van derWaals andCoulomb
contributions calculated via additive atom-atom scheme.The force fields (sets of mathematical
formulae and numerical parameters) are derived from simple physical considerations followed
by adjustment to the experimental data and precise quantum mechanics results. The additiv-
ity of the terms responsible for separate atom contributions and for interactions of different
physical nature, and transferability of the parameters between atoms and molecules of simi-
lar structure are the main assumptions of the MM approach. Development of the approach
results in elaboration of a variety of computer software and force fields for simulating different
molecular systems of biological, medical, and industrial importance. Various force fields dif-
fer in the complexity of mathematical expressions and in the relative role of experimental and
quantummechanics results used for the parameter adjustment.The development of algorithms
forMMapplications (including those formolecular dynamics andMonteCarlo techniques) and
the increase of computer power has enabled researchers to approach such complex problems
as predicting the pathways of the formation of the biopolymer’s three-dimensional structure,
molecular recognition in various biological processes, and assistance in creation of compounds
with desirable properties (including drugs and industrial materials). Several force fields have
been elaborated recently, going beyond the atom-atom approach and the additivity principle.
There are programs utilizing the united atomapproach to energy calculations and a hierarchical
procedure for consideration of the complex systems. It may be predicted that the role of MM
computations in the pure and applied science will arise synchronously with arising the role of
computers in the human life.
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Abstract: The theory and applications of ab initio methods for the calculation of molecular
properties are reviewed.A wide range of properties characterizing the interactions of molecules
with external or internal sources of static or dynamic electromagnetic fields (including nonlin-
ear properties and those related to nuclear and electron spins) is considered. Emphasis is put on
the properties closely connected to the parameters used to describe experimentally observed
spectra. We discuss the definitions of these properties, their relation to experiment, and give
some remarks regarding various computational aspects.Theory provides a unified approach to
the analysis of molecular properties in terms of average values, transition moments, and linear
and nonlinear responses to the perturbing fields. Several literature examples are given, demon-
strating that theoretical calculations are becoming easier, and showing that computed ab initio
molecular properties are inmany casesmore accurate than those extracted from experimentally
observed data.

Introduction

The term “molecular properties” is generally used to denote properties characterizing the inter-
actions of molecules with internal or external sources of static or dynamic electromagnetic
fields. In the description of a complex quantum-mechanical system consisting of a molecule
and a field it is convenient, both in theory and in experiment, to introduce an approxima-
tion that separates the molecule, the field, and the molecule–field interaction. One can then
introduce an additional approximation and analyze the effects of the interaction only for the
molecule, assuming a passive role of the interaction-induced changes in the field. In this way
we can describe the interaction between the field and the molecule in terms of what we can
consider intrinsic properties of the molecule.

Most spectroscopic methods assume that the experiment can be described in terms of
these molecule–field interactions. There is, therefore, often a very close connection between
the parameters used to describe the experimental spectra and the molecular properties that
describe the molecule–field interactions probed by the experiment. The set of properties
describing the influence of external electric and magnetic fields – static and time-dependent,
spatially uniform or nonuniform – can be used to determine parameters that enter into the anal-
ysis of different experimental spectra. In particular, optical properties describe the interactions
of a molecule with an external electromagnetic radiation field, and characterize both linear and
nonlinear responses to the fields. Other sets of molecular properties describe the interactions
of external magnetic fields and the magnetic fields due to the spins of all particles – that is,
nuclear spins (specific for each nuclear isotope) and electron spin. These properties determine
the parameters entering the analysis of NuclearMagnetic Resonance (NMR) and Electron Spin
Resonance (ESR) experiments. Additional fields can be created by the presence of neighboring
molecules, and various effects due to weak long-range intermolecular interactions can also be
described in terms of molecular properties. The treatment of molecular vibrational properties
is in many cases based on the same principles as the formalism explored here; however, the
calculation of such properties differs quite substantially from that of electronic properties due
to the different quantum-mechanical treatments of the electronic and nuclear motions, and for
this reason we will not consider vibrational properties in this chapter.

We dedicate this work to the memory of our longtime friend Andrzej Sadlej
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TheMolecular Hamiltonian

Our starting point for electronic structure calculations of molecules is the time-independent,
field-free nonrelativistic Schrödinger equation for the electronic degrees of freedom of a
molecule

Ĥ()Ψ = EΨ, (.)

where Ψ is the wave function describing the electronic state of the molecule, E the energy of
this state, and Ĥ() the Hamilton operator for the system, given by

Ĥ()
=


me

∑

i
p̂i −

e

πє
∑

iK

ZK

riK
+

e
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∑

i≠ j


ri j

+

e

πє
∑

K≠L

ZKZL

RKL
, (.)

where the first term corresponds to the kinetic energy of the electrons, pi = −iħ∇i is the linear
momentum operator of particle i, the second term is the attractive potential between the elec-
trons and the nuclei, the third term the electron–electron repulsion potential, and the last term
the repulsive potential for the interaction between the nuclear point charges. In > Eq. ., e is
the elementary charge, ZKe is the charge of nucleus K , є is the electric constant (electric per-
mittivity of vacuum), and me the mass of the electron. We use ri and RK to denote the vectors
giving the position of electron i and nucleus K with respect to a chosen origin of the molecular
frame. If needed, for a specific frame of interest, we use the notation

riO = ri −O (.)

to emphasize that the positions are given relative to an originO. We define vectors between two
different points in space with the directional convention

RKL = RK − RL , (.)

corresponding to a vector pointing from nucleus L to nucleus K . In the summations over elec-
trons or nuclei, we always assume – unless explicitly stated otherwise – that the summation
runs over all the particles of a given type in the molecule. Whenever needed, we shall use for
vector and tensor coordinates the following subscripts:

• Greek symbols for unspecified molecular frame coordinates; for these coordinates the
Einstein summation convention is applied

• x, y, z for specific molecular frame coordinates (for instance, determined by molecular
symmetry)

• X, Y, Z for laboratory frame coordinates
• , ,  when the tensor is specified using its own principal axes and values
• a, b, c for coordinates defined by the moment of inertia I

where I =
∑K MKRKRT

K and MK is the mass of nucleus K .
The Hamiltonian in > Eq. . does not take into account the interactions with external

electric or magnetic fields. Moreover, so far we have neglected numerous other interactions,
related to the existence of the electron and nuclear spins (and the corresponding magnetic
moments), their interactions with external fields, and relativistic effects. Thus, for the study
of molecular properties which depend on these interactions we need to consider a more gen-
eral approach, based for instance on the Breit–Pauli Hamiltonian (Dyall and Faegri Jr. ;
Moss ). Inmany cases the contributions tomolecular properties due to the additional terms
appearing in the Breit–Pauli Hamiltonian can be estimated using the available solutions of the
(nonrelativistic) Schrödinger equation and perturbation theory.
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TheMolecular Breit–Pauli Hamiltonian

There are several ways to introduce and justify the use of the Breit–Pauli Hamiltonian. One can
start from the Dirac equation which involves the relativistic Hamiltonian for the free electron,
and extend it by applying various approximations to many electrons in the field generated by
the nuclei. We will not discuss here the steps taken in the reduction of the Dirac Hamiltonian
to the Breit–Pauli Hamiltonian (Dyall and Faegri Jr. ; Moss ). Instead, we only list the
various contributions appearing in the Breit–Pauli Hamiltonian. The approximate form of the
Breit–Pauli Hamiltonian we will discuss is accurate to order α

fs, where αfs is the fine structure
constant, and higher-order corrections are not considered at this stage (we will include later
selected terms of the order α

fs needed for the calculation of response properties in the presence
ofmagnetic fields). Finally, even though some of the operators appearing in the electronic Breit–
Pauli Hamiltonian are of little interest from the point of view of molecular properties, they are
included here for completeness.

The purely electronic contributions to the Breit–Pauli Hamiltonian can be written as (Bethe
and Salpeter , p. ; Moss ):
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e

⎡

⎢

⎢

⎢

⎢

⎣

πi ⋅ π j

ri j
+

(πi ⋅ ri j) (ri j ⋅ π j)

ri j

⎤

⎥

⎥

⎥

⎥

⎦

(.)

+

eα
fs

me

mi ⋅ (ri j ×πi)

ri j
(.)

−

eα
fs

me

mi ⋅ (ri j ×π j)

ri j
(.)

+

α
fs


[

mi ⋅m j

ri j
−

 (mi ⋅ ri j) (ri j ⋅m j)

ri j
−

π

δ (ri j)mi ⋅m j] (.)

−

πeħα
fs

m
e

δ (ri j)}
⎞

⎠

, (.)
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where δ (ri j) is the Dirac delta function

δ (ri j) =  for ri j /= ;
∫

V
δ (ri j) dr = . (.)

In addition to these purely electronic contributions, we must also consider the interactions that
involve simultaneously one of the electrons and one of the nuclei:

ĤBP
eN =


πє

∑

iK
ZK [−

e

riK
(.)

+

eα
fs

me

mi ⋅ (riK × πi)

riK
(.)

+

πeħα
fs

m
e

δ (riK) ] . (.)

Finally, we have the contributions arising from the nuclei only

ĤBP
nucl =∑

K
[ZKeϕK −mK ⋅ B (.)

+
∑

L/=K

e

πє
ZKZL

RKL
]. (.)

We have omitted in these equations all the terms dependent on the (inverse) masses of the
nuclei. In the purely electronic and purely nuclear parts we have not included the rest mass of
the particles. In the above equations we have introduced the mechanical momentum

πi = pi − qiA (ri) , (.)

whereA (ri) is the magnetic vector potential experienced by electron i, and qi is the charge of
the particle, which for an electron is −e. The corresponding magnetic field induction is B (see
below). ϕ represents the external scalar electrostatic potential, and the electric field due to this
external potential is F = −∇ϕ. We have also introduced the magnetic moment of the electron
mi , which is related to the electron spin through

mi = −ge
eħ
me

si = −geμBsi , (.)

where ge is the electron g factor and the Bohr magneton μB is the unit for magnetic moments.
In a similar manner,mK is the nuclear magnetic moment, related to the nuclear spin IK as

mK = ħγKIK = μNgKIK , (.)

where γK is the nuclearmagnetogyric ratio, μN = eħ/mp is the nuclear magneton,mp the pro-
tonmass, and gK is the g factor of nucleusK , unique for each isotope. For a detailed description
of the different terms appearing in the Breit–Pauli Hamiltonian we refer to Moss (). The
Breit–Pauli Hamiltonian, > Eqs. .–., does not contain explicitly any coupling between
the nuclear magnetic momentsmK and the magnetic moments of the electrons mi . In > sec-
tions “The Magnetic Vector Potential” and > “Small Terms Due to the Scalar Potential in the
Hamiltonian,” we introduce these interactions by establishing a magnetic vector potential for
the nuclear magnetic moments in a similar manner to the magnetic vector potential for the
external magnetic field induction. These interactions, important for determining the observ-
able NMR and ESR spectra, will thus appear through the couplings arising when we expand
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π
i (and the spin–Zeeman term leading to > Eq. .) using the full mechanical momentum

operator given in > Eq. ..
The Breit–Pauli Hamiltonian describes a number of contributions that can be considered

small compared to the nonrelativistic Hamiltonian given in > Eq. .. These contributions
are thus ideally suited to be treated by perturbation theory, at least as long as we do not con-
sider the heaviest atoms of the periodic table, where the relativistic effects become substantial
and the lack of a variational bound for the Breit–Pauli Hamiltonian makes any perturbation
approach fail. For the energy of molecules consisting of light atoms, the relativistic effects can
to a first approximation often be treated considering only the mass-velocity (> Eq. .) and
one-electron Darwin (> Eq. .) terms.

Some of the terms included in the Breit–Pauli Hamiltonian also describe small interactions
that can be probed experimentally by inducing suitable excitations in the electron or nuclear
spin space, giving rise to important contributions to observable NMR and ESR parameters. In
particular, for molecular properties for which there are interaction mechanisms involving the
electron spin, also the spin-orbit interaction (> Eqs. . and > .) becomes important.The
Breit–Pauli Hamiltonian in > Eqs. .–., however, only includes molecule–external field
interactions through the presence of a scalar electrostatic potential ϕ (and the associated electric
field F) and the appearance of the magnetic vector potential in the mechanical momentum
operator (> Eq. .). In order to extract in more detail the interaction between the electronic
structure of amolecule and an external electromagnetic field, we need to consider inmore detail
the form of the scalar and vector potentials.

Small Terms Due to the Scalar Potential in the Hamiltonian

Let us begin with the simplest example, the interaction of a molecule with a static electric field.
This interaction can be described by the Hamiltonian

Ĥ = Ĥ()
− e

∑

i
ϕ(ri) + e

∑

K
ZKϕ(RK), (.)

where we have neglected the spin-orbit and relativistic terms given in > Eqs. . and > ..
We can expand the potential around a common origin

ϕ(ri) = ϕ() +
∂ϕ
∂riα

riα +



∂ϕ
∂riα∂riβ

riα riβ +⋯ (.)

with a similar expansion for the potential at the position of the nuclei, ϕ(RK). Recalling that
the electric field due to the external potential is F = −∇ϕ, we can rewrite > Eq. . in terms
of electric multipole operators

Ĥ = Ĥ()
+ Qϕ() + ĤF

⋅ F + Ĥ∇F
⋅ ∇F +⋯, (.)

where Q is the total charge of the molecule. We note that the multipole operators are defined
with respect to the chosen common origin. For a neutral system, the first two contributions
describing the field effects are given by the:

● External electric field perturbation:
ĤF

= −μ, (.)
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where the electric dipole operator is

μ̂α = −e∑
i
r̂ iα + e

∑

K
ZKRKα . (.)

● External electric field gradient perturbation:

Ĥ∇F
= −



Θ, (.)

where the electric quadrupole operator in its traceless form is

Θ̂αβ = −
e
 ∑i

(r̂ iα r̂ i β − r̂i δαβ) +
e
 ∑K

ZK(RKαRKβ − R
Kδαβ). (.)

The interactiondue to the external field gradient can also be expressed in terms of the second
moments (traced form)

q̂αβ = −e∑
i
r̂ iα r̂ i β + e

∑

K
ZKRKαRKβ . (.)

Later we shall discuss also the effects due to the:

● Electric field gradient at the nucleus K:

V̂ K
αβ =


πє

e
∑

i

r̂ iK ,α r̂iK ,β − r̂iKδαβ
riK

−


πє

e
∑

L≠K
ZL

RLK ,αRLK ,β − R
LKδαβ

R
LK

, (.)

since we will need it to describe the interaction with the nuclear quadrupole moments,QK ,
described by the interaction Hamiltonian

ĤVK

= −


 ∑K

VKQK . (.)

TheMagnetic Vector Potential

Weconsider amolecule inwhich themagnetic field arises from twoprimary sources, an external
magnetic field induction and the permanent magnetic moments of nuclei possessing a spin.
In the minimal coupling approximation, the mechanical momentum operator (> Eq. .) is
given as

πi = pi + eAB
(ri) + e

∑

K
AmK

(ri) , (.)

where the superscripts indicate the different sources of the magnetic vector potential. In
> Eq. . we have explicitly indicated that we are interested in the magnetic vector potential
at the positions of the electrons.

The magnetic vector potential is not uniquely defined, and we have to choose the
gauge (Jackson ). In the Coulomb gauge, that is, where the magnetic vector potential is
divergence free at all points in space,

∇ ⋅A (r) = , (.)



Molecular Electric, Magnetic, and Optical Properties  

we may choose the vector potential describing the interaction with the external magnetic field
induction and with the magnetic moments of the nuclei in the form

A(ri) =


B × riO + α

fs∑
K

mK × riK
riK

. (.)

It can easily be verified that the magnetic vector potential (> Eq. .) is divergence free.
Since the magnetic field induced by the magnetic vector potential is given by

B = ∇ ×AB
(ri) , (.)

we can add any scalar differentiable potential∇Λ to themagnetic vector potential in > Eq. .
without changing the description of the magnetic field induction experienced by the molecule
(since ∇ × (∇Λ) = ). There are, therefore, multiple definitions of the magnetic vector poten-
tial that describe the same magnetic field induction, and thus the same physical situation. This
invariance with respect to the choice of magnetic vector potential may be lost in approximate
calculations. This in turn leads to what is known as the gauge dependence of computed mag-
netic properties, an undesirable feature of approximate calculations – the results depend on an
arbitrary factor in the calculation. In practice, when interactions with external magnetic fields
are considered, special computational methods are introduced to bypass this problem and to
obtain reliable and unambiguous gauge-origin independent results. We will return to this point
when we consider magnetic properties in > section “Magnetic Properties.”

Small Terms Due to the Vector Potential in the Hamiltonian

Having now established the form of the vector potential, we return to the molecular Hamil-
tonian. In the presence of magnetic fields, the kinetic energy is defined by the mechanical
momentum operator, > Eq. . (instead of the linear momentum operator), and in addition
we need to consider the Zeeman term, > Eq. .. We can expand all the terms appearing in
the kinetic energy, using the vector potential in the mechanical momentum, and introduce the
magnetic field induction in the Zeeman term.This yields the following formof theHamiltonian:

Ĥ = Ĥ
− i

eħ
me

∑

i
A (ri) ⋅∇i +

e

me
∑

i
A

(ri) +∑
i
mi ⋅ (∇i ×A (ri)) , (.)

where Ĥ indicates the Hamiltonian in > Eq. .. In this equation we have taken advantage
of the commutator relation [A (ri) ,∇i] =  (this relation holds true for our choice of the
Coulomb gauge, see > Eq. .). Inserting the magnetic vector potential, > Eq. ., into
> Eq. . we get

Ĥ = Ĥ
+ ĤBB +

∑

K
ĤK(PSO)mK (.)

+ BTĤB,BB +
∑

K
BTĤB,KmK +


 ∑

K/=L
mT

K Ĥ
K ,L(DSO)mL (.)

+
∑

i
mi Ĥs,BB +

∑

iK
mi ĤK(FC)mK +∑

iK
mi ĤK(SD)mK . (.)

The summation over the nuclear magnetic moments in the last term of > Eq. . should
include contributions quadratic inmK , but since these contributions do not correspond to any
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measurable quantity, we have restricted the summation to different nuclei. We note also that
these neglected terms are divergent, which shows the limitations of the applied theory.

Let us analyze the explicit expressions for the different operators in > Eqs. .–., which
are obtained by inserting the magnetic vector potential > Eq. . into > Eq. .. The con-
tributions in > Eq. . arise from the unperturbed Hamiltonian and from the term linear in
A (ri). The operators involved are:

● Magnetic dipole operator

ĤB
=

e
me

∑

i
liO =

μB
ħ ∑

i
liO = −iμB∑

i
(riO ×∇i) = −m. (.)

The magnetic dipole moment is proportional to the angular momentum, the coefficient of
proportionality being the magnetogyric ratio γe = e/me. The orbital angular momentum
of electron i is defined as

liO = riO × pi = −iħriO ×∇i . (.)

The magnetic dipole operator describes the magnetic moment induced by the angular
momentum of the electrons arising from the orbital motion, in contrast to the mag-
netic moment arising from the electron spin which we discuss when we consider the
spin–Zeeman interaction.

● Paramagnetic spin-orbit operator

ĤK(PSO)

= α
fs
μB
ħ ∑

i

liK
riK

. (.)

The paramagnetic spin-orbit interaction, often called the orbital hyperfine interaction,
describes the interaction of the magnetic moment induced by the orbital motion of the
electrons with the nuclear magnetic moments.

The contributions in > Eq. . arise from the term quadratic in A (ri) in > Eq. .. They
involve the following operators:

● Diamagnetic magnetizability operator

ĤB,B
=

e

me
∑

i
(riO − riOrTiO) , (.)

where  is a  ×  unit matrix. This operator is closely related to the second moment of the
electronic charge, and thus reflects the size of the electron density distribution. The dia-
magnetic magnetizability tensor is a symmetric ×  tensor operator, and has, therefore, in
general six independent tensor operator elements.

● Diamagnetic shielding operator

ĤB,K
= α

fs
e

me
∑

i

(riO ⋅ riK)  − riOrTiK
riK

. (.)

The diamagnetic shielding tensor describes the interaction of the magnetic field induction
with the nuclear magnetic moment, mediated by the orbital motion of the electrons. We
note that the diamagnetic shielding tensor is a  ×  nonsymmetric tensor operator, and
thus in general has nine independent elements.

● Diamagnetic spin-orbit operator

ĤK ,L(DSO)

= α
fs

e

me
∑

i

(riK ⋅ riL)  − riKrTiL
riK r


iL

. (.)
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The diamagnetic spin-orbit operator describes the direct interaction between the two
orbital magnetic moments induced in the electron density by the presence of the mag-
netic moments of nuclei K and L. As for the diamagnetic shielding operator, this is a  × 
nonsymmetric tensor operator, with in general nine independent elements.

Finally, the terms in > Eq. . arise from the spin–Zeeman term, the last term in > Eq. ..

● Spin–Zeeman operator

Ĥs,B
= −. (.)

The spin–Zeeman operator describes the direct interaction of an electron spin with the
external magnetic field induction, and does not act on the spatial coordinates of the elec-
trons, acting only in spin space (this contribution thus vanishes for closed-shell systems).
We note that it is customary to describe this term in the Hamiltonian using the electron
spin explicitly rather than the electron magnetic moment.

● Fermi contact (FC) operator

ĤK(FC)
= −α

fs
π
 ∑

i
δ (riK) . (.)

The Fermi contact operator acts both in the spin and in the spatial space of the electronic
coordinates, often leading to a very different behavior of the response properties than for
instance the ĤK(PSO) operator.The Fermi contact operator represents the direct interaction
of the electron spin-magnetic moment with the nuclear magnetic moment at the position
of the nucleus, and can also be considered to be a measure of the spin-polarization at the
nucleus.

● Spin–dipole (SD) operator

ĤK(SD)

= −α
fs∑

i

 riKrTiK − riK
riK

. (.)

The spin–dipole operator is in the form of a classical dipole–dipole interaction between the
magnetic dipole of the nucleus and the magnetic dipole of the electron.

For the contributions involving the electronic spin operators through the electron spin-
magneticmomentmi – that is, ĤK(FC) and ĤK(SD) – we need to keep track of the electron spin
index and of the nuclear spin index. Due to the nature of the Dirac delta function appearing in
the operator for ĤK(FC), this operator is diagonal in the two tensor indices, that is

ĤK(FC)
αβ = ĤK(FC)

iso δαβ . (.)

Both the Fermi contact and the spin–dipole operators can be derived considering the magnetic
field induction created by the vector potential describing the nuclear magnetic moment

∇ ×AmK
(ri) = α

fs∇ ×

mK × riK
riK

(.)

= α
fs (∑

i

 riKrTiK − riK
riK

+

π
 ∑

i
δ (riK) )mK ,

which can be derived using standard vector product formulas.
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We shall in later sections also discuss the effects of the spin-orbit interaction.The total spin-
orbit (SO) interaction operator (McWeeny ) can be defined combining the terms included
in > Eqs. ., > ., and > . as

ĤSO
= −

e
πєme

α
fs

⎡

⎢

⎢

⎢

⎢

⎣

∑

iK
ZK

mi ⋅liK
riK

−
∑

i≠ j

(mi+m j)⋅li j
ri j

⎤

⎥

⎥

⎥

⎥

⎦

≡ ĤSO()
+ ĤSO() . (.)

The corrections to the ĤSO operator, > Eq. ., which account for the presence of magnetic
fields, arise through the angular momentum operators (Fukui et al. ):

liK = riK × [−iħ∇i + eA(ri)] (.)
li j = ri j × [−iħ∇i + eA(ri)] . (.)

The first part of the vector potential, related to the external magnetic field, causes the ĤSO

operator to contain two contributions

ĤSO,B
= ĤSO,B()

+ ĤSO,B(), (.)

ĤSO,B()
= −

e

πєme
α
fs [∑

iK
ZKmi ⋅

(riO ⋅ riK)  − riOrTiK
riK

⋅ B] , (.)

ĤSO,B()
=

e

πєme
α
fs

⎡

⎢

⎢

⎢

⎢

⎣

∑

i≠ j
(mi + m j) ⋅

(riO ⋅ ri j)  − riOrTi j
ri j

⋅ B
⎤

⎥

⎥

⎥

⎥

⎦

. (.)

Similarly, the second part of the vector potential related to the magnetic moment of nucleus K
leads to

ĤSO,K
= ĤSO,K()

+ ĤSO,K(), (.)

ĤSO,K()
= −

e

πєme
α
fs [∑

M
ZM ∑

i
mi ⋅

(riK ⋅ riM)  − riKrTiM
riKr


iM

⋅mK] , (.)

ĤSO,K()
=

e

πєme
α
fs

⎡

⎢

⎢

⎢

⎢

⎣

∑

i≠ j
(mi + m j) ⋅

(riK ⋅ ri j)  − riKrTi j
riKr


i j

⋅mK

⎤

⎥

⎥

⎥

⎥

⎦

. (.)

Response Theory

Molecular Response: Definitions, Symbols

The formalism we use to compare theory with experiment is based on the analysis of the expec-
tation value of some operator of interest.We denote the time-dependent reference state as ∣̃(t)⟩
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and consider hermitian (in general time-dependent) perturbing operators.The response func-
tions correspond to the Fourier coefficients in the expansion of the time-dependent expectation
value of an operator A (Olsen and Jørgensen ):

⟨̃(t)∣A∣̃(t)⟩ = ⟨∣A∣⟩ +
∫

∞

−∞

⟨⟨A;Vω
⟩⟩e−iω tdω

+


 ∫

∞

−∞

∫

∞

−∞

⟨⟨A;Vω ,Vω
⟩⟩e−i(ω+ω)tdωdω (.)

+


 ∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

⟨⟨A;Vω ,Vω ,Vω
⟩⟩e−i(ω+ω+ω)tdωdωdω +⋯,

where each Vωi represents a time-dependent perturbation operator. We have omitted the
infinitesimal factors, which ensure that the perturbations are switched on adiabatically and
vanish for t = −∞.

In the analysis of the different terms in > Eq. . for the case of exact electronic states,
the zeroth-order response function is the expectation value of the operator A in the reference
state ∣⟩, ⟨∣A∣⟩. The first-order, or linear, response function and its residue are given in the
sum-over-states form by (Olsen and Jørgensen (), Sasagane et al. ()):

⟨⟨A; B⟩⟩ω = −

ħ ∑P

∑

n

⟨ ∣A ∣n⟩⟨n ∣B ∣⟩
ωn − ω

= −


ħ ∑n

[

⟨ ∣A ∣n⟩⟨n ∣B ∣⟩
ωn − ω

+

⟨ ∣B ∣n⟩⟨n ∣A ∣⟩
ωn + ω

]. (.)

The poles correspond to the excitation energies of the system. In addition, from the residues:

lim
ω→ωe

ħ(ω − ωe)⟨⟨A; B⟩⟩ω = ⟨ ∣A ∣ e⟩⟨e ∣B ∣⟩, (.)

lim
ω→−ωe

ħ(ω + ωe)⟨⟨A; B⟩⟩ω = −⟨ ∣B ∣ e⟩⟨e ∣A ∣⟩, (.)

we can extract information about the transition matrix elements. The second-order, or
quadratic, response function is defined as

⟨⟨A; B,C⟩⟩ω,ω = −

ħ ∑P

∑

m,n

⟨ ∣A ∣m⟩⟨m ∣B ∣n⟩⟨n ∣C ∣⟩
(ωm − ωσ)(ωn − ω)

. (.)

In > Eq. . and in the expressions given below, ωσ equals the sum of the other frequencies
(ωσ =

∑i ωi) and P permutes the operators and the associated frequencies. For example, in
> Eq. ., P permutes A(−ωσ), B(ω),C(ω). We note that different expressions for nonlin-
ear response functions, involving operators of the form B = B − ⟨ ∣ B ∣ ⟩, are obtained when
the state ∣⟩ is omitted from the summations (see, e.g., Sasagane et al. ).

For the quadratic and cubic response functions there is a variety of residues, and we present
only expressions for the residues that are of practical interest. A single residue of a quadratic
response function is

lim
ω→ω f

ħ(ω − ωf )⟨⟨A; B,C⟩⟩ω,ω = −

ħ
[
∑

P
∑

m

⟨ ∣A ∣m⟩⟨m ∣B ∣ f ⟩
(ωm − ωσ)

]⟨ f ∣C ∣⟩.

(.)
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This type of residue is used for instance to evaluate two-photon transition amplitudes, the B
term in magnetic circular dichroism or the transition moments in phosphorescence. A double
residue of the quadratic response function, given by

lim
ω→−ω f

ħ(ω + ωf ) lim
ω→ωe

ħ(ω − ωe)⟨⟨A; B,C⟩⟩ω,ω

= −⟨ ∣B ∣ f ⟩⟨ f ∣(A− ⟨ ∣A ∣⟩)∣ e⟩⟨e ∣C ∣⟩, (.)

allows us to determine (from a knowledge of the reference state ∣⟩ only) the transition moment
between two other states, ∣ e⟩ and ∣ f ⟩.

For the particular choice of ∣ e⟩ =∣ f ⟩, we obtain

lim
ω→−ωe

ħ(ω + ωe) lim
ω→ωe

ħ(ω − ωe)⟨⟨A; B,C⟩⟩ω,ω

= −⟨ ∣B ∣ e⟩ (⟨e ∣A ∣ e⟩ − ⟨ ∣A ∣⟩) ⟨e ∣C ∣⟩, (.)

which allows us to extract the expectation value ⟨e ∣A ∣ e⟩. In this way, using a double residue of
the quadratic response function from the reference state function we can compute first-order
properties of another state.

Finally, the third-order, or cubic, response function can be expressed as

⟨⟨A; B,C,D⟩⟩ω,ω ,ω = −

ħ ∑P

∑

m,n,q

⟨ ∣A ∣m⟩⟨m ∣B ∣n⟩⟨n ∣C ∣q⟩⟨q ∣D ∣⟩
(ωm − ωσ)(ωn − ω − ω)(ωq − ω)

.

(.)

From the discussed residues, we can determine properties explicitly dependent on different
electronic states, for instance all the transition moments coupling the reference state ∣⟩ and
other states ∣e⟩ (from linear response residues) and all the one-photon transition moments
coupling other pairs of states (from quadratic response double residues). In addition, from
single residues of the second- and third-order response functions we can identify two- and
three-photon transition matrix elements.

The frequency(time)-independent properties are a special case of the response functions
(ω = ω . . . = ) and correspond to energy derivatives.We shall use a simplified notation omit-
ting the subscripts indicating the (zero) frequencies for these properties.The response function,
is therefore, in this case written as ⟨⟨A; B,C,D...⟩⟩.

For time-dependent oscillatory perturbations, the response functions can be related to
the derivatives of the time-averaged quasienergy (Christiansen et al. ; Saue ). The
derivation, based on a time-dependent variational principle and the time-dependentHellman–
Feynman theorem, shows explicitly the symmetry of the response functions with respect to the
permutation of all the operators.

We do not describe in this chapter the standard basis sets and wave function models in use
in quantum chemistry, referring instead the interested reader to other chapters in this hand-
book and to a recent textbook (Helgaker et al. ). We only note that response theory has
been formulated and corresponding programs have been implemented for most of the standard
approximations, such as:

• RHF, the restricted Hartree–Fock model
• MCSCF, the multiconfigurational self-consistent field model
• DFT, density-functional theory
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• MP, theMøller–Plesset second-order perturbation theory, which in the case of frequency-
dependent perturbations has to be replaced by an iterative optimization of the perturbation
amplitudes, as described by the CC model (Christiansen et al. )

• CCSD, the coupled-cluster singles-and-doubles model
• CCSD(T), CCSD with a noniterative perturbative treatment of the triples correction, which

in the case of frequency-dependent response functions has to be replaced by an iterative
triples correction, as described by the CC model (Koch et al. )

• FCI, full configuration-interaction theory

There are also a couple ofmodels designed primarily for the purpose of calculating response
functions – that is, they cannot be derived in terms of energy or quasienergy derivatives of
the energy expression for an electronic structure method. We note here the second-order
polarization propagator approximation [SOPPA (Enevoldsen et al. ; Nielsen et al. )],
SOPPA using CCSD correlation amplitudes [SOPPA(CCSD) (Sauer )], as well as the
equation-of-motionCCSDmodel [EOM-CCSD (Perera et al. a; Stanton andBartlett )].

In general, the accuracy of the computed molecular properties reflects the accuracy of the
approach used for the unperturbed reference state.There is, however, one significant difference
between variational and perturbative, nonvariational approximations which should be kept in
mind in the calculation of properties. The response equations which hold for the exact wave
function are in general not fulfilled for nonvariational wave function models, even in the limit
of a complete basis set. For instance, in the MP and coupled-cluster approximations, the static
first-order properties, which should be computed as the first energy derivatives, do not corre-
spond to simple expectation values – corrections arising from orbital relaxationmust in general
be taken into account. Similarly, in the calculation of higher-order molecular properties when
the basis set depends explicitly on the applied perturbations (such as geometrical distortions,
ormagnetic field perturbations described using London atomic orbitals), orbital relaxation cor-
rections should be included (Gauss and Stanton ). We note, however, that as the excitation
level is increased (triple excitations, etc.), the importance of orbital relaxation is reduced, since
in the limit of the full CI wave function, which is exact, no orbital relaxation is necessary.

Expansions of Energy andMultipole Moments

The static properties can be defined by an expansion of the total energy

E = E()
− μαFα −



ααβFαFβ −



βαβγFαFβFγ −




γαβγδFαFβFγFδ +⋯

−



ΘαβFαβ −



Aα ,βγFαFβγ −



Cαβ ,γδFαβFγδ +⋯

−



ξαβBαBβ −



ζγ ,αβBαBβFγ −



ηγδ ,αβBαBβFγFδ +⋯

+ σK ,αβBαmK ,β +⋯. (.)

For a molecule in a radiation field, the definitions of the frequency-dependent properties
are related to the induced (in general also frequency-dependent) multipole moments. Let us
consider a small harmonic perturbation of angular frequency ω from a plane-wave radiation
field. We then have (Barron ):
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• The induced electric dipole moment μ

μα = ααβFβ +

ω
G′

αβ Ḃβ +


Aα ,βγFβγ +⋯ (.)

+


ω
α′

αβ Ḟβ +GαβBβ +

ω

A′

α ,βγ Ḟβγ +⋯, (.)

• The induced electric quadrupole moment Θ

Θαβ = Aγ ,αβFγ −

ω
D′

γ ,αβḂγ + Cαβ ,γδFγδ +⋯ (.)

−


ω
A′

γ ,αβ Ḟγ + Dγ ,αβBγ +

ω
C′

αβ ,γδ Ḟγδ +⋯, (.)

• The induced magnetic dipole momentm′

m′

α = ξαβBβ +

ω

D′

α ,βγ Ḟβγ −

ω
G′

βα Ḟβ +⋯ (.)

+


ω
ξ′αβ Ḃβ +



Dα ,βγFβγ + GβαFβ +⋯, (.)

where Ḟ and Ḃ denote the time derivatives of the fields and we have considered only linear
response properties.

The properties we have included are the electric multipole polarizabilities – ααβ , dipole–
dipole, Aα ,βγ , dipole–quadrupole; and Cαβ ,γδ , quadrupole–quadrupole – as well as the
mixed polarizabilities – Gαβ , electric dipole-magnetic dipole, Dγ ,αβ , magnetic dipole-electric
quadrupole and the magnetizability (magnetic dipole-magnetic dipole polarizability) ξαβ . The
frequency-dependent response properties labeled with a prime vanish for ω = , and the prop-
erties specified in the second rows of the equations (> Eqs. ., > ., > .) are zero
for reference states described by real wave functions (in practice, closed-shell nondegenerate
systems).

We note that in the expansion of the induced dipole moment, higher-order corrections may
also be important, in particular in connection with electric-field perturbations. For instance,
considering only electric dipole contributions, it is customary to also include contributions to
μα arising from frequency-dependent hyperpolarizabilities (see > Eq. . below).

Electric Properties

In this section we consider molecular properties which characterize the interactions with static
and/or frequency-dependent electric fields.The electric properties of a molecule determine the
electric properties of the bulk sample, such as the relative permittivity (dielectric constant) and
the refractive index. In addition, the electric properties can be used to describe intermolecular
forces.

Only static and dynamic molecular properties involving electric dipole and quadrupole
operators will be discussed below. However, electric properties related to higher-order elec-
tric multipole operators can also be determined in a similar manner to the properties described
here, in terms of expectation values, linear and nonlinear response functions. Nevertheless,
it should be kept in mind that although the same formalism is applied in the calculation of
response functions involving octupole, hexadecapole, and higher moments, in practice it may
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⊡ Table -
Unit conversion factors for selected electric properties

 a.u. SI esu

F Ehe−a− . ×  V m− . ×  statvolt cm−

μ ea . × − C m . × − statvolt cm a

Θ ea . × − C m . × − statvolt cm

α eaE
−
h . × − C m J− . × − cm

β eaE
−
h . × − C m J− . × − statvolt− cm

γ eaE
−
h . × − C m J− . × − statvolt− cm

VK Ehe−a− . ×  V m− . ×  statvolt cm− b

a  Debye = − statvolt cm

b Thenuclear quadrupolemoments, needed to compare the calculatedNQCCwith experiment (> section “Electric
Field Gradient at the Nucleus, Nuclear Quadrupole Coupling Constant”), are usually given in barn;  barn = − m

be difficult to obtain accurate results for these moments and related molecular properties. For
instance, significantly larger basis sets with more polarization and diffuse functions may be
required than for the properties involving lower-order electric moments.

Most theoretical results are obtained in atomic units (a.u.), whereas experimental data often
are given in SI or esu units. In > Table - some useful conversion factors are given.

Electric Multipole Moments

The permanent multipole moments characterize the charge distribution in a molecule. The
zeroth-order (monopole) moment corresponds to the total charge, the first moment to the
dipole, the second to the quadrupole, and so on. The multipole moments can be computed
as expectation values of the multipole moment operators discussed in > section “Small
Terms Due to the Scalar Potential in the Hamiltonian.” As for the operators, we can use the
primitive or traceless forms for the quadrupole and higher-order moments.The traceless mul-
tipole moments describe the deviation from an isotropic charge distribution. For instance,
the traceless quadrupole moment vanishes for a spherical charge distribution when the cen-
ter of the sphere coincides with the origin, since the transformation from the primitive (traced)
quadrupole moment qαβ to the traceless quadrupole moment Θαβ eliminates the isotropic con-
tribution. The traceless multipole moment of order n is defined by n+  components, whereas
the traced tensor involves (n + )(n + )/ independent quantities. A tabulation of nonzero
symmetry-independent elements of multipole moments (μ = dipole, Θ = quadrupole, Ω =
octupole, and Φ = hexadecapole) for different point groups is given by Kielich ().

In general, when the multipole expansion of the potential is used to describe the influence
of a static electric field, only the first nonzero moment is unambiguously defined. The next,
higher-order multipole moments depend on the choice of origin, and when computed with
respect to the origin of the coordinate system, they depend on the position of the molecule in
space. This can be seen from > Eq. ., where a shift of the chosen common origin for the
expansion of the potential by a vectorD for amolecule with the total chargeQ leads to a change
of QD in the dipole moment; similarly, for a neutral molecule with a nonzero dipole moment,
the quadrupole moment will change.
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Dipole and QuadrupoleMoments

From the multipole expansion of the energy in the presence of a static electric field, > Eq. .,
we find that the α-component of the static permanent dipole moment is defined as the electric
field derivative of E(F)

μα = −
∂E (F)
∂Fα

∣

F=
. (.)

For wave functions that fulfill the Hellman–Feynman theorem we can compute the dipole
moment as the expectation value

μα = ⟨ ∣ μ̂α ∣ ⟩, (.)

where μ̂α is the α-component of the dipole moment operator defined in > Eq. .. Obviously,
the expectation value expression is correct for the exact wave function. Furthermore, for most
approximatewave functions it ismuch easier to compute the expectation value than to calculate
the energy derivative. However, the results differ when the method used does not fulfill the
Hellman–Feynman theorem. In this case, one can either derive the analytic expressions which
reproduce the correct definition of the electric field derivative of E(F) (see for instance the
discussion of the coupled cluster approach in Helgaker et al. ) or use the finite fieldmethod
and numerical differentiation.

The finite-field method appears to be very simple and has been often applied, but it has
some drawbacks. First, the values of E(F) depend not only on the dipole moment, but also on
the polarizability and hyperpolarizabilities, and high accuracy of the computed values of E(F)
is required to perform the numerical differentiation accurately. Moreover, the presence of the
finite electric field may lower the symmetry of the system, making the calculations much more
time-consuming.

> Figure -, taken from Bak et al. (), illustrates the accuracy of equilibrium geom-
etry dipole moments calculated for a series of small molecules. In Bak et al. (), the dipole
moments of  molecules were studied at various levels of approximation using a sequence of
basis sets, with theCCSD(T)/aug-cc-pVQZ results providing the benchmark values.Thenormal
distribution of errors with respect to the reference values, shown in > Fig. -, demonstrates
the systematic improvements of the computed results with increasing basis set and improved
treatment of electron correlation effects.

The expectation value of Θ̂, that is, the traceless electric quadrupole operator as defined in
> Eq. . following Buckingham (),

Θαβ = ⟨ ∣ Θ̂αβ ∣ ⟩ = −
∂E (∇F)
∂Fαβ

, (.)

can be related to the expectation values of second moments, qαβ = ⟨∣q̂αβ ∣⟩, by a simple linear
transformation, the same as that connecting the corresponding operators, > Eqs. . and
> .. Both Θ and q are rank two, symmetric tensors.

For molecules with an n-fold rotation axis with n ≥  :

Θ ≡ Θzz = −Θy y = −Θxx , (.)

where z coincides with the rotation axis. In experiment, two diagonal components of Θ are
measured.
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⊡ Fig. -
Correlation and basis set dependence of the dipole moment – normal distribution of errors (in
Debye) (Reproduced by permission from Bak et al. ())

The Origin of the Frequency-Dependent Electric Dipole
Polarizability and Hyperpolarizabilities

The electric dipole moment μ̃ in the presence of an applied spatially homogeneous non-
monochromatic electric field

∑i F
ωi (where ωi indicates the circular frequency) can be

written as

μ̃ωσ
α = μαδ(ωσ = ) + ααβ(−ωσ ;ω)Fβ(ω)

+


 ∑

ω ,ω

βαβγ(−ωσ ;ω,ω)Fβ(ω)Fγ(ω) (.)

+


 ∑

ω ,ω ,ω

γαβγδ(−ωσ ;ω,ω,ω)Fβ(ω)Fγ(ω)Fδ(ω) + ⋯,
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where μα is the unperturbed electric dipole moment. In this phenomenological expansion
(which we use to describe elastic light scattering processes) the summations over optical fre-
quencies will be restricted in order to preserve a constant ωσ equal to the sum of optical
frequencies

ωσ =∑
i
ωi . (.)

> Equation . defines the components of the dynamic electric dipole polarizability tensor,
αμν(−ωσ ;ω), those of the first electric dipole hyperpolarizability, βμνη (−ωσ ;ω,ω), and those
of the second electric dipole hyperpolarizability γμνηξ(−ωσ ;ω,ω,ω). The combination of
frequencies and the presence or absence of static fields characterize various nonlinear processes.
The calculations can be done for any combination of frequencies satisfying > Eq. ., but only
selected examples of the most commonly studied optical phenomena will be discussed below
(see, e.g., Willets et al.  and Bogaard and Orr  for more details).

> Figure - shows how some of these processes can be interpreted in terms of electronic
transitions between ground and excited states.The excited states can be treated as virtual states,
but if one of the excitation energies is close to the frequency of the light, the contribution of that
state is often dominant. Simplified models that include in the analysis only a few excited states
can be used when these computed states describe well the real, physical states of the molecule
which are relevant for the property studied. However, it is important to emphasize that even
though these few-states models in many cases may give qualitative insight into the electronic
processes, the convergence of the sum-over-states expansion for the (hyper)polarizabilities (see
> Eqs. ., > ., and > .) with respect to the number of excited states included in the
summation is in general very slow (Wiberg et al. ). We should also keep in mind that if
an excitation energy equals a frequency, we have a very different situation in which we have to
consider the finite lifetime of the excited state and also deal with the absorption process.

In experiment, the molecule is often perturbed by a combination of a static and a dynamic
electric field. We then have, assuming a monochromatic dynamic field,

Fα(t) = F
α + Fω

α cos(ωt), (.)

and therefore the time dependence of the polarization can be described as

μα(t) = μα + μω
α cos(ωt) + μωα cos(ωt) + μωα cos(ωt) + ⋯, (.)

where μnω
α are the Fourier amplitudes to be determined. In order to compare the measured

polarization at a certain frequency to the theoretical expressions, we insert > Eq. . into
> Eq. . and use the relations between cosn(ωt) and cos(nωt). We obtain

μα = μα + ααβ(; )F

β +



βαβγ(; , )F


βF


γ +



γαβγδ(; , , )F


β F


γ F


δ

+



βαβγ(;−ω,ω)F

ω
β F

ω
γ +



γαβγδ(; ,−ω,ω)F


βF

ω
γ F

ω
δ , (.)

μω
α = ααβ(−ω;ω)F

ω
β + βαβγ(−ω;ω, )F

ω
β F


γ

+



γαβγδ(−ω;ω, , )F

ω
β F


γ F


δ +



γαβγδ(−ω;ω,−ω,ω)F

ω
β F

ω
γ F

ω
δ , (.)

μωα =



βαβγ(−ω;ω,ω)F

ω
β F

ω
γ +



γαβγδ(−ω;ω,ω, )F

ω
β F

ω
γ F


δ , (.)

μωα =




γαβγδ(−ω;ω,ω,ω)F
ω
β F

ω
γ F

ω
δ , (.)
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⊡ Fig. -
Linear and nonlinear optical properties – a schematic illustration of the involved transitions for
(left, top to bottom): α(−ω;ω); β(−(ω + ω);ω ,ω); and β(−(ω − ω);ω ,−ω); (right, top to
bottom) γ(−(ω + ω + ω);ω,ω,ω); γ(−(ω + ω − ω);ω,ω,−ω), and γ(−(ω − ω +

ω);ω ,−ω,ω)

where we have truncated the expansions at cos(ωt). Using the expansions given above and the
expansion in > Eq. . we can compare the experimentally measured polarization and the
theoretical estimates.

Dipole Polarizability

The frequency-dependent electric dipole polarizability is, next to the dipole moment, the most
important effect characterizing the response of a molecule to electromagnetic radiation. It is a
second-order symmetric tensor determined by the linear response function

ααβ(−ω;ω) = −⟨⟨μ̂α ; μ̂β⟩⟩ω . (.)

The frequency dependence of the polarizability may be described using the Cauchy moments
(> section “Cauchy Moments”).
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For the static dipole polarizability α(;) we have

ααβ(; ) = −
∂E (F)
∂Fα∂Fβ

∣

F=
, (.)

and the energy derivative can be evaluated using the finite-field approach (i.e., computing
numerically the differences between E (F) and E ()).

Numerous molecular properties which describe nonlinear effects, such as the Kerr effect
(> section “Second Dipole Hyperpolarizability”) or magnetic circular dichroism (> section
“Magnetic Circular Dichroism”), arising in the presence of radiation and additional electric
or magnetic fields, are interpreted as derivatives of the dipole polarizability (Michl and Thul-
strup ). They can be calculated as higher-order response functions. Similarly, relativistic
corrections to the polarizabilities for heavy atoms can be estimated from higher-order response
functions including the mass-velocity and Darwin operators, > Eqs. . and > ., as
additional perturbations (Kirpekar et al. ).

In isotropic fluids, the experimentally measured quantity is usually the scalar component
of the α tensor given by the isotropic average, defined as

αiso =


αηη . (.)

The polarizability anisotropy may be defined as

(αanis)

=

(αμναμν − αμμανν)


, (.)

which, using the components of the diagonalized tensor, leads to

αanis = −/[(αxx − αyy)

+ (αyy − αzz)


+ (αzz − αxx)


]

/. (.)

For linear molecules, αanis reduces to the difference between the parallel and perpendicular
components,

αanis = α
∥
− α

⊥
. (.)

The macroscopic property related to the molecular polarizability α is the dielectric constant
є, defined by the ratio of the permittivity of the medium to the electric constant, є. It is also
related to the refractive index n (n =

√

є, assuming the vacuum magnetic permeability to be
equal to ). The quantity measured in a dielectric constant experiment is

α̃ = (
μ̃F
Z

F
)

F→
= ⟨αII⟩Ω +

μz
kT

, (.)

where we use the notation < ... >Ω for the average over all the orientations, k is the Boltz-
mann constant, and T is the temperature.The temperature-dependent term is proportional to
the square of the dipole moment, the temperature-independent term is the isotropic average
of the polarizability (using > Eq. . we can obtain a corresponding expression in terms of
properties calculated in the molecular frame of reference).

The anisotropy of the electric dipole polarizability can be determined in Rayleigh scat-
tering experiments, where the observed depolarization of the incident light is a function of
(αanis)

 (Bonin and Kresin ).
The static electric dipole polarizability of the He atom has been studied in more detail than

any other response property of any other atomic or molecular system. Not only is the non-
relativistic value known accurately, and the relativistic corrections computed, but – in a recent
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benchmark calculation – the quantum-electrodynamic corrections have also been analyzed and
numerous effects related to the nuclear mass have been taken into account (Łach et al. ).

Standard energy-optimized basis sets are not suitable for accurate calculations of elec-
tric polarizabilities. The simplest solution – adding the necessary polarization and diffuse
functions – makes the basis sets too large to enable efficient calculations for large molecules.
Significantly smaller basis sets, designed considering the electric-field dependence of the
orbitals (Benkova et al. ; Sadlej ), provide results of similar or better quality at lower
computational cost.

A practical problem that may be encountered in calculations using very extended basis sets
is the appearance of linear dependencies in the basis set.This maymake the response equations
(as well as the equations determining the molecular energy/density) ill-conditioned and the
calculations slowly convergent; in exceptional cases it may even be impossible to converge the
equations. The problem is normally resolved by removing the linear dependencies in the basis
set, or by removing manually the most diffuse basis functions from the basis set.

Electron correlation effects on the isotropic polarizability are in general moderate, being
at the most –% of the uncorrelated value and for nondipolar systems always leading to an
increased polarizability. Correlation effects are usually larger on the individual tensor compo-
nents than on the isotropic polarizability, and can, therefore, be expected to be more important
for the polarizability anisotropies. In general, Hartree–Fock polarizability anisotropies can-
not be considered accurate enough to allow for a quantitative comparison with experimental
observations, or for the interpretation of the ellipticity arising in some birefringences, where
the polarizability anisotropies often constitute an important (and dominant) orientational
contribution.

DFT in general reproduces quite well correlation effects in the polarizability of small molec-
ular systems. In particular, polarizability anisotropies calculated using DFT will usually be in
better agreementwith experiment.However, due to the local nature of the exchange-correlation
functionals and the lack of general implementations of current density functionals, DFT does
not perform so well for extended conjugated systems (Champagne et al. ). We will return
briefly to this point when discussing calculations of hyperpolarizabilities.

First Dipole Hyperpolarizability

The first electric dipole hyperpolarizability, given by the quadratic response function

βαβγ(−ωσ ;ω,ω) = −⟨⟨μ̂α ; μ̂β , μ̂γ⟩⟩ω ,ω , (.)

has physical meaning only when ωσ = ω + ω.
The static dipole hyperpolarizability β(;,) can be obtained evaluating the third derivative

of the energy. When we consider dynamic fields, the processes of particular interest are:

Second Harmonic Generation (SHG) βSHG
μνη (−ω;ω,ω) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ⟩⟩ω,ω ,

dc-Pockels Effect (dc-P) or
Electro-Optic Pockels Effect (EOPE) βEOPE

μνη (−ω;ω, ) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ⟩⟩ω,,

Optical Rectification (OR) βOR
μνη(;ω,−ω) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ⟩⟩ω,−ω .
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According to > Eqs. .–., in these processes we deal with a perturbation of fre-
quency ω (and a static field in the Pockels effect) and we consider the resulting dipole moment
oscillating with frequency ω, frequency ω or static, respectively.

The general definition of the quadratic response function, > Eq. ., indicates its symme-
try with respect to permutation of operators. Thus, for all the dipole hyperpolarizabilities we
have

βμνη(−ωσ ;ω,ω) = βμην(−ωσ ;ω,ω). (.)

Also the relation
βμνη(−ωσ ;ω,ω) = βνμη(ω;−ωσ ,ω) (.)

holds, and we have, for instance, βOR
μνη(;ω,−ω) = βEOPE

ηνμ (−ω;ω, ). We note that this relation
does not hold for macroscopic samples due to the differences in the local fields experienced by
the molecule in these two different experimental setups.

In the case of the first hyperpolarizability, the measured quantity is the vector component
of β in the direction of the permanent dipole moment μ, defining the molecular z axis. The
relevant averages are given by:

β
∥
=



(βzηη + βηzη + βηηz), (.)

β
⊥
=



(βzηη − βηzη + βηηz), (.)

where the same sequence of optical frequencies (not given explicitly) is used for the laboratory
axes and the molecular axes.

The number of independent nonzero tensor elements depends on the nonlinear optical
process and on the symmetry of the molecule, see for instance Bogaard and Orr (). For
example, βSHG is symmetric with respect to the permutation of the second and third indices
(see > Eq. .) and this can be used to simplify the equations for the parallel and perpen-
dicular components. For nonzero frequencies, the number of independent tensor components
to be computed decreases when Kleinman’s symmetry (Kleinman ) is assumed – that
is, we assume that we can permute the indices of the incoming light without changing the
corresponding frequencies,

βμνη(−ωσ ;ω,ω) ≈ βμην(−ωσ ;ω,ω). (.)

Although for ω ≠ ω this is only an approximation and these two tensor components are not
equal, Kleinman’s symmetry is often applied for low frequencies, where it is usually found to be
a reasonable approximation.

The basis set requirements for the calculation of first hyperpolarizabilities are much the
same as for the linear polarizability.However, as the first hyperpolarizability probes evenhigher-
order electric-field-perturbed densities of the molecule, care should be exercised to ensure that
the basis set is sufficiently saturated with respect to diffuse polarizing functions. Special basis
sets have been developed for the calculation of hyperpolarizabilities by Pluta and Sadlej (),
though the same basis sets that can be used for polarizabilities in most cases give reliable
estimates also for first hyperpolarizabilities.

Due to the fact that the first hyperpolarizability involves multiple virtual excited states
(> Eq. .), the property has proven to be more sensitive to electron correlation effects than
the polarizability (Christiansen et al. ). Molecules with push–pull conjugated structures
are often characterized by large first hyperpolarizabilities. Due to the problems facing many
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commonly used local exchange-correlation functionals, DFT has been shown to have diffi-
culties describing correctly nonlinear optical properties such as the first hyperpolarizability
for extended systems (Champagne et al. ). The recently introduced Coulomb-attenuated
BLYP functional (CAM-BLYP), see Yanai et al. () has, in contrast, shown quite good
performance also for rather extended systems (Paterson et al. ).

Second Dipole Hyperpolarizability

The second dipole hyperpolarizability is described by the cubic response function

γαβγδ(−ωσ ;ω,ω,ω) = −⟨⟨μ̂α ; μ̂β , μ̂γ , μ̂δ⟩⟩ω ,ω ,ω , (.)

where ωσ = ω + ω + ω.
Similarly to the lower-order static polarizabilities, the hyperpolarizability γ(;,,) corre-

sponds to an energy derivative and can be computed using the finite-field approach. Among
the possible frequency-dependent third-order processes, the most relevant are:

Electric Field – Induced Second Harmonic
Generation (dc-SHG, ESHG, EFISH)
γESHG
μνηξ (−ω;ω,ω, ) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ,μ̂ξ ⟩⟩ω,ω, ,

Third Harmonic Generation (THG)
γTHG
μνηξ(−ω;ω,ω,ω) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ,μ̂ξ ⟩⟩ω,ω,ω ,

Electro-optical or dc-Kerr effect (EOKE, dc-Kerr)
γdc−Kerrμνηξ (−ω;ω, , ) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ,μ̂ξ ⟩⟩ω,,,

Optical or ac-Kerr effect (OKE, ac-Kerr)
γac−Kerrμνηξ (−ω;ω,ω,−ω) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ,μ̂ξ ⟩⟩ ω ,ω ,−ω ,

Intensity-Dependent Refractive Index or
Degenerate Four Wave Mixing (IDRI or DFWM)
γIDRI
μνηξ(−ω;ω,ω,−ω) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ,μ̂ξ ⟩⟩ω,ω,−ω ,

dc Optical Rectification (dc-OR, EFIOR)
γdc−OR
μνηξ (;ω,−ω, ) = −⟨⟨ μ̂μ ;μ̂ν ,μ̂η ,μ̂ξ ⟩⟩ω,−ω, .

The experimentally measured quantities in isotropic fluids are usually the scalar compo-
nents of the tensor γ given by the isotropic average:

γ
∥
=



(γξηηξ + γξηξη + γξξηη), (.)

γ
⊥
=



(γξηηξ − γξξηη), (.)

where the same sequence of optical frequencies, not given explicitly above, is used for the
laboratory axes and the molecular axes.
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As for the first hyperpolarizability, the number of independent nonzero tensor elements
depends on the optical process and on the symmetry of the molecule. For example, γTHG is
symmetric with respect to the second, third, and fourth indices, and this can be used to sim-
plify > Eqs. .–.. For instance, the average value that should be compared with the
experimental THG parallel component becomes

γTHG
∥

=



γTHG
ξξηη . (.)

Experimentally, if all fields have parallel polarization, one can measure the parallel com-
ponents of the first and second hyperpolarizabilities which take into account the classical
orientational averaging. In the case of ESHG, with the optical field polarized perpendicular
to the static field, one measures the perpendicular components, and in the case of a dc-Kerr
experiment, the differences between the parallel and perpendicular components.

In the ESHG experiment a laser beam passes through the sample in a static electric field
and a weak, collinear, frequency-doubled beam is detected. Absolute values for the hyperpolar-
izabilities cannot be extracted; the signal from the sample is compared to that of a known buffer
gas (ultimately helium, for which there are accurate theoretical values (Bishop and Pipin ))
or a solid. In analogy with the derivation for α̃, the classical thermal averaging yields

γ̃ESHG
= (β̃F

ZZZ/F)
F→

= ⟨γZZZZ⟩Ω +

μz⟨βZZZ⟩Ω

kT
. (.)

The molecular hyperpolarizabilities γESHG and βSHG can be obtained in this experiment. For
non-centrosymmetric molecules a series of measurements over a range of temperatures has to
be performed, whereas for centrosymmetric molecules β =  and thus a single measurement at
one temperature is sufficient.

The majority of existing experimental data on hyperpolarizabilities are derived from ESHG
and dc-Kerr measurements (Shelton and Rice ). The dc-Kerr effect differs from the other
nonlinear optical processes as it allows for absolute measurements without the need for a
reference measurement.The measured molar Kerr constant is (Shelton and Rice ):

Adc−Kerr
=

NA

є
[



(⟨γZZZZ⟩Ω − ⟨γZXXZ⟩Ω) + μz(⟨βZZZ⟩Ω − ⟨βXXZ⟩Ω)/kT

+


kT

(ααβα

αβ − ⟨αZZ⟩Ω⟨α

ZZ⟩Ω +


kT

μz(αzz − ⟨αZZ⟩Ω))] , (.)

where NA is Avogadro’s number, and it involves both dynamic hyperpolarizabilities (γdc−Kerr

and βEOPE) as well as static (superscript ) and dynamic polarizabilities.
The computational requirements for the second hyperpolarizability are more or less the

same as for the first hyperpolarizability. Although the number of studies that analyze the impor-
tance of electron correlation effects (not including here DFT) is rather limited, the available
results confirm in general the findings made for the first hyperpolarizabilities (Christiansen
et al. ).

Cauchy Moments

Response functions for a system in its electronic ground state are analytic functions of the fre-
quency arguments, except at the poles that occur when a frequency or a sum of frequencies is
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equal to an excitation energy.Thus, for frequencies below the first pole, the linear, quadratic, or
cubic response functions can be expanded in power series (Hättig and Jørgensen ). Let us
consider in more detail the simplest case when only electric dipole operators are involved and
the frequency dependence of the (hyper)polarizabilities is of interest.The Cauchy series – that
is, the power series expansion of the frequency-dependent polarizability – is usually written as:

α(−ω;ω) =

∞

∑

k=
ωkS(−k − ) = S(−) + ωS(−) + ωS(−) +⋯, (.)

where S(−) = α(; ).This expansion is valid also for purely imaginary frequency arguments.
Similar expansions may be applied to describe the dispersion effects for hyperpolarizabili-

ties. Often, the power series expansion in the frequency arguments may be truncated at second
order leading to:

αiso(−ωσ ;ω) = αiso(; )[ +Aα
(ω

σ + ω
 ) +O(ω


i )], (.)

β
∥
(−ωσ ;ω,ω) = β

∥
(; , )[ +Aβ

(ω
σ + ω

 + ω
) + O(ω


i )], (.)

γ
∥
(−ωσ ;ω,ω,ω) = γ

∥
(; , , )[ +Aγ

(ω
σ + ω

 + ω
 + ω

) + O(ω

i )]. (.)

Each expansion contains only a single second-order dispersion coefficientA. Since these coef-
ficients for different optical processes of a given order are equivalent (Bishop ), they express
the dispersion of frequency-dependent properties in a way that is transferable between differ-
ent optical processes, for instance Aβ describes both the second-harmonic generation and the
(dc-)electro-optic Pockels effect.

Long-Range Dispersion Interaction Coefficients

For neutral, closed-shell weakly interacting systems, one of the dominant contributions to the
interaction energy at large intermolecular distances is the dispersion energy. It can be analyzed
using perturbation theory, and for two atoms or molecules A and B, we find (McWeeny ):

EAB
disp = −


ħ

A

∑

n≠

B

∑

m≠

∣ ⟨AB ∣ V̂ AB
∣ nAmB

⟩ ∣



ωA
n + ωB

m
, (.)

where V̂AB denotes the intersystem interaction, ∣ A⟩ and ∣ nA
⟩ represent the ground and excited

states of system A, ωA
n is the excitation energy, and similarly for system B.

We would like to express the dispersion energy in terms of response properties of molecules
A and B since this allows for a physical interpretation of the dispersion interaction. Such an
expression is obtained applying an integral transform to avoid the summation of the A and B
excitation energies in the denominator of > Eq. . and using the multipole expansion of the
perturbing operator V̂ AB .

For the second-order dispersion interaction between closed-shell atoms A and B we have:

EAB
disp(R) = −

CAB


R −

CAB


R −

CAB


R −⋯, (.)
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where the coefficient for the dipole–dipole term can be written as (Langhoff et al. ):

CAB
 =

ħ
(πє)


π
∫

∞


αA
(−iω; iω)αB

(−iω; iω)dω. (.)

This equation is knownas theCasimir–Polder formula.Thepolarizability at imaginary frequen-
cies, α(−iω; iω), can be obtained for instance using > Eq. . with an imaginary value of ω.
The CAB

n , n >  coefficients depend on similar higher-order multipole polarizabilities of one
or both atoms. The same approach can be applied for atom–molecule and molecule–molecule
interactions considering individual tensor components of the required polarizabilities. It can
also be used for three-body interactions, and to describe the dispersion contributions to the
pair polarizability function (Fowler et al. ).

To determine the long-range dispersion coefficients we need the values of α(−iω; iω) for
the whole range of imaginary frequencies, whereas the radius of convergence of the power series
expansion of the polarizability (> .) is determined by the lowest excitation energy. How-
ever, using analytic continuation of the Cauchy expansion (Langhoff and Karplus ) we can
obtain all the required values of α(−iω; iω) and thus we can determine accurate values of the
dispersion interaction coefficient CAB

 .The polarizabilities at imaginary frequencies can also be
obtained directly, solving the complex linear response equations (Norman et al. ).

Qualitatively correct estimates of the dispersion energy are obtained in the perturbational
approach even using the dispersion coefficients Cn calculated at the DFT level. It has been
shown that a successful description of intermolecular forces for largemoleculesmay be obtained
in this manner (Misquitta et al. ; Podeszwa and Szalewicz ).

Electric Field Gradient at the Nucleus, Nuclear Quadrupole
Coupling Constant

The electric field gradient (EFG) tensor at the nucleus K – VK
αβ – corresponds to the expectation

value (Baker et al. ; Fowler et al. ) of the EFG operator V̂ K given by > Eq. .:

VK
αβ = ⟨ ∣ V̂

K
αβ ∣ ⟩, (.)

where the traceless form of the operator V̂ K is used. The components of the diagonalized EFG
tensor, given in its own (EFG) principal axis system, fulfill therefore the equation

VK
zz + VK

yy + VK
xx = . (.)

They are by definition arranged so that

∣ VK
zz ∣≥∣ V

K
yy ∣≥∣ V

K
xx ∣ . (.)

For the asymmetry parameter ηK defined as

ηK =

VK
xx − VK

yy

VK
zz

, (.)

we thus have  ≤ ηK ≤ .
On the other hand, for comparison with experimental data derived from the hyperfine

structure of rotational spectra, tensor components defined in the principal axes of inertia system
must be used.
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For quadrupolar nuclei – that is, nuclei for which the nuclear spin quantum number IK ≥ ,
the nuclear quadrupole coupling tensor is defined as −eQKVK

/ħ, where eQK is the electric
quadrupole moment of the nucleus.There is an interaction of the nuclear quadrupole moment
tensor with the EFG at the nucleus, mediated by the nuclear spin IK and described by the
operator:

H

Nq
=


 ∑K

−eQK

IK(IK − )
ITK VK IK . (.)

The nuclear quadrupole coupling constant (NQCC) is defined as −eQKVK
zz/ħ. The EFG at the

nucleus affects the NMR relaxation processes, thus it is relevant in the analysis of the linewidths
of NMR signals. The linewidth is proportional to the inverse relaxation time (Abragam ),
that is:

Δν/ ∝

Tq

=




IK + 
IK (IK − )

( +
ηK

) (

eQK

ħ
VK
zz)


τc , (.)

where Δν/ is the width of the peak at half of the maximum intensity and τc is the correlation
time for the quadrupole coupling relaxation.

From the formal /rK dependence of the operator in > Eq. ., we realize that the basis
used to calculate this property must be flexible in the core region and the outer-core/inner-
valence region. This is an important requirement, as many modern basis sets are quite heavily
contracted in these regions (since the orbitals do not change much in this region when going
from the atomic to themolecular system). In general,muchof the same basis set requirements as
those arising in the calculation of nuclear shielding constants (and to some extent also the spin–
spin coupling constants) apply, and we refer to > section “Nuclear Spin–Related Properties”
for further discussion.

An important application of theoretically calculated electric field gradients at the nucleus
is in the determination of nuclear quadrupole moments. The interaction between the nuclear
quadrupole moments and the electric field gradient at the nucleus can be measured with
unprecedented accuracy (compared to other experimental approaches for determining nuclear
quadrupole moments) inmicrowave spectroscopy.These interactions give rise to the fine struc-
ture in the rotational spectrum of the molecule. Highly accurate estimates for the electric field
gradient at the nucleus can often be calculated theoretically (since this is a first-order molecu-
lar property). By combining these theoretical results with experimental observations, accurate
values of the nuclear quadrupole moments can be obtained, and this approach has been used
to revise previously estimated nuclear quadrupole moments (see, e.g., Kellö and Sadlej ).

One-Photon Absorption, Excitation Energies, and Transition
Moments

Calculations of one-photon absorption enable the determination of the extinction coefficient
ε, describing the attenuation of the intensity of an incoming light beam when passing through
a sample of absorbing species. In the lowest-order perturbative expansion of the interaction
between light and matter, ε is related to the excitation energy and ⟨ ∣ μ ∣ n⟩, the transition
moment between the ground ∣ ⟩ and excited ∣ n⟩ electronic states. The derived quantities are
the dipole strength

nDαβ = ⟨ ∣ μ̂α ∣ n⟩ ⟨n ∣ μ̂β ∣ ⟩ , (.)
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and the oscillator strength. In the length gauge, the latter can be written as

f rn =
meωn

ħe
⟨ ∣ μ̂α ∣n⟩⟨n ∣ μ̂α ∣⟩ =

me

e
lim

ω→ωn
(ω − ωn)ω ⟨⟨μ̂α ; μ̂α⟩⟩ω . (.)

Using the hypervirial relationship

⟨ ∣ p̂α ∣n⟩ = ime ωn ⟨ ∣ r̂α ∣n⟩, (.)

we obtain in the velocity gauge

f vn =


ħmeωn
⟨ ∣ p̂α ∣n⟩⟨n ∣ p̂α ∣⟩ =


me

lim
ω→ωn

(ω − ωn)ω−
⟨⟨p̂α ; p̂α⟩⟩ω , (.)

and in the mixed length-velocity gauge

f rvn = −
i
ħe

⟨ ∣ μ̂α ∣n⟩⟨n ∣ p̂α ∣⟩ = −
i
e

lim
ω→ωn

(ω − ωn) ⟨⟨μ̂α ; p̂α⟩⟩ω , (.)

respectively (Hansen and Bouman ).
To illustrate the differences between oscillator strengths computed in different approaches,

we present in > Table - the results for the Σ+

g → Πu singlet transition in the N molecule.
The HF results and the results for the hierarchy of coupled-cluster approximations (CCS, CC,
CCSD and CC) show the role of the wave function model. In addition, the role of the basis
set is shown in the sequence of the results for the d-aug-cc-pVXZ correlation-consistent basis
sets (Kendall et al. ), with X =D, T, Q, and , abbreviated in the table as daDZ, daTZ, daQZ,
and daZ, respectively. At the HF level the hypervirial relationship (> Eq. .) is fulfilled in
complete basis sets and the differences between computed oscillator strengths are only due to
the incompleteness of the basis set. We observe that all the HF results converge with X, and
the daZ values are almost identical. In the CC methods, in addition to the differences arising
due to basis set incompleteness, f rn , f vn , and f rvn may differ even for a complete basis set since
> Eq. . is not satisfied. This difference should be diminishing as we approach the full CI
limit, and in fact for a given one-electron basis the differences between f rn , f vn , and f rvn follow
the sequence CCS >CC ≈CCSD >CC. Finally, we note that for evaluating the accuracy of the
results the gauge invariance of a calculated oscillator strength is a necessary, but not sufficient
requirement. Gauge invariance has been obtained for large basis sets both at the HF and at the
CC level, whereas the correlated values differ significantly from the HF results, and only the
CC results can be expected to be of high accuracy.

The Thomas–Reiche–Kuhn (TRK) sum rule, which can be written in terms of the dipole
oscillator strengths as

∑

n
fn = Nel, (.)

where Nel is the total number of electrons, can be used as another test of the accuracy of the
calculations.

Of particular concern are Rydberg states, characterized by a very diffuse orbital occupied by
the excited electron. DFT in general fails to properly describe Rydberg-excited states, as many
of the common exchange-correlation functionals do not display the correct asymptotic behav-
ior for the −/r operator. This deficiency of modern exchange-correlation functionals can be
partially rectified by introducing the correct asymptotic behavior for the exchange-correlation
functional (Tozer and Handy ). It is worth noting that the time-dependent Hartree–Fock
(TDHF) theory does not display the same problems in describing Rydberg states, due to use
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⊡ Table -
Oscillator strength and excitation energy (ωn, in eV) for the singlet transition Σ+g → Πu of N;

results taken fromPawłowski et al. ()

Model Basis set f rn fvn f rvn f rn − fvn ωn

HF daDZ . . . −. .
daTZ . . . −. .
daQZ . . . −. .
daZ . . . −. .

CCS daDZ . . . . .
daTZ . . . . .
daQZ . . . . .
daZ . . . . .

CC daDZ . . . . .
daTZ . . . . .
daQZ . . . . .
daZ . . . . .

CCSD daDZ . . . . .
daTZ . . . . .
daQZ . . . . .
daZ . . . . .

CC daDZ . . . . .
daTZ . . . . .
daQZ . . . −. .
daZ . . . . .

of the exact exchange operator. However, the lack of electron correlation effects in TDHF may
limit the applicability of this approach for excited states in general.

To account for the broadening of the experimental spectrum (related not only to the finite
lifetime of the electronic state, but also to the rovibrational structure, collisions, and other
aspects of the interaction between light and matter), and in particular to investigate whether
certain bands may be hidden in the experimental spectrum due to overlapping bands, simple
Lorentzian line broadening is often added in the form

L (ν) ≈
Γ̃
π
[


(ν − ν) + Γ̃

] , (.)

where Γ̃ is related to the lifetime of the excited state, and ν is the frequency of the electronic
excitation. Assuming an isolated absorption band, Γ̃ is equal to half the width of the absorption
band at half height (the value of Γ̃ is often adjusted in the calculations to fit the experimental
data). It is common also to employ a Gaussian function to reproduce the line broadening

L (ν) =


Γ
√

π
e−(ν−ν)


/Γ , (.)

and we have Γ̃ = Γ
√

(ln/).
Finally, we recall that the transition moment between two excited states ⟨m ∣ A ∣ n⟩ can be

obtained using only the reference state wave function from a double residue of the quadratic
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response function > Eq. . (and if ∣ m⟩ =∣ n⟩ we may in this way determine the expectation
value of A in the excited state).

Two-Photon Absorption

In experimental studies of two- and multi-photon absorption processes, the multiphoton tran-
sition strength, a function of all the frequencies of all photons absorbed, is analyzed. For two
laser sources of circular frequency ω and ω with associated wavelengths λ and λ, the two-
photon transition strength δ(ω,ω) for the transition between states ∣ ⟩ and ∣ n⟩ in isotropic
samples is given by, see e.g., Craig andThirunamachandran ():

δTPAn (ω,ω) = FSn
αα(ω,ω)S

on,∗
ββ (ω,ω) +GSn

αβ(ω,ω)S
n,∗
αβ (ω,ω) +

+HS
n
αβ(ω,ω)S

n,∗
βα (ω,ω), (.)

where F, G, and H are numbers depending on the polarization state of the two photons and on
the geometrical setup (mutual direction of the laser beams) (Craig and Thirunamachandran
; McClain ) and, in the dipole approximation,

S

n
αβ(ω,ω) =


ħ ∑m

{

(μ̂α)m(μ̂β)mn

ωm − ω
+

(μ̂β)m(μ̂α)mn

ωm − ω
} (.)

is the second-rank, two-photon tensor. In > Eq. . the summation runs over the whole set
of excited states, the energy conservation relation ω+ω = ωn applies, and off-resonance con-
ditions are implied – that is, the frequencies ω and ω are sufficiently far off the values at which
the denominators vanish. The tensor is nonsymmetric in the exchange of the two frequencies
except for ω = ω. For the special case of a one-color beam – that is, a monochromatic light
source – the transition matrix is symmetric and (using ω = ω = ω)

δTPAn (ω) = Sn
λλ (ω)S

n,∗
μμ (ω) + Sn

λμ(ω)S
n,∗
λμ (ω) (.)

for linear polarization of the incident light and

δTPAn (ω) = −Sn
λλ (ω)S

n,∗
μμ (ω) + Sn

λμ(ω)S
n,∗
λμ (ω) (.)

for circular polarization, respectively.
It can be shown that the two-photon absorption transition rate (cross section) can be

obtained from the single residue of the cubic response function (Hättig et al. a). Two-
photon absorption transition amplitudes Sn

αβ(ω,ω), > Eq. ., can also be extracted from
the single residue of a quadratic response function, see > Eq. . above.

The following relations hold for the matrix elements of the two-photon transition tensor

Snαβ(ω) = Snβα(ωn − ω), (.)

Snαβ(ω) = Snαβ(−ω)
∗. (.)

For methods which do not fulfill > Eq. . (such as the coupled cluster approach), one can
instead use the two-photon transition strength (Hättig et al. b):

Fn
αβ ,γδ(ω) =



{Snαβ(−ω)S

n
γδ(ω) + Sn,∗γδ (−ω)Sn,∗αβ (ω)}, (.)

where Snαβ(ω) and Snαβ(ω) are the left and right transition moments.
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Three-photon absorption has been described through the single residue of the cubic
response function (Cronstrand et al. ). Similarly to two-photon absorption, one can discuss
the third-order (left and right) transition moments and strengths (Hättig et al. a) and define
the three-photon transition strengths in this manner for nonvariational wave functions. There
has been a rather limited number of theoretical studies of three-photon absorption processes
and these will therefore not be discussed any further here.

In general, the computational requirements for the calculation ofmolecular properties from
the residues of the response functions inherit the requirements from the response functions
themselves; that is, the selection of the basis sets has to be done considering the operators
appearing in the expression for the transition moments and excited-state properties. However,
as the residues are connected to specific excited states, the nature of the probed excited state
also needs to be considered.

Magnetic Properties

Let us now consider perturbations involving external staticmagnetic fields only. In this case, the
number of observable molecular properties that arise is rather limited.This is due in part to the
fact that the strength of themagnetic field perturbation of themolecular energy ismuch smaller
than the electric field perturbational strength, but also because only even-order interactions
will survive for closed-shellmolecules.This is normally referred to as quenching of the induced
magneticmoment, and can also be seen as an explanationwhy there are no permanentmagnetic
dipoles in such systems.The quenching of the magnetic moment in closed-shell molecules can
easily be understood by considering that for any orbitally nondegenerate state, one can always
choose the wave function to be real. For such a state, the expectation value of the magnetic
moment is given as

⟨ ∣ ĤB
α ∣ ⟩ = ⟨ ∣ Ĥ

B
α
∗

∣ ⟩∗ = −⟨ ∣ ĤB
α ∣ ⟩

∗

= , (.)

since the magnetic dipole operator is Hermitian and purely imaginary (see > Eq. .).

Magnetizability

Themagnetizability yields the first nonvanishing (second order in the external magnetic field)
contribution to the energy of interaction between an external magnetic field and a closed-shell
molecule

ΔE (B) = −


Bα ξαβBβ , (.)

where ξ is a symmetric tensor of rank two with a total of six independent elements. For isotropic
samples, the magnetizability is expressed in the principal axis system in which the tensor is
diagonal, and in addition to the isotropic magnetizability defined in a standard manner as

ξiso =


ξαα , (.)

two anisotropies:

ξanis = ξ − (ξ + ξ) /, (.)
ξanis = ξ − (ξ + ξ) /, (.)
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⊡ Table -
Unit conversion factors for magnetizability

 a.u. SI CGS

ξ (eħ/me)
E−h . × − JT− . ppm cgs/ppm cm mol−

are usually defined, with ∣ ξ ∣ ≤ ∣ ξ ∣ ≤ ∣ ξ ∣. However, results reported in the literature often
do not follow these definitions, and care should be exercised when comparing with experiment
to ensure that the same conventions are used for defining the anisotropies. For unit conversion
factors, see > Table -.

Two contributions to the magnetizability appear in the nonrelativistic electronic Hamilto-
nian in the presence of a magnetic vector potential > Eq. .. One arises as an expectation
value of the diamagneticmagnetizability operator, see > Eq. ..The second involves a linear
response contribution arising from the interaction of the magnetic dipole operator > Eq. .
with itself. We can, therefore, calculate the magnetizability from the expression:

ξαβ = −⟨∣Ĥ
B,B
αβ ∣⟩ − ⟨⟨Ĥ

B
α ; Ĥ

B
β⟩⟩ = −

∂E (B)
∂Bα∂Bβ

∣

B=
, (.)

where the last equality shows that the magnetizability can be obtained as an energy derivative
and it holds because the magnetic fields discussed here are static.

A negative magnetizability corresponds to an induced magnetic moment of the molecule
opposing the applied magnetic field, and is experimentally manifested by the molecule try-
ing to get away from the poles of a magnet and thus align itself across the applied magnetic
field, an effect that is referred to as diamagnetism. The opposite effect, where the induced mag-
netic moment enforces the magnetic field, is referred to as paramagnetism, and in this case the
molecule will seek to orient itself in the direction of the poles of the magnet and therefore along
the magnetic field.

The diagonal elements of the first contribution to the magnetizability in > Eq. . are
negative since

ξdiaαβ = −⟨∣Ĥ
B,B
αβ ∣⟩ = −

e

me
⟨∣r̂Oδαβ − r̂O ,α r̂O ,β ∣⟩, (.)

and this part is for this reason referred to as the diamagnetic contribution. The linear response
function contribution to the magnetizability (including the negative sign, see > Eq. .) is
always positive and is therefore referred to as the paramagnetic contribution. For closed-shell
molecules, the expectation value almost always dominates, and these molecules are therefore
diamagnetic. Exceptions occur for molecules for which there are near degeneracies in the elec-
tronic ground state. Then the denominator of the linear response function (> .) may
become small, leading to such an increase of the magnitude of the paramagnetic term that the
overall magnetizability becomes positive. A well known and often studied example is the BH
molecule (Ruud et al. ; Sauer et al. ).

Although the expression for the magnetizability in > Eq. . is conceptually simple
and can in principle be used straightforwardly, the gauge origin problem turns out to be dif-
ficult. In order to ensure gauge-origin independent magnetizabilities, as well as significantly
improve the basis set convergence, London atomic orbitals should be used when calculating
magnetizabilities.
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A London orbital is obtained from a conventional basis function by multiplying it by an
imaginary phase factor

ωμ (B,RM) = exp(−
i
ħ
eAM ⋅ r) χμ (RM) . (.)

χμ is here an ordinary basis function, such as a Gaussian or a Slater-type basis function. The
magnetic vector potential appearing in the imaginary phase factor is defined as

AM =



B × ROM =



B × (RM −O) . (.)

The effect of this complex phase factor is to move the global gauge origin O to the “best” gauge
origin for the basis function located at center RM , namely, the nucleus M to which the basis
function is attached.

When London atomic orbitals (LAOs, known also as gauge-including atomic orbitals –
GIAOs) are used, the definition of dia- and paramagnetic contributions to the magnetizability
in > Eq. . can no longer be used. We can instead define (Ruud and Helgaker ):

ξdiaαβ (O) = −⟨∣Ĥ
B,B
αβ (O) ∣⟩, (.)

ξpara,Lonαβ (O) = ξLonαβ − ξdiaαβ (O) . (.)

This partitioning leads to dia- and paramagnetic contributions that display the correct gauge
origin dependence also for finite basis sets, since the diamagnetic contribution, ξdiaαβ in
> Eq. ., is an expectation value, and therefore it has the correct origin dependence.
Furthermore, expectation values in general show fast basis set convergence. Therefore the
significant improvement in convergence of both the total magnetizability and the diamag-
netic magnetizability ensures fast basis set convergence also for the paramagnetic contribution,
> Eq. ..

To illustrate the importance of using London orbitals when calculating magnetizabilities,
we consider in > Table - the magnetizability (and rotational g tensor, vide infra) of the PF
molecule. We note that the isotropic magnetizability calculated using the aug-cc-pVDZ basis
set and without London atomic orbitals is wrong by a factor of almost three compared to the
estimated Hartree–Fock limit. As shown in > Table -, even when the aug-cc-pVZ basis
containing more than  basis functions is used, the results obtained using > Eq. . are
still more then % off the results obtained with London atomic orbitals, which can be expected
to be very close to the Hartree–Fock limit considering the excellent basis set convergence of the
London atomic orbital magnetizabilities. In contrast, all the calculations using London orbitals

⊡ Table -
Basis set convergence of the SCFmagnetizability (in a.u.) and rotational g tensor of PF calculated
without and with London atomic orbitals, Ruud and Helgaker ()

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pVZ
No-Lon Lon No-Lon Lon No-Lon Lon No-Lon Lon

ξiso −. −. −. −. −. −. −. −.

Δξ −. −. −. −. . −. −. −.

g
∥

. −. . −. −. −. −. −.

g⊥ . −. . −. −. −. −. −.
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are within % of the LAO aug-cc-pVZ results. More importantly, the anisotropy is off by an
order of magnitude at the aug-cc-pVDZ level, and even has the wrong sign at the aug-cc-pVQZ
basis (containing  basis functions) if London orbitals are not used.

Computational studies have shown that unless the ground electronic state is nearly
degenerate with the lowest excited states, electron correlation effects on the isotropic mag-
netizability are in general negligible. All published results of correlated calculations of the
magnetizability of closed-shell molecules without close-lying excited states have found elec-
tron correlation effects to be less than % in most cases, much smaller than any uncertainty
in experimentally determined magnetizabilities for such molecular systems. Results within
–% of the Hartree–Fock limit can be obtained using the very modest-sized aug-cc-pVDZ
basis set of Woon and Dunning (). The important point in the construction of a suit-
able basis set is the inclusion of diffuse polarizing functions in order to ensure highly accurate
magnetizabilities.

Commonly adopted exchange-correlation functionals (e.g., BLYP, BLYP) are in general
less efficient in recovering correlation effects onmolecular magnetic properties than they are in
recovering correlation effects on vibrational spectra or electric properties. Indeed, inmany cases
DFT may perform worse than Hartree–Fock in the calculation of isotropic magnetizabilities.
A set of new functionals designed specifically for the calculation ofmagnetic properties has been
developed by Keal and Tozer (). However, recent CCSD benchmark calculations indicate
that the results obtained with one of these functionals deteriorate when vibrational corrections
and solvent effects are taken into account (Lutnæs et al. ).

The isotropic magnetizabilities are in general very little affected by nonelectronic contribu-
tions such as zero-point vibrational corrections, dielectric medium effects, or weak intermolec-
ular forces. The situation is very different for the magnetizability anisotropy, which may display
both fairly large electron correlation effects as well as sizeable contributions from nonelectronic
contributions.

Although highly accurate theoretical calculations using coupled-cluster wave functions
have demonstrated that correlation effects are in general small (Gauss et al. ), and that non-
electronic contributions are small as noted above, agreement with experimentally determined
magnetizabilities is in general poor. Part of the reason for this is the general lack of experimental
gas-phase magnetizabilities. However, more important for the apparent disagreement between
theory and experiment may be the fact that isotropic magnetizabilities are almost exclusively
determined relative to the magnetizability of reference compounds. It has been suggested that
the reference values used to determine experimental magnetizabilities are inaccurate (Ruud
et al. ).

Rotational g Tensor

Themagnetizability describes themagneticmoment induced in amolecule by an external mag-
netic field induction, and how this induced magnetic moment in turn can interact with the
external magnetic field and lead to an energy correction. A molecule also has its own source of
a magnetic moment, arising from the rotational motion. Since the molecule consists of charged
particles, the nuclei, and the electrons, the overall rotation of these particles will generate a
small magneticmoment. In the case of the external-field-inducedmagneticmoment, the vector
potential and the electronmagnetogyric ratio determine the form of themagnetic dipole opera-
tor in > Eq. .. For the magneticmoment induced by themolecular rotation, the magnitude
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of the rotational angular momentum J is determined by the rotational quantum numbers of the
molecule, giving rise to a rotationally induced magnetic moment

mJ
a =

μN
ħ ∑

a ,b
g Jab Jb , (.)

where μN is the nuclearmagneton and the rotational g tensor (also called themolecular g factor)
is defined as

g J = g J,nucl + g J,el = mpI−∑
K
ZK (R


K ,CM − RK ,CMR

T
K ,CM) −

mpme

e
I−ξpara (RCM) . (.)

In > Eq. . we have introduced the moment of inertia tensor I and we have used the defini-
tion of ξpara as given in > Eq. ., which is applicable both when using London orbitals and
when using conventional basis sets. Both the nuclear positions and magnetic dipole operators
are defined with respect to the center of mass of the molecule, as this is the point about which
the molecule rotates.

There are two contributions to the rotationally inducedmagneticmoment, one arising from
the rotation of the nuclear framework, and one arising because of the rotation of the electron
density, and these contributions are opposite in sign because the linear response function ξpara

in > Eq. . is positive.This rotationally inducedmagnetic moment is an example of a nona-
diabatic effect. If the electrons were able to adjust their positions andmomenta instantaneously
to any change in the nuclear configuration, the magnetic moment created by the electrons and
the nuclei would have the samemagnitude but opposite sign, due to the different charges of the
particles. However, this description, corresponding to the Born–Oppenheimer approximation,
is not exact, and in fact a small permanent magnetic moment will arise from the decoupling of
the electronic and nuclear rotation.

The rotational magnetic moment can interact with either internal or external sources of
magnetic moments or magnetic fields. If the rotational magnetic moment interacts with the
nuclear magnetic moment it gives rise to a contribution to the energy, discussed in more detail
in > section “Nuclear Spin Rotation Constants,” which involves the nuclear spin–rotation con-
stant. If we apply an external magnetic field and consider the interaction of this field with the
magnetic moment created by the molecular rotation, the interaction energy is (Flygare ;
Gauss et al. ):

ΔE = −

μN
ħ ∑

a ,b
Bag Jab Jb , (.)

where Ja is the rotational quantum number along the principal rotational axis a.
The rotational g tensor is a tensor of rank two with in principle nine independent elements.

The rotational magnetic moment is only well defined in the principal rotational axis system,
where the moment of inertia tensor is diagonal, and only the diagonal elements of g J in this
principal axes system contribute to the rotational Zeeman effect (Flygare ; Gauss et al.
).

We also note that if we can determine both the magnetizability and the rotational g factor,
we can indirectly determine the molecular quadrupole moment from the equation:

qcc =
me

e
(ξaa + ξbb − ξcc) +

e
mp

(g Jaa Iaa + g Jbb Ibb − g Jcc Icc) . (.)

This relation shows thatmicrowave Zeeman spectroscopy can be an important source ofmolec-
ular quadrupole moments. From a theoretical point of view, this equation does not provide any
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additional information compared to calculating the molecular quadrupole moment directly
as an expectation value, since the relationship (> Eq. .) is fulfilled exactly for any wave
function.

The electronic contribution to the rotational g factor is important in high-resolution
microwave spectroscopy even in the absence of an external magnetic field. In > Eq. .
we introduced the magnetic moment induced by the rotation of the molecular framework.
Instead of letting this inducedmagneticmoment interactwith an externalmagnetic field induc-
tion, we can let it interact with the rotational moment of the molecule. This gives a correction
to the molecular energy which is quadratic in the rotational quantum number J. In ordinary
microwave spectroscopy, the leading energy contribution is related to the moment of inertia
tensor and is also quadratic in J. Therefore, the energy correction related to g J can be treated
as a correction to the moment of inertia tensor, and it is customary to introduce an effective
inverse moment of inertia tensor defined as (Flygare ):

I−eff = I− ( −
me

mp
g J,el) . (.)

When comparing highly accurate theoretical estimates of moments of inertia directly with the
results observed in high-resolution microwave spectroscopy, it is essential to take into account
these nonadiabatic corrections. It is particularly noteworthy that the experimental determina-
tion of the equilibrium geometry involves the estimation of the effects of the rotational g tensor
on the moment of inertia tensor, and that it is currently possible to calculate these effects with
an accuracy much higher than obtainable from experimental data alone. Therefore, the use of
highly accurate experimental data, for instance from rotational spectra, combined with highly
accurate calculations of small corrections to these quantities, is currently the most accurate
way to obtain experimental equilibrium geometries (Stanton et al. ) (for a related analysis
of diatomic systems, see Sauer et al. ).

As the rotational g tensor includes a linear response function involving twomagnetic dipole
operators, similar computational requirements apply for this property as for themagnetizability.
We can therefore expect that the direct calculation of the rotational g tensor using > Eq. .
will display very slow basis set convergence. However, London orbitals are very efficient in
getting fast basis set convergence, as illustrated for PF in > Table -.

In microwave or molecular beam experiments, all of the three diagonal elements of the
rotational g tensor are determined.As for themagnetizability, the individual tensor components
show some dependence on electron correlation effects, and in order to allow for the calculated
results to be within the very tight experimental errors bars for the rotational g tensor elements,
electron correlation and the effects of zero-point vibrational corrections need to be included.
This is illustrated for the water molecule in > Table -.

Birefringences and Dichroisms

The consequences of the fact that an electromagnetic wave has both a frequency-dependent
electric field component and a frequency-dependent magnetic field component have so far not
been discussed. The two components are perpendicular to each other, as well as perpendicu-
lar to the direction of the propagation of the light beam. Moreover, we have not discussed the
implications of the possible polarization of the light beam. Light experienced in everyday life
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⊡ Table -
Electron correlation effects and zero-point vibrational corrections to the rotational g tensor com-
ponents of HO. The molecule is located in the xz-plane with the dipole moment along the z-axis
(gJ is dimensionless)

Computational method gJxx gJyy gJzz
Hartree–Fock (Ruud et al. ) . . .

RASSCF (Ruud et al. ) .() .() .()

CCSD (Gauss et al. ) . . .

CCSD(T) (Gauss et al. ) . . .

RASSCF+ZPV (Ruud et al. ) .() .() .()

Exp. (Molecular beam) (Verhoeven and
Dymanus )

.() .() .()

Exp. (Microwave Zeeman) (Kukolich ) .() .() .()

is mostly nonpolarized – that is, the tip of the electric or magnetic field vectors moves ran-
domly in the plane perpendicular to the propagation direction. With the use of appropriate
tools, unpolarized light can be turned into a wide variety of polarization states, becoming lin-
early, elliptically, or circularly polarized. In these cases, the tip of the field vector(s) oscillates in
the plane containing the direction of propagation (linear polarization) or rotates along a circle
(circular polarization) or an ellipse (elliptical polarization) in the plane perpendicular to it. The
polarization of light plays an important role in the interactions of light with a molecule.

Birefringences and dichroisms are two aspects of this interactionwhich are closely related to
the polarization status of light.They arise through a variety of different mechanisms and inter-
actions between the electromagnetic field and themolecule, but they are all characterized by the
simultaneous measurements of the refractive (birefringences) or absorptive (dichroisms) index
of light along two directions, different with respect to some predefined laboratory or molecu-
lar frame. The difference in the dispersion or absorption in these two directions is described
by a quantity of a specific sign and magnitude. All these properties give detailed information
about themolecular structure, and in particular some of them can distinguish between a sample
and its mirror image. Distinguishable mirror images can occur naturally, in chiral molecules
where the mirror image of the molecule cannot be superimposed on the original molecule
itself – that is, for so-called enantiomers – or they can occur by introducing an asymmetry
in the experimental setup that makes the mirror image of the experimental design impossible
to superimpose on the original setup. In the latter case, since the experimental design is itself
chiral, the observed effect does not vanish even if the molecule is not chiral. We note that only
molecules possessing no improper or rotation-reflection axes may be chiral.

It is instructive to start by giving some examples of birefringences, before discussing the
details of the most important birefringences and dichroisms. Let us consider first an isotropic
liquid sample subject to a strong external static electric field.The refractive index n

∥
experienced

by the component of the polarization vector aligned parallel to the direction of the external field
F in this case differs from the index of refraction n

�
for the component aligned perpendicular

to the direction of the vector F (Kerr a, b). As a consequence, the initially linearly polarized
light beam will exit the region of the sample with an ellipticity. This is an example of a linear
birefringence

Δnlin
= n

∥
− n

�
, (.)



  Molecular Electric, Magnetic, and Optical Properties

and the effect is known as electric-field-induced optical birefringence or more often as the Kerr
(electro-optical) effect. It exhibits a quadratic dependence on the strength of the applied electric
field. Its existence is duemainly to the fact that the external electric field, in a system possessing
an anisotropic electric dipole polarizability tensor, tends to align the molecules preferentially
in its direction.

Other mechanisms in general also contribute to the emergence of an anisotropy, the
most important being the effect of electronic rearrangements. They play a role through
the higher-order polarizabilities of the system, in particular through the second electric-
dipole hyperpolarizability γ and, in the presence of permanent electric dipoles, through
the first electric-dipole hyperpolarizability β (Kerr a, b). Other examples of linear
birefringences are the Cotton–Mouton and Buckingham effects, briefly discussed below,
and the Jones and magneto-electric birefringences, which occur when linearly polarized
light goes through an isotropic fluid perpendicularly to both static electric and magnetic
fields.

Circular birefringence is observed when the two circular components of a linearly polarized
beam propagate with different circular velocities, and therefore an anisotropy arises between
the two refractive indices n

+
and n

−
:

Δncirc
= n

+
− n

−
. (.)

The net result is a rotation of the plane of polarization. An example of a circular birefringence is
optical activity, which is observedwhen amediumcomposed of chiralmolecules (with an excess
of one enantiomer) is subject to linearly polarized electromagnetic radiation. The dependence
of the corresponding anisotropy on the wavelength is described by the optical rotatory disper-
sion (ORD). The Faraday effect, discussed below, is another well-known example of a circular
birefringence.

An axial birefringence occurs with unpolarized light, and an example is the so-called mag-
netochiral birefringence (Barron and Vrbancich ; Kalugin et al. ). It can be seen in
isotropic samples composed of chiral molecules, and it is observed when a static magnetic
induction field is switched on parallel to the direction of propagation of the unpolarized probe
beam. The refractive index experienced by the beam propagating parallel to the external mag-
netic field, n

↑↑
, becomes different from that experienced by a beam propagating antiparallel to

the field, n
↑↓

Δnax
= n

↑↑
− n

↑↓
. (.)

The corresponding anisotropy has a different sign for the different enantiomers.
An external field will have an orientational effect on the molecules of the sample, and this

is a mechanism responsible for the emergence of birefringences. In the presence of external
fields the sample becomes anisotropic, and the extent to which this happens depends on the
temperature. Indeed, the general form of the optical anisotropy (for measurements taken at a
fixed pressure) is usually of the form

Δn ∝ A +
A

T
+

A

T +⋯, (.)

where the term A includes all contributions arising from the reorganization of the electrons
due to the action of the external field(s), whereas the terms A, A, . . . are connected to different
mechanisms of reorientation of the molecules, involving the interaction of the field(s) with per-
manent electric or magnetic multipole moments.The temperature-dependent terms vanish for
systems of spherical symmetry; the contributions exhibiting a nonlinear dependence are usually
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connected to the presence of permanent electric or magnetic dipole moments, or higher-order
processes involving more complicated interactions between fields and multipoles.

When the inducing field is time dependent, the birefringence is said to be “optically
induced.” In general, the information provided by birefringences induced by static fields can
differ from that obtained observing the corresponding optically induced phenomena. For
example, in the static Kerr effect of dipolar molecules, an important role is played by the per-
manent dipoles, which tend to be aligned by the static field. This contribution vanishes for
dynamic inducing fields, where the birefringence arises only from the rearrangement of the
anisotropy of the electric dipole polarizability. The contribution resulting from the interaction
with permanent multipoles averages over time to zero.

Optical Rotation

The first contribution to the induced electric dipole moment in > Eq. . from the time
dependence of the magnetic field, ω−G′, gives rise to two different observable properties. In
the dispersive region, this property determines the optical rotatory power, or just optical rota-
tion (OR) for short, and in the absorptive region it determines the rotational strength observed
in electronic circular dichroism (ECD).

There are no terms bilinear in the electric and magnetic fields in the Hamiltonian, there-
fore G′, the mixed electric dipole–magnetic dipole polarizability (see also > Eq. .), can be
expressed as a linear response function:

G′

αβ(−ω;ω) = −
ω
ħ ∑

n≠
Im

⟨ ∣ μ̂α ∣ n⟩ ⟨n ∣ m̂β ∣ ⟩
ω

n − ω = −Im ⟨⟨μ̂α ; m̂β⟩⟩ω . (.)

We note that G′ vanishes if the electromagnetic field is static (ω = ), see the discussion
in > section “Expansions of Energy and Multipole Moments.” For unit conversion factors,
see > Table -.

Measurements of optical rotation are almost exclusively carried out on liquid samples
(though gas-phase measurements recently became possible (Müller et al. )) and we will,
therefore, be concerned primarily with the rotational average of the G′ tensor, which is
described by the quantity ORDβ defined as

ORDβ = −

ω

G′

αα . (.)

The most common experimental setup involves the determination of the rotation of plane-
polarized light as it passes through a sample in which there is an excess of one enantiomer.The
standard optical rotation [α]D , proportional to ORDβ, is reported for light with a frequency
corresponding to the sodium D-line (. nm) at a temperature of ○C.

⊡ Table -
Unit conversion factors for electric dipole–magnetic dipole polarizability

 a.u. SI CGS

G′ eaħ
− . × − CmJ−s− . × − Fr cm G−
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Because the mixed electric dipole–magnetic dipole polarizability involves the magnetic
dipole operator, in approximate calculations G′ carries an origin dependence. Indeed, the indi-
vidual tensor elements of G′ are origin dependent.The trace of G′ must be origin independent,
since the optical rotation is an experimental observable. In non-isotropic media, contribu-
tions to the optical rotation tensor arise from the mixed electric dipole–electric quadrupole
polarizability A,

Aα ,βγ (−ω;ω) = −⟨⟨μ̂α ; Θ̂βγ⟩⟩ω , (.)

(see the last term in > Eq. .), and it is the combination of the G′ and A contributions that
is gauge-origin independent for exact wave functions. The contribution from A vanishes in
isotropic samples, since thismixed electric dipole–electric quadrupole polarizability is traceless.

For approximate variational wave functions, the origin independence of the trace of G′ is
only achieved in the limit of a complete basis set. One way to overcome this problem is to
introduce local gauge origins by using London atomic orbitals (Helgaker et al. ).

The dispersion of the optical rotation was for a long time also the focus of much experimen-
tal attention through optical rotatory dispersionmeasurements.Even after it became customary
to restrict the optical rotation measurements to a single frequency, ORD served as an important
tool for determining excitation energies in chiralmolecules, although it has nowbeen surpassed
by electronic circular dichroism for these purposes (see > section “Circular Dichroism”).

At the sodium frequency, the optical rotation is rather small for most molecules. However,
the individual diagonal elements of the mixed electric dipole–magnetic dipole polarizability
may be fairly large in absolute value, often canceling each other in the trace.This is illustrated for
a few selected molecules in > Table -. Consequently, the optical rotation is highly sensitive
to numerical errors in the tensor components, because small residual errors in the individ-
ual tensor components, arising from the solution of the linear response equations, may lead
to substantial errors in ORDβ. Another consequence of this cancellation is that ORDβ is very
sensitive to the choice of molecular geometry, as well as zero-point vibrational effects (Ruud
et al. ), since the small changes introduced by these effects in the molecular charge dis-
tribution, and thus on the different diagonal elements of G′, can give rather large effects
on ORDβ.

The sensitivity of the optical rotation is perhaps most clearly illustrated in the case of
conformationally flexible molecules – that is, molecules that have a significant population
of multiple stable minima. As exemplified for paraconic acid (a substituted γ-butyrolactone)
in > Table -, different molecular conformations can have optical rotations that differ by
orders of magnitude and even in sign. A thorough conformational search is therefore manda-
tory before the absolute sign of the optical rotation (or any birefringence or dichroism for that
matter) is determined from theoretical calculations for conformationally flexiblemolecules.The

⊡ Table -
The diagonal elements of themixed electric dipole–magnetic dipole polarizability and the trace of
the tensor for a few selected molecules (in a.u., [α]

D
in deg cm dm− g−)

Molecule ω−G′xx ω−G′yy ω−G′zz ORDβ [α]D
HO (ϕ = ○) −. . . −. −.

(+)-methyloxirane −. −. . . .

(+)-camphor . . −. . .

DFT/BLYP results obtained with the Sadlej polarized basis sets, taken from Giorgio et al. ()
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⊡ Table -
The specific optical rotation ([α]

D
in deg cm dm− g−) for different conformers of (S)-(−)-

paraconic acid calculated using different basis sets and at DFT/BLYP and MP optimized
geometriesa

Conformer DFT geometries MP geometry

-++G** aug-cc-pVDZ aug-cc-pVDZ aug-cc-pVDZ

A −. −.b −. −.

B . .b . c

C . .b . .

D −. −.b −. −.

E −. −.b . −.

F −. −.b −. −.

[α]D +. +. +. −.

aThe bottom line of the table gives the total specific optical rotation [α]D (all conformations weighted by
the Boltzmann distribution). All the results taken from Marchesan et al. ()
bThe optical rotations were calculated for the BLYP/-++G** geometries
cAn energy minimum corresponding to a B-like conformer could not be found

optical rotation of the flexible molecule can then be determined by Boltzmann averaging over
the dominant molecular conformations.

In order to ensure reasonably well-converged results for the optical rotation, basis sets of
polarized valence double-zeta quality are required, and sets such as the aug-cc-pVDZ of Woon
and Dunning (), or the polarized triple-zeta basis of Sadlej () have been shown to
perform well for calculations of optical rotation. Most importantly, diffuse p functions in the
outer regions of the electron density, which in most cases is described by the electron density
of hydrogen atoms, are required to ensure qualitatively correct results (Zuber and Hug ).

Since the optical rotation is very sensitive even to small changes in the electron density, elec-
tron correlation effects should also be taken into account in order to get accurate results. Due to
the fact that chiral molecules in general have very low symmetry, if any symmetry at all, the only
viable approach for calculating electron correlation effects in chiral molecules is currently den-
sity functional theory (Ruud et al. ; Stephens et al. ). Methods such as MP and CCSD
could also be used to describe electron correlation, but due to their nonvariational nature it is
not ensured that gauge-origin independent results can be obtained in the conventional length-
gauge formulation even in the limit of a complete basis set. In principle, the use of the dipole
velocity gauge will ensure that the calculated results are independent of the gauge origin. For
all but the smallest basis sets, the differences between the velocity and the length gauges are
not very large, with the length gauge in general performing better. However, in the case of the
optical rotation an additional complication arises: whereasG′ given by > Eq. . will vanish
in the limit of a static field, this is not the case for the dipole-velocity analogue of the optical
rotation. It has been suggested that themuch slower basis set convergence of the optical rotation
compared to other properties calculated using the velocity-gauge formulation can be improved
by subtracting the static-limit value of the corresponding response function (Pedersen et al.
), such that

G′

∝ ⟨⟨p̂α ; l̂β⟩⟩ω − ⟨⟨p̂α ; l̂β⟩⟩. (.)
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Since there are no empirical rules relating the stereochemistry of a molecule to the observed
sign of the optical rotation, an important area of application for optical rotation calculations
would be the combined theoretical and experimental determination of absolute configurations.
However, this is a difficult task due in part to the large variations with geometry in the optical
rotation of conformationally flexible molecules, and in part because of the small magnitude of
ORDβ. These factors make the sign of the optical rotation hard to determine with confidence.
One way to increase the predictive power of the calculations is to change the frequency of the
incident light to shorter wavelengths. The magnitude of the optical rotation increases dramat-
ically as the frequency approaches that of a resonance. Thus, if both theory and experiment
could determine the optical rotation at frequencies closer to electronic excitation energies, the-
oretical calculations could provide a much more reliable proof of the absolute configuration of
the molecule (Giorgio et al. ).

Circular Dichroism

Natural (Electronic) Circular Dichroism

Let us now turn to the lowest-order absorption process involving mixed electric and magnetic
perturbations. This property, which is the absorptive analogue of the optical rotation, is known
as electronic circular dichroism (ECD) or just CD for short.

The differential absorption of circularly polarized light, corresponding to the difference
between the absorptive index of the two circular components of linearly polarized light, is pro-
portional to the rotational strength, which is normally calculated as the residue of the linear
response mixed electric dipole–magnetic dipole polarizability:

lim
ω→ωn

ħ(ω − ωn)⟨⟨μ̂α ; m̂β⟩⟩ω = ⟨ ∣ μ̂α ∣ n⟩⟨n ∣ m̂β ∣ ⟩. (.)

Since this expression corresponds to the infinite lifetime approximation for the excited state,
only a single number will be obtained at the frequency of the electronic excitation.

In general nR, the rotatory strength for the transition ∣ ⟩ →∣ n⟩, includes an electric dipole–
magnetic dipole contribution

nRm
αβ = −

ie

me
(δαβ⟨ ∣ r ∣ n⟩⟨n ∣ l

T
∣ ⟩ − ⟨ ∣ r̂β ∣ n⟩⟨n ∣ l̂α ∣ ⟩), (.)

and an electric dipole–electric quadrupole contribution

nRQ
αβ = −

ωne


εαγδ⟨ ∣ r̂γ ∣ n⟩⟨n ∣ q̂δβ ∣ ⟩. (.)

For randomly orientedmolecules, the averaging leaves only the electric dipole–magnetic dipole
contribution and the scalar rotatory strength is given by

nR = −

ie

me
⟨ ∣ rT ∣ n⟩⟨n ∣ l ∣ ⟩, (.)

corresponding to > Eq. .. These expressions are given in the length gauge. In the velocity
gauge

nRm
αβ =

e

m
eωn

(δαβ⟨ ∣ p ∣ n⟩⟨n ∣ l
T
∣ ⟩ − ⟨ ∣ p̂β ∣ n⟩⟨n ∣ l̂α ∣ ⟩), (.)
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and
nRQ

αβ =
e

m
eωn

εαγδ⟨ ∣ p̂γ ∣ n⟩⟨n ∣ T̂
+

δβ ∣ ⟩, (.)

where T+ indicates the “velocity” form of the electric quadrupole operator

T+

= −(rp + pr). (.)

This form has an advantage in comparison to the length form. Although with a translation of
the reference frame the magnetic dipole and electric quadrupole components change, the total
tensor in the velocity gauge is invariant to such a change of origin. For the length gauge, this
invariance depends in addition on the fulfillment of the hypervirial relation, > Eq. ..

Two-Photon Circular Dichroism

Two-photon circular dichroism (Tinoco ) arises in chiral systems due to the differential
absorption of two photons, of which at least one is circularly polarized (De Boni et al. ). In
this sense it can be seen as the nonlinear extension of ECD. The observable, the anisotropy of
the two-photon transition strength, is proportional to the two-photon rotatory strength (Jansík
et al. ; Rizzo et al. ; Tinoco ):

nRTPCD
(ω) = −b[B(ω)]n − b[B(ω)]n − b[B(ω)]n , (.)

where b, b, and b are numbers, simple combinations of the analogous polarization and setup-
related coefficients F,G, andH given for two-photon absorption in > Eqs. ..Themolecule-
related parameters B, B, and B take the form:

[B(ω)]n =

ωM

p,n
ρσ (ω)Pp∗,n

ρσ (ω), (.)

[B(ω)]n =


ω T
+,n
ρσ (ω)Pp∗,n

ρσ (ω), (.)

[B(ω)]n =

ωM

p,n
ρρ (ω)Pp∗,n

σσ (ω), (.)

and they are, therefore, appropriate contractions of generalized two-photon second-rank ten-
sors, like the one given in > Eq. .. Indeed, these tensors are defined (for the general case
of two photons of different frequency) as follows:

P

p,n
αβ (ω,ω) =


ħ ∑m

{

(μ̂pα)m(μ̂
p
β)mn

ωm − ω
+

(μ̂pβ)m(μ̂
p
α)mn

ωm − ω
}, (.)

M

p,n
αβ (ω,ω) =


ħ ∑m

{

(μ̂pα)m(m̂β)mn

ωm − ω
+

(m̂β)m(μ̂
p
α)mn

ωm − ω
}, (.)

T

+,n
αβ (ω,ω) =


ħ
εβρσ ∑

m
{

(T̂+

αρ)m(μ̂
p
σ)mn

ωm − ω
+

(μ̂pσ)m(T̂+

αρ)mn

ωm − ω
}, (.)

where we have introduced the velocity form of the dipole operator,

μ̂pα = −
e
me

∑

i
p̂iα . (.)
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Within the formalism of response theory, the second-rank tensors of interest are obtained from
the single residues of appropriate quadratic response functions, see > Eq. .. The quadratic
response functions of relevance for two-photon circular dichroism are:

⟨⟨μ̂pα ; μ̂
p
β ,V

ωn
⟩⟩ω ,ω ⇒P

p,n
αβ (ω,ω), (.)

⟨⟨μ̂pα ; m̂β ,V
ωn
⟩⟩ω ,ω ⇒M

p,n
αβ (ω,ω), (.)

εβρσ⟨⟨T̂
+

αρ; μ̂
p
σ ,V

ωn
⟩⟩ω ,ω ⇒ T

+,n
αβ (ω,ω), (.)

whereVωn is an arbitrary operator (corresponding to the excitation vector to the state n). Single
residues of quadratic response functions are efficiently and accurately computed nowadayswith
a number of wave function models. Nevertheless, DFT has been used almost exclusively in the
few theoretical studies of two-photon circular dichroism that have been published (Jansík et al.
, ).

Faraday Effect

In , Faraday observed thatwhen a staticmagnetic fieldwas appliedwith its directionparallel
to the direction of propagation of linearly polarized light traversing a transparent sample (glass,
liquid, gas), the plane of polarization of the beam was rotated (Faraday a, b). It was the
first ever experimental evidence of a birefringence phenomenon, and in particular of a circular
birefringence, and the effect is often referred to as the Faraday effect or magnetic field-induced
optical rotation. The rotation is proportional to the optical anisotropy, see > Eq. ., and
this depends linearly on the strength of the applied magnetic induction field.The mechanisms
governing this effect involve the interaction of the static external magnetic induction field with
the oscillating electric field of the light wave and with the electric multipoles of the sample.The
term “magnetic optical rotatory dispersion” (MORD) is often used to denote the frequency
dispersion of the Faraday effect, and thus of the corresponding circular birefringence.

For a fluid sample, the rotation with respect to the molecular frame becomes (Barron ;
Buckingham and Stephens ):

ϕ = V(ω)Bz l ∝ ωεαβγ(α
′
B
αβ ,γ +


kT

⟨∣m̂γ ∣⟩α′

αβ)Bz l , (.)

where l is the path length, we have introduced the Verdet constant V(ω), and α′
B denotes

the magnetic field derivative of α′, the antisymmetric electric dipole polarizability. The second
term in the parentheses vanishes for closed-shell systems, as the magnetic dipole is quenched,
⟨∣m̂γ ∣⟩ = .

TheVerdet constant of a closed-shell system, free of orbital degeneracies both in the ground
and in the excited state, is therefore obtained from the response function (Jaszuński et al. ;
Parkinson and Oddershede ):

V(ω) ∝ iωεαβγ⟨⟨μ̂α ; μ̂β , m̂γ⟩⟩ω,. (.)

This contribution is sometimes referred to as the B term contribution to theVerdet constant. For
molecules containing orbital degeneracies additional contributions arise (the A and C terms),
in analogy with the closely related phenomenon – magnetic circular dichroism, discussed
in > section “Magnetic Circular Dichroism.” For unit conversion factors, see > Table -.



Molecular Electric, Magnetic, and Optical Properties  

⊡ Table -
Unit conversion factors for the Verdet constant

 a.u. SI CGS

V(ω) rad e a ħ− . ×  rad T− m− . ×  min G− cm−

Hypermagnetizabilities, Cotton–Mouton Effect

The Cotton–Mouton effect (CME) is a magnetic induction field-induced linear birefringence,
observed in the presence of a strong magnetic induction field B with a component perpen-
dicular to the direction of propagation of the beam. It is mainly due to the tendency of both
the electric field associated with the light beam and the magnetic induction field to align
the molecules exhibiting both an anisotropic electric dipole polarizability and an anisotropic
magnetizability tensor (according to the Langevin–Born theory (Born ; Langevin )).
The rearrangement of the electron density again plays a part through the mixed electric and
magnetic hyperpolarizabilities, or hypermagnetizabilities.

The experimental quantity connected to the hypermagnetizability is the molar Cotton–
Mouton constant mC. Semiclassically, for fluids composed of closed-shell systems (Buckingham
and Pople ; Fowler and Buckingham ; Jamieson ):

mC =

πNA


[Δη + Q (T)] , (.)

where Δη is the hypermagnetizability anisotropy

Δη =


(ηαβ ,αβ − ηαα ,ββ) , (.)

and
Q (T) =


kT

(ααβξαβ − ααα ξββ) . (.)

In > Eq. ., α is the (frequency-dependent) electric polarizability tensor, and ξ the magne-
tizability tensor. The two contributions to the molar Cotton–Mouton constant in > Eq. .
are, therefore, a temperature-independent term related to the hypermagnetizability ηαβ ,γδ and
a temperature-dependentmolecular orientational part – the “Langevin term.”

When the magnetizability is expressed as a power series in the perturbing electric field:

ξαβ (F) = ξαβ + ζγ ,αβFγ +


ηγδ ,αβFγFδ + ..., (.)

the expansion coefficients ζγ ,αβ and ηγδ ,αβ define the molecular first and second hypermagne-
tizability. The first indices of ζ and η refer to the electric field and the last two to the magnetic
field. In fluids, the experimentally measured property is related to the anisotropy of η. From the
expansion above it can be seen that the static hypermagnetizability η corresponds to the fourth
derivative of the molecular energy:

ηαβ ,γδ = −
∂E (F,B)

∂Fα∂Fβ∂Bγ∂Bδ
∣

F,B=
. (.)

It can also be expressed in terms of ξ (F) – the magnetizability dependent on F:

ηαβ ,γδ =
∂ξγδ
∂Fα∂Fβ

∣

F=
, (.)
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or α (B) – the polarizability dependent on B:

ηαβ ,γδ(ω) =
∂α(−ω;ω)αβ

∂Bγ∂Bδ
∣

B=
, (.)

and we have indicated in the latter equation that it holds also for the frequency-dependent
polarizability.

The hypermagnetizability is given as a sumof paramagnetic and diamagnetic contributions:

ηαβ ,γδ(ω) = ηparaαβ ,γδ(−ω;ω, , ) + ηdiaαβ ,γδ(−ω;ω, ), (.)

corresponding to a sum of a cubic response and a quadratic response function (Rizzo et al.
):

ηparaαβ ,γδ(−ω;ω, , ) = −⟨⟨μ̂α ; μ̂β , m̂γ , m̂δ⟩⟩ω,,, (.)

ηdiaαβ ,γδ(−ω;ω, ) = ⟨⟨μ̂α ; μ̂β , ξ̂
B,B
γδ ⟩⟩ω,, (.)

where (see for comparison > Eq. .) the “diamagnetic magnetizability operator” in the
second term is

ξ̂B,Bαβ = −ĤB,B
αβ . (.)

We recall here that the magnetic dipole moment and diamagnetic magnetizability operators,
and thus the partitioning of the hypermagnetizability into para- and diamagnetic components,
may depend on the chosen gauge origin.

Finite field approaches corresponding to > Eqs. . and > . have been used (Rizzo
et al. ). In these calculations ηαβ ,γδ is obtained combining the available analytic linear
response methods with the numerical finite difference approach. The frequency-dependent
electric dipole polarizability can be computed in the presence of a magnetic induction field,
and the hypermagnetizability is obtained by numerical differentiation.This approach (Cybulski
and Bishop ; Tellgren et al. ) in general requires complex algebra as the perturbation is
purely imaginary, whereasmost electronic structure codes use real wave functions. In the more
often used finite field approach based on > Eq. ., one computes the magnetizability ξ with
and without an external electric field perturbation. However, in this approach only the static
value of the required hypermagnetizability is obtained. Analytic calculations of the quadratic
and cubic responses > Eqs. . and > . also including London orbitals to ensure gauge
origin independence can nowadays be carried out (Thorvaldsen et al. ). The effect of the
London orbitals on improving the basis set convergence appears to be small.

For atoms, choosing the origin of the gauge at the nucleus automatically makes the depen-
dence on the gauge vanish, and there is no advantage in using LAOs. Moreover, the evaluation
of Δη may be reduced to the calculation of the Cauchy moments S(−n) and of the dipole–
dipole–quadrupole hyperpolarizability frequency dispersion coefficients (Coriani et al. a;
Rizzo et al. ). For unit conversion factors, see > Table -.

⊡ Table -
Unit conversion factors for hypermagnetizability

 a.u. SI CGS

η (ea)

(eħ/me)

Eh− . × − C m J− T− . × − cm G−
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Electric-Field-Gradient-Induced Birefringence

As a magnetic induction field can give rise to an optical anisotropy through its interaction
with the anisotropic magnetizability of a molecule, so can an electric field gradient, through
its coupling with a permanent molecular quadrupole moment. The corresponding birefrin-
gence (Buckingham ; Buckingham and Disch ) is commonly called electric-field-
gradient-induced birefringence, more recently Buckingham birefringence, and it exhibits a linear
dependence on the strength of the electric field gradient. Besides the orientational Langevin–
Born-type effect, acting on quadrupolar molecules and due to both the electric field associated
with the light wave and to the static external field gradient, it also involves the rearrangement of
the electron density as a consequence of the electron interaction with the electric andmagnetic
wave vectors associated with the beam and with the externally applied electric field gradient.
In this case,mixed electric-dipole, electric-quadrupole, andmagnetic-dipole hyperpolarizabili-
ties play their role in determining the strength of the effect. Buckingham birefringence has been
often employed for the determination of molecular quadrupole moments (Buckingham ;
Buckingham and Disch ).

For an ideal gas at constant pressure, for light propagating along the Z axis

Δn = nX − nY =

NA∇F
Vmє

s =
∇F
Vm

mQ(ω,T), (.)

mQ(ω,T) =
NA

є
s, (.)

where Vm is the molar volume, ∇F is the external electric field gradient arranged so that
∇F = ∇FXX = −∇FYY and ∇FZZ = . > Equation . introduces the Buckingham con-
stant mQ, which depends through the quantity s on the circular frequency of the light and on
the temperature. For non-dipolar systems, where the quadrupole moment does not depend on
the choice of origin,

s = b (ω) +

kT

Θαβααβ (−ω;ω) , (.)

involving the molecular quadrupole moment Θαβ and the frequency-dependent electric dipole
polarizability ααβ(−ω;ω). The temperature-independent contribution is

b (ω) = Bαβ ,αβ (−ω;ω, ) − Bα ,αβ ,β (−ω;ω, ) −

ω
εαβγ J

′

α ,β ,γ (−ω;ω, ) , (.)

and is a combination of three mixed hyperpolarizabilities:

Bαβ ,γδ (−ω;ω, ) = ⟨⟨μ̂α ; μ̂β , Θ̂γδ⟩⟩ω,, (.)

Bα ,βγ ,δ (−ω;ω, ) = ⟨⟨μ̂α ; Θ̂βγ , μ̂δ⟩⟩ω,, (.)
J′α ,β ,γ (−ω;ω, ) = i⟨⟨μ̂α ; m̂β , μ̂γ⟩⟩ω,. (.)

The expressions are somewhatmore complex for dipolar fluids (Buckingham and Longuet-
Higgins ), where the quadrupole moment becomes origin dependent. The formal expres-
sion for s, > Eq. ., does not change provided that we refer to a frequency-dependent origin
for the quadrupole operator, commonly labeled as the “effective quadrupole center” (Rizzo and
Coriani ; Rizzo et al. ). For any other choice of the origin we have

s = b (ω) +

kT

{Θαβααβ (−ω;ω) − μα [Aβ ,αβ (−ω;ω) +

ω
εαβγG

′

βγ (−ω;ω)]} . (.)
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The effective quadrupole center is defined as the point in space where the last term
in > Eq. ., involving the molecular dipole moment μα and the mixed polarizabilities
Aα ,βγ (−ω;ω) and G′

αβ (−ω;ω), vanishes.

Magnetic Circular Dichroism

For a medium that is isotropic in the absence of magnetic fields, the Faraday A, B, and C terms
determining the MCD of a transition from the electronic state ∣⟩ to the electronic state ∣n⟩ are
defined as (Buckingham and Stephens ; Schatz and McCaffery ; Stephens ):

A(→ n) =


[⟨n ∣m∣ n⟩ − ⟨ ∣m∣ ⟩] ⋅ Im( ⟨ ∣μ∣ n⟩ × ⟨n ∣μ∣ ⟩ ), (.)

B (→ n) = Im{
∑

k≠

⟨k∣m∣⟩
ωk

⋅ ⟨∣μ∣n⟩ × ⟨n∣μ∣k⟩

+
∑

k≠n

⟨n∣m∣k⟩
ωkn

⋅ ⟨∣μ∣n⟩ × ⟨k∣μ∣⟩ }, (.)

C (→ n) =


⟨ ∣m∣ ⟩ ⋅ Im( ⟨ ∣μ∣ n⟩ × ⟨n ∣μ∣ ⟩ ), (.)

where an average over the molecular orientations has been made. These tensors correspond
to the single residues of the tensors that determine the Verdet constant of the Faraday
effect (> section “Faraday Effect”). With the convention used here, the Faraday terms given
in > Eqs. .–. are three times those of Buckingham and Stephens (). The A term
exists only if either ∣⟩ or ∣n⟩ is degenerate, whereas the C term is nonvanishing only if ∣⟩ is
degenerate.

The B terms exist in all cases, independently of the appearance of any ground- and excited-
state degeneracies. We can rearrange > Eq. . recalling that (μ̂α)

∗

lm = (μ̂α)lm , (m̂α)
∗

lm
= −(m̂α)lm , and Im(z) = −i(z − z∗)/, and we find that the B( → n) term can be written
in terms of a single residue of a quadratic response function (Coriani et al. b; Olsen and
Jørgensen ) as:

B (→ n) = iεαβγ( lim
ω→ωn

ħ(ω − ωn)⟨⟨μ̂γ ; m̂β , μ̂α⟩⟩,ω). (.)

By analogy to the spectral representation expression for the single residue we may also
write (Olsen and Jørgensen ):

lim
ω→ωn

ħ(ω − ωn)⟨⟨μ̂γ ; m̂β , μ̂α⟩⟩,ω = M←n
μα Mn←

mβ μγ(), (.)

whereM←n
μα andMn←

mβ μγ() indicate specific one- and (formally) two-photon transition matrix
elements between state ∣⟩ and state ∣n⟩, respectively.

In a recent experimental study of the ethylene MCD spectrum (Snyder et al. ), the
assignment of the transitions was revised. The proposed new assignment is in agreement with
earlier ab initio calculations of the B term in ethylene (Coriani et al. b). Recently, also cal-
culations of the A term ofmagnetic circular dichroism appeared (Seth et al. ).We also note
that both the A and B terms come out directly from calculations using the complex polarization
propagator approach (Solheim et al. ).
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Nuclear Spin–Related Properties

In the electronic Schrödinger equation defined by the Hamiltonian of > Eq. ., there are
no terms dependent on the isotopic species of the nuclei. The electron–nucleus and nucleus–
nucleus interactions are described only as interactions of point charges. In particular, no
hyperfine interactions dependent on the nuclearmagneticmoments are included. To determine
molecular properties dependent on the nuclear magnetic dipole moments we thus considered
an extension of this Hamiltonian, > Eqs. .–., assuming that the magnetically active
nuclei are represented by point magnetic dipoles. The related properties of the nucleus – its
spin and magnetogyric constant – enter the definitions of the molecular properties as known,
constant factors.

All the effects which determine the existence of nuclearmagnetic resonance (NMR) spectra
are due to the magnetic moments of the nuclei. Each magnetically active nucleus contributes
to the magnetic field through the magnetic vector potential > Eq. .. In the NMR spectrum
we observe the effects due to the interaction of this locally induced magnetic field with the
applied external magnetic field and with other magnetically active nuclei in the molecule. The
richness of the NMR spectrum arises from the dependence of both these interactions on the
electronic structure. Within a molecule, each nucleus is shielded by the electrons, and due to
this shielding the effective, local magnetic field differs for different nuclei. Similarly, the interac-
tion of two magnetic dipole moments – determining the spin–spin coupling in NMR spectra –
depends not only on the distance between two nuclei, but also on the electronic structure of the
molecule. Moreover, in contrast to the direct dipole–dipole interaction, this electron-mediated
contribution – the indirect spin–spin coupling tensor – does not vanish in isotropic media.We
focus in this section on the calculation of the linear response properties that determine these
effects.

Due to the importance of NMR spectroscopy in modern chemical research, the shield-
ing and spin–spin coupling constants are undoubtedly the most important properties which
depend on the nuclear spin. Nevertheless, we analyze here also other phenomena proportional
to the magnetic moment of a nucleus. The existence of an external magnetic field affects the
rotational spectrum; similarly, splittings in the rotational spectrum will also appear due to the
field associated with the nuclear magnetic dipole moment and these splittings are described
by the nuclear spin–rotation constant (NSRC). Indeed, in high-resolution molecular beam
and microwave spectroscopies, the effective Hamiltonians describing the rotational spectrum
include the contributions to the rotational energy levels due to the presence of the spin–rotation
interactions, as well as the interactions between two nuclear spin–magnetic moments, and the
electric field gradients at the nuclei (see Vaara et al. () and references therein for more
details).

NMR Effective Spin Hamiltonian

Let us first consider the standard interpretation of the NMR spectrum. The parameters used
to define it – the shielding constants and spin–spin coupling constants – are obtained from
an effective NMR Hamiltonian H

NMR. This operator acts in the space defined by all possible
arrangements of the nuclear spins. The eigenvalues ofHNMR determine the transition energies
as the differences between different nuclear spin states in the molecule, and the eigenvectors
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determine the arrangement of the nuclear spins with respect to the external field. The effective
NMR Hamiltonian is written as (Abragam ):

H

NMR
= −

∑

K
BT

( − σK)mK +

 ∑

K≠L
mT

K (DKL +KKL)mL , (.)

where σK is the shielding tensor (see > section “Nuclear Magnetic Shielding”) and KKL is
the reduced indirect spin–spin coupling tensor (see > section “NMR Indirect Spin–Spin Cou-
pling”). We recall that the nuclear magnetic dipole moment is related to the nuclear spin,
mK = μN gKIK , see > Eq. .. Finally, DKL is the direct interaction of the magnetic dipoles.
The effective Hamiltonian does not include theHNq operator, > Eq. ., which describes the
interactions due to the quadrupole moment of the nucleus and the electric field gradient at the
nucleus (as discussed in > section “Electric FieldGradient at the Nucleus,Nuclear Quadrupole
Coupling Constant,” HNq can be related to the contributions quadratic in IK). The reason for
this is that in isotropic media the nuclear quadrupole interaction does not contribute to the
nuclear spin energy levels, but only to the relaxation processes in the nuclear spin system – thus,
it only affects the shapes of the spectral lines, and not their positions.

The effective NMRHamiltonianHNMR has no explicit dependence on the electronic struc-
ture. It includes two electron-independent contributions, the nuclear Zeeman term −BT

⋅mK
and the classical direct dipolar coupling of the nuclear magnetic momentsmT

KDKLmL . All the
effects of the electronic structure are incorporated in the nuclear magnetic shielding tensors
σK , and the reduced indirect nuclear spin–spin coupling tensors KKL .

In order to calculate the shielding and indirect spin–spin coupling tensors, we employ the
perturbation expansion of the molecular Hamiltonian, discussed in > section “TheMolecular
Hamiltonian.” As indicated by > Eq. ., in the perturbation expansion of the Schrödinger
equation we have to consider all contributions that are either linear or bilinear in B andmK for
the shielding constants, and those linear or bilinear in mK and mL for the indirect spin–spin
coupling constants. Since the perturbing operators are time independent, both the shielding
and spin–spin coupling tensors can be expressed as energy derivatives.

For a rotating molecule in an isotropic medium, the NMR spin Hamiltonianmay be written
as (assuming the external magnetic field is directed along the Z axis):

H

NMR
iso = −

∑

K
B ( − σK) mK ,Z +


 ∑

K≠L
KKL mT

K ⋅mL . (.)

The direct spin–spin couplings DKL are purely anisotropic and vanish in the rotational averag-
ing, while for the shielding and indirect spin–spin coupling tensors the averaging leads to what
is commonly referred to as the nuclear shielding constants σK and the reduced indirect nuclear
spin–spin coupling constants KKL :

σK =



Tr σK , (.)

KKL =


Tr KKL . (.)

The name “scalar coupling” is sometimes used for the indirect spin–spin interaction; this is
rather unfortunate, and one should keep in mind that we discuss a tensor even when the
individual components are not observed.

The numerical values of the shielding and indirect spin–spin coupling constants are deter-
mined in experiment by fitting the solutions of the nuclear spin equation with the effective
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Hamiltonian > Eq. . to the observed spectrum.TheNMR spin Hamiltonian is usually not
expressed in terms of the reduced indirect spin–spin coupling tensorsKKL , but rather in terms
of the indirect spin–spin coupling tensors JKL , which are related to the reduced tensors as:

JKL =

h
μNgK μN gLKKL . (.)

The reduced coupling tensors KKL are independent of the nuclear g factors, and therefore, in
contrast to JKL , can be used to compare the strengths of the couplings between nuclei with
different gK values.

An example of an NMR spectrum is shown in > Fig. -. The positions of the three groups
of peaks are determined by the shielding constants and the fine structure within each group of
peaks is determined by the spin–spin coupling constants. Both proton spectra have been simu-
lated assuming no coupling toC atoms (i.e., for C).We note here that the changes in the energy
levels due to the screening of the nuclear magnetic moments, reflected in the magnetic shield-
ing constants, depend on the external magnetic field induction, whereas the changes induced
by the spin–spin coupling constants (the splitting within each group of lines) are independent
of the external magnetic field induction.

geminal cis trans

⊡ Fig. -
Simulated MHz proton NMR spectra of CHF. Top – ab initio, bottom – experimental values
of shielding and spin–spin coupling constants. The labels define the position of the relevant pro-
ton with respect to the fluorine. The shielding constants and the Fermi contact contributions to
the coupling constants were computed at the CCSD level, the other theoretical values are taken
from Helgaker et al. (), where the experimental data were also discussed
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NuclearMagnetic Shielding

The nuclear magnetic shielding tensor σK can be determined from the equation:

∂E(B,mK)

∂B ∂mK
∣

B=,mK=
= σK − , (.)

where the second term represents the direct Zeeman interaction between the nucleus and the
field. From the form of the energy derivative, as well as the bilinear nature of the interaction
described by the shielding tensor appearing in the effective NMR Hamiltonian, it is clear that
in the molecular Hamiltonian the terms that are linear and bilinear in the external magnetic
field induction and the nuclear magnetic moments should be considered. Collecting them and
writing the contributions in terms of expectation values and response functions, we find for
closed-shell systems:

σK ,αβ = ⟨∣Ĥ
B,K
αβ ∣⟩ + ⟨⟨Ĥ

B
α ; Ĥ

K(PSO)

β ⟩⟩ = σdia
K ,αβ + σpara

K ,αβ . (.)

As for the magnetizability, there are two contributions to the shielding: the so-called dia-
magnetic contribution σdia

K , which is obtained as the expectation value ⟨∣ĤB,K
∣⟩ and the

paramagnetic contribution σpara
K , calculated as a linear response function ⟨⟨ĤB; ĤK(PSO)

⟩⟩.
The shielding tensor is a nonsymmetric tensor of rank two.The principal axis system (PAS)

is determined by the diagonalization of the symmetric part of the tensor. The shielding con-
stant, already introduced in > Eq. ., is defined as the isotropic part; we can also define the
anisotropy (Smith et al. )

σanis = σPAS
 −



(σPAS

 + σPAS
 ), (.)

as well as the asymmetry:

ηasym =

(σPAS
 − σPAS

 )

(σPAS
 − σiso)

, (.)

where it is assumed for the principal axis components of the shielding tensor that σPAS
 ≥ σPAS

 ≥

σPAS
 . Unfortunately, there are different conventions for the ordering of the principal shielding

axes which can lead to much confusion when comparing literature values of anisotropies and
asymmetries. To circumvent these problems it has been proposed that shielding tensor results
should be reported in terms of the span and the skew, defined as (Mason ):

Ωspan = σPAS
 − σPAS

 , (.)

κskew =

 (σiso − σPAS
 )

Ωspan
. (.)

The antisymmetric part does not affect the standard NMR spectrum (that is why the rank-
tensor has been disregarded above); however, it affects the relaxation rates (Anet et al. ).

Since the magnetic dipole operator appears in the expression for the paramagnetic contri-
bution to the shielding tensor, the calculated quantity will depend on the choice of a global
gauge origin. Similarly, for the diamagnetic contribution an origin dependence can easily be
seen from the definition of the operator ĤB,K in > Eq. .. Hence, the partitioning of the
nuclear shielding into dia- and paramagnetic contributions depends on the choice of global
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gauge origin. Any interpretation attributed to the individual contributions is, therefore, lim-
ited to the applied computational approximation – in particular, care should be exercised when
results for different nuclei in different molecules are compared. When the gauge origin is cho-
sen to be the nucleus of study, the paramagnetic contribution to the shielding tensor is related
to the electronic contribution to the nuclear spin-rotation constant; see > Eq. . below.We
note, however, that this relation is true only in a nonrelativistic approach.

The dependence of the dia- and paramagnetic contributions to the shielding on a global
gauge origin means that in approximate calculations the nuclear magnetic shielding tensors
will display a dependence on a gauge origin. This can be avoided through the introduction of
local gauge origins, as described in > section “Magnetic Properties.” In addition to the London
orbital approach other methods have also been applied to enable the calculation of origin-
independent nuclear magnetic shielding constants, such as the individual gauge for localized
orbitals (IGLO) method developed by Kutzelnigg (Kutzelnigg ; Schindler and Kutzelnigg
) and various continuous transformation of the origin of the current density (CTOCD)
methods developed by Lazzeretti, Malagoli, and Zanasi (Lazzeretti and Zanasi ; Lazzeretti
et al. ; Zanasi et al. ).

The shielding constant is dimensionless, and is expressed in ppm (parts per million). This
unit reflects the role of the shielding in comparison to the electron-independent direct Zeeman
interaction of the nuclear magnetic moment with the external field (> Eq. .). We can
get a physical understanding of the nuclear shielding by considering that the electrons in the
molecule create an additional magnetic field, acting as a correction proportional to the external
field and leading to the local magnetic field

Bloc
K = ( − σK)B. (.)

When σK is positive, it means that the presence of electrons leads to a decreased local mag-
netic field experienced by the nuclear magnetic moments – that is, the electron density shields
the nuclear magnetic moments from the external magnetic field, a concept that explains the
origins of the term shielding constant (we note that shielding constants can also be negative).
The values of the shielding constants for various elements differ widely, as do their variations
with molecular structure. In general the variation of the shielding constants increases with
increasing atomic number – ranging from – ppm for light atoms to ≈ ppm for Pb (see
also > Table -). The range of shielding constants for a particular nucleus is relevant when
we compare the computed and experimental spectra, for instance to assign the peaks in the
NMR spectrum to specific nuclei. The required accuracy for the shielding of hydrogen may be
≈. ppm, whereas for carbon or nitrogen nuclei it may be sufficient to obtain results accurate
to ≈ ppm.

Let us also briefly consider the shielding constants in paramagnetic molecules. In this case
we have a total electron spin S which implies a set of S +  degenerate spin states.These differ-
ent states will be split when an external magnetic field is applied to the sample. The ensemble
average of the projection of the spin operator along the Z axis can be obtained inmuch the same
way as the magnetization induced in a molecular sample containing unpaired electrons as:

⟨SZ⟩ = −
ge

S (S + )
kT

BZ . (.)

The total magneticmoment of the electrons becomes directly proportional to the external mag-
netic field induction, and thus additional contributions to the nuclear shielding constant arise,
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⊡ Table -
Absolute shielding (in ppm) of selected nuclei in commonly used standard reference moleculesa, b

NMR standard
Nucleus, Absolute Primary
standard shielding source Absolute shielding Shift δ
H in TMS(l) . H . Sundholm and

Gauss ()
. Jackowski et al.

()
C in TMS(l) . CO . Raynes

et al. 
. Jackowski et al.

()
N in
CHNO(l)

−. NH . Jameson
et al. 

−. Jameson
et al. 

O in HO(l) . CO −. Wasylishen and
Bryce ()

. Wasylishen and
Bryce ()

aSee the references for experimental details and error bars
bGas phase NMR or isolatedmolecule ab initio values for primary source, (l) = liquid

since we need to consider new terms linear and bilinear in the nuclear and electronic mag-
netic moments. From the terms in the molecular Hamiltonian introduced in > section “Small
Terms Due to the Vector Potential in the Hamiltonian” we see that these are the hyperfine
interactions involving the Fermi contact and spin–dipole operators, ĤK(FC) and ĤK(SD) given
in > Eqs. . and > ., respectively. Using the ensemble average for the spin-projection
given in > Eq. ., we find that the contributions to the nuclear shielding constants due to
these hyperfine interactions are (Rinkevicius et al. ):

σ con,FC
K ,αβ =

μB
kT

S (S + ) ⟨∣ĤK(FC)
αβ ∣⟩, (.)

σ con,SD
K ,αβ =

μB
kT

S (S + ) ⟨∣ĤK(SD)
αβ ∣⟩. (.)

These contributions are closely related to the hyperfine interactions observed in ESR spec-
troscopy (see > section “ESR Hyperfine Coupling Tensors”).The above expressions have been
derived assuming kT to be much larger than the separation of the different electronic spin
states.We have also for simplicity ignored higher-order corrections arising from the spin-orbit
interaction, which for many open-shell species can be quite significant.

It is worth noticing that the so-called contact contributions to the nuclear shielding ten-
sor, > Eqs. . and > ., are temperature dependent, and thus behave differently than
the orbital contributions. Experimentally, the contact contributions are often quite large and
assumed to vary much more with molecular structure than the dia- and paramagnetic contri-
butions, and thus these latter two terms are often assumed constant in different chemical species
or taken to be identical to closely related closed-shell molecules. However, theoretical studies
have shown that this is a rather crude approximation, and it may fail to correctly describe the
total shifts due to the contact and orbital terms (Rinkevicius et al. ).

A direct comparison of calculated shielding constants with experiment is hampered by the
difficulty in experimentally determining the absolute shielding constants calculated by theory.
The lack of experimental data for absolute shielding constants hasmany origins: first, the shield-
ing constant is defined as a correction to the direct interaction between the external magnetic
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field induction and the bare nuclearmagneticmoment.However, it is impossible to experimen-
tally determine this direct interaction. Moreover, determining the magnetic field induction of
an NMR spectrometer with sufficient accuracy is difficult.

The shielding constant can be considered as a measure of the local field experienced by
a nuclear magnetic moment due to the shielding of the external magnetic field by the elec-
tron density.The relativedifference in the local magnetic fields around different nuclei provides
similar information and for this reason experimental NMR studies report the chemical shift δK
defined as:

δK =

σK(reference) − σK(sample)
 − σK(reference)

≅ σK(reference) − σK(sample). (.)

The trends for the absolute shielding are thus reversed to those for the chemical shift – that is,
δK < δL means that the nucleus K is more shielded than nucleus L. The chemical shifts are
taken relative to the shielding in a selected molecule (see > Table -); for instance, liquid
tetramethylsilane (TMS) is used as a standard reference for C . Unfortunately, large molecules
in solution or in condensed phase are chosen for many nuclei to define experimental chemi-
cal shifts. It is not yet possible to perform benchmark calculations for these standard systems;
moreover, it is often not even possible to compute the shielding in these reference compounds
at the same level of accuracy as for smaller molecules that are of interest.

There is a semi-experimental approach for determining absolute shielding scales, based on
the relationship between the paramagnetic shielding constant and the nuclear spin–rotation
constants, as indicated in > Eq. . below. The absolute shielding constants have been used
to obtain the magnetic dipole moments of bare nuclei from NMR spectra – in this case, it is
not sufficient to measure the chemical shifts. Similarly to the electric quadrupole moments,
improved values of the nuclear magnetic dipole moments can now be determined applying
increasingly accurate absolute shielding constants obtained in ab initio calculations for small
molecules (Jaszuński and Jackowski ).

The use of perturbation-dependent basis sets is mandatory in theoretical studies of nuclear
shielding constants. This is particularly important in order to ensure that the calculated shield-
ing constants are independent of the choice of gauge origin. At the same time, for smaller basis
sets, the use of perturbation-dependent basis sets improves basis set convergence compared to
calculations only employing conventional basis sets. Moreover, the convergence may be sig-
nificantly improved by applying property-optimized basis sets, such as the pcS-n basis sets
optimized by Jensen for DFT calculations of the shielding constants (Jensen ).

For atomic systems, theory candetermine rather accurately the absolute shielding constants.
First, fairly large nonelectronic contributions such as the zero-point vibrational corrections are
absent. Secondly, because of symmetry only the diamagnetic term – an expectation value, which
is much easier to compute than an accurate value of the response function – contributes. For
instance, for the hydrogen atom the nonrelativistic shielding constant can be calculated as:

σdia
= α

fs
e

me
⟨ ∣


riK

∣ ⟩ = . ppm. (.)

In a similar manner, explicitly correlated calculation of the /riK expectation value leads to an
absolute shielding constant for the helium atom of .ppm (Drake ) (the most
accurate value obtained in a recent study including relativistic, quantum-electrodynamic, and
nuclearmass effects is σHe = . ppm (Rudziński et al. )). For all the rare-gas atoms the
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shielding constants have been computed using a four-component relativistic approach (Vaara
and Pyykkö ). The calculations were performed within the Dirac–Hartree–Fock approx-
imation and, if we assume that the electron correlation effects are small, they provide the
shielding scale for the rare gas atoms.

The development of efficient methods – using perturbation-dependent basis sets and
highly correlated wave functions for the calculation of nuclear magnetic shieldings – has
allowed in practice to reach high accuracy also for shielding constants in molecules (see the
reviews by Gauss and Stanton  and Helgaker et al. ). For instance, the use of carefully
chosen basis sets with the CCSD(T) method has enabled calculations of the equilibrium shield-
ing constants with an accuracy of about – ppm for C shieldings in a range ofmolecules (Auer
et al. ). Most importantly, it has been demonstrated that systematic convergence of the
results with improvement in the level of the calculation can be achieved. In order to obtain
highly accurate shielding constants comparable with experiment, in addition to the effects of
electron correlation, vibrational effects also have to be considered. The latter are obviously
mandatory to estimate the isotopic substitution effects, since for a fixed molecular geometry
the shielding constants are independent of the nuclear masses. The most accurate and reli-
able results are presently obtained in this manner – within the CCSD(T) approach, applying
GIAOs and taking into account the vibrational effects [see for instance a recent F shielding
study (Harding et al. a)]. CCSD(T) shielding constants may be computed for increasingly
large molecules, as shown by benzene calculations with basis sets including up to  func-
tions (Harding et al. b). Higher-order coupled-cluster methods have also been developed,
but so far their application has been limited to small molecules (Kállay and Gauss ). At
the HF or DFT level, shielding constants may nowadays be computed for molecules with more
than , atoms, with basis sets including over , functions (Kussmann and Ochsenfeld
; Ochsenfeld et al. ).

In practice, care should be exercised when using the data of > Table - to analyze experi-
mental chemical shifts and computed absolute shielding values.The differences between various
levels of approximation in the theory are often difficult to foresee, and variations of the exper-
imental conditions may also lead to unpredictable changes in the shielding. When a particular
approximation is used in a sequence of calculations, a comparison of the calculated chem-
ical shifts with the corresponding experimental data might be more appropriate. Moreover,
whereas there is no guarantee that zero-point vibrational effects or changes due to intermolec-
ular interactions will be identical for nuclei of interest in twomolecules (or evenwithin a single
molecule), one may expect that these effects partly cancel out for two nuclei (Ruud et al. ),
and thus that higher accuracy may be achieved for chemical shifts than for absolute shielding
constants.

To obtain the shielding constants in ppm, the computed values in a.u. are multiplied by
 × α

fs ≅ ..

Shielding Derivatives

The nuclear shielding depends, as does the molecular energy itself, on additional sources of
perturbations, such as electric and magnetic fields. Assuming these perturbations to be static,
we may perform a Taylor expansion of the nuclear shielding tensor in the presence of the addi-
tional perturbations.As the simplest example, let usmention the perturbation–induced changes
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in the shielding in the presence of a static electric field. They can be described in terms of so-
called shielding polarizabilities (a reviewwas given by Raynes ), where for instance the first
shielding polarizability is given by:

∂σK(F)
∂F

∣

F=
=

∂E (B,mK ,F)
∂B∂mK∂F

∣

B,mK ,F=
= ⟨⟨ĤB,K ; μ⟩⟩ + ⟨⟨ĤB; ĤK(PSO), μ⟩⟩. (.)

Wenote that there is a route to origin-independent shielding polarizabilities, as the combination
of origin-independent linear response calculations of the shielding constant in the presence of
a finite electric field can be used in a finite-field procedure. This allows for the calculation of
origin-independent shielding polarizabilities using for instance London atomic orbitals (Rizzo
and Gauss ).

Spin-Orbit Corrections to Nuclear Magnetic Shielding

The formalism presented above for calculating the nuclear shielding constants works well for
molecules containing elements from the first two or three rows of the periodic table. However,
when the molecule contains heavier nuclei, this formalismmay fail to reproduce correctly even
the qualitative features of all the shielding constants, also for light elements such as hydrogen
or carbon in a molecule. A classic example of this failure of > Eq. . is shown in > Fig. -,
which illustrates the hydrogen shielding in the hydrogen halides.Whereas the hydrogen shield-
ing observed experimentally increases strongly with increasing atomic number, only a small
increase is observed when > Eq. . is used to calculate the shielding constants. The reason
for this failure can be traced to relativistic effects, and in the case of the hydrogen shielding
in > Fig. - to the effects of the spin-orbit interactions.

Some of the most important relativistic effects – such as the discussed spin-orbit contri-
butions to the shielding of light elements bonded to heavy atoms – can be calculated using
perturbation theory, beginning with the nonrelativistic treatment and considering the spin-
orbit operator as an additional perturbation representing one of the relativistic corrections. The
spin-orbit operator provides a coupling between the orbitalmagneticmoment of the electron, in
the case of NMR induced by an external magnetic field induction, and either its own or another
electron’s spin-magnetic moment. This induced spin-magnetic moment may in turn interact
with the nuclear magnetic moments through the Fermi contact (> Eq. .) or spin-dipolar
(> Eq. .) mechanism.These contributions involve three perturbing operators, and they are
thus proportional to quadratic response functions such as ⟨⟨ĤK(FC)

+ ĤK(SD); ĤSO, ĤB
⟩⟩.

In addition, in the presence of an external magnetic field there is a term in the spin-orbit
operator which is proportional to the external magnetic field induction (we recall here the dis-
cussion of the general form of the spin-orbit operators in > section “Small Terms Due to the
Vector Potential in the Hamiltonian,” > Eqs. .–.). The operator ĤSO,B(n) can in turn
interact with the Fermi contact and spin-dipole operators, leading to second-order contribu-
tions to the shielding tensor which are proportional to triplet linear response functions (Vaara
et al. ) of the form ⟨⟨ĤK(FC)

+ ĤK(SD); ĤSO,B(n)
⟩⟩.

For the shielding constants of the heavy elements themselves, relativistic effects arising
from the other terms in the Breit–Pauli Hamiltonian (see > section “The Molecular Breit—
Pauli Hamiltonian ”) are in general found to be more important than the spin-orbit correc-
tions (Manninen et al. ). In general, relativistic effects on the heavy-atom shielding are due
to a large number of contributions (Fukui et al. ; Ruiz de Azúa et al. ) in contrast to



  Molecular Electric, Magnetic, and Optical Properties

28

30

32

34

36

38

40

42

44

HF HCl HBr HI

Non-relativistic
Relativistic

+

+

+

+

Experiment

⊡ Fig. -
The proton shielding constants (in ppm) in the HX series (X= F, Cl, Br, I) calculated with and with-
out spin-orbit coupling contributions. Also included are the available experimental data. The
theoretical data are CASSCF results from Vaara et al. ()

the hydrogen shieldings in molecules containing heavy elements, which are dominated by the
spin-orbit corrections. Although there have been several studies of scalar relativistic effects on
shielding, yielding results in good agreementwith four-component Dirac–Hartree–Fockmeth-
ods, the Breit–Pauli Hamiltonian is not variationally bound and thus the perturbation theory
approach may fail for heavy elements.

Nuclear Spin Rotation Constants

The interaction between the nuclear magnetic dipole and the effective magnetic field of a rotat-
ing molecule at that nucleus leads to a splitting in the rotational spectrum (Flygare ; Gauss
et al. ). This splitting is usually expressed in terms of the nuclear spin IK and the total
rotational angular momentum J as

ΔEK = −ITKMKJ, (.)

where MK = M

el
K + M

nucl
K is the nuclear spin–rotation tensor in the Born–Oppenheimer

approximation.More precisely, the energy shift depends on the nuclearmagneticmoment inter-
acting with the magnetic field induced by the molecular rotation, so we shall proceed from the
equivalent equation,

ΔEK = −
π

μNgK
mT

KMKJ. (.)
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The electronic contributionMel
K is a second-order property

M

el
K = −

μNgK
π

∂Eel

∂mK∂J
∣

mK ,J=
, (.)

and thus it can be obtained from the linear response function I−⟨⟨ĤK(PSO); l̂K⟩⟩, where I is the
moment-of-inertia tensor and the angular momentum is evaluated with respect to nucleus K .
The nuclear contribution is

M

nucl
K = α

fsμN gK ∑

L≠K
ZL

R
LK − RLKRT

LK

R
LK

I−. (.)

The principal axes of the nuclear spin–rotation tensor are determined by themolecularmoment
of inertia. Indeed, the magnetic moment induced by the rotational motion is well defined only
in the rotation frame. Spin–rotation constants are related to the difference between the total
shielding (for instance obtained using LAOs) and the diamagnetic part of the shielding derived
from a conventional calculation with RK as the global gauge origin, σdia

K (RK),

M

el
K =MK −M

nucl
K =

ħ
μB

μNgK
π

[σK − σdia
K (RK)]I− (.)

in analogy with our definition of the paramagnetic magnetizability, > Eq. .. Hence,Mel
K

is related to the correspondingly defined paramagnetic shielding:

σpara
K (RK) = ⟨⟨−m (RK) ; ĤK(PSO)

⟩⟩, (.)

as (Flygare ):

σpara
K (RK) =

μB
ħ

π
μNgK

M

el
KI. (.)

The additional contributions to the spin–rotation constants arising in paramagnetic molecules
have been discussed by Minaev et al. ().

As the spin–rotation interaction splits lines in the rotational spectrum, the unit of the spin–
rotation constant is kHz.

NMR Indirect Spin–Spin Coupling

The interaction of the magnetic dipoles of two nuclei, including also the classic dipolar inter-
action between the bare nuclei, can be determined (compare > section “NMR Effective Spin
Hamiltonian”) from perturbation theory as the second derivative of the energy

∂E(mK ,mL)

∂mK ∂mL
∣

mK=,mL=
= KKL +DKL , (.)

where KKL is the reduced indirect spin–spin coupling tensor given as the derivative of
Eel

(mK ,mL), and DKL describes the direct interaction of two nuclear dipoles. The reduced
spin–spin coupling constants, independent of the nuclear magnetogyric ratios, should be used
(for instance) to compare the strength of the coupling between pairs of different nuclei, and to
analyze relative accuracies of calculated constants.
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In standard gas- or liquid-phase NMR spectra the interaction of magnetic dipoles leads
to a splitting of the lines of the spectrum, described by the NMR indirect spin–spin coupling
constant JKL . This constant is the trace of the tensor (> .):

JKL =

h
μN gK μNgLKKL .

The total spin–spin coupling tensor includes (see, e.g., Vahtras et al. b) the so-called dia-
magnetic spin-orbit contribution – ⟨∣ĤK ,L(DSO)

∣⟩ – obtained as the expectation value of the
corresponding operator (> .), and a sum of linear response terms ⟨⟨ĤK(PSO); ĤL(PSO)

⟩⟩

and ⟨⟨ĤK(FC)
+ ĤK(SD); ĤL(FC)

+ ĤL(SD)

⟩⟩.
The paramagnetic spin-orbit operator ĤK(PSO) (> .) does not depend on electron spin,

whereas the Fermi contact ĤK(FC) and spin–dipole ĤK(SD) operators (> Eqs. ., > .) are
electron-spin dependent.Therefore, as shown for instance by the sum-over-states description,
in the calculation of the PSO term only singlet excited states have to be considered. In contrast,
the FC–FC, SD–SD, and mixed FC–SD contributions depend on the triplet excited states.This
leads to computational difficulties when the reference state function is not stable with respect to
triplet perturbations. For instance, when theHF approximation is used to describe the reference
state, completely meaningless results may be obtained.

JKL is an asymmetric tensor, and the different terms (DSO, PSO, SD, FC, and mixed SD–
FC) yield contributions of different symmetry. For example, the term ⟨⟨ĤK(FC); ĤL(FC)

⟩⟩ is
fully isotropic, whereas the terms ⟨⟨ĤK(FC); ĤL(SD)

⟩⟩ are fully anisotropic. Therefore, if we are
only interested in the isotropic value of the spin–spin coupling constant, we can express it as
the sum of four contributions:

JKL = JDSO
KL + JPSOKL + JSDKL + JFCKL , (.)

and we do not need to compute the SD–FC terms.They have to be included when all the tensor
components are required (see Buckingham and Love (), Buckingham et al. (), Jameson
() for details).

In addition to NMR spectra, microwave spectra also may provide information on the spin–
spin coupling (Vaara et al. ). In particular, for diatomic molecules accurate data can be
obtained from molecular beam electric and magnetic resonance when the splitting of a single
rotational–vibrational state can be observed. One of the parameters of this splitting (usually
called c) is equal to the isotropic value of the indirect spin–spin coupling tensor, another one
(c) depends both on the direct coupling (∝ R−

KL) and on the anisotropy of the tensor.
In contrast to the shielding constants, London orbitals are neither needed nor used in any

calculation of spin–spin coupling constants.There is no dependence of the perturbing operators
on the external magnetic field and thus no gauge origin problem.

The basis-set dependence of the Fermi contact term has been often a source of problems in
the calculation of spin–spin coupling constants. To describe properly the response to the δ (riK)
perturbation we need a basis set which is sufficiently flexible in the region of the nucleus. An
illustration of the slow convergence of computed JFC values for the simplest example – the HD
molecule – is given in > Table -. We can see that practically only the last added function
does not affect the result, whereas there are very few other properties where an s-type function
with so high exponents as , would be needed for the H atom.

In general, two modifications of the standard energy-optimized basis sets are needed: the
standard functions should be uncontracted and tight s, p, and d functions should be added.
The s-type functions are of particular importance for the Fermi contact contribution, whereas
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⊡ Table -
The Fermi contact contribution to the spin–spin coupling constant of HD (in Hz), calculated using
the CCSD Polarization Propagator Approximation (Oddershede et al. )

Basis seta Added s-function exponent JFC

spd .

spd ,  .

spd ,  .

spd ,  .

spd ,  .

spd ,  .

aGaussian-type functions. The effects of additional functions of p- and d-type symmetry are negligible

⊡ Table -
CH, all the contributions to the spin-spin coupling constants (in Hz)a

J(CC) J(CH) J(CH) J(HH)

DSO . . −. −.

PSO . −. . .

SD . . . .

FC . . . .

Total . . . .

aJaszuński and Ruud (), RASSCF-/cc-pCVQZsu results

other functions maybemore relevant for the other contributions. Various basis sets constructed
in this way have been successfully used in ab initio and DFT calculations; further improve-
ment of convergence with the basis set extension is achieved reoptimizing the exponents and
contraction coefficients (Benedikt et al. ; Jensen ).

In > Table - we present, as an example, the different contributions to all the coupling
constants in acetylene. The dominant role of the FC term is typical for many molecules, in
particular for large coupling constants in organic compounds. The SD contribution is often
small, and therefore (being most expensive to calculate) it is sometimes neglected or analyzed
at a lower level of accuracy than the other terms. In some cases such an approach is, however, not
possible. For instance, the FC, PSO, and SD terms, respectively, dominate for different coupling
constants in ClF (Jaszuński ).

To illustrate the accuracy of the results thatmay be achieved for small molecules, we present
in > Table - the values for all the coupling constants in acetylene. The comparison with
experimental data clearly demonstrates that it is necessary to consider the effects of vibration
and rotation (zero-point vibrations and temperature).

Finally, we note that JKL is very sensitive to variations in the molecular geometry. It has
been repeatedly observed that the best results are obtained when the same approximation (for
instance DFT functional and basis set) is used for geometry optimization and for the follow-
ing calculation of spin–spin coupling constants. We refer to the recent reviews discussing the
calculation of spin–spin coupling constants (Aucar ;Helgaker et al. ; Krivdin andCon-
treras ) for a discussion of many practical issues and numerous examples of successful
applications.

The unit of J is Hz; K is given in kg m− s− A− = N A−m− = TJ− (Raynes ).
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⊡ Table -
CH, indirect spin–spin coupling constants (in Hz)

J(CC) J(CH) J(CH) J(HH)

Experiment,

measureda .± . .± . .± . . ± .

Nuclear motion

contributionsb −. . −. −.

Equilibriumgeometry,

from experimentc . . . .

Equilibriumgeometry,

ab initio, MCSCFd . . . .

aGas phase, Jackowski et al. ()
bWigglesworth et al. ()
cCalculated using the nuclear motion contributions given above
dJaszuński and Ruud (). FC term – RASSCF-; other contributions – RASSCF-

Electron Spin–Related Properties

Electron spin resonance (ESR) and NMR are in principle very similar from a theoretical point
of view, involving excitations and de-excitations in the electron and nuclear spin space, respec-
tively. Thus, the effective Hamiltonians have much the same appearance in ESR and NMR
theory, and the structure of the interactions is also very similar from a purely theoretical point
of view.

However, from a computational viewpoint, there is a large difference between electron and
nuclear spin interactions. In the case of the nuclear spin interactions, the Born–Oppenheimer
approximation allowed us to decouple the nuclear spin wave function from the electronic wave
function. This is not possible for the electron spin; indeed, the change in the electron spin state
directly affects also the spatial part of the total electronic wave function. This is in principle
not a problem. In spin-unrestricted approaches, the α and β electrons are treated separately, and
changes of electron spin throughperturbation theory expressions can quite straightforwardly be
included. However, since the spatial part of the orbitals of the α and β spins may differ, the total
electron spin is no longer necessarily a good quantum number (as required for the exact wave
function), giving rise to what is often referred to as spin contamination. Spin contamination can
be avoided forcing the spin to be a good quantum number, for instance by demanding that the
spatial orbitals for the α and β electrons are the same and writing the wave function as a fixed
linear combination of Slater determinants referred to as configuration-state functions (CSFs).
We also note that many open-shell wave functions of low and intermediate spin have strong
multireference character, putting severe constraints on the wave function models that can be
used. An alternative approach to address low and intermediate spin states is through the use of
broken symmetry states (Noodleman ).

We recall that the Hamiltonian, > Eq. ., does not involve the electron spin. Spin-
restricted implementations of electronic structure methods, therefore, only optimize the wave
function parameters of the same spin symmetry as the reference wave function. Since opera-
tors that change the spin symmetry are known not to contribute to the ground-state energy (at
least in the nonrelativistic picture in which spin-orbit effects are ignored), such spin-breaking
wave function parameters are left undefined. This has the consequence that average values of
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triplet-perturbing operators cannot be accurately calculated in spin-restricted approaches, and
an alternative approach to circumvent this problem has been proposed (Fernandez et al. ).
Furthermore, in the calculation of second-order properties, such as for instance spin–spin cou-
pling constants discussed in > section “NMR Indirect Spin–Spin Coupling,” triplet instabilities
in the wave function may occur. We have discussed this problem in > section “NMR Indi-
rect Spin–Spin Coupling” and we will not dwell further on this here. We only note that these
considerations apply to all properties discussed in the following sections.

Spin-Orbit Coupling Constants

The spin–orbit coupling constant is obtained from the single residue of a triplet linear response
function:

lim
ω→ω f

ħ(ω − ωf )⟨⟨Ĥ
SO;Vωf

⟩⟩ω , (.)

whereVω f is an arbitrary operator (corresponding to the excitation vector).There are two terms
in the spin-orbit interaction operator ĤSO (> Eq. .); the contribution to the spin-orbit cou-
pling from the two-electron part is usually smaller than the one-electron contribution, though
it is as large as % for the spin–orbit coupling constant in triplet O (Vahtras et al. c).

The two-electron spin-orbit integrals calculated using the operators in > Eqs. .
and > . of the Breit–Pauli Hamiltonian have three spatial components and lower sym-
metry than conventional two-electron repulsion integrals, and the cost of calculating these
integrals is therefore very high. In order to reduce the costs of computations of spin-orbit
effects, building on the observation that the one-electron contribution dominates, either scaled
one-electron spin-orbit approximations are used (in which an effective nuclear charge is intro-
duced) (Kosegi et al. ) or atomicmean-field approaches are utilized (Hess et al. ). In the
latter approach, the two-electron interactions are included in a mean-field sense, in principle
similar to the way the two-electron repulsion is included in a mean-field sense in Hartree–Fock
calculations.

The spin-orbit coupling is the major intramolecular interaction mechanism responsible for
intersystem crossings, such as singlet–triplet transitions. It should be kept in mind that, in
contrast to, for example, external fields, ĤSO does not describe a perturbation which has a well-
defined physical meaning and arbitrarily modified strength. It is our description of the system
which provides first a set of singlet and triplet states and only next includes ĤSO and yields the
values of the spin-orbit coupling constants. Indeed, within a relativistic framework, the spin-
orbit interaction appears naturally and is included variationally in the optimization of the wave
function. The spin-orbit effects often differ quite substantially in their behavior from the scalar
relativistic effects (as for instance illustrated in the case of the hydrogen shielding constants in
molecules containing heavy elements). It is therefore important, in order to get physical insight
into the role of various relativistic effects, that spin-orbit effects can be addressed separately from
other effects in a four-component framework, and an approach for achieving such a decompo-
sition of the relativistic effects at the four-component level has been proposed (Visscher and
Saue ).

The spin-orbit coupling constant is normally reported in cm−.
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Phosphorescence

When the spin-orbit operator ĤSO is taken into account, the ground and excited state, which
we assumehere to be of singlet and triplet spinmultiplicity, respectively, are no longer pure spin
states – ∣()⟩ and ∣ f ()⟩ – but are contaminated by, to first order in perturbation theory:

∣

()⟩ = −
∑

n

∣

n()⟩ ⟨ n() ∣ĤSO
∣

()⟩

ωn
, (.)

∣

 f ()⟩ =
∑

n

∣

n()⟩ ⟨ n() ∣ĤSO
∣

 f ()⟩

ωf − ωn
. (.)

Including these first-order corrections to the ground- and excited-state wave functions in the
expression for the dipole transition moment, we find that the first-order nonvanishing contri-
bution to the dipole transition moment between a singlet and a triplet state may be written in
terms of a residue of a quadratic response function (Olsen and Jørgensen ; Vahtras et al.
a):

⟨

 ∣μ∣  f ⟩() = lim
ω→ω f

ħ(ω − ωf )⟨⟨μ; Ĥ
SO,Vω

⟩⟩,ω /⟨
 f ∣Vω

∣

 ⟩, (.)

whereVω is an arbitrary triplet operator (determining the excitation vector) and ωmatches the
singlet-triplet excitation energy.

The phosphorescent radiative lifetime τk of the kth triplet spin component of state ∣  f ⟩ is
obtained from the relation:


τk

=

ω
f α


fs

ħ ∑

ν
∣⟨

 ∣μ̂ν ∣  fk⟩∣

, (.)

and thus depends not only on the transition moment from the ground to the excited state, but
also on the excitation energy. The transition moments may vary for different polarizations of
the light, and the average phosphorescent lifetime is dominated by the shortest lifetime, corre-
sponding to the polarization with the largest partial transition rate. The total transition rate is
given in s− , the total lifetime being its inverse.

ESR Effective Spin Hamiltonian

The effective ESRHamiltonian, including also contributions from the nuclear spins and nuclear
quadrupole moments (the latter primarily observable in electron-nuclear double resonance –
ENDOR – spectroscopy), may be written as (Harriman ):

H

ESR
= H

ex
+H

sZ
+H

ZFS
+H

hf
+H

nZ
+H

Nq. (.)

Like the NMR effective Hamiltonian, the ESR effective Hamiltonian contains no reference to
the electronic structure of themolecule, and the different contributions to the ESRHamiltonian
thus describe phenomenologically the interactions present in the molecule.

The first term in > Eq. .,Hex, contributes to the overall energy of interaction between
electronic spin states, but the energy differences are in general too large to be observed by ESR
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spectroscopy. This exchange contribution accounts for the difference in energy between states
of different multiplicity, and the Hamiltonian

H

ex
= −J s ⋅ s, (.)

is often referred to as the Heisenberg Hamiltonian. It is important in the analysis of the spin
states in open-shell species. However, since to a large extent it defines an intrinsic relation
between different electronic states of a molecule, we do not consider it to describe a molec-
ular property in the sense we have defined, and we will, therefore, not discuss this contribution
any further.

The second term in > Eq. .,HsZ, is the electron spin–Zeeman interaction describing
the interaction between the spin-magnetic moment of the electron and the external magnetic
field induction

H

sZ
= μBSTgB, (.)

where g is the electron g tensor. We use here S to indicate the total effective spin of the system.
For a free electron, the strength of this interaction would be determined by > Eq. . and thus
be given by the free electron g factor (ge ≈ ., in which the quantum-electrodynamic
corrections to the electron g factor are included). However, unpaired electrons in a molecule
experience a local magnetic field, arising from a partial shielding (or deshielding) due to the
other electrons in the molecule, which leads to a shift relative to ge, and therefore:

g = ge + Δg. (.)

H

ZFS is the spin–spin interaction:
H

ZFS
= STDS, (.)

which gives rise to the zero-field splitting of the ESR spectrum, since it can be observed even
without an external magnetic field. It is described by the dipole interaction between the spin-
magnetic dipoles of two unpaired electrons, and is thus only present in states with more than
one unpaired electron, such as for instance triplet states. This term will in general lead to a
splitting of the different spin sublevels in the triplet state.

The electronic g tensor and the electron spin–spin interactions (if present) are in most
cases the dominating contributions to the ESR spectrum.The interactions of the spin-magnetic
moments of the electrons with the nuclearmagnetic moments give rise to hyperfine interaction
in the ESR spectrum described byHhf :

H

hf
=
∑

K
(Afc

KS
T
⋅ IK + STAsd

K IK) . (.)

There are thus hyperfine interactions arising from all nonzero nuclear magnetic moments. We
note from > Eq. . that the hyperfine interactions in general can be divided into two contri-
butions. The first term is purely isotropic and has the form of a contact interaction, whereas the
second term Asd

K corresponds to the dipolar interaction of the electron spin-magnetic moment
and the nuclearmagneticmoment, and is purely anisotropic.The isotropic hyperfine interaction
measures the spin density at a given nucleus.

The last terms in > Eq. . are in general not observable in ESR spectroscopy, because
of the increased linewidths due to the presence of the unpaired electrons. The nuclear Zeeman
interaction is given by:

H

nZ
= −μN∑

K
gKBT

⋅ IK , (.)
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and is analogous to the interaction included in the NMR effective Hamiltonian > Eq. .,
where the shift with respect to the nuclear g factor was described in terms of the shielding con-
stant.The final term, the nuclear quadrupole interactionHNq, also only involves the two nuclear
spins and has already been discussed in > section “Electric Field Gradient at the Nucleus,
Nuclear Quadrupole Coupling Constant.”

ESR Electronic g-Tensor

In this section we concentrate on the part of the ESR effective Hamiltonian describing the
interaction between the electron spin and the external magnetic field, > Eq. .. In the
case of molecules with a single open-shell electronic doublet state, as well as high-spin radi-
cals in the strong field limit, the energy difference between the eigenvalues of the effective ESR
Hamiltonian can be written as

ΔE = μB
√

BTGB, (.)

where we have introduced the so-called symmetric G tensor, measured in experiment, and
defined as G = g ⋅ gT. The shift in the g factor may be anisotropic, and thus the g tensor is
a  ×  nonsymmetric tensor. Both G and g tensors provide the same information and are thus
suitable for analyzing EPR data. We emphasize that the effective Hamiltonian employed here
requires the use of degenerateperturbation theory for a proper analysis, since we consider states
that are degenerate in the absence of the perturbation. We do not discuss these aspects in detail
here, referring instead to Löwdin and Goscinski () for a general introduction to this topic,
and to Rinkevicius et al. () for the g tensor in particular.

Within degenerate perturbation theory at the nonrelativistic level, there are in principle
two contributing terms arising from expectation values of the spin–Zeeman (> Eq. .) and
the magnetic dipole operator (> Eq. .), respectively. The latter can be shown to be zero,
and the effect of the spin–Zeeman operator is to recover the free-electron g factor, ge. Thus,
within a purely nonrelativistic picture, there would be no effect of the electronic structure of
the molecule on the interaction between an external magnetic field and the magnetic moment
of the unpaired electron.

Including relativistic effects to order α
fs leads to three corrections to the electronic g tensor

(we consider here only the shift Δg relative to the free-electron value):

Δg = ΔgSO + ΔgRMC
+ ΔgGC +O(α

fs) . (.)

Of these three contributions, the linear response contribution arising from the spin-orbit oper-
ator interacting with the orbital magnetic dipole operator is in most cases dominating, giving
corrections to the g tensor of the form:

ΔgSOαβ =


⟨SZ⟩
⟨⟨ĤB

α ; Ĥ
SO
β ⟩⟩, (.)

where ⟨SZ⟩ is the expectation value of the z component of the total electron spin.The relativistic
mass correction ΔgRMC and gauge correction ΔgGC contributions are obtained as expectation
values:

ΔgRMC
αβ =


⟨SZ⟩

⟨ ∣ĤSZ/KE
αβ ∣ ⟩ , (.)

ΔgGCαβ =


⟨SZ⟩

⟨ ∣ĤGC
αβ ∣ ⟩ . (.)
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Here, ĤSZ/KE is the kinetic energy correction to the spin–Zeeman term given in the Breit–Pauli
Hamiltonian (> Eq. .), whereas ĤGC

= ĤSO,B()
+ ĤSO,B() is the sum of the one- and

two-electron magnetic-field corrections to the spin-orbit operator, > Eqs. . and > ..
Higher-order relativistic corrections have also been derived (Rinkevicius et al. ). We note,
however, that the electron g tensor is a property for which a two- or four-component relativistic
framework provides the most elegant expression, with the g tensor being reduced to a simple
expectation value of the orbital magnetic dipole operator (see for instance van Lenthe et al.
()).

As for other open-shell properties, most calculations employ unrestricted approaches,
in which conventional response-theory methodology can be used to calculate the relevant
quantities if performed starting from a nonrelativistic wave function and using perturbation
theory to include the relativistic corrections, as applied in Geurts et al. (), Noodle-
man and Baerends (). Spin-restricted approaches have also been applied, though it is
important in this case to ensure that the triplet-perturbing operators acting on an open-shell
reference state properly take all possible excitations into account (Rinkevicius et al. ).
We also note that multireference CI and MCSCF wave functions have been used to calcu-
late the g tensor of small molecules (see, e.g., Engström et al. (), Lushington and Grein
()).

The computed electronic g tensor will in general also be origin dependent in approximate
calculations, since it depends on the external magnetic field. The origin dependence of the
orbital magnetic dipole operator is canceled by the origin dependence of the gauge-correction
term for exact states and wave functions. This means that in approximate calculations, care
should be exercised to ensure gauge origin independence, for instance using London atomic
orbitals (Ciofini et al. ). In general, however, electronic g tensors appear to be less sensitive
than other properties to the choice of gauge origin (see for instance Kacprzak and Kaupp ),
although exceptions have been observed.

Zero-Field Splitting

In degenerate perturbation theory, the ZFS of a spin-degenerate state S+Ψ is evaluated from
the eigenvalues of the matrix

∣ H

ZFS
i j −Wδi j∣ = , (.)

where

H

ZFS
i j = ⟨

S+Ψ i
 ∣ Ĥ

S,S
∣

S+Ψ j
⟩

−
∑

n,λ
∑

k

⟨

S+Ψ i
 ∣ Ĥ

SO
∣

λΨk
n ⟩⟨

λΨk
n ∣ ĤSO

∣

S+Ψ j
⟩

λEn − E
. (.)

In these expressions, λΨk
n is the zeroth-order wave function, λ is the multiplicity of the state, S

is the total spin quantum number, and the indices i, j, k = MS determine the projection of the
total spin (Minaev et al. ; Vahtras et al. ). As the operator couples two electron spins,
ZFS will only occur in molecules with at least two unpaired electrons.

As for many other properties, the zero-field splitting has two distinct contributions.The first
contribution in > Eq. . is an expectation value of the two-electron spin–spin dipole–dipole
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coupling operator,

ĤS,S
=

α
fs
 ∑

j/=i

⎡

⎢

⎢

⎢

⎢

⎣

mi ⋅m j

ri j
−

(mi ⋅ ri j)(ri j ⋅m j)

ri j

⎤

⎥

⎥

⎥

⎥

⎦

, (.)

whereas the other term is the indirect interaction between the spin-magnetic moments of two
electrons, mediated through the interaction between the orbital magneticmoments in the spin-
orbit operator. For transition-metal complexes, the spin-orbit effects, often dominated by a few
close-lying electronic states, can be included in a limited sum-over-states expansion (Bolvin
) or using ligand-field theory (Neese and Solomon ). The electron spin–spin interac-
tion can, however, be dominant in molecules with weak spin-orbit interactions, such as triplet
states of organic molecules (Vahtras et al. ).

We can represent the zero-field splitting as

H

ZFS
= STDS, (.)

and in a basis that diagonalizesD, it is customary to write

H

ZFS
= D [Sz −



S (S + )] + E [Sx − Sy] , (.)

in which D = Dzz −

(Dxx + Dyy) and E =


 (Dxx − Dyy), and there are thus only two inde-

pendent parameters for the spin–spin coupling constants. There is in principle a contribution
involving the total spin multiplied by the isotropic value of D, but since it does not contribute
to the splitting of the electron spin levels, it does not affect the ESR spectrum.

There have not been too many studies, in particular using highly correlated wave functions,
of the basis set and correlation requirements for the direct spin–spin interaction to the zero-
field splitting. For the spin-orbit contribution, the basis set requirements follow to a large extent
those applicable for the spin-orbit correction to the g tensor. Otherwise, an accurate description
of the relevant electronic excited states contributing to the spin-orbit contribution is required,
which by itself may be a challenge in the case of transition-metal complexes (Bolvin ).

ESR Hyperfine Coupling Tensors

The ESR hyperfine splitting constants AK appear in the ESR spin Hamiltonian > Eq. .
in the term H

hf dependent on STAKIK . This contribution couples the electron and nuclear
magnetic moments, and thus provides very detailed information about the structure of radi-
cals, in much the same manner as shielding constants do in NMR spectroscopy. To compute
this correction, we thus need to select in the perturbation expansion all the terms bilinear in
S andmK .

Considering the expansion of the spin–Zeeman term in > Eq. ., when we insert
the magnetic vector potential arising due to the nuclear magnetic moments, we find two
contributions that are bilinear in the electron spin and nuclear magnetic moments, namely:

AK = Afc
K + Asd

K . (.)

The purely isotropic contribution to the hyperfine interaction Afc
K = Afc

K and the purely
anisotropic contributionAsd

K (Fernandez et al. ) in > Eq. . are due to the Fermi contact
(> Eq. .) and the spin–dipole (> Eq. .) operators, respectively. Both contributions can in
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principle be calculated as expectation values of the respective operators, using the spin-density
matrixDα−β (i.e., the difference between the density matrices for α and β spin):

Afc
K = −



gK geμBμN ⟨SZ⟩−∑

μν
⟨ϕμ ∣ĤK(FC)

∣ ϕν⟩Dα−β
μν , (.)

Asd
K = −



gK geμBμN ⟨SZ⟩

−
∑

μν
⟨ϕμ ∣ĤK(SD)

∣ ϕν⟩Dα−β
μν . (.)

There are also contributions of the order α
fs – a linear response contribution

⟨⟨ĤSO; ĤK(PSO)

⟩⟩ due to relativistic effects caused by the spin-orbit operator and expectation
values ⟨∣ĤSO,K()

∣⟩ and ⟨∣ĤSO,K()
∣⟩, > Eqs. .–. (see Neese (), Arbuznikov

et al. ()).
The ESR hyperfine coupling is determined by triplet perturbations. Thus, in principle one

should use an unrestricted wave function to describe the reference state. However, it is also
possible to use a spin-restricted wave function (Fernandez et al. ) and take into account
the triplet nature of the perturbation in the definition of the response. Within such a (e.g., SCF
or MCSCF) restricted-unrestricted approach, first-order properties are given as the sum of the
usual expectation value term and a response correction that takes into account the change of
the wave function induced by the perturbation (of the type ⟨() ∣ H

∣ ⟩). This restricted-
unrestricted approach has also been extended to restricted Kohn–Sham density functional
theory (Rinkevicius et al. ).

In general, themost severe basis set requirements come from the isotropic hyperfine interac-
tions, the anisotropic contribution in general being well converged with basis sets that perform
well for the isotropic contribution. Wemention in particular that there are basis sets specifically
designed for calculations of hyperfine coupling constants (EPR-III) using density functional

⊡ Table -
Calculated isotropic hyperfine coupling constants (in MHz) of transition metal compounds
and their dependence on the exchange-correlation functionals; results taken from
Rinkevicius et al. ()

Molecule Isotope BP BLYP BLYP UBP UBLYP UBLYP Expt.

TiO Ti −. −. −. −. −. −. −.()
O −. −. −. −. −. −. n.a.a

VN V . . . . . . .
N . . . . . . n.a.

VO V . . . . . . .()
O −. −. −. −. −. . ()

MnO Mn . . . . . . . ()
O −. −. −. −. −. −. n.a.

MnH Mn . . . . . . .()
H . . . . . . . ()

TiF Ti −. −. −. −. −. −. −.(), −.()
F . . . . . −. .(), .()

MnO
Mn . . . . . . ()
O −. −. −. −. −. . n.a.

aNot available
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theory (Barone ). In general, for main-group elements, DFT does not display a particularly
strong sensitivity on the choice of exchange-correlation functional, and provides results in quite
good agreement with CCSD(T) (Perera et al. b).

Even though the majority of calculations of hyperfine coupling constants are performed
using unrestricted approaches, the importance of spin contamination and its effect on the
hyperfine coupling constants remains somewhat unclear, in particular in DFT calculations.
Whereas restricted and unrestricted approaches give more or less identical results for simple
radicals, the situation is less clear in the case of transition metal compounds, and a few examples
of the differences between restricted and unrestricted approaches are collected in > Table -,
based on the results reported by Rinkevicius et al. (). We note that the differences between
restricted and unrestricted approaches in general are small for the same functional, but that
these differences become significant when spin contamination can be a problem, for instance
for TiF and MnO.

The hyperfine coupling constants are usually reported in MHz; the contributions evaluated
in a.u. need to be multiplied by gK ge μB μN .

Conclusions

We end this discussion of molecular properties with some additional comments related both
to theory and to experiment. First of all, we have mainly discussed nonrelativistic meth-
ods, since these are still dominant in practical applications. The approach starting with a
nonrelativistic description of the molecular system and introducing relativistic effects as a cor-
rection/perturbation has obviously some limitations and cannot be applied in highly accurate
studies of molecules containing heavy elements.There are different approaches that start from
a relativistic description of the unperturbed molecule (using one-, two-, or four-component
wave functions), and we refer for a discussion of relativistic methods applied in the theory of
molecular properties to Reiher andWolf () and Saue ().There is an increasing number
of successful applications of these methods, for example, in the study of NMR shielding con-
stants (Autschbach ; Kaupp ; Maldonado and Aucar ) and spin–spin coupling
constants (Autschbach ).

Secondly, we have not discussed in any detail the effects of nuclearmotion. Methods used to
calculate these vibrational corrections, for both zero-point vibrational effects and temperature
effects, have been described elsewhere in this book.There are, however, other effects that should
also be considered. We have not discussed the role of the purely vibrational contributions to
molecular (electric) properties (Bishop ), which in certain cases can be as large as the elec-
tronic contributions (Kirtman et al. ). Moreover, in conformationally flexible molecules
one has to consider the effects of large nuclear motions. For instance, for a proper compari-
son with experiment, it may not be sufficient to perform an ab initio calculation for a single
molecular structure. In experiment one will always observe the average value of the different
thermally accessible isomers (rotamers, conformers), and in order to allow for a direct com-
parison with these experimental observations, a Boltzmann average of the properties of these
isomers must be computed. This is particularly important when the properties of the isomers
are very different, possibly even differing in sign (Pecul et al. ).

Finally,most experimental data are not obtained in the gas phase.Therefore, in order to have
a faithful comparison with experiment, the effects of the solvent must be considered. There is
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an increasing number of studies of molecular properties in the presence of a solvent; we refer to
a recent review for more details (Mennucci and Cammi ). Molecular dynamics or Monte
Carlo procedures can be used when it is necessary to describe the nuclear dynamics in more
detail, for example, for a better description of solvent effects or when considering sophisticated
isomerization processes (Böhm et al. ; Møgelhøj et al. , ).

The theory of molecular properties has for a long time provided a precise description of
the interactions of a molecule with external and internal fields. In the last years, progress in the
development and implementation of computational methods has enabled increasingly accurate
calculations of such properties, often yielding results more accurate than experimental data.
We note here that a molecular property is always defined as a quantity characterizing an iso-
latedmolecule, in a particular state, subject to particular perturbation(s) – conditions not easily
achieved in experiment.

Theoretical calculations may thus provide insight into the electronic origins of the behavior
of a molecule in the presence of electromagnetic fields, and help disentangle the contributions
of solvents, vibrational effects, molecular rotation, and other small perturbations to the exper-
imental observation. By combining the information obtainable in experiment with the tools of
analysis offered by quantum-chemical calculations, a better understanding of the interactions
between molecules and electromagnetic fields can be achieved, which in turn may facilitate for
instance the design of molecules and functional materials with specific responses to external
perturbations.
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Jaszuński, M., & Ruud, K. (). Spin–spin coupling
constants in CH. Chemical Physics Letters, ,
.
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  Weak Intermolecular Interactions: A Supermolecular Approach

Abstract: Weak intermolecular interactions, which are ubiquitous in biological and mate-
rials chemistry, are fast becoming more routinely and accurately investigated owing to the
increased performance of computational methods being actively developed. A vast array of
pragmatic methods have been proposed using empirical, semi-empirical, density functional
theory, and ab initio approaches, which all serve to widen the scope of feasible problems. Espe-
cially for the calculation of the important London dispersion interactions, significant progress
has been achieved. Herein, we present a general overview on a number of illustrative strate-
gies used to routinely investigate structures and energies of such systems.The composition and
advantages/disadvantages of different benchmark sets, which have been found to be of cru-
cial importance in assessing such a wide range of methods is discussed. Finally, a number of
experience-based perspectives are provided in relation to the scaling and accuracy of the “more
popular” methods used when investigating non-covalent interactions.

A present trend in quantum chemistry is on cheap and reliablemethods that effectively solve
present-day problems in biological and materials chemistry. Quantum chemistry now confi-
dently looks beyond small polyatomic molecules and toward large supramolecular complexes;
this represents an area on the cutting edge of simulation sciences.

This chapter deals withweak intermolecular (non-covalent) interactions betweenmolecules
in the gas phase. These interactions are essential for the quantitative description and under-
standing of complex molecular aggregates in physics (e.g., surface science), chemistry, and
molecular biology. The same interactions also occur in an intramolecular fashion between
atoms or groups in one molecule. One of the big advantages of the supermolecular approach
described herein is that it can handle both situations on an equal footing. Just for convenience
and due to space limitations, we will consider here only intermolecular cases (complexes of at
least two molecules). The reader should, however, keep in mind that much of what we are say-
ing about quantum chemical methods similarly holds for the quantum chemical simulation of
protein folding.

The following chapter is a pragmatic overview on “current” methods that are useful in
obtaining reliable data from quantum chemical calculations, with a strong focus on methods
used (and developed) primarily to study such non-covalent interactions. Weak intermolecular
interactions in the solid or solution phase are almost completely neglected here, this is by no
means a reflection on their importance, rather a way of restricting the scope of this chapter to
a particular stream of research. A thorough description of the underlying theory of molecular
interactions is presented in Volume I written by Alston Misquita. Only a succinct overview of
weak intermolecular interactions is given below to “set the scene.”

Introduction

The individual stabilization of weak interactions is to a good approximation additive and is,
therefore, extremely important. Weak molecular interactions are characterized by stabilization
energies of typically less than ΔE < − kJ/mol (Suresh and Naik ) per pair of interacting
atoms (fragments). Therefore, in normal physiochemical environments, there is a continuous
formation and breaking of such molecular interactions. The resultant combined interaction
energies can be responsible for some substantial effects on, e.g., molecular conformation and
reactivity. However, one should keep inmind that due to additive property, complexesmadeout
of about  atoms can have non-covalent (gas phase) interaction energiesmore resembling that
of covalent bonds (i.e., – kJ/mol).
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⊡ Fig. -
Deoxyribonucleic acid (DNA) highlighting the intrastrand interaction (blue bracket) between the
two ball-and-stick base pairs, and the interstrand interaction (red bracket) which is between the
lower ball-and-stick base and the adjacent base rendered as tubes

In chemistry and biochemistry, weak interactions are a hot topic of interest, especially
within the emerging areas of molecular recognition (Desiraju and Steiner ), self-assembly
(Hyla-Kryspin et al. ), supramolecular chemistry, and general host–guest interactions
(Arunan and Gutowsky ; Desiraju and Steiner ; Hyla-Kryspin et al. ; Kim et al.
; Sharma et al. ; Sinnokrot et al. ; Steed et al. ; Tsuzuki and Luthi ; Tsuzuki
et al. ). Weak interactions are fundamental in many aspects of biology with the quintessen-
tial example being the elegant double helix of DNA, resulting from a subtle interplay of weak
interactions (Antony and Grimme ), see > Fig. -.

Furthermore, the secondary and tertiary structure of proteins, membrane structures, and
complex intracellular particles such as ribosomes are allmaintained by a variety of weak interac-
tions (Wong ). Structure-based drug design is therefore dependentupon an understanding
of the geometric and energetic aspects of these abundant interactions. Since pharmaceutical
agents often bind to biological targets under the control of weak interactions, deconvolution of
such host-receptor interactions into separate quantifiable interactions enables drug designers
to make subtle modifications and then predict the consequences using modeling techniques.

Hydrogen-Bonded Complexes

The electron distribution in covalent bonds is frequently polarized due to electronegativity
differences of the atoms involved. The lone pair(s) on electron-rich atoms such as oxygen or
nitrogen are attractive targets for terminal electron-poor atoms such as hydrogen on adjacent
molecules. A hydrogen bond develops wherever a LP-bearing electronegative atom (acceptor)
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⊡ Fig. -
The Watson and Crick (interstrand) adenine-thymine hydrogen-bonded base pair

and a hydrogen atom that is bound covalently to another electronegative atom (donor) are
sufficiently near, see > Fig. -.

Hydrogen bonds are typically strong if the atoms (donor, hydrogen, and acceptor) are
collinear.The strength of their interactions reduces drastically for H-bondswhich depart signif-
icantly from collinearity. The length of hydrogen bonds depends on the type of the constituent
groups, but is typically .–.Å (between donor and acceptor nuclei) (Desiraju and Steiner
). Molecules may develop both inter- and intramolecular hydrogen bonds. So-called weak
H-bonding, e.g., between C–H and fluorine atoms (with interactions in the range – kJ/mol)
are a current topic of research (Hyla-Kryspin et al. ).

Aromatic π . . .π Stacking

When aromatic rings are oriented favorably, they may develop a stabilizing interaction known
as “π . . .π stacking” (i.e., involving the π electrons). The π . . .π interaction is known to influ-
ence reactions, stabilize complexes, and influence structure. It follows that the estimation
of the energetic and structural features of these interactions would be extremely useful in
understanding many important chemical phenomena (> Fig. -).
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⊡ Fig. -
The (intrastrand) adenine–thymine stacked base pair

A myriad of experimental and theoretical methods have been employed to investigate
π . . .π-stacking interactions. State-of-the-art electronic structure methods such as Møller–
Plesset perturbation and coupled-cluster methods (see below) show that dispersive forces play
the primary stabilizing role in π-stacked complexes (Arunan and Gutowsky ; Kim et al.
; Sinnokrot et al. ; Steed et al. ; Tsuzuki and Luthi ; Tsuzuki et al. ), while
the electrostatic forces are responsible for details of the geometrical arrangements. Dispersion
is a result of electron correlation, therefore methods that ignore electron correlation cannot be
used at all and those that make drastic approximations to it must be carefully validated. The
challenge of adequately describing the dispersion interaction is a major focus of the following
chapter.

The non-covalent interactions in biological systems are of significant interest, e.g., in purine
riboswitches binding sites (Sharma et al. ).The interactions of benzene and polycyclic aro-
matic hydrocarbons (PAHs) can be extended to real-world applications such as investigating the
interaction of stacked graphene-nucleobase complexes (Antony and Grimme ). Concave
buckyball catchers (Wong ) were investigated using sophisticated computational meth-
ods (e.g., DFT-D and SCS-MP) explained later within this chapter. Fullerenes and carbon
nanotubes (CNT) (Dappe et al. ), self-assembled of molecular tweezers formed by dis-
crete biomolecular π-stacks (Lohr et al. ), and C-derived nanobaskets (dos Santos et al.
) were all investigated in  using methods directly developed to model dispersion in
an efficient manner. An interesting question was raised by Grimme, asking whether “special
π . . .π-stacking interactions really exist?” (Grimme ).

Other Interaction Types

The “weak” interaction energy discussed in detail below can be decomposed into various
physically meaningful components, i.e., attractive electrostatic, polarization, and dispersion
interactions and the repulsive Pauli exchange term.The sumof dispersion and Pauli repulsion is
often called van der Waals interaction. In the various types of non-covalent interactions, these
contributions are contained to a different degree. For example, there is a continuous transition
from a purely dispersion bound van derWaals complex like themethane dimer to the ammonia
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dimerwhich already has partial H-bonding character to the water dimer as the H-bonding pro-
totype complex.The typical H-bond has strong electrostatic and polarization contributions but
only small (but non-negligible) dispersion forces. Pauli-repulsion is always present and mainly
determined by the distance (wave function overlap) between the fragments.The benzene dimer
on the other hand would be unbound when one could switch off the dispersion term. From the
above, it is clear that only an accurate account of all these physically important contributions
will lead to a consistent description of non-covalent interactions in general.

Interaction Energy

The interaction energy can be calculated with any of the methods outlined within this chapter,
to a varying degree of accuracy. Adopting a “Supermolecular approach,” the interaction energy
is defined as

ΔE int
= E(AB) − E(A) − E(B), (.)

where E(A), E(B), and E(AB) are the electronic energies of the monomers A, B, and of the
complexAB, respectively.This concept of interaction energy can be extended to a generalmulti-
body regime:

ΔE int
= E(A,A,A, . . . ,AN) −

N

∑

i=
E(Ai). (.)

When investigating multi-body effects, the question of cooperative and anti-cooperative inter-
actions can become an additional consideration of the utmost importance.

Whenone adopts a supermolecular approachusing ab initiomethods, one has to bemindful
of the strengths, and limitations, of a given method:

(a) Is a particular method size-consistent?
(b) Does a particular method provide an adequate description of electron correlation?
(c) Is the use of a particular finite basis set sufficient?
(d) Does the method inherently have problems in the description of the electronic structure

of A or B?

Within this chapter, we shall seek to answer such questions in a general overarching fashion.
An alternative to the supermolecular approach is symmetry adapted perturbation the-

ory (SAPT) that computes the interaction energy directly (Chipman and Hirschfelder ;
Jeziorski et al. , ). The SAPT method has been shown to be suitable for studying weak
intermolecular interactions and, in general, provides results similar to the current “gold stan-
dard” CCSD(T) (see below). Although this method has been instrumental to the understanding
of weak intermolecular interactions, we have omitted details to rein in the scope of the chapter.

Methods

A general overview of the methods, in particular those developed to particularly address weak
intermolecular interactions, will be given. The in-depth theoretical details of the underlying
methods are given in other parts of this handbook and shall not be restated here in any depth.
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This should ensure that readers of different levels (and background) could gain some insight
into how such calculations may be performed.

Ab initio methods are naturally more computational expensive than empirical or semiem-
pirical methods. However, they have the obvious advantage that no parameters need to be
derived beforehand, which is often laborious and time consuming. The advantage of semiem-
pirical methods are obviously speed, compared to their fully ab initio brethren. A discussion
on describing weak intermolecular interactions would be obviously incomplete without an
overview of the classical methods.

A strong disclaimer is that we cannot possibly cover all methods derived to compute weak
intermolecular interactions, and themethods thatwe choose to cover shall inevitably date rather
quickly. Neither of these considerations is avoidable within such a large and dynamic field of
research, and this should hardly be taken as a negative.

Coupled Cluster

Coupled cluster with singles and doubles excitations (CCSD) is a size-consistent post-HF elec-
tron correlation method.The wavefunction, Ψ, in coupled cluster theory is formulated in terms
of a cluster (exponential) expansion including the single and double excitation operators T̂

and T̂. The effect of triple excitations (T) is calculated with perturbation theory.
CCSD(T) has become, and remains, the “gold-standard” for studying weak intermolecu-

lar interactions in the gas phase. The accuracy of this method in general surpasses that of
experimental determination and marks the limit of what is feasible using current computing
resources.

QuantumMonte Carlo

Quantum Monte Carlo (QMC) effectively solves the many-body problem by a random walk
through the electronic configuration space; it has been shown to be a promising method in
quantum chemistry. One of the major advantages of QMC is the ability to perform massively
parallel calculations, which can effectively increase the scope of what is computational tractable
by distributing the work over hundreds or even thousands of processors. QMC is a general
method and, therefore, also has been applied recently to the computation of non-covalent
interactions (e.g., the S data set) (Korth et al. ).

Møller–Plesset Perturbation theory

Møller–Plesset second-order perturbation theory (MP) is a common method used in
computational chemistry to include electron correlation as an extension to Hartree–Fock (HF)
theory which neglects Coulomb correlation and thus also misses all dispersion effects. The
perturbation is the difference between the Fock-operator and the exact electronic Hamiltonian.

In general, MP is a substantial improvement upon Hartree–Fock for all types of non-
covalent interactions. The largest advantage of using second-order perturbation is, however,
the inclusion of dispersion interactions. The method in general overestimates such an interac-
tion; however, a number of strategies have been developed to address this problem. For example,
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Hobza et al. was the first to show that MP/-G(.)* (i.e., with spatially expanded polariza-
tion functions) works well in a number of cases due to error compensation (Hobza and Šponer
).

Local (truncated) correlation methods, for example, LMP, have the advantage of supe-
rior scaling behavior of the computation time with system size. In addition, they remove to
large extend the basis set superposition error (explained below in > section “Counterpoise
Correction”). Such local methods have been applied to weak intermolecular interactions in
combination with density fitting approximations (Goll et al. ; Hill and Platts ).

A further way to correct for the overestimation of MP for dispersion bound complexes is
MP. (Pitonák et al. ). This is a sum of MP/CBS (complete basis set limit) interaction
energies and a scaled third-order energy contribution obtained in small or medium size basis
sets. MP. results agree very closely with the estimatedCCSD(T)/CBS interaction energies for
weak intermolecular interactions. In particular, a very balanced treatment of hydrogen-bonded
compared to stacked complexes is achieved with MP..Themain advantage of the approach is
that it employs only a single empirical parameter and is thus based on two rigorously defined,
asymptotically correct ab initio methods, MP and MP. The method is an accurate and com-
putationally feasible alternative to CCSD(T) for the computation of the properties of various
kinds of non-covalently bound systems.

Spin Component ScaledMP

The total MP correlation energy is partitioned into parallel- and antiparallel-spin components
that may be separately scaled.The two parameters ps and pt (scaling factors), whose values can
be justified by basic theoretical arguments, were optimized on a thermochemical benchmark
set (Grimme ).

Ecorr
(SCS −MP) = psE↑↓

+ ptE↑↑+↓↓
. (.)

It was shown, that the new method performs significantly better than standard MP. Sig-
nificant improvements are especially observed for cases which are usually known as MP
pitfalls, while cases already described well with MP remain almost unchanged. Also, for dif-
ficult systems including strong (nondynamical) correlation effects, the improved MP method
clearly outperforms DFT(BLYP) and yields results of QCISD or sometimes QCISD(T) qual-
ity (QCISD is a variant of CCSD). The uniformity with which the newmethod improves upon
MP, thereby rectifying many of its problems and suggests it as a valuable quantum chemical
method for the investigation of weak intermolecular interactions.

In an effort to simplify and reduce the scaling of the SCS-MP method, Head-Gordon has
proposed a scaled opposite-spin (SOS) method.The SOS-MP method completely neglects the
antiparallel-spin contribution to theMP energy and scales the parallel contribution by a factor
of . (Jung et al. ).TheHead-Gordon group has also developed amethod, termedmodified
opposite-spin (MOS), in an attempt to provide a better description of long-range interactions
(Lochan et al. ). The SCS(MI)–MP (MI: molecular interaction) was specifically designed
to treat intermolecular interactions (Distasio and Head-Gordon ).

SCSN-MP is another parameterization of the spin scaling parameters which completely
neglects the contribution from antiparallel-spin electron pairs to the MP energy while scal-
ing the parallel contribution by . (Hill and Platts ). These spin-component scaled for
nucleobases (SCSN) parameters were obtained byminimizing, with respect to SCS parameters,
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the RMS interaction energy error relative to the best available literature values, over a set of ten
stacked nucleic acid base pairs.The applicability of this scaling to a wide variety of non-covalent
interactions is verified through evaluation of a larger set of model complexes, including those
dominated by dispersion and electrostatics.

One disadvantage of all SCS variants (except when the scaling factors add to a value of two)
is that asymptotically (for large interfragment distances) the correct dispersion energy is not
obtained. Although this is of less importance in many complexes, one should keep this in mind
when very extended systems are considered.

Hartree–Fock

Hartree–Fock theory is a well-established method in computational chemistry. Therefore, no
details on the method or implementation are given here. It suffices to say that Hartree–Fock
theory is adequately accurate for hydrogen-bonding interactions (with, however, significant
underbinding) in organic first-row compounds. Hartree–Fock, however, fails spectacularly for
dispersion bound complexes. A dispersion corrected Hartree–Fock method (HFD) was pro-
posed (Hepburn et al. ) and has seen some applications. Itsmain further disadvantage is the
systematic overestimation of dipole moments and underestimation of the fragment polarizabil-
ity. These two issues are much better described by DFT (at the same cost) so that Hartree–Fock
can be considered as being more or less completely outdated.

Density Functional Theory

Density functional theory (DFT) has gained huge popularity due to its ability to provide good
accuracy, and due to its favorable scaling, in a timely fashion. Although it has been shown,
and is commonly known, that an exact exchange correlation functional is possible, it remains
ever elusive. Tomakemattersworse, “traditional” (Kohn-Sham)DFT inpresent approximations
does not provide a correct description of the dispersion interactions.

Density functional theory still remains “plagued” by an abundance of functionals devel-
oped with a plethora of design goals. Some grouping of functionals was proposed by Perdew
and Schmidt () using the “Jacob’s ladder” metaphor. In this metaphor, functionals may be
grouped according to their formulation:

• First-rung functionals are only dependent upon the density and are known as local density
approximation (LDA). Although LDA does overestimate the interaction energies in some
dispersion bound systems (but for the wrong reasons), its accuracy can only be described as
sporadic, and therefore its application in intermolecular interactions is NOT recommended.

• Second-rung functionals utilize in addition the gradient of the density, known as general-
ized gradient approximation (GGA). They typically show repulsive behavior for dispersion
bound complexes similar to Hartree–Fock.

• Third-rung functionals further include the kinetic energy density or Laplacian (second
derivative) of the density. These functionals show only marginal improvements over their
second-rung counterparts.

• Fourth-rung functionals include Hartree–Fock exchange and are known as hybrid-GGAs.
A number of hybrid functionals have been intentionally parameterized using datasets that
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include dispersion bound complexes, e.g., M (Zhao et al. , ) andM (Zhao and
Truhlar a, b, ) (and variants thereof) from Truhlar and coworkers. The BHandH
(Becke ) has been shown to give reasonable answers for particular problems of interest,
but should be used with extreme caution (Swart et al. ; Waller et al. ).

• Fifth-rung functionals include the occupied and virtual orbitals simultaneously and are
known as double hybrid functionals. They offer a superior description of long range-
dispersion, while maintaining some quantum mechanical rigor. By their very nature, the
current implementations are fundamentally semiempirical. A general ansatz for a combi-
nation of Kohn-shamDFT and perturbation theory is based on the following expression for
the exchange-correlation energy Exc :

Exc = ( − ax)EGGA
x + axEHF

x + ( − cc)E
GGA
c + ccEPT

c . (.)

If cc =  and ax ≠ , then a fourth-rung functional; If cc =  and ax = , then a second-rung
functional is recovered, see > Fig. -.

The details of many “garden variety” density functionals are not discussed in this chap-
ter, rather only recently developed schemes that specifically address shortcomings of density
functionals in accurately describing weak intermolecular interactions.

DFT-D

An empirical method to account for dispersive interactions in practical calculations with the
density functional theory (termed DFT-D) (Grimme ) has been tested for a wide vari-
ety of molecular complexes. As in previous schemes, the dispersive energy is described by
a damped interatomic potential of the form CR−. The use of pure (non-hybrid), gradient-
corrected density functionals (e.g., BLYP or PBE), together with the resolution-of-the-identity

P
ar

am
et

er
 c

c

1

0

I

0 1

MP2

B–LYP HF–LYP

II

Parameter ax

⊡ Fig. -
Schematic description of possible methods arising from different combinations of HF exchange
and PTmixing parameters. The dashedareas I and II can be excluded by physical reasoning. B-LYP
is a second-rung GGA and in HF-LYP the correlation energy is mixed with Hartree–Fock
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(RI) approximation for the Coulomb integrals, allows for an efficient computation of large
systems (as is often required for supramolecular chemistry).

By using a global scaling factor for the atomic C coefficients, the functional dependence
of the results could be strongly reduced.The double counting of correlation effects for strongly
bound complexes is found to be insignificant if steep damping functions are employed. For
stacked aromatic systems and the important base pairs, the DFT-D(BLYP) model seems to
be even superior to standard MP treatments (which are known to systematically overbind).
The good results obtained, in a variety of diverse examples, suggest that the DFT-D approach
is a practical tool for describing weak intermolecular interactions. Furthermore, the DFT-D
data may be used to calibrate much simpler (e.g., force-field) potentials. Alternatively, the opti-
mized structuresmay be used as input for more accurate ab initio calculations of the interaction
energies (Grimme b).

The dispersive correction term in DFT-D is given by

Edisp = −s
Nat−

∑

i=

Nat

∑

j=i+

Ci j


Ri j


fdmp(Ri j), (.)

where N is the number of atoms in the system, Ci j
 denotes the dispersion coefficient for atom

pair i j, s is a global scaling factor (see below), and Ri j
 is the interatomic distance.The damping

function is

fdmp(R) =


 + e−α(R/R−)
, (.)

where R is the sum of atomic respective van der Waals (cut-off) radii, see > Fig. -.
This simple approach has recently been improved regarding accuracy, less empiricism (the

most important parameters R and C are computed ab initio), and general applicability to
most elements of the periodic table (Grimme et al. ). An important change in this so-called
DFT-Dmethod is that the C dispersion coefficients are dependent on themolecular structure
which accounts for subtle effects, e.g., the hybridization state of an atom changes.

TheDFT-Dmethod does not onlywork formolecular complexes and intramolecular disper-
sion effects but is rather general, and Sauer and coworkers extended this correction to periodic
systems (Kerber et al. ).

Range Separated and Dispersion Functionals

An alternative method is the nonlocal van derWaals density functional (vdW-DF) of Langreth
and Lundqvist and coworkers (Andersson et al. ; Lundqvist et al. ). In vdW-DF, the
nonlocal correlation is calculated explicitly in a non-empirical manner. It is typically used with
standard GGAs like PBE or revPBE which introduces some inconsistency, as this results in an
unbalanced treatment of computed interaction energies and equilibrium distances.The overall
quality of vdW-DF results for typical non-covalent complexes is not better than with DFT-D
but requires substantially more computation time.

The range-separated hybrid (RSH+MP) (Ángyán et al. ; Gerber and Ángyán )
employsMP to account for the dispersion interaction,HF for long-range exchange, and, finally,
LDA for short-range exchange and correlation. The method provides promising results for rare
gas complexes but has not thoroughly been tested on standard benchmark sets (see > section
“Benchmark Sets”). The basic idea is similar to that of double-hybrid functionals.
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Dispersion Calibrated Effective Potentials

A Dispersion-Corrected Atom-Centered Potential (DCACP) is a novel approach whereby the
“missing” dispersion effect in traditional DFT is introduced using a suitably engineered effec-
tive core potential (ECP) (von Lilienfeld et al. ). The fitted atom–electron potentials in
the DCACP method have been shown to perform well for weak intermolecular interactions
(Arey et al. ; Tapavicza et al. ). Importantly, for practical purposes, the parameterized
DCACPs are somewhat transferable to atoms in a wide range of different chemical environ-
ments (Lin and Rothlisberger ; Lin et al. a, b; von Lilienfeld et al. ).This approach,
however, has the same disadvantage as standard DFT-D in that the atomic parameters do not
change with the electronic environment.

SemiEmpirical Methods

Traditionally, it has been generally believed that semiempiricalmethods are not particularlywell
suited to hydrogen bonding problems. In order to overcome these limitations, the PMmethod
has been re-parameterized and additional empirical terms were added to increase the accuracy
of this semiemprical hamiltonian for describing weak intermolecular interactions(PM-DH)
(Řezáč et al. ) and the second generation corrections schemePM-DH (Korth et al. ).
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Such empirical corrections for the semiemprical methods brings about a new frontier in large
simulations.

Another approach was proposed by Tuttle and Thiel (), starting with the OMx fam-
ily of methods and adopting the dispersion correction of Grimme (). This particular
combination was referred to as OMx-D. The authors found it necessary to rescale the empir-
ical s parameter (see above). Similarly, Hillier et al. (McNamara and Hillier ) proposed
the AM-D and PM-D to alleviate some of the shortcomings of some more traditional
semiempirical Hamiltonians.

The RMBH method (Feng et al. ) was constructed by adding Gaussian functions to
the core–core repulsion items in the original AM formula. It was demonstrated that RMBH
provides good agreement with the values of both high-level calculations and experiments for
the binding energies of biological hydrogen-bonded systems.

Somewhat removed is the density functional based tight-bindingmethod (DFTB), which is
based on a second-order expansion of the Kohn-Sham total energy, employing a self-consistent
redistribution of Mulliken charges (SCC-DFTB) (Elstner et al. ). It also employs dispersion
corrections similar to theDFT-Dmethod andhas successfully been applied, e.g., to nuclear-base
stacking problems (Elstner et al. ).

Molecular Mechanics

The empirically fitted force-fields such as CHARMM (Brooks et al. ), AMBER (Case et al.
), andGROMOS (Scott et al. ) perhaps perform better than onemight originally imag-
ine.Most importantly for the focus of this chapter are the noncovalent interactions, as naturally
the interaction energy of a supramolecular complex should be dominated by the non-covalent
terms. Therefore, a good description of such noncovalent interactions requires a balanced
description of the electrostatic and van der Waals energies. Typically standard force-fields uti-
lize the Coulomb’s law for the electrostatic part and do not consider polarization. By judicious
adjustment of the partial charges, one may strive to effectively model hydrogen-bonded inter-
actions. Furthermore, one recognizes that the expression for the van der Waals interaction is
normally represented as a Lennard-Jones potential.The r− term describing the Pauli repulsion
and the r− term describing the long-range attractive dispersion forces. The vdW parameters
may also be fitted to reproduce experimentally derived structures.

Basis Sets

Most ab initio and DFT schemes employ the LCAO method. The molecular orbitals are
expanded using an orbital basis set – a collection of mathematical functions used to model
the spatial variation of the orbitals. Historically, Slater-type orbitals were used due to their
geometric similarity to the hydrogenic orbitals. They also remain a common choice in semiem-
pirical MO theory. However, they do have a significant drawback in that there are no general
and numerically stable solutions for the many-center integrals involving Slater-type orbitals.
Consequently, most practitioners of quantum chemistry turned to Gaussian type orbitals.

Larger basis sets give rise to more accurate representations of theMOs. Practical considera-
tions have dictated the need for optimization of basis sets to best describe molecular properties
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within a sensible computational time.This has lead to the developmentof various basis sets each
with differing characteristics reflecting their intended applications. The use of such optimized
finite basis sets does produce reasonably accurate geometries (as the particular choice of a basis
set does not strongly influence computed structures). However, energies are much more basis
set dependent.

One may use two contracted GTOs per atomic orbital, as in the so-called double-zeta basis
sets (Lochan et al. ), as this provides much greater flexibility. Split-valence basis sets par-
tition the atomic orbitals into core and valence regions. The core AO’s are assigned a minimal
basis, while the valence orbitals are described at the double-zeta level.

The Pople style basis sets (Binkley et al. ; Dobbs andHehre , a, b; Gordon et al.
; Hehre et al. ; Pietro et al. ) have received widespread use in the computational
community. They may be described as: X − YZg where X is the number of primitive Gaus-
sians used to describe the core atomic orbitals. The valence orbitals are composed of a linear
combination of Y and Z primitive Gaussian functions, respectively. Split-valence triple- and
quadruple-zeta basis sets are also used, denoted as X − YZWg, X − YZWVg, etc.

The correlation consistent (cc) basis sets devised by Dunning () were designed to
converge systematically to the complete-basis-set (CBS) limit when used in conjunction with
extrapolation techniques, see below.Theymay be described as: cc-pVNZwhereN=D,T,Q,,,...
(D=double zeta, T=triple zeta, etc.).

Alternatively, the Ahlrichs style split-valence basis sets (Schaefer et al. ) are also ubiqui-
tous in computational chemistry. Practically, extended AO basis sets of polarized TZV or QZV
quality should be employed. Because the Ahlrichs basis sets have been carefully optimized vari-
ationally, the basis set superposition error (described below) is much smaller thanwith Pople or
Dunning sets of about the same size.These expansions are consistently available for all elements
of the periodic table.

Diffuse functions, denoted in Pople-type sets by a plus sign, +, and in Dunning-type sets by
“aug” (abbreviation of “augmented”), are shallowGaussian basis functionswith large exponents.
The diffuse functions are essential for the “tail” portion of the atomic orbitals, which are distant
from the atomic nuclei.The diffuse basis functions are important when considering intermolec-
ular complexes (a) to effectively span the intermolecular region and (b) to accurately describe
the fragment polarizabilities. So-called polarization functions are also necessary for weak inter-
actions to improve the flexibility of the wave function. These are functions with higher angular
momentum than in the occupied ground state atomic orbitals.

TheRI approximation is amethod to approximate four-index two electron integrals without
having any significant effect on the accuracy of results (Eichkorn et al. ). It requires specific
auxiliary basis functions, which are available for many standard basis sets.The method is most
efficient in GGA andMP calculations where it saves a factor of – in computation time for
larger systems. It is also available in hybrid-GGA andHartree–Fock treatments, but the savings
are less (about a factor of –). RI (also called density fitting) is strongly recommended in all
treatments of larger complexes and is available in many major quantum chemistry codes.

Extrapolation schemes are employed to relieve the errors associated by using a truncated
basis set. It is most often used to improve the computed correlation energy but also Hartree–
Fock or DFT energies can be extrapolated. A number of schemes have been proposed and
routinely used within the literature, a brief survey of some of the more popular schemes in
chronological order: Martin () and later Martin and Taylor (), Helgaker et al. (),
Truhlar (), and Lee () correction scheme. In the mostly employed standard scheme,
two computations with basis sets of systematically improved quality (e.g., Dunning sets with
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X = , Y =  or X = ,Y = ) are required. The correlation energy is obtained by

E∞

XY =
Ecorr
X X

− Ecorr
Y Y 

X
− Y  . (.)

Basis set extrapolation also reduces considerably the basis set superposition error (see below).

Counterpoise Correction

The basis set superposition error (BSSE) arises as a direct result of basis set truncation.
This truncation for a dimer or complex is less severe as it is for the monomer as the dimer basis
set is the union of the two-monomer basis sets. This leads to an artificial energy lowering of
the dimer compared to the monomers and leads to a too low (negative) interaction energy.The
so-called counterpoise correction (CP) is the standard procedure for calculating an interaction
energy using a supermolecular approach. The counterpoise corrected interaction energy is

ΔECP
= EAB(AB) − EAB(A) − EAB(B), (.)

where EAB(A) and EAB(B) denote the total energies of monomers A and B, respectively, com-
puted with the dimer basis set of AB, i.e., in the calculation of monomer A including the basis
set of the B monomer (but neglecting the nuclear charges and electrons of B). In this way, the
basis set for each monomer becomes of about the same size as for the dimer thereby creating a
more balanced description.

The counterpoise correction typically overestimates the BSSE since the monomer basis set
is enhanced not only by empty orbitals of the other fragment, but also by orbitals occupied
by electrons of the other monomer molecule which are excluded by the Pauli principle. Thus,
if CP-corrected and uncorrected interaction energies are plotted as function of basis set size,
they approach from above and below, respectively, the true interaction energy at the complete
basis set (CBS) limit. CP corrections are mandatory for all double-zeta calculations and with
MP or CCSD(T) also for triple-zeta basis treatments. In triple-zeta basis set (e.g., cc-pVTZ or
TZVPP)DFT calculations, the BSSE is typically less than –% of the interaction energy which
makes the laborious CP correction unnecessary. If sets of valence quadruple-zeta are used, it
seems as if the error of the CP procedure is often similar to the (uncorrected) BSSE, but this is
system-dependent and more definite conclusions about this issue requires further work.

Benchmark Sets

The importance of validating and assessing the relative strengths, and pitfalls, of a given theoret-
ical method is often achieved using validation against standardized data sets.This circumvents
the need tometa-analyze inhomogeneous studies (different basis sets, density functionals, etc.)
of diverse molecular systems. Computational chemistry should ideally be predictive, and by
having a clear andwidely accepted set of references, one can preempt themagnitude of expected
errors.

The development of force fields, semiempirical parameters, or even indeed density func-
tionals, are reliant upon such carefully constructed datasets. What is needed is a good balance
of diversity and relevance,when creating such a benchmark set. A benchmark set should ideally
be able to expose systematic errors for different methods.



  Weak Intermolecular Interactions: A Supermolecular Approach

The BEDGB dataset (Řezáč et al. ) contains a number of subsets; S (Jurec̆ka
et al. ) has been used extensively in benchmarking weak intermolecular interactions, see
> Fig. -; S (Riley and Hobza ) augments four extra molecules into the S dataset;
Small Halogen Bonding Complexes (Riley and Hobza ) contains six complexes calculated
at the CCSD(T)/aug-cc-pVTZ CP level of theory; JSCH- (Jurec̆ka et al. ) is a larger
benchmark of non-covalent complexes; Set of five small peptides (Valdes et al. ) con-
tains aromatic side chains and includes the P set; SCAI (Berka et al. ) – representative
interactions of amino acid side chains.

The Minnesota non-covalent interaction databases were compiled by Truhlar et al. Bench-
markDatabase ofNoncovalent Interactions ():HB/ (Zhao et al. ; Zhao andTruhlar
a, b) is a hydrogen bond database that consists of the equilibrium binding energies of six
hydrogen bonding dimers; DI/ (Zhao et al. ; Zhao and Truhlar b, ) database
contains the binding energies of six dipole interaction complexes; WI/ (Zhao et al. ,
; Zhao and Truhlar a) database consists of the binding energies of seven weak inter-
action complexes; PPS/ (Zhao et al. ; Zhao and Truhlar a) database consists of
binding energies of five π . . .π-stacking complexes; CT/ (Zhao et al. , ; Zhao and
Truhlar b) database consists of binding energies of seven charge transfer complexes.

When a collection of the different constituents of the Minnesota non-covalent interaction
databases is made (HB/, DI/, WI/, PPS/, and CT/) the superset contains 
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⊡ Fig. -
The S dataset
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complexes withmany dimers in commonwith the S dataset. As these two databases are rather
similar, for the remaining chapter, we will focus on the S dataset, see > Fig. -, to asses
performance.

Performance Considerations

The methods were, more or less, presented above in order of decreasing accuracy. The higher-
level ab initio methods are more accurate than the lower methods, as expected. The density
functionals tend to roughly follow the Jacob’s ladder analogy in terms of accuracy for the S
dataset. Less accurate, for the S, are the semiempirical methods with the empirical ones per-
forming even worse. In order to provide a visual indication of the relevantmethods > Fig. -
displays plots of the normal error distributions. One can immediately note that most methods
are shifted to the right of the y-axis with CCSD(T) being the reference values.The higher-level
methods again tend to be more narrow in their error distribution.

The dramatic gains in accuracy when one investigates weak intermolecular interactions at
the DFT and MP levels of theory (with and without corrections) are displayed in > Fig. -.

Timing considerations (typically scaling) are important when one considers computational
efficiency. Diminishing returns does occur with ab initio methods, and one must remainmind-
ful of the desired accuracy and computational resources on hand. Such a delicate balancing act
is crucial for practitioners of computational chemistry.

The computation time t(cpu) required to execute a given quantum chemical method to
obtain the energy follows a power lawwith respect to the number of electrons in the system, i.e.,

t(cpu) = a(Nel)
b, (.)

where a and b are constants which are characteristic for each method and its implementation.
While b determines how fast the computation time increases with increasing system size (often
abbreviated by the term “order n”, i.e., an “order n” method means b = n), the prefactor amea-
sures how efficiently the given combination of hard- and software performs the task. Although
in general methods with small b are preferred, it is important to mention that to some extent
a large value of b can be compensated by a small a so that formally “expensive” methods can
sometimes be a better choice. Because the prefactor is very strongly influenced by many tech-
nical parameters, we present in > Table - the computation times (single-point energy only)
for two examples ordered according to formal scaling behavior.

It is seen (> Table -) that a realistic evaluation of the performance requires consider-
ation of not too small systems and basis sets. The aug-cc-pVDZ results for the water dimer
and the cc-pVDZ values for the benzene dimer, however, nicely illustrate the steep increase of
the computation time with the level of sophistication. While RI-MP is not much more costly
than HF (and even DFT), higher-level correlation methods (in particular CCSD(T)) already
for medium-sized systems lead to a substantial increase in computation time. The timings for
the two systems also allow to check if the formal scaling laws hold. For example, for the water
and benzene dimers, the system size increases by a about a factor of four which translates
for b =  to a computation time ratio of  =  which is worse than the actually observed fac-
tor of about .The timings also show that already for a medium-sized system like the benzene
dimer, CCSD(T) calculations with reasonable basis sets (at least aug-cc-pVDZ) are prohibitive
in routine applications.
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⊡ Table -
Computation times (in seconds on one Intel CoreDuo T . GHz CPU) for two non-
covalently bound complexes with different quantum chemical methods

Method Formal scaling exponent b Water dimer (Nel=) Benzene dimer (Nel=)

AM  . .

DFT(semi-local)  . .

Hartree–Fock  . (.) 

RI-MP  . (.) 

CCSD  . (.) ,

CCSD(T)  . (.) ,

Except for AM, all calculations have been performed with a small cc-pVDZ (or aug-cc-pVDZ in parentheses) AO
basis set and using the ORCA program package

Concluding Remarks and Recommendations

The aim of a developing a diverse set of well-balanced methods that can treat weak and
strong inter- and intramolecular interactions continues to be a dominate area of computational
chemistry. The ubiquitous nature of the weak intermolecular interactions in “state-of-the-art”
materials and biomedical sciences ensures that work in this direction shall continue unabated.

The nature of fundamental intermolecular interactions were briefly introduced; a general
impression of the relative strengths and weaknesses of different methods; basis sets; basis
set extrapolation schemes; counterpoise correction schemes; and benchmark sets was pre-
sented. The chapter has concluded with overarching summary for the expected accuracy of
the particular methods.

We finally want to make some general recommendations how “weak interactions” should
be treated by quantum chemical methods:

. Whenever possible, simple, approximate methods that are unavoidable in many practi-
cal applications should be checked or benchmarked against large (or complete) basis set
CCSD(T) results. Often one can identify themain interactions and construct suitable model
systems for this task. If the one-particle basis set issues and the basis set superposition error
are carefully considered, CCSD(T) errors are <% of the true interaction energies.

. The simpler CCSD and MP ab initio methods are much less reliable (but still computa-
tionally expensive) and should not be used. In the “wave function world,” MP can (with
some faults) also be recommend because the cost/performance ratio is rather good. MP
should not be used for unsaturated or more strongly correlated (metallic) cases for which
SCS-MP is a reliable alternative. If the systems are not too large (< atoms), MP. can
be used as well.

. An interesting ab initio alternative when the system can be separated into chemically mean-
ingful fragments is symmetry adapted perturbation theory (SAPT) that is complementary to
the here-described supermolecular approach. Itsmain advantage is that it is free of BSSE and
that it provides a natural partitioning of the interaction energy into physically meaningful
components.

. When the issue of London dispersion interactions is carefully considered with DFT, this
yields a similar or often even better performance than MP. Of the several approaches in
this area, the DFT-D method has proven as an accurate and robust computational tool.
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The main advantage of DFT-based approaches is that they can be applied also in electron-
ically complicated situations (e.g., metal-containing systems) when MPn-based methods
fail.

. The biggest problem in DFT is the choice of the functional approximation. In many cases,
computationally cheap (meta-)GGAs (e.g., BLYP, PBE, or TPSS) can be recommended. Such
functionals should not be used when the self-interaction error (e.g., in charged open shell
systems) plays a role. Then, hybrid functionals are required which also have less tendency
for over-polarization. The currently highest level of approximation in DFT is represented
by double-hybrid functionals (e.g., BPLYP) that also perform very well for non-covalent
interactions.

. An important performance issue, that is unfortunately occasionally overlooked, is the
tremendous computational savings gained by applying the resolution of the identity (RI)
approximation when evaluating the two-electron integrals. This approximation, in com-
bination with the development of well-performing “auxiliary” basis sets, has dramatically
opened up new frontiers in large-scale calculations. We do not wish to comment on the
accuracy of the various RI approximations, but we have experienced particularly good per-
formance with the implementations in TURBOMOLE, ORCA, MOLPRO and Q-CHEM.

. Semiempirical methods (and this also holds for many forcefields) mainly suffer from a poor
description of the electrostatic interactions which, e.g., is demonstrated by their notoriously
bad performance for hydrogen-bonded systems (for which even the simplest GGAs work
very well). Because also their description of polarization (induction) contributions to bind-
ing is deficient, these methods can only be recommended for nonpolar systems or as parts
in ONIOM-type approaches to describe the outer regions of a quantum chemical system.
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Abstract: This chapter provides an introduction to the calculation of thermochemical data
for chemical reactions using quantum chemicalmethods.The basic procedure is first described,
namely, obtaining molecular structures and electronic energies of reactants and products, fol-
lowed by vibrational frequency calculations and evaluation of thermal corrections. Since it is
harder to obtain a given accuracy for some types of reactions than others, some discussion is
provided on classes of reactions (e.g., isodesmic reactions) forwhich a given accuracy is easier to
achieve than for a general reaction. Three examples illustrate different aspects of thermochem-
ical calculations. The first example, the formation of ammonia from its elements, illustrates a
variety of basis set and correlation effects on calculated data.The second example is concerned
with calculations on small fluorine-oxygen species and a systematic side-by-side comparison
of coupled-cluster and density-functional methods, including the use of isodesmic reactions.
The third example describes the use of high-level coupled-cluster calculations to predict the
standard enthalpy of formation of S(OH).

Introduction

The term “chemical reactions” obviously covers a wide range of phenomena. The purpose of
this chapter is to address some of the basic issues that one faces when using quantum chemical
methods to calculate thermodynamic properties of chemical reactions. The focus here is more
on the electronic problem than the nuclear problem, i.e., more on the potential energy surface
than on motion thereon. The emphasis also is on gas-phase processes.

Fundamentally, the quantities to be calculated in thermochemical studies are the changes in
enthalpy, entropy, and Gibbs free energy for a chemical reaction. From the standard Gibbs free
energy change, the equilibrium constantmay be obtained. At themost basic level, thermochem-
ical data must be calculated for the reactants and products. This necessitates the calculation
of minimum energy structures for all reactant and product species, followed by the calcula-
tion of harmonic vibrational frequencies, and thermal corrections. Very often one will seek to
improve the results by high-level single-point energy calculations at the geometries obtained at
lower-level methods, and using thermal corrections from a lower-level method. Another point
is that the ultimate goal in a thermochemical study is often not the ΔH, ΔS, or ΔG of the reac-
tion(s) directly studied. Rather, these quantities for one reaction are to be combined with data
for another reaction, leading ultimately, for example, to an estimate of the standard heat of for-
mation for a particular species. Sometimes experimental data may be incorporated in some
way, and one often has some freedom in choosing which reactions to employ. The choices one
makes can have a significant effect on the accuracy of the final answer, and hence the overall
success of the project.

It is appropriate to mention a few monographs at this point. These provide a wide range
of information on studying the thermochemistry of reactions by quantum chemical methods.
The first of these is by Hehre et al. (). It summarizes a lot of studies using the theoretical-
model chemistry approach pioneered by John A. Pople, as well as providing information on
background theory and what have come to be called the Pople-type basis sets. Although this
book is almost  years old, it is still a useful source. Hehre’s book (Hehre ), which is pro-
vided as part of the Spartan software, is in some respects an update of (Hehre et al. ),
providing new data, including data from various density-functional theory (DFT) methods.
A different type of book is that by Helgaker et al. (). Most of it is devoted to a thorough and
advanced presentation of the theory behind quantum chemical methods, but it also presents
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some numerical results on enthalpy changes using very large basis sets. A volume edited by
Irikura and Frirup () covers a range of issues in computational thermochemistry. Finally, a
textbook by Lewars () is very readable and has useful material on thermochemistry.

The plan of this chapter is as follows. The next section first addresses some general aspects
of performing calculations and some points to be considered when planning a project that
will yield thermochemical data. Afterwards, it looks at some points concerning the accuracy
of results obtained.The third and final section is split into a discussion of three types of studies
that involve thermochemical calculations. The first examines in some detail the formation of
(gaseous) ammonia from its elements. Various effects of basis set and method are illustrated.
The second is concernedwith obtaining accurate heats of formation on fluorine-oxygen species,
especially using DFT methodology. The third is concerned with obtaining an accurate heat of
formation of HSO, for which experimental thermochemical data are lacking.

General Aspects of Thermochemical Calculations

Calculating the ΔH, ΔS, and ΔG for a Chemical Reaction

We consider a general gas-phase chemical reaction aA(g) + bB(g)→ cC(g) + dD(g). In quantum
chemical calculations, the enthalpy change for this reaction is calculated from the enthalpies of
the species involved:

ΔH
= cHC + dHD − [aHA + bHB].

This equation differs from the calculation of ΔH from standard enthalpies of formation
(ΔH

f ), although it is equivalent to it. We return to the issue of obtaining ΔH
f in theoretical

methods later. At first sight, the notion of the enthalpy of a substance (HA, HB, HC , and HD)
might be confusing: there is after all no such thing as an “absolute enthalpy.” The quantities
HA, HB, HC , and HD are relative enthalpies, but they are enthalpies of substances relative to
the so-called quantum chemical standard state. The quantum chemical standard state consists
of infinitely separated electrons and nuclei of a substance. For example, the quantum chemical
enthalpy of the water molecule is the enthalpy relative to an O nucleus, two protons, and ten
electrons, all infinitely separated.The quantum chemical standard state is the zero of the poten-
tial energy in the usual quantum chemical Hamiltonian. To make a parallel with experimental
thermochemistry, the ΔH

f of a substance is its molar enthalpy relative to the enthalpy of its
elements in their standard states.

Next we consider how the enthalpies are calculated. The quantum chemical enthalpy of a
substance has electronic, nuclear, and PV contributions. The nuclear contribution consists of
translational, rotational, and vibrational contributions. Hence:

HA = E(A)elec + E(A)trans + E(A)rot + E(A)vib + PV .

The electronic contribution is the quantum chemical energy, that is, the energy of the station-
ary, nonrotating, non-vibrating system relative to the quantum chemical standard state; it is
sometimes referred to as the bottom-of-the-well energy. The translational energy is the clas-
sical kinetic energy of a gas, and just depends on temperature. The rotational energy depends
on the molecular structure, and the vibrational energy depends on the vibrational levels of the
molecule.The rotational and vibrational contributions depend on the temperature. In practice,
the rotational and vibrational contributions are usually evaluated using the rigid-rotor and har-
monic oscillator models. Equations for the various contributions are given in many places, for
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example, the textbook by McQuarrie and Simon (). A technical note on the GaussianWeb
site by Ochterski () is also recommended. Along with the equations, a sample output from
the Gaussian software is explained. Calculating the enthalpy of a species thus requires a geome-
try optimization to obtain the molecular structure and a vibrational frequency calculation. The
electronic energy is the energy at the optimized geometry.

The first step is to select a particular method and basis set that will be used to optimize the
geometry and obtain vibrational frequencies. Several factors will be considered in this choice:

. The method and basis set selected should give a satisfactory geometry and vibrational
frequencies that are not qualitatively different from the true results.

. The required computational resources should be available for the geometry optimization
and frequency calculation. This is not a trivial matter: a geometry optimization involves
several force calculations, and each force calculation typically requires – times the time
required for an energy calculation. In addition to more processor time, further resources
may be needed, for example, additional disk space. Even more resources are needed for
frequency calculations. If vibrational frequencies are calculated by finite differences of gra-
dients, calculations at lower symmetries than themolecule’s symmetry are needed, and these
require substantially more resources.

. Ideally the method and basis set will be capable of providing reasonably accurate electronic
energy differences, that is, ΔEelec = cE(C)elec + dE(D)elec − [aE(A)elec + bE(B)elec]. In
practice, however, it is very common to use a higher-levelmethod and/or basis set to provide
an improved estimate for ΔEelec by performing “single-point” energy calculations at the
geometries obtained with a smaller basis set. ΔEelec is the major contribution to ΔH, and it
is more sensitive to quantum chemical method and basis set than are the other components
ofH. In conclusion, then, themethod chosen for the geometry and frequency calculations is
frequently not the method used for refined ΔEelec calculations, especially in high-accuracy
work. In fact, in high-accuracy work, it is also common to employ extrapolation techniques
to estimate higher-level corrections.

Preliminary Comments on Accuracy

Naturally, one of the key questions concerns the level of theory needed to obtain a particular
accuracy. There is no simple answer, but a few general comments are appropriate at this point
(Hehre ; Hehre et al. ). The more similar are the reactants and products, the easier it
should be to obtain accurate results. Similar in this sense means having similar chemical envi-
ronments and bonding patterns in reactants and products. If the reactants and products are
“similar” it might be anticipated that the errors in the calculations on reactants and products
are similar and to a significant degree cancel out. On the other hand, when there is less simi-
larity, such cancelation is not expected, and higher-level calculations are likely to be needed for
the same accuracy. For example, in the reaction N + H → NH, the reactants and prod-
ucts are rather dissimilar: the reactants have an N–N triple bond and an H–H single bond,
while the products have N–H single bonds. Another view is that the hybridization states of the
N in reactants and products are different. Accurately calculating the ΔH for the above “simple”
reaction in fact is not at all an easy task. Both large basis sets and a high-level treatment of elec-
tron correlation are needed. Some numerical data to illustrate these points will be presented. It
has long been known (Hehre et al. ) that it is especially difficult to obtain accurate results
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for reactions that have different numbers of unpaired electrons in reactants and products, for
example, homolytic dissociation reactions.

Several classes of reactions have been defined that display some degree of similarity in reac-
tants and products.These include isogyric, isodesmic, and homodesmotic reactions. In isogyric
reactions (Pople et al. ), the numbers of pairs of electrons in reactants and products is the
same (and hence so is the number of unpaired electrons). For example, the following are isogyric
processes:

OH + CHCH → CHOH + CH,

CHBr + CHCl→ CHCH + BrCl.

Isogyric reactions constitute a very large group of reactions and it should not be assumed that it
is easy to calculate the ΔH of a general isogyric reaction. However, overall it tends to be easier
to obtain an accurate ΔH for an isogyric reaction than for a non-isogyric reaction. Any reac-
tion that involves closed-shell reactants and products, such as the formation of ammonia from
elements, is isogyric. Isodesmic and homodesmotic reactions are more restricted. In isodesmic
reactions (Hehre et al. ), the number of bonds of each type and the number of lone pairs of
each type are the same in reactants and products. For example:

CHCl + CHBr→ CH + CHBrCl,

CH=CHCF + CBr=CHCH → CHBr=CBrCFH + CH=CHCHF.

Homodesmotic reactions (George et al. ) are a subset of isodesmic reactions. For organic
compounds, the reactants and products have equal numbers of carbon atoms with the same
hybridization. In addition, there are equal numbers of carbon atoms with each number of C–H
bonds in reactants and products. Two examples, taken from a IUPAC document (Minkin ),
are as follows:

c-(CH) + CHCH → CHCHCH,

CH + CH=CH → CH=CH–CH=CH.

It is expected andhas been amply verified (Hehre ;Hehre et al. ) that calculating ΔH for
isodesmic and homodesmotic reactions is less demanding than for reactions in which reactants
and products are less similar. Of course, this is of no apparent help if the target reaction is not
one of these types. However, in a significant number of cases, it is possible to take advantage
of (say) an isodesmic reaction in calculating a particular quantity of interest, such as a heat of
formation.

A term commonly used in theoretical thermochemistry is “chemical accuracy.” This nor-
mallymeans an accuracy of  kcal mol− or about  kJmol−. Achieving this accuracy is certainly
not easy, and a lot of effort has been expended in trying to do so for reactions of relatively small
molecules.

Examples

Case Study: H(g) + N(g)→ NH(g)

In this section we discuss the calculation of the ΔH of this reaction by different methods and
basis sets. Although many other choices could have been made, this example illustrates many
important points that are likely to apply to other cases.We begin by considering the calculation
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of the change in electronic energies, ΔEelec. In fact, an experimental value of ΔE (the elec sub-
script is omitted hereafter in this section) can be derived by starting from the observed ΔH

and using known molecular structures and vibrational frequencies to obtain an “experimental”
ΔE. Thus, we shall be assessing the ability of theoretical methods to calculate the experimental
ΔE. Hehre et al. estimated this value to be− kcal mol− (Hehre et al. , p. ), but the later
estimate of −. kcal mol− (Helgaker et al. , p. ) by Helgaker et al. is probably more
reliable. The ΔH is −. kcal mol−.

Small Basis Set Study

We begin with results of calculations at geometries obtained with the Hartree–Fock (HF)
method and the -G∗ basis set. In > Table - we report ΔE values from the HF method
and several correlated methods.The correlated methods used are second- and third-order per-
turbation theory (MP and MP), fourth-order perturbation theory including single, double,
and quadruple excitations (MPSDQ), fourth-order perturbation theory including single, dou-
ble, triple, and quadruple excitations (MP), coupled-cluster singles-and-doubles (CCSD), and
CCSDwith noniterative treatment of triple excitations (CCSD(T)). Twowell-knownDFT treat-
ments, namely, the BLYP and BLYP functionals, are also used. Five basis sets are used. These
are the -G∗ basis set and four extensions thereof, namely, -G∗∗, -+G∗, -+G∗∗, and
-++G∗∗. The -G∗ basis set is a double-zeta valence basis set augmented with a set of d
polarization functions on Li and heavier atoms. The -+G∗ set adds a set of diffuse s and p
functions to Li and heavier atoms to the -G∗ basis set. The -G∗∗ set includes a set of p
polarization functions on H atoms. The -+G∗∗ extends -G∗∗ by adding a set of diffuse
s and p functions to Li and heavier atoms. Finally, the -++G∗∗ set has a diffuse s set on H
atoms. References for these basis sets are given in (Hehre et al. ). The basis sets considered
here are not expected to give very high accuracy. However, they are a convenient starting point
and the results illustrate several important points.The resultswith the -G∗ and -+G∗ basis
sets can be discounted since these basis sets are not adequate for use with correlated methods
for this example: in the calculations onH these basis sets do not include any polarization func-
tions. For the MP and CC methods, one can see a large change in ΔE on going from -G∗ to

⊡ Table -
Calculated ΔE values for H(g) + N(g)→ NH(g) (units are kcalmol−)

-G∗ -G∗∗ -+G∗ -+G∗∗ -++G∗∗

HF −. −. −. −. −.

MP −. −. −. −. −.

MP −. −. −. −. −.

MPSDQ −. −. −. −. −.

MP −. −. −. −. −.

CCSD −. −. −. −. −.

CCSD(T) −. −. −. −. −.

BLYP −. −. −. −. −.

BLYP −. −. −. −. −.
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-G∗∗. Likewise, there is a significant effect on going from -+G∗ to -+G∗∗. Both show
the importance of polarization functions on H.

Several features are shown by the data in >Table -. Looking at basis set effects first, we see
that for all methods there is an appreciable effect on going from the -G∗∗ to the -+G∗∗

basis set. This is the effect of adding diffuse functions to the N atom: it is . kcal mol− for
the HFmethod and slightly more for the correlated methods. Adding the H diffuse s functions,
that is, going from -+G∗∗ to -++G∗∗, has a smaller effect. It decreases ΔE for the HF,MP,
and CC methods, but increases it for BLYP and BLYP. It should be borne in mind that effects
of diffuse functions depend on the size of the rest of the basis set, but here they are definitely
important.These results illustrate that diffuse functions can be important evenwhen all species
are neutral.

Several trends among the different correlated methods are noteworthy. TheMP results are
much closer to the MP or MPSDQ results than to the MP results. In fact, the MP results
seem to be somewhat exceptional. This underscores the widely held view thatMP calculations
rarely offer any benefits: they demand considerably more resources than MP calculations but
do not usually improve MP results. This is certainly the case here. For all basis sets, the MP
results are between the MPSDQ and MP results. This is not to be expected in general, but is
nonetheless noteworthy. There are close parallels between CCSD and MPSDQ and between
CCSD(T) andMP. CCmethods can be viewed as summing certain classes of terms in the per-
turbation series to infinite order. CCSD includes all of the contributions inMPSDQ to infinite
order, along with certain other terms. There is a similar relationship between CCSD(T) and
MP. The closeness the CC and MP methods suggests relatively minor importance of infinite-
order effects. Again, this is certainly not true in all cases, especially difficult cases, for which
the CC methods are expected to perform better than the MP methods.The effect of connected
triple excitations, that is, the difference between MPSDQ and MP or between CCSD and
CCSD(T), is about  kcal mol−, and so triple excitations are necessary for “chemical accuracy.”

It is premature to make judgments about accuracy based on the data in > Table - since
the basis sets are relatively small. A few noteworthy trends are apparent, however. The MP,
MP, and CCSD(T) results seem to be getting closer to the experimental value as the basis set
size increases. The HF result with the largest basis set is actually quite close to experiment, but
this cannot generally be counted on. The two DFT sets of results show contrasting behavior.
BLYP performs better for the larger basis sets, but this is not true for BLYP for this example.
It should be remembered that the effects of basis set and correlated methods are not additive.
Differences between a pair of methods can depend on the basis set being used.

Studywith Extended “Pople-Type”Basis Sets

Wenow examine the results when a set of larger Pople-type basis sets is used.These are based on
a triple-zeta valence description. The effects of adding diffuse functions and using multiple sets
of polarization effects are considered. The -G∗∗ basis set is a triple-zeta valence basis set,
augmentedwith a set of polarization functions for all atoms. -++G∗∗ includes in addition a
set of diffuse functions on all atoms. In the -++G(df,pd) and -++G(df,pd),multiple
sets of polarizations are used on all atoms.

Comparing the -G∗∗ results with the -G∗∗ data in > Table -, one sees a change
of about  kcal mol−, but not in the same direction for all methods. At the HF, MP, CCSD,
and CCSD(T) levels, the magnitude of ΔE decreases, while it increases for BLYP and BLYP
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on going from -G∗∗ to -G∗∗. Adding diffuse functions to -G∗∗ again has a signif-
icant effect,  kcal mol− for HF, about  kcal mol− for MP, CCSD, and CCSD(T), and about
 kcal mol− for BLYP and BLYP. As in > Table -, diffuse functions make ΔE more nega-
tive. The effect of expanding the polarization space illustrates a significant difference between
methods. For the HF method, the effect is comparatively small, and it decreases the magnitude
of ΔE. For the conventional correlated methods, that is, MP, CCSD, and CCSD(T), expand-
ing the polarization space increases the magnitude of E by about  kcal mol−, making it more
negative.There is a comparatively small difference between the two largest polarization spaces.
For BLYP and BLYP there is little effect on ΔE on going beyond the -++G∗∗ basis set.The
comparative insensitivity of the DFT methods to polarization is rightly cited as an advantage
of these methods over conventional wave function-based correlation methods. It is well known
that the results of the latter converge more slowly with respect to basis set expansion.

One difference between > Tables - and > - is that the effect of triple excitations is
slightly smaller with the larger basis sets used in > Table -. As observed in > Table -,
the MP method seems to perform very well since its results are between those of CCSD and
CCSD(T). Concerning agreement with experiment (−. kcal mol− (Helgaker et al. )),
results with the largest basis set show best agreement for CCSD(T). Of course, the effects of
several additional factors need to be assessed. These include further basis set extensions and
the effect of using the actual minimum energy geometries for the respective methods.

Effect of Geometry

Geometries of all species were calculated using the -++G(df,pd) basis set for six methods
(HF, MP, CCSD, CCSD(T), BLYP, and BLYP), and the ΔE values were calculated.The results
are shown in > Table - below, along with the ΔE values obtained with the same basis set and
the HF/-G∗ geometries.

The data in > Table - show that the effect of geometry in this case is comparatively small,
just under  kcal mol− for CCSD(T), for example.This is not to say that using a low-level geom-
etry such as HF/-G∗ is generally recommended. Rather, the choice of geometry should be
carefully considered, with factors such as desired accuracy and available resources being con-
sidered. Certainly, with extended basis sets, obtaining a CCSD(T) geometry can be very time
consuming, and this has to be weighed against benefits. In practice, it is advisable to study
the effect of geometry on the final results using both some low-level and intermediate-level
geometries before obtaining a very high-level geometry.

⊡ Table -
Calculated ΔE values for H(g) + N(g)→ NH(g) using extended Pople-type basis sets (units are
kcalmol−)

-G∗∗ -++G∗∗ -++G(df,pd) -++G(df,pd)

HF −. −. −. −.

MP −. −. −. −.

CCSD −. −. −. −.

CCSD(T) −. −. −. −.

BLYP −. −. −. −.

BLYP −. −. −. −.
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⊡ Table -
Effect of geometries on ΔE.

HF MP CCSD CCSD(T) BLYP BLYP

−. −. −. −. −. −.

−. −. −. −. −. −.

The basis set is -++G(df,pd). The first row data are for the HF/-G∗ geometry. The second row data are for
the optimized geometries of the different methods with the -++G(df,pd) basis set. Units are kcal mol−

⊡ Table -
Calculated ΔE values for H(g) + N(g) → NH(g) using the cc-pVXZ (X = D, T, Q) basis sets (units
are kcalmol−)

cc-pVDZ cc-pVTZ cc-pVQZ

HF −. −. −.

MP −. −. −.

CCSD −. −. −.

CCSD(T) −. −. −.

BLYP −. −. −.

BLYP −. −. −.

Results from Correlation-Consistent Basis sets

Within the family of so-called Pople-type basis sets, -++G(df,pd) is the largest standard
set. Even though this basis set is quite large, it is not a complete basis set for correlatedmethods.
Better basis sets for the systematic description of electron correlation, the so-called correlation-
consistent (cc) basis sets, were developed some years later, the first being published in 
(Dunning Jr. ). The largest of such sets are recognized as providing a pathway to basis set
completeness. At the same time, these basis sets are quite large, and basis set completeness for
wave function-based correlated methods generally requires the use of an extrapolation. The cc
basis sets were developed in such a way as to permit reasonably reliable extrapolation to the
complete basis set result. Of course, the larger the basis sets used in the extrapolation, the more
reliable the extrapolation is likely to be. Helgaker et al. () discuss the convergence and
performance of the cc sets quite extensively.

We have calculated the ΔE using two series of the cc basis sets. The first series used the
cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets.The cc-pVDZ set is a valence double-zeta set with
one set of polarization functions (p for H, d for Li-Ar). In terms of contracted functions, it
is equivalent to -G∗∗. The cc-pVTZ and cc-pVQZ sets are valence triple- and quadruple-
zeta sets. They have multiple sets of polarization functions (pd and df for cc-pVTZ; pdf
and dfg for cc-pVQZ). In the second series, we have used the augmented sets, namely, aug-
cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ. These contain a set of diffuse functions for each
angular momentum, for example, there are diffuse s, p, and d sets in cc-pVDZ. In terms of
contracted functions, the cc-pVTZ set is the same size as -G(df,pd). The aug-cc-pVTZ
set would be expected to be similar in accuracy to -++G(df,pd).The next table shows the
results from the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets (> Table -).

At theHF level, there is a small change as the basis set is extended, as observedwith the other
basis sets considered in this section. For MP, CCSD, and CCSD(T), there is a considerable
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⊡ Table -
CalculatedΔE values for H(g) + N(g)→ NH(g) using the aug-cc-pVXZ (X = T, Q) basis sets (units
are kcalmol−)

cc-pVTZ cc-pVQZ

HF −. −.

MP −. −.

CCSD −. −.

CCSD(T) −. −.

BLYP −. −.

BLYP −. −.

change from cc-pVDZ to cc-pVTZ (over  kcal mol−), followed by a much smaller change on
going to cc-pVQZ. The changes for BLYP and BLYP are smaller. It is natural to wonder how
well converged are the cc-pVQZ results. Larger basis sets in the cc series have been defined, and
one could employ these in calculation on these systems (Helgaker et al. ). An alternative,
mentioned above, is to use an extrapolation formula to estimate the complete basis set result.
For example, to use the L− extrapolation the formula (Halkier et al. ; Helgaker et al. ):

W(∞) =
MW(M) − N W(N)

M
− N 

could be applied to a pair of ΔE values for a method. In this formula, M and N are the high-
est angular momentum quantum numbers of two basis sets, while W(M) and W(N) are the
values of the quantity being extrapolated with the two corresponding basis sets. For example,
suppose we extrapolate the CCSD(T) results with the cc-pVTZ and cc-pVQZ basis sets: M = 
(for the f functions in cc-pVTZ), W() = −., N =  (for the g functions in cc-pVQZ), and
W() = −.. Applying the extrapolation formula, the result is −. kcal mol−. Applying the
extrapolation formula to the cc-pVDZ and cc-pVTZ data for CCSD(T) yields −. kcal mol−.
In this case, both extrapolations give quite similar results. This will not always be the case. The
larger the basis sets used in the extrapolation, the more reliable the result should be. The next
set of results to consider are those with the augmented cc basis sets. These are shown in the
> Table -.

Going from cc-pVTZ to aug-cc-pVTZ the ΔE decreases by about  kcal mol− for the cor-
related methods and just over  kcal mol− for HF. The effect of adding diffuse functions to
cc-pVQZ is smaller, namely, about . kcal mol− for the correlated methods. The diffuse func-
tions in aug-cc-pVTZ effectively make up for some the valence basis set incompleteness in
cc-pVTZ, while cc-pVQZ is more complete, so the effect of the diffuse functions is smaller.
The difference between the aug-cc-pVTZ and aug-cc-pVQZ results is very small in this case.

Finally, based on the data in > Table - and an experimentally derived value of ΔE
of −. kcal mol− (Helgaker et al. ), one can see the CCSD(T) results approaching chem-
ical accuracy for this problem. MP also performs very well in this case, but this is not always
the case. Helgaker et al. () report an extrapolated CCSD(T) result from cc-pcVZ and
cc-pcVZ values of −. kcal mol−. The cc-pcVXZ basis sets include additional functions to
account for core correlation effects that are not included in the cc-pVXZ sets.
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Thermochemistry of Species with F–O Bonds

Species containing F–O bonds have provided a significant challenge for theoretical methods
over the years. The most celebrated case is fluorine peroxide, the theoretical structure of which
is arguably an unsolved problem, as is its heat of formation. As far as thermochemistry is con-
cerned, getting reliable, chemically accurate heats of formation for several fundamental species
(e.g., FO, FO,HOF, FOO, and FO) is very difficult. For some of these species (FOOandFO)
additional difficulties are possible uncertainties in experimental data, whichmake it more diffi-
cult to assess the quality of theoretical data. One theoretical strategy is to use themost advanced
theoretical methods (e.g., CCSD(T)) and large basis sets, perhaps including attempted extrap-
olation to the (estimated) basis set limit. Such calculations place severe demands on resources
and are applicable only to relatively small species, but they should be capable of chemical accu-
racy when carried far enough. Another strategy is to use DFT methods. These are much less
demanding computationally and thus can be applied to much larger species. The key issue is
their accuracy: can they provide sufficient accuracy on small species to be applied with confi-
dence on larger species? A study by Ventura et al. () involves a comparative study of two
functionals and the CCSD(T) method for species with F–O bonds, which we now discuss.

Ventura et al. undertook this study since there were conflicting reports on the suitability of
DFT methods for systems containing F–O bonds. Their first goal was to provide a systematic,
side-by-side comparison of two functionals, namely, BLYP and BPW, and the CCSD(T)
method using the same large atomic natural orbital basis set.The basis set chosenwas an uncon-
tracted spdf set (for N, O, and F) combined with an uncontracted spd set for H. Two
strategies were used to calculate heats of formation: (a) calculating the enthalpy changes for
the defining equations of ΔH

f (referred to hereafter as the direct method) and (b) calculating
the enthalpy changes for appropriate isodesmic equations and then using experimental data on
all but one species to calculate the enthalpy of formation of the unused species. For example,
approach (a) would use the following equations for FO and FO:



F(g) +



O(g) → FO(g),

F(g) +


O(g) → FO(g).

The isodesmic approaches for FO and FO used the equations

FO +HO→ FOH +HO,
HO + FO→ FOH + FO.

To calculate the heat of formation of FO, for example, one would calculate the ΔH of the
first equation and then combine this result with experimental standard enthalpies of formation
of HO, HOF, and OH:

ΔH
f (FO) = ΔH


f (HO) + ΔH

f (HOF) − ΔH
f (HO) − ΔH.

DFT andCCSD(T) approaches were used to obtain a series of standard enthalpies of forma-
tion using both the direct (referred to by the authors as the diatomic approach) and isodesmic
approaches. The species with F–O bonds studied were FO, HOF, and FO. In addition, the
authors calculated heats of formation of the H, N, O, and F atoms, the OH and NO radicals,
and HO.

The general findings of Ventura et al. can be summarized as follows. The DFT methods
performed better using the isodesmic method than they did for the direct method. For the
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⊡ Table -
Calculated and experimental ΔH

f
of FO, HOF, and FO (units are kcalmol−; the data are from

Ventura et al. )

BPW BLYP CCSD(T)

Experiment Iso Direct Iso Direct Iso Direct

FO . . . . . . .

. . .

HOF −. −. −. −. −. −. −.

−. −. −.

FO . . . . . . .

⊡ Table -
Calculated and experimental ΔH

f
of FO and HOF using the -G∗ basis set (units are kcalmol−;

the data are from Ventura et al. )

BPW BLYP CCSD(T)

Experiment Iso Direct Iso Direct Iso Direct

FO . . . . . . .

HOF −. −. −. −. −. −. −.

CCSD(T) method, however, the reverse was true. For the isodesmic method, the DFT meth-
ods perform better than the CCSD(T) method, but CCSD(T) performs better than the DFT
methods for the direct method. Overall the performance of all methods is generally very good.
Representative data are shown in the table below (> Table -).

Two values are given for the isodesmic method for FO and HOF, one for each of the two
equations given above.Whether the isodesmic or directmethod is used for theDFT approaches,
the results are impressive, especially considering that the time required for these calculations is
a fraction of that needed for CCSD(T). The CCSD(T) results would likely be improved slightly
with larger basis sets, while the effect is likely to be much smaller for the DFT methods.

Another instructive aspect of the work of Ventura et al. () comes from the use of the
-G∗ basis set. Such a basis set is obviously not expected to be accurate enough for a direct
calculation of the heat of formation of a molecule. However, as the following data show, when
the isodesmic approach is used, very promising results are obtained (> Table -).

ForHOF in particular, one can see that the isodesmic approach is amajor improvement over
the direct method for all methods.This illustrates the potential value of isodesmic approaches.
The good result obtained for CCSD(T) for FO with the -G∗ is no doubt fortuitous. Ventura
et al. () do not report results for FO using the -G∗ basis set.

One cautionary comment worth making here concerns the use of experimental data in
schemeswith isodesmic reactions.The success of such schemes obviously depends on the relia-
bility of the experimental data, certainly requiring chemical accuracy in the experimental data.
For FO, HOF, and FO, this appears to be the case. As mentioned above, this is probably not
true for all F–O containing species. Some theoretical studies (Feller and Dixon ; Karton
et al. ) have found a disagreement between high-quality calculated data and experimental
data for FOO and FO and recommend revision and/or a new determination of experimental
data for these species.
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Calculating the Heat of Formation of HSO

In a recent study (Napolion et al. ), isomers of HSO were investigated theoretically using
the CCSD(T) and other methods. Part of that study was calculating the standard heat of for-
mation of the lowest energy isomer, namely, the C conformer of sulfoxylic acid, S(OH). This
species has been detected experimentally, but no structural, spectroscopic (e.g., infrared), or
thermochemical data have been measured. There had been some prior theoretical estimates,
but the variations were significant. In , using bond energy estimates, Benson (Benson
) estimated ΔH

f to be −. ± . kcal mol−. Wang and Zhang () calculated ΔH
f

in two ways using the GB and G//MP procedures. First, they calculated the enthalpy
change for dissociation to atoms. Then they used the experimental ΔH

f values of atoms to
obtain a ΔH

f for S(OH). With this approach they obtained values of −. (GB) and
−. kcal mol− (G//MP), which are at the lower end of Benson’s estimate. However, Wang
and Zhang were concerned about possible inaccuracies in the atomization procedure, so they
also used a procedure that involved isodesmic reactions.This gave estimates of −. kcal mol−

(GB) and −. to −. kcal mol− (G//MP). Wang and Zhang’s preferred value was
−. kcal mol−. Our strategy was to use the CCSD(T) method with extended basis sets,
including correlation-consistent basis sets and L− extrapolation.

A direct approach to calculating the ΔH
f was not possible since the standard state of sulfur

is solid sulfur. Instead, two schemes were devised, each of which involved calculating the ΔH

of a reaction that could be combined with experimental data to yield an estimate of the required
ΔH

f . In the limit of an exact calculation, both schemes will give the same final result. Hence,
the closeness of the two estimates is to some extent a measure of the accuracy.The two schemes
are as follows.

Scheme : The standard enthalpy change for the reaction S(OH)(g) → SO(g) + H(g) was
calculated.The ΔH

f was then calculated from

ΔH
f = ΔH


f (SO) + ΔH

f (H) − ΔH
rxn = −. kcal mol− − ΔH

rxn ,

using the calculated ΔH
rxn and experimental data for SO and H.

Scheme : The standard enthalpy change for the reaction S(OH)(g) → HS(g) + O(g) was
calculated.The ΔH

f was then calculated from

ΔH
f = ΔH


f (HS) + ΔH

f (O) − ΔH
rxn = −. kcal mol− − ΔH

rxn ,

using the calculated ΔH
rxn and experimental data for SO and H.

The difference
ΔH

f (Scheme ) − ΔH
f (Scheme )

is equal to ΔH(Expt.)−ΔH(Calc.) for the reaction HS(g) + O(g)→ SO(g) + H(g). For our
most complete calculations (see below), the difference is only −. kcal mol− , which is within
chemical accuracy. This is a significant achievement since it is well known to be very difficult
to obtain accurate thermochemical data on SO. This suggests that our strategy is suitable for
calculating the ΔH

f of S(OH).
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⊡ Table -
CCSD(T) values of ΔE, ΔH, and ΔH

f
from Scheme  (see above) in kcalmol−

ΔE ΔH ΔH
f

-++G(d,p) . . −.

-++G(df,pd) . −. −.

ANO-TZP . . −.

cc-pV(D+d)Z . . −.

cc-pV(T+d)Z . −. −.

cc-pV(Q+d)Z . −. −.

aug-cc-pV(D+d)Z . . −.

aug-cc-pV(T+d)Z . −. −.

aug-cc-pV(Q+d)Z . −. −.

Extrapolationa . −. −.

Extrapolationb . −. −.

aExtrapolation based on the cc-pVTZ and cc-pVQZ results
bExtrapolation based on the aug-cc-pVTZ and aug-cc-pVQZ results

The results of our calculations are shown in > Tables - and > - (see below). Each
table shows three quantities. ΔE is the energy change of the reaction for stationary nuclei at
 K. ΔH is the calculated standard enthalpy change of the reaction at . K, obtained from
ΔE and the unscaled CCSD(T)/-++G(d,p) thermal correction (−. and −. kcal mol−

for Schemes  and , respectively). ΔH
f is the calculated standard enthalpy of formation of

S(OH) at . K, obtained as indicated above.
Before discussing the data, a note on the cc basis sets used is needed. When the cc basis

sets for third-row elements such as sulfur were first developed, the numbers of polarization
functions used were the same as in the basis sets for the second-row elements (e.g., d for cc-
pVDZ, df for cc-pVTZ, and so on). It was subsequently found that the d set for third-row
elements was inadequate and needed to be expanded by adding a set of “tight” d functions. The
resulting basis sets are referred to as cc-pV(X+d)Z and aug-cc-pV(X+d)Z. For H and second-
row elements, these sets are the same as the original cc-pVXZ and aug-cc-pVXZ sets, but for
third-row elements they have an extra set of d functions.

Looking at > Table -, one sees that there are quite small differences between the
triple- and quadruple-zeta results, the largest being . kcal mol− between the aug-cc-pV(T+d)Z
and aug-cc-pV(Q+d)Z results. Consequently, the extrapolated results differ little from the cc-
pV(Q+d)Z and aug-cc-pV(Q+d)Z values. Also, the two extrapolated results differ by only
. kcal mol−. The -++G(df,pd) basis set performs fairly well overall. The cc-pV(D+d)Z
and aug-cc-pV(D+d)Z results are not as good, especially the latter.

The data in > Table - show greater sensitivity to basis set than do those in > Table -,
no doubt a reflection of the demands on the basis set in calculations on SO. In >Table -, one
can seemuch larger differences between the triple- and quadruple-zeta results. Not surprisingly,
the extrapolation has a larger effect than in > Table -. However, the two extrapolations give
ΔH

f values that differ by only . kcal mol−. The -++G(df,pd) basis set is seen not to
perform as well in > Table - as in > Table -. The deficiencies of the smaller basis sets are
more apparent in > Table - than in > Table -.
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⊡ Table -
CCSD(T) values of ΔE, ΔH, and ΔH

f
from Scheme  (see above) in kcalmol−

ΔE ΔH ΔH
f

-++G(d,p) . . −.

-++G(df,pd) . . −.

ANO-TZP . . −.

cc-pV(D+d)Z . . −.

cc-pV(T+d)Z . . −.

cc-pV(Q+d)Z . . −.

aug-cc-pV(D+d)Z . . −.

aug-cc-pV(T+d)Z . . −.

aug-cc-pV(Q+d)Z . . −.

Extrapolationa . . −.

Extrapolationb . . −.

aExtrapolation based on the cc-pVTZ and cc-pVQZ results
bExtrapolation based on the aug-cc-pVTZ and aug-cc-pVQZ results

A measure of the quality of the results can be obtained by comparing the ΔH
f values in

> Tables - and > -. Even for the aug-cc-pV(Q+d)Z basis set, there is a . kcal mol−

difference, which is not within chemical accuracy, of course. However, the corresponding
extrapolated values in the two tables differ by less than  kcal mol−, which is within chemi-
cal accuracy. Our best results for ΔH

f , then, are – kcal mol− above Benson’s mean value and
in the range of values obtained by Wang and Zhang by isodesmic reactions, rather than their
estimates based on dissociation reactions. Our reaction enthalpies predict that decomposition
of S(OH) to SO + H is slightly exothermic, while decomposition to HS + O is strongly
endothermic.
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Abstract:  Excited states participate in photoinduced events as well as in thermally acti-
vated reactions, even in many cases in which only the ground state is believed to be involved.
Life on Earth also depends, both directly and indirectly, on the influence that light has on
chemistry. The energy of the Sun’s visible and ultraviolet radiation promotes processes that
not only permit the continued existence of life on the planet, but which are keys for evolu-
tion by means of mutations. To study a system in an excited state, far away from its optimum
situation, is a challenge for chemists, both experimentalists and theoreticians. This chapter is
focused on the practical aspects related to the calculation of excited states in molecular systems
by using quantum-chemical methods, a type of study that escapes in many cases from the well-
established computational strategies used for the molecular ground states, both because of the
complexity of the problem itself and for the methodological requirements. A short review of
the spectroscopic and photochemical panorama will be provided first in order to explain which
are the main parameters and processes to be determined, followed by a compact description
of the most relevant and employed quantum-chemical methods and computational strategies
for excited states. A number of applied examples of actual calculations on paradigmatic excited
state problems will be provided in the different subchapters, followed in each case by comments
on practical issues occurring in the calculations. With these cases we will try to demonstrate
that in the last years the quantum-chemical studies on excited states have reached the required
maturity to interpret and predict, at a molecular level, different types of chemical situations.

Introduction

Computing electronic excited states with quantum chemical methods is much more com-
plex than doing it for ground states, because it implies not only coping with higher solutions
of the electronic Hamiltonian with diverse character and therefore requiring more complex
methods, but also to solve a plethora of new situations, such as hypersurface crossings and
coupling between the states, that usually requires to abandon convenient approximations like
Born–Oppenheimer (see Szabo and Ostlund ), for instance.

Molecules, consisting of electrically charged nuclei and electrons, may interact with the
oscillating electric and magnetic fields of light. Spectroscopic experiments demonstrate that
energy can be absorbed or emitted by molecules (and atoms) in discrete amounts, correspond-
ing to precise changes in energy of the molecule (or atom) concerned. As matter, light is a
form of energy that exhibits both wave- and particle-like properties. Absorption of the relevant
frequencies from incident radiation raises molecules from lower to higher levels. Electrons in
molecules occupy molecular orbitals (MOs) with precise energy levels. Transitions from lower,
filled orbitals, to upper (higher energy), empty orbitals usually involve absorption of radiation
in the UV and visible parts of the spectrum. Much smaller quantities of energy are linked to
changes in the vibrational and rotational energy of themolecule.The understanding of the spec-
troscopic phenomena in the light of molecular orbital theory has opened new avenues in the
comprehension of the photoinduced events.

Themolecule in excited state is often prone to react in an easier way than in the ground state.
The excess energy of an excited species can alter its reactivity and is particularly significant in the
case of electronic excitation because of the energies involved are of similar order of magnitude
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as bond energies. Electronic excitations can then have a considerable effect on the structure
of a species. Accordingly, the energies correspond roughly with typical activation energies for
many reactions, which are too high to be reached from the ground but not from the excited
state.The new electronic rearrangement may be also the key of the reactivity since the molecule
in an excited state may exhibit nucleophilic or electrophilic properties different than those of
its ground state.

Three modern developments have been produced in the last years that are the key for
the comprehension of the photophysics and photochemistry of many chemical and biochem-
ical phenomena: () rapid advances in quantum-chemical methods allow to study the excited
states with high accuracy; () improved molecular beams techniques permit studies of isolated
molecules, despite their sometimes low vapor pressure and propensity for thermal decompo-
sition, and () the revolutionary impact that femtosecond laser and multiphoton techniques
have had on the study of the electronic energy relaxation processes. Indeed, now it is possible
to get information about reaction intermediates at very short times from femtochemical tech-
niques, and, more than ever, the participation of quantum chemistry to interpret such findings
has become crucial. A constructive interplay between theory and experiment can provide an
insight into the chemistry of the electronic state that cannot be easily derived from the observed
spectra alone.

From the theoretical viewpoint, the calculation of excited states is still a very complex task.
Considering themany different electronic structure situations occurring in the potential energy
hypersurfaces (PEHs) of the excited molecular systems, the only methods generally applica-
ble to all of them are the multiconfigurational approaches. The application of these procedures
requires a lot of skill and experience, and the limitations on the size of the problem are notice-
able. Single-reference (black-box)methods onlywork in certain regions of the PEHs. In general,
the excited state problem can be considered heavily multiconfigurational. New tools and strate-
gies are required for excited states at the highest levels of calculation: optimization of minima,
transition states, hypersurface crossings (conical intersections), and reaction paths, whereas
states couplings (nonadiabatic, electronic, spin-orbit) need to be computed.This solves only the
first part of the problem, that is, the solution of the time-independent Schrödinger equation.
Once the potential represented by the PEHs is obtained, time-dependent equations have to be
solved to finally determine reaction rates, states lifetimes, or populations. Coupling at the proper
level those two types of calculations, static and dynamic approaches representing the electronic
structure and reaction dynamics problems, respectively, is still a task under development.

Spectroscopy Overview

The concept of PEHs comes from the Born–Oppenheimer approximation, based on the sep-
aration of electronic and nuclear motion due to the large difference in mass between these
particles, and assumes that the electrons follow the nuclei instantaneously during the motion of
the latter. Therefore, an electronic and a nuclear Hamiltonian can be defined. Solving the elec-
tronic Schrödinger equation provides us a description of the movement of electrons, whereas
we consider the rotation, vibration, and translation of the molecule solving the nuclear coun-
terpart.The solution of the electronic Schrödinger equation is the energy of a particular nuclear
configuration. The total energy for fixed nuclei must also include the constant (within this
approximation) nuclear repulsion potential. The value of this total potential energy for every



Calculation of Excited States: Molecular Photophysics and Photochemistry on Display  

possible nuclear configuration is specifically the potential energy hypersurface. Photophysical
and photochemical processes take place through interactions between PEHs. For the specific
case of close degeneracies between the surfaces, where ultrafast energy transfers occur, the
Born–Oppenheimer approximation breaks down and special methods in order to localize,
optimize, and study the crossing structures are required.

The absorption of photons for a molecule is hardly a static problem. After the absorption
(ABS) of one photon, a state of the same multiplicity as the ground state is mainly populated.
Direct absorption to states of different multiplicity are only possible if the states heavily inter-
act, for instance, by spin-coupling effects. Actually, in the general case, the energy goes to a
vibrational excited state of an electronic excited state of the molecule. Straight afterward, a
non-radiative decay occurs, with emission of heat (IVR, intramolecular vibrational relaxation),
toward more stable structures of the state PEH, in many cases the state minimum. It might
frequently happen that along the decay other states cross and, if appropriately coupling, the
system can evolve toward other electronic states of the same multiplicity via a non-radiative
internal conversion (IC). Finally, the molecule arrives to the lowest-lying singlet excited state,
S, fromwhich the molecule may emit (F, fluorescence) and return to the ground state. Alterna-
tively, a non-radiative transition between two states of differentmultiplicity is also possible (ISC,
intersystem-crossing). By successive internal conversions the system reaches the lowest-lying
triplet excited state, T, from which the molecule may emit (P, phosphorescence).

> Figure - contains a simplified Jablonski diagram summarizing the main photophysi-
cal and photochemical effects undergone by a molecular system. It is common to reserve the
word photophysics to processes not involving the generation of new photospecies, that is, just
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⊡ Fig. -
Jablonski’s diagram, lifetimes of the basic photophysical processes and deexcitation pathways
from the lowest-lying excited states of a molecule
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to decays leading to emission or returns to the ground state. However, nonradiative internal
conversions or intersystem crossing are also considered photochemical processes, therefore the
use of both terms is somewhat loose. A proper nomenclature for excited states is not easy to
establish . The less ambiguous (and less informative too) form is purely enumerative: S, S,
T, T, where S represents a singlet state and T stands for the triplet states, and the states are
ordered by energy. In symmetric systems, it is convenient to use the labels derived from group
theory. A state is then described in terms of the behavior of the electronic wave function under
the symmetry operations of the point group which the molecule belongs to (Ag , Bu ,…),
including the energy ordering, multiplicity, and symmetry label. Classical nomenclatures, such
as those developed byMulliken (N,V, T), Kasha (ππ∗, σπ∗), and Platt (La , Bb), highlighting
the type of orbitals implied in the excitation, can be useful in different cases.

The basic information required to rationalize a photoinduced phenomenon is the energy
levels of the excited solutions and the probability of energy (population) transfer from one
state to the other. In the semiclassical treatment of the interaction radiation-matter, whereas we
treat the molecule quantum-mechanically, the radiation field is seen as a classical wave obeying
Maxwell’s equations.

The electric and magnetic fields of the radiation will interact with the atomic or molecu-
lar electrons giving a time-dependent perturbation. Solving the time-dependent Schrödinger
equation provides us the comprehension of absorption and stimulated emission, whereas
to explain spontaneous emission we need the machinery of quantum electrodynamics. The
resonance condition provided by the energy differences between the different PEHs of the
corresponding states relates to the absorbed or emitted energy quanta. Regarding the trans-
fer probability, it is related with the strength of the interaction between the time-dependent
field and the multipolar (the dipole, d, approach is usually enough) charge distribution of
the molecular system. Such strength is proportional to the transition dipole moment (TDM)
(> Fig. -).

As an initial feature, the electronic states produce a superposition of bands which charac-
terize the absorption spectrum. The range of absorbed energies fluctuates between the vertical
absorption energy, EVA (difference between the minimum of the ground state and the excited
state at the same geometry, that is, the Franck–Condon transition), and the adiabatic transition

T0

Te EVA

EVE

S0

S1

υ′ = 0

υ″ = 0

⊡ Fig. -
Vertical energies and band origins. Vibrational states are labeled with the greek character υ
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or band origin, Te (difference between the excited state and the ground state at their respective
optimized equilibrium geometries): it is the minimal energy difference allowed in absorption
if the assumption that all excitations begin from the relaxed ground state is considered, as well
as the largest energy emitted from the relaxed excited state. In many cases, the determination
of Te provides enough information to assign band origins; however, the zero-point vibrational
energy (ZVE) has to be included in both initial and final states to get the vibrational band ori-
gin, T, which can be directly compared to the experimental value, at least that obtained in
the gas phase or in molecular beams. In addition, there is another magnitude named vertical
emission energy, EVE, which is the difference between the excited state and the ground state
at the relaxed geometry of the former. The Franck–Condon principle stipulates that the verti-
cal absorption can be related with the experimental band maximum. In fact, this is hardly the
case, except when the ground and excited states have very similar geometries, and in this case
the T transition (Sυ′′ =  → Sυ′ = ) yields the most intense peak. The vertical excitation
has, however, no experimental counterpart, whereas to get a true band maximum, the band
vibrational profile must be computed. The only direct comparison relates the theoretical and
experimental band origins, T actually. Trying to asses the quality of a theoretical approach by
comparing theoretical vertical excitations and experimental band maxima is one of the most
frequent mistakes seen in the literature.

Regarding the transfer probability, far from the conical intersection regions the Fermi’s
Golden Rule is employed, in which the one-photon (optical) transition probability between two
states ∣n⟩ → ∣m⟩ is proportional to the square of the TDMbetween such states: TDM = ⟨m∣d∣n⟩.
Two- and higher-order multiphoton probabilities can be also obtained. Based on symmetry
considerations, selection rules for electronic transitions have been developed because only the
totally symmetric matrix elements yield allowed nonzero probabilities (at first order). Using
the so-computed electronic TDM, it is useful to estimate the electronic oscillator strength as
f = (/)EVATDM, with EVA being the vertical energy difference. The oscillator strength
is a classically derived magnitude that represents the relative area of the electronic transition
band and that it can be compared with the experimental estimation based in shapes and band-
widths. On the other hand, the vibrational contributions to the band intensity (or, in general,
the strength of the transfer) can be obtained by computing the TDMbetween vibrational states.
If belonging to the same electronic states, infrared or Raman intensities can be produced, other-
wise electronic band vibrational profiles can be obtained.The vibrational TDM is proportional
to the vibrational overlap term between the electronic states, ⟨υm ∣υn⟩, which are called the
Franck–Condon factors (the probability of transition is proportional to its square). The vibra-
tional profiles are basically related to the differences in geometry existing from the initial to the
final electronic state and, therefore, the most intense progressions proceed through the normal
modeswhich trigger the aforesaid changes. Within the harmonic approach, the complete TDM
with respect the nuclear coordinates Qi is defined as the Herzberg–Teller expansion:

TDM = TDM(Q)⟨υm(Q)∣υn(Q)⟩

+
∑

K
(

∂TDM(Q)
∂QK

)

Q

⟨υm(Q)∣QK ∣νn(Q)⟩ + . . . .

Each one of the terms has an electronic and a vibrational component. The neglect of all
terms except the first one is known as the Condon approximation, a usual way to proceed but
only applicable for the one-photon dipole-allowed transitions. Otherwise, TDM(Q) is zero by
symmetry and the first term vanishes. Nonetheless, this approximation is valid only when the
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Born–Oppenheimer approximation is also valid. Otherwise, the phenomenon of vibronic cou-
pling arises, which gives rise to other approximations (the term vibronic should be reserved to
solutions obtained in non-Born–Oppenheimer cases, although is frequently used improperly).
From the calculation of transition dipole moments, radiative lifetimes can also be obtained,
both in fluorescence and phosphorescence by using the Einstein coefficients (A) and the
Strickler–Berg relationships (Strickler and Berg ):

A =


τrad
= . ⋅ E

VETDM

→, (.)

where τrad is the radiative lifetime measured in s−. The use of Te instead of EVE is more
representative of the energy of the emission.

To study photophysical and photochemical processes on theoretical grounds, we need to
determine the topography of the potential surfaces of the implied states (see > Fig. -).
According to the different reaction paths throughwhat a systemmight evolve, one can normally
make the following classification that defines the photochemical panorama: adiabatic and non-
adiabatic photochemistry. In an adiabatic reaction path, once vertical absorption takes place,
the system proceeds along the hypersurface of the excited state to reach a local (or absolute)
minimum leading in some cases to an emitting feature. On the contrary, in a non-adiabatic
photochemical reaction, one part of the reaction takes place on the higher-state hypersurface
and after a nonradiative jump at the surface crossing (or funnel) continues on the lower-state
hypersurface. In a typical closed-shell ground-state molecule, the reaction usually begins on
the potential energy surface of the excited state (S or higher) at the Franck–Condon geometry
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⊡ Fig. -
Scheme of the main photophysical and photochemical molecular events. Notice that the order of
the states changes along the nuclear coordinate,Q
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(i.e., at the ground-state equilibrium geometry) and evolves either to the S state minimum,
from which it might emit, or to a crossing region with the ground state. Depending on the
properties of such crossing, the process will end up on the reactant minimum or a new pho-
toproduct minimum on the ground-state surface (S). The crossings between the excited state
relevant from the photochemical view and the ground state are frequent, and they represent
the basis of the spectroscopic phenomena. Therefore, a molecule evolving through the PEH of
an excited state may well enter in a crossing region between two hypersurfaces during the life-
time of such an excited state. Hence, the lifetime of excited states is determined by the barriers
that separate the excited states at the Franck–Condon geometry from the low-lying crossings.
There are two types of crossings: conical intersections (CI), when the two interacting hypersur-
faces have the same multiplicity, and (within the nonrelativistic approximation) singlet-triplet
crossings (STC) or any other crossing between states that have different multiplicity (Bearpark
and Robb ; Domcke et al. ; Herzberg and Longuet-Higgins ; Robb et al. ;
Teller ). Therefore, internal conversions take place through CIs, and intersystem crossings
through STCs. The name of conical intersection (see > Fig. -) reflects the fact that a cone-
shaped crossing is obtained when the energy of the states is plotted against the two privileged
coordinates, the gradient differential vector, x, and the nonadiabatic coupling vector, x. Thus
the total coordinate space F-dimensional is divided in two: the intersecting space (of dimen-
sion F − ), in which both states are degenerated, and the branching space (of  dimensions).
The most pronounced difference between the slopes of both hypersurfaces occurs along x,
whereas along x the optimum nuclear displacementwhichmixes the two adiabatic wave func-
tions in the CI point takes place. Actually, the intersection space is an hyperline that consists
of an infinite number of CI points, i.e., a (F − )-dimensional intersection space. To locate a CI
point is equivalent to minimize the energy in the intersection space. In the case of STCs (if the
nonrelativistic Hamiltonian is considered), we have only one privileged coordinates since the
nonadiabatic coupling vector vanishes.Therefore we should refer this feature as an hyperplane,
since we are moving along a (F − )-dimension space.

F-2-dimensional
intersection space

2-dimensional
branching space

Ground state

Excited state
E

X2

X1

X2

X1

Cl Cl

X3, X4, ..., XF

⊡ Fig. -
Descriptionof a conical intersection. Thevectorsx and x span thebranchingspace. Theyarecalled
the gradient difference (GD) vector and the derivative coupling (DC) vector. The DC vector mea-
sures the distortion of the system providing the maximum coupling between the electronic states
involved in the crossing. TheGDvectormeasures the distortionof the system leading to the largest
variation of the energy difference between the two electronic states involved in the crossing
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⊡ Fig. -
Scheme of the limit characters displayed by the conical intersections. For a peaked CI, the twomin-
ima lie on the two different sides of the CI point and the gradients of the two intersecting PEHs are
directed towarddifferent directions. Conversely, for a slopedCI, theexcited-state andground-state
minima lie on the same side (the gradients of the two PEHs point in the same direction), then the
probability of re-crossing is higher and the efficiency of funneling is lower

As the Born–Oppenheimer approximation is not valid in regions where the electronic states
become too close, it is logical that the nonadiabatic transfer is faster than the radiative relax-
ation. In essence, the former is based on the structure of the vibronic states. Certainly, the
smaller is the gap between the states, the larger is the transfer probability.

Conical intersections may be peaked or sloped (see Atchity et al. ; Ben-Nun and
Martínez , and > Fig. -).

If the connection between the two surfaces is sloped, the funnel may well be more efficient.
In addition, the degeneracy at a crossing point can also be lifted at second order. As a conse-
quence, we can choose a coordinate system in which to mix the branching and intersection
space coordinates to remove this splitting and preserve the degeneracy to second order. These
new coordinates give the curvature of the conical intersectionhyperline and determinewhether
one has a minimum or a saddle point on it. These studies may also provide the vibrational
modes that must be stimulated in order to enhance nonradiative decay because they decrease
the energy gap and can lead to a CI (see Paterson et al. ; Sicilia et al. ).

A computational strategy can be designed, namely the Photochemical Reaction Path
approach, in which the mechanism of the photoinduced process is accounted for by determin-
ing the fate of the energy on the populated state by computing the reaction profile. The whole
process can be described by computing Minimum Energy Paths (MEPs), describing the lowest-
energy, and therefore most favorable, although not unique, path for energy decay. The MEP is
often built as steepest descent paths, guaranteeing the absence of barriers along the path. Each
step requires the minimization of the PEH on a hyperspherical cross-section of the hypersur-
face centered on the initial geometry and characterized by a predefined radius. The optimized
structure is taken as the center of a new hypersphere of the same radius, and the procedure
is iterated until the bottom of the energy surface is reached. Mass-weighted coordinates are
used, therefore theMEP coordinate corresponds to the so-called Intrinsic Reaction Coordinate
(IRC), measured in a.u., that is, bohr⋅(amu)/.The end of the path and the states crossed along
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the computed profile will inform about the fate of the energy, and, in particular, of the loca-
tion of possible radiative minima and surface crossings, CIs and STCs. More crucial than the
presence of a crossing is its accessibility. The path of available energy should reach the crossing
region to take place. Otherwise, if a too high energy barrier hinders the access to the crossing,
the feature could be totally ineffective.

Electronic Structure Calculations

The development of Quantum Mechanics was spread over by Erwin Schrödinger, Werner
Heisenberg, and Paul Dirac in the s. The wave and particle aspects of matter are recon-
ciled by the Schrödinger equation for stationary states,HΨ = EΨ. The Hamiltonian operator,
H, is associated to the total energy of a physical system and is the sum of the kinetic energy and
the potential energy operators associated with electrons and nuclei (H = Te + TN +VNN +VNe

+ Vee). This is an eigenvalue problem, in which wave functions Ψ are the eigenfunctions of
H and E stands for the corresponding eigenvalues (energies). The main challenge in Quantum
Chemistry is that we cannot solve exactly the Schrödinger equation, except for one-electron
systems, due to the electron repulsion term present in the Hamiltonian. Quantum-chemical
methods look for approximate solutions of the equation, employing computational numerical
methods typically based on the variational principle and perturbation theory. A point worth
bearing in mind is that none of these models is applicable under all circumstances. Actually, we
should get the best method in order to find what it has been wisely defined as “the right answer
for the right reason.”

The physics of electron correlation is hidden in the Hamiltonian itself.The Coulomb repul-
sion given by the term r− present in theVee energy, the inverse distance between two electrons,
increases enormously in the regions close to rij = , preventing that two electrons may occupy
the same space. Therefore, the motion of any two electrons is not independent but it is cor-
related. The phenomenon is known as electron correlation. Moreover, the statement that two
electrons are correlated is equivalent to express that the probability of finding two electrons at
the same point in space is zero. The instantaneous position of electron i forms the center of a
region that electron j will avoid. For this reason, it is stated that each electron, as described by
the exact wave function Φ, is surrounded by a Coulomb hole. However, electron correlation is
not taken into account properly by many approximate methods. The effect of neglecting elec-
tron correlation partly in approximate quantum-chemical approaches has great impact in the
computed molecular spectroscopic properties of interest.

General Overview

We can group computational–chemical methods in three basic categories (see for instance
Atkins and Friedman ; Helgaker et al. ):

• Ab initio methods, in which the complete Hamiltonian is used, all the integrals are solved
numerically, and no essential parametrization is employed

• Semiempirical methods, in which a simpler Hamiltonian is used or integrals are adjusted to
experimental values or ab initio results
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• Molecular mechanics, in which we solve Newton’s equation of motion, only valid for
situations where no bonds are broken or formed, i.e., conformational changes

Obviously, the larger is the systemunder study, the less accurate is the availablemethod.Despite
their inherent drawbacks, classical semiempirical methods are still employed in large systems,
whereas modern semiempirical methods, based on the Density Functional Theory, have a
widespread use. A combined approach, QM/MM (Quantum Mechanics/Molecular Mechan-
ics) treats an internal part of the problem with QM methods, whereas the surroundings or a
large part of a macromolecule (for instance, a protein) is introduced using classical mechanics.

According to the number of configurations used to build the reference wave function, the
ab initio methods can be classified in the following two categories (see > Fig. -):

• Single-configuration methods.They are typically based in the single Hartree–Fock (HF) ref-
erence, which determines the optimal ground-state energy and MOs (molecular orbitals).
Post-HF methods introduce the electron correlation usually at the Configuration Interac-
tion (CI), Coupled-Cluster (CC) or perturbative (PT)Møller–Plesset (MP, or PT in general)
levels. The coupled-cluster methods with singly and doubly excited configurations, includ-
ing the effect of triple excitations by perturbation theory CCSD(T), as well as related
approaches, yield accurate results in well-defined ground-state situations and are consid-
ered as benchmark results for small to medium molecules. In general, the applicability of
the methods in this group is restricted to situations where a single reference wave func-
tion is adequate for the description of a chemical process, something not generally true for
bond-breaking cases, degeneracies, and excited states

• Multiconfigurational methods. Part of the electronic correlation is already included in the
reference wave function, normally by using a Multiconfigurational Self-Consistent-Field
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Ab initio methods
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(MCSCF) wave function, which determines a set of MOs. The remaining electron correla-
tion effects are accounted for byMRCI, MRCC, or MRPT techniques, whereMR stands for
multireference. They have a more ample range of applicability (ground state, excited states,
transition states) than single-reference methods

The variation principle states that given a normalized wave function that satisfies the appro-
priate boundary conditions, then the expectation value of the Hamiltonian is an upper bound
to the exact ground-state energy. In the linear variational problem, the trial function is a linear
combination of basis functions, in general using the Linear Combination of Atomic Orbitals
(LCAO) approach. On the other hand, in perturbation theory, the total Hamiltonian of the
system is divided into two pieces: a zeroth-order part, which has known eigenfunctions and
eigenvalues, and a perturbation part.The exact energy and wave function are then expressed as
an infinite sum of contributions of increasing complexity. If we have chosen the zeroth-order
Hamiltonian wisely, then the perturbation is small and the expansion (i.e., the sum of the st-,
nd-, …, nth-order energies) converges quickly.

The simplest wave function to describe a many-electron system is a Slater determinant
built by orthogonal one-electron wave functions. Electrons are fermions and accordingly they
have to be described by an antisymmetric wave function. For an N-electron system, the Slater
determinant has the form:

Ψ(x, x, . . . , xN) = (N!)−/
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= ∣χi χj . . . χk⟩ (.)

without specifying which electron is in which orbital. To simplify the notation, a normalized
Slater determinant is represented by only showing the diagonal elements of the determinant.
The constant (N!)−/ is a normalization factor.Thewave function for an electron that describes
both the spatial distribution and its spin is called spin orbital, χi(xi). Since the Hamiltonian
employed does not depend on the electronic spin, each spin orbital can be expressed by mul-
tiplying the spatial orbital, ψj(ri), by the spin function, ω (α – spin up and β – spin down):
χi(xi) = ψj(ri) ⋅ ω. A complete set for describing the spin of an electron consists of two
orthogonal functions α(ωi) and β(ωi).

A single-determinant wave function has several interesting properties. Firstly, it is worth
noting that spin orbitals must be linearly independent, otherwise the value of the determinant
is zero. It is obvious that interchanging two rows of the Slater determinant, which is equiva-
lent to interchanging the coordinates of two electrons, changes the sign of the determinant.
The requirement of the antisymmetry principle is automatically fulfilled. Having two columns
of the determinant identical, that is, two electrons occupying the same spin orbital, makes the
determinant zero. Thus, no more than one electron can occupy a spin orbital (Pauli exclusion
principle). When a linear transformation of the set {χi} is carried out, χ′i = ∑ j χ j ⋅ Aji , where
Aji is an element of the matrixA of dimension N×N, with a value for its determinant, det(A),
different from zero, then Ψ′

= det(A)Ψ.The wave functions Ψ′ and Ψ differ just in a constant
and, therefore, represent the same physical situation. Since the set of spin orbitals is linearly
independent,we can always choose a transformation matrixA so that the resulting spin orbitals
χ′i become orthonormal. Therefore, no restriction at all is imposed when we choose from the
beginning an orthonormal set of spin orbitals. It just makes the computation of the Hamilto-
nian matrix elements involving Slater determinants easier. A Slater determinant is completely
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specified by the spin orbitals used to build it, and any unitary transformation of them is equally
valid. Two sets of spin orbitals related by a unitary transformation (A† = A−), which keeps
the orthonormality of the spin orbitals, yield the same Slater determinant. Slater determinants
formed from orthonormal spin orbitals are normalized andN-electron Slater determinants that
have different spin orbitals are orthogonal. In other words, a Slater determinant is completely
specified by the spin orbitals used to build it and any unitary transformation of them is equally
valid (each result of such a linear transformation represents the same physical situation).

There are two types of spin orbitals: restricted spin orbitals, which are constrained to
have the same spatial function for α and β spin functions; and unrestricted spin orbitals,
which have different spatial functions for α and β spins. A restricted set of spin orbitals has
the form: χi(x) = ψj(r) ⋅ α(ω)//ψj(r) ⋅ β(ω), whereas an unrestricted set has the form:
χi(x) = ψα

j (r) ⋅ α(ω)//ψ
β
j (r) ⋅ β(ω).

Essentially, all practical calculations for generating solutions to the electronic Schrödinger
equation are performed withmolecular orbital methods: the zeroth-order wave function is con-
structed as one or two Slater determinants and theMOs are expanded in a set of atomic orbitals,
the basis set. In a subsequent step, the wave function may be improved by adding electron cor-
relation by either CI, MP, or CC methods. Nevertheless, there is another equivalent theory to
get approximate solutions of this eigenvalue equation: the valence bond (VB) theory. The main
drawback is that this theory leads to awkward calculations. On the positive side, conceptually
it is much closer to the experimentalist’s language since it may be regarded as a quantitative
version of the resonance structure of electronic structure, with ionic structures and covalent
structures of molecules. The VB method assumes that the wavefunction of a molecule may be
written as a linear superposition of mathematical functions which represent canonical elec-
tronical structures: structures in which electrons are assigned to specific atoms and then paired
(spinwise) leading to covalent and ionic structures, the combination of which represents the
wave function. The VB description of a bond as the result of two overlapping and localized
orbitals is in contrast to the MO approach where a bond between two atoms arises as a sum
over (small) contributions from many delocalized orbitals.

Classical valence bond theory is very successful in providing a qualitative explanation for
many aspects. One of the great merits of VB theory is its pictorially institutive wave function
that is expressed as a linear combination of chemically meaningful structures. It is this feature
that has made VB theory so popular in the –s. However, VB theory was “defeated”
by MO theory for two main reasons: () mathematical simplicity and () several “failures” of
the VB theory (actually due to misuse of very simplified versions of the theory). Currently, VB
theory is coming of age in all the branches of theoretical chemistry (excited states, dynamics,
environmental effects, and so on), with the development of faster, and more accurate ab initio
VBmethods, and with generation of new post-Pauling concepts.The Renaissance of VB theory
is marked by surge in the following two-pronged activity: () creation of general qualitative
models based on VB theory and () development of new methods and softwares that enable
applications to moderate sized molecules.

Methods, Advantages, and Drawbacks

The Hartree–Fock method is the simplest ab initio approach. We can equate closed-shell HF
theory to single determinant theory, and we are thus interested in finding a set of spin orbitals
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{χa} such that the single determinant formed from them, ∣Ψ⟩ = ∣χ χ χ . . . χa χb . . . χN⟩ is
the best possible approximation to the ground state of the N-electron system described by an
electronic Hamiltonian H. The expectation value of the energy, E = ⟨Ψ∣H∣Ψ⟩, is a linear
combination of one-electron integrals, ⟨i∣h∣ j⟩ and two-electron integrals, ⟨i j∣kl⟩. According to
the properties of a Slater determinant, electrons are not uncorrelated in a HF wave function. At
least the probability of finding two electrons with parallel spins at the same point in the space is
zero, the so-called exchange correlation, which is incorporated by the antisymmetric condition
of the wave function for fermions. The phenomenon is known as the Fermi hole.We are, there-
fore, facing a model of independent particles where the behavior of certain electrons is not fully
independent because the Fermi hole simulates somehow the Coulomb hole. Consequently, only
Fermi correlation is accounted for by the HF wave function.

By minimizing E with respect to the choice of spin orbitals {χa}, varying them with the
only restriction that they remain orthonormal, ⟨χa∣χb⟩ = δab , one can arrive to the Hartree–
Fock conditions. In doing so, one obtains an equation that defines the best spin orbitals, the ones
that minimize E. This equation for the best (Hartree–Fock) spin orbitals is the Hartree–Fock
integro-differential equation f ∣χa⟩ = εa ∣χa⟩, for the N-occupied spin orbitals {χa}. Each of the
solutions {χ j} has a spin orbital energy ε j. The N spin orbitals with the lowest orbital energies
are just the spin orbitals occupied in ∣Ψ⟩ for which we use the indices a, b, etc. The remaining
infinite number of spin orbitals with higher energies are the virtual spin orbitals, which we label
with the indices r, s, etc.

The Fock operator f is the sum of a core-Hamiltonian operator h(), which is the kinetic
energy and potential energy for attraction to the nuclei of a single electron, and an effective
one-electron potential called the Hartree–Fock potential vHF

(), which contains the Coulomb
term (the total averaged potential acting on the electron in χa , arising from the N −  electrons
in the other spin orbitals) and the exchange term (which arises because of the antisymmetric
nature of the determinantal wave function). This is the essence of the HF approximation: to
replace the complicated many-electron problem by a one-electron problem in which electron-
electron repulsion is treated in an average way. What is more, since the Fock operator has a
functional dependence, through the coulomb and exchange operators, on the solutions {χa} of
the pseudo-eigenvalue equation, Hartree–Fock equations are actually nonlinear equations and
will need to be solved by iterative procedures.Thematrix representation of the Fock operator in
the basis of spin orbitals eigenfunctions is diagonal with diagonal elements equal to the orbital
energies.

The exact solution to this integro-differential equation corresponds to the “exact” HF
spin orbitals. In practice, it is only possible to solve this equation exactly (i.e., as an integro-
differential equation) for atoms. In practice, for molecules, the spin orbitals are expanded as a
combination of one-electron atomic base functions and the set of matrix equations are solved.
Only as the basis set approaches completeness, i.e., as one approaches the HF limit, will the spin
orbitals be the exact HF orbitals.

It can be shown that any single determinant wave function ∣Ψ⟩ formed from a set of spin
orbitals {χa} retains a certain degree of flexibility in the spin orbitals; the spin orbitals can be
mixed among themselves without changing the expectation value E = ⟨Ψ∣H∣Ψ⟩. Further-
more, for a single determinant wave function, any expectation value is invariant to an arbitrary
unitary transformation of the spin orbitals, since a transformed single determinant ∣Ψ′

⟩ can at
most differ from the original determinant ∣Ψ⟩ by a phase factor and, obviously, any observable
property depends on ∣Ψ∣, as we stated before.Thus the spin orbitals that make the total energy
stationary are not unique, and no particular physical significance can be given to a particular set
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of spin orbitals. Localized spin orbitals, for instance, are not more “physical” than delocalized
spin orbitals. Indeed, there exist a set of spin orbitals forwhich the eigenvaluematrix is diagonal,
and we obtain just the equation f ∣χa⟩ = εa ∣χa⟩, and this set is called “canonical spin orbitals.”
The canonical spin orbitals, which are a solution to this equation, will generally be delocalized
and form a basis for an irreproducible representation of the point group of the molecule.

It was in  that Roothaan published his equations (see Roothaan ), considering
molecular orbitals that were restricted to be linear combinations of a set of three-dimensional
one-electron functions, ϕμ . Thus, ψi is a linear combination of these functions ϕμ (basis set):
ψi = ∑Cμi ⋅ ϕμ . If the set {ϕμ} was complete, this would be an exact expansion, and any
complete set {ϕμ} could be used. Unfortunately, this one is always restricted, for practical com-
putational reasons, to a finite set of N basis functions. As the basis set becomes more and more
complete, this expansion leads tomore andmore accurate representations of the “exact” molec-
ular orbitals, which are eigenfunctions of the Fock operator. For any finite basis set, we will
obtainmolecular orbitals which are exact only in the space spanned by the aforesaid finite basis.
In addition, since the electronic energy (the output of the quantum mechanical calculation) is
variational, the better the basis set, the lower the total energy. As the basis set becomes more
andmore complete, the total energy approaches the Hartree–Fock limit. Of course, by the vari-
ational principle, the Hartree–Fock-limit energy is still above the “exact” energy, which here
can be taken as the energy obtained form an exact solution to the nonrelativistic Schrödinger
equation in the Born–Oppenheimer approximation.

Variation of the total energy was then carried out respect to the coefficients Cμi of such a
linear combination. This leads to a set of algebraic equations which can be written in matrix
form, FC = SCE, where F is the matrix representation of the Fock operator (which can be
divided into the core-Hamiltonian matrix, that is, integrals involving the one-electron operator
h(i) describing the kinetic energy and nuclear attraction of the electron i, plus the two-electron
terms), C is the matrix of coefficients, S is the overlap matrix, and E is the diagonal energy
matrix.The columns of C describe the molecular orbitals, i.e., the coefficients describing ψ are
in the first column, with the corresponding energy ε, those describing ψ are in the second
column, and so on. If S is the unit matrix (i.e., if we have an orthonormal basis set), then we
would have FC = CE, and Roothaan’s equations would just have the form of the usual matrix
eigenvalue problem. Increasing the flexibility of the one-electron basis set {ϕμ}, the HF energy
E will progressively reach the Hartree–Fock limit.

The approximation has its limitations, in particular the lack of electronic correlation energy.
For instance, Restricted Hartree–Fock (RHF) solution predicts incorrectly the dissociation of
molecules into open-shell fragments (like H → H) given that both electrons are forced to
occupy the same spatial molecular orbital (MO), when they should belong to infinitely sep-
arated atoms in the dissociated solution. This means that some electron-electron repulsion
remains even at infinity, which is the source of a spurious term in the total energy (different
from twice the energy of two hydrogen atoms). Alternatively, the products of dissociation are
not just H⋅, but also include, incorrectly, H− and H+. However, the poor behavior of closed-
shell RHF calculations upon dissociation to open-shell products does not detract from their
utility as reference function in the region of equilibrium: the potential surface obtained from a
closed-shell RHF calculation will not be parallel in regions of the surface characterizing disso-
ciation limit, but it will be reasonably parallel near the region of the equilibrium geometry. It is
worth mentioning that the VB wave function for H, Ψ = CcovΨcov + CionΨion, with the cova-
lent and ionic counterparts, contains “left-right” correlation which is necessary for a correct
description of dissociation of the H molecule.
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Within the HF approach, a slight improvement can be achieved in dealing with open-
shell systems with the restricted open-shell (ROHF) and the unrestricted Hartree–Fock (UHF)
procedures. In the former, all electrons, except those that are explicitly required to occupy
open-shell orbitals, occupy closed-shell MOs. In the latter, electrons of different spin, in gen-
eral, are described by different sets of spatial orbitals, although the obtained wave function
is typically contaminated with higher spin state solutions. The approximation leads to two
integro-differential eigenvalue equations which are coupled and cannot be solved indepen-
dently. The introduction of a basis leads to the Pople–Nesbet equations, FαCα

= SαCαEα and
FβCβ

= SβCβEβ . When Nα
= Nβ , a restricted solution to the Roothaan equations is a solu-

tion to the unrestricted Pople–Nesbet equations. In general those approaches, which can serve
as reference for post-HF methods in ground-state cases, are not accurate enough to compute
excited states.

The lack of correlation is the actual source of all errors. In particular, a Slater determinant
incorporates exchange correlation, i.e., the motion of two electrons with parallel spins is cor-
related (the so-called Fermi correlation). Unfortunately, the motion of electrons with opposite
spins remains uncorrelated. It is common to define correlation energy, Ecorr , as the difference
between the exact nonrelativistic energy of the system, ε, and the Hartree–Fock energy, E,
obtained in the limit that the basis set approaches completeness: Ecorr = ε − E. The simplest
manner to understand the inclusion of the correlation effects is through the method of con-
figuration interaction (CI). The basic idea is to diagonalize the N-electron Hamiltonian in a
basis of N-electron functions: we represent the exact wave function as a linear combination of
N-electron trial functions and use the linear variational method.

∣Φ⟩ = C∣Ψ⟩ +∑
ra

Cr
a ∣Ψ

r
a⟩ + ∑

a<b ;r<s
Crs
ab ∣Ψ

rs
ab⟩ + . . . . (.)

If the basis were complete, we would obtain the exact energies of all the electronic states of
the system. In spite of providing the exact solution of a many-electron problem, we can handle
only a finite set of N-electron trial functions. As a result, the CI method provides only upper
bounds to the exact energies. Specifically, the lowest eigenvalue, ε, will be an upper bound to
the ground-state energy of the system. When all the N-electron wave functions are taken into
account, the calculation is named full configuration interaction (FCI) and the corresponding
eigenvalues and eigenvectors computed are exact within the space spanned by the finite basis
set. Despite the great advances in FCI technology in the last few years, the size of the eigen-
value problem becomes rapidly too large to be handled by modern computers. As a result, FCI
solutions are only available for very small molecular systems. In contrast to HF, the FCI energy
of H properly describes the dissociation. However, within a minimal basis set approach, the
FCI potential curve does not agree very well with the exact one provided by Kolos and Wol-
niewicz due to the lack of flexibility of such a basis set.The truncation of both N-electron basis
and one-electron basis is the main source of inaccuracies in quantum-chemical calculations
(> Fig. -).

As mentioned earlier, for computational reasons, we have to truncate the full CI matrix
or equivalently the CI expansion for the wave function, considering only those configurations
which differ from theHF ground-state wave function by nomore than a predetermined number
of spin orbitals. The simplest version of this scheme is to deal with single and double excitation
out of ∣Ψ⟩: a SDCI calculation. SDCI and, in fact, all forms of truncated CI deteriorate as the
number of electrons increases. The truncation of the CI expansion leads to problems of size-
extensivity. For instance, in aDCI calculation, by definition thewave function of eachmonomer
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⊡ Fig. -
Many-electron expansion (CI) and one-electron expansion (basis set). The total wave function,Φ,
is a linear combination of N-electron wave functions Ψ, Ψr

a, etc. Each one of these functions is
an antisymmetrized and normalized product of spin orbitals, χi . Each of them is constituted by a
one-electron wave function,ψi , and a spin function, ω. Each one-electron wave function is defined
as a linear combination of a set of basis functions, ϕμ , which are used to be contracted gaussian
functions, CGTFs (linear combinations of a set of primitive functions, gK )

contains double excitations within the monomer. If we restrict the supermolecule trial function
to double excitations, we exclude the possibility that bothmonomers are simultaneously doubly
excited, since this represents a quadruple excitation in the supermolecule. It is now common to
differentiate size-extensivity and size-consistency. The latter was originally employed by Pople
as a criterion for awell-constructed quantum-chemicalmethod, indicating that the energy com-
puted for two noninteracting molecules should be exactly twice that calculated for only one
isolated molecule, that is, a property that described the additive separability of the wave func-
tion. Recently, the concept has been extended to include not only the fragmentation limit but
the entire process, that is, qualitatively all regions of the potential energy hypersurface must
be qualitatively correct. For instance, both RHF and UHF wave functions are size consistent
in the first sense, considering that they properly describe a separated H dimer system, but for
a closed-shell molecule dissociating into open-shell fragments the RHF descriptions fails, and
therefore does not conform to the broader size-consistency concept. On the other hand, size
extensivity, analogously to the extensivity concept in thermodynamics, refers to the correct,
linear, scaling of a method with the number of electrons, and its fulfillment leads to methods
in which calculations with differing number of electrons can be compared, like those related to
ionization processes. Otherwise, the error of the method increases with the size of the system.
At the noninteracting limit size extensivity implies size consistency, but this latter property has
the requirement of correct fragmentation, which does not depend on the mathematical scal-
ing. Therefore, RHF and UHF approaches are always size extensive, but RHF does not provide
proper dissociation in open-shell cases, and it is therefore non-size-consistent, as any other
method such as single-reference coupled-cluster (CC) or perturbation approaches (PT) which
use RHF as reference wave function. On the other hand any truncated configuration interaction
approximation is not size extensive, whereas CC and PT are. In the case of the multiconfigura-
tional methods, the size-consistency depends on the selected reference – generally they are size
consistent – and the size extensivity varies with the approach. MRCI is formally a truncated CI
approach and therefore is not size extensive, as CASPT –multiconfigurational complete active
space perturbation theory up to second order – and similar methods, which are formally not
size extensive either, but in practice the effects are irrelevant, in particular for themost common
implementation (see Taylor ).
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It is worth mentioning that using a better-variational method only ensures to get a bet-
ter variational energy, but a priori we cannot say nothing regarding properties other than the
energy. For instance, the dipole moment of CO is ca. zero, and to obtain the correct sign of
the vector (actually, greater than zero: +. a.u. experimentally) is a tricky problem. A DCI
calculation with the  most important double excitations has a lower energy than a SDCI
procedure with  doubles +  singles. Still, the DCI calculation predicts the wrong sign of
the dipole moment (−. a.u.), just the contrary that the SDCI calculation (+. a.u.). To
improve the result it is necessary to employ CCSD(T) (+. a.u.) (Paschoal et al. ).

There is another clever way to introduce in the wave function enough correlation effects
to get a good account of the nature of the chemical problem, for instance, in a dissociation
path of a diatomic molecule. Such procedure implies to improve the reference wave function
by including more than one determinant or electronic configuration in its description. Adding
more than one configuration means to get their weights in a linear combination. Therefore, the
central idea of a multiconfigurational self-consistent field (MCSCF) calculation is to build the
wave function as a truncated CI expansion

∣ΨMCSCF⟩ = ∑
I
cI ∣ΨI⟩, (.)

in which both the expansion coefficients and the orthonormal orbitals contained in ∣ΨI⟩ are
optimized simultaneously. For a closed-shell system, if only one determinant is included in
such an expansion, the MCSCF and HF methods become identical. In the minimal basis set
description of H, ΨMCSCF is identical to the FCI wave function. However, if an extended
basis set is used, the MCSFC energy will be above and nearly parallel to the FCI energy
but below the energy obtained from any two-configuration CI expansion based on canonical
HF MOs.

The correlation energy introduced in a MCSCF wave function is usually named nondy-
namic, static, or large-range correlation energy, and the corresponding wave function must
be build in such way that includes most of near-degenerate electronic configurations, that is,
all those which basically contribute to define the reference function along the chemical pro-
cess under study. An example is a bond breaking. A proper MCSCF description should include
both the bonding and antibonding distribution of the electrons, and the corresponding MOs.
The optimization procedure at each region of the PEHwill determine the relative weight of each
configuration at that point and the proper MOs. Improving the reference in such manner helps
to the post-HF approaches to account for the remaining correlation effects, named dynamic or
short-range. It is like starting the race from a more advantageous position.

One of the most successful and systematic procedures to account for the correlation
energy, which is not variational but is size extensive at each order, is the perturbation the-
ory. Using different zeroth-order Hamiltonians, Møller–Plesset perturbation theory (MPPT),
also named many-body perturbation theory (MBPT), yields the energy and the wave func-
tion corrected up to n order following a Taylor series expansion. Although, in general, higher
perturbation orders improve the result, it has been proved that it leads to divergences at infi-
nite order. Second- and fourth-order perturbation (MP, MP) results are much better than
the SCF and SDCI ones. The most recent family of methods based on a single reference is
that based on the coupled-cluster (CC) approach, in which the correlation energy is intro-
duced size-extensively by increasing the excitation level. CC methods for the ground state,
especially when including up to triple excitations, have become, in practice, the most accurate
quantum-chemical approaches for many systems.
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No matter how good is the quality of the post-HF method for the inclusion of the correla-
tion energy, when based on a single HF reference, the accuracy of the results largely decreases
in many situations, like those related with dissociations, degeneracies, and excited states. For
instance, regarding the dissociation problem, the potential curve calculated at any level based
on a RHF reference is not satisfactory at long range. The problem is the starting point: the
exact wave function at large R cannot be described by a single determinant. The results largely
improve its accuracy when a multiconfigurational or multireference (MR) wave function is
used as a reference, for instance, in the MRCI, MRCC, or MRMP approaches. Recovering cor-
relation energy does not require so large effort in this case, for instance, lower perturbation
(MP) or excitation (CC) levels. As a drawback, the complexity of the methods increases.

On the other hand, the semiempirical DFT approach has become the most widespread
quantum-chemical method in the last years. It allows us to treat large systems in a relatively
short time taking into account electron correlation. The basic idea is that the energy of an elec-
tronic system can bewritten in terms of the electron density, ρ. For a systemofN electrons, ρ(r)
denotes the total electron density at a particular point in space r.The electronic energy E is said
to be a functional of the electron density, denoted E[ρ], in the sense that for a given function
ρ(r), there is a single corresponding energy. It is not necessary to compute a wave function,
but, unfortunately, the Hohenberg–Kohn theorem does not inform about the form of the func-
tional dependence of energy on the density: it confirms only that such a functional exists. So
the procedures should resort to approximate derivations with adjustable parameters.This is the
reason why functionals proliferate to hundreds in the literature. Some of them, like the Becke-
Lee-Yang-Parr (BLYP) functional, is the most popular in the literature, not because its overall
accuracy but of its balance and its controlled flaws.There is no systematicway to improve a func-
tional, just to derive another one with different parameters. It is typical to use one functional per
each situation, something that makes the predictability of the results somewhat questionable.
On the contrary, ab initio calculations, if allowed by the size of the problem, can be hierarchically
improved in a known direction enlarging the N-electron and/or the one-electron basis.

Basis Sets

The choice of the one-particle space is a most important decision when setting up any calcu-
lation, and there is no point in trying to improve the result if the selection of the one-electron
basis set is not adequate. This is especially true for the calculation of excited states, in which
states of very different nature (for instance, compact and diffuse) have particular requirements
thatmust be fulfilled simultaneously when selecting the basis set. In a strict mathematical sense,
many different types of basis set functions {ϕμ} can be used. Gaussian-type functions (GTFs,
g ∝ e−αr


) are the more widespread in spite of being ill-behaved in both close and far away

of the nuclei. Nevertheless, four-center integrals (that is, two-electron repulsion integrals) are
very easy to evaluate with GTFs, and, in addition, the basis set can be improved by employing
contracted Gaussian functions, CGTFs, which are linear combinations of primitive GTFs. To
build a CGTFs, the primitive functions have to be optimized, both exponents and contraction
coefficients. According to the number of basis functions, it is common to distinguish among
minimal basis set (a single basis function per occupied atomic orbital), double-ζ (two basis
functions per atomic orbital), triple-ζ , split-valence (duplication only affects to valence layer
whereas minimal basis set is used for core orbitals), etc.
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Ground-state calculations havemade extensive use of the so-called Pople basis sets: STO-G,
-G, -G. These basis sets are built using segmented contraction, which means that each
primitive functions contributes to one or a limited number of contracted function only. Expo-
nents and coefficients were optimized using the HF approach. Valence basis sets are too limited
to get accurate results, and therefore additional functions have to be added, named polarization
functions (-G* or -G(d), which means that polarization functions are added to second-
period atoms; and -G** or -G(d,p), whichmeans that, additionally, polarization functions
are added to hydrogen atoms). These are functions of higher angular momentum than those
of valence type and are necessary in order to describe the changes of the electronic density
of an atom in the molecule. Diffuse functions (-+G, -++G) can be also added which
are more extended in the space, that is, with smaller exponents, to describe better situations
such as anions or Rydberg states. A -G basis set for the C atom (ssp) is described as
(sp)/[sp], i.e.,  primitives s and  primitives p ( primitives: s ×  + s× + s× +
p×  + p× ) are contracted to three combined functions s and two combined functions p
(nine contracted functions: s, s, s′, p, p′). The basic flaw of Pople’s basis sets is that they
have been built with amethod lacking correlation energy.The consequence is that they are very
poor in recovering correlation effects in post-HF methods. In order to get better values, more
polarization of diffuse functions have to be added to compensate the lack of flexibility of these
basis set.

If the ultimate goal is to perform correlated calculations, it would seempreferable to include
correlation in the construction of the basis set. For correlated calculations, the basis set require-
ments are different and more demanding since we must also provide a virtual orbital space
capable of recovering a large part of the correlation energy. It is often sufficient to correlate only
the valence electrons. This is the case for correlation consistent (cc) or Atomic Natural Orbitals
(ANO) basis sets. Correlation consistent basis sets are designed so that functions which con-
tribute in similar amounts of correlation energy are included at the same stage, independently
of the function type.We can add polarization functions (cc-pVDZ. . .) or diffuse functions (aug-
mented, aug).They need fewer primitives than ANOs, and each contracted basis comes from a
different primitive set and the exponents of polarization functions are optimized by correlated
calculations within a segmented contraction scheme.

On the other hand, ANO-type basis sets arise as eigenfunctions of the first-order reduced
densitymatrix of the atom.They give themost rapidly convergent CI expansion, and to obtain a
given accuracy one requires fewer configurations formed fromNOs than configurations formed
from any other orthonormal basis. The occupation number is a reference of its significance in
the wave function and the truncation of the orbital space by elimination of the ANOs whose
occupation numbers are small produces the least possible error on the wave function. The coef-
ficients of ANOs obtained in a correlated calculation of the ground state of the atom represent
the coefficients of the basis functions within a general contraction scheme (all primitives on a
given atom and of a given angular momentum enter all the contracted functions having that
angular momentum, but with different contraction coefficients, which improves the flexibility).
This yields basis of any size with a unique calculation with the primitive set, and since the same
primitive set for all contractions is used, a smaller basis is always a subset of a larger basis. In
other words, we can enlarge our basis set without changing of vector space (Almlöf and Taylor
; Almlöf and Taylor ). An improvement of the original scheme takes into account an
average densitymatrix to build the basis set (including ground state, excited state, cation, anion,
atom into an electric field, seeWidmark et al. ()). In general, ANO basis set will require less
contracted functions than the other basis to get the same results. Recently, all electron ANO
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basis sets, including correlation effects for all periodic system elements, have been generated
(Roos et al. ). It has also been observed that for extremely accurate calculations, only ANO
basis sets can provide the best answer (see, e.g., Martin et al. ).

A final type of approach regarding the one-electron basis sets is the combination of inner-
shell pseudopotentials (including typically relativistic effects) with valence basis sets and the
use of embedded potentials to represent atomic environments.

Methods for Excited States

Based on the methods described in the previous section, specific algorithms to deal with
electronic excited states have been developed. In this section, the most commonly employed
approaches will be briefly summarized (see also Merchán and Serrano-Andrés ; Serrano-
Andrés and Merchán ).

Starting by the single-configurational methods that use the HF solution as reference wave
function, an approach which has lost popularity because of its poor performance is the method
named Configuration Interaction-Singles (CIS). The essence of the method is to consider that a
excited state can be described by a singly excited determinant formed by replacing, with respect
to the reference wave function, an occupied spin orbital with a virtual spin orbital. The draw-
backs of such a description may be partially compensated if a linear combination of all possible
single excited determinants is used to build the excited state wave function. In general, the CIS
excitation energies are largely overestimated due to the absence of correlation energy effects.
It is more common to find in the literature cases in which CIS yields the wrong order and
state nature than the proper ones, simply because the differential correlation energy affects the
excited states unevenly and because the intrinsic character of the states is multiconfigurational
(Foresman et al. ).

In the light of the previous discussion, the logical method to deal with excited states should
be multireference CI (MRCI) (Buenker et al. ). Consider a wave function of CI type
expanded in a many-electron basis set of determinants. As in the H molecule, it is possible
to select a number of determinants to describe the correct dissociation limit. When the energy
is minimized with respect to the coefficients of the expansion, the configuration interaction
(CI) method is employed. It should be kept in mind that actual calculations are performed
using either spin-adapted Configuration State Functions (CSFs: appropriate linear combina-
tion of Slater determinants) or determinants as a N-electronic basis set (Slater determinants
lead to more efficient CI algorithms), whereas CSFs lead to shorter CI expansions and, obvi-
ously, spin eigenfunctions, i.e., singlet, doublet, triplet states…). In case that the expansion
contains more than one configuration, the process is denoted as MRCI. The wave function
∣Ψ⟩ is a multireference function and, at least, the singly and doubly excited determinants
generated from each reference determinant ∣m⟩ are taken into account. Unfortunately, MRCI-
based approaches are restricted to molecular systems of small molecular size (containing up
to – atoms), where dynamic correlation can be fully retrieved. Otherwise, truncation of the
many-electron functions involved in the MRCI expansion might easily lead to large errors in
the computed excitation energies.

Another type of methods applied to the calculation of excited states are the propaga-
tor approaches (Oddershede ). The underlying technique, also called Green’s function
approach, equation-of-motion or linear response theory in its different forms, can be applied to
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various types of methodologies: single- or multi-reference configuration interaction, coupled-
cluster, or density functional. The essentials of the technique consider that once a molecule
is subjected to a linear time-dependent electric field fluctuating with frequency ω, a second-
order property as the frequency-dependent ground-state polarizability of the system is well
approximated by

αω =
states
∑

i≠

∣⟨Ψ∣r∣Ψi⟩∣


ω − ΔEi
, (.)

where the denominator of the expression involves the frequency of the field and the excitation
energies (ΔEi) characterizing the excited states (), while the numerator of each term is the
square of the transition dipole moment between the ground and the corresponding excited
state.Using complex function analysis, it is possible to obtain the poles of the expression, that is,
the values for which the frequency corresponds to the excitation energies and the denominator
goes to zero, while the residues provide the numerators, in this case, the one-photon absorption
matrix elements. The peculiarity of the propagator approaches is that the wave functions of
the individual states are not necessarily computed to obtain excitation energies and transition
probabilities, while its quality relies on the type of reference wave function. Except for very
elaborated implementations, usual propagator approaches have also the same problems as all
single-reference procedures.

The family of methods CCS, CC, and CC is based on response theory (Koch and
Jørgensen ). The CCS approach is equivalent to the single excited configuration interac-
tion or Tamm–Dancoff approach. The iterative hybrid CC and CC procedures introduce
approximations to account for the level of excitation. They have been defined for systems with
closed-shell ground-states, although some Equation of Motion EOM-CC procedures also deal
with open-shell ground state cases. In order to get accurate excitation energies and properties,
the single-configuration coupled-cluster methods should include high excitation levels to com-
pensate both the poor reference wave function and the multiconfigurational character of the
excited states. CC-based methods are, up-to-date and in practice, the most accurate methods
to compute excited states in small to medium size molecules with closed-shell ground states,
but only for those states which are well described by singly excited configurations, in systems
where the ground state has a clear single-configuration character, and close to the equilibrium
geometry. Triple excitations have to be anyway included in the cluster expansion if accuracy is
intended. The precision of the single-reference CC methods decreases in systems with open-
shell ground states and vanishes (up to several eVs of error) for multiconfigurational cases,
like the A state of ozone. The inclusion of quadruple excitations, unpractical so far, would
improve some of those results, although the only solution in prospect to beat in accuracy the
lower level and less expensive multireference perturbation approaches such as CASPT, is to
use multireference coupled-cluster (MRCC) methods, in which the required excitation level
will be expected lower. However, the development of such methods is still in their infancy, and
the initial results are not very promising.

Before continuing with the ab initio procedures, in particular the MRMP theory most
employed in this chapter, the use of DFT approaches for excited states will be discussed.
The implementation, known with the unfortunate name of Time-Dependent DFT (TD-DFT)
approach (no time-dependency is accounted for) should be expected to be able to deal with
large systems were ab initio methods become too expensive. Unfortunately, these methods fail
dramatically in too many situations: charge transfer states, multiconfigurational states, doubly
or highly-excited states, and even introduce large and systematic errors in valence states of large
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π extended systems. In some cases, the deviations can be as large as – eV, especially in cases
in which the ground state is poorly defined by the HF configuration. Even when many differ-
ent parameterizations have been tried and different functional developed in order to correct
the flaws of the method, so far no single functional is able to solve most of them simultane-
ously. Much worst than that (and this is common for all single-configurational approaches),
they cannot describe at all degenerate situations like conical intersections, which are the core
of the quantum-chemical description of the excited states.

An hybrid derivation, known as DFT/MRCI is unarguably the best DFT-based procedure
for excited states. It consists of an MRCI expansion with multiconfigurational wave functions
replacing the HF orbitals with Kohn–Sham orbitals in the building of CSFs. The Hamiltonian,
however, is heavily modified with empirical parameters, and only a few situations can be han-
dled.The objective is to recover dynamic correlation by means of DFT and static correlation by
means of MRCI. In this way, severe size-extensivity problems can be avoided even for systems
with many valence electrons. Currently, optimized parameter sets for the effective DFT/MRCI
Hamiltonian are available in combination with the BHLYP functional. The accuracy in energy
is about .–. eV, and other properties are well balanced as well. Additionally, it is very appro-
priate to compute SOC, including a spin-dependentHamiltonian (Grimme andWaletzke ;
Kleinschmidt et al. ).

As already mentioned, a multiconfigurational description of the reference wave function
helps enormously to recover the overall correlation effects. Starting from a good reference, the
method used for such a recovery does not need to be extremely elaborated.That is why multi-
configurational second-orderMøller–Plesset theory, theCASPTmethod, based on aComplete
Active Space SCF (CASSCF) zeroth-order wave function, has become the most successful
method for excited states. As this is the procedure in which most of the examples of the chap-
ter will be based on, a more detailed description of the procedure will be given. Nowadays, the
CASPT//CASSCF methodology has proved the best ratio quality of the results/computational
cost. At the CASSCF level (a particular case of MCSCF), both the many-electron-function
coefficients of the MCSCF expansion and the coefficients included in the expansion of each
molecular orbital are optimized simultaneously (see > Eq. .). Their variations are consid-
ered as rotations in an orthonormalized vector space. In the CASSCF method, the orbitals are
classified in three categories, depending on the role they play in building the N-electron wave
function: inactive, active, and secondary orbitals. Inactive and active orbitals are occupied in the
wave functions, whereas the remaining of the orbital space, given by the size of the one-electron
basis set employed, is constituted by secondary orbitals, also called external or virtual. Inactive
orbitals are doubly occupied in all the CASSCF configurations. The rest of the electrons (called
active electrons) occupy active orbitals. The CASSCF wave function is formed by a linear com-
bination of all the possible configurations that can be built by distributing the active electrons
among the active orbitals and are consistent with a given spatial and spin symmetry. That is, in
the configuration space spanned by the active orbitals, the CASSCF function is complete (CAS-
CI space, equivalent to FCI). Inactive orbitals are also optimized in the variational process, but
they are treated as in the restricted HF function. The CASSCF energy is invariant to rotations
among the active orbitals (Roos et al. ).

Essentially, we construct for a given state a multiconfigurational wave function which
includes all configurations generated by a set of active orbitals and active electrons that fulfils
spin and spatial symmetry requirements.This provides the nondynamic correlation effects due
to configurations which are very close in energy. Several states that belong to a same symmetry
are usually computed bymeans of a State-Average (SA) CASSCF calculation, where a functional
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of energy is defined as average of a number of states, that, if required, although it is not recom-
mended, can be weighted. From a SA-CASSCF calculation, a single set of average orbitals and a
number of orthogonal wave functions equal to the number of roots used in the average process
are obtained. In this manner, it is sometimes possible to overcome the problem of “root flip-
ping,” that is, the interchange of roots along the CASSCF optimization procedure. For a given
spatial and spin symmetry, the treatment of excited states is preferably performed by using SA-
CASSCF calculations. In principle, it is also possible to make a single CASSCF calculation for
higher roots, optimizing just one state. Nevertheless, experience shows that in most cases it
can only be achieved for the second root of a given irreducible representation. Wave functions
obtained in a SA-CASSCF calculation are orthogonal among them, whereas those obtained
from different CASSCF calculations are not. In the latter cases, the wave function is rather poor
and cannot be used for a further correlated calculations, although sometimes it may be useful
to perform CASSCF optimizations.

On the other hand, the Restricted Active Space Self-Consistent Field (RASSCF) method is
a more general extension of the CASSCF method. Now, there are three subspaces within the
active orbitals: RAS (orbitals that are doubly occupied except for a maximumnumber of holes
allowed in this orbital subspace), RAS (in these orbitals, all possible occupations are allowed),
and RAS (orbitals that are unoccupied except for a maximum number of electrons allowed in
this subspace). CASSCF calculations can be performed by allowing orbitals only in the RAS
space. A single reference SDCI wave function is obtained by allowing a maximum of two holes
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in RAS and a maximumof two electrons in RAS, while RAS is empty (Malmqvist et al. ;
Olsen et al. ) (> Fig. -).

Either by using CASSCF or RASSCF, the active space provided by the user of a CASSCF
calculation represents a key point to obtain accurate theoretical predictions once dynamic cor-
relation has subsequently been taken into account, for instance, at the CASPT or RASPT
levels. The properties of a CASSCF wave function depend on the active space. Thus, a valence
CASSCF is size-extensive (the computed energy within a givenmethods scales linearly with the
number of particles) and the corresponding CASPT results become also nearly size-extensive
(formally the CASPT method is not size-extensive, but it is in practice, in particular theMOL-
CAS implementation). As in any quantum-chemical approach, one has to make sure that the
method has enough flexibility, i.e., the active space is the appropriate one, to describe the chem-
ical process under consideration. It is important to mention here the power of the CAS State
Interaction (CASSI) approach, which provides orthogonal wave functions and transition densi-
ties fromCASSCF or RASSCF wave functions optimized independently for a number of excited
states of whatever symmetry (Malmqvist and Roos ).

Valence-bondmethods have increased its applicability recently. One example is the CASVB
(complete active space valence bond)method. A CASVB wave function can be obtained simply
by transforming a canonical CASSCF function and readily interpreted in terms of the well-
known classical VB resonance structures. The total CASVB wave function is identical to the
canonical CASSCF wave function. In other words, the MO description and the VB description
are equivalent, at least at the level of CASSCF. The CASVB method provides an alternative tool
for describing the correlated wave functions.

The CASPT (complete active space perturbation theory to second order) method
(Andersson et al. ) includes the remaining dynamic correlation due to short-range elec-
tronic interactions. This method can be seen as a conventional non-degenerate perturbation
theory, that is, a single state is independently considered, with the particularity that this
zeroth-order wavefunction is multiconfigurational (CASSCF). The wave function is corrected
up to first order and, consequently, the energy is corrected up to second order. The set of func-
tions required to compute the first-order correction of the wave function is formed by those
that interact with the zeroth-order wave function through the Hamiltonian in the Rayleigh–
Schrödinger perturbation theory, and it is known as the first-order interacting space. Taking
into account the one and two particle nature of the Hamiltonian, the first-order interaction
space, called hereafter VSD, comprises the functions generated by singly and doubly excited
configurations from the zeroth-order (CASSCF) wave function. As amatter of fact, the configu-
rational space is divided in four subspaces:V (one-dimension space expanded by the reference
function ∣⟩ of the studied states), VK (orthogonal to ∣⟩ in the restricted FCI subspace used
to generate the CAS function), the aforesaid VSD (space expanded by the singles and doubles
replacements from ∣⟩), andVTQ... (space that contains the excitations of higher order). Regard-
ing orbitals, they are classified into frozen (doubly occupied, not correlated), inactives (doubly
occupied in the reference function), actives (with any occupation, between  and , in the ref-
erence function) and secondary (empty in the reference function). Recently, a new shifted
zeroth-order Hamiltonian named IPEA has been designed and set up with a value . a.u.
into the default for the MOLCAS implementation (Ghigo et al. ). The new formulation
solves previous effects for open-shell cases in which the correlation effects were overshoot.The
net effect of this correction is to slightly increase the excitation energies. In any case care has to
be taken when comparing present with previous CASPT results.
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The normalized wave function is corrected up to first order. The weight of the reference
function, C

, can be used as a simple and rapid criterion of quality for the perturbation treat-
ment carried out. Ideally, in order to get a fast convergence in the perturbation series, the
weight should be close to unity. Nevertheless, its value depends on the number of correlated
electrons. Thus, upon enlarging the molecular system the reference weight decreases.The elec-
tronic excited states considered should have a similar magnitude for the weight as compared
to the ground state, employing the same active space. Sometimes intruder states appear in the
second-order calculation, which are normally related to the occurrence of large coefficients in
the first-order expansion, leading to a low value for the reference weight. Analysis of the states
with large coefficients (intruder sates) may give a hint about the type of reformulation in the
perturbation partition necessary to overcome the problem. Thus, a new CASSCF calculation
might be designed comprising in the active space the MOs implied in the description of the
previous intruder states. It is the proper action to be taken when intruder states are strongly
interacting with the CASSCF reference wave function, because it points out to obvious defi-
ciencies in the choice of the active space. Intruder states are often present in the treatment of
excited states of small organic compounds when the active space does not include the full π

valence system. Thus, the low weight for the zeroth-order wave function in such a case just
tells us that the active space has to be enlarged in a way that previous intruder states would
be treated variationally, that is, they should be moved to the active space. It is also frequent to
find calculations where the reference weight of the excited state is “somewhat low” compared to
that of the ground state, but a particular state cannot be identified as intruder in the first-order
wave function, which is instead characterized by a large number of low-energy minor contri-
butions. It occurs often in the simultaneous computation of valence and Rydberg states, where
the one-electron valence basis set has been augmented with Rydberg-type functions. This is a
typical case when using large and diffuse basis sets like ANOs. We have to face then acciden-
tal near-degeneracy effects, implying weakly interacting intruder states, and the level-shift (LS)
technique is especially useful in order to check the validity of the perturbation treatment per-
formed.The level-shift CASPT (LS-CASPT) method removes efficiently weak intruder states
by the addition of a shift parameter ε, to the zeroth-order Hamiltonian and a subsequent back
correction of its effect to the second-order energy.

Many times, one has to apply both strategies: enlargement of the active space to overcome
the problem of severe intruder states, and, with the enlarged active space, the LS technique is
applied in order to minimize the effect of weakly interacting intruder states. Since a constant
added to a linear and Hermitian operator (like H) does not affect its eigenfunctions but it is
added to its eigenvalues (let k be a constant; as long as HΨ = EΨ, then (H + k)Ψ = HΨ +
kΨ = EΨ + kΨ = (E + k)Ψ), the energies of the states may be altered, but this is a price
that must be paid. However, it is desirable that the shift parameter is as small as possible. For
instance, results at ε = . (standard CASPT), ., ., ., and . a.u. are sufficient to establish
the proper behavior of the LS-CASPT results. It is extremely dangerous to rely on just one
result because the appearance of an accidental near degeneracy might lead to large errors in
the excitation energies. In order to demonstrate the proper performance of the LS-CASPT
technique, calibration calculations of that type always have to be carried out.The best choice for
ε is the lowest possible value capable of removing intruder states. In order to avoid singularities,
currently the technique so-called imaginary level-shift should be employed. The dependence
of the energy on the imaginary level-shift parameter is of minor relevance (see Forsberg and
Malmqvist ; Roos et al. ).
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Finally, themultistate CASPT (MS-CASPT) procedure has to bementioned. It represents
an extension of the CASPT method for the perturbation treatment of chemical situations that
require two or more reference states. The procedure implies the use of an effective Hamilto-
nian in which the diagonal terms are the single-root, and non-orthogonal, CASPT solutions,
whereas the interacting terms form the off-diagonal components. The diagonalization of the
Hamiltonian, after symmetrization, provides a set of MS-CASPT energies and orthogonal
states ready to describe situations such as avoided crossings and near-degeneracy of valence
and Rydberg states, which cannot be fully accounted for by just using a single-reference pertur-
bation treatment. A newwave function, named Perturbatively Modified CAS-CI (PMCAS-CI),
is obtained built as a combination of the previous SA-CASSCF states, which has been in many
cases improved from the previous set. This approach is not free of problems, as it will be
discussed along this chapter (Finley et al. ; Serrano-Andrés et al. ).

The CASPT approach, especially when combined with ANO-type basis set functions, has
proved to give a balanced and accurate description of all types of excited states and electronic
structure cases, independently of their nature.The energy and the wave function are treated in
general in an unbiased way. As all other quantum-chemical methods, the results heavily rely
on the proper determination of the structural parameters, that is, the geometry optimizations.
Because of their computational cost, geometries are obtained at lower levels of calculations
than energies. In many cases, analytical gradients, more convenient for optimization processes,
are not available at the highest level of calculation (they are, for instance, at the MRCI level,
see Shepard et al. () or for CASPT applicable to small molecules, see Celani and Werner
()).This is whymost of the calculations use themixed strategy, for instance, CASPT ener-
gies and CASSCF geometries (CASPT//CASSCF), but also MRCI//CASSCF or CC//CC.
Some problems related with this inconsistency will be discussed during the chapter.

It can be finally commented that, recently, the RASPT approach, in which a RASSCF
wave function is used as reference for multiconfigurational perturbation theory has been made
available, using all tools related with CASPT, for instance allowing MS-RASPT calculations
(Malmqvist et al. ). Benchmark studies are currently under way in order to determine the
best partition schemes for the RASSCF active spaces. Prospectively, the approach will largely
extend the applicability of the MRMP calculations.

How to Compute Excited States

How to Start: Selection of Goals, Methods, Geometries

Quantum-chemical methods provide information for excited states directly applicable to
explain and predict the spectroscopy, photophysics, and photochemistry of molecular systems.
A balanced description of the different electronic states is required in order to obtain the ini-
tial, basic data, that is, energy differences and transition probabilities, in an accurate way. This
goal is a much more difficult task for excited states as compared to the ground state. First, one
has to deal with many classes of excited states, each one showing different sensitivity to the
amount of electronic correlation energy and, also, flexible one-electron basis functions able to
describe all effects simultaneously are required, in general larger than that used in ground-state
quantum chemistry. Then, it is necessary to compute extremely complicated potential energy
hypersurfaces where the number of minima, transition states, and surface crossings like conical
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intersections, is multiplied. Because of the inherent complexity of the problems, the methods
and algorithms to compute excited states are not as widespread as for ground states or are still
under development.

In this section, we are going to illustrate different examples for the calculation of excited
states using presently available quantum-chemical techniques. In each subsection, we will pro-
ceed in the same manner, first, by describing an actual example taken from the literature,
and, after, practical aspects which explain the choices made. The results obtained will be then
discussed, including new cases if necessary.

Before introducing the first example, let’s make some comments on the initial way to tackle
the problem. Our goal, in principle for a typical ground-state closed-shell case, will be focused
in the lowest-lying singlet and triplet excited states of the molecule. Most of the interesting
spectroscopy and photochemistry will take place in the low-lying states, although higher states
are relevant in other contexts. Properties of interest provided by static electronic structure
quantum-chemical calculations that help to rationalize the photophysical and photochemical
processes in a molecule are: molecular structures, charge and spin distributions, electronic and
vibrational energies, oscillator strengths, dipole and transition moments and their directions,
radiative lifetimes, nonadiabatic, vibronic, spin-orbit, and electronic couplings. In a second step,
in reaction dynamics calculations, reaction rates, lifetimes, and population distributions can be
provided.

Whichmethod is themost appropriate for the purpose of that research?The initial questions
to answer is what is the goal of the study, how far can it go, how many questions can be solved,
and, especially, which is the accuracy required in the study. All this depends in most cases on
the complexity and the size of the system. Of course, the best ratio quality/CPU time should be
looked for, but it is useless to carry out calculations, nomatter how cheap they are, withmethods
that cannot provide accuracy tomake conclusive predictions. Apart from checking carefully the
literature, calibrations will be typically necessary. Both methods and basis sets should be tested,
and several steps to approach to the problem are maybe necessary. We can start by using less
expensive semiempirical classical or TD-DFTmethods in order to understand the problem and
its requirements, and then move to more sophisticated coupled-cluster or multiconfigurational
approaches, depending on the goals of the research. The same with basis sets. -G-type basis
sets are practical because of their reduced time requirements, but they are less accurate and in
many cases using themmay degrade toomuch our results. Calibrating the obtained values with
fully correlated methods or higher-quality basis sets like Dunning’s correlation consistent or
ANO-type basis sets is always a requirement.Obviously the program package we should use has
to balance all aspects we have mentioned. Normally a combination of them will be necessary:
versatile programs, such as GAUSSIAN, GAMESS, or QCHEM; packages specialized in DFT
implementations, like ADF, TURBOMOLE, or NWCHEM; suites focused on CC algorithms
such as DALTON or ACES II; or programs especially designed for multiconfigurational meth-
ods like MOLCAS or MOLPRO, these more generally applicable to the calculation of excited
states.

A point to bear in mind is that there are different types of excited states, and each of them
has different theoretical requirements. A valence state can be viewed as a promotion from one
occupied molecular orbital to a virtual one. On the other hand, a Rydberg state, in a simple
MO theory, is the result of exciting one electron from one occupied molecular orbital to an
atomic-like orbital of higher quantum number. Valence excited states are more compact than
the diffuse Rydberg states. A valence state can be denoted as covalent or zwitterionic according
to the type of valence bond (VB) structures. Covalent and zwitterionic states are described by
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hole-hole and hole-pair VB structures, respectively. What is more, the label ionic is reserved
to states with an actual charge separation. On the other hand, if a pair of nearly degenerated
nonbonding orbitals is occupied with a total of two electrons in the ground state, the molecule
is called biradical. In addition, there are charge transfer states, inwhich an electron is transferred
from one occupied orbital of a molecule to a virtual orbital of another molecule (or the same
molecule, if it is intramolecular).

Excited states can be also classified according to the main types of configurations involved
in their description, in relation to the ground state: singly excited states, doubly excited states,
and so on. Rydberg states are usually well described by only one singly excited configuration.
Multiconfigurational singlet excited states with a large contribution of doubly excited configu-
rations are normally covalent. Singlet excited states of zwitterionic character are described by
one or several singly excited configurations. In anionic systems, new types of excited states are
present, such as the resonance states or themultipole-bound (dipole, basically) states,where the
bonding energy is the result of the interaction between the additional electron and themultipole
moments of the molecule.

Molecular Photophysics: Computing Absorption and Emission
Spectra

An Application Example: Psoralen

The simplest approach to the electronic state problem is the determination of the photophysics
of an isolatedmolecule, that is, to reproduce its absorption and emission spectra. Asmentioned,
let’s first describe in its full extent a case, the psoralen molecule, and later the choices made can
be analyzed (see Serrano-Pérez et al. , a, b, c, d).

Furocoumarins (also named psoralens, see > Fig. -) are a class of heterocyclic com-
pounds with a known phototherapeutic activity. These systems have been found to possess
mutagenic properties when applied in conjunction with near UV-A light (–nm) expo-
sure.The technique so-called PUVA therapy (psoralen + UV-A) has been specifically designed
to treat different skin disorders such as psoriasis and vitiligo. It is generally assumed that there
is an oxygen-independent mechanism, which implies a [+]-photocycloaddition of psoralen
and a pyrimidine DNA base monomer, and there is also an oxygen-dependent mechanism, in
which energy transfer between the furocoumarin and molecular oxygen present in the cellular
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environment is produced generating cytotoxic singletmolecular dioxygen. It is believed that the
state protagonist of the photosensitizing action, in both cases, is the lowest-lying triplet excited
state of psoralen. Initially, ourmain goal is to describe the absorption spectrumof themolecule,
and we do it by computing the lowest-lying singlet and triplet states at the optimized structure
of the ground state (i.e., those distances, angles, and dihedral angles which make the energy
minimum), what is typically known as the Franck–Condon geometry. Later, the mechanisms
for triplet state population can be determined.

Using CASSCF multiconfigurational wave functions as reference, the second-order per-
turbation theory through the CASPT method was employed to include dynamic correlation
energy in the calculation of the electronic excited states. The imaginary level-shift technique
was employed in order to prevent the effect of intruder states. A shift parameter of . a.u. was
selected by checking the stability in the excitation energies. The molecular symmetry was con-
strained to the CS point group. An atomic natural orbital (ANO-L)-type basis set, contracted to
C,O [spd]/H [sp] was used throughout.The carbon and oxygen s core electrons were kept
frozen in the second-order perturbation step. Geometries were obtained by computing analyti-
cal gradients at the RASSCF level of calculation for the ground and the lowest singlet and triplet
excited states. In the optimization of the A′ states, an active space of  a′′ active orbitals and 
electrons, i.e., the full π system of the molecule, has been employed, and up to quadruple exci-
tations were considered (eight orbitals in RAS space and six orbitals in RAS space). Within
the irreducible representations (a′, a′′) of the CS group, this active space can be labeled as (,
). An additional oxygen lone-pair orbital was included in the active space (, ) in order to
optimize the lowest A′′ excited state. In all the remaining calculations, CASSCF wave functions
were generated as state-average (SA) CASSCF roots of a given symmetry. Based on preliminary
RASSCF calculations and using the criterion of the largest natural orbitals occupations for the
states of interest, the CASSCF active space was reduced to include  active electrons and 
active orbitals (, ) for A′ roots and  active electrons and  active orbitals (, ) for A′′

roots. The CAS state interaction method (CASSI) was used to compute transition properties,
including the spin-orbit coupling (SOC) elements between selected states.

At the Franck–Condon (FC) geometry, the lowest singlet excited states A′ (ππ∗), A′′

(nπ∗), and A′ (ππ∗) lie at ., ., and . eV, respectively (see > Table -). Whereas the
transition to the nπ∗ state is predictedwith negligible intensity, theππ∗ states have related oscil-
lator strengths of . and .. Unlike other states, the A′ state has a high dipole moment,
.D, differing by more than .D from that of the ground state, and therefore the associated
transition is expected to undergo a red shift (bathochromic effect) in polar environments. The
recorded absorption spectra in different solvents, from cyclohexane towater, display a weak and
structured band ranging from  to nm (.–. eV). Depending on the band resolution
and the environment, one or two maxima near  and  nm (. and . eV, respectively)
have been described.The present computed results suggest that this set of features can be better
assigned just to the A′ (ππ∗) transition, with the weak nπ∗ band lying beneath. In that case,
the observed band profile should be attributed to vibrational structure. This explanation is not
unlikely, considering that a noticeable rearrangement of the molecular bond distances occurs
at the A′ minimum.

Although less relevant regarding the phototherapeutic properties, we will describe the
higher-energy region of the absorption spectrum. Transitions to the A′ (. eV) and A′

(. eV) (ππ∗) excited states have oscillator strengths of . and ., respectively. The
recorded spectra show a single and sharp band peaking near  nm (. eV) in cyclohexane
and nm (. eV) in ethanol and water. In principle, the observed feature can be assigned to
transition to the A′ state at . eV. Moreover, taking into account our computed results, an
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⊡ Table -
ComputedexcitationenergiesΔE (eV) atCASPT level, oscillator strengths f, dipolemoments μ(D),
dipolemoment directions μdir(deg), and transition dipolemoment directions TDMdir(deg) for the
low-lying electronic transitions of psoralen

State ΔE f μ μdir TDMdir

A′ − − .  −

A′(ππ∗) . . .  

A′′(nOπ∗) . . .  −

A′(ππ∗) . . .  

A′(ππ∗) . . . − −

A′(ππ∗) . . . − 

A′(ππ∗) . . . − 

A′(ππ∗) . − .  −

A′(ππ∗) . − .  −

A′(ππ∗) . − .  −

A′′(nπ∗) . − .  −

additional and more intense band can be expected at higher energies (. eV). The measured
band is probably a combination of both transitions.

Three other A′ππ∗ states are next in energy at ., ., and . eV.The nature of the low-
lying transitions of each symmetry, which are those basically responsible for the photophysical
properties of psoralen, can be graphically described by computing the differential electron den-
sity plots as displayed in > Fig. -. Transition to the S ππ∗ state is mainly benzene-like, with
the charge migration concentrated in the central benzenoid ring. On the contrary, that related
to the T ππ∗ state has its major contributions in the pyrone ring, with high participation of the
carbonyl oxygen and a shift in the density away from the pyrone ring C−C bond, which will
be later discussed as an essential feature of the photophysics of the system. Also in > Fig. -,
we find the expected differential density plots of the nπ∗ states centered on the carbonyl group.
Transition dipole moment directions (TDMdir) indicate that the three lowestππ∗ features have
nearly parallel polarizations, that is, they are aligned with the long axis of the molecule, while
transition to the A′ state has essentially perpendicular polarization. Regarding the vertical
excitations to the triplet states, the A′ ππ∗ (T) state lies at . eV, near . eV below the A′

(S) state.
Fluorescence has been reported for psoralen in polar solvents starting (T) at  nm

(. eV) with a maximum at  nm (. eV). Phosphorescence has also been recorded in
solution with band origin at  nm (. eV) and a maximum between  and  nm
(.–. eV).

The fluorescence and phosphorescence quantum yields were measured in ethanol as ΦF =

. − . and ΦP = ., respectively. The obtained ratio ΦF/ΦP is approximately .. The
total phosphorescence decay time (τP) has been reported . s in glycerol-water and . s in
ethanol.With those data, the phosphorescence radiative lifetime τrad(= τP ⋅ΦP) can be therefore
expected between  and  s.

The low-lying singlet excited state A′ (ππ∗) is responsible for the lowest-energy absorp-
tion and emission fluorescence bands (see > Table -). Vertically, at the ground-state geom-
etry, the transition energy is computed to be . eV and, upon relaxation of the geometry,
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11A′ (gs) → 21A′(ππ∗) 11A′ (gs) → 11A″(nπ∗)

11A′ (gs) → 13A′ (ππ∗) 11A′ (gs) → 13A″ (nπ∗)

⊡ Fig. -
Differential electron density for the main valence transitions in psoralen computed at the ground-
state optimized geometry. The electron density is shifted upon light-induced excitation from
darker to lighter regions

⊡ Table -
Computed and experimental excitation energies (eV) and emission radiative lifetimes (τrad) rele-
vant for the photophysics of psoralen

Theoretical (CASPT)

State EVA Te EVE τrad
A′(ππ∗) . . .  ns

A′′(nOπ∗) . . . μs

A′(ππ∗) . . .  s

A′′(nOπ∗) . . . ms

Experimental (data in ethanol)

State Absmax T Emax τrad
A′(ππ∗) .−. . . –

A′′(nOπ∗) − − − –

A′(ππ∗) − . . – s

A′′(nOπ∗) − −

EVA vertical absorption, Te adiabatic electronic band origin, EVE vertical emission, Absmax experimental absorption
maximum, T experimental band origin, and Emax emissionmaximum

the band origin (Te) decreases to . eV. This means that the range of absorption goes from
. to . eV, well within the PUVA action. A similar relaxation is observed experimentally
between the lowest-energy absorption band maximum and the band origin. The structural
changes of the computed equilibrium geometries for the ground (S) and the A′ (ππ∗) (S)
states affect the bond alternation of the system, mainly in the central ring (cf. > Figs. -
and > -), as expected from the differential charge density plots. By using the Strickler–Berg
relationship, a fluorescence radiative lifetime of  ns is calculated for the S state.The low-lying
A′′ (nπ∗) state (vertically S) becomes relaxed bymore than  eVupongeometry optimization.
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13A′ (ππ∗) 13A″ (nπ∗)

23A′ (ππ∗)

⊡ Fig. -
Spin density for the low-lying triplet states in psoralen computed at the ground-state optimized
geometry

Although the A′′ (nπ∗) minimum belongs to the S hypersurface, the final Te value is about
. eV higher in energy than the computed andmeasured band origin for A′ (ππ∗).Therefore
the nπ∗ state is not a plausible candidate for the fluorescence, which is better attributed to the
ππ∗ state.

The A′ (ππ∗) state is the clear protagonist of the phosphorescence. The computed band
origin at . eV perfectly relates to the observed value in solution at . eV. The relaxation
energy is about . eV. The largest structural change is produced in the C–C bond of the
pyrone ring, which enlarges by near . Å from the ground-state value. The computed spin
population, displayed in > Fig. -, is mainly placed on each of the carbon atoms forming the
bond. In that way, psoralen becomes highly reactive in its lowest triplet state through its pyrone
C–C bond. This finding is the cornerstone of the photophysics of psoralen, which has been
repeatedly proposed to take place through a reactive triplet state. The computed phosphores-
cence radiative lifetime is  s, somewhat higher than those estimated experimentally from the
quantum yield and the total relaxation time,  and  s. For the A′ (ππ∗) state, the spin popu-
lation is placed mainly on the carbon atoms forming both C=C bonds, that is, C–C (pyrone)
and C′–C′ (furan).

Practical Aspects

Selection of Geometries
Any quantum-chemical calculation starts with the definition of the molecular geometry. As
mentioned in > section “Methods, Advantages, andDrawbacks,” we can safely assume that the
absorption spectrum is initiated at the ground state equilibrated geometry. An optimization is
therefore required, in principle at the highest reasonable level of theory. DFT (with a proper
functional) works well for most closed-shell cases, and it is a fully correlated method. Other ab
initiomethods that also include all correlation energywill bemore accurate, but alsomore com-
putationally expensive: MP, CCSD, CASPT (with numerical gradients for small molecules).
Although the best choice is not to use any symmetry restriction and let the system to find the
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lowest-energy solution, it is possible to make approximations and, for instance, let the system
to be planar (Cs point group), like in the case of psoralen and save computational time, espe-
cially if experiment give some indication along these lines. In order to confirm that the obtained
point is a true minimum, it would be desirable to perform a frequency analysis, although com-
puting Hessians (second derivatives) is an expensive task. If too demanding, maybe is feasible
to compute the Hessian at lower levels of theory and check the outcome. Of course, if possible,
one should compare the result with experimental (X-ray or electron diffraction, for instance)
data. To compute emission, we have to optimize excited states too, a more difficult task than for
ground states only at reach of fewmethods: CASSCF, RASSCF, CASPT, andCCSD, tomention
the most reliable ones (the two latter only for small systems). If the ground state is optimized
with a better method than the ground state, some unbalance in the results may occur. It can be
a good idea to get the different states optimized at the same level, like CASSCF or RASSCF. The
choice of RASSCF in the psoralen example is motivated by the impossibility of including all π
space into a CASSCF calculation. Although safe inmany cases, the exclusion of someMOs, like,
for instance, the lowest-energy nodelessπ orbital, may lead to problems if the excluded orbital,
instead of becoming delocalized and having then no biased effect, tends to localize unbalanc-
ing the calculations. It is worth noticing that CASSCF (RASSCF) gives very good geometries
in π-conjugated systems, probably because of some compensation between the obtained single
and double bonds lengths.

Accuracy of the Excitation Energies and how to compare with experiment

It is time to decide if themethod and strategy employed is accurate enough to solve the problem.
In principle, the accuracy should be established by previous experience if the electronic struc-
ture problem is under control. We cannot expect a TD-DFT calculation to be more accurate
than .–. eV, much less if the problem has no closed-shell ground state or a charge transfer
character (except for specific functionals like CAMBLYP, see Peach et al. ()). Choosing
one functional for each molecule makes theoretical chemistry useless as a predictive tool. It
is much better to stick into one procedure and know their limitations. Coupled-cluster results,
EOM-CC(T) or CC, aremuchmore accurate, sometimes near .–. eV if pushed to the limit,
but this also relies on being far from degenerate situations ormulticonfigurational ground states
(see Grein (), B state of ozone: CCSD(T) . eV vs. best estimation . eV, or Kowalski
(), A state of ozone: EOMCCSD . eV vs. best estimation . eV). Multiconfigura-
tional calculations, CASPT in particular, can reach also .–. eV in most cases, although
the result may degrade if the reference is not well described. More important that all we have
said: accuracy with respect to what? Many studies discussing the precision of a method for
excited states compare their vertical excitation energies with what experiment initially offers,
absorptionmaxima.This is wrong andmisleading. A vertical excitation energy computed at the
electronic ground-state equilibrium geometry is a purely theoretical concept without experi-
mental counterpart. The Franck–Condon principle relates such value with the absorption (not
emission) maximum, but this approximation will be true only in the case that the ground and
excited minima take place at the same geometry. Apart from that, an experimentally deter-
mined absorption maximum depends on the concentration of the sample, the apparatus, the
environment, the temperature, the pressure, etc. In the most favorable case, vertical absorption
and emission maximum will differ by near . eV from an experimental gas-phase or molecu-
lar beam maximum. Typically, those cases display as maximum feature the band origin or T

transition. Indeed, the true experimental data to compare with this band origin, that theory
computes as the energy difference between the states minima, also named the adiabatic energy
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difference, Te if it is just electronic energies or T – the true comparable value – if the zero-point
energy correction has been included. The situation is even worse for the emission, where the
FC principle is hardly fulfilled. In the psoralen example, a good agreement has been obtained
for the band origins: computed Te . and . eV and measured T . and . eV for fluo-
rescence and phosphorescence, respectively. In most cases, Te and T differ by close to . eV.
On the other hand, the vertical emission is typically much lower than the emission maxima.

How to Deal with Symmetry

Unfortunately, the topic is too extensive to be treated here. For practical cases, the reader is
referred to the advances examples in the MOLCAS program manual (see http://www.teokem.
lu.se/molcas). Group theory may be very useful in a calculation on excited states, especially
because it allows dividing the states in each one of the irreducible representations (since a
symmetry operation leaves a molecule unchanged) and consequently reduce the computa-
tional effort. Unfortunately, the molecular symmetry is typically only found for ground states,
and most of the photochemistry takes place at distorted asymmetric structures, especially for
organic systems. Linear molecules or many inorganic complexes can however be studied mak-
ing an extensive use of the symmetry, as well as other systems if absorption, and sometimes
emission, spectra are studied. Symmetry is particularly useful in multiconfigurational calcula-
tions to reduce the active space requirements. Also, symmetry permits prediction of intensities
when following selection rules or analysis of the polarization or dipolemoment directions. Nor-
mally, one should have at hand the character tables and also theWigner–Witmer rules, as those
found in Herzberg books. Finally, it is necessary to warn about symmetry breaking problems, in
which a bad selection of the method or the active space may lead to find spurious lower-energy
solutions.

How to Obtain Intensities and Band Shapes: Vibrational Contributions

Apart from the energies, computing electronic oscillator strengths, f, provides information
about the relative intensity of the different transitions, initially for those states allowed in one-
photon (optical) spectroscopy. Group theory indicates that one-photon allowed transitions of
the molecule are those in which the direct product of the symmetries of the initial state, the
corresponding dipole moment component (x, y or z), and the final state belong to the totally
symmetric irreducible representation of the point group of the molecule:

∫

ψ∗

md̂elψndτel ⇒ Γ(ψm) ⊗ Γ(d̂el) ⊗ Γ(ψn). (.)

For instance, in the case of aCS molecule like psoralen (in the XY plane), the allowed transi-
tions are those inwhich the aforesaid direct product isA′ . Otherwise, the transition is forbidden.
In other words, from the ground stateA′, the accessible states are A′ if the light is x-polarized or
y-polarized, and A′′ if the light is z-polarized. If the light is x-polarized, for instance, the tran-
sition A′

→ A′ is allowed, whereas the transition A′

→ A′′ is forbidden. The magnitude of the
adimensional f has to be compared to the area beneath the band representing the transition, not
to the height. Frequently, especially in gas-phase spectra, weak bands such as the Rydberg tran-
sitions are the highest because they sit on top of the more intense, although broader, valence
bands. Notice that the range of energies of a band depends on the length of the vibrational
progressions, which, in turn, relies on the difference in geometries with the ground state. The
larger is the difference, the broader and extended will be the band. Flexible systems like NH

or C=O-based spectra like that of formaldehyde extends their valence bands and spread their

http://www.teokem.lu.se/molcas
http://www.teokem.lu.se/molcas
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intensity by several eVs. Inmany occasions it may be required to compute the vibrational profile
of different electronic bands and plot them together.This is an expensive task because, requires
the calculation of Hessians, FC factors, and sometimes the derivatives of such factors and of
TDMs in order to obtain vibrational TDMs. This is, however, the only procedure to elucidate
complex cases, for instance, that of the lowest single valence .–. eV band of pyrrole, which
contains two valence and four Rydberg bands which have all to be resolved (see Roos et al.
). Ideally, and in order to get all actual excitation bands, calculations on vibrational TDMs
should be complemented with the inclusion of vibronic couplings, in which more than one
electronic state is considered at the same time (breaking the Born–Oppenheimer approach),
an example of what can be found in the pioneering studies of Domcke and coworkers on the
pyrazine molecule (Domcke et al. ).

How to Add Environmental Effects

Adding the effects of the environment for excited states accurately is, if possible, even more
complex than for the ground state. Usual procedures use cavity models such as Onsager’s or the
Polarized ContinuumModel (PCM), with the additional consideration of the non-equilibration
of the electronic response for the excited states that leads to divide the reaction field in slow,
inertial, and fast, optical, parts. Results obtained with cavity models cannot be expected to be
as accurate as those for the isolated systemwhen compared with gas-phase results, among other
things, because using large basis sets as those required for excited states will force the charge to
leave the cavity and provide non-physical results. In many cases, the information yielded by the
dipole moment of the stateswill be informative enough for qualitative purposes. In the psoralen
example, it was discussed how states with dipole moments larger than that of the ground state
were expected to stabilize in polar solvents (and undergo a spectral red-shift) than those with
smaller dipole moments (blue-shift), typical case of the nπ∗ states, which, additionally, tend to
directly interactwith protic solvents forming hydrogenbonds and pushing the excitation energy
up in energy, sometimes even . eV.These interactions cannot be included by the cavitymodels
and specific molecules have to be applied, even several solvation shells. Careful microhydration
experiments allow nowadays comparison with such type of calculations.

Solvation is a very dynamical phenomenon which requires also the inclusion of statistical
effects. More sophisticated studies require the employment of dynamical approaches making
use of statistical mechanics, such asMonte Carlo type of calculations. Solvent molecules can be
then simulated by point charges (like in QM/MM approaches as it will be discussed later) and
dynamical time shots with their positions taken for a subsequent quantum chemical calculation.
The required property will be obtained as an average of the different conformations, as some
studies on -aminopurine reported recently have shown.

Active Spaces for Multiconfigurational Methods
As a large part of studies on excited states, and especially in photochemistry, employ multicon-
figurational approaches, it is necessary to understand the process of selection of an appropriate
active space (AS) for such computations. An active space should contain all orbitals and elec-
trons relevant for the chemical process under study. The size and nature of the AS define the
type of states and processes the multiconfigurational method will compute. Obviously, there is
no single choice, and the size is limited to – or – orbitals/electrons in CASSCF and
RASSCF calculations, respectively, depending on the type of partitions made. It is important
to emphasize that the selection depends on the problem. If one is only interested in low-lying
excited states, maybe a small AS is enough for that purpose. On the other hand, more states
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imply larger ASs. In photochemistry the situation is worse, because the AS must be flexible
enough to include all MOs participating in the process in all different regions of the PEHs
which are chemically relevant. For instance, each bond that breaks means that the AS should
contain both the corresponding bonding and antibondingMOs. In the psoralen example above
the highest-lying ππ∗, MOs plus one lone-pair MO from the carbonyl oxygen were selected
because the purpose was to compute the low-lying spectra.The selection was a combination of
experience and use of tools like performing aRASSCF calculation on several rootswith enlarged
active spaces to analyze theMOs participation in the different states and eliminate those orbitals
with occupation numbers <. and >. in all roots of interest. If Rydberg states were to be
computed, they should be added into the active space too. Making a TD-DFT calculation also
helps to select the AS. As a general rule, it is wise to have in the AS one “virtual correlating”
MO for each heavily occupied MO, for instance, each π MO with its corresponding “correlat-
ing”π∗ MO.This is not necessary for lone-pair orbitals. Other well-known requirements relates
to the need to include a second “correlating” d shell (d) when computing the excited states of
first-row transition metals, or more specific rules for very heavy elements.One big advantage of
using symmetry in the calculations is the possibility of splitting the AS following the symmetry
requirements, always when the energy differences are computed between states computed with
the same AS size.The reader is referred to the specialized literature and the MOLCAS manual.

The recently developed RASPT method has opened the field to the use of larger RASSCF
ASs. Special care has to be taken in the proper distribution of the MOs into the three RAS sub-
spaces, and in the inclusion of an excitation level high enough (triples typically) from and to
RAS/RAS to get accurate results. The method is still under calibration, but it is a big step
forward for the application of the methodology to larger and more complex systems. Typi-
cal improvements include the placement of Rydberg MOs or the second d-shell into the RAS
space.

Computing Rydberg States

An Application Example: Water

How do we understand a Rydberg state? If we extract one electron from each of the MOs of a
neutral molecule, the system becomes positively charged. An electrostatic interaction is there-
fore established between the molecular cation and the negative electron up to the moment that
this ends up as a free electron, that is, at the energy named ionization potential (IP). While
the electron leaves the molecule many metastable situations, the Rydberg states, take place, one
series from each of the MOs converging to the respective IPs. Obviously, the electrons will be
located relatively far from the molecule, therefore the Rydberg states will differ in extension
from the compact valence ones andwill require basis sets that generate large and diffuse orbitals
able to represent them. Typically, the Rydberg states are labeled, and even represented, in the
united-atom approach, that is, by using atomic-type orbitals, because they “see” the molecule as
a single atom.The Rydberg states are of interest in gas-phase photochemistry; because of their
diffuseness, they are strongly affected by external fields and solvation. Solution chemistry does
not contain Rydberg transitions.

Treating simultaneously valence and Rydberg states is not that simple. It requires methods
able to deal with the mixing of configurations and orbitals in the wave function. In the past,
the literature has been plagued with discussions about how physical is the effect of the valence-
Rydberg mixing. In most cases, such mixing was just a consequence of the lack of electron
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correlation in the calculation of the wave function.Then, both valence andRydberg orbitals and
configurations mix, and valence states, becomemore diffuse and Rydberg statesmore compact,
with specially dangerous consequences for the valence states, which are extremely sensitive to
the mixing. Therefore, if a calculation does not provide clear and compact valence states the
result is always suspicious.

Not always the mixing is spurious. One intriguing case is the water molecule. A compre-
hensive ab initio study performed in  byGoddard andHunt characterized all the computed
states below .eV as having Rydberg nature, a result supported at the configuration interaction
(CI) level. The electronic spectrum of water in the gas phase is currently interpreted as com-
posed either of different Rydberg series or implying excited states with a significant Rydberg
character at the ground-state equilibrium geometry. The lowest-energy band of the gas-phase
electronic spectrumofwater is broad (.–. eV),with poorly defined vibrational progressions,
and has its maximum absorption around . eV. There is a unanimous agreement in assigning
the lowest-energy band to the B state, but the valence, Rydberg or mixed valence-Rydberg,
nature of the state is still under debate.

In Cv symmetry, the ground state of the water molecule is mainly described by the elec-
tronic configuration (a)(a)(b)(a)(b). The latter orbital is nonbonding. The
valence orbitals comprise the four highest occupied MOs listed above and two unoccupied
orbitals of a and b symmetries (a and b orbitals). The valence excited states can interact
with the corresponding Rydberg states of the same symmetry and close in energy. For instance,
the valence singly excited b → a configuration could be mixed with the b → s, b → pz ,
b → dx−y , and b → dz Rydberg states.

The properties of the lowest-lying electronic states were studied in the light of
CASPT//CASSCF procedure (see Rubio et al. ). The coupling of the CASSCF wave func-
tions via dynamic correlation was dealt by using the MS-CASPT method. In this way, all the
states of a given symmetry are allowed to interact under the influence of dynamic correlation,
and the possible erratic valence-Rydberg mixing can be removed. Properties of the states were
determined from the PMCAS-CI wave functions.

The next table lists some properties of the low-lying electronic states of the water molecule,
employing (after calibration) a one-electron basis set O[spdf]/H[spd]+(spd), being
the diffuse spd set, located at the oxygen atom only, necessary to properly describe Rydberg
states. Indeed, if no Rydberg orbital is included into the active space, the CASSCF calcula-
tion will only yield roots corresponding to valence states. Rydberg and valence orbitals must
be treated simultaneously, and this is not possible if there is no Rydberg orbital in the active
space.The full valence active space comprises six orbitals with eight electrons and corresponds
to (), labels that represents each one of the irreducible representations of the point group
(abba).

Regarding the first excited state, B, it has a diffuse nature according to the value of ⟨r⟩,
more than twice that of the ground state, but appreciably lower than that obtained for a pure
Rydberg state as the B (b →pz) state (⟨r⟩=  a.u.). As the state is mainly described
by the singly excited b →s/a configuration (% in the PMCAS-CI wave function), the
valence-Rydberg character of the state arises mainly from the nature of the excited orbital,
labeled here as s/a to highlight its intermediate character valence (a)-Rydberg (s), and
not from configurational mixing (> Table -).

We can get further insight into the nature of such a state analyzing its evolution with
respect to the O–H internuclear distance. For the sake of simplicity, we have considered the
symmetrical stretching of both O–H bonds, preserving thus the Cv symmetry of the system.
MS-CASPT calculations were performed for the three lowest roots of B symmetry using the
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⊡ Table -
Computed MS-CASPT vertical transition energies (ΔE, eV), oscillator strengths (f), and orbital
extensions (⟨r⟩, a.u.) from the PMACAS-CI wave functions for the lowest-lying singlet states of the
watermolecule at the ground-state equilibrium geometry

State ΔE f ⟨r⟩

A 

B(b → s/a) . . 

A(b → py/b) . Forbidden 

A(a → s/a) . . 
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⊡ Fig. -
Symmetrical stretching of the O–H bonds in the ground and low-lying B states of the water
molecule. Potential energy curves referred to the corresponding ground-state minimum (left) and
computed ⟨r⟩ values

O[spd]/H[sp]+(spd) basis set (since now we will use the same basis sets for each state,
one for vertical transitions, another for potential curves analysis) and the () active space
(full valence active space plus two extra Rydberg orbitals of a symmetry). The bond angle was
kept fixed at .○.

The second and third B states have Rydberg character at all distances examined since they
show high values of ⟨r⟩ in comparison with the ground state. However, the situation is clearly
different for the B state. The evolution of the computed ⟨r⟩ with the O–H distance shows
that the state is getting more and more valence character when stretching the O–H bond as a
result mainly of the changes undergone by the virtual orbital: the energy of the antibonding a
orbital decrease when lengthening the O–H distance separating this orbital from the related
s-Rydberg orbital. In other words, the nature of the B state evolves form a valence-Rydberg
mixing type (b →s/a) at the ground-state equilibrium geometry to a valence character
(b → a) at O–H bond lengths around .Å and longer, which corresponds only to a sym-
metrical bond stretching of . Å from the ground-state equilibrium value. Accordingly, the
second B root becomes the Rydberg state (b →s) at O–H distances longer than .Å .This
state constitutes an example ofMORydbergization postulated byMulliken.The reason for such
behavior is probably that both valence and s RydbergMOs share the same energy and position
in space, yielding therefore a common mixed state (> Fig. -).

A similar analysis of the A state shows another example of Rydbergization, as its nature
evolves from (b →py/b), with a % weight at PMCAS-CI wave function at geometries
close to the ground-state equilibrium geometry to (b → b) at O–H distances longer than
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∼.Å, where the second A state becomes the b →py Rydberg state. Indeed, the dif-
fuse nature of the A state decreases when increasing the O–H distance. Calculations of the
stretching potential energy curves were performed using the active space () with eight active
electrons.

On the other hand, the A state is characterized mainly by means of the a →s/a
configuration, with a weight of % at the PMACAS-CI wave function, and by b →px , with
a weight of %.This state is closely related to the A state, which is characterized by the same
configuration but in different proportion (% and %, respectively). Since the b →px one-
electron promotion is a pure Rydberg excitation, its contribution increases the configurational
mixing of the state. Calculations carried out using the active space () show that the valence
character of the state increases with the stretching the O–H bonds due to the increment of the
weight of the singly excited a →s/a configuration in the PMACAS-CI wave function of the
state togetherwith the transformation of the excited orbital toward a valence a orbital. To sum
up, the A state is a valence-Rydberg state at the ground-state equilibrium geometry and the
mixing is not only due to the nature of the excited orbital (s/a), but also to configurational
mixing involving the Rydberg b →py excitation.

In the light of these results, it is concluded that the electronic spectrum of gas-phase water
has a predominant Rydberg character at the Franck–Condon geometry, in line with the general
view, although a certain degree of valence character has been shown to exist in the three lowest
singlet states, a property that increases far from the FC region.

Practical Aspects

How to Solve Valence-Rydberg Mixing
Many methods are unable to solve properly the valence-Rydberg mixing because they do not
include enough correlation effects in the calculation of thewave function, for instance, TD-DFT,
CASSCF, RASSCF, or even CC. In many cases, the problem is aggravated by the use of exces-
sively diffuse basis set functions. For instance, aug-cc- or -++G-type basis sets are already
too diffuse, becoming even more when atom-centered and combined in the LCAO approach.
The excess of uncontracted diffuse functions has been found necessary to compensate the poor
recovery of the correlation energy of the underlying valence basis sets. A procedure to reduce
themixing problems and even tomake the obtained Rydberg solutions identifiable is to employ
molecule-centered uncontracted functions, as explained in the previous example. Typically,
orbitals, excitations, and even population analysis are more clearly represented in such cases.

If the mixing persist, and it can be observed by comparing the orbital extension (second
Cartesianmoment ⟨r⟩) of the valence state with that of the ground state, which should be sim-
ilar and different from that of the Rydberg state, the only solution is to increase the level of
correlation used to compute the wave function. In the CC treatments, it might mean to include
the triple excitations. For multiconfigurational studies, it means to make the CASPT states
to interact and display orthogonal solutions via the MS-CASPT method. Ethene is the most
paradigmatic case. A CASPT(e,MOs)/ANO-L C[spd] / H[sp] + spd calculation
yielded an expected Bu valence and Rydberg states at . and . eV with orbital exten-
sions ⟨x⟩  and  a.u., and with related oscillator strengths . and ., respectively (see
Finley et al. ; Müller et al. ). Several errors plague these results. First, the ground state
extension was  a.u., therefore none of the two states seemed to have proper valence character.
Also, Rydberg states cannot have oscillator strength values close to those of valence states.
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Second, the correct energetic values are known to be ∼. and . eV, respectively, leading then
to deviations of±. eV. A clearmixing of stateswas obtained at the CASSCF level (in which our
wave function was obtained) that CASPT could not solve properly for the energies. Using the
multistateMS-CASPTmethodmakes both states to interact. By diagonalization of the effective
interaction Hamiltonian, a new set of states is obtained. The new wave functions, PM-CASCI,
are linear combination of the previous SA-CASSCF references built with the eigenvectors of
the MS treatment.The new results provide two new solutions for the Bu valence and Rydberg
states at . and . eVwith orbital extensions ⟨x⟩ of  and  a.u., andwith related oscillator
strengths . and ., respectively, leading to a proper interpretation of the spectrum.

A proof that the valence-Rydbergmixing problem is just a problem of lack of correlation in
the wave function is obtained when performing RASSCF/RASPT calculations on the ethene
molecule. When a calculation including all valence σ , π, π∗, σ∗ and Rydberg orbitals in the
RAS active spaces is carried out, the mixing vanishes even at the RASSCF level and compact
valence and diffuse Rydberg states are obtained separated.The RASPT step, without the need
of a multistate treatment, produces already the correct results.

Focusing on the Valence States
Is it possible to ignore the Rydberg states and focus on the valence spectrum? Logically, this
depends on the system and also on our goals. A system with a solvated or proteinic environ-
ment perturbs somuch the diffuse transitions that it is safe to ignore the Rydberg solutions. For
isolated systems, the simultaneous treatment of valence and Rydberg states seems unavoidable,
for instance, in pyrrole, where the lowest-energy excited single state is of Rydberg character.
Using poor basis sets like -G* type or excluding in general the diffuse functions from the
basis set or the Rydberg orbitals from an active space may seem a solution (the Rydberg states
cannot be represented in such case), but the obtained “valence” solutions will most probably be
of mixed type.

For larger systems the, exclusion of the Rydberg orbitals from the basis or the active space
may be less dangerous. Valence states decrease much more in energy with the enlargement
of the molecule or the complexity of the chromophore than Rydberg states. It is unusual to
find Rydberg series below .–. eV. Therefore, if one is interested in computing low-lying
valence states in a large molecule, it might be safe to first estimate where the lowest-energy
Rydberg state is placed and consider that valence states below such energy are treated accu-
rately with compact basis sets. From one to other molecule, this estimation can be done using
the respective IPs, which are a good measure of where the Rydberg series are being located
energetically. On the other hand, the geometry of the Rydberg states tends to be similar to that
of the molecular cation, typically different from that of the valence states. A way to simplify the
calculations in many systems may be to use a compact valence basis set to get the geometry of
valence states that, far from the FC region, might not suffer of mixing with the Rydberg states.
A recent example can be found in the literature for ,′-bicyclohexyliden (see Pérez-Hernández
et al. ).

Electronic States of Anionic Systems

An Application Example: p-benzosemiquinone Radical Anion

When computing excited states in anionic systems, several cautions should be taken into
account. In some molecules, certain states in the anion may lie below the ground state of the
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neutral system, for instance, those in which the actual electron affinity is positive. Most of
the electronic states in anions, including in many cases the ground state, are, however, higher
in energy than the ground state of the neutral system and represent temporary anion states,
which means that they are unstable with respect to electron detachment. They are typically
namedTemporaryNegative Ion (TNI) states, resonances, or anionic valence-bound states. Con-
ventional quantum-chemical techniques cannot be applied in general to the study of these
temporary states since they lie in the continuum of the neutral species plus the free elec-
tron. It has been shown that it is, however, possible to obtain well-localized solutions with
ab initio methods such as CASSCF and others. Those eigenvalues can be regarded as discrete
representations of the TNI or anion resonance states. The metastable states of anions can be
classified as either shape or core-excited resonances. From the electronic structure standpoint,
shape resonances originate in the attachment of the electron to a virtual orbital of the neutral
ground state. Alternatively, they can be viewed as the result of the promotion of the unpaired
electron of the LUMO to higher-lying virtual orbitals. Core-excited resonances can be seen,
on the other hand, as arising from the attachment of an extra electron to an excited state of
the neutral molecule. They can be divided into Feshbach and core-excited shape resonances,
depending on their energetic position with respect to the excited state of the neutral molecule
involved. The former lie below the parent state of the neutral, whereas the latter are located
above.

The theoretical treatment of temporary negative ions can proceed via the use of scattering
theory or the employment of modified bound-state quantum chemical techniques. The latter
requires the use of stabilization methods for the obtained solutions, for instance, by decreasing
the exponents of the diffuse functions. It is of general knowledge that any quantum chemical
calculation in anions requires a basis set including extra diffuse functions. Besides the discrete
valence TNI states, also named valence-bound (VB) anion states, diffuse states described by
a singly excited configuration involving a diffuse orbital can be also obtained, and they have
been sometimes erroneously interpreted as Rydberg states. Singly excited Rydberg states are
not present on monoanions because there is no specific direct electrostatic interaction between
the neutralmolecule and the electron; doubly excited Rydberg stateswould be instead present at
high energies.Then, if not Rydberg states, what is the nature of the diffuse states that a quantum-
chemical calculation finds interleaved between the valence excited states of the anion? In the
cases where the neutral system has a dipole moment larger than a critical value established
between . and .D,metastable solutions known as dipole-bound (DB) anion states should
be found consequence of the interaction between the additional electron and the dipolemoment
of the neutral system.These states will have small binding energies (i.e., they will be more sta-
ble than the neutral ground state), but in some cases, they may appear higher than the neutral
state because of deficiencies of the quantum-chemical treatment. Upon improvement of the
level of the calculation, they should end up with a positive binding energy. In systems with
smaller dipole moments, however, spurious diffuse solutions are also present together with the
VB and DB states, but they are an artificial consequence of the calculation, in particular of
the structure of the one-electron basis set, which forces a confinement effect (known as the
basis set cage effects) leading to erroneous results. In the low dipole moment molecules, these
diffuse solutions for the excited states of the anion try to simulate the neutral molecule plus
a free electron by placing the extra electron into the most diffuse orbital available. The com-
puted energy for these states strongly depends on the diffuseness of the basis set employed. In
practice, the only way to check if the obtained result is correct is to analyze the stability of the
energy, for instance, with the increase of the diffuseness of the basis set, as it will be discussed
below.
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We have a hint of how to analyze ionic systems in the monodeterminant HF approach.
The Koopman’s theorem stated that given an N-electron HF single determinant ∣NΨ⟩ =

∣χ χ . . . χc . . . χN⟩, the ionization potential (IP) to produce and (N − )-electron single deter-
minant by removing an electron from spin orbital χc , and the electron affinity (EA) to produce
and (N + )-electron single determinant by adding an electron to spin orbital χr , are just
IP =N− Ec −

N E = −εc and EA =N E −
N+ Er = −εr , respectively; that is, the corre-

sponding orbital energies of the protagonist spin orbitals. This “frozen orbital” approximation
assumes that the spin orbitals in the (N ± )-electron states are identical with those of the N-
electron state, neglecting the relaxation of the spin orbitals in the ionized states. As a result,
Koopman’s theorem calculations tend to produce too positive IPs and too negative EAs. In addi-
tion, we should take into account the correlation effects, which one obtains in going beyond
the HF approximation, which will produce further corrections. In general, Koopman’s ioniza-
tion potentials are reasonable first approximations to the experimental ones. On the contrary,
Koopman’s electron affinities are often inaccurate. Obviously, correlated methods are needed to
determine quantitatively such properties.

The ground state of the anion can be then lower (positive EA) or higher (negative EA)
in energy than the ground state of the neutral system. How about the excited states of the
anion? They will lie in general higher than the neutral ground state, in the continuum region.
As mentioned, it is possible to obtain discrete solutions of the Hamiltonian corresponding to
the valence-bound states of the anion, but, because of the confinement effect of the basis set
functions, other solutions in which the electrons are placed in the diffuse orbitals will be also
present. In a series of calculations on the p-benzosemiquinone radical anion (pBQ−, nonpolar
in the neutral form), a number of experiments were performed (see Pou-Amérigo et al. ).
Apart from the clearly localized valence-bound anionic states, a number of supposedly diffuse
states were obtained interleaved with the valence states. What are those solutions? They are
spurious solutions caused by the cage effect of the basis set. By decreasing the orbital exponents
in the C and O basis sets, it was observed that, while the valence states remained in energy,
the “diffuse” solutions started to decrease their absolute energy. The instability remained until
their energy converged to the energy of the neutral system, while the electron becomes free and
detached from the molecule, an effect that is observed because it always ends up on the most
diffuse orbital available. Once identified, the stable solutions above the neutral ground state
energy can be TNI states or anion resonances, whereas the instable solutions can be neglected
as spurious. The apolar character of pBQ− prevents the molecule to have dipole bound anion
states (although it has quadrupole-bound states).

The CASPT study on pBQ− used a basis set of ANO-L type C[spd]/H[sp]
plus a set of spd diffuse functions centered in the molecule and an active space of 
MOs of valence ππ∗ type, (), distributed into the Dh irreducible representations
(agbububgbubgbg au). The adiabatic electroaffinity (AEA), obtained as the difference
between the ground states of the neutral and anion pBQ at their respective geometries was
computed as −. eV (CASSCF) and . eV (CASPT), as compared to the . eV measured
in experiment.The result clearly highlights the fundamental role of the correlation effects. Two
series of calculations on the excited states were performed to analyze the spectrum of the sys-
tem at the geometries of neutral and anion pBQ. The former results can be compared with
those obtained from photodetachment measurements, whereas the latter are better related to
the electron attachment or electron transmission spectroscopy (ETS). >Table - summarizes
the results.
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⊡ Table -
Computed and experimental excitation energies (eV) and oscillator strengths of the
p-benzosemiquinone radical anion

Anion absorption Attachment energiesa

Theoreticalb Experimentalc Theoretical Experimentald

State EVA f Amax f State AEe SF ETS EI

Bg − − − − Bg −.

Bg . Forbidden . Forbidden Au . . . .

Bu . . ./. ./. Bu .

Au . . ./. ./. Bu . . . .

Bg . Forbidden − Forbidden Bu . . . .

Bu . . ./. ./. Bg .

aElectron attachment energies at neutral ground state geometry
bEVA: vertical excitation energy at the anion ground state geometry
cAbsorption maxima in acetonitrile/water
dSF scavenger spectra (SF), electron transmission spectroscopy (ETS), and vibrational excitation by electron
impact (EI)
eAdiabatic energy difference: energy difference between the anion state and the neutral ground state geometry at
such geometry

Whereasmost of the assignments,made toππ∗ valence-bound states, seem to be explained,
the observed band near .–. eV in the pBQ− absorption spectrum could not be initially
resolved because the degeneracy of the Bu and Au states, both leading to one-photon
allowed transitions. This broad band had two main peaks at . and . eV, which could be
attributed to one or other states. In principle, the transition to the Au was computed with
larger oscillator strength, but that does not guarantee that the highest peaks correspond to
such a state. The vibrational profile of the transitions to both states was therefore computed
at the CASPT//CASSSCF level of calculation by obtaining vibrational energies and TDMs,
which required geometries optimizations and Hessians for both states and resolution of the
vibrational Hamiltonian. As a result, it was confirmed that the two highest bands at .
and . eV corresponded to the initial quanta in the vibrational progression of the breathing
mode in the Bu state, whereas the Au transition, even when broader, extended to higher
energies displaying a larger band area but not so high peaks. Such result proves the danger
implicit in the use of vertical excitation energies matching band maxima to assign molecular
spectra.

Practical Aspects

Basis Sets and Spurious Solutions in Anions

Closely controlling the quality of our basis set and its effects on our states will confirm the
validity of our results. Let us illustrate this aspect with another example. Neutral nitromethane
(CHNO) has a dipole moment of .D. A standard ANO-L C,N [spd]/H[spd] basis
set is used supplemented with a set of s diffuse functions (eight primitives) with exponents for
the diffuse functions explicitly optimized to deal with Rydberg states. At the CASSCF optimized
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geometry for the neutral molecule, the lowest state of the anion is . eV above the neutral
ground state at the MS-CASPT level. Just by scaling the exponents of the diffuse functions
by a factor . in both the neutral ground state and the lowest anion state, the energy differ-
ence decreases to . eV. Scaling instead the exponents by . leads to an energy difference
of −. eV, that is, the lowest state of the anion has converged below the energy of the neu-
tral system. Increasing further the diffuseness of the basis set does not vary the result, which
corresponds to a dipole-bound state of the anion with a small binding energy of . eV
(experimental value . eV).The lowest valence-bound anion state is computed, adiabatically,
. eV below the neutral ground state of the molecule at the CCSD(T) level.This state remains
basically stable with the increase of the diffuseness of the basis set and it is, in general, better
represented by using diffuse functions localized in the positive sites of the molecule. To test
the stability of the solutions obtained, other techniques have been developed, such as increas-
ing the effective positive nuclear charge, adding specific counter ions to fix the negative charge,
or using penalty functions or electric fields, such the dielectric continuum cavities, which will
highly perturb the diffuse solutions.

Negative Electron Affinities

Ionization potentials and electron affinities are intrinsic properties of theDNAandRNAnucleic
acid bases (NABs) whose determination enables a deepunderstanding of all phenomena related
to the electron donor and acceptor abilities of the NABs, such as those involving charge trans-
fer and transport along the DNA strand. Determination of the EAs of NABs is difficult both
experimentally and theoretically, and the uncertainties range up to several eV, including also
changes in the sign of the energies, because both VB and DB anions may be located within a
small range of energies, and therefore determination of accurate EAs is uncertain, especially
because the type of anion formed may vary with the different experimental conditions. Apart
from that, new difficulties interfere the experimental determination of EAs of nucleobases as
the presence of different tautomers of the nucleobases which are close in energy in the gas phase.
In particular, the canonical (keto) form of guanine, which is the biologically relevant tautomer,
has a very low concentration in the vapor, and there is no direct experimental value reported
for the corresponding EA.

The electron affinity of a neutral molecule is the energy required for detaching an electron
from a singly charged negative ion, or equivalently, the energy released when an electron is
attached to the neutral system. Thus, the electron affinity of a neutral molecule can be defined
as the energy difference between the ground state of the neutral system and that of the anion.
A positive EA implies that the anion is more stable than the neutral species. As in the case of the
ionization potential, three theoretical magnitudes (see > Fig. -) are used for describing this
transition: the vertical electronic energy difference (VEAe or VEA) between the ground states
of the neutral system and the anion at the equilibrium geometry of the neutral molecule, the
adiabatic energy gap (AEAe ) between the minima of the neutral and anion molecule ground
states, and the corrected adiabatic property (AEA or AEA) with the addition of the zero-point
vibrational energy correction (ZPE). Thus, positive VEAs indicate that the molecule acts as a
trap for an excess electron, with an attachment energetically favored and, therefore, the anion
can be created spontaneously. In this case, positive AEAs follows, and the system becomes sta-
ble, that is, it does not undergo autodettachment and can take part in chemical reactions. On
the other hand, negative values for VEAs and AEAs represent the TNI states, existing in short
periods of time and becoming prone to photodetachment.
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⊡ Fig. -
EA diagram (B + e− → B−). Definitions of the theoretical magnitudes related to EA are graphically
shown through the electronic, vibrational, and rotational potential energy levels. Those magni-
tudes are VEAe (vertical electronic electron affinity, from the neutral ground-stateminimum), AEAe
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Analysis of the experimental literature onnucleobase EAs shows an extremely confuse situa-
tion, ranging fromclearly negative values (−. eV) up to largely positive energies (. eV), and
including EAs close to  eV. In general, determination of EAs represents a technical challenge,
especially when they have negative values, and in many cases it is based on indirect measure-
ments. Negative electron affinities can be experimentally measured by electron transmission
spectroscopy. The technique is able to detect negative ion resonance states, which are ener-
getically unstable with respect to electron autodetachment. It is unclear when the experiment
is measuring vertical (VEA) or adiabatic (EAs) attachments, or if the indirectly obtained data
truly represent themolecular EAs. In general, however, ETS is the only direct experimental tech-
nique which is expected to provide actual VB anions in the region of the resonance states. In
particular for gas-phase NABs (except G, which cannot be isolated), ETSmeasurements report
EAs values clearly in the negative region (from −. to −. eV).

In order to compute accurate theoretical results for the VEA and AEA of NABs
different levels of theory were taken into account, employing the MP, CCSD, and
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CCSD(T), and the CASSCF and CASPT methods, in conjunction with the -G*, cc-
pVDZ, aug-cc-pVDZ, ANO-L C,N,O[spd]/H[sp] (hereafter ANO-L /), and ANO-L
C,N,O[spdf]/H[spd] (hereafterANO-L/) basis sets.Methods and basis setswere
selected to obtain the most accurate values from preliminary calculations on atomic systems,
in which the required levels of highly flexible enough basis sets and strongly correlated meth-
ods to obtain predictive EAs were determined. Geometry optimizations of both neutral and
anionic NABs were carried out at the MP/-G(d), MP/aug-cc-pVDZ, CASSCF/cc-pVDZ,
CASSCF/ANO-L /, and CCSD/aug-cc-pVDZ levels of theory. No symmetry restrictions
(C symmetry) were imposed, whereas all minima were characterized by computing second
derivatives at the same level, except in the case of CCSD/aug-cc-pVDZ where the geometries
were tested comparingwith the optimized parameters at the other levels of theory.At the respec-
tive equilibrium structures, additional CASPT and CCSD(T) calculations were performed to
account for the most accurate energy values. ZPE corrections were included at different levels
using the harmonic approach. The active space for the CASSCF calculations in geometry opti-
mizations comprises the full π-valence system, except the molecular orbital localized mainly
on the nitrogen atom of the NH group in the case of cytosine, adenine, and guanine, whose
occupation number is very close to two. This MO is further included in conjunction with the
lone pair electrons and orbitals of the heteroatoms in the final CASSCF and CASPT calcula-
tions of VEAs and AEAs, except when the large ANO-L / basis set was employed (see
Roca-Sanjuán et al. , a).

The analysis of the results shows that neither DFT procedures nor the MP method have
the required accuracy, either by the known problems of DFT to deal with negative centers
or by the spin contamination problem that affects MP. CCSD(T)//CCSD/aug-cc-pVDZ and
CASPT(IPEA)/ANO-L / //CASSCF/ANO-L / will be established as the most
accurate procedures, both for vertical and adiabatic EAs. It must be emphasized here that the
main factor to achieve accurate results for the VEA of NABs by using ab initio methods is the
employment of atomic one-electron basis sets flexible enough to describe both the spatial distri-
butions of electrons and their correlation effects and including functions decaying slowly with
the radial distance.The CASPT//CASSCF strategy has the advantage to compute several states
of the system, and it is possible to easily distinguish between the different solutions. Single-
reference methods are not free of problems, because they can only obtain the lowest solution.
For instance, at the corresponding geometry of the neutral species, adenine and guanine, in
which the VB anion state lies much higher than other diffuse states, the CCSD and CCSD(T)
computations lead initially to a diffuse and low-energy spurious solution in which a delocal-
ized electron is located far from the molecule in a diffuse orbital. Finally, the sequence of stable
solutions obtained for the VEAs of NABs using the reference CCSD(T) and CASPT(IPEA)
levels of theory is established as U ≈ T > C > A >G, ranging from −. eV (U) to −. eV (G).
Therefore, for guanine is less favorable to accept an electron at the neutral molecule geometry.

Regarding gas-phase adiabatic EAs, those for uracil and thymine were determined very
close to zero, whereas cytosine has a small negative AEA. The sequence of AEAs for isolated
NABs can be established as  eV ∼ U ∼ T > C > G > A. Purines are much less favorable
than pyrimidines to retain the electron attached to the neutral nucleobase, and after geome-
try relaxation adenine becomes the poorest electron acceptor of all NABs, in contrast to what
occurred for the vertical EAs, in which guanine had the more negative value. To understand
the differences among these compounds, it can be also analyzed how the inductive effect (and
the number of stable resonance structures) makes more or less stable the new center of neg-
ative charge created by the addition of the new electron. It should not be forgotten that the



Calculation of Excited States: Molecular Photophysics and Photochemistry on Display  

accepting properties of the systems will largely change in solvated or biological environments.
For instance, a recent calculation performed for the EAs of the cytosine molecule within a
chain of oligomers, dC×dG, employing a CASPT/MM approach led the AEA of cytosine
to change from −. eV in vacuo to . eV in the biological surrounding, becoming therefore
the molecule a strong electron acceptor.

Photochemistry: On the Trail of the Energy

An Application Example: Thymine

The energy absorbed by a molecule can be released radiatively, that is, slowly emitted via flu-
orescence or phosphorescence, or nonradiatively. In that case, it can give rise to productive
photochemistry, yielding photoproducts different from the initial species, or it can become
unproductive, meaning that it is dissipated to the environment through the vibrational degrees
of freedom, ending in some cases in the initial ground state of the system. Photophysics and
photochemistry is typically a combination of all such processes. From the theoretical viewpoint,
the best initial strategy to understand the photochemical processes is trying to follow closely the
path of the energy from the initially populated states at the FC region toward favorable regions
of the PEHs. That means to trace the lowest-energy possible pathway until reaching an energy
barrier, that is, aminimum, or a transition state, or a hypersurface crossing, in particular conical
intersections (CIs), the protagonists of the ultrafast radiationless nonadiabatic energy transfers
between PEHs. The only strategy that guarantees finding PEH points along the lowest-energy
path is the computation of a minimum energy path (MEP), that is, a steepest-descendent path-
way.The procedure is performed generally inmass-weighted coordinates, and it is equivalent to
the Intrinsic Reaction Path approach. Once localized, the crossings and CIs, the estimation of
their accessibility, and the calculation of the interstate couplings (like the SOC between singlet
and triplet states) and transfer probabilities will help understand and predict favorable IC and
ISC processes. The described strategy is named as the Photochemical Reaction Path approach,
and it can be applied to solve a large number of photochemical problems.

An interesting example of nonproductive photochemistry can be found in important com-
pounds such as the DNA/RNA natural nucleobases, which were determined a long time ago
as basically nonfluorescent. Modern femtochemical techniques have determined fluorescence
decay times in the DNA/RNA nucleobase monomers, nucleosides, and nucleotides in different
media to be ultrafast. In particular, molecular beam measurements reported two main decay
lifetimes near  fs and few ps in all five natural NABS: thymine, uracil, cytosine, adenine,
and guanine (Crespo-Hernández et al. ). Finding ultrafast decays in a molecule suggests
the presence of extremely efficient internal conversion channels, and therefore the presence
of accessible conical intersections, in particular one connecting the initially populated bright
spectroscopic ππ∗ singlet and the ground state, yielding therefore nonfluorescent species. The
ultrashort lifetime of nucleobases is an intrinsic molecular property as it has been proved in
recent years both from theory and experiment. Indeed, such photoprotective properties may
well be very important at the beginning of life in our planet given that there are evidences
that point out that life began on Earth millions of years before the development of the ozone
layer. The ultrafast decay channels of the nucleobases may have favored photostable natural
nucleobases against less stable derivatives (Serrano-Andrés and Merchán ). This type of
photochemical mechanisms may have been operative as natural selection processes reaching
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⊡ Fig. -
Evolution of the ground and lowest singlet excited states for thymine from the FC geometry along
the (ππ∗ HL)

in that way the genomic stability until the development of the ozone layer and complexes
mechanisms of reparation of DNA.

Thymine photophysics is here selected as an illustration of the computational strategies
mentioned above (see Merchán et al. ; Serrano-Pérez et al. b). > Figure - displays
the CASPT energies of the lowest-lying singlet and triplet states of thymine along theMEP cal-
culated for thymine on the bright (ππ∗ HL, HOMO→LUMO) state from the FC geometry.The
level of the calculation was CASPT//CASSCF(e− ,MOs)/ANO-S C,N,O[spd]/H[sp].
Apart from the radius of the hypersphere controlling the distance from the initial geometry, not
any other restriction was imposed to the calculations.

From thymine ground state and upon near-UV absorption at the FC region, most of the
population reaches initially singlet excited states, and in particular, it is the transition to the
(ππ∗ HL) excited state at . eV which has the largest oscillator strength up to  eV, that is,
..The ultrafast nonradiative decay undergone by thymine in the femtosecond range can be
rationalized by the barrierless character of the path leading from the FC region toward a CI
seamwith the ground state, (gs/ππ∗

)CI. Unlike simple geometry optimizations, the use of the
MEP technique guarantees the absence of energy barriers along the lowest-energy path. The
structure of the CI at the end of theMEP can be characterized as ethene-like, a diradical species
(as many CI are) involving combined stretching and twisting of the ethylenic bond and leading
to a screw-boat (S) conformation S for the six-membered ring. The presence of an accessible
CI explains also the low fluorescence quantum yield (∼ϕF = −) detected for thymine with
band origin at . eV in water. This weak emission can be related to the presence of a high-
lying planar (ππ∗ HL) minimum computed adiabatically from the ground state at . eV,
whereas a nonfluorescent (nOπ∗) minimum is found at . eV with a minor contribution to



Calculation of Excited States: Molecular Photophysics and Photochemistry on Display  

(gs / ππ∗)CI

(gs / ππ∗)CI

U(3.9 eV)

T(4.0 eV)

C(3.6 eV)

CO length

(ππ∗ HL)mm

U(4.53 eV)
T(4.49 eV)
C(3.62 eV)

Absorption

U(5.02 eV)
T(4.89 eV)
C(4.41 eV)

1(ππ∗ HL)

1(ππ∗ HL)min

fs decay

ps decay

FC 0.00 eV
(gs)min

Vertical
Emission

U(3.9 eV)
T(3.8 eV)
C(2.4 eV)

low quantum yield
fluorescence

d(HC, C, H)
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Global scheme of the photochemistry of uracil (U), thymine (T) and cytosine (C) as suggested by
the CASPT calculations

the emissive properties. As recently estimated by means of reaction dynamics, the near  fs
decay detected in natural nucleobases can be related to the barrierless path from the FC to
the CI region. Although other slower singlet decay pathways could beestimated proceeding
through the low-lying nOπ∗ state, that crosses the MEP at high energies and has its own CI
with the ground state, still the main relaxation path for the energy runs along the computed
(ππ∗ HL) barrierless MEP, which will transfer most of the energy toward the ground state
and back to the original species. Such behavior means that the systems are largely photostable,
as it has been proved for natural and methylated nucleobases, and that the mechanism can be
considered an intrinsic property of the systems. > Figure - illustrates such mechanism for
the pyrimidine nucleobases, thymine, uracil, and cytosine, although the basics also hold true for
the purine systems, adenine and guanine (Merchán et al. ; Serrano-Andrés et al. , ;
?). Further insight can be only obtained when reaction dynamic calculations are performed on
larger regions of the PEHs (see, for instance, Szymczak et al. ()).

The decay along the singlet manifold is not the only procedure for energy relaxation. Effi-
cient population of the triplet manifold can also take place, essentially through intersystem
crossing (ISC) processes taking place along the main decay process on (ππ∗ HL) or via photo-
sensitization from endogenous or exogenous species. Triplet states are frequent intermediates
in different types of photoinduced reactions. Both their usual diradical character and long
lifetimes make them reactive species prone to interact with other systems. Among the most
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important reactions involving triplet states, those related to DNA/RNA purine and pyrimidine
nucleobases have undoubtedly attracted more attention, in particular the photodimerization
of pyrimidine nucleobases, considered to be the most frequent DNA lesion taking place after
UV light irradiation. Through their triplet states, DNA/RNA nucleobases may not be as pho-
tostable as expected. As seen in > Fig. -, along the (ππ∗ HL) state, MEP is clear that two
singlet-triplet crossings (STC) are accessible, and therefore two ISC processesmay take place: at
. eV with the (nOπ∗) triplet state, (nOπ∗

/

ππ∗

)STC, and at . eV, further along the relax-
ation path and near the ethene-like CI with the ground state, directly with the lowest 

(ππ∗)
T triplet state, (ππ∗

/

ππ∗

)STC, a structure displaying the same type of screw-boat puckered
geometry with a stretched and twisted double bond C=C as at the (gs/ππ∗

)CI CI. Efficient
ISC requires both small singlet-triplet energy gaps and large spin-orbit coupling elements at
the regions of degeneracy. As compared to IC, taken place essentially in small zones where the
seam of CIs becomes accessible, the regions of the potential energy hypersurfaces for effective
ISC are more extensive.

> Figure - includes a scheme describing the population of T based on our CASPT
calculations, and three are the suggested competitive mechanisms from the initially populated
singlet state by means of STC processes:

√ ππ∗

→ (

nOπ∗

/

ππ∗

)STC → (

nOπ∗

/

ππ∗

)CI
√ nOπ∗

→ (

nOπ∗

/

ππ∗

)STC
√ ππ∗

→ (

ππ∗

/

ππ∗

)STC

Regarding the higher-energy ISC process, the 
(nOπ∗) triplet state can be populated from

(ππ∗) in the STC crossing region, in which a high SOC of  cm− has been computed favoring
the process. From such region, a MEP on the (nOπ∗) state leads directly to its energy mini-
mum, (nOπ∗

)min, placed at . eV adiabatically from the ground state. Basically degenerated,
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we have located a conical intersection connecting the triplet states (nOπ∗) and (ππ∗), facili-
tating the population switch toward the lowest (ππ∗) state. Another computed MEP on the
T hypersurface leads from (nOπ∗

/

ππ∗

)CI to the 
(ππ∗) state minimum. A second ISC

channel also relates with an nπ∗ state. In our results, as well as in previous theoretical stud-
ies, the presence of the low-lying (nOπ∗) state is confirmed, lying almost isoenergetic with the
lowest ethene-like (gs/ππ∗

)CI CI near . eV. The (nOπ∗) state may then be related to the
observed dark state in pyrimidine nucleobases in solution. Additionally, we have found that,
as both singlet and triplet ,(nOπ∗) states have almost parallel hypersurfaces because of the
typical small singlet-triplet splitting of nπ∗-type states, near degeneracy structures with the
lowest (ππ∗) state are equal to both states. Therefore, close to the (ππ∗

/

nOπ∗

)CI CI, we
have found a singlet-triplet crossing (ππ∗

/


(nOπ∗

)STC. The extremely large computed SOC
terms, ∼− cm−, guarantee also an efficient ISC process in the region, confirming this mecha-
nism as relevant for the overall process. In principle, in different environments such as in polar
solvents, it is expected that the nπ∗-type excited state will destabilize with respect to ππ∗-type
excited states. Despite those effects, both singlet and triplet nOπ∗-type states are estimated to
lie in the solvent below the 

(ππ∗ HL) state at the FC geometry, confirming the existence of the
STC crossing upon decay along the 

(ππ∗ HL) state. Finally, a third ISC channel directly con-
necting the lowest ππ∗ states is found at low energies with SOC values ranging – cm− . The
profile of the computed MEP in > Fig. - suggests that the lowest-energy ISC mechanism
may enhance its efficiency with respect to the other nucleobases resulting in larger quantum
yields because the region for the energy transfer near to the end of the MEP seems to be much
more extended.The presence of three basic ISC funnels in thymine (occurring also in uracil and
adenine but not in guanine and cytosine where the higher-energy nπ∗-mediated channels are
absent) successfully explains for the first time the wavelength dependence on the measured ISC
quantum yield (ϕISC) reported in thymine (uracil and adenine too) on the basis of the location
and accessibility of the two STC crossing regions upon the initial excitation conditions. In the
case of thymine, the ϕISC value increases from .× − at  nm (. eV) to .× − at
 nm (. eV). At low excitation energies, only the lowest-lying ISC computed to take place
close to . eV will be activated. At higher-energies, however, the channels near . eV will be
additionally activated, increasing the overall triplet formation yield.

From any of the STCorCI regions, the lowest triplet state is populated by any of the previous
ISC processes and reaches its minimum, as proved by the computed MEPs. The high reactiv-
ity attributed to this triplet state originates from its partial diradical character on C and C.
The minimum is placed at . eV, adiabatically from the ground state optimized minimum.
As a final aspect of the evolution along the triplet manifold in thymine, we have located the
singlet-triplet crossing connecting the (ππ∗) and the ground state, andmapped theMEP lead-
ing from such STC toward 

(ππ∗

)min. The crossing is placed at near . eV from the ground
state minimum, what means that there is a relatively small barrier of . eV (. kcal mol−)
to reach (gs/ππ∗

)STC from 
(ππ∗

)min. The computed electronic SOC is, however, somewhat
low, ∼ cm−, predicting for the triplet state a long lifetime and a slow relaxation, becoming
therefore prone to undergone reactivity (Merchán et al. ; Serrano-Pérez et al. b).

Practical Aspects

Reaction Paths: MEP Verses Other Approaches

Computing minimum energy paths (MEP) is an expensive procedure in which each point of
the MEP is obtained from individual optimizations. Special care is required in the selection
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of active spaces, which should be flexible enough and appropriate along the whole path, and
the radius of the hypersphere, which should be not too small or too large. When the steepest-
descendentMEP ends finding an energy barrier, for instance, as frequently in the minimum of
the state, other procedures should be employed. It must occur also that the calculation of the
MEP is too expensive. It is possible to continue using the MEP algorithm upward, that is, by
increasing the hypersphere radius increasing energy paths can be computed. Other procedure
is to search for a transition state (TS) along the path that represents the energy barrier. More
general strategies are normally required to map the full profile of the reaction linking two pre-
defined regions of the PEHs. One possibility is performing a relaxed scan, that is, varying by
specific amounts one internal coordinate which is expected to be the leading structural modifi-
cation along the path and, at each selected value, to perform a restricted geometry optimization
in which only such coordinate is frozen. Relaxed scans are extremely dangerous and should be
usedwith caution, because they often produce unconnected and useless paths.There is no guar-
antee that the lowest-energy value for each of the selected frozen-coordinate structures belongs
to a connected path. Inmany cases, the results will jump from one region of the PEH to another
along a profile that should represent a reaction path but does not at all. In general, the only rel-
atively safe case in which a relaxed path can be used is that leading to a dissociation of an atom,
because in this case the path has a descendent character while the bond length is increased.

Instead of a relaxed scan is preferable to make a linear interpolation in internal coordinates
(LIIC). This is a predefined path in which each structure is generated from the previous one
by adding linearly to each internal coordinate the geometrical change of the initial and final
structures divided by the number of steps.The advantage of this profile is that the points belong
to a connected path. The disadvantage is that it will most probably give rise to too high energy
barriers, although they will always be upper bounds of the actual barrier. For instance, in a
study of the photophysics of psoralen, it was determined that the MEP from the FC region led
the system to the minimum of the initially populated S 

(ππ∗) state. Psoralen is a strongly
emitting system, especially by phosphorescence (in a ratio / with respect to fluorescence).
Emission from the S (ππ∗) minimumexplains the fluorescence of the system, but, what about
phosphorescence? The population of the triplet manifold seems not to take place close to the
FC region, and no relevant STC crossing takes place soon along theMEP.Therefore, an effective
triplet formation has to take place by depopulating the singlet state minimum by an accessible
STC.The T (Tπ) state lies much lower in energy than the S (Sπ state, both vertically (∼. eV)
and adiabatically (∼. eV). Direct interaction between the singlet and triplet vertical excited
states is unlikely, and therefore another mechanism has to be found, involving most probably
population of higher-energy triplet states and subsequently internal conversion toward T. The
qualitative El-Sayed rules indicate that the spin-orbit coupling is large between states of ππ∗

and nπ∗ types and small between states of the same character. In addition, it is known that the
ISC process is enhanced in molecules with heavy atoms (the heavy-atom effect) because the
SOC terms increase. There are two necessary conditions to be fulfilled for an effective ISC to
take place: low energy gap and high spin-orbit coupling between a singlet and a triplet state.
Thus, the nonradiative decay to a triplet state should occur along the relaxation pathway of Sπ,
starting from the Franck–Condon region, and in close vicinities of a singlet-triplet crossing.
A LIIC profile was computed (see > Fig. -) from (Sπ)MIN to the minimum of the A′′,
(Sn)MIN, a path considered to be appropriate to find the singlet-triplet crossing, since both Sn
and Tn states share the same basic structure and energetics (see Serrano-Pérez et al. a). At
half of the path the Sπ and Tn


(nπ∗) states cross, and the SOC value is high enough ( cm−)

to guarantee an efficient ISC. A barrier of . eV, surely an upper bound, has to be overcome to
reach the Tn state.
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The geometry closer to the crossing point was used as initial geometry to initiate a search at
the CASSCF level for a singlet-triplet crossing (STC) between Sπ and Tn , that is, (Sπ/Tn)X . As
expected, the main change in geometry from the minimum of Sπ to the optimized structures of
Sn or Tn is related to the length of the C=O bond, much larger (∼. Å) than the ground state
value for the nπ∗ states. It is not surprising that the STC structure displays an intermediate
value of .Å. The SOC term in STC is computed as . cm−. As displayed in > Fig. -,
the barrier from (Sπ)MIN to (Sπ/Tn)X was computed . eV at the CASPT level. This is still
a large energy barrier; however, the crossing is now below the energy of the Sπ state at the FC
geometry, and therefore the system has enough excess energy to access the STC region and
make the ISC process to take place.

Once the Tn state is efficiently populated through a favorable ISCmechanism, it will quickly
evolve toward the nearby energy minimum, (Tn)MIN, placed . eV below (Sπ/Tn)X . At those
geometries, Tn is the second-energy excited triplet state and can be expected that the energy
follows a pathway for favorable internal conversion (IC) toward the low-lying Tπ state. Actu-
ally, a conical intersection has been found, (Tn/Tπ)CI, placed isoenergetic with (Tn)MIN. An
efficient IC will therefore take place transferring the population to Tπ, which will subsequently
evolve to its own minimum, (Tπ)MIN, from where phosphorescence (P) will take place. Addi-
tionally, the molecule may react with thymine or transfer its energy to the molecular oxygen
exerting the photosensitizing action. The family of furocoumarins (-MOP, -MOP, khellin,
TMP, and -CPS) was studied at the same grounds showing that all the compounds share the
samemechanism of population of Tπ. The differences in the values of the barriers (to reach the
crossing regions on the hypersurfaces), besides the values of SOC, are actually the key points in
considering the photosensitizing ability of each compound.

Afinal remark should be introduced.Considering that nπ∗ states tend to destabilize in polar
solvents, the (Tn)-mediated mechanism here proposed will surely decrease its importance in
polar media, remaining a plausible candidate for the efficient population of the low-lying Tπ

triplet state in the gas phase. Indeed, the relevance of out-of-plane displacements for the relax-
ation of the Sπ state has been emphasized recently at DFT/MRCI level of theory, together with
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the enhancement of the SOC terms between low-lying Sπ and Tπ states by vibronic coupling
effects involving out-of-plane modes, as an alternative mechanism for efficient ISC.

How to Compute Conical Intersections

There is hardly any good recipe tomake the calculation of CIs more efficient, in particular those
relating the ground and excited states that are usually the most relevant features for the photo-
chemistry of the systems. Experience orientates toward certain types of CIs common in organic
compounds, like the so-named ethane- or methanamine-like CIs, taking place by the stretch-
ing and twisting of C=C and N=C bonds, respectively, or situations of C=O stretching, in both
cases creating an almost diradical species. In many other cases, one has to let the computational
algorithm to find the right path. One initial approach is trying to find the minimum energy CI
(MECI), considered to be the most relevant for the photochemical process. Technically, it is
easier to look for MECIs, because one can simply search for the lowest-energy crossing point
fulfilling the nonadiabaticity rules. Calculation of nonadiabatic terms, the so-called branch-
ing space, is complex. Time-consuming projected-gradient or Barry’s phase algorithms have
to be used to guarantee the true CI nature. In practical cases, there are some implementations
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available at a high level of theory, like that at the MRCI level in the COLUMBUS code (see
Lischka et al. ).

In many cases, however, it is safe enough just to compute the minimum energy crossing
point (MECP), discarding the calculation of nonadiabatic coupling, because the obtained solu-
tion already defines the crossing region accurately enough. Even when the MECI (or MECP) is
found, nothing guarantees that this is going to be the relevant structure from the photochemical
viewpoint. It might happen that the MECI is placed in a region that it cannot be easily accessed
from the main energy decay paths of the molecule. Therefore, the accessibility of the region is
the key point making a CI (or a seam of CIs) relevant for the photochemistry.The next example
can properly illustrate this idea. In the samemanner as described for thymine, theMEP from the
FC region on the bright (ππ∗ HL) state was computed for guanine at the CASPT//CASSCF
(e−,MOs)/ANO-S C,N,O[spd]/H[sp] level of calculation (see > Fig. -, top), lead-
ing, through a barrierless path, to a crossing with the ground state at the end of the MEP.
Independently, a MECI search was carried out to find the lowest-energy CI (> Fig. -, bot-
tom, right), which provided a geometry somewhatdifferent from that obtained at the end of the
MEP. To solve the problem, a CASSCF path was computed along the seam of CIs (> Fig. -,
bottom). The points of this profile have been computed to belong to the seam, that is, both the
ground and the 

(ππ∗

) states are degenerated, and by successive optimizations in which the
radius of the hypersphere has been increased from the initial MECI structure. It is clear that
the MECI energy is lower than any other point of the seam, but also that a barrier separates
that structure from a CI which is higher in energy but accessible from the end of the MEP (the
actual source of the energy) and whose structure is quite similar to that of the end of the MEP
(> Fig. -, bottom, left). That CI is the relevant funnel for the photochemistry of guanine.

Other serious problems can be found when computing PEHs crossings, although it is as
general issue in quantum chemistry. Determination of molecular structures is one of the most
time-consuming steps in computational chemistry. It is therefore a typical strategy to use lower-
level methodologies to locate singular-point geometries (minima, transition states, conical
intersections…) and correct then the energetics by employing higher-level methods. Implicit
in this procedure is the problem of the differential correlation effects. We shall check this issue
in the case of the location of conical intersections (or any other hypersurface crossing). A usual
protocol employed for that purpose is namedCASPT//CASSCF,meaning that geometries have
been determined at the CASSCF level and, at those structures, the energies have been com-
puted at the CASPT level. CASSCF includes the static or long-range correlation effects and
provides wave functions which describe qualitatively the electronic states and form the ref-
erence for subsequent calculations. The remaining short-range correlation effects, dynamical
electron correlation, are included bymeans of a second-order perturbative treatment, CASPT.
Depending on the nature of the state, the effects of the static and dynamical correlation ener-
gies differ, affecting directly to the description of the hypersurface. > Figure - summarizes
what we have called the differential correlation effects on the location of surface crossing within
the CASPT//CASSCF protocol. It is important to recall that this problem is general in quan-
tum chemistry if two levels of theory are being used to compute geometries and energies, e.g.,
CCSD(T)//CCSD or MRCI//CASSCF.

Turning to our example, two main situations do actually occur. In cases where the PEHs
computed at the CASSCF and CASPT//CASSCF levels behave approximately parallel (Case
A), the CASSCF optimized geometries will be in general correct, despite they have been com-
puted at a lower level of theory. It means that the dynamical correlation contributions are quite
regular and similar for the two states in ample regions of the PEH. In these situations, two-step
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⊡ Fig. -
CASPT low-lying singlet states along theMEP from the FC region on the  (ππ∗ HL) state in guanine
(top) and seam of CIs (bottom) computed from the MECI structure (bottom, right) to the CI close to
the end of the MEP (bottom, left)

computational strategies like CASPT//CASSCF can be confidently applied. When dynamical
correlation ismarkedly different for the states considered and varies significantly along the PEH
of interest, geometry optimization has to be carried out at the highest correlated level (Case B).
Otherwise, the uneven contributions of dynamical correlation may lead to unphysical crossings
and interactions between the two electronic states.The crossing can be then placed at a different
geometry or it may never occur! Normally, states of ionic (in the valence-bound sense) nature
have larger amounts of dynamical correlation in contrast to covalent states, in which the static
correlation is able to recover large fractions of the total correlation energy. When both types
of states are involved in a crossing, it is clear that a CASSCF description will give an unbal-
anced picture of the hypersurfaces and, obviously, of the crossing, which can be recovered only
by inclusion of the dynamical correlation, with CASPT for instance, even in the searching of
states crossing. In difficult cases, it can be convenient to map a grid of CASPT points in the
region of the CASSCF CI to find the degeneracy at the highest level, or, if possible, to compute
the CI with CASPT, more specifically, with MS-CASPT, considering that CASPT provides
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Different effects of correlation within the CASPT//CASSCF protocol

non-orthogonal and therefore mixed solutions. This is a tricky issue that was studied recently
and requires careful consideration.

> Figure - displays the result of CASPT/MS-CASPT/ANO-L Li [sp]/F [spd]
calculations on the lowest-lying Σ+ states of the LiF molecule along its dissociation path (see
Serrano-Andrés and Merchán ). The lowest state has ionic and covalent character at short
and long distances, respectively, because the lowest dissociation channel leads to the ground
states of the neutral atoms, whereas the opposite occurs for the second state. At intermediate
distances, the lowest ionic and next covalent states interact and change their character smoothly
thanks to the multiconfigurational treatment. According to the non-crossing rule for states of
the same spin and spatial symmetry that holds true for diatomic molecules, the two curves
cannot become degenerate and instead an avoided crossing should take place. In the sample
calculations, the results of three different active spaces and two levels of calculation, CASPT
and MS-CASPT, have been displayed. In cases A and B, the CASPT curves (dotted lines)
incorrectly cross or touch. The reason is that in a single-state perturbation theory each root is
not orthogonal to the others.

Neglecting the state interaction leads to unphysical crossing situations. On the contrary,
the multistate treatment of MS-CASPT (solid lines) makes the two states to interact. The
corresponding orthogonal solutions display therefore a “correct” avoided crossing. In case A
the employed AS is the minimal one (one s orbital from Li and three p orbitals from F).
Although theMS-CASPT solution yields a formally correct avoided crossing, the state interac-
tion is overestimated, giving rise to a large energy splitting at too short distances (as compared
to higher-level MS-CASPT or MRCI calculations) because of the too large value of the off-
diagonal elements in the multistate effective Hamiltonian. A better treatment is obtained for
enlarged active spaces in B and, especially, C, in which the increased space allows for angular
correlation in the AS and the CASPT andMS-CASPT solutions match, undoubtedly because
the initial CASPT states were including most of the interaction effects. Unfortunately in most
cases the enlargement of the active space will not be possible. A good strategy is testing different
spaces to check the stability of the results. The right solution seems to be between the CASPT
and theMS-CASPT ones. In the worst case, the CASPT result is generally not so bad after all.
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> Table - compiles the results of CASPT andMS-CASPT calculations on the two low-
est singlet states of the Ch ethylene dimer using a cc-pVDZ basis set computed at the MECP
point upon the increase of the AS (see Serrano-Andrés andMerchán ). In order to provide
a proper multistate treatment, the off-diagonal elements of the effective Hamiltonian have to be
small and similar, otherwise the matrix symmetrization will be erroneous, whereas the energy
split undergone by the original states once diagonalized the matrix will be excessive. Indeed,
although the CASPT energy differences between the states remained always small (<. kcal
mol−), the splitting largely increases at theMS-CASPT level, especially when the off-diagonal
elements H and H most differ. It is only with the largest active space (angular σ − π cor-
relation has been included in the active space in this case, ,) that the elements become
smaller and the MS-CASPT reduces. Values close to  kcal mol− can be considered small
enough to identify such feature as a CI point within the accuracy of the method.What happens
when aCI search is performed blindly usingMS-CASPT solutions? Typically, it occurs that the
obtained solutions are too separated and, apparently, the closest-energy solutions correspond
to an avoided crossing. This is probably a wrong answer derived from that fact that the active
space is too small and the MS-CASPT method is overshooting the interaction of the CASPT
solutions. If it is not possible to increase the AS (may be MS-RASPT is a solution), it is better
trusting in the CASPT energies.
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⊡ Table -
ComputedMS-CASPT energies and off-diagonal Hamiltonianmatrix elements for theMECP point
of the Ag/Ag states in the Ch ethylene dimera

ΔECASPT −H −H −(H + H) ΔEMS−CASPT

Active spaces (kcal mol−) (kcal mol−) (kcal mol−) (kcal mol−) (kcal mol−)

,, e− . . . . .

,, e− . . . . .

,, e− . . . . .

,, e− . . . . .

,, e− . . . . .

aTheMS-CASPT calculations comprise two roots at the CASPT(,, e−) optimized Ag/
Ag MECP geometry

Setting the Path for Dynamics
Mapping the PEHs of the molecular systems is not but the initial stage of the calculations. Once
the topography of the hypersurfaces is obtained by solving the time-independent Schrödinger
equation, the evolution of the nuclei on that potential must be described. Studying the reaction
dynamics (RD) of the system implies considering time dependence and the statistical distribu-
tion on a sample of molecules. Several procedures can be followed, from the most expensive
approach, solving the time-dependent Schrödinger equation, typically along specific reaction
coordinates, to the semiclassical approaches, in which quantum-chemical information is used
to solve the classical Newton equations. When properly averaged, the obtained data yield, in
principle, predictive data for reaction rates, state lifetimes, and population distribution. Wewill
not discuss dynamical calculations here, but will simply try to emphasize that the quality of a
RD calculation, no matter how sophisticated, strongly relies on the quality of the underlying
quantum-chemical description of the PEHs.

In other words, the dynamics is always as good as the quantum chemistry employed to
describe the PEH. Expensive RD calculations tend to use analytical potentials fitted with
quantum-chemical parameters, a technique filled with problems. The other approach is known
as direct or “on the fly” reaction dynamics, meaning that the quantum-chemical information
is obtained at each of the points of a trajectory and passed to the RD step. The basic difficulty
stays: how good is the description of the PEHs and how this affects to the RD results?

In the study of thymine described above, it was found that when using lower levels of cal-
culation, for instance, a -G* basis set or a small active space, the CASSCF MEPs run in
wrong regions of the PEHs, something that only occurred in thymine and uracil, not in purine
bases. The MEP FC 

(ππ∗

) leads in this case to the high-energy planar minimum and not to
the low-lying CI with the ground state, an outcome obtained only when increasing the qual-
ity of the calculation by using ANO-type basis sets, larger active spaces or CASPT gradients.
It is obvious that the RD description will be strongly affected by the quality of the underlying
quantum-chemical description. As an illustration, > Fig. - includes two sample trajecto-
ries computed in the guanine molecule on the lowest-energy 

(ππ∗

) state starting near the
FC region. The calculations used a Verlet-type algorithm for the classical part (which gives the
solution of the equations of motion, i.e., how position, velocity, and acceleration change over
time) and CASSCF(,) or CASPT(,)/-G(d,p) quantum-chemical energies and gra-
dients computed “on the fly” at intervals of  fs. In this preliminary study, most of the computed
trajectories starting close to the FC region were shown to follow a similar path than the MEP,
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Sample CASSCF (left) and CASPT (right) semiclassical trajectories run on the lowest-energy (ππ∗)
state of guanine from the FC region

that is, leading to the region of CI with the ground state, and this is done in times close to  fs,
explaining the ultrafast lifetime measured for the molecule in molecular beams (see Serrano-
Andrés et al. ). From that point, the complications continuewith the selection of the surface
hopping algorithm for the population transfer, the diabatic description of the crossing regions,
the re-evaluation of the reaction step, etc. (see, just as one of the many examples the use of the
NEWTON-X reaction dynamics approach (Barbatti et al. )).

Photoinduced Reactions in Bimolecular Systems

The theoretical description of photoinduced bimolecular reactions requires specific strategies
and procedures that will be illustrated here with two examples. First, the cytosine dimer, which
forms an excimer in the ground state and it is also able to react yielding a photoadduct in the
ground state. Second, the energy transfer reaction between psoralen and molecular oxygen, in
which the lowest-energy triplet states are the protagonists.

An Application Example of Reactivity: Cytosine Dimer

One intriguing aspect of UV-irradiated DNA is the appearance of red-shifted long-lived emis-
sive states not found in base monomers, whereas the DNA absorption spectra closely resemble
that of the monomers.This phenomenon is called excimer fluorescence, reflecting the relevant
role assumed to be played by the corresponding excited dimer (excimer) of the biopolymer,
given the similarity between the emission from dinucleotides and polynucleotides (Eisinger
and Shulman ). Recent experimental results in the light of time- and wavelength-resolved
fluorescent techniques using  picoseconds (ps) excitation pulses make readily apparent the
longer-decay components and red-shifted emission that it was assumed to arise from excimer
formation. Because of the slow rate of energy relaxation, these long-lived states associated to
excimer-like states have been suggested as the precursors of the DNA photolesions, including
photodimers (Schreier et al. ).
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(a) The nonexcited molecule (or a set of molecules; notice that A and B can be both atoms or
molecules) is in a bound state; once excited, the molecules evolve to a dissociative state. (b) An
excimer is a combination of atoms (or molecules) such that it is bound only in the excited state,
and then it dissociates as soon as the system relaxes

Classically, an excimer (homodimer) or exciplex (heterodimer) is defined as a dimer sys-
tem which is bound in the excited state and dissociative in the ground state (see > Fig. -).
The existence of excimers between DNA nucleobases was proven theoretically by means of
CASPT(,)/ANO-S C,N,O [spd]/H [sp] calculations (see Olaso-González et al. ).
Potential energy curves (PECs) with respect to the intermolecular separation (R) of two cyto-
sine molecule kept at the ground-state geometries were built (see > Fig. -). The structure
allows for an effective and natural interaction of two cytosine molecules in the biologically rel-
evant cis-syn stereoisomer.The ground-state PEC is repulsive at the CASSCF level, whereas the
lowest singlet excited state is weakly bound. In contrast, at the CASPT level (see > Fig. -),
when dynamic correlation is taken into account, the ground-state S and the three lowest singlet
excited states (S, S, and S) have well defined minima with binding energies of a few tenths of
an eV.

The Basis Set Superposition Error (BSSE) is corrected by means of the counterpoise pro-
cedure, an important aspect that will be discussed later. In the figure energies are referred to
two ground-state cytosine molecules separated about  a.u. In the asymptotic limit, S and S
become degenerate, which is consistent with the fact that they are related to the equivalent situa-
tions C+C* andC*+C, whereC andC* stand for the ground-state cytosine and its lowest singlet
excited state, respectively. The absorption S → S calculated at  a.u. (. eV) corresponds to
the monomer absorption. On the other hand, the vertical emission from the minimum of S
is calculated at . eV, and it can be considered the source of emission observed in DNA or
oligomer samples. In particular, the fluorescence maximum was reported in aqueous solution
for the dimer d(C) and the -mer d(C) at . eV, considerably red-shifted as compared to
that of the monomer (. eV).

Since that theoretical determination, the existence of excimers in DNA and their role as
precursors for phenomena like the red-shifted DNA emission, charge transports in the DNA
strand, the formation of nucleobase photoadducts, and, in general, the control of the decay
dynamics of excited DNA has been determined both theoretically and experimentally. Crespo-
Hernández et al. (), for instance, have shown by using femtosecond transient absorption
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spectroscopy that excimers are formed in high yields in a variety of synthetic DNA oligonu-
cleotides and conclude that excited-state dynamics of A⋅T DNA is controlled by base stacking.
CASPT calculations explained also the dynamics of the adenine dimer by the presence of the
excimers.

As an illustration of bimolecular reactions, the formation of pyrimidine nucleobase adducts
in the excited state will be presented here (see Roca-Sanjuán et al. b; Serrano-Pérez
et al. d). Among the possible photoreactions that pyrimidine (Pyr) bases of nucleic acids
may undergo upon ultraviolet (UV) irradiation, cyclobutane thymine dimers (T<>T or CBT)
formed by intrastrand adjacent thymine bases (see > Fig. -) constitute one of the major
photoinduced lesions, particularly in cellular DNA, in spite of the direct reparation by a light-
activated mechanism (DNA photolyase) in which abnormal bonds are cleaved. Unrepaired or
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⊡ Fig. -
Photocycloaddition between two adjacent molecules of thymine is a particular class of peryciclic
[+] reaction allowed photochemically and not thermally. It is one of the most usual lesion on
DNA. In this picture, taken from a structure obtained in the Protein Data Bank and visualized by
Jmol program, the cyclobutane ring is highlighted

misrepaired thymine or cytosine dimers and the resultantmutations maywell lead to the devel-
opment of skin cancer. The major of Pyr<>Pyr photoproducts. The relatively smaller degree of
flexibility of A-DNA compared to B-DNA to achieve the right orientations that become prone
to react has been related to the greater resistance of A-DNA to Pyr<>Pyr formation.

Dimerization seems to occur only for thymine residues that are already in a reactive arrange-
ment at the instant of excitation because the rate of formation by favorably oriented thymine
pairs is much faster that the rate of orientation change. The dimerization reaction occurs both
in the singlet and triplet manifolds (see Bosca et al. ; Cadet et al. ). Focusing on the
singlet states, a CImust drive the ultrafast formation of the cycloadduct. > Figure - displays
an scheme of the energy levels of the cytosine dimer in its lowest-lying singlet states based on
CASPT(,)/ANO-S C,N,O[spd]/H[sp] results (BSSE corrected). The lines connecting
the different solutions represent the different evolution paths followed by the system.

Initially, upon absorption ofUV-light radiation in the . eV region, the system can undergo
two types of processes. Nearly unstacked pairs will localize its excitation in one of themonomers
and evolve in a ultrafast way toward the ground state via the CI of the monomer, located at
. eV. Other pairs will form an excimer through the stacking interaction of the π clouds of the
nucleobases, displaying much larger lifetimes, as it has been already determined experimen-
tally. The binding interaction in the excimer will depend on the conformational arrangement
of the nucleobase pair. Whereas the most common DNA confirmation, B-DNA, displays a very
small interaction, strongly overlap situations like the face-to-face parallel arrangement yields
the largest binding energy. The cytosine dimer has an excimer structure even lower than the
CI leading the system to the formation of the ground state photoadduct CBT. This peculiarity
and the presence of both S/S CIs, that of the monomer and the one related to CBT, almost
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Scheme based on CASPT calculations of the dimerization photochemistry of the cytosine dimer
after UV-light absorption

isoenergetic and therefore competitive, makes the yield of formation of CBT adducts much
smaller than in the case of the thymine dimer, where the CI of the adduct is the lowest and
easily accessible feature.

An Application Example of Energy Transfer: Psoralen + O

Photomedicine applies the principles of photobiology, photochemistry, and photophysics to
the diagnosis and therapy of diseases. One of the most active research areas in this field is
photodynamic therapy (PDT), in which the affected living tissue is treated with a combina-
tion of a photosensitizer, activated by UV light, and molecular oxygen in its ground triplet
state, Σ−

g . Oxygen is present in the cellular environment ready to transform into singlet oxygen
O (Δg), which is a strong electrophilic species that reacts with different compounds includ-
ing some components of the cellular membrane causing cell death by apoptosis. An energy
transfer (ET) process triggered by electronic coupling between a molecule in an excited state,
the donor (D*), and a molecule, the acceptor (A) or quencher within a collision complex,
is the mechanism through what the reaction takes place, a process that strongly depends on
the inter-fragment distance. In general, ET processes, at large separation between the moieties
(–Å or even larger), the electronic coupling arises from the Coulomb interaction between
electronic transitions that, under the dipole approximation, reduces to the known Förster’s
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dipole–dipole coupling. The process is actually a nonradiative transfer of energy occurring
whenever the emission spectrum of D overlaps with the absorption spectrum of A (although
no intermediate photon takes part on it). It is the electric field around D*, behaving like a field
generated by a classical oscillating dipole, the cause of the excitation of A. At larger separa-
tions than Förster’s, fluorescence resonance ET (with photon emission by D* and subsequent
absorption byA) becomesmore efficient than excitation ET. At shorter interfragmentdistances,
however, the so-called Dexter exchange coupling predominates, arising from the exchange inte-
grals that account for the indistinguishability of the electrons in many-electron wave functions.
This factor decreases steeply with separation. If the interaction is assumed weak and overlap
betweenD* and A wave functions is produced, Fermi’s Golden Rule for coupled transitions can
be applied. Such processes have been studied theoretically in depth in recent years, in particular
for singlet–singlet ET processes implying an exchange of electrons of the same spin but differ-
ent energies, that is, the spin state of each fragment is conserved. In PDT, the actual mechanism
is, on the other hand, an intermolecular triplet-triplet energy transfer (TET), that is, a pro-
cess of exchanging both spin and energy between a pair or molecules or molecular fragments.
These reactions are commonly used to efficiently populate the triplet states of many organic
molecules.

TET processes can be therefore understood as two simultaneous ETs with spin exchange
between the interacting fragments and it is similar to the Dexter coupling for singlet-singlet
ET, in particular because, as it depends on an electron exchange mechanism, it only takes place
at short donor-acceptor distances (< Å). In TET the Förster’s mechanism will not contribute,
because at short distances the dipole approximation breaks down and because the transitions
are dipole forbidden. The electronic coupling is not the only key factor that determines the
efficiency of the ET process, but also the resonance condition, that is, the energy available in
the donor must be at least equal or higher than that required to populate the excited state of
the acceptor. If this is the case, the process is usually controlled by diffusion and described as
exothermic. In the opposite situation, that is, if the energy of the acceptor is lower than that of
the donor, the process becomes thermally activated and lies in the endothermic region. That
means that there is an energy barrier whose height will depend on the nature of the acceptor,
either classical (for rigid systems) or nonclassical (flexible systems whichmight find conforma-
tions for efficient, non-vertical TET), with a corresponding larger or smaller, respectively, decay
in the process rate.

Besides the reaction with DNA nucleobases, psoralen can also interact with molecular oxy-
gen to exert its photosensitizing action. Singlet oxygen and other reactive species of oxygen
induce photooxidation of lipids and are considered responsible for cell membrane damaging
effects, causing also the appearance of erythema and pigmentation activity in the human skin.
In particular, the TET process taking place between psoralen andmolecular oxygen is (see also
> Fig. -):

Pso∗(T) +
 O(

Σ−

g ) →
 Pso(S) + O∗

 (
Δg), (.)

where activated psoralen behaves as a donor in its lowest triplet state, and triplet ground-state
oxygen is the acceptor. The lowest excited singlet state of molecular oxygen (Δg) is located at
. eV. Furocoumarins (psoralen, -MOP, -MOP, khellin, TMP, and -CPS) have their lowest-
lying triplet T state energy at least . eV higher than the oxygen singlet state, what makes the
TET exothermic and diffusion-controlled, with molecular oxygen behaving as a rigid, classical
acceptor.
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⊡ Fig. -
Scheme of the oxygen-dependent PUVA mechanism

⊡ Fig. -
Psoralen-O supermolecule. The molecular oxygen was placed parallel to the reactive pyrone
double bond of psoralen

A recent study (see Serrano-Pérez et al. ) performed employing the CASPT/ANO-
LC,O[spd]/H[sp] methodology estimated the electronic coupling at some specific dis-
position of the moieties (psoralen and O). Looking for an appropriate arrangement yielding
the most effective TET process is nontrivial and, in general, not even relevant, in particular
in diffusion-controlled systems which may form a collision complex at short distances. It is
important, however, to estimate reaction rates and lifetimes at different intermolecular dis-
tances. Furthermore, M−O interaction potentials are very weak, and the potential surfaces
are generally characterized by multiple shallow minima. Hence, it is necessary to consider dif-
ferent orientations when approaching M and O through a basic interfragment coordinate,
here the distance R. Previous studies on systems composed by two ethylene molecules (Et–Et),
by the methaniminium cation and ethylene (MetN+–Et), and by ethylene and molecular oxy-
gen (Et–O), show that the face-to-face (FF) arrangement is the most appropriate orientation
(see > Fig. -).

The geometries of both psoralen and molecular oxygen were kept fixed at the CASSCF
optimized triplet excited (T) state structure and the triplet ground (Σ−

g ) state experimental
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Potential energy curves of the low-lying excited states of the supermolecule psoralen-molecular
oxygen along the interfragment distance (R). The energy coupling H′ is obtained as half of the
energy difference ∣ε

∞

− εi ∣ between the initial A (T of psoralen and Σ−g of O) and final A (S of
psoralenand Δg ofO) statesof thesupermoleculeat infinitedistance (ε

∞

, zero couplingsituation)
and at each of the distances (εi)

geometry, respectively. The active space employed was  electrons/ orbitals (/ located in
the furocoumarin and / located in O). The active space was validated after comparing the
results with previous findings in the isolated psoralen and control calculations on the oxygen
molecule with larger active spaces and basis sets. The four lowest singlet states and the three
lowest triplet states of the supermolecule were computed. The molecule behaves as a donor in
its triplet state, and it is capable to transfer its energy to molecular oxygen in its triplet ground
state to generate the singlet ground state furocoumarin and excited singlet oxygen (Δg). The
energy of the triplet state of the furocoumarin is much higher than the energy of the oxy-
gen Δg state (computed . eV, experimental . eV), and the process falls clearly into the
exothermic regime, expected to be controlled by diffusion. > Figure - displays the potential
energy curves of the lowest-lying singlet and triplet states of the supermolecule psoralen-O in
a FF arrangement with respect to the C=C bond of the pyrone ring (the reactive bond in the
triplet state, where the spin density is basically located at different intermolecular distances).
The states of the supermolecule protagonist of the TET are A (T of psoralen + Σ−

g of O), as
initial energy level, and A (S of psoralen + Δg of O), as the final outcome of the process in
which bothmoieties have changed spin and energy.Within the present approach, the electronic
coupling (H′) is obtained as half the difference ∣ε

∞
− εi ∣, where ε∞ and εi are the energy gaps

between the states A and A at infinite distance (at Å in the current computation) and
at the different interfragment distances, respectively. In this way, the coupling represents the
perturbation introduced in each state due to the interaction within the dimer. It is important
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to notice how advantageous that definition is, because the results are in practice independent
of the number of states considered. Notice that the BSSE problem does not affect the results of
the coupling, which uses energy differences between states computed at the same geometry. As
a result, the BSSE correction vanishes when the energy gap is computed. In other cases, known
as non-vertical TET systems, the geometry of the acceptor can be distorted to better accept the
photosensitization from the donor. In such situations, the search for regions of state degeneracy
with enhanced effectiveness for the ET transfer may be convenient. This is not the case for the
present example, in which the acceptor is a rigid oxygen molecule and the process is basically
diffusion controlled.

> Table - compiles the values of the electronic coupling computed at the different inter-
nuclear distances, related with the ET rates and lifetimes. In the weak coupling regime in which
the electronic interaction is smaller than the vibrational reorganization energy, the rate for
triplet–triplet energy transfer (kTET), and the corresponding lifetime (τTET), between the donor
and the acceptor can be estimated using Fermi’s Golden Rule:

kTET =


τTET
=

π

h
∣⟨ψi ∣Ĥ∣ψj⟩∣

ρE =
π

h
(H′

)

ρE , (.)

where the matrix element of the Hamiltonian, H′, is the electronic part of the energy transfer
(i.e., the electronic coupling) and ρE is the density of vibrational states in the initial and final
states and their spectral overlap. The inverse of the rate is the lifetime of energy transfer. To
obtain the TET rates, we have taken values of ρE =  eV− and (π

/h) = .×  eV− s−.
This order of magnitude for the value of the density of states was used previously as a good
estimation in systems of this size.

The whole process of generation of singlet oxygen from psoralen does not only depend on
the efficiency of the TET from the triplet state of the photosensitizer, but also on the rate of
formation of the triplet state itself. As shown previously, in psoralen the crucial step to popu-
late the triplet manifold in the gas phase is the intersystem crossing (ISC) process between the
initially populated singlet Sπ (ππ∗) state and the lowest-lying triplet Tn (nπ∗) state.The latter
state evolves subsequently toward the lowest triplet T (ππ∗) state via a corresponding (and
essentially barrierless and ultrafast) internal conversion (IC).

In a similar manner as for > Eq. ., the estimation of the rate constant, here for
nonradiative ISC (kISC), can be obtained as:

kISC =
π

h
∣HSO∣

ρE , (.)

⊡ Table -
ET analysis of Psoralen-O system along the distance between the two moieties

R/Å H′ /eV kTET/s− τTET/s
. . − −

. . .× .×−

. . .× .×−

. . .× .×−

. . .× .×−

. . .× .×−

. . .× .×−
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where HSO stands for the spin-orbit coupling terms for the nonradiative transition Sπ (ππ∗)
→ Tn (nπ∗). An estimated value of  eV− will be employed for ρE as used for psoralen in
studies explicitly computing vibronic factors.

The ISCnonradiative process corresponds to the transfer Sπ (ππ∗)→Tn (nπ∗) in each furo-
coumarin donor, a process which will take place more efficiently in the region of the (Sπ/Tn)STC
singlet-triplet crossing, and that subsequently will give rise to an ultrafast population of the
lowest Tπ (ππ∗) by internal conversion in the triplet manifold. The spin-orbit coupling factors
near the crossing point between Sπ and Tn , along the LIIC performed in a previous study, is
. cm− (see > Fig. -). As a result, the kISC rate computed was .×  s− . Additionally,
to the HSO strength, the presence of energy barriers in the potential energy hypersurfaces may
strongly affect the value of the rate constants, which can be corrected using the Arrhenius expo-
nential term in the framework of the transition state theory. As a qualitative estimation of these
effects, a corrected ISC rate (k′ISC) can be obtained from:

k′ISC = kISCe
−ΔE/RT , (.)

where kISC is that computed from > Eq. ., ΔE is the energy of the barrier from the initial
electronic singlet to the triplet state, R is the ideal gas constant, and T the temperature ( K).
In this particular context, ΔE will be estimated as the energy difference between the singlet Sπ

(ππ∗) state, populated at the Franck–Condon geometry, and the triplet Tn (nπ∗) state in the
computed crossing point with the singlet state (Sπ/Tn)X , considering that the energy obtained
initially to populate Sπ will be available, at least, to surmount the barrier and populate Tn .

In a previous section, we considered as a barrier the energy difference between the mini-
mumof the Sπ state and the crossing point (Sπ/Tn)X , which is . eV, but the present approach
accounts for the excess vibrational energy available in the system from the initially populated
Sπ state (at the Franck–Condon geometry) to the crossing point (. eV), which seems to be
more relevant in this context, where the interest focuses on rate constants. The results were
.×  s− and . ns for k′ISC and τ′ISC, respectively.

Within this methodology, we can compute the photosensitizing effectiveness, regarding the
generation of singlet oxygen, of other furocoumarins and other photosensitizers in general,
analyzing the effectiveness of populating Tπ as well. Since molecules (donors) that share the
same basic structure are known to possess almost the same electronic coupling (against a com-
mon acceptor), the first part of this study may well be more interesting if different families of
compounds are compared. On the contrary, we should rely on the different way to populate the
lowest-lying triplet excited state. In studies performed on the family of furocoumarins (pso-
ralen, -MOP, -MOP, khellin, TMP, and -CPS), the latter, -carbethoxypsoralen, was found
with the largest ISC rate.

Practical Aspects

The Basis Set Superposition Error (BSSE) for Excited States

The use of finite basis sets derives in a specific defect of the quantum-chemical calculation
known as the Basis Set Superposition Error (BSSE). The majority of the contribution to the
energy of a system comes from the internal electrons. If the basis set of an atom is deficient
in the core region, a molecular method recovers a large amount of energy correcting this defi-
cient area with the basis set of the other atoms.The BSSE is therefore related with the improper
inclusion of the correlation energy in a quantum-chemical calculation. Although present in all
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⊡ Fig. -
CASPT (,) potential energy curves built with respect the distance cytosine–cytosine arranged
in a face-to-face way without the inclusion of the CP correction for BSSE

practical cases, as BSSE strongly depends on the separation between the different centers, its
effects only become crucial in dimers and aggregates, that is, when energies at large internu-
clear distances are compared to those at short distances. In general, the result of ignoring BSSE
is both a shortening of bond lengths and an increasing of bond energies because the net effect
is an increase of the energy in absolute value.This error is a purely mathematical artifact owing
to the fact that the supermolecule possesses a larger basis set than the isolated monomers and
as a result the potential energy surface is altered. There are some methods to correct this error
like the counterpoise (CP) or the Chemical Hamiltonian Approach (CHA) procedures.

In the previous study on the formation of the excimer of the cytosine dimer, the correction
of the BSSE effect was necessary. > Figure - displays the same PECs as in > Fig. -, but
excluding the BSSE correction. All states seem now to be bound, including the ground state,
and compared to the BSSE-corrected results, the vertical emission takes place at . eV instead
of . eV. > Table - collects the numerical results on the system.

The CASPT ground-state binding energy in the uncorrected result is substantial, . eV,
but the system becomes unbound by −. eV when the BSSE is included, that is, the ground
state dimer at .Å is . eV above the sum of two ground-state monomers. The CP-BSSE
corrections seem to be large. With inclusion of the BSSE, both S and S are bound (CP − Eb is
positive). Because of the cancelation of BSSE corrections, the vertical emission remains like the
direct CASPT result once that the BSSE has been taken into account.

The corrected minimum for S is obtained at R = .Å, with a vertical emission of . eV
and a binding energy CP-Eb of . eV. Thus, our best estimate has a difference of . eV with
respect to the emissionmaximumdatum obtained experimentally. It is worth recalling that the
computed vertical transition does not have experimental counterpart, and for a truly correct
comparison with experiment, vibrational resolution of the band should be computed in order
to determine the band maximum (> Table -).

The CP procedure has been followed here to take into account the BSSE, a strategy that is
known to slightly overestimate the effect. The method corrects the energy at each geometry by
subtracting from the full energy of the supermolecule twice the difference between the energy
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⊡ Table -
Binding energies (Eb), basis set superposition error (BSSE) obtained through the counterpoise
method (CP-BSSE), and the corrected binding energy (CP-Eb), computed at the CASPT level

State Geometry R Eb CP-BSSE CP-Eb
S S . . . −.

Sa S . . . .

S S . . . −.

S S . . . .

aThe CASPT vertical emission (fluorescence), including the CP-BSSE correction leads to . eV, as the result of
(. eV – . eV – . eV)

of the fragment using its own basis set and the energy of the fragment using the full basis,
but placing the basis functions of the opposite fragment in ghost centers, that is, at the same
position as the atoms but with no atoms on them. This subtracted energy is what is known as
the BSSE in the CP correction procedure. Obviously the error will decrease when the distance
between the fragments decreases, therefore at large internuclear distances the BSSE vanishes.
The uncorrected binding energies will then be larger than they should because they are com-
puted as differences between the energy of the minimum of the supermolecule (with large and
stabilizing BSSE effects) and the summed energy of the independent fragments (with no BSSE).
The CP method was developed for ground states, and it can be directly extended to excited
states only in those cases in which the excitation is clearly localized in one of the fragments.
For delocalized situations, it is not possible to define a consistent procedure. As observed in
> Table -, however, BSSE values are the same for ground and excited states at a common
geometry, for instance here, . eV both for the S and S states at the S geometry. This is a
systematic behavior, in particular for methods like CASPT, in which a previous common set
of State-Average MOs has been used for both states. Therefore, it can be concluded that it is
safe to assign the same BSSE correction for ground and excited states at the same geometry,
considering also that the inter-fragment distance is the most important parameter to modulate
the extent of the BSSE. Let’s finally add that ANO basis sets, large and flexible, produce larger
BSSE effects than lower quality basis sets.

Computation of Electronic Couplings

The calculation of the electronic coupling matrix element H′ is the crucial part in the deter-
mination of ET rates and lifetimes. The extent of the coupling controls the energy transfer
process, specifically the passage from one state to another, and it can be taken as a measure
of the efficiency of the ET process. Different procedures to estimate the ET coupling have been
developed based ondiabatic localized dimer calculations,monomer transitiondensities or tran-
sition dipolemoments, and a supermolecule ansatz of the dimer, whereas generalization of such
approaches to determine TET couplings are also available. From all procedures, an energy gap
based method such as the supermolecule dimer approach, in which the value of the coupling is
obtained as half of the splitting or perturbation between the interacting states, has been shown
to be convenient and accurate, and it will be valid in the weak regime where the interaction is
not strong. It is clear that its accuracy strongly relies on the quality of the quantum-chemical
method used to perform the electronic structure calculations, something guaranteed by the
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highly reliable and accurate CASPT method. It has also the additional advantage that their
results are not affected by the BSSE because they are obtained as energy differences at the
different internuclear distances.

Conclusions

Quantum Mechanics helps in explaining natural phenomena from theoretical physics (parti-
cles, strings) and theoretical chemistry (chemical reactions, intermolecular forces) to the most
complex theoretical biology.The complexity level increases as the simplicity of models decrease
due to the growing number of variables to be dealt with and the difficulty in simulating the
environment. The challenge lies in the ascertainment that life takes place into hierarchically
structuredmatter (macromolecules, cells, tissues, organs, and entities), and it requires the action
of several physical properties of its constituent elements on the whole: the interactions among
them and with the environment.

Interaction of light with tissues or, in general, living or nonliving entities is a complex phe-
nomenon which lies on the borders among physics, chemistry, and biology. Specifically, the
quantum chemistry of the excited state has experienced an outstanding development in the last
decades. Improved algorithms and computational strategies, and obviously faster computers,
have contributed to increasing the accuracy of the theoretical description of the photochem-
ical phenomena. Although quantitative determinations in realistic biological systems are still
far into the future, medium-size systems and their processes are already at reach of quantum-
chemical models. Even more, state-of-the-art experimental techniques, such those related to
femtosecond lasers, cannot be properly interpreted without the support of accurate calcula-
tions, in a way that a constructive interplay between theory and experiment shows particularly
rewarding.

We are witnesses of how the walls which blocked our understanding of photochemical and
photophysical processes are being slowly demolished. Step by step larger systems and more
complex processes can be studied with accuracy. In fact, it has been theory which has provided
modern photochemistry with the proper framework formed by the potential energy hypersur-
faces, their interaction through conical intersections and states coupling, and the molecular
evolution along such potentials. Unfortunately there are not many methods able to compute
properly excited states, and the available ones are complex and sometimes of limited applica-
bility. Multiconfigurational approaches (MRCI, MRPT, and MRCC) give the most general and
unbiased description of all types of excitations and situations, either valence, Rydberg or anionic
states, bound and dissociated situations, involving open and closed-shell ground states. Among
the available approaches, the CASPT method has proved to better balance applicability and
accuracy at a relatively low computational cost, although new developments and refinements
are soon to come, like RASPT. Single configurational methods (CC, TDDFT, CIS…) must be
used with caution because they do not give a balanced treatment of all situations in excited-
state chemistry, for instance, for degenerate cases like conical intersections. Apart from having
proper methods, theymust be provided with the required tools, like geometry optimizers, algo-
rithms to search for conical intersections, to compute state couplings or trajectories for the
nuclei. One-electron basis sets must be also selected with caution. The simultaneous calcula-
tion of valence and Rydberg states is necessary in those regions where both types of states are
present, and properly solving valence-Rydberg mixing requires specific strategies.The calcula-
tion of anionic excited states requires their own cautions, such as checking the convergence of
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the resonance solutions by means of different stabilization methods. On the other hand, when
dealing with finite one-electron functions and comparing fragment energies with bonded situ-
ations, the problem of BSSE arises. In such a situation, the BSSE corrections may well be very
important and the phenomenon should be taken into account.

In summary, the excited state quantum chemistry cannot be undertaken routinely because
of its complexity. Some of the tools available for the ground state are not even developed yet for
the excited state. In order to get accurate and predictive results, one has to calibrate carefully
the computational procedure and determine the requirements in each situation. In this manner,
an accuracy of .–. eV is currently expected for the excitation energies, almost an order of
magnitude larger than previously. Undoubtedly, the development and refinement of quantum-
chemical methods (the software) and computers (the hardware) are making easier the study
of the interaction radiation-matter, a still unfinished task with fascinating challenges in the
foreseeable future.
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Abstract: The properties of a molecule may change quite substantially when passing from
the isolated state to a solution, and computational chemistry requires the possibility of taking
into account the effects of a solvent on molecular properties. These changes are mainly due to
long range interactions, and electrostatics involving a large number of solvent molecules play
the major role in the phenomenon and free energy changes have to be evaluated. Statistical cal-
culations by means of usual Monte Carlo or molecular dynamics coupled with a full quantum
chemical description of a sample representative of the solution is still out of reach for stan-
dard molecular modeling computations nowadays. Nevertheless, several simplified approaches
are available to evaluate the free energy changes which appear when an isolated molecule, as
described by standard quantum computations, undergoes the influence of a solvent and to pre-
dict the changes in the molecular properties which are the consequences of solvation. In this
chapter, we develop the principles of the most usual methods that a computational chemist can
find in standard codes or can implement more or less easily to approach the solvent effects in
quantum chemistry investigations.

Introduction: Importance of Solvent Effects in Chemistry

Most of the chemical reactions as well as experimental structure determinations are performed
in solutions. On the contrary, usual quantum chemical computations usually deal with isolated
chemical species.Thismay lead to erroneous conclusions. For instance, the addition of bromine
to an ethylenic hydrocarbon is known for having a different mechanism in the gas phase and
in solution. In this example, the velocity constant vary by a factor of  when going from
carbon tetrachloride towater as a solvent (Reichardt ), although themechanism is the same.
These features are confirmed by appropriate quantum chemical computations which show that
the transition state of ethylene-bromine would be dissymmetric and  kcal/mol above the van
der Waals complex in the case of the isolated species (Yamabe et al. ), while with a simple
simulation of the solvent effect one finds a symmetric transition state lying . kcal/mol above
the van der Waals complex in a non dipolar solvent and . kcal/mol in water (Assfeld ).

A full quantum mechanical treatment of a sample containing the solute and a number of
solvent molecules large enough to simulate the solution is still out of reach of usual quantum
chemical computations not only because the system of interest should be pretty large but also
because the free energy computations would require a statistical treatment on millions of con-
figurations of this system. One is therefore led, in general, to use model systems, simplified
expressions of interatomic interactions allowing either statistical simulations or the derivation
of molecular distribution functions or some semi-empirical approaches. In this vade mecum,
we summarized different ways of modeling solvent effects in quantum chemistry.This includes
the supermolecule model, the continuum and semi-macroscopic models, the full quantum
description of liquids, the QM/MMmethods (see > Fig. -), and the use of analytical molec-
ular distribution functions (Hirata ). All these approaches have their limits, and one is led
to choose one or the other according to the kind of problem being addressed.

The Supermolecule Model

In some cases, in particular that of aqueous solutions, the specific interactions may be modeled
bymeans of a supermoleculemade of an aggregate of the solute and a limited number of solvent
molecules treated as an isolated single molecular system at the desired quantum chemical level.
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a isolated molecule b supermolecule

c continuum model d fully solvated molecule in
a periodic box

⊡ Fig. -
The different approaches formodeling a solutemolecule in a solvent. From top left to bottom right:
(a) the isolatedmolecule (gas phase); (b) the supermolecule (solute with a few solvent molecules);
(c) the continuum approach (the molecule is inserted in a cavity surrounded by a dielectric con-
tinuum); (d) the fully solvated system (the solute is inserted in a periodic box filled with solvent
molecules)

This approach may give useful information on strong intermolecular interactions (Catak et al.
; Harb et al. ) but cannot model correctly the effect of the solvent because the long-
range electrostatic interactions, which play an important role in a liquid (Buckingham ,
), are not taken into account. An efficient way to model these long-range electrostatic
interactions is to use a continuum model.

ContinuumModels

These models are by far the most widely used in current computational chemistry nowadays,
and several review articles give an overview of them (Rivail and Rinaldi ; Tomasi ;
Tomasi et al. ). They are based upon the consideration of the solvent as a continuous
medium characterized by its macroscopic properties: bulk dielectric permittivity, possibly sur-
face tension. The solute is assumed to occupy a cavity surrounded by this continuum. The free
energy of interaction between this molecule and its surrounding may be analyzed as the sum
of three contributions:

• The free energy variation of the system when the cavity is created in the bulk of the liquid.
This can be considered as an increase of its free area and is a positive free energy variation.
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• The dispersion-repulsion energy arising between a polarizable solute and the solvent
molecules of finite size, which is always a negative contribution.

• The electrostatic free energy arising from the polarization of the solvent by the charge dis-
tribution of the solute. The result of this polarization is a non zero electrostatic potential
within the cavity which perturbs the charge distribution of the solute, leading to changes in
the solute’s structure, compared with the isolated molecule (Luque et al. ).

The earlier attempt to approach the electrostatic contribution to the free energy of solvation
is due to Kirkwood (). This model is based on a multipole expansion of the charge distri-
bution of the solute at the center of a spherical cavity surrounded by a continuum represented
by the dielectric permittivity of the solvent. When this expansion is limited to rank  which
corresponds to a pure dipole μ, one finds the Onsager model (Onsager ) in which the elec-
trostatic contribution to the free energy of solvation by a solvent of dielectric constant ε of a
molecule having a dipole moment μ in a cavity of radius a takes the expression:

ΔG = −


a
(ε − )
ε + 

μ. (.)

Onsager has shown, in the case of a pure liquid made of dipolar, polarizable molecules, that
the dielectric constant of the liquid is fairly well predicted when the volume of the cavity is
equal to the apparent molecular volume in the liquid. This finding gives a hint to the estimate
of the volume of the cavity which is a parameter in the Kirkwood model. In the case of a non
neutral solute, the charge q corresponds to the multipole of rank  and the corresponding term
in the multipole expansion is the well-known Born formula (Born ) giving the free energy
of solvation of charged solutes:

ΔG = −

a
ε − 
ε

q. (.)

This approach which has the advantage of giving an analytical formula of the free energy of sol-
vation has been extended to ellipsoidal (Rinaldi and Rivail ) and spheroidal cavities (Rivail
and Terryn ) and has been applied long ago to quantum chemical computations, at various
levels of approximation (Rinaldi et al. ). As the perturbation to the wavefunction depends
on the charge distribution of the solute which is defined by the wavefunction to be computed,
the computational scheme requires self consistency combined with the usual self consistent
computational algorithms for quantum chemistry. This is frequently referred as the Self Con-
sistent Reaction Field (SCRF) where the solute is polarized by the solvent which is, in return,
polarized by the solute.Nowadays, this model has been extended to cavities of any shape using a
multicentric multipole expansion on all the atoms of the solute (Rinaldi et al. ). In all these
approaches, the first and second derivatives of energy are computed allowing a full geometry
optimization and the determination of the stationary points in the potential energy surface and
the computation of the harmonic vibrational frequencies (Rinaldi et al. ).

A closely related approach, using the same kind of molecular cavity has been developed by
Tomasi et al. (). In this model, the multipole expansion is replaced by a numerical compu-
tation of the electrostatic potential inside the cavity, due to the polarization of the boundary by
the solute.This model also has been improved along the years. It has various versions all known
under the acronym of PCM (Cancès et al. ) which are implemented in the Gaussian suites
of programs, and a closely related model is available in the Jaguar package (Marten et al. ;
Tannor et al. ).
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Rather, different approaches are based on the so-called generalized Bornmodel inwhich the
charge distribution of the solute is represented by point charges on all atoms and the solute–
solvent interaction is defined by a sum of the Born contributions of each atom in which the
reciprocal of the sphere radius in > Eq. . is replaced by a parameterized empirical formula.
The most elaborated applications of this model is found in the series of SMx models of Cramer
and Truhlar (x =  to  nowadays, corresponding to successive improvements) (Cramer and
Truhlar , ).

Finally, to simplify the electrostatic algorithm somemethods start with a dielectric permit-
tivity ε = ∞ corresponding to a conductor like solvent and then correct the result either by the
ratio (ε− )/(ε+ )of the Onsager factor of the actual dielectric permittivity of the solvent to
the limiting value when ε = ∞, or by the ratio of the Born factors: (ε−)/ε. It is noteworthy that
the difference may not be negligible for low dielectric constants. This approximation has first
been introduced in the COSMO model (Klamt and Schüürmann ). A version of the PCM
model, known as C-PCM (Barone and Cossi ) uses the same approximation to evaluate the
electrostatic solvation term.

The importance of any kind of solvents, including the non polar ones has to be emphasized
because some people claim that the properties in a non polar solvent should be close to the gas
state.The experimental results mentioned in (Reichardt ) show that it is not true, and this
can also be seen in the case of the Born or Onsager models. If one considers a solvent such as
cyclohexane with a dielectric permittivity close to , one sees that the electrostatic free energy of
solvation is for the former and the latter model respectively % and % of the limiting value
at infinite permittivity. Similarly, one also notices that for high dielectric permittivities, these
terms do not vary noticeably when this constant varies, justifying the COSMO-type models in
particular in the case of water and highly polar solvents.

The quantitative use of continuummodels requires care.The absolute values of free energies
of solvation depend onmany parameters.The electrostatic contribution mainly depends on the
shape and volume of the cavity. The most widely used shapes are defined by the “molecular
surface” (Pascual-Ahuir and Silla ; Silla et al. ) defined after the atomic radii (Bondi
) multiplied by a factor of the order of .. A test for the choice of this parameter can be
the comparison of the volume of the cavity with the apparent molecular volume of the solute
(when known) in the liquid state or in the solution like in the Onsager’s theory of the dielectric
permittivity of pure polar liquids.

The non electrostatic contributions are far more difficult to model. Usually, they are eval-
uated by empirical formulae which, in the most favorable cases, introduce some error bars.
The models parameterized on a large number of experimental data, such as SM (Cramer and
Truhlar , ), are probably rather reliable although one may deal with a case which is
an exception. Conversely, variations of solvation energy for systems in which the non electro-
static terms are assumed not to vary significantly, such as conformational equilibria, may be
approached rather safely by means of these computational efficient models.

The Full Quantum Approaches of Liquids

A reliable computation of free energies in a molecular system requires the use of statistical
mechanics on a sample which can be considered as macroscopically representative. In the case
of solutions, this requires more than one hundred solvent molecules and the computation of
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an enormous number of different configurations. Full quantum chemical studies are now pos-
sible thanks to some specific algorithms but they are still lengthy. An efficient approach uses a
standard semi-empirical code, reparameterized to account properly for intermolecular energies
(Bernal-Uruchurtu and Ruiz-López ; Bernal-Uruchurtu et al. ), coupled with a linear
scaling divide and conquer algorithm (Dixon and Merz , ), which allows the simula-
tion of a set of  water molecules in a quite affordable computer time (Monard et al. ).
The use of fast DFTmethods can now replace the semi-empirical ones (Hu et al. ) and one
may anticipate that in the near future, the theoretical and algorithmic improvements will make
possible the use of non empirical treatments. The use of plane wave basis sets (Todorova et al.
; VandeVondele et al. ) is another attempt to improve the efficiency of the codes.

In contrast with the previous approaches in which the energy and the forces calculated at
each configuration of the system are computed within the usual Born-Oppenheimer approxi-
mation (BOMD), the Car-Parrinello unified approach for molecular dynamics and DFT (Car
andParrinello ) is an efficient alternative to the simulation ofmacroscopic samples although
it requires rather large computational facilities and time. The CPMD package is available for
such computations which require some expertise to be ran safely (Marx and Hutter ). A
comparison of CPMD and BOMD simulations may be useful to determine the best compu-
tational procedures (Kuo et al. ). Car-Parrinello computations are widely applied to the
simulation of liquids, mainly water (Izvekov and Voth ) but other liquids are also consid-
ered (Bakó et al. ). All these full QM approaches are, for the time being, mainly limited to
the understanding of the structural properties of pure liquids.

The QuantumMechanical/Molecular Mechanical (QM/MM) Models

Chemical studies usually deal with a solute which can be a single molecule or a molecular
complex or transition state in a chemical reaction. In such systems, the role of the solvent is
mainly a physical perturbation which can be simulated at a lower theoretical level than that
required for the study of the subsystem of chemical interest.The success of continuum models
confirms this statement. In order to describe the solution at the molecular level and to per-
form full statistical mechanics computations on a model of macroscopic sample, one may set
up some computationally efficient approaches by limiting the quantum chemical study to the
solute and using one of the usual classical force-fields to represent the solvent molecules. The
computation of the statistical averages can be done by means of either Monte Carlo or molecu-
lar dynamics algorithms. The so-called QM/MMmodels are now widely used in such chemical
studies.

The Hamiltonian is a sum of three terms: HQM , the usual quantum Hamiltonian of the
solute, HMM , the classical Hamiltonian corresponding to the configuration of the solvent
HQM/MM , which corresponds to the interaction energy between the classical solvent molecules
and the quantum solute (Monard et al. ).The first twoHamiltonians are well defined by the
choice of the quantummethodology and the classical force field chosen tomodel the liquid.The
definition of the interaction Hamiltonian is far more difficult. It is usually made of a sum of van
derWaals interaction energies between the classical atoms of the solvent and the quantumatoms
of the solute, the long-range electrostatic interactions between the classical solvent molecules
and the electron distribution and the nuclei of the solute and the possible specific interactions
(hydrogen bonds). This is the most delicate part of the methodology, which requires specific
parameterizations for each kind of quantum chemical method used as well as each classical
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force field. A large number of papers have been published on this problem (Freindorf and Gao
; Freindorf et al. ; Giese and York ; Luque et al. ; Riccardi et al. ). For
specific problems, useful methodologies have been set up to determine the most appropriate
parameters (Martín et al. ).

Once the methodology has been defined, running a computation requires the usual molec-
ular dynamics or Monte Carlo codes, but the necessity of taking into account a large number
of configurations makes any improvements which accelerate the process very valuable. One
of the time consuming step is the computation of the long-range electrostatic interactions for
which some algorithms, such as the use of Ewald sum (Nam et al. ) or periodic bound-
ary conditions (Laino et al. ), may become very efficient to compute accurate free energies
(Gao et al. ).

Various methods and levels of approximation can be used for the QM part of the stud-
ies, from semi-empirical (Cummins and Gready ; Geerke et al. ), empirical Valence
Bond (Sumner and Iyengar ) to correlated levels (Kongsted et al. ; Woods et al. ).
QM/MM simulations also work with the Car-Parrinello methodology (Laio et al. ).

QM/MMmethods have now reached a good level of achievement and have opened the way
to refined studies of molecular structure and reactivity in the liquid state (Hu and Yang ).
However, may be one of the last remaining challenges for QM/MMmethods is to correctly and
efficiently handle reactivity problems where one or more solvent molecules are directly implied
in the chemical mechanism. The usual solution found in literature is to choose among all sol-
ventmolecules the uniquemolecule which will react with the solute. Some solutions which take
into account the dynamical nature of the first solvation shell have been suggested so far (Kerd-
charoen and Morokuma , ; Tongraar et al. ; Tongraar and Rode ), but they
have not been applied to reactivity problems yet.

Other Statistical Approaches of the Solvent

Reference Interaction SiteModel (RISM)

Integral equations of the liquid state provide us, in principle, with a rigorous statistical descrip-
tion of the liquid, although, to solve them, one is forced to use several approximations, in
particular various closure conditions to get pair correlation functions (Hansen and McDonald
). These approaches have been successfully used to describe simple liquids. In the case of
polyatomic molecules, the difficulty increases rapidly with the number of sites and the nature
of the interatomic potential. Nonetheless, a Reference Interaction Site Model (RISM) has been
proposed to extend the treatment to polyatomic liquids (Chandler and Andersen ) and
has been successfully applied to several problems dealing with molecular solutions (Hirata and
Rossky ). Some routines are now available to solve the RISM equations. These equations
have also been coupled with a quantum computation of the solute (Ten-no et al. ). The
interatomic potentials have the standard Lennard-Jones expression in which the electrostatic
interactions are developed on a basis of point charges. Therefore, the electronic distribution
of the solute is limited to effective partial charges qλ located on the atoms (denoted by a greek
index here λ).TheHartree-Fock equations aremodified by introducing a perturbative potential
on each atom λ of the solute:

Vλ = ρ∑
j∈S

qi
∫

∞


r−gλ j(r, qλ)πr

dr, (.)
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where ρ is the solvent density and gλ j(r, qλ) is the radial distribution function of the jth site of
solvent molecules S relative to the λth site of the solute molecule. This function is given by the
RISM equations. The RISM-SCF cycle simultaneously optimizes the pair correlation functions
and the electronic wavefuctions. This approach has been successfully applied to the study of
solvent effects on the electronic spectra of carbonyl compounds (Ten-no et al. ).

Langevin Dipole Model (LD)

Between a macroscopic description of the solvent represented by the continuum models and a
microscopic approach where all solvent atoms are explicitly represented, there exists an alter-
native semi-macroscopic approach: the Langevin Dipole model. This model treats the solvent
(usually water) explicitly but in a simplified way. It represents the time average polarization of
the solvent molecules by a cubic grid of polarizable dipoles (Warshel ; Warshel and Russel
). According to the Langevin equation (Langevin ), the electrostatic field of the solute
reorientes and polarizes the grid point dipoles.While this method has been successfully applied
to the computation of the free energy of solvation of small neutral and ionic molecular solutes
at a quantum level (Florián andWarshel , ; Kongsted et al. ), the Langevin Dipole
model has been mostly used to represent the electrostatic interactions between water as a sol-
vent and proteins through the Protein Dipoles/Langevin Dipoles (PDLD) method (Roca et al.
; Warshel et al. ).

The Future of Studies in the Liquid State

The number of selected papers dealing with various approaches of the liquid state and solu-
tions clearly indicate that taking into account the influence of the solvent in quantum chemical
studies will soon become quite usual. The large variety of methods allows us to adapt the level
of modeling to the accuracy required to get useful chemical information. The methodology is
still expected to improve in the near future. In particular, the full quantum treatment of a solu-
tion which takes advantage of the advances in quantum modeling of pure liquids seems to be
at hand, especially when one can use different quantum levels for the solute and for the solvent.
Like in the case of QM/MM the key feature is the proper treatment of the interaction between
both subsystems but one can be confident to the quantum chemists to find the proper solutions
to this problem.
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Abstract: Theworking equations of auxiliary density functional theory (ADFT) and auxiliary
density perturbation theory (ADPT) are derived in the framework of the linear combination of
Gaussian type orbital expansion. The ADFT and ADPT implementations in the density func-
tional theory program deMonk are discussed. The use of ADFT and ADPT in first-principle
Born–Oppenheimer molecular dynamics at the pico- to nanosecond time scale is reviewed.
In particular, the long-standing mystery of the discrepancy between experiment and compu-
tations for the polarizability of small sodium clusters is resolved. Applications of the parallel
deMonkADFT implementation to systems on the nanometer scale are reviewed.This includes
Al-zeolites and giant fullerenes. It is shown that structures as large as C can be fully opti-
mized without any symmetry constrains in the ADFT framework employing all-electron basis
sets within a few days.

Introduction

Within the broad spectrum of computational methods included in this “Vademecum,” this
chapterwill focus onDensity FunctionalTheory (DFT) as implemented in the software package
deMon, the most recent version of which is known as deMonk (Köster et al. ).

DFThas shown solid progress since its formal beginnings in the theorems ofHohenberg and
Kohn () andKohn and Sham () and its even older roots dating back to the early work of
Thomas and Fermi (Fermi , a, b; Thomas ), Slater () and others (Gaspar ;
Schwarz ). Our deMon program, too, has a significant track record of steady improvement
over the years.

Looking back to the s and early s, the most popular DFT method was the Xα-
Scattered Wave (SW) method of Slater and Johnson (Johnson ; Johnson and Smith ).
This method, with its unsightly Muffin-Tin potential, was the trailblazer for DFT in molecu-
lar applications. It had good success for the spectroscopy of inorganic complexes, including
those containing transition metals (Johnson and Messmer ; Johnson and Smith , ;
Messmer et al. , ; Salahub ; Weber et al. ). But the lack of a full potential pre-
vented the SW technique from performing even such simple tasks as geometry optimizations
which, at the time, were coming under control by the usual wave function–based methods of
quantum chemistry, at least for simple molecules. Hence Xα-SW remained a rather specialized
fringe methodology, which was either ignored or scorned by main-stream quantum chemists.

The s and early s saw work that changed all of that. A few “ab initio quantum
chemists” got interested in DFT and slowly but surely brought over some of the methodology
and techniques that would allow a broader and broader base of functionality for DFT codes.
This was the case for the earliest versions of deMon (Casida et al. ; St-Amant and Salahub
) aswell as for several other codes, such as LCGTO-Xα (Dunlap andRösch ), DGAUSS
(Andzelm and Wimmer ), ADF (Velde et al. ), and DMOL (Delley ). The deMon
program, for example,was based onGaussian functions andmuchof themachinery comes over
to the DFT world straightforwardly, although some aspects like numerical integration (Becke
) remain special. Now geometry optimizations held no mystery for the DFT codes and one
could start to think about real chemical applications. Then, in the late s, the holy grail of
chemical accuracy was reached, at least for organic thermochemistry, with the development
of hybrid functionals (Becke a, b). This really got the chemists interested in DFT and that
interest has persisted until today.
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In parallel, a broad range of physical and chemical properties and processes came into range.
The s saw the development of powerful methodology that included NMR chemical shifts
and coupling constants (Malkin et al. a, b, ; Valerio et al. ), core-electron spec-
troscopies (Triguero and Pettersson ; Triguero et al. ), optical properties through the
Time-Dependent-DFT (TD-DFT) (Casida ; Jamorski et al. ) approach, photoelectron
spectroscopy including the ZEKE (Zero Electron Kinetic Energy) technique (Calaminici et al.
, ; Yang et al. ), molecular polarizabilities and hyperpolarizabilities (Calaminici
et al. , , ; Guan et al. ; Sim et al. ), and many others. DFT and pro-
grams like deMon were now established as components of the quantum chemical tool kit. The
first decade of the twenty-first century, like its predecessors, continued to show steady progress.
Born–Oppenheimer Molecular Dynamics (Calaminici et al. b; Gamboa Martinez et al.
; Krishnamurty et al. , a, b; Vásquez-Pérez et al. ; Wei and Salahub ,
;Wei et al. ) have now become “routine” (though sometimes costly) for systems with a
hundred or so atoms for simulation times of tens or even hundreds of picoseconds. Geometry
optimizations and transition state searches (del Campo and Köster ) can now be per-
formed for systems containing several hundred atoms (Calaminici et al. ;Dominguez-Soria
et al. , ), the thousand-atom barrier has been broken (Dominguez-Soria et al. ;
Salahub et al. ), thanks mainly to the development of ADFT (Auxiliary Density Functional
Theory) (Köster et al. b). Hybrid, QM/MM, and QM/QM′ methodologies (Bertran et al.
; Lev et al. ) are now being applied with considerable confidence to systemswith a level
of complexity that would not have been contemplated just a few years ago.

So, at the present time deMonk is one of the most powerful “pure DFT” codes available.
In the next section, we will present the underlying theory, including a description of ADFT
and Auxiliary Density Perturbation Theory, a rather new non-iterative alternative to the Cou-
pled Perturbed Kohn–Sham (CPKS) methodology. Then, in the Applications section, we will
describe three recent studies that represent the state of the art in “pure DFT” on large and/or
difficult molecular and cluster problems, the largest of which are well into the nano-regime.We
solve a long-standing mystery of the discrepancy between experiment and computations for
the polarizabilities of sodium clusters (up to the nonamer) – finite-temperature effects are the
key. In the second application, large models for Na+ and protonated Al zeolites are constructed
and the acidic sites are analyzed, including important vibrational effects. Finally the structures
of giant fullerenes, up to C have been optimized using full all-electron basis sets. The results
confirm that for all of the large fullerenes a faceted shape is preferred over a spherical shape.
The calculated binding energies are in the diamond range, but considerably below the value for
graphene.

Theory

Kohn–Sham Density Functional Theory

Density functional theory (DFT) is based on the Hohenberg–Kohn theorem (Hohenberg and
Kohn ). According to this theorem the ground state energy, E, of a many electron system
with the external potential v(r) can be expressed by the following density functional (Dreizler
and Gross ; Parr and Yang ):

E[ρ] = T[ρ] +
∫

ρ(r) v(r) dr+ Vee[ρ]. (.)
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Here ρ(r) is the electron density, T[ρ] is the kinetic energy, and Vee[ρ] collects all electron–
electron interaction energies. A major technical problem is the accurate description of the
kinetic energy functional T[ρ]. In the Kohn–Sham approximation this problem is avoided by
introducing orbitals of a non-interacting reference system. Levy and Perdew (Levy ; Levy
and Perdew ) have shown that these orbitals are delivered by the following minimization
procedure:

TKS[ρ] = min
Ψ↦ρ
⟨Ψ∣ T̂ ∣Ψ⟩. (.)

Here Ψ is a Slater determinant composed of the Kohn–Sham orbitals ψi(r), and TKS[ρ] is the
corresponding Kohn–Sham kinetic energy. This energy can be calculated from the occupied
orbitals of the non-interacting system,

TKS[ρ] = −



occ
∑

i
⟨ψi[ρ] ∣∇

∣ψi[ρ] ⟩. (.)

These Kohn–Sham orbitals are functionals of the density and can be derived from it as shown
by Parr and coworkers (Zhao and Parr , ; Zhao et al. ). Imposing the constraint
that occupied orbitals of the non-interacting system reproduce the true ground state density,

ρ(r) =
occ

∑

i
∣ ψi(r) ∣ , (.)

to the variation > Eq. . and using a local Lagrange multiplier vKS(r), the following set of
equations is obtained:

(−



∇


+ vKS(r) ) ψi(r) = єi ψi(r). (.)

These are the Kohn–Sham equations and vKS(r) determines (within a trivial constant) the
external potential of the Kohn–Sham reference system.

In order to find a more explicit representation of vKS(r) we now rewrite the energy func-
tional > Eq. . using the Kohn–Sham kinetic energy term > Eq. . and the explicit
expression for the classic electronic interaction (Coulomb) energy,

J[ρ] =

 ∫ ∫

ρ(r) ρ(r′)
∣ r − r′ ∣

dr dr′ , (.)

It then follows:
E[ρ] = TKS[ρ] +

∫

ρ(r) v(r) dr+ J[ρ] + Exc[ρ]. (.)

Here the newly introduced exchange-correlation energy functional is defined as:

Exc[ρ] ≡ T[ρ] − TKS[ρ] + Vee[ρ] − J[ρ]. (.)

This quantity collects all non-classical interactions between the electrons and the difference of
the kinetic energies of the interacting and non-interacting system.The accuracy of the Kohn–
Shammethod ismainly determinedby the quality of the approximation used for the calculation
of Exc[ρ].The kinetic energy difference appearing in Exc[ρ] is on the order of magnitude of the
correlation energy (Almbladh and Pedroza ).

Based on the Hohenberg–Kohn theorem, the ground state density minimizes the energy
functional > Eq. . and hence satisfies the Euler equation:

μ =
δE[ρ]
δρ(r)

, (.)
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where μ is the Lagrange multiplier associated with the normalization of the electronic density
to the number of electrons n in the system:

∫

ρ(r) dr = n. (.)

The functional derivative of the energy functional > Eq. . yields:

δE[ρ]
δρ(r)

=

δTKS[ρ]
δρ(r)

+ v(r) +
∫

ρ(r′)
∣ r − r′ ∣

dr′ +
δExc[ρ]
δρ(r)

=

δTKS[ρ]
δρ(r)

+ vKS(r). (.)

Thus, the Kohn–Sham potential has the following explicit form:

vKS(r) = v(r) +
∫

ρ(r′)
∣ r − r′ ∣

dr′ + vxc[ρ; r], (.)

where the exchange-correlation potential is defined as:

vxc[ρ; r] ≡
δExc[ρ]
δρ(r)

. (.)

Substituting > Eq. . in > Eq. . yields the canonical Kohn–Sham orbital equations:

(−



∇


+ v(r) +

∫

ρ(r′)
∣ r − r′ ∣

dr′ + vxc[ρ; r] ) ψi(r) = єi ψi(r). (.)

These equations have to be solved iteratively to reach self-consistency.They can be cast inmatrix
form yielding Roothaan–Hall-like equations (Hall ; Roothaan ).

The LCGTO Kohn–ShamMethod

In the linear combination of Gaussian-type orbitals (LCGTO) ansatz the Kohn–Sham orbitals
are expanded in atomic orbitals:

ψi(r) = ∑
μ
cμi μ(r). (.)

In our notation μ(r) represents an atomic orbital and cμi the corresponding molecular orbital
coefficient. To avoid unnecessary complications in the presentation we restrict ourselves to the
closed-shell case. The extension to the open-shell formalism (Binkley et al. ; Pople and
Nesbet ; Roothaan ) is straightforward. With the LCGTO expansion we find for the
electron density > Eq. .:

ρ(r) =
∑

μ ,ν
Pμν μ(r) ν(r). (.)

Pμν represents an element of the closed-shell density matrix defined as:

Pμν ≡ 
occ
∑

i
cμi cν i . (.)
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Using the above expansions for theKohn–Shamorbitals > Eq. . and the density > Eq. .,
the Kohn–Sham energy expression > Eq. . can be rewritten in terms of atomic orbitals,

E =
∑

μ ,ν
Pμν Hμν +


 ∑μ ,ν

∑

σ ,τ
Pμν Pστ ⟨ μν ∥ στ ⟩ + Exc[ρ], (.)

with

Hμν = ⟨ μ ∣ −


∇


∣ ν ⟩ −

Atoms
∑

C
⟨ μ ∣

ZC

∣ r − C ∣
∣ ν ⟩ (.)

and

⟨ μν ∥ στ ⟩ ≡
∫ ∫

μ(r)ν(r)σ(r′)τ(r′)
∣r − r′∣

dr dr′. (.)

where the symbol ∥ represents the /∣ r − r′ ∣ operator.
The SCF convergence is based on this energy expression. The Hμν in > Eq. . denotes

elements of the one electron Hamiltonian matrix. They are built from the kinetic and nuclear
attraction energy of the electrons and describe the motion of an electron in the nuclear frame-
work. The computation of this matrix has a formal quadratic scaling with the number of basis
functions N of the system. The second term in > Eq. . represents the Coulomb repulsion
energy of the electrons. In contrast to Hartree-Fock theory the calculation of the Coulomb and
exchange energies are separated in DFT. The Coulomb term introduces a formal N  scaling.
The exchange-correlation energy can be obtained bymeans of an integral of the following type:

Exc[ρ] =
∫

ρ(r) єxc[ρ] dr. (.)

In general, the explicit form of the exchange-correlation energy density, єxc[ρ], will not permit
an analytic solution of this integral. Therefore, a three-dimensional numerical integration has
to be performed. It scales formally as N 

×G, whereG denotes the number of grid points in the
numerical integration.

From the above discussion it follows that the calculation of the Coulomb repulsion energy
represents the most demanding computational task in > Eq. .. The introduction of the
variational approximation of the Coulomb potential (Dunlap et al. ; Mintmire and Dunlap
; Mintmire et al. ) reduces the formal scaling of this term to N 

×M, where M is the
number of auxiliary functions which is usually three to five timesN .This technique is nowadays
used in most LCGTO-DFT programs. It is identical to the so-called resolution of the identity
(RI) (Flores-Moreno and Ortiz ; Hamel et al. ; Vahtras et al. ) that cropped up
in wave function methods, too. The variational approximation of the Coulomb potential, as
implemented in deMonk, is based on the minimization of the following self-interaction term:

E =

 ∫ ∫

[ ρ(r) − ρ̃(r) ] [ ρ(r′) − ρ̃(r′) ]
∣ r − r′ ∣

dr dr′. (.)

The approximate density ρ̃(r) is expanded in primitive Hermite Gaussians (Köster ) which
are centered at the atoms:

ρ̃(r) =
∑

k̄
xk̄ k̄(r). (.)

The primitive Hermite Gaussian auxiliary functions are indicated by a bar. An (unnormalized)
auxiliary function k̄(r) centered at atom C with exponent ζk has the form:

k̄(r) = (
∂

∂Cx
)

k̄x
(

∂
∂Cy
)

k̄ y

(

∂
∂Cz
)

k̄z
e−ζk(r−C)



. (.)
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In deMonk, these auxiliary functions are normalized with respect to the Coulomb norm and
grouped into s, spd, and spdfg sets.The exponents are sharedwithin each of these sets (Andzelm
et al. , ). Based on the exponent range of the primary atomic basis set an automatic gen-
eration of auxiliary function sets, indicated by the abbreviation GEN, is available in deMonk.
A detailed description is given in Calaminici et al. (a) for all-electron calculations and in
Calaminici et al. () for effective and model core potential calculations.

With the LCGTO expansion for ρ(r) and ρ̃(r) we obtain the following representation
for E:

E =

 ∑μ ,ν

∑

σ ,τ
Pμν Pστ ⟨ μν ∥ στ ⟩

−
∑

μ ,ν
∑

k̄
Pμν ⟨ μν ∥ k̄ ⟩ xk̄ +


∑k̄ , l̄

xk̄xl̄ ⟨ k̄∥ l̄ ⟩. (.)

The two- and three-center electron repulsion integrals are defined as:

⟨ k̄∥ l̄ ⟩ ≡
∫ ∫

k̄(r) l̄(r′)
∣r − r′∣

dr dr′, (.)

⟨ μν ∥ k̄ ⟩ ≡
∫ ∫

μ(r)ν(r)k̄(r′)
∣r − r′∣

dr dr′. (.)

The expansion coefficients xk̄ of the approximate density are determined by the minimization
of E:

∂E
∂xm̄

= −
∑

μ ,ν
Pμν ⟨ μν ∥ m̄ ⟩ +∑

k̄
xk̄ ⟨ k̄ ∥ m̄ ⟩ =  ∀ m̄. (.)

At this point it is useful to introduce the Coulomb matrix,

G =
⎛

⎜

⎜

⎜

⎝

⟨ ̄ ∥ ̄ ⟩ ⟨ ̄ ∥ ̄ ⟩ . . . ⟨ ̄ ∥ m̄ ⟩
⟨ ̄ ∥ ̄ ⟩ ⟨ ̄ ∥ ̄ ⟩ . . . ⟨ ̄ ∥ m̄ ⟩
⋮ ⋮ ⋱ ⋮

⟨ m̄ ∥ ̄ ⟩ ⟨ m̄ ∥ ̄ ⟩ . . . ⟨ m̄ ∥ m̄ ⟩

⎞

⎟

⎟

⎟

⎠

, (.)

and the Coulomb vector

J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

μ ,ν
Pμν ⟨ μν ∥ ̄ ⟩

∑

μ ,ν
Pμν ⟨ μν ∥ ̄ ⟩

⋮

∑

μ ,ν
Pμν ⟨ μν ∥ m̄ ⟩

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (.)

With G and J the following system of inhomogeneous equations for the determination of the
fitting coefficients, collected in x, can be formulated:

G x = J. (.)

A straightforward solution is obtained by the inversion of the Coulomb matrix G:

x = G− J. (.)

Because G is symmetric and positive definite its inversion can be very efficiently performed
via Cholesky decomposition (Press et al. ). However, if very large auxiliary function sets
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are used the Coulomb matrix tends to become ill-conditioned. As a consequence the Cholesky
decomposition might fail. For this reason in deMonk we perform by default a singular value
decomposition (SVD) of G at the initial SCF and use in the following energy calculations (e.g.,
in a geometry optimization or molecular dynamics run) a numerical solver (Dominguez-Soria
et al. ) that acts only on the non-redundant space of the SVD. This has proven to be a
good compromise between accuracy and efficiency. The approach is suitable for systems with
thousands of atoms and tight SCF convergence criteria (− a.u.). The SVD threshold can be
altered by the keyword MATINV (Köster et al. ). Its default value is −.

After the description of the calculation of the fitting coefficients we now turn to the energy
and SCF calculation. Because E is positive definite the following inequality holds:


 ∑μ ,ν

∑

σ ,τ
Pμν Pστ ⟨ μν ∥ στ ⟩ ≥ ∑

k̄
∑

μ ,ν
Pμν ⟨ μν ∥ k̄ ⟩ xk̄ −


∑k̄ , l̄

xk̄ xl̄ ⟨ k̄∥ l̄ ⟩.

With this inequality an approximate SCF energy, which is based on > Eq. ., can be derived:

E =
∑

μ ,ν
Pμν Hμν +∑

k̄
∑

μ ,ν
Pμν ⟨ μν ∥ k̄ ⟩ xk̄

−


 ∑k̄ , l̄

xk̄ xl̄ ⟨ k̄ ∥ l̄ ⟩ + Exc[ρ]. (.)

The variation of this energy expression with respect to the molecular orbital coefficients,
constraining the Kohn–Sham orbitals to be orthonormal,

∑

μ ,ν
cμi Sμν cν j = δi j ∀ i, j , (.)

yields:

∂E
∂cμi

= 
∑

ν

⎛

⎝

Hμν +∑
k̄
⟨ μν ∥ k̄ ⟩ xk̄ + ⟨ μ ∣ vxc[ρ] ∣ ν ⟩

⎞

⎠

cνi

− 
∑

ν
∑

j
Sμν cν j є ji ∀ μ, i. (.)

Here, the derivative of the exchange-correlation energy, restricting ourselves to local functionals
for clarity, was developed according to Gel’fand and Fomin ():

∂Exc[ρ]
∂cμi

=

∫

δExc[ρ]
δρ(r)

∂ρ(r)
∂cμi

dr = 
∑

ν
⟨ μ ∣ vxc[ρ] ∣ ν ⟩ cνi . (.)

The є ji in > Eq. . are the undetermined Lagrangemultipliers. Because the electronic density
is invariant to unitary transformations of the occupied molecular orbitals (MOs) it is possible
(and convenient) to choose a set of MOs for which the off-diagonal multipliers are zero. These
MOs are called canonical and are the solutions of the canonical Kohn–Sham equations,

Kc = S c є , (.)

with the elements of the Kohn–Sham matrix K defined as:

Kμν ≡ Hμν +∑
k̄
⟨ μν ∥ k̄ ⟩ xk̄ + ⟨ μ ∣ vxc[ρ] ∣ ν ⟩. (.)

In > Eq. ., S represents the overlap matrix, c the molecular orbital coefficient matrix, and
є the diagonal matrix of the Lagrange multipliers, that is, the Kohn–Sham orbital energies.
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As can be seen from > Eq. . the Kohn–Sham matrix elements depend on the fitting
coefficients xk̄ and the molecular orbital coefficients cμi via the dependence of the exchange-
correlation potential on the orbital density ρ(r). In deMonk this theoretical model is selected
by the keyword specification VXCTYPE BASIS (Köster et al. ) and is often referred to as
the BASIS approach. It should be noted that the SCF convergence can be guided either by the
molecular orbital coefficients or by the fitting coefficients that arise from the variational fitting
of the Coulomb potential. In any case the variational fitting of the Coulomb potential turns the
original energy minimization into a MinMax variation (Köster et al. ). In deMonk the
SCF convergence is guided by the fitting coefficients because they form a vector rather than a
matrix. As a result memory efficient SCF convergence acceleration methods suitable for very
large systems are available (Köster et al. ).

Due to the use of efficient three-center electron repulsion integral algorithms (Köster ,
) the numerical integration of the exchange-correlation energy and potential is the com-
putationally most demanding task in this approach. Therefore, a more efficient approach for
the calculation of the exchange-correlation energy and potential is desirable. In fact, the use
of auxiliary functions for the calculation of the exchange-correlation energy and potential has
a long history in DFT methods (Baerends et al. ; Sambe and Felton ). In programs
like deMon-KS (Casida et al. ), DGAUSS (Andzelm and Wimmer ), or GTOFF
(Trickey et al. ) the exchange-correlation potential is expanded in auxiliary functions as
proposed by Sambe and Felton ().The expansion coefficients are obtained by a least squares
fit on a grid. Because this fit and the corresponding energy expression are not variational only
approximate gradients and higher energy derivatives are available.

Auxiliary Density Functional theory

As an alternative to the fitting of the exchange-correlation potential by auxiliary functions the
direct use of the auxiliary function density from the variational fitting of the Coulomb potential
for the calculation of the exchange-correlation potential has been investigated over the last years
(Belpassi et al. ; Birkenheuer et al. ; Janetzko et al. ; Köster ; Köster et al.
b; Laikov ).The resulting energy expression, from now on named the auxiliary density
functional theory (ADFT) energy, is variational and has the form (Köster et al. b):

E =
∑

μ ,ν
Pμν Hμν +∑

k̄
∑

μ ,ν
Pμν ⟨ μν ∥ k̄ ⟩ xk̄

−


 ∑k̄ , l̄

xk̄ xl̄ ⟨ k̄ ∥ l̄ ⟩ + Exc[ρ̃]. (.)

In deMonk, this theoretical model is selected by the keyword specification VXCTYPE AUXIS
(Köster et al. ), that is the default setting, and often referred to as the AUXIS approach.
Because the approximate density is a linear combination of auxiliary functions the density cal-
culation at each grid point scales linearly. In contrast, with the orbital density, products of
basis functions have to be evaluated. Obviously, this represents a considerable simplification
of the grid work. In particular, using auxiliary function sets that share the same exponents
reduces considerably the number of expensive exponential function evaluations at each grid
point.Moreover, by usingHermite Gaussian auxiliary functions the Hermite polynomial recur-
rence relations (Saunders ) can be used for the function calculations on the grid. For the
numerical integration of the exchange-correlation energy and potential adaptive and fixed grids
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(Köster et al. a; Krack and Köster ) of various qualities are available in deMonk. The
default setting guarantees energy accuracies in the range of − a.u. for most systems. Higher
accuracies can be selected with the GRID keyword (Köster et al. ).

The variation of the ADFT energy expression > Eq. . with respect to the molecular
orbital coefficients, again constraining the Kohn–Sham orbitals to orthonormality > Eq. .,
yields:

∂E
∂cμi

= 
∑

ν

⎛

⎝

Hμν +∑
k̄
⟨ μν ∥ k̄ ⟩ ( xk̄ + zk̄ )

⎞

⎠

cνi

− 
∑

ν
∑

j
Sμν cν j є ji ∀ μ, i. (.)

The derivative of the exchange-correlation energy, again restricting ourselves to local function-
als, now contains the fitted density:

∂Exc[ρ̃]
∂cμi

=

∫

δExc[ρ̃]
δρ̃(r)

∂ρ̃(r)
∂cμi

dr. (.)

The resulting functional derivative defines the exchange-correlation potential calculated with
the fitted density:

vxc[ρ̃; r] ≡
δExc[ρ̃]
δρ̃(r)

. (.)

The derivative of the fitted density with respect to molecular orbital coefficients is given by:

∂ρ̃(r)
∂cμi

=
∑

l̄

∂xl̄
∂cμi

l̄(r). (.)

After differentiation of > Eq. . it follows for the derivative of the fitted density:

∂ρ̃(r)
∂cμi

= 
∑

k̄ , l̄
∑

ν
cν i ⟨ μν ∥ k̄ ⟩G−

k̄ l̄ l̄(r). (.)

Substituting this expression and the definition of the approximate exchange-correlation poten-
tial > Eq. . into > Eq. . yields:

∂Exc[ρ̃]
∂cμi

= 
∑

k̄
∑

ν
cν i ⟨ μν ∥ k̄ ⟩ zk̄ , (.)

with
zk̄ =∑

l̄
G−

k̄ l̄ ⟨ l̄ ∣ vxc[ρ̃] ⟩. (.)

In order to distinguish the xk̄ and zk̄ coefficients we name them Coulomb and exchange-
correlation coefficients, respectively. The corresponding Kohn–Sham matrix elements are
defined as:

Kμν = Hμν +∑
k̄
⟨ μν ∥ k̄ ⟩ ( xk̄ + zk̄ ). (.)

These matrix elements depend only on the fitting coefficients. In contrast to the traditional
fitting of the exchange-correlation potential ADFT employs the fitted density for the exchange-
correlation potential calculation and hence the numerical integration of vxc is not avoided.
However, the work on the grid is considerably reduced because only one-center terms are
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involved in the integrals in > Eq. .. Despite the fact that these terms are evaluated numer-
ically, the calculation of the Kohn–Sham elements > Eq. . scales linearly (Köster et al.
). Because the ADFT energy is variational, analytic gradients (Köster et al. b) and
higher energy derivatives can be formulated.

Auxiliary Density Perturbation theory

For second energy derivatives that appear in the calculation of polarizabilities, chemical hard-
ness, van der Waals coefficients, vibrational frequencies and other second order properties,
the perturbed density matrix is required. McWeeny’s self-consistent perturbation (SCP) theory
(Diercksen and McWeeny ; Dodds et al. ; McWeeny , ; McWeeny and Dier-
cksen ; McWeeny et al. ) represents a direct approach for the calculation of this matrix.
For the clarity of the presentation we assume perturbation-independent basis and auxiliary
functions and restrict ourselves to closed-shell systems. Under these conditions the elements
of the perturbed density matrix are given by the SCP formalism of McWeeny et al. ():

P(λ)
μν ≡

∂Pμν
∂λ
= 

occ
∑

i

uno
∑

a

K

(λ)
ia

εi − εa
( cμi cνa + cμa cνi ) . (.)

Extension to the case of perturbation dependent basis and auxiliary functions is straightfor-
ward. However, a number of extra terms appear which only distract from the discussion.
In > Eq. . λ denotes the perturbation parameter, for example, an electric field compo-
nent in the calculation of polarizabilities, εi and εa orbital energies of the ith occupied and
ath unoccupied orbital, and K(λ)

ia the perturbed Kohn–Sham matrix in the molecular orbital
representation:

K

(λ)
ia = ∑

μ ,ν
cμi cνa K(λ)

μν , (.)

with
K(λ)

μν = H
(λ)
μν +∑

k̄
⟨ μν ∥ k̄ ⟩ ( x(λ)

k̄
+ z(λ)

k̄
). (.)

The perturbation of the exchange-correlation coefficients is given by:

z(λ)
k̄
=
∑

l̄
G−

k̄ l̄ ⟨ l̄ ∣ v
(λ)
xc [ρ̃] ⟩. (.)

Since vxc[ρ̃; r] itself is a (local) functional of the density it follows:

⟨ l̄ ∣ v(λ)xc [ρ̃] ⟩ = ∫ ∫ l̄(r)
δvxc[ρ̃; r]
δρ̃(r′)

∂ρ̃(r′)
∂λ

dr dr′

=
∑

m̄
⟨ l̄ ∣ fxc[ρ̃] ∣ m̄ ⟩ x(λ)m̄ , (.)

with the exchange-correlation kernel defined as:

fxc(r, r′) =
δExc[ρ̃]

δρ̃(r′) δρ̃(r)
=

δvxc[ρ̃; r]
δρ̃(r′)

. (.)



Auxiliary Density Functional Theory: From Molecules to Nanostructures  

Compared to the standard LCGTO kernel ⟨ μν ∣ fxc ∣ στ ⟩ the scaling of the kernel calculation
is reduced by almost two orders of magnitude in the ADPT approach. With this result we now
rewrite the perturbed Kohn–Sham matrix elements in molecular orbital representation as:

K

(λ)
ia = H

(λ)
ia +∑

k̄ , l̄
⟨ ia ∥ k̄ ⟩Mk̄l̄ x

(λ)
l̄

, (.)

with
Mk̄l̄ = δk̄ l̄ +∑

m̄
G−

k̄m̄ ⟨ m̄ ∣ fxc[ρ̃] ∣ l̄ ⟩. (.)

On the other hand we find as the derivative of the fitting equation system > Eq. .:

∑

k̄
Gm̄k̄ x

(λ)
k̄
=
∑

μ ,ν
P(λ)
μν ⟨ μν ∥ m̄ ⟩. (.)

Substituting > Eqs. . and > . into > Eq. . yields:

∑

μ ,ν
P(λ)
μν ⟨ μν ∥ m̄ ⟩ = 

occ
∑

i

uno
∑

a

⟨ m̄ ∥ ia ⟩H(λ)
ia

εi − εa

+ 
occ
∑

i

uno
∑

a
∑

k̄ , l̄

⟨ m̄ ∥ ia ⟩ ⟨ ia ∥ k̄ ⟩
εi − εa

Mk̄l̄ x
(λ)
l̄

=
∑

k̄
Gm̄k̄ x

(λ)
k̄

. (.)

We now define the elements of the Coulomb coupling matrix as:

Ak̄ l̄ =
occ
∑

i

uno
∑

a

⟨ k̄ ∥ ia ⟩ ⟨ ia ∥ l̄ ⟩
εi − εa

. (.)

Similarly, the elements of the perturbation vector are given by:

b(λ)
k̄
=

occ
∑

i

uno
∑

a

⟨ m̄ ∥ ia ⟩H(λ)
ia

εi − εa
. (.)

With these matrices and vectors, > Eq. . can now be recasted into:

(G − AM ) x(λ) = b(λ) ⇐⇒ x(λ) = (


G −AM)

−
b(λ). (.)

In the case of perturbation-dependent basis and auxiliary functions only b(λ) has to be mod-
ified. The matrix that needs to be inverted is exactly the same as in > Eq. .. Thus, the
calculation of the perturbed fitting coefficients is reduced to the solution of the above inho-
mogeneous equation system. In contrast to the traditional coupled-perturbed Kohn–Sham
equation system (Fournier ; Komornicki and Fitzgerald ) the dimension of > Eq. .
is M and, therefore, the memory requirement for the solution of this equation system is sim-
ilar to that of the fitting equation system > Eq. . in the corresponding SCF calculation.
With the perturbed fitting coefficients, the perturbed Kohn–Sham matrix can be constructed
via > Eq. . and the perturbed density matrix can then be calculated by > Eq. ..

So far > Eq. . has been applied successfully for the calculation of static and dynamic
molecular polarizabilities (Carmona-Espíndola et al. ; Flores-Moreno and Köster ;
Shedge et al. ) using local and gradient-corrected functionals as well as for the calcula-
tion of Fukui functions (Flores-Moreno ; Flores-Moreno et al. ). Calculation of second
derivatives with respect to nuclear displacements is currently under development.
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Applications

Dynamics of Sodium Clusters

In this section, we review the results obtained from a recent systematic study of the temper-
ature dependency of the polarizabilities of small sodium clusters at a reliable first-principles
all-electron level of theory (Calaminici et al. b; Gamboa Martinez et al. ).

Static polarizability measurements have been used for a long time to gain insight into the
electronic structure of small clusters (Bonin and Kresin ; Knickelbein , , ).
Because the polarizability is very sensitive to the distribution of the valence electron density it
can also be used as an indicator for chemical reactivity (Pearson ; Politzer ).Therefore,
the study of the size dependency of the polarizability of simple clusters yields results of funda-
mental importance to chemistry and physics. A particular example resides in the polarizability
studies on sodium clusters which were of paramount importance for the derivation of the jel-
lium model (Knight et al. ). Today, this model is used with great success in cluster science
(Bergeron et al. , ). Several series of experimental data on sodium cluster polarizabil-
ities are available in the literature (Knight et al. ; Molof et al. a, b; Rayane et al. ;
Tikhonov et al. ). In the pioneering work of Knight et al. () the static polarizabilities
of sodium clusters in a size range from  to  sodium atoms were studied. Later on Rayane
et al. () repeated these measurements for a smaller size range from  to  sodium atoms.
Most recently, Tikhonov et al. () measured the polarizability of selected sodium clusters
up to  atoms. The overall agreement between these different experiments is quite satisfying.
Nevertheless, discrepancies exist.

In > Fig. -, the experimental data series of sodium cluster polarizabilities are plotted
together with our theoretical values.

In particular, the pronounced oscillating behavior observed by Knight et al. up to the hex-
amer (> Fig. -a, dots) was not confirmed by themore recent study of Rayane and co-workers
(> Fig. -a, squares). To emphasize the spread between these two experimental data sets we
have connected the data points in > Fig. - by vertical lines.This figure also shows that for the
larger sodium clusters with ,  and  atoms excellent agreement between the reported data sets
exist. The heptamer and octamer polarizabilities were also measured by Tikhonov et al. ()
and are in good agreement with the depicted experimental data in > Fig. -, too.

In order to resolve the discrepancy in the measured polarizabilities of the smaller sodium
clusters many theoretical studies have been performed over the last two decades (see, for
example, Politzer (), Chandrakumar et al. (), Kümmel et al. (), Blundell et al.
(), Kronik et al. () and references therein). Most calculations employed density
functional theory (Hohenberg and Kohn ; Kohn and Sham ) but wave function–
based studies are also available (Chandrakumar et al. ). A comparison of these theoretical
studies reveals that the static polarizabilities of sodium clusters are severely underestimated
at all reliable levels of theory. Over the last two decades different corrections have been pro-
posed to resolve this long-standing discrepancy between theory and experiment.More recently,
it has been speculated that the mismatch between calculated and measured sodium cluster
polarizabilities is due to finite temperature effects (Blundell et al. ; Kronik et al. ; Küm-
mel et al. ). In fact, this idea was already mentioned in the original experimental work
(Knight et al. ). However, a systematic study of the temperature dependence of sodium
cluster polarizabilities at a reliable first-principles all-electron level of theory was still absent
until very recently we have finally closed this gap by performing a temperature dependent
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polarizability study of small sodium clusters by employing Born–Oppenheimer molecular
dynamics (BOMD) simulations (Calaminici et al. b; Gamboa Martinez et al. ).

The calculations were performed with the linear combination of Gaussian type orbital den-
sity functional theory (LCGTO-DFT) deMonk (Köster et al. ) code. In > Fig. -, the
crosses refer to all-electron polarizabilities calculated with the local density approximation
(LDA) employing the exchange functional from Dirac () in combination with the corre-
lation functional proposed by Vosko, Wilk and Nusair (VWN) (Vosko et al. ). The stars
denote polarizabilities obtained with the gradient corrected exchange-correlation functional
proposed by Perdew, Burke and Ernzerhof (PBE) (Perdew et al. ).

The cluster structures were optimized at the corresponding level of theory employing a
double zeta valence polarization (DZVP) basis set (Godbout et al. ). For the polarizability
calculations a triple zeta valence polarization (TZVP) basis set augmented with field induced
polarization (FIP) function was used (Calaminici et al. ). All calculations were performed
in the framework of auxiliary density functional theory (ADFT) (Köster et al. b)with A or
GEN-A* auxiliary function sets (Calaminici et al. a).The latter was used in the analytical
calculation of the cluster polarizabilities (Flores-Moreno and Köster ).

It is well established in the literature that calculated DFT polarizabilities at this level of the-
ory differ by no more than % from experiment (Calaminici et al. ). > Fig. -a, however,
shows that the calculated polarizabilities of the sodium clusters are not only considerably too
low but even at the level of the gradient corrected PBE functional differences of more than %
relative to the experimental values can occur. By and large these results are confirmed by many
other theoretical calculations.

In order to study the dynamics of small sodium clusters at finite temperatures Born–
Oppenheimer molecular dynamics (BOMD) calculations were performed at the above
described PBE/DZVP/A level of theory. For each cluster, from the dimer to the nonamer, 
trajectories were recorded in a temperature range from  to K with intervals of K. Each
trajectory has a length of  ps and was recorded with a time step of  ps. Similar statistics have
already been successfully applied to determine themelting temperatures of sodiumclusterswith
LDA pseudo-potential DFT molecular dynamics (Chacko et al. ).

The temperature in the canonical BOMDsimulationwas controlled by aNosé-Hoover chain
thermostat (Hoover ; Martyna et al. ; Nosé ). In order to study the temperature
dependency of the sodium cluster polarizabilities the polarizability tensor α was calculated
along the recorded trajectories. For this purpose the first  ps of each trajectory were discarded
and α was then calculated in  fs time steps along the remaining  ps. Due to the compu-
tational demand of the analytical polarizability calculation along the BOMD trajectories we
employed the LDA kernel. Thus, the computational level for the calculation of the temperature
dependent part of the cluster polarizabilities was VWN/TZVP-FIP/GEN-A*.The temperature
dependent mean sodium cluster polarizability was then calculated as:

ᾱ(T) = ᾱPBE
() + δᾱVWN

(T), (.)

with

ᾱ(T) =


[ ᾱxx(T) + ᾱy y(T) + ᾱzz(T) ]. (.)

This approximation assumes that the temperature dependency of ᾱ(T), namely, δᾱ(T) is the
same at PBE and VWN levels of theory. It should be remembered that the geometries are of
course always determined from PBE BOMD calculations.
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In > Fig. -, the calculated cluster polarizabilities at  (a),  (b),  (c), and K
(d) are depicted. As this figure shows the individual cluster polarizabilities increase with tem-
perature. Somewhere between  and K the calculated ᾱ(T) per atom match into the
experimental data sets. In particular, the comparison of the calculated and experimental ᾱ(T)
per atom at K for Na, Na, and Na, for which excellent agreement between the different
experimental data sets exist, is very satisfying. Moreover, it is interesting to note that the oscil-
lating behavior of the ᾱ per atom for the smaller clusters, which was observed in the original
measurement (Knight et al. ) and also appears, less pronounced, in the T = KPBE calcula-
tions (> Fig. -a, stars), disappears at higher temperatures. Instead, the ᾱ per atom decreases
monotonically from Na to Na. Therefore, we can conclude that the finite temperature polar-
izabilities of small sodium clusters do not reflect individual molecular structures. Instead, they
only reflect the shell closing at the dimer and octamer consistent with the jellium model.

Our BOMD calculations also show that cluster fragmentations are not important for the
cluster polarizabilities. Such fragmentations occur in our simulations above K.

The change in the trend of the ᾱ per atom for the small sodium clusters with increasing
temperature is due to the different temperature dependencies of the individual cluster polariz-
abilities. In > Fig. - the temperature dependencies of the individual cluster polarizabilities
are presented. As this figure shows, for the smaller clusters up to the pentamer (> Fig. -a)
the behavior of Na is particular. Over a large temperature range up to K the δᾱ(T)
value for this cluster changes almost ideally linearly with the temperature. A closer analysis
reveals that in this temperature range the Dh rhombic structure of Na rearranges only in the
molecular plane. At K and above, three-dimensional rearrangements occur. In this case
the temperature dependency of the polarizability reflects directly the dynamics of the clus-
ter rearrangement. > Figure -a also shows that δᾱ(T) increases considerably faster with
temperature for Na than for Na. As a result, the bump in the static T = K PBE polarizabil-
ities at the pentamer (> Fig. -a) disappears in the finite temperature polarizabilities. For
the larger clusters we found very similar temperature dependencies of δᾱ(T) for Na and Na
(> Fig. -b). The shape of our Na temperature dependent polarizability resembles previous
studies with the extended Thomas–Fermi approximation (Blundell et al. ). The enlarged
sodium hexamer polarizabilities in the temperature range between  and K are due to
the coexistence of two isomers, planar and pentagonal-pyramidal, as was already previously
speculated in Calaminici et al. ().

Summary

In this section, the results obtained by the first systematic study of the temperature dependency
of the sodium cluster polarizabilities at a reliable first-principle all-electron level of theory were
reviewed.The main results of this study are summarized as follows:

. The calculated ᾱ(T) per atom match well the available experimental data sets at around
K.

. The long-standing discrepancy between theory and experiment is resolved by inclusion of
finite temperature effects in the electronic structure calculation.

. The calculated finite temperature sodium cluster polarizabilities show characteristicminima
at the dimer and octamer as expected from the jellium model.

. Individual molecular structures besides these two are not resolved in the calculated finite
temperature sodium cluster polarizabilities.
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Change of the mean polarizability per atomwith temperature for Nan clusters with n= – (a) and
n=– (b). The calculations were performed at the VWN/TZVP-FIP/GEN-A* level of theory

Structure of Zeolites

In this section, the calculated structural parameters and energetic properties of Na- and H-
mordenites (MOR), using cluster models with more than  atoms will be reviewed. These
calculations (Dominguez-Soria et al. , ) were performed in the framework of ADFT,
using both the local (LDA) and the generalized gradient approximation (GGA), employing
all-electron basis sets. For this study, the most populated T, T, and T Al sites have been
investigated, using two differentMORmodels, each containing two isolated Al sites. A detailed
analysis of the structures, D contours of the molecular electrostatic potential (MEP), binding
energies of Na cations and protons and Brønsted O–H harmonic frequencies are discussed. If
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possible, comparisonwith available experimental results ismade.The structural changes among
Si/Al substitution as well as Na/H exchange are discussed, as well.

Diffusion, adsorption, and reactivity of molecules within micro- or mesoporous materials
are specifically related with the physico-chemical properties of the material structures. It was
originally underlined by Dérouane et al. () that the interactions of the host molecules with
thematerial surfaces depend on the volume, shape, and topology of the cavities, which generate
particular organizations of these molecules. The inter-relationship between the porous materi-
als and the host molecules has been referred to as “confinement” and attributed a large role in
the selectivity and catalytic activity of zeolite materials, in particular, in acid-catalyzed reactions
(Anquetil et al. ; Smirnov andThibault-Starzyk ; Thibault-Starzyk et al. ).

Computer modeling based on ab initio techniques have been used in recent years to pro-
vide a better understanding of the physico-chemical processes involved in the protonation of
reactants. They lead to somewhat different conclusions, according to the methods applied and
the reactions studied:

. A confinement effect should originate from van der Waals interactions between the reac-
tants and the zeolite framework (Rungsirisakun et al. ).

. Protonated products are stabilized by the long range electrostatic effects of the framework
(Demuth et al. ; Rozanska et al. , ; Vos et al. ).

. Confinement acts through the stabilizing interaction of the framework oxygens on proto-
nated transition states, which are also favored when matched with the zeolite cavities, van
der Waals interactions being dominant when neutral species are considered (Demuth et al.
; Rozanska et al. , ; Vos et al. ).

These results obtained with modern computational methods demonstrate that the concept of
confinement is now widely invoked but not yet clearly quantified, differing with the level of
accuracy and approximation. The relative influence of the local structure on the Brønsted acid
strengths (large vs. small cavities), of the solid-reactant dispersion interactions, and of electro-
static polarization effects on the reactants has not really been quantified yet. We believe that
such a study necessitates first to set up an accurate and also efficient methodology in order to
answer the following fundamental questions:

. Is the Brønsted acid strength different in small and large cavities and what is the role of the
local site geometry on this property?

. How dependent on the cavity size is the stabilization of the guest molecule through long
range dispersion and electrostatic polarization due to the solid framework?

We have recently focused our attention on the first question (Dominguez-Soria et al. ,
), studying the structure and the intrinsic properties of mordenite (MOR) cationic sites,
in particular sodium binding energies and acid strengths. For these studies we proposed a new
methodological approach based on very large model clusters, which can eventually be embed-
ded in a classical environment, which we believe is a promising alternative to the idealized
periodic representation of a zeolitic solid. This is particularly important for zeolites where the
experimental Si/Al ratio is not very large, that is, when the solid contains an Al distribution
which can hardly be represented as periodic. In the next sections, we will compare our results
with those reported experimentally for natural and synthetic zeolites. In > section “Models and
Methodology,” we discuss the zeolite models that we have chosen and the applied methodol-
ogy. In > section “Calculated Geometries and Properties,” we report the calculated geometries
and properties and discuss them with respect to experiment and other theoretical results. The
results obtained so far are summarized in > section “Summary”.



  Auxiliary Density Functional Theory: From Molecules to Nanostructures

Models andMethodology

Mordenites are natural and synthetic zeolites with Si/Al ratios of . to . in the former case
and . to . in the latter (Jacobs andMartens ; Passaglia ). Synthetic mordenites are
used for acidic catalysis. MOR catalysts are synthesized in theNa-form followed by amild treat-
ment with NHCl which leads to H-exchanged forms. The MOR structure can be described as
composed of edge-sharing five-membered (-m) rings of tetrahedra forming chains along the c
crystallographic axis (Meier ). Their architectures comprise large mono-directional acces-
sible -m ring channels of TO tetrahedra where T stands for either Si or Al and small -m
ring channels, which are interconnected through -m ring tubes. The topological symmetry
of MORs is orthorhombic with space group Cmcm having in the unit cell four symmetrically
independent tetrahedral sites, usually called T, T, T, and T. T and T sites connect four dif-
ferent rings, while the T and T sites constitute the -m rings of the zeolite framework (Meier
). Since the first structural study of natural mordenite byMeier (), much work has been
performed to solve several problems about the real symmetry of the solid due to the presence
of Al tetrahedra and extra-framework cations, framework defects, and other structural distor-
tions (Alberti ; Alberti et al. ). Having different Si/Al ratios, natural and synthetic
zeolites also have different Al distribution patterns and slightly different T–O bond lengths
(Schlenker et al. ). Our strategy in this study for the determination of the structure and
intrinsic properties of the catalyst has been to use clusters containing  tetrahedra, sufficiently
large to enclose the main m-rings and the side pocket m-rings. These models include two
unit cells along a and b whereas the × c dimension has been cut at the middle of the second
m-ring channel (see > Fig. -).

The substitution of Si by Al has previously been studied extensively for natural and syn-
thetic mordenites (Alberti ; Alberti et al. ; Ito and Saioto ; Schlenker et al. ;
Simoncic and Armbruster ). Following these results based on crystal structure refinement
(Alberti ; Alberti et al. ) and IR intensities of the OH stretching bands (Yang et al.
), it has been proposed that the Brønsted sites of MOR are related to an Al occupancy with
the probability T>T>T>T, associated with a relative population of the OH sites which is
probably larger in the -ring channel for natural zeolites (Alberti et al. ). The T site has
also been proposed as the most probable candidate for Al substitution by Demuth et al. based
on the relative stability of Al embedded clusters with Al substituted in turn at the four possible
sites (Demuth et al. ). Due to the low probability of Al in T, and the high probability of
more Al sites in the main channel (Alberti ), we have selected two models with the distri-
butions T, T andT, T, associatedwith bothNa cations (Na-MOR, Na-MOR) and protons
(H-MOR and H-MOR). The original models have been cut from a solid with the appropri-
ate Al distribution, generated using the Cerius program (Cerius ) and terminated with
hydrogens. In order to constrain the structure of the cluster to that of the solid, the coordinates
of the terminal hydrogen atoms, positioned along the Si–O bonds, have been fixed during the
subsequent optimizations, all other atomic coordinates being relaxed. > Figure - illustrates
the two models Na-MOR and Na-MOR. In order to test the influence of the Al content on
the mordenite geometrical parameters, we have also studied the same model without Al atoms,
as will be discussed later.

For these studies we have used an ADFT-based approach, using a linear combination
of atomic orbitals, as implemented in the deMonk program (Köster et al. ). Geome-
try optimizations and molecular electrostatic potential (MEP) calculations were performed
at the local level using the correlation functional proposed by Vosko et al. (), whereas
energetic properties (binding energies and proton affinities) have also been evaluated using
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⊡ Fig. -
Structures, T and O atoms legend of the studied mordenite models. The orientation of the three
crystallographic axis a, b, and c is also given

the exchange-correlation functional of Perdew et al. (). DFT-optimized double zeta plus
valence polarization (DZVP) basis sets were employed for all atoms (Godbout et al. ). For
the fitting of the density, the A auxiliary function set was used (Godbout et al. ). The
exchange-correlation potential was numerically integrated on an adaptive grid (Köster et al.
a). The grid accuracy was set to − a.u. in all calculations. The Coulomb energy was cal-
culated by the variational fitting procedure proposed by Dunlap et al. () and Mintmire
and Dunlap (). A quasi-Newton method in internal redundant coordinates with analytical
energy gradients was used for the structure optimization (Reveles and Köster ). The con-
vergence was based on the Cartesian gradient and displacement vectors with a threshold of −

and − a.u., respectively. For the geometry optimization of themordenite structures the paral-
lel version of deMonk (Calaminici et al. ; Geudtner et al. ) was used. Eachmordenite
model possesses more than  atoms with around , orbital basis functions and ,
auxiliary functions. The calculations were performed on six or eight .GHz Intel Xeon CPUs.
These nodes were connected with a Myrinet switch. The geometry optimization of such mod-
els takes about  days on  CPUs. In this time roughly  optimization steps are performed.
The cation binding energies (BE) to the framework have been calculated using the formula:
BE = E(neutral model) – E(cation) – E(anionic model). The O–H stretching frequencies of
the H-MOR model have been calculated within the harmonic approximation. This normal
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mode being uncoupled with all the other vibrational modes of the model, its frequency has
been calculated using a partial Hessian analysis, as proposed by Li et al. (Li and Jensen ).

Calculated Geometries and Properties

General Structural Parameters of the Mordenite Models
Our purpose here was to simulate averaged bond length and bond angle data that can be
compared with those provided by X-ray experiments performed on natural and synthetic mor-
denites with various Si/Al ratios. Comparison with available theoretical data was also presented
(Dominguez-Soria et al. ).Themain geometrical parameters (T–Obonds andT–O–Tbond
angles) of the fully siliceous and sodium mordenite models have been compared in Table  of
Ref. Dominguez-Soria et al. () with experimental data. The calculated values have been
averaged over Na-MOR and Na-MOR, namely, considering different Al distributions. This
procedure mimics the experimental averaging over the non-distinguishable Si and Al posi-
tions. Among several experimental structures of natural mordenites (Alberti ; Alberti et al.
; Ito and Saioto ; Schlenker et al. ; Simoncic and Armbruster ), the structure
obtained byAlberti et al. () has been chosen for comparison togetherwith the experimental
structure of a natural and a synthetic Na-mordenite (Simoncic and Armbruster ).

As we have shown in Table  of Ref. Dominguez-Soria et al. (), the calculated bond
lengths are very comparable with the experimental results, within .Å. We have noticed that
this uncertainty is of the same order of magnitude as that obtained in previous theoretical work
using the LDA level of theory and periodic boundary conditions (Demuth et al. ). The
systematic lengthening of the T–O bonds in our calculations with respect to standard exper-
imental bond distances could be interpreted in terms of a correction for thermal motions as
given in Ref. Simoncic and Armbruster (). The average values of the T–O–T bond angles,
presented in Table  of Ref. Dominguez-Soria et al. (), are in good agreement with experi-
ment, within ○, which is also the average difference of our calculated bond angles with respect
to those reported previously byDemuth et al. (). It is worth noting that the isotropic temper-
ature factors provided by X-ray refinements for the zeolite oxygens are all very large (.–.Å)
(Alberti et al. ; Simoncic and Armbruster ), leading to a substantial uncertainty on the
oxygen positions. It was also shown that the averaged bond length and bond angle are rather
insensitive to the Al content of the model. This allowed us to compare our models containing
two Al sites with experimental mordenites which contain about – Al per unit cell.

Al Sites of Na-MOR
Previous Data for Extra-Framework Cations
Experimentally, the positions of the extra-framework cations are not easily determined. More-
over, there is a clear difference between natural and synthetic mordenites, due to the different
natures of their extra-framework cations, as it was demonstrated in the literature (Simoncic
and Armbruster ). Whereas Ca and K cations predominate in natural mordenites, syn-
thetic zeolites are grown using Na cations, leading, presumably, to different locations of the (Al,
cation) pairs; although T remains slightly more populated than the other sites, the distribution
of Al among the possible T sites is much more balanced according to the pattern reported by
Simoncic et al. (Simoncic and Armbruster ) (for an Al content of , one can expect . Al at
T and T, . at T, and  at T). Consequently, the Na cations compensating the Al charges are
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found distributed within two regions, that is, the side pocket and the main channel. Due to the
presence of water, about % of the cations cannot be precisely determined, presumably being
located mainly in the main channel (Simoncic and Armbruster ). The remaining cations
are found either bonded to three oxygens around T in the side pocket or pushed downward
into the m-ring tube.

Since our study concerns Na-MOR models, we focus on comparing our results with the
experimental data provided for synthetic Na-mordenites. Previous theoretical work on Na-
mordenite used periodic models involving eight (Al, Na) pairs per unit cell, and results were
compared with the natural zeolite data available (Demuth et al. ).The choice of occupying
only T andT sites with equal populations wasmade, leading then to a strong concentration of
cations in each cavity, related to the high symmetry of the solid. Therefore, it is hardly possible
to make a direct comparison with this study, concerning the Na positions with respect to the
framework oxygens.

Analysis of the Properties of the Cationic Sites in Na-MOR and Na-MOR
The substitution of one Si by Al in the framework generates one negative charge, which has to
be compensated by the presence of a counterion. The framework negative charge is distributed
among the framework oxygens, more particularly to the four oxygens adjacent to Al. The loca-
tion of the cation thus depends on the local geometry around the T site for large Si/Al ratios,
that is, when the Al sites can be considered isolated. In these conditions, it is well established
that smaller Al–O–Si angles are generally associated with larger electrostatic potentials, that is,
larger attractive interactions with an incoming positive charge (Goursot et al. ). In order to
locate the most probable positions of the counterions, we have used the well-known strategy of
approximating the cation position by searching the largest electrostatic interaction of the system
density with a positive point charge. To do so the molecular electrostatic potential (MEP) was
calculated around the three AlO T, T andT tetrahedra.The contour plots of theseMEPs are
illustrated in Fig. a, b and c of Ref. Dominguez-Soria et al. (), respectively.TheseMEP val-
ues have been calculated for the optimized structures of the corresponding T anions, at the T
and T sites in Na-MOR and at the T and T sites in Na-MOR, respectively. As expected, the
MEPwells in Na-MOR surround the twoO andO in themain channel at T and the twoO
andO at T in the side pocket.The lowest MEPminimum at T is located between the two O
andO (−. eV).The lowest minimum at T is located close to O (−. eV). In Na-MOR,
theMEPs at T are identical to the ones calculated for T in Na-MOR, showing that the two Al
sites are independent. Interestingly, the T site of Na-MOR belongs to both the main channel
and the side pocket.The O andO adjacent oxygens are in the side pocket, whereasO andO
are located in the main channel (> Fig. -). The MEP well at T is essentially located within
the side pocket, with the lowest minimum close to O (−. eV). It is worthwhile to underline
that the MEP values at O and O, that is, in the main channel, are equal to −. and −. eV,
respectively, showing that a compensatingNa+ orH+ at those oxygens is unfavoredwith respect
to O. This result indicates that the counterion at T will be more stable within the side pocket
than in the main channel, at least after dehydration. This conclusion is also valid for protons
(Dominguez-Soria et al. ).

Si substitution by Al leads, as expected, to lengthening the T–O bonds and decreasing the
T–O–Si angles.The average elongation of the T–O bonds reaches . for T, . for T, and
.Å for T.The corresponding T–O–Si averaged decrease is found to be .○, .○, and .○

for T, T, and T, respectively. These changes are in a reasonable range, with a lower varia-
tion for the T site, due to its more rigid environment. The optimized structures of the Na+
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sites were reported in Table  of Ref. Dominguez-Soria et al. (), as well as the Na binding
energies to the framework. From the reported Na–O distances, the cation can be considered as
bi-coordinated at T and T andmono-coordinated at T.This result correlates with the calcu-
lated positions of the MEP minima, as shown in Fig.  of Ref. Dominguez-Soria et al. ().
Interestingly we noticed that the shortest Na–O distances correspond to the smallest Al–O–Si
angles (smaller Al–O–Si angles correlate with more electron density available for cations in the
O lone pair due to better hybridization conditions) (Goursot et al. ).This result can be con-
sidered as the physical reason why the cation at T is located inside the side pocket. Moreover,
this finding allows us to anticipate the preferred oxygen for protonation, that is, O at T, O
at T, and O at T.

The calculatedNa binding energies follow the orderingT>T≈T,which is very compara-
ble with that indicated by theMEPs.This result indicates that electrostatics governs the cation –
framework binding. Moreover, we noticed that the use of the PBE GGA exchange-correlation
functionals does not modify the trend established on the basis of LDA calculations. For sites
T, T, and T, it can be pointed out that the ordering of the Na binding energies reproduces
the (Na, Al) population pattern, reported for synthetic Na-MOR. This result supports the sug-
gestion of Simoncic et al. that there is a synergistic effect (Al, Si) order during the growth of the
solid (Simoncic and Armbruster ). Finally, we remark that the binding properties found at
T and T are different, although both sites belong to the side pocket.This is related to a sum of
different effects, the prominent one being most probably the global electrostatic potential felt
by the cation. For the same reason, T and T present comparable binding properties, despite
their different locations in the zeolite framework. It is important here to stress that these con-
clusions are made on the basis of the existence of two independent Al sites. If several (Al, Na)
pairs are present within the side pockets, the distribution of the cations would most probably
be governed by their mutual repulsion (Campana et al. ).

For isolated sites, we have found that both T and T compensating cations are located in
the side pocket area. In synthetic mordenites, at least two sites in side pockets are substituted
by Al (≈.). Since the binding of Na+ at T is favored with respect to that at T, the three short
Na–O bonds indicated by experiment (to O, O′ and O) can then be related to our calculated
values at T. In the presence of a second Na+ to compensate Al in T, one can expect that
the mutual repulsion of the two cations will modify their position. Taking into account their
relative stability, the experimental evidence that the other cation is pushed downward to the
main cavity (Simoncic and Armbruster ) is supported by our results. Moreover we could
argue further about Na-MOR with  Al per unit cell: this Al content would imply the presence
of three (Na, Al) pairs in the side pockets (presumably two at T and one at T). In this situation,
onemay expect that only two cationswill remain inside the pocket, whereas the third onewill be
pushed outside due to cation–cation repulsion (this argument is verified by classical molecular
mechanics simulations using Cerius associated with the cvff-aug-ionic force field (Demuth
et al. ).

Al Sites of H-MOR
As for the Na-MORmodels, the protonated structures have been optimized, the original proton
positions being those of the respective lowest MEP minima. At T, the MEP well is situated at
equivalent distances from the twoO andO.Whereas theNa+ cation at Twas found at equal
distances from O and O, the optimized position of the proton corresponds to a bonding to
O. In a previous theoretical study of the relative energies of various H-MOR models, the O
protonation was also found to bemore favorable than theO protonation (Li and Jensen ).
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Consistency with the mentioned relationship between Al–O–Si bond angle values and cation
binding energies would lead one to expect comparable proton affinities at O and O. At T
and T, the proton attaches to O and O, respectively. Moreover, the O–H and O–H bonds
are pointing toward the center of the m-ring which contains the T and T site, respectively,
these bonds lying in the m-ring planes. The proton at T can thus be reached by a molecule
being in the main channel as well as coming from the side pocket. In contrast, the O–H bond
at T is pointing toward the center of the side pocket.

We could see that the Al–O bonds which do not connect to a proton are only a little changed
with respect to those of the Na-MOR models, with a maximum elongation of about .Å.
As expected, the Al–O(H) bonds are elongated by about .–.Å with respect to the same
bonds in the Na-MOR models. This effect is due to the covalent character of the OH bond,
which induces the weakening of the Al–O bonds, whereas the Na+-oxygens interactions are
weaker and essentially electrostatic. The presence of the sodium cation, bonded to two O (T,
T) or oneO (T) had thusmuch less impact on the Si–O–Al framework than that of the proton.

In contrast with the Na binding energies, we found that the proton affinity values are more
sensitive to the inclusion of theGGAcorrection, leading to increased valueswith respect to LDA
and to non-significant differences among the three acid sites (less than . eV) if one takes into
account all methodological errors. From these values, we conclude that the sites belonging to
the main channel and to the side pocket display similar proton affinities, showing thus that the
strength of the O–H bond is not dependent on the local structure of the studied sites. It is worth
noting that proton affinities are not related to relative energies of models with different H-sites,
which are reported in previous theoretical work (Demuth et al. ), relative total energies
being essentially related with relative Al site stabilities.

In order to complete the description of the OH bond strength, the vibrational harmonic
frequencies of O–H and O–H in the H-MOR model have been calculated. The values are
, cm− for O–H at T and , cm− for O–H at T, with IR intensities of  and
 kmmol−, respectively. These frequencies, not corrected by any scaling factor, can be con-
sidered similar within the theoretical error bar. This result is consistent with the corresponding
proton affinity found for the proton at O (T) with respect to O (T).They are shifted toward
higher energies by about  cm− with respect to the reported Infra-Red (IR) experimental
asymmetric band at about , cm−. The comparison of our results with X-ray and IR exper-
imental data allows us to suggest that the OH stretching vibration (T site) is not responsible
for the observed low-energy component at , cm−.

Due to the similarity of the model and method used for both vibrations, it is most probable
that the lower energy vibration is related to another Brønsted hydroxyl originated from the
following:

. Proton migration, after dehydration, to another oxygen, especially if both T and T sites
are aluminated, leading to different local interactions.

. The presence of two T and one T aluminated sites in the side pocket (Simoncic and
Armbruster ) will induce different MEP surfaces and different electrostatics.

. The presence of a () defect layer (Simoncic and Armbruster ) that induces geometry
changes in the side pockets which are not reproduced in our models.

We can thus argue that our models with isolated Al sites (Si/Al = ) show that main channel
and side pocket hydroxyls are energetically not different because of their framework environ-
ment.Their different energetical behaviors aremost probably generated by the different content
of framework Al at the -membered ring-channels and in the side pockets obtained after
crystallization.
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Summary

In this work, Na and protonated models of a mordenite zeolite, including Al in T, T and T
crystallographic sites, were studied using all-electron DFT calculations. From the analysis of
the obtained results, the following conclusions can be drawn:

. A good agreement with experimental bond length and bond angle data reported for
synthetic Na-mordenites has been obtained.

. The binding energies of the Na cation follows the same ordering as the populations of Al
T sites, as derived from X-ray measurements on synthetic Na-mordenites; this result shows
the existence of a synergic effect between cations and (Al, Si) order during the growth of the
solid, as suggested experimentally.

. The compensating cation at the T site is found to be more stable in the side pocket than in
the main channel, which questions the assignments of the T-associated proton to a main
channel location.

. The calculated proton affinities at T, T, and T sites are equivalent, indicating that these
Brønsted sites have similar acid strengths. One can thus infer that the different acidic behav-
iors at the different sites (Marie et al. , ) do not originate from different acid
strengths of these OH sites.This leads to the suggestion that the MOR acidic properties are
more related to the electronic structure of the base than to effects of the solid framework.

Thus, for the evaluation of differences in local acidity, the presence of the associated base (CO,
CHCN, NH, etc…) has to be taken into account. Further work in this direction is currently
in progress in our laboratories.

Stability of Giant Fullerenes

Fullerenes are carbon nanostructures formed by the closing of a graphitic sheet with the
needed curvature supplied by intersecting, among a given number of graphitic hexagons, of 
pentagons (Andreoni ; Kadish and Ruoff ).These carbon aggregates have been exper-
imentally known for more than  years (Kroto et al. ) and, consequently, a large number of
works, experimental as well as theoretical, focused on this subject (see, for example, Refs. Seifert
et al. (), Cioslowski (), Boltalina et al. (), Bühl and Hirsch (), and references
therein).

One main reason for the great interest in the study of fullerenes is certainly to be found in
their particularly appealing geometrical form. The best known fullerene is the so-called buck-
minsterfullerene that contains  carbon atoms (C) and is composed of  pentagonal carbon
rings located around the vertices of an icosahedron and  hexagonal carbon rings at the centers
of icosahedral faces (Kroto et al. ).

Larger fullerenes that have an icosahedral symmetry can be constructed (Itoh et al. ;
Kroto and McKay ) as well. These clusters, known as giant fullerenes, can be thought of
as cut-out pieces of graphene that are folded into their final shapes (icosahedrons). This kind
of procedure generates  pentagonal carbon rings situated around vertices of an icosahedron,
while all other carbon rings are hexagonal. Giant or large fullerenes have been the subject of
different theoretical studies in the last years. We address the interested reader to Refs. Dunlap
et al. (), York et al. (), Bakowies et al. (), Scuseria (), Scuseria (), Xu and
Scuseria (), Haddon et al. (), Bates and Scuseria (), Heggie et al. (), Geudtner
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et al. (), Dunlap and Zope (), Shao et al. (), Shao et al. (), Zope et al. (),
and references therein.

Most of these studies were focused either on understanding if the shape of these clusters is
spherical or faceted (Bakowies et al. ; Bates and Scuseria ; Geudtner et al. ; Scuse-
ria , ; Xu and Scuseria ; York et al. ), on calculating their response properties
(Zope et al. ) or testing new algorithms developed for the investigation of large systems
(Dunlap andZope ;Geudtner et al. ).Most previous first-principles theoretical studies
of large fullerenes have been performed either at the Hartree-Fock level of theory using symme-
try restrictions and relatively small basis sets or employing analytic density-functional theory
(Bakowies et al. ; Bates and Scuseria ; Dunlap and Zope ; Haddon et al. ; Heg-
gie et al. ; Scuseria , ; Shao et al. , ; Xu and Scuseria ; York et al. ;
Zope et al. ).

In a recent study we have performed state-of-the-art calculations on the large C, C,
C, and C fullerenes by employing the linear combination of Gaussian-type orbitals den-
sity functional theory (LCGTO-DFT) approach (Calaminici et al. ). The structures of
these clusters were fully optimized without any symmetry constraints. This work represents
the first systematic study on large fullerenes based on non-symmetry, adapted first-principles
calculations, and it demonstrates the capability of ADFT for energy calculations and structure
optimizations of large scale structures without any symmetry constraint.

In the next two sections, the computational details will be presented and themost important
results we have obtained in terms of structural changes, of the evolution of the bond lengths and
of the calculated binding energies, will be reviewed.

Computational Details

All calculations were performed using the DFT program deMonk (Köster et al. ). The
exchange-correlation potential was numerically integrated on an adaptive grid (Köster et al.
a).The grid accuracywas set to − in all calculations.TheCoulomb energywas calculated
by the variational fitting procedure proposed by Dunlap et al. () andMintmire and Dunlap
(). The calculation of the exchange-correlation energy was performed with the auxiliary
function density (Köster et al. b), that is, auxiliary density functional theory was used.The
structure optimizations were performed with the local density approximation (LDA) employ-
ing the Dirac exchange functional (Dirac ) in combination with the correlation functional
from Vosko, Wilk, and Nusair (VWN) (Vosko et al. ). DFT optimized double zeta plus
valence polarization (DZVP) all-electron basis sets optimized for local functionals (Godbout
et al. ) were employed. For the structure optimization a quasi-Newton method in inter-
nal redundant coordinates with analytic energy gradients was used (Reveles and Köster ).
The geometry optimizations were performed using the parallel version of the deMonk code
(Calaminici et al. ; Geudtner et al. ). The convergence was based on the Cartesian
gradient and displacement vectors with a threshold of − and − a.u., respectively.

The diamond and graphene calculations were performed in the same theoretical framework
using the cyclic cluster model (CCM) (Janetzko et al. ). The obtained energies using the
CCM are in the range of other calculated cohesive energies for graphene (Dunlap and Boettger
; Trickey et al. ). Because the fullerenes and graphene calculations are performedwithin
the same theoretical framework, the relative energy differences found here are reliable.
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Results and Discussion

TheDFT optimized singlet structures of C, C, C, and C are depicted in > Fig. -.
These structures have been fully optimized at the all-electron level using DZVP basis sets in
combination with the VWN functional.

A long standing discussion in the literature addresses the question of whether giant
fullerenes prefer a faceted or a spherical shape. This question was raised considering pictures
obtained by transmission electron microscopy (TEM) that have shown evidence of possible
spheroidal structures in concentric carbon particles (Iijima ; Ugarte , ).

Using a divide-and-conquer method for density functional calculations the structure and
stability of C were studied and the most stable structure was claimed to be highly spherical
(York et al. ). However, this result was not confirmed by any successive theoretical work that
have clearly shown evidence of a faceted shape for this fullerene (Bakowies et al. ; Bates and
Scuseria ; Dunlap et al. ; Haddon et al. ; Scuseria , ; Xu and Scuseria ).
Depending on the viewing axis, simulated TEM of icosahedral fullerenes can provide either
images with spherical or with faceted shapes (Scuseria ). In addition, an explanation of why
experimental results showed rounder shapes for large fullerenes was also given (Scuseria ).

As > Fig. - shows our first-principles based structure optimizations predict that larger
fullerenes, C, C, andC, prefer a faceted shape.Moreover, even for the smallest fullerene
here studied, C, there is clear evidence that the faceted shape is preferred over a spher-
ical shape if first-principles all-electron optimizations without any symmetry restriction are
performed (see > Fig. -). Details about the timing of these calculations are reported in Ref.

C180 C240

C320 C540

⊡ Fig. -
Optimized structure of C, C, C and C fullerenes. The calculations have been performed
with the VWN functional in combination with DZVP basis sets
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Geudtner et al. () where it is shown that the optimization of such large fullerenes is feasible
within a few days on a parallel architecture with – cores.

We noticed that the obtained results are in agreement with most of the previous
reported theoretical studies (Bakowies et al. ; Bates and Scuseria ; Dunlap et al. ;
Haddon et al. ; Scuseria , ; Xu and Scuseria ).

In order to gain more insight into the structural changes of these systems as the number
of carbon atoms increases, a detailed analysis of the bond length evolution was performed. In
> Fig. -, the normalized number of bonds for C, C, C, and C are plotted versus
the bond length.The dashed line at . Å represents the graphene bond length obtained from
the periodic (CCM) deMonk calculation.

Most obvious from this figure is the difference of C to all other fullerenes. In fact, whereas
usually a discrete distribution of bond lengths is found, in C, a wide, in some ranges almost
continuous bond length distribution is observed. This clearly indicates a break in the expected
high symmetry of the system. Our studies show that the C fullerene possesses a ground
state potential energy surface (PES) of higher multiplicity, most likely either triplet or quintet.
Further test calculations indicated that for this fullerene also in the cases of triplet and quintet
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⊡ Fig. -
Normalized number of bonds for C, C, C, and C versus the bond lengths (in Å)
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PESs the continuous bond length distribution observed for the singlet PES persists. Of course,
only non-symmetry-adapted optimizations can lead to such a result. To the best of our knowl-
edge this symmetry breaking in larger fullerenes due to their electronic structure has never been
observed in previous calculations. As > Fig. - shows the observed symmetry breaking does
not alter the global shape of the giant fullerene.

For the other systems, C, C, and C, the expected discrete bond length distribution
is obtained, indicating that the symmetry of the electronic structuresmatcheswith the expected
geometrical symmetry. In these systems, the number of different bond lengths increases with
system size and an accumulation of bond lengths around the graphene bond length is observed
(> Fig. -).

More surprising is the trend that the longest bond length in the cluster shortenswith increas-
ing cluster size. This indicates that delocalization increases with cluster size despite the global
building pattern, that is, the appearance of  pentagons.

With the aim of guiding future desirable experiments on large fullerenes and to gain more
information about their stability we have also explored the behavior of the binding energy of the
studied fullerenes with increasing fullerene size. The results of the uncorrected binding energy
(in eV) per carbon atom obtained with the VWN functional have been illustrated in Fig.  of
Ref. Calaminici et al. () showing that the binding energy increases monotonically with the
increase in the number of carbon atoms. This indicates that the large fullerenes become more
and more stable with increasing size. However, the increase turned out to be very moderate.
We have also included the basis set superposition error (BSSE) in the calculation of the binding
energies. The inclusion of the BSSE decreases the calculated binding energies of each studied
fullerene by . eV but without altering the trend (Calaminici et al. ).

From the comparison of the CCM calculations we found that the calculated binding energy
of C of . eV is very close to the cohesive energy of diamond (. eV). This result indi-
cates that C has a similar binding energy to diamond which fuels the hope that such giant
fullerenes could indeed be prepared. However, the binding energy of even the largest studied
fullerene, C, is still far away from the corresponding value in graphene which was calculated
to be . eV (Janetzko et al. ).

Summary

In this section, the results obtained from state of-the-art density functional theory calculations
performed on large fullerenes, such as C, C, C, and C, have been reviewed.The study
was carried out with all electron basis sets, and all structures were fully optimized without any
symmetry restriction. The results obtained can be summarized as follows:
. This work confirms that for all large fullerenes studied here a faceted shape is preferred over

the spherical shape.
. The analysis of the bond length evolution reveals for C a qualitatively different pattern

than for the other fullerenes. The most likely explanation for this difference is a symmetry
breaking in the electronic structure of this large fullerene.

. The shortening of the longest bond length with increasing cluster size indicates that
delocalization increases with cluster size.

. The calculated binding energies are in the range of diamond but considerably below the
graphene value.Thus, even giant fullerenes as those reviewed in this section are only meta-
stable.
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Conclusion

This chapter highlights recent developments in auxiliary density functional theory (ADFT) and
their implementation in deMonk. The simplifications associated with ADFT permit an effi-
cient parallel code structure that is suitable for research applications in the nano-regime with
chemical accuracy. The presented Born–Oppenheimer molecular dynamics simulation shows
that simulation times on the nanosecond time scale can be reached with ADFT. As the here pre-
sented applications show this opens new and exciting perspectives for computational chemistry
and material simulations with first-principle methods.

The development of ADFT in deMonk is also a very educative example for the interplay of
Theoretical Chemistry and Computer Science. The simplifications of the Kohn–Sham method
by employing an atom-centered auxiliary density for the calculation of the Kohn–Sham poten-
tial yields simple and very efficient parallel algorithms. A typical example is the SCF acceleration
by theMinMax procedure. Because only fitting vectors are involved it can be applied to systems
with hundreds of atoms like the here discussed zeolites and fullerenes. Another example is the
formulation of the non-iterative auxiliary density perturbation theory (ADPT) that substitutes
the computationally cumbersome CPKS method in ADFT.

The increased use of ADFT in the deMon Developers community over the last years has
considerably enhanced our understanding of this fitting approach. While the present authors
are responsible for errors or omissions in this small chapter, the credit for the advances in ADFT
and ADPT is shared with a much wider group cited in the references here and elsewhere.
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Abstract: This chapter reviews most of the widely used non-relativistic quantum chemistry
program packages. Considering that information about availability and capabilities of the free
quantum chemistry programs is more limited than that of the commercial ones, the authors
concentrated on the free programs. More specifically, the reviewed programs are free for the
academic community. Features of these programs are described in detail. The capabilities of
each free program can generally be categorized into five fields: independent electron model;
electron correlation treatment; excited state calculation; nuclear dynamics including gradient
and hessian; and parallel computation. Examples of input files for theMøller–Plesset calculation
of formaldehyde are presented for most of the free programs to illustrate how to create the input
files.Themain contributors of each free program and their institutions are also introduced, with
a brief history of programdevelopment if available. All the key references of the cited algorithms
and the hyperlinks of the home page of each program (both free and commercial) are given in
this review for the interested readers. As the most important information of every cited free
program’s documentation has been extracted here, it is appropriate to consider this chapter to
be the manual of manuals.

Introduction

Computational quantum chemistry has been experiencing recently a period of tremendous
growth. As the capabilities of computer hardware increased, so did the appetites of researchers
for modeling tools. Many computer packages became available, both commercially and as free
programs, the latter usually requiring a simple registration procedure to obtain and use the code.
The free access is usually restricted to researchers from academic institutions and the programs
are sometimes unsupported; however, an associated users’ discussion forum often accompanies
the program. In this chapter, we will review the software that is currently available, focusing on
packages that are familiar to the reviewers. In addition to outlining the unique capabilities of
each program, we added the URL links to the home pages to allow the readers to follow the
latest developments of each code.

The programs that use only the density functional theory and the programs for relativistic
calculations at the level of Dirac theory and beyond are reviewed in other chapters.

All the reviewed programs carry out fundamental tasks of a computational chemist or a
computational molecular physicist: calculation of energy for various hamiltonians; evaluation
of gradients of energy (needed to locate stationary points on the potential energy surface); eval-
uation of the energy hessian (required to analyze the character of the located stationary point,
identify local minima and saddle points, and perform vibrational frequency calculation); and
evaluation of basic properties (population analysis, dipole moments). The components of the
programs include basis set libraries and pseudopotentials.

At the Hartree-Fock level (Hartree ; Fock ), the energies for closed-shell systems
are evaluated using the restricted Hartree-Fock (RHF) method (Hall and Lennard-Jones ;
Roothaan ). For the open-shell molecules, there are several methods that are available
in most programs: the unrestricted Hartree-Fock (UHF) method (Pople and Nesbet ),
several variants of the restricted open-shell Hartree-Fock (ROHF) method (Hsu et al. ;
McWeeny and Diercksen ), and the generalized valence bond (GVB) method (Bobrowicz
and Schaefer ).
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Thewavefunction based on a single-configurationHartree-Fockmethod is often inadequate
to describe bonding in a molecule, and in such a case several multi-configuration methods are
used; the approach is usually called multi-configuration self-consistent field (MCSCF) (Olsen
et al. ; Roos , ; Schmidt and Gordon ; Shepard ; Werner ), and
its practical implementations are the full orbital reaction space (FORS) (Ruedenberg et al.
a, b, c) and complete active space (CAS) (Roos ).

Beyond Hartree-Fock, the energies (and wavefunctions) may be improved at several
levels: various orders of the perturbation method at theMøller–Plesset level () (MP, MP,
MP); for open-shell systems we could use either unrestricted MP (Pople et al. ) or one of
several variants of the perturbation method based on the ROHF wavefunction: the Z-averaged
perturbation theory (ZAPT) (Lee and Jayatilaka ; Lee et al. ) and RMP (Knowles et al.
; Lauderdale et al. ); configuration interaction (CI) method (Brooks and Schaefer ;
Ivanic and Ruedenberg ).

Very accurate energiesmay be obtained using the coupled-cluster theory (CC) (Paldus ;
Shavitt and Bartlett ).

Excited states may be studied using the general post-Hartree-Fock methods listed
above, or some specialized techniques, such as configuration interaction with single
substitutions (CIS) (Foresman et al. ), time-dependent density functional theory
(TDDFT) (Dreuw and Head-Gordon ; Elliott et al. ), equations-of-motion coupled
cluster (EOM-CC) (Kowalski and Piecuch ; Włoch et al. ).

Solvent effects may be treated using several models: self-consistent reaction field
(SCRF) (Karelson et al. , ; Kirkwood ; Tapia and Goscinski ), polariz-
able continuum model (PCM) (Cammi and Tomasi ; Miertuš et al. ; Tomasi and
Persico ; Tomasi et al. ), surface and simulation of volume polarization for elec-
trostatics (SS(V)PE) (Chipman , , ), and conductor-like screening model
(COSMO) (Baldridge and Klamt ; Klamt ; Klamt and Schüürmann ).

Even though the programs described in this chapter are referred to as “non-relativistic” (i.e.,
using single-componentwavefunction), for molecules containing heavy atoms it is necessary to
include at least scalar relativistic effects. A popular method of adding relativistic corrections is
based on the formalism developed by Douglas and Kroll () and by Hess (, ), and
is usually referred to as DKHn (where n denotes the order of the method).

Some scalar relativistic effects are included implicitly in calculations if pseudopotentials
for heavy atoms are used to mimic the presence of core electrons; there are several fami-
lies of pseudopotentials available: the effective core potentials (ECP) (Cundari and Stevens
; Hay and Wadt ; Kahn et al. ; Stevens et al. ), energy-adjusted pseudopoten-
tials (Cao and Dolg ; Dolg ; Peterson ; Peterson et al. ), averaged relativistic
effective potentials (AREP) (Hurley et al. ; LaJohn et al. ; Ross et al. ), model
core potentials (MCP) (Klobukowski et al. ), and ab initio model potentials (AIMP)
(Huzinaga et al. ).

For very large molecular systems several programs offer semiempirical hamiltonians (Stew-
art ), includingModifiedNeglect of Differential Overlap (MNDO) (Dewar andThiel ),
Semi-Ab initio Model  (SAM) (Dewar et al. ), Austin Model  (AM) (Dewar et al. ),
Parametric Method  (PM) (Stewart ), and Parametric Method  (PM) (Stewart )
(the PM parameterization is available in the MOPAC program which is freely available
to academics, see http://openmopac.net/downloads.html). Zerner’s modification of the Inter-
mediate Neglect of Differential Overlap approach (ZINDO) (Ridley and Zerner ) (see
also Zerner ) is available in the ArgusLab program http://www.arguslab.com/index.htm.

http://openmopac.net/downloads.html
http://www.arguslab.com/index.htm
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The present Guide will focus on those programs that are freely available to academic com-
munity. In describing the capabilities of the programs we heavily borrowed from the available
documentation. Commercial programs for ab initio computational chemistry (including sev-
eral that employ semiempiricalmethods)will bementioned only very briefly, guiding the reader
to relevant home pages on the Internet.

Several collections of references to quantum chemistry software may be found on the
Internet http://en.wikipedia.org/wiki/Quantum_chemistry_computer_programs.

Free Software

Free access to computer programs discussed in the present section is sometimes restricted to
academic researchers. Please consult the Internet links for each program for specific restrictions.

GAMESS-US

GAMESS-US (GAMESS = General Atomic and Molecular Electronic Structure System) is one
of the early programs for the large-scale ab initio calculations in the public domain (Gordon
and Schmidt ; Schmidt et al. ). The origins of GAMESS-US go back to the National
Resources forComputations inChemistry (NRCC),where the originalGAMESSwas assembled
before  (Dupuis et al. ). Since  the development of GAMESS-US was carried out in
the research groupofMarkGordon, first atNorthDakota State and then at Iowa StateUniversity,
with several research groups across the world making their contributions. The code is a good
illustration of the care and effort that go into the development of anymodern ab initio code: the
October  (Release ) version has , lines of code and , lines of comments.

The capabilities of GAMESS-US are listed below:

• Analytic gradients and hessians for RHF, ROHF, UHF, GVB, and MCSCF wavefunctions
that are used to locate stationary points on the potential energy surface and identify their
character (local minimum or transition state).

• MP energy and gradients for RHF, ROHF, and UHF wavefunctions.
• CI energy for very general CI excitation schemes (Ivanic a, b; Ivanic and Ruedenberg

).
• Several methods of evaluating the CC energy, such as CCwith single and double excitations

(CCSD), with perturbative triples excitations (CCSD(T)), and including the latest com-
pletely renormalized (CR) CR-CC(,) method (Piecuch and Włoch ; Piecuch et al.
); numerical gradients for the CC methods are available.

• Excited states may be treated using the CIS, TDDFT, multi-configurational quasi-
degenerate perturbation theory (MCQDPT) (Nakano a, b), and equation-of-motion
coupled-cluster (EOM-CC) methodologies.

• There are many ubiquitous density functionals available.
• Extensive basis set libraries.
• Pseudopotentials: both effective core potentials and model core potentials are available.
• The intrinsic reaction coordinatemethod allows for checking whether the path from a tran-

sition state connects the two minima that correspond to the required reactant and product.
• Anharmonic vibrational analysis via the vibrational self-consistent field (VSCF) method

(Chaban et al. ).

http://en.wikipedia.org/wiki/Quantum_chemistry_computer_programs
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• Many molecular properties may be calculated (static polarizability and hyperpolarizabil-
ity; frequency-dependent polarizability; electric moments; electric field and electric field
gradient).

• Solvent effects may be studied via continuum solvation methods using effective fragment
potentials (EFP) (Adamovic et al. ; Day et al. ; Gordon et al. ; Jensen et al.
), polarizable continuummodel (PCM), surface and simulation of volume polarization
for electrostatics (SS(V)PE), conductor-like screeningmodel (COSMO), and self-consistent
reaction field (SCRF).

• A unique feature of the program is its ability to carry out all-electron calculations based on
the FragmentMolecular Orbital (FMO) method (Fedorov and Kitaura , ).

• Several possibilities for carrying out multi-reference perturbation calculations; spin-orbit
coupling may be treated as a perturbation.

• For spin-orbit coupling CI wave functions, two-component natural orbitals (natural
spinors) may be formed and analyzed (Zeng et al. a, b)

• Scalar relativistic effects may be included at the levels of DKH, DKH, normalized elim-
ination of small components (NESC) (Dyall ), and relativistic elimination of small
components (RESC) (Nakajima and Hirao ) methods.

• Semiempirical Hamiltonians (AM, PM, and MNDO) are available.

The input style is illustrated below for the MP energy calculation for formaldehyde HCO
at the experimental geometry r(CH) = . Å, r(CO) = . Å,∠(HCH) = .○. The basis
set is the correlation consistent cc-pVDZ basis (Dunning ), used in the form of spherical
Gaussian functions. Cv point group symmetry is used. In this example, the geometric struc-
ture of formaldehyde is defined in terms of internal coordinates (bond lengths, bond angles,
and dihedral angles) in the representation known as Z-matrix. For HCO, the first line in
the Z-matrix definition specifies the starting atom, in this case oxygen O. The second line,
C 1 1.208, defines the second atom, carbon, which is connected to the first atomand the CO
bond length equals . Å. The first hydrogen atom is defined on the third line, H 2 1.116
1 121.75; this H atom is connected to the second atom (carbon), the CH bond length equals
. Å, and the bond angle H–C()–O() equals .○. Finally, the fourth line, H 2 1.116
1 121.75 3 180.0, defines the second hydrogen atom, which is connected to the second
atom (C) with the CH bond length of . Å, the bond angle H–C()–O() of .○, and the
dihedral angle H()–C()–O()–H() of .○.

$contrl mplevl=2 runtyp=energy coord=zmt ispher=1 $end
$basis gbasis=ccd $end
$data
H2CO at experimental geometry (CRC, p. 9-36)
cnv 2

O
C 1 1.208
H 2 1.116 1 121.75
H 2 1.116 1 121.75 3 180.0
$end

The home page of the program is http://www.msg.ameslab.gov/GAMESS/.

http://www.msg.ameslab.gov/GAMESS/
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Firefly

Formerly known as PC-GAMESS, the Firefly was developed on the basis of GAMESS-US,
ending with the  version. The program has been extensively modified, with large sec-
tions written to increase the efficiency of the program. The program is available as binaries for
Windows-based computers as well as the Macintosh computers. The development of the code
took place at the lab of A. A. Granovsky (Moscow State University). Some interesting features
of the program are:

• TheMøller–Plesset energy corrections may be calculated up to the fourth order (MP,MP,
and MP).

• Compression of files allows for very large calculations to be carried out; the compression is
accomplished via packing of integrals, matrix elements, and their indices reduces file size
and input/output (I/O) time.

• Faster MCQDPT algorithm and availability of XMCQDPT implementation.
• Integral code allows for fast evaluation of generally-contracted basis sets (Raffenetti ),

such as atomic natural orbitals (ANO) (Almlöf ).

Sample input file is illustrated below for the same MP energy calculation. At present, the
program’s internal library does not have the cc-pVDZ basis set; in order to avoid the explicit
(and thus rather lengthy) definition of this basis, the double-zeta basis set of Dunning and
Hay (Dunning and Hay ) is used instead. This input file also illustrates an alternative defi-
nition of the geometric structure of a molecule: in terms of Cartesian coordinates (according to
Firefly’s defaults, in Ångströms), with only the symmetry-nonequivalent atoms defined. Each
line defining atomic Cartesian coordinates specifies also the atom name and its nuclear charge.

$contrl mplevl=2 runtyp=energy d5=1 $end
$basis gbasis=DH $end
$data
H2CO at experimental geometry (CRC, p. 9-36)
cnv 2

O 8.0 0.0000000000 0.0000000000 -0.6036077039
C 6.0 0.0000000000 0.0000000000 0.6043922961
H 1.0 0.9489930831 0.0000000000 1.1916470349
$end

Home page http://classic.chem.msu.su/gran/gamess/index.html.

GAMESS-UK

This code also originated from the NRCC code (Dupuis et al. ) and has been extensively
modified by the Daresbury Laboratory (UK) group that includedM. F. Guest, J. H. van Lenthe,
J. Kendrick, K. Schöffel, P. Sherwood, and R. J. Harrison. A good summary of the code’s features
has been published (Guest et al. ). A summary of the program’s capabilities is given below:

• Gradients and hessians for many energies (RHF, ROHF, UHF, MCSCF, CASSCF).
• Energies of the excited states and corresponding transition moments may be calculated

using the multi-reference CI method (MR-DCI). For the studies of electronically excited

http://classic.chem.msu.su/gran/gamess/index.html
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states, direct random-phase approximation (RPA) andmulticonfigurational linear response
(MCLR) (Fuchs et al. ) excitation energies and oscillator strengths are also available.

• Ionization potentials may be calculated using the Green’s function methodology (Ceder-
baum and Domcke ) and the two-particle-hole Tamm-Dancoff method (Schirmer and
Cederbaum ).

• MP (energies and gradients) and MP (energies).
• Multi-reference second order perturbation method (CASPT method); multi-reference

MP method (MR-MP) is also available.
• CCSD and CCSD(T) energies.
• Many density functionals for the density functional theory calculations.
• Many properties may be evaluated, among them atomic charges (derived from Mulliken

and Löwdin population analysis, natural population analysis (Read and Weinhold ;
Read et al. ), and electrostatic potentials), polarizabilities, hyperpolarizabilities, and
magnetizabilities.

• Semiempirical Hamiltonians (MNDO, MINDO/, AM, PM, PM, and MNDO-d) are
available.

• Pseudopotentials (Hay and Wadt ; Roy et al. ) may be employed, with many
pseudopotentials included in the library.

• The effects of the solvent may be modeled using the direct reaction field (DRF)
method (de Vries et al. ; Duijnen and de Vries ).

• Relativistic effects may be treated using the zeroth-order regular approximation
(ZORA) (Faas et al. ).

Sample input file for the HCO calculation at the MP/cc-pVDZ level of theory is shown
below; notice that the symmetry of the molecule is determined by the program.

title
H2CO at experimental geometry (CRC, p. 9-36)
zmatrix angstrom
O
C 1 1.208
H 2 1.116 1 121.75
H 2 1.116 1 121.75 3 180.0
end
harmonic
basis cc-pVDZ
scftype mp2
enter

Home page is http://www.cfs.dl.ac.uk/gamess-uk/index.shtml.

Dalton

To quote from the authors of the program, “the Dalton program system is designed to allow
convenient, automated determination of a large number of molecular properties based on
an HF, density functional theory (DFT), MP, coupled cluster, or MCSCF reference wave func-
tion.” Given the great flexibility of Dalton’s computational capabilities, the authors describe it as

http://www.cfs.dl.ac.uk/gamess-uk/index.shtml
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directed at experts in ab initio calculations. The program has been developed at the University
of Oslo.

A very short list ofDalton’s capabilities is shown below; for those interested in the evaluation
of molecular properties we suggest that Dalton’s manual be consulted (http://www.kjemi.uio.
no/software/dalton/dalton.html).

• Complete Active Space (CAS) or Restricted Active Space (RAS) wave functions.
• Calculation of excited states and core hole states.
• Several coupled-cluster (CC) wave functions.
• MP and explicitly correlated R-MP triples models.
• Dalton can calculate a large variety of molecular properties at many levels of theory: linear,

quadratic, and cubic frequency-dependent response properties.
• Linear second-order polarization propagator approach (SOPPA) (Nielsen et al. ).
• NMR properties (magnetizabilities, nuclear shieldings, and all contributions to nuclear

spin-spin coupling constants).
• EPR properties (electronic g-tensor, hyperfine coupling tensor, and zero-field splitting

tensor).
• Circular dichroism properties (electronic circular dichroism, vibrational circular dichro-

ism, and Raman optical activity).
• Gauge-origin independent magnetic properties.
• Solvent effects may be modeled via the self-consistent reaction field (SCRF) to arbitrary

order in the multipole expansion.
• First-order properties for ground states: dipole and quadrupole moments, secondmoments

of the electronic charge distribution and electric field gradients at the nuclei, as well as
scalar-relativistic one-electron corrections (Darwin and mass velocity).

• Relativistic two-electron Darwin correction to the ground state.
• Excitation energies may be calculated for several levels of the coupled-cluster wavefunc-

tions.
• Density functional theory.
• Effective core potentials.

Input file for the calculation of the MP/cc-pVDZ energy of HCO is shown below; the
symmetry of the molecule is determined by the program.

BASIS
cc-pVDZ
Z-matrix input

4 0
ZMAT
O 1 8.0
C 2 1 1.208 6.0
H 3 2 1.116 1 121.75 1.0
H 4 2 1.116 1 121.75 3 180.0 0 1.0

**DALTON INPUT
.RUN WAVE FUNCTION
**WAVE FUNCTIONS

http://www.kjemi.uio.no/software/dalton/dalton.html
http://www.kjemi.uio.no/software/dalton/dalton.html
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.HF

.MP2
*MP2 INPUT
.MP2 FROZEN
2 0 0 0
**END OF INPUT

Home page http://www.kjemi.uio.no/software/dalton/dalton.html.

NWChem

The program has been developed in the Molecular Sciences Software Group at the Pacific
Northwest National Laboratory (Richland, WA, USA). The authors of the program state that
“NWChem is a computational chemistry package designed to run on high-performance paral-
lel supercomputers. Code capabilities include the calculation of molecular electronic energies
and analytic gradients using Hartree-Fock self-consistent field (SCF) theory, Gaussian density
function theory (DFT), and second-order perturbation theory. For all methods, geometry opti-
mization is available to determine energyminima and transition states.” Furthermore, they add
that “Classical molecular dynamics capabilities provide for the simulation of macromolecules
and solutions, including the computation of free energies using a variety of force fields.” Details
of the NWChem program system were described (Kendall et al. ).

Features of the program include:

• Spin-orbit density functional theory.
• Electron correlation energies may be calculated using many methods, including linearized

coupled-cluster doubles (LCCD), coupled-cluster doubles (CCD), linearized coupled-
cluster singles and doubles (LCCSD), coupled-cluster singles and doubles (CCSD), coupled-
cluster singles, doubles, and triples (CCSDT), coupled-cluster singles, doubles, and active
triples (CCSDTA), coupled-cluster singles, doubles, triples, and quadruples (CCSDTQ),
CCSD and perturbative connected triples (CCSD(T)), CCSD and perturbative connected
triples (CCSD[T]), completely renormalized CCSD[T] method (CR-CCSD[T]), completely
renormalized CCSD(T) method (CR-CCSD(T)), CCSD and perturbative locally renor-
malized CCSD(T) correction (LR-CCSD(T)), quadratic configuration interaction singles
and doubles (QCISD), configuration interaction singles and doubles (CISD), configuration
interaction singles, doubles, and triples (CISDT), configuration interaction singles, dou-
bles, triples, and quadruples (CISDTQ), second-, third-, and fourth-order Møller–Plesset
perturbation theory (MP, MP, and MP).

• Multi-configuration SCF wavefunctions.
• Selected configuration interaction with perturbation correction.
• Effective core potentials that allow to include both the scalar relativistic effects and spin-

orbit effects (Pacios and Christiansen ).
• Relativistic corrections may be added at the levels of DKH and ZORA.
• Solvent effects may be described using COSMO (Baldridge and Klamt ; Klamt ;

Klamt and Schüürmann ).
• For the studies of excited states, the CIS, time-dependent Hartree-Fock (TDHF), and

TDDFT methods are available.

http://www.kjemi.uio.no/software/dalton/dalton.html
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• Anharmonic vibrational analysis may be carried out using the VSCF method (Chaban et al.
).

Sample input file for the HCO calculation at the MP/cc-pVDZ level of theory is shown
below; the symmetry of the molecule is determined by the program.The Cartesian coordinates
of all atoms must be defined, and the atomic symbol must be used as atom name, eliminating
the need to define nuclear charges.

echo
start h2co
geometry units angstrom

O 0.00000 0.00000 -0.60361
C 0.00000 0.00000 0.60439
H 0.94899 0.00000 1.19165
H -0.94899 0.00000 1.19165

end
basis

O library cc-pvdz
C library cc-pvdz
H library cc-pvdz

end
task mp2 energy
mp2
freeze core 2
end

Home page http://www.emsl.pnl.gov/capabilities/computing/nwchem/.

ORCA

The principal developer of the code has been Frank Neese, first at the Max Planck Institute
for Bioinorganic Chemistry in Mülheim and then at the University of Bonn. In the words of
the program’s author, “ORCA is a flexible, efficient and easy-to-use general purpose tool for
quantumchemistrywith specific emphasis on spectroscopic properties of open-shellmolecules.
It features a wide variety of standard quantum chemical methods ranging from semiempirical
methods to DFT to single- and multireference correlated ab initio methods. It can also treat
environmental and relativistic effects.” An abbreviated list of program’s features includes:

• Calculation of MP and RI-MP energies and gradients.
• Coupled cluster methods.
• CASSCF wavefunction.
• Scalar relativistic corrections at the levels of Douglas-Kroll, ZORA, and the infinite-order

relativistic approximation (IORA) (Dyall and van Lenthe ).
• Excited states energies may be calculated using the CIS, CIS(D), and TDDFT methods.
• Multi-reference CI and perturbation theory.
• Many properties may be calculated, including spin-orbit coupling, hyperfine and

quadrupole couplings, the EPR g-tensor, and zero-field splitting.

http://www.emsl.pnl.gov/capabilities/computing/nwchem/


Guide to Programs for Non-relativistic Quantum Chemistry Calculations  

Sample input file for calculation of theMP/cc-pVDZ energy of HCO is shown below (the
symmetry of the molecule is determined by the program).

! MP2 RHF cc-pVDZ
* int 0 1
C(1) 0 0 0 0.00 0.0 0.00
O(2) 1 0 0 1.208 0.0 0.00
H(3) 1 2 0 1.116 121.75 0.00
H(3) 1 2 3 1.116 121.75 180.00
*

Home page http://www.thch.uni-bonn.de/tc/orca/.

PSI

In the description of the designers of the code, C.D. Sherrill, T.D. Crawford, and E.F. Valeev
(from Georgia Institute of Technology and Virginia Tech), “the PSI suite of quantum chem-
ical programs is designed for efficient, high-accuracy calculations of properties of small to
medium-sized molecules. The package’s current capabilities include a variety of Hartree-Fock,
coupled cluster, complete-active-space self-consistent-field, and multi-reference configuration
interactionmodels.” PSI, written in the programming languages C and C++ (rather than in the
Fortran language, which has been traditionally used in computational quantum chemistry), was
recently reviewed (Crawford et al. ).

Some interesting features of the program are:

• Arbitrarily high angular momentum levels in integrals and derivative integrals (up to
m-type functions have been tested).

• Coupled cluster methods including CC, CCSD, CCSD(T), and CC with RHF, ROHF,
UHF, and Brueckner orbitals.

• Determinant-based CI including CASSCF, RAS-CI, and full CI.
• MP and MP-R methods.
• Methods for excited state: CIS, CIS(D), random phase approximation (RPA), EOM-CCSD,

and CC.
• Analytic energy gradients for CCSD based on RHF, ROHF, and UHF orbitals.
• Coupled cluster linear response methods for static and dynamic polarizabilities and optical

rotation.
• Diagonal Born–Oppenheimer correction (DBOC) for RHF, ROHF, UHF, and CI wave

functions.

Sample input file for the HCO calculation at the MP/cc-pVDZ level of theory is shown
below (symmetry of the molecule is determined by the program).

psi:(
label = "H2CO at experimental geometry (CRC, p. 9-36)"
wfn = mp2
reference = rhf
basis = "cc-pVDZ"
zmat = (
O
C 1 1.208

http://www.thch.uni-bonn.de/tc/orca/
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H 2 1.116 1 121.75
H 2 1.116 1 121.75 3 180.0

)
)

Home page http://www.psicode.org/.

ACES II

The program ACES II (Advanced Concepts in Electronic Structure) was developed in the
research group of R.J Bartlett at the QuantumTheory Project (QTP) of the University of Florida
in Gainesville.The program’s backbonewas written in the early s and has undergone exten-
sive developments since that time. ACES II focused on the coupled-cluster theory (Paldus 
and its applications (Bartlett ; Bartlett and Musiał ).
Single point energy calculations may be carried out for the following cases:

• Independent particle models RHF, UHF, and ROHF.
• Correlation methods utilizing RHF and UHF reference determinants, including MBPT(),

MBPT(), SDQ-MBPT(), MBPT(), CCD, CCSD, CCSD(T), CCSD+TQ*(CCSD),
CCSD(TQ), CCSDT- CCSDT-, CCSDT-, QCISD, QCISD(T), QCISD(TQ), UCCS(),
UCCSD(), CID, and CISD.

• Correlation methods that can use ROHF reference determinants include MBPT(), CCSD,
CCSDT, CCSD(T), CCSDT-, CCSDT-, and CCSDT-.

• Correlation methods that can use quasi-restricted Hartree-Fock (QRHF) or Brueckner
orbital reference determinants include CCSD, CCSDT, CCSD(T), CCSDT-, CCSDT-, and
CCSDT-.

• Two-determinant CCSD calculations for open-shell singlet state.
• Equation-of-motion CCSD calculation of dynamic polarizabilities and of NMR spin-spin

coupling constants.
• Equation-of-motion CCSD calculations of excitation energies.
• Kohn-Sham DFT density functional methods combined with a wide selection of density

functionals.

Analytical gradients may be calculated for:

• Independent particle models RHF, UHF, and ROHF.
• Correlation methods utilizing RHF and UHF reference determinants, including MBPT(),

MBPT(), SDQ-MBPT(), MBPT(), CCD, CCSD, CCSD+T(CCSD), CCSD(T), CCSDT-,
CCSDT-, CCSDT-, QCISD, QCISD(T), UCC(), UCCSD(), CID, and CISD.

• Correlation methods that can utilize ROHF reference determinants, including MBPT(),
CCSD, and CCSD(T).

• Correlation methods that can utilize QRHF reference determinants, including CCSD.
• Two-determinant CCSD calculations for open-shell singlet state based on QRHF orbitals.
• EOM-CCSD for excited states.
• TD-CCSD analytical derivatives.

Analytical hessians may be carried out for the independent particle models RHF,
UHF, and ROHF.
Home page http://www.qtp.ufl.edu/ACES/.

http://www.psicode.org/
http://www.qtp.ufl.edu/ACES/
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ACES III

The program represents a significant advance in parallel processing and resulted from com-
pletely rewriting ACES II for efficiency in parallel calculations. The parallel technology, based
on the super instruction assembly language (SIAL) that marked the progress from ACES II to
ACES III was discussed by Bartlett and co-workers (Lotrich et al. ).
Home page http://www.qtp.ufl.edu/ACES/.

CFOUR

The four C’s in the name of the program stand for Coupled-Cluster techniques for Computa-
tional Chemistry. The predecessor of this program was known as the Mainz-Austin-Budapest
version of ACES II which was replaced by CFOUR in April  (see http://www.aces.
de/). At present, the development of the program is continued at the University of Mainz
(J. Gauss), at the University of Texas at Austin (J.F. Stanton and M.E. Harding), and at Eötvös
Loránd University (P.G. Szalay).

Some of the features of the program are:

• NMR chemical shifts.
• Many properties, including nuclear spin-rotation constants, magnetizabilities, rotational

g-tensors, indirect spin-spin coupling constants.
• Electronically excited states may be calculated via CIC, CIS(D), and several EOM-CC

methods; the ionized and electron-attached statesmay be described via EOM-CCmethods.
• Anharmonic force-field calculations may be carried out.
• Vibrationally averaged properties.
• Relativistic corrections.
• Diagonal Born–Oppenheimer corrections.
• Automated addivity and basis-set extrapolation schemes.
• Basis sets up to i-type Gaussian functions.
• Effective core potentials.

Home page http://www.cfour.de/.

COLUMBUS

COLUMBUS originated in  at the Ohio State University and was developed by I. Shavitt,
H. Lischka (University of Vienna), and R. Shepard (Battelle Columbus Laboratories). The pro-
gram was designed to carry out a variety of multireference calculations on ground and excited
states of molecules (Lischka et al. ). Specific features include:

• Geometry optimization to find minima and saddle points.
• Searches for minima on the crossing seam (conical intersections).
• General MCSCF with quadratic convergence including state averaging.
• Direct MR-CISD (single and double excitations), using an arbitrary set of reference config-

urations.
• Multireference averaged coupled-pair-functional (MR-ACPF) and multi-reference average

quadratic coupled-cluster (MR-AQCC) with size-extensivity corrections.

http://www.qtp.ufl.edu/ACES/.
http://www.aces2.de/
http://www.aces2.de/
http://www.cfour.de/.
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• Spin-orbit CI (based on graphical unitary group approach) (Yabushita et al. ).
• Search for conical intersections may be done at the MRCI level.
• For excited states, MCSCF, MR-CISD, and MR-AQCC-LRT transition moments may be

calculated.
• Finite field method for second-order properties (polarizabilities).

Home page http://www.univie.ac.at/columbus/.

MPQC

The Massively Parallel Quantum Chemistry (MPQC) program is an object-oriented code that
was written in C++. The work on the code has been initiated by C.L. Janssen at the Sandia
National Laboratories (USA).
The capabilities of MPQC include:

• Energies and gradients are available for closed shell, unrestricted and general restricted open
shell Hartree-Fock and density functional methods.

• Energies may be calculated for the second-order open-shell perturbation theory.
• Energies and gradients may be evaluated for the second-order closed-shell Møller–Plesset

perturbation theory (MP).
• MP energies of closed-shell systems, including an R correlation factor and using an

auxilary basis set, are supported.

Home page http://www.mpqc.org/index.php.

Commercial Software

For the details of commercial software the reader is referred to the links listed below for
the most up-to-date information about each program. For completeness, both ab initio and
semiempirical programs are included.

Gaussian

One of the first programs for large-scale calculations in the commercial domain, dating its
origins to , is currently in its  edition.

Please see home page http://www.gaussian.com/.

 The original , lines of Gaussian  code were released to general public via the now defunct Quantum
Chemistry Program Exchange (QCPE). Historic information about QCPE may be found on http://www.ccl.
net/ccl/qcpe/QCPE_removed/. QCPE offered as the first ab initio program Polyatom (Version  with ,
lines of code) was made available by Csizmadia et al. in . It is worth mentioning in passing that the fees
that QCPE charged for the programs were very modest by today’s standards: $ for codes greater than ,
lines plus $ for media and handling. The programs grew as new capabilities were added: in  Polyatom
(Version II for IBM ) grew to , lines, while the  release of Gaussian (IBM Version II) contained
about , lines of code. The current status of QCPE was explained in a brief note saved in Computational
Chemistry List http://ccl.net/chemistry/resources/messages///.-dir/index.html

http://www.univie.ac.at/columbus/
http://www.mpqc.org/index.php
http://www.gaussian.com/
http://www.ccl.net/ccl/qcpe/QCPE_removed/
http://www.ccl.net/ccl/qcpe/QCPE_removed/
http://ccl.net/chemistry/resources/messages/2009/06/04.001-dir/index.html
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Molcas

Please see home page http://www.teokem.lu.se/molcas/introduction.html

Q-Chem

Please see home page http://www.q-chem.com/

Turbomole

Please see home page http://www.turbomole.com/

Molpro

Please see home page http://www.molpro.net/

Jaguar

Please see home page https://www.schrodinger.com/products///.

PQS

Parallel Quantum Solutions. Please see home page http://www.pqs-chem.com/software.shtml

Spartan

Please see home page http://www.wavefun.com/

HyperChem

Please see home page http://www.hyper.com/

Ampac 

Please see home page http://www.semichem.com/

http://www.teokem.lu.se/molcas/introduction.html
http://www.q-chem.com/
http://www.turbomole.com/
http://www.molpro.net/
https://www.schrodinger.com/products/14/7/
http://www.pqs-chem.com/software.shtml
http://www.wavefun.com/
http://www.hyper.com/
http://www.semichem.com/
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Abstract: This chapter reports numerical models devoted to predict the optical and vibra-
tional properties of nanoparticles treated as isolated objects or confined in host matrixes.
The theoretical data obtained by the numerical simulations were confronted with the exper-
imental investigations carried out by several spectroscopic methods such as Raman, IR, and
UV-Vis absorption as well as photoluminescence. As model cluster systems, the physical
properties of nanosized silicon carbide (SiC) particles in vacuum were numerically modeled.
The computer simulations were also performed for SiC confined in polymeric matrix, namely,
poly(methyl methacrylate), poly-N-vinylcarbazole, and polycarbonate. The obtained host–
guest nanocomposites exhibit original optical and electro-optical features.

The considered systems were built using molecular dynamic simulations method and
the full atomistic modeling of the composite materials was performed using CVFF method.
The equilibrated geometries of nanocomposites were used to evaluate their key physical fea-
tures. Particularly, the electronic and vibrational properties of SiC were calculated in the cluster
approach model. The suitable cluster size and the nature of terminating bonds used to satu-
rate the outermost nanograin surface were judiciously evaluated with the criterion to achieve
consistent agreementwith experimental results such as IR absorption, Raman, vibrational den-
sity of states and photoluminescence responses. The role of SiC clusters and its interaction
with the surrounding polymer were investigated for the hybrid host–guest nanocomposites
and their electro-optical functionalities were evaluated.The polarizability and first-order hyper-
polarizabilities responsible for second harmonic generation and Pockels effect were calculated
using DFTmethod.Then, taking into account the environmental interaction between host and
guest molecules the optical susceptibilities were predicted. The effect of the local electric fields
involved at the organic–inorganic interfaces on the NLO parameters was taken into account for
each system.Additionally it was found that polymer environment reconstructs the surface of the
SiC nanograin, which contributes critically to the NLO properties of hybrid materials. Finally,
the chapter shows in exhaustive way that the developed methodologies associating key exper-
imental works and relevant numerical methods allows to tailor the suitable nanostructured
materials with the optimal physical responses.

Introduction

The realization of functional nanosized materials has been achieved thanks to the development
of innovativemethods for the synthesis and the characterization of physical properties required
for potential technological applications. So far, several domains have benefited from properties
offered by nanostructured systems. Examples are the superplasticity inmechanics, the efficiency
of luminescence in optics, the gain in memory storage in magnetism, the tendency to develop
molecular transistor in electronics and realization of therapeutic structures based on functional
nanoparticles in medicine. All these facts underline the importance of nanomaterials and their
usefulness for new technologies.

From fundamental aspects, nanosized structures exhibit quite different properties com-
pared to their parent bulk-likematerials (Norris and Bawendi ).Thus, the electronic density
of states related to nanoparticles exhibits quantified features in similar way as the optical emis-
sion spectra might be related to those of artificial atoms (Kagan et al. ). The quantum
confinement effect alters both electrons and phonons mean-free paths in the nanostructures.
The consequence on the electronic features lies in the bandgap widening for semiconducting



Functional Nanostructures and Nanocomposites  

nanoparticles, while the vibrational density of states exhibits broad shape due to reduction of the
mean-free paths of phonons. Obviously, the size reduction of particles favours the role played
by the surface atoms since their fraction dominates those involved in the nanoparticle core
(Alivisatos et al. ). From engineering aspects, the suitable tools such as AFM (atomic force
microscopy) or STM (scanning tunneling microscopy) were developed to tailor and function-
alize nanostructures with a precision at the atomic scale. Alternatively, a great attention was
paid to the lithography process using X-ray or electrons to design high density of nanoscale
components required for miniaturized devices leading to nanoelectronic technologies.

Several approaches were developed to synthesize nanoparticles with wide range of chemical
formula from inorganic up to organic components, and with well-controlled size distributions.
However, except some fundamental analysis of luminescence phenomena in colloidal solutions
or an improvement of mechanical properties of composites by suitable sintering, the poten-
tial technological applications of nanoparticles remain very limited. The key approach to take
benefit from the physical properties of such nanoobjects requires their organization in host
matrixes, which may be organic or inorganic composition. The functional nanomaterials pro-
cessed by combining different components give rise to nanocompositeswith properties different
than those of individual constituents. As a main reason, the phenomena at the interface play
a key role in the physical responses of composites in nanoscale. The numerical simulations
devoted to predict optimal geometry of nanostructures and their physical properties contribute
efficiently to the development of functional materials. The geometry of the model clusters,
their structural order, and the surface states constitute crucial parameters which monitor the
achievement of stable structures and determine physical responses combined with optimal
time consumption. Wide possibilities are offered by theoretical investigations of clusters or
large nanoparticles treated as isolated objects or associated to host matrixes. This last configu-
ration, realized in host–guest nanocomposites, offers unique possibilities to take benefit from
high specific surfaces of nanoparticles and the interface effects, which monitor their physical
properties (Ricciardi et al. ).

The present chapter reports experimental works and numerical models applied to nanopar-
ticles and nanocrystals treated as isolated objects or alternatively confined in host matrixes.
Numerical modeling and predictive physical properties constitute innovative approach, which
offers exhaustive support for experimental investigations on nanostructures. The considered
architectures used for numerical simulations can be modulated in a large extent with respect
to the size of nanoparticles and the chemical composition of their core and surface feature as
well as the interactions involved at the interface. To evaluate the potentialities of nanoobjects,
which are able to draw functional architectures applicable in electronics or in optics, the cluster
model taking advantage of semiempirical methods and DFT codes was developed. The silicon
carbide (SiC) components were chosen as the representative of wide bandgap semiconduct-
ing nanocrystals. In a first stage, the proposed numerical methodology proceeds by building
suitable cluster geometries according to their related ordered bulk crystalline structures restrict-
ing any geometry optimization or structural relaxation. This is fundamental requirement
to suppress any structural disorder, which occurs from amorphous arrangement, relaxation,
or reconstruction. However, the effect of the surface ordering and the chemical composition
of nanoobjects on their physical properties were considered with the criterion that the optimal
structural features should reproduce similar physical responses of the investigated powder-like
samples. Numerical simulations based on DFT and semiempirical methods were developed to
predict accurately the electronic structure of the nanostructures. Optical absorption curves,
infrared (IR) and Raman spectra as well as photoluminescence responses under several optical
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excitations were theoretically calculated and their relevance was compared to experimental
spectroscopic data obtained on synthesized nanoparticles. In addition to the intrinsic behavior
of nanoparticles, the doping effect on their core and surface structure was modeled.Thus, the
incorporation of oxygen atoms into the surface layer of nanocrystals point out the dramatic
changes in a calculation of the electronic structure compared to nonoxidized nanoparticles.
In a similar approach, doping of nanoparticle core by appropriate elements, such as nitrogen,
is suitable to modify the semiconducting nanocrystal bandgap and the optical behavior of the
investigated nanostructures.

Based on above-mentioned nanoobjects, the investigated nanocompositematerial was built
in several configurations. It was composed on the inorganic nanocrystals and host organic or
inorganic matrixes. Its electronic and optical behaviors predicted theoretically show remark-
able agreement with experimental results. Furthermore, the theoretical approach supported by
experiment proves that host matrix may play key role to enhance some physical responses of
the nanocomposites. Among the considered architectures, those related to organic–inorganic
structures based on SiC nanocrystals embedded in polymer matrix were found of particular
interest in electro-optical applications. An inorganic–inorganic medium was also investigated.
In such case, the SiC nanocrystals arranged in selective inorganic dielectricmatrixes were taken
into consideration.

The applied numerical methods use molecular dynamics with suitable force field required
for the geometry optimization of the realistic composites. Mastering of such tools allows draw-
ing homogeneous distribution of nanocrystals in the host matrixes with valuable criterion of
the stability and the structural equilibrium.The free volume around nanocrystal embedded into
hostmedia, the distribution of bond lengths terminating nanocrystal surfaces, and themobility
of the nanoobjects inside the matrix can be evaluated depending on interactions involved at the
host–guest interface. With regard to the interface role, several organic media were considered
by modeling their interactions with the inorganic nanocrystals through the polar character of
polymer chains. Simulations using semiempirical and DFT methodology have demonstrated
the relevance of the predicted electro-optical performances of the nanocomposites compared
to those demonstrated experimentally.

All the developed works contribute to point out the relevance of the numerical methods
and the cluster model, in isolated state or confined in host matrix, to account quantitatively for
the key physical phenomena in nanostructured systems.

Nanocomposite Materials

General Features

Nanocomposites have attracted a great interest inwide range of areas including thermomechan-
ical features, dielectrics, optics, or electronics. Depending on the searched application, several
architectures can be tailored such as core-shell nanomaterials, host–guest media or porous
matrixes with functional groups grafted on the offered specific large surfaces (Henglein ;
Alivisatos ). The main characteristics of such materials lie in the possibility to combine
not only the relevant features of individual components but also the effects generated at the
interface. These last contributions can even dominate the physical behavior of the media and
induce new properties. As examples, the enhancement of the photoluminescence in host–guest
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nanocomposites or the high dielectric response originates from large interfacial polarization at
the nanoparticle interface.These particular cases underline the importance of the nanocompos-
ites for several functionalities. They are also good candidates for experimental and numerical
investigations with regard to the wide range of physical phenomena. Furthermore, their syn-
theses can be achieved simply by homogeneous and regular distribution of nanoparticles in
host matrixes or alternatively by their surfaces functionalization using active molecules. In the
case of nanoparticles, it is well known that the size reduction causes decreasing of the mean-
free path of electrons and phonons leading to the quantum confinement effect. Such effect is
experimentally traduced when the electronic, magnetic, thermodynamic, or spectral properties
are probed (Dabbousi et al. ). The reference size scale of semiconducting nanostructured
materials related to the quantum confinement effect is defined by the exciton Bohr radius.
Any material dimension below this characteristic length leads to important quantum
effects (Timp ) which cause, for example, blueshift of characteristic absorption spectra
(Sapra et al. ), vibrational density of states accompanying normal Raman modes of crys-
talline structure, as well as the appearance of peaks connected with transition between exciton
states (Wang et al. ). On the other hand, the quantum confinement effect is desired in non-
linear optics and luminescence (Schmitt-Rink et al. ), because the significant molecular
dipole moment is caused by the large changes of the charge and energy distribution at the out-
ermost grain surfaces (Manna et al. ). This is a fundamental criterion, which leads to the
applications of such nanomaterials in linear and nonlinear optics (NLO).

The Maxwell-Garnet nanocomposites are characterized by the nanoparticles being
unbounded to the polymeric chain. Also no long-range order can be established in such
media (Fischer et al. ). Additionally, these structures used in optics should be transpar-
ent in selective spectral windows depending on the searched applications. Other treatments,
such as the optical or electrical poling, are also required to create structural gratings or non-
centrosymmetric media notably for optoelectronic applications. However, the main drawback
of nanocomposites based on host–guest structures lies in the easy agglomeration, which over-
came their eventual technological applications. In general, particular treatments are required to
disperse correctly nanoparticles in the host media in order to take the benefit from their large
specific surfaces and then from the interfacial effects. It is worth noting that polyvinyl alcohol
matrix incorporating CdS nanocrystals even with loading rate as high as wt% of the guest
elements prevent their agglomeration (Akimov et al. ). This explain the reason why the
NLO properties are widely investigated in structures based on CdS, PbS, CdSe, PbSe, GaAs or
CuCl nanocrystals (Beecroft and Ober ).

SiC-Based Nanomaterials and Nanocomposites

The present studies are mainly devoted to silicon carbide (SiC)-based materials in the form
of isolated clusters, nanoparticles, or several architectures, which exhibit various original fea-
tures. The interests in SiC is motivated by the large offered possibilities from structural aspects
as well as physical responses such as electronic, optics, photovoltaic or dielectric properties.
Additionally, beyond good thermal stability and mechanical hardness, the SiC is versatile from
structural aspect (more than  polytypes), electronic behavior (a variable energy gap from
. to . eV) as well as photorefractive properties (Vonsovici et al. ). As matter of fact, the
nanocrystalline size modulates all the intrinsic parameters involved in the parent bulk mate-
rials. When nanoparticles are associated with suitable matrixes, promising new potentialities
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such as charge transfer, NLO, and electro-optical effects are demonstrated (Kityk et al. ).
However, in composites made from polymers and SiC nanoparticles, the interfaces govern the
optical or electro-optical responses, and a great challenge lies in the control of the particle sur-
face states. From the wide variety of SiC polymorphic structures, only the C–SiC and H–SiC
crystalline orders were studied and the influence of the organic host matrixes on their optical
properties was examined experimentally and supported by numerical simulations. Poly(methyl
methacrylate) (PMMA), poly-N-vinylcarbazole (PVK), and polycarbonate (PC) were chosen
as hosts due to their optical transparencies and improved thermomechanical properties. Some
experiments are hereafter reported to point out the key features of the morphology, compo-
sition, vibrational and structural order in SiC nanoparticles. The selective experimental data
are devoted to shed light on the theoretical model, which will be developed in forthcoming
sections.

The built of realistic clusters or host–guest nanocomposites require effective experimental
tools such as transmission electron microscopy (TEM) images, which illustrate the involved
crystalline order both in the core and in the outermost particle surfaces. Second relevant
information deals with the experimental vibrational spectra of SiC. The validity of theoreti-
cal construction of small-size clusters and evaluation of their physical properties should follow
the experimental behavior. Also, IR and Raman experiments were performed on the SiC
nanoparticles and will serve as reference for testing the relevance of the carried out numerical
simulations performed. Representative experimental data, required for the initiation of theo-
retical model, are hereafter reported and consist in morphology and vibrational features of SiC
nanoparticles.

For the morphology aspects, it is worth noting that nanoparticles of SiC can be synthesized
by laser pyrolysis of gaseousmixture constituted by SiH andCH as source of Si andC, respec-
tively. The synthesis method leads to nanoparticles with the shape and organization illustrated
in > Fig. -. The investigated SiC nanograins consist in the cubic and hexagonal structures
with the C/Si ratio in the range .–. and particle size about –nm (Charpentier et al.
). Careful analyses of the TEM images show the occurrence of carbon layers arranged on
the particle surfaces (> Fig. -).These experimental facts point out a key property, which can
be adopted in numerical simulations of SiC clusters. This will be taken into consideration by
saturating the external surface of modeled cluster by carbon atoms in coherence with the real
atomic organization of investigated batches.

A second aspect of the relevant experimental information required for a sound numerical
approach can be found in the typical Raman spectra obtained on representative SiC batches
(> Fig. -).The spectra recorded using the . nm radiation of an Ar laser excitation corre-
spond to SiC batches with C/Si ratio equal to ., ., and ., respectively. The sample with
higher carbon content than mentioned exhibits similar features as those for the nanopowder
batch with C/Si ratio about .. It can be seen from > Fig. - that the characteristic Raman
lines of the different components (C, SiC, Si) are present at different wavenumber ranges with
particular high scattering efficiency of surface located C–C or Si–Si bonds with respect to the
nanoparticle core Si–C bonds. This is particularly shown through the intensity of the bands at
, − or , cm− and  cm− associated to C–C and Si–Si surface bonds, respectively
compared to the core Si–C bands (Kassiba et al. a) located in the range – cm−.

The numerical model, which will be developed, should conciliate optimal size of clusters,
realistic organization of the clusters composition at their outermost surfaces and lead to sound
theoretical vibrational and optical responses. These parameters will be exhaustively discussed
in the applications part of numerical simulations.
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⊡ Fig. -
High-resolutionTEM imagesof SiCnanoparticles: top–evidenceof crystallization fringes;bottom –
presence of carbon graphene sheets on the nanoparticle surfaces in nanopowders synthesized
with an excess of carbon (Charpentier et al. ) (> Figure a has been reproduced with permis-
sion fromBouclé et al. (). > Figure b has been reproduced with permission fromKassiba et al.
(a))

0 500 1000 1500 2000

Wavenumber (cm–1)

a

b

c

⊡ Fig. -
Ramanspectraof theSiCnanoparticles fordifferentC/Si ratios (a: ., b: ., c: .)withhighscat-
tering efficiency of the surface bonds (C–C, Si–Si) compared to the core bonds (Si–C) (Reproduced
with permission from Kassiba et al. (a))

Theoretical Background

The quantum chemical models, developed for numerical modeling of materials, offer a rele-
vant support for several experimental effects demonstrated on nanostructures. The developed
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theories and numerical approaches allow exhaustive and more quantitative interpretations
of experimental results. Additionally, numerical simulations can tailor predictive physical
properties of nanomaterialswith suitable chemical compositions, optimal sizes, and geometries.
A wide range of computational simulation methods was extensively used in physics and chem-
istry including ab initio (Payne et al. ) or semiempirical codes (Di Bella et al. ).However,
a relevant tool to simulate nanocrystals and related nanocomposites consists in the density
functional theory (DFT) (Koch and Holthausen ). In spite of ab initio and DFT efficien-
cies, semiempirical methods are particularly relevant to model and analyze physical features of
composite systems. Additionally, the molecular dynamic simulations are required to build the
material configurations and to optimize the molecular geometries in polymeric environment.

DFT and Semiempirical Codes

In quantum chemical approach, the electronic structure may be described by many electron
wave functions such as Ψ (r, r′, . . . , rN) or alternatively by using the electron density distribu-
tion n(ri) required for the density functional theory (DFT). The starting point of DFT theory
is based on the lemma of Hohenberg and Kohn, which specifies that the ground state density
n(r) determines the external potential υex t(r) (Hohenberg and Kohn ). For given υex t(r)
the energy functional of n(r)may be defined by

Eυ(r) [n(r)] = ∫ υex t(r)n(r)dr + F [n(r)] , (.)

where the functional F[n(r)] depend on the electron density distribution as follows:

F [n(r)] = Ts [n(r)] +

 ∫

n(r)n(r′)
∣r − r′∣

drdr′ + EXC [n(r)]. (.)

The Ts[n(r)] represents the kinetic energy expressed in term of the density n(r). The second
term of > Eq. . characterizes the interaction energy and the last one describe exchange-
correlation (XC) energy EXC . In consequence the Euler–Lagrange equation may be written as
so-called Kohn–Sham (SK) equation:

(−



∇


+ υex t(r) +

∫

n(r′)
∣r − r′∣

dr′ + υXC(r) − ε j)φj(r) = , (.)

where n(r) =
N
∑

j=
∣ϕ j(r)∣

 with ϕ j(r) representing an individual system state and the XC

potential defined by υXC(r) = δEXC [n(r)]/δn(r). The local > Eq. . must be solved self-
consistently by calculating the XC potential in each operation cycle. The main encountered
problem is to find the appropriate expression of EXC[n(r)]. Several approaches were devel-
oped to estimate the relevant EXC [n(r)] function. In the local density approximation (LDA),
the exchange-correlation energy may be calculated by using the expression (Kohn and Sham
):

ELDA
XC [n(r)] ≡ ∫ εXC [n(r)] n(r)dr. (.)

εXC is the XC energy per particle of interacting electron gas with a density n. This method
assumes that the electron density is uniform throughout the molecule. The KS orbitals in
the LDA approximation are usually very close to Hartree–Fock orbitals and the method is
appropriate to be usedwhen the length overwhich n(r) varies is larger than the particle spacing.
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More elaborated level of approximations is the so-called generalized gradient approxima-
tions (GGA) giving the EXC as follows:

EGGA
XC [n(r)] ≡ ∫ f [n(r), ∣∇n(r)∣] dr, (.)

where the function f [n(r), ∣∇n(r)∣] should be chosen judiciously. Thus, with respect to LDA,
GGA approximation includes terms, which depend on the density gradient.

The following section, even if general purposes are considered, will focus on optical param-
eters being exploited in the remaining part of the chapter. In this context, we consider the DFT,
which is very attractive technique for the computation of many-atom systems. This method is
less time consuming than other traditional computational methods and may be used for sys-
tems including even more than  atoms (Kohn et al. ). By the DFT technique, relevant
physical properties may be calculated, but time-dependent (TD) phenomena are still not well
explored. However, the calculations in the frame of TD-DFT technique using the LDA approx-
imation yield satisfactory results notably for optical parameters such as polarizabilities, even if
they are overestimated (van Gisbergen et al. ). The rigorous foundation for TD-DFT was
given by Runge and Gross (). According to their model, the first-order change in density
n(r) is related to the TD change in the external potential υex t(r):

δn (r,ω) =
∫

dr′χ (r, r′,ω) δυex t (r′,ω). (.)

The χ(r,r′,ω) is the linear response function which is, in general, difficult to estimate. Alterna-
tively the change in the density n(r)may be defined using response function χs(r,r′,ω) of the
noninteracting system, in combination with an effective potential υe f f (r):

δn (r,ω) =
∫

dr′χs (r, r′,ω) δυe f f (r
′,ω), (.)

in which the response function may be calculated using rule:

χs (r, r′,ω) =
occ .

∑

k

unocc .

∑

l

⎧

⎪

⎪

⎨

⎪
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
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. (.)

The ϕk and ϕl are associated to the occupied and unoccupied virtual Kohn–Sham orbitals with
the energies εk and ε j, respectively. All these parameters are calculated in the approximation of
standard DFT procedure. The effective potential υe f f (r) from > Eq. . depends on the n(r)
density variation:

δυe f f (r,ω) = δυex t (r,ω) + ∫ dr′
δn (r′,ω)
∣r − r′∣

+ δυXC (r,ω). (.)

The change in the XC potential is given by XC kernel term f(r,r′,ω) as

δυXC (r,ω) =
∫

dr′ fxc (r, r′;ω) δn (r′,ω). (.)

In the variety of LDA approximation also called adiabatic LDA (ALDA), the kernel term is local
in space as well as in time and may be written as

f ALDA
XC (r, r′;ω) = δ (r − r′)

d

dn [nεXC (n)] ∣n=n(r) , (.)

where n(r) is converged SCF density. The parameterization for the XC energy density εxc of a
homogeneous electron gas is used according to Vosko-Wilk-Nusair rule (Vosko et al. ).
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On the other hand, the Coulomb and XC term in > Eq. . may be combined into an
induced potential υind . The potential is known in all points of the numerical integration grid
and it allows the calculation of the first-order change in the density δn(r) (van Gisbergen et al.
). Also, this value is used to calculate the polarizability:

αi j (ω) = −

E ∫

drδni (r,ω) r j, (.)

where i and j denote the Cartesian coordinates x, y, z. E characterizes an intensity of external
electric field.The hyperpolarizabilities are calculated by using a finite field method.

Among the available LDA approximations, the ALDA option is the most advanced one and
may be used to calculate TD parameters of molecules with a large number of constituents.
On the other hand, semiempirical method constitutes good alternative for molecules, which
exceed the size of those practically accessible to ab initio methods. Semiempirical formal-
ism ignores all core electrons and makes major simplification of the mathematics procedure.
This relies on Hartree–Fock (HF) formalism, but replaces some of the mathematical terms
by data (parameters) derived from experimental or computational results. The mentioned
approach parameterizes the HF integrals. The various types of semiempirical methods use
different numbers and types of parameters and new approaches rely on Neglect of Differen-
tial Diatomic Overlap (NDDO) formalism. One of them is Parameterization Method  (PM)
(Stewart ), which is widely used for rapid estimation of molecular properties and has been
recently extended to include many elements such as some transition metals. The PM method
is all valence model, which constrains two-center two-electron integrals. All integrals (μν ∣λσ )
are retained, provided that μ and ν are on the same atomic center and λ and σ are also on the
same atomic center. It is not necessary for μ and νgo be at the same atomic center with λ and
σ . The PM method may be used to calculate energy and geometry of inorganic compounds
(Cramer ).

Molecular Dynamics

One of the principal theoretical method, particularly devoted to calculate the time-dependent
behavior ofmolecular systems, dealswithmolecular dynamics simulation (MD).Thismethod is
suitable to give precise insights on the structure and dynamics of compositematerials. As exam-
ples, MD simulations generate for a given system, the atomic positions and velocities, which
are afterward converted intomacroscopic observables such as pressure, energy, and heat capac-
ities. Basically, MD simulations proceed by the integration of the Newton equations of motions
leading to the trajectories and determine the dynamics of particles (positions and velocities)
correctly known during the time, past or future. Such trajectories allow obtaining the average
values of physical properties.

In the following, let us outline briefly, the main idea behind MD simulation process. The
force acting on an atom can be expressed as the gradient of the potential energy V :

Fi = −∇iV = mi
dri
dt

. (.)

V is a function of the position of all the atoms in the system. Due to the complicated nature
of this function, there is no analytical solution of the equations of motion. It can be solved
numerically using different algorithms such as the Verlet, leap-frog, or Beeman’s procedure
(Cramer ).
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The potential energy may be calculated using quantum chemical methods, which need to
solve the Schrödinger equation. However, with regard to high number of atoms required for
real composite systems, empirical energy functions are more suitable to solve the problem than
other methods such as ab initio. Among the most commonly used semiempirical methods to
estimate potential energy functions, we consider those referred as AMBER, CHARMM, GRO-
MOS, or OPLS/AMBER force fields (Cramer ). When hybrid nanocomposites based on
polymeric matrix and inorganic nanoclusters are concerned, the approximation of all-atom
consistent valence force field (CVFF) (Kitson and Hagler ) is particularly recommended.
Indeed, this can successfully reproduce biophysical (Lau et al. ), crystalline (Ma et al. ),
or host–guest polymeric systems (Makowska-Janusik et al. ). The potential energy can be
computed as a summation of the contributions due to bond stretching, bond bending, dihedral
angle torsion, and nonbonded particles interactions:

V =
∑

al l bonds
Vbond (li) + ∑

al l ang l es
Vangl e(θi) + ∑

all dihedral
angles

Vtorsional (ϕi) + ∑

al l pairs i , j
Vnonbond ed (ri j) (.)

where li , θi , and ϕi refer to bond length, bond angle, and dihedral angle, respectively. The rij is
a distance between atoms i and j. The interactions of nonbonded particles are modeled using
the Lennard-Jones - potential and the Coulombic potential due to fixed partial charges. The
interactions of bonded atoms are based on a fixed list of neighbours.

In general, the molecular dynamics simulations are performed under conditions of con-
stant N, V, E (the microcanonical ensemble) or at constant N, T, and P. Beyond to obtain the
average, simulated structures which can be compared to experimental ones, MD contributes to
characterize and understand the dynamic changes at macroscopic scale.

Numerical Simulations of IR and Raman Spectra

The vibrational signatures are drastically modified in the nanosized particles compared to the
corresponding bulk structures. These modifications are revealed by a widening and position
shifts of the vibrational bands. Furthermore, the structural reconstruction at the surface of
nanograins and the electron–phonon interactions play a key role on the optical and vibrational
properties. In this context, spectroscopic methods such as Raman and IR are suitable tools to
probe the surface reconstruction and size effects through the features of the bands related to
active vibration modes. The fundamental IR absorption or Raman spectra are based on rules
related to dipole moments and polarizabilities of molecules.Thus, for IR technique, when clus-
ters or molecular complexes are considered, the intensity of their characteristic bands may be
calculated according to the following formulation:

I(IR) ≈

ħ∑

ωn ∣μn ∣

ωn − ω
, (.)

where μon is a transition dipole moment which couples the ground state ∣⟩ and excited state
∣n⟩ of the system. ħωn represents the excitation energy between both mentioned states. The
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situation is quite different for Raman spectra, which require the formation of induced dipole
moment depending on the polarizability and on the probing radiation:

μ(ex)i = αi jE j, (.)

where i, j = x, y, z represent the directions of the molecular referential frame and αi j is the
component of the polarizability tensor, which may be computed by the following expression:

[αi j]mn ≈
⟨m∣ μi ∣n⟩ ⟨n∣ μ j ∣m⟩

ħωn − ħωm
, (.)

∣m⟩ and ∣n⟩ represent the involved states of the molecular system. According to a simple
approach, the Raman intensity may be calculated by using the following expression:

Inm(ω) = I (ω − ωmn)

[αi j]mn

[αi j]
∗

mn f (ω), (.)

where f (ω) represents the Lorentzian line shape taking into account the finite lifetime of the
scattering and ω represents the pulsation of the probing light.

All computational works described in the next subsection were done using HyperChem
software. The IR and Raman spectra were calculated for fixed structures such as the poly-
types C–SiC and H–SiC as well as for the amorphous SiC clusters with different sizes. The
nanograins were covered by amorphous carbon shell. The chosen saturation of the model clus-
ter is in accordance with the surface carbon sheet observed in TEM images (> Fig. -). The
structure of external carbon shell was optimized by the total energy minimization, which was
performed using conjugated gradient method with criterion . kcal mol− Å−. The calcula-
tions were done applying semiempirical method with parameterization PM at the SCF RHF
and UHF level (Weiner et al. ). As the criterion of the SCF convergence, the value equal to
− eV was chosen.

The calculations of IR and Raman spectra were performed using semiempirical method
with the same parameters as mentioned above. Several clusters with fixed cubic structure and
different size were considered. The corresponding IR spectra are summarized in > Fig. -a.
The theoretical data are compared to the experimental ones performed for the samples referred
as SiC (> Fig. -b). In as-formed state, the nanoparticles exhibit spherical shape with
a diameter about  nm and an average composition close to the stoichiometric one. Each
nanoparticle consists of several small nanocrystals (– nm as diameter) separated by stacking
faults at their boundaries. The average sample structure probed by Si NMR consists of % of
C–SiC, % of H–SiC, and % of amorphous phase (Bouclé et al. ) (see > Table -).
This is a consequence of the low nanocrystals dimension and the structural disorder at the their
boundaries.

The experimental IR spectrum (> Fig. -b) was satisfactorily fitted by combining two
spectra calculated for clusters with sizes about . nm and different structures: cubic and amor-
phous ones.These theoretical contributionswere superimposedwith appropriate weighting fac-
tors in order to fit spectra nicely to the experimental result.The performed calculations account
satisfactorily for the empirical data.The proposed clustermodel is in agreementwith structural
investigations done byTEMandNMR technique.The experimental results give a precise insight
on the structures involved into nanograins. It showsnanoparticles consisted of cubic, hexagonal,
and amorphous arrangement. Additionally, it is worth noting that a minimal cluster size about
. nm is required to reproduce the main features of experimental IR spectra of SiC naongrains.
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⊡ Fig. -
(a) IR absorption spectra simulated for the C–SiC clusters with sizes . nm, . nm, and . nm; (b)
IR spectra for the SiC clusters obtained experimentally (solid line) and theoretically (dashed line)
(Reproduced with permission fromMakowska-Janusik et al. ())

The vibrational frequencies of smaller clusters exhibit large shifts to higher wave numbers.
This is expected from behavior dominated by surface like atoms when the cluster size is
drastically reduced.

The same cluster geometries used for the simulations of IR spectra were also considered to
model the Raman spectra as summarized in > Fig. -.The obtained results are in remarkable
agreement with the experimental data (> Fig. -) and point out the enhanced Raman signal
from the elements in excess. Both atomic bonding around vacancies within the nanocrystal-
lite and the excess of carbon at the outermost particle surfaces seem to be characterized by
high Raman scattering efficiency compared to the intrinsic vibrational modes involved in per-
fect crystalline SiC structures. By limiting the computational procedure to only the harmonic
interactions, we were able to show the stoichiometric effects of SiC nanocrystalline on the
Raman signature. Thus, the performed calculations draw a realistic distribution of C and
Si excess within the nanoparticles and support the experimental effective screening of SiC
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⊡ Table -
Structural properties of SiC nanosized powders inferred from Si MAS-NMR investigations.

Sample H–SiC (%) C–SiC (%) Amorphous SiC∗

SiC   

SiC   

SiC   

SiC   

∗The rate of amorphous fraction is overestimated due to the short spin-lattice relaxation time of amorphous
structure compared to that in C-S-iC and H–SiC lattices
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⊡ Fig. -
Calculated Raman spectra for (I) ideal SiC cubic-like fragment; (II) hexagonal-like (a) and cubic-like
(b) SiC fragment with carbon excess (%); and (III) with excess of silicon (%) (Reproduced with
permission from Kassiba et al. (a))

core particles from the laser excitation. The structure with an excess of Si was obtained by
introducing defects exchanging carbon atom by silicon compared to those in an ideal crystal
structure.

Vibrational Density of States (VDOS) and Luminescence Features

TheRaman signatures of SiC nanoparticles inform on the vibrational properties of the involved
structures and on the degrees of organization and their stoichiometry. Any departure from
perfect crystalline order, silicon or carbon excess leads to additional features, such as broad
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vibrational bands, vibrational density of states (VDOS), or photoluminescence (PL) super-
imposed to normal modes. A combination of suitable Raman experiments and theoretical
calculations, which allow exhaustive computation of Raman spectra taking into account VDOS
and PL features, contribute to point out the nanoparticles structures and their surface states.

Experimental Results

The Raman analysis of the involved structure within the nanopowders shows broad and struc-
tured features in the low wavenumber range. This is clearly exemplified for two representative
batches such as SiC and SiC (> Figs. - and > -, > Table -).The Raman spectra
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⊡ Fig. -
Ramanscatteringsignal inSiC sample for theas-formednanopowders (a) andafter annealingat
,○C (b) and ,○C (c). SiCRamanbandsassociated toTOandLOactivemodesarewell resolved
after annealing at ,○C (Reproduced with permission fromMakowska-Janusik et al. ())
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⊡ Fig. -
Low-frequency Raman spectra of SiC nanopowders versus annealing. (a) as-formed powder, (b)
annealing at ,○C, and (c) annealing at ,○C. SiC Raman active modes at  and  cm−

are well resolved after annealing at ,○C (Reproduced with permission fromMakowska-Janusik
et al. (); Kassiba et al. ())

exhibit twomain bands located in the ranges (– cm−
) and (–, cm−

). A possible
assignment of such details lies in VDOS signatures from the acoustic and optic modes of the
SiC structures (Zhang and Xu ). The main difference between the SiC (nanoparticles
composed of several nanocrystals) and SiC sample (nanoparticles as single nanocrystals,
see > Table -) lies in their structure. The structure SiC gives enhanced intensity of the
VDOS signals compared to SiC batch (> Figs. - and > -). Obviously, the annealing
suppresses the broad details from the spectrumwith regard tomore improved surface states for
both the crystalline order and the homogeneity as well. However, a precise insight and confir-
mation of the signal origin require exhaustive calculation of the vibrational responses from SiC
clusters by using the same numerical tools developed for IR spectra analyses.

Let us first address the main experimental facts probed by micro-Raman analysis. Using
the .-nm laser radiation of Ar+ on the SiC samples in the as-formed batch and oxidized
ones, broad PL features are demonstrated in the wavelength range – nm (> Fig. -).
The large PL intensity is obtained on the sample oxidized at the highest temperature.The same
experiments were done on samples SiC with a large nanocrystalline size (> Fig. -).
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⊡ Fig. -
Broad photoluminescence bands on the Raman spectra of SiC samples: (a) the as-formed sam-
ple and heated samples under oxygen, at temperatures ○C (b) and ○C (c) The intensities are
normalizedbyweighting factors / (a),  (b), and / (c) (Reproducedwithpermission fromKassiba
et al. (b))
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⊡ Fig. -
Experimental Raman spectra evidencing broad PL signal from the as-formed SiC samples: (a)
SiC, (b) SiC, and (c) SiC. The weighting factors are / (a),  (b), and  (c) (Reproduced
with permission from Kassiba et al. (b))

Furthermore, for the SiC and SiC samples, annealing under argon at ,○C con-
tributes to the emergence of well-defined SiC Raman bands and reduction of the broad PL
features (Kassiba et al. b). Improvement of the crystalline structures and modification
of the particle surfaces by a release of carbon excess are the main effects of the annealing
treatment (Charpentier et al. ).
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Theoretical Analysis and Computational Results

VDOS Fingerprints of Nanoparticles

The size reduction of particles modifies the vibrational features mainly through the phonon
confinement effect, which causes large changes on the dispersion relation compared to the bulk
parent material. Additionally, the interface effects play a key role in the vibrational responses
inferred from Raman or IR experiments. From the previously reported Raman and IR data
obtained for SiC nanostructured materials, the size is drastically manifested on the shape of
the spectra. Indeed, the experimental results show the manifestation of features, which can be
identified to some contribution from vibrational density of states (VDOS). The assignment
is made in detriment to broad luminescence features, which can be induced by some dan-
gling bonds or any electronic active centers involved at the surface. Obviously, the expected
concentration of such electronic centers is presumably high with respect to the high specific
surfaces, which characterize the investigated nanoparticles (∼mg −

). VDOS signatures are
plausibly caused by the surface reconstruction and the amorphous structure, which occurs at
the outermost nanoparticle surface and modify the phonon dispersion curves. As a relevant
approach, the computer simulations are very helpful to discriminate between the luminescence
and VDOS features. In this context, using the same methodology as developed for theoretical
Raman spectra, the VDOS calculations were performed. The obtained results give additional
evidences of the relevance of the used model. The developed approaches consider effects such
as the broken translational symmetry at the nanocrystal boundaries or the size-induced changes
on the electronic band structures and vibrational properties (Lin andChang ). It was clearly
demonstrated that the numerical methods contribute efficiently to identify the features of the
low wavenumber Raman spectrum and particularly to discriminate between VDOS signatures
and the luminescence features due to radiative recombination from defects of different kinds
(dangling bonds, stoichiometry departure (Kassiba et al. b), radicals).

Theoretical spectra were obtained by using SiC clusterswith different diameters as shown in
> Fig. -. Additionally, the calculations for clusters with fixed diameter at . nm and differ-
ent structures cubic, hexagonal, and amorphous were performed (> Fig. -).The computed
VDOS spectra for amorphous clusters seem closer to the experimental curves obtained on the
as-formed nanopowders (> Figs. - and > -).This suggests that the main contribution to
the experimentalVDOScomes from the amorphous fractions of the nanoparticles in agreement
with the structural NMR characterizations.

Photoluminescence Responses of SiC Nanoparticles

In order to prove the relevance of the cluster model used to simulate properties of SiC, cal-
culations of photoluminescence (PL) spectra were also performed using the same tools as for
IR simulations. The computational results were obtained on clusters with a size about . nm
as a critical size to reproduce the main features of IR and Raman spectra of the investigated
nanoparticles. A carbon shell was used to saturate the built cluster. It is in agreement with real
organization of nanoparticles when slight carbon excess is used during the synthesis process
(carbon to silicon ratio about .). Three types of model clusters, differ by the structural orga-
nization fixed as C–SiC, H–SiC and amorphous one obtained by full geometry optimization,
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⊡ Fig. -
Calculated vibrational density of states for SiC clusters with cubic structure and different cluster
sizes: (a) . nm, (b) . nm, and (c) . nm (Reproduced with permission from Makowska-Janusik
et al. ())

were built. In the performed constructions, the cluster cores may differ from the ideal cubic and
hexagonal structure by an introduction of defects such as Si and C vacancies. The simulations
were done using a semiempirical method with parameterization PM as mentioned above for
IR simulations. The cluster was treated as a large molecule for which vibrational and electronic
states are determined by quantum chemical codes.

As main idea, PL intensity model was developed for the theoretical approach concerning
an emission process in nanoclusters. A transition between the electronic cluster states ∣ j⟩ and
∣k⟩manifested by a dipolar radiation are characterized by a single spectral line at the frequency
ωjk . The intensity of spectral line, per unit source volume and per solid angle unit, reads as
follows:

I jk(ωjk) ≈
ω

jk

πc
∣μ jk ∣

 , (.)
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⊡ Fig. -
Calculated vibrational density of states in the low-wavenumber range for SiC nanoclusters (. nm)
with cubic SiC (a), hexagonal (b) and amorphous (c) arrangements obtained by a full geometry
optimizationof the Si–C bonds (Reproduced with permission fromMakowska-Janusik et al. ())

where μ jk represents the transition dipole moment between two electronic cluster states ∣ j⟩ and
∣k⟩. For the theoretical photoluminescence spectrumdescription, the relevant relation was used
as the following formulation:

IPL(ω) ≈
n
∑

j=

∑

i=x ,y,z
∣μ(i) j ∣



(ω − ω j)

+ (

Γ
 )

 +
n
∑

j=

n
∑

k= j+

∑

i=x ,y,z
∣μ(i)jk ∣



(ω − ωjk)

+ (

Γ
 )

 . (.)

In this expression, the finite lifetime (≈ /Γ) characterize the emission processes traduced by
Lorentzian shape for the spectral lines. The summation parameter n represents the number
of excited states. ω j and ωjk are the frequencies of transition between the ground ∣⟩ and
excited ∣ j⟩ states and between two excited states ∣ j⟩ and ∣k⟩, respectively. According to the
approach developed inmolecular systems (Oudar and Chemla ), transition dipole moment
describing the elements for two excited states was calculated as the difference between the
dipole moments for the ∣ j⟩ and ∣k⟩ states. Such an analytical expression allows a straightforward
evaluation of the PL spectra in the cluster approach.

Due to the electron–phonon interactions, which contribute to the emission process by
phonon-assisted transitions, the above expression may be modified to take into account the
vibrational states. In that case, the dipole momentum matrix elements include both electronic
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and vibrational terms. However, with respect to the Franck–Condon rule, only the dipole
momentum elements for the final transition states are affected by the vibrational contribution.
In this framework, the following expression written below:

IPL(ω) ≈
n

∑

j=

m

∑

l=

∑

i=x ,y,z
∣μ(i)j − μ

(i)
 ⋅ μ

(i)
Ω l ∣



[ω − (ω j ± ωΩ l)]

+ (

Γ
 )

 +
n

∑

j=

n

∑

k= j+

m

∑

l=

∑

i=x ,y,z
∣μ(i)j − μ

(i)
k ⋅ μ

(i)
Ω l ∣



[ω − (ωjk ± ωΩ l)]

+ (

Γ
 )



(.)
was used for an evaluation of the PL response from different cluster configurations with μΩ l
being the dipole momentum element for the vibrational states ∣l⟩ with energies ħωΩ l .

The above cluster model with the derived formula for the emission process was used
to model PL responses from C–SiC and H–SiC under and excitation line sets at  nm.
The choice is dictated by the need to probe the interbands emission by using excitation line
energy higher than the bandgap of SiC structure. In this case, the calculated emission bands
were found centered around  and  nm and correspond to pseudo-optical gap at . and
. eV for the two considered cluster structures, respectively.These values differ from the bulk-
like optical gap, which are . eV for C–SiC and . eV for H–SiC. The large blueshift of the
calculated PL lines in C–SiC compared to the bulk-like gap can be explained by the confine-
ment effects due to the small cluster size. Indeed, the cluster size of . nm is situated largely well
below the exciton Bohr radius (. nm), which characterizes the semiconducting and undoped
SiC structures.

However, it is well known that real nanoparticles exhibit a non-negligible amount of dan-
gling bonds at the outermost surfaces or vacancies in the nanoparticle cores. Furthermore, a
stoichiometry departure at the surface due to carbon excess or stacking faults in the particle
cores are present in real nanoparticles. Also, as a large molecular complex, SiC cluster should
exhibit intermediate energy levels and electronic states allowed inside the bandgap.

Probing the PL response from states due to imperfections of SiC clusters it requires the
use of smaller excitation energies. For the numerical simulations, three cluster configurations
depicted in > Fig. -a were built. There were the amorphous SiC structure, the carbon clus-
ter, and the defected SiC created by including Si–O bonds to traduce the oxidation effect.
For the emission process, the PL spectra were calculated by using excitation radiation lines
located between  and nm. The chosen cluster configurations give rise to visible photo-
luminescence bands centered in the red and near IR wavelengths. A superposition of the the-
oretical spectra with appropriate weighting factors and line widths is relevant approach, which
allows straightforward interpretation of the set of PL responses from the SiC nanoparticles
(> Fig. -b).

Comparing the experimental results in > Figs. - and > -with the calculated PL spec-
tra summarized in > Fig. -b, we may note the relevance of the carried out PL simulations.
Particularly, the simulations on SiC cluster with oxygen substitution and experimental spectra
in oxidized nanoparticles of SiC sample show good analogy of the relevant details. Obvi-
ously, the calculated PL signal is blueshifted with respect to the experimental PL spectrum of
the oxidized sample at ○C. The close features between theory and experiments point out
the relevance of implemented theoretical model for PL simulations. The assignment of the
features of the PL spectra is correctly done and discriminates between structural peculiarities
and the role of the surface composition induced by stoichiometry departure or oxidation effect
on nanoparticle surfaces.
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⊡ Fig. -
(a) Examples of clusters used for the numerical simulations of PL spectra A: C–
SiC cluster; B: defected SiC cluster using Si–O bonds; C: amorphous carbon cluster;
(b) Theoretical PL spectra of SiC clusters with different structures and defects: amorphous
structure (solid line); C–SiCwith Si–O bonds (dashed line) and amorphous carbon cluster (linewith
squares). The excitation line has a wavelength in the range  nm < λexc <  nm (Reproduced
with permission from Kassiba et al. (b))

To interpret correctly the experimental PL signatures from isolated nanoparticles as
discussed above, the theoretical models were tested to account for the PL responses when SiC
nanocrystals are confined in alumina matrix. The experimental organization of the nanostruc-
ture is depicted in > Fig. -. Experimental PL spectra were investigated using Xe lamp and
selecting the spectral line equal to  nm. However, the low intensity of the PL spectrum
(> Fig. -) recorded at temperature K is a consequence of small size and low quantity
of SiC nanocrystals involved in the thin composite film (aluminum/nc-SiC). Nonetheless, the
shape of PL signal is quite resolved and it may be compared to the performed calculations
depicted in > Fig. -. The used cluster in this case is made from crystalline structure such
as H–SiC with an introduction of carbon vacancies. The positions of the experimental and
calculated bands are in good agreement but larger spectrum holds for theoretical data. The
broadening is a consequence of the experiments being carried out at low temperature where
phonons have a less contribution compared to experiments at room temperature.

To sum up the approaches applied to SiC nanoparticles, we underline that relevant
numerical methods were developed and exhaustive analyses of experimental vibrational and
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Calculated photoluminescence spectra of H–SiC cluster with carbon vacancies (Reproduced with
permission from Kassiba et al. ())

luminescence spectra were achieved. The theoretical model treats the cluster with an optimal
size as a molecular complex for which the electronic and vibrational states are evaluated by
quantum chemical codes. Experimental IR and Raman spectra obtained on SiC nanoparticles
are quite well reproduced by numerical simulations based on the developed cluster approach.
The experimental PL spectra were also satisfactorily accounted using appropriate clusters
with several configurations (amorphous SiC, crystalline with vacancies and carbon cluster).
These choices are dictated by the real organization of the SiC nanoparticles generally probed
by high-resolution electron microscopy as clearly stated above. The good agreement between
numerical simulations and the experimental IR and Raman spectra requires parameterizing
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Photoluminescence of Aluminum/nc-SiC composite film recorded at  K. The used Xe excitation
line has a wavelength at  nm

correctly the real organization of the nanograins. Within such requirement, the efficiency of
the developed model is thus clearly demonstrated to analyze the linear optical behavior and
vibrational features of SiC clusters. For a completeness of the methodology, the forthcoming
paragraph is dedicated to model hybrid materials such as host–guest nanocomposites where
the SiC nanocrystals play the key role of active vectors for nonlinear optical features.

Nonlinear Optical Properties of Composite Materials

Pockels Effects in Hybrid Nanocomposites

The linear electro-optical (EO) behavior, i.e., the Pockels effect, constitutes a manifestation
of nonlinear optical features of anisotropic and non-centro-symmetric media. Functional
architectures based on host polymer matrixes and guest SiC nanoparticles (nc-SiC) as active
chromophores were realized.The intrinsic dipole moments of the chromophore combined with
the eventual polarization at the interfaces with the host matrix constitute the physical origin of
the electro-optical responses. The experiments were carried out in hybrid materials based on
SiC nanocrystals and matrixes such as PVK, PMMA, or PC.

Beyond a good transparency and thermomechanical properties (Sanetra et al. ), the
chosen polymers exemplify several features. Thus, PMMA or PC contains polar groups, which
facilitate and keep macroscopic polarization, which may be induced by electrical poling. At the
opposite, the PVK polymer exhibits photoconductivity. The consequence is to annihilate the
macroscopic polarization and then to limit the Pockels effect in hybrid nanocomposite such
as PVK/nc-SiC. Despite the role of the polymers, the characteristics of the SiC nanoparticles
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play also a key role on the electro-optical effect. Indeed, the crystalline order in the nanopar-
ticle core has a crucial influence on the searched phenomena due to the main requirement of
non-centrosymmetric media.With regard to the crystalline structures such as H–SiC and C–
SiC involved in the nanoparticles, the Pockels effects is allowed and can be demonstrated on
the investigated nanograins. Additionally, the nature of the nanoparticle surface (composition,
crystalline order) monitors the polarization involved at the interfaces between polymer and
nc-SiC. Indeed, a local charge neutrality departure holds at the interfaces and exhibits an easy
polarization under an applied electric field, contributing then to enhance the EO responses.

In the performed EO experiments, three hybrid nanocomposites were synthesized using
the above polymers and two SiC nanoparticle batches (SiC, SiC) with concentrations
in the range .–wt%. All samples were submitted to electrical poling required for the cre-
ation of structural anisotropy and non-centrosymmetric media (Bouclé et al. ). Linear
EO measurements were performed using Senarmont setup with a dynamic regime, i.e., prob-
ing under AC voltage. The EO response depends drastically on the dispersion quality of the
nanoparticles in the polymer matrix leading to homogenous films. The effective Pockels coeffi-
cients re f f obtained for all investigated hybrid materials are reported in > Fig. -.The results
point out the role of electrical poling to enhance the EO parameters. Additionally, the nature
of the polymer host matrix is crucial on the obtained EO responses. These results suggest that
the interfaces between the SiC nanoparticles and the surrounding polymer media play a key
role in the observed linear EO phenomenon. Particularly the interfacial polarizations involved
between the SiC nanoparticles and the polar polymer contribute to EO coefficients, which are
as important as those involved in the well-known traditional monocrystalline such as LiNbO.

In the hybridmaterials based on the SiCnanoparticles and host polymermatrixes, the origin
of the EO behaviour is intimately connected to the hyperpolarizabilities intrinsically involved
in the SiC and depends on the interactions at the host–guest interfaces. The intrinsic effect
originates from the nanocrystallite bulk in agreement with the EO behavior of C–SiC thin
films (Vonsovici et al. ).The effect of the surrounding polymer on the nanocrystal nonlin-
ear optical behavior was evaluated by numerical methods. In this case the molecular dynamic
technique was first used to build the relevant architectures, which combine SiC nanocrystals
and the polymers. In a second step, the EO parameters were computed and exhaustive com-
parison with experimental results was achieved and underlines the strength of the developed
theoretical and numerical approaches.

Photoinduced SHG in Host–Guest SiC-Based Nanocomposites

A second aspect of the nonlinear optical behaviour of SiC based nanocomposites was
demonstrated through the photoinduced second harmonic generation (PISHG) experiments
(Kityk et al. ). The nanocomposites were made from SiC nanocrystals with several struc-
tural fractions such as hexagonal and cubic polytypes. The PISHG measurements were per-
formed in nanocomposites based on SiC nanocrystals embedded into oligoetheracrylate
photopolymermatrix.With increasing the power of the photoinducing nitrogen laser pulses the
SHGmaximumoutput signal increases and achieves its saturation at the pumping photon fluxes
of about .GW/cm. It is necessary to underline that the maximumof photoinduced SHG sig-
nal is achieved for the hexagonality (H–SiC crystalline fraction in the nanocrystallite) of about
% but at very low temperature (.–K). For the room temperature, it is more preferable is
to take batches with higher amount of cubic phase. The measurements have been carried out
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Effective electro-optical Pockels coefficient as function of the polymer nature and the electrical
poling. The used concentration of SiC nanoparticles is %

for different concentration of the nanocrystallite chromophores.The investigations have shown
that the optimal concentration of the embedded SiC nanopowders lies within the .± .%.
The olygoetheracrylate photopolymers may also vanish the SHG output signal values (Czer-
winski et al. ). Therefore the main contribution to the nonlinear optical susceptibility in
this case belongs to host–guest interfaces.

Molecular Dynamics Simulations

Three host–guest systems were built and their structural and physical features were simulated.
The model hybrid materials consist of PMMA/nc-SiC, PC/nc-SiC, and PVK/nc-SiC compos-
ites. For each system, the starting structure was generated usingHyper-Chemprogrampackage.
The unit cell of each structure consists of one SiC cluster surrounded by one polymer chain of
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PMMA (-mer) with molecular wt. ,. amu, one PC (-mer) chain (wt. ,. amu),
or one PVK (-mer) chain (wt. ,. amu).The structures and specific features of the used
polymers are reported in > Fig. -. The density of each polymer was about . g/cm and
corresponds to the solid state of the considered matrixes.

The SiC cluster was built with defined crystalline structure mainly from the cubic and
hexagonal arrangements with a diameter about . nm as it was used for the above carried out
simulations of IR, Raman, and PL signatures. Each cluster was composed by  atoms and pos-
sesses a mass about ,. amu. The simulated unit cell of the nanocomposite structure was
cubic with an edge length of .Å, .Å, .Å for the PMMA/nc-SiC, PC/nc-SiC and
PVK/nc-SiC system, respectively. The mass fraction of SiC embedded into the polymer host
matrix was about .wt% for PMMA/nc-SiC, .wt% for PC/nc-SiC, and . wt% for
PVK/nc-SiC system.

MD simulations were performed using the GROMACS software. A leap-frog algorithm was
used to integrate Newton’s equations of motion (Hockney et al. ). The potential energy was
computed as a summation of the contributions of bonded terms and nonbonded interactions
such as Lennard-Jones - potential and aCoulomb potential. Bonded interactions were based
on fixed list of atoms and nonbonded ones on a dynamic list.The atomic charges of the system’s
constituents were obtained using DFT calculations described below. The pair list was updated
at each step of the MD run. To make the neighbor list, a grid search algorithm was used with
a cutoff parameter equal to . nm. Bond interactions are represented by harmonic potentials,
while angle and dihedral distortions are modeled by a simple cosine function. The potential
function of the modeled system is described via all-atom consistent valence force field (CVFF)
(Kitson andHagler ).The relevant parameters of SiC and CSi tetrahedral bonding poten-
tials are presented elsewhere (Mirgorodsky et al. ).Note however that among the considered
approach, theCVFF force field has beenused successfully tomodel awide variety of biophysical,
crystal, and host–guest systems (Lau et al. ).

At the beginning of simulations, the geometry of each investigated system was optimized
using an energy minimization tool based on the steepest descent method with a convergence
criterion of  kcal mol− Å− . All MD simulations were conducted with a constant number of
particles, volume, and temperature (NVT ensemble) by applying periodic boundary condition.
The stabilization of the temperature to the required value about K was carried out by incre-
ments of ○ usingNose–Hoover thermostat (Hoover ; Nose ). Each investigated system
was first evaluated during  ns at temperature K using a time step of  fs to allow a relax-
ation and an achieved equilibrium regime for the system. At this stage, the data were not used
in the subsequent analysis. The stability of total energy was reached after about . ns of MD
runs. However, a second execution of the simulation is generally performed at K, with time
step of  fs and the coordinates were stored every , steps. Furthermore, the Particle Mesh
Ewald (PME) summation (Essman et al. ) was employed for the electrostatic long-range
interactions. The cutoff distance for integrating the coordination numbers was larger than the
nearest-neighbour distance of a perfect C–SiC crystal structure.

From the MD simulations, the resulting structure of SiC cluster can be characterized by
its radial distribution function (RDF). The atomic RDFs of Si–C atoms distances recorded at
the end of MD simulations are shown in > Fig. -. The maximum of RDFs plot, for each
investigated polymeric matrix is located at . nm. Such value is in agreement to the nearest-
neighbor distance in C–SiC structure and the corresponding peak is related to a C–Si–C
configuration. In such nanocrystalline structures, vibrations of atoms around their equilibrium
positions are involvedwith relatively small amplitudes leading to slight variations of interatomic
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⊡ Fig. -
Atomic radial distribution function G(r) between the Si and C atoms of the C–SiC clusters embed-
ded into PMMA, PVK, and PC polymeric matrix (Reproduced with permission from Makowska-
Janusik et al. ())

distances. The second peak on the RDF plot, centered at distance . nm, is related to Si–C
farthest-neighbor distances. The computed RDFs of Si–C distances do not change with the
nature of the polymer host matrix. One may conclude that the geometry of the C–SiC clus-
ter is very stable. The averaged distances between Si and C atoms are no longer affected by the
MD simulations performed at T = K which is very far from the melting point of the SiC.
We may also note that the internal Si–C bond lengths inside the investigated clusters are not
altered from the surrounding polymeric matrixes.

The main goal of the performed simulation procedures is not to simulate the structure of
SiC clusters but it is rather dedicated to determine the polymeric environment around them.
The spatial distribution of the SiC clusters in polymeric matrix was investigated through the
estimation of the intermolecular RDFs.This was calculated between the outermost Si–C cluster
surface atoms and the center of mass (COM) of four polymeric groups. For the PMMA matrix
the following groups were taken into account: methyl group bonded to the backbone carbon
atom, methyl group bonded to COO, COO group and CH. The RDFs between SiC cluster
and the PC polymer were calculated for the two benzene rings, for C–(CH) group and the
C =O one. For the PVK, four groups were chosen including the COMof the two benzene rings,
that of CH group and the N atom. In order to show the spatial distribution of the SiC cluster
surrounded by the polymer environment, only the nearest distances between the cluster and
polymeric groups are drawn (> Fig. -).

The RDF related to the PMMA-SiC distances is evaluated for the methyl group bonded to
COO. It is the nearest polymeric group to the SiC cluster with the distance equal to . nm. For
the PC and PVK host polymers, the benzene rings and the carbazole groups were respectively
considered. The SiC clusters embedded into the PC matrix show shorter distances (. nm)
to the polymer groups compared to our finding for PMMA matrix (. nm). Similar remarks
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Intermolecular radial distribution functions for the distance between last Si–C surface atomsof SiC
cluster and the polymer chains (Reproduced with permission fromMakowska-Janusik et al. ())

on the involved short distance can be made in the case of the PVK matrix. This testifies that
PVK groups can be closer to SiC cluster than the PMMA groups. As a consequence, the free
space around the SiC cluster is larger in PMMA-based composites than in the case of PVK
host media. As the matter of fact, the free space around SiC clusters incorporated into PMMA
matrix is the highest from all investigated matrixes and has the same value as it was calculated
for variety of organic chromophores (Makowska-Janusik et al. ). Finally, with regard to
the nanocomposite order, it is worth noticing that all observed RDFs are typical for amorphous
environments.No long-range order exists for considered systems except in the case of PC-based
nanocomposite where the regular oscillations of RDF plot suggest some ordering degree.

Quantum Chemical Computations

The optical properties of the SiC cluster were calculated in the rare gas cluster approach and
local field modification using  atoms with the geometry of an isolated C–SiC structure.
Described below quantum chemical computations were performed using Amsterdam Density
Functional (ADF) package implementing Slater-type basis sets. All calculationswere performed
with the standard double-ζ basis sets available in ADF and described in the cited references.
The polarizability α and first hyperpolarizability β were calculated by using ADF-RESPONSE
module within a frame of time-dependent DFT (TDDFT) theory. The local density approx-
imation (LDA) for the potential and kernel was used. It composes the local Slater exchange
functional and the uniform electron gas local correlation functional due to Vosko, Wilk, and
Nusair (VWN) procedure (Vosko et al. ). All the clusters were rotated to maximally align
the ground-state dipole moment along the Z-axis.
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⊡ Table -
Average local fields (F) on COM of SiC in PMMA, PVK, and PCmatrixes

System Fx [GV/m] Fy [GV/m] Fz [GV/m] F [GV/m]

PMMA/SiC −. −. . .

PVK/SiC −. −. −. .

PC/SiC . −. . .

In the frame of local field theory, linear and nonlinear macroscopic susceptibilities are
related to molecular properties by local field factors. In discrete local field theory, the local
fields are computed by considering the molecular environment rigorously. The intensity of the
created electric field depends on the arrangement of the polarized molecules around the point
of interest, in our case in the center of mass (COM) of the SiC cluster. Using the MD simula-
tions results, the host–guest structures were considered to calculate the electrostatic interaction
between the host polymer and the SiC cluster.The local electric fieldwas calculated for each sys-
tem in the COM of the SiC cluster. The calculations were carried out for each snapshot of the
MD simulations via the boundary condition and then averaged.The influence of the next neigh-
bor cells were taken into account with a cutoff defined by the difference between two calculated
electric fields being less than ΔF = − GV/m. The calculated electric fields related to the dif-
ferent nanocomposites are summarized in > Table -. In order to evaluate the electrostatic
intermolecular interactions, the data from the last range of . ns related to the MD run were
considered. The obtained electric fields were used to predict the linear and nonlinear response
of investigated composites as it was developed for the poled host–guest polymer systems (Reis
et al. ).

In > Table - the electric properties calculated by DFT method on SiC cluster in sev-
eral environments are reported. The energy-splitting ΔEHOMO−LUMO value for an isolated SiC
cluster is in agreement with the work reported elsewhere (Reboredo et al. ) and shows a
blueshift compared to the bulk C–SiC due to the used small cluster size. For the case of SiC
cluster surrounded by polymeric matrixes, the ΔEHOMO−LUMO values are somehow reduced
compared to an isolated SiC cluster.The environment contributes to narrowing the energy gap
of the SiC clusters and increases the static dipole moment, which characterizes a given SiC
grain. The most striking results concern the large effects from PC host matrixes. This is tra-
duced through the high local electric field induced in the COM of the investigated clusters (see
> Table -) and also on the large dipole moment involved on the nanograins (> Table -).
Generally, each considered polymer matrix delocalizes charge density of the semiconducting
cluster. One can conclude that all investigated polymers should be appropriate to use them like
matrixes keeping the SiC clusters.

On the other hand, the polarizability α and hyperpolarizability β related to the electro-
optical effect of the SiC clusters are calculated using Hartree–Fock and time-dependent DFT
approaches at λ = . μm. The calculations are performed for an isolated cluster and then
for the one embedded into polymer matrix. The effects of the surrounding media are taken
into account via local field theory using the point-dipole approach. The obtained results are
compared with the experimental data published recently (Bouclé et al. ). The obtained
polarizabilities α and hyperpolarizabilities β(ω; ,ω) are summarized in > Table -. Even
with large differences observed on the local field calculations (see > Table -) in the different
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⊡ Table -
Molecular electric dipole moment μ, HOMO-LUMO energy splitting ΔEHOMO−LUMO, polarizability
α(ω) and hyperpolarizability β(ω; ,ω) of the SiC cluster calculated in vacuum and polymeric
environment (λ =  nm;  au = .× − C m J−for α and  au= .× − C m J−

for β)
Molecule μ [D] ΔEHOMO−LUMO [eV] αav [au] βvec(ω; ,ω) [au]
SiC . . . .

SiC in PMMA . . . .

SiC in PVK . . . .

SiC in PC . . . .

environments, the linear optical properties seem independent on the nature of polymers. The
average value αav calculated in the local field approximation is about % lower in isolated cluster
compared to the one located in a polymeric environment. Also, one may notice that the calcu-
lated local field has a tendency to be parallel to the direction of the molecular dipole moment.
The absolute value of local field obtained for the PMMA and PVK matrixes are larger com-
pared to the result obtained for the molecular crystals (Reis et al. ) but remains comparable
with the previously investigated other guests in PMMA-based composites (Reis et al. ). It
is worth noting the large electrical interactions involved between nc-SiC and the host polymer
PC compared to those involved in the case of the PMMA- or PVK-based nanocomposites.

According to the carried out calculations, the environmental effect seems more important
on the NLO properties than on the linear ones. All the considered host matrixes contribute to
enhance drastically the hyperpolarizability β(ω; ,ω) compared to the one involved in isolated
C–SiC clusters.The largest effect is obtained on the PC-based nanocomposites due to the high
local field involved at the COM of the SiC cluster. With regard to the available experimental
works on electro-optical behavior of SiC nanocrystals in polymer matrixes, the hyperpolar-
izability coefficients are used to evaluate the linear electro-optical parameters. > Figure -
summarizes the experimental effective EO parameters re and the calculated hyperpolarizabil-
ity parameters for the SiC nanocrystals embedded in the different polymeric matrixes (PMMA,
PVK, and PC). The experimental results are compared to those defined from the β(ω; ,ω)
hyperpolarizability related to the EO effect and computed in local field approach. In practice,
presented comparison is not straightforward. The re parameter depends not only on the effec-
tive hyperpolarizability β(ω; ,ω) of considered molecule but also on the unit cell volume,
density of active molecules, and the order parameters of the system. However, one main task
of interest consists in analyzing the behavior of the electro-optical activity with respect to the
used host matrix. One can conclude that the variation of the theoretical β(ω; ,ω) values is in
qualitative agreement with the experimental results.

The highest theoretical value of β(ω; ,ω) is obtained for the PC/nc-SiC nanocomposites
and seems to correlate with the experimental finding. It is worth noting that what we have
addressed from the carried out analysis is to underline the general evolution of the effective
EO coefficients and the hyperpolarizability parameters. More elaborated treatments should be
performed on the nanocomposites and particularly the behavior under electrical poling.

Based on such approach, the EO properties discussed above can be improved bymore elab-
orated approaches using MD simulations of the electrically treated media. In this context, the
calculations of the macroscopic optical properties should be supplemented by the local field
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⊡ Fig. -
Linear effective EO parameter re experimentally obtained for the different kind of polymeric
matrixes (bars) and hiperpolarizability β(ω; ,ω) calculated via the local field theory (diamonds)
(Reproduced with permission fromMakowska-Janusik et al. ())

factor calculations. This approach can be combined with the permanent environmental effect
on a perturbation ofmolecular surface.This ismatter of current developments and actual scope.

Conclusions

The development of innovative experimental approaches for the synthesis of functional nanos-
tructured materials and the investigations of their key features was accompanied by theoretical
and numerical approaches.This combination is dictated by the eventual lack ofmodels and the-
ories of bulk-like media to describe the real behavior from nanosized systems. Straightforward
analyses and relevant interpretations of experimental responses require numerical simulations
for the evaluation of the underlying physical properties of nanoparticles as isolated objects or
associatedwith suitable hostmatrixes. Based on this methodology, the effects of broken transla-
tion symmetry at the nanocrystal boundaries or the size inducing electronic band structure and
vibrational changes with respect to infinite media can be accounted quantitatively. This chapter
summarizes the peculiarities of physical features of isolated nanoparticles and nanocomposites
and describes the role of interface, which monitors electronic, optical, or vibrational phenom-
ena.The conjugation of the different investigation approaches including experiments, theories,
and simulations was applied to model nanosized materials based on SiC. This material has
intrinsically versatile behaviors from structural (wide polytype family), electronic, and optical
aspects as well.The interest from SiC-based nanostructures is also motivated by the technolog-
ical applications of SiC in devices for high-power electronics, integrated optics, or photovoltaic
applications.The developmentof the newmethodology to improve the expected functionalities
of SiC based nanosized architectures is a challenging investigation. This consists in the predic-
tion of key properties from numerical simulations, the demonstration of their relevance using
suitable experimental tools and finally, the establishment of the necessary feedback to enhance
the physical responses for targeted applications.
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The developed approach contributes to discriminate between experimental spectra of
VDOS, the IR bands, and those due to photoluminescence (PL) phenomena. For the useful-
ness of nanosized crystalline materials, the cluster model was developed. It brings view on the
physical properties of real nanostructured materials based on non-boundary condition calcu-
lations. Several geometries and structures of the clusters were tested and the suitable cluster
size was determined for correct analysis of the experimental facts. A good agreement between
experiments (IR, Raman) and the numerical simulation underline the strength of the devel-
oped methodology to describe correctly the physical properties of nanosized objects. Thus,
theoretical VDOS spectra clarify their origin as mainly due to amorphous fraction of the SiC
nanoparticles. In the PL investigations, the electron–phonon interactions play crucial role in the
emission process through the phonon-assisted transitions stated on the theoretical model and
the corresponding numerical simulations.The approach was developed on three representative
cluster configurations to give precise insight on the experimental PL spectra even after oxida-
tion treatments. However, it is worth noting that the construction of any cluster configuration
and the evaluation of its physical peculiarities is generally dictated by the real organization of
the SiC nanoparticles being precisely probed by high-resolution electron microscopy. This is
the main requirement, which make us confident in the relevance of the carried out numerical
analysis of vibrational and luminescence experiments.

In SiC-based nanocomposites, the simulations of the system proceed by numerical con-
struction and geometry optimizations of the representative unit cell made from SiC cluster
possessing appropriate size and the surrounding molecular arrangement of host matrix. The
approacheswere applied to the polymer hostmatrixes such as PMMA,PC, andPVKused for the
evaluation of the electro-optical properties of hybrid nanocomposites. The geometry of struc-
tures was optimized using MD simulations with realistic parameters for the local order in SiC
cluster and the boundary conditions defined by the interface features. The key parameter eval-
uated fromMD simulations consists in the RDF between the cluster and the polymeric groups.
Comparative analysis of the RDF features was then carried out depending on the polymer
nature. In the final step of simulationwork, the time-dependentDFT approachwas used to eval-
uate the polarizability and hyperpolrizability parameters of SiC components. The dependence
of these parameters on the host polymer matrixes was found similar to that of effective lin-
ear electro-optical parametersmeasured experimentally in the nanocomposites.The qualitative
agreement between experimental responses and the numerical results in SiC based nanocom-
posites justify the validity and the generalization of the developed numericalmethods to analyze
the electro-optical behaviors of other nanostructured systems.
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Abstract: This chapter describes general principles in the stability and bonding of empty
fullerenes, endohedral fullerenes, and exohedral derivatives of empty fullerenes. First, an
overview of the structural properties of empty fullerenes is given. The problem of isomers’
enumeration is described and the origin of the intrinsic steric strain of the fullerenes is dis-
cussed in terms of POAV (π-orbital vector analysis) leading to the isolated pentagon rule
(IPR). Finally, theoretical studies of the isomers of fullerenes are discussed. In the second
part of the chapter, bonding phenomena and molecular structures of endohedral metallo-
fullerenes (EMFs) are reviewed. First, the bonding situation in EMFs is discussed in terms
of ionic/covalent dichotomy. Then, the factors determining isomers of EMFs, including those
favoring formation of non-IPR cage isomers, are reviewed. In the third part, general principles
governing addition of atomic addends and trifluoromethyl radicals to fullerenes are analyzed.

Introduction

Carbon cluster research, originally the field of scientists interested in Cn species thatmight exist
in deep space, “landed” on Earthwith two discoveries that eventually changed the face of carbon
science in particular and the nanoscience/nanotechnology in general. The first discovery was
reported in , whenKroto, Curl, Smalley, and coworkersmade theNoble-prize-winning sug-
gestion that the high-mass peaks in the mass spectra of laser-evaporated graphite belonged to
closed-cage structures now known as fullerenes (Kroto et al. ). These molecules remained
the playthings of mass spectrometrists, the only scientists who could “observe” fullerenes by
producing them in situ in infinitesimal amounts, until  when Krätschmer and coworkers
discovered that this “new form of carbon” can be produced in bulk (i.e., macroscopic) amounts
by the arc-burning of graphite (Krätschmer et al. ). C followed by C are the major
fullerenes produced by arc-burning, however, starting from C, classical fullerene cages are
possible for each even number, and many of such fullerenes (known as higher fullerenes) are
produced as well. Studies of higher fullerenes are complicated by the increasing number of pos-
sible isomers, even if the strict isolated pentagon rule (IPR; see below formore details) is applied.
The fullerenes with the number of atoms less than  are also available, but still remain exotic
objects.Thus, the world of fullerenes themselves is very rich, but they also provide uncountable
possibilities for further chemical modifications.

One of the attractive properties of fullerenes intrinsic to their closed-cage structure is the
possibility of using them as robust containers for other species. The first evidence that metal
atoms can be put inside fullerenes was reported in  and was based on mass spectrometry
(Heath et al. ), while the first bulk samples of fullerenes with metal atoms inside (endohe-
dral metallofullerenes; hereinafter EMFs) were obtained in  by laser evaporation (Chai et al.
) or arc-discharge (Alvarez et al. ) of the graphite rods mixed with lanthanum oxide.
In the first decade after the discovery of macroscopic fullerene production the field of EMFs
remained very “hot.” Many metals were put inside fullerenes during this time, and many new
molecules were reported (Shinohara ), but the yields of EMFs were very low (usually on
the order of % of the empty fullerenes in the arc-discharge soot). Until , EMFs were mostly
molecules with one to three metal atoms encapsulated in the carbon cage. In  it was found
that the presence of nitrogen gas in the arc-burning reactor resulted in metal-nitride cluster
fullerenes (NCFs) with the composition MN@Cn (M=Sc, Y, Gd–Lu; n = –; the sym-
bol “@” in the formula denotes how the EMF molecule is divided into the endohedral cluster,
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the composition of which is given before this symbol, and the carbon cage with optional exo-
hedrally attached groups, which follow after this symbol) to be produced (Dunsch and Yang
; Stevenson et al. ). In  it was discovered that some “conventional” EMFs actually
had C carbide units inside the cage. For example, “Sc@C” and “Sc@C” were shown to
be ScC@C and ScC@C, respectively (Iiduka et al. ; Wang et al. ). Judicious
choice of the nitrogen source led the group in Dresden to the invention of the reactive atmo-
sphere method, in which the use of ammonia in the arc-burning reactor resulted in NCFs as
major fullerene products (Dunsch et al. , ). The same method with the use of CH

resulted in ScCH@C (Krause et al. ). Recently, oxides ScO,@C were synthesized
using copper nitrate as the source of oxygen (Stevenson et al. ), while the use of guani-
dium thiocyanate afforded formation of sulfide clusterfullerenes MS@C (M=Sc, Y, Dy, Lu)
(Dunsch et al. ). The chemical route to open the empty fullerene cage, insert the small
molecule inside (e.g., H), and then close the carbon cage was also recently reported (Komatsu
et al. ). Finally, it is also possible to introduce one or two atoms of inert gases into the
fullerene by high pressure–high temperature treatment (Saunders et al. ).

Another important property of fullerenes from the chemist’s point view is a very rich
π-system based on the formal sp hybridization state of all carbon atoms. In chemical reac-
tions fullerenes behave as polyalkenes (original expectations of the “superaromatic” properties
were not confirmed) and thus exhibit very rich addition chemistry.That is, numerous cycload-
dition reactions and addition of the groups forming one single bond to the fullerene core (such
as atoms, e.g., halogens or hydrogen, or radicals, e.g., alkyl groups) are reported (Hirsch and
Brettreich ).

Development of fullerene science was always accompanied – and sometimes preceded – by
theoretical studies. The principles governing stability of fullerenes were revealed in late s
and early s with the use of computational approaches, and such important data as relative
energies of the fullerene isomers are still available only from the results of quantum-chemical
calculations. Likewise, the most mysterious question about the fullerenes – why and how they
are formed – is successfully addressed by theoreticians (Irle et al. , ). The rise of the
fullerene era to a large extent coincided with a dramatic increase in the capabilities of com-
putational chemistry – either from advances in hardware, software, or theory itself. If studies
of fullerenes in the mid-s, even by semiempirical approaches, were possible only in spe-
cial laboratories, presently, at the end of the first decade of the twenty-first century, accurate
DFT calculations can be done by virtually any scientist using a standard office computer. Yet,
the large size of fullerenes and their derivatives still imposes serious limitations: even now it is
barely possible to perform post Hartree-Fock ab initio calculations. Thus, DFT is the method
of choice in fullerene chemistry, and will probably remain so in years to come. Although MP
calculations are becoming more feasible (Darzynkiewicz and Scuseria ; Haser et al. ;
Krapp and Frenking ), a significant increase of computational demands in many cases is
not justified by the reliability of the results when compared to DFT (the modeling of noncova-
lent interaction, the weak point of DFT, is, however, an important exception). Routine use of
methods with higher scaling than MP is still very difficult at present.

In this chapter we will show how quantum-chemical calculations can assist in studies of
fullerenes. In particular, we will discuss prediction and elucidation of the molecular structures
of the empty fullerenes, endohedralmetallofullerenes, and selected fullerene derivatives. Taking
into the account the huge amount of literature published on this subject, any review of the field
is necessarily incomplete. We will not try to cover the whole field; instead, we will focus on
several representative examples.
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Structures and Stability of Empty Fullerenes

Definition of Fullerenes and Enumeration of Their Isomers

IUPAC defines a fullerene as a “compound composed solely of an even number of carbon
atoms which form a cage-like fused-ring polycyclic system with twelve five-membered rings
and the rest six-membered rings.” In practice, all other closed-cage structures built from three-
coordinate carbon atoms are also called fullerenes. The definition of fullerenes is based on the
Euler theorem, which states that for a given polyhedron the numbers of vertices (n), edges (e),
and faces ( f ) are related by:

n + f = e +  (.)

Each carbon atom in a fullerene is bonded to three other atoms; therefore, for a fullerene
Cn the number of edges is e = n/, which yields the number of faces f = n/ + . Since all arc-
discharge produced fullerenes have only five- and six-membered faces (it is possible to obtain
fullerenes with four or seven-membered rings only by chemicalmodification), one can calculate
the number of vertices and faces through the number of pentagons (p) and hexagons (h):

(p + h)/ = n (.a)

p + h = n/ +  (.b)
Solution of > Eq. . yields p=  (and hence the number in the definition given above)

and h = n/–. Obviously, the smallest structure with  pentagons is C (it has no hexagons),
and starting from n =  at least one fullerene structure is possible for each even n (note that it
is not possible to build a fullerene for C).

The number of the isomers is rapidly increasing with n, raising the problem of systematic
enumeration of all possible isomers. The problem was solved for all practical fullerene sizes
by the invention of the spiral algorithm (Manolopoulos et al. ; Fowler and Manolopou-
los a). The algorithm is based on the spiral conjecture, which states that: “The surface of a
fullerene polyhedron may be unwound in a continuous spiral strip of edge-sharing pentagons and
hexagons such that each new face in the spiral after the second share an edge with both (a) its
immediate predecessor in the spiral and (b) the first face in the preceding spiral that still has an
open edge” (Fowler and Manolopoulos a).

> Figure - shows one of the ways in which C and C can be unwound into a spiral.
The spiral can be coded by a sequence of “” and “” digits corresponding to the positions of
the pentagons and hexagons. For instance, the spiral of the fullerene C shown in > Fig. -
can be written as:

 (.)

Enumeration of all fullerene isomers is now straightforward: one should generate all possi-
ble spiral codes consistent with the given number of atoms (that is, for Cn fullerene the length
of the code is f = n/ + , and positions of the pentagons can be used as running indices)
and then check for each spiral if it can be wound up into a fullerene. The task, however, is not
complete at this point since the fullerene molecule can be unwound into up to n spirals, and
hence each fullerene will be generatedmany times. For instance, if C is unwound into a spiral
starting from a hexagon, the following codes can be also obtained:

 (.a)

 (.b)
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⊡ Fig. -
Unwinding C and C into spirals (thick black line)

There is a simple way to solve the problem of checking the uniqueness of the given fullerene.
One can consider the spiral codes given in > Eqs. . and > . as numbers, which can
then simply be compared to each other. For the spirals of C under discussion, (> Eq. .) <
(> Eq. .a) < (> Eq. .b). The spiral with the smallest number is called a canonical spiral;
all non-canonical spirals should be sorted out. Thus, in addition to checking whether a given
spiral can be wound up into a fullerene, one should also check if it is canonical. This problem
can be also solved straightforwardly: if it is found that the spiral forms a fullerene, this fullerene
should then be unwound into all possible spirals, the canonical one should be found among
them and compared to the testing spiral.

The algorithm outlined above has been proved to be very successful, and its use in enu-
meration of the fullerene isomers is now standard. Importantly, the sequential number of the
given fullerene isomer (i.e., the number of the isomer in the list of all isomers generated for the
given fullerene by the spiral algorithm) is its sufficient and unique identifier. Usually, in desig-
nation of the fullerene isomer, one also adds its symmetry (to be precise, the highest symmetry
possible for this topology of atoms; the ground state structure of the molecule can have lower
symmetry), and we will use this notation in this chapter.

To conclude this section, we note that the spiral codes in > Eqs. . and > . can be
further simplified, taking into account that each fullerene has only  pentagons, and hence the
spiral code can be uniquely defined by the numbers of the pentagon positions. In this notation,
the spiral of C in > Eq. . is written as:

            (.)

This notation is usually used in the literature, including the famous “Atlas of Fullerenes”
(Fowler and Manolopoulos a).

The Isolated Pentagon Rule and Steric Strain

The importance of exhaustive systematic enumeration of all isomers for a given fullerene
becomes clear when the problem of structure elucidation of fullerenes is raised. Highly sym-
metric structures of C andC were proposed as a result of playing with themodels.However,
the success of this approach was to a large extent fortuitous, and this is hardly possible for other
fullerenes. Of course, an unambiguous elucidation of the molecular structure might be pos-
sible through single-crystal X-ray diffraction studies. However, the quasi-spherical shape of
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fullerene molecules results in strong disorder, which in most cases precludes reliable elucida-
tions of the isomeric structures. This problem can be solved by chemical functionalization of
fullerenes (e.g., via chlorination and perfluoroalkylation) and X-ray studies of their derivatives
(Kareev et al. a; Shustova et al. ; Simeonov et al. ; Troyanov and Tamm b),
but this promising approach is not always applicable. Thus, since early s and up to now,
C NMR spectroscopy has been the most important method in structural studies of newly
isolated fullerenes. However, through the number of lines and their relative intensities, C
NMR spectrum gives at best only the symmetry of the fullerene molecule, but not the exact
isomeric pattern. Therefore, it is necessary that all isomers with NMR-determined symmetry
are considered as possible structural guesses. Quantum-chemical calculations and studies by
other spectroscopic techniques can be then used to determine the most appropriate structure.

> Table - lists the total amount of possible isomers of fullerenes Cn for different n.
These numbers clearly show that consideration of all isomers is hardly feasible for the low-
symmetric structures. For instance,  isomers are possible for C, and the information
that an experimentally studied isomer has C symmetry allows one to reduce the structural
guesses to  isomers, which is still not very feasible. On the other hand, the number of iso-
mers formed in arc-discharge synthesis is usually rather low. Therefore, it seems possible and
highly desirable to develop some simple rules to reduce the number of isomers that should be
considered.

Themost successful rule of this sort is the isolated pentagon rule (IPR) proposed byH.Kroto
back in  on the basis of general considerations (Kroto ) and by Schmalz and coworkers
in  on the basis of more careful considerations of the sources of strain in carbon clusters
andHückel calculations (Schmalz et al. ).The IPR rule states that the fullerene isomerswith
adjacent pentagons are less stable than the isomers in which pentagons are surrounded only by
hexagons (i.e., pentagons are isolated). In subsequent works numerous isomers of fullerenes
were studied and the number of the pentagon-pentagon edges was found to be a parameter
exhibiting very good correlation to the stability of the fullerenes. > Figure -a shows the
correlation between the number of pentagon-pentagon edges and the relative energies of all
 isomers of C calculated at the QCFF/PI level of theory (Austin et al. ) (QCFF/PI
is an inexpensive semiempirical computational approach combining classical mechanics for
σ-bonds and the Pople-Pariser-Par method for π-system).The correlation is close to the linear

⊡ Table -
The total number of isomers of C–C fullerenes and the number of fullerene C isomers of
different symmetry types compared to the number of corresponding IPR isomers

Cn Total IPR Cn Total IPR C-symmetry group Total IPR

 ,   ,  C − C  

 ,   ,  C − C  

 ,   ,  C − Cs  

 ,   ,  C − C  

 ,   ,  C − Cv  

 ,   ,  C − D  

 ,   ,  C − D  

 ,   ,  C − Dh  

 ,   ,  C − Dh  
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⊡ Fig. -
(a) The relative energy of C isomers computed at the QCFF/PI level as a function of the num-
ber of pentagon/pentagon edges (Reproduced with permission from (Austin et al. ), © ()
American Chemical Society); (b) energy penalty for the pentagon adjacency as a function of the
fullerene size (Based on the data from Campbell et al. ); (c) relative energy of the IPR isomers
of C computed at the QCFF/PI level as a function of the steric strain parameter H (Reproduced
with permission from (Achiba et al. a), © () American Chemical Society)

form, and the energy penalty for one pentagon-pentagon edge,  kJ/mol for C, can be esti-
mated from the slope of the fitted line. In a detailed study of the C–C fullerene isomers at the
QCFF/PI level (Campbell et al. ), it was found that the penalty is increasing with the cage
size (> Fig. -b), from  kJ/mol for C to  kJ/mol for C. The study of  C isomers of
D and higher symmetry at the QCFF/PI level (Austin et al. ) has shown that the penalty
of the pentagon adjacency can be estimated as  kJ/mol (but this value is probably overesti-
mated since the non-IPR isomers with lower symmetry can be more stable). The study of all 
isomers of C at various levels of theory, including DFT (BLYP, BLYP, and LDA), the Hartree-
Fock method, semiempirical methods (AM, PM, MNDO, QCFF/PI), the density-functional
based tight-binding method (DFTB), and molecular mechanics (MM), has shown that for all
methods except for MM the penalty for C isomers falls in the narrow range of – kJ/mol
(Albertazzi et al. ). In particular, BLYP/STO-G andQCFF/PI values are  and  kJ/mol,
respectively, which confirms that the predictions on the broader range of isomers obtained at
the QCFF/PI levels are also reliable. It should be noted, however, that the increase of the basis
set to -G∗ resulted in a % increase in the penalty at the BLYP level, showing that the basis
set effects can be rather important.

The energy penalty for the pentagon adjacency is sufficiently large to suggest that all non-
IPR isomers can be sorted out for higher fullerenes (relative energies of the isolable fullerene
isomers are usually less than  kJ/mol; see below). Increase of the energy penalty with the cage
size is another factor favoring the application of the IPR. Indeed, the rule is strictly followed by
all experimentally available empty fullerenes (the notable exclusion is C, which is discussed
below). For the experimentally accessible fullerenes, the IPR reduces the number of possible iso-
mers to be considered frommany thousands to tens and hundreds (> Table -). It is, however,
possible to stabilize pentagon adjacencies by exohedral derivatization or by coordination to the
metal atoms in EMFs (Tan et al. ), and hence larger sets of isomers have to be considered
in these cases.
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High energy penalty is the result of the combination of at least two factors. First, a pair
of adjacent pentagons (pentalene) has an -electron π-system and is antiaromatic. Another
factor, which is probably more important, is the steric strain induced by adjacent pentagons.
The formal hybridization state of carbon in fullerenes is sp. Thus, carbon atoms should be pla-
nar (by this, we mean that it has three neighboring carbon atoms in the same plane). From the
geometrical point of view, planarity is achieved when a carbon atom is located on the fusion
of three hexagons. In this case, π-orbitals (pz) of the neighboring atoms are exactly parallel
and the optimal overlap of these orbitals is achieved. However, one cannot build fullerene only
from hexagons – pentagons are necessary to make closed-cage structures. The carbon atoms in
pentagons are not planar any more (the small angle of ○ vs ○ in hexagons has to be com-
pensated by the out-of-plane shift of the central atom), which results in rehybridization, the
effect easily explainable in terms of π-orbital axis vector (POAV) analysis. POAV is defined as
the vector that forms equal angles (POAV angles, θσπ) to all three σ-bonds (it is assumed that
σ-orbitals are aligned toward the neighboring atoms). Admixing of s-orbitals into the hybrid
π-orbital (the essence of rehybridization) can be quantified from geometrical point of view as:

m =
 sin(θσπ − π/)

 −  sin(θσπ − π/)
(.)

where m determines admixture of s-orbital to the hybrid π-orbital (π= smp; for perfect sp

hybridization, θσπ = ○ andm = ).Whenm is not equal to zero,π-orbitals of the neighboring
atoms are not parallel any more. Because of this misalignment, the π-orbital overlap is reduced,
and therefore the π-bonding is weakened, the effect being the stronger the larger the value of
m. > Figure -b shows possible junctions of pentagon and hexagons and hybrid π-orbital
of the central atom computed for idealized polygonal bond angles. Misalignment of π-orbitals
increases with the increase of the number of fused pentagons, and the IPR is a manifestation of
this tendency.

It is obvious from > Fig. - that all fullerenes are inherently strained. For instance, it was
estimated that the steric strain constitutes approximately % of the excess energy of C with

θσπ

π = s0.000p1.000 π = s0.081p0.919

π = s0.292p0.708π = s0.173p0.827

a b

⊡ Fig. -
(a) Definition of the θσπ angle in the POAV approach; (b) the component of the hybrid π-orbital
of the central atom in different junctions of pentagons and hexagons computed for idealized
polygonal bond angles (Based on the data from Fowler and Manolopoulos a)
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respect to graphite (Haddon ). To quantify the steric strain, Raghavachari introduced the
concept of hexagonal indices (Raghavachari ). The neighbor index k of a given hexagon is
the number of its edges which are shared with other hexagons, and every fullerene isomer can
be characterized by a set of indices hk(k =  − ), where hk is the number of hexagons with
neighbor index k. In the aforementioned study of  isomers of C, it was shown that the
parameter

H =
∑k k

hk (.)

also gives good linear correlation with the relative energies of the isomers.
The concept of hexagonal indices was in fact invented to explain relative stabilities of the IPR

isomers. As each hexagon in the IPR isomer is adjacent to at least three other hexagons, h, h,
and h indices are equal to , and the combination of four indices (h, h, h, h) is sufficient to
characterize hexagon adjacencies in a given fullerene isomer (Fowler andManolopoulos a;
Raghavachari ). Raghavachari suggested that to minimize the steric strain, the indices of
all hexagons should be as close to each other as possible. In other words, the lowest strain
energy can be achieved when the non-planarity is uniformly distributed over the whole car-
bon cage. Hence, the lowest strain is expected for those structures, in which all hexagons have
the same neighborhood (all indices are equal), the condition fulfilled only for highly symmet-
ric C − Ih(), C − Ih(), and C − Dh() in the whole range of IPR fullerenes Cn with
n < (Fowler and Manolopoulos a). More complex conditions were derived for other
IPR fullerenes, namely:

(h, h, h, h) =
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

( − n, n/− , , );→  ≤ n ≤ 
(,  − n/, n − , );→  ≤ n ≤ 
(, , , n/− );→  ≤ n

(.)

> Table - lists optimal combinations of hexagonal indices as well as fullerene isomers in the
range of C−C with such sets of indices. Importantly, C is the only fullerene that has no
isomers satisfying these conditions.

⊡ Table -
Optimal hexagon indices, the IPR isomerswith optimal hexagon indices, and the lowest energy IPR
Cn and C−

n
isomers (n= –)

Cn (h,h,h,h) The least-strain IPR isomersa
The lowest energy
Cn IPR isomersb

The lowest energy
C−
n

IPR isomersc

C (,,,) Td () D() Td ()

C (,,,) Dh() Cv () Dh()

C (,,,) Dh(), Ih() Dd(), D() Dh(), Ih()

C (,,,) Cv () C() Cv ()

C (,,,) D(), D(), Dd() D(), Dd() D()

C (,,,) D() C() D()

C (,,,) D() Cs() D()

C (,,,) C(), C(), C(), C(), C() C() C()

abased on the data from (Fowler and Manolopoulos a)
bsee > Table - for more details
cbased on the data from (Popov and Dunsch a)
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As a numerical parameter to quantify the steric strain in IPR fullerenes, one can use the
standard deviation of the index distribution (Fowler and Manolopoulos a):

σh =
√

⟨k⟩ − ⟨k⟩ (.)

where

⟨ki⟩∣
i=,
= (

k=
∑

k=
kihk) ⋅ (

k=
∑

k=
hk)

−

(.)

It was also shown that σh correlates well with the standard deviation of the square of POAV
pyramidalization angle, σ(θp) (θp = θσπ– ), as can be seen in > Fig. -a for a set of  IPR
isomers of C (Boltalina et al. ). Therefore, σ h and σ(θp) can be used interchangeably
to quantify the steric strain, the later parameter being more universal (for instance, it can be
equally used for fullerene derivatives, in which some carbon atoms are in sp hybridization
state). >Figure -b also plots the relative energies (ΔE)ofC computed at the BLYP/-G∗

level of theory versus σ(θp).The lack of correlations between ΔE and σ(θp) for the isomerswith
medium values of these parameters indicates that for IPR fullerenes, the other (e.g., electronic)
factors are at least equally important as the steric strain.As a result, the lowest energy isomers for
C–C are usually not the isomers with the lowest steric strain (see > Table -), and steric
strain analysis is not widely used now in the studies of higher fullerenes of medium size. If a
larger set of isomers is considered (e.g., , IPR isomersC), then the steric strain indicators
(such as H in > Eq. .) indeed show correlation with the relative energies, at least at the
QCFF/PI level (> Fig. -c) (Achiba et al. a). However, the standard deviation of  kJ/mol
is still too large, and such data can be of help only to sort out some high-energy isomer. Below
we will show that more precise schemes have been developed based on the combination of
topological motifs and their increments (Cioslowski et al. ).
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⊡ Fig. -
(a) Correlation between σ(θp) and σh parameters for  IPR isomer of C (Based on the data from
Boltalina et al. ); for a fitted line, R = .; (b) correlation between σ(θp) and BLYP/-G∗-
computed relative energies of  IPR isomer of C (Based on the data from Sun and Kertesz b)
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The Isomers of IPR Fullerenes

With the advent of the IPR, the number of fullerene isomers to be considered was drastically
reduced and detailed computations of reasonable (i.e., IPR) isomers and comparison to the
experimental results became feasible. In this section we will review the results of the search of
the most stable isomers of fullerenes beyond C (starting from C, at least one IPR isomer
is possible for each even number of atoms). It is necessary to point out that the term stabil-
ity comprises some ambivalence. It can be used in terms of thermodynamic stability, which in
the studies of isomers means low relative energy, or in terms of kinetic stability, which implies
reactivity of the compound in the given experimental conditions (in the studies of fullerenes
it is usually determined by the HOMO–LUMO gap). When predicting the possible isomeric
structure of fullerenes, it is necessary to consider a combination of both thermodynamic and
kinetic stability factors, the former determining the possibility of the formation of the given
fullerene, and the latter showing whether a given fullerene can be extracted from the soot and
further processed by standard fullerene separation techniques. In fact, conclusions based on
thermodynamic stability can be valid only when the reaction is close to the equilibrium (which
is hard to prove for fullerenes). Moreover, for the equilibrium, Gibbs energies (rather than rel-
ative energies) should be taken into account, and it was shown by Slanina and coworkers that
the equilibrium composition can be significantly altered at high temperatures (Slanina et al.
b). On the other hand, there are some examples (see below) showing that if thermody-
namically stable fullerene has small HOMO–LUMO gap, it is possibly produced but remains
in the insoluble part of the soot after extraction (presumably because of its polymerization). In
this respect, a combination of the relative energy and the HOMO–LUMO gap still seem to be
convenient parameters for the basic characterization of the fullerene isomers. > Table - lists
the data on the relative energies of some higher fullerene isomers obtained using BLYP and
PBE (also known as PBEPBE) hybrid DFT functionals. BLYP results are compiled from sev-
eral works by different groups and are obtained mainly with the use of -G or -G∗ basis
sets (Chen et al. ; Slanina et al. ; Sun and Kertesz , b, ; Sun a, b;
Zhao et al. ), while PBE values are results of single-point calculations with -G∗ basis
set and DFTB-optimized atomic coordinates (Shao et al. , ). > Table - also lists
PBE-obtained HOMO–LUMO gaps. > Figure - shows the structures of the major isomers
of C and C–C.

The first fullerene after C, C, is a “missing” fullerene since it has never been obtained in
considerable amounts. The sole IPR isomers of C with Dd molecular symmetry is predicted
to have large HOMO–LUMO gap (. eV at the PBE/TZP level), however, DFT calculations
(Kobayashi andNagase b, b; Slanina et al. a) supported also by themeasurements
of electron affinity of C (Boltalina et al. a) show that trace amounts of C present in
the fullerene extract are most probably based on the non-IPR Cv () isomer, which is –
 kJ/mol more stable than the IPR Dd () isomer at the DFT level of theory (> Table -).
Thus, C is the only empty fullerene Cn (n > ) which violates IPR.

C represents to some extent the opposite situation to C: according to DFT calcula-
tions, the sole IPR isomer of C, Dh(), has small HOMO–LUMO gap and probably has a
triplet ground state (Kovalenko and Khamatgalimov ). This fullerene was also thought to
be “missing” for a long time, until it was shown that it is insoluble in common fullerene sol-
vents (Karataev ), most probably because of polymerization. C as well as some other
“insoluble” fullerenes can be solubilized by either electrochemical (Diener and Alford )
or chemical modification (Goryunkov et al. b; Shustova et al. , ). For instance,
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⊡ Table -
Relative energies (kJ/mol) and HOMO–LUMO gap (eV) in selected isomers of C–C fullerenes as
computed at the BLYP and PBE//DFTB levels of theory

Cn Sym. BLYP PBE Gap Ref.a Cn Sym. BLYP PBE Gap Ref.a

C Dd() . . . [b,c] C C() . . . [b,d]

Cv −. −. . Cs() . . .

C Dh() . . . [b,c] C() . . .

C D() . . . [b,c] C() . . .

Td() . . C() . . .

C Cv() . . . [b,c] C Cs() . . . [f,d]

Dh() . . . C() . . .

Cv() . . . C() . . .

D() . . . C() .

Dh() . C() . . .

C D() . . . [b,c] C C() . . . [g,d]

Dd() . . . Cv () . . .

Cv() . . . Cs() . . .

Cv() . C() . . .

D() . C() . . .

C C() . . . [b,d] C() . . .

Cs() . . . C() .

Cs() . . . C() . . .

C() . . . C D() . . . [h,d]

C() . . . D() . . .

Cs() . . . C() . . .

C Dd() . . . [e,d] C() . . .

D() . . . D() . . .

Dh() . . . D() . . .

Cs() . . . C C() . . . [i,d]

C() . . . Cs() . . .

Dd() . Cs() . . .

Cs() . . . C() . . .

C() . C() . . .

Dd() . C() . . .

Cs() . C() . . .

Cv() . C() . . .

D() . C() . .

aIn each pair of references, the first one is for BLYP values, the second one is for PBE/-G∗//DFTB values
bBLYP/-G∗ (Chen et al. )
cShao et al. 
dShao et al. 
eBLYP/-G∗ (Sun and Kertesz b)
fBLYP/-G (Sun a)
gBLYP/-G (Sun b)
hBLYP/-G∗//SAM (Slanina et al. )
iBLYP/-G∗//SAM (Zhao et al. )
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C70–D5hC60–Ih C72–C2v (11188) C74–D3h

C78–C2v(3)C78–C2v(2)C78–D3(1)C76–D2

C80–D5d(1) C80–D2(2) C82–C2(3) C84–D2(22) C84–D2d(23)

⊡ Fig. -
Molecular structures of C, C, and selected higher fullerenes. The atoms in adjacent pentagon
pair in C are highlighted

trifluoromethylation of “insoluble” fullerene mixture afforded C(CF) as a major prod-
uct, and Dh() carbon cage in this compound was unambiguously confirmed by single-crystal
X-ray diffraction (Shustova et al. ).

Identity of C as D() isomer was unambiguously confirmed by C NMR spectroscopy
in the very early studies of the higher fullerenes (Ettl et al. ). According to DFT calcu-
lations, D() is considerably more stable than the second IPR isomer, Td(). Moreover, the
latter is subject to Jahn-Teller distortion (the actual symmetry is D) and has a small HOMO–
LUMO gap. Recently, it was shown that C−Td () is probably also formed in the fullerene
synthesis but remains insoluble; however, it can be solubilized and characterized in the form of
trifluoromethyl derivative (C−Td())(CF) (Shustova et al. ).

C has five IPR isomers; four of them are quite stable (their ΔE covers the range of
 kJ/mol) and are proved to be formed in the arc-discharge synthesis. Three isomers, D(),
Cv(), and Cv (), are obtained in approximately comparable amounts (the actual ratio
depends on the pressure used in the synthesis) and can be easily extracted from the soot as
they have comparably high HOMO–LUMO gaps (Kikuchi et al. ; Wakabayashi et al. ).
The isomer Dh(), although it is the second in the stability order (> Table -), can be found
in the fullerene extract in much smaller amounts (Simeonov et al. ). A possible reason is
the lowHOMO–LUMO gap, which results in the poor solubility. Indeed, this isomer was found
among the “insoluble” fullerenes, its structure being unambiguously confirmed by the single-
crystal X-ray structure of the trifluoromethyl derivative, (C−Dh()) (CF) (Shustova et al.
).
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From seven IPR isomers ofC, only the twomost stable structures (> Table -),D() and
Dd(), are obtained in the form of empty fullerenes (Hennrich et al. ; Wang et al. b).
DFT predicts that they are almost isoenergetic (the D() isomer is somewhatmore stable), but
Dd() isomer has considerably smaller HOMO–LUMO gap. Besides, the higher symmetry of
Dd() isomer also reduces its content if entropy factors at higher temperatures are taken into
account. As a result, the yield of D() is about  times higher (Wang et al. b). Isolation of
(C−Cv())(CF) after trifluoromethylation of the “insoluble” fullerene mixture has shown
that C−Cv() is also produced in the arc-discharge synthesis (Shustova et al. ). Cv()
isomer is rather stable but has small HOMO–LUMO gap (ΔE =  kJ/mol, gap = . eV at the
BLYP/-G∗ level). Importantly, icosahedral C−Ih() isomer, which should have the least
steric strain among all IPR isomer of C, is in fact the least stable isomer (ΔE =  kJ/mol at the
BLYP/-G∗ level of theory (Slanina et al. ).The reason is its electronic instability – in the
ideal icosahedral symmetry, its HOMO is fourfold degenerate and is occupied by two electrons.
BP/TZVP studies have shown that it has Dh symmetry in the ground state, and its singlet and
triplet states are isoenergetic (Furche and Ahlrichs ). However, this isomer becomes the
most stable C isomer in the hexaanionic state, when itsHOMO is fully occupied, whichmakes
it a key structure for the endohedral metallofullerenes (see section “Bonding, Structures, and
Stability of Endohedral Metallofullerenes” of this chapter).

C has seven IPR isomers, but only one of them, C(), was isolated in pure form (Kikuchi
et al. ; Zalibera et al. ). C() is the most stable isomer of C and has large HOMO–
LUMO gap (Sun and Kertesz a), so its high abundance is not surprising. Meanwhile, Cs()
isomer is also rather stable and has similar gap, but this isomer has never been observed. The
studies of the “insoluble” fullerene fraction have shown that C() isomer is also formed in the
arc-discharge synthesis, as verified by the isolation and characterization of its CF derivative,
(C−C())(CF) (Shustova et al. ).

Starting from C, the increase in the number of possible structures becomes quite sig-
nificant (see > Table -), which seriously complicates the studies, both experimentally and
theoretically. This fact also increases the value of theoretical studies, since they can help in sort-
ing out unrealistic isomers. The question of high importance in this situation is how to handle
the rapidly increasing number of isomers.The obvious strategy of choice is to use several (usu-
ally two) computational approaches, first the “cheap” one (for instance, semiempirical method)
for the whole set of isomers, and then the more expensive but more reliable approach (usually
DFT) for a reduced set of structures. It is important that the “cheap” method should be also
sufficiently reliable so that the possible errors in the relative energies should be not very high,
and a reasonable cut-off in the relative energiesmight be applied for the subsequent higher level
computations. Twenty-four IPR isomers of C form a convenient training set, since it is still
feasible to perform a full DFT study for all of them. > Figure - compares relative energies
of  isomers obtained at the BLYP/-G∗ level (Sun and Kertesz b) to those obtained
with three semiempirical approaches widely used in the fullerene chemistry, QCFF/PI,MNDO,
and DFTB. One can see that in all cases the correlation is quite reasonable (R

≈ .), and the
standard deviations (σE) is less than ∼ kJ/mol. Roughly estimating the energy cut-off for the
isomers computed by means of “cheap” method as σE , one can consider then only the isomers
with ΔE < σE for the subsequent DFT study (the cut-off should be appropriately increased,
of course, if one is interested in the whole set of isomers within the given energy window).
Assessment study of three semiempirical approaches, MNDO, AM, and PM, in predicting
relative energies of fullerene isomers in comparison to BLYP/-G∗ was reported for a set
of fullerenes including C–C, all IPR isomers of C–C, and selected isomers of C–C
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⊡ Fig. -
Correlations between relative energies of  IPR isomer of C computed at the BLYP/-G∗ level
and those computed using QCFF/PI (a), PM (b), and DFTB (c), all values are in kJ/mol. R values for
the fitted lines are ., ., and ., respectively

(Chen and Thiel ). Quite good correlations were found between the results of DFT and
semiempirical calculations for higher fullerenes (R = ., ., and ., for MNDO, AM,
and PM, respectively; standard deviations are – kJ/mol), while for small fullerenes with a
large number of pentagon adjacencies performance of semiempirical methodswas significantly
worse. In another work, AM and PM methods were compared to DFTB and BLYP/-G∗

for all IPR isomers of C–C fullerenes and selected isomers of C–C (Zheng et al. ). At
variance with the results in (Chen andThiel ), the authors have found that AM and PM
performed rather bad (R = . and ., respectively, for C–C), while DFTB-predicted
values were close to BLYP/-G∗ (R = . and . for NCC and SCC-variants of DFTB,
respectively). The significant difference in performance of AM and PM methods reported
by two groups is quite remarkable. Close comparison of the relative energies from the two
works shows that the difference in relative energies predicted for the same isomers by the same
method can be as high as  kJ/mol, and in one case (Cv () isomer of C) reaches  kJ/mol.
At the same time, both works report the same values for the isomer of C and agree in that
semiempirical methods give reliable predictions for this fullerene.

C is also a special case among the higher fullerenes since, on the one hand, it is the most
abundant empty fullerene after C and C (at least, if all C isomers are taken together); on
the other hand, it provides the broadest range of the isomers characterized for one fullerene.The
lowest energy is predicted bymany approaches for D() and Dd() isomers, separated from
the other isomers by the gap of ca  kJ/mol (> Table -). They are essentially isoenergetic
(ΔE varies within few kJ/mol in favor of one or another isomer depending on the method) and
have large HOMO–LUMO gaps. Indeed, these are the isomers produced in the largest amounts
(the D to Dd ratio is ca : and varies depending on the conditions of synthesis) (Kikuchi et al.
). C also serves as a good example to emphasize that with the increase of the number of
isomers the density of their distribution in the energy scale is also increasing. The energies of
at least  isomers fall in the range of ΔE = – kJ/mol at the BLYP/-G∗ level (Sun and
Kertesz b), andmany of them can be isolated as “minor” isomers, including (in the order of
their yield) C(), Cs(), Cs(), Dd(), and D() (Dennis et al. ). Isolation of Dh()
andDd() isomers from the arc-discharge soot ofGd-doped composite rodswas also reported
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(note that these isomers were not formed in noticeable amounts with pure graphite rods) (Tag-
matarchis et al. ). Recent perfluoroalkylation of the higher fullerene mixture resulted in
the isolation and single-crystal X-ray characterization of the derivatives of several C isomers,
including (C–Cv ())(CF) , the carbon cage isomer of which has not been found in the
previous studies (Tamm et al. b).

For C, two isomers, with C and Cs symmetry, could be isolated from the arc-discharge
soot and characterized by C NMR spectroscopy (Miyake et al. ). From  IPR isomer
of C,  have C symmetry and  have Cs symmetry. DFT calculations show that isomers
C() and Cs() have the lowest energies and large HOMO–LUMO gaps and hence can be
assigned to the experimentally observed structures (Sun and Kertesz ). The assignment
was also confirmed by comparison of BLYP/-G computed and experimentally measured
C NMR chemical shifts (Sun and Kertesz ). Recently, trifluoromethylation of the mixture
of higher fullerenes afforded, among the other compounds, CF derivatives of C, C(CF)
and C(CF), all assigned to the C() cage by means of single-crystal X-ray diffraction
study (Troyanov and Tamm b).

In the most recent experimental study of C, three isomers of this fullerene were isolated
and assigned by C NMR spectroscopy to one Cs and two C-symmetric structures (Miyake
et al. ). Among  IPR isomers of C,  and  structures have Cs and C symmetry,
respectively. DFT calculations show that Cs() has the lowest energy, followed by C() and
C() isomers, all within the range of  kJ/mol (> Table -). These three structures have
large HOMO–LUMO gaps and are separated from the less stable isomers by a gap of at least
 kJ/mol. Therefore, they can be readily assigned to the experimentally observed structures,
which is also confirmed by the comparison of the BLYP/-G computed C NMR spectra to
the experimental data (Sun b). Recently, the presence ofC() isomer in the arc-discharge
produced fullerene mixture was confirmed by the isolation and single-crystal X-ray diffrac-
tion characterization of (C−C())(CF) among the other trifluoromethylation products
of higher fullerenes (Troyanov and Tamm a).

Detailed experimental study ofC has shown that at least five isomers are formed in the arc-
discharge synthesis, and that the major fraction is a mixture of C and Cv-symmetric isomers
(Achiba et al. ). The BLYP/STO-G calculations of all  IPR isomers with subsequent
BLYP/-G calculations of the isomers with ΔE <  kJ/mol have shown that the lowest
energy structures are C() and Cv() (Sun b). Analogous result was also obtained in
theDFTB and PBE/-G∗//DFTB study (Shao et al. ).Therefore,C() andCv() are
the most probable candidates for the main major isomers of C. Chlorination of the mixture
of higher fullerenes resulted in CCl with Cv() and Cs() cage isomers, thus confirming
that at least the Cv() isomer is indeed formed in the arc-discharge (Kemnitz and Troyanov
). At the same time, the trifluoromethylation product, C(CF), was assigned to the
C() isomer (ΔE = . kJ/mol, BLYP/-G) (Kareev et al. b). Very recently, Dh() iso-
mer (ΔE = . kJ/mol, BLYP/-G) was isolated from the soot produced by vaporization of
SmO/graphite rods and characterized by single-crystal X-ray diffraction (Yang et al. ).

Isolation and C NMR characterization of five major isomers of C, of which two have
C symmetry and three have D symmetry, has been reported (Achiba et al. b), however,
further spectroscopic details were not given. In another work, one C-symmetric isomer and
inseparable mixture of at least three other isomers were obtained from dysprosium arc-burned
soot (Tagmatarchis et al. ). C(CF) with either D() or D() carbon cage was iden-
tified among the other products of the trifluoromethylation of the higher fullerene mixture
(Troyanov and Tamm a). Results of DFT studies are more controversial for C than for
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smaller fullerenes discussed above (>Table -). Twodetailed studieswere reported, one based
on the screening of the whole set of IPR isomers at the semiempirical SAM level with subse-
quent BLYP/-G∗//SAM calculations (Slanina et al. ), while another study included
screening at the DFTB level followed by PBE/-G∗//DFTB calculations of the most sta-
ble isomers (Shao et al. ). As can be seen in > Table -, the two approaches resulted in
substantially different relative energies and stability order of the isomers. While BLYP//SAM
approach favors D() isomer as the most stable one, PBE//DFTB predicts that D() is
 kJ/mol lower in energy than D(). Full optimization of D() and D() isomers at the
BLYP/-G∗ and PBE/-G∗ levels of theory in (Shao et al. ) showed that the former
is indeed more stable by . and . kJ/mol, respectively, in very close agreement with the
results of PBE//DFTB calculations. It appears thus that PBE//DFTB values are more reliable
than the results of BLYP//AM calculations.

Experimental structural information on the empty fullerenes beyond C is very scarce
and usually limited to the mixtures of isomers. X-ray crystallographic study of C(CF)
and C(CF) obtained by perfluoroalkylation of the higher fullerene mixture with sub-
sequent HPLC separation proved formation of C−C() and C−C() isomers in the
arc-discharge synthesis (Tamm et al. a), but these data are inconclusive since the actual
isomeric composition of the initial fullerene mixture remains unknown. Yet, a lot of calcula-
tions were performed for larger fullerenes, and systematic information on the lowest energy
isomers is available up to C.

The aforementioned PBE/-G∗//DFTB study was performed for all IPR fullerenes in
the C–C range as well as for all IPR and non-IPR isomers of C–C fullerenes (Shao et al.
, ). For the most stable isomer, C NMR spectra were also predicted for comparison
with experiment.

In another series of works, the most stable isomers of C to C were identified (Xu et al.
, ). To screen the huge number of the isomers, the authors used the empirical scheme
of Cioslowski and coworkers (Cioslowski et al. ). According to the original scheme, for-
mation enthalpies of fullerenes were factorized into contributions of  independent structural
motifs, namely -member rings with their first and second neighbors, and the contributions
of the motifs were fitted using the energies of  IPR fullerenes in the C–C size range
computed at the BLYP/-G∗ level. In , parameters were re-fitted using the energies of
 fullerene molecules in the C–C range (Xu et al. ). The serious advantage of this
empirical method is that it is very inexpensive, and the energies can be estimated with high
accuracy without quantum-chemical calculations. BLYP/-G∗ calculations were then used
by the authors to determine the lowest energy isomers (Xu et al. , ). The same authors
also performed benchmarking computations of C, C, and C isomers to analyze per-
formance of QCFF/PI, AM, PM, MNDO, and tight-binding (TB) methods in comparison
to BLYP/-G∗//BLYP/-G (Xu et al. ). It was found that, in contrast to the relative
energies of the medium-size higher fullerenes such as C, for large fullerenes semiempirical
methods performed badly and did not show any reasonable correlations with DFT-predicted
relative energies. However, it should be noted that DFT is not a panacea itself. DFT has difficul-
ties with description of the extended π-systems (Reimers et al. ), and hence it is possible
thatDFT is also not reliable for large fullerenes. Unfortunately, results of computations for larger
fullerenes cannot be verified by experimental information at this moment.

In conclusion, numerous studies have shown that the most stable isomers of the middle-
size higher fullerenes predicted by DFT are usually the major isomers in the experimentally
produced fullerene mixtures. At the same time, it is also clear that experimental results cannot
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be fully described by considering only thermodynamic control (equilibrium), since some other
unknown factors are also important in determining the isomeric composition. For instance, it
is not clear yet why some stable isomers are not formed in the arc-discharge synthesis; besides,
the influence of the metals on the distribution of the arc-discharge produced fullerene isomers
is not understood.

Bonding, Structures, and Stability of Endohedral Metallofullerenes

Metal-Cage Bonding in Endohedral Metallofullerenes

Since La@C was first isolated in , the nature of themetal-fullerene bonding was of interest
to researchers. Because of the radical nature of La@C as well as other MIII@C (M=Y, Sc),
the ESR spectroscopy appeared useful in revealing the main features of the electronic structure
of EMFs. Small hyperfine splitting constant of the metal observed in the spectra indicated that
the spin density in M@C is presumably localized on the fullerene cage. This, along with the
high electron affinity of fullerenes, resulted in the concept of the endohedral metallofullerenes
as non-dissociative salts (e.g., La+@C−

 ), with the metal cation encapsulated in the negatively
charged carbon cage. Likewise, ionic model is often used to describe electronic structure of
endohedral fullerenes with more complex encapsulated species, such as dimetallofullerenes
(e.g., (La+)@C−

 ), nitride clusterfullerenes (e.g., (ScN)
+@C−

 ), or carbide clusterfullerenes
(e.g., (Sc+)C−

 @C−
 ).

The concept of the ionic metal-fullerene bonding was further developed by Kobayashi
et al. (Kobayashi andNagase ; Nagase et al. ).The authors analyzed the spatial distribu-
tion of electrostatic potential inside fullerene and showed that it has large negative values inside
negatively charged carbon cages. This results in the strong stabilization of the metal cations if
they are placed inside fullerene anions thus favoring formation of EMFs. Importantly, the min-
imum of the electrostatic potential in C−

 was found in the position where metal resides in
M@C as predicted by calculations (Kobayashi and Nagase ; Lu et al. ) or shown by
experimental X-ray diffraction studies (Takata et al. ). At the same time, it was also found
that electrostatic potential inside C−

 has no distinguishable minima, and hence there are no
distinct bonding sites for metal atoms or clusters in C−Ih(). This is indeed confirmed by
several computational studies of La@C−Ih() (Kobayashi et al. ; Shimotani et al. ;
Zhang et al. ) and ScN@C−Ih() (Campanera et al. ;Gan andYuan ;Kobayashi
et al. ; Popov and Dunsch ; Yanov et al. ). For La@C it is shown that there are
two almost isoenergetic minima for positions of La atoms, with Dh and Dd molecular sym-
metries, and each minimum is multiplied by the group symmetry operations of Ih group. As
a result, La unit exhibits almost free rotation inside C cage, and the charge density of La
atoms forms a pentagonal-dodecahedron as revealed by synchrotron radiation powder diffrac-
tion study (Nishibori et al. ). Another important argument in favor of the ionic model is
the carbon cage isomerism of EMFs, which shows a good correlation with the relative stability
of the appropriately charged empty cages, as will be discussed in detail below.

Although the ionic model explains some spectroscopic and structural properties of EMFs,
there are numerous studies which indicate that this model is oversimplified.While the analysis
of MO energy levels in the EMFs and the corresponding empty cages can be indeed interpreted
as an electron transfer to the cage from themetal, experimental (Alvarez et al. ; Kessler et al.
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⊡ Fig. -
(a) Frontier Kohn-ShamMO levels in ScN@C−Dh() and C−Dh(), the dash arrows show corre-
spondence between the orbitals of the empty cage and ScN@C; (b) LUMO (A

′) MO of C and
corresponding occupied orbital in ScN@C; (c) LUMO+ (E′, only one component is shown) in C

and corresponding occupied orbital in ScN@C (Based on the data from Krause et al.  and
Popov )

) and theoretical (Campanera et al. ; Lu et al. ; Muthukumar and Larsson ;
Nagase et al. ; Yang et al. ) studies clearly show a substantially non-zero population of
nd-levels of the endohedral metal atoms. The mixing of the cluster and fullerene MOs as well
as the corresponding change of the orbital energies in EMF when compared to the MOs of the
empty cage are the most apparent for ScN@C (> Fig. -) (Campanera et al. ; Krause
et al. ). Inmany other EMFs themetal contribution to individualπ-MO orbitals of the cage
is very small; yet, the significant metal-cage interaction can be also revealed when the electron
density distribution is analyzed (Liu et al. ; Popov and Dunsch ; Wu and Hagelberg
; Yang et al. ; Popov ). This can be best done with the use of promolecule defor-
mation density approach, i.e., by visualizing the changes in the electron density distribution
Δρ = [ρ(Mol) − ρ(Ref)], where ρ(Mol) is the electron density of the molecule under study,
while ρ(Ref) is the electron density of the reference system. A natural choice of the reference
system in the studies of EMFs can be either non-interacting metal atoms or clusters (e.g., ScN)
and corresponding Cn molecules or metal or cluster cations (e.g., ScN+

) and appropriately
charged Cn anions (e.g., C−

n ). In particular, when two sixfold charged ions were taken as a
reference, a considerable concentration of the density at Sc atoms was found in all ScN@Cn

(n = , , ) EMFs (Popov and Dunsch ; Popov ), the effect referred to by some
researchers as “back-donation” (Liu et al. ;Wu andHagelberg ).The Δρ plots have also
revealed that metal-cage bonds are not localized (such as, e.g., carbon–carbon bonds) but can
be better described by “coordination” bonds such as those found in transition metal complexes
(Cortés-Guzmán and Bader ).

The cluster-cage bonding in ScN@C and ScN@C was also analyzed using the energy
decomposition method (Campanera et al. ). The authors have shown that after the
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ScN+ cation is encapsulated inside C−
, cages, a strong orbital mixing and an electronic

reorganization take place.
Computed atomic charges are also much smaller than the values expected for the purely

ionic bonding. For instance, net Bader, Mulliken, and NBO charges of the ScN cluster in
ScN@C are +., +., and +., respectively, at the BLYP/-G∗ level of theory
(Popov and Dunsch ); another group reported the net ScN charges of +. (Mulliken),
+. (Hirshfeld), +. (Voronoi) (Valencia et al. ) at the BP/TZVP level of theory with
ZORA relativistic corrections. Note that the charges strongly depend both on the method of
theory used to compute wavefunction and on the electron density partitioning, but all reported
values are significantly smaller than + expected for the ionic ScN+@C−

 .
In summary, from themolecular orbital point of view, themechanism of themetal(cluster)-

cage interactions in EMFs can be described by the formal transfer of the appropriate number
of electrons from the endohedral species to the carbon cage with subsequent coordination of
the metal cations by the cage as a “ligand” and reoccupation of the metal nd orbitals (see also
(Liu et al. ) for a more detailed discussion). Note that in most cases there are no special
localized orbitals that could be responsible for the cage-to-cluster electron transfer. Instead, this
kind of interaction occurs through the overlap of many cage π-orbitals with nd orbitals of the
metal. One of the consequences of this type of bonding is a spin-charge separation found in the
radical-anions of the EMFs with the metal-localized LUMO (such as ScN@C, La@C,, ,
TiC@C). In these anions, the spin density is mostly localized on the metal atoms, however,
the changes of the metal charges compared to the neutral state of the EMF molecule are rather
small; instead, the surplus charge ismostly delocalized over the carbon cage (Popov andDunsch
).

Since the effect of the metal-cage bonding in EMFs is best revealed in the analysis of the
electron density as a whole, rather than by studying the individual MOs, it is natural to use
the method based on the analysis of the electron density for the quantitative description of
the metal-cage interactions in EMFs. The quantum theory of atoms in molecules (QTAIM)
developed by Bader is probably the most refined and well-established method for the analy-
sis of the topology of the electron density frequently used for the revealing and quantifying
of the bonding situation between the atoms (Bader ; Matta and Boyd ). Kobayashi
and Nagase analyzed a topology of the electron density distribution in Sc@C, Ca@C, and
Sc@C using QTAIM (Kobayashi and Nagase , a). Their studies have shown that
although the bond critical points (BCPs: critical points of the electron density, in which the
density has a minimum along one axis and has a maximum in the plane perpendicular to this
direction) could be found between Sc or Ca and certain carbon atoms of the cage, the values
of the electron density at BCPs (ρbcp) were very small (. a.u. for Sc-C and .–. a.u.
for Ca-C), and the Laplacian of the density (∇ρbcp) at metal-carbon BCPs was always posi-
tive. The authors concluded that such values for these descriptors are signatures of the highly
ionic character of the metal-cage bonding. However, care should be taken when the bonding
in transition metal compound is analyzed with QTAIM (Cortés-Guzmán and Bader ). It
was revealed that for transition metals∇ρbcp values are usually positive, while ρbcp are small
because of the diffuse character of electron distribution (Macchi and Sironi ) and hence
these values alone cannot be proper descriptors of the bonding situation. Therefore, more spe-
cific descriptors should be applied in the analysis of the bonds involving transition metals, and
the analysis of the energy density appears more useful than the analysis of the electron density
alone. While kinetic energy density, G, is positive everywhere, potential energy density, V , is
negative everywhere, and their sum, the total energy density H, defines which of the energy
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components is dominating. Cremer and Kraka suggested that bonding between the atoms can
be considered as covalent if the total energy density at BCP,Hbcp, is negative (Cremer andKraka
).

The in-depth study of the metal-cage and intra-cluster bonding by DFT and QTAIM
was recently reported for the four major classes of endohedral metallofullerenes, includ-
ing monometallofullerenes, dimetallofullerenes, metal-nitride clusterfullerenes, metal-carbide
clusterfullerenes, as well as ScCH@C and ScOx@C (x = , ) (Popov and Dunsch ).
The analysis of the bond critical point indicators showed that both the intra-cluster and the
metal-cage interactions in EMFs were characterized by the negative total energy density, which
means that bonding in EMFs exhibits a high degree of covalency. Furthermore, from the point
of the electron density distribution, the interior of the EMF molecules was found to be a com-
plex topological object, with many critical points, unpredictable number of the bond paths, and
large bond ellipticities, similar to the bonding situation in the complexes of transition metals
with π-carbocyclic ligands (Farrugia et al. ). In this respect, the analysis of the metal-cage
bonding based only on the properties of the bond paths was found to be insufficient, and the
metal-cage delocalization indices, δ(M, C), were also analyzed (by definition, δ(M, C) is num-
ber of the electron pairs shared by the atomsM and C, which is very similar to the “bond order”
in Lewis definition). It was found that in the majority of EMFs, δ(M, C) values do not exceed
.; however, when summed over all metal-cage interactions, values of δ(M,cage) close to –
were obtained. While QTAIM atomic charges of the metal atoms were found to be approxi-
mately two times smaller than their formal oxidation states, the total number of the electron
pairs shared by the metal atoms with the EMF molecule, Δ(M), was found to be close to the
typical valence of the given element (> Table -).

To conclude the section on themetal-cage bonding in EMFs, it appears useful to distinguish
twoways to determine the charge on the atom in endohedral fullerene: () a “formal” charge and
() the “actual” charge. The formal charge is integer and implies that the metal (cluster)–cage
bonding is purely ionic. As such, formal charges do not describe the actual electron distribution
in the endohedral fullerenes, but still appear to be useful in understanding the spectroscopic
and structural properties of endohedral fullerenes. For instance, compounds with the same for-
mal cage and metal charges exhibit very similar absorption and vibrational spectra. In the next
section wewill show that the formal charge of the cage largely determines the isomeric structure
of a given endohedral fullerene.

The “actual” charge should represent the electron density distribution in the endohedral
fullerenes, but unfortunately there are no unique ways to partition the electron density between
the atoms. Depending on the definition and the method of theory used to evaluate the charges,
they can vary in a large range in the same molecule as already noted for ScN@C. However,
whatever method is used, computed charges are always considerably smaller than the formal
charges, which is a clear manifestation of the covalent contribution to the metal-cage interac-
tions. At the same time, the charges are still considerably large to indicate that ionic contribution
to the cluster-cage bonding is also important.

Isomerism in Endohedral Metallofullerenes: Stability of the
Charged Carbon Cages

One of the specific features of the endohedralmetallofullerenes is that their carbon cage isomers
are usually different from those of the isolated empty fullerenes.This fact can be understood by
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⊡ Table -
QTAIM atomic charges (q) of the metal atoms and the clusters, and the metal-cage and metal-
cluster electron-pair sharing in EMFsa

q(cluster) q(cluster)
EMF q(M) QTAIM QTAIM formal δ(M, cluster) δ(M, cage) Δ(M)

C-Ca@C .  . .

Cs-Ca@C .  . .

Cs-Sc@C .  . .

D-ScN@C . .  . . .

C-ScN@C . .  . . .

D-ScC@C . .  . . .

Cs-ScC@C ., . .  ., . ., . ., .

C-ScCH@C . .  . . .

C-ScO@C ., . .  ., . ., . ., .

C-ScO@C ., . .  ., . ., . ., .

C-TiC@C . .  . . .

Cs-Y@C .  . .

Cs-Y@C . .  . . .

Cs-Y@CN . .  . . .

C-YN@C . .  . . .

D-YN@C . .  . . .

D-YN@C . .  . . .

C-YC@C . .  . . .

C-La@C .  . .

Cv-La@C .  . .

Dh-La@C . .  . . .

C-LaN@C . .  . . .

C-LaN@C . .  . . .

aδ(M, cluster) is thenumberof theelectronpairs sharedby themetalwith the cluster; δ(M, cage) is thenumberof the
electron pairs shared by themetal with the carbon cage; Δ(M) is the total number of the electron pairs shared by M
with all other atoms of themolecule; when EMF has inequivalentmetal atoms, corresponding values are averaged,
unless they are significantlydifferent; in the latter cases, different values are listed in the table separated by comma.
Based on the QTAIM-BLYP/-G∗ calculations from (Popov and Dunsch )

taking into account the electron transfer from the encapsulated species as discussed in the pre-
vious section. Using the semiempirical QCFF/PI method, Fowler and Zerbetto have shown that
charging dramatically changes relative stabilities of the fullerene isomers (Fowler and Zerbetto
b). For instance, Ih() isomer of C, being the least stable structure for (+) and () charge
states, is the lowest energy structure for (−) and (−). In agreement with this finding, it was
shown that the most stable isomer of La@C has Ih() cage, as opposed to the D-symmetric
empty C (Kobayashi et al. ). Variation of the relative energies of C isomers in the neg-
atively charged states was analyzed by Kobayashi and Nagase at the HF/-G//AM level to
rationalize experimentally observed isomers of M@C (Kobayashi and Nagase a, ).
The authors have found that while C() is the lowest energy isomer of the neutral C, the
Cv () cage is the most stable for both C−

 and C−
 as well as for M@C (M=Ca, Sc, Y, La, etc.)



Structures and Stability of Fullerenes, Metallofullerenes, and Their Derivatives  

200

a b

150

100

50

0

0 –1 –2 –3
charge

ΔE
, k

J
/m

ol

–5–4 –6
–1035.95

68

C80-Ih(7)

C80-D5h(6)

7672 80
2n, number of atoms in C2n

6–
84 88 92 96 100

–1035.90

–1035.85

–1035.80

E
ne

rg
y 

pe
r 

at
om

, e
V–1035.75

–1035.70

C2v(9)

C3v(8)
Cs(6)

C2(5)

Cs(4)

C2(3)

C3v(7)

Cs(2)
C2(1)

⊡ Fig. -
(a) Relative energies IPR isomers of C computed at the PBE/TZP level in different charge
states (Based on the data from Popov ); (b) PBE/TZP computed energies of the most stable
C−
n hexaanions on the per-atomic basis plotted as a function of the cage size (Based on the data

from Popov and Dunsch a)

(Kobayashi andNagase a, ).This finding is confirmed by experimental C NMR stud-
ies of La@C and Ce@C anions (Akasaka et al. ; Tsuchiya et al. ; Wakahara et al.
). Recently, DFT calculations of C−

 isomers were reported (Valencia et al. ) and the
Cv () isomer was shown to be the most stable tetraanion, in line with the finding of this cage
in the most abundant isomers of ScC@C(Iiduka et al. ; Nishibori et al. a) and
YC@C (Inoue et al. ; Nishibori et al. b). The data on the relative energies of all
IPR C isomers in ()-(−) charge states obtained at the PBE/TZP level (Popov ) are
summarized in > Fig. -a.DFT calculations show that Cv() is the most stable isomer for all
charge states starting from (−), however, there is a change in favor of Cv () for (−) (Valencia
et al. ). Note also that starting from (−) charge state, the IPR isomers Cv(), Cv (), and
Cs() are considerably more stable than the other IPR isomers; as a result, only these isomers
are found for MIII@C and MC@C.

The data on representative fullerenes discussed above show that () the relative energies of
the fullerene isomers are dramatically affected by the charge and () the stability of the isomers
of appropriately charged empty fullerenes provides a good estimation to the relative stability
of the cage isomers of endohedral fullerenes. Thus, though ionic model is not realistic for the
description of the electron density distribution in endohedral metallofullerenes, it can be useful
for understanding the carbon cage isomerism of endohedral fullerenes.

In the last decade, the higher yields, increased stability, and broad variety of the formed
structures attracted special attention to the family of nitride clusterfullerenes. Their electronic
structure may be conceived as a result of a formal sixfold electron transfer from theMIII

 N clus-
ter to the fullerene. Predicting of the lowest energy isomers ofMN@Cn endohedral fullerenes
is a difficult task since, in addition to the carbon cage isomerism, different orientation of the
MN cluster inside the cage can give structures with substantially different relative energies;
besides, DFT calculations of the molecules with transition metals are more complex than those
of the empty fullerenes. In this respect, attempts were made to predict the possible structures
of MN@Cn molecules based on the calculation for the empty fullerenes.
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The simple use of this formal sixfold electron transfer in MN@Cn to predict the most
suitable cage isomers capable of encapsulating a nitride cluster was proposed by Poblet and
coworkers. It was supposed that only the fullerenes with a considerable gap between LUMO+
and LUMO+ (which become HOMO and LUMO, respectively, in the C−

n hexaanion and
presumably in MN@Cn) should be considered as suitable hosts for nitride clusters (Cam-
panera et al. ). With the application of this criterion, only C, C−Dh(), C−Ih(),
and C−Dh() were found to be suitable cage isomers among all IPR fullerenes in the C–
C range. Indeed, besidesC, which is too small to host a ScN cluster, only these and no other
IPR cage isomers were found for ScN@Cn clusterfullerenes. Later this work was expanded by
considering also all IPR isomer in the C–C range (Valencia et al. ), and the isomers
with the largest orbital gaps found for C andC hexaanions (D() andD(), respectively)
were those proved to exist in TbN@C and TbN@C by single-crystal X-ray diffraction
studies (Zuo et al. ).

A different approach to the search of the suitable cage isomers for nitride clusterfullerenes
is based on the stability of the hexaanions (Popov and Dunsch a, d; Yang et al. a, b).
In the view of the correlation found between the relative energies of the empty fullerenes in
appropriate charge state and the relative energies of endohedral fullerenes, it was suggested that
the suitable cage isomers of MN@Cn should be found among the most stable isomers of C−

n .
The growing number of endohedral fullerenes violating IPR shows that non-IPR isomers should
also be included in the search. Importantly, good correlation was found between the relative
energies of the C−

n isomers computed at the AM and DFT levels of theory (Yang et al. b).
Since optimization of the structure of the fullerene at AM levels normally takes only about
–min with the standard office computer, this fact dramatically facilitates the search of the
stable isomers.That is, screening of all possible isomers can be done at AM level, and only few
lowest energy C−

n isomers (and corresponding andMN@Cn isomers) can then be studied at
the higher – and more computationally demanding – level of theory. By screening through the
large number of the C−

 , C
−
 , and C−

 isomers, the molecular structures of ScN@C (Yang
et al. b),MN@C (M=Dy, Tm) (Popov et al. d), andDyScN@C (Yang et al. a)
were proposed, all violating the IPR.The structural guesseswere then confirmed by comparison
of the experimental and DFT-computed vibrational spectra.

The full search of themost favorable cage isomers of ScN@Cn andYN@Cn (n = –)
at the PBE/TZP levelwas reported in  (Popov andDunsch a). For C−C, both IPR
and non-IPR isomers were considered, which however resulted in the huge number of possible
structures (for instance, there are totally , for C). Taking into account that metal atoms
in all know non-IPR fullerenes are coordinated to the adjacent pentagon pairs, the authors sug-
gested that only the isomers with such pairs should be considered (while the structures with
three or more adjacent pentagons could be omitted). This assumption considerably reduced
the number of the isomers (e.g., , isomerswere studied for C), making the computations
more feasible.

> Table - lists the lowest energy isomers of C−
n found in that work with their relative

energies and HOMO–LUMO gaps computed at the PBE/TZP level; experimentally avail-
able structurally characterized EMFs are listed in the last column. Importantly, the isomers
shown to exist by single-crystal X-ray studies can be found among the lowest energy isomers
of C−

n . C−C(,) and C−Cs(,) isomers were predicted as possible structures of
MN@C andMN@C (Popov andDunsch a, d) before their structures were confirmed
by single-crystal X-ray studies of GdN@C and GdN@C (Beavers et al. ; Mercado
et al. ). Even better correlation with experimental data is found if the relative energies of
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⊡ Table -
The lowest energy C−

n
(n=–) isomerswith their relative energies (kJ/mol) andHOMO–LUMO

gaps (eV) computed at the PBE/TZP level of theory, and the experimentally available EMFs with
corresponding carbon cages (Based on the data from Popov and Dunsch a)

Cn Isomer ΔE Gap Exp. EMFs

C D(,) non-IPR . . ScN@C

C Cv(,) non-IPR . . ScN@C

C D(,) non-IPR . . M@C (M=La, Ce)

C C(,) non-IPR . . not known

C Cs(,) non-IPR . . DyScN@C

C Dh() IPR . . M@C (M=La, Ce), TiC@C, ScN@C

C(,) non-IPR . . MN@C (M=Dy, Tm, Gd)

C Ih() IPR . . M@C (M=La, Ce), MN@C (M=Sc, Y, Gd–Lu),
Sc,C@C, ScO,@C

Dh() IPR . . Ce@C, MN@C (M=Sc, Y, RE)

C Cv()b IPR . . not known

Cv(,)b non-IPR . . not known

Cs(,)b non-IPR . . MN@C (M=Y, Gd, Tm, Dy, Tb)

C D() IPR . . not known

Cs(,) non-IPR . . MN@C (M=Y, Gd, Tm, Dy, Tb)

C D() IPR . . MN@C (M=Y, Gd, Tm, Dy, Tb)

C D() IPR . . MN@C (M=Y, Gd, Tm, Dy, Tb)

bFor YN@C, the relative energies for isomers Cv (), Cv(,), and Cs(,) are ., ., and . kJ/mol,
respectively, at the PBE/TZP level

ScN@Cn and YN@Cn isomers are considered (Popov and Dunsch a). It is remark-
able that C−

n isomers with high thermodynamic stability (i.e., low relative energy) quite often
exhibit high kinetic stability (i.e., large HOMO–LUMO gap). As a result, the IPR isomers
proposed by the group of Poblet (Campanera et al. ; Valencia et al. ) in most cases
coincide with predictions based on the relative stability of the hexaanions (Popov and Dunsch
a).

The broad range of the fullerene sizes studied (Popov and Dunsch a) enabled the
authors to follow the general trends in their stabilities. To compare the energies of the fullerenes
of different size, the absolute energies were normalized to the number of atoms in the given
fullerene. >Figure -bplots the normalized energies of themost stable C−

n isomers versus the
number of atoms.The smooth decrease of the energywith the increase of the fullerene size is the
result of a combination of two factors: () the decrease of the curvature of the cage, which results
in smaller curvature-induced strain, and () the decrease of the on-site Coulomb repulsions of
six surplus electrons in C−

n with the increase of the cage size. There is, however, a significant
deviation from the smooth curve found for C−Ih() and C−Dh() isomers. These iso-
mers are  and  kJ/mol more stable than they might be if they were like all other fullerenes
(i.e., like those which obey the smooth decay in the normalized energy). The enhanced sta-
bility of the two C−

 isomers explains the increased yield of MN@C compared to all other
cage sizes. Besides, it explains why the C−Ih() isomer is always the most preferable structure
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in other clusterfullerenes with formal sixfold electron transfer to the cage, such as La@C,
ScO,@C (Stevenson et al. ), and ScC@C (Wang et al. ).

The exclusive stability of the Ih() and Dh() isomers of C−
 can be rationalized using

the concept of hexagon indices (Raghavachari ) discussed in section “Structures and Sta-
bility of Empty Fullerenes.” The lowest-strain condition (all indices are equal) is fulfilled only
for C−Ih(), C−Ih() and C−Dh() in the whole range fullerenes Cn with n < 
(Fowler and Manolopoulos a). Thus, the exceptional stability of two C−

 isomers can be
explained by the favorable distribution of the pentagons, which leads to the least steric strain.
Moreover, the list of the least-strained IPR isomers (> Table -) perfectly corresponds to
the lowest energy IPR isomers of C−

 –C
−
 (Popov and Dunsch a). For larger cages these

conditions are less instructive, because many of the IPR isomers satisfy them. Interestingly,
the relative energies of the IPR C−

n isomers follow the rationalization of the stability based
on the steric strain much better than the relative energies of the uncharged IPR fullerenes,
which usually violate the requirement of the minimized strain (the only exclusions are C and
C; see > Table -). Very recently, this phenomenon was clarified by Poblet and co-workers
(Rodriguez-Fortea et al. ). The authors have suggested that the relative stabilities of the
isomers of multiply charged fullerene anions are largely determined by the on-site Coulomb
repulsion. Since the negative charge in anions is mostly localized on the pentagons because of
their non-planarity, the lowest-energy structures should be those in which themaximal separa-
tion (and hence the most uniform distribution) of the pentagons is achieved.The authors have
constructed the inverse pentagon separation index to show that its correlation with the relative
stabilities of the isomers is improving with the increase of the charge. Thus, minimization of
the on-site Coulomb repulsion andminimization of the steric strain are achieved by fulfillment
of the same condition, namely the most uniform distribution of the pentagons. If for the non-
charged fullerenes the steric strain factor can be outweighed by other factors such as stability
of the π-system (and hence the lowest strain condition is usually violated), with the increase
of the negative charge on the cage the Coulomb repulsion sooner or later outweighs all other
factors. Therefore, to predict the lowest energy isomers of the EMFs with high formal charge
of the cage (such as MN@Cn) one can apply the same arguments as were developed in early
s to find the isomers of empty fullerenes with the lowest steric strain.

Isomerism in Endohedral Metallofullerenes: The Cluster Size Factor

The carbon cage stability is very important in determining the molecular structure of endo-
hedral fullerenes, however, the isolated structures are not always based on the lowest energy
isomers of the hollow anions. In addition to the high stability, the cage should also provide a
suitable shape for enclosed metal atoms or clusters; that is, there should be enough inner space
in the cage for the endohedral species. If then a fullerene has adjacent pentagon pairs, they
should be located in such a way that their coordination by the endohedral metal atoms is pos-
sible. This factor can be especially important for the nitride clusterfullerenes since the shape of
the cluster itself imposes significant limitations on the possible location of the binding sites.

> Figure -a plots the relative energies of the twenty lowest-energy isomers of C−


and corresponding ScN@C isomers calculated at the PBE/TZP level. The significant dif-
ference between the two sets of data is observed. While the most stable isomer of C−

 is
D() (Slanina et al. a; Popov and Dunsch a), this cage isomer is destabilized for
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⊡ Fig. -
(a) Relative energies of C−


and corresponding ScN@C isomer computed at the PBE/TZP level

(Based on the data from Popov and Dunsch a); (b) Relative energies of C−


and corresponding
ScN@C andYN@C isomer computedat thePBE/TZP level (Basedon thedata fromPopovet al.
d)

ScN@C, and the lowest energy is found for ScN@C with Cs() cage. The explana-
tion of this phenomenon becomes clear when the structures of the cage isomers are analyzed.
C−D(,) has elongated shape with two adjacent pentagon pairs on the opposite poles
of the cage (> Fig. -). It is impossible to coordinate both pentagon pairs at once with the
Sc atoms of the triangular ScN cluster, and hence one pentagon pair in ScN@C−D(,)
is not stabilized by the metal, which explains the high relative energy found for this isomer
by theory. The lowest energy C−

 isomer with favorable location of adjacent pentagon pairs is
Cs(), and it corresponds to the most stable isomer of ScN@C. However, this isomer is
based on the relatively unstable carbon cage and, besides, it has a small HOMO–LUMO gap
(. eV at the PBE/TZP level). As a result, the ScN@C nitride clusterfullerene has never
been observed experimentally. Similar situation was also found for C−

 and ScN@C, which
also has never been observed. Since the bimetallic cluster is more flexible, the steric factor is
less important for dimetallofullerenes, and La@C is based on the lowest energy D(,)
cage isomer (Kato et al. ; Lu et al. ).

A different situation was found for the clusterfullerenes based on C (Popov et al. d).
> Figure -b compares relative energies of the lowest energy isomers of C−

 and MN@C

(M=Sc, Y). The most stable C−
 isomer is IPR Dh(), which is followed by the non-IPR

C(,) isomerwith two adjacent pentagon pairs.The relative energies of ScN@C isomers
closely follow those of C−

 , which agrees with the formation of the ScN@C−Dh() isomer
(Olmstead et al. ). C−Dh() was also proved for M@C (M=La, Ce) and TiC@C

(Cao et al. , ; Tan and Lu ; Sato et al. ; Yumura et al. ; Yamada et al.
). However, with the increase of the cluster size from ScN to YN the relative energies of
theMN@C isomers are changed dramatically.The isomer based on the Dh() cage is signifi-
cantly destabilized, and the lowest energy is now found for the YN@C−C(,) ( kJ/mol
more stable than YN@C−Dh()). The dramatic change in the stability of the isomers can be
explained by insufficient size of the C−Dh() cage for encapsulation of the clusters larger than
ScN. As a result, YN cluster is forced to be pyramidal in YN@C−Dh() (nitrogen atoms
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Sc2C2@C68-C2v(6073) La@C72-C2(10612) La2@C72-D2(10611)

Sc3N@C68-D3(6140) Sc3N@C70-C2v(7854) DySc2N@C76-Cs(17490)

M3N@C84-Cs(51365)M3N@C82-Cs(39663)M3N@C78-C2(22010)

⊡ Fig. -
Molecular structures of the non-IPR endohedral metallofullerenes. Carbon cages are shown in grey
except for the adjacent pentagon pairs, which are shown in black. In MN@C, MN@C, and
MN@C, M can be Y, Gd, Dy, Tm, Tb, and possibly some other lanthanides

is displaced from the plane of the metal atoms by . Å), which is an indication of the strong
strain exerted by the cage. On the contrary, the inner space in C−C(,) isomer is suffi-
cient to retain the planar shape of the YN cluster (> Fig. -). Results of these calculations
were supported by experimental spectroscopic studies of TmN@C and the major isomer of
DyN@C (Popov et al. d) and by single-crystal X-ray diffraction studies of GdN@C

(Beavers et al. ).
MN@C−Ih() represent another important example of the cluster size influence on the

stability of the clusterfullerenes (Popov and Dunsch a).The lowest energy isomers for C−


and ScN@C are Ih() and Dh(), and there is a gap of approximately  kJ/mol between
these two isomers and the gap of approximately  kJ/mol between Dh() and all other, less
stable isomers. Stability order of C−

 and ScN@C isomers is rather close, but relative energies
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of unstable ScN@C isomers are – kJ/mol smaller than those in C−
 . These data agree

with formation of ScN@C−Ih() as the most abundant product of the ScN@Cn cluster-
fullerene synthesis, followed by ScN@C−Dh() as the second most abundant structure.
With the increase of the cluster size to the YN, the Ih() isomer is still the most stable one, and
the energy difference between Ih() and Dh() isomers is almost the same as in the ScN@C

series, but all other isomers of YN@C are significantly stabilized with respect to the Ih() iso-
mer. For instance, relative energies of the Dh() and non-IPR C() isomers are quite close
(. and . kJ/mol, respectively). Similar to the case of MN@C, this can be explained by
the relatively small size of almost spherical C−Ih() andC−Dh() cages, which leads to the
increase of the strain when large MN clusters are encapsulated. As a result, MN@C−Ih()
is still the most abundant nitride clusterfullerene for the clusters up to the size of GdN, but
overall yields are suppressed compared to the clusterfullerenes with smaller clusters (Krause
and Dunsch ). For the larger cluster size (M=Nd, Pr, Ce, La) Echegoyen and coworkers
have shown that the larger cages (in particular, C) are produced in higher yield than that of
MN@C (Chaur et al. ).

Violation of the Isolated Pentagon Rule in Endohedral
Metallofullerenes

The specific feature of endohedral fullerenes is that the isolated pentagon rule, which imposes
a strict limitation on the possible isomers of empty fullerenes, is often violated when a metal
or a cluster are encapsulated inside the cage. Such possibility was first suggested by Kobayashi
et al. in theoretical studies of Ca@C isomers (Kobayashi and Nagase b), and the first
experimental evidence was provided in  when Sc@C−Cv(,) (Wang et al. a)
and ScN@C−D(,) (Stevenson et al. ) were isolated. Since that time, a lot of non-
IPR endohedral fullerenes have been reported (> Fig. -), including ScC@C−Cv (,)
(Shi et al. ), ScN@C−Cv(,) (Yang et al. b), La@C−C(,) (Wakahara
et al. ), La@C−D(,) (Kato et al. ; Lu et al. ), DyScN@C−Cs(,)
(Yang et al. a), MN@C−C(,) (M=Dy, Tm, Gd) (Beavers et al. ; Popov et al.
d), GdN@C−Cs(,) (Mercado et al. ), and MN@C−Cs(,) (M=Tb,
Gd, Tm) (Beavers et al. ; Zuo et al. ). The non-IPR isomers were also pro-
posed for Sc@C−Cs(,) (Popov and Dunsch a), Ca@C−C(,) or Cv (,)
(Kobayashi and Nagase b; Nagase et al. ) and the minor isomer of Yb@C, C(,)
or C(,) (Slanina et al. b).The state of the art in the studies of non-IPR fullerenes has
been recently reviewed (Tan et al. ).

The tendency to violate the IPR in endohedral fullerenes can be explained by the changes of
the relative energies of the fullerene isomers with the increase of the cage charge. It was shown
already in  that for C, the non-IPR Cv(,) isomer with two pairs of adjacent pen-
tagons is substantially less stable than the IPR isomer in the neutrally charge state, but with the
increase of the negative charge on the cage, the difference in the relative energies is diminish-
ing, reaching almost zero for (−) and inversing for (−) states (Fowler and Zerbetto b).
Recently, semiempirical and DFT calculations for the whole set of , isomers of C in ,
(−), (−), and (−) charge states were reported (Chen et al. ). This study has shown that
the lowest energy isomers of C−

 and C−
 are Cv (,) and D(), in agreement with iso-

lation of these isomers for ScC@C (Shi et al. ) and ScN@C (Olmstead et al. ;
Stevenson et al. ), respectively. By plotting the relative energies of the isomers of the same
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charge versus the number of pentagon adjacencies, the authors have found that the penalty for
a pentagon adjacency is decreasing from  kJ/mol in C to  kJ/mol in C−

 at the AM level,
confirming that the increase of the charge stabilizes pentagon adjacencies.

An explanation of the stabilization of the pentagon adjacencies in metallofullerenes was
proposed by Slanina et al. (a). The authors noted that the pentalene (a unit of two fused
pentagons) is an π anti-aromatic system in the neutrally charged state, but becomes π aro-
matic in the dianionic state (Zywietz et al. ). In a similar fashion, when the metal in the
non-IPR endohedral fullerenes is coordinated to the pentagon pair, it donates two electrons to
the pentalene unit to make it aromatic. This reasoning agrees with the fact that the maximum
number of pentagon pairs found in endohedral fullerenes is equal to the half of the formal
charge of the cage: three pairs for (−) charge as in ScN@C (Olmstead et al. ; Stevenson
et al. ) or ScN@C(Yang et al. b), two pairs for (−) state as in ScC@C (Shi et al.
), and one pair for (−) and (−) states as in La@C (Wakahara et al. ) and Ca@C

(Kobayashi and Nagase b).
A correlation of the total number of adjacent pentagon pairs in the lowest-energy isomers

of C−
n (n = –) with the cage size was revealed in (Popov and Dunsch a).The authors

found a pronounced tendency to decrease the number of pentagon pairs in the molecules with
the increase of the cage size: while three pairs are common for C−

 and C−
 isomers, two and

one pairs are preferable for C−
 –C

−
 and C−

 –C
−
 , respectively. At the same time, relative

energies of the non-IPR isomers are increasing with respect to the IPR isomers, and starting
from C formation of the non-IPR fullerenes is not expected (at least, for the cages with the
formal charge of − and smaller). Indeed, the largest cage reported to date for any non-IPR
fullerene is C–Cs () (Beavers et al. ; Zuo et al. ). This tendency agrees with the
increase of energy penalty for the adjacent pentagon pair in the empty fullerenes with increase
of the cage size as discussed in the section “The Isolated Pentagon Rule and Steric Strain.” With
the increase of the cage size a more uniform distribution of the pentagon-induced strain over
the fullerene is possible and hence, localization of such a strain in pentagon adjacencies should
become more unfavorable than for the smaller cages. Besides, for the charged cages, the influ-
ence of the charging of the fullerene should be diminished with the growth of the cage size and
hence its stabilizing role for the pentagon adjacencies is leveled down for larger fullerenes.

Structures and Stability of Fullerene Derivatives

Addition of X to C – Isomers of CX and General Considerations

The C molecule has two types of C–C bonds, hexagon/hexagon (hex/hex) edges and pen-
tagon/hexagon (pent/hex) edges. Determination of their bondlengths by different experimental
and theoretical methods gives the values of ca . and .Å, respectively. As might be
expected, these values fall in the range of the bondlengths typical for conjugated systems; yet,
they also show that there are formal double and singlebonds in C, and it ismore appropriate to
call it polyalkene rather than superaromaticmolecule.The chemical properties of fullerenes are
to a large extent determined by the presence of the conjugated double bonds, and vast majority
of fullerene reactions are addition reactions. We will not cover here the cycloaddition, mainly
because quantum chemical approaches are not so helpful in predicting and elucidation molec-
ular structures of the reaction products. Thus, we will focus on the addition of atoms or groups
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that form single bonds to the fullerene core (i.e., atoms or radicals, “X” hereafter). Such reac-
tions, on the one hand, often occur at rather high temperatures allowing close-to-equilibrium
distribution of the products and, on the other hand, addition of such groups allows multiple
possibilities from the point of the distribution of the groups on the surface of the fullerene.
For instance, there a  possible isomer of CX, , isomers of CX, , isomers of
CX, and the number of possible isomers is growing rapidly with the further increase of the
number of the added groups (Balasubramanian ). It is therefore desirable to find the prin-
ciples which govern addition of the addends to the fullerenes, the task to be naturally addressed
by theoreticians. It should be also noted that equilibrium or close-to-equilibrium distribution
of the products in the addition reaction (i.e., thermodynamic control) is a necessary prerequi-
site for the conclusions based on the relative energies of isomers to be valid. Otherwise, kinetic
factors can be equally or even more important than the relative stability of the isomers, and
theoretical predictions of the products are severely complicated.

All possible isomers which can be obtained by the addition of two hydrogen atoms to C

(addition of the odd number of groups leads to the highly reactive radicals and therefore is not
considered here) were studied at the PM level of theory by Dixon and coworkers (Matsuzawa
et al. ). An AM study of the relative stabilities of CX isomers for X=H, F, Cl, Br, CH,
and t–CH was reported in  (Clare and Kepert a). Let us consider several possible
isomers of CX (> Fig. -a). The simplest addition pathway is when two X groups are
added to one double bond of C; the rest of the π-system of the fullerene remains unchanged
(in other words, this is ,-addition to a cyclohexatriene). If then two groups are attached to one
hexagon in para position (,-addition to a cyclohexatriene), theπ-system of the fullerene has to
be adjusted by relocating one double bond to the pent/hex edge. All other variants of addition
require more pronounced changes in the π-system of C and lead to the larger number of
double bonds in pentagons (DBIPs). It was discovered that the number ofDBIPs is an important
parameter showing perfect correlation with the stability of the isomers of CX (> Fig. -b):
the larger the number of DBIPs, the lower stability of the given isomer (Matsuzawa et al. ).
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(a)–(c) Fragmentsof the lowest energy isomersofCH: (a) ,-addition; (b) ,-addition; (d) relative
energies of CH isomers computed at the AM level as a function of the number of double bonds
in pentagons (DBIPs) (Based on the data from Clare and Kepert a)
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From the slope of the fitted line, the penalty for each DBIP in CH can be estimated as 
and  kJ/mol at the PM and AM levels, respectively. The penalty is virtually independent on
the nature of X, being  kJ/mol for CF and  kJ/mol for C(t–CH) at the AM level
(Clare et al. a). Obviously, “,”-addition should be the most preferable from the energetic
point of view, and ,-CX is indeed the most stable isomer for X=H and F (Dixon et al. ;
Clare et al. a) in good agreement with the experimental structures of CH (Henderson
and Cahill ) and CF (Boltalina et al. b). However, in the ,-CX, the X groups are
experiencing eclipsing interactions. With the increase of the size of the groups, the influence of
the steric factor is increasing and can balance the destabilizing effect of DBIP. Indeed, either
semiempirical or DFT calculations show that for the bulky groups (such as Br or CF), ,-
addition is more preferable (Dixon et al. ; Clare and Kepert a; Goryunkov et al. ).
Furthermore, for even larger groups such as t–CH, the isomer with two DBIPs and t-CH

groups on different hexagons (> Fig. -d) is the most stable at the BLYP/-G∗//AM level
(at the same time,AMmethod predicts that ,-C(CH) is the lowest energy isomer) (Clare
and Kepert a).

The studies of CX isomers allow one to conclude that the structures of the products of
the multiple addition of X groups should be a result of the interplay of at least two factors:
() destabilizing double bonds in pentagons and () destabilizing eclipsing interactions of bulky
groups. It can be expected that for the relatively small atoms such asHor F,multiple ,-addition
is preferable, while for the bulky groups, multiple ,-addition is to be expected.Detailed studies
of the multiple additions of various groups (in particular, H and Br) to fullerenes performed by
Clare and Kepert in s using AM method confirmed these suggestions (Clare and Kepert
, a, b, c, a, b, a, b, a; Kepert and Clare ). In brief, the methodology
of the authors included a search of the most stable isomers of CXn , sorting out majority of
the unstable structures, and then a search of the most stable isomers of CXn+ based on the
several most stable isomers of CXn . Gradual increase of n allowed Clare and Kepert to cover
broad range of compositions, reveal some general principles of the multiple addition to C

and other fullerenes, and predict several addition patterns which were indeed found later in the
experimental studies. In the remaining parts of this chapter, we will discuss several examples of
the addition patterns to C and C.

Addition of H and F to C – Contiguous Addition, Benzene Rings,
and Failures of AM

Early on semiempirical calculations of CH and CF have shown that ,-isomers are –
 kJ/mol lower in energy than ,-isomers, and then all other structures are substantially less
stable (Dixon et al. ; Matsuzawa et al. ; Clare and Kepert ). Based on this fact,
in their investigation of the multiple addition of hydrogen atoms to C, Clare and Kepert
considered only ,-addition (addition to hex/hex edges). In the AM study (Clare and Kepert
), they have found that the most energetically favorable would be consequent addition of
H molecules to hex/hex edges in a pathway, which eventually leads to Th-symmetric CH

with all CH–CH edges separated from each other (> Fig. -d). While this addition pattern
has never been experimentally verified for CH or CF, it was indeed proved for many
hexakis-cycloadducts such as C(C(COOEt)) (Lamparth et al. ; Hirsch and Vostrowsky
).
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⊡ Fig. -
Addition patterns typical for small groups (H, F). (a) S and T addition motifs; (b) lowest energy
Cs isomer of CF; (c) Cs-CF with S-motif; (d) Th-CX with isolated CX–CX edges; (e) crown
Cv-CX with isolate benzene ring; (f) Dd-CX with S-type loop around equator; (g) T-CX;
(h) C-CX; (i) C-CX

Further addition to hex/hex edges in Th-CH inevitably requires formation of longer
CH–(CH)x–CH strings. It was, however, found that formation of CH is energetically unfa-
vorable, and –(CH)x– strings should be built up from the edge-sharing CH hexagons. Two
motifs of the string growth, S and T (> Fig. -a), have been indicated (Clare and Kepert
b).

Among many addition patterns studied by Clare and Kepert for CHn (n ≤ ), two are of
particular interest. For CH, Cv-symmetric “crown” structure built from combination of S
and T motifs (> Fig. -e) was shown to be one of the most stable isomers (Clare and Kepert
b). In this molecule, –(CH)x– string forms a loop, which isolates one hexagon from the rest
of the π-system.The isolated hexagon is highly aromatic, and the carbon cage is flattened in its
neighborhood.Discovered first in  in the theoretical study, in  this addition patternwas
proved by H NMR spectroscopy for the experimentally available CH (Darwish et al. ),
and later the same pattern was found in CF (Neretin et al. ). Consecutive extension of
the S-motif leads to the closure of the –(CH)– string in a loop around the fullerene equator
with formation of the Dd -symmetric CH (> Fig. -f ) (Clare and Kepert a). This
addition pattern was found experimentally in CF (Boltalina et al. ), whose structure
was recently confirmed by a single-crystal X-ray diffraction study (Shustova et al. ).
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The crown motif with isolated benzene-like ring proposed for CH was then found com-
mon for highly hydrogenated C (Clare and Kepert a, b, a). In particular, CH was
studied in detail because a compound with this composition was among the first C deriva-
tives ever synthesized by differentmethods (Haufler et al. ; Attalla et al. ; Ruchardt et al.
), but its structure remained unclear for more than a decade. For CH, combination of
several crown motifs can lead up to four isolated benzene ring as in the T-symmetric isomer
(> Fig. -g), but in the AM studies some isomers with two or three benzene rings were
found to be equally stable (Clare and Kepert a). Almost identical results were obtained
at the AM level for isomers of CF (Clare and Kepert a), whose structure also could
not be unambiguously elucidated in the first synthetic studies. It was also found in the studies
of CX and CX that double bonds in pentagons are not destabilizing any more at high
degrees of functionalization (Clare andKepert , a, a). For instance, themost stable
isomers of CF have all their six double bonds in pentagons (Clare and Kepert ).

In early s, when routine DFT calculations have became feasible for the fullerene
derivatives, Clare and Kepert reconsidered some of their earlier results by comparing AM to
BLYP/-G∗//AM. One of the main conclusions of these studies was the understanding that
one should treat results of AM calculations with caution.

First, it was found that AM underestimated the energy difference between , and
,-isomers of CX by ca  kJ/mol (at least, when compared to the results of DFT cal-
culations), and the error accumulated at higher degrees of addition. As a result, while AM
calculations predicted the CH, CH, and CH structures with, respectively, one, two,
and three skew pentagonal pyramidal (SPP) motifs (> Fig. -d) to be the most stable isomers
for their compositions (Clare and Kepert ), DFT calculations showed that these addition
motifs are energetically unfavorable. For instance, CH with three SPP motifs is . kJ/mol
more stable than the “crown” Cv-CH isomer at the AM level, but the latter is . kJ/mol
more stable at the BLYP/-G∗//AM level (Clare and Kepert b). This agrees with the
fact that hydro- or fluorofullerenes with SPP motifs have never been observed experimentally.

Second, DFT studies have shown that for the low degree of additions, the most stable are
those isomers, which have –(CH)x– strings, rather than isolated CH–CH fragments (Clare et
al. a). At the AM level, themost stable isomer of CH is . kJ/mol level lower in energy
than the Cs-symmetric isomer with CH fragment, while at the BLYP/-G∗ level the latter
is lower in energy by . kJ/mol. Likewise, the isomer of CH with the S-motif is . kJ/mol
lower in energy at the BLYP/-G∗//AM level than the isomer with three isolated CH–CH
fragments, while at the AM level the latter is more stable by  kJ/mol. For the isomers of
CH, analogous energy differences increase to . and . kJ/mol, respectively. The prefer-
ence of the contiguous addition at the early stages of fluorination was proved experimentally by
F NMR spectroscopy (Boltalina et al. ).

It is instructive to show that although contiguous addition appears to be the rule supported
by both experimental and DFT studies, the other possibilities should not be completely aban-
doned. In the experimental studies of low C fluorides, Cs-symmetric isomer of CF was
isolated (Boltalina et al. ). Cs symmetry is not compatible with the S-type string, and the
authors proposed a contiguous addition patternwithT-motif and two additional fluorine atoms
attached at the both ends of the string. However, later calculations have shown that such a struc-
turewould byunstable. Sandall and Fowler performed a broad search of all possible structures of
Cs symmetry compatible with NMR data (Sandall and Fowler ). After calculations of more
than  isomers usingMNDO, AM, andPMmethods and – for selected structures –Harree-
Fockmethod with STO-G and -G∗ basis sets, the authors have found that themost suitable
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isomer indeed has T-motif, but two additional fluorine atoms are added in a non-contiguous
way with formation of ,-CF hexagon (> Fig. -b). In a recent study it was shown that two
isomers ofCF are actually formed in the synthesis, aforementioned isomerwithCs symmetry
and another one, also with Cs symmetry (Goryunkov et al. b). Exhaustive DFT PBE/TZP
calculations performed by the authors confirmed assignment of the Cs isomer to the structure
proposed by Sandall and Fowler and showed that another Cs-isomer is based on the S-motif.
At the PBE/TZP level, S-Cs isomer of CF is . kJ/mol lower in energy.

The third failure of semiempirical methods revealed in the comparative AM/DFT studies
is that AM strongly underestimates stabilizing factor of the isolated benzene rings. Compar-
ison of the relative energies of the isomers of CH with different number of benzene rings
computed at the AM and BLYP/-G∗//AM levels of theory shows that AM-predicted rel-
ative energies should be adjusted by ca  kJ/mol per benzene ring to match the DFT-predicted
values (Clare and Kepert b). For instance, at the AM level the relative energies of S (
rings), C ( rings) and T ( rings) isomers of CH are ., ., and . kJ/mol, while at the
BLYP/-G∗//AM level the values change to ., –., and –. kJ/mol, respectively (Clare
andKepert a). In a similar study of CH isomers at the PM and PBE/TZP levels of the-
ory, it was found that PM-computed relative energies should be corrected by approximately
 kJ/mol per benzene ring to match the DFT results (Popov et al. ). For the isomers of
CF, AM-predicted relative energies should be corrected by approximately  kJ/mol per
ring to match BLP/-G∗//AM energies (Clare and Kepert b). At the same time, rel-
ative energies of the isomers with the same number of benzene ring are reliably predicted by
semiempirical approaches (Clare and Kepert b; Popov et al. ). Thus, semiempirical
methods were unable to predict the most stable isomers of CH and CF. At the same
time, DFT calculations correctly predicts that T , C, and C isomers shown in > Fig. -g–i
are the most stable isomers, in perfect agreement with the experimental results, which show
that both CH and CF are obtained as mixtures of these three isomers (Boltalina et al.
; Gakh and Tuinman , ; Avent et al. ; Hitchcock and Taylor ; Popov et al.
). It should be noted that formation of isolated benzene rings is very important stabiliz-
ing factor in the multiple addition to fullerenes and it has been observed for many addends
and many fullerenes. The failure of semiempirical methods in adequate prediction of the rel-
ative energies of isomers with such fragments is therefore a very serious problem and makes
these methods hardly applicable when the broad search of the possible isomers is necessary.
Good results demonstrated by DFTB in the studies of the fullerenes of different size show that
this methodmight be useful for fullerene derivatives as well, but to our knowledge, benchmark
calculations for fullerene derivatives with DFTB are not available yet.

Addition of Bulky Groups to C: Bromination and
Perfluoroalkylation

In contrast to H and F, bromine atom is sufficiently large tomake eclipsing interactions strongly
repulsive, so that , addition of two Br atoms is more energetically preferable than , addition
either at the AM (ΔE = . kJ/mol) or DFT levels of theory (. kJ/mol at BLYP/-G∗//AM,
. kJ/mol at LDA/DNP//AM, and . kJ/mol at the PBE/TZP levels) (Dixon et al. ; Clare
and Kepert a, ). At the same time, the difference in the energy of ,- and ,-isomers
is not very large, and hence the possibility of ,-addition should be also considered. Indeed, in
the AM study of CBr isomers, it was found that two lowest energy isomers are results of the
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consecutive , additions, while the third most stable isomer was a result of a combined ,- and
,-additions (> Fig. -a–c) (Clare andKepert a). Regression analysis of the relative ener-
gies of CBr isomers as a function of the number of different structural motifs (such as CBr,
CBr, CBr, etc. hexagons) revealed that the most stable isomer of bromofullerenes might
be obtained through formation of ribbons (also referred to as “strings”) of edge-sharing CBr
hexagons, rather then by addition of pairs of bromine atoms to the distant parts of C .Thus, the
most stable isomer has para-para-para string (p hereafter), while the secondmost stable isomer
has para-meta-para string (pmp hereafter) (> Fig. -a, b).The relative energy of pmp isomer
at the PBE/TZP (AM) level of theory with respect to the p isomer is . (.) kJ/mol, while
the next in stability order with one ortho- and one para-CBr hexagons is . (.) kJ/mol less
stable (the DFT calculations reported hereafter for bromofullerenes at the PBE/TZP level with
effective-core potential basis set for the Br atoms were performed specifically for this chapter).

Further addition of Br atoms to the three most stable isomer of CBr confirmed the pref-
erence of the string formation (Clare and Kepert a). However, the most stable isomer at the
AM level has a special Cs-symmetric addition pattern titled by some authors as “skew pentag-
onal pyramid” (SPP, > Fig. -d).This addition pattern includes one pair of Br atoms bonded
to neighboring carbon atoms, and is . kJ/molmore stable than the secondmost stable isomer
with a pmp ribbon (> Fig. -e). At the PBE/TZP level, the energy difference between SPP
and pmp isomers is reduced to . kJ/mol. Experimentally isolated CBr indeed has the SPP
pattern (Birkett et al. ), and this addition motif was also found for some other addends,
including Cl (Birkett et al. ) and CF (Kareev et al. ). It should be noted that formation
of SPP-CX derivatives for relatively large X is also favorable kinetically if the radical addition
mechanism is adopted (Rogers and Fowler ).

Next two added Br atoms continue the tendency of the ribbon formation. At the AM
level, the most stable isomer of CBr has pmpmp ribbon (> Fig. -f ), while DFT
(PBE/TZP) shows that the isomer in which the ribbon is closed to a Cv-symmetric loop
((pm), > Fig. -g) is . kJ/mol more stable. The latter motif is indeed observed in the
experimentally isolated CBr (Birkett et al. ). AM calculations have also shown that the
isomers with the SPP motif and an additional para-CBr hexagon on the opposite part of C

are also equally stable (Clare and Kepert a).
While there are no experimentally isolated CBrx compounds between CBr and

CBr, theoretical studies of the intermediate compositions were still very useful for predict-
ing the general trends in the addition of bulky groups (Clare and Kepert a, b). In particular,
a remarkable prediction was done for CBr. The authors have shown that the most stable
isomers in SPP and ribbon series are the Ch-isomer with two SPP motifs on the opposite sides
of C and the S-symmetric isomer in which the ribbon is closed to a loop around the equator
of the carbon cage (> Fig. -h, i). At the AM level, Ch isomer is . kJ/mol more stable,
while PBE/TZP favors the S-isomer by . kJ/mol. Though not available experimentally for
CBr, both addition patterns have been found for C(CF) derivatives (Popov et al. c;
Troyanov et al. ). In further addition of Br atoms, the competition between SPPmotifs and
ribbons is continued up to CBr, for which the isomer with three SPPmoieties was predicted
to be the lowest energy structure (Clare and Kepert b). For even larger number of Br atoms,
SPPmotif does not provide stable structures anymore, and the most stable isomer of CBr is
Th-symmetric structure in which all Br atoms are bonded to the non-neighboring carbon atoms
( is the largest number of addends for which such a restriction is possible) (Clare and Kepert
a; Fowler et al. ). This isomer corresponds to the experimentally available structure of
CBr (Tebbe et al. ).
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⊡ Fig. -
CXn addition patterns typical for bulky groups (for CBrn and C(CF)n, PBE/TZP-computed
relative energies (kJ/mol) are listed). (a)–(c) isomers of CX; (d)–(e) isomers of CX; (d)–(e)
isomers of CX; (h)–(j) isomers of CX; (k)–(l) isomers of CX; (m) Th-CX. Symmetry
group of the isomer is indicated only when it is different from C. Ribbons of edge-shared CX-
hexagons are shaded (except for CX, here shaded are one SPP and one isolated fulvene moiety,
respectively)
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Significant progress achieved in the last years in the perfluoroalkylation of fullerenes initi-
ated exhaustive theoretical studies of Cn(CF)x isomers with the aim to find the most stable
structure(s) for each composition. Since the studies were performed almost a decade after the
AM-based analysis of CBrx addition patterns by Clare and Kepert, they have strongly ben-
efited from the serious progress in hardware. Instead of the maximum of about  structures
reported in the early exploratory studies, up to thousands and tens of thousands isomers were
routinely studied for CF derivatives, and results of the AM studies were then verified by DFT
calculations. Besides, the isolation of C(CF)n derivatives with each even n from  to 
(in many cases each composition is also presented by several isomers) enabled more detailed
comparison between experimental and theoretical results.

Both AM and DFT (PBE/TZP) unambiguously show that ,-isomer of C(CF) is
much more stable than the ,-isomer, the DFT relative energy of the latter being . kJ/mol
(Goryunkov et al. a).The energy difference ismore pronounced than for the CBr , which
clearly shows that CF is bulkier than bromine. Therefore, in the compounds with larger num-
ber of CF groups, ,-addition is to be avoided. Indeed, the most stable isomers of C(CF)
are p (ΔE = . kJ/mol at the PBE/TZP level) and pmp (ΔE = . kJ/mol) structures, just like
for CBr, however the o, p-C(CF) isomer, the third stable for CBr, is . kJ/mol less
stable than p-C(CF) (for CBr its relative energy is . kJ/mol) (Goryunkov et al. a).
The pmp is the major isolable isomer of C(CF), while the more stable p isomer appears to
be too reactive and is isolated only in the form of its epoxide C(CF)O (Goryunkov et al.
; Kareev et al. ).

The trend revealed for C(CF) in comparison to CBr is further emphasized for six
added groups. For CF, the ribbon addition motifs are noticeably more preferable than the SPP
motif. Themost stable isomer of C(CF) has pmp addition pattern, while the SPP isomer is
. kJ/mol less stable (for CBr, SPP is . kJ/mol lower in energy) (Dorozhkin et al. ).
The SPP-C(CF) still can be isolated, but its yield is ca  times lower than the yield of the
major, pmp isomer (Kareev et al. ).

Another difference between CF and Br which becomes apparent for further additions is
that CF groups are sufficiently bulky to experience repulsive interaction when two groups are
in one pentagon, even though they are not bonded to the neighboring carbon atoms.Thus, the
stable ribbon addition pattern of CBrx with CBr pentagons are destabilized for CF groups
(although some stable isomer still can have them). For instance, the most stable Cv-symmetric
addition pattern of CBr (. kJ/mol more stable than pmpmp) is . kJ/mol less stable than
the pmpmp isomer of C(CF) at the PBE/TZP level (Goryunkov et al. ).The pmpmp
isomer itself is the second most stable (ΔE = . kJ/mol, PBE/TZP), while the lowest energy
was predicted for one of the isomers with pmp,p addition pattern (i.e., addition pattern of the
lowest energy pmp-C(CF) isomer with an additional isolated para-C(CF) hexagon).
Theoretical results agree well with experimental isolation of one pmpmp, three pmp,p, and
one pmpmpmp isomers of C(CF)(Goryunkov et al. ; Popov et al. c).

Fortuitously, performance of the AM method for addition of bulky groups is much bet-
ter then for the consecutive ,-additions of H and F, which encourages the use of AM for
the prescreening of thousands isomers of C(CF)n . Although there is rather poor correlation
between AM and PBE/TZP values (> Fig. -a), the trend in the energies of the most stable
isomers is correctly predicted by AM. For instance, when all isomers of C(CF) obtained
by a combination ,-additions were studied at the AM level and then a cutoff of  kJ/mol
was applied to the AM results for the consequent PBE/TZP calculations, the most stable iso-
mers within the range of ca  kJ/mol could be identified (Popov et al. c). > Figure -
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⊡ Fig. -
(a) Correlation between relative energies of C(CF) isomers computed at the AM and PBE/TZP
levels of theory; (b)–(i) Schlegel diagrams of the eight lowest energy isomers of C(CF)
(PBE/TZP-computed relative energies are also listed, based on the data from Popov et al. a).
Experimentally characterized compounds are framed in black (“X-ray” means single crystal X-ray
diffraction; “NMR”means F NMR spectroscopy). Ribbons of edge-shared C(CF)-hexagons are
shaded

shows addition patterns and relative energies of the eight most stable isomers of C(CF).
Except for one isomer, which has two symmetry-related pm loops, all other structures have
ribbon addition patterns similar to those of C(CF). Six isomers of C(CF) are charac-
terized experimentally by single-crystal X-ray diffraction and/or F NMR spectroscopy, and
all of them fall in the range of ΔE <  kJ/mol confirming reliability of the DFT predictions.
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The splitting of the F NMR lines due to the through-space interaction of the fluorine atoms of
CF groups in the same hexagon allows experimental identification of the lengths of the ribbon,
and when combined with results of DFT calculations of the relative energies, these data allow
unambiguous identification of the addition pattern. Molecular structures of several isomers of
C(CF) were elucidated this way by a combination of NMR and DFT, and some of them
were later confirmed by X-ray studies (Popov et al. c).

Two key addition motifs predicted by Clare and Kepert for CBr, double-SPP pattern
and S-symmetic loop (> Fig. -h, i), have been identified experimentally for C(CF)
(Popov et al. c; Troyanov et al. ). Extensive AM and DFT calculations showed that
the S-loop isomer is at least  kJ/mol more stable than all other isomer of C(CF) , while
the Ch-(×SPP) isomer is . kJ/mol less stable (Kareev et al. ).The third isolated isomer
of C(CF) with ribbonmotif and two C(CF) pentagons (> Fig. -j) has been found to
be . kJ/mol less stable than the S-isomer, showing that kinetic factors can be also important
in the isomeric distribution of C(CF)x derivatives even at ○C (Kareev et al. ).

When addition ofmore than  CF groups is considered, one has to consider that fullerenes
have only  pentagons, and hence it is impossible to avoid formation of destabilizing C(CF)
pentagons. Therefore, when CF groups are too crowded on the fullerene surface, results of
,-addition can be not as destabilizing as at the lower addition stages. Exhaustive AM and
DFT calculations have shown that for C(CF), the lowest energy isomer with one SPP
fragment is only . kJ/mol less stable then the most stable ribbon isomer with two C(CF)
pentagons; however, experimentally characterized isomers of C(CF) do not have SPP frag-
ments (Omelyanyuk et al. ). Likewise, for C(CF), SPP and ribbon isomers are equally
stable; moreover, it was found that stable addition patterns with CF groups on adjacent carbon
atoms can be realized without formation of the SPPmoiety, and one of the experimentally char-
acterized C(CF) isomers has o-C(CF) hexagon (Troyanov et al. ). For C(CF),
theoretical studies have shown that the most stable isomer has Cv-symmetry, two isolated ben-
zene rings, three isolated fulvene fragments, nine C(CF) pentagons, and no CF groups on
adjacent carbon atoms (> Fig. -l) (Troyanov et al. ). DFT calculations show that this
isomer is . kJ/mol more stable than the isomer with triple SPP motif, which also has one
benzene ring (> Fig. -k). Moreover, even for CBr this isomer is . kJ/mol more sta-
ble than the structure with three SPP moieties. Recently, the isomer of C(CF) with this
addition pattern has indeed been isolated and characterized by single-crystal X-ray diffraction
(Samokhvalova et al. ). Up to now,  is the largest number of CF groups in structurally
characterized C(CF)x derivatives; the Th-symmetric CX motif known for X=Br and Cl
could not be reached yet for CF derivatives.

Addition to C and Higher Fullerenes

Ih-C has only two types of C–C bonds, which can be straightforwardly classified according to
their bondlengths as “single” and “double” bonds. For C and higher fullerenes, the symmetry
in most cases is much lower, and the lengths of C–C bonds are more uniformly distributed. It is
therefore almost impossible to make an unambiguous classification of the bond types, and the
relevant chemical properties (such as addition pathways) are much harder to predict.

The structure of C can be described as a combination of two C-like hemispheres on
the poles separated by the belt of  carbon atoms and five benzene-like rings around the
equator (> Fig. -a). The bonds between the belt carbon atoms are significantly elongated
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compared to C values; besides, these atoms are located on triple hexagon junctions. Clare
and Kepert reported AM study of the addition patterns of CXn derivatives (n = –, X=H,
F, Br, CH) (Clare and Kepert b). For CH, the authors have found that ,-addition is
energetically preferable in the pole region, while the lowest energy ,-addition occurs at the
equator. The AM-computed energy difference between the most stable ,- and ,-isomers is
only . kJ/mol, which can be compared to  kJ/mol for CH. Such a considerable difference
between the relative energies of CH and CH isomer can be explained by the fact that the
,-addition at the equator of C does not generate destabilizing double bond in any pentagon.
For CH, the isomer with p-string at the equator (> Fig. -) is in fact . kJ/mol lower
in energy than the isomer obtained by two ,-additions. The studies of CHn with n = –
further emphasized the preference of consecutive ,-additions with formation of the pn−-
ribbon along the equator of the carbon cage. The most stable CH and CH isomers in
these series are, respectively, . and . kJ/mol lower in energy than the isomers obtained by
,-addition. Note that p and p-strings at the equator of C can be realized as eitherCs or C-
symmetric isomers. ForCH,C−p isomer is .kJ/molmore stable than theCs−p pattern
(. kJ/mol at the PBE/TZP level (Dorozhkin et al. a), while for CH, the Cs−p iso-
mer is . kJ/mol (. kJ/mol at the PBE/TZP level)more stable than C−p.Themost stable
isomer at the next addition step is obtained by the closure of the p ribbon via addition of two
atoms to pent/hex junction with formation of the Cs−po-loop (> Fig. -), which cuts the π-
system of the fullerene into two non-communicating parts. This structure is . kJ/mol more
stable than the C−p isomer, obtained by the growth of the equatorial ribbon via one more
,-addition step. Computations for the bulkier Br and CH groups have also shown that for-
mation of the ribbon around the cage equator is the most referable addition motif in C (Clare
and Kepert b). Even for CH, the sterically strained Cs−po-loop addition pattern is more
stable for CX than C−p isomer. Results of these calculations agree very well with exper-
imental data. Except for C(CF) discussed below, the majority of experimentally available
CX compounds (X=H, Cl, Br, Ph, CH) have Cs−po-loop (Birkett et al. ; Avent et al.
; Spielmann et al. ; Al-Matar et al. ; Troyanov et al. ), and only bulky OOtBu
groups form the decakis-adduct with C−p addition pattern (Xiao et al. ). Some CXn

compounds with less than ten added groups have also been reported, and most of them also
have equatorial string addition patterns. Thus, both computational and experimental data con-
firm that the most energetically stable addition motif for C is formation of the string from
para-CX hexagons around the cage equator, and even for hydrogen this motif might be more
preferable than the consecutive ,-additions.

Trifluoromethylation of C deserves separate attention since, like for C, this reaction was
studied recently in great details, and many compounds from C(CF) to C(CF) (each
composition being presented by several isomers) have been isolated and structurally character-
ized (Goryunkov et al. , a; Kareev et al. ; Dorozhkin et al. a,b; Ignat’eva et al.
; Popov et al. b).The experimental studies were usually combinedwith and sometimes
preceded by detailed theoretical analysis at the AM and PBE/TZP level.

It was found that the two lowest energy isomers of C(CF) have a p-C(CF) hexagon
on the pole of the molecule, and these structures are assigned to the experimentally available
isomer (Dorozhkin et al. a; Popov et al. b). The most stable isomer with equatorial
addition is . kJ/mol higher in energy at the PBE/TZP level of theory; meanwhile, the same
method shows that the isomer of CH with equatorial addition is . kJ/mol more stable than
the isomerwith p-CH hexagon on the pole.The reason for such a difference ismost probably a
much higher curvature of C cage at the poles as compared to the almost flat equator.Therefore,
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the distance between two CF groups is longer for p-C(CF) hexagon on the pole than for
the hexagon on the equator, hence the repulsion between the groups is weaker on the pole. For
CH, repulsion between the atoms is a less important factor, and the equatorial addition is
more preferable.

Addition on the pole is more preferable for C(CF) as well. Similar to C(CF),
the most stable isomers have Cs−p and C-pmp ribbons with the energy difference of only
. kJ/mol (PBE/TZP) (Dorozhkin et al. a). Both can be isolated experimentally, how-
ever the p isomer is kinetically unstable, and the isolable form is its epoxide C(CF)O
(Popov et al. b). DFT calculations have also shown that there are at least  other isomers of
C(CF) within the range of  kJ/mol, including the isomer with Cs−p string at the equator
(ΔE = . kJ/mol, PBE/TZP), but no other structure has been characterized experimentally.
Note that the model calculations of CH and CBr isomers at the PBE/TZP level have also
shown that the equatorial addition is more energetically preferable for H and even Br (relative
energy of the pole Cs−p isomer is . and . kJ/mol for Br and H, respectively, versus the
equatorial Cs−p isomer).

Starting from C(CF), addition switches to the equatorial motif. Like for many other
groups (H, Cl, Br, Ph), the lowest energy isomer has a C−p ribbon at the equator, and
this is indeed the most abundant experimentally characterized isomer (Dorozhkin et al.
a). For C(CF), the two most stable isomers have Cs−p and C−p (ΔE = . kJ/mol,
PBE/TZP) ribbons, and both isomers could be isolated and characterized by single-crystal
X-ray diffraction (Goryunkov et al. ; Mutig et al. ).

For C(CF), the large size of CF groups again makes the lowest energy addition pat-
tern different from that for other addends. Repulsion of CF groups on adjacent carbon atoms
destabilizes the Cs−po-loop isomer of C(CF), and the most stable isomer is obtained if
the Cs−p equatorial ribbon is continued by the mp fragment which is crawling to the pole
again, as in the early stages of addition, and forming as a result C−pmp ribbon (Kareev et al.
). The C−p string is . kJ/mol less stable followed by Cs−po-loop (. kJ/mol). For
comparison, the C−pmp isomer of CBr is . kJ/mol less stable than the Cs−po-loop.
In accordance with its DFT-predicted high thermodynamic stability, the C−pmp is the most
abundant C(CF) isomer, and it can be obtainedwith unprecedented high yield (Popov et al.
b). C−p as well as three other less stable minor isomers could be also structurally char-
acterized, but their yield is much lower; the Cs−po-loop has never been found (Popov et al.
b).

The stable addition pattern of the major C(CF) isomer is found in all lowest energy
and experimentally isolated addition patterns of C(CF)−. For instance, four isolated
isomers of C(CF) have pmp,p patterns, while C(CF) and C(CF) have SPP frag-
ment on the pole with pmp and pmpmp ribbons, respectively (Avdoshenko et al. ;
Goryunkov et al. a; Ignat’eva et al. ). Exhaustive theoretical studies have shown that
these structures are the lowest energy isomers.

One of the important findings revealed in the studies of the multiple addition to C is the
fact that the isomers in which addends are bonded to the carbon atoms on the triple hexagon
junctions (THJs) are very unstable. This rule is fulfilled for all C derivatives with low and
medium addition rate, and from all known derivatives of C the only violation of this rule is
CF (Hitchcock et al. ). Moreover, it was found that this is also a strict rule for higher
fullerenes (Troyanov and Kemnitz ; Shustova et al. , ; Kareev et al. b). Thus,
when considering the possible isomers of CnXm , one can exclude addition to triple hexagon
junctions. This fact can dramatically reduce the number of possible isomers. For instance, in
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the experimental study of the trifluoromethylation of the “insoluble” small HOMO–LUMO gap
fullerenes, the conditions were optimized to produce Cn(CF) as major products (Shustova
et al. ). F NMR spectroscopy then enabled identification of the symmetry of the deriva-
tives and the relative location of the groups (i.e., number and length of the ribbons). Note that
the cage isomers of the studied fullerenes were unknown. As a result, millions isomers were
possible for these derivatives. However, when the rule about the triple hexagon junctions was
taken into account and combined with the condition that CF groups cannot share the same
pentagon ( is the largest number of the groups added to any fullerene which can be distributed
with one group per pentagon), the number of possible isomers was reduced to only a few struc-
tures for all possible cage isomers, and the DFT studies of all compatible structures could easily
identify the experimental structures and determine their carbon cage isomers (Shustova et al.
). Interestingly, in contrast to the empty fullerenes, multiple addition of CF groups to THJ
carbon atoms was found for ScN@C (Shustova et al. , ) showing that the endohe-
dral cluster and electron transfer to the carbon cage dramatically change chemical properties
of fullerenes.
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Abstract: Materials that exhibit an electrical resistivity between that of conductor and
insulator are called semiconductors. Devices based on semiconductor materials, such as tran-
sistors, solar cells, light-emitting diodes, digital integrated circuits, solar photovoltaics, and
much more, are the base of modern electronics. Silicon is used in most of the semiconduc-
tor devices while other materials such as germanium, gallium arsenide, and silicon carbide
are used for specialized applications. The obvious theoretical and technological importance
of semiconductor materials has led to phenomenal success in making semiconductors with
near-atomic precision such as quantumwells, wires, and dots. As a result, there is a lot of under-
going research in semiconductor clusters of small and medium sizes both experimentally and
bymeans of computational chemistry since theminiaturization of devices still continues. In the
next pages, we are going to learn which the most studied semiconductor clusters are, we will
explore their basic structural features and visit some of the most representative ab initio studies
that are considered as works of reference in this research realm. Also, we are going to be intro-
duced to the theory of the electric properties applied in the case of clusters by visiting some of
the most illustrative studies into this research area. It is one of the purposes of this presenta-
tion to underscore the strong connection between the electric properties of clusters and their
structure.

Introduction

About two decades ago Robert Pool stated: “Clusters are strange morsels of matter: when met-
als or semiconductors are shrunk down to clumps only  or  atoms in size, they become
a “totally new class of materials” with potentially valuable applications” (Pool ). This dis-
tinctive behavior of clusters has triggered an explosion of scientific work in this area and it is in
close relation with the dramatic development of a new field in science.This field is now widely
known as “nanoscience.”The term nanoscience comes from the terms “nano” and “science.”The
word “nano” is used to define a specific length of one billionth of a meter.This size scale resides
between bulk materials and typical molecular dimensions.Thus, nanoscience is associatedwith
the study of structures, materials, and devices, which are larger than the typical molecules but
extremely small, usually in the range from . to  nm. The increasing importance of this
area and its rapid expansion is owed mainly to the requirements of modern technologies for a
vast diversity of new materials with more than one function. The field of nanoscience is highly
multidisciplinary and joins different disciplines such as chemistry, applied physics, materials
science, colloidal science, device physics, supramolecular chemistry, and even more, mechan-
ical and electrical engineering. As a matter of fact, nanoscience can be viewed as extension of
most of existing sciences into the nanoscale or the upgrade of the existing molecular sciences
to the nanoscale dimensions.

Among nano-objects clusters occupy a large part of the big picture.The so-called nanoclus-
ters apart from a bridge between molecules and solids are systems with properties of their own
which are considerably different from those of the bulk materials and from those of their con-
stituent parts (atoms andmolecules). Under specific conditions those species can be considered
as the building modules of nano-objects which are the foundations of nanoscience. Clusters are
aggregates of atoms or molecules in the size of few nanometers and their constitution ranges
between  and  atoms. They can be built from only one type of atoms such as the homo-
geneous silicon clusters, or from more than one element such as the heterogeneous gallium
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arsenide binary clusters. Atomic clusters can be met in neutral or charged forms while their
atoms bind together by almost all of the main bond types such as covalent, ionic, van der
Waals, and metallic.

Amongst the different types of clusters that have been the subject of numerous studies
in the past, clusters which originate from semiconductor materials have attracted consid-
erable attention. In spite of their origin, these entities are not necessarily semiconductors.
Their basic bonding features resemble those of the metals but they keep as well some of the
covalent bonding characteristics which dominate in semiconductor nanocrystals.

The purpose of this presentation is to bring together themost representative ab initio studies
of the non-bulk-like structural and electric properties of semiconductor clusters. Both of these
two different property classes are closely related to each other and have occupied the interest of
the researcher in numerous studies.

Structural Properties of Semiconductor Clusters

Excluding clusters built from carbon (fullerenes) then the most studied semiconductor clus-
ters are those made from silicon (Si) and gallium arsenide (GaAs). GaAs clusters belong to the
so-called III–V group of semiconductors which are formed between the elements of groups 
and . Also, there is a significant amount of work focusing on the II–VI semiconductor clus-
ters which are formed between the elements of the  and  groups. Especially for the latter
clusters there is significant amount of reported experimental and theoretical work due to their
unique optical properties. The most studied II–VI semiconductor clusters are those built from
cadmium sulfide which have served as prototypes for studies of the effect of quantum confine-
ment on electronic and optical properties of semiconductor nano-objects. For instance, CdS
quantum dots which are water soluble and biocompatible (Bruchez et al. ), are potentially
useful as fluorescent biological labels since they are characterized by large optical gaps. Also,
cadmium selenide and telluride clusters have attracted considerable attention due to their nar-
row bandgaps and large Bohr exciton radii. The last characteristic implies that nanostructures
built from those systems are expected to exhibit strong quantum confinement and this feature
makes both CdSe and CdTe nano-objects very interesting to explore their properties. Other
kinds of semiconductor clusters that have been the subject of a notable number of computa-
tional studies are clusters built from GaN, GaP, InP, InAs, ZnO, ZnS, AlP, HgTe, Ge, SnTe, BeTe,
BiTe, BN, BAs, and BP.

The Ground-State Structure

In principle, the most favorable atom arrangement of a cluster should be the one that is charac-
terized by the smallest total energy. This structure is generally called the ground-state structure
and at zero or low enough temperatures should be the mathematical global minimum of the
potential energy of a cluster as a function of the coordinates of the atomic centers (the potential
energy surface, PES).The arrangement of the atoms in the ground-state structure is the one that
is considered in the majority of cluster property studies, assuming that most of those properties
are defined by the properties of the lowest energy configuration. As a result, a respectable
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number of various computational schemes have been developed and proposed in order to treat
the ground-state structure problem in an accurate and efficient manner. However, the solu-
tion to this problem is neither obvious nor simple. In the contrary, it corresponds to a task
of extremely high computational complexity. The problem becomes even harder given that the
available experimental methods are not yet in the position to provide the necessary micro-
scopic structural details for the complete understanding of clusters structures in order for the
developed theoretical methods to be verified or improved. Also, the developed computational
methods face certain difficulties that are mainly delivered from “practical” limitations of the
algorithms used or restrictions of the quantum chemical methods in the precise calculation of
the potential energy surface of a given cluster. Accordingly, in several cases the globalminimum
of the potential energy cluster surface exhibits a strong dependence on the quantum chemical
method one uses in order to explore it (Karamanis et al. b). A classical example of the
above statement is the case of C. This cluster is the smallest possible fullerene, and experi-
ments suggest that it should be a planar ring (Castro et al. ; Dugourd et al. ; Prinzbach
et al. ). However, detailed theoretical studies (Grossman et al. ) by means of quan-
tumMonte Carlo, all-electron fixed-node quantumMonte Carlo (Sokolova et al. ), single-
andmultireferenceMP methods (Grimme andMück-Lichtenfeld ) and high-level ab ini-
tio methods (An et al. ) pointed out the bowl and the cage structures as more stable. The
answer to this puzzle is that both experiments and theory are correct since if one introduces
finite-temperature corrections to the calculations then ring structure becomes more stable (see
> Fig. -).

Furthermore, some specific clusters show a peculiar behavior well known as “fluxional
behavior.” This behavior is connected with the fact that at a given temperature the clusters are
expected to be in some sort of thermal equilibriumm rapidly interconverting from one sta-
ble isomer to the other due to fast and sometimes drastic atomic rearrangements. During a
structural rearrangement of this kind, the resulting “isomerization” leads to structures char-
acterized by different bonding patterns. Thus, it would not be irrational for one to claim that
there is no guarantee that the theoretically predicted ground states are favored in all situations and
condition.

In order to overcome such problems many studies extend their property investigations to
stationary points which correspond to cluster configurations energetically close to the ground
state. These clusters are meta-stable species and their study is expected to complement the
investigations which focus on the narrow area of the global minima. A demonstration of the
numerous stable local minima that exist even for clusters of small size is given in > Fig. -

Bowl Cage Ring

⊡ Fig. -
The three different structures of C competing for the ground state
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⊡ Fig. -
Ground state structures and low lying isomers of AlSi in comparison with the lowest energy
structures of Si and Si

which depicts the ground-state structures of aluminum-doped clusters along with several
low-lying isomers which are extremely close in energy (Karamanis et al. ).

Structural Determination

There are two major classes of global computational methods: the unbiased and the seeded
methods. The first class works independently of initial cluster configurations and is con-
sidered as the most significant and reliable but the more computationally demanding.
The second class utilizes a set of initial structures as seeds and they are usually faster than the
unbiased; however, there is always the possibility of disregarding configurations of low energy
that are not expected. Another optional way of finding the most favorable structures of clusters
is based on guiding principles and structural rules stability principles, such those that have
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been originally developed and tested over the years for boranes and carboranes and bisboranes.
Although this kind of approach is more of an art than of an automatic algorithmic computa-
tional approach it has been utilized with remarkable success in various systems such as pure or
doped silicon cluster, or clustersmade from gallium arsenide, cadmium sulfide, selenide, or tel-
luride (see for instance, Al-Laham and Raghavachari , ; Lipscomb ; Zdetsis ,
; Williams ; Gutsev et al. a, b; Raghavachari and Logovinsky , Raghavachari
and Rohlfing ; Matxain et al. , , , ). In any case though, whatever the
method chosen, one has to deal with the existence of a vast number of local minima even in the
case of clusters composed by few atoms.

Let us now see in brief some of the developed algorithms that have been used in cases that
involve semiconductor clusters. The most commonly used computational schemes in finding
the ground-state structures of semiconductor clusters are those based on genetic algorithms
that simulate the evolution in nature through natural selection.This approach utilizes concepts
such as chromosomemixing, mutations, and the selection of the fittest. Another family of algo-
rithms is the so-called basin hopping which use canonical Monte Carlo simulations at a certain
temperature. The basic idea of the basin hopping algorithms is to lower the energetic barriers
that separate the various local minima of a cluster by leaving the number and the kinds of the
local minima unchanged. This has been proven very efficient in scanning different areas of the
potential energy surface and has been successfully applied in cases of clusters up to  atoms.
A different approach which has been applied in a great variety of systems is the thermal simu-
lated annealing. This method lets the system to evolve initially at a high temperature and then
a cooling down procedure starts by reducing gradually the temperature of the system to zero
temperature. At each step some neighbor structures are considered based on probability rules
and then it is decided whether this new structures are accepted or not following certain energy
criteria (e.g. by moving to states of lower energy). As a result, the search space which contains
appropriate solutions to the problem considerably narrows down. However, if the free energy
global minimum changes at low temperatures where dynamical relaxation is slow, the algo-
rithms may become stuck in the structure corresponding to the high-temperature free energy
global minimum.Thus, although this algorithm is easy to follow and understand because of its
physical concepts, it is less efficient than methods based on genetic and basin hopping algo-
rithms. Finally, another method that has been developed to treat the problem of rich potential
energy surfaces close to the minimum is the so-called Global Search Algorithm of Minima
(GSAM) (Marchal et al. , , ). In brief, the GSAM includes three major parts: the
first part is devoted to the generation of an initial guess set of structures for a large number
of cluster structures randomly generated by several techniques. The second part performs an
automatic selection of the most appropriate structures through a special pattern recognition
technique (Karamanis et al. ), which are expected to lead to different local minima. Finally,
the third part comprises full geometry optimizations of the selected configurations. This last
part yields themost stable cluster structures and the structure which corresponds to the ground
state among them.

Further information into the subject of the methods that have been used to treat clus-
ter structural problems in a global manner can be found in the Refs. Bazterra et al. (),
Biswas andHamann (), Blaisten-Barojas and Levesque (),Hamad et al. (),Ho et al.
(), Hossain et al. (), Jelski et al. (), Menon and Subbaswamy (), Nair et al.
(), Pedroza and Da Silva (), Sokolova et al. (), Tekin and Hartke (), Yoo et al.
(, ), Yoo and Zeng (, ).
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Silicon Clusters

Selected Structural Studies

As we have already mentioned, among the various semiconductor clusters studied during the
past two decades, those made from silicon have attracted most of the attention. A significant
number of algorithms and computational strategies have been employed to identify the ground
states and the low-lying isomers of silicon clusters of small and medium size with remarkable
success. As a result, it is now a common sense that the silicon atoms of a cluster are “different”
from those of the bulk material.

It is evident that most of the studies on silicon clusters concern their neutral forms. How-
ever, it is impossible to neglect investigations on charged clusters since they have led to very
significant results and conclusions (Lyon et al. ; Xiao et al. ; Nigam et al. ; Wei
et al. ; Li et al. , Li ; Zhou and Pan ). One of the most impressive inves-
tigations on this subject is the recent study reported by Lyon et al. who studied for the first
time the experimental infrared spectra of positively charged silicon bare clusters up to  atoms
in the gas phase. In this study the experimental spectra were compared to theoretical spec-
tral predictions and the authors managed to make unambiguous structural assignments for
these species (> Fig. -). This work is one of the most recent proofs confirming that the
silicon clusters which have been predicted one way or another by theory also exist in the gas
phase.

In the case of the neutral clusters up to  atoms, the most stable structures are not pla-
nar except Si and Si. Mainly they prefer polyhedral structures of rather high symmetry.
Raghavachari and Logovinsky (), Fournier et al. (), Li (), and Yu et al. () have
established the basic structural patterns of those small species which nowadays are considered
as systems of reference. For those species, Zhu and Zeng () provided accurate geometries
computed at high levels of theory. A recent study performed by Zdetsis (a, b) have showed
that silicon clusters of  up to  atoms, and their dianions follow common structural motifs of
the corresponding closo-boranes. Among the small clusters with  up to  atoms there are two
species of remarkable interest.These species are the Si and Si which are considered as magic
clusters because of their high stability. The six-atomic silicon cluster has attracted the attention
of many researchers due the existence of three almost isoenergetic structures that compete for
the ground state. Namely, the distorted (compressed) octahedron of Dh symmetry and two
trigonal bipyramidal shapes of lower Cυ symmetry, the edge-capped and face-capped trigonal
bipyramids. On the other hand Si is also known as an extremely stable entity and it has been
used as a building module of larger structures (Raghavachari and Rohlfing ; Mitas et al.
; Rohlfing and Raghavachari ; Grossman et al. ).

From n=  the shapes of the most stable structures become prolate (Zhu et al. ;
Yoo and Zeng ). An interesting structural feature of the stacked prolate structures is
that they are built from blocks that in fact are smaller stable clusters such as the Si tri-
capped trigonal prism or the Si puckered-hexagonal-ring. For instance Si and Si are built
upon the tricapped-trigonal-prism of Si while Si puckered-hexagonal-ring motifs can be
identified for silicon clusters with – atoms. This is the most reliable explanation of their
stability since it is related to the stability of their building blocks. This finding is of crucial
importance since it may open new directions in the nanomaterial and single nanoparticle
design.
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⊡ Fig. -
Ground-state structures of neutral and charged silicon clusters. Stable structures of neutral silicon
clusters
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After n = , hollow near-spherical shapes start to show significant stability. From n= ,
the near-spherical structure with interior atoms becomes nearly degenerated with the prolate
configurations (Jarrold and Bower ; Jarrold and Constant ; Kaxiras and Jackson ).
However, up to n = , the stacked prolate structures are still the most stable. Finally, although
clusters with more than  atoms are not very well studied and their ground-state structures are
either unknown or under debate (Bai et al. ), there are recent studies that yielded very inter-
esting results. For instance, Yoo and coworkers (Avramov et al. ; Yoo et al. , ; Yoo
and Zeng , ) searched for generic structural features as well as patterns of structural
evolution for the low-lying silicon clusters up to the size of  atoms by studying the structures
and relative stability of different cluster shapes families.Their results indicate that for some clus-
ter sizes such as Si, Si, and Si, the fullerene cage motifs consistently are more stable than
other kind of cage structures.

The Si and Si Cases

To demonstrate the difficulty in studying the structures and properties of clusters even of small
size even when are built from only one element, and the complexity in interpreting com-
putational and experimental results of diverse sources we shall revisit two distinctive cases:
One concerns the small Si cluster and the other the larger Si. As mentioned, Si is a par-
ticularly stable cluster and along with Si coincides with clusters found abundantly in the
experiment. > Figure - shows three optimized structures of Si at the CCSD(T) level and
the natural atomic charges computed with the CCD density. It is obvious that although the two
Cv isomers keep the characteristics of their symmetry group as they were defined in the star-
ing point geometries, they are almost identical with the distorted octahedron and their energy
separations are extremely smaller than expected.The Cv face-capped isomer and the distorted
octahedron are lying only . and . kcal/mol higher in energy than the edge-capped iso-
mer, respectively. Additionally, MP polarizability tensor values (au) at the CCSD(T) optimized
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⊡ Fig. -
CCSD(T)/-G(d) optimized structures of the three isomers of Si, atomic charges after a nat-
ural bond orbital analysis at the CCD level and MP/-G(d) polarizabilities (au). All drawn
bondlengths are in Å and dihedral angles in degrees. Structure a is of Dh symmetry, structures
b (face-capped) and c (edge-capped) of Cv symmetry.
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geometries (also included in > Fig. -) show that the twoCv structures are almost as polariz-
able as the Dh structure in all three directions. Consequently, the two trigonal bipyramid struc-
tures could be viewed as slightly distorted tetragonal bipyramidal shapes belonging to the Cv

point group.
A careful literature search shows that these three structures compete for the ground state.

More specifically, all electron and core potential geometry optimizations at Hartree–Fock (HF)
level by Raghavachari and Rohlfing prefer an edge-capped trigonal bipyramidal shape of Cv

symmetry while MP geometry optimizations favor a distorted octahedron of Dh symme-
try. On the other hand, higher order correlated method based on Möller–Plesset perturbation
theory with the standard -G(d) basis set by Zdetsis () showed that the MP pre-
dicted structure of Dh symmetry is unstable. Additionally, density functional theory (DFT)
(Karamanis et al. b) shows an fluctuating preference between the Cv face-capped, Cv

edge-capped trigonal bipyramids. It is evident that there is an obvious disagreement between
different theoretical approaches.

Let us now explore the most important experimental results concerning this problem.
Raman experiments by Honea et al. () of matrix isolated clusters, supported indirectly the
MP/-G(d) structure of Dh symmetry. Their conclusions were based on two arguments:
The first was the number of visible bands in both spectra which characterize species of Dh
symmetry, and second, the agreement between the experimental and scaled theoretical har-
monic frequencies computed at the MP/-G(d) level with the small -G(d) standard basis
set. The strongest arguments used to reject the other two candidates were two: first, geometry
optimizations at MP level starting from either face-capped or edge-capped trigonal bipyra-
midal shapes collapsed to the distorted octahedron of Dh symmetry; second, the other two
structures were predicted to have a larger number of active vibrational bands than observed in
both experimental Raman and IR spectra. Obviously such a puzzling problem rarely has solely
one answer. Indeed, the resolution to this puzzle is twofold. On one hand the source of the dis-
agreement among the various methods used hides in the particular capabilities of eachmethod
in the treatment of the pseudo Jahn–Teller effect (PJTE) (Karamanis et al. b). Accord-
ing to general Jahn–Teller theory the only source of instability in any molecular systems is the
proper Jahn–Teller effect, for degenerated states (Renner Teller effect in linear systems), and
pseudo-Jahn–Teller for non-degenerated ones. PJTE is a part of modern JT interaction theory
(Bersuker ) and its importance in the formation of the equilibrium structures of clusters
has been demonstrated by Garcia-Fernandez et al. () and by Pushpa et al. (). In the
Si case, geometry optimizations with methods based on Møller–Plesset perturbation theory,
which have been demonstrated not to treat the PJTE correctly, predict that the distorted octa-
hedron of Dh symmetry is the ground-state structure, while, methods which do provide PJTE
treatment (DFT, HF) suggest that the distorted octahedron is unstable and undergoes PJTE
distortions. On the other hand, the flat potential energy surface is connected with a fluxional
behavior of Si (Zdetsis b) caused by the couplings between the electronic motion and soft
nuclear vibrations due to the second-order Jahn–Teller effect under the influence of “electron
deficiency” and the resulting charge smoothing process.The soft nuclear motion that is implied
by the calculation is shown in > Fig. -. Of course, this kind of discrepancies in cluster struc-
tures can hardly be identified by experimental means since in such a flexible (or fluxional)
system with low barriers, the consideration of separate “conformers” is probably not appro-
priate at all, and experimental spectroscopic properties are just an average of all structures.This
has been highlighted in the recent work of Fielicke et al. () who used tunable far-infrared-
vacuum-ultraviolet two-color ionization to obtain vibrational spectra of neutral silicon clusters
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⊡ Fig. -
Schematic representation of the three competing structures of Si based on the normal modes
of the imaginary frequencies at CCSD(T) level of theory with the split valence Pople-like Basis set
-G(d)

in the gas phase. Their results show clearly that it is almost impossible to distinguish the three
different structures by means of vibrational spectroscopy.

Another example that demonstrates the complexity in determining the ground-state struc-
tures of larger clusters, and the importance of exploring the complete space when searching
for atomic cluster is the case of Si (Bazterra et al. ; Sun et al. ). This cluster is one
of the first large species that have been studied using first principles within the density func-
tional framework (Sun et al. ). The structure that was initially proposed as the most stable
was a stuffed fullerene-like configuration of near-spherical shape (> Fig. - structure a).
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a b

⊡ Fig. -
Two competing structures of Si

This structure seemed to confirm the up to that time experimental findings according to which
a shape transition from prolate shapes to compact ones is occurring as the size of silicon clus-
ters grows. Nonetheless, a subsequent study (Bazterra et al. ) based on a global approach
using genetic algorithms, showed that a totally different structure lies lower in energy than the
one previously adopted (> Fig. - structure b). Once more, the structure of Si proposed by
Bazterra et al. can be envisioned as an assembly of smaller, stable clusters.

III–V and II–VI Semiconductor Clusters

General Features

The III–V and II–VI semiconductor clusters are isoelectronic with the elements of the group
 and . For instance, gallium arsenide clusters of the type GanAsn have the same number
of electrons with Gen clusters while the analogue AlnPnclusters are isoelectronic with the
corresponding Sincluster species. For clusters of these two semiconductor families with even
number of electrons, the preferred spinmultiplicity is the singlet, where all electrons are in pairs.
Triplets and larger spinmultiplicities are always higher in energy (Gutsev et al. ). In the case
of nonstoichiometric GaAs clusterswhich are species with evennumber of electrons, thus, open
shell systems the preferred spin multiplicity is the doublet (Karamanis et al. ).

The basic bonding pattern in the compound III–V and II–VI semiconductor clusters is the
alternating arrangement of their atoms (> Figs. - and > -). The alternating A-B type of
bonding is a result of the polarity of these entities which is owed to the electronegativity dif-
ference between their atoms. As a result, the bonding in clusters formed by atoms with large
electronegativity differences is expected to bemore ionic than in clusters built from atoms char-
acterized by smaller differences. For instance, the spectroscopic electronegativity differences
Δχspec converted to Pauling scaling between the As and the atoms Ga and In are . and
., respectively. Accordingly, the bonding in III–V compound clusters built from As and Ga
is expected to be of less ionic (or of more covalent character) than clusters built from In and
As. However, although the alternating A-B type of bonding is generally observed for this class
of semiconductor clusters due to the polarity of their bonding, there are some cases in which
homo-atomic bonds are detected between the electronegative atoms. For example the ground-
state structures of GaAs (> Fig. -) and AlP (> Fig. -) are characterized by As–As and
P–P bonds. On the other hand, this bonding feature is not favorable for II–VI semiconductors
which also do not favor endohedral structures.
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⊡ Fig. -
Establishedground-state structuresofGanAsn clusterswithn = –and. Suchstructureas forn =
is the most stable also in the cases of AlP and Cd(S, Se, Te)
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(GaAs)27 S6 fullerene

(GaAs)24 S6 fullerene

(GaAs)36 C3h bulk-like

⊡ Fig. -
Fullerene and bulk-like structures of large GaAs clusters (Gutsev et al. )

GalliumArsenide Clusters

Combined experimental and computational studies have led to very interesting and important
conclusions concerning microscopic feature of those systems such as their bonding and elec-
tronic structures. For instance, the revealed even/odd alternation in the photoionization cross
section obtained with an ArF excimer laser (. eV) indicated that clusters of any composition
composed by even numbers of atoms (e.g., GaAs, GaAs, GaAs, GaAs, GaAs) have sin-
glet ground states, whereas odd numbered clusters of any composition (e.g., GaAs, GaAs,
GaAs, GaAs) have doublet ground states with an unpaired electron in a weakly bound
HOMO. This sort of electronic structure clearly indicates that the structural and bonding fea-
tures of the produced small GaAs clusters should be dramatically different from the tetrahedral
sp hybridization of the bulk. Both of those indirect experimental conclusions–assumptions
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⊡ Fig. -
Structures of aluminum phosphide clusters

have been verified by all the later computational studies on those species which clearly showed
that the singlet closed shell forms of the even-numbered GaAs clusters are the most stable than
any other electronic configuration and their structures are completely different from the bulk
(see: O’Brien et al. ; Lou et al. ; Karamanis et al. a; Gutsev et al. a, b).

Let us now make a brief review of the most representative studies of those important
species starting from GaAs clusters which are the most studied species from those belonging
to the III–V semiconductor family. Current and future applications of those species, in their
nano or bulk, forms are very promising and interestingly diverse, extending from fuel cells
Schaller and Klimov () and optoelectronic sensors (Chen et al. ) to spintronics (spin-
based electronics), medical diagnostics, and quantum computing (see Calarco et al. ;
Michalet et al. ; Wolf et al. ).

Pioneering studies performed by O’Brien et al. on supersonic cluster beams of GaAs clus-
ters generated by laser vaporization of discs made from pure GaAs brought theory closer to
the experimental reality by providing cluster species of sizes suitable for very precise theoreti-
cal computations. As a result, the structural and bonding features of small GaAs clusters have
occupied the interest of the researchers in the early cluster computational studies. For instance,
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Graves and Scuseria () studied the first members of these systems using the Hartree–Fock
(HF) method. Liao and Balasubramanian () by means of the multireference configuration
interaction method with singles and doubles (MRCISD) made a reference estimation of the
bond lengths and angles of (GaAs); Lou et al. () studied the structures and the bond-
ing of small GaAs clusters up to  atoms while Andreoni within the Car–Parinello molecular
dynamics approach studied the stoichiometric systems up to the ten-atomicGaAs. Later, Song
et al. () applied a fourth-order many body perturbation theory to study species from  to
 atoms (GanAsn with n = –). The interest in studying those systems remains intense even
the recent years and a respectable variety of different methods have been applied. For instance,
Costales et al. () applied a DFT-GGA method for the systems up to the trimer, Zhao et al.
(), Zhao and Cao (), Zhao et al. () used another level of DFT-GGA approach
for (GaAs)n (n = –) while Karamanis et al. (b) revisited the previous reported results
using second-order many body perturbation theory (MP) up to clusters with  atoms. More
recently, Gutsev et al. (a, b) extended the earlier studies and reported structures up to 
atomswith the DFT framework. In addition, there are some reported attempts in studying non-
stoichiometric species and the influence of the composition on their properties. One of themost
representative works in this field is the investigation of structural and electronic properties of
GamAsn clusters reported by Feng et al. (); Gutsev et al. () studied the electronic and
geometrical structures of neutral (GaAs)nclusters using density functional theory with gener-
alized gradient approximation and relativistic effective core potentials for n = –, , and .
Also, they examined the energetic preference of tubular and non-tubular cages with increasing
n and found that tubular cages are generally lower in total energy than the other cage isomers.
Along with the cage structures, they probed structures cut off from a zinc blende lattice, tailor-
ing the surface atoms in such a way as to have no dangling bonds. They found that the lowest
energy state of (GaAs) has a bulk-like structure with  tetrahedrally coordinated inner atoms
(> Fig. -). Finally, Gutsev and coworkers (Karamanis et al. ) studied the structure and
properties of prolate (GaAs)n clusters up to  atoms corresponding to the (, ) and (, )
armchair and (, ) zigzag capped single-wall tubes within the generalized gradient approxi-
mation (DFT-GGA). It was found that the bandgap in all three series does not converge to the
GaAs bulk value when the cluster length increases.

II–VI Semiconductor Clusters

The synthesis of ZnO, ZnS, ZnSe, CdS, CdSe, and CdTe nanostructures which shape an impor-
tant category of optically active materials with strong size dependence of their exciton energy
(see: Alivisatos ; Swaminathan et al. ; Murray et al. ; Peng et al. , ) have
inspired most of the studies on II–VI semiconductor clusters.The respective nanomaterials can
be synthesized in a great variety of sizes and shapes (spheres, rods, tetrapods or branched and
core-shell structures) and they have been used for a wide assortment of applications, including
quantum light emitting diodes pigments, biological tagging, and solar cells (Gur et al. ).
Particularly, for CdSe clusters, correlations between their structure and properties have been
highlighted by Jose et al. ().

One of the most fascinating features of this class of semiconductor clusters is the size
dependence of the HOMO–LUMO bandgap which is distinguishable in their luminescence
properties. For instance, it has been shown that by adjusting the particle size of colloidal
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CdSe–CdS core–shell nanoparticles the fluorescence can be tuned between blue and red. Moti-
vated by those finding, in nanoparticles, Sanville et al. () used direct laser ablation to
produce ZnS, CdS, and CdSe clusters and found that clusters composed of  and  monomer
unitswere ultrastable in all cases. Kasuya et al. () bymeans ofmass spectral analysis ofCdSe
nanoparticles found that (CdSe)and (CdSe) are so stable that they grow in preference to any
other chemical compositions to producemacroscopic quantities with a simple solutionmethod.
First-principles calculations predict that these clusters are puckered (CdSe)-cages, with four-
and six-membered rings based on the highly symmetric octahedral analogues of fullerenes,
accommodating inside their framework either (CdSe) or (CdSe) to form a three-dimensional
network with essentially heteropolar sp-bonding.

Let us now see in brief the most cited computational studies for this very interesting
class of cluster species. Behrman et al. () have shown that ZnO clusters can form stable,
fullerene-like structures while Hamad et al. () provided evidences that ZnS clusters can
form onion-like or alternatively “double bubble” structures. Matxain et al. () studied sys-
tematically the structures of small ZnO clusters with up to nine atoms and demonstrated that
three-dimensional structures may be envisioned as being built from ZnO and ZnO rings.
Also, the same group (Matxain et al. , ) have found that clusters built from ZnS, ZnSe,
and CdO clusters can form stable one-dimensional ring structures (> Fig. -).

For species made from Cd and the chalcogenides S, Se Gurin () studied small CdxSy
and ZnxSy (x,y ≤ ) clusters, Troparevsky and Chelikowsky (), Troparevsky et al. ()
reported structures of Cdn(S, Se)n with up to  atoms, Deglmann et al. () used density
functional theory potential surface investigations to study small CdS, and CdSe clusters, up to
the heptamer while CdSe large clusters have been investigated further using large crystal struc-
ture sections with up to  atoms. Also, Matxain et al. () and Jha et al. () reported
ring and spherical structures with up to  atoms while Sanville et al. () obtained geome-
tries and energies of the neutral and positively charged MnXn clusters up to n =  (M=Zn, Cd
and X= S, Se). Their results showed that one-dimensional structures are favored for some clus-
ter sizes while three-dimensional structures may be envisioned as being built from Cd(S, Se)
and Cd(S, Se) rings. At this point it is important to stress that contrary to what is reported
in several studies about CdX clusters, the five-atom rings are not totally planar. Instead, they
maintain distorted envelope structures of C symmetry due to the weakening of the steric repul-
sion between the metal atoms as the size of the ring increases. As, a result the planar structure
is a transition point in each cluster’s potential energy surface characterized by soft imaginary

Cd

X

⊡ Fig. -
Ring structure-types of MnXn (M=Zn, Cd and X= S, Se, Te) small clusters



Structures and Electric Properties of Semiconductor clusters  

frequencies frequencies of a few cm− which indicate a very floppy system that is expected to
exhibit fluxional behavior (> Fig. -).

Lastly, small CdnTen and HgnTen clusters have attracted the attention of several groups (see
for instance Wang et al. , , ). Especially HgTe clusters are very interesting since
this material is considered as a semimetal with a small negative bandgap around =. eV at
K and a semimetal-to-semiconductor can be produced by size quantization making HgTe
nano-objects promising candidates as optical amplifiers (> Fig. -).

Transition state structure
with 2 degenerated imaginary freqs
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of the imaginary Frequencies

Distorted global minimum

⊡ Fig. -
Displacement patterns and ground-state structure of CdTe

Cd

X

6-6

10-10 9-9

8-87-7

12-12

⊡ Fig. -
Typical cage structures of CdnXn (X = S, Se, Te) clusters
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Electric Polarizabilities and Hyperpolarizabilities of Clusters

Definitions and Theory

The electric dipole (hyper)polarizabilities describe the response of a molecular system to an
external electric field. Briefly, the polarizabilities (or linear polarizabilities) are used to express
the ability of the electronic density of a molecular or cluster entity to distort under the influence
of weak external fields such as the field generated by a charge in close distance. The hyperpo-
larizabilities (or nonlinear polarizabilities) describe the same response to laser beams. Large
polarizabilities imply easily polarized molecules, whereas, small polarizabilities correspond to
molecules in which the electronic density is considerably insensitive to electric field pertur-
bations. Large hyperpolarizabilities involve molecules which can interact with intense electric
fields in a “nonlinear” manner and the corresponding materials are known as nonlinear optical
materials.Thepolarizabilities are associatedwith fundamental chemical concepts such as global
softness (Vela and Gázquez ), basicity–acidity (Headley ), electronegativity (Nagle
), and stability (Hohm ), (Parr and Chattaraj ). On the other hand, the hyperpo-
larizabilities are closely related to the nonlinear optical behavior of materials in such processes
as the second harmonic generation (SHG) (or frequency doubling), the third harmonic gener-
ation (THG), the sum frequency generation (SFG), the optical Kerr effect, and others which are
expected to find application in a wide range of future technologies (see Bloembergen  and
references therein).

For clusters, polarizability is one of the few microscopic quantities that are available from
experiment (Backer ) and is linked both to macroscopic and microscopic features of the
matter such as the bulk dielectric constants and chemical bonding, respectively. Hence, this
property can provide valuable information about crucial microscopic cluster features and the
behavior of low dimensional systems that may be used in nanotechnology applications where
nano-objects are subjected in small electric perturbations. On the other hand, given that the
macroscopic nonlinear optical properties of materials are governed by the microscopic molec-
ular hyperpolarizabilities, the study of those properties on clusters (Leitsmann et al. ) may
offer a new ground in the search of new nonlinear optical materials with potential applications
in future nanostructure technologies.The nonlinear behavior could be employed for amplifica-
tion, modulation, and changing the frequency of optical signals, similar to hownonlinearities of
valves and transistors are used to govern the processes in traditional electric chips and circuits.

The microscopic (hyper)polarizabilities are studied by means of the so-called theory of the
response functions which is of importance for all molecular and cluster entities (Roman et al.
).Themost commonly used approach in studying the linear and nonlinear optical proper-
ties of clusters is the so-called semiclassical one. According to this approach a classical treatment
is used to describe the response of the cluster to an external field (radiation) while the system
itself is treated using the lows and techniques of quantum mechanics. This is done by using a
Hamiltonian which combines both of the above treatments:

H = H
− μ̂aFa −



Θ̂αβFaβ −



Ω̂αβγFαβγ −




Φ̂αβγδFaβγδ + . . . (.)

H is the Hamiltonian which represents the free of the field system and the coefficients denoted
with the Greek capital letters stand for the tensors of the dipole quadrupole, octupole, and
hexcadecapole moments which are used to implement the field perturbation (F) into the new
Hamiltonian. The expectation value after the implementation of this modified operator on the
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wavefunction is the perturbed energy of the system due to the influence of the field which in
the case of a static field F can be written using a Taylor series expansion as

Ep
= E

− μaFa − 
 ΘαβFaβ − 

 ΩαβγFαβγ − 
Φαβγδ Faβγδ + ...  aaβFaFβ

−


Aα ,βγFa ,βγ − 

Cαβ ,γδFaβ ,γδ − 
 Eα ,βγδ Fa ,βγδ + ... − 

 βαβγFaFβFγ
−


 Bαβ ,γδ FaFβFγδ − 

γαβγδ FaFβFγFδ + ....
(.)

Ep is the energy of the atomic or molecular system in the presence of the static electric field
(F), E is its energy in the absence of the field, μα corresponds to the permanent dipolemoment
of the system, ααβ to the static dipole polarizability tensor and βαβγ , γαβγδ to the first and second
dipole hyperpolarizabilities, respectively. Greek subscripts denote tensor components and can
be equal to x, y, and z and each repeated subscript implies summation over x, y, and z as follows:



aaβFaFβ =


 ∑

α ,β=x ,y,z
aa ,βFaFβ (.)

In the case of a weak uniform (homogenous) field, the above expression becomes more
simplified:

Ep
= E

− μαFα −


ααβFaFβ −



βαβγFαFβFγ −




γαβγδ FαFβFγFδ + .... (.)

The properties that are routinely computed and discussed are themean (or average) static dipole
polarizability (α), the anisotropy (Δα) of the polarizability tensor, the vector component of the
first hyperpolarizability tensor in the direction of the ground state permanent dipole moment
(β

∣∣
), the total first-order hyperpolarizability βtot , and the scalar component of the second

hyperpolarizability tensor γ. Those quantities are related to the experiment and in terms of
the Cartesian components are defined as

α =


(αxx + αyy + αzz) (.)

Δα = (


)

/
[(αxx − αyy)


+ (αxx − αzz)


+ (αzz − αyy)


+ (α

x y + α

xz + α


z y)]

/
(.)

β
∣∣
=

/ (βx μx + βyμy + βz μz)
∣μ∣

(.)

where βx = βxxx + βx yy + βxzz
βy = βyxx + βyyy + βyzz

βz = βzxx + βzyy + βzzz

βtot = (βx + β

y + β


z)

/
(.)

γ = / (γxxxx + γyyy y + γzzzz + γxx yy + γyyzz + γxxzz) (.)

Cluster (Hyper)Polarizabilities: Computational Approach

Themajority of the undergoing theoretical (hyper)polarizability studies on semiconductor clus-
ters rely on conventional ab-initio and density functional methods (DFT) As it is broadly
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accepted the ab initio approach leads to accurate (hyper)polarizability predictions and most of
the reported attempts rely on a hierarchy of ab initio methods of increasing predictive capability
such as the Hartree–Fock approximation (HF), the Møller–Plesset (MP) many body perturba-
tion theory, and also on the coupled cluster theory such as singles and doubles coupled-cluster
(CCSD), and singles and doubles coupled-cluster with an estimate of connected triple excita-
tions via a perturbational treatment (CCSD(T)) (further reading for those quantum chemical
methods can be found in Szabo and Ostlun (), and Helgaker et al. (). Although this
computational strategy is not always straightforward and in most of the cases computationally
demanding, leads to reliable predictions of cluster (hyper)polarizabilities giving also crucial and
detailed information about the electron correlation effects on the properties of interest. On the
other hand the density functional approach (Koch andHolthausen ) is by far less computa-
tionally costly and allows the treatment of large systems; however, the reliability of DFT results
rely heavily on the ability of the functional applied each time to describe the response of the
system to an external electric field (see Karamanis et al.  and references therein)

Looking carefully at > Eq. . it becomes obvious that the computation of polarizabilities
and hyperpolarizabilities in the case of static fields is in fact a mathematical derivation issue
of the cluster energy with respect to the applied field. Consequently, the best accuracy can be
achieved by finding and using the analytic expressions of the following relations:

−(

∂E
∂F ) = astatic,F =  (.)

−(

∂E
∂F ) = βstatic,F =  (.)

−(

∂E
∂F ) = γstatic,F =  (.)

In the case of the linear polarizability, the majority of the available quantum chemical
software is able to evaluate analytically the first field derivative of the energy yielding in a
straightforwardmanner all components of the polarizability tensor. Inmost of the cases the type
of the calculation has to be indicated in the command line of the input file and the polarizabili-
ties of the system are returned after the calculation ends. Unfortunately no analytical evaluation
of the high-order field derivatives of the energy is available in all commercial packages for all
methods. What is more, for methods of high accuracy such as the CC methods, this option is
not available even for the linear polarizabilities. To overcome this problem several numerical
procedures have been developed. The most applied numerical solution to this mathematical
problem is the one provided by the so called finite field approach. According to this approach,
first a field perturbation of different magnitudes and along different directions is added to the
Hamiltonian. Then the wavefunction is “solved” for each perturbation and the energy of the
perturbed system is obtained. Lastly the differentiation of energy of the system with respect to
the applied field is performed numerically and the coefficients of the > Eq. . are obtained
(> Figs. - and > -).

Let us now demonstrate a simple example of the above process which will show us how
the > Eq. . can be utilized in order to calculate all the components of the polarizability
tensor for a cluster without symmetry (C point group). For this symmetry group there are
three independent components of the dipole moment (μx , μy and μz) and the six for the dipole
polarizability: three principal (axial) components αxx , αyy , and αzz and three transversal ones
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Gallium arsenic clusters of various symmetries

αx y = αyx , αzy = αyz , and αxz = αzx . The three principal ones can be computed by applying a
weak electric field (of .–. au strength) along each Cartesian direction, as follows:

μa ≈
E (−Fa) − E (Fa)

Fa
(.)
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αaa ≈
E() − E(−Fa) − E(Fa)

F
a

(.)

In the same manner, the transversal components can be obtained by applying fields in each
αβ plane along each π/ diagonal between x, y, and z axis (this is done by applying fields of
equal strengths (Fα = Fβ) at each xy, yz and xz planes). In this case one obtains the following
equation:

αaβ ≈
E(Fa) + E(Fβ) − E(Fa , Fβ) − E()

FaFβ
(.)

In the case of centrosymmetric structures, the computation of the dipole polarizability becomes
more straightforward since the permanent dipole moment and the transversal components of
dipole polarizability of those systems are vanishing. In this case we have

αaa ≈
E() − E(Fa)

F
a

(.)

Provided that a suitable field is chosen, the above computational approach leads to quite reliable
polarizability values. The advantage of this approach is that it gives the flexibility to the user to
compute the polarizabilities of a given system using a variety of post Hartree–Fock methods
only by computing the energies of the free clusters with and without the field.

The described approach can be applied to other response properties apart from the per-
turbed energies provided that the method used for their computations satisfy the Hellmann–
Feynman theorem (Feynman ; Hellmann ) according to which the derivative of the
total energy with respect to the field is equivalent with the expectation value of the deriva-
tive of the Hamiltonian with respect to the field. In this case, one can safely use the following
relationships:

−(

∂E
∂F ) = (

∂μ
∂F ) = (

∂α
∂F ) = (

∂β
∂F
) = γstatic,F= (.)

−(

∂E
∂F ) = (

∂μ
∂F ) = (

∂α
∂F
) = βstatic,F= (.)

−(

∂E
∂F ) = (

∂μ
∂F
) = astatic,F= (.)

These relations can be used in all caseswhere the approximation to the truewavefunction is vari-
ationally optimized with respect to the Hamiltonian.This holds in the case of the SCF approach
and all the DFT methods in which the energy of the systems is obtained through an iterative
process. Contrary, in the case of the finite-orderMøller–Pleset perturbation theory, (MP,MP,
MP), which is not variational, the relations > Eqs. .–. do not hold and the calculations
of the properties of interest should be extracted using only the energy derivatives.

Another key point in (hyper)polarizability calculations of clusters, as in all molecular sys-
tems, is the basis set choice. This has been clearly demonstrated in previous basis set studies
on semiconductor clusters (see for instance Karamanis et al. a, b, a, a; Maroulis
et al. , ; Papadopoulos et al. , ). In general the polarizabilities are less sensitive
to the basis set used than the first and second hyperpolarizabilities (see > Fig. -) System-
atic basis set studies on cluster polarizabilities using basis sets of increasing size emphasize the
importance of the diffuse s pGaussian type functions (GTFs) and the effect of GTFs of polariza-
tion functions and functions of higher angular momentum such as f functions Also it has been



Structures and Electric Properties of Semiconductor clusters  

38

36
6-31G
6-31+G
6-31+G(d)
6-31+G(2d)
6-31+G(2df)
6-31+G(3df)

34

32

30

28

26

24

(M
ea

n 
po

la
riz

ab
ili

ty
 p

er
 a

to
m

)/
e2

a 0
2
E
h–1

22

20

2 4 6 8 10 12
Number of Atoms

14 16 18 20

6-31G

6-31+G

M
ea

n 
di

po
le

 s
ec

on
d 

hy
pe

rp
ol

ar
iz

ab
ili

ty
 \

au

103×185

103×50

180

175

170

80

70

60

+d +2d

+3d
+3df

+3d2f

+3df

+3d2f

+3d+2d+d

⊡ Fig. -
Basis set effect, at the Hartree–Fock level of theory, on the mean dipole polarizabilities per atom
of the ground state structures of aluminum phosphide cluster of the type AlnPn win n= –, and
basis set effect on the mean second hyperpolarizability of AlP

illustrated that as the cluster size increases the overall basis set effect on the mean polarizability
gradually decreases (Karamanis et al. ).

Besides the methods and techniques described above there are also some theoretical meth-
ods that have been developed to treat the polarizabilities of clusters in a different manner
from that described above. One of those schemes has been used by Jackson et al. ()
and relies on partitioning the volume of a system into atomic volumes and using the charge
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distributions within the atomic volumes to define quantities such as atomic dipole moments
and polarizabilities. In a second step each of the latter quantities are further decomposed into
two components: the dipole (or local) and the charge-transfer component. The summation of
each component over all of the atoms gives the local and charge-transfer parts of the total system
dipole moment and polarizability. This treatment allows one to perform a site-specific analysis
of dielectric properties of finite systems and, also, to obtain an insight about the contribution of
each atom or of any desired building block of the cluster.The specific method has been applied
to silicon clusterswith up to  atomswhichwere subjected to a small external electric field.The
obtained results showed clearly a strong dependence of the individual atomic polarizabilities,
as well as their dipole and charge-transfer components, on the site location of the atom within
the cluster. For atoms at peripheral sites those properties are substantially larger than for atoms
at the interior sites, and the more peripheral atoms are characterized by larger polarizabilities.
The same conclusion was drawn later by Krishtal et al. ().

An alternativemethodologywhich uses electrostatic interaction schemes to predict the evo-
lution of cluster polarizabilities has been developed and tested on silicon clusters by Guillaume
et al. (). This approach accepts the electrostatic nature of the dominant intra- and inter-
molecular interactions of a bulk material which is under the influence of external electric fields.
This bottom-up approach allows the treatment very large clusters, enabling to reach the con-
vergence of the response of the bulk material up to a point where adding new cluster units in
the system would not change significantly the response of the material.

Further reading about the computational aspects of (hyper)polarizabilities on clusters and
other molecules can be found in the following: Buckingham (), McLean and Yoshimine
(), Marks and Ratner (), Kanis et al. (), Brédas et al. (), Bishop et al. (),
Xenides (), Xenides andMaroulis (, ), Champagne et al. (), Maroulis (,
, ), Maroulis et al. (, ), Pouchan et al. (), Maroulis and Pouchan (),
Papadopoulos and coworkers (Avramopoulos et al. ; Raptis et al. ; Reis et al. );
Karamanis and coworkers (Hohm et al. ; Kurtz et al. ; Luis et al. ).

Semiconductor Cluster (Hyper)polarizabilities: General Trends
and Selected Studies

General Trends

Semiconductor cluster polarizabilities have been the subject of some very important experi-
mental studies via beam-deflection techniques (Backer ; Schlecht et al. ; Schnell et al.
; Schäfer et al. ; Kim et al. ) while they have been extensively studied using quan-
tum chemical and density functional theory. In this research realm, one of the areas intensively
discussed is the evolution of the cluster’s polarizabilities per atom (PPA) with the cluster size.
The PPA is obtained by dividing the mean polarizability of a given system by the number of its
atoms. Such property offers a straightforward tool to compare the microscopic polarizability of
a given cluster with the polarizability of the bulk (see > Fig. -) as the latter is obtained by
the “hard sphere” model with the bulk dielectric constant via the Clausius–Mossotti relation :

α =

π
(

ε − 
ε + 

) υat (.)

where υat is the volume per atom in the unit cell of the bulk and εis the static dielectric constant
of the bulk.



Structures and Electric Properties of Semiconductor clusters  

42

40

38

36

34

32

30

28

26

24

22
4 6 8 10

Ga5As5Ga4As4Ga3As3Ga2As2

Ga

As

Bulk polarizability

(M
ea

n 
po

la
riz

ab
ili

ty
 p

er
 a

to
m

)/
e2

a 0
2
E
h–1

⊡ Fig. -
Comparison between computed polarizabilities of small GaAs clusters and the polarizability of the
bulk. The polarizabilities have been computed at the MP level of theory

Most of the obtained knowledge on the polarizabilities of semiconductor clusters has
emerged as the result of extensive studies of such species as silicon and gallium arsenide which
have served well as models for the better understanding of the (hyper)polarizability evolution
of semiconductor clusters. Also other kinds of clusters built from different elements such as
aluminum phosphide, cadmium sulphide, selenide, and telluride have attracted the attention
of several researchers and the corresponding studies have led to interesting conclusions. Those
studies suggest that cluster polarizabilities are very different from the known polarizabilities of
bulk materials. In general the PPAs of small semiconductor cluster are larger than the polar-
izability of the bulk (> Fig. -). For instance, in all studied cases the theoretical predicted
polarizabilities of small semiconductor clusters (e.g., Si, AlP, CdSe, CdS, GaAs) are found higher
than the bulk polarizability and converge to the bulk limit from above. Also, the polarizabil-
ity dependence of the cluster size is strong and as a rule cluster species exhibit strong and
nonmonotonic size variations. In addition there is a strong dependence of the polarizability
on the shape of the cluster. It has been shown that for species which maintain closed cage-
like structures (i.e., close to the spherical shape), the polarizability per atom (PPA) decreases
with clusters size (> Fig. -) (see for instance (Jackson et al. , ; Karamanis et al.
b, c; Zhang et al. ). On the other hand the per atom polarizabilities of clusters which
maintain prolate structures (e.g., tubular clusters) increase as a function of the cluster size
(Jackson et al. ; Karamanis et al. b, ). Another important issue is the dependence
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of the electric polarizabilities on the cluster bonding. It has been shown that semiconductor
clusters which favor structures characterized by covalent bonds are expected to exhibit larger
polarizabilities than clusters which tend to form ionic structures This dependence is signifi-
cantly more intense in the case of the second hyperpolarizability. The general rule that holds in
this case is that semiconductor clusters which are characterized by significant electron transfer
from the electropositive atoms (ionic bonding) to the electronegative ones are less hyperpo-
larizable than species in which the electron transfer is smaller (covalent bonding) (Karamanis
et al. d; Krishtal et al. ). This variation explains the nonmonotonic size variations of
the mean PPAs of small binary semiconductor clusters. Also, both polarizabilities and hyper-
polarizabilities of clusters have been proven very sensitive to the cluster elemental constitution.
For instance, InAs clusters are more (hyper)polarizable than GaAs, AlP, AlAs, InP, and GaP
clusters while CdTe clusters, are far more (hyper)polarizable than CdS and CdSe clusters
(Karamanis and Pouchan ). What is more, the strong correlation between the polarizabil-
ities of semiconductor clusters and their composition is also significant. In the case of GaAs
clusters it has been demonstrated both experimentally and theoretically that Ga-rich gallium
arsenide clusters aremore polarizable thanAs-rich clusters due to the larger polarizability of Ga
(> Fig. -) (Karamanis et al. ). Lastly, it was shown that the cluster shape dominates the
magnitude of the second hyperpolarizabilities of large clusters (Karamanis and Pouchan ).

Selected Studies

Polarizabilities
Let us now briefly explore some of the most representative studies in the subject of the polar-
izabilities of Si and GaAs clusters that have attracted considerable attention. One of the first
studies has been reported by Vasiliev et al. (). In that work the authors computed the polar-
izabilities of small Sin , Gen (n ≤ ), and GanAsm (n +m ≤ ) clusters and they found that the
polarizabilities of all systems are higher than the values estimated from the “hard sphere”model
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Composition-dependent polarizabilities of small GanAsm with clusters n +m= computed at the
BPLYP/aug-cc-pVDZ-PP level
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using > Eq. .. Also they evidenced that the computed per atom polarizabilities tend to
decrease with increasing the cluster size and they related this trend to the one observed in the
case of metallic clusters, for which the polarizability bulk limit is approached from above. This
observation was considered as an evidence for the “metallic-like” nature of small semiconduc-
tor clusters. Two similar studies about silicon clusters up to  atoms by Jackson et al. () and
up to  atoms by Deng et al. () confirmed the reported trends regarding to the PPA evo-
lution with size and the metallic nature of silicon semiconductor clusters.The same conclusion
has been reported also in later studies by Bazterra et al. () andMaroulis et al. (). In the
case of GaAs clusters the early results reported by Vasiliev et al. () have been confirmed by
Torrens ()with an interacting-induced-dipoles polarizationmodel and have been extended
up to  atoms by Karamanis et al. (a, ). Furthermore, the polarizability ordering in
the case of the III–V dimers has been established: InAs > InP >AlAs >GaAs >AlP >

GaP (Karamanis et al. a).

Hyperpolarizabilities
In the domain of the nonlinear polarizabilities of semiconductor clusters (i.e., the second dipole
hyperpolarizability and third polarizability) the reported studies are fewer than in the case
of the linear polarizabilities. However, this field is very promising due to the properties that
the compound semiconductors possess. With respect to their interaction with intense electric
fields compound semiconductors are characterized byhigh sensitivity, high speed, and theymay
operate at a wide variety of wavelengths in the near-infrared range. In particular the compound
III–V and II–VI semiconductors such as GaAs, InP, and CdS possess the two properties needed
for the existence of the photorefractive effect, the photoconductivity, and the electro-optic effect.
These properties are very crucial in electro-optical technology; and alloptical information tech-
nology, thus the study of clusters and nano-objects of those materials are essential, first for
better understanding the properties of the bulk material and second for the research of new
nano-materials with improved nonlinear optical properties (Bechstedt et al. ; Adolph and
Bechstedt ; Hughes and Sipe ; Bergfeld and Daum ; Bloembergen ; Butcher
and Cotter ; Powell et al. ; Vijayalakshmi et al. ).

At themicroscopic level, one of the first studies into this matter was reported by Korambath
andKarna ()who studied the first dipole hyperpolarizabilities ofGaN,GaP, andGaAs clus-
ters within the ab initio time-dependent Hartree–Fock method using an even-temperedGaus-
sian basis set and demonstrated that the magnitudes of the calculated (hyper)polarizabilities
depend on the size of the cluster. Lan et al. () studied the hyperpolarizabilities of GaAs,
GaSb, InP, InAs, and InSb clusters using a similar approach based on the time-
dependent Hartree–Fock (TDHF) formalism combined with sum-over-states (SOS) method
and found that the charge transferred from the π- bonding to π- antibonding orbitals between
III and V group atoms under the influence of an electric fieldmake a significant contribution to
the second-order polarizability. The first ab initio attempt in treating the hyperpolarizabilities of
semiconductor using methods of high sophistication such as CC andMP has been reported by
Maroulis and Pouchan who explored the second hyperpolarizabilities of cadmium sulfide clus-
ters. Their results showed that the mean second hyperpolarizability per atom of those species
decreases rapidly with the cluster size. A second attempt on systems of increasing size has been
reported by Lan et al. (). These authors studied several small GaAs clusters up to  atoms
within the time-dependent density functional theory and reported that the dynamic behavior
of β and γ show that the small GanAsm clusters are expected as good candidates for nonlinear
optical properties due to the avoidance of linear resonance photoabsorption. An application
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of the time-dependent DFT (TD-DFT) theory on the hyperpolarizabilities of clusters can be
found in the work of Sen and Chakrabarti () who studied the second hyperpolarizabilities
of CdSe clusters. In their conclusions, it is highlighted that these clusters have a high nonlin-
ear optical activity. Karamanis et al. (a) reported ab initio values at the HF, MP level of
theory for stoichiometric GaAs clusters up to  atoms and showed that as the size of the clus-
ter increases the per atom mean second hyperpolarizability decreases fast and converges to a
specific value. Finally, the significance of the bonding on the nonlinear polarizabilities of small
clusters has been demonstrated by Karamanis and Leszczynski () in a hyperpolarizabil-
ity study of stoichiometric aluminum phosphide clusters up to  atoms. The conclusions of
investigations on aluminum phosphide clusters have been extended later to several types of
III–V semiconductor in a comparative hyperpolarizability study by Karamanis et al. (a).
In that study the relative mean static dipole hyperpolarizabilities of the XY type (X =Al, Ga,
In and Y=P, As) clusters have been established in several levels of theory, γ: InAs> InP

≅AlAs >AlP ≅ GaAs > GaP. This classification follows the size ordering of the elec-
tropositive atoms. Ga is slightly smaller than Al, while In is far more larger than both Ga and
Al. The atomic radius of Ga(dsp) is slightly smaller than the Al(sp) atomic radius,
despite its larger number of electrons. This is caused by the insufficient shielding that the d

electrons provide to the sp valence electrons of Ga. As a result, the valence electrons of Ga
experience a larger attraction from the nuclear charge than the electrons of Al. Considering
that the (hyper)polarizabilities are valence-related properties, the described peculiarity of the
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Comparisons between the second-order mean hyperpolarizabilities (divided by ) of CdS, CdSe,
and CdTe clusters computed at the HF/aug-cc-pVDZ-PP level of theory
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Ga atoms can explain qualitatively the smaller hyperpolarizabilities of both GaP and GaAs
compared to AlP and AlAs clusters.

The dynamic-second order hyperpolarizabilities of Si and Si have been explored by Lan
et al. () using the coupled cluster cubic response theory.These authors reported that Si and
Si clusters exhibit wide non-resonant optical region. The same approach has been used by Lan
and Feng () in the study of the nonlinear response of another class of semiconductor clus-
ters, namely, the SiCn and SinC. In this work it was demonstrated that the size dependence of
the first-order hyperpolarizabilities of the SiCn clusters, which have approximate Si-terminated
linear chain geometry, is similar to that observed inπ-conjugated organicmolecules. Lastly con-
cerning the (hyper)polarizabilities of other II–VI clusters apart from CdS there two reported
studies on their hyperpolarizabilities. The first (Li et al. ) deals with the ground states and
low-lying isomers of stoichiometric (ZnO)n clusters with n = – using finite field approach
within density functional theory framework and the second (Karamanis et al. ) involves
a comparative study of CdS, CdSe, CdTe with respect to their second hyperpolarizabilities
(> Fig. -). Both of those studies demonstrate the structural and size dependence of those
properties while the second one reveal that CdTe clusters are far more (hyper)polarizable than
CdS and CdSe, verifying previous experimental work reported by Wu et al. () which pro-
vided evidences that that CdTe nanoparticles exhibit stronger nonlinear optical properties than
nanoparticles built from CdS and CdSe.

Concluding Remarks

In this brief review, we made an attempt to present some of the most illustrative computational
investigations of the structural properties of semiconductor clusters.We have chosen to present
studies that had as subject cluster species which have attracted most of the attention of the
researchers the last two decades and have served as models in the better understanding of clus-
ter properties. Therefore it must be emphasized that although this chapter does not cover the
vast number of studies that have been reported during the previous years, it can be utilized as
starting material for those who are interested in contributing in this field, or simply, as a guide
for those whowish to get some general information about the structural and bonding features of
semiconductor clusters. Finally, in this chapter we have revisited most of the recent studies that
focus on the electric properties of those species which also demonstrate in a comprehensive
manner that clusters and electric properties such as the dipole polarizabilities and especially
hyperpolarizabilities are strongly related.
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  Structures, Energetics, and Spectroscopic Fingerprints of Water Clusters n = –

Abstract: This chapter discusses the structures, energetics, and vibrational spectra of the
first few (n ≤ ) water clusters obtained from high-level electronic structure calculations.
The results are discussed in the perspective of being used to parameterize/assess the accuracy
of classical and quantum force fields for water. To this end, a general introduction with the
classification of those force fields is presented. Several low-lying families of minima for the
medium cluster sizes are considered. The transition from the “all surface” to the “fully coor-
dinated” cluster structures occurring at n =  and its spectroscopic signature is presented.
The various families of minima for n =  are discussed together with the low-energy net-
works of the pentagonal dodecahedron (HO) water cage. Finally, the low-energy networks
of the tetrakaidecahedron (T-cage) (HO) cluster are shown and their significance in the
construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.

Introduction

Water’s function as a universal solvent and its role in mediating several biological functions
that are responsible for sustaining life has created tremendous interest in the understanding of
its structure at the molecular level (Ball ). Due to the size of the simulation cells and the
sampling time needed to computemanymacroscopic properties, most of the initial simulations
are performed using a classical force field, whereas several processes that involve chemistry are
subsequently probed with electronic structure based methods. A significant effort has there-
fore been devoted toward the development of classical force fields for water (Robinson et al.
). Clusters of water molecules are useful in probing the intermolecular interactions at the
microscopic level as well as providing information about the subtle energy differences that
are associated with different bonding arrangements within a hydrogen-bonded network. They
moreover render a quantitative picture of the nature and magnitude of the various components
of the intermolecular interactions such as exchange, dispersion, induction, etc.They can finally
serve as a vehicle for the study of the convergence of properties with increasing size.

Over the last decade, there have been tremendous advances in the experimental (Cruzan
et al. a, b, ; Liu et al. , a, b, a, b; Pugliano and Saykally ; Suzuki and
Blake ; Viant et al. ) and theoretical (Xantheas , a; Xantheas and Dunning
a, b) studies of the structural, spectral, and energetic properties of water clusters, as well as
refinements of the macroscopic structural experimental data for liquid water (Hura et al. ;
Soper ; Sorenson et al. ). These developments have created a unique opportunity for
incorporating molecular level information into classical force fields for water as well as using
the available database of cluster energetics for the assessment of their accuracy. The process of
developing interaction potentials is by no means straightforward, and the different approaches
that are used tomodel the various components of the underlying physical interactions have their
own advantages and shortcomings. Some of the outstanding issues that are associated with the
development of models based on molecular level information are the shortage or scarcity of
experimental data for clusters. To this end, an alternative approach based on the use of ab initio
results for water clusters can be put into practice.

Assuming that the route of parameterization of an interaction potential for water from the
cluster results is adopted, the question naturally arises of the level of accuracy that needs to
be attained so the models can produce meaningful and accurate results for the macroscopic
properties of extended systems such as the bulk liquid and ice. In the subsequent sections, we
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will present the results of ab-initio electronic structure calculations for cluster sizes up to 
water molecules and we will address some important features of their structural and spectral
properties. We will finally present results on the first few water cages that are the constituents
of the three-dimensional hydrate networks.

Models of Intermolecular Interactions

Force fields describing intermolecular interactions can be in general classified into two cat-
egories: () classical and () quantum models, the characteristics of which are outlined in
> Fig. -. Classical potentials consist of force fields that employ an analytic expression, in con-
junction with several adjustable parameters, for the potential energy surface (PES) as a function
of the coordinates of the atoms in the system. In contrast, for quantummodels, the PES is com-
puted by considering both the position of the nuclei and the distribution of the electrons of the
system, and it is obtained by solving Schrödinger’s equation.

The choice of the adjustable parameters used in conjunction with classical potentials
can result to either effective potentials that implicitly include the nuclear quantization and
can therefore be used in conjunction with classical simulations (albeit only for the condi-
tions they were parameterized for) or transferable ones that attempt to best approximate
the Born–Oppenheimer PES and should be used in nuclear quantum statistical simulations.
Representative examples of effective force fields for water consist of TIPP (Jorgensen et al.
), SPC/E (Berendsen et al. ) (pair-wise additive), and Dang-Chang (DC) (Dang and
Chang ) (polarizable, many-body).The “polarizable” potentials contain – in addition to the
pairwise additive term – a classical induction (polarization) term that explicitly (albeit approx-
imately) accounts for many-body effects to infinite order.These effective potentials are fitted to
reproduce bulk-phase experimental data (i.e., the enthalpy at T = K and the radial distri-
bution functions at ambient conditions) in classical molecular dynamics simulations of liquid
water. Despite their simplicity, these models describe some experimental properties of liquid
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⊡ Fig. -
Characteristics of classical and quantum potential models
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water at ambient conditions quite well but usually fail for conditions and environments that
are not parameterized for, and so they have limited predictive power. On the other hand,
force fields such as the Effective FragmentPotential (EFP) (Adamovic et al. ; Day et al. ;
Gordon et al. ; Jensen andGordon ; Netzloff andGordon ), the SAPT- (Bukowski
et al. ; Szalewicz et al. ), and the family of Thole-type models (TTM (Burnham et al.
), TTM-F (Burnham and Xantheas a), TTM.-F (Fanourgakis and Xantheas ),
TTM-F (Fanourgakis and Xantheas ), and TTM-F (Burnham et al. )) are examples
of transferable potentials that are fitted to high-level first principles electronic structure results
of the PESs of small water clusters, usually the water dimer and trimer, and should be used in
conjunction with nuclear quantum statistical simulations.

The availability of energetic information for water clusters (such as binding energies) is
of paramount importance in both fitting transferable potentials as well as assessing their
performance. Currently, binding energies of small water clusters, even the water dimer, are
not available experimentally but can only be obtained from high-level electronic structure
calculations.

QuantumModels from Electronic Structure Calculations

> Figure - shows the spectrum of methods that are used to describe intermolecular inter-
actions ranging from the classical descriptions, such as Molecular Mechanics (MM), up to the
highly correlated ones, including Coupled Cluster with Single, Double, and perturbative esti-
mates of Triple excitations [CCSD(T)] andMulti Reference Singles and Doubles Configuration
Interaction (MRSDCI). Methods on the left part of the spectrum have the advantage of low for-
mal scaling and as such allow for the treatment of large systems, but they are also associatedwith
large inaccuracies. In contrast, methods to the right side of > Fig. - have the disadvantage
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O(N7)

MD QM / MM DFT HF MP(2-4) MCSCF CCSD(T) MRSDCI ...

⊡ Fig. -
Models of intermolecular interactions: from classical to highly correlated
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of high formal scaling (as much as ∼O(N), where N is the system size) and are more appro-
priate for smaller systems for which high accuracy is achieved. Currently, the state of the art
consists of the application of highly correlated methods such as CCSD(T) to a cluster of about
 water molecules (∼, basis functions and  electrons), a calculation that can sustain a
performance of . Petaflop/s (Apra et al. ).

Electron Correlation and Orbital Basis Set

The cluster energies are obtained from the solution of the nonrelativistic Schrödinger equation
for each system.The expansion of the trial many-electron wave function delineates the level of
theory (description of electron correlation), whereas the description of the constituent orbitals
is associated with the choice of the orbital basis set. A recent review (Dunning ) outlines
a path, which is based on hierarchical approaches in this double expansion in order to ensure
convergence of both the correlation and basis set problems. It also describes the application of
these hierarchical approaches to various chemical systems that are associated with very diverse
bonding characteristics, such as covalent bonds, hydrogen bonds and weakly bound clusters.

As regards the description of the electron correlation problem it has been recognized that
the coupled cluster method (Bartlett and Purvis ; Cizek , ; Coester ; Coester
and Kümmel ; Kucharski and Bartlett ; Purvis and Bartlett ), which includes all
possible single, double, triple, etc. excitations from a reference wave function, represents a viable
route toward obtaining accurate energetics for hydrogen-bonded dimers (Halkier et al. ;
Peterson andDunning ). Among its variations, the CCSD(T) approximation (Raghavachari
et al. , ), which includes the effects of triple excitations perturbationally, represents an
excellent compromise between accuracy and computational efficiency and has been recently
been coined as the “gold standard of quantum chemistry.” The CCSD(T) approximation scales
asN for the iterative solution of the CCSD part, plus an additional single N step for the pertur-
bative estimate of the triple excitations.This represents a substantial additional expense over the
widely used second-order perturbation level (Møller and Plesset ) of theory (MP) which
formally scales as N.

For the basis set expansion, the correlation-consistent (cc-pVnZ) orbital basis sets of
Dunning and coworkers (Dunning ; Dunning et al. ; Kendall et al. ), ranging from
double to quintuple zeta quality (n = D, T, Q, ), offer a systematic path in approaching the
complete basis set (CBS) limit.These sets were constructed by grouping together all basis func-
tions that contribute roughly equal amounts to the correlation energy of the atomic ground
states. In this approach, functions are added to the basis sets in shells. The sets approach the
complete basis set (CBS) limit, for each succeeding set in the series provides an evermore accu-
rate description of both the atomic radial and angular spaces. The extension of those sets to
include additional diffuse functions for each angular momentum function present in the stan-
dard basis yields the augmented correlation consistent (aug-cc-pVnZ) sets. The exponents of
those additional diffuse functions were optimized for the corresponding negative ions.

The Basis Set Superposition Error Correction

The use of a finite basis set in electronic structure calculations as been known to overestimate
the interaction energy (Clementi ) (ΔE) of a weakly bound dimer complex, a quantity
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defined as
ΔE = Eα∪β

AB (AB) − E
α
A(A) − E

β
B(B), (.)

where superscripts indicate the basis set; subscripts, the molecular system; and parentheses,
the geometries for which the energies are obtained. In this notation, the term Eα∪β

AB (AB) is the
energy of the dimer (AB) at its equilibrium geometry AB with the basis set of the two frag-
ments aUb. The overestimation comes from the fact that the basis functions that are centered
on the one fragment help lower the energy of the other fragment and vice versa, a situa-
tion first termed “Basis Set Superposition Error” (BSSE) by Liu and McLean (). Boys and
Bernardi () originally proposed two approaches to circumvent this problem, introducing
corrections via the “point counterpoise” (pCP) and the “function counterpoise” (fCP) meth-
ods, the latter being nowadays almost exclusively adopted in electronic structure calculations
of intermolecular interaction energies (Chalasinski and Szczesniak ; van Duijneveldt et al.
).

For a dimer of two interacting moieties (extension to larger clusters is straightforward), the
fCP correction is:

ΔE(fCP) = Eα∪β
AB (AB) − E

α∪β
AB (A) − E

α∪β
AB (B). (.)

> Equations . and > . will not converge to the same result as the basis set increases
toward the Complete Basis Set (CBS) limit since the reference energies of fragments A and B
are computed at different geometries, viz. the dimer vs. the isolated fragments. Alternatively, if
the BSSE correction is estimated via the equation (Xantheas b)

ΔE(BSSE) = Eα∪β
AB (AB) − E

α∪β
AB (A) − E

α∪β
AB (B) + E

α
rel(A) + E

β
rel(B) (.)

where

Eα
rel(A) = E

α
AB(A) − E

α
A(A) (.a)

Eβ
rel(B) = E

β
AB(A) − E

β
B(B) (.b)

represent the energy penalty for distorting the fragments from their isolated geometries to the
ones that adopt due to their interaction in the complex, then it is readily seen that after substi-
tution of > Eqs. .a and > .b into > Eq. . and collecting terms, the BSSE correction
(> Eq. .) can be cast as:

ΔE(BSSE) = ΔE − {Eα∪β
AB (A) − E

α
AB(A)} − {E

α∪β
AB (B) − E

β
AB(B)} . (.)

> Equations . and > . do converge to the same result at the CBS limit since the
terms in the brackets in > Eq. . will numerically approach zero as the basis sets α and β
tend toward CBS, viz.

lim
α ,β→CBS

ΔE(BSSE) = lim
α ,β→CBS

ΔE. (.)

The importance of this correction, although previously recognized (Emsley et al. ; Smit
et al. ; van Lenthe et al. ), has rarely been applied (Eggenberger et al. ; Kendall
et al. ; Leclercq et al. ; Mayer and Surjan ; van Duijneveldt-van de Rijdt and
van Duijneveldt ) until the problems arising from omitting it, especially for () strongly
bound hydrogen-bonded complexes exhibiting large fragment relaxations and () calcula-
tions employing large basis sets, were noted. It should be emphasized that for some strongly
hydrogen-bonded dimers such as F−(HO) and OH−(HO), the energy penalty term is quite
large (≥ kcal/mol) and its omission will lead to erroneous results as regards the magnitude
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and convergence of the uncorrected and BSSE-corrected values of the interaction energy as the
basis set increases.This large energy penalty is caused by the strong interaction between the ion
and water, a fact that results in a large elongation of the hydrogen-bonded OH bond causing
the water molecule to adopt a configuration that is far from its isolated equilibrium geometry.
A further consequence of this effect is the large red shift in the corresponding OH stretching
vibration, a fact that has been experimentally verified.

Extrapolation to the Complete Basis Set Limit

Application of the family of these sets to a variety of chemical systems (see Reference Dun-
ning () and references therein) – ranging from the very weakly bound (by around
. kcal/mol) rare gas diatomics, to intermediate strength hydrogen-bonded neutral (–
 kcal/mol), singly charged ion-water (– kcal/mol) clusters, and single-bond diatomics
(– kcal/mol), to very strong (> kcal/mol) multiply charged metal–water clusters and
multiple bond diatomics – has permitted a heuristic extrapolation of the computed electronic
energies and energy differences to the CBS limit. Among the various approaches that have been
proposed (Bunge ; Fast et al. ; Feller ; Halkier et al. ; Klopper ; Martin
; Termath et al. ; Wilson and Dunning ; Xantheas and Dunning c) in order to
arrive at the CBS limit, we have relied on the following two:

. A polynomial with inverse powers of  and  (– polynomial):

ΔE = ΔECBS + γ/(ℓmax + ) + (ℓmax + ) (.)

where ℓmax is the value of the highest angular momentum function in the basis set and
. An exponential dependence on the cardinal number of the basis set n (n = , , ,  for the

sets of double through quintuple zeta quality, respectively):

ΔE = ΔECBS + α ● exp(−β ● n). (.)

It should be noted that in nearly every case, this “extrapolation” procedure only accounts for
a very small change when compared to the “best” computed quantity with the largest basis set
[usually the (aug)-cc-pVZ or, computer resources permitting, the (aug)-cc-pVZ]. This result
suggests that effective convergence of the respective properties (such as structure and relative
energies) has already been achieved with the largest basis sets of this family.

Global Minimum Structures of the n = –Water Clusters

> Figure - shows the global minimum structures of the water clusters n = – and
> Fig. - shows the variation of their uncorrected and BSSE-corrected binding energies from
MP calculations with the correlation-consistent basis sets (Xantheas et al. ).TheCBS limit
of −. kcal/mol for the cyclic trimer was estimated fromMP binding energies with basis sets
up to aug-cc-pVZ.

It is worth noting that extrapolating the uncorrected and BSSE-corrected binding energies
using > Eqs. . and > . yields CBS limits that are within . kcal/mol from each other,
while the extrapolation process itself results in minimal (<. kcal/mol) changes with respect to
the best computed numbers with the largest aug-cc-pVZ set. For the cyclic water tetramer, the
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TIP4P: –6.235 –16.729 –27.866 –36.355

TTM3-F: –5.176 –15.775 –26.823 –35.785

MP2: –5.18 –16.29 –28.59 –37.59

MP2/CBS: –4.97 –15.82 –27.63 –36.31

⊡ Fig. -
Globalminimumenergystructures for (HO)n,n = –are thesamefor theTIPPandTTM-Fpoten-
tials and the MP level of theory. The binding energies (De) at the MP level of theory (kcal/mol)
were calculatedwith the aug-cc-pVTZ basis set
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⊡ Fig. -
The variation of the uncorrected (solid circles) and BSSE-corrected (open circles) binding energies
from MP calculations with different basis sets for the global minimum structures of water clus-
ters n = –. The figure is reprinted with permission from reference Xantheas et al. (). © 
American Institute of Physics
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CBS limit estimated using the – polynomial (see > Eq. .) is −. kcal/mol. The extrap-
olation of the uncorrected and BSSE-corrected binding energies results in identical estimates
for the CBS limit, which is just . kcal/mol away from the best computed value with the aug-
cc-pVZ set. The same trend is observed for the cyclic water pentamer with an estimated CBS
limit of −. kcal/mol. Both the effective pair-wise TIPP (Wales and Hodges ) potential
and the transferable, polarizable, many-body TTM-F do yield these structures as the global
minima, in agreement with the results of the MP calculations. The unique common feature
of the global minimum structures of water clusters in the n = – size range is a cyclic (or
ring) structure motif with the same direction of in-the-ring hydrogen bonding network in a
homodromic direction (Xantheas ). These homodromic hydrogen bonding networks, i.e.,
those exhibiting donor-acceptor (da) arrangements between all watermolecules, are associated
with the largest non-additivities among other networks present in low-lying minima of small
(n = –) water clusters.These cyclic (or ring) structures, especially for n =  and  are of par-
ticular importance since they consist of the building blocks for the global minimum structures
of water clusters in the size range n = –.

The water hexamer has four distinct almost isoenergetic isomers that lie within  kcal/mol
fromeach other (see > Figs. - and > -) (Xantheas et al. ). Four distinct low-lying iso-
mers are knownas the prism, cage, book, and ring (S) structures.Theprism isomer (bilayer of a
trimer ring) is the global minimum at the MP level of theory with all basis sets, while the cage
isomer becomes the global minimum when zero-point energy corrections are included. The
MP/CBS limits are estimated at −. kcal/mol for the prism isomer and at −. kcal/mol
for the cage isomer, respectively.We have also estimatedMP/CBS limits of −. kcal/mol for
the book isomer and−. kcal/mol for the ring isomer of S symmetry.The calculations indi-
cate that the “transition” from a quasi-planar, ring motif to a more compact, cage-like structure
occurs for n = . A first difference among the results with classical water potentials was found
for this cluster. The TIPP potential predicts the cage isomer as the global minimum (Wales
and Hodges ), while the TTM-F potential favors the prism isomer in agreement with the
result of the MP calculations.

prism cage book ring

TIP4P: –46.915 –47.271 –46.121 –44.377
TTM3-F: –46.193 –45.880 –45.168 –44.288

MP2: –47.94 –47.83 –47.47 –46.37
MP2/CBS: –45.86 –45.79 –45.61 –44.81

⊡ Fig. -
Global minimum energy structures and binding energies (kcal/mol) for (HO). The TIPP poten-
tial prefers the cage-like hexamer, while the TTM-F potential the prism-like one. The prism-like
hexamer becomes the global minimum structure at the MP/aug-cc-pVTZ level of theory
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⊡ Fig. -
The variation of the uncorrected (solid circles) and BSSE-corrected (open circles) binding energy
fromMPcalculationswithdifferent basis sets for thewater hexamer (n = ). Thefigure is reprinted
with permission from reference Xantheas et al. (). ©  American Institute of Physics

The water heptamer (n = ) is an intermediate structure between the hexamer and
the octamer. Note that water hexamer prefers to be a prism isomer (bilayer of cyclic ring
trimer) and the water octamer a bilayer of the cyclic tetramer. The global minimum struc-
ture of the water heptamer consists of a cyclic trimer and cyclic tetramer on each layer as
shown in > Fig. -. The water octamer (n = ) has two nearly isoenergetic forms having
Dd and S symmetry as the low-energy structures (see > Figs. - and > -) (Xanth-
eas and Aprà ). These are comprised of two stacked cyclic tetramers and the distinction
between those two isoenergetic isomers lies in the direction of the two in-the-ring hydro-
gen bonding networks that can be either along the same (or parallel) for the S isomer or
opposite (or antiparallel) for the Dd isomer. The variation of the MP binding energies
with basis set is graphically illustrated in > Fig. - for the two isomers. The best esti-
mated BSSE-corrected MP/CBS limits obtained with the – polynomial (cf. > Eq. .)
are −. kcal/mol and −. kcal/mol for the antiparallel (Dd) and the parallel (S)
isomers, respectively. The corresponding BSSE-corrected MP/CBS limits estimated with
the exponential extrapolation (via > Eq. .) are −. kcal/mol for the antiparallel
and −.kcal/mol for the parallel isomers, respectively. Note that the MP energy difference
between both isomers is quite small of ∼. kcal/mol for both extrapolationmethods. Given the
heuristic nature of the two extrapolation methods to arrive at the CBS limit and these caveats,
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n=7 antiparallel
(D2d)

parallel
(S4)

TIP4P: –58.215 –72.995 –73.021
TTM3-F: –57.225 –71.857 –71.856

MP2: –56.00 –76.16 –76.11

⊡ Fig. -
The global minimum energy structures and binding energies (kcal/mol) for (HO) and (HO). For
n = , the TIPP and TTM-F potentials have the same global minimum. For n = , the TIPP
potential favors the parallel circular arrangement of hydrogen bonds of two ring tetramers, while
TTM-F, the antiparallel arrangement. At the MP/aug-cc-pVTZ level of theory, the antiparallel
arrangement is preferred in agreement with the TTM-F result

it is difficult and probably futile to assign a CBS limit for the binding energy with an “error bar”
smaller than this quantity (∼. kcal/mol), which arises from the extrapolation procedure. As
can be seen from > Fig. -, we suggest a value of −. ± . kcal/mol for the MP/CBS limit
of the binding energy for both isomers of the water octamer, keeping in mind that the antipar-
allel isomer is always lower in energy by ∼. kcal/mol than the parallel one. As regards the
results of classical potentials, TIPP predicts the parallel isomer (Wales and Hodges ),
while TTM-F the antiparallel isomer as the global minimum structure in agreement with the
results of the MP calculations.

> Figure - shows the global minimum structures for n =  and . The TIPP and
TTM-F potentials predict the same global minimum structure of (HO) consisting of the
cyclic tetramer and the cyclic pentamer on each layer. The water decamer (n = ) has two
nearly isoenergetic isomers consisting of two stacked cyclic pentamers.These two isoenergetic
isomers are distinguished by the direction of the in-the-ring hydrogen bonding networks as we
have previously discussed for the two isomers of the water octamer. The antiparallel isomer
of water decamer has the opposite direction of the in-the-ring hydrogen bonding networks on
each layer, while the parallel isomer has the same direction. The TIPP potential predicts the
parallel isomer (Wales and Hodges ), whereas the TTM-F potential predicts the antipar-
allel isomer as the global minimum structure that is consistent with the results of the MP
calculations.

The Global Minima of Medium-SizedWater Clusters
in he Range  ≤ n ≤ 

During the last  years, the search for the global minima of medium-sized water clusters has
receivedmuch theoretical attention (Bulusu et al. ; Day et al. ; Fanourgakis et al. ,
; Hartke ; Kazimirski and Buch ; Koga et al. ; Lagutchenkov et al. ;
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⊡ Fig. -
The variation of the uncorrected (solid circles) and BSSE-corrected (open circles) binding energy
fromMP calculationswithdifferent basis sets for thewateroctamer (n = ). The figure is reprinted
with permission from reference Xantheas and Aprà (). ©  American Institute of Physics

Lee et al. , ; Nigra and Kais ; Sadlej ; Tsai and Jordan ; Wales and Hodges
) and several previous ab initio calculations (Day et al. ; Fanourgakis et al. , ;
Koga et al. ; Lee et al. , ; Sadlej ; Tsai and Jordan ) suggested that the global
minima of medium-sized water clusters in the n = – range mainly consist of the building
blocks of the antiparallel octamer and the antiparallel decamer isomers. > Figure - shows
the global minimum structures for n = , , , and  at the MP level of theory. In detail,
the global minima of (HO) and (HO) are stacked cube structures with the antiparallel
arrangement of the in-the-ring hydrogen bonding networks that are built from the building
blocks of the antiparallel octamer. For the globalminimumof (HO), the antiparallel decamer
was used as the building block to form a stacked pentagonal prism. In the case of the globalmin-
imum structure of (HO), two building blocks of the antiparallel octamer and decamer were
used to obtain a fused square-pentagon prism structure.The TIPP potential fails in predicting
these arrangements as the globalminima for n = ,  and . It rather uses the parallel octamer
and the parallel decamer isomers as starting points to build the global minimum structures of
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n=9 antiparallel parallel

TIP4P: –82.322 –93.441 –93.457

TTM3-F: –81.459 –92.818 –92.811

MP2: –85.913 –97.943 –97.824

⊡ Fig. -
The global minimum energy structures and binding energies (kcal/mol) of (HO) and (HO). The
TIPP and TTM-F potentials predict the sameglobalminimum structure for (HO), which is based
on the antiparallel arrangement of hydrogen bonding in (HO). For (HO) (stacking of two pen-
tagon rings), the TIPP potential favors the parallel arrangement, while the TTM-F potential the
antiparallel arrangement. The binding energies at the MP/aug-cc-pVTZ level of theory are listed

n=12 n=14 n=15 n=16

TIP4P: –117.801 –139.338 –150.148 –162.791

TTM3-F: –118.218 –140.648 –151.329 –164.842

MP2: –125.335 –149.155 –160.822 –173.890

⊡ Fig. -
The global minimum of (HO)n for n = , –. The TIPP potential predicts a different global
minimum for n = ,  and n = . The MP/aug-cc-pVDZ energies are listed

water clusters for n = , , and  since these were the most stable isomers for n =  and n = 
(see > Figs. - and > -) (Wales andHodges ). In contrast, the TTM-F potential again
predicts the arrangements in agreement with the MP results.
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434 515 551 443

TIP4P: –82.322 –93.441 –93.457 –93.457

TTM3-F: –101.771 –101.629 –101.653 –102.964

MP2: –107.611 –107.485 –107.270 –107.134

⊡ Fig. -
The isomersof (HO). The () isomer is theglobalminimumstructurewith theTIPPandTTM-F
potentials. The () isomer has the lowest binding energy (De) at the MP/aug-cc-pVTZ level the-
ory. Binding energies are shown in kcal/mol. The figure is reprintedwith permission from reference
Bulusu et al. (). ©  American Chemical Society

In the case of the odd-numbered water clusters (n =  and ), it is not as easy to build the
global minimum structures starting from most stable networks of the octamer and decamer
clusters. > Figure - shows the four distinct structural families of the low-lying isomers
of (HO) (Bulusu et al. ). Two families labeled as () and () are built from the
stacked pentagon (HO) (antiparallel decamer, the global minimum of (HO) as shown
in > Fig. -). The () isomer can be viewed as constructed by adding one water molecule
between the top and middle layers of the antiparallel decamer isomer, whereas the () iso-
mer from inserting one water molecule into the top layer. The families labeled as () and
() are built from the stacked cube (HO) isomer, which consists of three layers of cyclic
tetramers: the () isomer can be built by removing one water molecule from the top layer
of the global minimum of (HO) and the () isomer by removing one water molecule
from the middle layer of the stacked cube structure of (HO). The MP results indicate that
the low-lying isomers of the () and () families are the most probable candidates for
the global minimum. Since the maximum MP energy difference for all four distinct almost
isoenergetic isomers is very small (∼. kcal/mol), the inclusion of zero-point energy correc-
tions is important to identify the global minimum.When zero-point energy corrections (albeit
at the harmonic level) were included, the () isomer becomes the global minimum struc-
ture of (HO). Both the TIPP and TTM-F potentials predict the () isomer as the global
minimum.

> Figure - shows four distinct isomers for (HO) as the low-lying isomers of (HO)
(Bulusu et al. ). Note that the three isomers (), (), and () can be built from
the antiparallel global minimum of (HO), as shown in > Fig. -. However, the (-b)
isomer, which is the global minimum structure predicted by TIPP, is built from the parallel
(HO) in accordance with the fact that this is the global minimum structure of (HO) pre-
dicted byTIPP. For completeness, the () isomer can be built by adding onewatermolecule
vertically between the top and middle layers of the antiparallel isomer of (HO). The ()
and (-b) isomers can be built by inserting one water molecule into the middle layer of the
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4414 454 445 454-b

TIP4P: –127.069 –127.282 –127.3829 –127.3832

TTM3-F: –127.6884 –127.6680 –128.059 –126.822

MP2: –135.817 –135.812 –135.639 –155.443

⊡ Fig. -
The isomersof (HO). TheMPenergieswerecalculatedwith theaug-cc-pVDZbasis set. Thefigure
is reprintedwith permission from reference Bulusu et al. (). ©  AmericanChemical Society

antiparallel and parallel (HO) isomers, respectively. The () isomer can be constructed
by inserting one water molecule into the top water layer. The MP calculations predict that
the () isomer is the most stable isomer of the (HO) cluster and the () isomer is the
next lowest isomer. Since the maximum MP energy difference for four distinct isoenergetic
isomers of (HO) is very small (∼. kcal/mol), we furthermore estimate the effect of the zero-
point energy correction to the relative stability of the isomers.The () isomer remains as the
global minimum structure of (HO) after including harmonic zero-point energy corrections
The TTM-F potential predicts the () isomer as the global minimum structure of (HO).

The Transition from “All-Surface” to “Internally Solvated”
Clusters at n = 

So far we have discussed in > section “Global Minimum Structures of the n = – Water
Clusters” that the structural “transition” from a quasi-planar ring motif to a more compact,
cage-like structure, which occurs at n = . For the smaller clusters, the need to maximize
hydrogen bonding results in all the atoms being on the surface of the cluster. However, as the
cluster grows, there is a point where more compact, fully connected structures are formed, in
which water molecules are fully coordinated (i.e., they have two donors and two acceptors of
hydrogenbonds) like in an average arrangement in the liquid environment. Several experiments
(Beuhler and Friedman ; Haberland ; Hermann et al. ; Lin ; Nagashima
et al. ; Niedner-Schatteburg and Bondybey ; Schindler et al. ; Searcy and Fenn
; Stace and Moore ; Yang and Castleman ) such as expansion of ionized water
vapor (Beuhler and Friedman ; Searcy and Fenn ), ion bombardment of ice surfaces
(Haberland ), as well as black-body-radiation-induced dissociation studies (Niedner-
Schatteburg and Bondybey ; Schindler et al. ) suggested a prevailed magic cluster
of the HO+(HO) cluster consisting of a clathrate-like pentagonal dodecahedron structure.
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This magic cluster of HO+(HO) indicates the transition from the “all-surface” to “inter-
nally solvated” clusters. Note that this kind of transition for the neutral water clusters has not
yet been identified experimentally. For a cluster of that size, the number of isomers increases
dramatically with size. A detailed discussion of this problem will be presented in the following
> section “The Family of Minima for (HO).” In brief, a global search algorithm (Hartke
; Li and Scheraga ; Wales and Scheraga ) has been previously used in order to
identify low-energy structures of clusters of that size. That global search approach of an evo-
lutionary algorithm combined with the TTM-F potential predicted that for the neutral water
clusters, the transition from “all-surface” to “internally solvated” occurs for (HO) (Hartke
). > Figure - shows the alternation between the all-surface and interior minima at the
n = – cluster regime predicted by the TTM-F interaction potential. The solvated water
molecule with a tetrahedral network is highlighted in green color. The TIPP potential predicts
that the transition from “all-surface” to “internally solvated” clusters occurs for (HO). Both
the TIPP and TTM-F potentials predicted the same global minimum structures for n = 
and . The lowest energy structure predicted with TIPP has a slightly different hydrogen
bonding orientation for n =  when compared to the global minimum structure predicted
by TTM-F.

Validation from Electronic Structure Calculations

Since the TIPP and TTM-F classical water potentials predicted different global minimum
structures for n =  and , we concentrated our efforts in comparing the relative stabilities of

interior

–186.241 –212.204 –238.296

all-surface
–184.512 –198.650 –234.023

n=17 n=18 n=19 n=21

⊡ Fig. -
The transition from “all-surface”to “internally solvated”clusters in the range of n = –. The bind-
ing energies were calculated at the MP/aug-cc-pVDZ level of theory. The figure is reprinted with
permission from reference Lagutchenkov et al. (). ©  American Institute of Physics
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the two different arrangements predicted by the two models from electronic structure calcu-
lations. The results (Lagutchenkov et al. ) obtained at the MP level of theory with the
aug-cc-pVDZ and aug-cc-pVTZ basis sets are shown in > Fig. -. For the n =  clus-
ter, MP calculations with both basis sets predicted the “interior” structure to be more stable,
in agreement with the predictions of the TTM-F potential. Inclusion of differential zero-
point energy corrections (. kcal/mol at BLYP/TZVP level of theory) furthermore tends
to increase the energy difference between the two isomers in favor of the “interior” config-
uration. Our best estimate for the energy difference between the “all-surface” and “interior”
isomers of n =  is . kcal/mol (. kcal/mol including zero-point energy corrections) at
the MP/aug-cc-pVTZ level of theory. For the n =  cluster, a similar behavior was found
between themost stable “all-surface” and “interior” isomers.The basis set effect at theMP level
of theory also results in decreasing the energy difference, where as the inclusion of zero-point
energy corrections tends to stabilize the “interior” configurationwith respect to the “all-surface”
one. The TTM-F potential predicts the correct ordering between the two different arrange-
ments, yielding an energy difference that is almost half of the MP/aug-cc-pVTZ value. At
this level of theory, the “interior” configuration is stabilized by . kcal/mol (. kcal/mol
including zero-point energy corrections) with respect to the “all-surface” one for n = .There-
fore, the MP calculations provided a reliable benchmark that validated the predictions of the
TTM-F potential as regards the onset of the “all-surface” to “interior” configurations occurring
at n = .

Spectroscopic Signature

As noted earlier, the ab initio investigation of the relative stability of the various hydrogen bond-
ing networks in the n = – cluster regime has identified the existence of a transitional size
regime where preferential stabilization alternates between “all-surface” (all atoms on the sur-
face of a cluster) and “internally solvated” (one water molecule at the center of the cluster, fully
solvated) configurations with the addition or the removal of a single water molecule.

This behavior has been previously suggested based on the results of the TTM-F interaction
potential. It is qualitatively different from the picture that simple, pairwise-additive potentials
like TIPP suggest. The onset of the appearance of the first “interior” configuration in water
clusters occurs for n = .The observed structural alternation between “interior” (n = , , )
and “all-surface” (n = , ) global minima in the n = – cluster regime is accompanied
by a corresponding spectroscopic signature, namely the undulation in the position of the most
red-shifted OH stretching vibrations (indicated by the shaded area in > Fig. -) according
to the trend: “interior” configurations exhibit more red-shifted OH stretching vibrations than
“all-surface” ones (see > Fig. -).These most red-shifted OH stretching vibrations form dis-
tinct groups in the intramolecular region of the spectra and correspond to localized vibrations
of donor OH stretches that have the following characteristics: () the hydrogen-bonded OH
group belongs to a watermolecule that has a “free” (non-hydrogen-bonded) OH stretch and ()
the bound OH group acts as a donor to a neighboring water molecule via a water dimer-like
hydrogen bond (i.e., a hydrogen bond in which the dihedral angle between the free OH of the
donor molecule and the bisector of the HOH angle of the acceptor molecule is ○, as seen in
the lower panel of > Fig. -.
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⊡ Fig. -
Intramolecular spectra in the ,–,cm− region associated with the hydrogen-bonded and
free OH stretching vibrations for n = – [(a)–(e)] at the BLYP/TZVP level of theory. The stick
diagramof the computed frequencies is also shown. Shaded area denotes themost red-shifted OH
stretching vibrations. The figure is reprinted with permission from reference Lagutchenkov et al.
(). ©  American Institute of Physics

The Family of Minima for (HO)

Interest in the family of water clusters for n =  stems from the fact that one of the families
of minima is the dodecahedron which has been proposed as a model for inclusion compounds
and constitutes a building block of type I ice clathrate (we will discuss this in detail in > section
“The First Few Water Cages”) The structure of (HO) has been the subject of debate due to
the existence of various major families of minima which are energetically in close proximity
and the disagreement as to which was the global minimum (Fanourgakis et al. ).

We have previously briefly discussed (see > section “The Transition from “All-Surface” to
“Internally Solvated” Clusters at n = ”) the issue regarding the number of isomers increasing
dramatically with cluster size. The assignment of the structural motif of the neutral (HO)
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cluster represents a much more difficult task especially in the absence of experimental infor-
mation (such as rotational constants or infrared spectra) that can yield definitive structural
information. For typical clusters of that size, even for a fixed position of the Oxygen atom net-
work, there exists a multitude of arrangements of the hydrogen atoms in a manner consistent
with the cluster analog of the Bernal–Fowler ice rules (Hobbs ; Petrenko and Whitworth
) For instance, just for the dodecahedral arrangement of the oxygen atom network in
(HO), the application of graph theoretical techniques (Kuo et al. ; McDonald et al.
) yields an estimate of , symmetry-distinct hydrogen bond topologies which are likely
candidates for local minimum structures. For this reason, extensive sampling of the n = 
cluster potential energy surface (PES) has been performed only with classical interaction poten-
tials. Using the “basin-hopping”method combinedwith the TIPP potential,Wales andHodges
(Wales andHodges ) identified fourmajor families of (HO) which, based on the arrange-
ment of the oxygen atom network, they classified as (a) dodecahedron, (b) fused cubes, (c)
face-sharing pentagonal prisms, and (d) edge-sharing pentagonal prisms. Representative can-
didates of these families of minima are illustrated in > Fig. -.The relative energetic order of
the four families is predicted to be (d)-(b)-(c)-(a) with TIPP. An evolutionary algorithm used
byHartke in conjunction with TTM-F interaction potentials resulted in the edge-sharing pen-
tagonal prism as the global minimum. The global minimum structure is in fact qualitatively

⊡ Fig. -
The lowest energy isomers within the four-families of minima for (HO): (a) dodecahedron, (b)
fused cubes, (c) face-sharing pentagonal prisms, and (d) edge-sharing pentagonal prisms. The fig-
ure is reprintedwithpermission from reference Fanourgakis et al. (). © American Institute
of Physics
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identical for TTM-F and TIPP, and it is an all-surface one. The edge-sharing pentagonal
prism (d) is lower by . (TIPP) and by . kcal/mol (TTM-F) than the dodecahedral
family (a).

The Four Major Families of Minima

First principles electronic structure calculations at the MP level of theory with the family of
augmented correlation-consistent basis sets up to quadruple zeta quality were used to esti-
mate complete basis set (CBS) binding energies De for the lowest energy structures within
each of the four low-lying families of minima as follows: (a) dodecahedron (−. kcal/mol, 
hydrogen bonds), (b) fused cubes (−. kcal/mol,  hydrogen bonds), (c) face-sharing pen-
tagonal prisms (−. kcal/mol,  hydrogen bonds), and (d) edge-sharing pentagonal prisms
(−. kcal/mol,  hydrogen bonds) (Fanourgakis et al. ). Among the various interaction
potentials, TTM-F (Burnham and Xantheas b) was found to predict the absolute cluster
binding energies to within % from the correspondingMP/CBS values.These calculations also
yielded the first harmonic vibrational spectra of the lowest energy isomers within each family
as a means of providing the necessary information for their future spectroscopic identification.

Zero-point energy corrections do not change the relative order of the four different
networks, although they reduce the separation between the highest-lying dodecahedron
structure and the lowest-lying edge-sharing pentagonal prism isomer from . kcal/mol to
. kcal/mol.

Vibrational Spectra

The IR spectra of the four low-lying families of minima of (HO) exhibit different features
in the OH stretching region that can be used for their spectroscopic assignment. These are
shown in > Fig. -. Some of these spectral features are reminiscent of their constituent
water tetramer and pentamer fragments.The dodecahedral network is associatedwith the most
red-shifted (by – cm− with respect to the monomer) OH stretching vibrations among
the four isomers and shows the richest structure in the ,–, cm− range. The lowest
edge-sharing pentagonal prisms family of isomers displays IR intense bands that are red-shifted
by ∼ cm− with respect to the average of the symmetric and antisymmetric OH stretching
vibrations in the water monomer. A common feature of the vibrational spectra that is shared
by all four networks is that themost red-shifted, IR-active OH stretching vibrations exhibit the
same characteristics previously found for the most stable isomers of n = – (> Fig. -),
namely that they belong to fragments that have a “free” OH stretch and act as donors to a neigh-
boringwatermolecule along a hydrogen bondwhich resembles a gas-phase dimer arrangement.
It is conceivable that the second characteristic directly affects the energetic stability of the isomer
within the corresponding family.

The computed spectra can be used as guides for the spectroscopic assignment of the lowest
energy edge-sharing pentagonal prism isomer inmolecular beams or the higher-lying networks
in other environments such as helium droplets or cryogenic para-hydrogen solids that can
facilitate the formation of higher energy cluster isomers.
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⊡ Fig. -
Intramolecular spectra in the ,–,cm− region associated with the OH stretching vibra-
tions. The stick diagramof the frequencies is also shown. The IR spectra for thewater ring tetramer,
pentamer, and octamer cube are shown for comparison. The figure is reprinted with permission
from reference Fanourgakis et al. (). ©  American Institute of Physics
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The First FewWater Cages

Significance

Gas hydrates are naturally occurring in situ in the deep oceans and permafrost regions of the
earth (Mao et al. ; Sloan ).Their potential importance as inclusion compounds relevant
to energy problems such as hydrogen storage has been recently highlighted. All of the clathrate
hydrate forming natural gases adopt one of the following three crystal structures (Jeffrey et al.
; Ripmeester et al. ): () sI (cubic, Pm̄n), () sII (cubic, Fd̄m) and () sH (hexag-
onal, P/mmm). These three-dimensional lattices are constructed from the following water
cages: () the pentagonal dodecahedron (D-cage), which consists of  water molecules that
form  pentagonal faces (); () the tetrakaidecahedron (T-cage), which consists of  water
molecules that form  pentagonal and  hexagonal faces ()l; () the hexakaidecahedron
(H-cage), which consists of  water molecules that form  pentagonal and  hexagonal faces
(); () the irregular dodecahedron,which consists of watermolecules that form  tetrag-
onal,  pentagonal, and  hexagonal faces (); and () the icosahedron, that consists of 
water molecules that form  pentagonal and  hexagonal faces (). In the previous nota-
tion, pnqm identifies the underlying Oxygen atom network of the constituent cages, with p,
q being the size of the polygons and n, m the number of faces; for instance,  denotes 
pentagonal and  hexagonal faces. The unit cell of the three-dimensional (sI) hydrate periodic
structure is made of  units of the  cage and  units of the  cage. In a similar manner,
the unit cell of the (sII) hydrate lattice is constructed from  units of the  cage and  units of
the  cage. This hydrate lattice (sII) has been recently considered for practical applications
in energy storage as it was shown to meet current US Department of Energy’s target densities
for an onboard hydrogen storage system (Mao et al. ; Schüth ). Finally, the unit cell of
the (sH) hydrate is more complex since it is constructed from  units of the  cage,  units of
the  cage, and  unit of the  cage.The constituent cages of those three hydrate lattices
are often used as models to probe the relevant guest/host interactions from electronic structure
calculations to derive intermolecular potentials that can be then used for the full system of the
periodic lattice and the molecular guests.

The Pentagonal Dodecahedron (D-cage) (HO) Cluster

The analysis of the relative energetics of the various dodecahedron isomers is performed using
the previous results (Wales and Hodges ) of Wales and Hodges as the starting point. These
authors have used the basin-hoping Monte Carlo method (Li and Scheraga ; Wales and
Scheraga ) in conjunction with the classical TIPP (Jorgensen et al. ) potential in order
to obtain the global and low-lying local minima of the pentagonal dodecahedron family of iso-
mers. The list of the first  minima obtained with the TIPP potential by Wales and Hodges
were used as starting geometries for optimization with the TTM-F (Burnham and Xantheas
b, c; Burnham et al. ) interaction potential (see > Fig. -). In that figure, the global
minimum obtained with TIPP for the dodecahedron corresponds to minimum # in the list
and is indicated by an arrow. In general, there is a good correspondence between the TIPP
and TTM-F relative isomer energetics, except for the isomer indicated as minimum “” in the
list. That isomer labeled by “” is the one suggested as the global minimum from the combina-
torial optimization with the “strong” and “weak” hydrogen bonds (SWB) model (Kirov )
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⊡ Fig. -
Binding energies of the first  isomers of the pentagonal dodecahedron (HO) cluster with the
TIPP (filled circles) and TTM-F (open circles) potentials. The TIPP global minimum corresponds
tominimum # and is indicated with an arrow. Minimum “” is the isomer predicted from the SWB
model. The figure is reprinted with permission from reference Kirov et al. (). ©  Elsevier

when the intermolecular interactionswere computedwith the ST (Stillinger andRahman )
interaction potential.

In order to further assess the validity of the predictions of the empirical interaction poten-
tials regarding the relative stability of isomers for the pentagonal dodecahedron, we have
carried out electronic structure calculations for the  minima that are included in > Fig. -
(Kirov et al. ). The TTM-F optimal structures (which are qualitatively similar to the ones
obtained by TIPP) for the  minima labeled – were used as starting points in the geom-
etry optimization at both the density functional (DFT) (Hohenberg and Kohn ; Kohn
and Sham ) and MP (Møller and Plesset ) levels. In the DFT calculations, Becke’s
gradient-corrected exchange-correlation density functional (BLYP) (Becke , ) was
used in conjunction with Ahlrichs’ polarized triple-ζ (TZVP) basis set (Schäfer et al. ). As
for the previous cases, theMP optimizations were performed using Dunning’s (Dunning ;
Kendall et al. ) augmented correlation-consistent basis sets of double-ζ (aug-cc-pVDZ)
quality.

The binding energies of these  isomers of the dodecahedron (HO) are shown in
> Fig. - at the BLYP/TZVP (open circles) and MP/aug-cc-pVDZ (filled squares) lev-
els of theory (Kirov et al. ). The order of isomers has been maintained the same as in
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⊡ Fig. -
Binding energies of the first  isomers of the pentagonal dodecahedron (HO) cluster at the
BLYP/TZVP (open squares) andMP/aug-cc-pVDZ (filled squares) levels of theory. The TIPP global
minimum corresponds to minimum # and is indicated with an arrow. Minimum “” is the isomer
predicted from the SWBmodel. The figure is reprinted with permission from reference Kirov et al.
(). ©  Elsevier

> Fig. - for a direct comparison. We first note that BLYP/TZVP also predicts minimum
“” to be more stable than minimum # (the global dodecahedron minimum of TIPP model)
as was the case with TTM-F potential. However, it yields an even lower energy structure
(minimum #). The energetic stabilization of minimum # is also confirmed during subse-
quent MP/aug-ccpVDZ optimizations. Based on the results of the DFT andMP calculations,
we therefore suggest minimum # as the global minimum for the dodecahedron family of
(HO). Its binding energy (De) is −. kcal/mol (BLYP/TZVP) and −. kcal/mol
(MP/aug-cc-pVDZ). The three-dimensional structure and its two-dimensional mapping onto
the corresponding Schlegel diagram (Schlegel ) for the newly found global minimum are
shown in > Fig. -. Schlegel diagrams assist in categorizing the various isomers by offering
a helpful two-dimensional visual representation of the connectivity of the underlying hydro-
gen bonding network. Their construction is based on the principle that the nodes and lines of
the graph correspond to the vertices and edges of the corresponding polyhedron.The hydrogen
bonding network is naturally preserved upon this dimensional reduction from the D structure
(left) to the D graph (right). In order to better indicate the correspondence between the two
representations, we also indicate the numbering of the oxygen atoms in > Fig. -.
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⊡ Fig. -
The lowest energy isomer of the dodecahedron predicted at the MP level of theory. Left panel:
D structure. Right Panel: Schlegel diagram indicating the “strong” (dimer-like, solid lines) and
“weak” (dashed lines) nearest-neighbor (n–n) molecular arrangements. The figure is reprinted with
permission from reference Kirov et al. (). ©  Elsevier

The Tetrakaidecahedron (T-Cage) (HO) Cluster

For a fixed position of the Oxygen atoms in the  (HO) cage cluster, there are ,,
symmetry distinct configurations arising from the different hydrogen positions that are consis-
tent with the ice rules.The application of the SWEB discretemodel with subsequent refinement
at the DFT andMP levels of theory yields the first few (∼) low-lying networks.The Schlegel
diagrams (Schlegel ) (D projections of the D structures) of the ten lowest minima of the
T-cage (fully optimized at the MP/aug-cc-pVDZ level of theory) are shown in > Fig. -
(Yoo et al. ). The various networks are labeled using the R or L designation, depending on
whether the direction of the donorH atoms in the three concentric rings starting from the inner
one is either clockwise (R) or counterclockwise (L). For example, the RLR isomer corresponds
to an arrangement in which the H atoms are arranged in a clockwise (for the inner and outer
circles) and a counterclockwise direction (for the middle circle). Primes are used to indicate
different arrangements of the vertical H atoms that connect the three rings. Therefore, the L’LR
network has the same connectivity and direction as LLR for the three rings but differs in the
direction of the vertical H atoms.The ten lowest-lying minima of the T-cage can be furthermore
grouped into three families (indicated as I, II and III in > Fig. -) depending on the donor–
acceptor connectivity of the top hexagonal face. For this six-member hydrogen-bonded ring,
isomers in family (I) isomers have only donor-acceptor (da) water molecules, whereas isomers
in families (II) and (III) have both double donor (dd) and double acceptor (aa) watermolecules.
The (dd)/(aa) molecules are indicated with blue and gray colors in > Fig. -. It should be
noted that all tenminima shown in > Fig. - have a zero total dipole moment.Their relative
order at the MP/aug-cc-pVDZ level of theory with respect to the most stable LLR network of
family (I) (I-LLR) is identical with the larger aug-cc-pVTZ basis set at the MP level of theory.

Starting from any of those low-lying isomers of the T-cage the three-dimensional periodic
lattice of the (sI) hydrate can now be constructed. In the -molecule unit cell of the (sI) lattice
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⊡ Fig. -
Schlegel diagrams of the ten lowest minima of the T-cage (HO) cluster obtained at theMP/aug-
cc-pVDZ level of theory. The figure is reprinted with permission from reference Yoo et al. ().
©  American Chemical Society

two adjacent T-cages are surrounded by six D-cages. When two T-cage isomers sharing a com-
mon hexagonal face are used as the building blocks, the positions of the hydrogen atoms of the
rest of  molecules ( ×  −  − ) can determined. In this manner, the possible networks of
the (sI) hydrate unit cell are dramatically reduced.The proposed “bottom-up” approach, which
starts from the constituent cages and builds up the three-dimensional lattice, can be used to con-
struct three-dimensional unit cells of the (sI) hydrate from the low-energy networks of their
constituent cages. In > Fig. - the process of constructing a periodic unit cell of the (sI)
hydrate lattice starting from the lowest-lying I-LLR isomer is illustrated.

Outlook

The study of small- to medium-sized water clusters offers an important, molecular-level insight
into the fundamental interactions between water molecules. It provides information about the
nature andmagnitude of the cooperative effects that govern the structural and dynamic proper-
ties of themore complex aqueous environments.The structures of the first fewwater clusters are
controlled by the need tomaximize the amount of hydrogen bonding and as such they are inho-
mogeneous and under-coordinated, resulting in structures in which all atoms are on the surface
of the cluster. This hydrogen bonding environment is very different than the on-the-average
homogeneous, fully coordinated one that is found in aqueous systems. As the cluster grows
there is a point where fully coordinatedmolecules in the inside on the cluster are observed.The
onset of this transition from the “all-surface” to “fully coordinated” molecules occurs at n = .
Classical force fields for water are essential in probing the plethora of isomers especially for the
larger (n > ) clusters. They can be used in conjunction with new approaches for the efficient
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⊡ Fig. -
Schematic approach for building the (sI) hydrate lattice from the low-lying networks of the T-cage.
The connectivity of the O atoms between the two cages (without hydrogen atoms) is highlighted
in gray. The blue box indicates the (sI) cubic unit cell ( water molecules). The figure is reprinted
with permission from reference Yoo et al. (). ©  American Chemical Society

sampling of the configuration space in order to obtain the low-lying isomers of clusters in this
size regime.The structures of the small- and medium-sized water clusters are essential in order
to assess the accuracy of those force fields in developing transferable models that can be used
in different environments such as liquid water, ice, at aqueous interfaces, or around charged
species or hydrophobic surfaces. Given the fact that accurate energetics for the interaction even
between two water molecules is not currently available experimentally, the use of high-level
first principles electronic structure calculations to obtain the cluster energetics represents an
indispensable and currently irreplaceable path toward understanding aqueous environments.
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Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures  

Abstract: This chapter provides information on various carbon allotropes, and in-depth
details of structures, electronic and chemical properties of graphene, fullerenes, and single-
walled carbon nanotubes (SWCNTs). We have given an overview of different computational
methods that were employed to understand various properties of carbon nanostructures.
Importance of application of computational methods in exploring different sizes of fullerenes
and their isomers is given. The concept of isolated pentagon rule (IRP) in fullerene chem-
istry has been revealed. The computational and experimental studies involving Stone–Wales
(SW) and vacancy defects in fullerene structures are discussed in this chapter. The relation-
ship between the local curvature and the reactivity of the defect-free and defective fullerene
and single-walled carbon nanotubes has been revealed. We reviewed the influence of different
defects in graphene on hydrogen addition. The viability of hydrogen and fluorine atom addi-
tions on the external surface of the SWCNTs is revealed using computational techniques. We
have briefly pointed out the current utilization of carbon nanostructures and their potential
applications.

Introduction to Carbon Nanostructures

Carbon is one of the first few elements known in antiquity. The pure forms of
this element include diamond and graphite, which have been known for few thou-
sand years (http://www.nndc.bnl.gov/content/elements.html; Pierson ; Wikipedia -
http://en.wikipedia.org/wiki/Carbon). Both of these materials are of immense importance in
industry and in everyday life. Diamond and graphite are termed as giant structures since, by
means of a powerful microscope, one could see millions and millions of atoms, all connected
together in a regular array. Diamond would appear as a rigid and rather complex system like
some enormous scaffolding construction. Carbon is also the major atomic building block for
life. All life forms on Earth have carbon central to their composition. More than ten million
carbon-containing compounds are known. Compounds containing only carbon atoms, partic-
ularly nano-sized materials are intriguing and attract attention of scientists working in various
disciplines. Before , scientists deemed that there were only three allotropes of carbon,
namely, diamond, graphite, and amorphous carbon such as soot and charcoal. Soccer-ball-
shapedmolecule comprising of  carbon atoms,C buckyball named fullerenewas discovered
in  and it is another interesting carbon allotrope (Kroto et al. ). Carbon nanotubes
(CNTs), a spin-off product of fullerene, were reported in  by Iijima (). Important
well-known carbon materials are depicted in > Fig. -. The publication of transmission elec-
tron microscope (TEM) images of CNTs by Iijima was a critical factor in convincing a broad
community that “there is plenty of room at the bottom” and many new structures can exist
at the nanoscale. > Figure - shows eight allotropes of carbon. In addition to graphene,
fullerenes, and carbon nanotubes, there are few other uncommon carbon nanostructures such
as nanohorns (Iijima et al. ; Poonjarernsilp et al. ), nano-onions (Palkar et al. ;
Zhou et al. ), nanobuds (He and Pan ; Nasibulin et al. a, b; Wu and Zeng ),
peapods (Launois et al. ; Li et al. a; Smith et al. ), nanocups (Chun et al. ),
and nanotori (Liu et al. ; Sano et al. ).

We performed a quick search in SciFinder on “fullerene” and “carbon nanotubes” to reveal
their importance and growth in current science, engineering, and technology. Nearly ,
references were obtained for the word “fullerene,” while ∼,  references were obtained for

http://www.nndc.bnl.gov/content/elements.html
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⊡ Fig. -
Eight allotropes of carbon: (a) Diamond, (b) Graphite, (c) Lonsdaleite, (d) C (Buckminster-
fullerene or buckyball), (e) C, (f) C, (g) Amorphous carbon, and (h) single-walled carbon
nanotube or buckytube (The picture adopted from Wikipedia – http://en.wikipedia.org/wiki/
Allotropes_of_carbon)
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“carbon nanotubes” when we searched these topics in October .This is indicative that car-
bon nanomaterials have gained a momentum with the development of nanotechnology as the
driving force of the modern science and engineering. Among various carbon nanostructures,
CNTs play a special role in the nanotechnology era. The design and discovery of new materi-
als is always exciting for the potential of new applications and properties (Cohen ; Serra
et al. ). In this chapter, we aim to present an overview of carbon nanostructures, with a
particular interest on structural, electronic, and chemical properties of graphene, fullerenes,
and carbon nanotubes. Important topological defects in the graphene, fullerenes, and carbon
nanotubes will be delineated. Thus, this chapter is intended to be an informative guide of car-
bon nanostructures and to provide description of current computational chemistry applications
involving these species to facilitate the pursuit of both newcomers to this field and experienced
researchers in this rapidly emerging area.

Graphene

Carbon displays a unique feature of making a chemically stable two-dimensional (D), one-
atom thick membrane called graphene in a three-dimensional (D) world. Each carbon atom
in graphene is covalently bonded to three other carbon atomswith sp hybridization. Graphene
is the thinnest known material and in the same time it is the strongest material ever to be
measured. It can sustain current densities six orders of magnitude higher than that of copper.
It has extremely high strength, very high thermal conductivity and stiffness, and is imper-
meable to gases (Geim ). Well-known forms of carbon-containing molecules that
derived from graphene are graphite, fullerene, and carbon nanotube, which are depicted in
> Fig. -. Graphite consists of stacked layers of graphene sheets separated by . nm and
is stabilized by weak van der Waals forces (He and Pan ). Buckminsterfullerene (C)
is formed from graphene balled into a sphere by including some pentagons and hexagons

Graphene

Graphite
C60

Carbon nanotube

⊡ Fig. -
Carbon-containing molecules (graphite, Buckminsterfullerene (C), and carbon nanotube)
derived from graphene
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into the lattice (Kroto et al. ). Carbon nanotubes can be viewed as rolled-up cylinders
of graphene. Therefore, graphene can be called “the mother” of all these three sp carbon
structures.

It was presumed that planar graphene cannot exist in free state since they are unstable
compared to curved structures such as soot, nanotubes, and fullerenes. This presumption has
changed since Novoselov et al. prepared graphitic sheets including single graphene layer and
studied their electronic properties (Novoselov et al. , a). The detailed information
of growth and isolation of graphene has been provided in the recent review by Geim ().
Graphene is a prospective material for nanoelectronics. The electron transport in graphene is
described by Dirac-like equation (Geim and Novoselov ; Novoselov et al. b; Pono-
marenko et al. ). The experimental realization of graphene motivates several studies
focusing on fundamental physics,materials science, and device applications (Abanin et al. ;
Geim and Novoselov ; Novoselov et al. , a, b; Pereira et al. ; Ponomarenko
et al. ). The studies pertinent to the chemistry of graphene sheets have also been reported
(Abanin et al. ; Avouris et al. ; Geim and Novoselov ; Neto et al. ; Pereira
et al. ). Graphene research is a hot topic in this decade, thanks to the recent advances in
technology for growth, isolation, and characterization of graphene.

Graphene sheets need not always be as perfect as one thinks. Various defects such as
Stone–Wales (SW) (Stone andWales ), vacancies (Carlson and Scheffler ), pore-defects
(Jiang et al. ), and substitution atoms (Miwa et al. ; Zhu et al. ) can occur in
the thin graphene sheet. Like the creation of vacancies by knocking atoms out of the graphene
sheet, surplus atoms can be found as ad-atoms on the graphene surface. Ad-dimer defect can
be introduced to graphene and is characterized by two adjacent five-membered rings instead of
two adjacent seven-membered rings in Stone–Wales defect.Therefore, ad-dimer defect is called
as Inverse Stone–Wales (ISW) defect. > Figure - depicts some of the common defects in
graphene sheet.

Experimental observations of defects in graphene have been reported recently (Meyer et al.
;Wang et al. ). Zettl and coworkers showed the direct image of Stone–Wales defects in
graphene sheets using transmission electron microscopy (TEM) and explored their real-time
dynamics. They found that the dynamics of defects in extended, two-dimensional graphene
membranes are different than in closed-shell graphenes such as nanotubes or fullerenes (Meyer
et al. ). High-resolution transmission electron microscopy (HRTEM) and atomic force
microscopy (AFM) have been useful in identifying various defects in graphene. AFM and
HRTEM images of graphene sheet with different defects are shown in > Fig. -. The effect of
various defects on the physical and chemical properties of graphene was studied theoretically
(Boukhvalov and Katsnelson ; Carpio et al. ; Duplock et al. ; Lherbier et al. ;
Li et al. ).The characteristics of typical defects and their concentrations in graphene sheets
are unclear.

Computational and experimental studies concerning defects in graphene sheet are critically
important for basic understanding of this novel system and such understanding will be helpful
for scientists who actively work on applications of graphene-basedmaterials. Although the sur-
face physics of graphene sheets is currently at the center of attention, its chemistry has remained
largely unexplored. Like any other molecule, graphene can involve in chemical reactions. The
chemical functionalization is probably one of the best approaches to detect imperfections in a
graphene sheet (Boukhvalov and Katsnelson ). The functionalized graphene can be suit-
able for specific applications. Research on bended, folded, and scrolled graphene is rapidly
growing now.
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⊡ Fig. -
Defects in graphene sheet; the segment of graphene containing (a) the Stone–Wales (SW) defect;
(b) a bivacancy; (c) a nitrogen substitution impurity; (d) an all-hydrogen saturated pore in
graphene; (e) the pore electron density isosurface of all-hydrogen passivated porous graphene;
(f) creation of a nitrogen-functionalized pore within a graphene sheet: the carbon atoms in the
dotted circle are removed, and four dangling bonds are saturated by hydrogen, while the other
four dangling bonds (DBs) together with their carbon atoms are replaced by nitrogen atoms; (g)
the hexagonally ordered porous graphene. The dotted lines indicate the unit cell of the porous
graphene; (h) the pore electron density isosurface of nitrogen-functionalized porous graphene;
(i) An Inverse Stone–Wales (ISW) defect. Color code for (d), (f), and (g): C, black; N, green; H, cyan.
Isosurface is at . e/Å (The pictures were reprinted with permission from refs. Jiang et al. ()
and Boukhvalov and Katsnelson (). Copyright  and  American Chemical Society)

a b c d e

⊡ Fig. -
(a) HRTEM image of a single graphene layer (atoms appear white). (b) Image of graphene
with Stone–Wales defect (atomic configuration superimposed for easy recognition). (c) Image of
vacancy defect with atomic configuration. (d) Defect image with atomic configuration consisting
of four pentagons (green) and four heptagons (red). (e) Defect image with atomic configuration
consisting of three pentagons (green) and three heptagons (red) (Pictures were reprinted with
permission from ref. Meyer et al. (). Copyright  American Chemical Society)
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Fullerenes

Discovery of fullerene C and other fullerene molecules, isolated pentagon rule (IPR) in
fullerenes:

The fullerene era started in ; Kroto and his colleagues obtained cold carbon clusters
when they carried out an experiment to simulate the condition of red giant star formation.
With the use of the mass spectrometer, they found a large peak commensurate with  carbon
atoms (Kroto et al. ).Themolecule C was proposed to have a football structure, known to
mathematicians as the truncated icosahedron. The shape is composed of  pentagons located
around the vertices of an icosahedron and  hexagon rings placed at the centers of icosahedral
faces.The C molecule was named “Buckminsterfullerene” in honor of the renowned architect
Buckminster Fuller, who designed geodesic domes based on similar pentagonal and hexagonal
structures.The carbon atoms in C fullerene are arranged in exactly the same way, albeit much
smaller, as the patches of leather found on the common football (> Fig. -a).

Since the remarkable discovery of fullerenes in  (Kroto et al. ), these new carbon
allotropes have received significant attention from the scientific community and still exhibit vast
interest (Lu and Chen ; Thilgen and Diederich ). The  Nobel Prize in Chemistry
was awarded to Sir Harold W. Kroto, Robert F. Curl, and the late Richard E. Smalley for their
discovery of fullerenes. Essentially, the most prominent representative of the fullerene family is
C. In early , a method was discovered for producing macroscopic amounts of this fasci-
nating molecule (Krätschmer et al. ). This breakthrough allowed scientists to explore the
properties of C and understand its chemistry. Krätschmer et al. characterized the fullerene
C using mass spectroscopy, infrared spectroscopy, electron diffraction, and X-ray diffraction
(Krätschmer et al. ). Both Kroto et al. () and Krätschmer et al. (), by means of
mass spectroscopy, also characterized the fullerene C. Pure C and C fullerenes were iso-
lated and separated by Kroto and coworkers (Taylor et al. ). The stable fullerenes of C
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⊡ Fig. -
The structures of fullerenes C and C and their familiar shapes. C and C are in icosahedron
(Ih) and Dh point groups
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andC were reported in the ratio of approximately :. C nuclearmagnetic resonance (NMR)
spectroscopy was used to characterize the fullerenes (Taylor et al. ). These two molecules
aremembersof a homologous series of hollow closed-cagemolecules.The fullerene C belongs
to a class of nonspherical fullerenes. It adopts an ellipsoidal shape (point group Dh) and it looks
like “Rugby Ball” as shown in > Fig. -b. Existence of C was predicted by Eiji Osawa in 
(Kagaku ). However, his prediction did not reach Europe or America since it was published
in a Japanese magazine.

In the eighteenth century, the Swiss mathematician Leonhard Euler demonstrated that a
geodesic structure must contain  pentagons to close into a spheroid, although the number of
hexagons may vary. Later research by Smalley and his colleagues showed that there should exist
an entire family of these geodesic-dome-shaped carbon clusters (Kroto et al. ). Fullerenes
form with an even number n ≥  of three connected vertices, n/ edges,  pentagonal faces,
and (n–)/ hexagonal faces (Fowler and Manolopoulos ; Kroto et al. ). Thus, C

has  hexagons, whereas its “rugby-ball”-shaped cousin C has  hexagons. As hexagons are
added or removed, the molecule begins to lose its roundness. Giant fullerenes take on a pen-
tagonal shape. Smaller fullerenes look like asteroids. One should note that all of the fullerenes
have the same Gaussian curvature sign; therefore, all of them have a convex surface. The Buck-
minsterfullerene C, shown in > Fig. -, has a spherical-like shape and the full group of
symmetry of the icosahedron (Ih), which means that it could be rotated by the angle of π/
around the center of each pentagon and reflected in themirror located on each plane of its sym-
metry. Another class of spherical fullerenes like C and C lacks the mirror symmetry h,
hence their maximum symmetry group is icosahedral (I) (Terrones et al. ).

The fullerenes C and C were identified in carbon flames and their ratios depend on the
temperature, pressure, carbon/oxygen ratio, and residence time in theflame (Howard et al. ).
ThemolecularstructureofC wasdeducedfromelectrondiffractionusingasimulated-annealing
method (McKenzie et al. ). Scientists tried to understand the crystal structures of C and
C using X-ray diffraction technique (David et al. , ; Fischer et al. ; Valsakumar
et al. ). At ambient temperature and pressure, C crystals have face centered cubic (fcc)
structure with a lattice constant of .Å (David et al. ), while the C crystals adopt to
a hexagonal close packed (hcp) structure with a= . Å and c= .Å (David et al. ). The
average diameters ofC andC fullerenes are about  and Å, respectively. Since the discovery
ofC followedbyC (Krotoetal. ;Tayloretal. ),differentsizesofcarboncage fullerenes
were revealed. In early , Diederich et al. isolated the carbon cages of C, C, C, and C,
and these fullerenes were characterized by mass spectrometry, C NMR, electronic absorption
(ultraviolet/visible), and vibrational (infrared) spectroscopy techniques (Diederich et al. a).
As compared with C and C, the isolation of higher fullerenes is really challenging, and their
characterization is complicated by the presence of a varying number of isomers.

Fullerenes are generally represented by a formula Cn , where n is an even number and
denotes the number of carbon atoms present in the cage. Theoretical calculations predicted
that fullerenes larger than C should have at least two isomeric forms (Manolopoulos and
Fowler ). For fullerenesC andC,  and  distinct isomerswere predicted, respectively
(Manolopoulos and Fowler , ).Three isomers for C and two isomers for C were iso-
lated and characterized by CNMR spectroscopy (Kikuchi et al. a). Some of the isomers of
C andC proposed by experimental CNMRspectroscopy are depicted in> Fig. -.Many
of the unique properties of fullerenes originate from their unusual cage structures. Therefore,
determining the ground state geometries of the fullerenes was considered to be an important
step in understanding their unusual properties.
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⊡ Fig. -
The structures of fullerene isomers suggested by the C NMRmeasurements. (a) Three isomers of
C fullerene withC

′

v , Cv , andD point group. (b) Three structural candidates for C fullerene with
C symmetry. (c) Structures of Cv- and Cv -C isomers (The picture was reprinted by permission
fromMacmillan Publishers Ltd.: Nature, ref. Kikuchi et al. (a), copyright )

Experimental works are very limited for higher fullerenes beyond C because such species
are difficult to isolate in pure form in quantities suitable for comprehensive study. Synthesis
of C, in isolable quantities, was achieved using flash vacuum pyrolysis (FVP) technique by
Scott and coworkers by  steps in  and no other fullerenes were formed as by-products
(Scott et al. ). Very recently, Amsharov and Jensen synthesized larger fullerene C using
the same FVP technique used for C synthesis (Amsharov and Jensen ). This shows a
promise for the synthesis of higher fullerenes. It is noteworthy tomention that there has been lot
of experimental and theoretical studies involving fragments of fullerenes, called “buckybowls”
(Barth and Lawton ; Dinadayalane and Sastry , a, b; Dinadayalane et al. ,
, , ; Mehta and Rao ; Mehta et al. ; Priyakumar and Sastry a, b, c;
Sakurai et al. ; Sastry and Priyakumar ; Sastry et al. , ; Seiders et al. ,
; Sygula and Rabideau ; Wu and Siegel ). The smallest buckybowl “corannulene”
was synthesized nearly  years prior to the discovery of fullerene C (Barth and Lawton ).
Another small fragment of C called “sumanene” was successfully synthesized in  after so
many futile attempts by different groups (Sakurai et al. ).

Fullerene can be classified into (a) classical fullerene and (b) nonclassical fullerene. The
former is a closed carbon cage containing  pentagons and any number of hexagons, while
the latter can have heptagons, octagons, and an additional number of pentagons or squares.
Growing classical fullerenes from nonclassical fullerenes, for example from C to C by the
dimer addition, was proposed (Hernández et al. ). However, there is no clear experimental
evidence for fullerene formation through this route. Helden et al. showed the experimental evi-
dence for the formation of fullerenes by collisional heating of carbon rings in the gas phase
(Helden et al. ). Various mechanisms have been proposed so far for the formation of
fullerenes. They can be divided into two major models: the pentagon road (PR) model (Klein
and Schmalz ; Maruyama and Yamaguch ; Smalley ), and the fullerene road (FR)
model (Heath ).
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Since the discovery of C, scientists showed vast interest in larger fullerenes.Therefore, the
family of fullerenes increased, and now it also includes C, C, C, C, C, C, C, C,
C, C, and C (Diederich et al. a, b; Kikuchi et al. b; Kimura et al. ; Miyake
et al. ; Mizorogi and Aihara ; Taylor et al. , ). The fundamental understand-
ing of the size dependence of the closed carbon cage structures is important for tailoring these
systems for possible nanotechnology applications. Larger fullerenes that have an icosahedral
symmetry can also be constructed. This procedure generates  pentagons positioned around
vertices of an icosahedron, while all other carbon rings are hexagonal. In general, there are two
kinds of fullerenes with Ih symmetry, one being n =  k and the other n =  k; where n is
the number of carbon atoms and k is any positive integer (Miyake et al. ). > Figure -
depicts some of the giant fullerene structures, where C and C belong to  k family of
icosahedral fullerenes, but all other structures belong to  k family of icosahedral fullerenes.
For more than a decade, these giant fullerenes have been fascinating molecules for theoreti-
cians (Calaminici et al. ; Dulap and Zope ; Dunlap et al. ; Gueorguiev et al. ;
Lopez-Urias et al. ; Tang and Huang ; Tang et al. ; Zope et al. ).

The closed carbon cages smaller than C consist of adjacent pentagons. Such smaller
fullerenes are predicted to have unusual electronic, magnetic, and mechanical properties that
arise mainly from the high curvature of their molecular surface (Kadish and Ruoff ).
A dodecahedron consisting of  carbon atoms with only pentagon rings is topologically the
smallest possible fullerene. The well-known isomers of C are cage, bowl, and ring as shown
in > Fig. -. The bowl shaped isomer is reminiscent of corannulene. The realization of the
smallest carbon closed-cage C, which exclusively contains  pentagons, was doubtful until
.The C closed cage has extreme curvature and high reactivity, which led to doubts about
its existence and stability (Wahl et al. ). Prinzbach et al. produced the smallest fullerene
C from its perhydrogenated form in the gas phase and also obtained the bowl- and ring-
shaped isomers for comparison purposes (Prinzbach et al. ). All these structures were
characterized by photoelectron spectroscopy (PES) and their electron affinities vary signifi-
cantly (Prinzbach et al. ). Theoretical calculations at different levels predicted dissimilar
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⊡ Fig. -
The structures of giant fullerenes (Reprinted with permission from Zope et al. (). Copyright
 by the American Physical Society)
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⊡ Fig. -
Isomers of C: cage-, bowl-, and ring-shaped structures (Reprinted by permission fromMacmillan
Publishers Ltd.: Nature, ref. Prinzbach et al. (), copyright )

energetic ordering for these three isomers. However, all revealed very small relative energies
of isomers. MP method predicted the fullerene to be the most stable followed by the bowl
and then the ring, and this prediction is very similar to the calculations of density functional
theory (DFT) using the local density approximation (LDA). Complete reversal of the stability
ordering was obtained in the calculations with Becke–Lee–Yang–Parr (BLYP) functional. Some
otherDFT functionals predicted the bowl to be themost stable structure, closely followed by the
fullerene isomer (Scuseria ). Hybrid density functional theory and time-dependent DFT
formalism validated the synthesis of the smallest cage fullerene C by comparing the computed
photoelectron spectra with the experimental results (Saito and Miyamoto ).

Closed-cage structure of C was detected by mass spectroscopy in very early days of
fullerene science (Kroto ; Robinson et al. ). Zettl’s group claimed the first prepara-
tion of C in the solid form (Piskoti et al. ). However, the existence of C has not been
fully confirmed to date. C has  conventional fullerene isomers; out of which, the Dh and
Dd have a minimal number of pentagons (Fowler and Manolopoulos ). Therefore, these
two are potential candidates for the most stable structure. In general, the number of isomers
increases as the carbon cage size increases for these small fullerenes as shown in > Fig. -.

Fullerenes from C to C have been extensively studied by theoreticians (Fowler and
Manolopoulos ; Scuseria ; Shao et al. ). They have been predicted to have narrow
HOMO–LUMO gaps and high reactivity. Lu and Chen reviewed the structures, aromaticity,
reactivity, and other properties of the smaller fullerenes that is, less than  carbon atoms
(Lu and Chen ). Readers may refer to the review by Lu and Chen and the references
therein for detailed understanding and further knowledge if required (Lu and Chen ).
Selected structures of smaller fullerenes and their isomers are depicted in > Fig. -. Schlegel
diagram is commonly used by scientists to sketch the fullerenes in planar view, which is very
helpful in identifying atoms and the C–C bonding networks (Fowler and Heine ; Thilgen
and Diederich ; Troyanov and Tamm ). > Figure - depicts the Schlegel diagram
for fullerenes C, C, C, and C.

Natural Abundance of Fullerenes

Scientists are actively involved in discovering the presence of natural fullerenes on Earth.
Interestingly, occurrence of fullerenes such as C and C was reported in shungite, a meta-
anthracite coal from a deposit near Shunga, Russia (Buseck et al. ). Heymann et al. reported
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Number of isomers for the closed carbon cages from C to C (Data was taken from ref. Fowler
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the presence of C at very low concentrations in Cretaceous–Tertiary boundary sites in
New Zealand (Heymann et al. ). Fullerenes (C and C) were found in a unit of shock-
produced impact breccias (Onaping Formation) from the Sudbury impact structure in Ontario,
Canada (Becker et al. ). The abundance of naturally occurring fullerenes was found in car-
bon materials, for example, coal, rocks, interstellar media, and even dinosaur eggs (Heymann
et al. ).

Fullerene Nano-Capsules

In the area of fullerene science, one should not forget to mention an interesting property
of holding the atoms or ions or molecules inside the fullerene cage (Thilgen and Diederich
). Fullerenes are potential nano-capsules. Experimental detection of the nano-capsules
of fullerenes such as La@C , La@C, La@C, La@C, La@C, La@C, and Ce@C was
reported (Kessler et al. ; Kubozono et al. ; Moro et al. ; Saunders et al. ;Thilgen
and Diederich ; Yamada et al. , ). Fullerenes are known in the field of radioac-
tive chemistry/physics. Radioactive nuclear materials can be stored by encapsulating inside the
fullerenes. U@C, Gd@C, and Gd@C are few examples of encapsulated radioactive mate-
rials (Guo et al. ; Kubozono et al. ).The stability of thesemetallic fullerenes could bring
the new effective solution of the radioactive waste elimination. For the substance enclosed in
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C20 C28 C36(D6h) C36(D2d) C44(D3h) C44(D2) C44(D2)

C50(D5h)C50(D3)C46(Ds)
C46(C2)

C52(C2) C54(C2v) C56(D2)
C58(Cs/ C3v)

⊡ Fig. -
Representative structuresof smaller fullerenes and low-energy isomers aregiven for someof them.
The pentagon–pentagon fusions are highlighted in blue color only for C, C, C, and C. The
point groups are given in parentheses (Reprinted with permission from ref. Lu and Chen ().
Copyright  American Chemical Society)

the fullerene nano-capsule, carbon atoms act like a defense shield and the fullerene contain-
ers are good for protecting their contents from water and acid. The structures, stabilities, and
reactivities of encapsulated fullerenes (nano-capsules) and doped fullerenes have been the sub-
ject of theoretical interest (Guo et al. ; Lu et al. ; Park et al. ; Simeon et al. ;
Wang et al. ; Wu and Hagelberg ; Zhao and Pitzer ). The closed-cage “fullerenes”
or “heterofullerenes” can be placed inside the single-walled carbon nanotubes, for example,
C@SWCNT (Hirahara et al. ; Okada ; Smith et al. ). Leszczynski and cowork-
ers have explored the mechanism of the catalytic activity of fullerene derivatives using reliable
computational methods (Sulman et al. ; Yanov et al. ). Fullerenes are certainly worthy
of scientific study because of their unique shape and intriguing properties.

Isolated Pentagon Rule (IPR) in Fullerenes

A wide range of methods available for producing fullerenes concluded that C is the most
abundant and is followed by C (Kadish and Ruoff ). The pristine C (Ih) contains two
different C–C bonds: the one at the junction of two six-membered rings and the other one at the
junction of a five- and a six-membered ring. These two bonds are usually labeled as a [,] and
[,] C–C bonds respectively. The pristine C (Dh) has eight distinguishable C–C bonds. It
has been known to chemists that energetically it is not favorable to have two pentagons sharing
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⊡ Fig. -
Schlegel diagrams of C, C, C, and C fullerenes. The point groups are given in parentheses,
systematic numbering recommended by IUPAC (Pictures were reprinted with permission from ref.
Thilgen and Diederich (). Copyright  American Chemical Society. Ref. Fowler and Heine
(). Copyright  Royal Society of Chemistry)

the same C–C bond.There are ,mathematical ways of forming a closed cage with  carbon
atoms (isomers), but the Buckminsterfullerene C (Ih) is the most special and stable because
all of its pentagons are isolated by hexagons.This condition is called the “isolated pentagon rule”
(IPR), which tends to make fullerenes more stable (Fowler and Manolopoulos ).

In fact, C is the smallest fullerene cage that obeys the isolated pentagon rule. Fullerenes
C, C, C, or C do not satisfy the IPR. The next fullerene, which follows the IPR, is C

(it has , possible isomers). Also, C has an IPR structure. Most of the higher fullerenes
have proven to follow IPR (Kroto ). Only one IPR-obeying isomer exists for C and for
C (Fowler and Manolopoulos ), while the number of possible IPR isomers increases
rapidly with increase in the size of the fullerenes as shown in > Fig. -. Fullerene C has
five isomers that satisfy the IPR. Three isomers (two with Cv and one with D symmetry) out
of these five were identified and characterized using C NMR spectra (Kikuchi et al. a).
The fourth isomer (Dh-C) has been recently separated and characterized in the form of
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⊡ Fig. -
Fullerene size versus number of isolated pentagon rule (IPR) isomers (The datawas taken from ref.
Manolopoulos and Fowler ())

C(CF) (Shustova et al. , ), and the last one has been synthesized using FVP tech-
nique (Amsharov and Jensen ). According to Manolopoulos and Powler (Manolopoulos
and Fowler ), C has nine IPR-satisfying isomers, out of which three isomers with C sym-
metry were experimentally characterized using C NMR spectroscopy, which gave  NMR
lines with nearly equal intensity (Kikuchi et al. a).

There are  geometric isomers satisfying IPR and , non-IPR isomers are possible for
fullerene C (Fu et al. ). Earlier experimental C NMR spectroscopy studies character-
ized two IPR isomers with D and Dd point groups (Kikuchi et al. a; Taylor et al. ).
Third isomer was also identified and reported (Achiba et al. ; Crassous et al. ). Pure
D-C was synthesized by Dennis et al. in  (Dennis and Shinohara ). A theoretical
study revealed that C cage is special in the family of fullerenes from C to C since the num-
ber of preferable isomers for C is more than that of C fullerene. Okada and Saito provided
the geometries of all of the  IPR isomers of fullerene C along with their point groups (Okada
and Saito ). Miyake et al. separated two IPR isomers of C out of possible  isomers using
multistageHPLC (highperformance liquid chromatography) (Miyake et al. ) and these two
isomers were characterized to have C and Cs point groups by C NMR spectroscopy (Taylor
et al. ). Burda et al. showed the experimental evidence for the photoisomerization of higher
fullerenes.They confirmed the theoretical prediction that C has less number of IPR-satisfying
isomers ( isomers) than C ( isomers) (> Fig. -) (Burda et al. ). Experimental
studies based on C NMR spectroscopy revealed that fullerenes C and C possess  and
 IPR isomers respectively, and HPLC was used to separate the isomers (Achiba et al. ;
Miyake et al. ; Tagmatarchis et al. ). Computational methods were used to calculate
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⊡ Fig. -
Correlation between the number of isomers (dotted line as a visual guide) for each fullerene and
the time constant for the formation of the lowest excited singlet state monitored at  nm (dots)
(Reprintedwithpermission fromref. Burdaet al. (). Copyright AmericanChemical Society)

relative energies of the IPR isomers and the C NMR spectra of fullerenes (Shao et al. ;
Slanina et al. a, b; Sun ). The computed C NMR spectra were interpreted with the
available experimental data (Beavers et al. ; Chaur et al. a, b; Melin et al. ; Rojas
et al. ; Scheina and Friedrich ; Shao et al. ; Slanina et al. a, b; Sun ; Xie
et al. ). Theoretical calculations predicted that C () is one of the most stable IPR iso-
mers (Shao et al. ). The number provided in the parenthesis is the isomer number. Very
recently, consistent to the theoretical prediction, Troyanov and Tamm reported the isolation
and X-ray crystal structures of trifluoromethyl derivatives of C () and C () fullerene
isomers complying with the isolated pentagon rule (Troyanov and Tamm ).

Rojas et al. have shown the experimental evidence of the decreasing trend in the gas-phase
enthalpy of formation and strain energy per carbon atom as the size of the cluster increases.
Thus, the fullerenes become more stable as they become larger in size (Rojas et al. ).
Interestingly, molecules encapsulated inside the carbon cages stabilize the fullerene isomers
that violate IPR (Beavers et al. ; Fu et al. ; Thilgen and Diederich ). Several IPR
and non-IPR endohedral fullerenes (single metal, di-metal, or tri-metal nitride encapsulated
fullerenes) were isolated and characterized experimentally (Beavers et al. ; Chaur et al.
a, b; Fu et al. ; Melin et al. ; Thilgen and Diederich ), and their isolation
motivated significant theoretical interest (Fu et al. ; Park et al. ; Wu and Hagelberg
). Dinadayalane and Sastry explored the structures and relative energies of the IPR iso-
mers of buckybowls using computational methods (Dinadayalane and Sastry ). Scheina
and Friedrich have recently proposed head-to-tail exclusion rule in explaining the stability of
carbon cage structures that obey the IPR (Scheina and Friedrich ).

Fullereneswith less than  carbon atoms cannot have isolated pentagons and therefore they
should be highly unstable and reactive. Xie et al. synthesized non-IPR Dh-C fullerene, which
is a little sister ofC , by introduction of chlorine atoms at themost reactive pentagon–pentagon
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vertex fusions. They confirmed the Dh-C structure by mass spectrometry, infrared, Raman,
ultraviolet-visible, and fluorescence spectroscopic techniques (Xie et al. ). The report of
novel small cage “Saturn-shaped” CCl structure encourages the possibility of obtaining
other small non-IPR fullerenes and their derivatives. The investigations of the properties and
applications of small fullerenes and their derivatives are now open.

Common Defects in Fullerenes

Stone andWales examined rotation of C–C bonds in various fullerene structures using approxi-
mateHuckel calculations.The ○ rotation of C–Cbond in fullerene is called Stone–Wales (SW)
or “pyracylene” rearrangement (> Fig. -) (Stone andWales ). Austin et al. reported that
% of all fullerene C isomers can rearrange to Buckminsterfullerene by SW transformation
(Austin et al. ). The C cage represents the smallest fullerene in which SW rearrangement
can give stable IPR isomers: C: (Dh)↔ C: (Cv )↔ C: (Cv )↔ C: (Dh); where
the numbers , , , and  indicate the isomer numbers (Austin et al. ). In case of higher
fullerenes, the number of IPR isomers that can be transformed one into another by SW rear-
rangement considerably increases. For example, the SW transformation gives  and  stable
IPR isomers for C and C, respectively (Fowler and Manolopoulos ). The SW transfor-
mation is usually thought to be the possible mechanism for achieving fullerene isomers (Austin
et al. ; Fowler and Manolopoulos ; Stone andWales ).

It was proposed that fullerenes can have seven-membered rings in addition to five- and
six-membered rings (Taylor ). Troshin et al. isolated and characterized the C fullerene
derivatives in which the cage structure contains the seven-membered ring. The structures were
characterized usingmass spectrometry, IR spectroscopy, andNMR spectroscopy (Troshin et al.
). Smalley and coworkers found that laser irradiation can fragment C into C, C, C,
and other smaller cages with even number of carbon atoms via losing C fragments (O’Brien
et al. ). The formation of seven-membered rings was considered to play an important role
in the fragmentation process of fullerenes (Murry et al. ).The laser desorption ionization of
products generated from the reactions of C with O gives the odd-numbered clusters such as
C, C, C, and C (Christian et al. ; Deng et al. ). Vacancy defects destroy the orig-
inal topology of five- and six-membered rings in fullerenes (Christian et al. ; Deng et al.

SW
transformation

ba

⊡ Fig. -
(a) Stone–Wales or “pyracylene” transformation in fullerenes interchanges pentagons and
hexagons; (b) Stone–Wales transformation of Cv isomer of C with two adjacent pentagons gives
the most stable Ih Buckminsterfullerene; the C–C bond involved in ○ rotation is highlighted and
the two adjacent pentagons are marked in the fullerene structure in left hand-side
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⊡ Fig. -
Buckminsterfullerene (perfect structure); vacancy defect fullerenes generated from C: (a) mono-
vacancy, (b) di-vacancy, (c) tri-vacancy, (d) three different structures of tetra-vacancy (Reprinted
with permission from Hu and Ruckenstein (). Copyright , American Institute of Physics)

; Hu and Ruckenstein ; Hu and Ruckenstein ; Lee and Han ; Murry et al.
; O’Brien et al. ). They generate various sizes of rings such as four-, seven-, eight-, and
nine-membered rings and also produce the new five- and six-membered rings depending on
the number of carbon atom vacancies (> Fig. -) (Christian et al. ; Deng et al. ; Hu
and Ruckenstein ; Hu and Ruckenstein ; Lee and Han ;Murry et al. ; O’Brien
et al. ).

Carbon Nanotubes (CNTs)

Discovery and Classification of CNTs

Modern “nanotechnology revolution”was flourished by the discovery of fullerenes and has been
escalating since the isolation of multi- and single-walled carbon nanotubes. The detection of
carbon nanotubes by Iijima in  is one of the landmarks in nanotechnology (Iijima ).
In the interview to Nature Nanotechnology, Iijima told that the discovery of carbon nanotubes
was unexpected but not entirely accidental because he had accumulated a lot of experience
in looking at short-range order in carbon species such as amorphous carbon and very thin
graphite sheets (Iijima ). The discovery of Buckminsterfullerene by Kroto, Curl, Smalley,
and coworkers motivated Iijima’s interest in finding out new carbon allotropes (Kroto et al.
).

There are two structural forms of carbon nanotubes: multi-walled carbon nanotubes
(MWCNTs) and single-walled carbon nanotubes (SWCNTs). The former one was reported in
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the journal Nature in  by Iijima ().The SWCNTswere reported for the first time in back-
to-back papers in Nature in  independently by Iijima as well as Bethune groups (Berthe
et al. ; Iijima and Ichihashi ). The existence of carbon nanotubes was reported as early
as  and also in  (Oberlin et al. ; Radushkevich and Lukyanovich ). However,
those reports did not reach the wide range of scientific community because they were published
in unpopular journals and at that time, no fabrication process was known that would lead to the
synthesis of macroscopic amounts of carbon nanotubes (Oberlin et al. ; Radushkevich and
Lukyanovich ).Monthioux and Kuznetsov have recently documented the history of carbon
nanotube discovery since  (Monthioux and Kuznetsov ).

High-resolution electron microscopy (HREM) images of the CNTs showed the resem-
blance of a “Russian doll” structural model that is based on hollow concentric cylinders capped
at both ends. The model structures of multi-walled and single-walled carbon nanotubes are
shown in > Fig. -. Wide range of methods such as arc-evaporation of graphite, laser abla-
tion, chemical vapor deposition (CVD), vapor phase decomposition, or dispropotionation of
carbon-containing molecules, etc., have been reported for the synthesis of multi-walled and
single-walled carbon nanotubes (Dresselhaus et al. ). It remains unclear whether SWCNTs
andMWCNTs are formed via the samemechanism. It is also unclear whether various methods
used to produce carbon nanotubes are mechanistically consistent (Dresselhaus et al. ). For
the transformation pathway, fullerenes are known to be a suitable carbon source for MWCNT
growth under certain conditions (Suchanek et al. ). An ideal MWCNT consists of cylindri-
cal tubes in which the neighboring tubes are weakly bonded through van derWaals forces. The
MWCNT is incommensurate when each of its walls has its own chirality independent of other
walls.

SWCNT, which is a one-dimensional (D) system, can be considered as the conceptual
rolling of a section of two-dimensional (D) graphene sheet into a seamless cylinder form-
ing the nanotube.The structure of SWCNT is uniquely described by two integers (n,m), which
refer to the number of a⃗ and a⃗ unit vectors of the D graphene lattice that are contained in
the chiral vector, Ch = na⃗ + ma⃗. The chiral vector determines whether the nanotube is a
semiconductor, metal, or semimetal. From the (n, m) indices, one can calculate the nanotube
diameter (dt), the chirality or chiral angle (θ), the electronic energy bands, and the density of
electronic states. The nanotube diameter (dt) determines the number of carbon atoms in the

MWCNT SWCNT

a b

⊡ Fig. -
Representative structures of (a) multi-walled (b) single-walled carbon nanotubes
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circular cross section of the nanotube shell, one atom in thickness (Saito et al. ). The tube
diameter and chiral angle can be written in terms of (n, m) as

Tube diameter, dt = (
√

/π) acc (
√

m
+mn + n

)

Chiral angle, θ = tan− {
√

 m/(n +m)},

where acc is the nearest-neighbor carbon atom distance of . Å.
Among the large number of possible Ch vectors, there are two inequivalent high-symmetry

directions. These are termed “zigzag” and “armchair” and are designated by (n,) and (n,n),
respectively. Either achiral (armchair and zigzag) or chiral SWCNTs can be constructed
depending on the orientation of the six-membered rings with respect to the nanotube axis.
Schematic representation of the structures of armchair, zigzag, and chiral SWCNTs are shown in
> Fig. -.Theoretical studies in  predicted that the electronic properties of “ideal” SWC-
NTs depend on the width and chirality of the tubes (Hamada et al. ; Mintmire et al. ;
Saito et al. ). The electronic properties of a SWCNT vary in periodic way between being
metallic and semiconductor. SWCNTs are metals if (n–m)/ represent an integer, otherwise
they are called semiconductors (Dresselhaus et al. ).

Several metallic (n, m) nanotubes have almost the same diameter dt (from . to . nm),
but have different chiral angles: θ = , ., ., ., ., and .○ for nanotubes (, ), (, ),
(, ), (, ), (, ), and (, ), respectively (Dresselhaus et al. ). Few people realize that
CNTs constitute a large family with a wide variety of sizes and properties, which are determined
by their structure and composition, including chirality, number of walls, ordering of the wall,
defects, surface functionalization, and other features.

Strano has recently sorted out chiral SWCNTs into left-handed and right-handed tubes,
which is an important milestone for studying of SWCNTs (Strano ). Significant progress
has been made in the area of carbon nanotubes. Scientists are able to disperse, identify, sort,
and now also isolate various types of carbon nanotubes (Arnold et al. ; Peng et al. ;
Strano , ). Specific methods have been found to grow long SWCNTs and control the
nanotube diameters (Lu et al. ; Zhang et al. ). Controlled synthesis of nanotubes opens
up exciting opportunities in nanoscience and nanotechnology (Dai ). A range of methods
have been found for effective separation of metallic and semiconducting SWCNTs. Although
some synthetic procedures have been known, they are not easy methods for synthesizing bulk
quantities of metallic and semiconducting SWCNTs (Zhang et al. ). Very recently, scien-
tists have succeeded the preferential growth of SWCNTs with metallic conductivity (Rao et al.
a).

Raman and electronic spectroscopy techniques are useful in characterizing metallic and
semiconducting SWCNTs.The radial breathing mode (RBM) in Raman spectra of SWCNTs is
helpful in determining the diameter and chiral indices (n, m) of the nanotubes (Dresselhaus
et al. ; Dresselhaus et al. , ; Harutyunyan et al. ; Rao et al. a). Experi-
mental results pointed out decreasing band gapwith increasing radius of the armchair SWCNTs
(> Fig. -) (Ouyang et al. ). Another breakthrough in carbon nanotube chemistry has
been accounted by Zhang and Zuo, who have determined a quantitative atomic structure of
MWCNT containing five walls with diameter ranging from ∼ to Å and the C–C bond
lengths of individual SWCNTs using electron diffraction technique (Zhang and Zuo ).
Their results indicate that there are three different bond lengths in chiral walls and two dif-
ferent bond lengths in achiral walls (Zhang and Zuo ). Electron diffraction technique has
been used in determination of atomic structure of SWCNTs and the chiral indices (n,m) of
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⊡ Fig. -
(a) The roll-up of graphene sheet into SWCNT; (b) picture shows how to roll-up graphene sheet
to generate three different types of SWCNTs; (c) (,) armchair SWCNT; (d) (,) zigzag SWCNT; (e)
(,) chiral SWCNT; (f) three types of SWCNTs (armchair, zigzag, and chiral) with fullerene end caps.
These can be viewed as the growth of SWCNTs by adding several layers of hexagonal rings at mid-
dle of different fullerenes; (g) Mirror image of the chiral SWCNT; The structures (c), (d), and (e) are
given exactly same types of SWCNTs that are mentioned in (b). In (c)–(e), σv and σh indicate the
vertical plane of symmetry and horizontal plane of symmetry, respectively. Further, in these three
structures, the red line is the axis of rotation; the distance of one unit cell for these three types of
SWCNTs is provided; the number of carbon atoms (x) in each layer and the number of layers (y)
required for one unit cell is given as xy , for example –  means six carbon atoms in each layer and
three layers required for one unit cell of (,) armchair SWCNT (Pictures (b) and (g) were reprinted
by permission from Macmillan Publishers Ltd.: Nature Nanotech., ref. Strano (), copyright
)
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⊡ Fig. -
Tube radius versus observed band gap. Each experimental data point (Δ) represents an average
gap valuemeasured on a distinct (n,n) tube. Theoretical results (solid square, open square, and solid
circle) are also shown for comparison (Reprinted with permission from ref. Ouyang et al. ().
Copyright  American Chemical Society)

CNTs (Jiang et al. ; Qin ). Rao et al. have revealed the efficient growth of SWCNTs of
diameter – nm from diamond nanoparticles and fullerenes (Rao et al. b).

SWCNTs have stimulated vast interest due to their unique structural, mechanical, elec-
tronic, thermal, and chemical properties, and their potential applications in diversified areas.
There has been enormous growth in patents related to carbon nanotubes, fuelled by predictions
that themarket for nanotubes will be $ billion by . Between  and  it was estimated
that , nanotube-related patents were issued in the USA. Still, there is a cumulative backlog
of more than , patent applications relevant to CNT as reported in  (MacKenzie et al.
).

Since there are reports of the natural abundance of fullerenes (Becker et al. ; Buseck et al.
; Heymann et al. , ), the issue of the natural occurrence of carbon nanotubes has
also attracted the attention of researchers. In , Esquivel et al. published TEM images that
appear to be MWCNTs isolated from a Greenland ice core (Esquivel andMurr ). Velasco-
Santos reported the images of hollow carbon fibers from oil-well samples (Velasco-Santos et al.
). However, we do not have any evidence so far for naturally occurring SWCNTs.

Various Defects in Carbon Nanotubes

Carbon nanotubes are not as perfect as they were thought to be earlier. Defects such as
pentagons, heptagons, Stone–Wales defects, vacancies, ad-atoms, and dopants can occur in
the nanotube during the growth or in processing and handling of the CNTs (Charlier ).
> Figure - depicts different types of defects in SWCNTs.Heptagon defects are found to play
a crucial role in the topology of nanotube-based molecular junctions, for making X and Y type
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(a) to (c) Nonchiral Haeckelite nanotubes of similar diameter; (a) Nanotube segment containing
only heptagons and pentagons paired symmetrically. (b) Nanotube segment exhibiting repetitive
units of three agglomerated heptagons, surrounded by alternating pentagons and hexagons. (c)
Nanotube segment containing pentalene and heptalene units bound together and surrounded
by six-membered rings. (d) Atomic structure of an (,)–(,) intermolecular junction; the large red
balls denote the atoms forming the pentagon–heptagon pair. (e) The SW transformation leading
to the --- defect, generated by rotation of a C–Cbond in a hexagonal network. (f) HRTEM image
obtained for the atomic arrangement of the SW defect. (g) Simulated HRTEM image for the model
shown in (f). (h) (,) armchair SWCNTwith a Stone–Walesdefect. (i) Ideal single vacancy (SV) defect
in (,) armchair SWCNT. (j) Ideal double vacancy defect in (,) armchair SWCNT. (k) Defect (,)
SWCNT with seven (n = ), eight (n = ), and nine (n = ) membered rings. (l) SWCNT doped with
boron [B atoms are bonded to three C atoms; B in red spheres; C in blue spheres]. (m) SWCNT doped
with nitrogen [N atoms are bonded to two C atoms; N in red spheres; C in blue spheres] (Pictures
(a)–(d), (l) and (m) were reprinted with permission from ref. Charlier (). Copyright 
American Chemical Society. Pictures (e)–(g) were reprinted by permission from Macmillan Pub-
lishers Ltd.: Nature, ref. Suenaga et al. (), copyright . Pictures (h)–(j) were reprinted with
permission from ref. Yang et al. (a). Copyright AmericanChemical Society. Picture (k) was
reprinted with permission from Nishidate and Hasegawa (). Copyright  by the American
Physical Society)
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nanotube connections (Menon and Srivastava ). Long ago, theoretical studies proposed that
pentagon–heptagon pair can be found in the intramolecular junctions of two SWCNT segments
of different chirality (> Fig. -d) (Charlier et al. ; Chico et al. ). Recent experimen-
tal study revealed that ion irradiation has induced defects in the SWCNTs and the dangling
bonds produced by irradiation are rapidly saturated (Chakraborty et al. ).

Low-energy electron and photon also induce damage in SWCNTs (Suzuki and Kobayashi
). The defect formation in SWCNTs is strongly dependent on the nanotube diameter,
suggesting that the curvature-induced strain energy plays crucial role in the damage (Suzuki
and Kobayashi ). The defect formation and healing are reversible processes (Berthe et al.
; Suzuki and Kobayashi ). The defects in the SWCNTs affect their electronic, opti-
cal, and chemical properties. A competition between the defect formation and healing at room
temperature or even below was reported. Raman spectroscopy, electrical measurements, and
photoluminescence (PL) spectroscopy were used to examine the defect formation. However,
the type of defects was not confirmed. Chemically stable topological defect, Stone–Wales defect,
was ruled out because the activation energy for the defect healing was quite small (∼ eV). Low-
energy electron and photon can break C–C bonds in SWCNTs, as it was concluded based on
energetic criterion. Thus, the experimental study proposed that the defects may be a vacancy
and an ad-atom (Suzuki and Kobayashi ).

The Stone–Wales defect is one of the important defects in carbon nanotubes. Stone and
Wales showed that a dipole consisting of a pair of five- and seven-membered rings could be
created by ○ rotation of a C–C bond in a hexagonal network (Stone and Wales ). Such a
dipole was later called Stone–Wales defect. SW transformation is thought to play important role
during the growth of carbon nanotubes. Miyamoto et al. reported an unambiguous identifica-
tion of SWdefect in carbon and boron nitride nanotubes using photoabsorption and vibrational
spectroscopy (Miyamoto et al. ). Experimental vibrational frequency of , cm− was
reported to be a signature in identifying SW defect in carbon nanotube (Miyamoto et al. ).
Identifying and characterizing topological defects in SWCNTs are highly challenging tasks. A
powerful microscope with high resolution and high sensitivity is required for characterizing the
topological defects in CNTs. Using HRTEM, the first direct image of the pentagon–heptagon
pair defect (Stone–Wales defect) in the SWCNT has been reported recently (Suenaga et al.
). Computational studies examined the structures and defect formation energies of the
SWCNTs with defects containing different sizes of rings (seven-, eight-, and nine-membered
rings) (Nishidate and Hasegawa ), and different types of defects (Amorim et al. ;
Dinadayalane and Leszczynski a, b; Ding ; Wang et al. ; Yang et al. a, b).

Computational Approaches Used to Study Carbon
Nanostructures: An Overview

Theory and computation play important role in understanding structures and reactivity of
carbon nanosystems such as graphene, fullerenes, and carbon nanotubes. Computational
nanoscience often complements the experiments and is very useful for the design of novel
carbon nanomaterials as well as predicting their properties. Theory is helpful in obtaining
knowledge on the mechanism of reactions and fragmentations of carbon clusters. Thus, we
provide an overviewof the computational approaches employed to study various carbon nanos-
tructures in this chapter. Carbon nanostructures are very large systems.Hence, performing very
high-level quantum chemical calculations is not possible even using modern supercomputers.



  Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures

Many-body empirical potentials, empirical tight-binding molecular dynamics, and local
density functional (LDF) methods were used to perform electronic structure calculations of
carbon nanosystems including fullerenes and model CNTs in early of the last decade (Robert-
son et al. ; Zhang et al. ). In the mid-s, electronic structure calculations for large
fullerenes with Ih point group were performed using Huckel approximation (Tang and Huang
). In the late s, scientists performed geometry optimizations for large fullerenes using
molecular mechanics (MM), semiempirical methods (MNDO (Dewar and Thiel ), AM
(Dewar et al. ), and PM (Stewart )), and Semi-Ab Initio Model  (SAM) (Dewar et al.
).The single-point energy calculations were affordable at that time using ab initio Hartree–
Fock (HF) method in combination with small basis sets such as -G and -G (Slanina
et al. ). The computing power has been tremendously increasing since . Thus, cur-
rently theoreticians enjoy investigatingmedium sizemolecules using reliable quantumchemical
methods and exploring carbon nanoclusters beyond molecular mechanics and semiempirical
methods.

The popular BLYP functional, which is a combination of Becke’s three-parameter (B)
(Becke ) hybrid functional incorporating exact exchange with Lee, Yang, and Parr’s (LYP)
(Lee et al. ) correlation functional, has been employed with small and medium size basis
sets like STO-G, -G, -G, and -G(d) for calculations on fullerenes and carbon nan-
otubes (Bettinger et al. ; Dinadayalane and Leszczynski b; Feng et al. ; Matsuo
et al. ; Yumura et al. a, b; Zhou et al. ). Computational studies indicate that the
BLYP functional can yield reliable answers for the properties of carbon compounds and car-
bon nanostructures (Bettinger et al. ; Dinadayalane and Leszczynski b; Feng et al.
; Matsuo et al. ; Yumura et al. a, b; Zhou et al. ). PBEPBE/-G(d) level
has been used for calculating relative energies and C NMR spectra of fullerene isomers (Shao
et al. , ). The PBEPBE functional was concluded to be very reliable DFT functional
since it yields the same relative energy ordering as the high-level coupled cluster calculations
for the top three isomers of C (cage, bowl, and ring isomers) (An et al. ).

In comparison with ab initio MP or CCSD methods, DFT is less time consuming and
computationally feasible for large carbon nanosystems. For studying chemical reactivity in
fullerenes and nanotubes, ONIOM approach is more cost-effective than treating the whole
molecule with DFT. ONIOM is a hybrid methodology in which the molecule is partitioned
into two or more fragments. The most important part (one fragment) of the molecule is
treatedwith high-levelmethod and the other parts are treatedwith low-levelmethods (Maseras
and Morokuma ; Morokuma et al. ; Osuna et al. ). Osuna et al. have recently
examined the performance of ONIOM approach by taking different density functional theory
levels against the experimental results for the Diels–Alder reaction between cyclopentadiene
and C (Osuna et al. ). Two-layer ONIOM approach ONIOM(BLYP/-G(d) : AM),
where BLYP/-G(d) and AM are used for high and low layers, has been utilized to study
chemisorption of alkoxide ions with the perfect and Stone–Wales defective armchair (,)
SWCNTs of cap-ended and H-terminated structures (Wanbayor and Ruangpornvisuti ).

Independent theoretical studies considered DFT methods in investigating the structures
and properties of SWCNTs (Akdim et al. ; Amorim et al. ; Andzelm et al. ;
Bettinger ; Dinadayalane and Leszczynski a, b; Govind et al. ; Lu et al. ;
Nishidate and Hasegawa ; Robertson et al. ; Wang et al. ; Yang et al. a, b;
Zhang et al. ).The BLYP functional with double-ζ basis set was often employed to investi-
gate the electronic structures of pristine and defect SWCNTs, and also the influence of defects
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on functionalization of SWCNTs (Akdim et al. ; Andzelm et al. ; Dinadayalane and
Leszczynski b; Govind et al. ; Lu et al. ). Sometimes, more than one basis set
was utilized for the exploration of defective SWCNTs and the viability of metal adsorption in
the defect tubes (Yang et al. b). DFT with periodic boundary condition (PBC) as imple-
mented in Gaussian  program package (Frisch et al. ) was used to examine the reactivity
of Stone–Wales defect in (,) and (,) SWCNTs (Bettinger ). The unit cell should be
carefully chosen for the calculations involving PBC in order to simulate the tubes of infinite
length. Popular DFT methods fail to provide reliable answers for π–π interactions involving
fullerenes and other carbon clusters (Cuesta et al. ; Kar et al. ; Shukla and Leszczynski
). Although calculations at the MP and CCSD(T) levels are required to obtain very reli-
able results for π-stacking interactions (Dinadayalane et al. a; Lee et al. ; Sinnokrot
and Sherrill ), they are not possible for such large systems with current computational
facilities. Recently developed meta-hybrid density functional (M-X) has been reported to
be a promising functional to calculate the binding energies for π–π interactions involving large
carbon nanostructures (Zhao and Truhlar , ).

Using powerful supercomputers, performing static and dynamic calculations at high-level
ab initio and DFT methodologies is affordable for graphene and carbon nanotubes. Very
recently, density functional theory (PBE functional Perdew et al. ) calculations with plane-
wave basis sets and periodic boundary conditions (PBCs) were employed to understand small
molecule interactions with the defective graphene sheets (Jiang et al. ). Vienna ab initio
simulation package (VASP) has been used in several studies to perform static and dynamic cal-
culations (Kresse and Furthmuller a, b).Theoretical calculations are helpful to understand
the electronic structure of graphene sheets and SWCNTs, and their viability as ion separation
systems and gas sensors (Jiang et al. ; Li et al. b; Nishidate and Hasegawa ). The
Stone–Wales defect formation energy for graphene and CNTs has been calculated using DFT,
invoking the local density approximation to the exchange-correlation potential as implemented
in VASP (Ertekin et al. ).

The mechanical properties of CNTs have been the interest of theoreticians for the last two
decades (Avila and Lacerda ; Chandra et al. ; Dereli and Sungu ; Yakobson et al.
). An array of methods has been employed for computing the Young’s modulus of MWC-
NTs and different types of SWCNTs (armchair, zig zag, chiral). Awide range of Young’smodulus
values has been reported in the literature (Avila and Lacerda ; Chandra et al. ; Dereli
and Sungu ; Mielke et al. ; WenXing et al. ; Yakobson et al. ). Most of the
molecular dynamics methods used so far are classical or tight binding (Avila and Lacerda ;
Chandra et al. ; Dereli and Sungu ;WenXing et al. ; Yakobson et al. ). Quan-
tum chemical calculations on mechanical properties of carbon nanotubes or graphene sheets
are scarce since they are still highly time consuming (Mielke et al. ). It is not of our interest
to discussmechanical properties in this chapter since there aremany papers and some of classic
reviewson this subject available (Avila and Lacerda ; Chandra et al. ;Dereli and Sungu
; Mielke et al. ; WenXing et al. ; Yakobson et al. ). By using DFT and time-
dependent DFT methods, one can obtain IR, Raman, NMR, and UV spectra. Recent advances
in computer hardware and ab initio electronic structure methods have brought a substantial
improvement in the capabilities of quantum chemists to predict and study the properties of
carbon nanostructures. However, the application of state-of-the-art quantum chemical meth-
ods to study the structures and properties of large carbon nanoclusters (graphenes, fullerenes,
and CNTs) is still a great challenge.
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Structural, Electronic and Chemical Properties of Graphene,
Fullerenes and SWCNTs

Graphene

The recent experimental investigation of mechanical properties of monolayer graphene reports
a breaking strength of∼N/m and the Young’smodulus of∼. TPa (Lee et al. ). Graphene
displays a thermal conductivity of ∼, Wm− K− at room temperature (Balandin et al.
). Graphene chemistry is expected to play an important role in producing graphene-based
materials. In this chapter, we outline the Stone–Wales defect in graphene, chemisorption pro-
cess (covalent functionalization) on graphene, and the influence of defects on chemisorption;
particular interest is given to hydrogen chemisorption. Chemical functionalization in graphene
should produce new D systems with distinct electronic structures and different electrical,
optical, and chemical properties. Chemical changes can probably be induced even locally.
The first known example of hydrogenated graphene is graphane, which is a D hydrocarbon
with one hydrogen atom attached to every site of the honeycomb lattice (Elias et al. ;
Sofo et al. ).

Stone–Wales defect is expected to enhance the tendency of graphitic layers to roll up into
other carbon nanostructures such as fullerenes and nanotubes.Therefore, in-depth understand-
ing of Stone–Wales defect in graphene is required. It is known that pentagons and heptagons
induce curvature in graphitic materials. In perfect graphene, the equilibrium C–C bond length
is reported as . Å using PBE functional with the plane-wave code CPMD (Hutter et al.).
Further details of the calculations can be obtained from the paper of Ma et al (Ma et al.
). The C–C bond shared by two heptagons of the SW defect in graphene is compressed
to .Å using the same method. Density functional theory and quantum Monte Carlo sim-
ulations reveal that the structure of the SW defect in graphene is not simple. Ma et al. have
systematically studied the polycyclic hydrocarbon size dependence on the structural distor-
tion caused by the Stone–Wales defect formation. They considered different systems ranging
from the smallest analog of SW defect, azupyrene (CH) to D tape-like structure of CH,
and finally, to D planar cluster of CH. As known earlier, azupyrene is planar. The opti-
mized bond length of the C–C bond at the center of azupyrene is .Å, which is longer than
the corresponding C–C bond length of .–.Å observed for the SW defect in graphene
(Ma et al. ).

Large carbon clusters exhibit a tendency to buckle upon the creation of SW defects. Vibra-
tional frequency calculations of the flat graphene sheet with the Stone–Wales defect reveal that
the structure is not a local minimum, but instead has two imaginary frequencies.The true min-
imum is a sine-like structure in which the C–C bond at the defect core is ∼.Å longer than
in the flat defect. Furthermore, many C–C bonds are slightly elongated in the buckled struc-
ture compared to the flat defect structure. The cosine-like SW defect structure was obtained
as a transition state connecting to sine-like SW defect structure. The optimized structures of
sine-like and cosine-like SW defect graphenes are depicted in > Fig. -. Vibrational fre-
quencies also revealed that the maximum phonon frequencies corresponding to the stretch of
the rotated C–C bond for the flat and buckled SW structure are , and , cm−, respec-
tively. The corresponding frequency computed for perfect graphene is , cm− (Ma et al.
). Theoretical study pointed out that for a graphene sheet of CH containing a SW
defect, the sine-like buckled structure becomesmore stable (by∼meV) than the flat SWdefect
(Ma et al. ).
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⊡ Fig. -
(a) Stone–Wales transformation by ○ rotation of C–C bond in graphene sheet; (b) top and side
views of sine-like and cosine-like buckled SWdefect graphene sheets (The pictures were reprinted
with permission fromMa et al. (). Copyright  by the American Physical Society)

Hydrogenation of Graphene with andWithout Defects

Chemical modification of graphene has been less explored (Geim andNovoselov ). Attach-
ment of atomic hydrogen to each site of the graphene lattice to create graphane is an elegant
idea (Sofo et al. ). As a result, the hybridization of carbon atoms changes from sp to sp,
thus removing the conducting p-bands and opening energy gap (Boukhvalov et al. ; Sofo
et al. ). In experiment, the fully hydrogenated graphene called “graphane” was produced by
exposing graphene to hydrogen plasma discharge. Raman spectroscopy and transmission elec-
tron microscopy confirmed the reversible hydrogenation of single-layer graphene (Elias et al.
).

Li et al. have investigated the structural and electronic properties of graphane using DFT
PW functional with plane-wave basis set applying periodic boundary conditions as imple-
mented in VASP (Li et al. b). Computations revealed that hydrogenation of graphene
nanoribbon is experimentally viable and the electronic properties of graphane are completely
different from graphene nanoribbons. > Figure - depicts the structures of graphane. Two
types of graphane nanoribbons (zigzag and armchair edge) can be obtained by cutting the opti-
mized graphane layer.The edge carbon atomswere all saturatedwithHatoms to avoid the effects
of dangling bonds.The bond lengths of edge C–C and C–H bonds are almost as the inner C–C
(.Å) and C–H (. Å) bonds. The calculated C–C bond length is similar to the bond length
of . Å in diamond (sp carbon atoms) and is longer than .Å characteristic of sp carbon
in graphene. Both spin-unpolarized and spin-polarized computations yielded same energy for
ground state graphane nanoribbons (Li et al. b).

> Figure -a shows that computed band gap decreases monotonically with increasing
ribbon width for both zigzag and armchair nanoribbons. Graphane nanoribbons are semi-
conductors. The formation energy increases with increasing ribbon width (> Fig. -b)
irrespective of the type, indicating that narrow ribbons are more likely to form than the wider
ribbons (Li et al. b). Sofo et al. investigated the structures, formation energies, and vibra-
tional frequencies of graphane using DFT with plane-wave basis set (Sofo et al. ). They
found two favorable conformations of graphane: chair-like conformer with the hydrogen atoms
alternating on both sides of the plane and the boat-like conformer with the hydrogen atoms
alternating in pairs. Chair conformer has one type of C–C bond (.Å), while boat conformer
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Variation of the band gap (a) and the formation energy (b) of zigzag (≤Nz≤ ) and armchair
(≤Nz ≤ ) graphanenanoribbons as a function of ribbonwidth. N is the number of zigzag chains
for a zigzag ribbonand thenumberof dimer lines along the ribbondirection for anarmchair ribbon
(Reprinted with permission from ref. Li et al. (b). Copyright  American Chemical Society)

possesses two different types of C–C bonds (bond lengths of .Å and .Å). The boat con-
former is less stable than the chair conformer due to the repulsion of the two hydrogen atoms
bonded to first neighbor carbon atoms on the same side of the sheet. This repulsion results
in slightly longer C–C bonds in boat conformer. Calculated C–H bond stretching frequencies
are , and , cm− for the boat and chair conformers respectively. These C–H stretching
modes are IR active and they should be useful in characterizing these two types of conformers
of graphane (Sofo et al. ).
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Using density functional calculations, Boukhvalov and Katsnelson have studied hydro-
genation of graphene sheets with defects such as Stone–Wales (SW), bivacancies, nitrogen
substitution impurities, and zigzag edges (Boukhvalov and Katsnelson ). They performed
calculations for chemisorptions of hydrogen atoms on the defects in the graphene from low
to high coverage. The optimized geometries of the graphene supercells with various types of
defects as well as their hydrogenated structures are depicted in > Fig. -, which also displays
the computed chemisorption energy as the function of coverage for the graphene containing dif-
ferent defects.The chemisorption energy of a single hydrogen atom to the defect-free graphene
was given as . eV, while those of . eV for SW defects, . eV for bivacancies, and . eV
for substitution impurities of nitrogen in graphene were reported.This indicates the significant
influence of defects on single hydrogen atom chemisorption energy in graphene.The calculated
chemisorption energy for different nonequivalent carbon atoms of the graphene containing SW
defect reveals that the chemisorption energy for the entire area surrounding the SW defect is
lower compared to the perfect graphene. Further, the defects also decrease the chemisorption
energy of two hydrogen atoms at adjacent positions compared to the defect-free graphene. It
was reported that, for the complete coverage, the binding energy is smaller for the hydrogen
chemisorption of graphene with defects than the perfect graphene. Thus, completely hydro-
genated graphene is less stable with defects than without them (Boukhvalov and Katsnelson
).
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⊡ Fig. -
Optimized geometric structures for graphene supercell containing (a) the Stone–Wales defect, (b)
a bivacancy, and (c) a nitrogen substitution impurity. Optimized structures for the Stone–Wales
(SW) defect functionalized by (d) , (e) , (f)  hydrogen atoms, and (g) completely covered by
hydrogen. Green circles represent carbon atoms, violet circles represent hydrogen atoms, and blue

circles represent nitrogen atoms. Hydrogen atom chemisorption energy per atom as a function of
coverage for a graphene sheet containing (h) a Stone–Wales (SW) defect, (i) a bivacancy, and (j)
a nitrogen substitution impurity. The blue dashed line represents the results for the ideal infinite
graphene sheet (Reprintedwithpermission from ref. Boukhvalov andKatsnelson (). Copyright
 American Chemical Society)
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Graphenes with various kinds of defects may have different types of properties and applica-
tions.Therefore, obtaining knowledge on graphenes with defects is important. DFT calculations
showed only physisorption of water molecule with perfect graphene, while the vacancy defect
greatly assists the dissociative chemisorption of water molecules in the graphene (Cabrera-
Sanfelix and Darling ; Kostov et al. ). There can be many possible reaction pathways
for the dissociation of water molecule over defective sites in the graphene (Kostov et al. ).
Computational studies provide evidence that defects such as Stone–Wales and vacancy strongly
influence the chemisorption of functional groups in the graphene (Boukhvalov and Katsnelson
; Boukhvalov et al. ; Cabrera-Sanfelix and Darling ; Kostov et al. ).

Fullerenes

Computational Studies of Fullerene Isomers

Computational methods were employed to systematically search and study the low-lying iso-
meric structures of fullerenes, and such thorough investigations have been useful to predict
the best candidates for the lowest-energy structures of higher fullerenes because of the grow-
ing experimental interest (Shao et al. , ; Slanina et al. a, b; Sun ; Sun and
Kertesz ; Zhao et al. a, b). Fullerene C has  possible isomers obeying IPR and all
of these isomers were studied by Sun and Kertesz using BLYP functional with different basis
sets (Sun andKertesz ). Among  isomers, the isomer withC symmetry is themost sta-
ble followed by isomer  with Cs symmetry and these two isomers are shown in > Fig. -.
It should be noted that these two isomers were experimentally observed. At the BLYP/-G
level, isomer  was predicted to be about  kcal/mol less stable than isomer , albeit the for-
mer has slightly larger HOMO–LUMO gap than the latter. The variation of relative stability at
different theoretical levels for all  IPR satisfying isomers of C is depicted in > Fig. -.
The relative stabilities were calculated with respect to the lowest-energy isomer (). The HF/-
G level and the semiempirical AM Hamiltonian overestimate the relative energies compared
to the density functional theory levels (Sun and Kertesz ).

Experimental study identified two isomers of fullerene C and characterized them using
C NMR spectroscopy (Miyake et al. ). Based on the experimental NMR spectra, C and
Cs point groups were assigned for the two isomers, but there are more than one C and Cs

16(Cs) 17(C2)

⊡ Fig. -
Two experimentally observed IPR isomers of fullerene C. Their point groups are given in paren-
theses (Reprinted with permission from ref. Sun and Kertesz (). Copyright  Elsevier)
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The relative energy of IPR satisfying isomers of C at various levels of theory. Isomers , , , , ,
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isomers. Theoretical calculations play crucial role in identifying the correct structure by com-
paring theoretical and experimental CNMR spectra. Sun andKertesz calculated the CNMR
chemical shifts for all of the  IPR isomers of C, except isomer . Theoretical C NMR spec-
tra complement the experimental spectra as evidenced from > Fig. -. Computational study
revealed that isomer  has high thermodynamic and kinetic stability among the six IPR iso-
mers of C possessing C point group. The computed NMR spectrum of isomer  supports
the results of experimental spectrum. Among the Cs isomers, the secondmost stable isomer 
has large HOMO–LUMO gap (Sun and Kertesz ). Isomers , , , , , and were pre-
dicted to have relative energies less than  kcal/mol and moderate HOMO–LUMO gap, thus
indicating the possibility of experimental realization (Sun and Kertesz ).

Okada and Saito proposed the number of extractable fullerenes among the IPR-satisfying
isomers of fullerenes from C to C. They found that C is unique since the number of
preferable isomers is more than for other fullerenes and this was attributed to the abundant
production of C after C and C. Okada and Saito computationally studied all  IPR-
satisfying isomers of C (Okada and Saito ). A complete set of  isomers that obey IPR
of fullerene C was systematically investigated using various theoretical methods including
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Experimental and theoretical C NMR spectra of (a) C isomers of fullerene C. (b) Cs isomers
of fullerene C. Theoretical spectra are labeled by isomer number and experimental spectrum
labeled by symmetry (Reprinted with permission from ref. Sun and Kertesz (). Copyright 
Elsevier)

molecular mechanics (MM), semiempirical (AM, MNDO, and PM) and quantum mechan-
ical (HF/-GandBLYP/-G)methods.All of the theoretical levels unequivocally predicted
that isomer  with D point group is the lowest-energy one.The relative energies for some of
the isomers were reported to be quite method-sensitive and varied dramatically with different
methods.The computational study highlighted the importance of the entropy effect in examin-
ing the relative stability of IPR-obeying isomers of fullerene C (Zhao et al. a). A large set
of  IPR isomers of C has been explored using the above-mentioned semiempirical and
molecularmechanics (MM)methods. Systematic theoretical calculations predicted the isomer
with D point group (isomer ) as the lowest energy by all of the methods employed (Zhao
et al. b).

Recently, Shao et al. have searched the lowest-energy isomer of the fullerenes C to C and
C to C. For the first set (C to C), all IPR and all non-IPR isomers were considered, and
only IPR-satisfying isomerswere considered for the second set of fullerenes (C to C) (Shao
et al. ). Thus, a large set of molecules was taken for optimizations at the semiempirical
density functional–based tight-binding (DFTB) method and the single-point energy calcula-
tions at the DFT (Shao et al. ). It is known that the fullerene with large HOMO–LUMO
gap and high-symmetry is not necessarily the lowest-energy structure. The decreasing trend of
HOMO–LUMO gap was reported with increasing the fullerene size (Shao et al. , ).
An unexpected manner of pentagonal adjacency was observed in the low-lying isomers in the
series of fullerenes C to C (Shao et al. ).

In a comprehensive computational study, Shao et al. identified  isomers as the best candi-
dates for the lowest-energy structures. Among the  isomers,  isomers with relative energies
less than  kcal/mol are depicted in > Fig. - (Shao et al. ). Computational study pro-
posed that these  isomers can be observed experimentally. The C NMR chemical shifts for
these  isomers were calculated. Theoretical study predicted that C: can be more eas-
ily isolated and characterized in the laboratory than other higher fullerenes from C to C

(Shao et al. ). In a different study, Shao et al. proposed the seven best candidates of the
lowest-energy isomers for the fullerenes C to C based on the systematic study using DFTB
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⊡ Fig. -
Best candidates for the lowest-energy structure of higher fullerenes (C to C). The isomer num-
ber and point group are given (Reprinted with permission from ref. Shao et al. (). Copyright
 American Chemical Society)

and DFT methods. They pointed out that C (C: ) and C (D: ) isomers can be
easily synthesized (Shao et al. ).

Fullerene C and CCl were computationally studied using BLYP/-G(d) level due
to the experimental report of the latter compound (Lu et al. ). The computational study
thoroughly explored the structures, relative energies, HOMO, LUMO energies, and HOMO–
LUMOgap for low-lying isomers ofC and its anions.The computed IR, Raman, CNMR, and
UV-Vis spectra of the CCl with Dh symmetry showed very good agreement with the
reported experimental data.The pentagon–pentagon fusions were found to be the active sites of
addition reactions in both D and Dh symmetric isomers of fullerene C. It was observed that
HOMO and LUMO coefficients of C (Dh) are distributed around the equatorial pentagon–
pentagon fusion sites. This was given as a reason for the binding of Cl atoms around the
equatorial pentagon–pentagon fusion sites of C yielded CCl (Lu et al. ).

Giant Fullerenes

Giant fullerenes have been the subject of theoretical interests (Calaminici et al. ; Dulap
and Zope ; Dunlap et al. ; Gueorguiev et al. ; Lopez-Urias et al. ; Zope et al.
). Very recently, the structures and stabilities of the giant fullerenes C, C, C, and
C have been investigated using high-level density functional theory calculations (Calaminici
et al. ).The results of the uncorrected binding energy (in eV) per carbon atom for the giant
fullerenes obtained using the VWN functional are depicted in > Fig. -. The inclusion of
the basis set superposition error (BSSE) decreases the calculated binding energies but does
not alter the trend. The increasing trend of binding energy indicates that the large fullerenes
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⊡ Fig. -
Bindingenergy (in eV) for C , C, C, andC fullerenes. The calculationshavebeenperformed
with the VWN functional in combinationwith DZVP basis sets (Reprinted with permission from ref.
Calaminici et al. (). Copyright  American Chemical Society)

becomemore and more stable with increasing size. Fullerene C has a similar binding energy
to diamond, giving the hope that such giant fullerenes could be prepared. However, the bind-
ing energy per carbon atom of the fullerene, C, is considerably lower than that of graphene
(Calaminici et al. ). Gueorguiev et al. performed the calculations for giant fullerenes using
semiclassical approximation LR-LCAO (Linear Responsemodel in the framework of the Linear
Combination of Atomic Orbitals). They reported the decreasing trend of HOMO–LUMO gaps
(except C) and the considerably large increase of the static polarizability as increasing the size
of the fullerene cage (> Fig. -) (Gueorguiev et al. ).The static dipole polarizability per
atom in C is three times larger than that in C (Dunlap et al. ).

Local Strain in Curved Polycyclic Systems: POAV and Pyramidalization Angle

Fullerenes experience large strain energy because of their spherical shape. The curvature-
induced pyramidalization of the carbon atoms of fullerenes weakens the π-conjugation. The
curved π-conjugation in carbon networks of fullerenes has not only π-character but also sub-
stantial s-character. The π-orbital axis vector (POAV) analysis developed by Haddon is useful
in measuring the local curvature of the nonplanar conjugated organic molecules, fullerenes,
and SWCNTs (Haddon ; Haddon and Scott ). In general, the sp-hybridized carbon
atom prefers to be in the planar arrangement, but it is pyramidalized in fullerenes. The local
strain of carbon framework in fullerenes and SWCNTs is reflected in the pyramidalization
angle θP at the carbon atoms (Niyogi et al. ). The pyramidalization angle (θP) equals to
the difference between the π-orbital axis vector (POAV) and the normal right angle ○: Thus,
θP = (θσπ−○), where the θσπ is the angle between the π-orbital of the conjugated atom and
the σ-orbital of the surrounding atoms. As shown in > Fig. -, the pyramidalization angle
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⊡ Fig. -
Thevariationof (a) radius (R, Å), (b)HOMO–LUMOgap (ev), and (c) static polarizability as increasing
the size of the fullerene cage (C, C, C, C, C, C, and C) (The data for the plots was
taken from ref Gueorguiev et al. ())

is  and .○ for a planar sp-hybridized carbon and a tetrahedral sp-hybridized carbon,
respectively. All carbon atoms in the icosahedral C have the same θσπ of ∼.○.

Pyramidalization angle of a carbon atom in fullerenes and SWCNTs is helpful in predict-
ing the chemical reactivity (Akdim et al. ; Bettinger ; Dinadayalane and Leszczynski
a, b; Lu and Chen ; Lu et al. ). The larger pyramidalization angle of carbon atom
indicates the higher reactivity toward addition reactions in the curved systems of fullerenes and
SWCNTs.The curvature-induced pyramidalization and the π-orbital misalignment cause local
strain in SWCNTs (> Fig. -). Hence, carbon atoms of SWCNTs are more reactive than that
of a perfect graphene sheet (Niyogi et al. ; Park et al. ). Cyranski et al. studied the
structures and energetics of the  lowest-energy isomers of neutral, closed-shell IPR fullerenes
C–C using BLYP/-G(d) level.They obtained the decreasing values of pyramidalization
angles, while no regular trend was obtained for HOMO–LUMO gaps with increasing size of
fullerenes (> Fig. -) (Cyranski et al. ).
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⊡ Fig. -
(a) Pyramidalization angle (θP) is defined by the angle between the π orbital and σ bond −○ so
that θP =○ for agraphenesheet and θP =.○ for sp-hybridizedcarbon. Forpractical reasons,we
take the average of three θP values. (b) θP for a perfect planar sp-hybridized carbon atom (e.g., in
CH), (c) θP for a perfect tetrahedral sp-hybridized carbon atom (e.g., CH), (d) θP for a nonplanar
sp-hybridized carbon atom (e.g., C atom in C or SWCNT). (e) The π-orbital misalignment angle
(ϕ) along the C–C bond in the (,) SWCNT and the fullerene C (Pictures were reprinted with
permission from refs. Lu and Chen (), Niyogi et al. (), and Park et al. (). Copyright
, , and  American Chemical Society)
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⊡ Fig. -
(a) Variation of pyramidalization angle for the carbon atom of the most stable IPR fullerene as
increasing the size of fullerene size. (b) Variation of HOMO–LUMO gap for the most stable IPR
fullerene as increasing the size of fullerene size. The point groups are given in the parentheses.
The values for these graphs were taken from ref. Cyranski et al. ()
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Decachloro-derivative of C fullerene has been synthesized and experimental characteri-
zation confirmed the existence of C cage. Two C caps and five C units around the equator
are present in the C core of CCl (Xie et al. ). The calculated pyramidalization angle
for the carbon atoms of the C caps of fullerene C ranges from . to .○, which are com-
parable to that of C (.○). However, a large pyramidalization angle (.○) is obtained for
the equatorial C atoms (pentagon–pentagon fusion). Such large value was attributed to high
reactivity of those carbon atoms in addition reactions to form exohedral adducts (Chen ;
Lu et al. ). Such structural features were reasoned for the instability of a bare C cage and
the stability of CCl (Chen ).

Stone–Wales Defect in C

Fullerene isomers are likely to interconvert through Stone–Wales transformation (Stone and
Wales ; Troyanov and Tamm ). Very recently, experimental study has reported that
the chlorine functionalized D–C IPR isomer transformed to non-IPR isomer and this trans-
formation was proposed to include seven single Stone–Wales rearrangements (Ioffe et al. ).
Computational chemists strived to understand the energy barriers for the Stone–Wales trans-
formation and the possible mechanisms involved in this rearrangement, particularly consider-
ing the C fullerene (Bettinger et al. ; Eggen et al. ; Yumura et al. ). Stone–Wales
transformation is a thermally forbidden rearrangement by following the orbital symmetry con-
siderations ofWoodward andHoffmann (Woodward andHoffmann ).The icosahedral C

fullerene (Buckminsterfullerene) gives an isomer of C with Cv point group that violates the
isolated pentagon rule. Two different pathways namely, concerted and stepwise pathways and
two different (symmetric and asymmetric) transition states were identified theoretically for the
Stone–Wales transformation in C fullerene. The C − Cv isomer, which is a Stone–Wales
type defect structure with two adjacent pentagons, was reported to be less stable by .–
. kcal/mol (.–. eV) than the Buckminsterfullerene using various density functional
theory levels (Yumura et al. ).

Bettinger et al. listed the C–C bond lengths of C (Ih) and the activation barrier for the
Stone–Wales defect transformation through different transition states at various levels of theory
(Bettinger et al. ). Computed geometries of Buckminsterfullerene at different levels showed
shorter [,] C–C bond length than the [,] C–C bond length, in consistent with experimental
results (Bettinger et al. ). > Figure - depicts the concerted C symmetric transition
state and asymmetric transition state involved in SW transformation of C − Ih to C − Cv .
The intrinsic reaction coordinate calculations by Bettinger et al. support the concerted path-
way rather than stepwise pathway for the SW transformation in the C fullerene. Based on the
computed activation energies, both concerted and stepwise pathways are highly competitive
(Bettinger et al. ). The rigorous computational study of SW transformation in Buckmin-
sterfullerene revealed that the empirical schemes such asTersoff–Brenner potentials and density
functional–based tight-binding (DF-TB) underestimate the barrier heights, and semiempirical
AM appears to be promising for such investigations (Bettinger et al. ).

Computational Studies on Vacancy Defects in Fullerene C

Vacancy defects in fullerene C were studied using quantum chemical methods (Hu and
Ruckenstein ; Hu and Ruckenstein ; Lee and Han ). They were generated by



  Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures

C60 (Ih)
0.00 eV (0.0 kcal / mol)

Stone-Wales-type C60 (C2v)
1.68 eV (38.7 kcal / mol)

1.474
{1.475}

1.425
{1.423}

1.458
{1.462}

1.478
{1.480} 1.431

{1.433}

1.379
{1.388}

1.484
{1.484}

2.236
{2.242}

2.181
{2.187}

1.401
{1.412}

1.245
{1.257}

1.474
{1.474}

1.415
{1.421}

1.397
{1.408}

1.353
{1.366}

1.604
{1.592}

1.648
{1.643}

1.615
{1.611}

1.467
{1.472}

1.509
{1.479}

1.443
{1.447}

1.475
{1.477}

1.467
{1.469}

3

2

4

1

d(C1-C4):2.276
{2.249}

d(C1-C3):2.269
{2.265}

a

c d

b

⊡ Fig. -
(a) Buckminsterfullerene toC −Cv with Stone–Wales defect generated by the ○ rotation of the
C–C bond in blue color of C (Ih). (b) Optimized structure of the Cv symmetry isomer. (c) Struc-
ture of the C symmetry transition state for the concerted Stone–Wales transformation pathway.
(d) Structure of the asymmetric transition state between carbene intermediate and C − Cv iso-
mer. Bond lengths were obtained at the BLYP/-G* and PBE/-G* (in curly brackets) levels of
theory and are given in Å (Pictures were reprinted with permission from ref. Bettinger et al. ()
and Yumura et al. (). Copyright  and  American Chemical Society)

removal of – carbon atoms in C as shown in > Figs. - and > -. Different modes
are possible to remove carbon atoms from C to generate vacancy defects; hence, different
sizes of rings (, , , and nine-membered rings) were produced by removing carbon atoms in
C. Removing one, two, three, and four adjacent carbon atoms from the C cluster generates
two, three, three, and six different isomers for the C, C, C, and C clusters, respectively
(Hu and Ruckenstein ; Lee and Han ). The odd-numbered clusters have unsaturated
carbon, which favors being located in a six-membered ring rather than a five-membered ring.
Two atom vacancies give structure with seven- and eight-membered rings, whereas one atom
vacancy gives the structure with nine-membered ring. Four atom vacancies provide the most
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⊡ Fig. -
BLYP/-G(d) optimized structures of C, C, and C clusters. Description indicates highlighted
rings. “A-B”denotes A- and B-membered ring. Circle denotes an unsaturated atom (Reprinted with
permission from Lee and Han (). Copyright , American Institute of Physics)

stable structure with only five- and six-membered rings. Thus, increasing the number of vacan-
cies need not increase the size of the hole (Hu and Ruckenstein ; Hu and Ruckenstein
).

The singlet structures are more stable than the triplet ones for C cluster, while the reverse
is true in case of C clusters. The reported stabilization energy per atom at the BLYP/
-G(d)//BLYP/-G(d) level is ., ., and . kcal/mol for the C, C, and C,
respectively. Quantum chemical calculations provide relationship between structure and sta-
bility of the defect fullerene clusters (Hu and Ruckenstein ; Hu and Ruckenstein ;
Lee and Han ). In case of removal of four adjacent carbon atoms in C, additional five-
membered rings are formed in geometry optimizations (e.g., isomer  in > Fig. -). The
isomer  has only five- and six-membered rings ( five-membered rings and  six-membered
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mode 1: romoving atoms 1, 2, 3, 4

mode 2: romoving atoms 1, 2, 3, 6

mode 3: romoving atoms 1, 2, 3, 9

mode 4: romoving atoms 1, 2, 6, 7

mode 5: romoving atoms  2, 3, 6, 7

mode 6: romoving atoms  2, 3, 6, 9
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⊡ Fig. -
Different modes to generate isomers of C with four vacancies by removing four adjacent atoms
from the perfect C structure. Structures of isomers – of defect C with four vacancies. The ring
size and the number of rings (in parentheses) for each isomer is given (taken from ref. Hu and
Ruckenstein ); for example, isomer  – ()-()-()-() means one -membered, thirteen
-membered, fifteen-membered, one-membered rings (Reprintedwithpermission fromHuand
Ruckenstein (). Copyright , American Institute of Physics)

rings) and was predicted to be the most stable among the isomers depicted in > Fig. -.
The stability energy for the isomers generated by removing four carbon atoms has the follow-
ing sequence: Isomer  > isomer  > isomer  > isomer  > isomer  > isomer . All defect
clusters have lower stability energy per atom than C. The removal of carbon atoms from
C increases the HOMO and decreases the LUMO energy. Consequently, the defect structures
exhibit lower HOMO–LUMO gap compared to C. No relationship was obtained between the
stability energy per carbon atom and the HOMO–LUMO gap for the defect carbon clusters of
C (Hu and Ruckenstein ).

Computational Studies of Single-Walled Carbon Nanotubes

Computational chemists have explored the structures, electronic properties, and reactivities of
SWCNTs of varying length and diameter (Bettinger ; Dinadayalane and Leszczynski ;
Dinadayalane et al. b; Galano ; Kaczmarek et al. ; Matsuo et al. ; Niyogi et al.
; Yang et al. c). They also tried to understand the influence of different defects on
these properties at reliable theoretical methods within the limitations of hardware and soft-
ware (Akdim et al. ; Andzelm et al. ; Bettinger ; Dinadayalane and Leszczynski
a, b; Govind et al. ; Lu et al. ; Nishidate and Hasegawa ; Wanbayor and
Ruangpornvisuti ;Wang et al. ; Yang et al. a, b). A series of finite-length hydrogen
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⊡ Fig. -
Calculated weighted average values of the C–C distance as a function of the tube length for
armchair (n,n) SWCNTs (Reprinted with permission from ref. Galano . Copyright  Elsevier)

terminated armchair SWCNTs have been computationally studied to obtain knowledge on the
influence of diameter and length on the structural and electronic properties (Galano ).The
optimized armchair (n,n) SWCNTs possess Dnh and Dnd point groups for ϑ/ even and odd,
respectively.The different lengths of the armchair SWCNTs have the general formula C

(n)kHn

with k= ϑ/. Galano considered (,), (,), (,), and (,) armchair SWCNTs with k of –
(i.e., from  to  carbon atom layers) (Galano ).There are two types of bonds in the perfect
(n,n) armchair SWCNTs: one is perpendicular to the tube axis (rI) and another one is nearly
parallel to the tube axis (rII). The maximum difference between rI and rII was obtained in case
of the narrow diameter (,) tube. Galano found that the influence of diameter on the weighted
average values of the C–C distances is larger than the influence of the tube length (> Fig. -)
(Galano ).

The frontier molecular orbitals (HOMO and LUMO) play important role in SWCNTs since
they are helpful in predicting number of ground state properties of molecules. According to
Huckel theory, the (n,n) armchair SWCNTs should be metallic (Saito et al. ), but the finite-
length armchair SWCNTs are semiconducting with a finite size of the HOMO–LUMO gap
(Cioslowski et al. ). The computed HOMO–LUMO gaps for (,) to (,) SWCNTs were
reported to be lower than the corresponding value for fullerene C. The HOMO–LUMO gap
oscillates as the tube length increases for all of these armchair tubes (> Fig. -).The behavior
of narrow diameter (,) tube is different from other armchair SWCNTs (Galano ).

Matsuo et al. classified the structures of finite-length armchair (,) and (,) SWCNTs as
Kekule, incomplete Clar, and complete Clar networks depending on the exact length of the
tubes. The (,) and (,) SWCNTs were elongated layer by layer of  and  carbon atoms,
respectively (Matsuo et al. ). The local aromaticity of different lengths of the tubes was
evaluated using the NICS (Nucleus Independent Chemical Shift) calculations (GIAO-SCF/
-G*//HF/-G* level). Matsuo et al. pointed out that the geometry of CH is similar to
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⊡ Fig. -
Variations of HOMO–LUMO gaps as increasing the tube length for the armchair SWCNTs. There is
no periodicity in (,) tube and the shaded region indicated the broken periodicity in other tubes
(Reprinted with permission from ref. Galano (). Copyright  Elsevier)

the equatorial belt of the fullerene C. Bond lengths of optimized structures exhibit oscillation
with increase in tube length for both (,) and (,) armchair SWCNTs. The schematic struc-
tures of Kekule, incomplete Clar and complete Clar networks for (,) and (,) SWCNTs are
depicted in > Fig. - along with the NICS values of dissimilar benzenoid rings. The energy
of frontier molecular orbitals and HOMO–LUMO gap also oscillate as the length of the nan-
otube increases (> Fig. -). The Kekule structure shows larger HOMO–LUMO gap than
other two. It was reported that the band gap will eventually disappear at a certain tube length
(Matsuo et al. ).

The pyramidalization angle (θP) and π-orbital misalignment angles are useful to gauge the
reactivity of the carbon atom sites of SWCNTs. The end caps of SWCNTs resemble fullerene
hemisphere, thus the end caps are expected to be more reactive than sidewalls irrespective
of the diameter of the SWCNTs. Carbon atoms in fullerene are more distorted than those in
the corresponding SWCNTs. For example, the carbon atom of (,) armchair SWCNT has
the pyramidalization angle (θP) of about .○, while the carbon atom of the fullerene with
corresponding radius (fullerene C) has the θP of about .○ (the hemisphere of fullerene
C can be capped to (,) SWCNT) (Niyogi et al. ). Chen et al. mentioned that the
pyramidalization angle of the C atoms of the sidewalls of SWCNTs is smaller compared to that
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⊡ Fig. -
Schematic structures and color-codedNICSmaps of finite length (,) and (,) SWCNTs. Hydrogen
atoms are omitted for clarity. Chemical bonds are schematically represented by using single bond
(solid single line; bond length >.Å), double bond (solid double line; bond length <.Å), single
bond halfway to double bond (solid-dashed line; . Å > bond length >.Å), and Clar structure
(i.e., ideal benzene). NICS coding: red, aromatic < −.; blue, nonaromatic > −. (Reprinted with
permission from ref. Matsuo et al. (). Copyright  American Chemical Society)

of the fullerenes of same radius. As a consequence, the covalent functionalization to SWC-
NTs is less favorable compared to fullerenes of same radius (Chen et al. ). The π-orbital
misalignment is likely to be a main source of strain in the SWCNTs. For both armchair and
zigzag SWCNTs, the pyramidalization angle and the π-orbital misalignment angle decrease
with increase in diameter of the tube (> Fig. -) (Niyogi et al. ).
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⊡ Fig. -
Variation of HOMO, LUMO energies and HOMO–LUMO gap with increase in tube length of (,)
armchair SWCNT (CjH) (Reprinted with permission from ref. Matsuo et al. (). Copyright 
American Chemical Society)

Covalent Functionalization of SWCNTs: H and F Atom Chemisorptions

The covalent functionalization of SWCNTs, which modifies the properties of the tubes, has
become a challenging field of research for the past few years (Bettinger ; Hirsch ;
Niyogi et al. ; Vostrowsky and Hirsch ). Functionalization of tubes is considered to
be promising to produce carbon nanotube–basedmaterials for selective applications (Bettinger
; Cho et al. ; Denis et al. ). The binding of hydrogen with SWCNTs has gener-
ated lot of experimental and theoretical interests due to their potential application in hydrogen
storage (Dillon et al. ; Dinadayalane and Leszczynski ; Dinadayalane et al. b;
Kaczmarek et al. ; Nikitin et al. ; Ormsby and King ; Yang et al. c; Zhang
et al. ). Scientists have tried to obtain knowledge on themechanismof hydrogen adsorption
in SWCNTs. They attempt to design and achieve the viable nanotube-based hydrogen storage
material to meet the Department of Energy (DOE) target of . wt% at ambient temperature
(Dillon et al. ; Dinadayalane and Leszczynski ; Dinadayalane et al. b; Kaczmarek
et al. ; Nikitin et al. ; Ormsby and King ; Yang et al. c; Zhang et al. ).The
experimental investigations reported the chemisorption of H atoms on the surface of SWCNTs
as promising approach to meet DOE’s target of hydrogen storage (Nikitin et al. ; Zhang
et al. ).Our group aswell as others have investigated the chemisorption of lowoccupancy of
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⊡ Fig. -
The change of pyramidalization angle (a,b) at the carbon atom and the π-orbital misalignment
angle (c,d) between two adjacent carbon atoms of armchair (a,c) and zigzag (b,d) SWNTs. The
π-orbital misalignment angle is zero for the carbon atoms of the circumferential bond in armchair
tube and axial bond in zigzag tube (The data was taken from ref. Niyogi et al. ())

hydrogen atoms on the surface of SWCNTs (Dinadayalane and Leszczynski ; Dinadayalane
et al. b; Kaczmarek et al. ; Ormsby and King ; Yang et al. c). The covalent
functionalization of SWCNTs byH atoms is a hot topic.Thus, we discuss the quantum chemical
studies of the hydrogen chemisorption on different types of SWCNTs.

Yang et al. studied, using DFT and ONIOM calculations, the chemisorption of atomic
hydrogen(s) on the open-ended finite-size (,), (,), and (,) zigzag and (,) armchair
SWCNTs (> Fig. -) (Yang et al. c). They compared the binding energies obtained for
nanotubes with results of the model graphene sheet in order to examine the effect of curva-
ture. It was reported that the chemisorptions of H atoms to the exterior wall of the SWCNTs
are more favorable than the interior walls.TheH chemisorption has strong dependence of tube
diameter and helicity or chirality in both interior (endohedral) and exterior (exohedral) addi-
tion. In case of single H atom addition, the binding energy (chemisorption energy), which is
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⊡ Fig. -
Finite-size small carbonnanotubemodels of (,), (,), and (,) zigzag and (,) armchair SWCNTs
considered for low occupancy of H chemisorptions (Reprinted with permission from ref. Yang et al.
(c). Copyright  American Chemical Society)

the reaction energy for H chemisorption with SWCNT, decreases with increase in tube diam-
eter. In the chemisorption of two hydrogen atoms in the interior and exterior walls of (,)
and (,) SWCNTs, two hydrogen atoms prefer to bind at alternate positions rather than adja-
cent positions. This was attributed to the crowding effect when two hydrogen atoms occupy
in the adjacent positions. In case of (,) SWCNT, chemisorption of ten hydrogen atoms (%
coverage) decreases the magnitude of chemisorption energy, which is further decreased by an
increase the coverage to %. Similar to the situation in zigzag SWCNTs, two hydrogen atoms
prefer to attach at alternate carbon sites rather than adjacent sites in the graphene sheet. Signif-
icantly large deviation of chemisorption energy between the graphene sheet and zigzag SWNTs
(H atoms chemisorbed on the exterior wall) was reported. It was found that the chemisorptions
ofH atomswith small diameter SWCNTs aremuchmore favorable thanwith the graphene sheet
(Yang et al. c).

We have recently investigated a single hydrogen chemisorption, the preference of the
positions (i.e., –, –′, –, or – positions) for the chemisorption of two hydrogen atoms
considering (,), (,), (,), and (,) armchair SWCNTs of  and  carbon atom layers
(Dinadayalane et al. b).The SWCNTs of  carbon layers considered in our study are shown
in > Fig. -. The addition of H atoms on the outer wall of SWCNT (exohedral addition) has
only been considered in our study.We performed DFT calculations using BLYP/-G(d) level
for full geometry optimizations. The finite-length SWCNTs were capped with hydrogen atoms
to avoid dangling bonds.The reaction energies for hydrogen chemisorption (Er) on the external
surface of SWCNTs have been calculated using the formula Er = ESWCNT+nH – ESWCNT – nEH ,
where ESWCNT+nH denotes the total energy of hydrogen chemisorbed nanotube; n represents
the number of hydrogen atoms chemisorbed; ESWCNT and EH correspond to the energies of
pristine nanotube and the hydrogen atom, respectively.The reaction energy Er can also be con-
sidered as hydrogen chemisorption energy. The chemisorption of hydrogen is an exothermic
process if the value of Er is negative (Dinadayalane et al. b).

We have observed the rupture of circumferential C–C′ bond when two hydrogen atoms
were chemisorbed in case of (,) SWCNT of  carbon layers. As shown in > Fig. -, the
reactions of single as well as two hydrogen chemisorptions on the surface of armchair SWCNTs
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Structures of (,), (,), (,), and (,) armchair SWCNTs of  carbon layers (cl) considered for
the chemisorption of one and two H atoms. The carbon atom sites for attachment of H atoms are
shown (Reprinted with permission from ref. Dinadayalane et al. (b). Copyright  American
Chemical Society)
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 American Chemical Society)
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are highly exothermic. The reaction energy for the addition of two H atoms is more than two
times that of oneH chemisorption except forH(,) addition. Our computational study revealed
a competition between H(,) and H(,) addition in case of (,) and (,) SWCNTs, but
such competition was not seen in case of narrow diameter (,) and (,) SWCNTs. Increasing
the length of the tube has pronounced effect on the reaction energy of hydrogen chemisorp-
tion. In case of armchair SWCNTs, the chemisorption of two hydrogen atoms at alternate
positions is thermodynamically less favored compared to H(,) and H(,′) additions regard-
less of the length and diameter of the tubes (Dinadayalane et al. b). The least positional
preference of H(,) for armchair SWCNTs is different compared to the results of zigzag type
nanotubes by Yang et al. (c), Dinadayalane et al. (b). We found that the H chemisorp-
tion on nanotubes of different diameters and the positions of two hydrogen atoms chemisorbed
on the surface of armchair SWCNTs can be characterized by C–H stretching frequencies of
chemisorbed hydrogen atoms (Dinadayalane et al. b). In the investigation of chemisorp-
tion of H atoms with (,) and (,) SWCNTs of different lengths, we found that changing the
length of the nanotube has significant effect on the reaction energy of hydrogen chemisorption,
HOMO–LUMO gap of pristine and hydrogen chemisorbed SWCNTs (Kaczmarek et al. ).

Ormsby and King predicted the reactivity pattern for the hydrogenation in chiral SWCNTs
(Ormsby and King ). Investigations involving chiral SWCNTs are more challenging than
for zigzag and armchair SWCNTs because single unit cell contains many atoms; consequently,
more computational resources require. Computational study demonstrated that hydrogenation
of the fully benzenoid (,) SWCNT was significantly less energetic (by ∼ kcal/mol per mol
H) than the hydrogenation of (,) and (,) SWCNTs (> Fig. -a). Furthermore, the
hydrogenation at an internal Clar double bond or bonds was reported to be more exothermic
than at randomly selected internal bonds. Like other polycyclic aromatic hydrocarbons, hydro-
genation of double bonds is energetically preferred over hydrogenation of aromatic sextets.The
frontier molecular orbitals (HOMO and LUMO) of chiral SWCNTs have maximum amplitude
at the double bonds suggesting that Clar’s model also predicts the kinetic reactivity. Thus, the
frontiermolecular orbitals are useful in predicting the favorable sites for hydrogenation in chiral
SWCNTs (Ormsby and King ).

In the early s, experimentalists found that partial fluorination of the SWCNTs
could be used as a technique for cutting the nanotubes of varying lengths. However, the mech-
anism of cutting is not yet clear (Gu et al. ). In a computational study, Bettinger observed a
strong oscillation of reaction energy for the addition of F atom on the external surface of (,)
SWCNT of varying lengths (> Fig. -). The computed reaction energy oscillation ranges
from  to  kcal/mol at the UBLYP/-G(d) level using UPBE/-G optimized geometries.
The shortest tube exhibited the highest exothermicity. The energy oscillation was reported to
be periodic with large exothermicity for the fully benzenoid frameworks, in agreement with
their smaller band gaps compared to Kekule and incomplete Clar structures. Computational
study demonstrated that the addition of F atom to the sidewall of SWCNT strongly depends on
the length of the nanotube (Bettinger ). As observed in H atom addition (Dinadayalane
et al. b; Kaczmarek et al. ; Yang et al. c), the F atom addition to the sidewalls of
SWCNTs transforms the carbon atom hybridization from sp to sp (Bettinger ).

The chemical reactivity of carbon nanotubes is governed by the local atomic structure.
As mentioned earlier, the pyramidalization angle is an important parameter in predicting the
chemical reactivity of SWCNTs. Park et al. predicted the hydrogenation and fluorination ener-
gies of each carbon from its pyramidalization angle for zigzag SWCNTs (> Fig. -). They
formulated the Etotal for chemisorption of H and F atom on the external surface of zigzag tubes



Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures  

(12, 7)

(12, 7) (12, 7)

(12, 8)

(12, 8)
(12, 8)

(12, 9)

(12, 9) (12, 9)

–6.1 (kcal / mol) / mol H2 –6.6 (kcal / mol) / mol H2 +1.6 (kcal / mol) / mol H2

90º

90º

90º 90º

90º

90º 90º

90º 90º

90º 90º

90º

S
ea

m
s

S
ea

m
s

a

b c

d

⊡ Fig. -
(a) Hydrogenation of equivalent vectors of (,), (,), and (,) chiral SWCNT segments (planar
representation). (b) HOMO plotted on the isodensity surface for (,), (,), and (,) chiral SWC-
NTs. (c) LUMO plotted on the isodensity surface for (,), (,), and (,) chiral SWCNTs. (d) The
hydrogenated model chiral SWCNT (side and top views). The locations of double bond seam are
indicated in (b) and (c). HOMO and LUMO isodensity surface structures generated at AM method
(Reprinted with permission from ref. Ormsby and King (). Copyright  American Chemical
Society)
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⊡ Fig. -
Variation of reaction energy for the addition of F atomto (,) armchair SWCNT of different lengths
(n – increasing number of carbon layers) (Reprinted with permission from ref. Bettinger ().
Copyright  American Chemical Society)

of different diameters as a function of pyramidalization angle of the binding site of tubes.They
revealed that the metallic zigzag SWCNTs are slightly more reactive than the semiconduct-
ing SWCNTs. Furthermore, the fluorination is more viable than the hydrogenation (Park et al.
).

Theoretical Studies on Common Defects in SWCNTs

Investigating the atomic defects is important in tailoring the electronic properties of SWCNTs.
Recent experimental study reported a method to selectively modify the electronic properties
of semiconductor SWCNTs by the creation and annihilation of point defects on their surface
with the tip of a scanning tunneling microscope (STM) (Berthe et al. ). Such experimental
study motivates theoreticians to explore the structures, energetics, reactivities, and electronic
properties of SWCNTs containing different types of defects.

Stone–Wales Defect

TheStone–Wales defect can be created by ○ rotation of one of the C–C bonds in the hexagonal
network of SWCNTs. Two types of C–C bonds exist in each of armchair and zigzag SWCNTs.
Therefore, one can generate Stone–Wales defect in two different orientations in both armchair
and zigzag SWCNTs (> Fig. -). DFT calculations revealed that the formation energies of
(,) SWD_II and (,) SWD_II are lower than those of (,) SWD_I, and (,) SWD_I. The
computed formation energies of (,) SWD_I, (,) SWD_II, (,) SWD_I, and (,) SWD_II
are . (. eV), . (. eV), . (. eV), and . (. eV) kcal/mol, respectively. The
formation energy was calculated as the relative energy of the Stone–Wales defective tube with
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⊡ Fig. -
DFT-computed Etotal (◻) and pyramidalization angle (θP) values (◯) for fully relaxed configurations
and their estimated values (solid curves) for (a) hydrogenation, and (b) fluorination (Reprintedwith
permission from ref. Park et al. (). Copyright  American Chemical Society)

respect to the corresponding defect-free SWCNT. It was reported that the formation of Stone–
Wales defect causes no change in the HOMO–LUMO gaps (Yang et al. a, b).

We have investigated the structures, formation energies, reactivities of Stone–Wales defect
with two different orientations and different locations from the end of tube in armchair (,)
SWCNTs of CH (I) and CH (II) (> Fig. -a) (> Dinadayalane and Leszczynski
b). We employed HF/-G, HF/-G(d), BLYP/-G, and BLYP/-G(d) levels of
theory. HF/-G level overestimates the Stone–Wales defect formation energy compared to
BLYP/-G(d) level. Our study revealed that BLYP/-G level, which provides reasonable
energy estimation, may be employed for large nanotube systems to compute the defect forma-
tion energieswhen the calculations at the BLYP functionalswith large basis sets are prohibitive.
Our study showed that the Stone–Wales defective (,) armchair SWCNTs generated by rotation
of nearly axial bond (ABR) are more stable than those created by circumferential bond rotation
(CBR) as shown in > Fig. -b. The SW defect structures generated by ABR show lower
HOMO–LUMO gap than those created by CBR and the defect-free SWCNTs (Dinadayalane
and Leszczynski b).
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⊡ Fig. -
Generation of Stone–Wales defect with different orientations in (,) armchair and (,) zigzag
SWCNTs. The atoms in the Stone–Wales defect region are highlighted in yellow color (Reprinted
withpermission from ref. Yanget al. (a). Copyright AmericanChemical Society. Reprinted
with permission from Yang et al. (b). Copyright , American Institute of Physics)

Bettinger demonstrated in a comprehensive computational study that some of the bonds of
SW defect show higher reactivity than pristine tube, others are less reactive (Bettinger ).
Computational studies explained the reactivity of carbon atom sites based on the pyramidal-
ization angles (Akdim et al. ; Bettinger ; Lu et al. ). Lu et al. investigated addition
of O, CH, and O across C–C bonds of SW defective and defect-free armchair SWCNTs.They
showed that the central C–C bond of the SW defect in armchair SWCNT (SW defect generated
by CBR) is chemically less reactive than that in the perfect tube and it was attributed to small
local curvature in the carbon atoms of central C–C bond of the SW defect (Lu et al. ). We
found that the values of pyramidalization angles do not completely explain the reactivity of dif-
ferent bonds of SW defect region for cycloaddition reactions and the reactivity may arise from
various other reasons, in addition to topology. We concluded that the cycloaddition reactions
across the C–C bond shared by two heptagons (– ring fusion) need not always be less reactive
than the corresponding bond in the pristine structure and the reactivity of that bond depends
on the orientation of the SWD in the SWCNTs (Dinadayalane and Leszczynski b).

Topological Ring Defects

Nishidate and Hasegawa calculated the formation energies of n-membered topological ring
defects with n = (heptagon), n =  (octagon), n =  (enneagon) in (,) armchair and (,)
zigzag SWCNTs (> Fig. -a). They used both local density approximation (LDA) and the
generalized gradient approximation (GGA: PW). The spin-polarized projector augmented-
wave (PAW) implemented in VASP code was employed for calculations and periodic boundary
condition was used (Nishidate and Hasegawa ).
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⊡ Fig. -
(a)BLYP/-G(d) level optimized structures of defect-free (,) armchair SWCNTs and the Stone–
Wales defect tubes generated by the ○ rotation of circumferential and nearly axial C–C bonds.
(b) The Stone–Wales defect formation energy obtained at the BLYP/-G(d) level (Reprintedwith
permission from ref. Dinadayalane and Leszczynski (b). Copyright  Elsevier)

The defect formation energy (En
f ) of n-membered rings was calculated as the energy dif-

ference between the total energy of defective SWCNT (En
tot) and that of the pristine SWCNT

(Etot); that is, En
f = En

tot − Etot. The number of atoms of each defective SWCNT is the same
as that of the corresponding SWCNT. Computational study showed that the defect formation
energy increases with increase in defect ring size (n) (> Fig. -b). In general, LDA method
yielded higher defect formation energy than generalized gradient approximation.The SWCNTs
were reported to be more fragile than the graphene sheet for defect formation. Distortion of the
SWCNTs became larger as the defect ring size increases (Nishidate and Hasegawa ).

Topological Ring Defects: Single- and Di-Vacancy

An ideal single vacancy (SV) with three dangling bonds (DBs) was generated by removing one
carbon atom from the perfect (,) and (,) SWCNTs. Upon geometry optimization, an ideal
SVwith three dangling bonds rearranged into a pentagonal ring and one DB (Yang et al. a).
Hence, this defect is called a -DB defect (Lu and Pan ; Yang et al. a). In case of (,)
SWCNT, the optimization of the ideal SV resulted in two different -DB defects.The structures
were named as (,) SV_I and (,) SV_II as shown in > Fig. -. The latter structure was
reported to be energetically more favorable (by . eV) than the former. A similar behavior
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⊡ Fig. -
(a)Fully relaxed structures of the defect-free and the defective (,) (upper panel) and (,) (lower
panel) SWCNTs obtained by the GGA calculations. Gray balls and rods are the carbon atoms and
bonds shorter than . Å, respectively. Carbon ring defects (given in red color) are indicated by the
thick circles. (b) Defect formation energy (En

f
) of n-membered carbon rings for (,) and (,) calcu-

lated using LDA and GGA (The pictures in (a) and the data for (b) were taken with permission from
Nishidate and Hasegawa (). Copyright  by the American Physical Society)

was observed for (,) zigzag SWCNT. The bond length of the new C–C bond forming five-
membered ring is .Å in (,) SV_I, while that of .Å was obtained for (,) SV_II (Yang
et al. a). Lu and Pan found using tight-binding calculations that the single vacancy defect
formation energy for (n,n) armchair SWCNTs increases monotonically with increasing tube
radii.The formation energy curve of single vacancy defects in the zigzag (n,) SWCNTs is peri-
odic, which is mainly characterized by metallic (n,) tubes (such as (,), (,), (,), (,),
etc.) (Lu and Pan ).

An ideal di-vacancy can be generated by removing two carbon atoms. Two different ori-
entations are possible because of the presence of two different types of bonds in both (,)
armchair and (,) zigzag SWCNTs. Upon geometry optimizations, SWCNTs with ideal di-
vacancies yielded -- (five-eight-five-membered rings) defects in two different orientations
in both armchair and zigzag type tubes. Computational study revealed that (,) DV_II and
(,) DV_II configurations are energetically more favorable than (,) DV_I and (,) DV_I
by . and . eV, respectively (Yang et al. a). Yang et al. mentioned that (,) DV_II and
(,) DV_II can be obtained by removing the carbon atoms with the dangling bond from (,)
SV_II and (,) SV_II, which are the most stable configurations among the possible types of
SVs in each type of tubes (Yang et al. a).

The di-vacancy in graphene as well as SWCNTs generates structures possessing two
pentagons side by side with an octagon ( structure) as a result of geometry optimization.
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⊡ Fig. -
Configurations of the single (SV) and double (DV) vacancies. Ideal SV and DV mean one and two
carbonatoms removed frompristine and the structureswerenot relaxed. Single anddouble vacan-
cies in two different orientations (I and II) given for (,) and (,) SWCNTs. Carbon atoms in defect
region are given in yellow color (Reprinted with permission from ref. Yang et al. (a). Copyright
 American Chemical Society)

The  configuration can reconstruct further into a complex structure composed of three
pentagons and three heptagons, called  defect structure. In fact,  configuration
is more stable than  configuration in graphene. Amorim et al. investigated the stability of
these types of configurations, derived by di-vacancies, in armchair and zigzag SWCNTs con-
sidering different tube diameters (Amorim et al. ). The  defect in SWCNTs has two
possible orientations with respect to the tube axis: perpendicular and tilted in armchair, and
parallel and tilted in zigzag SWCNTs. For the (,) SWCNT, the perpendicular orientation is
less stable than the tilted one by ∼. eV. In case of (,) SWCNT, the tilted orientation is less
stable by ∼. eV than the parallel one. In their study, Amorim et al. have considered only the
tilted and the parallel orientations of defects for armchair and zigzag SWCNTs, respectively
(> Fig. -) (Amorim et al. ).

In contrast to graphene, the  defect was predicted to be more stable than the 
defect in both armchair and zigzag SWCNTs. Both  and  defects in nanotubes (both
armchair and zigzag) are more stable than in graphene. The defect formation energy increases
monotonically as the diameter of the armchair SWCNT increases (> Fig. -a). The energy
difference between the  defect and the  defect was computed to be ∼. eV in case
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⊡ Fig. -
Ball and stick models for the final geometries of the defects: (a)  and (b)  in graphene;
(c)  tilted and (d)  in the (,) armchair SWCNT; (e)  parallel and (f)  in the (,)
zigzag SWCNT. The carbon atoms in pentagons are marked in red, the ones that complete either
the octagons or the heptagons are colored in blue, and the ones at the center of the C symmetry
operation in the  defects are colored green. All the others are colored gray (Reprinted with
permission from ref. Amorim et al. (). Copyright  American Chemical Society)
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The limits for graphene were given in both graphs (Reprinted with permission from ref. Amorim
et al. (). Copyright  American Chemical Society)

of zigzag tubes, while the difference was reported to be ∼. eV for armchair SWCNTs. Zigzag
SWCNTs exhibited oscillations in the formation energies and the oscillations were related to
the alternation between semiconductor and metallic character of the (n,) zigzag SWCNTs
(> Fig. -b) (Amorim et al. ).
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Outlook of Potential Applications of Carbon Nanostructures

Graphene is used as a base material for nanoelectromechanical systems (NEMS) due to its
lightweight and stiffness properties (Bunch et al. ; Robinson et al. ). Graphene-based
resonators have notable advantages in comparison with nanotubes. Reduced graphene oxide
films are used to make drum resonators. The high Young’s modulus, extremely low mass,
and large surface area make the graphene-based resonators ideally suited for use as mass,
force, and charge sensors (Ekinci et al. ; Knobel and Cleland ; Lavrik and Datskos
). Graphene can be used for metallic transistor applications and ballistic transport. One
of the potential applications of graphene sheet is its use as membrane for separation (Jiang
et al. ). Graphene may be useful for electro- and magneto-optics (Geim ). Graphane
(fully hydrogenated graphene) nanoribbons have quite promising applications in optics and
opto-electronics due to the wide band gap. Graphene may also be used for transistor applica-
tions (Novoselov et al. ). Research into applications for carbon graphene nanosheets has
focused on their uses as platforms for next-wave microchips, active materials in field emitter
arrays for flat panel screen displays, in biological sensors and medical imaging devices, in solar
energy cells, and in high-surface area electrodes for use in bioscience. Graphene is a possible
replacementmaterial where carbon nanotubes are presently used (Xia et al. ). Recent study
revealed that graphene-based liquid crystal devices (LCDs) show excellent performance with
high contrast ratio.Thus, LCDsmight be graphene’s first realistic commercial application (Blake
et al. ).

Fullerenes hold possibilities of application inmany areas including antiviral activity, enzyme
inhibition, DNA cleavage, photodynamic therapy, electron transfer, ball bearings, lightweight
batteries, new lubricants, nanoscale electrical switches, new plastics, antitumor therapy for can-
cer patients, and combustion science and astrophysics (Dresselhaus et al. ). The fullerene
derivatives obtained by attachment of electron donor moieties are used as photovoltaic devices.
The supramolecular design of molecular assemblies involving fullerenes holds the possibility
to reach new efficient photovoltaic devices (Hudhomme and Cousseau ). Fullerenes show
promising biomedical applications (Bakry et al. ; Bosi et al. ; Mashino et al. ;
Stoilova et al. ; Thrash et al. ). The fullerene derivatives showed antibacterial and
antiproliferative activities; they inhibited bacteria and cancer cell growth effectively (Mashino
et al. ). Cationic fullerenes have been identified to work as antimicrobial photosensitiz-
ers. Bis-functionalized C derivatives have shown the activity against HIV- and HIV- strains
(Bosi et al. ). The antiviral activity of fullerene derivatives is based on several biological
properties including their unique molecular architecture and antioxidant activity (Bakry et al.
). Fullerenes derivatized by hydrophilic moieties are capable of carrying drugs and genes
for the cellular delivery (Thrash et al. ).The localization of themetallofullerol in bonemight
be useful chemotherapeutic agent for treatment of leukemia and bone cancer (Thrash et al.
).

Several potential applications have been proposed for carbon nanotubes; for example,
conductive and high-strength composites, energy storage and energy conversion devices, sen-
sors, field emission display and radiation sources, and nanotube-based semiconductor devices
(Baughman et al. ; Sinha andYeow). Supercapacitorswith carbonnanotube electrodes
can be used for devices that require higher power capabilities than batteries. Nanotubes have
potential application as hydrogen storage (Dinadayalane and Leszczynski ). CNTs can be
added to aircraft to offer EMI (Electromagnetic Interference) shielding and lightning strike pro-
tection. They will also make the aircraft stronger and lighter, allowing for larger payloads and
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greater fuel efficiency. They may be used in commercial aircraft and in notebook computers to
efficiently draw away generated heat without adding additional weight (Sinha and Yeow ).
Nanotube films may be used by the automobile industry to make cars and trucks stronger yet
lighter, and therefore, more fuel efficient.

MWCNTs show great potential for use in nanofluidic devices because of their highmechan-
ical strength and fluid transport ability at near-molecular length scales (Sinha and Yeow ).
Due to the advantages of miniature size of the nanotube and the small amount of material
required, the carbon nanotubes are being explored for chemical sensing applications. SWCNTs
are promising materials for building high performance nano-sensors and devices (Close et al.
). Defects in SWCNTs play important role in chemical sensing applications (Robinson et al.
). CNTs can be used as implanted sensors to monitor pulse, temperature, blood glucose,
heart’s activity level, and can also be used for repairing damaged cells or killing them by target-
ing tumors by chemical reactions (Sinha and Yeow ). Some of the selected applications of
carbon nanotubes are shown in > Fig. -.

Potential biological and biomedical applications of CNTs are under investigation (Dhar
et al. ; Karousis et al. ; Liu et al. ; Sinha and Yeow ). Carbon nan-
otubes have potential to make miniature biological electronic devices, including probes
and sensors (Sotiropoulou and Chaniotakis ; Stevens et al. , ). Water-soluble
peptidomimetic–functionalized carbon nanotubes have been reported to have antitrypsin
activity (Dhar et al. ). Functionalized and water-soluble SWCNTs have been explored to
find biological applications in the area of drug delivery (Dhar et al. ;Karousis et al. ; Liu
et al. ). CNTs could be used as potential delivery tools for peptide-based synthetic vaccines.
CNTs are currently being considered as suitable substrate for neuronal growth, as ion chan-
nel blockers, as vectors for gene transfection (Sinha and Yeow ). Carbon nanotubes have
provided possibilities for applications in nanotechnology. Continuous and optimistic research
efforts in the area of carbon nanotubes are required to realize lot of breakthrough commercial
applications.

Summary and Outlook

In this chapter, we provided vital information and up-to-date research on carbon nanos-
tructures, particularly graphene, fullerenes, and carbon nanotubes, which are critical in the
nanotechnology revolution. This chapter also covered the modeling aspects, especially the
current trends of computational chemistry applications in understanding the structures, reac-
tivity, and other properties of above, mentioned carbon nanostructures, and their importance
in supporting the experimental results. Many aspects of basic research and practical applica-
tion requirements have been motivating both theoreticians and experimentalists to gain better
understanding about the carbon nanostructures. Obtaining knowledge on a specific class of
chemical reactions with graphene, fullerenes, and SWCNTs is required for making novel mate-
rials as well as to produce carbon-based nanomaterials for specific applications. Computational
investigations provide opportunity to understand the structures, binding of atoms/molecules
with the carbon nanotubes. Systematic and careful computational chemistry approaches could
have important implications for the rational design of novel CNT composite materials, novel
nanotube-based sensors, as well as for the development of new chemical strategies for SWCNT
functionalization. Strong interactions between experimentalists and theoreticians working in
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(a) and (b) Electron micrographs of two different AFM cantilever tips, each with a nanotube
attached; (a) An SEM (scanning electron microscope) micrograph of a nanotube. (b) A TEM (trans-
mission electron microscope) micrograph of a nanotube (Reprinted with permission from ref.
Stevens et al. (). Copyright  Institute of Physics). (c) Nanoelectromechanics of suspended
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(polyethyleneimine) (Pictures (c) and (d) were reprintedwith permission from ref. Dai (). Copy-
right  American Chemical Society). (e) Folate receptor (FR)-mediated targeting and SWCNT-
mediated delivery of Pt containing complex (Reprinted with permission from ref Dhar et al. ().
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the area of carbon nanostructures will enhance the real-time applications rapidly. Future
efforts should not only provide high-tech nano-devices but also address fundamental scientific
questions. Further exciting developments in nanoscience and nanotechnology are expected.
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Abstract: This chapter reviews the fundamental concepts of excitons and excitonic polari-
tons and their extraordinary optical properties in quantum dot nano-composite materials. By
starting with the optical excitation of an exciton in the nanostructure we show that the effec-
tive dielectric constant of the nanostructure becomes significantly modified due to the exciton
generation and recombination, resulting in high positive and negative dielectric constants. We
also discuss single exciton generation by multiple photons and multiple exciton generation by
single photon. All these nonlinear optical properties of quantum dot nano-composite materials
offer novel possibilities and are expected to have deep impact in nanophotonics.

Introduction

Materials with nanoscale features have the potential to revolutionize optoelectronics, permit-
ting new and interesting device and system capabilities.The key design element is the geometry,
that is, size and shape, which defines the properties of the nanostructured material and has led
to the expectation of new and/or significantly improved physical, electrical, and optical prop-
erties. To precisely engineer light–matter interaction at the nanoscale, electron-hole pairs, that
is, excitons, and their coupling with photons, exciton-polaritons, are becoming increasingly
important. Excitons are of great interest in nanoscience because it has been discovered that
their properties can be dictated by the size and the shape of a nanostructure in which they are
confined, in addition to the constitution of the nanostructure.The new aspect of excitons that is
prevalent in or evendefining nanoscience is that the physical size and shape of the nanostructure
are parameters that significantly influence their properties.

Exciton polaritons were intensively studied in the s and s, and their manifestation
in various optical phenomena, including light reflection and transmission, photoluminescence,
and resonant light scattering are well established and documented by now, see, for example, the
dedicated volume (Sturge and Rashba ) and references therein. We refer to Kavokin ()
that presents detailed discussions of energy dispersion of exciton-polaritons in microcavities
(largely about quantumwells,QWs), to Scholes and Rumbles () for a very intuitive descrip-
tion of excitons in nanoscale systems and a detailed review about excitons in polymers and
nanotubes, and to Weisbuch et al. () for research and development of excitions and pho-
tons in confined structures from three-dimensionally (D) extended states (bulk) to atom-like
quantum dots (QDs) and their applications in light emitting devices.

In semiconductor technology, the geometric miniaturization of individual components and
devices have been scaling according to Moore’s Law (International Technology Roadmap for
Semiconductors; Fu et al. a). Photonics has also been catching up (Thylén et al. ) but
at a slowpace due to the limitations imposed by the diffraction limit. Resonant excitonic states in
nanostructures, after coupling with light to form excitonic polaritons, provide a source for both
high and negative dielectric constant (Fu et al. b, ; Zia et al. ), thus offering novel
possibilities to drastically increase the integration density and new functionalities in photonics
at the nanoscale. Rapid growth of nanotechnology also greatly expands the clinical opportu-
nities. Colloidal QDs are highly fluorescent with excellent photochemical stability, extreme
brightness, and broad excitation spectral range, which have been introduced successfully in
many fluorescence-based optical imaging applications (Medintz et al. ). Surface-modified
and water-soluble QDs open a new era in cell imaging and bio-targeting as transport vehicles
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⊡ Table -
Atomic structures of typical elements making up common semiconductors

Element Core electrons Valence electrons

IV-Si ssp sp

IV-Ge sspspd sp

III-Ga sspsspd sp

V-As sspsspd sp

II-Cd sspspdspd s

VI-Se sspspd sp

for therapeutic drug delivery to different diseases such as cancer and atherosclerosis (Derfus
et al. ; Molnár et al. ; Vashist et al. ).

In this chapter we concentrate on nano-semiconductor systems, where it has become possi-
ble during the last  years to handle and control single excitons. More specifically we focus on
excitons and exciton-polaritons in semiconductor QDs.This chapter presents first a theoretical
background of the solid-state theory, the exciton and the coupling between the exciton and the
photon (excitonic polariton). Optical properties of exciton polaritons in nanostructures and
their photonic engineering are then discussed.

Solid-State k ⋅ p Theory

The theoretical description of electronic and optical properties of nanostructures is currently
advancing using modern quantummethodologies such as pseudo potential, tight-binding, and
atomistic semi-empirical pseudo potential methods (Allan and Delerue ; Franceschetti
et al. ; Jiang et al. ; Rabani and Baer ). However, these studies have been lim-
ited to light atoms and small nanostructure sizes. Our target nanostructure systems are about
 nm in diameter and even more where macroscopic micrometer scale solid-state theory is
well developed.

In isolated atoms the energy levels are sharply defined.When two atoms are brought close to
each other their electron wave functions overlap. As a result of the interaction between the elec-
trons, it turns out that each single state of the isolated atom splits into two states with different
energies. The degree of splitting increases as the inter-atomic separation decreases. Similarly,
if five atoms are placed in close proximity, then each original energy level splits into five new
levels. The same process occurs in a solid, where there are roughly  atoms/m: The energy
levels associated with each state of the isolated atom spread into essentially continuous energy
bands separated from each other by energy gaps.

Before further examining the various properties of semiconductors it is extremely use-
ful to examine the atomic structure of some of the elements which make up commonly used
semiconductors as listed in > Table -.

A very important conclusion can be drawn about the elementsmaking up the semiconduc-
tors: The outmost valence electrons are made up of electrons in either the s- or p-type orbitals.
While this conclusion is strictly true for elements in the atomic form, it turns out that even
in crystalline semiconductors the electrons in the valence band (VB) and conduction band
(CB) retain this s- or p-type character. The core electrons are usually not of interest, except



  Optical Properties of Qt Dot Nano-composite Materials

d2

d1

y

x

y

z z

x

a a

R3

R1

a b

R2

⊡ Fig. -
(a) Face-centered cubic (fcc) latticewith primitive translation vectors R, R, and R. (b) Zincblende
crystal structurewhered andd denote twodifferent atoms (canbe identical suchas in Si crystal in
which case the lattice structure is calleddiamond). Inboth (a) and (b),adenotes the lattice constant

of some special characterization-type experiments. Note that II–VI compounds such as CdSe
are normally complicated and their lattice structures are hexagonal.

In general, it is found that when atoms exchange or share valence electrons so that the
complement of quantum states is completed, they have a lower electrostatic energy for their
combined electron patterns than when they are separate. For example, silicon has four valence
electrons grouped in two closely spaced energy levels (s and p, see > Table -); it can com-
bine with other silicon atoms by sharing four valence electrons with four surrounding silicon
atoms in an endless array. The atoms around any one atom are centered at the corners of a
regular tetrahedron: the tetrahedral bond.This creates the diamond crystal structure.

Essentially all semiconductors of interest for electronics and optoelectronics have the face-
centered cubic (fcc) structure. However, they have two atoms per basis. The coordinates of the
two basis atoms are () and (a/)(), indicated in d and d in > Fig. -b. Here a is
normally denoted as the crystal lattice constant. If the two atoms of the basis are identical, the
structure is called the diamond structure. Semiconductors such as silicon, germanium, and car-
bon fall into this category. If the two atoms are different, for example, GaAs, AlAs, and CdS, the
structure is called zincblende.

The intrinsic property of a crystal is that the environment around a given atom or group of
atoms is exactly the same as the environment around another atom or similar group of atoms.
Many of the properties of crystals andmany of the theoretical techniques used to describe crys-
tals derive from such a periodicity of crystalline structures. This suggests the use of Fourier
analysis in the form of real space–reciprocal space or wave vector space duality for crystal prob-
lem discussions. Many concepts are best understood in terms of functions of the wave vector.
We prefer to describe a wavewith wavelength λ as a plane wavewith wave vector k ofmagnitude
π/λ and propagation direction perpendicular to the wave front. The space of the wave vectors
is called the reciprocal space.

The k ⋅ p method is much used in analyzing semiconductor nanostructures as it gives a
good approximation of the states close to the Γ point (k = ), which is the most relevant region
for many device applications. The approximation is given with good accuracy, while in many
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nanostructure calculations, this is the only feasible numerical model that can be implemented
(even though it is still much restricted due to the computational capability).

The goal is essentially to solve the Schrödinger equation for a nanostructure to get the
eigenenergies and their associated eigenvectors (wave functions). The wave functions usually
have too high frequencies to be feasible to calculate explicitly using numerical methods on
computers as an inordinately high number of grid points would be necessary to capture an
acceptable numerical representation of the wave function. A solution is to separate the wave
functions into an oscillatory part and a modulating part which is of the same scale as the het-
erostructure. This is the basic idea of the envelope function approximation – the modulating
part is called the envelope function. We write the envelope function as a Bloch function:

ψnk(r) = e
ik⋅runk(r) (.)

where n is the state index and k is the wave vector. The Schrödinger equation for this wave
function is simply

[

p

m
+ V(r)]ψnk(r) = En(k)ψnk(r) (.)

Substituting the factorization into the equation requires some care in evaluating the product of
themomentumoperator p and the two parts of the wave function.With p = −iħ∇ and knowing
from vector calculus that∇eik⋅r = ikeik⋅r , the product of the momentumoperator and the wave
function becomes

−iħ∇[eik⋅runk(r)] = −iħe
ik⋅r
(∇ + ik)unk(r) = e

ik⋅r
(p + ħk)unk(r) (.)

Applying themomentumoperator a second time gives eik⋅r(p+ħk)

unk(r), so the Schrödinger

equation can be written in the following way that the oscillatory part will cancel out:

eik⋅r
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(p + ħk)


m
+ V(r)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

unk(r) = e
ik⋅rEn(k)unk(r) (.)

Expanding the (p + ħk)

term gives

[

p

m
+ V(r) +

ħk ⋅ p
m

+

ħk

m
]unk(r) = En(k)unk(r) (.)

The first two terms are identical to the original Hamiltonian, so if the two other terms are
treated as a small perturbation the Hamiltonian can be expressed as (H + H + H)unk(r) =

En(k)unk(r), and treat H = (ħ/m)k ⋅ p and H = ħk/m as first-order and second-order
perturbations, respectively.

If the equation is solved for k = with onlyH remaining nonzero, the result is a set of eigen-
vectors un(r), typically at the optimal points such as the Γ point in > Fig. - which shows
the energy band structure of most common GaAs and InAs bulk materials. For the following
discussion we express the eigenfunction using Dirac notation as ∣n⟩, and eigenvalues En . These
form a complete basis set with orthogonal eigenfunctions which can be used in perturbation
calculations of states with k ≠ .

As the atoms of the elements making up the semiconductors are brought together to form
the crystal, the valence electronic states are perturbed by the presence of neighboring atoms.
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Energy band structures of electrons in GaAs and InAs bulk materials

While the original atomic functions describing the valence electrons, of course, no longer are
eigenstates of the problem, their characteristics can be used as a good approximate set of basis
states to describe the “crystalline” electrons. For most semiconductor materials of interest, the
atomic functions required to describe the outermost electrons are s, px , py , and pz types, as
shown by >Table -. A common approach of choosing the above ∣n⟩ at the Γ point is to follow
Kane () and define a set of eight states, that is, unk(r) in > Eq. . at k = , ∣S ↑⟩, ∣X ↑⟩,
∣Y ↑⟩, ∣Z ↑⟩, ∣S ↓⟩, ∣X ↓⟩, ∣Y ↓⟩, ∣Z ↓⟩, where the arrows indicate spin up and down. ∣X,Y , Z⟩
denotes degenerate VBs while ∣S⟩ denotes the CB. Other remote bands are not included unless
specifically required.

The eigen function for a given k is a linear combination of the basis functions:

unk(r) = ∑
m

cnm(k)∣m⟩ (.)

so the objective is now to find the coefficients cnm that form our envelope parts together with
the basis functions at Γ.

If we substitute this linear combination into the Schrödinger equation, we get

H
∑

m
cnm(k)∣m⟩ = ∑

m
cnm(k)H∣m⟩ = En(k)∑

m
cnm(k)∣m⟩ (.)

Multiply this on the left with the conjugate of any, say ∣ℓ⟩, of the basis functions, and we obtain

∑

m
cnm(k)⟨ℓ∣H∣m⟩ = En(k)∑

m
cnm(k)⟨ℓ∣m⟩ = En(k)cnℓ(k) (.)

The right-hand part is the result of wave function’s orthonormal property.
Inserting the expanded k ⋅ p Hamiltonian > Eq. ., multiplying with the conjugate, and

integrating over an unit cell using the fact that the basis functions are orthonormal gives

∑

m
[(Em +

ħk

m
) δℓm +

ħ
m
⟨ℓ∣k ⋅ p∣m⟩] cnm(k) = En(k)cnℓ(k) (.)
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The first-order approximation is thus

En(k) = En +
ħk

m
, cnm(k) = δnm (.)

The second-order approximation is thus given by

En(k) = En +
ħk

m
+

ħ
m
∑

ℓ≠n

∣⟨ℓ∣k ⋅ p∣n⟩∣

En − Eℓ
(.)

The result can be expressed in terms of an effective massm∗:

En(k) = En +∑
i , j

ħ

m∗

i j
ki k j (.)

where i, j = x, y, z, and
m

m∗

i j
= δi j +


m
∑

ℓ≠n

⟨n∣pi ∣ℓ⟩⟨ℓ∣p j∣n⟩
En − Eℓ

(.)

Note here that the effective mass can be anisotropic which can be utilized for optical coupling
in quantum well photodetection (Xu et al. ).

It can be easily seen that a narrow bandgap, which leads to two states being close to each
other, gives a small effective mass which agrees very well with the experimental data which
indicates that InSb has both the smallest bandgap and the lowest effective mass. By a series
of experiments the parameters for the k ⋅ p Hamiltonian can be determined, and the final
result is a matrix with many material-dependent parameters and no arbitrary parameters to
adjust. Details of the k ⋅ p Hamiltonian for III–V and II–VI semiconductor materials are well
documented in reviews (Madelung , ; Vurgaftman et al. ).

Excitons in Nanostructures

After reviewing some solid state theory, we are now capable of modeling excitons and exciton-
polaritons in semiconductor nanostructures. We first study and model the exciton in general,
then excitons inQD-based nanostructures, and finally applications of QD excitons and exciton-
polaritons. Details of exciton theory can be found in Dimmock () and Fu and Willander
().

As discussed in the previous section, the energy band structure of electrons in a semi-
conductor consists of energy bands separated by band gaps. At absolute zero temperature, a
pure semiconductor is characterized by having only completely occupied and completely empty
energy bands.The highest occupied bands are referred as VBs and the lowest unoccupied band
is the CB. Let H be the Hamiltonian of the nanostructure under investigation, then

Hψvkh(rh) = Ev(kh)ψvkh (rh)

denotes the VB state and
Hψcke (re) = Ec(ke)ψcke (re)

the CB state. We consider an optical absorption process in which an allowed electric dipole
(not ultra intense excitation) transition raises an electron from a filled VB state to an empty CB
state.The properties of a systemwith an electronmissing from a VB state ψvkh can be described
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by considering a single particle of positive charge in the state, that is, the VB hole. The exact
expression of the interaction potential between the CB electron and VB hole is rather compli-
cated. For commonly used semiconductor systems, and when the electron and hole are widely
separated and moving relatively slowly with respect to one another, the Coulomb interaction
between them is screened and given by Dimmock ()

V(re − rh) = −
e

πє
∞
∣re − rh ∣

(.)

where є
∞

is the high-frequency dielectric constant.
The exciton state is described by the two-particle wave function

ψcke (re)ψvkh(rh)

The total wave vector of the excited state is K = ke + kh . Because of the Coulomb interaction,
ψcke (re)ψvkh(rh) does not represent an eigen state of the system. We approximate the eigen
state of the exciton by a linear combination of electron-hole states

ΨnK(re , rh) = ∑

cke ,vkh
AnK(cke , vkh)ψcke(re)ψvkh (rh) (.)

where n is the quantum index of the exciton state. By introducing the Fourier transform of
AnK(cke , vkh),

ψnK(re , rh) =

Ω ∑

ke ,kh
eik e ⋅re eikh ⋅rh AnK(cke , vkh) (.)

where Ω is the normalization volume, it is easy to show thatψnK(re , rh) satisfies the differential
equation

[Ec(−i∇e) − Ev(−i∇h) + V(re − rh)]ψnK(re , rh) = EψnK(re , rh) (.)

where Ec(−i∇e) is the expression obtained by replacing ke in the power-series expansion
of Ec(ke) by −i∇e . The result is valid provided Ec(ke) and Ev(kh) are analytic and can be
expanded in powers of ke and kh . In the effectivemass approximation of > Eq.., the exciton
Hamiltonian becomes

H = −
ħ∇

e

m∗

e
−

ħ∇
h

m∗

h
−

e

πє
∞
∣re − rh ∣

(.)

where m∗

e and m∗

h are effective masses of electron and hole.
It is easier to introduce the relative and centre-of-mass coordinates re −rh and R = (m∗

e re +
m∗

hrh)/(m
∗

e +m∗

h) to solve the above exciton Hamiltonian

H = −
ħ∇

R

(m∗

e +m∗

h)
−

ħ∇
re−rh

m∗

r
−

e

πє
∞
∣re − rh ∣

(.)

where /m∗

r = /m∗

e + /m∗

h is the reduced effective mass.
For three-dimensionally extended bulk material, the part of the wave function in R con-

tains a factor of eiK ⋅R, the part in the relative coordinates contains a hydrogenic ψnK(re , rh) =
ψnK(re − rh), so that the exciton wave function and its energy are

eiK ⋅RψnK(re , rh), EnK =
ħK

(m∗

e +m∗

h)
−

m∗

r e

є
∞
n (.)
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and the wave function of the ground exciton state (n = ) corresponding to the last two terms
of the Hamiltonian > Eq. . is

ψK(re , rh) =


√

πaBr
e−∣re−rh ∣/aBr (.)

where aBr = πє
∞
ħ/m∗

r e is the Bohr radius of the exciton in the semiconductor material.
In three-dimensionally confined nanostructures, the center of mass of the exciton is not mobile
so that we simply let K =  in > Eqs. . and > ..

We now study the effect of excitons on the optical transition. The probability that the system
makes an electronic transition from the ground stateΨ to an excited (exciton) stateΨnK(re , rh)
is proportional to

∣⟨ΨnK ∣eiq⋅ra ⋅ p∣Ψ⟩∣
 (.)

where p is the momentum operator, q and a are, respectively, the wave vector and polarization
vector of the photon. By > Eq. . we obtain

⟨ΨnK ∣p∣Ψ⟩ = ∑

cke ,vkh
AnK(cke , vkh)⟨ψcke ∣p∣θψvkh ⟩ (.)

where θ is the time-reversal operator and θψvkh is the unoccupied VB state out of which the
electron was excited. Denoting θψvkh = ψv−kh as the hole state andmaking use of the negligible
q (the photon wave vector is negligibly small so that K = ) so that ke = −kh ≡ k,

⟨Ψn∣p∣Ψ⟩ = ∑
k
An(ck, v − k)⟨ψck∣p∣ψvk⟩ (.)

where we have neglected the contribution from all other bands except the VB and CB in the
vicinity of the Fermi level.

Under normal device operation conditions, ⟨ψck∣p∣ψvk⟩ ≈ pcv which is independent of k
over the range of k involved,

⟨Ψn∣p∣Ψ⟩ = pcv∑
k
An(ck, v − k) (.)

By > Eq. . the transition probability is therefore proportional to

∣⟨Ψn∣p∣Ψ⟩∣

= pcv ∣ψn(re , rh)∣


re=rh (.)

Note that the optical transition is also constrained to K =  since the photon wave vector is
negligibly small. For spherical state ψn() is nonzero only for s-type states of > Eq. . (the
reader can refer to the hydrogen atom inmany quantummechanics textbooks) and ∣ψn()∣ ∝
/n so that

∣⟨Ψn∣p∣Ψ⟩∣

∝


n (.)

which shows that only the low-energy exciton states (small n) can be probed optically for bulk
materials.

The exciton binding energy E in > Eq. . for the ground exciton state (n = ) in
commonly used bulk semiconductors is less than meV so that their room temperature lumi-
nescence is very weak (exciton thermally dissolved so that n is large). Moreover, exciton Bohr
radii, that is, the effective spatial extensions of the excitons, in bulk materials are also quite
extended, see > Table -.
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⊡ Table -
Excitons in common semiconductor (Fu et al. ; Madelung , ) (low temperature for IV
and III–V). Eg denotes the band gap between VB and CB

Si GaAs AlAs InAs CdSe ZnO

m∗h (heavy hole) . . . . ./. .

m∗e (electron) . . . . . .

Eg [eV] . . . . . .

aBr [nm] . . . . . .

E [meV] . . . . .

In high quality semiconductor nanostructures, quantum size effects prevail and subband
formation strongly influences the exciton as the electron and hole are forced to stay in a very
confined spatial area. Coulomb interaction between the electron and hole, that is, the exciton
binding energy, becomes much increased. Even at room temperature the sharp exciton lines
can be detected in the absorption spectra of AlGaAs/GaAs multiple QWs (Miller et al. ),
which can hardly be observed in bulk GaAs samples.

One of the reasons for the fast development of ZnO and related materials is their large
excitonic binding of about meV which binds the electron and hole strongly in bulk
ZnO even at room temperature (Sun et al. ). A photonic switch operating by controlling
exciton excitation in ZnO QWs via an optical near field has been reported, where ZnO QWs
were in the form disks with a disk diameter of  nm and the heights of  nm (in a structure
composed of one single-QW and three double-QW) and . nm in the one double-QW case
(Yatsui et al. , ). Another development based on the large exciton binding energy of
ZnO was the room-temperature polariton laser (Zamfirescu et al. ).

> Equation . tells us that the major reason for studying and developing semicon-
ductor nanostructures for optical applications refers to the forced quantum confinement.
The exciton will not dissolve even when the exciton binding is comparable or smaller than
the thermal energy. Light–matter interaction in the forms of optical exciton generation and
radiative recombination is much enhanced, resulting in many novel nanostructure-based
optoelectronic applications.

Polarization and Optical Properties of Exciton-Polaritons

In this section, we study the optical properties of excitons in nanostructures. We start with the
detailed analysis of optical absorption in which an allowed electric dipole transition creates an
exciton ΨnK from a filled VB and in this scheme the wave function of the initial state (the filled
VB) is simply unity denoted by Ψ in the formalism of second quantization. Assume that our
electron-hole system is initially in its ground state Ψ for time t < . We switch on an external
radiation of E(r, t) for t ≥ ; the first-order perturbation Hamiltonian is

V =
∫

d(r) ⋅ E(r, t) dr (.)

where d(r) is the dipole-moment operator given by,

d(r) = −ere δ(r − re) + erhδ(r − rh) (.)
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where e is the charge unit.We denote the wave function of the electron-hole system as ∣re , rh , t⟩,
its time-dependent Schrödinger equation is then

iħ
∂
∂t
∣re , rh , t⟩ = (H + V)∣re , rh , t⟩ (.)

where H is given by > Eq. ..
By the first-order perturbation approximation where we consider only the exciton ground

state Ψ to one excited excitonic state ΨnK(re , rh , t) the time-dependent wave function

∣re , rh , t⟩ = ∣Ψ(t)⟩ + cnK(t)∣ΨnK(re , rh , t)⟩ (.)

Here we simply assume that ∣cnK(t)∣ ≪ . We will discuss this more closely in the coming
sections.

We now formally denote both Ψ(t) and ΨnK(re , rh , t) as eigen functions of H such that

HΨ(t) = EΨ(t) = ħωΨ(t)
HΨnK(re , rh , t) = EnKΨnK(re , rh , t) = ħωnKΨnK(re , rh , t)
Ψ(t) = Ψe−iω t

ΨnK(re , rh , t) = ΨnK(re , rh)e
−iωnK t (.)

Substituting > Eq. . into > Eq. . leads to

iħ
∂Ψ(t)

∂t
+ iħ

∂cnK(t)
∂t

ΨnK(re , rh , t) + iħcnK(t)
∂ΨnK(re , rh , t)

∂t
= HΨ(t) + cnK(t)HΨnK(re , rh , t) + VΨ(t) + cnK(t)VΨnK(re , rh , t)

By > Eqs. .,

ħωΨ(t) + iħ
∂cnK(t)

∂t
ΨnK(re , rh , t) + ħωnK cnK(t)ΨnK(re , rh , t)

= EΨ(t) + cnK(t)EnKΨnK(re , rh , t) + VΨ(t) + cnK(t)VΨnK(re , rh , t)

which is
iħ

∂cnK(t)
∂t

ΨnK(re , rh , t) = VΨ(t) + cnK(t)VΨnK(re , rh , t) (.)

Multiplying the above equation by ⟨ΨnK(re , rh , t)∣ we come to

∂cnK(t)
∂t

=


iħ
⟨ΨnK(re , rh , t)∣∫ d(r) ⋅ E(r, t) dr∣Ψ(t)⟩ (.)

It can be shown (Fu and Willander )

⟨ΨnK(re , rh)∣∫ d ⋅ E(r, t) dr∣Ψ(re , rh)⟩

=

e
ωnKm

∫

ψ∗

nK(r, r)pcv ⋅ E(r, t) dr (.)

where ψnK(r, r) is obtained from ψnK(re , rh) by setting re = rh = r. Thus,

dcnK(t)
dt

=


iħ

e
ωnKm

∫

ψ∗

nK(r, r)pcv ⋅ E(r, t) dr e
i(ωnK−ω)t (.)

Note that optical couplings among excitonic states are zero because of the quantum selection
rules. As well, only a limited number of excitonic states have nonzero optical couplings with the
ground state.
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In reality ω =  since this is the reference state where the VB is completely filled and
the CB is empty. Furthermore, we can very well describe the excitation radiation as E(r, t) =
E(r,ω)e−iωt , so that integrating the above equation we obtain immediately

cnK(t) =
ei(ωnK−ω)t

ħ(ωnK − ω + iγ)
e

ωnKm
∫

ψ∗

nK(r, r)pcv ⋅ E(r,ω) dr (.)

Before wemove on, let us discuss the spatial distribution of the exciton wave function. Exci-
tons are normally categorized into two types. The Frenkel exciton is an excited electronic state
where the electron and the hole are situated in the samemolecule or atom. Because of their small
radius, the Frenkel excitons usually are considered to be local. The large-radius Wannier–Mott
exciton in bulk semiconductors is relatively weakly bound due to a typically large exciton Bohr
radius. A hybrid state ofWannier–Mott exciton and Frenkel exciton in different heterostructure
configurations involving QDs was found to exist at the interfaces of the QDs and the surround-
ing organic medium with complimentary properties of both kinds of excitons (Birman and
Huong ).

In heterostructures both the CB electrons and the VB holes will experience extra potential
energies such as band offsets. For low-energy Frenkel excitons in a QD, the electrons and holes
are confined within the sameQD volume (type-I exciton) so that we will have a common poten-
tial energy V(∣R − a∣) that confines the exciton, where R is the center of mass of the exciton
(see > Eq. .), a denotes the center of the QD. For common semiconductor QDs, the radius
of the QD, RQD, is in the order of the exciton Bohr radius aBr so that one may neglect the free
motion of the center of mass of the electron-hole pair in the QD, that is, K =  in > Eq. ..
For the ground state of the exciton we can approximateV(∣R−a∣) =  when ∣R−a∣ < RQD and
V(∣R− a∣) = ∞ elsewhere so that the wave function corresponding to the motion of the center
of mass becomes (Gasiorowicz )


√

πRQD ∣R − a∣
sin(

π∣R − a∣
RQD

) (.)

for ∣r − a∣ ≤ RQD. The wave function is zero elsewhere. We thus finally obtain the total wave
function of the exciton ground state inside the QD


√

πRQD ∣R − a∣
sin(

π∣R − a∣
RQD

)


√

πaBr
e−∣re−rh ∣/aBruc(re)uv(rh) (.)

Here Bloch functions uc(re) and uv(rh) at CB andVB bandedges are included, see > Eqs. .
and > ..

The polarization of the excited exciton in a QD centered at a is

Pa(r, t) = ∑
nK
⟨ΨnK(re , rh , t)∣d(r)∣Ψ(re , rh)⟩c

∗

nK(t)c(t) + c.c. (.)

whered is the dipole of the exciton given by > Eq. .. Since the wave function > Eq. . of
the exciton is confined and real, the polarization of the exciton in the QD excited by an external
electromagnetic field E(r, t) is (Fu et al. , )

Pa(r, t) = ∑
nK

epcv e
−iωt

ħ(ωnK − ω + iγ)ω
nKm




× ψnK(r, r)
∫

ψnK(r′, r′)pcv ⋅ E(r
′,ω) dr′ (.)
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By assuming small spatial variation of the excitation field within the QD, an effective permit-
tivity is defined for the QD exciton polariton by writing

D(r,ω) = є
∞
E(r,ω) + P(r,ω) = єQD(r,ω)E(r,ω) (.)

where є
∞

is the background dielectric constant of the QD material, and

єQD(r,ω) = є∞ ( +∑
nK

ωLT

ωnK − ω + iγ
sin αnK

αnK
) (.)

where αnK = π∣r − a∣/RQD. є∞ωLTaBr = epcv/πħω
nKm


. ωLT is normally referred to be

the exciton longitudinal-transverse splitting. The above equation was obtained under the per-
turbation approximation and thus can also be accounted at a semiclassical level by adding a
Lorentz-oscillator term to the dielectric function (Andreani et al. ).

Notice that єQD(r,ω) in the above equation is position-dependent. Making an average over
the QD volume results in an effective dielectric constant

єQD(ω) = є∞

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 +
∑

nK

ωLT

π
(ωnK − ω + iγ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(.)

For a normal system without any extra external modifications except the incident electro-
magnetic field of E(r, t) under investigation, the occupation of excited excion state, ∣cnK(t)∣,
is small (the first-order perturbation condition). Moreover, this occupation of the excited state
is also much smaller than the ground state, see > Eq. ., so that an optical absorption dom-
inates. This means that the optical field is absorbed during the exciton excitation following its
propagation through the QD. The situation is normally referred to as optical loss, for example,
in photodetectors.

Optical gain is achieved in light-emitting and laser devices by population inversion.
To achieve optical gain in the QD, we increase the occupation of the exciton state. Here we
consider such a pumping process that the exciton population of the excited exciton state c()nK is
finite at time t =  so the time-dependent wavefunction becomes

∣re , rh , t⟩ = [c
()
 + c(t)]∣Ψ(re , rh)⟩ +∑

nK
[c()nK + cnK(t)]∣ΨnK(re , rh , t)⟩ (.)

due to the external electromagnetic field E(r, t). We can obtain (Fu et al. )

єQD(ω) = є∞

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 +
∑

nK

(∣c() ∣

− )ωLT

π
(ωnK − ω + iγ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(.)

Let us write є = є′ + iє′′,

є′QD(ω) = є∞

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 +
∑

nK

(∣c() ∣

− )(ωnK − ω)ωLT

π
[(ωnK − ω) + γ]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

є′′QD(ω) = є∞

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 +
∑

nK

(∣c() ∣

− )γωLT

π
[(ωnK − ω) + γ]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(.)
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⊡ Fig. -
Dielectric coefficients of theQDbefore (a) and after (b) the excited exciton state in theQDbecomes
populated. є

∞

= ., ħωnK = . eV, ħωLT = meV, and ħγ = meV for typical II–VI semiconductor
QDs, for example, colloidal PbSe/ZnSe QD

Since є′′ represents the energy loss of the incident electromagnetic field, we observe that the
QD is lossy when ∣c() ∣


< /, it becomes transparent when ∣c() ∣


= /, and optical gain will

occur when ∣c() ∣

> /. At the same time, the polarization changes sign.

> Figure - shows the calculated dielectric constant for one QD before and after some
fraction of the exciton states becomes populated. In this example, II–VI PbSe/ZnSe QD in a
CdSe background is assumed and ħγ = .meV. In > Fig. - and throughout this chapter we
write є = є′ + iє′, where є′ and є′′ are expressed in units of є. Here we observe the possibility
of finding low-loss negative dielectric constant.

As shown in > Fig. -, a huge effective permittivity is expected in the vicinity of ωnK ,
with which the energy dispersions of photonic crystals based on QD arrays were derived
(Fu et al. ) to understand photonic band gaps observed inCdSQDs embedded in fcc porous
silica matrices (Vlasov et al. ). A close-packed D array of spherical CuCl QDs in air was
shown by extended Maxwell-Garnett theory and rigorous layer-multiple-scattering method to
have a negative refractive indexwithin the region of the excitonic resonance (Yannopapas ).
The structure was proposed for subwavelength imaging (the loss is however formidably high)
(Yannopapas ).

Exciton-Polariton Photonic Crystals

As shown by > Eq. ., the effective dielectric coefficient of the QD is strongly modified
when the exciton state in the QD is resonantly excited by an incident electromagnetic field.
The contrast between this exciton effective dielectric coefficient and the background material
can thus be utilized to construct a photonic crystal when the QDs are positioned in space in
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a periodic manner. > Equation . was coupled to the electromagnetic field to study the
optical dispersion of exciton-polariton crystals (Fu et al. ; Ivchenko et al. ) stimulated
by the experimental works of fcc structured silica opals (Vlasov et al. ).

Maxwell equations describing the incident electromagnetic field in theQDphotonic crystal,
free of charges and free of drift-diffusion current, are written as

∇× [∇× E(r)] = μωD(r)
∇ ⋅D(r) =  (.)

in the MKS unit system, where E(r) is the electric field, D(r) is the displacement vector, and
ω is the angular frequency of the incident electromagnetic field. Here we have assumed that
the QD consists of uniform isotropic linear media, for which D = є

∞
E and B = μH. H is the

magnetizing field and B is the magnetic field. μ is the magnetic constant (permeability of free
space). The nonlocal material equation relating D(r) and E(r) is (Fu et al. )

D(r) = є
∞
E(r) +

∑

a
Pa(r) (.)

where Pa(r) is the polarization contribution from the excited exciton in a QD centered at a,
that is, > Eq. .. We have neglected the overlap of exciton envelope functions centered at
different QDs so that excitons excited in different QDs are assumed to be coupled only via the
electromagnetic field.

By denoting P =
∑a Pa(r), it follows from the second > Eq. . and > Eq. . that

∇ ⋅ E(r) = −

є
∇ ⋅ P(r) (.)

so that the first > Eq. . can be rewritten as

∇

E(r) + kE(r) = −
k
є
{P(r) +


k
∇[∇ ⋅ P(r)]} (.)

where k = ω/c, k = kn = ωn/c, and n =
√

є
∞
/є.

Bloch-like solutions of > Eq. . satisfying

Eq(r + a) = eiq⋅aEq(r) (.)

is the photonic band structure. > Figure - shows the dispersion relationships of primitive-
cubic and fcc QD photonic crystals (Fu et al. ). An overall bandgap, most prominent along
the Λ (Γ-L) line (the [] direction) is observed in the fcc lattice (Zeng et al. a).

Photonic Dispersion of QD Dimer Systems

As demonstrated by > Eqs. . and > Fig. -, є′QD can be adjusted to be positively large
as well as negative by tuning the initial occupation condition of the exciton state in the QD.
However, optical loss is not avoidable when a single type of QDs is used. To tackle the loss
issue, we construct a QD dimer photonic crystal by positioning two types of spherical QDs,
having radii R and R, respectively, in a fcc lattice having a lattice constant a, see > Fig. -.
The lossy QDs, that is, type-I QDs (exciton energies are ħω) occupy the normal fcc lattice sites,
while the already excited QDs, type-II QDs (ħω) are displaced from the type-I QDs by τ. Let
cai be the occupation of the ground state of QD i positioned at lattice site a, that is, the valence
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radii of the QDs and a the lattice constant of the fcc lattice



Optical Properties of Qt Dot Nano-composite Materials  

band is completely filled and the conduction band is completely empty, the contribution of an
excited exciton state in a QD ai to the dielectric polarization is given by

Pai(r) =
epcv (∣cai ∣


− )

ħ(ωai − ω + iγ)ω
aim



ψai(r, r)

∫

ψ∗

ai(r
′, r′)pcv ⋅ E(r

′

) dr′ (.)

by referring to > Eqs. . and > ..
We seek again for Bloch-like solutions of > Eq. . satisfying > Eq. ..We expand the

vector function Eq(r) in the Fourier series

Eq(r) = ∑
g
ei(q+g)⋅rEq+g (.)

Where g are the reciprocal lattice vectors. Denote a =
√

∣c∣ − , a =
√

∣c∣ − , v = a/
is the volume of the primitive unit cell of the fcc lattice, ϕi = aiψi and t = є ωLTπaBr, the
excitonic polarization becomes

P(r) =
∑

ai

t
ωi − ω + iγ

ϕai(r, r)
∫

ϕ∗

ai(r
′, r′)E(r′)dr′ (.)

Note that the excitonic wave function is real so that we have dropped off the complex conjuga-
tion of the wave function in the integrals in > Eq. ..The two integrals in the above equation
can be transformed into

∫

ϕ,a(r)E(r)dr = eiq⋅a∑
g
I,q+gEq+g ≡ eiq⋅aΛ

∫

ϕ,a+τ(r)E(r)dr = eiq⋅a∑
g
I,q+gEq+g ≡ eiq⋅aΛ (.)

where I,q+g =
∫

ϕ,(r)ei(q+g)⋅rdr, I,q+g =
∫

ϕ,(r)ei(q+g)⋅(r+τ)dr. The sums
∑a ϕ,a(r)eiq⋅a

and
∑a+τ ϕ,a+τ(r)eiq⋅a satisfy the translational symmetry and can be presented as

∑

a
ϕ,a(r)eiq⋅a =∑

g
ei(q+g)⋅r

I∗,q+g
v

∑

a+τ
ϕ,a+τ(r)eiq⋅a = ∑

g
ei(q+g)⋅r

I∗,q+g
v

(.)

The linear equations for the space harmonics Eq+g can thus be written

(∣q + g ∣ − k)Eq+g

=

k t
v
[ −


k
(q + g)] [

I∗,q+g
ω − ω + iγ

Λ +
I∗,q+g

ω − ω + iγ
Λ] (.)

Let S(Q)αβ = δαβ−QαQβ/k, α, β = x, y, z, δαβ is the Kronecker symbol. Dividing > Eq. .
by (∣q + g∣ − k), multiplying it by I,q+g , and summing over g :

∑

g
I,q+gEq+g = Λ

=

kt
v
∑

g

̂S(q + g)
∣q + g ∣ − k

[

∣I,q+g ∣

ω − ω + iγ
Λ +

I,q+g I∗,q+g
ω − ω + iγ

Λ]

=

̂M(ω,q)Λ + ̂M(ω,q)Λ (.)
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where

̂M(ω,q) =
kt

(ω − ω + iγ)v
∑

g

̂S(q + g)
∣q + g∣ − k

∣I,q+g ∣

̂M(ω,q) =
k t

(ω − ω + iγ)v
∑

g

̂S(q + g)
∣q + g ∣ − k

I,q+g I∗,q+g (.)

Similarly, dividing > Eq. . by (∣q + g ∣ − k), multiplying it by I,q+g , and summing
over g ,

∑

g
I,q+gEq+g = Λ

=

k t
v
∑

g

̂S(q + g)
∣q + g ∣ − k

[

I,q+g I∗,q+g
ω − ω + iγ

Λ +
∣I,q+g ∣

ω − ω + iγ
Λ]

=

̂M(ω,q)Λ + ̂M(ω,q)Λ (.)

where

̂M(ω,q) =
kt

(ω − ω + iγ)v
∑

g

̂S(q + g)
∣q + g ∣ − k

I,q+g I∗,q+g

̂M(ω,q) =
kt

(ω − ω + iγ)v
∑

g

̂S(q + g)
∣q + g ∣ − k

∣I,q+g ∣ (.)

We arrive at the vector equations

[I − ̂M(ω,q)]Λ = ̂M(ω,q)Λ

[I − ̂M(ω,q)]Λ = ̂M(ω,q)Λ (.)

where I is a  ×  unit matrix. We can rewrite the above equations as

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

 −M, −M, −M, −M, −M, −M,

−M,  −M, −M, −M, −M, −M,

−M, −M,  −M, −M, −M, −M,

M, M, M, M, −  M, M,

M, M, M, M, M, −  M,

M, M, M, M, M, M, − 

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(.)

M,αβ (Ω,q) =


πv
ωLTR

 ∣a∣


(ω − ω + iγ)
σ,αβ(Ω,q)

M,αβ (Ω,q) =


πv
ωLT(RR)

/aa∗
(ω − ω + iγ)

σ,αβ(Ω,q)

M,αβ (Ω,q) =


πv
ωLT(RR)

/a∗ a
(ω − ω + iγ)

σ,αβ(Ω,q)

M,αβ (Ω,q) =


πv
ωLTR

∣a∣


(ω − ω + iγ)
σ,αβ(Ω,q)

σst ,αβ(Ω,q) =
∑

g

f (∣g + q∣Rs) f (∣g + q∣Rt) Sαβ(g + q)
Ω
(g + q) − Ω ei(s−t)(g+q)⋅τ

f (x) =
π sin x

x(π
− x)



Optical Properties of Qt Dot Nano-composite Materials  

Ω =
ω
ω

Ω(Q) =
c∣Q∣
ωn

(.)

where s, t = , . The exciton-polariton dispersion ω(q) satisfies the equation

Det∣D∣ =  (.)

Note that by setting ∣c∣ =  and ∣c∣ = . (type-II QDs are totally transparent) we retrieve
the case of a photonic crystal composed of only type-I QDs (Fu et al. ), see > Fig. -. By
setting ∣c∣ = ∣c∣ =  and ω = ω we retrieve the case of a compound QD photonic crystal
(Zeng et al. b).

The dispersion relationship ω(q) for a QD dimer fcc lattice is presented in > Fig. -.
The lattice is denoted by its lattice constant a, which is set to be .aBragg (which is  nm
for GaAs), where aBragg = cπ/ωn. The lossy type-I QDs (ħω = . eV) occupy the nor-
mal fcc lattice sites, while the excited type-II QDs (ħω = . eV) are displaced by τ =
(a/, a/, a/). ħωLT = meV. Here we observe the modification of the photonic band struc-
ture of the QD dimer system by pumping one type of the QDs (type-II QDs), which evolves
from the one of only type-I QDs (∣c∣ = , i.e., at their ground exciton state) when type-
II QDs are transparent [∣c∣ = ., > Fig. -c] to the compound system [∣c∣ = .,
> Fig. -a]. We can observe modified but still characteristic features of the photonic dis-
persions of individual type-I and type-II QDs in their separate photonic crystal formats in the
compound system, see > Fig. -. More specifically, the resonance features of type-I QDs
around (ω − ω)/ωLT = . in > Fig. -d become compressed by the radiative interac-
tion between type-I QDs and type-II QDs, and they are also shifted down to around .
in > Fig. -a.

By varying ∣c∣ from . to . we find that the solutions of > Eq. . are symmetric
with respect to ∣c∣ and  − ∣c∣ when c = . Thus, > Fig. -a represents also the pho-
tonic dispersion of the QD dimer system when both type-I and type-II QDs are all initially at
their ground exciton states, that is, ∣c∣ = ∣c∣ = . Thus the modification of the exciton state
(from ground state to excited state) in one type of QDs in the dimer system does not affect the
feature of the dispersion structure.

Lossless Dielectric Constant of QD Dimer Systems

As shown by > Fig. -, the exciton polarization provides possibilities of generating positively
high dielectric constant as well as negative dielectric constant at the cost of disturbing the exter-
nal electromagnetic field (either loss or gain). At least in the photonic crystal composed of one
type of QDs (either lossy or gain), the dielectric modulation is always accompanied by loss or
gain. The idea of the QD dimer system discussed in the previous sub-section is to compensate
the loss of type-I QDs by the gain of type-II QDs, while still maintaining dielectric modulation.
More specifically, we require є′′ =  at some frequencies in order to achieve lossless dielectric
modulation for various optoelectronics applications.

In the following, we consider a PbSe/ZnSe QD assembly such as > Fig. - immersed in a
medium of dielectric constant єi . The macroscopic dielectric constant є for the ensemble of the
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⊡ Fig. -
Energy dispersion relationships of QD dimer systems in the fcc lattice. R = a/, R = a/, ħω =

. eV, ħω = . eV, ħωLT = meV, a = .aBragg, τ = (a/,a/,a/). ∣c∣ = . (a) ∣c∣ = .
(complete excitation), (b) ∣c∣ = ., (c) ∣c∣ = . (type-II QDs are total transparent)

QDs can be described by the dielectric theory of Maxwell-Garnett () and Gittleman and
Abeles (), which for two QD species can be written as

є − єi
є + єi

= x
єQD − єi
єQD + єi

+ x
єQD − єi
єQD + єi

(.)

where xi is the volume fraction of the i-th QD species.While > Eq. . works best for xi less
than ., there is evidence that useful information can be available with higher concentrations
(Cohen et al. ). > Figure -a shows the spectra of є′QD and є′′QD of the two types of QDs.
For the combination of two types of QDs, that is, the QD dimer system, one type is lossy and
the other gain, immersed in a conducting polymer with an effective dielectric constant єi = .,
the optical spectrum is presented in > Fig. -b.
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(a) Dielectric constants of type-I QDs at . eV and ∣c()∣ = ., and type-II QDs at . eV and
∣c()∣ = .. Solid lines: є′; Dotted lines: є′′ . Note that є′′ is magnified by . (b) QD dimer system
after immersing the two types of QDs in єi = .. The densities of two types of QDs are ×  cm−.
Adapted from Fu et al. ()

> Figure - shows that a mixture of two types of QDs such as > Fig. - can produce an
effective dielectric constant that is lossless and negative, thus permitting, in concept, arbitrarily
small scaling of the optical mode volume in the field of nanophotonics (Fu et al. ). Another
binary mixture of lossy QDs and plasmonic silver nanorods was also shown to have a negative є
and compensated optical loss by using finite-difference time-domain calculations (Bratkovsky
et al. ).

Multiple-Photon andMultiple-Carrier Processes

Multiphoton Process

Another important aspect about the optical properties of QDs is themultiphoton process which
has been widely applied in recent years in biological and medical imaging after the pioneer
work of Goeppert-Mayer (), Lami et al. (), Helmchen et al. (), Yokoyama et al.
(). The multiphoton process has largely been treated theoretically by steady-state pertur-
bation approaches, for example, the scaling rules of multiphoton absorption byWherrett ()
and the analysis of two-photon excitation spectroscopy of CdSe QDs by Schmidt et al. ().
Non-perturbation time-dependent Schrödinger equation was solved to analyze the ultrafast
(fs) and ultra-intense (in many experiments the optical power of laser pulse peak can reach
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⊡ Fig. -
Exciton states (open circles) confined in the QD and their corresponding light-matter interactions
(vertical lines). Adapted from Fu et al. ()

GW/cm) dynamics of multiphoton processes in QDs that are highly fluorescent with excel-
lent photochemical stability, extreme brightness, and broad excitation spectral range (Fu et al.
c, ).

For spherical QDs the exciton wave function can be expressed by a radial function and
spherical harmonics. The degeneracy of each exciton state is (ℓ + ), where ℓ is the quan-
tum number of the angular momentum. > Figure - shows the exciton states (open circles)
confined in the QD as well as their corresponding light–matter interactions (vertical lines).
For spherical QDs, only exciton states having zero angularmomenta (ℓ = ) have nonzero relax-
ation energies. Moreover, only confined exciton states (i.e., both the electron and hole states
that compose the exciton state under discussion are confined) have significant light–matter
interaction.

In the ultrashort regime, after a continuous-wave optical excitation is switched on at
t = , > Fig. - shows that the time to reach peak two-photon excitation ismuch shorter than
the one-photon excitation. Moreover, the multiphoton excitation spectral range is very broad.
From about . to . eV (i.e., two-photon excitation range), the calculated excited exciton rate
is much larger than the occupation of the first-excited exciton so that the emission spectrum is
expected to be dominated by the recombination of the ground-state exciton. It was concluded
by the theoretical simulation that experimentally observed strong multiphoton excitations can
be reproduced when optical transitions among all confined states in the QD and an additional
few hundred extended states in the barrier are taken into account (Fu et al. c). This agrees
with the experimental results of multi-particle (Huxter and Scholes ) and multi-exciton
dynamics (Suffczyński et al. ).
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Multiphoton excitation of QD exciton in an ultrashort period excited by a continuous wave light
source switched on at t = . S denotes the optical power of the excitation light source. Adapted
from Fu et al. (c)

Impact Ionization and Auger Recombination

Nozik proposed that impact ionization might be enhanced in semiconductor QDs to increase
the efficiency of solar cells up to about % (Nozik ).This was later verified experimentally
by Schaller andKlimov (). Impact ionizationwas reported to producemultiple exciton gen-
eration (MEG) per photon in a QD that results in a very high quantum yield (up to %when
the photon energy reaches four times the QD bandgap) in QD solar cells (Hanna et al. ).
Multiple carrier extraction (> %) was observed at photon energies greater than . times
the PbSe QD bandgap with about % measured at . times the bandgap (Kim et al. ).
In a recent communication in Nano Letters, Trinh et al. () showed compelling support for
carrier multiplication in PbSe QDs.

We concentrate here on reviewing impact ionization and Auger recombination in QDs
using the solid-state theory. As shown in > Fig. -, a highly photoexcited electron and hole
pairs can evolve into a multiple-exciton state through impact ionization. The carrier–carrier
interaction is expressed by the Coulomb potential in the form of

V =
e

πє∣r − r∣
(.)
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Schematic depiction of impact ionization of a high-energy electron-hole pair. () Electron-hole pair
(e and h) is generated, for example, by a photon. () e gets excited from a VB state to a CB state
via Coulomb interactionwith e, leavingholeh behind. The reverseprocess is referred tobeAuger
recombination

to account for the two-body interaction of two electrons from an initial state ϕ j(r)ψi(r) exp
[−i(E j + Ei)t/ħ], that is, one electron occupying a VB state

ϕ j(r) exp (−iE j t/ħ)

and another electron occupying a CB state

ψi(r) exp (−iEi t/ħ)

to a final state

√


∣

ψn(r)ψm(r)
ψn(r)ψm(r)

∣ exp [−i(En + Em)t/ħ] (.)

in the CB. Notice that the two electrons in the final state are not distinguishable so that we use
a Slater determinant.

Other ionization pathways exist such as one electron occupying a low-energy VB state
falls into h and the released energy excites another electron from the VB to the CB. Auger
recombination can be expressed similarly.

Before discussing the QD case, let us consider the computation of an Auger-type process
in solid states that an incident high-energy CB electron with a wave vector k collides with a
second electron that occupies a VB state k, resulting in two CB electrons k′ and k′.The general
expression for the scattering matrix element of this process is

∫ ∫

Ψ∗

ck(r)Φ
∗

vk(r)


∣r − r∣
Ψck′(r)Ψck′(r) drdr (.)

where Ψck(r) [Φvk(r)] denotes the total wave function of the CB electron (VB hole)
state k. For semiconductor systems and within the effective mass approximation,
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Ψck(r) = ψck(r)uck(r) and Φvk(r) = ϕvk(r)uvk(r), where ψ and ϕ are envelope functions
of the CB electron and VB hole, respectively, and u’s are periodic Bloch functions, the above
expression becomes

∫ ∫

ψ∗

ck(r)u
∗

ck(r)ϕ
∗

vk(r)u
∗

vk(r)


∣r − r∣
(.)

×ψck′(r)uck′(r)ψck′(r)uck′(r) drdr (.)

See, for example, Eq. . in Ridley (). Following overlap integrals are thus involved

I =
∫

cell
u∗

ck(r)uck′(r) dr

I =
∫

cell
u∗

vk(r)uck′(r) dr (.)

in the evaluation of the Auger-type scattering processes.The first overlap integral can be approx-
imated to unity. Because of the orthogonality of u functions for different bands but the same k,
the second overlap integral I is, in crudest approximation, zero. This, however, is not correct
since the periodic Bloch functions are functions of wave vectors.More specifically, we can write

uck(r) = uc(r) + k∇kuc(r) +⋯
uvk(r) = uv(r) + k∇kuv(r) +⋯ (.)

for small k, where uc(r) and uv(r) are periodic Bloch functions at the CB and VB bandedges,
respectively.

∫cell u
∗

v (r)uc(r)dr = . Substituting these expressions into the overlap integrals
we obtain the squared overlap integral in terms of the heavy-hole mass mv (Landsberg and
Adams ; Ridley )

∣I∣ =
ħ

Eg
(


m
+


mv
) ∣k − k′∣

 (.)

where Eg is the energy band gap of the bulk material. By using the inverse Bohr radius of shal-
low impurities as a measure about the k values, Landsberg and Adams obtained ∣I∣ = .
for shallow-impurity-assisted Auger-type processes in bulk CdS and ∣I∣ = . in GaAs
(Landsberg and Adams ). Note that the inverse Bohr radius of shallow impurities in bulk
semiconductors is small. For QDs under investigation, the effective Bohr radius of the elec-
tron and hole distribution is largely determined by the QD size, which is about  nm, that is,
very small compared with the Bohr radius of shallow impurities in bulk semiconductors (about
 nm in CdS andGaAs Landsberg and Adams ).This results in a large value of ∣I∣. Under
this specific circumstance we approximate ∣I∣ = . In other words, the electrons and holes in
QDs, described by effective masses in the presence of the QD confinement potentials, interact
with each other via the Coulomb force of > Eq. . (Abrahams ).The approach has been
adopted for describing carrier interactions in many electronic devices such as tunnel junctions
where the kinetic energies of relevant carriers are large, see for examples Takenaka et al. ()
and Rodina et al. ().

By the scattering theory and the generalized Golden rule (Landau and Lifshitz ) and
denoting ⟨ϕ jψi ∣T̂(t)∣ϕ jψi⟩ ≈ e−w ji t/ as the temporal development T̂(t) of state ji, it is easy to
obtain

wji =
π
ħ ∑

nm≠ ji
∣⟨ϕ jψi ∣V ∣ψnψm⟩∣

 δ(E j + Ei − En − Em) (.)

Γji = ħwji/ is the relaxation energy and /wji the decaying time. In numerical calculations the
δ functions in the above equation are replaced by Γji/[Γji + (E j + Ei − En − Em)


] and Γji is
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to be calculated by the above equation in a self-consistent way that the left and right sides of
> Eq. . equal after knowing the interaction values of ⟨ϕ jψi ∣V ∣ψnψm⟩∣

.
Numerical calculations of the Coulomb interaction > Eq. . are not trivial. They

were simplified in Allan and Delerue () by using a screened Coulomb potential
involving one-electron wave functions which were derived for bulk semiconductor mate-
rials (Landsberg ). To calculate the impact ionization interaction from an initial state
of Rℓ(r)Yℓm(θ, ϕ)Rℓ(r)Yℓm(θ, ϕ) to a final state Rℓ(r)Yℓm(θ, ϕ)Rℓ(r)Yℓm

(θ, ϕ) (the first term one in > Eq. .), we notice


π∣r − r∣

=

∞

∑

ℓ=

ℓ
∑

m=−ℓ


ℓ + 

rℓ
<

rℓ+
>

Y∗

ℓm(θ, ϕ)Yℓm(θ, ϕ) (.)

where r
<
= min{∣r∣, ∣r∣} and r> = max{∣r∣, ∣r∣} so that the impact ionization energy consists

of

rℓ
<

rℓ+
>

Rℓ(r)Rℓ(r)Rℓ(r)Rℓ(r)Y
∗

ℓm(θ, ϕ)Y∗

ℓm(θ, ϕ)

× Y∗

ℓm(θ, ϕ)Yℓm(θ, ϕ)Yℓm(θ, ϕ)Yℓm(θ, ϕ) (.)

forwhichwe utilize the addition theorem for spherical harmonics (Cohen-Tannoudji et al. )

YℓmYℓm =

ℓ+ℓ
∑

ℓ=∣ℓ−ℓ ∣

A

B

BC

(ℓ + )(ℓ + )
π(ℓ + )

× C(ℓ∣ℓ; ℓ)C(ℓm +m∣ℓm; ℓm)Yℓm+m (.)

where C(ℓm +m∣ℓm; ℓm) is the CG-coefficient.
A more detailed analysis shows a few selection rules for ℓ’s and m’s such as m − m =

m −m. However, these selection rules can be easily fulfilled in nanoscale QDs because of the
large number of available states confined in the QDs (see further discussion below). The most
important qualitative selection rules refer to the radial functions that

∫ ∫

rℓ
<

rℓ+
>

Rℓ(r)Rℓ(r)Rℓ(r)Rℓ(r)

=

∫

a


Rℓ(r)Rℓ(r) [∫

r



rℓ
rℓ+

Rℓ(r)Rℓ(r)r

dr

+

∫

a

r

rℓ
rℓ+

Rℓ(r)Rℓ(r)r

dr] r


 dr (.)

which shows that a direct spatial overlap between Rℓ(r) (VB hole state) and Rℓ(r) (CB
electron sate) will result in a large impact ionization. Impact ionization in type-II QDs is thus
negligible since the electron-hole wave function overlap is small. Furthermore, to ensure energy
conservation, Rℓ(r) is normally a high-energy CB state, while both Rℓ(r) and Rℓ(r) are low-
energy CB states. Impact ionization in many core-shell-structured QDs (e.g., Fu et al. )
could be small since the high-energy wave functions are much more extended (extended into
shells) than the ground-state wave function (deeply confined in the core region).

We now consider a spherical CdSe QD in vacuum with a radius of a. The energy bandgap
of bulk CdSe material is . eV (room temperature) and the exciton Bohr radius is . nm,
the quantum confinement energies for CB electrons is . and . eV for the VB holes, and
the electron and hole effective masses are m∗

c = .m and mv = .m, respectively, m
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⊡ Fig. -
(a) Conduction-band (CB) electron states and (b) valence-band (VB) hole states confined in a
spherical CdSe QD with a radius of  nm as functions of angular momentum quantum number ℓ

is the electron rest mass (Madelung ). In numerical calculations we also include a shell of
vacuum with a thickness of  nm to account for the penetration of wave functions of high-
energy states from the QD volume to the vacuum (the results are compared with the ones when
a shell of  nm thick vacuum shell is included and no significant differences are observed).
We include all the confined energy states in the QD (i.e., energy levels below the vacuum state)
of all possible combinations of CB electron states and VB hole states that form the initial state
of the impact ionization, then all possible combinations of two final CB electron states. Each
single-particle state is denoted by its energy, R(r), ℓ and m. Spherical harmonics (i.e., ℓ and
m) is calculated using the addition theorem, while the radial integration is to be performed
numerically.

> Figure - shows the CB electron states and VB hole states confined in a spherical CdSe
QD with a radius of  nm as functions of angular momentum quantum number ℓ. Note that
states with ℓ ≠  are (ℓ+ )-fold degenerate.We pick up one of the CB state from > Fig. -a
and oneVB state from >Fig. -b to calculate the total impact ionization energy to all possible
combinations of two final CB states in > Fig. -a, which is shown in > Fig. -a.

> Figure -a conforms with what can be expected intuitively that the initial CB state
has to be high while the VB state low in order to fulfil the energy conservation requirement.
Furthermore, high-energy states can be highly degenerate because of large ℓ so Γ can be also
high. For the case of > Fig. - where a =  nm, we observe a maximal Γ of about meV.We
further observe tens of Γ over meV while majorities are about meV. These are very high as
compared with the light–matter interaction of only .meV in a similar CdSe QD (Fu et al.
), thus we can be very optimistic aboutMEG processes in colloidal QDs, as has beenmuch
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(a) Impact ionization energy between initial CB state(s) and initial VB state(s). Inset shows theband
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from Fu et al. ()

reported and also anticipated for significant solar cell applications. For the CdSe QDs under
investigation, the MEG effect can be expected when the excitation radiation energy exceeds a
threshold of about Eg (note that Eg is the energy of the ground exciton state, that is, nanocrystal
energy gap in Schaller et al. ()) when the QD radius a = . nm, while the threshold energy
will be .Eg when a = . nm, and .Eg for a = . nm.

The Auger recombination process (reverse process of the impact ionization) shown in
> Fig. -b can be similarly analyzed. Note that the energy range of the initial CB states in the
Auger recombination processes is much wider than the impact ionization, especially for small
QDs. This is due to the large density of states at high energy so that there are more available
final CB states for two initial CB states to interact via the Auger recombination process.

Summary

We have briefly reviewed fundamental theory of excitons and excitonic polaritons in nanos-
tructures. Experimental characterization and application-specific developments using excitons
and excitonic polaritons in nanostructures at the electronic and photonic engineering levels
have also been briefly discussed. A realization of the potential applications is intimately tied
to the control of the geometry and localization of the nanoscale features. Positioning of the
nanostructures not only allows for reproducible communication with the environment, but is
also necessary for defining the interaction between nanostructures. Solid-state-based nanos-
tructures such as self-assembled QDs provide excellent communication to the environment.
The geometry control of these QD size is though relatively poor by the current molecular
beam epitaxy (MBE) andmetal-organic vapour phase epitaxy (MOVPE) techniques.The size of
colloidal II–VI QDs can be very well controlled during the chemical synthetic processes and
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many colloidal II–VI QDs used in bioimaging applications are core-multishells formed so that
possible effects of the surface and external environment on the exciton in the central core
region are minimal. However, the interconnection to the environment becomes a major issue,
for example, for photocarrier extraction in solar cell applications. We will, nevertheless, surely
witness a further fast development in the research and we hope that this chapter provides
some foundation for the understanding and simulation of excitons and exciton polaritons in
nanostructures.
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Modeling of Quasi-One-Dimensional Carbon Nanostructures  

Abstract: The purpose of this chapter is to describe and review examples of how theoretical
investigations can be applied to elucidate the behavior of carbon nanostructures and to under-
stand the physical mechanisms taking place at the molecular level. We will place a special
emphasis in theoretical works utilizing density functional theory. We assume that the reader is
familiar with the basics of density functional theory as well as the electronic properties of single-
walled carbon nanotubes and graphene nanoribbons (GNRs). We do not intend to present an
extensive review; instead, we focus on several examples to illustrate the powerful predictive
capabilities of current computational approaches.

Density Functional Theory with Periodic Boundary Conditions

The focus of this chapter is on carbon structures that are elongated, predominantly one-
dimensional systems. For most modeling purposes, these structures can be considered as
periodic in one dimension. There are many software packages either free or commercially
available to performdensity functional theory (DFT) calculations using periodic boundary con-
ditions. In fact, these type of calculations are routine in condensed matter physics and became
very popular recently in the quantum chemistry community. One of the most widely used
approaches for DFT calculations with periodic boundary conditions is the combination of the
local density approximation (LDA)or the generalized gradient approximation (GGA) and plane
waves. This approach usually involves only valence electrons, while the effect of core electrons
is represented with pseudopotentials. Many modern pseudopotential calculations use ultrasoft
pseudopotentials, whichwere first developed byVanderbilt in the early s (Vanderbilt ).
Full-potential all-electron calculations can also be performed using plane waves, although they
are somewhat computationally expensive for routine calculations. On the other hand, another
class of software packages employ localized basis functions such as Gaussians.These basis func-
tions allow not only an all-electron treatment of the system but also present the flexibility of
pseudopotential calculations when heavy atoms are involved. In most cases, dealing with sys-
tems involving first- and second-row elements in an all-electron fashion can be routinely done.
Another advantage of localized basis functions is that periodic boundary conditions can be
explicitly imposed in either one, two, or three dimensions, in contrast to plane waves, which
are naturally periodic in three dimensions and therefore approaches such as the super-cell are
commonly used to reduce the dimensionality from three to two or one at the price of increas-
ing the computational cost. The main advantage of plane waves over Gaussian basis functions
is that the basis set convergence is more controlled. The basis set convergence of Gaussian-type
orbitals is well known for molecules and there are tens of available basis sets developed for dif-
ferent purposes (see for instance the EMSL library Feller , ). However, the basis set
convergence of Gaussian functions is less known for periodic systems, especially for proper-
ties like the bandgap. Another disadvantage of Gaussians is that available basis for molecular
systems cannot always be straightforwardly employed in periodic boundary conditions calcu-
lations due to linear dependencies that occur in periodic structures, limiting in practice the use
of large exponents (Gruneich and Hess ).

When using localized functions, in general, the basis set needs to be carefully chosen in
order to obtain sensible results. It is important to point out that using either localized basis or
plane waves, different properties can have different basis set convergence behavior, and the fact
that one property such as the energy is converged (within a given criterion) does not imply that
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all properties are converged. In single-walled carbon nanotubes (SWNTs), for instance, the
choice of the Gaussian basis set does not seem to have a significant impact on the bandgap.
In > Table -, we show the bandgap (obtained as Kohn–Sham band energy differences) of
the (,) SWNT calculatedwith different functionals and standardGaussian basis sets.The ini-
tial SWNT geometry was obtained with the Tubegen program (Frey and Doren ) and then
relaxed using the different functionals and basis sets indicated in each column. For each opti-
mized structure, we calculate the bandgap of the systemwith the different functionals and basis
sets. As shown in > Table -, the bandgap does not depend significantly on the level of theory
utilized for the geometry optimization, or the basis set. > Table - illustrates, however, the
dependence of the bandgap upon the choice of the exchange-correlation (XC) functional. This
shows that for SWNTs, the choice of the XC functional has a larger impact on the calculated
bandgap and related properties.

There are several options available in DFT software packages for the choice of the approx-
imate XC functional. The most widely used XC functionals depend either on the electronic
density (local[-spin] density approximation or L[S]DA) or on the electronic density and its gra-
dient (generalized gradient approximation or GGA). For example, in > Table - we employ
the combination of Dirac exchange and the parameterization of Vosko et al. () for correla-
tion in the LSDA functional and the GGA functional of Perdew, Burke, and Ernzerhof (PBE)
(). Comparing with available experimental data, these families of functionals usually per-
form well for structural properties but have some deficiencies for energetics and electronic
properties. Other type of approximate XC functionals include an orbital dependency either
through quantities such as the kinetic energy density or Hartree–Fock (HF) type of exchange
(for a thorough review, see Kümmel and Kronik ). Examples of orbital-dependent func-
tionals are the meta-GGA TPSS (Tao et al. ), or the hybrid functionals PBE (Adamo
and Barone ; Ernzerhof and Scuseria ; Perdew et al. ) (also known as PBEh),
and BLYP(Becke ). These type of functionals generally show some improvement over the
LSDA and GGA but are computationally more demanding. In particular, due to the nature of
theHF approximation, hybrid functionals in extended systems can be extremely demanding for
metallic and small bandgap systems (Paier et al. ). An alternative to standard hybrid func-
tionals for extended systems are the short-range hybrid functionals such as HSE (Heyd et al.
, ).These functionals truncate the long-range tail of the electron–electron interaction
in the exchange contribution to the electronic energy. In this way, the remaining (short-range)
part of the HF exchange can be efficiently evaluated (Adamson et al. , ). It has been
shown that this truncation has little effect on the properties of finite systems and at the same

⊡ Table -
Bandgaps (ineV) for the (,) SWNTobtainedwithdifferent functionals (LDA, PBE, andHSE, shown
row-wise) and basis sets (-G, -G*, and -G*, shown column-wise).

LDA optimized PBE optimized HSE optimized
-G -G* -G* -G -G* -G* -G -G* -G*

LDA . . . . . . . . .

PBE . . . . . . . . .

HSE . . . . . . . . .

The structure was optimized using the functional and basis set indicated in each column. Calculations were
performed with the Gaussian development program (Frisch et al. )
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time provides an efficient route for hybrid DFT calculations in extended systems (Heyd and
Scuseria ).

Most commonly available functionals, either derived from nonempirical grounds or using
fitting procedures, are meant to approximate only the electronic ground state, and not excited
states. Moreover, although in “static” DFT, Kohn–Sham eigenvalues are often used to evaluate
the energy bandgap, there is no formal justification for this: The formal theoretical framework
is provided by time-dependent DFT (Runge and Gross ). For a review, see Onida et al.
().Therefore, the evaluation of the energy bandgaps and related properties fromDFT calcu-
lations needs to be carried out with care. From a pragmatic viewpoint, Kohn–Sham eigenvalues
are often used to distinguish between metals and semiconductors and to estimate excitation
energies. LSDA and GGA Kohn–Sham gaps usually underestimate experimental data and
sometimes small-gap semiconductors are erroneously predicted to be metallic. Kohn–Sham
gaps from hybrid functional calculations, on the other hand are, in general, in better agree-
ment with experimental gaps (Barone et al. a, b; Heyd et al. ; Kümmel and Kronik
; Peralta et al. ), although they tend to overestimate, in general, the available experi-
mental data. Short-range hybrid functionals improve upon regular hybrids and provide good
agreement with experiments and more sophisticated many-electron approaches (Barone et al.
b; Batista et al. ).

Structure–Property Relations in Single-Walled Carbon Nanotubes
and Graphene Nanoribbons

Single-Walled Carbon Nanotubes

Carbon nanotubes are one of the most fascinating carbon nanostructures. Although soon after
the discovery of fullerenes in  (Kroto et al. ) there were many speculations about the
possibility of synthesizing long and narrow graphitic cage-like structures, the synthesis of the
first carbon nanotubes was reported by Iijima in . After that seminal work, several new
routes toward the synthesis of single- and multi-walled carbon nanotubes were developed.

The electronic properties of SWNT were first studied within the so-called zone-folding
scheme (ZF) (Hamada et al. ; Saito et al. , ). This scheme is based on the tight-
binding (TB) approximation for the two-dimensional honeycomb lattice and the subsequent
quantization of the wave vector associated with the radial direction of the nanotube. In this
framework, the electronic structure of SWNTs is determined by the allowed values of the quan-
tized wave vector.Within this approach, each nanotube, characterized by the indices (n,m), can
be either metallic if (n +m)/ = k, with k integer, or semiconducting for k non-integer (with
a bandgap that depends on the inverse diameter, /d).This versatility in the electronic behavior,
that depends only on the geometric structure of the tubes, ignited a large amount of experimen-
tal and theoretical efforts with the promise of novel technological applications based on these
unique nanostructured materials.

In , Tang et al. produced SWNTs grown in zeolite channels with diameters of about
Å(Tang et al. ). From the optical spectrum and the possible diameter distributions, these
tubes were identified as the (,), (,), and (,) (Li et al. ). In , the thinnest SWNTs,
with diameters of about  Å were grown inside multi-walled nanotubes. Because of the small
diameter, the possible (n,m) indices of these narrow SWNT were predicted to be (,), (,),
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and (,) (Zhao et al. ). DFT calculations pointed out the importance of curvature effects,
especially for narrower nanotubes which present a significant σ-π hybridization not accounted
for in the ZF scheme (Blase et al. ; Gülseren et al. ; Mintmire et al. ; Reich et al.
). Although the ZF schemeworks reasonably well for the average diameter SWNT of about
Å, several studies confirmed the profound effect of the σ-π hybridization in small diameter
SWNT on their electronic properties.

DFT calculations have shown that the zigzag (,) SWNT, which should be a semicon-
ductor according to the zone-folding scheme, is indeed metallic (Barone and Scuseria ;
Cabria et al. ; Li et al. ; Liu and Chan ; Machón et al. ; Springborg and
Satpathy ). The same holds true for the zigzag (,) SWNT (Barone and Scuseria ;
Cabria et al. ). Although it is tempting to assume that narrower tubes tend to be metal-
lic due to the σ-π hybridization, it has been shown that the narrowest chiral tubes (,) and
(,) present the largest bandgaps of all SWNTs (. and . eV, respectively, obtained with the
HSE functional) (Barone and Scuseria ). Due to curvature effects, most narrow semi-
conducting SWNTs become indirect gap semiconductors and largely deviate from the ZF /d
predictions.

On themodeling side, we note that the calculated electronic properties of narrow nanotubes
strongly depend on the exchange-correlation functional used. In > Fig. - we show the band
structure and density of states (DOS) for the three narrow (,), (,), and (,) nanotubes
obtained with LDA and the hybrid PBE functionals. The largest differences are found for the
chiral semiconducting tube for which PBE predicts a bandgap as large as . eV. However, as
we show in > section “Modeling the Optical Spectrum of Single-Walled Carbon Nanotubes
and Graphene Nanoribbons,” while the bandgap of SWNTs is largely underestimated by LSDA,
it is also significantly overestimated by PBE.

Graphene Nanoribbons

Graphene, a single layer of graphite, has attracted a lot of attention since  when it was
isolated for the first time as a stand-alone two-dimensional all-carbon network (Novoselov et al.
). Since then, major accomplishments in their production have been achieved and now,
lower dimensional graphene derivatives are routinely created in the lab (Berger et al. ;
Cai et al. ; Han et al. ; Ritter and Lyding ; Wang et al. ; Yang et al. ).
Recent studies point to graphene and its derivatives as one of the most promising materials for
technological applications ranging from spintronic devices to energy storage media (Bhardwaj
et al. ; Son et al. b).

By cutting a quasi-one-dimensional structure out of a two-dimensional graphene sheet,
it is possible to obtain a flat structure usually referred to as a graphene nanoribbon
(GNR). These ribbons can also be thought of as unwrapped nanotubes of a given chi-
rality. In > Fig. - we present a scheme of the two extreme crystallographic orienta-
tions of the GNRs axis: armchair (AGNR) and zigzag (ZGNR). Dangling bonds at the
edges are usually passivated with hydrogen atoms for the purpose of performing compu-
tational studies as it is very difficult to experimentally determine the chemical nature of
the edges.

One of the earliest theoretical investigations of the electronic properties of these materi-
als was reported by Fujita et al. (). In that work, the authors report striking differences
between armchair and zigzag GNRs. Most notably, the authors found that magnetism can
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⊡ Fig. -
Band structure and electronic density of states for the (,), (,), and (,) SWNT. (a) Obtained at
the LDA/-G* level. (b) Obtained at the PBE/-G* level
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armchair zigzag

⊡ Fig. -
Schematic representation of the fundamental cell of an armchair and a zigzag graphene nanorib-
bon. The horizontal line represents the translational vector

arise in nanometer-scale graphitic fragments in the zigzag configuration due to the appear-
ance of localized edge states. According to TB calculations these edge states are manifested
as flat bands near the Fermi energy in the band structure of the system. We will return to
the case of ZGNRs later in this section. AGNRs do not present such edge states. Instead, the
bandgap of these ribbons is predicted to vary with a three fold periodicity as a function of
their width, changing from metallic to semiconducting as one consecutively increases their
width (Ezawa ). When electronic correlation effects are taken into account via DFT, simi-
lar bandgap oscillations appear. Nevertheless, a major difference is identified. While in the TB
calculations, at certain widths, AGNRs appear to become metallic, DFT calculations predict
all AGNRs to be semiconducting (Barone et al. ; Son et al. a). In > Fig. -, we
present DFT results for the bandgap of armchair ribbons as a function of their width. As shown
in this figure, ultra-narrow graphene nanoribbons with widths up to  nm present the largest
bandgaps in the range of – eV. For the range of widths covered by the DFT calculations (up to
 nm), no significant quenching of the energy gap oscillations is observed (Barone et al. ).
However, GNRs are expected to reach the graphene limit of zero bandgap for sufficiently large
widths.

We note that the armchair GNRs bandgaps presented in > Fig. - can be separated into
three groups, namely, the points forming the envelope of the maxima of the oscillations, those
forming the envelope of the minima of the oscillations, and the remaining intermediate points.
It is possible then to extrapolate the behavior of each of these subgroups independently to larger
widths. Such an extrapolation can be performed using an inverse power law with two fitting
parameters (Barone et al. ). This simple rule presents the correct asymptotic behavior and
provides qualitative information on the electronic structure of ribbons beyond the range of
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⊡ Fig. -
Bandgap of H-terminated armchair GNRs as a function of the width obtained with the HSE func-
tional (Reprinted (Adapted) with permission fromBarone et al. (). © () American Chemical
Society)

widths studied by first-principles calculations. From these calculations, it is shown that in order
to obtain an AGNR with a bandgap comparable to that of Ge (. eV) or InN (. eV), it will
be necessary to go to a range of widths between  and  nm. If a larger bang gap material is
needed (like Si, . eV, or GaAs, . eV), the width of the AGNR must be reduced to as low as
– nm.The extrapolation to wider ribbons also shows that an AGNR of about  nmwill present
a bandgap smaller than . eV. It is interesting to note that when the first DFT calculations on
these systems were carried out, it seemed impossible to produce nanoribbons as narrow as a
few nanometers. Only  years later, the fabrication and electrical measurement of nanoribbons
with widths down to a few nanometers are performed routinely in many laboratories around
the world (Wang et al. ; Yang et al. ; Berger et al. ; Cai et al. ; Han et al. ;
Ritter and Lyding ).

Experimentally, it has been demonstrated that the energy gap in graphene nanoribbons can
be tuned during fabrication and that the energy gap scales inversely with the ribbon width
(Chen et al. ; Han et al. ). Suspended GNRs with widths below  nm have been syn-
thesized by a chemical route (Wang et al. ). However, the uncontrollable character of these
methods restrict the quality of theGNR’s edges and consequently limit their applications. Novel,
organic synthetic protocols leading to graphene type molecules with different sizes have been
presented recently (Yang et al. ; Cai et al. ). This route should provide perfect edged
narrow graphene nanoribbons with widths up to  nm.
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In zigzag graphene nanoribbons, quantum confinement is accompanied by the existence
of pronounced edge states localized around the zigzag edges. As mentioned before, the exis-
tence of these edge states have been suggested theoretically more than a decade ago (Fujita
et al. ; Klein ; Kobayashi ; Nakada et al. ; Tanaka et al. ). Recently, such
states along the zigzag edges of graphite have been experimentally observed (Kobayashi et al.
, ; Niimi et al. ). One of the most interesting characteristics of these edge states
in graphite is their predicted magnetic character (Fujita et al. ; Kusakabe and Maruyama
; Son et al. a; Wakabayashi et al. ). Early theoretical predictions of graphene edge
stateswere based on TB andHubbardmodels (Fujita et al. ; Nakada et al. ; Tanaka et al.
),Huckel theory (Klein ), and theDV-Xαmethod (Kobayashi ; Tsukada et al. ).
A more chemically oriented interpretation of the structure and electronic character of the dif-
ferent edges has recently been given using Clar’s sextet theory, a well-known tool for the study
of aromaticity in organic materials (Balaban and Klein ; Baldoni et al. ; Wassmann
et al. ).

The magnetic character carried by the zigzag edge states has a dominant effect on the elec-
tronic structure of the system. If one views a ZGNR as unrolling an armchair SWNT, one
would naively expect both systems to have similar electronic character while replacing the
symmetry of a “particle in a ring” type of boundary conditions with that of a “particle in a
box.” Therefore, since all armchair SWNTs are metallic in nature, it can be assumed that all
ZGNRs would be metallic as well. When performing spin-restricted DFT calculations, this
indeed turns out to be the case (Son et al. b). Nevertheless, if the spin degree of freedom is
taken into account via the unrestricted DFT scheme, the spin-polarized character of the elec-
tronic ground state of the ZGNR is revealed (Son et al. b). Here, the electronic edge state
on one zigzag edge has one spin flavor while the corresponding state on the other zigzag edge
has the opposite spin flavor. This antiparallel edge spin alignment is a direct consequence of
the antiferromagnetic coupling of spins on adjacent sites within the hexagonal carbon lattice.
In contrast to the case of the metallic armchair SWNTs, the magnetic ground state exhibits
a finite bandgap, and therefore, all ZGNRs become semiconducting (Son et al. b). This
is an excellent example showing how edge states may dominate the electronic character of
the system.

The existence of such spin-polarized edge states opens a venue for controlling the electronic
properties of GNRs. One possible scheme was recently suggested where an in-plane electric
field, applied perpendicular to the axis of the ribbon, drives the system into a half-metallic state
(Son et al. b). Due to the field-induced charge separation, a local gating with opposite
charge polarization occurs at the edges of the ribbons. This in turn, shifts the local DOS at both
edges with respect to one another thus increasing the bandgap of electrons with one spin flavor
and reducing the bandgap of the opposite spins (see > Fig. -). By changing the intensity of
the applied electric field, one can control the ratio of the bandgaps of the two spin components
up to a point where the bandgap of one spin flavor completely vanishes while the other spin
flavor presents a large bandgap. A system in such a half-metallic state may serve as a perfect
spin filter in nanospintronic devices.

The half-metallic behavior exhibited by zigzag ribbons under an external electric field was
first obtained using the LSDA functional. Shortly after, calculations in a large cluster model of
a zigzag GNR performed using the hybrid BLYP challenged those findings arguing that the
inclusion of HF exchange prevents the half-metallic behavior (Rudberg et al. ). However,
Kan et al. () andHod et al. (a) independently found half-metallicity in periodic zigzag
nanoribbons using the BLYP and HSE functionals, respectively.
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(a) Schematic density of states diagram of the electronic states of a zigzag GNR in the absence of
an applied electric field. (b) Schematic density of states diagram in the presence of a transverse
electric field. The electrostatic potential on the left edge is lowered, whereas the one on the right
edge is raised. (c) Dependence of half-metallicity on system size. Red denotes the bandgap of α-
spin, and blue the gap of β-spin as function of Eext for the -GNR (filled circles), -GNR (open circles),
-GNR (squares), and -GNR (triangles). The rescaled gaps for the various widths collapse to a
single function as shown in the inset (Reprinted with permission from Macmillan Publishers Ltd:
Nature (Son et al. b), © ())
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Modeling the Optical Spectrumof Single-Walled Carbon
Nanotubes and Graphene Nanoribbons

Single-Walled Carbon Nanotubes

Characterizationmethods for single-walled carbon nanotubes based on optical absorption have
attracted much attention during the past few years. Experiments based on photoluminescence
(Bachilo et al. ; Weisman and Bachilo ), resonant Raman spectroscopy (Fantini et al.
; Telg et al. ), and Rayleigh scattering (Sfeir et al. ) have been reported in which
optical transitions are obtained as fingerprints of a certain (n,m) SWNT. Optical transitions
were first studied theoretically within the tight-binding approach considering the excitations as
inter-band transitions. Within this framework, the optical spectra is generally obtained by uti-
lizing the random-phase approximation (RPA) for the imaginary part of the dielectric function
ε (for a review, see Onida et al. )

Im(ε) =

ω ∑

k
∑

o,u
∣ ⟨ψk

o ∣p∣ψ
k
u⟩ ∣

 δ(єko − є
k
u − ω) , (.)

where p is the linearmomentumoperator and the indices o and u stand for occupied and unoc-
cupied Bloch orbitals, respectively. An example of the band structure and optical spectrum for
a semiconducting tube obtained from DFT calculations is shown in > Fig. -. Allowed opti-
cal transitions, marked with arrows in the band structure of panel (a), produce a peak in the
optical spectrum (panel (b)). Within the RPA the first-order optical transition corresponds to
the fundamental gap of the semiconducting SWNT (generally dipole-allowed).

The relation between the optical transitions and the diameter of the nanotubes (Kataura
plot) (Kataura et al. ) was used as a useful guide for experimentalists in characterizing
nanotubes samples. However, Kataura plots based on conventional TB calculations present
serious limitations (Bachilo et al. ). DFT calculations utilizing local and semi-local func-
tionals are well known to underestimate the bandgap of semiconductors significantly.This holds
also true for higher order optical transitions. Hybrid functionals have been shown to improve
significantly the description of the bandgap in semiconducting materials (Heyd and Scuseria
; Heyd et al. ). In the specific case of semiconducting nanotubes, commonly employed
hybrid functionals, like BLYP or PBE significantly overestimate the bandgap (Barone et al.
b).

Despite the excitonic character of optical transitions in SWNTs (Spataru et al. ), the
hybrid meta-GGA TPSS and the screened-exchange hybrid HSE provide excellent agreement
with experiments for the optical gap (Barone et al. b) as depicted in > Fig. - where
the mean error for the first-order optical transition with respect to experimental values in a set
of ten semiconducting nanotubes is shown. It is worth pointing out, however, that DFT-based
approaches cannot predict the strength of exciton binding energies due to themean-field nature
of the approximation.

First-principles calculations including electron–electron interactions beyond themean field
theory have shown the excitonic character of optical transitions in SWNTs with large exciton
binding energies (of up to  eV for the (,) SWNT) (Spataru et al. ).These predictions have
been corroborated by experiments (Shaver et al. ; Wang et al. ). Unfortunately, these
calculations are too demanding for routine calculations in large diameter tubes, and unlikely to
be practical to study the effect of defects and functionalization.
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⊡ Fig. -
Band structure (a) and optical spectrum (b) of the semiconducting (,) SWNT (Reprinted
(Adapted) with permission from Barone et al. (b). © () American Chemical Society)
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⊡ Fig. -
E mean errors in a set of ten semiconducting SWNTs calculated with different functionals
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⊡ Fig. -
Calculated versus experimental first optical excitation energies for semiconducting and metal-
lic SWNTs (Reprinted (Adapted) with permission from Barone et al. (a). © () American
Chemical Society)

The success of the hybrid functionals HSE and TPSSh in predicting the peak position of
optical transitions has been attributed to unknown error cancellations (Kümmel and Kronik
; Spataru et al. ). However, excitonic effects in metallic nanotubes are up to two orders
of magnitude smaller than in semiconducting tubes (Deslippe et al. ) and remarkably, the
same hybrid functionals that are able to describe the optical peaks in semiconducting tubes also
produce excellent results in metallic tubes (Barone et al. a).

As a first example of the predictive capabilities of these functionals, we show in > Fig. -
calculated first-order optical transitions, E as a function of the corresponding experimental
values in a set of five semiconducting and five metallic chiral nanotubes. All non-hybrid func-
tionals employed here (LDA, PBE, and TPSS) underestimate E in metallic tubes by approxi-
mately . eV. This error is comparable to the error for E in semiconducting tubes. The best
overall performance is achieved by the hybrids TPSSh and HSE, which yield comparable
first-order transitions in the case of metallic SWNTs.

As a second example, we compare in >Table -first-order transitions calculated using the
hybrid TPSSh andHSE functionals (Barone et al. a), and calculations considering GWplus
electron–hole interactions (GW+e–h) (Spataru et al. ), with experimental values. Here, it
is worth to point out the results obtained with hybrid functionals, that predict peak positions in
agreement with more complex quasiparticle and excitonic effects approaches. An explanation
for this behavior has been recently presented by Brothers et al. ().
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⊡ Table -
First-order optical transitions (eV) in metallic and semiconducting tubes calculated using the
hybrid TPSSh andHSE functionals (Barone et al. a, b), GWplus electron–hole interactions (GW
+ e–h) (Spataru et al. ), and experimental values

Tube TPSSh HSE GW + e–h Exp. Reference (Exp.)

Semiconductor

(,) . . . . Bachilo et al. ()

(,) . . . . Bachilo et al. ()

Metallic

(,) . . . . Fantini et al. ()

(,) . . . . Fantini et al. ()
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⊡ Fig. -
Dependence of the first (E) and second (E) optical transition energies on the width of bare (left
panel) and hydrogen-terminated (right panel) GNRs, at the HSE/-G* level of theory (Reprinted
(Adapted) with permission from Barone et al. (). © () American Chemical Society)

Graphene Nanoribbons

Theoretical and experimental studies reveal that the optical peaks of AGNRs might be utilized
as tools to determine the nature of their edges (Barone et al. ; Pimenta et al. ).The first
calculations of the optical spectrum of GNRs was presented by Barone et al. () bymeans of
DFT using the screened-exchange hybridHSE functional. As expected from an inter-band tran-
sitions framework, first optical excitations present the corresponding oscillations as a function
of the width. Second-order transitions also exhibit these oscillations, as shown in > Fig. -.

For armchair ribbons with hydrogen terminations there is a shift between the oscillation of
the first and second optical transition energies such that the local maxima of E coincide with
the local minima of E.This is expected to give rise to a doublet in the optical spectrum. A sim-
ilar doublet is expected to appear for bare GNRs with widths smaller than . nm. Nevertheless,
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for larger widths, the bandgap oscillations of the first and second optical transition energies of
bare ribbons are in phase and the doublet is expected to disappear. This effect should provide a
practical way of revealing information on the size and the nature of the edges of GNRs. Many-
body approaches later pointed out that due to the one-dimensional nature of GNRs, and like
in the case of SWNTs, their optical spectrum is dominated by excitonic effects with binding
energies as high as . eV for a . nm wide ribbon (Prezzi et al. ; Yang et al. ).

Chemistry at the Edges of Graphene

The question of what is at the edges of graphene has fascinated researchers in the area (Radovic
and Bockrath ), especially, since the possibility of finding magnetic edge states was openly
discussed in terms of the type of chemical bond that is expected to appear for bare and
hydrogen-terminated edges (Radovic and Bockrath ). The question of how magnetic and
electronic properties of nanoribbons depend upon chemical functionalization and doping has
been partially addressed by several studies. One of the first studies along this line of research
was presented by Hod et al. (a). In this study, the authors assumed that in most synthetic
scenarios GNRs edges will most likely be oxidized with an unknown effect on their electronic
properties. The oxidation schemes considered in these calculations included hydroxyl, lactone,
ketone, and ether groups. The authors have shown that these oxidized ribbons are, in general,
more stable than hydrogen-terminated GNRs (see > Fig. -). These configurations maintain
a spin-polarized ground state with antiferromagnetic ordering localized at the edges, similar to
the fully hydrogenated counterparts. Edge oxidation has been found to lower the onset electric
field required to induce half-metallic behavior (see > section “Graphene Nanoribbons”) and
extend the overall field range at which the systems remain half-metallic. When the edges of the
ribbon are fully or partially hydrogenated, the field intensity needed to switch the system to
the half-metallic regime is about .V/Å and the range at which the half-metallic behavior is
maintained is of .V/Å. Nevertheless,when the edges are fully oxidized, the system turns half-
metallic at a lower field intensity (. V/Å) and the range of half-metallic behavior is doubled
to . V/Å. Unfortunately, it is found that oxygen-containing groups at the edges have a minor
effect on the energy difference between the antiferromagnetic ground state and the above-lying
ferromagnetic state. This indicates a weak site-to-site exchange coupling and therefore oxygen
terminations do not increase the spin coherence length in these systems.

Gunlycke et al. () also studied the effect of oxygen and imine groups and found that
transport and magnetic properties are greatly affected by the nature of the chemical groups at
the edges. The electronic properties of ribbons with edge carbons presenting two hydrogen or
two fluorine atoms were also studied and it was found that in narrow GNRs the sp type of
edge carbon results in a non-spin-polarized state (Kudin ). Kan et al. () studied the
effect of combining donor and acceptor groups at different edges of zigzag nanoribbons using
DFT in the GGA. Within this approach, the authors found a half-metallic behavior without an
external field for some particular chemical decorations. Cervantes-Sodi et al. (a, b) inves-
tigated the electronic properties of chemically modified ribbons and observed that chemical
modifications of zigzag ribbons can lift the spin degeneracywhich promotes a semiconducting-
metal transition, or a half-semiconducting state, with the two spin channels having a different
bandgap, or a spin-polarized half-semiconducting state, where the spins in the valence and con-
duction bands are oppositely polarized. The authors find that edge functionalization studied in
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⊡ Fig. -
(a) Scheme of the oxygen- containing groups considered. (b) Relative stability of the different
chemical groups at the edges as calculated using the enthalpy of formationwith respect tomolec-
ular oxygen and hydrogen, and graphene as shown in Hod et al. (a) (Reprinted (Adapted) with
permission from Hod et al. (a). © () American Chemical Society)

their work gives electronic states a few eV away from the Fermi level in armchair ribbons and
does not significantly affect their bandgap. Lee and Cho () presented calculations based on
the local spin density approximation and found that edge-oxidated ZGNRs present a metallic
behavior. This was rationalized in terms of the electronegativity of O with respect to C. How-
ever, it needs to be stressed that while LSDA or PBE calculations might yield ametallic solution,
hybrid functionals still predict all oxidation schemes to be semiconducting (Hod et al. a).

Chemical functionalization of rectangular graphene nanodots has been studied in detail
using the DFT-BLYP approach (Zheng and Duley ). This study shows that edge chemical
modifications in finite ribbons significantly alter their electronic structure. Finite size effects in
this type of dots will be further discussed in the next section.

It is interesting to note that besides chemical functionalization at the edges of graphene it
is possible to introduce adatoms on the graphene surface. Usually, this type of interaction is
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governed by a charge transfer mechanism. Rigo et al. () presented DFT calculations on Ni
adsorption on graphene nanoribbons.The adsorption takes place preferentially along the edges
of zigzag nanoribbons and the interaction of the adatom with the carbon backbone quenches
the magnetization of the latter in the neighborhood of the adsorption site. Other transition
metal atoms adsorbed on GNRs were studied using DFT (Sevincli et al. ). Interestingly,
Fe or Ti adsorption makes certain armchair GNRs half-metallic with a % spin polariza-
tion at the Fermi level. These results indicate that the properties of graphene nanoribbons can
be strongly modified through the adsorption of d transition metal atoms. Alkaline and alkali
metal adsorption on graphene nanoribbons were found to exhibit a strong site-dependent inter-
action (Choi and Jhi ). Similar results have been obtained by Uthaisar et al. () when
considering the interaction of Li adatoms and graphene nanoribbons.The strength of the inter-
action is much larger in zigzag GNRs than in armchairs and occurs preferentially along the
edges. This enhancement is rationalized in terms of the larger number of electron acceptor
states in ZGNRs compared to AGNRs. Energy barriers for Li migration also present impor-
tant characteristics along the edges which can result in faster kinetics than in regular graphene
(Uthaisar and Barone ). In addition, recent computational studies suggest lithium doping
as a possible route for bandgap engineering of graphitic systems (Krepel and Hod ).

Finite Size Effects in Low-Dimensional Graphitic Materials

Finite size effects play a central role in dictating the electronic properties of materials at the
nanoscale. Due to their unique electronic structure, quasi-zero-dimensional (quantum dots)
graphitic structures may exhibit fascinating physical phenomena, which are absent in their
quasi-one-dimensional (nanowires, nanotubes, and nanoribbons) counterparts. Many factors
govern the effect of reduced dimensions on the electronic properties of nanoscale materials.
Here we focus on two such important factors, which are strongly manifested in the electronic
characteristics of graphitic materials, namely, quantum confinement and edge effects:

. Quantum confinement is related to the boundary conditions enforced on the electronic
wave function by the finite size of the system. When the typical de-Broglie wavelength
associated with the Fermi electrons becomes comparable to the dimensions of the system,
its electronic and optical properties deviate substantially from those of the bulk system.
As the confining dimension decreases and reaches this limit (which is typically within the
nanometer regime) the energy spectrum turns discrete and the energy gap becomes size
dependent.

. Edge effects in graphitic materials are dominated by localized states, which are physically
located at the boundaries of the system and energetically positioned in the vicinity of the
Fermi energy. These states influence not only the electronic properties of these systems but
also their chemical reactivity.

Quantum Confinement in Graphitic Systems

As shown in previous sections, combining the unique electronic structure of the two-
dimensional graphene sheet with the quantum confinement in quasi-one-dimensional
graphene derivatives, results in unique electronic properties, which are governed by the specific
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geometry and dimensions of the relevant system. In > section “Structure–Property Relations
in Single-Walled Carbon Nanotubes and Graphene Nanoribbons,” it was shown that one of the
most notable examples of such effects is found in the strong dependence of the electronic char-
acter of carbonnanotubes on their specific diameter and chirality.This diversity in the electronic
structure obtained from a single material just by changing its spatial symmetry, is one of the
most promising characteristics of carbon nanotubes for applications as basic components in
future nanoscale electronic devices.

Recent experimental procedures have allowed the production of ultra-short carbon nan-
otubes (Chen et al. a, b; Gu et al. ; Javey et al. ; Khabashesku et al. ;
Mickelson et al. ; Nakamura et al. ). The electronic structure of these quasi-zero-
dimensional systems is expected to be considerably different from their elongated counterparts,
since the reduction of dimensionality implies additional confinement restrictions which may
result in the emergence of new and interesting physical phenomena. Several theoretical investi-
gations have addressed the importance of quantum confinement on the electronic properties of
finite carbon nanotubes (Baldoni et al. ; Li et al. ; Liu et al. ; Rochefort et al. b).
Using a variety of methods including the HF approximation, semiempirical calculations, and
the GGA, Rochefort et al. (b) have investigated the change in bandgap, density of states,
and binding energies as a function of the length of armchair carbon nanotubes. In contrast with
the metallic character of the infinite tubes, finite segments shorter than  nm are predicted to
present a considerable bandgap, which vanishes as the length of the tube increases. Interestingly,
the convergence to the infinite metallic system is non-monotonic, and pronounced threefold
bandgap oscillations occur as the length of the tube is extended (see > Fig. -). These
bandgap oscillations were associated with the periodic changes in the bonding characteristics
of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular
orbital), which are a direct consequence of the quantum confinement of the π electrons along
the tube axis.

As one may expect, the calculated bandgaps strongly depend on the specific computational
method, where the HF and semiempirical approximations predict bandgap values which are
four to six times larger than those obtained by the generalized gradient DFT and extended
Huckel calculations. Nevertheless, the general characteristics of the bandgap behavior and the
existence of the bandgap oscillations are predicted by all methods. Similar results have been
obtained using the hybrid BLYP functional for open-ended and capped finite nanotube sec-
tions (Li et al. ). Expanding the study to the case of zigzag and chiral nanotubes, Liu et al.
() have used extendedHuckel calculations to show the dependence of the bandgap oscilla-
tions on the chirality of the finite nanotube segment. As shown in > Fig. -, as the chirality of
the tube changes gradually from armchair to zigzag, the amplitude of the oscillations reduces,
and almost vanishes for the case of (,) zigzag nanotube segments. This leads to the inter-
esting conclusion that the metallic character of the infinite armchair nanotubes is replaced by
HOMO–LUMO gap oscillations for finite armchair nanotube segments, while the oscillatory
bandgap nature of infinite zigzag nanotubes is replaced by a vanishing HOMO–LUMO gap for
the finite zigzag nanotube segments. An interesting interpretation of the behavior of theHOMO
and LUMO levels of finite carbon nanotube segments as a function of their length was recently
given using Clar sextet theory (Baldoni et al. ).

As discussed above, when an infinite graphene sheet is cut to form a quasi-one-dimensional
graphene nanoribbon with a finite width and infinite length, the π-electrons wave function is
confined along the direction perpendicular to the axis of the ribbon and is forced to vanish at
large distances along this direction. These “particle in a box” like boundary conditions induce
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⊡ Fig. -
Variation of the band gap of a (,) nanotube as a function of its length determined using differ-
ent computational techniques (Reprinted (Adapted) with permission fromRochefort et al. (b).
© () American Chemical Society)

discretization of the two-dimensional dispersion relation into a set of one-dimensional bands.
This discretization induces bandgap dependence on the width of the obtained ribbons.

The dimensionality of these systems may be further reduced to form graphene nanodots,
which can be viewed as molecular derivatives of graphene. This extra confinement has been
recently shown to strongly impact the electronic structure of these systems (Hod et al. ;
Shemella et al. ). > Figure - presents the HOMO-LUMO gaps as a function of the
length andwidth of a large number of graphene quantum dots calculated using the local density
approximation (upper left panel), the PBE flavor of the generalized gradient correction (upper
right panel), and the screened-exchange hybrid HSE functional (lower left panel). The studied
graphene derivatives are rectangular in shape and denoted by N×M where N and M are the
number of hydrogen atoms passivating the armchair and zigzag edge, respectively. As in the
case of infinite armchair graphene nanoribbons, an oscillatory behavior of the energy gap as a
function of the length of the ribbon is observed.The periodicity of these oscillations appears to
be somewhat different than the threefold period obtained for the infinitely long counterparts.
This, however, is a result of the fact that in order to prevent dangling carbon bonds, the width
step taken for the finite systems is twice as large than the one taken in the infinitely long armchair
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The bandgap as a function of the (even) number of SWNTs sections (Reprinted with permission
from Liu et al. (). © () by the American Physical Society)

ribbon calculations.The amplitude of the oscillations is found to be considerably damped due to
the finite size of the ribbons. As expected,when the length of the armchair edge (N) is increased,
the oscillation amplitude increases as well. It is interesting to note that, in general, the HOMO–
LUMO gap is inversely proportional to the width (N) and the length (M) of the finite GNR in
accordance with the semimetallic graphene sheet limit.Therefore, in order to obtain energy gap
tailoring capability, one will have to consider GNRs with long armchair edges (large N values)
and short zigzag edges (small M values). This will increase the amplitude of the energy gap
oscillations while maintaining overall higher gap values.

Edge Effects in Graphitic Systems

The effects of localized edge states on the electronic properties of quasi-one-dimensional
systems have been discussed in previous sections. The question arises of whether simi-
lar effects can be observed in quasi-zero-dimensional systems. It is well established that
small molecular derivatives of graphene, such as different types of polyaromatic hydrocar-
bons, have a closed shell nonmagnetic ground state. On the other hand, infinite ZGNRs
present a spin-polarized ground state. This suggests that there exists a critical size at
which molecular graphene derivatives become spin polarized. One of the earliest studies
addressing this issue dates back to more than two decades ago (Stein and Brown ).
Using Huckel theory it was found that finite graphene flakes exhibit electronic edge states
along the zigzag edges. More recently, several studies, based on DFT calculations have
investigated this question in detail. As a first step for obtaining quasi-zero-dimensional
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⊡ Fig. -
HOMO–LUMO gap values for three sets of graphene nanodots, as calculated by the local spin den-
sity approximation (upper left panel), PBE functional (upper right panel), and the HSE functional
(lower left panel) (Reprinted with permission from Hod et al. (). © () by the American
Physical Society)

graphene derivatives, it is convenient to consider truncated graphene nanoribbons in
the form of rectangular nanodots (Hod et al. ; Jiang et al. ; Kan et al. ;
Rudberg et al. ; Shemella et al. ). Surprisingly, it was found that even molecu-
lar scale graphene derivatives, such as the bisanthrene (phenanthro[,,,-opqra ]perylene)
isomer of the CH molecule and CH (tetrabenzo[bc,ef,kl,no]coronene), are predicted to
present a spin polarized ground state as shown in > Fig. - (Hod et al. ; Jiang et al.
; Kan et al. ). For the smaller molecules, this was further verified using a complete
active space self-consistent field many-body-wave function approach (Jiang et al. ). Fur-
thermore, the application of an in-plane electric field perpendicular to the zigzag edge was
found to turn the finite systems into molecular scale half-metals (Hod et al. ; Kan et al.
), similar to the case of infinite ZGNRs.

When considering more complicated graphene derivatives such as triangular graphene
flakes (Ezawa ; Fernandez-Rossier and Palacios ), the combination of the local anti-
ferromagnetic spin ordering on adjacent carbon sites and the edge geometry of the triangular
structure results in spin frustration. This leads to a metallic ground state with an overall fer-
romagnetic character and a finite magnetic moment. The results of tight-binding Ising model
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(a)–(e) Isosurface spin densities of the antiferromagnetic ground state of several molecular
graphene derivatives as obtained using the HSE functional and the -G** basis set. (f) and (g)
represent diradical andhexaradical Clar structures of bisanthrene (Reprintedwithpermission from
Hod et al. (). © () by the American Physical Society)

(Ezawa ) and Hubbard model (Fernandez-Rossier and Palacios ) Hamiltonians are
consistent with the predictions of DFT (Fernandez-Rossier and Palacios ). These can be
further rationalized by Lieb’s theorem (Lieb ) regarding the total spin S of the exact ground
state of theHubbardmodel in bipartite lattices.The honeycomb lattice of graphene is formed by
two triangular interpenetrating sublattices, A and B. Since triangular nanostructures havemore
atoms in one sublattice, NA > NB the total spin S of the ground state is S = NA−NB >. Here,
themain contribution to themagneticmoment comes from edge states around the zigzag edges
of the triangular structure. Such molecular graphene derivatives were suggested to function as
permanent magnets in future nanoscale memory devices.

Naturally, the effect of edge states reduces as the surface to edge ratio becomes larger. An
interesting question to address is at what length would the effect of the edges disappear and
the electronic structure of the system becomes essentially identical to that of the infinite sys-
tem? In a recent study, this question was addressed using a divide-and-conquer (D&C) DFT
approach, which enables the efficient and accurate calculation of the electronic properties and
charge transport through finite elongated systems (Hod et al. ). Within this approach, the
Hamiltonian H is given in a localized basis set representation by a block-tridiagonal matrix,
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where the first and last diagonal blocks correspond to the two terminating units of the ribbon
(see upper panel of > Fig. -).The remaining diagonal blocks correspond to the central part
of theGNRwhich is composed of a replicated unit cell.The terminating units and the replicated
central part unit cell are chosen to be long enough such that the block-tridiagonal representation
ofH (and the overlapmatrix S) is valid.The terminating unit diagonal Hamiltonian blocks and
their coupling to the central part are evaluated via amolecular calculation involving the two ter-
minating units and one unit cell cut out of the central part.The replicated unit cell blocks of the
central part and the coupling between two such adjacent blocks are approximated to be constant
along the GNR and obtained from a periodic boundary conditions calculation. The resulting
block-tridiagonal matrix ES −H is then partially inverted for each value of the energy E using
an efficient algorithm, to obtain the relevant Green’s function blocks needed for the DOS and
transport calculations using the following formula

ρ(E) = −

π
Im{Tr[Gr

(E)S]} , (.)

where Gr
(E) = [ES−H]−. A detailed account of the D&C method can be found in Hod et al.

().
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Upper panel: A finite elongated graphene nanoribbon. Lower panels: DOS of the finite GNR at dif-
ferent lengths. The red curve in the lowermost panel is the DOS of the infinite system (Reprinted
with permission from Hod et al. (b). © () by the American Physical Society)
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To study these edge effects in graphene, three graphene nanoribbons with consecutive
widths were considered and their DOS as a function of the ribbons’ length were calculated
using this D&C approach (Hod et al. b). As an example, > Fig. - presents the DOS
of a finite graphene nanoribbon of different lengths. It can be seen that for graphene nanodots
up to  nm in length, the DOS resembles that of a finite molecular system characterized by a
discrete set of energy levels. When the ribbon is further elongated to  nm, a constant DOS
around the Fermi energy of the infinite system arises and typical Van Hove singularities start
to build up. For this specific system, at a length of  nm most of the features that are related
to the edge states disappear, and the DOS almost perfectly matches that of an infinite armchair
graphene nanoribbon. The rate of convergence of the electronic properties of finite systems to
those of the infinite counterparts will depend on the type of the system and the specific inter-
actions that govern its electronic character. Therefore, the divide-and-conquer method allows
the quantitative estimation of this rate based on state-of-the-art DFT approximations.

We now turn back to the case of carbon nanotubes. When a zigzag nanotube is cut into
finite segments, the zigzag edges are exposed.We have shown in the previous section that quan-
tum confinement effects may play an important role in determining the electronic character of
such structures. Similar to the case of graphene nanoribbons, these effects are now accompa-
nied by the formation of spin-polarized edges states which put their own fingerprints on the
electronic structures of the system (see > Fig. -). There has been a debate in the litera-
ture regarding the energetic stability of these edge states, and whether they would appear for
all finite zigzag nanotubes regardless of their diameter (Higuchi et al. ; Kim et al. ;
Okada and Oshiyama ). It is now well accepted that all finite zigzag SWNT segments are
expected to present a spin-polarized ground state (Hod and Scuseria ;Kim et al. ;Man-
anes et al. ). Furthermore, as for ZGNRs, the application of an axial electric field will drive

(7, 0, 7) (8, 0, 7)

(9, 0, 7) (10, 0, 7)

⊡ Fig. -
Antiferromagnetic-type ground state spin density maps of the (,) (upper left panel), (,) (upper
right panel), (,) (lower left panel), (,) (lower right panel) finite zigzag SWNT segments as
obtained using the HSE functional with the -G** basis set. Red and blue isosurfaces indicate the
two spin flavors with an isovalue of . a− (Reprinted (Adapted) with permission fromHod and
Scuseria (). © () American Chemical Society)
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the system into a half-metallic state, thus forming a perfect spin filter. If one now eliminates
only one zigzag edge of the tube by capping it with a half-fullerene, spin frustration results in a
spin-polarized ferromagnetic ground state (Kim et al. ), which resembles the case of trian-
gular graphene derivatives discussed above and forms amolecularmagnet bearing a permanent
magnetic moment.

Two-dimensional graphene and its lower dimensional derivatives present a diversity of
electronic behaviors, making them particularly attractive as building blocks for future nano-
devices. Simplified model Hamiltonian approaches may give important insights on the general
physical trends in these systems. Nevertheless, density functional theory in general, and the
screen exchange hybrid functional approximation, in particular, seem to be excellent tools to
quantitatively study the structure–function relations in these systems and the effects of external
perturbations such as chemical substitutions and electric and magnetic fields.

Electromechanical Properties of One-Dimensional Graphitic
Structures

Electromechanical devices are based on systems for which the mechanical properties can be
controlled via the application of external electric potentials and/or the electronic properties
may be altered via inducedmechanical deformations. Such devices can be scaled down to form
microelectromechanical systems (MEMS), which are small integrated devices or systems that
combine electrical and mechanical components. Their dimensions may vary from the submi-
cron level up to a fewmillimeters. By fabricating miniaturemechanical elements such as beams,
gears, diaphragms, and springs MEMS enabled the realization of diverse applications includ-
ing ink-jet-printer cartridges, accelerometers, miniature robots, microengines, locks, inertial
sensors, microtransmissions, micromirrors, micro actuators, optical scanners, fluid pumps,
transducers, and chemical, pressure, and flow sensors.Nanoelectromechanical (NEMS) systems
present the ultimate miniaturization of such devices, scaling them further down to the molec-
ular level. Apart from the reduced dimensions, these systems are characterized by lower energy
consumption and increased sensitivity toward external perturbations. Furthermore, due to their
quantum-mechanical nature, molecular-sized NEMS may present unique physical properties
that cannot be obtained from their microscopic and macroscopic counterparts. The unique
electronic andmechanical properties of carbon nanotubes havemarked them as promising can-
didates for key components in NEMS. In recent years, several theoretical investigations as well
as experimental realization of NEMS have been presented (Cao et al. ; Cohen-Karni et al.
; Fennimore et al. ; Gomez-Navarro et al. ; Hall et al. ; Maiti ; Minot
et al. ; Nagapriya et al. ; Paulson et al. ; Rueckes et al. ; Sazonova et al. ;
Semet et al. ; Stampfer et al. ; Tombler et al. ).

Carbon Nanotubes in NEMS Applications

The key components in most of the suggested setups are suspended carbon nanotubes bridg-
ing the gap between two conducting electrodes without making contact with the underlying
surface (see > Fig. -). One may then induce mechanical deformations via manipulation of
an external nanoscale tip while simultaneously measuring the changes in the conductance of
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⊡ Fig. -
SEM image of a cantilever-SWNT-based NEMS sensing device. The white arrows indicate the loca-
tion of the suspended SWNT (Reprinted (Adapted) with permission from Stampfer et al. ().
© () American Chemical Society)

the system. Strong reversible electromechanical response of carbon nanotubes under combined
bending and stretching deformations have been recorded by several experimental groups (Cao
et al. ; Maiti ; Minot et al. ; Semet et al. ; Stampfer et al. ; Tombler et al.
). In > Fig. -, the change in the SWNT’s resistance as a function of the depression
applied to the top cantilever (> Fig. -) is plotted. The resistance of the system increases by
more than an order ofmagnitude over a depression range of less than  nm, suggesting that such
setupsmay be used for highly sensitive and reliable displacement sensors. A similar setup, where
a floating pedal is attached to a suspendedmulti-walled nanotube, has enabled the investigation
of the electromechanical response of single (Hall et al. ) and multi-walled (Cohen-Karni
et al. ) nanotubes under the application of torsional deformations. In this setup, an atomic
forcemicroscope (AFM) tip presses down on the floating pedal. Since the SWNT is fixed at both
edges to the conducting electrodes, the central section experiences torsion.This change in helic-
ity of the system induces considerable variations in the electronic conductance. Interestingly,
pronounced bandgap oscillations are observed as a function of the deflection angle of the pedal.
The origin of these oscillations has been associatedwith the distortion of the first Brillouin zone
(fBZ), which results in the shifting of the Dirac points (Cohen-Karni et al. ; Nagapriya et al.
). As the Dirac points shift within the fBZ they may approach an allowed electronic band
thus increasing the conductance of the system. Once the Dirac point crosses the allowed band
the conductance reaches a maximum value. Further deformation results in shifting the Dirac
points away from the allowed band and thus a decrease in the conductance. This process is
repeated anytime the Dirac point crosses one of the many parallel allowed bands. Other proto-
type devices such as nanotube actuators (Fennimore et al. ; Gomez-Navarro et al. ),
and nonvolatile memory components based on SWNTs junctions (Rueckes et al. ) have
been successfully fabricated as well, demonstrating the potential of SWNTs as nanoscale elec-
tromechanical devices. Aiming to obtain a microscopic understanding of these experimental
observations and to guide further experiments with carbon nanotubes under various mechan-
ical deformation modes, many theoretical investigations have been performed (Maiti ).
Due to the complexity of the deformed systems, most of the computational treatments were
based on semiempirical or DFT-based TB calculations.
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⊡ Fig. -
Electromechanical measurements of an electromechanical device based on a metallic SWNT
(> Fig. -). The upper insert shows the resistance plotted as a function of strain. The lower insert
shows a force versus deflection measurement performed on the cantilever-SWNT contact point
(Reprinted (Adapted) with permission from Stampfer et al. (). © () American Chemical
Society)

Theeffects of axial stretching (Heyd et al. ; Jiang et al. ; Kane andMele ; Kleiner
and Eggert ; Yang et al. ), bending (Kane and Mele ; Liu et al. ; Nardelli ;
Nardelli and Bernholc ; Rochefort et al. , a; Yang and Han ), torsion (Jiang
et al. ; Kleiner and Eggert ; Rochefort et al. a; Yang andHan ; Yang et al. ;
Zhang et al. ), and radial compression (Lammert et al. ; Lu et al. ; Peng and Cho
; Svizhenko et al. ) were studied extensively showing high sensitivity of the electronic
properties and transport characteristics of the deformed nanotubes to the applied deformations.

Several DFT calculations were conducted to study the effect of axial strain (Guo et al. ),
bending (Maiti ; Maiti et al. ), radial compression (Mehrez et al. ;Wu et al. ),
and torsional deformations in carbon nanotubes (Nagapriya et al. ):

. Axial strain: While isolating the effect of axial stretching and compression is a challeng-
ing experimental task (Cao et al. ), pure axial deformations are easy to study using
modern computational tools (Guo et al. ). Bandgap variations due to axial compres-
sion and stretching were studied using the local density approximation. As it can be seen in
> Fig. - for strains up to %, linear variations in the bandgap are predicted. The slope
of the bandgap response depends on the tube type and on the sign of the axial deformation.
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⊡ Fig. -
Calculated bandgap variation of zigzag (,), (,), (,), and (,) SWNTs as a function of axial
strain (Reprinted with permission from Guo et al. (). © () American Institute of Physics)

For all systems studied, the relative changes in bandgap are of the order of . eV and are
definitely measurable in experimental conditions.

. Bending: The effect of pure bending and AFM tip-induced bending was studied using the
Harris functional approximation (Maiti ;Maiti et al. ). It was shown that both pure
bending and tip-induced compression maintain the hexagonal sp lattice structure up to
relatively high bending angles. Armchair tubes remain significantly conducting even at large
deformations. However, metallic zigzag tubes display a dramatic drop in conductance, in
particular under tip-induced deformations.

. Compression: Radial compression was studied via a combined molecular dynamics
and density functional theory-based nonequilibrium Green’s function approach (Wu
et al. ). Reversible pressure-induced metal-to-semiconductor transitions of armchair
SWNTs were predicted suggesting that SWNTsmay be used as miniature sensitive pressure
detectors (Mehrez et al. ; Wu et al. ).

. Torsion: While the torsional electromechanical response was successfully explained via
the deformation of the Brilluoin zone, another possible explanation for the bandgap
oscillations may be the periodic formation of Moire patterns due to registry mismatch
between the different walls of the multi-walled tubes, which have a different curvature.
In order to rule out this possibility, DFT calculations within the LSDA were used to
show that the interlayer coupling is weak and the electronic structure of the individ-
ual walls resembles that of single-walled nanotubes for different intertube orientations
(Nagapriya et al. ).

As can be seen from all of the examples given above, the study of the physical prop-
erties of nanotubes in general and their electromechanical behavior in particular requires
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an intimate relation between theory and experiment, where the theoretical tools enable
an atomic scale understanding of the experimental observations and provide guidelines
for the design of new experiments. As we have seen above, when considering finite size
effects and chemical functionalization, DFT presents new insights that are not captured
within the simple TB approximations. When considering the electromechanical response of
SWNTs to different mechanical deformations, TB calculations seem to give a reliable descrip-
tion. Nevertheless, calculations based on DFT are required for comparison and validation
purposes.

Graphene Nanoribbons in NEMS Applications

Soon after the successful isolation of a single graphene sheet (Novoselov et al. ) the
first experimental realization of an electromechanical device based on graphene nanorib-
bons was presented (Bunch et al. ). In this setup, atomic thick layers of graphene were
suspended above predesigned trenches carved in the underlying silicon oxide surface while
bridging the gap between gold electrodes. Both optical and electrical actuation procedures
were demonstrated resulting in vibrational frequencies in the MHz regime. High charge sen-
sitivities suggested the possibility of using similar devices as ultrasensitive mass and force
detection (Bunch et al. ). Following this novel experimental fabrication and manipulation
of graphene nanoribbons as nanoelectromechanical components, several other studies have
explored the mechanical (Frank et al. ; Poot and van der Zant ) and electromechani-
cal response of these systems (Milaninia et al. ). The effects of uniaxial strains in isolated
graphene nanoribbons were recently studied in details using the generalized gradient approxi-
mation of the exchange correlation functional within the framework of DFT (Faccio et al. ;
Sun et al. ). It was found that the electronic properties of zigzag GNRs are not sensitive
to uniaxial strain, while the energy gap of armchair nanoribbons displays an oscillatory pat-
tern as a function of the applied strain. By comparison to TB calculations, it was deduced that
the nearest-neighbor hopping terms between atomic sites within the carbon hexagonal lattice
are responsible for the observed electromechanical response. To simulate the effects of bending
and torsional deformations in suspendedgraphene nanoribbons, DFT calculations utilizing the
screened-exchange HSE density functional were performed (Hod and Scuseria ). A large
set of short armchair graphene nanoribbons was considered, where narrow strips of atoms close
to the zigzag edges of the ribbonwere fixed to simulate a doubly clamped suspendednanoribbon
(see > Fig. -).

The effect of a driven deformation due to an external tip were simulated by constraining a
strip of hexagons at the central part of the ribbon to be either depressed or rotated with respect
to the fixed edge atoms. Extreme mechanical deformations, way beyond the linear response
regime, were applied to the full set of nanoribbons studied. Most of the nanoribbons consid-
ered stayed stable under depressions of  nm as well as torsional angles of ○ maintaining their
spin-polarized ground state character. As it can be seen in > Fig. -, pronounced electrome-
chanical responses for both bending and torsion (torsion not presented in > Fig. -) have
been obtained including evidence of dimension-dependent bandgap oscillations similar to the
case of SWNTs (Cohen-Karni et al. ; Nagapriya et al. ).

Apart from indicating the promise that graphene nanoribbons hold from an electrome-
chanical perspective, such calculations based on state-of-the-art density functional theory
approaches, enhance the molecular scale understanding of the physical processes governing
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⊡ Fig. -
Anartist viewof anelectromechanical devicebasedongraphenenanoribbons. Anexternal tipmay
inducebendingand torsionof thenanoribbon (Reprinted (Adapted)withpermission fromHodand
Scuseria (). © () American Chemical Society)
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the behavior of these intriguing materials. Furthermore, theory and computations may guide
future experiments to pursue promising scientific and technological routes towardwhich efforts
and resources should be directed.

Concluding Remarks

In this chapter, we have given several examples of how theoretical investigations can be applied
to elucidate the behavior of carbon nanostructures with emphasis on the understanding of the
basic physical mechanisms that take place at the molecular level. In particular, we have shown
that density functional theory is a powerful tool to this end, andwe have provided several exam-
ples where density functional theory has been utilized to investigate electronic and structural
properties of graphene nanoribbons, carbon nanotubes, and other low-dimensional graphitic
materials. We hope that this chapter will furnish the reader with an ample background on this
growing field and that it will serve as a starting point for readers interested in pursuing research
in this exciting field.
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Abstract: Recent computer simulations have indicated that there is a linear relationship
between the melting and the Curie temperatures for Nin (n≤ ) clusters. In this chapter, it
is argued that this result is a consequence of the fact that the surface and the core (bulk) con-
tributions to the cluster properties vary with the cluster size in an analogous way.The universal
aspect of this result is also discussed.Among the many interesting consequences resulting from
this relationship is the intriguing possibility of the coexistence of melting and magnetization.
As demonstrated, these conclusions have as their origin the major contribution coming from
themelting/magnetization ratio arising from surface effects and appear to overshadowall other
contributions. As a result, this can be quantified with approximate methods which are suitable
for describing any major surface contribution to a cluster property.

Introduction

As the cluster size increases, the cluster properties evolve toward their bulk counterparts. The
understanding of this evolution is of fundamental importance not only from the perspective
of basic science but also from the technological viewpoint. At a very approximate level, one
can claim that the cluster properties can be described in terms of their surface and core (bulk)
contributions and due to the fact that the surface to bulk ratio gets smaller as the cluster size
increases. Consequently, it is natural to expect that the cluster properties will evolve to their
corresponding bulk-phase ones for large cluster sizes.

As one particular example, wemention themelting temperature of large clusters. According
to the proposed model, the following functional relationship for the variation of the melting
temperature, Tcl

mel t ,N , of a cluster as the number N of its atoms increases has been suggested:

Tcl
melt,N = T

bulk
melt − δmeltN

−/, (.)

where Tbul k
mel t is the melting temperature of the corresponding bulk phase and δmel t is a constant

that dependsonN (Garcia-Rodeja et al. ; Gunes et al. ; Lee et al. ;Nayak et al. ;
Qi et al. ; Rey et al. ; Sun and Gong ). Correction terms in N−/ and N− powers
to the above expression have also been suggested (Doye andCalvo ).The term proportional
to N−/ in > Eq. . reflects the surface to bulk contribution to the melting temperature.

> Equation . was found to describe reasonably well the experimental findings in the
large-size regime (N > ). However, for clusters of smaller size, (especially for clusters with
number of atomsN ≤  ), > Eq. . does not ensure a quantitative description of the variation
of Tcl

mel t ,N with the cluster size (see, e.g., Baletto and Ferrando ; Lee et al. ; Nayak et al.
; Qi et al. ). This is because for small clusters, () the surface-to-volume contribution
to Tcl

mel t ,N is very large and () is very sensitive to the variations of the surface structure and
the cluster geometry (symmetry), as both of these characteristics get altered as the cluster size
changes.

Another property that has attracted much interest recently is the one pertaining to the evo-
lution of the magnetic features of the magnetic clusters as the cluster size and temperature
increase. This is mainly because of the potential applications of the magnetic grains in fabri-
cating new materials for advanced magnetic storage devices and other applications (Bansman
et al. ).

Recently, the results of our computer simulations led us to the conclusion that the Curie,
Tcl
C ,N , and the melting, Tcl

mel t ,N , temperature of NiN clusters consisting of N atoms are linearly
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related over a large range of cluster sizes (N ≤ ), and this relationship is quantified by the
following equation (Andriotis et al. ) :

Tcl
melt,N = αT

cl
C ,N + β, (.)

where α and β are constants. Least square fitting of our results leads to α = . and
β = .○K. This relationship was suggested to be related to the ratio of the surface to bulk
contributions to the clustermelting as well as to the averagemagneticmoment per cluster atom,
μ̄ i ,N(T) i = , ...,N . It was then claimed that this relationship could be justified within themean
field theory applied separately to the surface and core regions of the cluster (Andriotis et al.
).

A cursory thought seems to suggest that any type of direct relationship between Tcl
mel t ,N

and Tcl
C ,N to be fortuitous since melting and magnetic order seem to reflect completely differ-

ent aspects of the crystal potential. Therefore, > Eq. . cannot be considered as one which
reestablishes a valid physical relationship between these two cluster properties.

Furthermore, the variation of both Tcl
mel t ,N and Tcl

C ,N with the cluster size constitute separate
distinct and complicated projects for both theory and experiment. This is because significant
contributions to both of these physical quantities have their origin in surface as well as cluster-
core (bulk) effects which, at first look, affect Tcl

mel t ,N and Tcl
C ,N differently. These contributions

include: the effects of the cohesive energy, the shape (symmetry), the size, the surface to bulk
ratio, the surface tension, the temperature of the cluster, etc.

In early reports, it was found that Tcl
mel t ,N is usually smaller than the corresponding bulk

value. Of interest is the result applied for large enough spherical clusters of radius R:

Tcl
mel t ,N/T

bul k
mel t =  − km/R (.)

where km is a material-dependent constant (see, e.g., Buffat and Borel  and references
therein). A similar expression describing the variation of the Curie temperature with the clus-
ter size was also found within the phenomenological Landau–Ginsburg–Devonshire theory
(Huang et al. ), i.e.,

Tcl
C ,N/T

bul k
C =  − kc/R (.)

Use of > Eqs. . and > . gives the following values for α and β in > Eq. .:

α =
kc
km

Tbul k
C

Tbul k
mel t

(.)

and
β = Tbul k

C − αTbul k
mel t = ( −

kc
km
)Tbul k

C . (.)

Diep and collaborators (Diep et al. ) usingMonte Carlo simulations studied the effect of
the magnetic interactions on the melting temperature of a cluster. Although their investigation
was limited to very small clustersMN , (N ∈ [,]) of transition metals M, however, the conclu-
sions they arrived at are very important. In particular, among others, they have found that the
incorporation of the magnetic interactions leaves the cluster structure unchanged. However,
magnetic interactions lead to sharper peaks in the specific heat (and, therefore, to more precise
determination ofmelting and Curie temperatures), a slight increase in themelting temperature,
and a slight cluster-volume contraction (magnetostriction). After examiningmore carefully the
results of Diep et al. () (included in their Fig. ), we find that the relation of Tcl

mel t ,N and
Tcl
C ,N is more or less linear with the exception of the data of the very small clusters, i.e., for
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N ∈ [,,].The linear relationship between Tcl
mel t ,N and Tcl

C ,N was also suggested recently on the
basis of semiempirical and approximate phenomenological model descriptions (see Yang and
Jiang  and references therein).

All these descriptions support our findings (i.e., > Eq. .), which are based on a firm
quantummechanical model procedure as outlined in the following. In this work, we investigate
the implications of such a relationship which seems to specify a universal aspect of the surface
contribution to the cluster properties.

TheModel

The investigation of clusters of medium and intermediate sizes consisting of transition metal
atoms poses a severe challenge in terms of computer capacities and computer time. For this
reason, approximate schemes have been employed with most pronounced being those based on
empirical classical potentials. However, these models have limited applicability when there is a
need to understandmore about the electronic structure of these systems and follow its changes
as the cluster size increases and approaches the bulk phase. It is thus necessary to use methods
with firm ab initio footing while at the same time not sacrificing computational efficiency. One
suchmethod is based on the Tight-Binding approximation which we have adopted in our work.

In this section, we discuss briefly the implementation of this approach in order to model
the temperature and magnetic features of transition metal clusters. We will firstly give a brief
overview of our TB computational scheme that we used for systems at zero temperature. In the
following sections, we will describe the generalization of our method enabling the inclusion of
magnetic and temperature effects.

Tight-Binding Molecular Dynamics Methodology

The details of our Generalized Tight-Binding Molecular Dynamics (GTBMD) scheme can be
found in Andriotis and Menon () and Menon et al. (). The GTBMD method makes
explicit use of the nonorthogonality of the orbitals resulting in a transferable scheme that works
well in the range all the way from a few atoms to the condensed solid.The scheme also includes
d-electron interactions enabling dynamic treatment of magnetic effects in transition metal
systems. Here, we give a brief overview.

The total energy U is written in its general form as a sum of several terms (Andriotis and
Menon ),

U = Uel +Urep +U, (.)

where Uel is the sum of the one-electron energies En for the occupied states:

Uel =
occ
∑

n
En . (.)

In the tight-binding scheme, En is obtained by solving the characteristic equation:

(H − EnS)Cn
= , (.)

whereH is the Hamiltonian of the system and S the overlap matrix.
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The Hellmann–Feynman theorem for obtaining the electronic part of the force is given
by Menon et al. (),

∂En

∂x
=

Cn†
(

∂H
∂x − E

n ∂S
∂x )C

n

Cn†SCn
. (.)

The total energy expression also derives contributions from ion–ion repulsion interactions.This
is approximated by a sum of pairwise repulsive terms and included in Urep . This sum also con-
tains the corrections arising from the double counting of electron–electron interactions in Uel
(Andriotis and Menon ). U is a constant that merely shifts the zero of energy. The contri-
bution to the total force from Urep is rather straightforward. One can then easily do molecular
dynamics simulations by numerically solving Newton’s equation,

m
dx
dt
= Fx = −

∂U
∂x

(.)

to obtain x as a function of time.
Our TBMD scheme for a binary system consisting of elements A and B is based on a min-

imal set of five adjustable parameters for each pair (A,A), (B,B), and (A,B). These parameters
are determined by fitting to experimental data for quantities such as the bond length, the vibra-
tional frequency, and the binding energy of the dimers A, B, AB; the cohesive energy of the
corresponding bulk states of the A, B, AB materials; and the energy level spacing of the lowest
magnetic states of the dimer and trimer binary clusters consisting of atoms of A and B type.
In the absence of experimental data, we fit to data of small clusters obtained using ab initio
methods as described in the following subsection. It is apparent that only five parameters are
required in the case of a single species system.The generalization to a system containing more
than two kind of atoms is also plausible within this approach.

The fixed set of TB parameters are obtained from the universal scheme proposed by
Harrison () suitably scaled with respect to the interatomic distance (Andriotis andMenon
).

Collinear Magnetic Effects

In order to calculate the Curie temperature of a magnetic cluster, it is necessary to include non-
collinear magnetic effects in ourmodel description.These are introduced by extending our zero
temperature (ZT) Tight-Binding Molecular Dynamics (TBMD) approach at the Hubbard-U
level of approximation (Andriotis andMenon ) whichwe used to studymagnetic clusters in
the collinear magnetic approximation. According to this collinear model, an exchange-splitting
parameter s(i) is introduced which is proportional to the intra-site Coulomb interaction U.
This specifies the energy splitting between spin-up and spin-down electrons in the ith-atom in
accordance with results obtained by ab initio methods.Thus, within this model, a site-diagonal
spin-dependent Hamiltonian term V(i)

s pin is introduced which has the form:

V(i)
s pin =

⎛

⎝

s(i) 
 −s(i)

⎞

⎠

(.)

In this model, it is assumed that all atomicmagneticmoments (MMs) (of the cluster atoms)
are collinear to the z-axis of a local xyz-system assigned to the ith cluster-atom.
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The generalization of this model to include non-collinear effects is achieved in three steps.
In the first step, we include the randomness in the directions of the atomicMMs. In the second,
we include the spin-orbit interaction, and in the third, we include the temperature effects. For
the sake of completeness, we briefly discuss this generalization in the following.

Step : Inclusion of Randomness in the Direction of the Atomic
Magnetic Moments

In the first step, it is assumed that the deviation of the direction of theMM, μi , of the ith cluster-
atom from theZ-axis of the global coordinate systemXYZ is specified by the polar angles (θi, ϕi)
defined with respect to this XYZ system. As a result, the potential V(i)

s pin , originally defined in

the local coordinate system xyz of the ith atom, is transformed to its expression V(i),g l obal
s pin in

the global system XYZ as follows (Anderson and Hasegava ; Uhl et al. ):

V(i),g l obal
s pin = Ξ†(θi , ϕi)V(i)

s pinΞ(θi , ϕi), (.)

where Ξ(θi , ϕi) is the standard spin-/-rotation matrix :

Ξ(θi , ϕi) = (
eiϕi/ cos θi/ e−iϕ i / sin θi/
−eiϕi/ sin θi/ e−iϕ i/ cos θi/

) (.)

It is assumed that the Z-axis of the global system can be arbitrarily chosen, and a usual choice
is to take Z in alignment with the easy axis of the system.

Step : Inclusion of Spin-Orbit Interaction

In the second step, we introduce the Spin-Orbit (SO) interaction, V(i)
SO , in the ith-atom within

the L–S coupling scheme, i.e., V(i)
SO = −λ

(i)L(i) ⋅ S(i) where, λ(i) is the spin-orbit coupling
constant for the ith-atom, L(i) its orbital angular momentum along the Z-axis, and S(i) its total
spin in the direction of μi .

Details of the implementation of the Spin-Orbit interaction within our TBMDmethod have
been reported elsewhere (Andriotis and Menon ).

In the presence of a magnetic field, B (assumed to be along the direction specified by the
polar angles (θ, ϕ) with respect to XYZ-system), the atomicMMs of the cluster-atoms tend to
become parallel to the direction of B. The average projection of the MMs of the cluster-atoms,
μcl , along the direction of B (which is the experimentally measured quantity) is,

μcl =


Ncl

�

�

�

�

�

�

�

�

�

�

�

Ncl

∑

i
μi cos γi

�

�

�

�

�

�

�

�

�

�

�

, (.)

where Ncl is the number of cluster-atoms and cos γi = cos θ cos θi + sin θ sin θi cos(ϕ −ϕi).
In a different formulation within the Hubbard-U model approximation to the e-e correla-

tions, the spin-mixing interaction may be derived from a Coulomb-type Hamiltonian term of
the form (Kato and Kokubo ; Ojeda et al. ): Vsmix = −U∑l σ ρl σ , l σ̄ c

†
l σ̄ cl σ , where c

†
l σ

(cl σ ) is the creation (annihilation) operator for an electronwith spin σ at site l and ρl σ̄ , l σ denote
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the electron density matrix elements, i.e., ρl σ , l σ̄ =< c†l σ̄ cl σ >. It can be easily verified that the
Hamiltonian term Vsmix is equivalent to that given by > Eq. ., i.e.,V(i),g l obal

s pin .

Evaluation of the TB representation of the SO-interaction

In order to proceed with the evaluation of the TB matrix elements of the SO-interaction, we
write the SO-term as

S ⋅ L = LxSx + LySy + LzSz (.)

and compute the matrix elementswith respect to the basis set.We are using a basis set of atomic
orbitals yi lmσ (r), where the index i specifies the atom on which the atomic orbital (AO) is
centered, l specifies the angular momentum, m is used to count the various d-orbitals (i.e.,
dx y , dxz , dyz , dx−y , dz ), and σ denotes the spin. In terms of a linear superposition of these
basis functions, the single electron wave functions take the form

Ψiσ(r) = ∑
l ,m

Cilmσ yi lmσ (r), (.)

where Cilmσ denote the coefficients which are to be determined from the diagonalization of the
Hamiltonian.

The spin operators of > Eq. . refer to the global system and care has to be exercised as
they act on the local spin states, the latter relatedwith the former according to > Eqs. . and
> .. For example,

<↑

′

i ∣Sx ∣ ↓
′

i>=


cos ϕi sin θi , (.)

where the prime indicates the local functions and ↑, ↓ indicate spin-up and spin-down states,
respectively.

The matrix elements of the orbital angular momentum operators are obtained by operating
on the angular part of the wave functions which, in our TBMD formalism are described by
the Cubic harmonics. As an example, we write down the expression of the average value of the
z-component of the orbital magnetic moment, Lz , in terms of its matrix elements :

< Lz >=∑
iσ
∫

drΨ⋆

iσ(r)LzΨiσ(r) (.)

or

< Lz >=∑
σ

occ
∑

i
∑

l ,m
∑

l ′m′
C⋆

i lmσ Cil ′m′ σ ∫ dry⋆i lmσ (r)Lz yi l ′m′ σ(r) (.)

Assuming orthogonality of AOs centered at different atoms, and orthonormal basis functions
centered at one particular atom, we finally obtain the following expression for the d-orbital
contribution to the orbital magnetic moment < Ld

z > :

< Ld
z >= ∑

σ

occ
∑

i
∑

l=
∑

mm′
Δi l
mm′C

⋆

i lmσ Cilm′ σ (.)

where Δi l
mm′ are constants easily calculated by applying the relation:

LzYlm = mYlm (.)
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where Ylm are the spherical harmonics. For example, a straightforward calculation of the
constants Δi l

mm′ shows that the only nonzero matrix elements of Lz are the following:

< dx−y ∣Lz ∣dx y >= −i (.)

and

< yz∣Lz ∣zx >= −i (.)

Combining the above, we construct the spin-dependent TB-representation of the SO-
interaction term and add this to the other Hamiltonian terms.

Step : Inclusion of Temperature Effects

In the third step, our ZT-TBMD method has been extended by incorporating the Nose-bath
(Nose ) and the Multiple Histogram approximations (Fanourgakis et al. ), so as to be
applicable to cluster studies at finite temperatures in an efficient way (Andriotis et al. ,
; Fthenakis et al. ). This generalization allows one to calculate the caloric curve for
the cluster and use this to study the effect of temperature on the structural, electronic, and
magnetic properties of transition metal clusters and binary systems containing transition metal
and semiconductor atoms. The method has been used to study the variation of structural and
magnetic properties with temperature as well as to obtain the caloric curves of the Ni-clusters
(Andriotis et al. , ; Fthenakis et al. ).

Upon thermalization at temperatureT , a cluster can be described by the canonical probabil-
ity distribution function of total energy, PT(E), which specifies the probability that the system
will be found in the energy interval [E, E+ΔE] at the specified temperature T .The distribution
function corresponding to this temperature, within the canonical ensemble description, is (see
Fanourgakis et al. ; Schmidt et al.  and references therein):

PT(E) =
nT(E)
NT

=

[ΔΓ(E)] e−E/kBT

ZT
, (.)

where nT(E) is the number of states in the energy interval [E, E + ΔE], NT is the total number
of accessible states, kB is Boltzmann’s constant, ΔΓ(E) the number of all the different states with
energy in the interval [E, E+ΔE] (i.e., given by ZT = ∑Ei

exp(−βEi) = ∑i ΔΓ(Ei) exp(−βEi))
and ZT the partition function at temperature T .

Amolecular dynamics (MD) simulation at a given temperature T provides numerical values
for nT(E) at every accessible energy E. Having obtained these, we make use of the proposed
Multiple Histogram Method (MHM) (Weerasinghe and Amar ), and obtain the partition
functions ZTj for a finite set of temperatures Tj, j = , ...,M (M ≈ ) and the entropy terms
S(Ei) = kB ln [ΔΓ(Ei)] (within an additive constant) for a much larger set of energy values Ei ,
i = , ...,N (N ≈ ,) (Weerasinghe and Amar ).

Having obtained the quantities nT (E), ZT(E) and ST (E), we can then describe all the ther-
modynamic properties of the clusters and, in particular, the variation with temperature of their
structural, electronic, and magnetic properties.
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Computational Approach

The computation of the magnetic features of the clusters is performed within the above
described non-collinear TBMD scheme as this allows for a full quantumMD relaxation of sys-
tems containing several hundred transition metal atoms while incorporating magnetic effects
dynamically. More specifically, it includes: () e-e correlation effects at the Hubbard-U approxi-
mation (Andriotis andMenon ), () the spin-orbit interaction (in the L ⋅S approximation),
and () non-collinear magnetic effects (Andriotis and Menon , ). Furthermore, the
effect of temperature (Andriotis et al. ; Fthenakis et al. ) is included in the formal-
ism while making use of the full s, p, d basis set and contains many unique features that make
it ideally suited for the treatment of transition metal (TM) and semiconducting materials. For
large-scale simulations we have developed a parallel algorithm that enablesmolecular dynamics
simulations of systems containing atoms in excess of a thousand.This method is more accurate
than the order-N methods that are being used at present to treat systems of these sizes. The
successful application of our collinear TB scheme (see, e.g., Andriotis et al. , , ;
Lathiotakis et al. ) guarantees similar success for the present generalization as well. Finally,
we alsomention that this approach has been suitably adapted in order for exclusive use in study-
ing the transport properties (based on our computational codes as described in Andriotis and
Menon ; Andriotis et al. ).

While the TBMD computational approach generalized in such a way is suitable for calcu-
lating the magnetic properties of the clusters (of a specific geometry), its use for relaxing the
structure of particularly large clusters at nonzero temperatures has been found inefficient due
to the extreme computational complexity. This is because the thermodynamic equilibration of
a crystal requires sufficiently long MD relaxation time (of the order of – nanoseconds which
is translated into – million MD steps with each step being of the order of a femtosecond).

In order to make our computations feasible, we firstly reach the thermodynamic equilib-
rium at each temperature using the classical Sutton–Chen interatomic potential (Sutton and
Chen ) appropriately fitted to the TBMD results (Fthenakis et al.). It should be noted that
for Ni, the classical Sutton–Chen potential (Sutton and Chen ) was found to give results
closer in agreement with our TBMD method than any other classical potentials in use for Ni
(Erkos ; Fthenakis et al.). While reaching the thermodynamic equilibrium, we apply our
generalized TB formalism every  time-steps in order to calculate the MM of the cluster. In
theMMcalculation, the structure of the cluster is assumed frozen (as obtainedwithin the classi-
cal potential approach at that particular time step), and the calculation of theMM of the cluster
is repeated for a large number, N(i)

ran , of atomic spin configurations taken randomly over the
ith-structural configuration (N(i)

ran ≈ – for every i-time step in the present calculations).
In view of these results, > Eq. . is generalized as follows:

μcl =


KNcl
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�

�

�

�

�

�

�

�

�

�

�

Ncl

∑

i

N(i)ran

∑

j
μ j
i cos γ

j
i e

−(E j
i−E)/kBT
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�

�

�

�

�

�

�

�

�

�

, (.)

under the assumption that each spin configuration contributes to the magnetic state of the ith
geometric configuration with probability PM(E

j
i ) =


K e

−(E j
i−E)/kBT where,

K =
N(i)ran

∑

j
e−(E

j
i−E)/kBT . (.)
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The index j in > Eqs. .–. denotes quantities evaluated at the particular jth random
atomic spin configuration of the ith structural configuration of the cluster. E is taken to be
the energy of the ferromagnetically aligned atomic-spin configuration. In this way, we take the
average over the low-lying spin configurations of the cluster of a particular (frozen) geometric
structure (i.e., as calculated at the specific time step). Finally, the thermodynamic average of μcl
given by > Eq. . over the various cluster geometric structures (i.e., time-steps) is obtained
with the help of the probability PT(E) as given by > Eq. ..

Having obtained the temperature dependence of the averagemagnetic moment μcl (T) per
cluster atom,we proceedwith the calculation of the temperature dependence of the specific heat
of each cluster by taking the derivative d{μcl (T)}/dT of the corresponding μcl (T) curves.
FollowingGerion et al. (), we obtain theCurie temperature Tcl

C ,N for each cluster by locating
the maximum of the magnetic contribution to CV . This is repeated for a number of clusters of
various sizes.

Results and Discussion

In the present work, our focus is on the properties of themagnetic transition metal clusters and,
in particular, on Ni clusters for which experimental data are available for comparison. Using
the procedures discussed above, we have calculated the melting, Tcl

mel t ,N , and the Curie, Tcl
C ,N ,

temperatures of the NiN clusters for N ≤ .These results were discussed recently in Andriotis
et al. (). The melting temperature Tcl

mel t ,N has been derived on the basis of the Lindemann
index using the caloric curve as obtained from the classical potentialMD simulations.TheCurie
temperature Tcl

C ,N has been derived according to the quantummechanical procedure discussed
above. Both were found to increase with the cluster size tending to their corresponding bulk
values as the size of the clusters increases, in good agreement with the existing experimental
data (Andriotis et al. ).

The correlation between Tcl
mel t ,N and Tcl

C ,N obtained from our results is shown in > Fig. -
by the black solid line. This demonstrates and supports the validity of > Eq. .. We discuss
the universal aspect of this correlation and the conclusions that can be derived from in the
following.

Firstly, it should be noted that the conclusions one can arrive at from the obtained rela-
tionship between melting and Curie temperatures of magnetic clusters depend crucially on the
accuracy with which cluster melting temperatures are determined. This is a major issue as it
has been extensively discussed in the literature (see, e.g., Baletto and Ferrando (); Qi et al.
(); Sun and Gong () and references therein). This is because surface melting of small
particles occurs in a continuous manner over a broad temperature range in contradistinction to
themelting of the solid-core (bulk-like) which occurs at a specific critical temperature (Garrigos
et al. ). For this reason, it has been proposed that in order for Tcl

mel t ,N to be described quan-
titatively, the surface effects are usually treated separately from the core effects by introducing
the surface thickness, t , as a free parameter and calculate Tcl

mel t ,N by expressing firstly the heat
of the cluster fusion in terms of t and the cluster radius (see, e.g., Lai et al. ). A more com-
monly used approach for determining Tcl

mel t ,N is by employing the Lindemann’s criterion, an
approach followed in the present work (Fthenakis et al. ). Such a calculation is subject to the
limitations and the accuracy of this method. In particular, the so derived melting temperatures
depend strongly on the choice of the classical potential used (Andriotis et al. (); Fthenakis
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⊡ Fig. -
Plot of Tcl

melt,N
as a function of Tcl

C,N for the NiN clusters studied in the present work, N =, , ,
,  (solid line). The dotted black line denoted > Eq. . while and dashed black line describes
> Eq. . setting α =  and β = . Points above (below) the dashed line have Tmelt > TC (Tmelt < TC)
respectively

et al. ()). This explains why the reported values for the melting temperature of Ni clusters
cover a wide range. Nevertheless, the Sutton–Chen classical potential, employed in the present
work forNi, leads to accurate values for surface energies, vacancy energy, stacking fault energies,
and bulk melting temperature in very good agreement with experiment (Qi et al. ).

The accuracy of Lindemann’s criterion depends also on the steepness of its variation with
temperature at phase transition and on the specification of its percentage increase which should
be adequate to discriminate surface (partial) from all-cluster melting. In the present case, we
assign Tcl

mel t ,N to the temperature at which Lindemann’s index starts increasing. This allows us
to obtain the onset of cluster melting and to derive the melting temperature corresponding to
a cluster phase in which unmolten parts with a possible magnetic order are still present.

Similarly, the determination of Tcl
C ,N depends crucially on the accurate location of the max-

imum of the heat capacity variation with temperature.This was demonstrated in our previous
report (Andriotis et al. ) when discussing the Tcl

mel t ,N and Tcl
C ,N results of Ni and their

deviation from the prediction of > Eq. .. Additionally, the surface energy contribution to
the free energy of the cluster may be another reason that small cluster temperatures cannot be
extrapolated to bulk phase values (Qi et al. ).

Following these clarifications, we next discuss some obvious and hidden consequences of
> Eq. .. One of the first conclusion that can be deduced from these results is that the Curie
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temperature,Tcl
C ,N , of a magnetic cluster has to follow a size-dependence relationship analogous

to that of Tcl
mel t ,N .That is, if Tcl

mel t ,N is given by > Eq. ., then Tcl
C ,N has to follow the following

equation:
Tcl
C ,N = T

bul k
C − δCN−/, (.)

where δC is a constant that may have an N-dependence as δmel t . In fact, assuming the validity
of > Eqs. . and > . and taking the ratio between > Eq. . and > Eq. . by parts,
we obtain:

Tcl
C ,N − T

bul k
C

Tcl
mel t ,N − T

bul k
mel t

=

δC
δmel t

= δ, (.)

where δ is a constant which is expected to depend on N. It is apparent that > Eq. . has
exactly the form of our > Eq. ., suggesting that the N-dependence of the constant δ is very
weak.

It is worth noting that the numerical justification of > Eq. . by our results as expressed
by > Eq. . cannot ensure that the trends described by > Eqs. . and > . andwhich are
possibly valid for large clusters can be extrapolated to small clusters as well.The conclusion that
comes from > Eq. . is that whatever the functional relationship between the melting tem-
perature of a cluster and its size (not necessarily limited to that of > Eq. .) is, the functional
relationship followed by Tcl

mel t ,N should dictate the relationship between the Curie temperature
with its size as well. This hypothesis is supported by the results of Diep and collaborators (Diep
et al. ) who found that the incorporation of the magnetic interactions leaves the cluster
structure unchanged, thereby justifying our computational procedure.

One may argue that the use of two noncomparable methods, i.e., that of a classical potential
MD simulation for calculating the melting temperature and a quantum mechanical approxi-
mation for calculating the magnetic moments and the Curie temperature of a cluster, cannot
lead to results that can be correlated. We addressed this issue by fitting the classical Sutton–
Chen potential to the data for small clusters in such a way that resulted in TBMD and fitted
Sutton–Chen potential simulations giving the same structural properties for small Ni clusters.
Obtaining similar structural results by both methods appears to confirm the validity of the
classical potential MD simulations for our present purpose.

Furthermore, in order to resolve any reservations and ambiguities about the consistency of
our conclusions derived from the use of mutually inconsistent methods in calculating the melt-
ing and Curie temperatures, it is demonstrated in the following that a calculation of the melting
temperatures within our TBMD approximation is in excellent agreementwith the results of the
classical potential approximation used in the derivation of > Eq. ..

Following exactly the same procedure as the one we used to calculate the average magnetic
moment per cluster atom (and from this the Curie temperature) (Andriotis et al. ), we
calculate the average total energy, < ET >, of each cluster at its thermodynamic equilibrium at
a series of temperatures T. An average over Nran random spin configurations over the cluster
atoms is taken at each kth time step for Ncl time steps (Nran is taken approximately between
 and ). Finally, these spin-averaged values are averaged over time. That is,

< ET >=


Ncl

Ncl

∑

k=


Nran

∑

Nran
i= Ek

i e
−(Ek

i −E)/kBT

∑

Nrun
i= e−(Ek

i −E)/kBT
. (.)

where E is a reference energy (Andriotis et al. ). For completeness, it is recalled that

Ek
i =∑

jσ
εi ,kjσ + E

i ,k
re p (.)
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where εi ,kjσ denote the eigenvalues of the TB cluster Hamiltonian and Ei ,k
re p , the sum of the repul-

sive interactions (Andriotis andMenon ) of the cluster at the ith random spin configuration
and the kth time step. As in the case of the calculation of the Curie temperatures, the averaging
process over time in > Eq. . is performed while reaching the thermodynamic equilibrium
every  time-steps.

In > Figs. - and > -, we present our TB results for the variation with tempera-
ture of < ET > for the Ni and Ni clusters. For Ni, it is observed that the onset of a phase
change appears at≈ ○Kwhile themelting starts at≈ ○K. ForNi, themelting takes place
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at≈ ○K (taken to be themidpoint of the “parallel” shift of the two linear parts of the thermo-
dynamic curve.The so obtained melting temperatures appear to be in excellent agreement with
the results found using the classical potential method and the Lindemann criterion according
to which Tcl

mel t ,N= = 
○K and Tcl

mel t ,N= = 
○K.

Further headway can be made if > Eq. . is taken to be the zeroth-order approximation
of a piece-wise function of N in analogy to similar findings (Gunes et al. ; Qi et al. ) for
the expression for Tcl

mel t ,N given by > Eq. .. In this view, the results of Diep et al. () (see
Fig.  of their work) in the extreme case of very small clusters (N ∈ [,]) can lend support to
our results and conclusions.

The appearance of the nonzero constant term at the right-hand side of > Eq. . indicates
that there is a possibility for Tcl

C ,N to be greater than Tcl
mel t ,N . In particular, > Eq. . predicts

that Tcl
C ,N could be greater than Tcl

mel t ,N if

Tbul k
C > Tcl

C ,N >
β

 − α
. (.)

However, according to our results, the above inequality does not hold for the Ni clusters
since β/( − α) ≈ ○K, a value much greater than Tbul k

C = ○K. This is demonstrated in
> Fig. - with the indicated crossing of the dotted and dashed black lines with the former
describing > Eq. . and the latter describing the same equation taking α =  and β =  (i.e.,
corresponding to the Tcl

C ,N = Tcl
mel t ,N case). This incompatibility can be taken as an indication

that the functional forms dictated by > Eqs. . and > . are not valid for the entire range
of the cluster sizes.

The nonzero value of the constant βhas another consequence; it predicts that the ratio Tcl
me l t ,N

Tc l
C ,N

depends on the cluster size and, in fact, increases as the cluster size decreases. If the variation of
Tcl
mel t ,N is assumed as given by > Eq. ., the predictions of > Eq. . lead to the conclusion

that Tcl
C ,N decreases at a slower rate than Tcl

mel t ,N as the cluster size decreases and, therefore,
the “melting temperatures” of partially molten clusters can be found to be lower than the Curie
temperatures as > Eq. . implies. However, such a conclusion has to be taken with care as
the validity of > Eq. . over the entire range of cluster sizes is not valid.

Conclusion

We have presented results for the variation with the cluster size of the melting and Curie tem-
peratures of Nin , n≤ , clusters. Two complimentarymethodswere used, i.e., the classicalMD
employing the Sutton–Chen potential and the TBMD for obtaining the melting and the Curie
temperatures of the clusters. We have demonstrated that by fitting the classical potential to the
results of the TB description in the case of small clusters, we can achieve excellent agreement
between the results of the twomethods referring to the structural properties and the estimation
of the melting temperatures of the clusters.

Our results demonstrate without any ambiguity that the variation of the cluster properties
with the cluster size exhibits strong dependence on the ratio of the surface to bulk (core) con-
tributions, the latter appearing to have the same functional dependence on the cluster size for
both Tcl

C ,N and Tcl
mel t ,N .

In view of the established dependence of the melting temperature of a cluster on its surface
to volume contribution (as, for example, > Eq. .), our conclusion can be interpreted as an
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indication of a universal aspect of the surface to volume contribution to the cluster properties.
This justifies previous findings based on approximate and semiempirical approximations.
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Abstract: Clusters contain more than just some few atoms but not so many that they can
be considered as being infinite. By varying their size, their properties can often be varied in a
more or less controllable way. Often, however, the precise relation between size and property
is largely unknown: The sizes of the systems are below the thermodynamic limit so that simple
scaling laws do not apply. Theoretical studies of such systems can provide relevant information,
although in many cases idealized systems have to be treated.The challenge of such calculations
is the combination of the relatively large size of the systems together with an often unknown
structure.

In this presentation, different theoretical methods for circumventing these problems shall
be discussed. They shall be illustrated through applications on various types of clusters.
These include isolated metal clusters with one or two types of atoms, metal clusters deposited
on a surface, nanostructured HAlO, semiconductor nanoparticles, and metallocarbohedrenes.
Special emphasis is put on the construction of descriptors that can be used in identifying general
trends.

Introduction

Nanostructures are materials whose spatial extension in , , or  dimensions is roughly of the
order of at most some nm. Thereby materials properties different from those of the macro-
scopic materials we know from our daily life emerge. According to the simplest description
of the properties of some given material we may apply scaling laws so that, e.g., the electrical
resistance scales with the inverse cross section and linearly with the length of the system.With
such scaling laws it is indirectly assumed that the materials form some homogeneous continua
and, accordingly, that the fact can be ignored that on the atomic length scale the materials are
not at all homogeneous. However, since typical interatomic bond lengths are of the order of
some tenths of a nanometer, a proper description of the materials properties of nanostructures
often cannot be based on the above assumption that the materials are homogeneous. Thus, for
nanomaterials one can no longer apply the above–mentioned scaling laws, i.e., the systems of
interest have sizes far from the thermodynamic limit and one has left the scaling regime so that
“every single atom counts.” Indeed, the fact that the materials properties depend, in some cases
even strongly, on the size of the system for nanostructures is the reason for the large interest in
such systems.Here, both the prospects related to possible practical applications of thesemateri-
als as well as the wish to understand in detail the size-property relations aremotivations behind
this interest.

The present chapter is devoted to the results of our theoretical studies of clusters, i.e., nano-
structures that are finite in all three spatial dimensions.Therefore, their number of surface atoms
relative to their total number of atoms is large and, of the same reason, finite-size effects showup.
In addition, they most often contain just one or, at most, a few types of atoms, with the possible
existence of surfactants as an exception. The surfactants are radicals that are used in saturating
dangling bonds at the surfaces and, thus, in stabilizing the materials. For theoretical studies
it is important to notice that these systems are fairly large, but not so large that they can be
considered as being infinite and periodic, and that, consequently, they may have quite a low
symmetry so that in a theoretical calculation chemically identical atomsmay have to be treated
as being different since they have different surroundings.



Theoretical Studies of Structural and Electronic Properties of Clusters  

In experimental studies, such clusters/colloids are often produced and studied in a solution
or on the surface of some substrate. Moreover, as mentioned above, they are often stabilized
through ligands. In total, this means that the systems often are interacting with other systems,
this being the solvent, the substrate, or the ligands.This is contrasted by theoretical studies that
often consider isolated nanoparticles in gas phase that, in addition, often are naked (i.e., with-
out ligands). Another difference between experiment and theory is that the precise size of the
experimentally studied systems often is only approximately known, whereas, per construction,
theoretical studies consider well-defined systems, although for those one often assumes a cer-
tain structure that may or may not be realistic. Thus, experimental and theoretical studies are
rarely competing but instead complementing each other.

When attempting to use electronic-structuremethods in studying the properties of clusters,
in particular the size dependence of those where one, accordingly, will consider a larger range of
sizes, one very fast encounters some fundamental properties related to theoretical calculations.
We shall here briefly outline those.

In a typical electronic-structure calculation the number and types of the atoms for the sys-
tem that shall be studied are known. Then (cf. > Fig. -), some initial structure is chosen
and various properties for this structure are calculated.These properties are first of all the total
energy but may also be others like the forces acting on the nuclei (i.e., the derivatives of the
total energy with respect to the nuclear coordinates). Also available experimental information
may be sought calculated. Subsequently, one may ask whether a new structure shall be studied.
The reasons for doing so could be that the calculated forces are not approximately vanishing,
that the calculated properties differ significantly from those obtained in experiment, or that one
simply wants to explore further parts of the structure space.

start

choose
structure

calculate
properties

new
structure

?

yes

no

stop

⊡ Fig. -
A flow chart for a typical electronic-structure calculation
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For larger systems this approach is related with two serious problems. First, if the sys-
tem of interest contains N nuclei and M electrons, the computational costs for calculating the
properties for one single structure scale as the size of the system to some power, i.e., like Mk

or Nk , where k is some power from  upward. For some of the most popular approaches, like
density-functional and Hartree–Fock methods (see, e.g., Springborg ), k is typically , but
for more advanced methods k may be larger than . Thus, in this case it should be obvious
that for just intermediately large systems the calculation of the properties for just one single
geometry may become computationally very costly.

Independently of the scaling of the computational needs as a function of the size of the sys-
tem, another, complementary, problem causes additional complications.This problem is related
to the fact that the number of nonequivalent minima on the total-energy surface as a function
of structure grows very fast with the size of the system. In fact, it has been shown (Wille and
Vennik ) that the number of local total-energy minima grows faster than any polynomial
in N or, alternatively expressed, that the determination of the global total-energy minimum is
a so-called NP-hard problem.

A model system that is so simple that detailed studies can be performed is that of a clus-
ter of identical atoms for which it is assumed that the total energy can be written as a sum of
pair potentials, each one being a simple Lennard–Jones potential. This system was studied by
Tsai and Jordan (), who found a rapidly increasing number of nonequivalent metastable
structures as a function of size. In > Fig. - their results have been fitted with an exponen-
tial, a ⋅ exp(bN), and it is seen that the fit follows the calculated results fairly close.The fit gave
a = . and b = ., which in turn means that for N =  the fit predicts that of the order
of  nonequivalent minima exist.

This result points directly to a central issue of this presentation, i.e., how can we determine
the structure for a systemwith at least some tens of atoms and for which no, or only very limited,
information on the structure can be used.

The ground-state structure is obtained by minimizing the total energy. Employing the
Born–Oppenheimer approximation, the nuclei are treated as classical and not quantum

0
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⊡ Fig. -
A schematic representation of the number of nonequivalent local total-energy minima for
Lennard–Jones clusters (the black circles) together with a fit with an exponential (the full curve)
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particles, and there is no variational principle that can be used in systematically getting
arbitrarily close to the true ground-state structure, even when assuming that the total energy
can be calculated accurately for any structure. Instead, most often one has to change the struc-
ture “by hand” until one feels confident that the structure of the lowest total energy has been
identified. But it shall be stressed that there is absolutely no approach that with absolute cer-
tainty can guarantee that precisely that structure has been found. Trying to prove so would
require complete knowledge about the total-energy surface as a function of all internal degrees
of freedom. This information is beyond whatever will be available, even if the computers keep
on becoming more and more powerful, and the programs more and more efficient.

That this informationwill never become available can be seen by, e.g., considering the largest
possible computer, i.e., the complete universe. Lloyd () estimated that the complete uni-
verse, viewed as an enormous quantum computer that has been operating since the Big Bang,
could have performed of the order of  binary operations. Although this number is very
large, it is also finite. Therefore, it means that considering, e.g., a system of  atoms, assuming
that a total-energy calculation for this system and a given structure is just one single binary oper-
ation, and considering just ten different values for each internal structural degree of freedom,
exactly  calculations are needed for obtaining this, relatively crude, total-energy hyper-
surface. Thus, the calculations would have required the use of the complete universe since the
Big Bang!

In total, it is obvious that for any but the absolutely smallest systems it is not possible to
explore anything but very limited parts of the total-energy hyper-surface, and, moreover, that
it is never possible to be absolutely sure that the true global total-energy minimum has been
found. Any total-energy minimummay provide a total energy that is close to that of the global
minimum, although the structures of the two may be markedly different, simply due to the
very large number of local total-energy minima. It is also obvious that any attempt to iden-
tify the global total-energy minimum has to be based on some kind of qualified search in the
multidimensional structure space.

It is one of the purposes of this presentation to discuss some of the approaches that we
are using in searching for the global total-energy minimum in the structure space. Another
purpose is to present various descriptors/tools that we have derived in order to extract chemical
or physical information from the calculated properties. We emphasize that we shall concentrate
on the results of our own studies. For more general reviews the reader is referred to, e.g., Baletto
and Ferrando (), Ferrando et al. (), and Springborg ().

Basics

In the most general case, our goal is to calculate the properties of a system containing N
nuclei and M electrons. We shall denote the positions ⃗R, ⃗R,⋯, ⃗RN and those of the electrons
r⃗, r⃗,⋯, r⃗M .Moreover, we useHartree atomic units and set accordinglyme = ∣e∣ = πε = ħ ≡ .
The mass and charge of the kth nucleus is then Mk and Zk , respectively.The combined coordi-
nate x⃗i denotes the position and spin coordinate of the ith electron. In the absence of external
interactions and relativistic effects, the Hamilton operator for this system can then be written
as a sum of five terms,

Ĥ = Ĥkn + Ĥke + Ĥnn + Ĥee + Ĥen, (.)
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with

Ĥkn = −
N
∑

k=


Mk

∇


⃗Rk

Ĥke = −
M

∑

i=



∇


r⃗ i

Ĥnn =



N
∑

k≠l=

ZkZl

∣

⃗Rk − ⃗Rl ∣

Ĥee =



M

∑

i≠ j=


∣r⃗ i − r⃗ j∣

Ĥen = −
N

∑

k=

M

∑

i=

Zk

∣

⃗Rk − r⃗ i ∣
, (.)

i.e., the kinetic-energy operator for the nuclei, that for the electrons, and the three potential-
energy operators for the nucleus–nucleus, the electron–electron, and the electron–nucleus
interactions, respectively.

The time-independent Schrödinger equation becomes then

ĤΨ(x⃗, x⃗,⋯, x⃗M , ⃗R, ⃗R,⋯, ⃗RN) = E ⋅ Ψ(x⃗, x⃗,⋯, x⃗M , ⃗R, ⃗R,⋯, ⃗RN). (.)

As indicated above, we shall assume that the Born–Oppenheimer approximation is accurate.
Then, Ĥkn is ignored and, furthermore, the wavefunction Ψ that depends functionally on both
electronic and nuclear coordinates is written as a product of two functions,

Ψ(x⃗, x⃗,⋯, x⃗M , ⃗R, ⃗R,⋯, ⃗RN) = Ψn(⃗R, ⃗R,⋯, ⃗RN) ⋅ Ψe(⃗R, ⃗R,⋯, ⃗RN ; x⃗, x⃗,⋯, x⃗M). (.)

Here, Ψn is the wavefunction for the nuclei (which for the present study is irrelevant) and
Ψe is the electronic wavefunction. Ψe depends functionally on the electronic coordinates but
also parametrically on the nuclear coordinates (implying that different structures have different
electronic wavefunctions). Ψe is calculated from the electronic Schrödinger equation

ĤeΨe = EeΨe (.)

with

Ĥe = Ĥke + Ĥee + Ĥen. (.)

Moreover, the total energy is

E = Ee + Ĥnn = E(⃗R, ⃗R,⋯, ⃗RN), (.)

i.e., a function of the structure of the system.
Although the Born–Oppenheimer approximation does lead to some computational simpli-

fications, solving the resulting equations is still computational demanding, so that when aiming
at studying many structures for larger systems (as is the goal of the present work), it can easily
become necessary to invoke additional approximations. Then, the type of approximation will
depend on the system and scientific issue at hand, as we shall illustrate below.
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Only Nuclei

Methods

Ultimately, the goal is to study the total energy, E, as a function of structure, i.e.,
E(⃗R, ⃗R,⋯, ⃗RN).The determination of the electronic orbitals, their energies, and the total elec-
tronic energy, Ee , provides thereby additional information thatmay be highly relevant for other
purposes, but may also be considered as a complication that might be circumvented.The use of
approximate expressions (i.e., force fields) of the form

E(⃗R, ⃗R,⋯, ⃗RN) ≃ ∑
i
E()
t(i) +∑

i j
E()
t(i),t( j)(

⃗Ri , ⃗Rj)

+
∑

i jk
E()
t(i),t( j),t(k)(

⃗Ri , ⃗Rj , ⃗Rk) + ⋯ (.)

represents one possibility. Here, t(i) is the atom type of the ith atom, and the total energy has
been split into atomic parts as well as -, -,⋯ body interactions.The various functions E(i) are
then represented in some approximate, analytical or numerical, form.

Such approximations are very useful for the study of the structural properties of a larger
number of larger systems, but may, of course, suffer from inaccuracies due to the approximate
nature of the total-energy expression. The Lennard–Jones clusters discussed above represents
one such expression, where only - and -body terms are included. Some further examples are
discussed by Springborg ().

When applying such approaches to clusters, it is important to choose the method according
to the chemical bonding of the system of interest. In metallic systems the electrons are consid-
ered as being delocalized and packing effects are often the main driving force for the structure.
On the other hand, for many semiconductors and insulators the bonds between the atoms are
partly covalent and partly ionic, so that directional bonding as well as electron transfers are
important, i.e., a precise description of the electronic degrees of freedom is important. Yet other
types of systems include, e.g., molecular crystals with weak interactions between the molecules,
but here we are concerned with the first two types of systems.

One approach that we have been using for clusters ofmetal atoms is based on the embedded-
atom method (EAM) of Daw, Baskes, and Foiles (Daw and Baskes , ; Daw et al. ;
Foiles et al. ). According to this method, the total energy of the system is written as a sum
over atomic energies,

Etot =
N
∑

i=
Ei (.)

with

Ei = Fi(ρhi ) +



N
∑

i≠ j=
ϕi j(∣⃗Ri − ⃗Rj∣) (.)

being the energy of the ith atom.
In > Eq. . the first term is the so-called embedding energy, which is obtained by con-

sidering each atom as an impurity embedded into a host provided by the rest of the atoms.
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The second term describes electron–electron interactions and is represented in terms of short-
ranged pair potentials. The local density at site i is assumed being a superposition of atomic
electron densities,

ρhi = ∑
j (≠i)

ρaj (∣⃗Ri − ⃗Rj∣) (.)

where ρaj (r) is the spherically averaged atomic electron density provided by atom j at the
distance r.

With the EAM, the total-energy expression of > Eq. . contains also contributions from
P-body interactions with P being the number of nearest neighbors of the atoms of the system
of interest. Other potentials that also include many-body interactions are the Gupta, Murrell–
Mottram, Sutton–Chen, and Cleri–Rosato potentials. Since we have used the Gupta, Sutton–
Chen, and Cleri–Rosato potentials in some studies we shall here discuss these briefly.

With the Gupta potential (Gupta ), the total energy is written in terms of repulsive and
attractive many-body terms,

Etot =
N
∑

i=
[Vr
(i) − Vm

(i)] (.)

where

Vr
(i) =

N
∑

j= (≠i)
A(a, b) exp[ − p(a, b)(

∣

⃗Ri − ⃗Rj∣

r(a, b)
− )] (.)

and

Vm
(i) = {

N
∑

j= (≠i)
ζ(a, b) exp[ − q(a, b)(

∣

⃗Ri − ⃗Rj∣

r(a, b)
− )]}




. (.)

The summations run over all (N) atoms of the system of interest. Furthermore, A, r, ζ , p, and q
are fitted to experimental values of the cohesive energy, lattice parameters, and elastic constants
for the crystal at  K. Finally, a = t(i) and b = t( j).

The Sutton–Chen potentials are based on the empirical N-body potentials that have been
developed by Finnis and Sinclair () for the description of cohesion in metals. With these
potentials, the total internal energy is represented by a cohesive functional of pair interactions
and a predominantly repulsive pair potential. The main difference of such a potential to a pair
potential is that using only pair potentials, the calculated force exerted by one atom on another
depends on the interatomic distance only, whereas in the present case it depends on all neigh-
bors of both atoms. Finnis–Sinclair potentials are of relatively short range and extend only
to third neighbors in fcc crystals. The long-range modification constitutes the Sutton–Chen
potential. This potential has an extra 

r van der Waals tail and, accordingly, the following form

E = ε
⎡

⎢

⎢

⎢

⎢

⎣


∑i

∑

j≠i
V(∣⃗Ri − ⃗Rj∣) − c∑

i

√

ρi
⎤

⎥

⎥

⎥

⎥

⎦

(.)

with

V(∣⃗Ri − ⃗Rj∣) = (
a

∣

⃗Ri − ⃗Rj∣
)

n

ρi =∑
j≠i
(

a
∣

⃗Ri − ⃗Rj∣
)

m

. (.)
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With the empirical many-body potential given by Cleri and Rosato () the cohesive
energy of the system is written as

Ec =∑
i
(Ei

R + E
i
B), (.)

where

Ei
R =∑

j
Ae

−p(
∣
⃗R i−⃗R j ∣

r
−)

Ei
B = −

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

j
ξe

−q(
∣
⃗R i−⃗R j ∣

r
−)⎫⎪
⎪

⎬

⎪

⎪

⎭




. (.)

As for the Gupta potential, the values of the parameters that enter the Sutton–Chen and Cleri–
Rosato potentials are determined from experimental information.

In a series of studies we have studied the properties of various metal clusters for which the
total energy was approximated using one of those methods just mentioned. These include Ni
(Grigoryan et al. ; Grigoryan and Springborg , , ), Al (Joswig and Springborg
), Ti (Joswig and Springborg ), Cu (Grigoryan et al. ), Au (Alamanova et al. ;
Grigoryan et al. ), Ag (Alamanova et al. ), Ni–Cu (Hristova et al. b), and K–Cs
and Rb–Cs (Hristova et al. a, a) clusters.

In all cases the total-energy methods were combined with unbiased global optimization
methods. For the studies we shall report below in this section, we used the Aufbau/Abbau
method that was developed earlier by us (Grigoryan and Springborg , ) and which
consists of the following steps:

. We assume that we have obtained the structures of the global total-energy minima for the
clusters with up to N atoms.

. In addition, we consider clusters with N + K atoms with K ≃ –. For each of those sizes
(i.e., N and N +K) we randomly generate and relax a large set of structures, from which the
one with the lowest total energy is selected.

. This leaves us with two “source” clusters with N and N + K atoms. For the cluster with
N atoms we add at a random position a single atom and the structure is relaxed. This is
repeated many hundred times. In parallel, we consider the N + K structures of N + K − 
atoms that can be obtained by removing one of the atoms from the cluster with N +K atoms
and relaxing the structure. The structure of the lowest total energy is kept.

. The procedure of step () is repeated K −  times until we have obtained two sequences of
cluster structures with N , N + ,⋯, N + K − , and N + K atoms. From these two sets the
structures of the lowest total energies are chosen.

. Steps () and () are repeated with the new sets of structures, until no lower total energies
are found. Then it is assumed that the global total-energy minima for this size range have
been identified and we proceed to the next set of sizes.

By keeping track of not only the single energetically lowest isomer, but more of those, we
also obtain information about the energetic distribution of different isomers of the same cluster
sizes.

In some studies we used instead the basin-hopping method (Li and Scheraga ; Wales
and Doey ) to determine the structures of total-energy minima. This method is closely
related to the Monte Carlo methods, but considers a transformed total-energy surface. Thus,
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for each structure, ⃗R ≡ (⃗R, ⃗R, . . . , ⃗RN), instead of considering the true total energy E at that
structure, one considers the total energy Ẽ that the structure would have after having relaxed
to its closest total-energy minimum,

Ẽ(⃗R) = min{E(⃗R)}, (.)

where it is indicated that Ẽ(⃗R) is the lowest total energy that is obtained when starting from
the structure ⃗R but letting it locally relax. Ultimately, this leads to a transformed total-energy
surface.The transformed energy surface Ẽ is much less structured than E, although the energies
at the global and local total-energy minima are identical. The simpler shape of the transformed
structure makes it significantly easier to identify the global total-energy minimum, without
biasing the calculation in any way. In a practical calculation, instead of changing the structure
according to the Monte Carlo steps directly, the structure is first locally relaxed using standard
methods.

Ni Clusters

As a single example of isolated monatomic metal clusters, we shall in this subsection discuss
some of our results for isolated NiN clusters (Grigoryan et al. ; Grigoryan and Springborg
, , ).

The calculations outlined in the previous subsection give essentially nothing but a listing
of the total energies and the nuclear coordinates for a set of clusters. Thus, in our study on the
NiN clusters we considered the four energetically lowest isomers up to N =  and obtained,
accordingly, roughly , numbers. A large challenge is, consequently, to extract physical and
chemical data from this information.

In > Fig. -we show in the upper panel the binding energy per atom.A careful inspection
of the figure reveals that there are two curves very close in energy, since the results are given for
the two energetically lowest isomers. Nevertheless, the curves are rather structureless which is
a result of the fact that any cluster NiN cluster is stabler than any two noninteracting subparts
NiN−K and NiK for all K > .

More information can be obtained from the so-called stability function:

ΔE(N) = Etot(N − , ) + Etot(N + , ) − Etot(N , ) (.)

with Etot(N , j) being the total energy for the energetically jth lowest isomer of the NiN cluster.
ΔE(N) possesses peaks for clusters that are particularly stable compared to those with one
atom more or less. As seen in the middle panel in > Fig. -, this is the case for clusters with
N = , , , , and .These, so-calledmagic numbers, correspond to clusterswith a particu-
larly high-symmetric structure as can be seen from a more careful inspection of the structures.
As examples we show in > Fig. - the structures of the NiN clusters with N = , , ,
and .

Alternatively, onemay compare the total energies for the energetically two lowest isomers of
the same cluster size, i.e., Etot(N , )−Etot(N , ).This has peaks for clusters that are particularly
stable compared to the next isomer of the same cluster size. As seen in > Fig. -, many of the
magic-numbered clusters are also particularly stable according to this second criterion. This
suggests that the characterization of certain clusters to be particularly stable is very robust.
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⊡ Fig. -
The binding energy per atom for the energetically two lowest isomers (upper part), the stability
function (middle part), and the total-energy difference for the two energetically lowest isomers
(lowest part) for NiN clusters as functions of N. All energies are given in eV

In order to obtain information about the overall shape of the clusters we consider the  × 
matrix containing the elements

Ist =

u
l

N
∑

n=
(Rn,s − R,s)(Rn,t − R,t) (.)
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⊡ Fig. -
The structures of the NiN clusters with (top, left)N = , (top, right) , (bottom, left) , and (bottom,
right) 

with ul =  Å being a length unit, s and t being x, y, and z,

⃗R =

N

N
∑

n=

⃗Rn (.)

being the center of the cluster, and ⃗Rn being the position of the nth atom.The three eigenvalues
of this matrix, Iαα , can be used in separating the clusters into being overall spherical (all eigen-
values are identical), more cigar-like shaped (one eigenvalue is large, the other two are small),
or more lens-shaped (two large and one small eigenvalue). Moreover, the average of the three
eigenvalues, ⟨Iαα⟩, is a measure of the overall extension of the cluster. Finally, the sum of any
two of those three eigenvalues gives amomentof inertia that is relevant for rotational properties
of the clusters.

For a homogeneous, spherical cluster with N atoms, the eigenvalues are proportional to
N /. Therefore, in > Fig. - we scale the eigenvalues by N−/. This figure shows that the
overall shape changes many times for clusters with N up to somewhat above . After that,
the shape is more constant, with some few exceptions that in some cases are due to the fact
that the three eigenvalues all are very close so that only small atomic displacements would
change the shape classification.

In order to obtain further information on the structure of the clusters we introduce the
concept of radial distances. For each atom, its radial distance is defined as

rn = ∣⃗Rn − ⃗R∣. (.)
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The radial distances (in Å) as a function of cluster size, i.e., each small line represents (at least) one
atomwith that radial distance

By plotting various properties as functions of the radial distances we can obtain further insight
into the cluster properties. At first we show the radial distances themselves, cf. > Fig. -.
This figure shows that the overall size of the cluster (using the largest radial distance as a mea-
sure) in general increases with size of the cluster, although not monotonically. Moreover, for
certain size ranges, like slightly above  and  atoms, the radial distances tend to form
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different groups. This implies that those clusters have an onion-like structure with different,
essentially concentric, shells of atoms. For other sizes, the clusters tend to have a much more
irregular structure.

Riley and coworkers (Parks et al. , , ) have presented experimental results of
so-called chemical-probe experiments on NiN clusters. By measuring the mass of the clusters
before and after exposure to (in this case) an N atmosphere, the number of N molecules that
are adsorbed on the surface of the cluster can be determined, which in turn gives information
on the surface of the cluster. Thereby, Riley et al. make use of some simple empirical rules for
the adsorption: Nickel atoms with a coordination of  or less will bind two molecules; for a
coordination between  and  they will bind one molecule; for a coordination of  there may be
onemolecule bonded; and for larger coordinations there will be nomolecule bonded. Using the
same rules we calculated the number of N molecules that could be adsorbed on the structures
we have determined for the four energetically lowest isomers and show the results, in compari-
sonwith the experiment, in > Fig. -. It is here remarkable that there is a very good agreement
between theory and experiment and, moreover, that the overall shape of the size dependence
of this number appears to change slope for clusters with some – atoms. Unfortunately, the
experimental studies do not allow for analyzing this prediction.

For the study of growth processes as well as for analyzing the size for which the clusters
obtain structures that resemble small parts of the macroscopic crystalline material, we have
found the concept of similarity functions useful. In order to compare two structures consisting
of N and N atoms we shall, for each, calculate either the interatomic distances or the radial
distances, subsequently sort these, and, finally, define a so-called similarity function through
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⊡ Fig. -
The (opencircles) experimentallydeterminednumberofN bindingsites forNiN clustersas function
of N in comparison with theoretical calculated numbers (closed circles)
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Here, ul = Å. Moreover {di} and {d′

i} are the sorted radial or interatomic distances for the
two structures, andM is their total number (being either N or N(N − )/ with N the smallest
of N and N). The two structures are very similar (different) if S approaches  (). We add
that our experience has shown that qualitatively the same results are obtained independently
of whether the radial or the interatomic distances are used. Another result of our experience is
that S below roughly .–. usually indicates that the structures are quite different.

At first, we shall use the similarity functions in studying whether the structure withN atoms
can be considered similar to the one with N− atoms plus an extra atom. To this end we con-
sider each of the N structures that can be obtained by removing one of the atoms from the N
atomcluster and keeping the positions of the remainingN− atoms.Then, we compare this N−
atom fragment with the cluster with N− atoms, using the similarity function. Ultimately, the
largest of these N values for S is used. > Figure -a shows the results when comparing the
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⊡ Fig. -
Thesimilarity functions for comparing thestructureof theNiN clusterwith (a) theenergetically low-
est cluster withN− atoms, (b) the four energetically lowest clusters withN− atoms. (c) a fragment
of the fcc crystal, and; (d) an icosahedron. For details, see the text
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⊡ Fig. -
The structures of NinCum clusters for a fixed value of N = n +m =  and different values of (n,m).
The dark atomsmark the Ni atoms

energetically lowest isomers of the two clusters with N− and N atoms. Also for this prop-
erty we see many dips in the function for cluster sizes up to around  atoms after which
S gets much more regular. This effect becomes even more pronounced when comparing the
NiN cluster of the lowest energy with the four energetically lowest isomers with N− atoms.
Then (cf. > Fig. -b), S approaches  for almost all N > , suggesting that more different
isomers are active in the growth processes:Themost stable NiN cluster has a structure that may
be derived from that of an energetically higher structure of the NiN− cluster.

Finally, we show in > Fig. - also the similarity function that is obtainedwhen comparing
the cluster structures with fragments of the crystal or with an icosahedron. In this case the
similarity function is based on the radial distances, and for the crystal we have considered three
different spherical fragments with different definitions of the center. It is immediately seen that
for some ranges of N (e.g., N around ) the structures resemble fragments of the fcc crystal,
but also that for even larger sizes (around  atoms) as well as for N ≃  there is a considerably
larger structural similarity with an icosahedron. Thus even clusters with around  atoms are
too small to approach the macroscopic crystalline limit.

Bimetallic Clusters

For binary clusters (i.e., clusters with two types of atoms) the additional existence of so-called
homotops (Jellinek and Krissinel ; Lloyd et al. ) increases the computational demands
enormously. Homotops for, e.g., ApBq clusters are defined as clusters with the same size, com-
position, and geometric arrangement but differing in the way in which A- and B-type atoms are
arranged. Their number for the ApBq cluster equals (p+q)!

p!q! .
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⊡ Fig. -
The structures of NinCum clusters for a fixed value ofN = n +m =  and different values of (n,m).
The dark atomsmark the Ni atoms

As a single example we shall here discuss the results of our study on bimetallic NinCum
clusters (Hristova et al. a). In this case we used the basin-hopping method for optimizing
the structure in combination with the EAM for the calculation of the total energy of a given
structure. The EAM (as many other methods that do not include electronic/orbital degrees of
freedom explicitly) has a preference for close-packed structures so that in many cases the EAM
method predicts very similar structures for pure clusters with just one element.Therefore, often
only one or two types of structures were found for different NinCum clusters with the same total
number of atoms, N = n +m. The less obvious issue is accordingly, how the two types of atoms
are distributed within the cluster and, if more than one overall structure exists, which structure
is found for which stoichiometry.

For the NinCum clusters we found only three different types of scenarios. Either all clus-
ters for a given N = n + m have the same structure, which is the case for N =  and , for
instance. > Figure - shows the results for N = . Alternatively, for N = , the two pure
clusters have the same structure, whereas for n = − another structure is found as shown
in > Fig. -. Or, finally, for N =  the two pure clusters have different structures, and the
transition from the structure of the pure Cu cluster to that of the pure Ni cluster takes place
for just  Ni atoms (cf. > Fig. -). In all cases, the Ni atoms tend to occupy inner positions,
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⊡ Fig. -
The structures of NinCum clusters for a fixed value of N = n +m =  and different values of (n,m).
The dark atomsmark the Ni atoms

whereas the Cu atoms more often are found on the surface. This difference can be understood
when comparing the cohesive energy of the two metals: The larger value for Ni suggests that
this type of atom has a stronger preference for high coordination than Cu has.

Clusters on Surfaces

As mentioned in the introduction, > section “Introduction”, experimental studies of clusters
often consider clusters on some surface. Both clusters that have been deposited on the surfaces
and clusters that are grown directly on the surfaces have been studied. Since theoretical studies
often consider clusters in the gas phase a highly relevant question is whether the latter have
anything to do with clusters on a surface. In some few studies we have addressed this issue.

Using molecular-dynamics simulations and the EAM we studied the deposition of the par-
ticularly stable Ni and Cu clusters (cf. > section “Ni Clusters”) on the () surfaces of
crystalline Ni and Cu (Kasabova et al. ) as well as more different Cu clusters deposited
on the Cu() surface (Alamanova et al. ). The deposition energies, – eV/atom, imply
according to experimental classifications that the depositions are to be considered as being soft.
Nevertheless, the depositions even at the smallest possible deposition energies (cf. > Fig. -)
led to clusters that were highly deformed compared to the gas-phase structures. To some extent,
Ni clusters deposited on the Cu surface were partly intact, which may be understood through
the higher cohesive energy and bulk modulus of Ni compared with Cu.Thus, in this respect Ni
and Cu can be classified as being hard and soft, respectively.

Alternatively, one may suggest that when clusters and surfaces are made of the same metal,
the cluster atoms will lead to an epitaxial growth of the substrate. To quantify this suggestion,
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⊡ Fig. -
Top view of the final structures obtained when depositing A clusters on the B() surface with
 eV/atom deposition energy. A and B are (top, left) Ni and Cu, (top, right) Cu and Ni, (bottom, left)
Cu and Cu, and (bottom, right) Ni and Ni. The dark atoms are those of the clusters

we introduced a so-called index of epitaxy (Alamanova et al. ), I, through

q =
N

∑

i
∣

⃗Ri − ⃗Rc ∣


I =


 + q/u
l
, (.)

where ∣⃗Ri − ⃗Rc ∣ is the distance between the positions of the ith atom and the closest-lying
fictitious atom in the infinite, periodic crystal that is obtained by continuing the structure of the
substrate periodically. I =  if perfect epitaxy is obtained. Our calculations indicated, however,
very little epitaxy.

In another study we consider the structures that result when a cluster is grown directly
on the substrate (Hristova et al. b). We considered AgN clusters grown on Ag() and
Ni() surfaces. Since the () surfaces are close packed and since the EAM (as mentioned
above) has a strong (and, for the present systems, realistic) preference for structures with high-
coordinated atoms, the growth of Ag clusters on the Ag() surface led to planar structures that
moreover were roughly spherical. Thereby, the highest coordination for the cluster atoms could
be obtained and since substrate and cluster are of the same material there is no strain involved.
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This is different for Ag clusters on the Ni() surface. In this case, the lattice mismatch
between Ag and Ni leads to some strain in the clusters grown epitaxially on the surface and,
accordingly, the Ag clusters tend to get a somewhat elongated structure.

Only Electrons

The approaches we have discussed in the preceding section were based on the rationale that for
metal clusters, there is no directional bonding and, instead, the electrons are delocalized over
the complete system. Thereby, particularly stable clusters (i.e., magic numbers) occur for clus-
ters for which the atoms can form a particularly compact, close-packed geometrical structure.
The electronic effects were at most indirectly included so that, e.g., stability due to electronic
shell effects is not taken into account.

This is, on the other hand, the main effect that is included in the jellium model.Within the
jelliummodel it is assumed that the system of interest forms a compact, close-packed structure
and that the valence electrons are delocalized over the complete system. Due to the delocaliza-
tion of the electrons they do hardly feel the precise arrangement of the nuclei and core electrons
so that the effects of those can be approximated as being those of a homogeneous charge density
with the same average density as for the true system. The valence electrons move then in the
electrostatic potential created by this jellium.

The jellium model has been used intensively for the studies of clusters of metals (see, e.g.,
Brack ; de Heer ). In fact, one of the first papers in more recent times that treated the
special properties of clusters was a combined experimental and theoretical study on NaN clus-
ters (Knight et al. ). Sodium can be considered the prototype of metal clusters for which the
undirectional bonding due to the s valence electrons suggests that the arguments above pro-
vide a good starting point for rationalizing the properties of Na clusters.Thus, packing effects,
that can bemodeled accurately with a simple potential that does not include electronic orbitals,
will be responsible for the (essentially spherical) structures, and the particularly stable struc-
tures can be identified with a jellium model for delocalized electrons. In their study, Knight
et al. assumed that the jellium was spherical and calculated, subsequently, the orbitals for the
electrons moving in this jellium and under the influence of each other. Comparing with exper-
imental mass abundance spectra they could explain the experimental observation of certain
cluster sizes that showed up particularly often as related to these clusters’ high stability. The lat-
ter was, in turn, due to the closing of shells of electronic orbitals; equivalent to what explains
the inertness of the inert gases He, Ne, etc., in the periodic table.

In some more recent studies we have used the spherical jellium model to analyze the
properties of CsN clusters (Springborg ) and of a C molecule coated with alkali met-
als (Springborg et al. ). We shall here, however, not discuss these studies further but below
address the accuracy of this jellium model.

Both Nuclei and Electrons

Methods

When including both electrons and nuclei in the calculations, the calculations may become so
demanding that the number of structures and/or the size of the systems have to be limited. It is
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then often very useful to augment calculations with less accurate methods with more accurate
ones on selected structures in order to access the accuracy of the approximatemethods. In some
cases we have done so, too, using density-functional methods (see, e.g., Springborg  for a
description of such methods).

As a compromise between accuracy and computational demands we have often used the
so-called DFTB (density-functional tight-binding) method of Seifert and coworkers (Porezag
et al. ; Seifert et al. ; Seifert and Schmidt ). The DFTB method is based on the
density-functional theory (DFT) of Hohenberg and Kohn () in the formulation of Kohn
and Sham (). For more details we refer the reader to the original works or to Springborg
(). Within the DFTB approach, the total energy relative to the non-interacting atoms is
given as

Etot ≃
occ

∑

i
εi −∑

j
∑

m
εjm +


∑j≠k

U jk(∣⃗Rj − ⃗Rk ∣), (.)

where εi is the energy of the ith orbital for the system of interest and εjm is the energy of the jth
orbital for the isolatedmth atom. Moreover, Ujk is a short-range pair potential between atoms
j and k that is adjusted so that results from parameter-free density-functional calculations on
two-atomic systems as a function of the interatomic distance are accurately reproduced. Finally,
only the valence electrons are explicitly included in the calculations, whereas the other orbitals
are treated within a frozen-core approximation.

The elements of the Hamilton and overlapmatrices, i.e., ⟨χmn ∣Ĥ∣χmn ⟩ and ⟨χmn ∣χmn ⟩

with χmn being the nth atomic orbital of the mth atom, are obtained from calculations on
diatomic molecules.The Hamilton operator contains the kinetic-energy operator as well as the
potential. The latter is approximated as a superposition of the potentials of the isolated atoms,

V(r⃗) =
∑

m
Vm(∣r⃗ − ⃗Rm ∣), (.)

and we assume that the matrix element ⟨χmn ∣Vm ∣χmn ⟩ vanishes unless at least one of the
atoms m and m equals m.

Thus, within this approach all information that enters the calculations are extracted from
the properties of diatomicmolecules.These can, in turn, be determined from accurate, density-
functional calculations. In order to access the accuracy of the approach we perform additional
calculations on the infinite, periodic systems. If these provide accurate results, we assume that
the results are accurate for the intermediate, finite clusters as well.

For an unbiased structure determination we combine the DFTB method with genetic
algorithms. The genetic algorithms are based on the principles of natural evolution and are,
therefore, also called evolutionary algorithms (Goldberg ; Holland ) and have been
found to provide an efficient tool for global geometry optimizations. One version of the genetic
algorithms that we are using is as follows.

A population of P initial structures is chosen randomly (these clusters are called parents)
and each structure is relaxed to the nearest total energy minimum. By cutting each parent ran-
domly into two parts a next set of P structures is obtained by interchanging (“mating”) these
two parts and allowing the resulting “children” to relax too. Comparing the energies of the P
clusters of both sets, those P with the lowest total energies are chosen to form the set of par-
ents for the next generation.This procedure is repeated for many hundred generations until the
lowest total energy is unchanged for a large number of generations.

Alternatively, this “two-parents” method may be replaced by a “single-parent” method
where the two parts of one cluster simply are interchanged.The advantage of this latter approach
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is that for systems with more than one type of atom stoichiometry is automatically conserved.
Moreover, in some cases we found that the latter is faster than the former.

Na and Au Clusters

As discussed in > section “Only Electrons”, Na clusters may be considered as being the pro-
totype for which the jellium model provides a good starting point. Therefore, it seems to be
highly appropriate to start our discussion with considering this system but applying other the-
oretical approaches. Accordingly, we have studied the properties of NaN clusters both using
the EAM method of > section “Only Nuclei” and the DFTB method. In both cases, the total-
energy methods were combined with unbiased structure-optimization methods (Tevekeliyska
et al. ).

In > Fig. - we show the resulting stability function and in > Fig. - the radial dis-
tances of the atoms.The stability functions show only a marginal similarity and only the DFTB
calculations find particularly stable clusters for sizes that agree with those of the mass abun-
dance experiments and the jellium calculations (, , , , , , , . . . ) (Knight et al. ).
On the other hand, the radial distances indicate that the structures found in the EAM calcu-
lations are somewhat more symmetric than are those of the DFTB calculations. In fact, based
on a shape analysis (not shown), we find that none of the DFTB structures can be considered
as being roughly spherical, in marked contrast to the inherent assumptions behind the jellium
calculations.
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⊡ Fig. -
Stability function (in eV) as function of the size of the clusters from the DFTB (upper part) and the
EAM (lower part) calculations
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⊡ Fig. -
Radial distances (in Å) for sodium clusters obtained with DFTB (lower part) and EAM (upper part) as
a function of the number of atomsN. In each panel, a small horizontal line for a givenNmarks that
at least one atomhas that distance to the center of the cluster

Although gold often is considered as being a normalmetal, it has remarkable bonding prop-
erties that manifest themselves clearly in nanosystems (see, e.g., Springborg ). Thus, gold
is often found in situations with low coordinations. This is attributed to effects related to the
electronic orbitals (although the precise role of various effects like sd hybridization, relativistic
effects, the range of the atomic potential, etc., has not yet been clarified unambiguously) that are
absent in the EAM.Therefore, that EAM calculations for gold clusters (Alamanova et al. )
led to too compact structures may not surprise.

Instead, we used the DFTBmethod in combination with the genetic algorithms to study the
properties of AuN clusters with N up to  (Dong and Springborg ).The main findings are
reproduced in > Fig. -. The total energy per atom is seen to have a strong size dependence
until around  atoms after which it depends much weaker on the cluster size. It is known that
small, neutral AuN clusters are planar up to N somewhat above  (see, e.g., the discussion
in Dong and Springborg ), although this is not found in the present calculations. On the
other hand, as seen in the figure, the difference in the total energy between the planar and our
nonplanar structures is small. This difference can be taken as an estimate of the accuracy of the
present DFTB approach. Moreover, also the experimentally observed tetragonal Au structure
is not found in our calculations, although it has a total energy that is very close to that of our
optimized structure. On the other hand, as all other electronic-structure studies on Au, our
calculations do not find the icosahedron to be the most stable structure.
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⊡ Fig. -
The upper part shows the variation in the total energy per atom (relative to that of the isolated
atom) for the optimized AuN clusters (solid curve) together with those of planar structures (dark
circles) and those of icosahedral Au and tetragonal Au clusters (dark triangles). The lower part
shows the radial distances as a function of cluster size, i.e., each small line represents (at least) one
atom with that radial distance. The curve shows the radius of the spherical jellium with a density
as in the crystal

From the radial distances of the AuN clusters we see that they all are low symmetric.
This can also be seen when comparing the (high-symmetric) structures of NiN clusters
with those of AuN clusters with the same number of atoms, i.e., when comparing >Figs. -
and > -. Moreover, for  ≤ N ≤  no atom has a small value for its radial distance, imply-
ing that these structures are shell-like (see also > Fig. -). Indeed the finding of such “golden
cages” is in agreementwith other studies. Finally, we add that when analyzing the coordination
of the individual atoms we found that no atom has a coordination larger than , i.e., the value
of  of crystalline fcc gold is not found even for the fairly large clusters of this study. This may
be considered a further confirmation of the ability of gold atoms to exist in low-coordinated
situations.
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⊡ Fig. -
The structures of the AuN clusters with (from left to right) N = , , and 

HAlO Clusters

HAlO is a nanostructured material that can be used as substrate for deposition of other
materials. However, little is known about the material itself, except that it is stoichiometric
(i.e., it contains :: mole fractions of H, Al, and O). From nuclear resonance and vibra-
tional spectroscopy experiment some information can be obtained about the short-range
arrangements of the atoms.

In a collaboration with members of one of the groups that synthesize this material we
studied its properties using different theoretical methods (Dong et al. ). Genetic algo-
rithms together with the DFTB method were used in an unbiased determination of isolated
(HAlO)n clusters with n ≤ . Moreover, since the material is macroscopic and contains
interacting nanostructures, we also studied the interactions between two of those optimized
clusters using the DFTB approach. Finally, the predictions of the calculations were supported
by parameter-free density-functional calculations on selected structures for clusters with n ≤ .

At first, we show in > Fig. - the radial distances for each atom type as a function of n.
It is evident from this figure that the clusters consist of a core of aluminum and oxygen atoms
covered by a shell of hydrogen atoms. A more careful inspection of the structures (not shown)
reveals that for the Al-O core only heteroatomic (i.e., Al–O) and not homoatomic (Al–Al or
O–O) bonds exist.

The results of the parameter-free density-functionals are in support for these structural find-
ings. We considered in total  isomers of (HAlO)n with n = , , , , and . When analyzing
the structures of those we found that none possessed O–O or H–H nearest neighbors and that
it was relatively easy to identify Al–H, Al–O, andO–H bonds as being pairs with an interatomic
distance smaller than ., ., and . Å, respectively. The Al–Al interatomic distances, on the
other hand, showed a large spread and it was not possible readily to identify a cutoff distance
below which the Al atoms could be considered as being bonded. In the subsequent analysis we,
therefore, considered two extreme values, . and . Å.

Next we studied the total energy per unit as a function of number of A–B bonds per unit,
with A and B being H, Al, and O. The results are shown in > Fig. -. The results are very
scattered but it is possible to identify certain trends. First, the total energy decreases as the
number of Al–O bonds increases. Second, a similar, but much weaker, trend can be identified
for the number of Al–Al bonds (here we have used . Å as our cutoff value, but . Å gives very
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⊡ Fig. -
The radial distances (in a.u.) for Al, O, andHatoms, separately, as a function of the size of the cluster
n for (HAlO)n clusters. In each panel, a small horizontal line shows that at least one atom of the
corresponding type has that distance to the center of the cluster for a given value of n

similar results). Third, there is a clear preference for structures with one Al–H bond per unit.
These observations can be quantified by approximating the total energy of the various (HAlO)n
isomers as

Etot ≃ n ⋅ E + nAlAl ⋅ EAlAl + nAlO ⋅ EAlO + nAlH ⋅ EAlH + nOH ⋅ EOH. (.)

A least-squares fit gave EAlAl = −. eV (−. eV), EAlO = −. eV (−. eV), EAlH =

. eV (. eV), and EOH = . eV (. eV), when using . Å (. Å) as cutoff distance
for Al–Al bonds. These numbers show that Al–O bonds are strongly preferred and that when
choosing between adding H to either Al or O, it is energetically preferred to create Al–H bonds.

Our theoretical findings that the H atoms prefer to stay outside an AlO core, which for
larger clusters becomes increasingly difficult when requiring that the material is stoichiomet-
ric, suggest that stable structures of HAlO may occur for layers of HAlO. In order to study
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⊡ Fig. -
Variation in the total energy per unit as function of the number of A–B bonds per unit. The
results are from the parameter-free density-functional calculations for the (HAlO)n clusters with
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this proposal further we considered theoretically extended HAlO systems consisting of either
one or two layers of HAlO. We add that these calculations ignore interlayer interactions that
can be very important and that, therefore, may modify our conclusions significantly, when
included. For a single layer of HAlO, one can imagine two highly symmetric cases, i.e., one
where all H atoms are on the one side of the layer, and one where every second H atom is above
and every second H atom below the AlO layer. For the case that all H atoms are on the same
side of the layer, the Al and O atoms form a layer with bond lengths of . a.u. = .Å and
. a.u. = .Å.Moreover, the hydrogen atoms are sitting on the outside of the layer bonded to
the Al atoms with Al–H bond lengths of . a.u. = .Å.TheAl–O–Al bond angles are –○

and –○. Remarkably different things occur when the H atoms are sitting alternating on
the two sides of the single AlO layer. Then we found that the layer split into several small parts
all with the same kind of structure, i.e., the H atoms are binding to the Al atoms with Al–H
bond lengths around . a.u. = . Å, whereas the Al–O bond lengths are around . a.u. =
.Å. For the case of two layers of HAlO we studied two cases, i.e., either the Al atoms of one
layer were placed on top of the O atoms of the other layer, or they were placed on top of the
Al atoms of the other layer. It turned out that the first situation was much more stable than the
second one, which may not surprise, and in the second case we found that the system breaks
into small parts.
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Variation in energy per unit for isolated clusters and for the layers of HAlO. The results for the layers
are shown to the right with the one-layer results markedwith stars (here, the lowest total energy is
for thecase that theHatomsareon thesameside,whereas theyarealternatingon the twodifferent
sides in the other case) and the two-layer results markedwith circles (here, the lowest total energy
is for the case that Al–O bonds form the bonds between the layers). The energy is given in Hartrees
( Hartree ≃ . eV)

Finally, in > Fig. -we show the energy per unit for the finite clusters in comparisonwith
that for the layers. It is remarkable that the two-layer structure is not significantly more stable
than the finite clusters. We believe that the systems prefer to have H atoms on some surface.
However, since the surface area scales as n/, the available area per H atom scales like n−/,
meaning that above a certain critical size, the finite (HAlO)n clusters will be less stable simply
due to too little space for the H atoms on the surface. This effect is not found for the layers
that per construction are infinite. But it suggests that there is a competition between clusters of
HAlO and layers of HAlO, which may explain why different synthesis routes lead to different
materials. It is not possible to determine directly the critical size of the finite (HAlO)n clusters
above which they become unstable, but our results suggest that this size may be comparable to
the largest clusters of the present study.

As mentioned above, HAlO is a nanostructured material, so that the individual clusters
may interact with each other. In this context it is an interesting issue whether the H atoms will
try to remain outside a central part, as we have observed for the individual, isolated clusters.
We decided, therefore, to study the interaction between two clusters by putting two of the pre-
viously optimized clusters together. This was done as follows. We placed two clusters of n and
n units so close to each other that they would interact.The initial structures were those of the
isolated (HAlO)n and (HAlO)n clusters, and we considered very many relative orientations of
the two clusters out of which we chose the one that led to the lowest total energy after structural
relaxation. For the case that the two clusters were brought so close that they interact, before the
combined cluster was relaxed, it was found that the hydrogen atoms are placed between the two
cores of AlO, but after the combined cluster was relaxed, the hydrogen atoms are only sitting on
the surface of the combined cluster. This supports our consensus that clusters with hydrogen
sitting on the surface of the clusters are most stable.
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A graphical illustration of the structural relaxations of bringing the n =  (left part) and n = 
(right part) HAlO clusters together. Shown are the relaxations in a cylindrical coordinate system
with z and d being the position along the cylindrical axis and distance from it, respectively, both
in a.u. The three panels show the displacements of the Al, O, and H atoms, individually. For details
about the presentation, see the text

This is illustrated in > Fig. - that has been obtained as follows. We consider the case of
n =  and n =  units before and after relaxation. In each case (i.e., before and after relaxation)
we calculate the center of the two parts according to > Eq. .. The line joining these two
centers defines the z axis in a cylindrical coordinate system with z =  being the midpoint
between the two centers. Subsequently, we superpose the two coordinate systems in one figure
and show the initial and final values of z and the distance to the z axis (denoted d) for each atom
separately by joining these points with a straight line. Finally, we depict these lines for each type
of atom individually. The stars mark the final positions of the n =  system whereas the closed
circles mark the final positions of the n =  system. In particular the H atoms tend to increase
d upon relaxation, i.e., to move away from the region between the two clusters. On the other
hand, first of all the O atoms but also to a lesser extent the Al atoms are seeking to fill out the
space between the two clusters when they are combined.
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AB Semiconductor Clusters

Semiconductors are interesting materials first of all because of their electronic properties.
By modifying the material it is partly possible to vary these properties in a controllable way,
and further possibilities are obtained by considering semiconductor nanoparticles. When the
spatial extension of the clusters becomes comparable with that of an exciton, the electronic and
optical properties of the semiconductor will depend markedly on the cluster size.

An important class of semiconductors are the II–VI and III–V semiconductors. For those
an additional, relevant (and interesting) issue is that the macroscopic, crystalline material may
exist in (at least) two structures that are energetically very close, i.e., the zincblende and the
wurtzite structure (Yeh et al. a, b). Accordingly, it is likely that for the finite-sized clusters,
the energetic ordering of those two structures may change. To access this issue we have studied
finite clusters of a larger range of II–VI and III–V semiconductor nanoparticles (Asaduzzaman
and Springborg ; Goswami et al. ; Joswig et al. , , ; Roy and Springborg
, ; Sarkar and Springborg ; Sarkar et al. ; ur Rehman et al. ).We have used
the DFTB method that includes electronic degrees of freedom and not attempted to optimize
the structure completely. Instead, starting from the infinite, periodic crystals we have cut out a
spherical part that subsequently was allowed to relax to the structure of the closest local total-
energy minimum. In most cases we considered stoichiometric clusters that were obtained by
placing the center of the above-mentioned sphere on the midpoint of a nearest-neighbor bond.

In > Fig. - we show representative examples for the relative total energy of clusters
derived from the two different crystal structures. It is clear that the relative total energy depends
critically both on size and on the material of the clusters. This is in agreement with experi-
mental observations for nanoparticles of the same material but different sizes (see, e.g., Weller
and Eychmüller ). Moreover, although the total energy does show an overall decreasing
behavior as a function of size of the cluster, it is also structured.

There is an interesting correlation between the variation of the total energy and the energy
gap between the highest occupied (HOMO) and lowest unoccupied (LUMO)molecular orbital.
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Variation in the total energy per atompair (thick curves) and band gap (thin curves) for CdS clusters
with (a) zincblende- and; (b) wurtzite-derived structures as a functionof the total number of atoms
in the cluster

In > Fig. - we illustrate this for a single example, i.e., CdS clusters. Similar results are
obtained for the other systems.The figure demonstrates that high stability coincides with a high
energy gap, which may be interpreted in terms of the so-called hard-and-soft-acids-and-bases
(HSAB) principle (Pearson ). Moreover, a more detailed analysis of the frontier orbitals
gives that for the less stable structures, i.e., the ones with a small HOMO–LUMO gap, at least
one of theHOMOand LUMOorbitals is localized to the surface region. Because of these surface
states, less stable clusters are particularly reactive.

From these results we obtain also an example of how strongly and irregularly the prop-
erties can depend on the size of the clusters. For CdnSn clusters we find a HOMO–LUMO
gap of around . eV for n = , which increases to . eV for n =  (Joswig et al. ).
When analyzing the structures of those two, this difference can be explained: for n =  the
cluster contains a number of single-coordinated atoms, making it less stable, whereas no such
atoms are found for n = .

Finally, the fact that at least one of the frontier orbitals is localized to the surface is in agree-
ment with experimental studies of the recombination of holes and electrons in such clusters
(Lifshitz et al. ).

The results above have two important implications. First, in experimental studies it is often
assumed (cf. > Fig. -) that one obtains a more or less narrow size distribution that is very
regular as a function of size. Moreover, the size of the clusters is often estimated through the
energy of the optical transition that is assumed to be a monotonous function of size. However,
our results give that the total energy is structured as a function of size, suggesting that the size
distribution also will be structured, and also that the energy for optical transitions is less regular
as a function of cluster size, although a general decrease as a function of increasing cluster size
can be identified.

Secondly, since the stability of the clusters is strongly dependent on the presence/absence
of low-coordinated atoms on the surface, it should be possible to stabilize the clusters through
properly chosen surfactants or by modifying the surface in other ways (Frenzel et al. ).
For our stoichiometric AB clusters, the outermost atoms are formed to equal parts by A and
by B atoms. Considering nonstoichiometric clusters constructed, e.g., as a spherical cut-out of
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Schematic presentation of the variation in the total energy per atom (solid curve) as a function of
size of the cluster together with the size distribution (dashed curve) (a) as it usually is assumed
together with; (b) a modification as it may be in reality. The solid curve may also represent the
optical absorption threshold as a function of cluster size

the crystal with the center at an atomic position, the surface will contain exclusively one type
of atoms. In one study, on InP clusters (Roy and Springborg ), we considered this case
and did indeed observe a strong dependence of the properties on the surface, although the
properties did not only depend on the type of the outermost atoms. A further study (Roy and
Springborg ) demonstrated that surfactants could modify the electronic properties of the
clusters, leading in most, but not all, cases to a larger HOMO–LUMO gap.

Alternatively, one may obtain more stable structures by considering the so-called core/shell
nanoparticles, which are systems containing a core of one material coated by a shell of another.
We studied such systems with the two materials being either CdS and CdSe or Si and Ge
(Asaduzzaman and Springborg ; Sarkar et al. ) and found, besides a saturation of dan-
gling bonds on the core part of the nanoparticle, that new properties may emerge from such
systems. This includes that in some few cases the HOMO and LUMO are localized to the two
different materials, making a charge separation upon optical excitation possible. Furthermore,
the more stable systems were obtained when the shell material was the one with the lowest
surface energy.

Metcars

With the last example of this presentation we shall discuss the systems that initially led us to
start the theoretical work on unbiased structure optimization for nanoparticles.

In the beginning of the s, the group aroundCastleman inPennsylvania producedmetal-
containing carbon clusters MmCn . In mass abundance spectra with M being Ti they observed
a peak for (m, n) = (, ) (Guo et al. ), suggesting that this cluster was particularly sta-
ble. They proposed a cage-like structure of cubic Th symmetry with  five-membered rings,
each containing two metal and three carbon atoms.Thus, the topology is as that of the smallest
possible fullerene molecule C but containing metal atoms. An alternative description of the
structure is to consider it as formed by a cube of the eight metal atoms. The  carbon atoms
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form six C units that are placed symmetrically above the sides of the cube with the C–C bonds
parallel to the edges. Later, theoretical studies – first of all by Dance () – suggested that
the structure instead had tetragonal Td symmetry. Compared with the Th symmetry, the C

dimers are for the Td symmetry lying parallel to the diagonals of the six sides of the cube of
the eight metal atoms and, in addition, the cube becomes somewhat distorted. First recently,
theoretical and experimental studies agree that the tetragonal structure is the correct one (see,
e.g., Rohmer et al. ). In the meantime it has been found that for other metals also (e.g., Hf,
Zr, V) those so-called metallocarbohedrenes or metcars can be formed, and even metcars with
more different types of metals have been produced. However, whether they occur in significant
amounts depend strongly on the experimental conditions, suggesting that kinetic effects play a
significant role in their production.

In order to study the properties of these Ti-based clusters further, the group around
Ganteför in Konstanz, Germany, decided to study a whole class of TimCn clusters with different
values of (m, n) centered around (m, n) = (, ) (Blessing ). Using two different sources,
Ti and C atoms were produced that subsequently were allowed to form the clusters mentioned
above. After ionization, amagnetic field could be used tomass-separate the clusters and, finally,
photoelectron spectra could be recorded for these mass-selected clusters. Accompanying theo-
retical studies would then be very useful as a support for the interpretation of the experimental
results.

As one of the clusters of the experiments, let us choose TiC, i.e., (m, n) = (, ),
whose structure is absolutely unknown. One suggestion could be to assume that it has a struc-
ture that can been formed by removing two carbon and two titanium atoms from the larger
(m, n) = (, ) cluster, but the first question is then: which four atoms shall be removed? Start-
ingwith the two proposed structures (i.e., those of Th and Td symmetry) for the (m, n) = (, )
clustermentioned above we tried this strategy but obtained a new structure in each attempt.The
simplest approach would then be to choose the structure of the lowest total energy. However, it
has to be remembered that the experiment is performed in a completely different way: instead
of starting with the larger (m, n) = (, ) cluster and from that removing some atoms, the
(m, n) = (, ) cluster is formed from essentially isolated atoms and, therefore, it is not at all
given that its structure has any resemblance to that of the (m, n) = (, ) cluster.

Therefore, in order to obtain unbiased information on the structures of the different TimCn

clusters we started applying the genetic algorithms that were discussed earlier in this section
together with the DFTB method and applied the approach to the metcars (Joswig and Spring-
borg ; Joswig et al. ). In > Fig. - some of the results are summarized. This figure
shows the total energies for two series of TimCn metcars, i.e., with m = ,  and n = –. We
have defined an energy gain, for clusters with same m, as the difference in the total energy
of TimCn− and TimCn . For m = , experiments found the TiC metcar to be a particu-
larly stable cluster. However, our calculations do not find a specially high energy gain for this
cluster, although they do for the TiC cluster. Also the HOMO-LUMO gap does not indi-
cate a high stability for the TiC metcar. Actually, it has the smallest gap in the m =  series
(cf. > Fig. -f ). Furthermore, there is no evidence that the number of bonds is related to the
stability of the clusters, as also indicated by the results in > Fig. -. In total, the structural
properties give no hints to the experimentally observed special stability of the TiC metcar.

Instead, one may suggest that effects (for instance, kinetic effects) that are beyond the cal-
culational approach are important. An experimental support for this suggestion can be found
in the work of van Heijnsbergen et al. (). These authors found that the mass abundance
spectra depend critically on experimental parameters so that in one experiment the TiC
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⊡ Fig. -
(a), (e) Energy gain; (b), (f) HOMO and LUMO orbital energies; (c), (g) number of C–C, Ti–Ti, Ti–C
bonds and their total number, and; (d), (h) total number of bonds divided by total number of atoms
for (left) TiCn and (right) TiCn as functions of n
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⊡ Fig. -
Optimized structure of (right) TiC and (left) TiC. Light (dark) spheres represent C (Ti) atoms

metcar showed a large abundance, whereas in another it hardly occurred whereas a TiC

cluster (that has a structure similar to a part of a the rocksalt crystal, cf. Joswig and Springborg
) was found in large abundance.

Finally, wemention that exactly the TiC metcar that we discussed above was found in our
calculations to be particularly stable and of special, high symmetry, see > Fig. -. However,
so far it has not been discussed in detail in connection with experimental studies.

Conclusions

In this overviewwe have presented various, typical results from our theoretical studies on struc-
tural and electronic properties of clusters and colloids. We have put the main emphasis on
presenting the principles behind our approaches and less on the discussion of the different sys-
tems, separately. It shall be added that there are many other, related studies by others, but that
we have here chosen to focus on our own work.

The major challenge related to studies as those we have presented here is the complexity of
the calculations due to the fairly large size combined with an often low symmetry. In addition,
when aiming at extracting trends, as we have been, one needs to study not only one cluster size
of a given material but a whole range, adding to the computational demands.

Moreover, the fact that there is no standard method that can be used in identifying unam-
biguously the structure of the lowest total energy for a given systemmeans that one has to apply
more or less intelligent methods in the structure optimization and, furthermore, that there
never will be any guarantee that the structure of the lowest total energy indeed is identified.
Experience has shown that specially developed methods for unbiased structure optimization
are the most efficient ones, whereas others, e.g., molecular-dynamics simulations and random
searches, often perform considerably worse. In this overviewwe have presented a few intelligent
methods, including genetic algorithms, basin-hopping methods, and our own Aufbau/Abbau
method. Alternatively, one may also consider only certain types of structures when aiming at
studying special effects.The latter we illustrated through our study on AB semiconductor parti-
cles for which an interesting issue is the relative stability of cluster structures that can be derived
from two different crystal structures (in this case, the zincblende and wurtzite structures).

But even when applying such intelligent structure-optimization methods one often has to
performmaybe even severalmillions of total-energy calculations for a given cluster.Therefore, it
is often necessary to use approximate total-energy methods, that then shall be chosen carefully
according to the properties of the system of interest. In this presentation we have discussed
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embedded-atom methods and Gupta potentials and similar approaches as useful methods for
metallic systems with delocalized electrons, the DFTB method for systems with directional,
covalent bonds, and the jellium model, also for metallic systems with delocalized electrons.
Due to the approximations inherent in such approaches it is always important to access their
accuracy through comparison with results of more accurate calculations or with other studies
on similar systems.

Finally, we placed much emphasis in presenting various descriptors that we have developed
in order to be able to extract general chemical or physical information from the, often enormous
amount of, information from the calculations. This included descriptors for analyzing stability,
shape, spatial distribution of atoms and orbitals, and structural similarity.
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Abstract: Materials properties show a dependence on the dimensionality of the systems stud-
ied. Due to the increased importance of surfaces and edges, lower-dimensional systems display
behavior that may be widely different from their bulk counterparts. As a means to comple-
ment the newly developed experimental methods to study these reduced dimensional systems,
a large fraction of the theoretical effort in the field continues to be channeled towards computer
simulations. This chapter reviews briefly the computational methods used for the low dimen-
sional materials and presents how the materials properties change with dimensionality. Low
dimensional systems investigated are classified into a few broad classes: D nanoparticles, D
nanotubes, nanowires, nanorods, and D graphene and derivatives. A comprehensive literature
will guide the readers’ interest in computational materials sciences.

Introduction

Hierarchy of Methods

Methods for materials modeling are based on the particular length and time scales used for the
investigation of various materials properties that operate only over those scales. This has led
to basically four independent methodological streams, which may be categorized as ab-initio
density functional theory, molecular dynamics, statistical methods based onMonte Carlo algo-
rithms, and continuum mechanics (see > Fig. - for the ranges of them). Each of these is
computationally intensive within its own range. However, the expanding capabilities of com-
putational methods due to the increasing power of computers and continuing development
of efficient algorithms, together with advances in the synthesis, analysis, and visualization of
materials at increasingly finer spatial and temporal resolutions, have spawned a huge effort in
the modeling of materials phenomena.

Since the materials properties are directly related with the dimensionality of materials,
particularly at the nanoscale, it would be better to classify the methods of modeling of nanos-
tructures with respect to the dimensionality, such as zero-dimensional (D), one-dimensional
(D), two-dimensional (D), and three-dimensional (D) materials. At the nanoscale the
first three dimensionalities (D, D, D) are commonly used, but the D materials are usu-
ally considered as macroscopic systems; therefore those materials are not the subject of
this chapter.

D Structures: Nanoparticles

The class of nanomaterials that may be termed zero-dimensional comprise systems that are con-
fined within up to several hundreds of nanometers in all three dimensions. Although there
exists no clear-cut size threshold at which a system switches from a zero-dimensional system
to bulk, there is a rather well-defined class of systems that fit the above definition with unique
and intriguing properties.Themost commonly studied zero-dimensional systems are quantum
dots, nanoparticles (or clusters), and cage-like structures. In this section, we shall begin with an
overview of methods used to study such materials.

After the s, the field of nanoparticles has seen increasing activity. The results of these
studies and their applications have been collected in several reviews (Balasubramanian ;
Baletto and Ferrando ; Bonacic-Koutecky et al. ; Brack ; de Heer ; Halicioglu
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andBauschlicher ;Morse ;Ustunel andErkoc ;Weltner andVanZee ). Studies
on clusters have been concentrated on such diverse applications as catalysis, chemisorption and
substrate adsorption, laser applications, magnetism, nucleation, photographic processes, and
reactivity.

The term clustermay, in the broadest sense, be defined as an aggregate of atoms ormolecules
that form a size regime between molecules and bulk materials. It is far from a straightforward
task to define the range of number of atoms which constitute a cluster. In contrast to their bulk
counterparts, structural and electronic properties of clusters display a rather strong dependence
on size and geometric configuration due to their large surface-to-volume ratio. Thus in order
to understand the properties of clusters a careful determination of the equilibrium structure is
crucial. In general, the equilibrium geometry is determined by locating the global minimum of
the potential energy surface (PES) of a cluster, which in principle can be mapped out by calcu-
lating the total energy as a function of all possible locations of the atoms. Unfortunately even
the smallest clusters often have extremely complicated potential energy surfaces with practi-
cally countless local minima.This requires a thorough search over the entire PES for a realistic
determination of the equilibrium structure.

An added complication to the difficulty of determining the global minima is that clusters
with different but similar sizes of the same material may present PESs that are entirely dif-
ferent. It is likely then that the equilibrium shape of a cluster of a given material and size is
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significantly different from a different size cluster of the same material. Fortunately, some sim-
ilarities may be found in the vast number of possible structures. Mass spectroscopy of clusters
reveal that certain sizes of clusters are preferred over others, indicated by the high abundance
detected (Martin ). The number of atoms or molecules in a preferred cluster is commonly
referred to as a magic number. The origin of a magic number may be the completion of a geo-
metric or an electronic shell of the cluster. The particular geometric or electronic shell being
completed obviously depends upon the constituents of the clusters and the bonding between
them. For instance, noble gases are found in polyhedral form whereas metallic clusters prefer
cubic or prolate structures (Johnston ).The search for magic numbers has been the subject
of a very large number of works (Anagnostatos ; Balasubramanian ; Bonacic-Koutecky
et al. ; Haberland ; Jarrold and Constant ; Moraga ; Yang et al. ).

In order to map out the energy landscape of nanoparticles an adequate model for the
interatomic interactions within the cluster needs to be employed. Empirical potentials, the
tight-binding approximation, and density-functional theory whose brief description has been
given in previous sections are the most commonly used methods in literature. While empiri-
cal potentials (Erkoc , ) offer an efficient means of exploring the PES and determining
the equilibrium structure of large clusters, calculations based on the tight-binding approxima-
tion and density functional theory are preferred for more accurate and detailed description of
geometrical and electronic properties of small to medium sized clusters.

Once the method of choice is determined for interatomic interactions, the corresponding
potential energy surface may be explored using global search algorithms to determine the low-
est lying minima. A concise review of global optimization methods are given in the reviews
(Baletto and Ferrando ; Dugan and Erkoc ; Wales and Doye ). Here, we shall
briefly describe a few of them.

The basin hopping algorithm (Wales and Doye ) belongs to a class of optimization
methods called hypersurface deformation methods. These methods aim to simplify the PES by
applying a map that smooths it out. The global minimum of the simplified PES is then mapped
back to that of the real PES assuming that it leads back to the global minimumof the real PES. In
the basin hopping algorithm, the original, complicated PES, U(r⃗), is transformed onto a step-
like function ̃U(r⃗) according to the rule (Baletto and Ferrando ; Wales and Doye )

̃U(r⃗) = min[U(r⃗)], (.)

where the min function implies that a local minimization is to be applied such as the conjugate
gradients algorithm (Hestenes and Stiefel ).

In many of the cluster applications using basin hopping (Bromley and Flikkema ; Doye
andWales ; Hsu and Lai ;Wales andDoye ), this transformed PES is sampled with
a Monte Carlo algorithm, sometimes with a fixed acceptance (Wales and Doye ).

The second method we shall mention is the simulated annealing method (Kirkpatrick et al.
), in which the system is evolved at high temperature and then gradually cooled down.
Assuming that the system does not get trapped in a basin of attraction which is not the mini-
mum, it reaches the state of lowest energy during the cooling process. Attempts to use simulated
annealing to find the global energy minimum in larger systems is frustrated by high-energy
barriers that trap the system in metastable configurations (Ma andWang ).

Finally, we briefly describe a class of algorithms that has recently gained popularity, namely,
genetic algorithms. Genetic algorithms(GAs) are based on ideas borrowed from natural evolu-
tion. As explained in Darby and coworkers (), they employ operators that are analogues of
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the evolutionary processes of genetic crossover, mutation, and natural selection. A GA can be
applied to any problem where the variables to be optimized can be encoded to form a string,
each string representing a trial solution to the system. In cluster terminology each string is
a list of coordinates of a cluster. An initial number of clusters are chosen according to some
generation scheme (usually random) and locally minimized.

After the creation of the initial generation of strings, each member of this generation is
assigned a fitness parameter based on a fitness function. In Darby and coworkers (), for
example, this function was chosen to be the negative exponent of the deviation of the total
energy of each cluster from the cluster with minimum energy.

Once a fitness parameter is assigned to eachmember of the population, a new generation is
created: Two parents are chosen from members with high fitness parameter for each offspring
(member of the new generation) and then subjected to the crossover operation. A crossover
operation for clusters consists of a particular rearrangement and combination of the atomic
coordinates in the parent clusters. For an example, see Darby and coworkers (). After each
new cluster is generated a local minimization is performed. Mating continues in this way until
the desired number of offsprings are generated. New fitness parameters are assigned to each
offspring. In order tomaintain diversity, new genetic material is introduced into the population
by means of the mutation operator. After mutation in a cluster population, clusters are once
again locally minimized.

Finally the next generation is completed by applying natural selection.The previous genera-
tion and the new generation are ranked in order of fitness and the best N individuals (clusters)
are chosen, whereN is the population of the original population.TheseN individuals constitute
the new generation, and mating is performed again.

The process of mating, mutation, and selection is repeated for a predetermined number
of generations or until a given criterion is reached. This criterion could be, for example, the
convergence of the highest fitness to a plateau so that consecutive generations do not produce
better results.

Other global search algorithms include parallel random tunneling, conformational space
annealing, greedy search method, simulated annealing, quantum annealing, smoothing and
hypersurface deformation techniques, lattice methods, growth sequence analysis, and replica
exchange method.

Global Optimization with Empirical Potentials

In spite of the wealth of information they provide, global search algorithms ordinarily fail to
identify all the minima of a given cluster.The best explored potential surface for clusters belong
to possibly the simplest empirical potential, namely, the Lennard-Jones potential.The Lennard-
Jones potential is a simple model that captures the long- and short-range behavior of atoms
and molecules. It was proposed in  by J. E. Lennard-Jones () and has been used in
innumerable studies ever since. It has the following simple form

V(r) = є [(
σ
r
)


− (

σ
r
)


] , (.)

where є and σ are parameters that determine the depth and the width of the potential well,
respectively, and r is the interatomic distance between atom pairs.
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The four known structural forms for the LJ potential are (Hartke ) as seen in
> Fig. -:
. Icosahedral: formed by starting from the pentagonal bipyramid and adding a further layer

of atoms.
. Decahedral: icosahedral core surrounded by fcc stacks.
. Tetrahedral: tetrahedron of atoms in the innermost core.
. Face-centered cubic : sections of the fcc bulk structure.

For N < , , Lennard-Jones clusters follow an icosahedral pattern growth with magic
numbers corresponding to Mackay icosahedra (Mackay ) for N = , , , , etc.
In between thesemagic numbers,most of the structures areMackay-like with incomplete outer
layers. Exceptions occur when there are alternative structures with complete shells. These are
mostly Marks decahedra (Doye ) but there are instances of an fcc truncated octahedron
and a Leary tetrahedron (Noya and Doye ). The preference for icosahedral structures of
Lennard-Jones clusters at small sizes is thought to be due to a trade-off between optimal bond
distance and strain (Hartke ; Krainyukova ).

In spite of its simplicity, the Lennard-Jones potential may not be used for accurate descrip-
tion of cluster properties with the possible exception of noble gas clusters. Often empirical
potentials that involve a larger number of parameters than the two-parameter Lennard-Jones
potential are employed for structural determination.

To understand their behavior at finite temperature, Wu and coworkers studied Zn clusters
using the Gupta potential by means of molecular dynamics (Wu et al. ). Zn clusters are
found to display peculiar structures that are very different from other sp-type metal clusters.
The N =  cluster, for instance, has a disordered structure instead of the icosahedral struc-
ture found in most metals of the same size. The Cv curve also differs in that it has a double
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n = 103 Decahedral

Face-centered cubic

Icosahedral

Tetrahedral

⊡ Fig. -
The four basic structures of Lennard-Jones clusters (Reprinted with permission fromHartke ().
© () by Wiley-VCH Verlag GmbH & Co. KGaA)
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peak structure, whereas icosahedral structures display a single peak.The ΔE study inWu et al.
() reveals that magic structures are found at N = , , , , , , , and .

In a study byRey and coworkers (), several transitionmetal clusters (Ni, Pd,Au, andAg)
were studied using different model potentials. Three different embedded atom models (EAM)
and two different parameterizations of an N-body analytical potential were considered. For Ni
clusters, although the binding energies provided by the various models showed differences, the
peak stability was obtained for all the models at N =  (icosahedron) and N =  (double
icosahedron). In this work (Rey et al. ), earlier experiments on large Ni clusters (N = –
) are also quoted where icosahedral growth was observed. For Ni the EAM that was fitted
to bulk values(EAM) gave poorer results than the one fitted to diatomic values. For Pd, Au,
and Ag, only EAM and one of parameterizations of the analytical potential(TBM) were com-
pared. EAM failed to yield enhanced stability for N =  and N = , while TBM mostly gave
icosahedral structures for both sizes. This shows the importance of parameterization for the
accuracy of the model potentials.

In a recent study by Doye (), results for Pb clusters were calculated and compared for
theGupta potential and a glue potential in combinationwith a basin-hopping algorithm.Within
the Gupta potential framework, Pb clusters, in contrast to Si, Ge, and Sn, do not show any
tendency to form prolate or oblate structures. Their structures are mostly spherical with deca-
hedra being the most favored structure followed by close-packed. This study also presents an
interesting comparison between the Gupta potential and the glue potential, which reveals that
there is virtually no agreement between the two potentials neither in the magic numbers nor in
the resulting structures. This sharp discrepancy demonstrates that one should be very careful
while comparing results from differentmethods.More disordered structures are favored for the
glue potential than the Gupta potential because the embedding term dominates for the latter.

An interesting result from thework ofDoye () is that for theGupta potential the uncen-
tered Mackay icosahedron with N =  is more stable than the complete N =  Mackay
icosahedron. This is because of the strain applied by the external atoms on the center, making
it unfavorable to be occupied.

As a final remark on empirical potentials, we note that the particular parameterization
of the potential plays a crucial role in correctly identifying structural properties, and caution
should therefore be used in interpreting results for empirical potentials. For instance, according
to (Michaelian et al. ), the global minima of Au clusters are difficult to localize because of
the short range of the Au potential. As the range of a potential decreases, the number of global
minima associatedwith the potential increases. As a result of this, different studies have identi-
fied different global minima for Au clusters. In addition different potential models for themetal
yield different ordering of the lowest lying minima.

Local Optimization with Higher AccuracyMethods

Outside of the domain of simple empirical potentials, identifying the global minima of clus-
ter PESs becomes a prohibitively demanding task. Therefore, most studies on the theoretical
determination of cluster minima employ methods that either focus on local minima obtained
through an adequate initial guess or a mixture of global search algorithms with simple poten-
tials to reduce the number of minima followed by local minimization techniques that are more
accurate.
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Themajority of elements, regardless of whether they prefer atomic shells or electronic shells
form clusters that are more or less spherical. The only elements that deviate from this behav-
ior is the group IVA elements. This is especially remarkable in carbon, which goes from linear
chains all the way to fullerenes. Clusters of Si and Ge first grow in one dimension and then
abruptly change to form spherical clusters (Shvartsburg and Jarrold ). Some similarities
exist between the growth patterns of Si and Ge cluster but major differences also occur espe-
cially concerning the size at which transition to bulk-like structures takes place (Shvartsburg
and Jarrold ).

Because Si clusters undergo such a drastic change in cross section, an excellent experimental
technique exists for studying the structure as a function of size. This technique (Jarrold and
Constant ) is based upon the difference in the mobility of cluster ions that have different
shapes.The ionmobility of a cluster depends on its rotationally averaged collision cross section,
which depends on its size. Prolate and oblate geometries have a larger cross section and therefore
smaller mobilities (Sieck et al. ). Mobility studies indicate that Sin clusters undergo a phase
transition at about n = – from elongated to spherical whereas for the Ge clusters this
transition size is between n =  and n =  (Jarrold and Constant ; Shvartsburg and
Jarrold ).

The growth sequence of Si is realized by adding on small building blocks to smaller struc-
tures. In particular, Si (Shvartsburg and Jarrold ) and Si (Baletto and Ferrando )
have enhanced stability and, therefore, act as the fundamental building blocks. On the other
hand, medium-sized Si clusters are quasispherical but not crystalline. Crystallinity does not
become apparent until N gets as large as a few hundred atoms (Baletto and Ferrando ).

In the simulated annealing and DFT-based tight-binding work by Sieck and cowork-
ers (), a prolateness parameter is defined as follows

p =


∑

j=
(I j − Î) = −

I

+ I −

I

, (.)

where  < I ≤ I and Î = (I + I)/. For an oblate structure p < , for a prolate structure
p > , and for a spherical structure p = . Sieck and coworkers () studied various different
isomers corresponding to three fixed sizes, namely, N = , , and . In > Fig. -, the
cohesive energy versus the prolateness parameter for the low-lying isomers is displayed. An
investigation into the most stable structures clearly indicate the tendency to go from elongated
to spherical structures as the clusters grow in size.

An important point is noted by Sieck and coworkers (), which is that differentmethods,
even different flavors of the same method (LDA/GGA in DFT) may disagree about the exact
energetic ordering of clusters, however, usually the lowest energy structures are local minima
in all of them.

As an example to the multiscale methods mentioned above Bulusu and coworkers ()
used a basin-hopping algorithm combined with DFT to explore low-lying minima for Ge–
Ge. Global minima for the Ge clusters in this size range is compared to minima of Si clusters.
Various checks were performed to make sure different starting points yield the same global
minima, such as different seeding patterns. Unlike most studies in the literature, zero-point
motion is taken into account while calculating the binding energies.

In the same work (Bulusu et al. ) of Si and Ge clusters in the size range – were
compared and clusters of both Si and Ge were shown to have prolate geometries. However,
their growth patterns were found to diverge at N = . The global minima for Ge clusters of
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Cohesive energy versus prolateness parameter defined in > Eq. . for  lowest lying isomers of
Si, Si, and Sia (Reprinted with permission from Sieck et al. (). © () by Wiley-VCH)

size – are obtained by adding atoms to the Ge tetracapped trigonal prism (TTP) struc-
ture familiar from Si clusters (Bulusu et al. ). For low energy Si clusters TTP-to-six-fold
puckered ring(six/six) transition occurs at N =  and clusters with higher number of atoms
all contain the six/six pattern. In contrast, TTP-to-six/six pattern may occur at N =  for Ge
clusters and at N = , the magic number cluster Ge appears to be the preferred structural
motif.

According to Shvartsburg and Jarrold () , clusters of Sn up to n ≈  follow the trend of
germanium andprolate silicon clusters (Shvartsburg and Jarrold ). ForN > , themobility
of Sn clusters show larger fluctuations than either Si or Ge. This might indicate the presence of
multiple isomers of Sn clusters in this size range (Shvartsburg and Jarrold ). Even though the
α⇒ β transition occurs between  K and≈ K in the bulk, Sn clusters do not undergo such
a transition even at higher temperatures. In fact, mobility measurements show that Sn clusters
do not show significant changes in structure for a very broad temperature range. Transition
from prolate to spherical growth in Sn clusters is not abrupt like the transition in Si and Ge
clusters but occurs in steps. Clusters of N ≤  adopt a stacked prolate morphologymuch like Si
andGe clusters.This is unexpected because these highly noncompact structures are suitable for
covalentmaterialswhereas bulk Snunder ambient conditions is ametal. In a sense, the covalent-
to-metal transition that occurs between the fourth and fifth row of the periodic table for the
carbon series in the bulk fail to occur in their clusters. Shvartsburg and Jarrold () also find
that Pb−n and Pb+n clusters display different magic numbers.

Going down the group IV in the periodic table a comprehensive set of data is given by
Shvartsburg and Jarrold (). Their findings reveal that Pb clusters are structurally different
from Si, Ge, and Sn cluster for N < . While the latter clusters have low mobilities in this
size range indicating a prolate structure, Pb clusters exhibit much higher mobilities meaning
they are quasispherical in shape. For N > , Si clusters also display mobilities in accord with a
spherical shape. However, their mobilities are considerably smaller than the Pb clusters in the
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same size range. This is attributed to the densely-packed nature of the Pb clusters in contrast
with the open, cage-like arrangement of the Si clusters.

Transition metals form the largest group of elements considered in this section. Even as
bulk materials, they exhibit very interesting and diverse properties, in particular magnetism.
Interesting questions therefore arise concerning whether such properties as magnetism are
maintained or altered in clusters (Briere et al. ; Kabir et al. ). Appearance ofmagnetism
in the clusters of d elements (such as Ru, Rh, and Pd) is a very interesting phenomenon as these
elements are nonmagnetic in the bulk. Clusters of d elements (such as Fe, Co, and Ni), which
are already magnetic in the bulk, exhibit enhanced magnetic moments in the cluster form due
to narrower band widths and the increased localization of the electrons (Kumar and Kawazoe
; Pawluk et al. ). Indeed, a recent Stern–Gerlach experiment revealed that Mn clus-
ters in the range N = – display ferromagnetic ordering even though no such ordering is
observed in the bulk phase (Knickelbein ). These results reveal PES minima at N =  and
N =  and PES maxima at N =  and N = –.

We should mention here that most of the magnetism studiesmentioned in this section take
into account only the electronic spin contribution to the magnetic moment. This can be done
only in the cases where the spin-orbit coupling can be neglected.

In the work by Rodríguez-López and coworkers (), Co clusters in the range N = –
were studied by means of an evolutive algorithm based on the Gupta potential and tight-
binding. Experiments reveal thatmuch like the Cr clusters (Payne et al. ), different isomers
of Co clusters coexist with distinct magnetic moments. In this work two sets of isomers are
identified for each size – the lowest and the second-lowest lying. For the lowest-lying isomers
an icosahedral growth is observed with structures derived by adding atoms to the main icosa-
hedral sizes at N = , , , , , , , and . For the second isomers no particular growth
pattern was identified. The stability of these sizes were also confirmed by the second energy
difference ΔE in addition to other, intermediate icosahedral structures.

Relative thermodynamic populations of the lowest-energy isomers were used to simu-
late possible experimental conditions. Isomers coexist particularly evenly between sizes of
enhanced stability.This is due to the influence of the entropic contribution of the low-frequency
normal modes of the isomers to the free energy. For both the global minimum and the sec-
ond isomer, a nonmonotonic decrease is observed with increasing size. The greatest difference
between the two sets of clusters arises in the range N = –, which corresponds to the
range where the average interatomic distance and average coordination of the two sets show
significant difference. In this size range, two effects seem to compete for determining the mag-
netization of the two sets of configurations. On the one hand, the average coordination is
higher for the global minima, which should result in lower magnetic moments for the global
minima. On the other hand, the average nearest-neighbor distance is higher for the global
minima, which should yield higher magnetic moments. The results indicate that the average
coordination number effect dominates.

For noble and transition metals, the interactions between atoms are not pairwise and
simple empirical potentials are inappropriate (Barreteau et al. ). Therefore incorporat-
ing many-body effects into the potentials is essential. Moreover, for magnetism studies, ab
initio methods need to be employed, which render global optimization efforts extremely
computation-intensive. Therefore, most results we shall quote here will be based on restricted
searches of the potential energy surface.

In thework byBarreteau and coworkers (), for instance, the relative stability of cubocta-
hedra andMackay icosahedra is determined for Rh and Pd clusters for N = , , , , and
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 using a tight-binding method. Since both structures have an identical sequence of magic
numbers it is interesting to determine the transition size. A continuous transition is possi-
ble from the Mackay icosahedron to the cuboctahedron, and for the Rh and Pd clusters, this
pathway is explored. An analysis of theMackay transition from the cuboctahedron to the icosa-
hedron reveals that for N = , the cuboctahedron is unstable for both Rh and Pd, becoming
metastable for larger sizes with an increasing activation barrier with size.Themagneticmoment
of rhodium was found to disappear for sizes more than  atoms, and palladium clusters were
found to be hardly magnetic.

In Mn clusters, on the other hand, magnetism plays an important role in determining the
ground state structures. As mentioned in the work by Briere and coworkers (), many spin
isomers can lie close in energy. In this work, a few local geometric configurations of N = ,
, , and  were studied using spin-polarized calculations. At all sizes except N = , the
structure with the lowest energy was found to be icosahedral. For N = , a bcc configuration
was found to be favorable. In terms of spin, all the structures were found to be ferrimagnetic
with alternating domains of different spin configurations (see > Fig. -). Except for N = ,
the mean value of the integrated spin density was found to decrease with increasing size.

In the DFT work by Kabir and Mookerjee (), the ground state structure for Mn was
found to be the icosahedron with the two pentagonal rings that are coupled antiferromagneti-
cally. Therefore, the resulting magnetization is small, namely, .μB/atom.This magnetization
is considerably smaller than the neighboring sizes  and . The N =  structure differs from
the N =  structure by a single capping atom. However, the presence of this atom changes
the magnetization arrangement considerably. In this case the pentagonal rings are ferromag-
netically coupled and the magnetization is .μB/atom.The case of Mn is worth mentioning
because of the discrepancy between two DFT studies by Briere and coworkers () and
Kabir and Mookerjee (). In the latter, the ground state structure was found to be icosa-
hedral with a magnetic moment of .μB/atom whereas Briere et al. () found a bcc

Mn23Mn19

Mn13
Mn15 bcc Mn15 icosahedral

⊡ Fig. -
Lowest energy structures of some Mn clusters. Relative spin alignments are marked with dark for
spin up and light for spin down (Reprinted with permission fromBriere et al. (). © () by the
American Physical Society)
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structure with .μB/atom. For N = , a double icosahedron was observed, which again
has a smaller magnetic moment, .μB/atom, than its neighboring clusters. The central
pentagonal ring is AFM coupled to the neighboring pentagonal rings. This behavior is per-
sistent in the N =  cluster, which has a magnetic moment of .μB/atom. In the range
N =  − , spin segregation is observed, where like spins tend to cluster. The binding energy
is observed to increase monotonically with increasing size. This is due to the increased sp
bonding. However, when compared with other transition metals, Mn clusters remain weakly
bound.

An interesting property of Ta clusters were demonstrated in a recent study (Fa et al.
), where ferroelectricity and ferromagnetism was proven to coexist. Initial structures were
obtained by simulated annealing using an empirical potential.These structures were later reop-
timized with DFT calculations. The magic numbers for Ta clusters were found to be , , ,
, and . It was therefore deduced that Ta clusters do not prefer icosahedral growth. For
N = , for instance, the lowest energy structure among those studied was found to be a dis-
torted five-capped hexagonal bipyramid. For N = , the most stable structure is decahedral in
contrast with the double icosahedron, which was found to be stable for many other clusters. No
perfectly symmetric structureswere found indicating that Jahn-Teller distortions play an impor-
tant role in determining the ground state structures of Ta clusters. In the size range studied in
this work (Fa et al. ), the atomic packing shows differences such that each size behaves like
an individual system rather than steps of a continuous growth sequence. In addition, electronic
dipole moment and magnetic moment were also calculated.The electronic dipole moment was
found to have the same trend as the inverse coordination number, which is a parameter that
reflects the asymmetry of the cluster. This agreement is attributed to the strong correlation
between the structure and the electronic dipole moment of the clusters. Odd-N Ta clusters also
display a magnetic moment of about μB , which suggests the possibility of the coexistence of
ferroelectricity and ferromagnetism. The growth pattern of Ta was found to be very similar to
that of Nb. However, when compared with vanadium clusters, this similarity is absent (Fa et al.
).

In a similar work by Fa and coworkers (), Nb clusters were also found to display fer-
roelectricity supported by a recent experimental study. This is an important discovery because
ferroelectricity was never observed in single element bulk materials. For N ≥ , the electric
dipole moment exhibits even–odd oscillations. This suggests that there is a strong correlation
between the structure and the ferroelectricity.

In the work by Pawluk and coworkers (), the structure and stability of several Ir clusters
were studied using DFT. Rather than using a global optimization algorithm, possible configura-
tions both truncated frombulk and built independentlywere relaxed locally.The results indicate
that Ir clustersmostly prefer cube-like structures up toN = , except for N = , which assumes
an elongated structure. At N = , the lowest structure among the ones studied is the icosahe-
dron. This is in contrast with Ru and Pt, which prefer simple cubic structures. When compared
to clusters cut from the fcc bulk, simple cubic structures turn out to be more stable up to a size
of N = . This transition occurs near N =  in Ru and N =  for Pt. Another interesting
property studied in this work is the fluidity of clusters.The results indicate that while the Pt clus-
ters exhibit a more a more fluidlike character and will thus easily coalesce with other clusters,
Ir clusters are more rigid and have less tendency toward coalescence.

An interesting experimental result concerning Pt clusters was reported by Liu and cowork-
ers (), who found that Pt clusters exhibit substantial magnetism (about .μB/atom)
even though bulk Pt is not magnetic.
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Although for such clusters as Ni and Au the icosahedral structure is calculated to be
metastable with stability decreasing with size, experiment reveals that icosahedral structures
are found in clusters containing several thousands of atoms. This means that kinetic effects
are also very important in determining the structure of a cluster (Gafner et al. ). In order
to simulate these kinetic effects, a  Ni cluster was studied using tight-binding by Gafner
and coworkers in (). The cluster was heated to ,K (Tmelt = , K) and subsequently
cooled to K. The melting and crystallization curves are determined from a sudden change
in the potential energy as a function of temperature.They found that slow cooling results in an
fcc structure whereas fast cooling results in the formation of a metastable icosahedral structure.

In the study by Köhler and coworkers (), the potential surface of a few sizes (N = ,
–) of Fe clusters were mapped out with respect to magnetization and volume change using
a DFT-based tight-binding scheme. Icosahedra were found to be the most stable structures for
the magic numbers N =  and N = . Two local minima were observed for the N =  icosa-
hedron, one ferromagnetic and one antiferromagnetic. The PESs for clusters with N = –
were mapped out using a genetic algorithm-based procedure. Derivatives of the N =  struc-
ture were considered for N = , , , and . Generally icosahedra and icosahedron-derived
structures have relatively small magnetic moments.The structures without apparent symmetry
show higher magnetic moment than icosahedra. No ferromagnetic ordering was found for the
Fe cluster.

Tiago and coworkers provide a very comprehensive explanation of the origin of magnetism
in small Fe clusters in their article (Tiago et al. ). In the Fe atom, the magnetic moment is
a result of exchange splitting. The d

↑
states are occupied by  electrons, while the d

↓
states are

occupied by a single electron, which results in a rather high magnetic moment of μB . When
the atoms come together to form a crystal, hybridization of the large s bands and the d bands
reduce the magnetism down to .μB . In clusters, hybridization is not so strong because of
the reduced coordination numbers of the surface atoms. Because this hybridization depends
on orientation, clusters with faceted surfaces are expected to have different magnetic proper-
ties than those with irregular faces. According to Tiago and coworkers (), this effect is
the likely cause of the nonmonotonic suppression of magnetic moment as a function of size.
Two classes of Fe clusters were considered in this work: faceted and nonfaceted. Nonfaceted
structures are nearly spherical in shape and faceted structures are built using the conventional
layer-by-layer growth model.The magnetic moment was calculated as the expectation value of
the total angular momentum,

M =
μB
ħ
[gs⟨Sz⟩ + ⟨Lz⟩], (.)

where gs =  is the gyromagnetic ratio of the electron. The magnetic moments of the clusters
as a function of size is displayed in > Fig. - for all classes of clusters considered. Sup-
pression of the magnetic moment with increasing size is observed, in good agreement with
experiment. Clusters with faceted surfaces indeed have a lower magnetic moment due to more
efficient hybridization although the correlation of shape and magnetic moment is not always
well defined. Icosahedral structures are predicted to have magnetic moments lower than bcc
clusters.

Another good example of disagreement between different methods is given in Krüger
and coworkers where Pd clusters having several high-symmetry structures including icosahe-
dra, octahedra, and cuboctahedra were optimized using both the LDA and GGA in the DFT
framework. GGA yields larger bond lengths in accord with the general expectation. But the dif-
ference is almost independent of size. Icosahedral structures tend to yield larger bond lengths
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⊡ Fig. -
Magnetic moments of faceted and nonfaceted Fe clusters in the icosahedral and bcc configura-
tions: (a) atom-centered bcc, (b) bridge-centered bcc, and (c) icosahedral. Experimental data is
displayed as black diamonds for comparison (Reprinted with permission from Tiago et al. ().
© () by the American Physical Society)

than octahedral and cuboctahedral structures, also displaying a flatter variation with increas-
ing coordination number. The accuracy of this breathing mode relaxation was confirmed by
comparing to a full relaxation of the Pd cluster.

The Pd cluster was found in the work of Kumar and Kawazoe () to have an icosahe-
dral structure with a .μB/atommagneticmoment.This result agrees with some of the earlier
studies and disagreeswith some others.The central atom in the cluster is found to have a smaller
magnetic moment than the surface atom only by a very small amount unlike the large differ-
ence in the Mn study of Kabir and coworkers (). For N =  and  icosahedron-derived
structures are favored over other high-symmetry structures. The magnetic moments for both
sizes remain around .μB/atom. Going from N =  to the double icosahedron at N = , the
magnetic moment decreases from .μB/atom to .μB/atom. As the cluster sizes increase
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there is a decrease in local (atomic) magnetic moments. For N =  and N = , the lowest-
lying state was found to be theMackay icosahedra. Cubic and decahedral structures were found
to have the next highest energies, with .μB/atom and .μB/atom respectively. For the Pd
cluster, structures with smallermagnetization lie very close to the ground state andwould there-
fore be accessible at room temperature. Somagnetic order can be easily lost under experimental
conditions. In contrast to the results for Mn (Kabir et al. ), the icosahedral structures have
a higher magnetic moment than other high-symmetry structures.

In work of Nava and coworkers (), Pd clusters were studied using the spin-polarized
DFT method in the range N = –. The N =  cluster was found to have an icosahedral
structure with a high spin state. It is seen to undergo a very slight Jahn-Teller distortion, which
increases the cohesive energy only by . eV.The truncated decahedron and the cuboctahedron
are found to be less stable.

Yao and coworkers () utilized results from simulated annealing of Ni clusters using
an empirical potential as starting configurations to further optimize them using a DFT code.
This is another technique often used in cluster literature. In this work, Ni clusters with N =
– atoms were found to attain icosahedron-like structures with the N =  cluster being
a perfect icosahedron and N =  the double icosahedron. Clusters in the range N = –
have very complicated structures because they are in the transition region between the N = 
icosahedron and the N =  icosahedron. Around N =  and N = , clusters are mostly
formed by adding or removing a few atoms from the corresponding perfect icosahedra. Dips
are observed in themagneticmoment for N =  and  as expected from the compact structure
of these clusters.

While all of the studies mentioned above deal with collinear spin, which singles out one
direction along which the magnetic moment may be oriented, a very important class of clus-
ters with high magnetic moments display noncollinear spin. In these clusters, the magnetic
moment is allowed point in an arbitrary direction and thus present a new degree of freedom.
A good example for the investigation of this effect is presented in the work by Du et al. ()
where -atom clusters of Co and Mn atoms with several different compositions but always in
the octahedral geometry were investigated within the DFT theory including the noncollinear
spin formalism. Low-lying isomers with up tomore than ○ of average degree of noncollinear-
ity were identified. For certain compositions and geometries different tendencies for magnetic
coupling (AFM vs FM) is also found to cause a certain degree of spin frustration.

In the work by Zhang and coworkers (), Mo clusters were studied within the DFT
framework. An interesting result was that the initial icosahedral structure for the N =  cluster
was found to undergo a very large distortion. This distortion was explained by the tendency
of Mo clusters to form Mo dimers. The strength of the bonds in Mo is covalent, therefore,
at this size, the cluster shows nonmetallicity. At N =  , the icosahedral structure is found to
again undergo a large distortion. However in contrast to N = , the alternateOh structure was
not found to be much more stable than the distorted icosahedron. This was explained by the
decrease of nonmetallicity with size.

D Structures: Nanotubes, Nanowires, Nanorods

In nanoscience literature, the name one-dimensional was coined to describe systems where
one of the dimensions is several orders of magnitude larger than the other two dimensions.
Much like the zero-dimensional case, the border between one- and two-dimensional systems is
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ill-defined and system-dependent. For this reason, two-dimensional systems exhibit the same
richness in structural and electronic properties as in the zero-dimensional case unlike their bulk
counterparts.

One, dimensional structures may, in the broadest classification, be divided into nanotubes,
nanowires, and nanoribbons. Nanotubes are simply described as two-dimensional materials
(such as graphene, BN sheets, TiO sheets and many others) seamlessly rolled into a hollow
cylinder although the actual fabrication usually follows a muchmore involved procedure. Nan-
otubes may be regarded as a unique subset of one-dimensional structures that do not have a
surface and are thus devoid of surface effects. In this respect they are analogous to the fullerenes
in the zero-dimensional case. Nanowires on the other hand are extremely thin wires that are
grown or extracted along well-defined crystal directions and may have widely different sur-
faces. The surfaces, however, rarely remain in their bulk configuration and often reconstruct to
reduce strain or saturate broken bonds.This procedure is highly size- andmaterial-specific, and
nanowires therefore display a large variety of strongly surface-dependent properties. Finally,
nanoribbons are thin strips of two-dimensional materials such as graphene. The edges may
reconstruct or be saturated with different species to modify their properties.

In addition to structural and electronic properties that are explored in zero-dimensional
materials, one-dimensional materials also exhibit rather interesting elastic properties. We
shall begin this section with a brief review of elastic considerations regarding one-dimensional
nanomaterials and afterward move onto structural and electronic properties.

Elastic and Structural Properties

In nanowire applications such as AFM tips, NEMS, andMEMS, which make use of mechanical
properties, it is crucial to have a good understanding of the evolution of elastic properties all
the way down to the nanoscale. Elastic properties that are ordinarily under investigation include
elastic moduli, plasticity, crack propagation, buckling, and breaking points.

There are numerous examples of experimental determination of elastic properties of
nanowires in the literature. A recent study by Barth and coworkers () determines the
Young’s modulus of SnO nanowires by anchoring and bending them with the help of an AFM
tip. By mapping the bending amplitude to the Young’s modulus through classical elasticity
formulae the Young’s modulus is estimated at around GPa for the samples studied.

Contrary to the macroscopic scale, the elastic properties of nanoscale one-dimensional sys-
tems are often seen to depend on their physical dimensions. This intriguing fact brings forth
the necessity of studying, among others, the elastic properties of such systems as a function of
their size. In fact, the theoretical literature is very rich in examples of such studies. Empirical
potentials are particularly suitable for studies of size dependence since systems with large num-
bers of atoms may be handled with relative ease, allowing the determination of convergence
of elastic properties of nanomaterials to those of their bulk counterparts. A related question
to this fact is to what extent the laws of continuum elasticity can be applied to nanoscale sys-
tems, which has received much attention both theoretically and experimentally. A recent study
by Rudd and coworkers () opens with this very same question, where the Young’s modu-
lus of Ta ⟨⟩ and Si⟨⟩ nanowires has been determined using a Finnis-Sinclair () and
Stillinger-Weber () potential respectively in a molecular dynamics simulation. Nanowire
radii were explored up to approximately  nm and both materials were found to display a
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strong dependence on the wire width eventually converging to the bulk value. Interestingly,
the convergence trends are opposite where the Young’s modulus of the Si nanowires increases
while that of Ta nanowires decreases with radius. In the same study, DFT calculations were also
performed on Si nanowires, partially confirming the outcome of the Stillinger-Weber calcula-
tions. However, the match with continuum theory was found to be much better for the DFT
results.

Size-dependence is also demonstrated in a study by Hu and coworkers () on ZnO
nanowires and nanotubes where they use an exp- type empirical potential including Coulomb
interaction for Young’s modulus calculations. The Young’s moduli of nanowires and nanotubes
show a very strong dependence on the radius and wall thickness respectively.

Due to the extremely high surface-to-volume ratio in nanowires, the particular surfaces
that are exposed at the outer edges of the nanowires play a crucial effect in the determination of
their elastic properties. Recent evidence for this fact was demonstrated by Wang and Li ()
in their DFT-parameterized model study of Ag, Au, and ZnO nanowires with different surface
terminations. Their results show discernible albeit small differences in the size dependence of
the Young’s modulus for different surface terminations of the nanowires in question.

Nanotubes have also received a great deal of attention from researchers due to their extraor-
dinary elastic properties. They have been shown to possess an unusually high axial stiffness
in addition to very high reversibility under large distortions. In addition to the large body of
literature on experiments probing the elastic properties of nanotubes, many theoretical studies
have also been conducted. Due to their varying radii and chirality, nanotubes present end-
less possibilities for the investigation of their elastic properties. Liang and Upmanyu (),
for instance, have studied the radius (or equivalently curvature) and chirality dependence of
the torsion induced by applied axial strength of the nanotubes. Their studies, which utilize
the widely used second-generation reactive empirical bond-order potential (Brenner ),
revealed a torsional response of up to .○ nm, which varied remarkably for different radii
and chiral angles. Conversely, as reported in several early studies on nanotubes employing DFT
calculations, Young’s modulus is known to be largely independent of the chirality.

Elastic properties of nanotubes of many materials other than C have also been theoreti-
cally explored. In an exhaustive work, Baumeier and coworkers () used DFT calculations
to survey such properties as strain energy andYoung’smodulus of SiC, BN, and BeOnanotubes.
Baumeier and coworkers observe that being composed of two atomic species instead of one as
in carbon nanotubes, the nanotubes made out of these materials exhibit a different relaxation
pattern for the relevant anions and cations, suggesting possible different behavior than carbon
nanotubes. Nevertheless, the results show that at least for (n, n) and (n, ) nanotubes of sim-
ilar radii the behavior is similar. All three materials display a decreasing Young’s modulus as
a function of radius converging to the sheet value for large radii. Among the three materials,
BN nanotubes display a significantly high Young’s modulus, followed by SiC and finally by BeO
nanotubes.

The interwall attraction in multi-walled nanotubes opens up another possible avenue for
the study of elastic properties. Zhang () and coworkers have studied the Young’s modulus,
Poisson ratio and the buckling point of multi-walled nanotubes using a combination of second-
generation reactive bond-order potential to model intralayer bonding and a Lennard-Jones
potential for the interlayer interaction. The multi-walled nanotubes studied were divided into
two sets, the first formed by embedding increasingly smaller (n, n) tubes into a large (, )
nanotube (up to four walls) and the second by placing a (, ) tube into increasingly larger
(n, n) tubes (again up to four walls). A molecular dynamics algorithm was used during their
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calculation and the dependence of the moduli in addition to the buckled morphologies were
presented. Young’s modulus and Poisson’s ratio turn out to follow a different trend for the two
sets considered.While the set that grows inward display increasing (decreasing) Young’s modu-
lus (Poisson ratio) for increasing number ofwalls, the set that grows outward follow the opposite
trend.

As mentioned in the introduction to this section, one way to saturate the surface bonds
of nanowires is through passivation by different species. The elastic behavior of passivated
versus unpassivated nanowires raises an interesting question. Lee and his coworkers ()
studied several elastic properties of H-passivated nanowires of a large range of radii varying
between . nm and . nm (see > Fig. -) using DFT. As expected, the Young moduli of
H-passivated Si nanowires mostly follow predictions from continuummodels regardless of the
varying proportions of ⟨⟩ and ⟨⟩ surfaces exposed. This is attributed to the fact that the
bulk-like covalent bonding character at the surfaces is preserved when H is used to passivate
the dangling bonds at the surface.

Althoughmicroscopic modeling is of utmost importance in the understanding of nanoscale
materials, there are a number of experimental situations of interest that cannot be handled by
these time-intensive methods due to their large size. For large enough systems (such as large
portions of nanotubes suspended over a trench) continuummethodsmaybe employed (Ustunel
et al. ). However, complete coarse-graining is also not always a viable choice since one then
loses detailed information on locally nonhomogeneous regions of the system such as defects
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H-passivated Si nanowires of different sizes studied by Lee et al (Reprinted with permission from
Lee and Rudd (). © () by the American Physical Society)
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and local deformations. In such cases, multiscale methods which apply different methods at
different scales of the system are the methods of choice. An illustrative example was studied by
Maiti () where a micromechanical sensor made out of a nanotube was deformed by a Li
needle. The bent but undeformed portions of the nanotube were modeled by a coarse-grained
molecularmechanics simulation, while the highly deformedmidsection (enclosed in a box) was
modeled using a quantum mechanical method. The two methods were then matched at the
interface of the two regions.

Structural Properties

The novel electronic properties of nanotubes, nanowires, and nanobelts are inextricably linked
to their structural properties. This is largely due to their high surface-to-volume ratio, where
the bonding on the surface structure determines the electronic states which in turn determines
such properties of the system as conductivity and magnetism.

Asmentioned in the introductory section, nanowires nowadaysmay bemanufactured from
a great variety of materials. As fabricated, it is experimentally difficult, if not impossible, to
intuitively infer their surface structure. Simulations on the other hand provide an inexpensive
yet accurate way of studying this relation between structure and electronic properties.

The methods of preference in nanowire modeling is generally tight-binding and to a larger
extent DFT, since electronic properties depend sensitively on the structure requiring accurate
calculations. Once a material (or combination of materials) is chosen the important parameters
of nanowire modeling are the particular surfaces surrounding the nanowire and passivation,
that is, the saturation of the bonds at the surfaces. Two of the most commonly studied surface
terminations are surface reconstruction and H-passivation.

Due to the axial periodicity of one-dimensional nanomaterials, plane wave–basedmethods
which are traditionally used for crystals are very often employed. In the work of Arantes and
Fazzio (), where they study free and passivated Ge nanowires, the band gap of passivated
and unpassivated nanowires were determined using a plane wave–based GGA-DFT method.
The nanowires were grown in the ⟨⟩ and ⟨⟩ directions and their band gaps were calculated
as a function of nanowire diameter. In spite of the well-known underestimation of the band gap
by LDA and GGA methods, a trend can be obtained rather reliably. The band gaps are seen to
vary with respect to direction and size.

Though not often encountered global search algorithms are also used for determining the
structure of nanowires. Especially in the case of nanowires with smaller radii, the structure
may be so different from bulk as to prevent any a priori prediction. Chan and coworkers ()
conducted a genetic algorithm search based on the formation energy of H-terminated Si NWs
where the formation energy is defined as

f = (E − μHnH)/n − μ, (.)

where E is the total energy of theNW in question, μH and μ are the chemical potentials ofH and
Si respectively, and n is the number of Si atoms. The genetic algorithm was conducted in two
stages. In the first stage a long evolution through several generations was conducted using an
empirical potential (of theHansel-Vogel type). In the second stage the outcome structures of the
evolution for each size were relaxed using a DFT algorithm. The result, reminiscent of cluster
structures, is that certain sizes of SiNWs are preferred over other sizes.These structures are once
again termedmagic sizes. In general, structures with even number of Si atoms are preferred over
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those with an odd number. The most stable structures are observed either in a plate-like form
where chains of Si hexagons join together to form flat structures, or a hexagon-shaped cross
section.

One of the most important parameters in determining the geometric and therefore the elec-
tronic structure of nanowires is surface termination. The high-energy dangling bonds at the
surface may either be saturated by a rearrangement and rebonding of the surface atoms or by
attaching electropositive species (such as H). In general, while the reconstruction may signifi-
cantly alter the structural and electronic properties of the material, passivation by other species
leaves these properties relatively unaltered. In the recent work of Migas and Borisenko (),
⟨⟩ oriented Si nanowires were passivated by O, F and H and the structural and a large num-
ber of different sizes and geometries were studied using DFT. Under different combinations and
coverages by these elements, the band gap of the Si nanowires considered (only nanowires with
rhombic cross sections were considered) were found to vary between . and . eV, which
shows that termination can be used as a means to control the electronic properties.

Countless other studies in understanding the structure of experimentally relevant one-
dimensional structures have been done. Bi nanowires (Qi et al. ), CdSe nanorods
with hexagonal and triangular cross sections (Sadowski and Ramprasad ), and Te
nanowires (Ghosh et al. ) are some studies thatmay bementioned. In addition tomaterials
that have already been manifactured, researchers have also been interested in the possible exis-
tence and properties of nanoscale systems that have not yet been experimentally realized. Rathi
and Ray (), for instance, have examined the possibility of SiGe nanotubes, while Qi ()
and coworkers investigated Bi nanotubes and hollow Bi rods. Recently it was demonstrated
by model calculations that the stable carbon nanotube structure might be possible with non-
graphene like form (Erkoc ). Furthermore, nanorod structures constructed from benzene
rings only (called as benzorods) may also be possible.Their structural and electronic properties
were investigated by performing model calculations (Erkoc ; Malcioglu and Erkoc ).

Electronic, Magnetic and Optical Properties

As a result of the immense variation in structural properties of one-dimensional structures,
one observes an equally diverse spectra of electronic properties. Perhaps the most intriguing
property of one- and two-dimensional nanoscale systems is that after the required geometrical
deformations in order to reach their equilibrium, one might observe a stark difference between
the newly formed system and its bulk counterpart. Amaterial which is an insulator in bulk may
become a conductor when taken to the nanoscale. Similarly one- or two-dimensional nanos-
tructures of a nonmagnetic material may have a nonzero magnetic moment.These differences
usually stem from the new states introduced into the electronic structure of the material by ter-
minating structures such as surfaces, steps, edges, and corners. The interest in these emergent
properties is due to the possibilities of integrating these small-scale materials into technological
applications and controlling their properties by controlling the structure.

Due to the ease of interfacing with current technology, Si nanowires have perhaps been the
most intensely studied system. Rurali and Lorente (), for instance, explored a large range
of surface reconstructions for ⟨⟩ Si nanowires with a small radius of about . nm. They
discovered that for certain reconstructions the nanowires develop conducting states in their
band gap,while for others the semiconducting behavior is retained. This is a prime example of
effects of confinement on the electronic structure of a system.
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Another parameter that has a strong effect on the electronic properties of nanowires is sur-
face termination. As demonstrated byRurali () that both Si andC-terminatedH-passivated
SiC nanowires have a larger band gap than that of bulk SiC. As discussed by Rurali, this is
purely a confinement effect since passivation prevents reconstruction and the related introduc-
tion of gap states. However, when the nanowires are allowed to reconstruct, both species of SiC
nanowires are seen to become conducting due to the surface states introduced into the band gap.

In addition to the conventional carbon nanotubes, several other materials were inves-
tigated as viable candidates for nanotube structures. BN (Chopra et al. ) and more
recently (Sun et al. ) SiC nanotubes are two such materials which have been successfully
synthesized in the nanotube form. Following their synthesis Gao and coworkers () con-
ducted a DFT-PAW study of undoped and N-doped SiC nanotubes of varying sizes. For each
size the nanotubes were doped initially with  and  N atoms and their structural and electronic
properties were studied. For each doping level, several possibilities were investigated and the
most stable structure was identified. As an extreme case, the case in which all the C atoms were
replacedwithN atoms, in otherwords SiNnanotubes, was considered.These nanotubes, instead
of being circular were found to have a staggered or star-like cross section. In all the cases consid-
ered the nanotubes were found to be semiconducting with an indirect band gap. Recent model
calculations on binary compounds BN (Erkoc ), GaN (Erkoc et al. ), InP (Erkoc ),
ZnO (Erkoc andKokten ) nanotubes give reasonable results comparable with experimental
findings.

Although by nature rather free of defects, the few existing defects in graphene and nan-
otubes change the electronic structure of their hostmaterial drastically (Pekoz and Erkoc ).
In spite of the several experimental methods that have been developed to locate and study the
properties of such defects, theoretical methods are an indispensable tool for creating isolated
defects of the desired nature and studying their effects on electronic properties. A particularly
interesting question is the stability of well-characterized graphene defects in nanotubes of vary-
ing radius and chirality. Since a graphene sheet can be viewed as a nanotube with an infinitely
large radius, the formation energy of any nanotube defect should tend to the equivalent defect
on a graphene sheet. Amorim et al. () demonstrated an example of this behavior by study-
ing the so-called defect, which is a combination of three pentagons and three heptagons.
This defect is formed in two steps. In the first step two divacancies coalesce to form a new defect
() composed of two pentagons and an octagon. This step is followed by a further structural
change, which yields the  defect, see > Fig. -.

In graphene the  defect is found to be more stable than the  defect by . eV.
The same defects were then created in zigzag and armchair nanotubes of radius in the range
of –Å. As in the graphene case the  defect is found to be more stable in all the nan-
otubes studied.The formation energy is, however, lower than in the graphene case.The expected
tendency toward the corresponding graphene values is seen in both cases and convergence is
estimated to occur around a radius of Å.

The effect of defects on the electronic properties of their host substance is illustrated in this
work by the conductance graph calculated using the Green’s function density functional the-
ory. The results indicate that the presence of both the  and  reduce the conductance
considerably while at the same time displaying different voltage dependence.

Another investigation of defects in nanotubes for the purpose of application as a gas sensor
was conducted by Andzelm and coworkers (). The particular question at hand is the bind-
ing of NH molecule to nanotubes and whether or not binding is enhanced by defects. Three
defects are considered: a Stone-Wales defect (a defect formed by rotating a given bond by ○
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⊡ Fig. -
 (a) and  (b) defects ingraphene and (c,e) and  (d,f) defects in a nanotube in dif-
ferent orientations (Reprintedwith permission fromAmorim et al. (). © () by the American
Chemical Society)

a b

⊡ Fig. -
A Si–Ge interface shaped into a nanotube. (a) Side view, (b) cross view (Adapted from Kagimura
et al. )

resulting in the formation of two pentagons and two heptagons), a monovacancy and an inter-
stitial C atom placed on top of a bridge. In addition, the case of an O molecule dissociated
on a SW defect was also considered to mimic the environmental effects. Two different orien-
tations, straight and chiral, for the SW defect were considered. All-electron DFT calculations
reveal that the monovacancy is the most stable. Calculation of reaction barriers also reveal that
defects with preabsorbed O dissociate NH into NH and H.

The heterostructure problem, which has been widely studied in the bulk form, is becoming
an increasingly popular topic also in the one-dimensional systems.Theband alignment problem
has been addressed recently in a DFT study conducted by Kagimura and coworkers ()
where a Si–Ge interface was studied.The model for such a system is shown in > Fig. -. The
band states contributed by the surface dangling bonds were investigated as possible candidates
for the induction of a potential well.
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The search for nanoscale materials that exhibit spontaneous magnetization has become
an increasingly rich field in the past decade. Several materials such as doped nanotubes and
nanowires, defective graphene and nanoribbons of two-dimensional materials can be itemized
as candidates considered in these studies. In order to identify the suitability of a material for
spontaneous magnetization, electron density in the two spin channels, n↑(r⃗) and n↓(r⃗) are
compared. If there is a significant difference in this distribution, the material is nominated
for use in magnetic applications. If in addition the density of states in the two spin channels
show different characteristics at the Fermi level such that in one channel there is a significantly
larger number of states than the other, then the material provides promise also in spintronics
applications.

One such candidate material for magnetic applications is BN sheets and nanotubes doped
with several different elements. In a recent example, Li and coworkers (a), in their DFT
study on BN nanotubes with one, two, and three H atoms adsorbed at different locations,
observed that some of the configurations considered may give rise to a magnetic moment of
up to .. The origin of this magnetic moment is evident from the band structures where the
contribution of band gap states are due to only one of the spin channels.The states that are seen
in the gap are also shown visually and their origin is unambigiously identified as due to the
adsorbed hydrogen.

A rather novel and intriguing application of nanomaterials and its investigation using the-
oretical modeling is the subject of a recent work by Santos de Oliveira and Mina (). Their
study discusses a phenomenon called self-purification of nanomaterials, namely, the expulsion
of foreign species from the surface. Self-purification is attributed to the fact that nanoscalemate-
rials have a lower incorporation rate of impurities compared to their bulk counterpart. In this
work SiC nanowires are studied as another potential example of self-purifying materials. B and
N impurities were planted at different positions inside and on the surface of three SiC nanowire
configurations (⟨⟩ Si-coated, ⟨⟩ C coated and ⟨⟩ Si and C coated) at locations rang-
ing from the center to the surface. The formation energies of the configurations thus formed
were then calculated and compared. As a result, the self-purification process was found to be
favorable for B-doped SiC nanowires irrespective of their orientation. The B atomwas found to
segregate favorably to the surface and thus expelled.The N impurities, however, were found to
prefer the sites in the core of the nanowires, and therefore, N-doped SiC nanowires were found
to fail as self-purifying materials.

One-dimensional systems are actively sought after also for their optical properties. Using
the GW method, which is an accurate method for studying excited states, Bruno and cowork-
ers () demonstrated that optical properties of Si and Ge nanowires depend not only on the
nanowire diameter but also on the orientation.

D Structures: Graphene and Derivatives

Due to the remarkable ability of carbon to exist in different hybridization states, carbon-
based materials display an unusually rich variety. Diamond, graphene, cage-like molecules and
perhaps most notably carbon nanotubes are examples of the large selection of possibilities.

Graphene, which is a single layer of graphite, may be thought of as the building block of
most of the allotropes listed above (> Fig. -). Nanotubes are geometrically rolled up ver-
sions of graphene, and fullerenes can be formed by introducing topological defects (heptagons
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⊡ Fig. -
Graphene is a D building material for carbon materials of all other dimensionalities. It can be
wrapped up into D buckyballs, rolled into D nanotubes, or stacked into D graphite (Reprinted
with permission from Geim and Novoselov (). © () by Nature Publishing Group)

and pentagons) into the perfect honeycomb lattice structure of graphene in order to introduce
positive and negative curvature (Freitag ; Peres et al. ).

Regardless of the immense attention that graphene received in the theoretical literature, it
wasn’t until  (Novoselov et al. ) that a single layer of graphene was isolated experi-
mentally. Since two-dimensional crystals were proven to be unstable theoretically (Landau and
Lifshitz ; Mermin ), the discovery of free-standing graphene came as a surprise (Meyer
et al. ). This apparent discrepancy, however, was lifted when upon closer inspection, the
isolated graphene sheets were not perfectly flat but had corrugations reaching up to  nm
in size.

Since the discovery and isolation of graphene was achieved, many other materials were
found to form two-dimensional structures. In this chapter, we give an overview of carbon-based
two-dimensional materials including graphene, graphene nanoribbons, nanobelts, and strips in
addition to two-dimensional structures of several other materials.
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Graphene, Nanosheets, Nanoribbons, Nanobelts, Nanostrips

With the advent of several sophisticated experimental techniques, the two-dimensional
confinement of graphene layers were further extended to one-dimensional in the form of
nanoribbons. Nanoribbons are narrow strips of graphene that may exhibit quasi-metallic or
semiconducting behavior depending on the geometry of their edges. Much like nanotubes,
graphene nanoribbons (GNRs) are also termed zigzag or armchair based on the directional-
ity of the bonds with respect to the long axis (see > Fig. -). Due to the dependence of their
electronic properties on their geometry, it is important to control the morphology and crys-
tallinity of these edges for practical purposes. It has been experimentally shown that (Jia et al.
) controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons are
possible by Joule heating. During Joule heating and electron beam irradiation, carbon atoms
are vaporized, and subsequently sharp edges and step-edge arrays are stabilized, mostly with
either zigzag- or armchair-edge configurations.

In addition to the edge geometry, the electronic properties, in particular the band gap, of
nanoribbons also depend on their width (Han et al. ; Wu and Zeng ). The magnetic
properties may also be severely altered upon reduction of size to a graphene fragment (Wang
et al. ) which results in the emergence of giant spin moments.

Another path for controlling the electronic properties of nanoribbons is by an application
of an external electric field or by chemical doping of the pristine samples. Half-metallicity, for
instance, which has several applications in spintronics (Wu and Zeng ) may be introduced
through functionalization with such species as H, COOH, OH, NO, NH, and CH (Son et al.
).

Straight GNRs with zigzag, armchair, or mixed edges are proven to be semiconducting by
the experiment. In addition, GNRs can be sculpted by attaching two segments together that
are manufactured to make a  degree angle with each other thereby forming a sawtooth-like
nanoribbon (> Fig. -). The structure of a sawtooth-like GNR can be characterized by two
integers (w, l). The first integer denotes the width of the nanoribbon, while the second integer
describes its periodic length (Wu and Zeng ).

Stability is an important issue for amaterial which is intended to be used as a building block
of device applications. Even though perfect two-dimensional crystals are proven to be unstable,
graphene is found to be stabilized by corrugations in the third dimension. Understanding the
effect of GNR width on the stability is therefore also a central issue for possible applications.
Molecular dynamics computer simulations using empirical interatomic potentials predict that

a b

⊡ Fig. -
(a) Armchair graphene ribbon model. (b) Zigzag graphene ribbonmodel
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⊡ Fig. -
The model structure of a sawtooth-like GNR (Adapted fromWu and Zeng )

⊡ Fig. -
Armchair edged GNRs. Left column shows top view and right column shows tilted view. GNRs of
width five hexagonal rings are shown.  K, K, and final temperature images are given (Adapted
fromDugan and Erkoc )

structural stability of graphene nanoribbons show dependence on size (width) and edge orien-
tation (Dugan and Erkoc ). > Figures - and > Fig. - show respectively the relaxed
structures of armchair and zigzag edged GNRs with various widths.

In the recent nanoscale literature, a wealth of materials other than C have been identified,
both theoretically and experimentally, as viable candidates for future use as two-dimensional
devices.

Boron nitride, for instance, having electronic properties that resemble carbon can exist in a
hexagonal structure h-BN similar to the graphite layered geometry. Much like graphene sheets,
BN sheets can be grown on more or less lattice-matched transition metal surfaces (Corso et al.
; Huda and Kleinman ). A model BN sheet is shown in > Fig. -.

BN, being a member of the III-V semiconductor family indicates the possibility of nanorib-
bons or nanobelts made of other semiconductor families. Indeed, several oxide and other II-VI
family nanobelts have been discovered and reported (Pan et al. ) (ZnO, SnO, CdO, GaO,
PbO,ZnS, CdSe, and ZnSe). Some of the oxides in this family such as ZnO and SnO, owing
to their polarity and crystal structure, deform in novel morphologies such as rings, springs,
and spirals in order to bring together the positive and negative charges, counteracting the
charge imbalance (Yang and Wang ). These structures comprise a versatile set of nano-
materials that are promising candidates for various applications such as sensors, resonators,
and transducers.
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⊡ Fig. -
Zigzag edged GNRs. Left column shows top view and right column shows tilted view. Ribbons of
width five hexagonal rings are shown.  K, K, and final temperature images are given (Adapted
fromDugan and Erkoc )
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⊡ Fig. -
The geometric structure of BN sheet (Adapted from Venkataramanan et al. )

Nanobelts, a term coined by researchers working on these structures (Wang ), are
described as nanowires with not only a well-defined growth direction but also well-defined top,
bottom and side edges and cross-section. The nanobelt structures are usually obtained from
functional oxides, which are semiconductor materials, such as ZnO, GaO, t-SnO, o-SnO,
InO, CdO, and PbO. Puremetal nanobelt structures are also possible, Zn is one of themetals
that form fine nanobelt structures (Wang ). ZnO, being one of the most versatile materi-
als in nanoscale research alongside with carbon and BN, has once again been investigated at
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great depth in the context of nanobelts (Kulkarni et al. ; Wang ). Molecular dynamics
computer simulations using empirical interatomic potentials (Kulkarni et al. ) reveal that
ZnO nanobelts display properties that depend on their size and orientation. Depending on the
growth direction, ZnO nanobelts may exhibit an interesting shell structure or a simple surface
reconstruction.

Nanostrips are similar to nanobelts, they are usedwith the samemeaningwith nanobelts. All
these nanostructures (ribbons, belts, strips) are ideal materials for building nano-sized devices
and sensors (Lin et al. ).

In addition to the materials mentioned above, recent theoretical studies have proposed a
wealth of two-dimensional structures that are composed of less common materials. One such
example is the recently proposed BC graphene (Wu et al. ). The optimized BC graphene
structure is displayed in > Fig. -. Two neighboring CB motifs share two common boron
atoms, giving rise to a hexagon and a rhombus.ThemeanB–C and B–B bond length is . and
.Å, respectively. The sheet is slightly corrugated with a distance of only ∼.Å. The cor-
rugation is a result of an excess of p electrons normal to the sheet relative to the gas-phase CB

molecule.
The quasi-one-dimensional BC nanoribbons are finite-size graphene with parallel edges.

The width of the BC nanoribbon is defined by the number of C atoms normal to the long-
axis of the ribbon. As shown in > Fig. -, type I and II BC nanoribbons are displayed.
The dangling bonds at the edges of BC nanoribbons can be passivated by either H atoms or
CH groups.
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⊡ Fig. -
(a) A CV -CB motif structure. Each carbon atom is bondedwith four boron atoms.Optimized struc-
tures of two types BC nanoribbons with two different edge configurations, referred as type I (b)
and type II (c) (Adapted fromWu et al. )
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TiO with its uses in solar cell applications and surface catalysis has received much atten-
tion both theoretically and experimentally. Its nanostructures are of equal interest to technology
due to their chemical inertness, endurance, strong oxidizing power, large surface area, high
photocatalytic activity, non-toxicity, and low production cost. The titania nanostructures are
constructed by “cutting” of TiO monolayers into nanostrips and by rolling them into cylin-
drical nanotubes or nanorolls (Enyashin and Seifert ). There are two different topological
nanostrip models constructed fron titania. One model is obtained from () surface of tita-
nia, called as anatase layer, and the second model is obtained from () surface of titania,
called as lepidocrocite layer. A view of the structures of () and () TiO layers are shown
in > Fig. -. By rolling of these strips various nanostructures can be generated, such as
nanotubes and nanospirals (nanorolls) (Enyashin and Seifert ).

Non-carbon elemental sheet structures have also been investigated. Lau et al. () pro-
posed four possible configuration models for the boron sheet. According to this study, the
flat form, denoted {}, seen in > Fig. - is a triangular network, while the buckled
{}b and pair-buckled {}pb configurations include chain-wise and pair-wise out-of-
plane displacements. Finally, a reconstructed {} configuration is investigatedwith inversion
symmetry in the unit cell. It can be considered as a triangular–square–triangular unit network.

⊡ Fig. -
Monolayers of TiO in anatase (top (a) and side (b)) and lepidocrocite polymorphs (top (c) and
side (d))

a b

⊡ Fig. -
Idealized  (a) and reconstructed . (b) Boron sheets
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The DFT calculations reveal (Lau et al. ) that the reconstructed {} configuration
is the most stable configuration by . eV/atom relative to the idealized {} configura-
tion. Both the {}b and {}pb configurations tend to converge to the idealized {}
configuration when relaxed during the geometry optimization.

Electronic andMechanical Properties

Graphene has a unique and curious band structure which can be approximated by a double cone
close to the six Fermi points at the corners of the Brillouin zone (see > Fig. -). Commonly
referred to as Dirac electrons, the conduction electrons follow a linear energy-momentum
dispersion and have a rather large velocity.

The conduction in graphene is enabled by the delocalized π-electrons above and below the
plane. Due to their relative detachment from the tightly-knit planar network these electrons
are free to move along the graphene sheet with rather high mobility. This is of course a rather
desirable property for devices used in electronics (Li et al. b).

A good yet simple method for understanding the band structure of graphene is the tight-
binding formalism (Neto et al. ). Graphene is made out of carbon atoms arranged in
hexagonal structure, as shown in > Fig. -. The structure can be seen as a triangular lattice
with a basis of two atoms per unit cell. The lattice vectors can be written as

a =
a

(,
√

) , a =
a

(,−
√

),

where a ∼ . Å, is the carbon-carbon distance. The reciprocal-lattice vectors are given by

b =
π
a
(,
√

) , b =
π
a
(,−
√

),

Momentum

Band gap

Energy Energy

Momentum

Dirac
point

⊡ Fig. -
The band structure of a representative three-dimensional solid (left) is parabolic, with a band gap
between the lower-energy valence band and the higher-energy conduction band. The energy
bands of D graphene (right) are smooth-sided cones, which meet at the Dirac point
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zone. The Dirac cones are located at the K and K′ points

The two points K andK′ at the corners of the graphene Brillouin zone (BZ) are namedDirac
points. Their positions in momentum space are given by

K = (
π
a

,
π


√

a
) , K′

= (

π
a

,−
π


√

a
) .

The tight-binding Hamiltonian for electrons in graphene, considering that electrons can
hop to both nearest- and next-nearest-neighbor atoms, has the form (in units ħ = )

H = −t
∑

<i , j>,σ
(a†σ ,i bσ , j +H.c.) − t′

∑

<<i , j>>,σ
(a†σ ,i aσ , j + b

†
σ ,i bσ , j +H.c.), (.)

where ai ,σ (a†i ,σ ) annihilates (creates) an electron with spin σ (σ =↑, ↓) on site Ri on sublattice
A (an equivalent definition is used for sublattice B), t (∼. eV) is the nearest-neighbor hopping
energy (hopping between different sublattices), and t′ (∼. eV) is the next nearest-neighbor
hopping energy (hopping in the same sublattice). The Hamiltonian in > Eq. . is solved at
various momenta and the energy bands are obtained as follows:

E
±
(k) = ±t

√

 + f (k) − t′ f (k) (.)

with

f (k) =  cos(
√

kya) +  cos(
√




kya)cos (


kx a) , (.)

where the plus sign applies to the upper (π∗) and the minus sign the lower (π) band.
As illustrated by this simple model, graphene is a semimetal or a zero-gap semiconductor.

At low temperatures it does not possess superconducting properties; however, as demonstrated
by Pathak et al. () using variational Monte Carlo, there is a possibility that doped graphene
may superconduct.

The graphene nanoribbons (GNRs) discussed in the previous sections may also be mod-
eled rather easily using the tight-binding formalism taking as the basis the usual Schrödinger’s
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equation (Ezawa ) or the massless particle Dirac equation (Sasaki et al. ).These mod-
els predict that armchair GNRs can be either metallic or semiconducting depending on their
widths, and that zigzag GNRs with zigzag shaped edges are metallic regardless of the width.

The edges of GNRs are also suitable sites for chemical functionalization (Wang et al. ).
Due to the existence of dangling bonds at the edges, the electronic properties of GNRs may be
controlled by modifying these bonds by addition of other species.

The results of first-principle calculations using linear combination of atomic orbital density
functional theory (DFT) method predict that the electronic band structures and band gaps of
the GNRs show a dependence on the edge structure of the nanoribbons (Wu and Zeng ).
Clearly, the electronic band structures are sensitive to the edge structure of the nanoribbons. All
straight GNRs are semiconducting. Two distinct features can be seen concerning the band gap.
The band gap of GNR with zigzag edges slightly decreases with increasing the width w, while
that of GNR with armchair edges varies periodically as a function of w.

Like the straightGNRs, the calculated electronic band structures of the sawtooth-like GNRs
(see > Fig. -) also show semiconducting characteristics with direct band gap. More inter-
estingly, even though the sawtooth-like GNRs have zigzag edges, their band gaps show similar
oscillatory behavior as those of straight GNRs with armchair edges, which depend on the
width w. However, for most nanoribbons, their band gap reduces monotonically with increas-
ing periodic length l . The band gaps of nanoribbons with w = , , or  reduce much rapidly,
whereas those of nanoribbons with w =  or  reduce gradually.

For (, l) sawtooth-like nanoribbons, the band gap approaches zero rapidly as the l increases
(Wu andZeng ).These results show that the band gaps of the sawtooth-like GNRs aremuch
more sensitive to their geometric structures, which is an opportunity for tuning the band gap.

Quantization of electric conductance under the action of an externalmagnetic field displays
a rather interesting trend for GNRs. In the exhaustive tight-binding study conducted by Peres
et al. (), the number of plateaus in the quantized conductance was found to be even in
armchair GNTs while the same number is odd for the zigzag edge.

Rosales et al. () investigated theoretically the effects of side-attached one-dimensional
chains of hexagons pinned at the edges of the GNRs. These one-dimensional chains could be
useful to simulate, qualitatively, the effects on the electronic transport of GNRs when benzene-
based organic molecules are attached to the edges of the ribbons.They propose a simple scheme
to reveal the main electronic properties and the changes in the conductance of such deco-
rated planar structures. For simplicity, they consider armchair and zigzag nanoribbons and
linear poly-aromatic hydrocarbons (LPHC) and poly(paraphenylene), as the organicmolecules.
The attached molecules are simulated by simple one-dimensional carbon hexagonal structures
connected to the GNRs.

These nanostructures are described using a single-band tight-binding Hamiltonian and
their electronic conductance and density of states are calculated within the Green’s function
formalism based on real-space renormalization techniques (Rosales et al. ).

As revealed by the theoretical analysis conducted byNakabayashi et al., GNRs are a solution
to the difficulty of producing an effective graphene switch for turning off the current. Zigzag
nanotubes due to their peculiar band structuresmaybe utilized for better current control rather
than graphene. A single layer of graphene has no bandgap, which makes it difficult to con-
trol current. However, Nakabayashi et al. () found that when a sheet of graphene was in
the form of nanoribbons just a few nanometers wide, its electronic structure changed so that
currents could be controlled in radically different ways in comparison to conventional semi-
conductor devices. Nakabayashi et al. () showed that when a nanoribbon was cut so that
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its edges formed a zigzag structure with an even number of zigzag chains across its width, and
an electrostatic barrier potential applied along part of its length, then it behaved as a so-called
band-selective filter, preferentially scattering charges into either even or odd numbered bands
of its electronic structure depending on the potential. And when two such filters with different
potentials were connected in series, they showed it should be possible to completely shut off the
flow of current through the nanoribbons.

Tight-binding studies have revealed countless interesting electronic properties regarding
GNRs. GNRs, much like single-walled carbon nanotubes, can display metallic or semiconduct-
ing properties depending on their orientation and width. Similar to armchair nanotubes, zigzag
ribbons are all metallic and may have magnetic properties. Bare and H-terminated ribbons, as
studied by Barone et al. may show such effects as gap oscillations which make them a viable
choice for possible band structure engineering applications. The results of this study, which is a
careful investigation of GNRs of several orientations, widths and terminations are displayed
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in > Fig. - along with the details of the models used and the band gap profiles of the
corresponding models.

GNRs have localized edge states located near the Fermi level. By terminating the edges with
different species, one can change the character of these states and consequently the properties
of GNRs. In fact, a first-principles calculation within spin-unrestricted local-density functional
formalism on zigzag-edge graphene nanostrips terminatedwith hydrogen and oxygen atoms as
well as hydroxyl and imine groups show that these different species have a significant impact on
the electronic structure of these strips near the Fermi level (Gunlycke et al. ). Zigzag-edge
nanostrips terminatedwith hydrogen atoms or hydroxyl groups exhibit spin polarization, while
the nanostrips terminated with oxygen or imine groups are unpolarized. These differences of
course result in very different conductance characteristics for these systems.

In further support of the aforementioned evidence Zhang and Yang () confirmed in
their linear combination of atomic orbitals (LCAO) tight-binding study that H-terminated
armchair GNTs exhibit size dependence in their conductance properties.
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On the other hand, ZnO nanoribbons show different characteristics from that of carbon
nanoribbons. ZnO nanoribbons grown along the [] direction can form two different planar
monolayer, zigzag and armchair ribbons. First principles calculations of zinc oxide nanoribbons
show that the stability of armchair edge structures is greater than the zigzag edge configura-
tions. Furthermore, single layered armchair ribbons are semiconductors, whereas the zigzag
counterparts are metallic (Botello-Mendez et al. ). An effect that is not present in purely
carbon-based systems is the presence of two differently charged species offering different edge
configurations. For the zigzag ZnO ribbons, for instance, the exposed atoms are oxygen atoms
while the hidden are zinc. The opposite edge has the inverse structure. The armchair ribbons
are characterized by a Zn-O pair at the outer edge and another pair at the inner edge. After
relaxation, the far edge oxygen ions tend to shift outward on both sides of the ribbon. As in the
case of graphene materials, understanding the effects of edge-dimensional variation on band
gap energies will provide the new insights into the fundamental principle of architecture design
of nanodevices fabricated with ZnO nanostructured materials. A simple tight-binding model
can be used to investigate the electronic properties of nonpolar ZnO nanobelts following the
procedure described below.

Consider a simplified unit cell model (see > Fig. -) along the nanobelt growth z direc-
tion with Zn and O in the xy plane. This is the actual case for the ultrathin ZnO film oriented
along the [] direction.

In this case, the tight-binding Hamiltonian is given by (Yang andWang ):

H =
∑

r∈A
εr a†r ar +∑

r∈B
εrb†r br + ∑

r∈A,B
∑

i=,,⋯
(τr ,i a+r br+Si + τ

∗

i ,r b
+

r ar+Si),

where operators a†r (ar) and b†r (br) create (annihilate) a state at sites A (for Zn) and B (for O)
at their coordinates r, respectively. ε denotes the on-site self-interaction energy, whereas τ is the
interatomic coupling term. Similarly, the wave functions for Zn and O at their respective lattice
sites can be written as a linear combination of Bloch waves along the z direction and standing
waves along x and y as the following (Yang andWang ),

∣Zn, kx , ky >=
Mx

∑

mx=

My

∑

my=
∑

zm
cpeikz zm sin(kxmxa) sin(kymyb)a+mxmy ∣ >

mx

my

Zn (A)

O(B)

⊡ Fig. -
Schematic illustration showinga tight bindingunit cell for a ZnOnanobelt (Adapted fromYangand
Wang )
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∣O, kx , ky >=
Nx

∑

nx=

Ny

∑

ny=
∑

zn
cpeikz zn sin(kxnx a) sin(kynyb)a+nx ny ∣ >

in which lattice vectors a and b are as defined in > Fig. - and cp and cq are coefficients.
To simplify the model, onemay consider only the coupling term between the nearest neigh-

boring sites. In this case, on the same xy plane, theO-sites take the following coordinates around
a Zn center: nx = mx − , mx and mx + ; with ny = my − , my and my +  in correspon-
dence. Along the yz plane, there exist two O atoms that directly interact with the center Zn
with zn = zm ± c, respectively (Yang andWang ).

In addition to the conventional strip-like geometry, other configurations based on GNRs
have also been proposed as a part of a search for favorable transport properties. Various
graphene nanojunctions based on the GNRs have been studied, such as L-shaped, Z-shaped,
and T-shaped GRN junctions (Areshkin et al. ; Chen et al. ; Jayasekera andMintmire
). Of particular interest is the hybrid junctions which are mixtures of armchair and zigzag
GNRs. Some studies have shown that the transport properties of these hybrid GNR junctions
are very sensitive to the details of the junction region (Xie et al. ). Amodel calculation based
on tight-binding andGreen’s function methods for L-shapedGNRs show that the corner geom-
etry of the L-shaped junction has great influence on the electron transport around the Fermi
energy (Xie et al. ). The L-shaped GNRmodels considered are shown in > Fig. -. The
calculated conductance plots as a function of electron energy are shown in > Fig. -. Inter-
estingly the results reveal that the corner is the decisive factor for the electronic properties of
these junctions. As more carbon atoms are added to the inner side of the corner the junction
moves from being metal to a semiconductor, developing a band gap.

Carbon nanoribbons have also interesting mechanical properties. For instance, Raman
spectra show a remarkable dependence on ribbon width (W) (Zhou and Dong ). For the
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⊡ Fig. -
(a) A deformed LGNR (called LGNR) where a triangle graphene flake (in the dashed-line triangle) is
connected to the inside corner of a standard right-angle LGNR. (b) A deformedLGNR (called LGNR)
in which a triangle graphene flake is cut from the outside corner of LGNR in (a). NA and NZ rep-
resent the widths of the semi-infinite AGNR and ZGNR, respectively; N represents the side length
of added triangle flake, while N represents the side length of cut triangle flake (Adapted fromXie
et al. )
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GNRs whose widths are larger than Å, the radial breathing-like mode (RBLM) frequencies
follow the /W rule:

ω = . ×

W
+ . in /cm.

But for the narrow GNRs whose widths are less than Å, their RBLM frequencies follow the
/
√

W rule:

ω = . ×

√

W

′

. in /cm.

A unified fitting function has been proposed (Zhou and Dong ), which can be suitable for
all the GNRs:

ω = . ×

W
+ .×


√

W
− . in /cm.

Another interesting application of graphene is the antidot lattices. Antidot lattices are trian-
gular arrangements of holes in an otherwise perfect graphene sheet. In each hexagonal unit cell
of the lattice, a circular hole is introduced whose radius R can be adjusted along with the length
of the hexagonal unit cell, L. Previously known applications of antidot lattices involve semi-
conductor lattices, while in a recent publication the possibility of creating antidot structures on
graphene using e-beam lithography has been reported (Pedersen et al. ).The antidot lattice
causes graphene to become a semiconductor, introducing a tuning parameter which is the dot
size and shape. In addition spin qubit states can be formed in the antidot lattice by manipulat-
ing the antidot arrangement. Pedersen et al. () demonstrated that the hole shape plays a
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crucial role in determining the electronic structure. A triangular hole instead of a circular hole
results in the appearance of a metallic state at the Fermi level.The different band structures are
illustrated in > Fig. -.

Magnetic and Optical Properties

Lower-dimensional systems are expected to show electronic, magnetic, and optical properties
that are not observed in their bulk counterparts. In two-dimensional structures, the inherent or
emergentmagnetic properties depend onmany factors including shape, size, and the interaction
between subregions (Jensen and Pastor ).

GNRs are a typical example of emergent and controllable magnetic systems. Spin-polarized
first-principles calculations by Gorjizadeh et al. () have shown that doping GNRs with d
transition metals result in the appearance of FM or AFM states. In particular Cr and Co provide
a largemagneticmoment and dopingwith Fe orMnat lowdensities yields half-metallic ribbons.

As discussed in the work by Enoki and Takai, as the dimension of the system decreases,
the contribution coming from the edge states increases in proportion (Enoki and Takai ).
The localized edge states in GNR, which are dispersionless states that appear at the Fermi level
give rise to interesting magnetic properties.

From the applications point of view the magnetic properties of graphene nanoribbons
are more interesting and studied both experimentally and theoretically. Particularly quasi D
GNRs have magnetic properties depending on their size and symmetry. These are edge states
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of nanoribbons with opposite spin polarization and band gaps varying with the width of the
ribbon (Topsakal et al. ).

Using first-principles plane wave calculations within the DFTmethodTopsakal et al. ()
predict that in addition to edge states electronic and magnetic properties of graphene nanorib-
bons can also be affected by defect-induced states. In particular, when H-saturated holes are
introduced into the GNT, the band structure is modified dramatically altering in return the
electronic and magnetic properties. Similarly, vacancies and divacancies induce metallization
andmagnetization in non-magnetic semiconducting nanoribbons due to the spin-polarization
of local defect states. Antiferromagnetic ground state of semiconducting zigzag ribbons can
change to ferrimagnetic state upon creation of vacancy defects. In this study, the changes in
electronic properties are studied as a function of the location and the geometry of the vacan-
cies in different types of armchair GNRs. Due to the spin polarization of localized states and
their interaction with edge states, magnetization may be introduced into the GNRs. Some of
the representative results of this work are displayed in > Fig. -.

Not only armchair, but also zigzag nanoribbons are strongly affected by defects due to single
and multiple vacancies (Topsakal et al. ). When coupled with the magnetic edge states of
the zigzag nanoribbons the vacancy defect brings about additional changes. The magnetic state
and energy band structure of these ribbons depend on the type and geometry of the defects.
In a ZGNR(;) a single vacancy formation energy is lowered by . eV when the defect is
situated at the edge rather than at the center of the ribbon. Furthermore, two defects associated
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(a) Metallization of the semiconducting AGNR() by the formation of divacancies with repeat
period of l = . (b) Magnetization of the non-magnetic AGNR() by a defect due to the single car-
bon atomvacancywith the same repeat periodicity. Isosurfaces around the vacancy correspond to
the difference of the total charge density of different spin directions. Solid (blue) and dashed (red)
lines are for spin-up and spin-down bands; solid (black) lines are nonmagnetic bands (Reprinted
with permission from Topsakal et al. (). © () by the American Physical Society)
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with two separated vacancy and a defect associated with a relaxed divacancy exhibit similar
behavior (Topsakal et al. ).

On the other hand, Pisani et al. () investigated theoretically the electronic andmagnetic
properties of zigzag graphene nanoribbons by performing first principles calculations within
DFT formalism.Theypredict that the electronic structure of graphene ribbonswith zigzag edges
is unstable with respect to magnetic polarization of the edge states.

As can be seen from the model calculations of Topsakal et al. (, ), the energy band
gaps and magnetic states of graphene nanoribbons can be modified by defects due to single or
multiple vacancies. Electronic and magnetic properties of finite length graphene nanoribbons
also show similar behavior as infinite length nanoribbons. Finite length ribbons are usually
referred to as graphene quantum dots (GQD). Tang et al. () investigated theoretically the
electronic and magnetic properties of a square graphene quantum dot. Electronic eigen-states
of a GQD terminated by both zigzag and armchair edges are derived in the theoretical frame-
work of the Dirac equation. They find that the Dirac equation can determine the eigen-energy
spectrum of a GQD with good accuracy. By using the Hartree-Fock mean field approach, they
studied the size dependence of the magnetic properties of GQDs. They find that there exists a
critical width between the two zigzag edges for the onset of the stable magnetic ordering. On the
other hand, when such a width increases further, the magnetic ground state energy of a charge
neutral GQD tends to a saturated value (Tang et al. ).

Magnetic properties of graphene show a sensitive dependence on single atomdefects; defect
concentration and packing play an important role in magnetism. Singh and Kroll () inves-
tigated the magnetism in graphene due to single-atom defects by using spin-polarized density
functional theory calculations. Interestingly, they find that while the magnetic moment per
defect due to substitutional atoms and vacancies depend on the defect density, it is independent
of defect density for adatoms.The graphene sheet with B adatoms is found to be nonmagnetic,
but with C and N adatoms it is magnetic.The adatomdefects cause a distortion of the graphene
sheet in their vicinity. The distortion in graphene due to C and N adatoms is significant, while
the distortion due to B adatoms is very small.The vacancy and substitutional atom (B,N) defects
in graphene are planar in the sense that there is in-plane displacement of C atoms near the
vacancy and substitutional defects. Upon relaxation the displacement of C atoms and the forma-
tion of pentagons near the vacancy site due to Jahn–Teller distortion depends upon the density
and packing geometry of vacancies (Singh and Kroll ). The defect models considered by
Singh and Kroll are shown in > Fig. -.

The optical absorption coefficient is one of the most important quantities in solids and
is closely related to the electronic band structure. The Kubo formula–based calculations of

ba c d

⊡ Fig. -
The model samples of (a) ideal graphene, (b) graphene with one atom vacancy, (c) graphene with
one substitutional atom and (d) graphene with one adatomdefect (Adapted from Singh and Kroll
)
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Zhang et al. indicate that at high frequencies, the optical spectrum of graphene is highly
anisotropic (Zhang et al. ). It has also been shown that the weak optical response in
graphene nanoribbons can be significantly enhanced in an applied magnetic field (Liu et al.
).

Another effect important for determining the optical properties of graphene-related mate-
rials is spin-orbit coupling. Although spin-orbit coupling is negligible at high frequencies, it is
found to have a significant enhancing effect on the optical absorption at lower frequencies as
shown in a direct solution of the spin-orbit Hamiltonian in the effective mass approximation
by Wright et al. ().

Adsorption Phenomena

Adsorption of adatoms on graphene and/or graphene nanoribbons play an important role in
functionalizing graphenematerials for various device applications, such as gas sensors and spin-
valves. Transition metal (TM) atom decorated graphene shows different magnetic properties
depending on the concentration and the species of TM atoms.There are several coverage mod-
els, such as one TM atom adsorbed on either (× ) or (×) unit cells on only one side as well
as on both sides, namely, above and below the graphene. Sevincli et al. () investigated the
possible adsorption sites of TM atoms on graphene and GNR. The geometrical configurations
of the structures they considered include bridge (over a C–C bond), atop (on top of a C atom)
and on center (over the center of a hexagon) adsorption sites for both perfect graphene and for
AGNR of various widths Na.

In relation to another very important application, doping of transition elements was found
to increase the hydrogen storage properties of materials (Shevlin and Guo ). Especially
nickel and rhodium are widely used in the hydrogenation reaction and also in the synthesis
of BN sheets. Considering the potential application of Ni and Rh nanoparticles in hydrogen
storage and in catalysis, Venkataramanan et al. () investigated the interaction of Ni and Rh
atom on the BN sheets through first-principles calculations. They also analyzed the interaction
between hydrogen molecules and the metal atoms adsorbed on the BN sheets, which might be
useful to maximize the hydrogen storage capacity.

Hydrogen adsorption studies over the metal doped BN sheets shows that both Ni and Rh
atoms can hold three hydrogen molecules. In the case of Ni doped BN sheet all three hydrogen
molecules are chemically bound and are intact. In the case of Rh doped BN sheets, the first
hydrogen molecule dissociates and the remaining hydrogen molecules are bound to the metal
atom.The absorption energy for the first hydrogen was found to have a larger value for the Rh-
doped BN sheet, whereas for the second and third hydrogen molecules, the absorption energies
were higher for the Ni doped BN sheets. Upon addition of a fourth hydrogen molecule to the
Ni doped BN sheets, the fourth hydrogen molecule moved to a distance of .Å. In the case
of Rh-doped BN sheet, the Rh atom detached and acted in a similar way to a cluster. Thus Ni
atoms are more stable on BN sheets, and have higher absorption energy compared to the Rh
doped BN sheets (Venkataramanan et al. ).

Metallized graphene can be a potential high-capacity hydrogen storage medium. Graphene
is metallized through charge donation by adsorbed Li atoms to its π∗-bands. Each positively
charged Li ion can bind up to four H by polarizing these molecules.The storage capacity up to
the gravimetric density of .wt % is possible with a favorable average H binding energy of
. eV (Ataca et al. ).
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spin density α(HOMO–4)state β(HOMO–4)state

spin density α(HOMO)state β(HOMO)state

a

b

⊡ Fig. -
Plots of the spin density and electron density for the α-spin (up) and β-spin (down) states in
nanoscale graphene. For the spin density, different colors indicate the α- and β-states, while for
the electron density distribution (α- and β-states) the different colors correspond to different signs
of the molecular orbital lobes. (a) The electron density distribution in pure graphene. (b) The
electron density distribution for graphene with adsorbed water (Reprinted with permission from
Berashevich and Chakraborty (). © () by the American Physical Society)

Water and gas molecules adsorbed on nanoscale graphene play the role of defects which
facilitate the tunability of the bandgap and allow one to control the magnetic ordering of local-
ized states at the edges (Berashevich and Chakraborty ). The adsorbedmolecules push the
α-spin (up) and β-spin (down) states of graphene to the opposite (zigzag) edges such that the α-
and β-spin states are localized at different zigzag edges.This breaks the symmetry that results in
the opening of a large gap.The efficiency of the wavefunction displacement depends strongly on
the type of molecules adsorbed on graphene (Berashevich and Chakraborty ). The influ-
ence of adsorption of water on the electronic and magnetic properties of graphene is based on
calculation of the spin-polarized density functional theory and the results of the calculations
are depicted in > Fig. -.
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Abstract: Recent extensions of the coupled-cluster (CC) theory to molecular solutes
described with the Polarizable ContinuumModel (PCM) are summarized.The recent advances
covered in this review regard: () the analytical gradients for the PCM-CC theory at the single
and double excitation level and () the analytical gradients for the PCM-EOM-CC theory at the
single and double excitation level for the descriptions of the excited state properties of molec-
ular solutes. As coupled-cluster is the top level that quantum mechanical (QM) calculations
on molecules can presently be performed, and the PCM model gives an effective description
of the solute-solvent interaction, these computational advances can be profitably used to study
molecular processes in condensed phase, where both the accuracy of the QM descriptions and
the influence of the environment play a critical role.

Introduction: Quantum Cluster Theory and Solvation

In this chapterwe present some aspects of our recent work on the extension of computingmeth-
ods connected to the Polarizable ContinuumModel (PCM). Our persevering attention to PCM
can be in some sense immediately justified, as we proposed this method years ago and have
since continued to develop it. In another sense, a justification is required, andmay be expressed
in the form of a question: why implement PCM with sophisticated procedures such as those
given by the coupled-cluster (CC) theory?

Coupled-cluster is the top level at which quantum mechanical (QM) calculations on
molecules can now be performed. PCM is characterized by a drastic simplification of the mate-
rial system by replacing the degrees of freedomof the solventmolecules with a two body integral
operator. Apparently, the two methods are operating at very different scales of accuracy, but
actually they can be profitably coupled. To show it we will examine some features of PCM. The
rapid examination of some technical aspects of the methods used in PCM will be also useful as
an introductory section to our exposition.

The methodology on which PCM is based is that of an effective Hamiltonian expressed in
terms of interaction integral operators depending on the solution of a non-linear Schrödinger
equation. The method is powerful and versatile, allowing applications of very different natures.
A good number of such applications have been elaborated over the years by our group and
by others, and an undetermined, but large, number of new applications look promising. Many
among them are beyond the field of dilute solutions, others address the description of solvent
effects under special conditions, and a few regard higher levels of the QM theory.

We here consider an application of this last type. The features of PCM we have to examine
are limited to the developments of the QM ab initio version of the procedures (other versions
regard semiempirical and semiclassical descriptions).

PCM was born as a method to describe electrostatic solvation effects on the electronic
distribution of amolecule (Miertuš et al. ).Themethodwas conceived for ab initio QM cal-
culations, using a technique to solve the electrostatic problem never used before in molecular
sciences, a technique based on the use of the concept of apparent charges. The integral interac-
tion operator is thus reduced to the Coulomb interaction with a charge distribution spread on
the surface of the solute, and represented by a set of point charges.

Solute-solvent interactions are not limited to the electrostatic one. The non-electrostatic
terms have been introduced in PCMwith the aid of a phenomenological (and effective) Hamil-
tonian (Bonaccorsi et al. ). Each term of the interaction has a different physical meaning but
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a similar formal expression, given by an integral operator with kernel QX(r, r′), where X stays
for one of the contribution to the interaction energy: electrostatic, repulsion, dispersion, cavity
formation. The effective Hamiltonian mixes quantum and classical components. In particular,
the medium that appears in the kernel of the QX(r, r′) operators, has to be precisely defined,
in agreement with the physical conditions established for the experiments the computational
model has to describe.

The formal elaboration of the physical components of the model has to be followed by the
elaboration of the corresponding mathematical procedures. In this step several “concepts” of
quantum and classical origin have to be introduced: examples are the molecular surface and
the notion of charging process.

We shall use here the concept of charging process as a guide in our exposition. Charging
processes are of general use in physics, but rarely mentioned inmolecular quantummechanics;
more explicit is its use in statistical thermodynamics to which our model is connected.

The basic task in molecular QM, that of computing energy and charge distribution of an
isolatedmolecule at a clamped nuclear geometry, corresponds to a charging process.The analo-
gous process in solution with an effective continuumHamiltonian presents, however, important
differences.The medium defining the liquid portion of the material systems is changed (polar-
ized) by charging processes. A portion of the energy gained in a reversible charging process
is thus lost. The remaining portion of the energy is the free energy of the system, measured
from a reference state composed by the unperturbed medium and by the appropriate assembly
of non-interacting nuclei and electrons giving origin to the solute molecule. This process has
a classical counterpart, and can be derived on QM grounds without invoking physical argu-
ments (a derivation is based on the variational theorem with an effective Hamiltonian linearly
dependent on the solution) (Tomasi and Persico ).

The picture of the charging process can be used for the phenomenological partition we have
introduced earlier. This is a practice used in statistical thermodynamics.

The contributions can be described in an ordered sequence of charging processes; at the end
of each process themedium is modified (polarized) and the so polarized medium is the starting
point for the following charging process. The selected order of charging influences the result,
because couplings in this procedure are neglected and they change according the ordering,
but with an appropriate selection of the sequence the results of the solvation energy are well
reproduced with a computational cost decidedly lower that of the full calculation (Tomasi et al.
).

The option of decoupling the non-electrostatic part from the main calculation also has
another practical advantage, which we shall exploit in the rest of this chapter, namely, of pro-
visionally discarding the non-electrostatic terms during the elaboration of a new electrostatic
procedure. The non-electrostatic contributions to the energy are numerically large, but feebly
coupled with the electrostatic one. We stress, however, that decoupling and simplified descrip-
tions of single components are not strictly necessary: ab initio procedures computing everything
in a unique calculation exists (Curutchet et al. ).

We have so far examined some points of the original PCM procedure. Other elements of
interest for the present paper, drawn from the numerous procedures implemented and tested
later (Tomasi et al. ), will be here considered. These points regard the improvements in
the description of the solute’s electronic wave function, and the description of excited states,
including non-equilibrium solvent effects.

Improvements in the quantum description of a solute mostly regard the electron corre-
lation effects. There are, in principle, no problems to introduce in the formal framework of
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our effective Hamiltonian any version of QM methods describing electron correlation. Calcu-
lations including a description of correlation at a low level are nowadays routinely performed,
but for calculations at high levels the convenience of keeping low computational cost becomes
a necessity. There are features in the effective Hamiltonians for continuum solvation promis-
ing substantial reductions in some specific versions of post Hartree-Fock calculations. In the
present chapter we will make use of a decoupling of the QM charging process elaborated years
ago to better study the behavior of the many body perturbation scheme in continuum solution
and later adopted to simplify calculations in the series ofMPn calculations (delValle andTomasi
).The perturbation series may be expanded on the electronic configurations of the molecu-
lar solute’s electron distribution computed in vacuo and then used for the calculation of solvent
reaction potential and solvation free energy; this approximation is called PTD, being a version
of the perturbation theory based on the electronic density. Another scheme is based on the
expansion of the molecular solute’s electron distribution computed with PCM at the Hartree-
Fock level, and used to compute solvent reaction potential and energy; this approximation is
called PTE. The comparison of the results obtained with the two schemes gave insights on the
relative importance of the decoupled electron correlation and solvation potential effects on the
solute. A more complete procedure couples the two effects into a single iterative computational
scheme,with the correlated electronic density used tomake the solvent field self-consistent; the
procedure is called PTDE. We shall examine in a later section the PTE and PTDE version for
the coupled cluster method.

In this chapter we will also consider the first basic aspects of the dynamical, i.e., non-
equilibrium, behavior of liquid media.The subject embraces a very large variety of phenomena,
requiring different formulation of the continuummodels.We cite here an aspect, relatively sim-
ple, related to a phenomenon occurring in a span of time relatively short with respect to the
characteristic relaxation times (CRT) of the solvent: the vertical electronic transitions in solutes
(Basilevsky and Chudinov ; Kim and Hynes ; Marcus ).

Electronic transitions are very fast and the solvent molecules have no time to rearrange
themselves during this phenomenon, save for the electronic component of the solvent polar-
ization that has a CRT of the same order of magnitude of the vertical electronic transition. This
effect means that the energy of the vertical transition (a free energy) has a component due to
the solvent interaction limited to changes in the fast electronic polarization. The effects of the
electronic transition continue in time, but these do not regard the vertical process and have to
be described with a different formulation of the continuum method.

For the sake of completeness, we note that there are two theoretical models, respectively
namedMarcus and Pekar partitions, that describe this simple process, differing in the interme-
diate stages of the elaboration of the problem, but arriving at the same result when the correct
expression for the non-equilibrium free energy functional is used. The PCM versions of the
two models have been presented by Aguilar et al. () and by Cammi and Tomasi (b);
for a comment also see Aguilar (). A detailed comparison of the formulas of two models
has been reported in Sect. . of Tomasi et al. (). The Pekar partition will be used in the
following sections of this chapter; the Marcus partition is in this case less convenient.

Quantum models in condensed systems often present alternative computational routes
merging into a unique form when the effects of the medium are neglected. In coding the for-
mulas for problems, great attention must be paid to the proper inclusion of the corrections to
satisfy the free energy requirements.

This last remark also holds for the topic we shall consider now: the calculation of the elec-
tronic excitation energies. Two approaches are generally used to obtain the excitation energies:
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a version based on the CI approach or a version based on the response theory. Both approaches
have in condensed media problems not present in the corresponding calculations in vacuo.

The roots of a CI calculation give in vacuo the energies of the various states; in solution
these values have to be corrected for the effect of the solvent electronic polarization. Also the
corresponding description of the so-defined electronic states has to be modified (with an iter-
ative procedure), because mutual polarization effects occur at the same time.This operation of
polarization has to be separately performed for each electronic state, being the effective Hamil-
tonian of each excited state different from the others.Themethod is said “state specific” (SS) and
it constitutes the main way for the study of excited state potential surfaces. Note that the states
so obtained are not rigorously orthogonal to each other. Also, in CI calculations for correlation
in a given state (e.g., the ground state) of the solute there is no need for a SS procedure.

The second approach is based on a Hamiltonian with explicit time dependence, provided
with an opportune form of the of the time-dependent variation principle (the Frenkel principle
is generally used (Cammi et al. )). From this starting point linear and non linear response
functions are derived.

The linear response functions (LR) nowadays are amply used both in gas phase and in
solution for the characterization of excited states and of molecular properties. The complete
equivalence between SS and LR results for the excitation energies was universally accepted, but
recently it was shown (Cammi et al. ; Corni et al. ; Kongsted et al. ) that this
equivalence is valid only in vacuo, and that LR results can be seriously in error in solution.
A computational strategy to reduce this error was proposed (Caricato et al. ; Improta et al.
), efficient enough to allow the exploitation of the less expensive LR scheme.

It is convenient to mention here another aspect of the continuum solvation theory that will
be used in the following pages: the calculation of analytical derivatives.

It is essential for computational methods addressing chemical problems the availability of
analytic expressions for derivatives. The variety of derivatives appearing in molecular calcula-
tions is quite large, but we limit ourselves to considering derivatives of the energy with respect
to nuclear coordinates.

There is an important difference between these derivatives in vacuo and in solution. In solu-
tion it is compelling to compute derivatives taking into account partial derivation with respect
to cavity parameters. An accurate description of the cavity shape is compulsory: examples of
bad results due to inaccurate descriptions of the cavity are present in every field of applica-
tion: from the determination of the molecular structure, to the equilibria among conformers,
to spectroscopic properties. Spherical cavities have to be used only as first-order approxima-
tion; more subtle are the errors with cavities badly defined or treated in a simplified way during
the calculations. The problems of accurate handing of the derivatives of the cavity parameters
becomemore complex and computing expensive with the increase of the order of the derivative
and of the computational level.The problem of the numerical stability of the second derivatives
obliged us in the past to change the definition of the cavity elements.The analytical expressions
of the first and second derivatives with respect to nuclear coordinates have been elaborated for
the present version, but we shall use in the second part of this chapter the first derivatives only.

The methodological and computational bases of PCM have been elaborated more exten-
sively than shown in this exposition, but what has been stated would be sufficient to show
the care necessary to develop a reliable version of CC for PCM. Nothing has been said about
the numerical accuracy of PCM results. The definition of the accuracy for a method allowing
numerous different application is a problem; it is almost compulsory to separately consider dif-
ferent classes of phenomena. The largest number of applications of solvent methods regards
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the solvation energy. Actually, there is no need for this property of an accurate description of
the electronic distribution, and in fact many methods are based on semiclassical approxima-
tions.There are, however, difficult cases in which there is the need for an accurate description of
geometry and electronic charge distribution: in these cases ab initio method of sufficient accu-
racy are necessary. There are several methods satisfying this criterion, and all perform well. A
recent comparison (Cramer and Truhlar ; Klamt et al. ) gives some indications, even if
the really difficult cases were not abundant in the these comparisons. Another point to remark
is that the best fitting with experimental date were obtained using “calibrated parameters.” We
have not discussed in the preceding pages the empirical calibration of parameters over exper-
imental data, because we have not used this procedure in the elaboration of PCM methods
(and we are not using it in this chapter). Calibration of parameters is necessary for explicitly
declared semiempirical methods, but it is risky for methods aspiring to generality because ad
hoc parameterizations are limited to one (or few) properties, and performed over a single spe-
cific definition of the computational parameters (QM method, basis set, etc.). Nevertheless,
versions of PCM parameterized for solvation energies exist, and they behave very well.

More interesting is the consideration of accuracy for more complex problems of spectro-
scopic type, which actually constitute the direct motivation of this work. PCM is among the
best methods in this field, with features not present in other methods, but the need to have a
description of the electronic structure of the chromophore more accurate than those currently
used in these studies is, in our opinion, quite manifest. There was a previous attempt, several
years ago, with the use of a CC wavefunction modified by continuum solvent effects, just for
the calculation of molecular properties. The proposal was made by Mikkelsen and coworkers
(Christiansen andMikkelsen a) using a spherical cavity with a multipolar expansion of the
solvent reaction potential.This attemptwas bold and interesting, but the continuummodelwas
forcibly simple, with the perspective of giving, when applied to more complex chromophores,
results in which a gain in the description of the solute is accompanied by a poorer description
of the solvent effect. Time was not yet ripe for efficient applications of the approach to systems
of real spectroscopic interest. This is the answer to the question posed at the beginning of this
introduction.There is the need for some specific scopes ofmolecular calculationsmore accurate
than those currently available, and the more convenient way to arrive at this level of accuracy
apparently is given by an accurate (in the formulation and in the execution) ab initio continuum
code coupled to a an efficient procedure of the coupled cluster family. First principles molecular
dynamics at so high a level of quantum description is not feasible. The use of computer simu-
lations at a lower level accompanied by a final calculation at the CC level is a risky procedure,
requiring extensive validation.

In this introduction we have not examined the details of the coupled-cluster procedures
because we have used in the implementation standard aspects of it, on which particular com-
ments were not necessary (Bartlett and Musial ). Details and comments will be necessary
when an extension of the present study is published.

The Coupled-Cluster Theory for the Polarizable ContinuumModel

The coupled-cluster (CC) theory for a molecular solute described within the PCM model
exploits the concept of the coupled-cluster energy functional. For isolatedmolecules this energy
functional corresponds to the coupled-cluster “expectation value” of themolecular hamiltonian
operator (Bartlett and Musial ). The corresponding functional for molecular solute has an
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important difference with respect to this case, because of its thermodynamical status of a free
energy of the whole solute-solvent system, as we have already said in the Introduction. As a
consequence, the coupled-cluster free energy functional is nomore given as “expectation” value
of the molecular (effective) hamiltonian operator (Cammi ; Christiansen and Mikkelsen
a).

In the following section we reviewboth the formal PCM-CC equations, and their evaluation
at the single and double excitation levels (PCM-CCSD). The use of the variational properties
of the PCM-CC energy functional to obtain analytical expressions of the energy derivative,
will be described in > section “PCM-CCSD Analytical Gradients.” For reasons of length, the
expositionwill be limited to the analytical first derivatives only.The interested readermay found
the analytical second derivatives expressions in Cammi ().

The PCM-CC Reference State and the PCM-CC Energy Functional

The ket CC wavefunction of the molecular solute is written as exponential ansatz

∣CC⟩ = eT ∣HF⟩, (.)

where ∣HF⟩ is the reference state given by the Hartree-Fock ground state of the solvated
molecule, and the cluster operator T is given as a sum of all possible excitation operators over
the N electrons,

T = T + T + . . . + TN , (.)

Tn =

(n!) ∑aib j. . .

tab . . .i j. . . a
†
a ai a

†
b a j . . . ,

weighted by the amplitudes tai , t
ab
i j , etc.The excitation operators are here represented as products

of second quantization electron creation (a†i , a
†
b ) and annihilation operators (ai , ab). As usual,

indexes (i, j, k, . . .) and (a, b, c, . . .) denote, respectively, occupied and vacant spin orbitalsMO,
while (p, q, r, . . .) denote general spin orbitals.

The PCMHartee-Fock Reference State

TheHartree-Fock reference state ∣HF⟩ is obtained by the stationarity condition of Hartree-Fock
free energy functional GHF: (Cammi and Tomasi a)

GHF = ⟨HF∣Ho
+



⟨HF∣Q∣HF⟩ ⋅V∣HF⟩, (.)

whereHo is theHamiltonian of the isolated solute, and ⟨HF∣Q̂∣HF⟩⋅V̂ is the solute-solvent inter-
action term, being ⟨HF∣Q̂∣HF⟩ the solvent polarization charges computed with the Hartree-
Fock state reference state ∣HF⟩, and V̂ themolecular electrostatic potential operator of the solute
(see Appendix A); the one-half factor in front of the solute-solvent potential term is due to
the energy loss during the process of polarization of the dielectric representing the solvent, as
already noted in the introduction.
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In an N-electron system with spin-orbitals expanded over a set of atomic orbitals (AO)
{χμ, χν , . . .}, GHF may be written as:

G

HF
=
∑

μν
PHF
μν (hμν + jμν) +


 ∑μνλσ

PHF
μν P

HF
λσ [⟨μλ∣∣νσ⟩ + Bμν ,λσ ] + ṼNN, (.)

where hμν are the matrix elements, in the AO basis, of the one-electron core operator, ⟨μλ∣∣νσ⟩
are the antisymmetrized combination of regular two-electron repulsion integrals (ERIs) and
PHF
μν indicates the elements of the Hartree-Fock density matrix. The one-electron matrix ele-

ments jμν , and the pseudo two-electron integralsBμν ,λσ describe the solute-solvent interactions
within the PCM-Fock operator.The one-particle AO integrals jμν and the pseudo two-electrons
integrals Bμν ,λσ represent, respectively, the interactions with the nuclear and with the elec-
tronic components of the ASC charges. The solvent integrals jμν , Bμν ,λσ may be expressed in
the following form:

jμν = vμν ⋅ qNuc, (.)

Bμν , λσ = vμν ⋅ qλσ , (.)

where vμν is a vector collecting the AO integrals of the electrostatic potential operator evaluated
at the positions sk of the ASC charges; qNuc is a vector collecting the ASC charges produced by
the nuclear charge distribution; qλσ is a vector collecting the apparent charges produced by
the elementary charge distribution χ∗λ(r)χσ(r). The apparent surface charges may be obtained
in terms of the electrostatic potential of the solute charge distributions by using the integral
equation formalism of the PCM (Cances et al. ).

The last term of > Eq. ., ṼNN represents the interaction between the nuclei and the
nuclear component of the apparent surface charges, ṼNN = (/)vNuc ⋅ qNuc.

Requiring that GHF be stationary with respect the variation of MO expansion coefficients
we obtain the PCM-HF equations:

∑

ν
( f PCMμν − єpSμν)cν p = , (.)

where Sμν and f PCMμν are, respectively, the matrix elements of the overlap matrix and of the
PCM Fock matrix, in the AO basis, and єp and cν p are, respectively, the orbital energy and the
expansion coefficients of the pMO.The PCM Fock matrix elements are given by:

f PCMμν = (hμν + jμν) +Gμν(PHF
) + Xμν(PHF

), (.)

whereGμν(PHF
) are thematrix elements of the effective Coulomb-exchange two-electron oper-

ator, while Xμν(PHF
) are the matrix elements of the solvent operator representing an effective

Coulomb two-electron mediated by the polarization of the solvent.

The Coupled-Cluster PCM Free Energy Functional

To define the PCM free energy functional we introduce the bra coupled-cluster wavefunction:

⟨C̃C∣ = ⟨HF∣( + Λ)e−T , (.)
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where Λ is a de-excitation operator,

Λ = Λ + Λ + . . . Λn =

(n!) ∑

i jkabc . . .
λi jk . . .abc . . .a

†
i aaa

†
j aba

†
k ac . . . , (.)

and λia , λ
i j
ab , . . . are the de-excitation amplitudes.

In terms of the bra and ket wavefunctions the coupled-cluster free energy functional may
be written as Christiansen and Mikkelsen (a) and Cammi ():

GCC(Λ,T) = ⟨HF∣( + Λ)e−THeT ∣HF⟩ +


Q̄(T , Λ) ⋅ V̄(T , Λ), (.)

where ⟨HF∣(+Λ)e−THeT ∣HF⟩ is the energy functional for the isolatedmolecules and V̄ and Q̄
are, respectively, the coupled-cluster expectation value of the PCM operators Q̂ and V̂ (Bartlett
and Musial ):

Q̄(T , Λ) = ⟨HF∣( + Λ)e−TQeT ∣HF⟩, (.)

V̄(T , Λ) = ⟨HF∣( + Λ)e−TVeT ∣HF⟩. (.)

We note that arguments of the expectation values (> Eqs. . and > .) denote an explicit
functional dependence on the T and Λ amplitudes.These amplitudes, which define completely
the coupled-cluster wavefunction of the molecular solute, can be determined imposing the
stationary conditions on the energy functional GCC(Λ,T).

The PTDE and the PTE Coupled Cluster Schemes

To develop a coupled-cluster theory within the PTE and PTDE schemes described in the Intro-
duction, the free energy functional GCC(Λ,T)of > Eq. . is partitioned into a Hartree-Fock
component GHF and into a coupled-cluster component ΔGCC(Λ,T):

GCC(Λ,T) = ΔGCC(Λ,T) + GHF, (.)

where GHF is the HF contribution, defined in > Eq. ., and ΔGCC(ΛT) denotes the
correlative CC contribution:

ΔGCC(Λ,T) = ⟨HF∣( + Λ)e−T [H()N +


Q̄N(Λ,T) ⋅VN] eT ∣HF⟩. (.)

The partition of > Eq. . is based on the so-called normal ordered operators H()N ,VN
and, QN (Cammi ). Specifically, Q̄N(Λ,T) ⋅ VN is the component of the solvent reaction
potential due to the correlation CC electronic density, and H()N is the normal ordered form
of Hamiltonian of the solute in presence of the frozen Hartree-Fock reaction field Q̄HF.

The Coupled-Cluster PTDE Scheme

Within the PTDE scheme the coupled-cluster electronic density is used to make the sol-
vent reaction field self-consistent. This corresponds to making the free energy functional
ΔGCC(Λ,T) stationary with respect to the Λ and the T amplitudes.
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The stationarity with respect to the Λ amplitudes gives the equation for the self-consistent
T amplitudes

∂ΔGCC

∂λi j..ab ..

= ⟨HF∣ {i†a j†b..} e−TH(Λ,T)Ne
T
∣HF⟩ = . (.)

In turn, the stationarity with respect to the T amplitudes gives the equation for the self-
consistent Λ parameters:

∂ΔGCC

∂tab ..i j..
= ⟨HF∣( + Λ)e−T[H(Λ,T)N,{ a

†ia† j . . .}]eT ∣HF⟩ = . (.)

In > Eqs. . and > .,H(Λ,T)N is the Hamiltonian of themolecular solute in the PTDE
scheme:

H(Λ,T)N = H()N + Q̄N(Λ,T) ⋅VN , (.)

whereH()N is the normal ordered form of Hamiltonian of the solute in presence of the frozen
HF reaction field, and Q̄N(Λ,T) ⋅ V̂N is the coupled-cluster component of the solvent reaction
potential, as described above.

The equation for the T amplitudes has a clear physical meaning: it corresponds to projec-
tion in the manifold spanned by all the orthonormal excitations to ∣HF⟩ of the coupled-cluster
Schrödinger equation for the molecular solute,

[H()N + Q̄N(Λ,T) ⋅VN]eT ∣HF⟩ = ΔECCeT ∣HF⟩, (.)

where ΔECC is given by

ΔECC = ⟨HF∣( + Λ)e−TH(Λ,T)NeT ∣HF⟩. (.)

The coupled-cluster eigenvalue ΔECC differs from the free-energy functional ΔGCC(Λ,T) by
the work spent during the charging process of the coupled-cluster reaction field, i.e.:

ΔGCC = ΔECC −


Q̄N(Λ,T) ⋅ V̄N(Λ,T), (.)

where V̄N(Λ,T) is the coupled cluster expectation value of the electrostatic potential.
Being the HamiltonianH(Λ,T)N dependent on both T and Λ parameters, the correspond-

ing PTDE equations (> Eqs. . and > .), are coupled, and they must be solved in an
iterative and self-consistent way.

The Coupled-Cluster PTE Scheme

In the PTE coupled-cluster approximation the electronic distribution is computed with PCM
at the Hartree-Fock level. This approximation is easily obtained from the above PTDE
equations by neglecting all the contributions related to the coupled-cluster solvent operator
Q̄N(Λ,T) ⋅ VN . Specifically, the PTE Hamiltonian is the Hamiltonian H()N , which contains
the fixed reactionpotential of the solute at theHF level, and the free energy functional is given by

ΔGPTE
CC = ΔE

PTE
CC = ⟨HF∣( + Λ)e−TH()N e

T
∣HF⟩. (.)

The stationary condition of ΔGPTE
CC leads to the following T equations:

∂ΔGPTE
CC

∂λi j..ab ..

= ⟨HF∣ {i†a j†b..} e−TH()Ne
T
∣HF⟩ = , (.)
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and of the Λ equations

Δ∂GCC

∂tab ..i j..
= ⟨HF∣( + Λ)e−TH()N ,{ a† ia† j . . .}]eT ∣HF⟩ = . (.)

Within the PTE approximation the PCM coupled-cluster equations (> Eqs. . and > .)
have the same structure as the coupled-cluster equations of the isolated molecules and the T ,
and Λ amplitudes equations are not more coupled. As a consequence, we don’t need to solve
the Λ equations to compute the energy functional ΔGPTE

CC .
In the next section we describe how the basic PTDE and PTE equations lead to explicit

expressions suitable for the implementation in quantum chemistry computational codes.

The Explicit PCM-CCSD Equations

The explicit form of the PCM-CC equations (> Eqs. .–.) has been recently presented
(Cammi ) for the coupled-cluster single and double (CCSD) level, which restricts the T and
Λ operators to excitation operators T, T and to the de-excitation operators Λ, Λ, respectively.

The key entities are the similarity transformed PTE Hamiltonian H() = e−TH()NeT

and the similarity transformed molecular electrostatic potential operators V = e−T V̂N eT . Both
operators can be expressed as a terminatedBacker-Campbell-Hausdorffexpansion. Specifically,
H() terminates at the four-fold commutator, because it has at most two-particle interactions:

H() = Ĥ()N + [Ĥ()N ,T] +


[[Ĥ()N ,T],T]

+ [[[


!
Ĥ()N ,T],T],T]+


!
[[[[Ĥ()N ,T],T],T],T]

= (H()N exp(T))C , (.)

while V terminates at the two-fold commutator as it has at most one-particle interactions:

V = V̂N + [V̂N ,T] +


[[V̂N ,T],T] = (VN exp(T))C . (.)

In > Eqs. . and > . the subscript C indicates that only the so-called connected terms
are considered, when the operators are expressed in terms of normal ordered product of second-
quantization creation and annihilation operators (Bartlett and Musial ).

The similarly transformed coupled-cluster PTDE-PCMHamiltonian can then be written in
the connected form,

H(Λ,T) = (H()N exp(T))C + (VN exp(T))C , (.)

and the explicit PCM-CC equations may be obtained by substitution into > Eqs. .–..
The corresponding integralsmay be obtained by an algebraic approach, which exploits theWick
theorem (Bartlett andMusial ) for normal product operators withH(T , Λ)N written in the
second quantized form,

H(T , Λ)N =∑
p,q
( f PCMp,q + Q̄N(Λ,T)vpq){p

†q} +

 ∑p,q,r ,s

⟨pq∣∣rs⟩{p†q†sr}. (.)
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The explicit equation for the correlation energy ΔECC is obtained as

ΔECC = ⟨HF∣Ĥ(T , Λ)N(T + T +


)T

 ∣HF⟩, (.)

with the corresponding algebraic from given by

ΔECC = Q̄N(Λ,T) ⋅ via t
a
i +



⟨i j∣∣ab⟩τabi j , (.)

where τabi j = t
ab
i j + t

a
i t

b
j − t

b
i t

a
j .

The explicit expressions for the T,T equations are given by

 = ⟨ai ∣Ĥ(T , Λ)N( + T + T + TT +


T
 +


!
T
 )∣HF⟩c

= ⟨

a
i ∣ f

PCM
N ( + T + T +


!
T
 )

+ Q̄N(Λ,T) ⋅VN( + T + T +

!
T
 )

WN(T + T +

!
T
 + TT +


!
T
 )∣HF⟩, (.)

 = ⟨abi j ∣Ĥ(T , Λ)N( + T + T + TT +


T
 +


!
T
 +



T
 T

+


!
T
 +


!
T
 )∣HF⟩c

= ⟨

ab
i j ∣ f

PCM
N (T + TT) + Q̄N(Λ,T) ⋅VN(T + TT)

+WN(T +

!
T
 + TT +


!
T
 +


!
T
 +


!
T
 T +


!
T
 )∣HF⟩c , (.)

where ⟨ab ..i j ∣ = ⟨HF∣{i†a j†b . . .}.
The explicit Λ, Λ equations are obtained as:

 = ⟨HF∣Ĥ(T , Λ)NeT ∣ai ⟩c + ⟨HF∣(Λ + Λ)(Ĥ(T , Λ)NeT)c ∣ai ⟩c , (.)

and

 = ⟨HF∣Ĥ(T , Λ)NeT ∣abi j ⟩c + ⟨HF∣(Λ + Λ)(Ĥ(T , Λ)NeT)c ∣ai ⟩c

+
∑

c=a ,b ;k=i , j
⟨HF∣Ĥ(T , Λ)NeT ∣ck⟩⟨

c
k ∣Λ + Λ∣

ab
i j ⟩. (.)

The algebraic forms for the T,T and Λ, Λ equations are reported elsewhere (Cammi
).

The above PTDE PCM-CC explicit equations can be easily implemented in any computa-
tional quantum code. However, the PTDE coupled-cluster procedure is different with respect
to a calculation on isolate molecules, as anticipated above. The electron correlation compo-
nent of the reaction field Q̄N(Λ,T) ⋅ vme enters, as an effective one-body contribution, both
in the T and in the Λ equations, which must be solved simultaneously by using a recursive
procedure.The coupling between the T , Λ equations has obvious computational consequences,
with an increase of computational cost with respect to a coupled-cluster calculation for isolated
molecules. In fact, in this case it is not necessary to solve the Λ equation to obtain the CC energy
and wavefunction.
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The explicit equations for the PCM-CC-PTE approximation can be easily obtained from
the PTDE equations by neglecting all terms involving the coupled-cluster components of the
solvent reaction potential.Thismakes the computational cost of the PTE approximation similar
to a coupled-cluster calculation for isolated molecules.

PCM-CCSD Analytical Gradients

The differentiation with respect to a perturbational parameter α, of the stationary PCM-CC
functional ΔGCC leads to an expression that avoids the first derivative of the T , Λ amplitudes.
The first derivative ∂ΔGCC/∂α = ΔGα

CC can be expressed in the following form:

ΔGα
CC = ⟨HF∣( + Λ)∣e−T[H()αN e

T
∣HF⟩

+



⟨HF∣( + Λ)∣e−TQα

N e
T
∣HF⟩ ⋅ V̄N(Λ,T)

+



Q̄N(Λ,T) ⋅ ⟨HF∣( + Λ)∣e−TVα

N e
T
∣HF⟩, (.)

where the superscript α of the various normal ordered operators denotes the total derivative of
their second-quantization form.

The differentiated Hamiltonian H()αN in the second quantized form is given by

H()αN =∑
pq

f PCM,α
pq {p†q} +


 ∑pqrs

⟨pq∣∣rs⟩α {p†q†sr} , (.)

where f PCM,α
p,q and ⟨pq∣∣rs⟩α denote, respectively, the total first derivatives of the PCM-Fock

matrix elements and of the usual two-electron integrals, both in the MO basis.
The derivate matrix elements f PCM,α

p,q may be written in terms of the derivatives of the
constituting MO integrals

f PCM,α
pq = hα

pq + jαpq +
occ
∑

j
(⟨pj∣∣q j⟩α +Bα

j j,pq), (.)

where the derivatives of the solvent integrals jαpq and Bα
j j,pq are given by

jαpq = v
α
pq ⋅ qNuc + vpq ⋅ q

α
Nuc, (.)

B

α
pq,rs = v

α
μν ⋅ qrs + vμν ⋅ q

α
rs , (.)

where qαp,q vαp,q are, respectively, the differentiated apparent charges integrals and the differen-
tiated electrostatic potential integrals (Cammi and Tomasi ).

The differentiated operatorsQα
N and Vα

N of > Eq. . are given by:

Qα
N =∑

pq
qαpq {p

†q} , (.)

Vα
N = ∑

pq
vαpq {p

†q} . (.)
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Introducing > Eqs. .– ., the analytical gradients ΔGα
CC can be written in the

following explicit form:

ΔGα
CC =∑

ab
f PCM,α
ab γCC−respab +

∑

i j
f PCM,α
i j γCC−respi j

+
∑

ai
f PCM,α
ai γCC−respai +

∑

ia
f PCM,α
ia γCC−respia

+


 ∑pqrs

B

α
pq,rs γ

CC−resp
pq γCC−resprs +


 ∑pqrs

⟨pq∣∣rs⟩αΓrs pq , (.)

where Γrs pq are elements of the effective two-particle density matrix Γ (Bartlett and Musial
).

> Equation . is the most general form of ΔGα
CC from which we can obtain explicit

computational expressions. To proceed further, as in the case of isolated molecules, we have
to consider two alternative forms of the PCM-CCSD analytical derivatives: the so-called non-
relaxed MO form, which neglects the orbital relaxation effects, and the so-called relaxed MO
form, which includes these effects (Gauss ). Which of the two forms must be used is a con-
troversial issue in the CC properties calculations of isolated molecules. The use of unrelaxed
derivatives has been advocated by Koch et al. (Koch and Jørgensen ) for the calculation of
electrical properties. On the other hand, the use of the orbital relaxation effect is mandatory in
all cases where perturbation-dependent basis functions are employed. For geometrical deriva-
tives, only the MO relaxed derivatives provide a correct description of the potential energy
surface. In the following subsection we present the orbital relaxed form the gradients ΔGα

CC.
The interested reader may find the corresponding formulation for the unrelaxed MO gradients
in Cammi ().

PCM-CCSD Analytical Gradients with RelaxedMO

When the MO are allowed to relax under the perturbation, the occupied-virtual block of the
derivative of the PCM-Fockmatrix, f PCM,α

a ,i , vanishes by virtue of the Brillouin’s theorem.There-
fore, the contribution to the gradients ΔGα

CC of > Eq. . due to the derivative PCM-Fock
matrix consists only of occupied-occupied and virtual-virtual blocks:

ΔGα
CC =∑

ab
f PCM,α
ab γCC−respab +

∑

i j
f PCM,α
i j γCC−respi j

+


 ∑pqrs

(qαpq ⋅ vrs + qpq ⋅ vαrs)γ
CC−resp
pq γCC−resprs

+


 ∑pqrs

⟨pq∣∣rs⟩αΓrs pq . (.)

For the evaluation of the PCM-CC gradient the first derivatives of the PCM-Fock matrix
and of the other one- and two-electronMO integrals are needed.These derivatives lead to terms
involving the skelton derivatives of the MO integrals, i.e., integrals that involve the derivative
of the corresponding AO integrals, and also lead to terms involving the derivative of the MO
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coefficients. Then, the gradients ΔGα
CC may be written as:

ΔGα
CC = ∑

ab
γCC−respab f PCM,[α]

ab +
∑

i j
γCC−respi j f PCM,[α]

i j

+


∑rs

γCC−resprs [q[α]rs ⋅ V̄N + Q̄N ⋅ v
[α]
rs ]

+
∑

pqrs
Γpq,rs⟨pq∣∣rs⟩[α] +∑

pq
I′pqU

α
pq , (.)

where the superscript [α] denotes skeleton derivatives of the MO integrals,Ua
mi are the deriva-

tives of the MO coefficients cμp, in the MO basis, and I′pq are auxiliary matrix elements whose
expressions are given in Cammi ().

The explicit evaluation of the Ua
mi derivatives may be avoided by using the orthonormality

constraints of the MO and by using the interchange (Z-vector) method of Handy and Schaefer
properly extended to the PCM framework (Cammi et al. ).

The resulting PCM-CCSD gradients may be written as

ΔGα
CC =∑

ab
γCC−respab f PCM,[α]

ab +
∑

i j
γCC−respi j f PCM,[α]

i j

+
∑

i j
γMO−resp
ai f PCM,[α]

ai +


∑rs

γCC−resprs [q[α]rs ⋅ V̄N + Q̄N ⋅ v
[α]
rs ]

+
∑

pqrs
Γpq,rs⟨pq∣∣rs⟩[α] +∑

i j
I′i j S

[α]
i j +∑

ab
Iab S

[α]
ab − ∑

ai
I′ia S

[α]
ai , (.)

where the matrix elements γMO−resp
ai are obtained as solution of the PCM-Z vector equation,

and I′ia = Iia − γ
MO−resp
ai f PCMi i , and I′i j are given by

I′i j = Ii j −∑
em

γMO−resp
em (⟨ei∣∣mj⟩ + ⟨im∣∣ je⟩ + Bem,i j) .

Finally, the expression of the PCM-CCSD gradients can be reverted from theMO to the AO
representation, for an efficient computational implementation. The corresponding AO form is

ΔGα
CC =∑

μν
γCC−MO
μν (hα

μν + jαμν) +∑
μν

I′μνS
α
μν

+
∑

μνρσ
(γCC−MO

μν PHF
σρ +



γCC−respμν γCC−respσρ )B

α
μνσρ

+
∑

μνσρ
Γ′μν ,σρ⟨μσ ∣∣ρσ⟩

α, (.)

where Γ′μν ,σρ = Γμν ,σρ + γCC−MO
μν PHF

σρ .
> Equation . refers to the PCM-CCSD analytical gradients within the PTDE scheme,

as it contains terms involving coupled-cluster contribution to the solvent reaction field. By
neglecting these contributions we obtain the corresponding analytical gradients within the PTE
approximated scheme.
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The Equation-of-Motion Coupled-Cluster Theory for the
Polarizable ContinuumModel

In the previous sections we have shown how it is possible to obtain a coherent generalization of
the coupled-cluster theory to the description of the ground state properties ofmolecular solutes.
In this section we will show how a similar generalization can be obtained for the EOM-coupled
cluster theory, for the description of the excited states properties of solvated molecules.

The problem of the description of the excited states within the Polarizable Continuum
Model leads to two non-equivalent approaches, the approach based on the linear response
(LR) approach, and the state specific (SS) approach, as already said in the Introduction. Each
approach has advantages and disadvantages. The LR approach is computationally more con-
venient, as it gives the whole spectrum of the excited states of interest in a single calculation,
but is physically biased. In fact, in the LR approach the solute-solvent interaction contains a
term related to the one-particle transition densities of the solute connecting the reference state
adopted in the LR calculation, which usually corresponds to the electronic ground state, to the
excited electronic state. The SS approach is computationally more expensive, as it requires a
separate calculation for each of the excited states of interest, but is physically un-biased. In fact,
in the SS approach the solute-solvent interaction is determined by the effective one-particle
electron density of the excited state.

An EOM-CC method for continuum solvation models has been developed by Mikkelsen
and co-worker (Christiansen and Mikkelsen a), based on the LR approach. In this chap-
ter we will present a EOM-CC state specific (SS) method for the PCM. As already discussed in
the Introduction, we limit ourselves to a formulation of the PCM-EOM-CC to describe vertical
absorption processes (the emission processes require a slightly different formulation), and in
particular of absorption processes from the electronic ground state to a generic excited state.
For this processes we can give two versions: a first version in which the solvent is in equilibrium
polarization with both states (state  and state K) and a second version in which the polariza-
tion of the K-th state is in non-equilibrium for the reasons discussed in the Introduction. The
formulation that we report here refers to the equilibrium formulation. For the non-equilibrium
formulation there are two versions: the formulation corresponding to the version II (Pekar)
can be directly obtained from the equilibrium case by substituting the polarization charges of
the solvent that appear in the following > Eq. . for the equilibrium case, with those corre-
sponding to the non-equilibrium case (Tomasi et al. ).The version I of the non-equilibrium
case requires a slightly more elaborated formulation.

The PCM-EOM-CC Wavefunctions

In the PCM-EOM-CC approximation the excited electronic states are represented by a linear
(CI-like) expansion build-up on the coupled-cluster wavefunction for the ground state. The
corresponding expansion coefficients are then determined by solving a non-linear eingenvalue
problem. The eigenvalue equations are determined by a variational procedure involving the
PCM-EOM-CC free energy functional.

The EOM-CC ket wavefunction (Nakatsuji and Hirao ; Stanton and Bartlett ) for
the K-th state is defined as

∣ΨK⟩ = RK e
T
∣HF⟩, (.)
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where eT ∣HF⟩ is the coupled-cluster state obtained by solving the PCM-PTE equation
(see > Eq. . in > section “The Coupled-Cluster PTE Scheme”), andRK is a quasi-particle
excitation operator

RK = RK , +RK , +RK , + . . . , (.)

RK ,n =

n! ∑

i jk l . . .abc . . .
rabc . . .i jk . . . (K)a

†
a ai a

†
b a ja†c ak⋯.

The corresponding EOM-CC bra wavefunction is given by

⟨Ψ̃K ∣ = ⟨HF∣LK e
−T , (.)

whereLK is a de-excitation operator

LK = LK , + LK , + LK , + . . . , (.)

LK ,n =

n! ∑

i jk l . . .abc . . .
l abc . . .i jk . . . (K)a

†
i aaa

†
j aba

†
k ac⋯.

The set ket and bra wavefunctions LK andRK satisfy the property of bi-orthogonality many-
body systems

⟨Ψ̃K ∣ΨL⟩ = ⟨LK ∣RL⟩ = δKL . (.)

The variational PCM-EOM-CC free energy functional for the state of interest, ΔGEOM
K may

be written as:

ΔGEOM
K =

⟨HF∣LK e−THN()eTRK ∣HF⟩
⟨LK ∣RK⟩

+



Q̄EOM

K ⋅ V̄EOM
K + ⟨HF∣Z e−THN() exp(T)∣HF⟩. (.)

Here the first term on the right side represents the EOM-CC energy of the state on interest in
presence of the fixedHF reaction potential, while the second term Q̄EOM

K ⋅V̄EOM
K is the EOM-CC

solute-solvent interaction contribution. Specifically, Q̄EOM
K and V̄EOM

K are the EOM-CC expec-
tation value, respectively, of the polarization charges and of the electrostatic potential for the
K-th state:

Q̄EOM
K =

⟨HF∣LK e−T V̂N eTRK ∣HF⟩
⟨LK ∣RK⟩

,

V̄EOM
K =

⟨HF∣LK e−T Q̂N eTRK ∣HF⟩
⟨LK ∣RK⟩

.

The last term of ΔGEOM
K in > Eq. . introduces the constraint for the ground state coupled-

cluster wavefunction, and contains the de-excitation operatorZ given by

Z = Z +Z + . . . , (.)

Zn =

n! ∑

i jk l . . .abc . . .
ξabc . . .i jk . . . a

†
i aaa

†
j aba

†
k ac⋯.

The presence of the coupled-cluster constraint term is only relevant for the evaluation of
analytical gradient of the PCM-EOM-CC energy functional.
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The PCM-EOM-CC Eigenvalue Equations

Imposing that ΔGEOM
PCM be stationary with respect to the RK and LK amplitudes, we obtain a

right-hand and a left-hand eigenvalue equation:

H

EOM
K RK ∣HF⟩ = ΔEEOM

K RK ∣HF⟩, (.)

⟨HF∣LKΔEEOM
K = ⟨HF∣LKH

EOM
K , (.)

whereHEOM
K is the similarity-transformed state-specific PCM-EOM-CC Hamiltonian:

H

EOM
K = e−THEOM

N (K)eT = HEOM
N (K), (.)

with
HEOM

N (K) = HN() + Q̄EOM
K ⋅VN , (.)

where the first term of state-specific Hamiltonian describes the solute in presence of the fixed
HF polarization charges, while the second term, Q̄EOM

K ⋅ VN , represents the interaction of the
solute with the polarization charges produced by the solute in the excited state K-th.

The left and right eigenvalues and the EOM-CC energy can be obtained from the matrix
representing the non-Hermitian Hamiltonian HEOM

K in a suitable functional space. We limit
ourselves to consider the case of the functional space associated to the coupled-cluster reference
function at the CCSD level.

The EOM-CCSD the electronic states are associated with the diagonal representation of
H

EOM
K in the subspace ∣p⟩, spanned by the ∣HF⟩ determinant and by its single ∣ai ⟩ and double
∣

ab
i j ⟩ excited determinants (i.e., ∣p⟩ = ∣HF⟩ ⊕ ∣ai ⟩ ⊕ ∣

ab
i j ⟩). The > Eqs. . and > . can be

converted to a non-Hermitian CI-like eigenvalue problem

H̄EOM
K RK = ΔE

EOM
K RK , (.)

LLH̄EOM
K = LKΔEEOM

K , (.)

where Rk and Lk represent the vectors of coefficients for the chosen excited state, and H̄EOM
K is

the PCM-EOMmatrixHamiltonian.The elements ofmatrix H̄EOM
K can be evaluated by standard

methods. Details are given elsewhere (Cammi a; Cammi et al. b).
Themanifold of the eigenvectors ofmatrix H̄EOM

K can be determined using a non-Hermitian
modification of Davidson’s method (Hirao and Nakatsuji ). From this manifold we can
extract the RK and LK eigenvectors and the corresponding eigenvalue ΔEEOM

K . The remaining
eigenvectors of the manifold are not of interest for the topics treated in this chapter.

Finally, the free energy functional value for the state of interest may be obtained in terms of
the EOM-CC eigenvalue ΔEEOM

K as

ΔGEOM
K = ΔEEOM

K −



VEOM

K ⋅QEOM
K . (.)

We have thus completed the first step of the PCM-EOM-CC procedure, leading to the complete
determination of the EOM-CC eigenfunctions and free energy for the target state K. We note
that in this first step we have only exploited the stationarity condition of ΔGEOM

K with respect
to the left and right eigenvectors. As already said, the stationary conditions on the Z and T
amplitude are not necessary at this stage, but they are instead necessary to obtain analytical
derivatives of the ΔGEOM

K functional.
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PCM-EOM-CCSD Analytical Gradients

The analytical first derivative of the free energy PCM-EOM functional ΔGEOM may be eas-
ily obtained introducing the stationarity with respect the to the Z and the T amplitudes. This
avoids the evaluation of the first derivative of these parameters with respect to the external
perturbations.

The PCM-EOM-CCSD Equations for the Z Amplitudes

The stationary condition for the Z amplitudes leads to the PTE coupled-cluster equations for
the reference ground state, which are assumed to be satisfied (see > Eq. .); the stationary
condition for to the T amplitudes gives in turn the equations for the Z amplitudes.

The derivative of ΔGEOM with respect to the T amplitudes may be written as

∂ΔGEOM
K

∂tτ
= ⟨HF∣L [HEOM

K , τ̂]R∣HF⟩ + ⟨HF∣Z [H(), τ̂] ∣HF⟩ = , (.)

where τ̂ is the excitation operator associated to the amplitude coefficient tτ , HEOM
K is the

similarity-transformedEOMHamiltonian, andH() is the PTE similarity-transformedHamil-
tonian of > Eq. .; the square brackets denote a commutator operator.

> Equation . can be rewritten as an explicit linear system of equation for the Z
amplitudes:

∂ΔGEOM
PCM

∂tτ
= ⟨HF∣Z∣g⟩⟨g∣H̄()∣g⟩ − ⟨HF∣Ξ∣g⟩ = , (.)

or

⟨HF∣Z∣g⟩ = −⟨HF∣Ξ∣g⟩⟨g∣ ¯̄H()∣g⟩−, (.)

where ∣g⟩ denotes the subspace of the single and double excited Slater determinants, ∣g⟩ = ∣ai ⟩⊕
∣

ab
i j ⟩, ¯̄H() is defined as H̄() = H() − ⟨∣H̄()∣⟩, and Ξ denotes the de-excitation operator

Ξ = Ξ + Ξ + . . . , (.)

Ξn =

n! ∑

i jk l . . .abc . . .
ξabc . . .i jk . . . a

†
i aaa

†
j aba

†
k ac⋯, (.)

whose amplitudes Ξn are given as matrix elements of the operator RHEOM
K ∣q⟩⟨q∣R between

⟨HF∣ and ∣g⟩ = ∣ai ⟩ ⊕ ∣
ab
i j ⟩

⟨HF∣Ξ∣g⟩ = ⟨HF∣RHEOM
K ∣q⟩⟨q∣R∣g⟩. (.)

The explicit equation of the amplitudes ξn contains explicit PCM contributions that are given
elsewhere (Cammi a).
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The Analytical Gradients of the PCM-EOM-CCSD Free Energy
Functional ΔGEOM

K

The derivatives of free energy functional ΔGEOM
K may then be written as:

∂ΔGEOM
K

∂α
= ⟨HF∣(LK +Z)e−THN()eTRK ∣HF⟩

+



⟨HF∣LK e

−TVα
N e

T
RK ∣HF⟩ ⋅QEOM

K

+



⟨HF∣LK e−TQα

N e
T
RK ∣HF⟩ ⋅VEOM

K . (.)

This expression can be recast in a form that involves contractions between effective one-
and two-particle EOM-CCSD density matrices and differentiated one- and two-electron MO
integrals as:

∂ΔGEOM
K

∂α
=
∑

pq
f PCM,α
pq γEOM

pq (K)

+


 ∑pqrs

B

α
pq,rs γ

EOM−NR
pq γEOM−NR

rs (K)

+


 ∑pqrs

⟨pq∣∣rs⟩αΓEOM(K), (.)

where the Einstein summation convention is followed. The density matrices, γEOM−NR, γEOM

and ΓEOM are defined by Stanton ():

γEOM−NR
pq (K) = ⟨HF∣L[p†q exp(T)]cR∣HF⟩, (.)

γEOM
pq (K) = γ

EOM−NR
+ ⟨HF∣Z[p†q exp(T)]c ∣HF⟩,

ΓEOM
pqrs (K) = ⟨HF∣L[p†q†sr exp(T)]cR∣HF⟩ + ⟨HF∣Z[p†q†sr exp(T)]c ∣HF⟩,

where the subscript c denotes a limitation to connected diagrams.The effective density γEOM−NR

is the usual reduced one-particle density (expectation value of p†q), while the effective density
matrices γEOM and ΓEOM also contain correction terms that involve the ξ amplitude to account
for the response of T to the perturbation.

The PCM-EOM-CCSD analytical gradients (> Eq. .) have the same form of PCM-
CCSD analytical gradients (> Eq. .). Then, following the same procedure described for
the PCM-CCSD gradients it is easy to show that the differentiation of the MO integrals
in > Eq. . leads to terms involving the derivatives of the MO coefficients. In turn, the per-
turbativeMOcoefficients can be avoided using exploiting the PCMZ-vector technique (Cammi
et al. ) to obtain a perturbation independent one-particle γMO−resp

μν . The corresponding
expression of the PCM-EOM analytical gradients in the AO basis is given by

∂ΔGEOM
K

∂α
=
∑

μν
γEOM−MO
μν (K) (hα

μν + jαμν) +∑
μν

I′μν S
α
μν

+
∑

μνρσ
(γEOM−MO

μν PHF
σρ +



γEOM−NR
μν γEOM−NR

σρ )B

α
μνσρ

+
∑

μνσρ
Γ′μν ,σρ⟨μσ ∣∣ρσ⟩

α, (.)
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where the additional one-particle density matrix γEOM−MO
μν is defined as γEOM−MO

μν = γEOM
μν +

γMO−resp
μν .
The equation of the PCM-EOM-CC analytical gradients contains additional one-electron

MO derivative integrals with respect to the corresponding gradients for isolated molecules
(Stanton ). As these solvation terms canbe evaluatedwith a small effort, the PCM-EOM-CC
analytical gradients can be performed for all the molecular systems for which the EOM-CCSD
gradient calculations are feasible in gas phase.

Conclusions

We have presented a short review of very recent progresses toward the description at the
coupled-cluster level of the electronic structure and properties of molecular solutes with the
Polarizable Continuum Model framework (Cammi ). Specifically, we have presented: ()
the detailed expression for the evaluation of the analytical gradients for the PCM-CC theory
at the single and double excitation level, for the ground states; () the expression of the ana-
lytical gradients for the PCM-EOM-CC theory at the single and double excitation level for the
descriptions of the excited state properties of molecular solute.

Several implementations of the PCM-CC theories have been presented. Caricato et al.
() have presented an implementation of the PCM-CC analytical gradients for the ground
state of molecular solutes within the Gaussian suite of programs (Frisch et al. ). Cammi
et al. (b) have presented an implementation of the PCM-CC and PCM-EOM-CC analyt-
ical derivatives methods within the framework of SAC/SACCI methods. We hope that these
computational advances can be profitably used to study molecular processes in condensed
phase, where both the accuracy of the QM descriptions and the influence of the environment
play a critical role, as in photo-ionization processes, electronic transitions, and charge transfer
reactions.

Appendix A: The Solute-Solvent PCMOperator

In the Polarizable ContinuumModel for solvation, themolecular solute is hosted in a cavity of a
polarizable dielectric medium representing the solvent.The cavity is accuratelymodeled on the
shape of the molecular solute (Miertuš et al. ), and the dielectric medium is characterized
by the dielectric permittivity є of the bulk solvent. The physics of the model is very simple.
The solute charge distribution polarizes the dielectric medium, which in turn acts back on the
solute, in a process of mutual polarization that continues until self-consistence is reached. The
polarization of the solvent is represented by an apparent charge distribution (ASC) spread on
the cavity surface. In computational practice the ASC is discretized to a set of NTS point charges
and the solute-solvent interaction is expressed as in terms of the interaction between these and
the charge distribution of the molecular solute.

In this framework, the PCM solute-solvent interaction operator (see > Eq. .) can be
defined in terms of molecular electrostatic operators V and of a charges operatorQ describing
the PCM solute-solvent interaction operator (Cammi et al. , ).V is a vector collecting
the molecular electrostatic potential operator, evaluated at the positions of the ASC charges:

(V) j = vel(s j) + vnuc(s j), (.)
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where vel(s j) and vnuc(s j) are the electrostatic potential of the electrons and of the nuclei,
respectively, evaluated at the position s j of the j-th ASC point charge. In particular,

vel(s j) =
N
∑

i

−
∣ri − s j ∣

, (.)

where N is the number of electrons of the molecular solute and ri is the vector position of the
i-th electron. A similar expression holds for the nuclei contribution v̂nuc(s j).

The apparent charges vector operatorQ can be formally defined in different way, depending
on the different version of the BEM. In the Integral Equation Formalism (IEF) version of the
PCM (Cances et al. ), which is here adopted,Qmay be expressed as a linear transformation
of the vector operatorV:

(Q) j =
NTS
∑

l
Tjl(V̂)l , (.)

where the summation is over the NTS point charges, and Tjl are elements of the BEM square
matrix.Thematrix is dimensioned as theASCcharges and it depends on the geometry of surface
cavity and on the dielectric permittivity of themedium.The expectation value of the Q̂ operator,
(< Ψ∣Q∣Ψ >) is a vector collecting the actual ASC charges induced by the molecular solute
described by the wave function Ψ.

The solute-solvent interaction operator (⟨Ψ∣Q̂∣Ψ⟩) ⋅ V̂ of > Eq. . of the text is then
the inner product between the expectation values of the ASC, (⟨Ψ∣Q̂∣Ψ⟩), and the molecular
electrostatic operatorV:

⟨Ψ∣Q∣Ψ⟩ ⋅V =
NTS
∑

j
⟨Ψ∣(Q̂) j ∣Ψ⟩(V̂) j , (.)

where ⟨Ψ∣(Q) j∣Ψ⟩ denotes the expectation value of the j-th apparent surface charge.
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where eT ∣HF⟩ is the coupled-cluster state obtained by solving the PCM-PTE equation
(see > Eq. . in > section “The Coupled-Cluster PTE Scheme”), andRK is a quasi-particle
excitation operator
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n! ∑
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l abc . . .i jk . . . (K)a

†
i aaa

†
j aba

†
k ac⋯.

The set ket and bra wavefunctions LK andRK satisfy the property of bi-orthogonality many-
body systems

⟨Ψ̃K ∣ΨL⟩ = ⟨LK ∣RL⟩ = δKL . (.)

The variational PCM-EOM-CC free energy functional for the state of interest, ΔGEOM
K may

be written as:

ΔGEOM
K =

⟨HF∣LK e−THN()eTRK ∣HF⟩
⟨LK ∣RK⟩

+



Q̄EOM

K ⋅ V̄EOM
K + ⟨HF∣Z e−THN() exp(T)∣HF⟩. (.)

Here the first term on the right side represents the EOM-CC energy of the state on interest in
presence of the fixedHF reaction potential, while the second term Q̄EOM

K ⋅V̄EOM
K is the EOM-CC

solute-solvent interaction contribution. Specifically, Q̄EOM
K and V̄EOM

K are the EOM-CC expec-
tation value, respectively, of the polarization charges and of the electrostatic potential for the
K-th state:

Q̄EOM
K =

⟨HF∣LK e−T V̂N eTRK ∣HF⟩
⟨LK ∣RK⟩

,

V̄EOM
K =

⟨HF∣LK e−T Q̂N eTRK ∣HF⟩
⟨LK ∣RK⟩

.

The last term of ΔGEOM
K in > Eq. . introduces the constraint for the ground state coupled-

cluster wavefunction, and contains the de-excitation operatorZ given by

Z = Z +Z + . . . , (.)

Zn =

n! ∑

i jk l . . .abc . . .
ξabc . . .i jk . . . a

†
i aaa

†
j aba

†
k ac⋯.
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Abstract: We review the general concept of nonadiabatic quantum spin transitions in bio-
chemistry. A few important examples are highlighted to illustrate the concept: the role of spin
effects in oxidases, cytochromes, in dioxygen binding to heme, in photosynthesis, and in ten-
tative models of consciousness. The most thoroughly studied of these effects are connected
with dioxygen activation by enzymes. Discussion on the mechanisms of overcoming spin pro-
hibitions in dioxygen reactions with flavin-dependent oxygenases and with hemoglobin and
myoglobin is presented in some detail. We consider spin-orbit coupling (SOC) between the
starting triplet state from the entrance channel of the O binding to glucose oxidase, to ferrous
heme, and the final singlet open-shell state in these intermediates. Both triplet (T) and singlet
(S) states in these examples are dominated by the radical-pair structures D+

−O−

 induced by
charge transfer; the peculiarities of their orbital configurations are essential for the SOC analy-
sis. An account of specific SOC in the openπg-shell of dioxygen helps to explain the probability
of T-S transitions in the active site near the transition state. Simulated potential energy surface
cross-sections along the reaction coordinates for these multiplets, calculated by density func-
tional theory, agree with the notion of a relatively strong SOC induced inside the oxygenmoiety
by an orbital angular momentum change in the πg-shell during the T-S transition. The SOC
model explains well the efficient spin inversion during the O binding with heme and glucose
oxidase, which constitutes a key mechanism for understandingmetabolism. Other examples of
nontrivial roles of spin effects in biochemistry are briefly discussed.

Introduction

Many enzymes, for example, those that contain copper or iron-heme active sites (cytochromes,
peroxidases), are paramagnetic and undergo spin transitions depending on the change of the
metal site oxidation (Franzen ; Jensen and Ryde ; Prabhakar et al. ; Shaik et al.
; Shikama ; Sigfridsson and Ryde ; Stryer ). Oxygen molecules contain two
unpaired valence electrons (Sawyer ) and are therefore also paramagnetic because of the
nonzero total electron spin. The complete oxidation of organic materials by dioxygen in order
to transfer them into CO and water is highly exothermic (Sawyer ), but the kinetic barriers
preclude, fortunately, this spontaneous combustion of living matter at normal conditions in the
open air because of the spin selection rules (Prabhakar et al. ). Like mass and charge, spin is
an integral property of the electron, however, spin reveals itself through the relativistic quantum
equation as a pure quantum process associatedwith the structure of space-time, thus it is more
fundamental. The role of this fundamental quantum feature of the electron in biochemistry
could be extremely important, especially with respect to the mystery of the brain, the nature
of consciousness (Penrose ), and oxygen activation by enzymes (Franzen ; Jensen and
Ryde ; Prabhakar et al. ; Sawyer ; Shaik et al. ; Shikama ; Sigfridsson and
Ryde ; Stryer ).

When O reaches a red blood cell in the alveoli of the lung, where the gas exchange
of carbon dioxide and oxygen takes place, the hemoglobin binds O in such a strange way
that the total electron spin of the whole heme-O system is not conserved (Sigfridsson and
Ryde ). In ordinary chemistry the spin conservation rule is usually fulfilled (Sawyer ;
Shikama ; Stryer ), which is in agreement with the general conservation law of physics
(Sawyer ). But the change of the electron spin is a rather common case in biochemistry of
enzymes, in the respiration cycle and in other processes connected with dioxygen consumption
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(Blomberg et al. ; Friedman and Campbell ; Lane ; Minaev ; Minaev et al.
; Silva and Ramos ; Strickland and Harwey ).The spin change has to be compen-
sated by an orbital angular momentum change in order to follow the general conservation law
of the total angular momentum.The present review will show that this requirement is fulfilled
in a number of enzymatic processes that play key roles in biochemistry; this is accomplished by
an analysis of spin-orbit coupling perturbations.

With the appearance of photosynthesis on the primitive earth, a dramatic change in life
occurred when living cells adapted themselves from anaerobic life to the aerobic form (Shikama
). Anaerobic glycolysis represented a successful attempt to extract some of the chemical
energy from glucose. In contrast, the complete oxidation of glucose to CO and HO by utiliz-
ing oxygenmolecules was themost significant and crucial advancement in cellularmetabolism.
It thus allowed organisms to enhance their ability to utilize the chemical energy of sugar for a
most effective consumption. In light of the high efficiency of energy conservation, this dra-
matic change from anaerobic to aerobic systems was designated as an “oxygen revolution”
(Lane ; Penrose ; Shikama ; Stryer ). The most essential feature of this revo-
lution was the involvement of spin-catalysis and quantum spin effects in ordinary chemistry
(Minaev ). In fact, both processes, photosynthesis and respiration, are spin-forbidden;
from one side we have diamagnetic reactants and the paramagnetic species from the other side

CO + HO+ΔE
chlorophyll
⇄ CHO + O. In order to synthesize O with chlorophyll from

green plants beneath the sun and to use oxygen for glucose oxidation, nature has designed very
smart chemical manipulations that allow spin prohibition in dioxygen activation to be over-
come (Minaev ). With this revolution a large number of important enzymes that are based
on spin-catalysis principles (Blomberg et al. a; Jensen et al. ; Lane ; Minaev ,
, , ;Minaev et al. ; Petrich et al. ; Prabhakar et al. , ; Silva and
Ramos ) have been developed and spread (Blomberg et al. b; Klinman ; Minaev
and Lunell ; Sheldon ).

O Interaction with Heme, FAD, and Oxidases

Some oxidases include flavin adenine dinucleotide (FAD), which can activate O to produce
diamagnetic products without radical chain reaction steps (Minaev ; Stryer ). For
example, glucose oxidase (GO) is a well-known enzyme that can bind dioxygen directly from
air and produce hydrogen peroxide in the metabolic cycle (Prabhakar et al. ). An X-ray
structure of GO from Aspergillus niger is available (Klinman ) and used for simulation of
the active site in theoretical modeling (Prabhakar et al. ). The histidine residue has been
assigned an important role in the substrate oxidation by the GO active site.

In the heme biosynthesis pathway a deficient activity of the enzymes often leads to exces-
sive excretion of porphyrins (Silva and Ramos ). These toxic products can induce por-
phyria diseases due to decreased activity of coproporphyrinogen III oxidase (CPO), which
catalyzes the oxidative decarboxylation of propionic acid chains. This oxidase is similar to
GO in that they both activate dioxygen without using metals and reducing agents. However,
mechanisms by which these two oxidases produce diamagnetic peroxides from paramagnetic
dioxygen are not properly understood on experimental grounds (Klinman; Prabhakar et al.
; Silva and Ramos ), while some theoretical predictions seem to shed light on the
specific quantum nature of such chemical transformations (Minaev ; Minaev et al. ;
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Prabhakar et al. ; Silva and Ramos ). Density functional theory (DFT) calculations
(Prabhakar et al. , ; Silva and Ramos ) indicate the common feature of spin
transitions in these oxidases’ mechanisms.

Hemoglobin and myoglobin are important globular proteins that reversibly bind the O

molecule. Both proteins contain ferrous iron of a heme group, which is usually simulated by
Fe(II) porphyrin, where the iron ion is tetra-coordinated to the nitrogen atoms of the tetra-
pyrrole rings (Franzen ; Jensen and Ryde ; Shikama ; Sigfridsson andRyde ).
The proximal histidine residue from the protein side chain is also bound to the Fe(II) ion
leaving one empty position in the octahedral coordination sphere around the ferrous iron.
Hemoglobin andmyoglobin bind several small gaseousmolecules (CO andNO) besides dioxy-
gen (Sigfridsson and Ryde ). The binding of these diatomic ligands to heme has been
studied in biochemistry for over a  years (Shikama ). Dissociation of CO, NO, and O

from the iron of heme occurs by both photolysis and thermolysis. In the former case, the fate of
the diatomic ligands depends on the competition between geminate recombination and protein
relaxation. Binding to heme occurs by the reverse of the thermal process (Franzen ).

It is well established that the structure of surrounding protein affects the ligand binding
ability of the heme group; carbon monoxide binds to free heme in solution  times more
effectively than dioxygen, but in myoglobin this ratio is strongly reduced (Franzen ).Thus,
myoglobin seems to favor O binding compared to CO (Franzen ; Jensen and Ryde ;
Shikama ; Sigfridsson and Ryde ). Such discrimination is of vital importance: other-
wise we would suffocate from CO produced in our body during metabolism.The reason for the
discrimination has been connected with different geometric parameters of O and CO bind-
ing to the heme iron: the Fe–C–O bond is linear, whereas the Fe–O–O bond is bent (Franzen
). Both hemoglobin and myoglobin have another, distal, histidine ligand (His-) posi-
tioned above the Fe(II) ion, but too far away to coordinate directly to the iron. His- is in the
right position to affect the Fe–CO group and to produce a tension. This idea was supported
by early crystal structures, showing an Fe–C–O angle of –○ (Shikama ), an idea
that has penetrated into the textbooks (Shikama ; Stryer ). Some newer X-ray mea-
surements, IR spectra, and DFT calculations indicate that the Fe–C–O angle is nearly linear
in the heme models; thus one finds the idea of a strongly bent Fe–C–O unit as the reason for
the discrimination but which nowadays is agreed to be incorrect (Sigfridsson and Ryde ).
Recent DFT calculations show that the FeO group is much more polar than the FeCO group
in heme models (Franzen ; Jensen and Ryde ; Shikama ; Sigfridsson and Ryde
). The electronic structure of the FeP complex with dioxygen is close to that of a super-
oxide anion bound to a ferric ion, and this charge-transfer complex is in the singlet spin state
(Franzen ; Jensen and Ryde ; Shikama ; Sigfridsson and Ryde ). Thus, elec-
trostatic interaction between the distal histidine and the Fe(III)–O–O− group is stronger than
that for the Fe–CO group; therefore, the protein discriminates between O and CO by hydro-
gen bonding and electrostatic interaction in myoglobin (Franzen ; Jensen and Ryde ;
Sigfridsson and Ryde ).

Another important factor in such discrimination is determined by electron spin (Franzen
; Jensen and Ryde ; Minaev ; Shikama ; Sigfridsson and Ryde ; Stryer
). The O binding to heme is highly non-exponential at ambient temperature with a
rapid phase of  ps, a longer phase of similar geminate recombination (– ps), and a slow
bimolecular process of ms; all phases are spin-dependent processes (Franzen ; Jensen and
Ryde ; Petrich et al. ; Shikama ). At this point we need to consider it inmore detail.
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Definition of Spin and the Angular Momentum Conservation

Spin is derived from the Dirac equation and is a general intrinsic quantum property of electrons
(Esposito ; Hagan et al. ;Hameroff and Penrose ; Hu andWu ; Penrose ).
Spin is an angular momentum with a length of the momentum vector

√

⃗S =
√

S(S + )ħ =
(

√

/) ħ, where the spin quantum number for one electron is equal to S = / and two pro-
jection MS = ±(/)ħ described by α and β wave functions exist (the doublet state) (Esposito
). The role of electron spin in chemistry is rationalized in terms of spin-valence concept: a
covalent chemical bond is formed when atomic orbitals of two electrons with opposite spins
overlap each over (Stryer ). This spin wave function (αβ − βα) is antisymmetric with
respect to permutation of two electrons. The total spin of such pair is zero (S = ) and the
state is singlet (only one state; no spin, no intrinsic magnetic moment, the molecule is diamag-
netic). When spins are parallel the total spin has a quantum number S =  in the equation
for the length of the total spin angular momentum

√

⃗S =
√

S(S + )ħ =
√

ħ and there
are three spin states (αα, ββ, and αβ + βα) with different projections on z-axis MS = ±ħ, 
(triplet state) (Penrose ). For a simple covalent σ-bond the triplet state is unstable and
such simple molecule can exist only in the singlet state with two opposite spins. That is why
almost all stable organic molecules contain an even number of electrons, which can be divided
into α and β pairs. They are diamagnetic, have paired spins and are in the singlet ground
state.

Such diamagnetic substances usually do not change zero spin during chemical reactions
(Blomberg et al. a, ; Friedman and Campbell ; Jensen et al. ; Klinman ;
Lane ;Minaev , , ;Minaev et al. ; Petrich et al. ; Prabhakar et al. ,
; Sawyer ; Silva and Ramos ; Strickland andHarwey ).The absence of the total
electronic spin in stable molecules leads to the illusion that spin is not important in organic
chemistry and biochemistry. In fact, the total electronic spin is the main regulating factor in
manymetabolic processes catalyzed bymetal-organic enzymes, such as cytochromes (Blomberg
et al. ;Minaev ;Minaev et al. ; Shaik et al. ; Stryer ), copper-aminoxidase
(Prabhakar et al. , ), and even in metal-free glucose oxidase (Minaev ; Prabhakar
et al. , ). Spin inversion is especially important in many dioxygen reactions, binding to
heme (Jensen and Ryde ), combustion, and respiration (Minaev ). One can propose
that the importance of spin inversion is also reflected in the Perutz model of the hemoglobin
cooperativity (Franzen ; Minaev et al. ).

Dioxygen molecule is a well-known exception to the general rule: unlike many chemically
stable organic compounds, the O molecule has the triplet ground state (Sawyer ). Accord-
ing toHund’s rule, two unpaired electrons in two degenerateπg,x- andπg,y-orbitals have a lower
repulsive energy in the triplet state compared to the singlet one. Because of this, oxygen is
paramagnetic, it has intrinsic magnetic moment due to spins of two unpaired electrons and
its addition to organic compounds is spin forbidden: starting reactants have the total spin S = 
(from the O), whereas the oxidation products are diamagnetic (S = ). This is the reason why
organic matter may exist in the oxygen-rich atmosphere (Sawyer ). Because of the spin
prohibition, combustion of organic fuels requires activation in the form of high-temperature
ignition stage (Prabhakar et al. ; Sawyer ), i.e., generation of primary radicals. Reac-
tion of radical R (the triplet, S = /, doublet state) with O molecule is spin-allowed, since
the starting reactants (O +R

●

) and product (RO
●

) both have the doublet states (reactants also
possess quartet state, S = /, being non-reactive),
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O R
●

RO
●


[[↑] [↑]] + [↓] ⇒ [[↑↓] [↑]]

(.)

which provide the radical chain character of the combustion reactions (Minaev ).
The quantum cell [↑] denotes (> Eq. .) a molecular orbital (MO) with α spin; double

brackets embrace one molecule.The radical RO
●

 can decompose into radical RO
●

and biradical
●

O
●

thus providing a branching chain reaction. In radical chain combustion the energy is released
in the form of heat and light without any specific control (until fuel exhaustion). Clearly, such
mechanism of oxidation bymolecular oxygen cannot be realized in living cells. Cells meet their
energy needs in the course of metabolic processes using strictly controlled energy of oxidation
of organic compounds in their reactions with dioxygen, overcoming spin prohibition without
high-temperature ignition step of a radical chain (Minaev ). An aerobic life evolved due to
quantum kinetic prohibitions to reactions of paramagnetic oxygen with diamagnetic organic
substances. The main reason for sluggish O reactivity at the ambient conditions is the spin
prohibition, namely, the starting reagents have two unpaired spins (from O molecule), while
in diamagnetic oxidation products (CO,HO,N) all spins are always paired. Overcoming this
prohibition by generating radicals to interact with dioxygen (like in combustion) is not possible
in living matter. Since the cells cannot resist large temperature gradients, they have to transform
the energy released through oxidation to some kind of chemical energy prior to dissipation in
the form of heat. This occurs by combining oxidation with ATP synthesis. All versatile energy-
supplying metabolic processes and reactions occur under subtle enzymatic regulation, which
is often spin-dependent (Blomberg et al. a; Jensen et al. ; Minaev , , ;
Petrich et al. ; Prabhakar et al. , ).

Molecular Oxygen Structure and Spectra

TheO molecule in the triplet ground state has the following electronic configuration (Sawyer
) (σg)

 (σu)
 (σg)

 (σu)
 (σg)

 (πu)
 (πg)

 (> Fig. -). The two outer elec-
trons in two degenerate πg–MO’s provide the lowest triplet state of the type [ ↑ ][ ↑ ], where
the quantum cells [ ][ ] denote the degenerate πg-orbitals. These two unpaired electrons in
antibonding πg-MOs (> Fig. -) are responsible for the specific character of the dioxygen
interaction with radicals (combustion) and chemically stable diamagnetic compounds (slow
oxidation), as outlined above. Two antibonding πg-vacancies make it possible to transform
dioxygen into O−

 and O−
 anions, the formation of the latter being strongly dependent on

the presence of electron donors (enzymes) and magnetic perturbations that affect the spin
prohibition.

There are four possible quantum states (> Eq. .) for the electronic configuration men-
tioned above. For the imaginary form of two degenerate πg–MO’s: π±

g = ψ(r,θ) e±iφ, where θ

is an angle between the radius vector (r) and the molecular axis (z), φ is the rotation angle of
the radius vector about the z axis, the quantum states are represented by the scheme (Minaev
):

[↑] [↑] [↑↓] [] [] [↑↓] [↑] [↓] (.)

∣

Σ−

g > ∣
Δg > ∣

Δg > ∣
Σ+

g > .

Exchange interaction stabilizes the triplet state ∣Σ−

g >, while the degenerate singlet state
∣

Δg > is higher in energy by  kcal/mol, and the ∣Σ+

g > state is the uppermost one ( kcal/mol



Handbook of Computational Chemistry  

Energy

AO MO AO

3σu 

2σu 

2σg 

1σu 

1σg 

3σg 

2πg,x       

2πu,x       2πu,y       

2πg,y     

2s

1s

2s 

⊡ Fig. -
Molecular orbital configuration of dioxygen

above the ground triplet ∣Σ−

g > state). Interelectronic repulsion between the two electrons in
the two closely space-distributed πg–MO’s, expressed through exchange integrals, is relatively
high. This is an additional reason for a barrier in the O(

Σ−

g ) reactions with the closed shell
molecules.

The ∣Σ−

g > and ∣Σ+

g > states are mixed by weak internal magnetic perturbation, the
so-called spin-orbit coupling (SOC) (Minaev ; Minaev and Lunell ). Some small
admixture of one state (about .%) is present in the other state, when SOC is additionally
accounted for in the nonrelativistic Schrödinger equation. Such a small correction is very
important because it makes the forbidden S-T transitions become allowed and can explain large
difference in intensities of the atmospheric oxygen bands Σ−

g −
Δg ( nm) and Σ−

g −
 Σ+

g
( nm) (Minaev , , ; Minaev and Agren , ; Minaev and Ågren ;
Minaev and Minaeva ; Minaev et al. , , , ; Ogilby ; Paterson et al.
; Schweitzer and Schmidt ). In the following analysis we want to understand the
spin-dependent mechanism of the O binding step once dioxygen has moved from the solvent
through the protein chains and reached either themyoglobin distal cavity near the ferrous-heme
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cofactor or the flavin moiety in the active site of the GO enzyme. In both cases a similar SOC
effect of the S-T states mixing is responsible for the biochemically important oxygen activation
(Minaev , ; Minaev and Agren ; Prabhakar et al. ).

The heme-O binding step has been extensively studied after flash-photolysis (Franzen
; Jensen and Ryde ; Shikama ; Sigfridsson and Ryde ), which shows interest-
ing kinetic features, like non-homogeneous decay, recombination barriers, etc., and indicates
complicated spin-dependence (especially in comparison with NO and CO binding to myo-
globin). Kinetics of dioxygen reaction with GO has been investigated by studies of deuterium
isotope effect during oxidation half reaction (Klinman ; Prabhakar et al. ). Explanation
of such spin-dependence is the main purpose of the present review. In the beginning we want
to consider some general features of spin-effect manifestation in chemistry and in dioxygen
activation.

Spin-Prohibition of Dioxygen Reactions

Spins can undergo “depairing” when exposed to light; in (> Eq. .) an electron goes from a
doubly occupied orbital [↑↓] of the ground singlet state to a vacantMO []with the simultaneous
spin flip to produce the triplet excited state (Minaev ):

[[↑↓] []] + hν⇒ [[↑] [↑]] (.)

According to the Pauli principle, both spins can be parallel (total spin S = ) in such an excited
state when two electrons occupy two different MOs. This triplet state has three possible ori-
entations of the total spin vector, thus the singlet → triplet excitation includes three possible
transitions to three spin sublevels. All of them are spin-forbidden. This is a very strict prohibi-
tion, since it can be removed only by influence of magnetic interactions that aremuchweaker in
general than the electric interactions. The latter determine the energetics of chemical bonding,
electronic “depairing” excitation and the pathways of chemical reactions. The spin influences
the energy through exchange interaction (Minaev ). A weak SOC slightly mixes the singlet
and triplet states of molecules, which provides a non-zero rate for the T→S transitions. The late
are observed in the form of phosphorescence and are well known as important quenching pro-
cesses in photochemistry (Minaev , ;Minaev andMinaev ).The nonradiative T-S
transitions also play an important role in dark reactions, in particular, in catalysis (Metz and
Solomon ; Minaev ).Weak SOC acts as a “key” needed to open a “heavy door”: that is,
the system chooses a pathway of chemical reaction with low activation barrier in the triplet state
instead of overcoming a high activation barrier in the singlet state.We remind that the exchange
integral appears with different signs in the energy expression for the S and T states, namely, two
radicals form a chemical bond in the S state and repel each other in the T-state (Friedman and
Campbell ). The different behavior of the S and T states is important not only for radi-
cal reactions, but also for many chemical transformations that include spin “depairing” during
bond scission or proceed through biradical intermediates.This often occurs in catalysis by tran-
sition metal compounds (Minaev et al. ; Prabhakar et al. ; Sheldon ), especially
in hemoproteins (Franzen ; Jensen and Ryde ; Shikama ; Sigfridsson and Ryde
; Stryer ).
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Thecomplete occupation of the degenerate-shell, > Eq. ., requires adding two additional
electrons in order to become diamagnetic species, like usual chemical substance. Therefore,
the oxygen molecule has a very strong tendency to take electrons from other substances and
to make the complete electron-pairing in its unoccupied orbitals. This leads to the sequen-
tial formation of highly reactive or toxic oxygen species such as the superoxide anion O−

 ,
peroxide anion O−

 , as by-products of many normal cellular metabolisms. Consequently, the
development of enzymes to protect cells against such “oxidant stress” was of great urgency to
aerobic organisms.This resulted in the ubiquitous occurrence of superoxide dismutase, catalase,
peroxidase, and so on (Shikama ).

Cytochrome Oxidases and Related Heme-Containing Enzymes

Many heme-containing enzymes share the same active-species of the iron-ion types, but at
the same time they exhibit significant differences in biochemical properties and reactivity
with complicated spin-dependent kinetics (Burnold and Solomon ; de Winter and Boxer
; Kumar et al. ; Metz and Solomon ; Orlova et al. ; Shaik et al. , ,
). Some of these heme-containing enzymes, cytochrome P, cytochrome c oxidase, and
horseradish peroxidase (HRP), are utilized as the active site of a high-valent oxo-iron heme
species, called compound I (Shaik et al. ). Shaik et al. (Kumar et al. ; Shaik et al. ,
) proposed that the diverse reactions catalyzed by cytochrome P could be explained
in terms of the difference in reactivity between the high-spin and low-spin states of the com-
pound I.Their proposed two-state reactivity concept (Kumar et al. ; Shaik et al. , )
has been widely used for the cytochrome P family and based on spin conversion transition
between these states during reactions.

HRP, being similar to cytochrome P by crystal structure of the active site, differs in
axial (proximal) ligand bound to the iron; P has a thiolate ligand of a cysteinate side chain,
whereas HRP binds an imidazole group of a histidine residue side chain (Kumar et al. ).
Although HRP functions predominantly as an electron sink (Kumar et al. ), it is also
known to perform oxygen-transfer reactions (Afanasyeva et al. ; Chalkias et al. ;
Shaik et al. ). Generally, however, the reactivity of HRP enzymes is sluggish compared
with the P enzymes family; sulfoxidation is the most efficient while C-H hydroxylation is
rather sluggish. This originates mainly in the much smaller substrate-binding pocket in HRP
(Afanasyeva et al. ; Shaik et al. ). The recent DFT study of sulfoxidation by HRP and
by cytochrome P reveals a spin-state selection dependency on the proximal ligand: for thi-
olate ligand the reaction prefers the high-spin quartet state path while for the imidazole ligand
the reaction mechanism involves a two-state reactivity (Kumar et al. ). This spin pattern
also obeys orbital-selection rules, which are derived from the MO involvement of the ligands
into the key oxo-iron porphyrin orbitals (Kumar et al. ; Shaik et al. ). In the case of
the two-state reactivity the SOC-induced spin-transitions between the high-spin and low-spin
reaction pathways could be magnetic-field dependent, if the viscosity of the media is suffi-
ciently high (Afanasyeva et al. ; Buchachenko and Kouznetsov ; Buchachenko et al.
; Chalkias et al. ; Grissom ; Minaev ; Minaev and Lunell ; Serebrennikov
and Minaev ). This is because SOC in the active sites is highly anisotropic and provides
different rate constants for different spin-sublevels in zero field (Minaev ; Minaev and
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Lunell ), which become modified in the external field making the reaction to be magnetic-
field dependent (Buchachenko and Kouznetsov ; Serebrennikov and Minaev ).

Such a dependence is found for the HRP-catalyzed oxidation of NADH, which can be
presented by the schemes (Afanasyeva et al. ):

HRP + NADH → Per+ +NADH+
●

→

Per+ +O → Comp III + NAD
●

→ Comp I + NADH → Comp II, (.)

where compound II represents the Fe(IV)=O group connected with the porphyrin ring, com-
pound I represents Fe(IV)=O connected with the radical cation of porphyrin, and compound
III represents the porphyrin-containing Fe(IV)–OOH group. Here porphyrin denotes the pro-
toporphyrin IX linked with protein chain by the histidine residue. The scheme (> Eq. .) is
compatible with the magnetic-field dependence of the rate constants measured by stop-flow
spectroscopy (Afanasyeva et al. ). The catalytic cycle starts with electron transfer from
NADH to nativeHRP (Per+) to produceNADH+

●

radical and the ferroperoxidase intermediate
(Per+); (Per+) actually means here the ferric porphyrin-Fe(III).

Interconversion of NADH to form NAD+ occurs by hydride transfer, in which the H+ ion
and two electrons are transferred between the C() carbon atom of nicotinamide ring and
substrate (Minaev et al. ). Catalytic cycle of NADH oxidation in the presence of hydro-
gen peroxide begins with a two-electron oxidation of the HRP enzyme to form FeIV and the
porphyrin cation radical; this compound I is a highly reactive species that can accept one elec-
tron from NADH to form a NADH+

●

radical cation, which can undergo deprotonation to yield
NAD

●

and compound II (Afanasyeva et al. ; Grissom ).The process is competitive with
reverse electron transfer to regenerate NADH and Comp I, as shown by chemically induced
dynamic nuclear polarization (CIDNP) of one of the C() protons in the NMR spectrum of
NADH in presence of HRP (Afanasyeva et al. ). An alternative explanation of CIDNP is
also possible (Minaev ; Serebrennikov and Minaev ), based on account of anisotropic
SOC in compound I (Minaev ;Minaev and Lunell ; Minaev et al. ).Themagnetic-
field dependence of the enzymatic reaction helps to reveal electron spin correlation among the
catalytic states. Paramagnetic intermediates in the HRP catalytic cycle are difficult to detect,
since direct observation by the EPR method depends on trapping unstable kinetically relevant
radicals that may be transient or present at insignificant concentrations. Compound I is illu-
sive in the sense that it does not accumulate in the cycle. This transient radical was inferred by
cryogenic EPR/ENDOR technique (Davydov et al. ). The cryoreduction of the EPR-silent
compound II produces Fe(III) species retaining the structure of precursor [Fe(IV)=O]+ or
[Fe(IV)=OH]+; thus the EPR spectra of cryoreduced HRP II provide evidence of the low-spin
hydroxy-Fe(III) heme species (Davydov et al. ; Kumar et al. ).

The first stage (> Eq. .) is thought to be magnitosensitive (Afanasyeva et al. ).
Electron transfer from NADH to native HRP produces the quartet (Q) radical pair of Per+

and NADH+
●

, which is unreactive toward recombination. The quartet – doublet (D) transition
produces a radical pair that can recombine and quench the enzymatic process. It is claimed
(Afanasyeva et al. ) that the Q-D transition is governed by isotropic hyperfine interaction
and radical g-factors in terms of radical pair theory (Kumar et al. ). This Q-D transition is
presented in the left part of the following scheme:

[↑][↑] [↑] −

HFC
→ [↑] [↑] [↓] [↑][↑] [↑]−

SOC
→ [↑↓] [] [↑]

Q D Q D
radical pair theory spin-orbit coupling

(.)
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Here the set of three orbitals represents the triplet state of the Per+ active site and one unpaired
spin in the NADH+

●

radical. The ferro-porphyrin intermediate (Per+) is known now to have
a quintet ground state (Davydov et al. ) as follows from DFT calculations (Shaik et al.
). Thus, the main idea of the magnetic field mechanism (Afanasyeva et al. ) gives rise
to some doubt. The most important objection is connected with the possible account of SOC,
illustrated on the right side of the scheme (> Eq. .). It is possible to construct a number
of configurations that could be definitely admixed to the open shell ground states of the Per+

active site, which provides a strong SOC between Q-D states of the radical pair (> Eq. .).
Such an SOC-induced mechanism could be applied to a number of magnetic field effects in
metal-containing enzymes (Davydov et al. ; Engstrom et al. , ; Gegear et al. ;
Hoff ; Johnsen and Lohmann ; Maeda et al. ).

In the context of dioxygen activation we have to mention enzymes with binuclear metal
centers, like cytochrome oxidase (Blomberg et al. a, ), hemerythrin, and hemocyanin
(Burnold and Solomon ; Metz and Solomon ). Generally speaking, the enzymes con-
taining iron and copper active sites (Metz and Solomon ; Prabhakar et al. ) play key
roles in dioxygen activation by generation of a peroxo intermediate; either O is reduced by
two electrons, provided by a binuclear metal site, or one electron is provided by metal and a
second electron by a cofactor (Prabhakar et al. ). Cytochrome oxidase catalyzes the four-
electron reduction of oxygen molecule to water (Stryer ). No intermediates were detected
in the reaction O + e− + H+ = HO. However, many experimental measurements (Stryer
) have proved the formation of O−

 . The reaction center of cytochrome oxidase includes
one heme ferrous ion and one copper ion (Blomberg et al. a).The oxygenmolecule binds to
the heme Fe+ cation and to the Cu+ ion that donates one electron each to form an O−

 anion.
This provides a way to overcome the major obstacle to oxygen activation, that is, spin inver-
sion (T-S transition). The O−

 and O−
 species have the following ground state configurations

(in addition to > Fig. -):

[↑↓] [↑] [↑] [↑↓] [↑↓] [↓↑]

O−

 ∣
Πg > O−

 ∣
Πg > O−

 ∣
Σ+

g > .
(.)

Since the O−
 dianion has a filled electron shell, the ground state of this species is totally

symmetric and characterized by the term Σ+

g . Transfer of two electrons causes the ground-
state term, Σ−

g of the O molecule (> Fig. -), to transform smoothly to the term Σ+

g of the
dianion.The spin-orbit coupling between the states Σ−

g and Σ+

g is symmetry-allowed (Minaev
, ); therefore, the reductionO →O−

 is also symmetry allowedwith inclusion of SOC.
Transition of the active site of cytochrome oxidase to the singlet state removes spin prohibition
for subsequent fast chemical reactions up to formation of stable diamagnetic products (Minaev
). The orbital doubly degenerate ∣Πg > ground state of the O−

 ion is split by strong SOC
(Minaev ), since it has a nonzero orbital angular momentum. This is an important key
aspect of many enzymatic O-activation reactions, considered in the following sections.

Dioxygen Reactionwith Glucose Oxidase

It is often assumed (Sawyer ; Shikama ; Stryer ) that one can overcome the spin
prohibition to oxidation of organic substrates with atmospheric oxygen by successive addition
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of single electrons and protons in the successive reduction of O. Further reactions of diamag-
netic hydrogen peroxide, produced in such reduction, are spin allowed. It is assumed (Sawyer
; Sheldon ; Stryer ) that removal of spin prohibition in such reactions proceeds as in
the case of radical-chain oxidation, where the spin prohibition can be removed upon formation
of primary radicals. It is important to stress a fundamental difference between the enzymatic
reactions involving radicals and the radical reactions in chain oxidation processes. In the lat-
ter case radicals go to the bulk of the gaseous plasma flame (or in the solution bulk) and no
longer retain the “spin memory” about precursors. All participants of biochemical oxidation
reactions, i.e., dioxygen and electron transfer agents, are confined within the same active site of
enzyme. If an electron is transferred to the oxygenmolecule from a diamagnetic enzymeM, i.e.,
O +M → O−

 +M
+, it produces a triplet radical ion-pair (triplet precursor), all spins remain

correlated, the “spin memory” is retained, and the spin prohibition to subsequent reactions of
the radical ion-pair thus generated is not removed and cannot lead to a singlet product.

For example, reaction of O with glucose oxidase (Klinman ; Minaev ; Prabhakar
et al. , ) involves flavin adenine dinucleotide (FAD) and includes two stages; namely,
glucose oxidation to glucosolactone with reduction of FAD to FADH and the reverse cycle
FADH → FAD, with reduction of O to HO. From the standpoint of dioxygen activation
it is interesting to consider only the second stage (> Fig. -). In this model the protonated
histidine residue (His) is included, which is in close proximity to FAD as follows from X-ray
analysis (Klinman ). O can occupy the cavity between FADH and His (> Fig. -a).
DFT calculations indicate that an electron is transferred immediately from the reduced cofactor
to dioxygen (> Fig. -b); the electron transfer process is determined by low ionization poten-
tial of FADH, relatively high electron affinity of O (. eV), and attraction of the O−

 to the
protonated histidine. After formation of a triplet radical pair, FADH+O → FADH+

●

 +O
−
●

 , the
T→ S transition has to occur in order to provide the final diamagnetic products FAD + HO,
to which the singlet-spin stage (> Fig. -c) precedes.

After the T→ S transition in the ion-radical pair (> Fig. -b), an ordinary chemical trans-
formation on the singlet state PES occurs (> Fig. -c). It involves abstraction of hydrogen
atom from the N atom of FADH+

●

 and a proton abstraction from the nearest histidine residue
in order to createHO by reduction of the superoxide anion.This process, accompanied by the
formation of hydrogen peroxide, can occur only in the singlet state. The final phase of the cat-
alytic cycle (not shown in > Fig. -) consists of a subsequent proton transfer from FADH+

ion back to histidine across the system of H-bonds in water-protein chain (Prabhakar et al.
).This proton transfer does not change the number of active electrons and the closed-shell
spin state.The T→ S transition has been explained (Prabhakar et al. , ) by a relatively
large SOC between the S and T states of the radical pairs (> Fig. -b), which have different
orbital structures inside the superoxide ion. As one can see in the orbital-configuration scheme
(> Fig. -), the T → S transition includes an electron jump from one πg,x molecular orbital
of the dioxygen to another πg,y orbital (Spin on the FADH+

●

 moiety is non-active during the
transition). Such transformation is equivalent to orbital rotation, or to a torque, which creates
a transient magnetic field; finally this magnetic field induces a spin flip (Prabhakar et al. ,
). Thus, the reductive activation of dioxygen by GO is favored by an increased electron
affinity of O due to the proximity of protonated His-residue and a fast electron transfer
followed by the T→ S transition induced by strong SOC in superoxide ion. This simple consid-
eration is supported by direct quantum-mechanical calculations of the SOC integrals (Minaev
; Silva and Ramos ). Exactly the samemechanism of the T→ S transition is applied for
explanation of activity of coproporphyrinogen III oxidase (CPO) in catalysis of the oxidative
decarboxylation during the heme biosynthesis (Silva and Ramos ). Silva and Ramos have
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⊡ Fig. -
An active center of the glucosoxidase model. The first phase of the catalytic cycle (not shown)
includes the FAD to FADH reduction. (a) starting model of the dioxygen entrance to the active
site; (b) electron transfer stage and spin transition in the radical pair; (c) hydrogen peroxide pro-
duction. The final stage (not shown) includes the proton transfer from the N atom to the histidine
residue along the hydrogen-bond network in peptide chain of the enzyme

supported the so-called Lash’s model of CPO oxidation by dioxygen (Silva and Ramos )
and obtained the T-S crossing point that lies only  kcal/mol above the reactant state.They have
calculated the SOC integral between T and S potential energy surfaces crossing to be equal to
. cm− in an excellent agreement with the earlier prediction for GO reaction (Minaev ;
Prabhakar et al. ).

A similar mechanism of the SOC during the T → S transition has been used to explain
bioluminescence induced by the luciferase enzyme (Orlova et al. ). Attachment of triplet
dioxygen to the closed shell luciferin to yield a singlet state intermediate (which finally provides
bioluminescence) is a spin-forbidden process (Orlova et al. ). It is important to the use of
previous GOmodel (Minaev ; Prabhakar et al. ) that a critically significant protonated
histidine residue resides in the proximity of the acidic group of luciferin (Orlova et al. ),
quite similar to the GO active site (> Fig. -). Photodestruction of this histidine inactivates
luciferase completely, thus it is found plausible that the SOC-induced spin-flip in superoxide ion
(Prabhakar et al. ) operates in the case of oxygenation by luciferase (Orlova et al. ). In
the followingwewant to show that a similarmechanismof SOCenhancement by charge transfer
can be applied for spin-dependent reaction of dioxygen binding to heme.

Dioxygen Binding to Heme

The O binding with myoglobin model was studied recently by DFT methods (Blomberg
et al. ; Franzen ; Jensen and Ryde ; Jensen et al. ; Minaev ;
Minaev et al. , ; Sigfridsson and Ryde ; Strickland and Harwey ). Fully
relaxed potential energy curves (PEC) were calculated for the seven lowest electronic states
in Ref. Sigfridsson and Ryde (), Strickland and Harwey (), and Blomberg et al. (),
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⊡ Fig. -
A simple model of Fe(II)-porphine-NH-O model of oxyhemoglobin (heme-cofactor coordinated
with O. Simulates the heme (with NH as a model of a proximal histidine residue)

while the PEC for spin states S = , , ,  at fixed geometry as a functions of the Fe–O dis-
tances were presented in Ref. Franzen (). In this work we have recalculated some points
of the fixed Fe–O distance (., . and .Å) with full geometry optimization of all other
parameters for all possible multiplets and accounting for different symmetries (A′ and A′′) for
the singlet and triplet states. The model of oxyheme is shown in > Fig. -, which includes
Fe(II)-porphyrin coordinatedwithNH as amodel of proximal histidine residue. Its calculation
gives the similar singlet ground state as for the simplified Fe(II)-Porphin-Imidazole-O-model,
which poses Cs symmetry (Sigfridsson andRyde ).The simpler Fe(II)–Porphine–NH–O

model (> Fig. -) has been used in this work for DFT calculations in the vicinity of the equi-
librium.The BLYP/-G∗ method (Frisch et al. ) has been employed and the results quite
close to those presented in Ref. Sigfridsson andRyde () have been obtained. For the Fe(II)–
Porphyrin–NH–O model, shown in >Fig. -, all vibrational frequencies and their intensity
in the infrared and Raman spectra have been calculated. Many normal modes are similar to
those calculated in Refs. Minaev et al. () andMinaev (). An additional Fe–O stretch-
ing vibrational frequency is calculated at  cm−, which agrees qualitatively well with the res-
onance Raman band, observed at  cm− for oxy-hemoglonin by Soret excitation (Potter et al.
). This indicates reliability of the chosen model and of the DFT method used in this work.

In the entrance channel of the O binding reaction to heme we have a number of different
multiplets. At the infinite separation the deoxyheme has a quintet ground state with the triplet
state being very close in energy.This is in agreementwith the experimental data (Shikama ),
showing that the isolated deoxyheme is a high-spin quintet (Friedman and Campbell ).The
optimized structure of this Fe(II)P complex with NH at the fifth coordination position agrees
with the X-ray analysis of the crystal structure of deoxymyoglobin. In this case the porphyrin
Fe–N distances (.Å) are larger than in the low-spin states of deoxymyoglobin (. Å) and
the iron ion is above the porphyrin ring plane by . Å in agreementwith the X-ray data (.Å)
(Friedman and Campbell ; Sigfridsson and Ryde ).This illustrates the well-known fact
that the high-spin iron ion Fe(II)(D) is too large to fit into the porphyrin ring cavity (Jensen
and Ryde ).

When this deoxyheme interacts with the triplet ground state dioxygen O(XΣg
−), there

are six unpaired electrons (two from O plus  from heme). Their interaction can provide a
variety of possible total spin states. The maximum spin corresponds to the septet (A′′, S = )
state, when both subsystems have parallel spins. If they are anti-parallel, the triplet state A′′

occurs. At long Fe–O distances (R > .Å) these states are degenerate because of the absence
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of exchange interactions between O and heme. The intermediate quintet A′′ state is also
degenerate together with the triplet and septet. The A′′ symmetry is determined by the oxy-
gen degenerateπg orbitals, which have the a′ and a′′ symmetry, respectively, with respect to the
plane, which contains the O and Fe–N bond in ammonia molecule.

In general, all spin states that occur at each random collision of heme and O should lead
to oxygen binding. But the rate constants would be spin-dependent and different for the triplet,
quintet, and septet states (even for different spin sublevels of onemultiplet).More detailed infor-
mation about O binding has been obtained in flash-photolysis studies of O dissociation from
heme, when the fate of dioxygen depends on the competition between intrinsic recombina-
tion rate constant and protein relaxation, as well as the O escape from the protein (Shikama
). The greatly different recombination dynamics of O, CO, and NOmolecules with heme
have been attributed to spin states of each ligand and to their possible combinations with the
iron spin (Franzen ; Jensen and Ryde ; Shikama ; Sigfridsson and Ryde ).
The observed recombination kinetics can be influenced by protein dynamics, if the intrinsic
recombination rate constant is slower than this dynamics. By studies of viscosity and temper-
ature dependence, the general averaged time scale for the recombination rate constant can be
estimated (Friedman and Campbell ; Jensen and Ryde ; Shikama ).

It is interesting to compare O, CO, andNOmolecules in this respect (Blomberg et al. ;
Friedman and Campbell ; Strickland andHarwey ).TheCO recombination with heme
is a single exponential process characterized by a slow rate constant (k ≈  s−) at the ambient
temperature and a low solvent viscosity (below viscosity of globin). This intrinsic (geminate)
recombination rate is slower than both protein relaxation and CO escape, thus the recombina-
tion yield is very small (.) (Shikama ). The rebinding of the NO stable radical (doublet
ground state, S = 

/) is characterized by two-exponential kinetics with the rapid (k ≈  s−)
and slow (k ≈   s−) rate constants under ambient conditions (Friedman and Campbell
; Shikama ). Since the ground state heme has the quintet spin state (S = ), there
are two starting states: (S = / and S = /) depending on mutual spin orientation of two
species, while the recombination NO-heme product has the doublet state (S = 

/) (Fried-
man and Campbell ; Strickland and Harwey ). Both types of geminate recombination
require spin change. The slow process includes two-step spin-flip transformations (S = /) →
(S = /) → (S = 

/), since spin-orbit coupling can mix states and induces spin transition with
the selection rule ΔS =  (Minaev ).The rapid recombination occurs in one step (S = /) →
(S = 

/).
The CO molecule is diamagnetic; all spins are paired, the total spin is zero. The heme-CO

adduct is also diamagnetic (S = ). Since the ground state heme has the quintet spin state
(S = ), the geminate recombination reaction is doubly spin forbidden. First it should be a
quintet-triplet transition, which needs to overcome an additional activation barrier (besides
the spin flip, induced by SOC) and then a final triplet-singlet transition. This is the reason why
the CO recombination with heme is so slow, in spite of the high binding energy (Franzen ;
Jensen andRyde ; Shikama ; Sigfridsson andRyde ; Strickland andHarwey ).

It is interesting tomake the comparison: inorganic ferric ion (Fe+) has some catalytic activ-
ity for the decomposition of HO into water and oxygen. When the ion is incorporated into
the porphyrin molecule to form heme, the molecule is about a thousand times more effective
than Fe+ alone. If the protein component of the enzyme catalase then adds to the heme, the
catalytic efficiency increases by a further factor of  times (Shikama ). This means that
paramagnetic spin catalysis in combination with the SOC-induced spin-catalysis provide some
kind of synergetic effect.
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Spin-Orbit Coupling in O-Heme Interaction

In this review we shall consider dioxygen binding in more detail, since the O molecule is
the main subject of spin-dependent biochemical phenomena in a general context. The ground
state of the oxyheme product is an open-shell singlet in agreement with EPR experiment and
Mossbauer spectra (Friedman and Campbell ; Sigfridsson and Ryde ) (the closed-shell
singlet has been obtained in a number of calculations (Jensen et al. ; Shikama ), how-
ever, this result has since been revised (Blomberg et al. ; Strickland and Harwey )).
Thus, the reaction of O binding to heme is spin forbidden. At least the T-S transition has to
occur (Franzen ). Such spin flip can be induced by spin-orbit coupling (SOC) between
the T and S states. One has to calculate the matrix element of the SOC operator, which can be
presented in the effective single-electron approximation as

HSO =
∑

A
ζA∑

i

⃗li ,A ● s⃗ i =∑
i

⃗Bi ● s⃗ i = ∑
i
(Bi ,x si ,x + Bi ,ysi ,y + Bi ,zsi ,z). (.)

In (> Eq. .) ζA is a SOC constant for atomA (ζ =  cm−), ⃗li ,A, s⃗ i – are the orbital and
spin angular momentumoperators for the i-th electron, respectively.This is the effective single-
electron SOC approximation, which proved to be useful in many spectroscopic and chemical
applications including oxygen spin-forbidden atmospheric bands (Minaev ; Minaev and
Ågren ; Minaev et al. , , ; Ogilby ; Paterson et al. ; Schweitzer and
Schmidt ) and spin-forbidden enzyme reactions (Minaev , , ; Minaev et al.
; Prabhakar et al. , ).

Deoxyheme has a quintet ground state (four spins are unpaired, S = ) (Minaev et al. ;
Sigfridsson andRyde ) and the adductwith the triplet dioxygen (twounpaired spins)would
be expected to have either six (+ = ) unpaired spins or two (− = ) unpaired spins depend-
ing on ferromagnetic or antiferromagnetic relative orientation of the twomagneticmoments of
the deoxiheme and O. An intermediate quintet spin state is also possible for the ground state
species coupling. The triplet state of deoxyheme, being very close in energy, produces adducts
with the triplet O, which could be either quintet (S = ), triplet (S = ), or singlet (S = )
depending on if it is ferromagnetic or antiferromagnetic coupling of two species. Thus, only
triplet deoxyheme could provide the ground singlet state product in the process of the antifer-
romagnetic coupling with the triplet O in a spin-allowed oxyheme formation without spin flip.
Spin transition from the ground quintet to the close-lying triplet deoxyheme can be induced by
SOC in the third shell of the iron ion. In this case the primary electronic reorganization takes
place in the ferrous ion at the equilibrium between the quintet and triplet states already before
dioxygen approaches the deoxyheme (Franzen ; Jensen and Ryde ). All other recom-
bination processes include spin flip induced during heme–O interaction; they seem to bemore
important for dioxygen binding (Blomberg et al. ; Franzen ; Jensen and Ryde ;
Minaev ; Minaev et al. ; Shikama ; Strickland and Harwey ). Such natural
heme – O reactions could start with the A′′() state, which is repulsive at shorter distance
(R < . Å) or with the septet A′′() state (Jensen and Ryde ) (both are the ground state of
the entrance channel heme + O and go in parallel with some other multiplets until the short
distances limit (.–Å)). The energy gap is about . eV at these limits in agreement with Ref.
Jensen and Ryde (). The optimized singlet ground state A′() in the reaction product is
lower in energy than other multiplets at least by . eV; this oxyheme is an open-shell singlet
of a complicated orbital and spin structure (Franzen ; Jensen and Ryde ; Sigfridsson
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and Ryde ). It has a short Fe–O distance (. Å) (Jensen and Ryde ) (reproduced in
our DFT calculations, . Å) in contrast to the high-spin states (–.Å). Our result is close to
the Fe+–O−

 radical-pair structure in agreement with other DFT calculations and with Weiss’
model (Franzen ; Jensen and Ryde ; Shikama ; Sigfridsson and Ryde ). The
spin densities in oxyheme are equal to .,−., and−. for the Fe–O–O chain, respectively,
at the optimized bond angle of ○. The O–O bond distance (.Å) and vibration frequency
( cm−

) correspond better to superoxide ion (Jensen and Ryde ; Minaev ).
Potential energy surfaces for O binding with the hememodel (deoxy-Fe-porphyrin bound

with imidazole) have been calculated by Jensen et al. (Jensen and Ryde ), who optimized
by DFT method the Cs symmetry restricted reaction with fixed Fe–O bond length, which was
systematically increased point by point. Jensen et al. (Jensen andRyde ) found that the spin-
change occurs easily due to a broad crossing region of five electronic states. Similar PES crossing
are obtained in other studies (Franzen ; Minaev et al. ; Strickland and Harwey ).
Accounts of our data and the results of Refs. Sigfridsson and Ryde (), Franzen (),
Jensen and Ryde (), and Strickland and Harwey () allow us to consider the following
scenario of the O binding to myoglobin. At the intermediate distances .–Å the starting
A′′() state from the entrance channel transfers to the triplet Fe+–O−

 radical-pair. In this
region there are few crossing points between S and T states, including the A′′() -A′() states
crossing, where spin change could occur (Franzen ; Jensen and Ryde ; Sigfridsson and
Ryde ). A simplified electronic structure of the A′′() and A′() states near the crossing
of the potential energy surfaces is presented in scheme (). Outer electrons of the ground triplet
state dioxygen in two degenerate πg–MO’s provide a scheme [ ↑ ][ ↑ ]; electron transfer from
Fe+ toO in order to produce the radical pair Fe+–O−

 (> Eq. .) can be accomplished by the
occupation of either πg,x- or πg,y-orbitals. Both radical pairs could be in T and S states; all four
states are almost degenerate at the intermediate distances. The most interesting spin states are
those presented in scheme (> Eq. .), since they correspond to the desired T→ S transition
and to the final product of the O binding by heme. The scheme (> Eq. .) is equivalent to
the scheme (> Eq. .) and the same explanation for the high SOC matrix element (Minaev
; Prabhakar et al. ) is relevant.

[↑] .......... [↓↑] [↑] SOC
�→

Fe+
●

.........O−

●


Triplet, A′′

()

[↑] .......... [↓] [↑↓]
Fe+

●

.........O−
●


Singlet, A′

()
(.)

In this model SOC perturbation occurs entirely in the oxygen moiety and the Fe(III) ion is
magnetically silent. The starting triplet radical pair corresponds to a charge-transfer (CT) state
described by A′′() wave function ΨCTx = R∣(dα)(πg ,x β)(πg ,x α)(πg ,yα)∣, that is, transfer
of an electron to the πg,x-orbital of O molecule, whereas the singlet radical pair corresponds
to a CT state described by A′() wave function ΨCTy = R∣(dα)(πg ,x β)(πg ,yα)(πg ,yβ)∣ and
a transfer of an electron to another degenerate orbital of oxygen, πg,y. HereR means a proper
anti-symmetrization of the wave function. Spin-orbit coupling between these CT states is the
maximumpossible for a system comprised of such light atoms like oxygen (Minaev , ,
). The considered matrix element of the SOC operator (> Eq. .) is easily estimated to
be equal:

<

 A′′

()∣HZ
SO ∣

A′

() >=< ΨCTx ∣H
Z
SO ∣

ΨCTy>=


< πg ,x ∣Bz ∣πg ,y >=

i

ζO = . icm−

(.)
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The value is identical to those calculated for similar charge-transfer states including the GO
(Minaev ; Prabhakar et al. ) and coproporphyrinogen III oxidase (Silva and Ramos
). This SOC matrix element (> Eq. .) is very close to a value of about  cm−, pos-
tulated in estimation of the Landau-Zener rate constant for T-S transitions in spin-dependent
O and NO binding to heme (Franzen ; Friedman and Campbell ; Petrich et al. ).
With such a proposal for the generally unknown SOC integral (Shaik et al. ) a quite rea-
sonable estimation for the spin-dependent rate constants of the CO,O, andNO recombination
in heme proteins are obtained (Franzen ; Petrich et al. ). For CO binding to heme a
quintet-triplet-singlet step-wise transition is necessary, which explains the million times slower
recombination rate in this case in comparison with the O andNO recombination in heme pro-
teins (Franzen ; Shaik et al. ; Sigfridsson and Ryde ). The gradient difference at
the location of crossing points that enters the denominator of the Landau-Zener expression
of the rate constant for spin transition is quite small (.–. eV/Å) for O and NO binding to
heme (Franzen ; Jensen and Ryde ), thus the topology of the binding curves supports
a rapid recombination of both ligands to hemoglobin and myoglobin. The rapid NO rebinding
to heme (k ≈  s−) includes one-step quartet-doublet transition; since the NO radical has
one outer electron at the degenerate πx and πy orbitals, a quite similar theory of SOC in quasi-
degenerate charge transfer states, like that, presented in > Eqs. . and > ., can be applied.
The only difference is that the SOC integral (> .) now includesπx and πy orbitals of the NO
molecule and thus is slightly smaller (about  icm−

). The rate constant of spin transition in
the Landau-Zener model is determined by the square of the SOC integral. This explains that
the rapid NO rebinding rate constant is about three times slower than the rapid rate constant
of the O recombination in heme proteins (Franzen ; Jensen and Ryde ; Shikama
).

All previous analyses of SOC effects in hemoproteins were based on the assumption that
the SOC integral in dioxygen binding to heme is determined by the iron ion and no attempt at
direct calculation has been done (Blomberg et al. ; Franzen ; Jensen and Ryde ;
Sigfridsson and Ryde ; Strickland and Harwey ). As follows from our simple analy-
sis, the SOC integral (> Eq. .) is determined entirely by SOC in oxygen molecule and is
connected with the degeneracy of the two πg,x- and πg,y-orbitals in the open-shell of dioxy-
gen. This enhancement of SOC effect by inclusion of charge-transfer to O and involvement
of superoxide-ion structure seems to be quite general in biochemistry (Minaev , ); it
is applied also to those enzymes that have no transition atoms, like glucose oxidase, or copro-
porphyrinogen III oxidase (Minaev ; Prabhakar et al. ; Silva and Ramos ). It is
important to stress that the rapid T-S transition in O binding to heme is not only forbidden
by spin, but also by orbital symmetry (it includes the A′′ – A′ symmetry change). Such double
prohibition is necessary in order to make the spin change in chemical reaction to be effectively
allowed (Minaev and Lunell ).

The iron ion can also contribute to the SOC integral in the O binding to heme. In general,
contributions from different atoms can cancel each other in SOC calculations; it happens when
orbital rotation for different atoms occurs in opposite directions along the same axis during the
T-S transition (Minaev ; Minaev and Lunell ). This type of SOC suppression is known
in the form of the destructive external heavy atomeffect (Minaev ). However, such an effect
cannot be applied for SOC analysis in heme-O interaction. The main axis of the third-orbitals
rotation in ferrous ion during the T-S transition is perpendicular to the porphyrin tetrapyrrole
plane, while the SOC contribution from dioxygen is determined by the πg,x- and πg,y-orbitals’
rotation around the O–O axis and the two axes do not coincide.The angle of ○ between these
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axes excludes possibility of cancellation: only the sum of the squares of the x,y,z projections, of
the type given by > Eq. ., contributes to the final SOC value, which determines the rate con-
stant of the T-S transition in terms of the Landau-Zener approximation (Harvey ; Kondo
and Yoshizawa ; Minaev ; Minaev and Agren ; Poli and Harvey ).

The Role of Spin in Biochemistry

We can see that spin-dependent quantum effects and transformations are important in a
number of biochemical processes (Afanasyeva et al. ; Blomberg et al. a, ;
Buchachenko ; Buchachenko and Kouznetsov ; Buchachenko et al. ; Burnold and
Solomon ; Chalkias et al. ; Davydov et al. ; de Winter and Boxer ; Franzen
; Grissom ; Jensen and Ryde ; Jensen et al. ; Kumar et al. ; Lane ;
Metz and Solomon ; Minaev , , , ; Minaev et al. , ; Orlova
et al. ; Petrich et al. ; Prabhakar et al. , , ; Serebrennikov and Minaev
; Shaik et al. , , ; Sigfridsson and Ryde ; Silva and Ramos ; Strick-
land and Harwey ). Spin is a very fundamental quantum phenomenon associated with the
structure of space-time (Esposito ; Hameroff and Penrose ; Hu andWu ; Penrose
). Various models of elementary particles in modern physics and even space-time itself
are built with spinors (Esposito ; Penrose ). Spin of the Dirac electron is qualitatively
shown to be responsible for all known quantum effects and the quantumpotential is a pure con-
sequence of “internal motion” evidencing that the quantum behavior is a direct consequence of
the fundamental existence of spin (Penrose ). These results have been expanded recently
by deriving a spin-dependent gauge transformation between the Hamilton-Jacoby equation of
classical mechanics and the time-dependent Schrödinger equation of quantum mechanics that
is a function of the quantum potential in Bohm mechanics (Esposito ). It is quite natural
that the mostmysterious peculiarities of living matter, the neuron network machinery of brain,
hemoglobin, cytochromes, and oxydases, cannot avoid utilizing such a fundamental property
of electrons like spin and quantum behavior. The occurrence of non-zero electron spin in any
bio-system indicates that we are at a level of the life science where classical concepts are insuf-
ficient for its proper description and understanding. Electron spin is much more important
than nuclear spin since it determines the exchange interaction, the most significant part of
chemical forces, which are finally responsible for the functions of cells and for metabolism
processes.

External Magnetic Field Effects in Biochemistry

Regardless of the comments above, we need to speak about nuclear spins, since they are every-
where (at least in the form of protons) and because they also can be connected with quantum
effects in bio-systems. Recent experiments (Buchachenko and Kouznetsov ; Buchachenko
et al. ) demonstrate that intramitochondrial nucleotide phosphorylation is a nuclear spin
controlled process because the magnetic magnesium isotope Mg(II) increases the rate of
mitochondrial ATP synthesis in comparison with the spinless nonmagnetic Mg(II), Mg(II)
ions. Such nuclear spin isotope effect is usually interpreted in terms of radical pair theory for
separated spins in solvent cage (Buchachenko ), but an alternative explanation based on
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electronic spin-transition in the active center (Minaev ; Minaev and Agren ; Serebren-
nikov and Minaev ) is also possible. New developments in magnetic resonance imaging
of the brain demonstrate that induced quantum coherences of proton spins separated by long
distances ranging from thousands tomillions of nanometers (from μm to mm) are sustained
for milliseconds and longer (Hu and Wu ). While these quantum couplings are not the
type of quantum processes that are likely to prove useful in brain function (Hagan et al. ),
they nonetheless show that biology can take advantage of mesoscopic quantum coherence in
clever ways. These quantum modes are not the stable entangled superpositions required for
quantum computations in brain, but the proton spins’ coherence can indeed survive in DNA,
peptides, and in the brain’s milieu (Hameroff and Penrose ; Hu and Wu ). Some new
theory of consciousness is based on an idea that spin is the “mind-pixel” (Hagan et al. ;
Hameroff and Penrose ; Hu and Wu ); it postulates that consciousness is intrinsically
connected to quantum spin, since the latter is the origin of quantum effects in Bohm formalism
and a fundamental quantumprocess associatedwith the structure of space-time (Esposito ;
Hagan et al. ; Hameroff and Penrose ; Hu and Wu ; Penrose ). Spin involve-
ment in the theory of consciousness can be connected also with memory storage and magnetic
perturbations.

External magnetic field effects (MFE) in biochemistry are well known (Afanasyeva et al.
; Buchachenko and Kouznetsov ; Buchachenko et al. ; Chalkias et al. ; Davy-
dov et al. ; Engstrom et al. , ; Grissom ; Hoff ; Minaev et al. ;
Serebrennikov andMinaev ) and could be analyzed in terms of competition with the inter-
nal magnetic interactions including SOC as the most important one (Minaev ; Minaev and
Agren ;Minaev andLunell ) and hyperfine coupling (Burnold and Solomon ;Metz
and Solomon ; Minaev ); the spin-dependent exchange interactions are also involved
in theMFE theories as well as the whole spin-catalysis concept (Minaev andAgren ; Orlova
et al. ). MFE on enzymatic reactions have been first interpreted (Grissom ) entirely in
the context of RPT (Buchachenko ). It was clear since the a that RPT cannot explain all
variety of MFE in chemistry and biology and SOC effects could be taken into account (Minaev
, ). But only recently, a number of publications (Afanasyeva et al. ; Chalkias et al.
; Minaev ; Minaev and Agren ) examined the external MFE in terms of SOC
effects on the kinetics of enzymatic reactions. Activity increase of horseradish peroxidase (HRP)
in the presence of magnetic particles (FeO) (Chalkias et al. ) and external MFE in enzy-
matic oxidation of NADH by HRP (Afanasyeva et al. ) are the most interesting examples.
Interconversion of NADH to form NADH+

●

and NAD+ occurs by hydride transfer, in which
H+ ion and two electrons are transferred between the C() carbon atom of nicotineamide ring
and substrate (Afanasyeva et al. ). Catalytic cycle of NADH oxidation in the presence of
hydrogen peroxide begins with a two-electron oxidation of the HRP enzyme to form FeIV and
the porphyrin cation radical; this compound I is a highly reactive species that can accept one
electron from NADH to form NADH+

●

radical cation, which can undergo deprotonation to
yield NAD

●

and compound II (Afanasyeva et al. ; Grissom ).
MFE on the photosynthetic light-harvesting reaction center in bacterium Rhodopseu-

domonas sphaeroides was the first successful observation and interpretation of spin-dependent
intermediates in biology (Grissom ; Hoff ). The quantum yield of the triplet chro-
mophore decreases by % at . T. As the applied magnetic field increases, the Zeeman
interaction between MS = ± spin sublevels grows and causes a decrease of hyperfine coupling
between triplet T(±) and singlet S states, thus only T()-S states can interconvert. At highmag-
netic fields greater than . T the quantum yield of the triplet chromophore begins to increase
slowly and attains parity with the zero-field (B = ) value at B=  Tesla. At higher fields a net
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increase is detected, which is explained by T-S transitions via Δg mechanism (Afanasyeva
et al. ; Buchachenko ; Engstrom et al. ). Such biphasic MFE dependence on B
is typical for many photochemical (Hoff ; Serebrennikov and Minaev ) and enzymatic
(Afanasyeva et al. ; Grissom ) reactions that occur through the radical pair mecha-
nism. No total MFE on the photosynthetic reaction center would be expected since the total
quantum yield is composed of a series of coupled vectorial processes that create an irreversible
free energy cascade and drive proton pumping (Grissom ; Hoff ). For similar reasons
it is impossible to expect other MFE with biological relevance. For example, MFE is possible,
in principle, for the spin inversion step in GO, if the rotation of reactants in the step shown on
> Fig. -b would be frozen. The T-S transitions for different MS = ±, spin sublevels are
characterized by different rate constants even in zero field in the fixed molecular frame. But
rotation at room temperature quenches all anisotropy of zero-field splitting and SOC-induced
rate constants (Serebrennikov and Minaev ). That is why no MFE has been observed for
glucose oxidase in vivo (Chalkias et al. ).

Many mammals, reptiles, birds, insects, and fish are known to use the Earth’s magnetic field
for orientation and navigation (Gegear et al. ; Johnsen and Lohmann ; Maeda et al.
). Birds have been studied very intensively, but biophysics and neurobiology of their avian
magnetoreception are still poorly understood (Grissom ; Johnsen and Lohmann ).
Maeda et al. () have recently proposed a caratenoid-porphyrin model system to demon-
strate that the lifetime of a photochemically induced radical pair is changed by MFE with a low
magnetic field of about μT, which is comparable with the Earth’s magnetic field. Radiofre-
quencyMFE can disrupt the ability of birds to orient and also has profound influence on radical
pair reactions in vitro, which supports the RPT concept (Maeda et al. ). The recent DFT
study of the electronic mechanisms of oxidative cleavage of the O–O bond by apocarotenoid
oxygenase (ACO), which occurs in dark condition and includes a number of biradical and rad-
ical stages, is important additional support to the caratenoid-porphyrin model of Maeda et al.
().

In this context it is interesting to pay attention to molecular oxygen. Each O molecule
contains two unpaired electron spins and is a paramagnetic species capable of producing a fluc-
tuating magnetic field along its diffusing pathway.Thus, O serves as a natural contrast agent in
magnetic resonance imaging (Hu and Wu ). The existence of unpaired electrons in stable
molecules is very rare indeed. Dioxygen is the only paramagnetic species found in large quan-
tities in the brain (besides the nitric oxide) and in other aerobic tissues.The singlet excited Δg

oxygen (Minaev ) is a metastable species with a relatively short lifetime (fewmicroseconds
in water) (Schweitzer and Schmidt ) and long diffusion path (Ogilby ); it could serve as
a light signal transmitter or transfer other types of information along definite distance in tissue.
Generation and quenching of the singlet Δg oxygen are governed by SOC and other quantum
perturbations (Minaev , , ; Minaev and Agren , ; Minaev and Ågren
; Minaev and Minaev ; Minaev and Minaeva ; Minaev et al. , , ,
; Ogilby ; Paterson et al. ; Schweitzer and Schmidt ). But the ground state
triplet Σg oxygen bound and transported by hemoglobin is a source of many other quantum
effects besides those described above.

Spin Neuroscience

Conventional neuroscience has been unable to provide a complete understanding of cognitive
processes (Esposito ; Hagan et al. ; Hameroff and Penrose ; Hu and Wu ;
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Penrose ). It has been accepted that the brain can be simulated as a neural network orga-
nized by the principles of classical physics (Hameroff and Penrose ; Shaik et al. ). Such
an approach has delivered successful implementation of learning and memory and promoted
optimism that a sufficiently complex artificial neural network would (in principle, at least)
reproduce the full extent of brain processes involved in cognition and consciousness (Hagan
et al. ). But the functioning of the nervous system lie outside the realm of classical mechan-
ics; one finds ample support for this in analysis of sensory organs of vision, the operation of
which is quantized at levels varying from the reception of individual photons by the retina to
thousands of quanta in the auditory system (Hagan et al. ; Hameroff and Penrose ).
It is also proposed that synaptic signal transmission has a quantum character (Hagan et al.
). The Penrose-Hameroff orchestrated objective reduction (OOR) model (Hameroff and
Penrose ) of quantum computation inmicrotubules within neurons of the brain is compat-
ible with modern physiology and can generate testable predictions. Coherent superpositions
of tubulin proteins are unstable in the OOR model and subject to self-collapse under quantum
criterion.The phase of quantum superposition/computation is a preconscious process and each
self-collapse event corresponds to “moment of conscious experience.” An apparent shortcom-
ing of the Penrose-Hameroff OOR model and other models of quantum processes relevant to
consciousness is the question of environmental decoherence (Hagan et al. ).

The dioxygen utilization in living matter provides many interesting manifestations of spin-
dependent quantum effects that are under a control by very weak relativistic perturbations
(Minaev ). This illustrates a long-lived quantum coherence in O binding to hemoglobin
(Franzen ; Friedman and Campbell ; Shikama ). Spin coherence can occur in
photosynthetic systems, in oxidases, and in cytochromes. It depends on hyperfine interactions
and spin–spin coupling in the ensembles of paramagnetic complexes. The decoherence can be
induced by spin-flip and this review illustrates how to calculate and interpret such phenomena.
It seems promising that the SOC-induced spin effects connected with dioxygen activation in
bio-systems could be useful in other areas of life science.

Conclusions

In this reviewwe consider spin effects in a number of biochemical processes with special atten-
tion to O activation by heme, oxidases, and cytochromes. The universal role of the spin-orbit
coupling (SOC) effect in such activations is stressed. Oxidation of organic materials by dioxy-
gen, to give CO and water, is very favorable (exothermic); fortunately, the unfavorable kinetics
preclude this spontaneous combustion of living matter into “a puff of smoke” (Sheldon ).
The reason for the sluggish O reactivity is a spin barrier: the direct reaction of triplet dioxygen
with singlet organic molecules to give stable diamagnetic products is a spin-forbidden process
with a very low rate. The common way of circumventing this kinetic barrier via a free rad-
ical pathway (combustion) is impossible for living cells. The reaction of singlet (diamagnetic)
moleculeswith O forming two radicals is a spin-allowed process.Usually it is highly endother-
mic; Sheldon provides as an example of such a reaction observed at moderate temperature the
activation of Oby flavin-dependent oxygenases (Sheldon ). He argues that it is possi-
ble only for very reactive substrates (flavins) that form resonance-stabilized free radicals, e.g.,
reduced flavins, like FADH+

●

, andHO
●

 as a counterpart.We have stressed that, even in this case,
the complete oxidation in the enzyme (e.g., glucose oxidase) is spin-forbidden if theHO

●

 radical
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is not the final product that leaves the active center of enzyme and goes into the bulk of the cell,
but still participates in further oxidative transformations (Minaev ). We have shown that
flavin-dependent oxygenases provide a very efficient way to overcome the spin-prohibition by
spin-orbit coupling perturbation at the stage of electron transfer (> Eq. .).

A second way to overcome the obstacle of spin conservation is for O to combine with a
paramagnetic transition metal ion (Burnold and Solomon ; Metz and Solomon ; Prab-
hakar et al. , ). Such reactions are spin-allowed and governed by exchange interactions
(exchange-induced spin-catalysis) (Minaev ; Prabhakar et al. ). Peroxo-, dioxo-, and
superoxo-complexes with metals in different oxidation degree are considered during the search
of “dream reactions” for selective industrial catalysts (Sheldon ). The expectation that the
resulting metal-dioxygen complexes may react selectively with organic substrates at moderate
temperature forms a background for the extensive studies of metal-catalyzed oxidation during
the last four decades (Prabhakar et al. , ). In this respect the reactions of Owith
hemoglobin and myoglobin at moderate temperature are very peculiar, since they are still
spin-forbidden and quite efficient (Franzen ; Jensen and Ryde ; Sigfridsson and Ryde
).

We have recalculated some potential energy surface cross-sections for different multiplets
along the heme-O binding reaction coordinate and obtained results in agreement with Refs.
Sigfridsson and Ryde (), Franzen (), and Jensen and Ryde ().The Fe(II)porphine
molecule coordinated with ammonia molecules (> Fig. -, NH as a model of the proximal
histidine) are used as in other similar studies (Blomberg et al. ; Franzen ; Jensen et al.
; Sigfridsson and Ryde ; Strickland and Harwey ). The more realistic protopor-
phyrin IX model provides similar result for the ground state of the heme active site. Results
of previous works (Blomberg et al. ; Franzen ; Jensen and Ryde ; Minaev ;
Minaev et al. ; Sigfridsson and Ryde ; Strickland and Harwey ) indicate that the
main reason for the facilitated binding of O to heme is a broad crossing region of the relevant
spin states, which provides significant spin transition probabilities. They have shown that por-
phyrin is an ideal Fe(II) ligand for the spin-flip problem, because it tunes the spin states to be
close in energy, giving parallel binding potential energy surfaces, small activation energies and
large transition probabilities in terms of the Landau-Zener approach (Prabhakar et al. ).
But none of these studies (Blomberg et al. ; Franzen ; Jensen and Ryde ; Jensen
et al. ; Sigfridsson andRyde ; Strickland andHarwey ) have considered the reason
for relatively large spin-orbit coupling, which induces the necessary spin flip in the heme-O

binding reaction; a general assumption that the SOC integral at Fe(II) ion of about  cm−,
postulated in Ref. Petrich et al. (), has been put forward instead. We have shown that such
SOC integral (> Eq. .) is determined entirely by SOC in the oxygen moiety and is con-
nected with the two πg,x- and πg,y-orbitals in the open-shell of dioxygen.This is also connected
with charge transfer (CT) andwith the Fe+-O−

 radical-pair structure of the ground state
A′()

and the close-lying A′′() state near the crossing of the potential energy surfaces, see scheme
(> Eq. .). This scheme indicates that the triplet and singlet states, A′′() and A′(), differ
by a single electron jump inside O from the πg,x MO to the πg,y orbital. Such transformation is
equivalent to the electronic orbital rotation, i.e., a torque, which creates transient magnetic field
during the T-S transition and this magnetic field is responsible for the spin flip. In thismodel the
magnetic perturbation occurs entirely in the oxygen moiety and the iron ion is silent. Account
of SOC in the third-shell of the metal has to increase the total SOC integral.

From a broader perspective, the non-zero electron spin and the concepts of quantum
mechanics play a fundamental role in our understanding of themystery of life. Spin of dioxygen
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is a property of the ground state of the molecule and protects O from its involvement in
the realm of ordinary chemistry, where the brute force of activation energy just governs all
spin-allowed biochemical transformations of diamagnetic species. Dioxygen is protected from
brute force via the XΣg − aΔg energy gap ( kcal/mol) (Hagan et al. ) and via spin-
prohibition; at the same time O is extremely fragile and easily activated by the presence of
small amount of radicals or by magnetic perturbations (Minaev ). Such quantum spin
protection is very important for biological systems, which operate at room temperature and
are extraordinary complex, diverse, noisy, and “wet.” The quantum spin protection of dioxygen
reactivity and its dependence on weak internal and external magnetic perturbations is impor-
tant in connection with a fundamental fact, namely that biological systems are open driven
systems. Self-organization in such biosystems should involve additional and very common
mechanisms of self control, like S-T transitions in the O activating enzymes, cytochromes,
heme, photosynthetic centers, and probably in neural networks.

A fundamental conclusion of this review is an assertion of the fact that the functioning of
various enzymes is controlled by spin conversion determined by internal and external magnetic
forces.Themost importantmagnetic interaction is spin-orbit coupling andwe indicate a simple
physical origin of this perturbation as responsible for the functionality of enzymes like glu-
cose oxidase, coproporphyrinogen oxidase, luciferase, and myoglobin, hemoglobin, and other
hemoproteins.

Acknowledgment

This work is supported by the State Foundation of Fundamental Investigations (DFFD) of
Ukraine, the project F./, and by Visby project No= /.

References

Afanasyeva, M. A., Taraban, M. B., Purtov, P. A.,
Leshina, T. V., & Grissom, C. B. (). Mag-
netic field effects in enzymatic reactions: Radical
oxidation of NADH by horseradish peroxidase.
Journal of the American Chemical Society, ,
.

Blomberg, M. R. A., Siegbahn, P. E. M., Babcock,
G. T., & Wikstrom, M. (a). Modeling
cytochrome oxidase: A quantum chemical study
of the O–O bond cleavage mechanism. Journal of
the American Chemical Society, , .

Blomberg, M. R. A., Siegbahn, P. E. M., Babcock,
G. T., & Wikstrom, M. (b). O–O bond split-
ting mechanism in cytochrome oxidase. Journal
of Inorganic Biochemistry, , .

Blomberg, L. M., Blomberg, M. R. A., & Siegbahn,
P. E. M. (). A theoretical study of the bind-
ing of O, NO and CO to heme proteins. Journal
of Inorganic Biochemistry, , .

Buchachenko, A. L. (). Enrichment of magnetic
isotopes–new method of investigation of

chemical reaction mechanisms. Russian Journal
of Physical Chemistry, , .

Buchachenko, A. L., & Kouznetsov, D. A. ().
Magnetic field affects enzymatic ATP synthesis.
Journal of the American Chemical Society, ,
.

Buchachenko, A. L., Kouznetsov, D. A., Orlova,
M. A., & Markarian A. A. (). Spin
biochemistry: Intramitochondrial nucleotide
phosphorylation is a magnesium nuclear spin
controlled process. Mitochondrion, , .

Burnold, T. C., & Solomon, E. I. (). Reversible
dioxygen binding to hemerythrin. Journal of the
American Chemical Society, , .

Chalkias, N. G., Kahawong, P., & Giannelis E. P.
(). Activity increase of horseradish per-
oxidase in the presence of magnetic particles.
Journal of the American Chemical Society, ,
.

Davydov, R., Osborne, R. L., Kim, S. H.,
Dawson, J. H., & Hoffman, B. M. (). EPR



Handbook of Computational Chemistry  

and ENDOR studies of cryoreduced compound
I. Biochemistry, , .

de Winter, A., & Boxer, S. G. (). Energetics of
primary charge separation in bacterial photo-
synthetic reaction center mutants: Triplet decay
in large magnetic field. Journal of Physical Chem-
istry A, , .

Engstrom, M., Minaev, B. F., Vahtras, O., & Agren,
H. (). MCSCF linear response calculations
of electronic g-factor and spin-rotational cou-
pling constants for diatomics. Chemical Physics
Letters, , .

Engstrom, M., Himo, F., Graslund, A., Minaev, B. F.,
Vahtras, O., & Agren, H. (). H-bonding to
the tyrosyl radical analyzed by ab initio g-tensor
calculations. Journal of Physical Chemistry A,
, .

Esposito, S. (). On the role of spin in quan-
tum mechanics, Foundations of Physics Letters,
, .

Franzen, S. (). Spin-dependent mechanism for
diatomic ligand binding to heme. Proceedings of
the National Academy of Sciences of the United
States of America, , .

Friedman, J., & Campbell, B. (). Structural
dynamics and reactivity in hemoglobin. New
York: Springer.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al.
(). Gaussian , Revision B. . Pittsburg:
Gaussian Inc.

Gegear, R. J., Conelman, A., & Waddell, S. ().
Cryptochrome mediates light-dependent mag-
netosensitivity in Drosophila. Nature, , .

Grissom, C. B. (). Magnetic field effects in
biology: A survey of possible mechanisms with
emphasis on radical-pair recombination. Chem-
ical Reviews, , .

Hagan, S., Hameroff, S. R., & Tuszynski, J. A. ().
Quantum computation in brain microtubules.
Physical Review E, , .

Hameroff, S., & Penrose, R. (). Conscious events
as orchestrated space-time selections. Journal of
Consciousness Studies, , .

Harvey, J. N. (). Spin-forbidden CO ligand
recombination in myoglobin. Faraday Discus-
sions, , .

Hoff, A. J. (). Magnetic interactions between
photosynthetic reactants. Photochemistry and
Photobiology, , .

Hu, H. P., & Wu, M. X. (). Spin-mediated con-
sciousness theory. Medical Hypotheses, , .

Jensen, K. J., & Ryde, U. (). How O binds to
heme. Journal of Biological Chemistry, , .

Jensen, K. J., Ross, B. O., & Ryde, U. (). The
CAS PT study of oxymioglobin model. Journal
of Inorganic Biochemistry, , .

Johnsen S., & Lohmann, K. J. (). The physics
and neurobiology of magnetoreception. Nature
Reviews Neuroscience, , .

Klinman, J. P. (). Life as aerobes: Are there sim-
ple rules for activation of dioxygen by enzymes?
Journal of Biological Inorganic Chemistry, , .

Kondo, M., & Yoshizawa, K. (). A theoretical
study of spin-orbit coupling in an Fe(II) spin-
crossover complex. Mechanism of the LIESST
effect. Chemical Physics Letters, , .

Kumar, D., de Viser, S. P., Sherma, P. K., Hirao, H., &
Shaik, S. (). Sulfoxidation mechanisms cat-
alyzed by cytochrome P and HRP models:
Spin selection induced by the ligand. Biochem-
istry, , .

Lane, N. (). Oxygen: The molecule that made the
world. Oxford: Oxford University Press.

Maeda, K., Henbest, K. B., Cintolesi, F., Kuprov, I.,
Rodgers, C. T., Liddell, P. A., Gust, D., Timmel,
C. R., & Hore, P. J. (). Chemical compass
model of avian magnetoreception. Nature, ,
.

Metz, M., & Solomon, E. I. (). Dioxygen binding
to deoxyhemocyanin. Journal of the American
Chemical Society, , .

Minaev, B. F. (). Intensities of spin-forbidden
transitions in molecular oxygen. International
Journal of Quantum Chemistry, , .

Minaev, B. F. (). Theoretical analysis and prog-
nostication of spin-orbit coupling effects in molec-
ular spectroscopy and chemical kinetics. DrSc
Dissertation, Institute of Chemical Physics,
Moscow.

Minaev, B. F. (). Solvent-induced emission of
molecular aΔ g oxygen. Journal of Molecular
Structure (Theochem), , .

Minaev, B. F. (). Spin effects in reductive activa-
tion of O by oxidase enzymes. RIKEN Review,
, .

Minaev, B. F. (). Ab initio study of the ground
state properties of molecular oxygen. Spec-
trochimica Acta Part A-Molecular and Biomolec-
ular Spectroscopy, , .

Minaev, B. F. (). Electronic mechanisms of
molecular oxygen activation. Russian Chemical
Review, , .

Minaev, B. F. (). Environment friendly spin-
catalysis for dioxigen activation. Chemistry &
Chemical Technology, , –.

Minaev, B. F., & Agren, H. (). Spin-orbit coupling
induced chemical reactivity and spin-catalysis
phenomena. Collection of Czechoslovak Chemical
Communications, , .

Minaev, B. F., & Agren, H. (). Spin-catalysis
phenomena. International Journal of Quantum
Chemistry, , .



  Handbook of Computational Chemistry

Minaev, B. F., & Ågren, H. (). Collision-induced
bΣ g -aΔ g , XΣ g -bΣ g , and XΣ g -aΔ g transition
probabilities in molecular oxygen. Journal of the
Chemical Society-Faraday Transactions, , .

Minaev, B. F., & Lunell, S. (). Classification of
spin-orbit coupling effects in organic chemical
reactions. Zeitschrift Fur Physikalische Chemie-
International Journal of Research in Physical
Chemistry & Chemical Physics, , .

Minaev, B. F., & Minaev, A. B. (). Calculation of
the phosphorescence of porphyrins by the den-
sity functional method. Optics and Spectroscopy,
, .

Minaev, B. F., & Minaeva, V. A. (). MCSCF
response calculations of the exited states proper-
ties of the O molecule and a part of its spectrum.
Physical Chemistry Chemical Physics, , .

Minaev, B. F., Lunell, S., & Kobzev, G. I. (). The
influence of intermolecular interaction on the
forbidden near-IR transitions in molecular oxy-
gen. Journal of Molecular Structure (Theochem),
, .

Minaev, B. F., Mikkelsen, K. V., & Ågren, H. ().
Collision-induced electronic transitions in com-
plexes between benzene and molecular oxygen.
Chemical Physics, , .

Minaev, B. F., Vahtras, O., & Ågren, H. ().
Magnetic phosphorescence of molecular oxygen.
Chemical Physics, , .

Minaev, B. F., Lyzhenkova, I. I., Minaeva, V. A.,
& Boiko, V. I. (). A quantum chemical
approach to the mechanism of biochemical
action of nicotinamide. Theoretical and Experi-
mental Chemistry, , .

Minaev, B. F., Minaeva, V. A., & Vasenko, O. M.
(). Spin states of the Fe(II)-pporphin
molecule: Quantum-chemical study by DFT
method. Ukrainica Bioorganica Acta, , .

Minaev, B. F., Minaeva, V. A., & Evtuhov, Y. V.
(). Quantum-chemical study of the singlet
oxygen emission. International Journal of Quan-
tum Chemistry, , .

Ogilby, P. R. (). Singlet oxygen. Accounts of
Chemical Research, , .

Orlova, G., Goddard, J. D., & Brovko, L. Y. ().
Theoretical study of the amazing firefly biolu-
minescence. Journal of the American Chemical
Society, , .

Paterson, M. J., Christiansen, O., Jensen, F., & Ogilby,
P. R. (). Singlet oxygen. Photochemistry and
Photobiology, , .

Penrose, R. (). A spinor approach to general
relativity. Annals of Physics, , .

Penrose, R. (). Shadows of the mind. Oxford:
Oxford University Press.

Petrich, J. W., Poyart, C., & Martin, J. L. ().
Spin-forbidden binding of O to hemoglobin.
Biochemistry, , .

Poli, R., & Harvey, J. N. (). Spin-forbidden chem-
ical reactions. Chemical Society Reviews, , .

Potter, W. T., Ticker, M. P., & Caughey, W. S. ().
Resonance Raman spectra of myoglobin. Bio-
chemistry, , .

Prabhakar, R., Siegbahn, P. E. M., Minaev, B. F., &
Agren, H. (). Activation of triplet dioxygen
by glucose oxifase: Spin-orbit coupling in the
superoxide ion. Journal of Physical Chemistry B,
, .

Prabhakar, R., Siegbahn, P. E. M., & Minaev, B. F.
(). A theoretical study of the dioxygen acti-
vation by glucose oxidase and by copper amine
oxidase. Biochimica et Biophysica Acta, ,
.

Prabhakar, R., Siegbahn, P. E. M., Minaev, B. F., &
Agren, H. (). Spin transition during HO

formation in the oxidative half-reaction of cop-
per amine oxidase. Journal of Physical Chemistry
B, , .

Sawyer, D. T. (). Oxygen chemistry. New York:
Oxford University.

Schweitzer, C., & Schmidt, R. (). Physical mech-
anisms of generation and deactivation of singlet
oxygen. Chemical Reviews, , .

Serebrennikov, Y. A., & Minaev, B. F. (). Mag-
netic field effects due to spin-orbit coupling in
transient intermediates. Chemical Physics, ,
.

Shaik, S., Filatov, M., Schroder, D., & Schvarz,
H. (). Electronic structure makes a differ-
ence: Cytochrome P- mediated hydroxyla-
tion of hydrocarbons as a two-state reactiv-
ity paradigm. Chemistry-A European Journal, ,
.

Shaik, S., Ogliaro, F., de Visser, S. P., Schwarz, H.,
& Schroeder, D. (). Two state reactivity
mechanism of hydroxylation and epoxidation by
cytochrome P revealed by theory. Current
Opinion in Chemical Biology, , .

Shaik, S., Kumar, D., de Viser, S. P., Altun, A., &
Tiel, W. (). Theoretical perspective on the
structure of cytochrome P enzymes. Chemi-
cal Reviews, , .

Sheldon, R. A. (). A history of oxygen activation.
In D. Barton et al. (Eds.), The Activation of dioxy-
gen and homogeneous catalytic oxidation. New
York: Plenum.

Shikama, K. (). Nature of the FeO bonding in
myoglobin and hemoglobin. A new molecular
paradigm. Progress in Biophysics and Molecular
Biology, , .



Handbook of Computational Chemistry  

Sigfridsson, E., & Ryde, U. (). Theoretical study
of discrimination between O and CO by myo-
globin. Journal of Inorganic Chemistry, , .

Silva, P. J., & Ramos, M. J. (). A compara-
tive DFT study of the reaction mechanism of
the O-depemdemt coproporphyrinogen III oxi-
dase. Bioorganic Medical Chemistry, , .

Strickland, N., & Harwey, J. N. (). Spin-
forbidden ligand binding to the ferrous-heme
group. Journal of Physical Chemistry B, , .

Stryer, L. (). Biochemistry (th ed., p. ).
New York: Freeman.





 Protein Modeling
G. Náray-Szabó ⋅A. Perczel ⋅A. Láng
Laboratory of Structural Chemistry and Biology and Protein Modelling
Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University,
Budapest, Hungary

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Structure Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Protein Crystallography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Nuclear Magnetic Resonance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Computer Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Molecular Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Structure Prediction and Homology Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Structure Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Molecular Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Solvent-Accessible Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Time Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Dynamical Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Dynamics of Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Protein Hydration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Ligand Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Protein–Protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Enzyme Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

J. Leszczynski (ed.), Handbook of Computational Chemistry, DOI ./----_,
© Springer Science+Business Media B.V. 



  Protein Modeling

Abstract: Proteins play a crucial role in biological processes, therefore, understanding their
structure and function is very important. In this chapter we give an overview on computermod-
els of proteins. First we treat both major experimental structure determinationmethods, X-ray
diffraction and NMR spectroscopy. In subsequent sections computer modeling techniques as
well as their application to the construction of explicit models are discussed. An overview on
molecularmechanics and structure prediction is followed by an overview ofmolecular graphics
methods of structure representation. Protein electrostatics and the concept of the solvent-
accessible surface are treated in detail. We devote a special section to dynamics, where time
scales, structures, and interactions are discussed. Protein interactions are especially important,
so protein hydration, ligand binding, and protein–protein interactions receive special atten-
tion. Finally, computer modeling of enzyme mechanisms is discussed. We try to demonstrate
that protein representation by computers arrived to a very high degree of sophistication and
reliability; therefore, even lots of experimental studies make use of such models. A list with 
up-to-date bibliographic references helps the reader to get informed on further details.

Introduction

In order to obtain versatile models we attribute a definite spatial structure and shape to
molecules, which may, however, change in time. In the case of proteins the structure is too
complicated and complex; thus the use of computer graphics is unavoidable. In this chapter we
give an overview on the experimental and computational methods that provide information on
protein structure and allow deriving its relation to function. Neither of the techniques currently
available is able to yield full information. X-ray diffraction works only for crystalline samples;
NMR techniques refer to restraints, which determine a manifold of related, but not identical
structures, while modeling still lacks full reliability. Accordingly, in order to obtain thorough
information on protein structure, various techniques should be combined, though in several
cases even a single technique provides a model, which is adequate for some considerations. The
present chapter should help in obtaining an overview on up-to-date techniques with reference
to more detailed reviews on specific subjects.

Structure Determination

Both experimental and modeling techniques are available for the determination of the three-
dimensional structure of proteins.They vary in performance and neither of themoffers a unique
tool to be applied for any type of proteins and their complexes. In most cases publications refer
to a singlemethod only, structures are determined either by X-ray diffraction, nuclearmagnetic
resonance (NMR) spectroscopy, or, eventually, by computer modeling. In order to get a true,
broad, and rather complete information on structural and dynamic properties of proteins, we
need to compare data obtained by a variety of methods.

Experiment

The first protein structures were determined by X-ray diffraction techniques; to datemore than
, structures are available in the Protein Data Bank (). Structure determination by
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NMR spectroscopy is also rapidly growing; the number of deposited structures is more than
, (Protein Data Bank ).

Protein Crystallography

Protein structures can be visualized at the atomic level by working with X-rays. An appropriate
crystal has to be irradiated, the obtained diffraction pattern recorded and analyzed by math-
ematical tools. The result is an electron density map with relative maxima at the position of
atomic nuclei. Using classical chemical information the density map can be evaluated and the
three-dimensional molecular model of the protein can be constructed. In order to determine
the structure of a protein the following steps have to be performed (Brandén and Tooze ).

Sample Preparation and Crystallization

Its goal is to produce a well-ordered crystal that is large enough to provide an appropriate
diffraction pattern when irradiated with X-rays. It is inherently difficult because of the fragile
nature of protein crystals. Proteins have irregularly shaped surfaces, which form large chan-
nels within the crystal. The non-covalent bonds that hold together the lattice must often be
formed by flexible amino-acid residues of the protein surface. The success of crystallization of
a protein depends on several factors, like purity, pH, concentration, temperature, and precipi-
tants. In order to ensure sufficient homogeneity, the protein should be pure to at least %. It is
necessary to screen a reasonable number of conditions; for that we need at least μL of
material in a concentration of about mg/mL.The most commonly used techniques for crys-
tallization are the hanging and sitting drop methods (Horsefield and Neutze ) although
alternative approaches have emerged, e.g., the micro-batch method (Luft et al. ). Recently,
efficient high-throughput methods have been developed to speed up the process and to
determine optimal crystallization conditions (Chayen ).

Data Collection
Once we have an appropriate crystal, its symmetry, the unit cell parameters, and the resolution
limit have to be determined. Then, it will be irradiated by an X-ray beam and continu-
ously rotated by a small angle. Thus we can record the X-ray diffraction pattern containing
relevant information on the position of scattering centers. For crystals of lower quality we may
apply synchrotron radiation, where the beam intensity is greater, therefore data collection times
are shorter, sometimes not more than min. Synchrotron radiation is also the basis of time-
resolved crystallography (Bourgeois and Royant ). The relatively slow reaction rates allow
following changes in atomic positions during the enzymatic process.

Structure Solution
The relationship between the scattering angle and the distance between planes passing through
the atoms in the crystal is given by the Bragg’s law.The electron density is related to the diffrac-
tion pattern by a mathematical function, the inverse Fourier transform. To compute this we
need to know both the amplitude and the phase of the diffracted waves. Since we cannot
measure the relative phase angles experimentally, we face the so-called phase-problem, often
themost serious bottleneck in determining a new structure. A possible technique to solve this is
the isomorphous replacement, i.e., to provide a crystal that is nearly identical to the one studied,
except that a few atoms have been replaced or added. If these atoms have a large atomic num-
ber, they will strongly perturb the diffraction pattern and allow deducing possible values for the
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phase angles. A similar technique makes use of the multiple-wavelength anomalous dispersion
(MAD). By changing the wavelength of the X-rays, the degree to which the anomalously scatter-
ing atoms perturb the diffraction pattern also changes.This gives the same kind of information
as isomorphous replacement.

Model Building
If the studied crystals were perfectly ordered, then all the atoms would scatter in phase and the
electron density map would have peaks at each of the atomic positions. However, in electron
density maps of most protein atoms are not resolved from each another; we need a model to
be fitted to the electron density. Fitting models to density requires the use of computer graph-
ics programs such as COOT (Emsley and Cowtan ) and as a result the electron density
map is interpreted in terms of a set of atoms. In most cases the protein backbone is fitted first;
then, if the resolution permits, the side-chain atoms are positioned. The result is dependent
on the resolution and the quality of the phases (> Fig. -). Often regions of high flexibility
(e.g., surface lysine side chains) are not visible since the corresponding electron density is
smeared.

Refinement and Validation

An atomic model can be improved by refinement, in which it is adjusted to the measured
diffraction data. Refinement improves the phases leading to clearer maps and better models.
The quality of an atomic model can be judged by the so-called R-factor, which is the average
fractional error in the calculated amplitude compared to the observed one. Since, in general,
there are not enough diffraction data, thesemay be completed by restraints on geometry, which
keep the bond lengths, angles, and close contacts within a reasonable range.Main-chain torsion

⊡ Fig. -
Atomic (. Å) resolution electron density mapof a section of the complex between crayfish trypsin
and an inhibitor from the desert locust Schistocerca gregaria (SGTI) (V. Harmat unpublished)
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angles are difficult to restrain, but the distribution of these angles is strongly restricted, as shown
by the Ramachandran plot (Hovmöller et al. ), which is thus an additional indicator of the
quality of a structure. Neutron diffraction, a special method requiring high thermal-neutron
fluxes, which can be obtained only from nuclear reactors, provides special information on pro-
teins (Fitter et al. ). Hydrogen atoms can be precisely located, which is almost impossible
by X-ray diffraction. A diffraction experiment can be performed on a crystal; the results can be
evaluated similarly, as done for the X-ray technique.

Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool of modern structural biol-
ogy, which allows determining protein structures, even in some cases where X-ray diffraction
fails. It has become an independentmethod of routine structure determination for proteins with
up to about  residues. Structure determination by NMR consists of multiple consecutive
steps.

Sample Preparation and Stability Testing
For successful NMR experiments a protein solution of high purity (>%), stability (over a
week), and appropriate concentration (.–mM) is needed; the total sample volume and mass
should be –μL and –mg, respectively. ,-Dimethyl--silapentane--sulfonic acid
(DSS) rather than tetramethylsilane (TMS) is used as a reference compound. Although both
natural and synthetic polypeptides and proteins can be used, most samples are expressed via
a suitable prokaryotic or eukaryotic cellular or cell-free recombinant technique. The latter
method eliminatesmost toxic effects attributed to the overproduction of recombinant proteins.
Biotechnological approaches have the common advantage of large-scale protein production,
specific or non-specific stable isotope labeling, and easy sequence variation.

Data Acquisition
When placed in a magnetic field (– T), magnetically active nuclei (e.g., H, C, or N)
absorb energy at a characteristic resonance frequency, which is detected in the form of a signal
in the NMR spectrum (Schorn and Taylor ). The resonance frequencies, mostly between
 and MHz for H nuclei, referring to the energy of the absorption are proportional to the
strength of the staticmagnetic field.Depending on the local chemical environment, nuclei of the
same type in the samemolecule resonate at slightly different frequencies.The relative shift from
a reference (DSS for proteins in aqueous solution) resonance frequency is called the chemical
shift. Peptides and proteins from natural sources are typically restricted to utilizing resonances
based solely on protons, however, to get more information, further NMR active nuclei (mostly
C and N) have to be introduced or enriched in the molecule.

In ideal signal dispersion each magnetically active atom has its unique chemical shift by
which it can be recognized and assigned. Assignment of each measured chemical shift to a
single atom (or a group of atoms, e.g., a methyl group) is a mandatory step toward structure
determination. Resonance frequency assignment is a very complicated and laborious pro-
cedure and often needs to introduce further “dimensions” into measurements, but provides
useful information on protein structure, dynamics, interaction, and ligand binding. Beside the
most common direct dimension, typically associated with H, experiments are run to gen-
erate additional dimensions to minimize spectral overlap. For structure determination, two



  Protein Modeling

major types of NMR experiments are in everyday use: () the one based on coherence trans-
fer between chemically connected atoms via indirect (through bond) coupling (e.g., COSY,
TOCSY, HSQC, HNCO,HNCA, etc.) and () those relaying onmagnetization transfer between
spatially close atoms (through space coupling; see below). The first set is for the identifi-
cation of connected chemical shifts, while the second one is to localize related chemical
shifts.

Resonance Frequency Assignment

First, real and artificial (background) signals have to be distinguished; this provides the basis
of the analysis of NMR-spectra. Then, one has to find out which chemical shift corresponds to
which nuclei within the macromolecule. Several different protocols were invented to achieve
this tedious goal, primarily depending on the type of isotope labeling introduced for proteins.
Homonuclear techniques are used for unlabeled molecules by taking advantage of a series of
specific experiments. Resonance assignment for proteins of medium size (<MW <  kDa)
relies on N-labeled samples by using suitable parameterized methods. Larger proteins require
double (N-, C) or triple (H-, N-, C) labeling, enabling resonance assignment for both
backbone and side-chain atoms. In principle, by filtering peaks, grouping of resonances, iden-
tifying spin-systems, and by grouping stretches of sequences into segments the full assignment
procedure can be automated. Sophisticated software, like DYNASSIGN (Schmucki et al. ),
ensures high completeness of the assignment procedure.

Restraint Collection
Structure determination by NMR-spectroscopy depends on various structural restraints. Dis-
tance restraints are typically obtained fromNOESY experiments, where cross peaks appear due
to successful magnetization transfer events between spatially close nuclei. Once assigned, each
of the cross peaks can be converted into the approximate internuclear distance. The success
of a structure determination depends on several factors, such as the total number of Nuclear
Overhauser Effect (NOE) defined hydrogen–hydrogen distance restraints, on their distribution
within the molecule, accurate assignment, and on their proper calibration. Because of vari-
ous limitations these distances cannot be determined precisely; rather they are sorted as short
(.–. Å), medium (.–. Å), or large (.–.Å) ones. Restraints on the backbone (ϕ andψ)
and side-chain (χ, χ etc.) dihedral torsion angles can be obtained bymeasuring conformation
sensitive indirect coupling constants. Various D- and D-methods have been developed for
the accurate measurementof coupling constants by NMR both in solution and in solid state. By
suitable measurements followed by careful calibrations these data can be converted into dihe-
dral angle restraints. Orientation NMR restraints are commonly obtained for macromolecules.
Dipolar couplings are averaged in solution because of fast molecular tumbling. However, due
to slight overpopulation of one state, residual dipolar coupling (RDC) can be measured even in
solution, if molecular tumbling is restricted by using suitable oriented media. Dipolar coupling
is routinely used in solid state NMR and provides useful information about the relative ori-
entation of bond vectors. Hydrogen bonds as structural restraints are typically determined by
some sort of hydrogen/deuterium exchange experiment. H/D exchange can be quantitatively
monitored by the isotope effect of deuterium on the chemical bond strength. The slower the
NH exchanges to ND, the more the amide group is buried within the protein. For peptides
and shorter proteins, the temperature dependence of NH chemical shifts can also be detected
and used to estimate the involvement of the NH bond in an intramolecular H-bond. Various
paramagnetic restraints can also be used for solution structure determination. Finally, order
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parameters introduced as restraints reflect an advanced view on dynamic-structure of proteins.
Rawdata required typically involve Longitudinal R and transversal R relaxation rate constants,
N-{H}-NOE to determine order parameters beside the overall- and local-correlation times
and chemical exchange rates. Recently, chemical shifts have been used to obtain preliminary
models of protein structures (Cavalli et al. ).

Structure Calculation and Refinement
Experimentally determined structural restraints are used as input for these structure elucida-
tions. Computer programs, like XPLOR (Schwieters et al. ) combine as many restraints
as possible in conjunction with general properties of proteins. These approaches convert the
different structural restraints into target functions with general protein properties describing
energy terms, all to be minimized at once. A bundle of structures will be obtained reflecting
a selected molecular fold. Structure determination by NMR is yet a time consuming iterative
process requiring well-trained and devoted specialists.Themost time-consuming processes are
the chemical shift and the NOE assignments. Automating and black-boxing the assignment to
increase the throughput and to eliminate subjective decisions during structure elucidation is an
important goal, yet partially achieved. Efforts are made to fully automate resonance assignment
in conjunction with structure calculations in an integrated manner (Volk et al. ).

Structure Validation
Structure Validation is strongly recommended by using special software [e.g., CheckShift
(Ginzinger et al. )] to check both the quality of the NMR experimental data and structural
information before publication. In general these programs provide a means of validating both
the geometry and restraint violations of an NMR driven protein structure bundle. The output
provides both statistical summaries and visualizations on restraint violations, agreement with
already deposited model parameters, quality of geometrical properties, etc.

Although NMR is a versatile tool for protein structure determination, it may have severe
limitations such as spectral crowdedness, too fast relaxation, poor automation, etc. Tradi-
tionally, NMR has been used for proteins of small or medium size. Drawbacks and technical
problems originate from the limited spectral resolution and signal overlap. Introducing mul-
tidimensional NMR spectroscopy, in conjunction with the different isotope labeling schemes,
as well as the increase of the applied static magnetic field helped a lot in enhancing the power
of NMR spectroscopy. An additional limitation is connected to spin relaxation; coherence and
magnetization vanish quickly for larger macromolecules. This means that there is less and less
time to acquire NMR signals, causing signal-broadening and weakening. Two techniques have
been introduced lately to overcome this problem, a chemical one by the introduction of sample
deuteration and a spectroscopic one, namely the transverse relaxation optimized spectroscopy
(TROSY). Today, these technical novelties allow determining even structures of larger water
soluble and membrane proteins (Wüthrich ).

ComputerModeling

Modern computer hardware and software technology allowsmodeling of proteins at the atomic
level quite precisely. Several computer methods are available for experiment-based structure
determination, interpretation of structure-function relationships, as well as construction of
explicit models of proteins from atomic or molecular fragments.
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Molecular Mechanics

Since proteins are very large, containing several thousand atoms, quantum mechanical calcu-
lations are not tractable for doing calculations on the whole system. Instead, the much simpler
molecular mechanics (MM) or force field methods are applied, where a molecular system is
treated as an ensemble of atoms connected by strings (bonds). A price for simplicity is that
electrons are not treated explicitly and correctly. Forces acting between atoms are described by
simple mathematical expressions, adapted from classical physics. A certain force field is com-
posed by interaction terms describing different types of strain present in a molecule. The total
energy of the system is typically calculated as the sum of the following terms:

EMM = Vstretch + Vbend + Vtorsion + Voutofplane + Vnonbonded (.)

where stretching, bending, torsion, out-of-plane bending, van der Waals, and electrostatic
terms, respectively, are defined as follows:

Vstretch = ΣbondsKstretch(ri j − r

i j)

 (.)

Vbend = ΣanglesKbend(θi jk − θ

i jk)

 (.)
Vtorsion = ΣdihedralsKtorsion[ + cos(nϕ − δ)] (.)

Voutofplane = ΣimpropersKoutofplane χi jk ; l
 (.)

Vnonbonded = Σnon−bondedpairs [Anonbonded(Cr−i j −Cr−i j ) (.)
+ qi q j/Dri j]

where ri j , ri j , θi jk , and θi jk are the actual and equilibrium bond lengths (interatomic distances)
and bond angles, respectively, ϕ is the dihedral angle and δ is its phase shift, χi jk ; l is the angle
between the bond jl and the plane i jk, where j is the central atom. Kstretch , Kbend, Ktorsion,
and Koutofplane refer to respective force constants; n is the multiplicity of the torsional func-
tion. Anonbonded , C, and C are adjustable parameters. qi is the net charge on atom i, D is the
dielectric parameter. For review and comparison of various force fields see (Hu and Jiang ;
MacKerell ; Wang et al. ).

Van der Waals and electrostatic parameters in > Eq. . are usually not calculated for
atoms that are relatively close (at a distance of one or two bonds). In order to reduce computa-
tional efforts (e.g., methyl) groups of atomsmay be considered as a single interacting unit. Force
constants and other parameters in the energy expression are fitted to experimental or calculated
data. Different parameters are used, e.g., for sp-, sp-, and sp-type atoms and additional ones
for atoms in carbonyl or peptide groups or in aromatic systems. Accordingly, the total number
of adjustable parametersmay be quite large. As the number of atompairs inVnonbonded increases
quadratically; in order to reduce computation time most programs use a cut-off value, beyond
which the interactions are set to zero over an additional short distance. It has to be noticed that
a certain set of parameters works only for a given force field, and a single parameter has no
meaning in itself, it cannot be transferred to another force field.

Basically twoways of parametrization can be followed. Class I force fields like AMBER (Case
et al. ) or GROMOS (), work with a simpler energy expression and their parameter-
ization is based on experimental data. They find a wide application to proteins, nucleic acids,
and carbohydrates, as well as their complexes. Class II force fields, e.g., the Merck Molecular
Force Field (Halgren ) include higher order and cross terms, too; they are calibrated to
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quantum mechanically calculated energies and gradients. This increases their transferability
and reliability.

Various free or commercially available protein modeling software packages make use of
different force fields. AMBER (Case et al. ) is a package of molecular simulation pro-
grams including both source code and demos. GROMACS (Van Der Spoel et al. ) is a
highly optimized and fast program that supports several force fields and has an open source
code. INSIGHT II from ACCELRYS (http://accelrys.com/), SYBYL from TRIPOS (http://
www.tripos.com/), CHARMM (http://www.charmm.org), and SCHRODINGER (http://www.
schrodinger.com/) are licensed packages with many components, including force fields and
programs for energy calculations.

A basic limitation to classical force fields is that they are valid only near local minima of
the potential energy surface (PES) of a molecular system. Thus, they cannot be applied to,
e.g., enzyme reactions, which pass through other regions of the PES, where the electronic dis-
tribution is strongly perturbed. In order to overcome this limitation, quantum mechanics, and
molecular mechanics may be combined by partitioning large covalent systems in a quantum
region, which is embedded in a classical one.The total energy in this approach (hybrid quantum
mechanical/molecular mechanical, QM/MM) method (Gao and Truhlar ; Hu and Yang
), is as follows:

E = EQM + EMM + EQM/MM (.)

where EQM, EMM, and EQM/MM refer to the energies of the quantum and classical regions and
their interaction, respectively. EQM = ⟨Ψ∣HQM ∣Ψ⟩ is the expectation value of the Hamiltonian
for the atoms in the quantum region, which is composed of kinetic, electron–electron, and
electron-nucleus interaction energy terms

HQM = ΣΔ i + Σ/ri j + ΣZa/ria (.)

Here, subscripts “i,” “ j,” and “a” refer to electrons and nuclei of the quantum region. EMM

is calculated for atoms of the classical region as in > Eq. .; the third term in > Eq. .
refers to the interaction between atoms of the quantum and the classical region, respectively.
EQM/MM = ⟨Ψ∣HQM/MM ∣Ψ⟩ with

HQM/MM = ΣqM/riM + Σ[ZaqM/raM + Anonbonded(Cr−aM − Cr−aM)] (.)

whereM denotes an atom in the classical region.
For most QM/MM studies on proteins definition of the quantum region (mostly the active

site) needs cutting covalent bonds, which requires special care in treating the boundary. This is
very important to avoid artifacts and to ensure a relatively smooth variation of the energy and
its gradient when passing from the quantum to the classical region, prerequisite for a successful
molecular dynamics calculation. Two main approaches are available for the appropriate treat-
ment of atoms at the boundary: the link atom and the localized orbital methods. In the first
method an artificial link (dummy or hydrogen) atom is used to saturate the dangling bonds;
the quantum calculation should be done for the saturated system. In the second method the
bonds, connecting the quantum and classical regions are cut and represented by a set of strictly
localized molecular orbitals, which are assumed to be transferable.

http://accelrys.com/
http://www.tripos.com/
http://www.tripos.com/
http://www.charmm.org
http://www.schrodinger.com/
http://www.schrodinger.com/
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Structure Prediction and Homology Modeling

Protein structures are very complicated, therefore their determination by energyminimization,
like in case of small molecules, would need astronomical computational work. However, several
methods are available for the prediction of such structures (Bujnicki ; Krieger et al. ;
Xu et al. ). Below we discuss some of them.

Homology Modeling

Proteins, derived from a common ancestor, are called homologous and their primary sequence
overlaps to a certain extent. It has been observed that overlap in the sequences results in the
partial conservation of three-dimensional structures. This allows constructing a model of an
unknown protein on the basis of other, homologous ones, possessing some sequence simi-
larity. Conservation of folds among homologues guides modeling, which follows four steps:
fold recognition and template selection, target-template alignment, model building, andmodel
assessment.

The first two steps are often performed together, as the most common methods of identify-
ing templates rely on the production of sequence alignments. Selection of the correct template
is of basic importance to the quality of the final model. Subsequent steps can be performed
iteratively to improve the quality of the result. After the templatewas chosen on the basis of per-
centage of identities and similarities with the target protein it has to be corrected with respect
to missing residues and improper bond lengths and mutated to the corresponding residues of
the target protein. The gaps in the target sequence have to be excised; loops should be built and
inserted by selecting anchoring residues (cf. > Fig. -).

Loops satisfying the distance condition for connecting secondary structures can be located
by a search in the Protein Data Bank. At last, using an appropriate force field the generated
complete model has to be optimized.

Assessment of homology models can be performed with two main methods: statistical
potentials or energy calculations. Both methods produce an estimate of the energy (or an
analogous quantity) for the model being assessed. Unfortunately, neither of the two methods
correlates very well with structural accuracy. Statistical potentials are computationally quite
efficient and can be constructed empirically on the basis of observed residue–residue con-
tact frequencies among proteins of known structure. Energy calculations are performed using
a molecular mechanics force field (cf. > section “Molecular Mechanics”). The use of these
methods is based on the hypothesis stating that a native structure of a protein refers to a min-
imum on the energy hypersurface, thus the lower the energy, the better the structure. Some
methods employ implicit solvation, representing the solvent around a single protein molecule
as a continuous dielectric medium. Quality of homology models decreases with decreasing
sequence identity. At % and % identity the rms deviation between the matched Cα atoms
ranges between – and –Å, respectively. Several computer programs, likeWHAT IF (Krieger

ARIFYDKGFQGHCYKSEC–NLQP
ARIFYDKG– – –RCYKSECPNLQP

⊡ Fig. -
Sequence alignment of template (top) and target (bottom) in homology modeling
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et al. ), MODELLER (Fiser and Sali ), and SWISS-MODEL () are available for
homology modeling.

Protein Threading

Protein Threading (fold recognition) is based on the observation that the number of different
folds in nature is limited to approximately ,. Furthermore, % of the new structures sub-
mitted to the Protein Data Bank in the past few years have similar folds to the ones already
stored. The method uses sequences, which have the same fold as some known structures but
are not homologous with any of these. Prediction uses statistical relationships between struc-
ture and sequence.The prediction ismade by aligning each amino acid in the target sequence to
a given position in the template structure, and evaluating how well the target fits the template.
After that the best-fit template is selected; the structural model of the sequence is built on the
basis of the alignment with the chosen template.

Ab Initio Methods
When structural analogues are not available, prediction has to be based on other informa-
tion. Various types of potentials as well as evolutionary information may be used in generating
spatial restraints or identifying local structural building blocks. A popular ab initio method is
Rosetta@home (), where the conformations, specified by the non-hydrogen backbone and
Cβ atoms, observed for each short sequence segment in known protein structures are used as an
approximation of the set of local conformers, which the same sequence segment would occupy
in the modeled protein. The combination of local conformers, which has the lowest overall
energy, is considered as the best model. Before its structure has been determined experimen-
tally, ROSETTA provided a model for the protein T having  residues. Comparison of
this model to the experimental structure indicates an RMS deviation of .Å over  residues.
Despite significant success, the enormous computer cost of the procedure is still prohibitive for
routine use.

Structure Representation

Protein structures contain typically thousands of atoms, therefore, their graphical represen-
tation, replacing old mechanical models, is essential for understanding structure, function,
and their relationship. Modern computer technology provides an irreplaceable tool and allows
insight into structural and functional details.

Molecular Graphics

Three-dimensional structure of a molecule may be displayed on the computer screen in various
representations (Lesk et al. ). The simplest is where the molecule is displayed as a chem-
ical graph, in which vertices stand for atoms and edges for bonds. Usually this representation
is not very useful for molecules as large as proteins, as the figure gets too crowded. However,
for structures derived from X-ray data it is often used when mobility of various atoms is repre-
sented by spheres or ellipsoids centered at edges. In most cases evaluation of data from NMR
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spectroscopy provides a bundle of structures, a superposition of those  or  ones that fit best
to restraints extracted from the spectrum. In order to simplify the model a single structure,
adopting the “average” conformation of the bundle, is often shown.

More sophisticated is the ball-and-stickmodel, displaying atoms as balls and bonds as sticks
connecting them. In space-filling, or CPK, representation atoms, represented by spheres with
van der Waals radii, within which most of the electron density can be located, are drawn to
suggest the amount of space they occupy. For proteins, ribbon diagrams offer a simple, yet
powerful means to visualize special features of protein structure; they indicate whether the
polypeptide chain is twisted, folded, or unfolded.They are generated by interpolating a smooth
curve through the polypeptide backbone. α-Helices are shown as coiled ribbons, β-strands
as arrows, random coils as lines or thin tubes. As an example for the performance of ribbon
diagrams we display a β-barrel, a bunch of large β-sheets that twist and coil to form a closed
structure, on > Fig. -. The ribbon representation allows easy recognition of backbone struc-
tural motifs, while the space-filling model refers to other steric aspects of the macromolecule,
e.g., location and shape of crevices.

A special feature of molecular graphics is that it can generate various surfaces around the
molecule, on which a variety of its properties can be displayed. For proteins the electrostatic
potential (see > section “Electrostatics”), water accessibility, and hydrophobicity (see > sec-
tion “Solvent-Accessible Surface”) patterns are most important. Commercial (see > section
“Molecular Mechanics”) and open source code software, like PyMOL (http://www.pymol.org/)
and Jmol (http://jmol.sourceforge.net/) is available for molecular graphics.

⊡ Fig. -
Ribbon (left) and space-filling (right) representation of green fluorescent protein (PDB code: RRX)

http://www.pymol.org/
http://jmol.sourceforge.net/
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Electrostatics

Since proteins have several polar or charged side chains, especially on their surface, electrostat-
ics is a simple, yet quite reliable tool to study various processes involving proteins (Baker and
McCammon ). Electrostatic interactions may play a role in protonation, ligand binding,
enzymatic catalysis, redox processes, and electron–proton coupling (e.g., in photosynthesis).

The electrostatic potential generated by the electrons and the nuclei of a protein molecule
in a given spatial point, r i , is calculated as follows:

V(r i) = ∫ ρ(r)/∣r − r i ∣dr + ΣZa/∣r i − Ria ∣ (.)

where ρ is the electron density of the protein, and Za is the nuclear charge of atom a located
at the point Ria . Exact calculation of the electron density involves the quantum mechanically
determined total wave function; for proteins this would need astronomical computer time. In
order to reduce computational work the density can be approximated by a sum of quantum
mechanically defined molecular fragments, classical atomic monopoles, or multipoles.

> Equation . refers to a protein molecule in vacuo, however, a realistic model should
include explicit treatment of the surrounding biophase.This is done in the Poisson-Boltzmann
approach, where themobile ions around the protein are representedby amean field approxima-
tion. A linearized equation can be derived, which combines the electron density of the protein
and the charge represented by the mobile ions

∇[ε(r)∇V(r)] + π[−IV(r)/kT + ρ(r)] =  (.)

Here V (r), ε(r), and ρ(r) are the electrostatic potential, the dielectric constant and the pro-
tein electron density in point r, while I stands for the ionic strength. DelPhi, a versatile software
package providing numerical solutions to the Poisson-Boltzmann equation, is widely used for
the calculation and visualization of the protein electrostatic potential (DelPhi ).

An application of the Poisson-Boltzmann equation is the estimation of the effective
pKa of a given side-chain, which is related to the electrostatic potential generated by the
whole protein near the protonated atom. pK shifts caused by, e.g., site-directed mutage-
nesis can be precisely calculated using electrostatics (Gilson and Honig ). In sub-
tilisin mutants the calculated, ionic strength dependent pK shifts lie very close to the
experimental values, the trend is correctly reflected for all but the lowest ionic strengths
(cf. > Table -).

The electrostatic approach is quite useful in describing the binding of small ligands to pro-
teins. > Figure - shows a representation of the protein electrostatic potential on the surface,
providing a simplemeans to roughly estimate position and binding strength of charged ligands.
This point will be discussed in more detail in > section “Protein Hydration.” Molecular recog-
nition by proteins, as well as enzyme catalysis is also partly determined by electrostatics (cf.
> sections “Ligand Binding” and “Enzyme Mechanisms,” respectively).

Redox processes involve a change in the charge distribution of the participating protein
fragments, therefore electrostatics may play here again a significant role. If a negative charge
is located near the redox center, addition of an electron becomes more difficult, which low-
ers the redox potential. This effect is formally similar to the pK shift upon point mutation of a
neutral side chain to a negative one. A specific advantage of the calculations is that contribu-
tions of various protein groups, the biophase, and ionized side chains can be treated separately.
This information is very useful in the design of experiments, because probable effect of point
mutations, ionic strength, and pH variation, respectively, can be predicted with a fair accuracy.
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⊡ Table -
Comparison of calculated and experimental (in parentheses) pKa shifts in subtilisin mutants
as a function of the ionic strength

I DSmutant ES mutant

. .(.) .(−)

. .(. − .) .(.)

. .(.) .(.)

. .(.) .(.)

. .(.) .(−)

. .(−) .(.)

⊡ Fig. -
Electrostatic potential of the miniprotein Tcb_DE mapped on the molecular surface (red: nega-
tive,white: neutral, blue: positive)

As an example, values of the one- and two-electron reduction potential of pheophytin-
a were calculated in N-N-dimethylformamide by a combination of quantum mechanical,
statistical mechanical, and polarizable continuum methods (Mehta and Datta ). Two
different computational methods gave −. and −.V for the one-electron, while −.
and −.V for the two-electron reduction potential values, respectively. The observed one-
and two-electron potentials are −. and −.V, respectively. Solution of the Poisson-
Boltzmann equation gave for the reduction potential of pheophytin-a within the thylakoid
membrane −.V, which is in good agreement with the reported value of −.V.

Protonation-mediated modulation of electron transfer has been supposed to explain the
location of the radical site in Compound I, an intermediate of the enzymatic reaction, of two
related heme peroxidases (Menyhárd and Náray-Szabó ). Both molecular orbital and elec-
trostatic potential calculations suggest that the spin distribution depends on the protonation
state of the proximal His … Asp… Trp triad. If the transferable proton is shifted from the Trp
side chain to Asp, the radical localizes on the indole group, while if it remains on the Trp the
unpaired electron transfers to the heme group. Therefore, in cytochrome C peroxidase, Trp is
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deprotonated in Compound I, while it is protonated and neutral in cytosolic ascorbate perox-
idase. Protonation state of the proximal residues is influenced by the electrostatic effect of the
protein environment that differs in these enzymes, especially in the immediate vicinity of the
Asp side chain.

Solvent-Accessible Surface

Protein surfaces are quite irregular; their analysis has application in structure-based drug
design, since drugs bind in protein crevices. Since the hydrogen atom positions are generally
not known, heavy atoms binding hydrogens are represented by a single sphere, whose van der
Waals radius is increased by .–.Å. Several surfaces can be defined around proteins, maybe
most important is the solvent (typically water) accessible surface (Connolly ). This is con-
structed using a probe sphere, representing the solvent molecule, which is rolled around the
protein surface. A typical value of its radius is .Å, which corresponds to a water molecule.
The contact surface is that part of the van der Waals surface that can be touched by the probe
sphere; the solvent accessible surface is derived as the location of the center of the probe as it
rolls over the van derWaals surface (see > Fig. -).The solvent-excluded volume of a protein
is that volume of space where the probe sphere is in contact but does not collide with the atoms
of the molecule.

The solvent accessible surface area (SASA) is often used as a descriptor in quantitative
structure-activity relationships (Connolly ). For a wide variety of molecules there is an
approximate linear relation between solvation free energies and SASA. However, theoretical
considerations indicate that the SASA model is incapable of accurately describing non-polar
solvation phenomena at length-scales comparable to the size of a water molecule. It is more
useful at large length-scales when more extended hydrophobic surfaces are in contact with the
solvent.

⊡ Fig. -
Left: construction scheme of the solvent accessible surface from the van der Waals surface (inside,
obtainedas aunionof vanderWaals spheres representingprotein atoms).Right: solvent accessible
surface of the miniprotein Tcb_DE
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Dynamics

Finding the optimum structure representation of a protein is often not easy, as for larger
molecules even the simplest ball-and-stick models can be too cumbersome.Thus, any simpli-
fication (neglecting H-atoms, fold representation by ribbons, etc.) of the graphics (see above),
especially on a paper plot is important. It can also be misleading to use rigid representations
of a flexible macromolecule. Graphical representations are based on set(s) of congruent exper-
imental or computational restraints, typically not shown in a figure. Clearly, it is inconvenient
to display the electron density alone when reporting an X-ray structure, or plotting all collected
NOE restraints, the source of structural models determined by NMR spectroscopy. However,
the need to provide simple and easy-to-understand D structures of proteins drives scientists
to neglect inherent dynamical properties of these molecules. For the very same reason, NMR
spectroscopists tend to over-refine protein structures. Striving to obtain low RMSD values and
to display an “X-ray-like,” static structure, the reported model can be biased.The static picture
often provided fails to satisfactorily explain the results of associated biological assays, and is not
fully compatible with ligand docking data.With the recent appearance of intrinsically unstruc-
tured proteins (IUPs) on stage, the importance of the inherent dynamics is unquestionable.
In other words, the absurdity of reporting only a single mean conformer is becoming evident.
The present chapter gives an account on the dynamics occurring on different timescales, ways
of reporting and including them in protein representation and some hints on the relevance of
dynamics to biology.

Time Scales

Motions and events – especially when occurring periodically – are commonly characterized by
their repetition rate, frequency, or by their time requirement. For example, our heart beats about
once every second, so the heartbeat cycle, incorporating several steps such as the relaxation of
the heart, opening of valves, etc., is occurring on the time scale of seconds. There are many
slower events requiring more time than a second and thus, the introduction of minutes, hours,
days, seasons, years, etc. is easily justified. In our everyday life we are experiencingmotions hap-
pening simultaneously, but oftenon very different time scales.While going towork,which could
take about an hour, our heart beats about , times andwe repeat this daily routine nearly 
times in a year. Proteins also have their “life,” which, after synthesis, starts with folding, an event
that typically occurs on the millisecond time scale. As proteins are continually synthesized and
degraded in all cells, the half-life time of a protein is about an hour, varying from a fewminutes
to several weeks. However, when we think of protein dynamics we are looking for much faster
events such as secondary structure formation (e.g., winding and unwinding of an α-helix) on
the  ns–ms time scale, or opening and closing of loops and hairpins on the μs–ms time
scale.

The rotational diffusion correlation time, τC , is characteristic of any molecule as τ−C is
the average frequency of molecular tumbling in solution. The correlation time for short, of a
protein stands for the time that it takes for the molecule to reorient by  rad via tumbling in
solution. Being dependent among others on molecular size, for proteins in aqueous solution
at normal conditions τC is in the range of – ns. However, there are additional interesting
types of motions on an even faster timescale, such as protein backbone ( ps– ns) and pro-
tein side-chain (.– ps) dynamics. Although even faster events may take place in proteins
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(e.g., bond vibrations studied by Fourier transform infrared or vibrational circular dichroism
spectroscopy), they are less characteristic of the whole and more complicated to interpret.

NMR has long been used to decipher dynamics of biopolymers, as the relaxation times and
the line shapes of selected resonances are rather sensitive to chain motions. For proteins in
solution, relaxation of the magnetically exited states occurs because of the above described very
rapid and slower segmental motions. The somewhat localized motions are effective in causing
relaxation in solution. As more than a single relaxation process characterizes the correlation
function G(τ), often spanning a large time scale of motions (ps↔ms), it is advised to mea-
sure a number of different relaxation parameters at various magnetic fields and temperatures.
During typical relaxation measurements, nuclear spins are excited by suitable radio frequency
(RF) pulses, and then relaxation to equilibrium is monitored by heteronuclear single quantum
coherence (HSQC) type D-experiments. Commonly measured relaxation parameters are lon-
gitudinal (R) and transverse (R) relaxation rate constants, constraints obtained on the basis
of the heteronuclear Overhauser effect (hetNOE) and additional cross-correlated relaxation
parameters (Jarymowycz and Stone ).

Today when routinely working with N and C labeled proteins it is common to estimate
the degree ofmain-chainmobility by using NNMRrelaxation.The associated experiments are
straightforward to complete and the interpretation is relatively easy as it probes the reorienta-
tion of N–Hbond vectors of protein amide bonds. Coupled primarily to fast ( ps– ns)motion
of the protein, heteronuclear NMR relaxation of backbone N atoms is usually interpreted in
the “model-free” framework, where it is supposed that global (τC) and local (τl) motions are
uncorrelated. R, R, and N–{H} NOE relaxation data of each N atom are measured and
subsequently fitted to the model to reconstruct spectral density components, J(ωj). Results
are analyzed in terms of the lowest number of sufficient secondary parameters. Local N–H
motions are quantified by the generalized order parameter,  ≤ S ≤ , reflecting the amplitude
of N–H fluctuations with characteristic time constants (e.g., effective internal correlation time)
(Cavanagh et al. ). A possible interpretation and graphical representation of the backbone
dynamics is tomap S values on the graphical representation of the structure (cf. > Fig. -). In
case of the present example, conformation of the central Trp residue, forming the hydrophobic
cluster of the protein, is most restricted.

Recent developments in molecular dynamics techniques allow consideration of S values
and NOE restraints as an ensemble property (Lindorff-Larsen et al. ; Richter et al. ).
The obtained ensembles represent a more realistic view of these flexible molecules in solution
than those calculated with conventional NMR structure refinement methods.The dynamically
restrained ensembles occupy a considerably larger conformational space than the convention-
ally calculated ones, and reproduce independent NMR parameters (e.g., chemical shifts) much
better.

The model-free approach is not applicable for non-globular, highly asymmetric, and par-
tially folded or fully unfolded proteins as they do not meet the criteria of separation of internal
and overall motions. The reconstruction of spectral density components, J(ωj), from R, R,
and N-{H} NOE measurements is possible but more experiments are required (e.g., relax-
ation measurements at several B values). Nevertheless, IUPs can also be analyzed in terms of
raw data as done recently, e.g., for the unstructured protease inhibitor calpastatin (Kiss et al.
).

Until now, we have discussed molecular motions  or  times faster than the rotational
diffusion correlation time, τC , of the protein. As mentioned above slowermotions occurring on
the microsecond-millisecond time scale are also of significance (loop fluctuations, secondary
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⊡ Fig. -
Residue-specific generalized order parameters, S, mapped on the Tcb miniprotein represen-
ted by its ribbon structure. Mobility is color-coded: brown (S < .) stands for high, while yellow

(S > .) for lowerbackboneNHmobilityoccurringon the  ps↔  ns timescaleofmotion.Orange
represents .–. S values (Pohl et al. unpublished)

structure reorientations, etc.). Motions of this regime are accessible to spin relaxation arising
from modulation of the isotropic chemical shift of H, C, and N spins coupled to chem-
ical exchange. NMR can also provide information on this much slower motional regime by
recording C and N heteronuclear ZZ-exchange, NOESY-spectroscopy, or various relaxation
data (Cavanagh et al. ). More recently, residual dipolar couplings (RDCs) are also used
for assessing dynamics of supra-τC time scales (Lange et al. ). These techniques are sen-
sitive to protein motions or chemical kinetic processes happening on microsecond time scales
(Palmer et al. ). Beside conformational events such as protein folding, other biochemical
processes, e.g., enzyme catalysis also occur on this time scale. It seems that information on the
so-called slower dynamics could be of great use in the future when interconversion rates and
populations of states, cooperative conformational transition(s), functional aspects of enzymes,
enzyme dynamics, etc. are modeled.

Dynamical Structures

Partially folded and molten globule states are of considerable interest and can be character-
ized by NMR and additional spectroscopic techniques. The molten globule state of a protein
is folded to a given extent; it has native-like secondary structural elements and comprises a
native-like D-structure. The main difference from the native state is the absence of impor-
tant side-chain/side-chain interactions. This intermediate structure can be stabilized under
selected conditionsmaking it possible to obtain structural information. Proteins studied in their
molten globule form are characterized as ensembles of a diverse set of interchanging conformers
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(Gsponer et al. ).The study of molten globule states by X-ray diffraction is often impossible
and can be difficult also if using NMR techniques. However, from simple line-shape and H/D
exchange analysis obtained by NMR spectroscopy, measurement of the hydrodynamic radius,
deciphering stable (or residual) secondary structural subunits (by, e.g., circular dichroism or
fluorescence spectroscopy) molten globule states can be appropriately characterized (Redfield
). Thus, protein modeling can be possible even in the molten globule state.

Dynamics of Interactions

Protein–protein and protein-ligand interactions have two apparently contradicting aspects.
As these molecules are interacting D-objects coming in contact with each other, part-
ners should have complementary shapes of considerable stiffness over time (cf. > section
“Ligand Binding”). However, several phenomena cannot be understood without consider-
ing the inherent flexibility and plasticity of proteins. Thus, the shape of a protein should
be kept rigid to enhance selectivity, but it is also dynamically changing upon binding of a
partner molecule. Thus, proteins should both have a well-defined shape and the ability to
change it.

Although the rigid lock-and-key model has been revisited in the past decades, one of the
last standing cases is that of the so-called canonical protease inhibitors. Proteases have the task
to cut other proteins into pieces for various reasons, such as digestion, activation, degradation,
etc. Thus, they should be under severe control both in space, time, and concentration, often
manifested by fine tuned canonical inhibitors. Upon binding they are not expected to influence
any conformational changes around the binding site of the protease, as they have to bind in
a substrate-like manner to inhibit activity. Recently, fast (ps-ns) backbone dynamics of some
canonical inhibitors was measured and found that, in contrast to the expectations, they are
quite mobile. In fact these - to -residue-long inhibitor proteins, stabilized by three disul-
fide bonds, are as mobile as their protease binding region. Thus, even for canonical inhibitors,
the classical lock-and-keymodel cannot remain valid. It was shown that the interaction cannot
be properly described without taking into account the internal mobility of the partner proteins.
Interestingly enough the presence of flexible rather than rigid keys removes the necessity of an
entirely complementary shape of the interacting partners. In fact, “keys” can gently adapt to the
locks, which are slightly different from case to case (Fodor et al. ). Moreover, conforma-
tional changes or flexibility of partners was found to be synchronized and also encoded (Szenthe
et al. ). This might even mean that the lock-and-key concept, proven utterly useful in the
early days of biochemistry, should be interpreted dynamically and replaced by themore general
hand-and-a-glove analogy (cf. > section “Ligand Binding”) (Goh et al. ).

Interactions

Interaction of proteins with water, drugs, and other biological macromolecules plays an essen-
tial role in physiological processes. Owing to the very high number of atoms in a protein,
in general, such interactions cannot be handled at the atomic level explicitly; simplified, still
reliable models are needed.
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Protein Hydration

Hydration of proteins is especially important in determining their properties (Makarov et al.
). For example, protein activity is practically zero in the absence of hydrating water. The
first hydration shell around proteins is ordered; surface water forms hydrogen-bonded patterns
and positively charged surface side chains also take part in stabilization. The first hydration
shell is denser by about –% than bulk water and this is probably responsible for keeping
the molecules sufficiently separated so that they remain in solution.

Proteins are flexible in solution, which involves a variety of hydration states, absent in the
crystal or in non-aqueous environments. Hydration also affects redox potentials. The biolog-
ical activity of proteins appears to depend on the formation of a hydrogen-bonded network
connecting the protein surface and water clusters.Water molecules can form a bridge between
the carbonyl oxygen atoms and amide protons of different peptide residues to stabilize protein-
ligand and protein–protein complexes. Enzyme-substrate contact may be controlled by water
molecules located in the protein environment, and one or more watermolecules may be part of
the catalytic machinery of enzymes. These water molecules act as proton donors or acceptors
(or both) during reaction.

Computer modeling of protein hydration follows essentially two ways. One is to treat
all water molecules in the hydration sphere explicitly and apply an appropriate force field
(cf. > section “Molecular Mechanics”) in molecular mechanics or molecular dynamics cal-
culations. As an example, we present results of molecular dynamics calculations on aquaporin,
a membrane protein facilitating the transport of water and other small solutes across biological
membranes (Hub et al. ). Simulation was carried out with full electrostatics in a periodic
simulation box containing the aquaglyceroporin tetramer, embedded within a lipid bilayer sur-
rounded by water.Thewholemodel consists of about , explicit atoms.Themechanism of
water permeation through aquaporin was described, and it was found that protons are strictly
excluded from the channel by a large electrostatic barrier. Both protein electrostatic field and
desolvation contributes to this effect. Permeation of apolar molecules like carbon dioxide is
hindered by a high energy barrier; therefore this process can only be expected to take place
in membranes with low intrinsic gas permeability. Analysis of MD simulations indicated that
a narrowing region, containing aromatic, and arginine side chains, filters uncharged solutes.
Here, selectivity is controlled by the hydrophobic effect and steric restraints. As we see, sim-
ulation provides a specific tool to understand membrane permeation in atomic detail and to
recognize its basic factors. No experimental means is available at present to provide such a
detailed picture of the process.

Another way to consider protein hydration is to extend the concept of the solvent accessible
surface (cf. > section “Solvent-Accessible Surface”) applying continuumdielectricsmodels. For
example, combination of the electrostatic and an appropriate hydrophobic potential, accounting
for hydrophilic, and hydrophobic interactions, respectively,may be used as a solvation function,
which considerably increases the reliability of protein structure predictions (Lin et al. ).

Ligand Binding

Binding of small-molecule ligands, such as drugs, vitamins, flavors, or pheromones, takes place
in crevices of the protein surface. In a broader sense ligand binding means the formation of a
stable complex between a host and a guest [molecular recognition (Harmat and Náray-Szabó
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)], and it can be best understood in terms of the lock-and-key analogy. Under lock wemean
here the protein crevice, while the key stands for a small molecule or a fragment of a larger one,
fully, or partly embedded in the crevice. In general, we suppose that both lock and key are
rigid, however, in many cases they are flexible and adopt their final shapes only upon binding.
This process is best illustrated by the hand-and-a-glove analogy. If the macromolecular crevice
undergoes conformational changes in order to provide the optimal shape for embedding the
relatively rigid guest molecule, we speak about induced fit. Alternatively, the guest molecules
may adopt different conformations, some of which are appropriate for binding. This alternative
is called conformational selection.

Steric fit means that interacting atoms may not interpenetrate beyond their van der Waals
spheres and, simultaneously, the host crevice should be filled as perfectly as possible reduc-
ing the empty space between host and guest atoms to a minimum. Electrostatic fit refers to
the maximization of ionic, hydrogen-bonding, and other types of polar interaction, and is well
accounted for by the molecular electrostatic potential provided by the host and acting on a
charge distribution representing the guest. The term hydrophobic fit refers to the association
trend between apolar groups in the biophase. This may be explained either in terms of den-
sity differences between water and the host, or macromolecular crowding, an entropy effect
reducing water-accessible surfaces of dissolved molecules upon association, in order to avoid
unfavorable perturbation of water structure around the separated solutes.

The accurate prediction of the binding mode and affinity of a small molecule to its putative
receptor is crucial for successful drug design and optimization, therefore, a variety of computer
methods has been developed for that. Docking is an optimization method, which predicts the
preferred orientation of the ligand bound to the protein and forming a stable complex. It may be
also used to predict the binding affinity using energy terms or an appropriately defined scoring
function. Essentially three types of docking procedures are available (Mohan et al. ).

Rigid body docking assumes both the receptor and the small molecule to be rigid. Flexi-
ble ligand docking means that the receptor crevice is held fixed, but the ligand is treated as
flexible (conformational selection, see above); this is the most commonly used method. In flex-
ible docking both partners are considered to be able to change conformation easily. Following
another classification, either a matching technique is used, which describes the protein crevice
and the ligand as complementary surfaces, or the actual docking process is simulated and the
ligand-protein interaction energies are calculated (Guvencs and MacKerrell ). Further-
more, modeling the role of the aqueous solvent in ligand-protein interactions is one of the key
components. Three main computational techniques have been developed to model hydration:
free energy methods, ligand-protein docking, and scoring, and the explicit inclusion of tightly
bound water molecules in modeling (Mancera ).

Shape complementarity methods describe the protein and ligand in terms of complemen-
tary molecular surfaces. The host and guest protein surfaces are defined in terms of the SASA
(cf. > section “Solvent-Accessible Surface”) and the matching surface description, respectively.
The complementarity between these two surfaces is defined as the shape matching, which may
help finding the appropriate orientation of the ligand in the crevice.Thesemethods are typically
fast and robust; however, in general, they cannot model the dynamic changes in the conforma-
tion of the protein-ligand complex.They can scan through several thousand guest molecules in
some seconds and figure out which of them can bind at the crevice.

Differences in binding energies of similar ligands, A and B, differing only by a few atoms,
can be precisely calculated by the free-energy perturbation method (see > Fig. .). A thermo-
dynamic cycle is constructed, where the horizontal free energies are determined experimentally,
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since they are difficult to calculate. The vertical free energies are calculated by simulation
based on a force field or a continuum electrostatic model. ΔGsolv corresponds to the hydra-
tion energy change mutating A into B in water, while ΔGprot is the binding energy change
upon replacing A by B in the binding pocket. Since the thermodynamic cycle is closed and
the free energy is a state function, we may write: ΔΔGbind(A-B) = ΔG–ΔG = ΔGprot–ΔGsolv;
the difference can be obtained from calculated quantities. Instead of simulating the horizontal
physical binding processes, which is quite uncertain, the non-physical transformations repre-
sented by the vertical reactions can be calculated relatively easily and precisely. An example
for the successful application of the free-energy perturbation method is the calculation of the
absolute binding free energy of benzamidine to trypsin, which is found to be −. kcal mol−

(Jiao et al. ), while the experimental binding free energy ranges from . to . kcal mol−.
The calculated binding energy of a close analogue, diazamidine is weaker than that of ben-
zamidine by . kcal mol−, agreeing well with the experimental value of . kcal mol−

(> Fig. -).
Docking by simulation is a much more complicated process. In this approach, the protein

and the ligand are separated by a physical distance, and the guest finds its position in the crevice
after a certain readjustment in the conformational space. This refers to translations, rotations,
and conformational changes. Each of these induces an energy change of the system, which is
calculated on the basis of a force field or a scoring function. Clearly, this method is much more
sophisticated; it incorporates ligand-flexibility, which is, in general, absent from complemen-
tarity techniques (see Zsoldos et al.  and references therein). A disadvantage is that it takes
a much longer time to evaluate the optimal binding arrangement, since a rather large energy
landscape has to be explored.

Docking ismost commonly used in the field of drug design, to quickly screen large databases
of potential drugs in silico, to identifymolecules that are likely to bind to a certain protein target
(virtual screening). In lead optimization docking may predict how a ligand binds to a protein
crevice, information that may be used to design more potent and selective analogues. Several
computer platforms are available for efficient and relatively fast docking, e.g., AUTODOCK
(http://autodock.scripps.edu/).

Protein–Protein Interactions

Proteins often exert their function through interactionwith other ones, forming complexes, e.g.,
in the ribosome or in cell membranes, during immune response or enzyme catalysis. Complex

⊡ Fig. -
The thermodynamic cycleused to computesolvation (left) andproteinbinding (right) freeenergies.
L: ligand with substituents A or B, P: protein

http://autodock.scripps.edu/
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structures are essential in understanding action, therefore beyond experimental techniques, like
X-ray diffraction, electronmicroscopy, or mass spectrometry, in silicomethods also are of great
interest. However, due to a number of practical difficulties, it seems unlikely that solving the
structures of protein complexes will become routine in the near future. Hence, computational
docking techniques play an important role (Ritchie ).

The simplest protein–protein docking methods are based on the complementarity princi-
ple and focus on the properties of the contact surface. To do this, interaction patterns, observed
in protein–protein complexes of known structure, have to be analyzed. An example is based
on shape and electrostatic complementarity (> Fig. -), where spatial matching of surfaces
with complementary electrostatic potential patterns can be observed (Harmat andNáray-Szabó
). It can be supposed that much less improper orientations of the interacting partners
would be obtained if one could first identify the interaction surfaces on them. For many (e.g.,
antibody-antigen or most enzyme-inhibitor) interactions, the binding site is known on one or
more of the proteins to be docked. In other cases, a binding site may be strongly suggested by
mutagenic or phylogenetic evidence.

Although the properties of protein–protein interfaces have been analyzed in considerable
detail, it remains a significant challenge to reliably predict the locations of protein–protein
interaction surfaces using computational techniques alone (Porollo andMeller ). Machine
learning techniques are being used to develop automated protein–protein interface prediction
software.These systems are typically trained using various combinations of, e.g., buried surface
areas, desolvation, and electrostatic interaction energies, hydrophobicity scores, and residue
conservation scores.

⊡ Fig. -
Steric and electrostatic complementarity between C inhibitor (left, the docked heparin disaccha-
rides are shown in green) and target proteases, factor XIa (top right) and Cs (bottom right). Blue,
positive, red, negative electrostatic potential. Yellow arrows indicate the presumed position of the
reactive center loop of C inhibitor in the complex.Grey arrows indicate that one of the interacting
molecules must be rotated by ○ in order to get in the right position for overlap with the other
at the contact surface (Figure by V. Harmat, Budapest)
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Like in case of protein-ligand docking (cf. > section “Ligand Binding”), for protein–
protein docking we have essentially two alternatives (Ehrlich andWade ). In the rigid-body
approach interacting partners do not relax; their structures remain unchanged during com-
plex formation. Quite often substantial conformational change occurs within the components
as a result of their interaction. In this case a soft docking technique has to be applied, where
conformational relaxation is allowed.

Docking involves two main steps: () generating a set of reliable configurations and
() distinguishing correct configurations from those not appropriate for complex formation.
Docking algorithms may start with a rigid body representation of the protein, obtained by
projecting interacting partners onto a three-dimensional grid, and by distinguishing grid cells
according to whether they are near or intersect the protein surface, or are deeply buried within
the core of the protein. A docking search is then performed by scoring the degree of overlap
between pairs of grids in different relative orientations. Aftermaking exclusions based on exper-
imental evidence or steric conflict, the remaining structures must be sampled by appropriately
scoring each configuration. In the geometric hashing approach, each protein surface is first pre-
processed to give a list of a few hundred critical points, which are then compared in a special
algorithm to generate a relatively small number of trial docking orientations for grid scoring
(Fischer et al. ).

An automated algorithm was developed to identify molecular surface complementarity
(Katchalski-Katzir et al. ). It involves a digital representation of the molecules distin-
guishing between surface and interior, calculates a correlation function assessing the degree of
surface overlap and penetration upon displacement using Fourier transformation, and scans
relative orientations in three dimensions. The algorithm estimates the degree of geometric
match between the surfaces of the interacting molecules. The procedure is equivalent to a
six-dimensional search but it is much faster; the computation time depends only moderately
on molecular size. Such methods can be used to evaluate very large numbers of configurations,
however, this advantage is lost if conformational changes are also considered. Furthermore, it is
possible to construct reasonable convolution-like scoring functions combining both steric and
electrostatic fit.

Conformational changes can be considered in Monte Carlo methods, where an initial con-
figuration is refined by taking random steps that are accepted or rejected based on their induced
improvement in score, until a certain number of steps have been tried (Gray et al. ). It is
assumed that convergence to the best structure should occur from a large class of initial config-
urations, only one of which needs to be accepted. Because of the difficulty of finding a scoring
function that is highly discriminating and also converges to the correct configuration, various
refinements have been proposed. Monte Carlo methods are not guaranteed to search exhaus-
tively, so that the best configuration may be missed even using a scoring function which would
in theory identify it.

To find a scoring function, which forms an appropriate basis for selecting the best config-
uration, studies should be carried out on a standard benchmark of protein–protein interaction
cases. For example, a benchmark of several dozens of known protein–protein complexes has
been developed for testing docking methods (Mintseris et al. ). The set is chosen to cover
a wide range of interaction (e.g., enzyme-inhibitor, antigen-antibody) types and to avoid repe-
tition. Scoring functions are assessed on the rank they assign to the best structure, and on the
proportion of the benchmark cases for which they provide an acceptable result. Scores may be
based on residue contacts, shape complementarity, interaction energies estimated by a force
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field or on phylogenetic considerations. Often hybrid scores are created by combining one or
more categories above.

Although solvation and desolvation effects are crucial in complex formation, most docking
algorithms do not take into account the presence of water molecules near the protein–protein
interface. An exception is the work by Van Dijk and Bonvin ().

EnzymeMechanisms

Catalysis is a molecular transformation where the rate of the chemical reaction increases
through the interaction of the reacting partners with the catalyst without changing the equi-
librium constant. Accordingly, the catalyst modifies the potential surface of the non-catalyzed
reaction and reduces the activation barrier. In case of enzyme catalysis, the reference is the
activation energy in aqueous solution, where the reaction mechanism may considerably differ
from that in the enzyme. The enzymatic process is especially effective, since rate increase may
be as large as -fold in some cases. Proteinmodeling plays a crucial role in the understanding
of the basis of enzymatic rate acceleration since experiments do not provide direct information
on details, e.g., potential transition-state stabilization by the protein environment (Náray-Szabó
et al. ).

Entropy effects may play an important role, though the actual advantage of their contribu-
tion to rate acceleration is still unresolved. This is partially due to the difficulties in obtaining
estimates of entropic effects by modeling. Quite often it is argued that the binding of reacting
partners to an enzyme active site freezes their motion reducing the entropy contributing to the
activation energy. However, it has been shown that this effect is much smaller than thought,
because many of the movements that are free in the initial state of the reference solution reac-
tion are also free in the transition state of the enzymatic process. The binding to the enzyme
does not completely freeze the motion of the reacting fragments so that the entropy change
during reaction is limited. Furthermore, the binding entropy in the enzyme active site is not
necessarily equal to the entropy change in the reference solution reaction (Warshel ).

Many enzymes make use of general acid or base catalysis, when a reaction step is modified
and proton transfer is mediated by an acidic or basic side chain. This reduces the free energy of
the proton transfer step and accelerates the reaction. For proton transfer, itmay be supposed that
rate acceleration is a consequence of the reduced distance between proton donor and proton
acceptor, which is known to determine the activation energy. However, it has been shown that
both in enzymes and the reference reaction in water H-bond distances are similar. General
acid/base catalysis plays a role in enzymes by reducing the free energy of the proton transfer step
using a different reaction path with different reactants, which is, however, not a true catalytic
effect. Simulation studies have indicated that special effects such as desolvation, low-barrier
hydrogen bonds, steric strain, or entropy traps do not account for themajor part of the catalytic
power of enzymes (Warshel ).

Molecular modeling and experiments provide more and more evidence for the crucial role
of protein electrostatics in enzymatic rate acceleration. Enzymes, acting as a “supersolvent,”
can strongly stabilize polar structures, like ion pairs or the (– + –) charge distribution located
in their active sites. Stabilization in enzymes is stronger than in water, since preorganized and
fixed protein dipoles are almost optimally oriented at the active site.The enzyme, therefore, pro-
vides a preoriented environment that stabilizes the transition state of the reaction. In contrary,
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water dipoles are distributed randomly and have to reorient in order to stabilize transition
states. Reduction of the reorganization free energy in the enzyme is due to its folding into its
final configuration, which precedes the catalytic process and takes place independently, during
protein synthesis.

This contribution of the protein reorganization rather than the enzyme–substrate interac-
tion is the most important factor in enzyme catalysis (Warshel ). In other words, enzymes
have evolved to bind reacting groups in the correct position for reaction with a very high
accuracy.

Because of the extreme importance of the protein environment in determining enzymatic
reaction rates, the use of extended models and QM/MM computations methods is a must
(cf. > section “MolecularMechanics”).Until now, awide variety ofQM/MMmethods are avail-
able, which can be applied to the calculations on various enzyme reactions, it is therefore not
easy tomake a ranking. It seems, however, that basic features ofmost processes can be described
by practically all types of methods, if a large enough number of protein atoms and surround-
ing water molecules is considered explicitly or if using a continuum approach combined with a
relatively large model of the active site.

In the following we discuss a specific example, the catalytic mechanism of enzymatic phos-
phoryl transfer (Lasilla et al. ). This reaction plays a crucial role in most cellular functions,
as DNA replication, signal transduction, metabolism, and transcription, it is involved in several
enzymatic processes. Kinases catalyze the transfer of γ-phosphate fromATP to othermolecules;
mutases transfer phosphoryl groups between two atoms of the same molecule. Phosphatases
accelerate the removal of phosphoryl groups,while polymerases catalyze the synthesis of nucleic
acid polymers. Endonucleases are able to cleave the phosphodiester bond by transferring a
phosphoryl group from a bridging oxygen atom to an activated water molecule.

It is generally claimed that phosphoryl transfer may follow basically two pathways
(see > Fig. .). In the dissociativemechanism a trigonalmetaphosphate intermediate is formed
(Xu andGuo), while the associativemechanism involves a relatively stable, trigonal bipyra-
midal intermediate (Lahiri et al. ). Note that an intermediate refers to a local energy
minimum on the reaction path. However, a third option has to be mentioned, too, this is the
classical SN mechanism with a trigonal bipyramidal transition state, referring to a maximum
on the reaction path (Bernardi et al. ). The preferred pathway is determined by the nature
of the phosphorus electrophile, the nucleophile, and the reaction medium (solvent or enzyme
active site). Earlier computer simulations indicate that associative and dissociativemechanisms
are similarly favored in the aqueous phase (Florián andWarshel ), and also calculations for
different enzymes support either dissociative or associative pathways depending on a variety of
factors (Klähn et al. ) (> Fig. -).

It is not easy to propose a mechanism on the basis of experimental evidence alone, since
measured data provide in most cases indirect information on the energy and structure of the
transition-state complex. Mildvan () evaluated possible mechanisms by using the distances
between the attacking and leaving axial oxygen atoms and phosphorus in the trigonal bipyra-
midal state to decide between associative or dissociative character. These distances may be
considered as a measure of the strength of the P–O bond. The Mildvan criterion may be pre-
sented as an example for the unclear information often inherent in experiment. Based on X-ray
diffraction experiments, Lahiri et al. () reported on a pentacovalent phosphorane interme-
diate in the phosphoryl transfer reaction catalyzed by β-phosphoglucomutase, which refers to
an associative mechanism. However, the associative character, as calculated from experimental
bond distances in the intermediate, is quite weak (∼.), while for a truly associative reaction
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⊡ Fig. -
Two pathways of the phosphoryl transfer reaction. Top: dissociative, bottom: associative. X and Y
denote an enzyme or some functional group

it should be near . (Berente et al. ). Another example for a trigonal bipyramidal inter-
mediate, as observed by X-ray diffraction experiments, has been published by Barabás et al.
().

In general, the character of the TS changes from associative to dissociative upon decrease
in the pKa of the leaving group, but the potential surface is very flat; therefore, careful calcu-
lations have to be performed in each special case in order to get reliable information on the
associative character of the reaction (Florián and Warshel ). Recently, calculations have
been performed on a variety of enzyme reactions where the associativemechanism seems to be
supported, see, e.g., Elsasser et al. ().

Enzymatic phosphoryl transfer reaction provides an example where quantum mechanical
calculations are irreplaceable in the precise description of the mechanism. The process is very
complicated, however, up-to-date methods are available for sophisticated studies and it can
be anticipated that in the not too far future mechanistic studies will be considered even by
experimentalists as very useful in understanding subtle details.

Conclusion and Outlook

Molecules are not “seen” like macroscopic or microscopic objects, which provide a picture in
our eyes by using visible light and human or artificial lens(es). Asmolecules are submicroscopic,
they are too small to be visible evenunder themost powerful optical microscope. Although spe-
cial opticalmicroscopy allows seeing even cell cycles, the entire universe of atoms andmolecules
remains hidden for such a direct observation scheme.Wemay obtain “pictures” even on viruses
having the size of –nm by transmission electronmicroscopy via electrons passing through
an extensively prepared sample. Scanning tunneling microscopy and atomic force microscopy
can improve resolution; however, neither of these techniques enable us to investigate molecules
at an atomic level, especially not in solution. Accordingly, we must use indirect methods for
visualization, by which we collect information on various physical properties related to the
spatial position of atoms within a molecule. An ideal scenario is when a representation, or
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in other words a model, of a molecule on the screen is extracted and subsequently recon-
structed from a suitable set of experimental data typically processed and evaluated by the
computer.
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Applications of Computational Methods to Simulations of Proteins Dynamics  

Abstract: Advances in computer technology offer great opportunities for new explorations of
protein structure and dynamics. Sound and well-established theoretical models may be suc-
cessfully used for searching new biochemical phenomena, correlations, and protein properties.
In this review the fast-growing field of computer simulations of protein dynamics is presented.
The principles of currently used computational methods are outlined and representative exam-
ples of their recent advanced applications are given. In particular, protein folding studies,
protein-drug interactions, transport phenomena, ion channels activity, molecular machines
mechanics, origins of molecular diseases, and simulations of single molecule AFM experiments
are addressed.

Experimentalists and management will not only become used to accepting the use of
molecular modeling, but they will expect it. (Phillip R. Westmoreland)

WTEC Panel Report on Applications of Molecular and Materials Modeling, NIST 
(USA)

Introduction

Proteins perform their functions through selective intermolecular interactions. These forces
are exerted on external objects such as other proteins, inhibitors, nucleic acids, membranes,
and signal molecules. The strength and temporal evolution of interactions depend on proteins’
amino acid composition and a particular spatial arrangement of these basic building blocks.
Non-native conformations usually prevent proteins from performing their “natural” tasks. The
definition of “a protein conformation” is somewhat blurry, since proteins are flexiblemolecules.
The energy landscapes of such large systems are very rich, complex, and highly multidimen-
sional. In other words, one may expect that in its native, functional form a protein adopts not
only one particular conformation but that rather numerous closely lying, related structures are
present and all may participate in a given chemical or biological process. Quite often large-
scalemolecularmotions are required for performing a given protein function (Bahar and Rader
; van Oijen ). For example, the enzyme helicase performs  revolutions per second
during DNA replication and in RAS P protein conformational switch participate in signal
transduction (Ma and Karplus ).

Capturing protein dynamical structures at work is not an easy task (Russel et al. ).
Numerous experimental techniques have beendeveloped throughout the twentieth century and
in recent years: spectroscopy of all sorts, NMR, EPR, and even time-dependent X-ray crystal-
lography. The advent of the computer era brought an excellent additional tool for studies of
protein structures and dynamics. Since the pioneering application work by McCammon et al.
(), empirical force fields have been used thousands of times to describe computationally
proteins’ dynamics and their interactions. Currently, quantum mechanics is the only physical
theory having appropriate rigor for the description of molecular systems and their interactions.
Unfortunately, ab inito (or force field-free) molecular dynamics (MD) simulations of proteins
are still in their infancy and far from being widely available for research (Dal Peraro et al. ).
On the other hand, a classical approximation, where individual atoms (or even groups of atoms)
are replaced bymodelmaterial points interacting through analytically predetermined potentials
offers a very promising alternative for tedious, expensive, and difficult experimental studies of
proteins. Computermodeling of protein structure and dynamics is currently a well-established,
mature field of science (Karplus and McCammon ).
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Why do we use computational molecular mechanics and/or molecular dynamics methods
for studies of structure and protein dynamics? Here is a partial list of good reasons for their
popularity and widespread applications:

. Give material for mechanistic interpretation of protein functions.
. Help to connect protein structure with its functions.
. Provide time-resolved data on protein structures.
. Provide visual models easy to manipulate (great pictures in papers!).
. Promise to determine intra- and intermolecular interactions quantitatively.
. Help to discover subtle functional differences in protein architectures.
. Are useful in drug design (a great hope!).
. Provide an easy tool to study mutants.
. Allow for checking catalytic properties.
. Are easy to verify, extend, or modify.
. Bring information on thermodynamics.
. Provide information on mechanical strength.
. Quite often direct comparisons with experimental data such as NMR or x-ray structures,

single molecule AFM spectroscopy are possible.
. Cheap computers available everywhere.
. Good quality, free software accessible via the Internet.
. Relatively short “learning curve”.
. Well-established field of computer modeling with many experts, conferences, and special-

ized journals.
. Supercomputer power doubling every  months.
. Strong support from industry and governments, biopharma sector, medical agencies,

computer makers, etc.

And of course the last but not the least reason for the great popularity of computational
modeling of proteins is just human curiosity and interest in solving interesting scientific prob-
lems. Solving the protein folding problem is the great challenge to scientific community. We
know over  million protein sequences but only , D structures are available in the Pro-
tein Data Bank (as of ). It is commonly believed that finding a realistic and sturdy method
of converting a -D sequence into a -D structure should bring a Nobel Prize to the authors of
such a discovery.

The purpose of this article is twofold: (a) we want to draw attention to major review papers
and resources regarding studies of molecular dynamics of proteins and (b) we want to describe
the most representative, modern applications of MD methods that have been published in
recent years.

Formalism of Molecular Mechanics andMolecular Dynamics
Methods – A Short Presentation

In order to describe atomistic level chemical phenomena one has to use quantum mechanics
(Dahl ). This theory applied to molecules brought “an explosion” of quantum chemistry
and, together with the computer revolution, has changed the way the chemistry is done in the
twentieth century. Despite great successes of quantum chemistry, this approach is now limited
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to small or medium size systems, having – atoms. Proteins usually are composed of thou-
sands of atoms;moreover their realisticmodels should take into account a substantial number of
water molecules. Thus classical models of proteins are necessary. In such a simplified approach
electrons are neglected, subtle quantum bonds are replaced by effective analytical potentials,
and instead of atoms we have carefully designed model balls. The motion of atoms is treated in
a classical way: validity of Newton equations of motion is assumed in the protein nanoworld.
Structure of molecules may be optimized using classical force fields and methods of molecu-
lar modeling, the time evolution of a position of each individual atom may be followed for a
reasonably long period of time using the molecular dynamics formalism, but a possibility of
formation/breaking chemical bonds is basically lost. Thus, the real chemistry, based on chem-
ical reactions, needs the full quantum theory. Nevertheless, the classical modeling provides so
many useful hints into the nature of protein chemistry that computational modeling of protein
structure and dynamics is a fundamental part of the research in all major laboratories.

SomeHistory

The Electronic Numerical Integrator And Computer (ENIAC) was completed at the University
of Pennsylvania in Philadelphia in . It weighed more than , kg (, lb), and con-
tained more than , vacuum tubes. It is regarded as the first successful digital computer. In
 E. Fermi, J. Pasta and S. Ulam calculated numerically the motions of a chain of coupled
anharmonic oscillators. This is probably the first example that molecular dynamics simulation
suggested an analytical solution for the problem studied. In  Alder and Wainwright stud-
ied dynamics of a system of hard, two-dimensional discs (Alder and Wainwright ) Much
later, in , Rahman and Stillinger used a more realistic Lennard–Jones interaction potential
to study motions in water (Rahman and Stillinger ). The duration of those simulations was
about  ps.

The concept of interaction force field was applied to proteins by S. Lifson in . Thismodel
was aimed at facilitating the refinement process of protein structure determination based on
X-ray diffraction experiments (Levitt and Lifson ). Current force fields – sets of analytical
formulas together with carefully chosen parameters – are based on infrared spectra, geometri-
cal information from amide crystals, and quantum mechanical calculations. The famous paper
published in  by McCammon et al. () on BPTI dynamics may be regarded as the first
MD modeling of a protein. Interesting stories on the history and development of molecular
dynamics simulations science may be found in the review published by Karplus (). At the
beginning of  in the PubMed bibliographical database nearly , papers were listed under
the query “molecular dynamics simulation protein.” This area of computational chemistry and
biology is very strong and is fast growing.

On the Origin of Potential Energy Surface (PES) Concept

As we know, on the grounds of quantummechanics, the complete information of themolecular
system may be obtained from the wavefunction ∣Φ⟩, which is a solution of the Schroedinger
equation:

Ĥ ∣Φ⟩ = ε ∣Φ⟩
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where Hamiltonian Ĥ contains both electron (i, j) and nuclear (A,B) degrees of freedom (in
atomic units):
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If we adopt Born-Oppenheimer approximation, a separation of electronic and nuclear degrees
of freedom is possible:

ĤelΦel = εelΦel

where electronic Hamiltonian is:
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and electronic wavefuntion Φel depends in a parametric way on positions of all nuclei { ⃗RA}:

Φel = Φel ( { r⃗ i} ;{ ⃗RA} )

εel = εel ( { ⃗RA} )

As one can see, the electronic energy εel depends on positions of nuclei as well. Thus, for each
different arrangement of atoms Φel is a different function of electron coordinates r⃗ i . For a fixed
position of atoms (nuclei) the total energy reads:

εfixNtot = εel +
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Such an approximation leads to the following nuclear Hamiltonian Ĥnucl:
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This total energy εfixNtot (with the fixed positions of atoms) provides a potential for nuclear
motion. Such quantity is called Potential Energy Function (PES) and in molecular dynamics
simulations is approximated by a force field. In terms of quantum mechanics solutions to the
nuclear Schroedinger equation:

ĤnuclΦnucl = εnuclΦnucl

provides information on vibrations, rotations and translations of the molecule. But the dynam-
ics of a molecule (protein) may also be studied classically, provided that the realistic molecular
PES is known.

Force Fields

Classical force fields have a common assumption that the analytic potentials are a good approx-
imation to the “real” PES. It is also assumed that parameters pertaining to particular atom types
(or groups of atoms) are transferable from one model biomolecular system to similar ones.

The general expression for potential energy V is the following:

V =
∑

bonds i
VB
i + ∑

bond angles j
VA
j + ∑

torsional angles k
VD
k

+
∑

improper angles l
V E
l + ∑

atom pairs (r ,s)
(VC

r ,s + V
P
r ,s + V

VdW
r ,s )

The physical meaning of each term is described in the legend to > Fig. -. In general, an
intuitive decomposition of energy is used in this equation. Additive components correspond
to energies of chemical bonds (VB

i ), energies related to angular deformation of the optimal
molecular structure (VA

j , V
D
k , VE

l ) and pairwise interactions of all atoms present in the system
related to Coulomb energy of a system of partially charged model atoms (VC ) and so called
Lennard–Jones (or Van der Waals) term (VP

+ VVdW ).
One should distinguish between all-atom and united-atom force fields. In this second type

the groups of real atoms are used as a basic model “atoms,” for example, the methyl group CH

may be treated as a special type of a united atomhavingmolecular weight of . Such simplifica-
tion saves some computer time and in certain cases does not affect the results of modeling.The
drawback of the majority of force fields currently used is the lack of atomic polarization effects.
Partial changes on atoms to some extent include polarization, but usually parameters remain
fixed through the whole simulation. But the reality is different. Induced dipole moments may
change dynamics of the molecule and may affect results of modeling. Charges are modified
“on-the-fly.” Thus, it is expected, that the next generation of force fields will include atomic
polarizability (Warshel et al. ).

There are tens of classical force fields designed for the description of protein structure
and dynamics. Among the most popular ones are CHARMM (MacKerell et al. ), AMBER
(Weiner et al. ), GROMOS (Christen et al. ), and OPLS (Jorgensen and Tiradorives
). Perhaps the best up-to-date account of various force fields and computer codes avail-
able for protein simulation is Wikipedia on the Internet. The problem of design of a potential
energy function for proteins is discussed in Boas and Harbury (). Only very recently some
papers concerning comparison of the quality of various force fields have appeared (Guvench
and MacKerell ; Hornak et al. ). It is obvious that each force field was optimized for
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⊡ Fig. -
Interaction contributions to a typical force field. Bond stretch vibrations are described by a har-
monic potentialVB, theminimumofwhich is at theequilibriumdistanceb between the twoatoms
connected by chemical bond i (the indices i, j etc. are not shown in the Figure). Bond angles and
out-of-plane (improper) angles are also described by harmonic potential terms, VA and VE , where
Θ and ζ denote the respective equilibrium angles. Dihedral twists (torsional angles) are sub-
jected to aperiodic potentialVD; the respective force constants aredenotedby k’swith appropriate
indices. Non-bonded forces are described by Coulomb interactions, VC , and Lennard–Jones poten-
tials, VLJ = VP + VVdW , where the latter includes the Pauli repulsion, VP ∼ r− and the van der
Waals interaction, VVdW ∼ −r−, respectively (based on: Grubmueller (). ©  by John von
Neumann Institute for Computing)

a different set of systems and they were tuned to reproduce different properties, so it is not
clear how a fair comparison should be performed. On the other hand, in the protein modeling
community there is some tension and pressure that more effort should be devoted for careful
scrutinizing of the force fields and for setting clear recommendations regarding “justified” error
bars for results of computations (Aliev and Courtier-Murias ).
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StructureOptimization or EnergyMinimization

Themost standard problem ofmolecular mechanics applied to proteins is the following: what is
the best (optimum) structure of the studied protein? The common assumption is that the min-
imization of the energy (or sometimes another thermodynamic function such as free energy)
will give the answer. It is believed that such a structure is a good approximation to the native
structure of the protein of interest.

There are numerous computational methods of finding local minima (Chou ; Klepeis
et al. ; Kmiecik et al. ). Unfortunately, there is no general method known that might
lead to the global minimum of PES of a given protein. Such techniques as simulated anneal-
ing (Kannan and Zacharias ) or replica exchange (Sugita ; Sugita and Okamoto )
supported by genetic algorithms, may help to sample the conformational space efficiently and
may generate plausible “candidates” for the global minimum, but these approaches are heuristic
recipes rather than rigorous procedures. Quite often the energetics of transition from a confor-
mation A to a conformation B is of interest and should be calculated (Schlegel ). There are
numerousmethods of finding classical reaction paths appropriate for proteins, for example, the
Self Penalty Walk (Nowak et al. ). It is worth noting the tricky and promising technique
of milestoning (Kuczera et al. ). The interested reader may find details of reaction paths
calculations for large molecular systems in (Elber et al. ).

General Molecular Dynamics Scheme

The basic physics behind a simple molecular dynamics scheme seems to be trivial. We want to
solve simultaneously M Newton’s equation of motion for each individual atom i (or a grain of
atoms):

ai =

mi

Fi , i = , . . . ,M

The force Fi acting on each atommay be calculated (locally) as gradient of the potential (PES):

Fi = −∇V .

With forces, one can easily have accelerations acting on each atom. We assume that the
molecular system is deterministic (not always the case) and we may predict the position of all
atoms by integrating the acceleration (twice) with respect to time. There are many numerical
algorithms suitable for solving these problems, but due to its simplicity and numerical stability
the Verlet algorithm is perhaps the most frequently used in real simulations. Of course, one
must assume the initial structure of the protein and plug in time into numerical algorithm.
Time variable is discretized, the size of the time-step depends on the time scale of the fastest
motions we want to study. For real proteins in ambient temperatures it is usually  fs (− s).
> Figure - shows the major steps in MD routines.

Here we present the typical steps in doing molecular dynamics simulations of proteins:

. What is the scientific problem we want to solve?
. Is classical MM/MD modeling an appropriate methodology for this type of the problem?

Would these calculations help to understand nature? How might our results be verified
experimentally?
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Repeat as long as you need

Assign initial positions to atoms r (t = 0), choose Δt

↓

↓

↓

↓

Get forces:  F = –∇�(t) and a = F / m

Move atoms: r(t+ Δt) = r(t) + v(t) Δt + (1 / 2) a Δt2 +…

Move time forward: t = t + Δt

⊡ Fig. -
A general scheme of generating MD trajectory

. Do we have enough knowledge/experience/expertise or do we prefer a “black-box”
approach? (“Let’s calculate something, and we will see… .”)?

. What is the expected time of calculations required to obtain reasonable, publishable
results? (Note: one trajectory usually is not enough)

. Do we have sufficient resources (licensed codes, computer time, storage space, man-
power,….)?

. Having answered points (–) we need to set up an initial model of the protein. Usually an
experimental structure (X-ray orNMR) downloaded from the PDBwww.pdb.org (Berman
et al. ) is a good starting point.

. We should check whether the structure is complete. Is the resolution of the structure ade-
quate for our purposes? Does it contain all amino acids? Are there any missing atoms?
Do we have force field parameters for prosthetic groups/ligands/metal ions/etc. and exotic
stuff present in our favorite protein? One should always check the “biological unit” entry
in PDB to avoid misunderstanding of the real structure of a protein of interest.

. We need to decide in what particular environment simulation will proceed. Vacuum?
Water? Continuum dielectric? Exotic solvent? pH? Should ions be added for charge
neutralization?

. In what conditions of temperature and pressure should we plan simulations? How will the
temperature be maintained? Shall we switch to the Langevin dynamics?

. Do we need the quasi-infinite model (Periodic Boundary Conditions, PBC)? What is an
appropriate shape and size of the solvation box? Should we use the Ewald summation
technique to properly calculate electrostatic interactions?

. Let us assumewe perform a standard  nsMD simulation of a protein having a reasonable
initial structure. We will add a box of model water molecules at least  (or ) Angström
thick at each protein border region.

. After these initial preparations, the first step will be an optimization of the protein struc-
ture. We may initially freeze the protein and allow for some steps of minimization of
solvated water molecules (for example,  steps of the Steepest Descents (SD) method).

. Next, we may allow for some MD simulations of the solvent (water). We may gradually
increase the temperature of waters from K (minimized structure in principle is not related

www.pdb.org
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to any temperature), to K, for a  ps period of time. The time step in MD is usually
 fs, thus we will ask the MD code to perform , steps in integration of equations of
motions.

. We may relax constraints and “unfreeze” the protein. Some –, SD steps should be
sufficient to transfer the protein (+water) from the “experimental” minimum to a “local
force field related” minimum.

. We may increase the temperature in a stepwise manner from  to K for the whole
system.  ns of such heating phase is often more than enough.

. If we perform T= const. simulation, we need to equilibrate the system well before useful
data may be collected. The equilibration time teq depends on the system studied. In the
current literature one can find teq from  to  ns. We should observe at least a few geo-
metrical parameters of our protein. The RMS distance calculated for Cα atoms from the
minimized (or PDB) structure to the current one may help to estimate whether the model
is fully equilibrated.The RMS plot versus time should be flat.

. Now we may use the equilibrated system (protein + water) and launch a long production
run (–) ns.

. The structures at selected time point (frames) should be stored.These structures are further
analyzed using computer graphics and specialized software analysis tools. One may store
structures every  steps (fs) or even every , steps, depending onwhat data are needed.

. In the theory we should set up modeling for infinite time in order to sample all con-
figuration space of the protein studied. This is obviously not possible, thus we cross our
fingers and believe in ergodicity of the trajectory obtained. Once calculated quantities do
not depend on time of simulation, it is a reasonable signal that the longer calculation will
not bring new information. Usually several shorter trajectories, with different initial con-
ditions, will provide better understanding of the protein than one but very long trajectory.

One should note that solvation effects may be accounted for not only by including into the
studied system explicit watermolecules, but also via implicit solventsmodels (Chen and Brooks
; Chen et al. ). Changes in free energy upon solvation are often estimated using the
generalized Born model (Bashford and Case ; Hou et al. ).

Practical Aspects

Even the most sophisticated and advanced methods (Schwede and Peitsch ) need tools to
perform practical computations. Both computer codes and hardware are required. The major-
ity of papers published in this field utilized public domain codes to obtain data on protein
dynamics. There are of course numerous advanced and elaborate commercial packages, such
as Discovery Studio (Accelrys), HyperChem, Yassara, Desmond/Maestro (Schroedinger Inc.),
popular in industry and certain research environments, but it seems that routine academicwork
is based on freely available software.

MDCodes

One of the first codes was CHARMM (the commercial version is called CHARMm), originally
developed at Harvard University. This suite of programs is very versatile and contains all major
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computationalmethods. It is parallelized and allows also forQM/MMsimulations (Brooks et al.
). The most recent, tenth, version of AMBER is heavily optimized with respect to perfor-
mance and contains such advanced techniques as Locally Enhanced Sampling and SCC-DFTB
QM/MM methods. AMBER force field is popularly used for modeling of nucleic acids, but
thousands of simulations of proteins have been published as well (Case et al. ).

In Europe the GROMACS code has growing popularity due to its speed and good scaling
on parallel clusters (Van Der Spoel et al. ). The methods of Essential Dynamics, Principal
Component Analysis, and Flooding (Lange et al. ) are available here. Perhaps the recent
GROMITA graphical interface to GROMACS . will increase further the number of users of
this code (Hess et al. ; Sellis et al. ).

In our lab we are happy with the NAMD code (Phillips et al. ). It is well documented,
relatively fast, well maintained, frequently updated and scales nicely. It has certain flexibility
in selection of the force field (CHARMM, AMBER). The authors have implemented Locally
Enhanced Sampling (LES), Implicit Ligand Sampling (ILS), Replica Exchange, and Steered
Molecular Dynamics (SMD) schemes. New versions of NAMD will run on a GPU, and there
are also some attempts to port this code to a computational grid environment.

This short presentation of major packages devoted to protein dynamics simulations is far
from complete. Some Internet services, including Wikipedia, try to maintain the updated lists
of available MD codes.

Visualization

In the era of the Internet and efficient graphics cards we have tens of programs designed to
visualize a protein structure. Each year brings newplayers in this competition.Many researchers
prefer to pay a license fee and to use professional graphics for visualization of their structure
and MD data: Accelrys, Maestro, HyperChem, Yassara, etc. A comprehensive list of modern
molecular visualization codes may be found in the book by Gu and Bourne ().

In recent years a very versatile, user friendly, and robust code evolved from the early Visual
Molecular Dynamics (VMD) software, created by K. Schulten’s group at UIUC in the US
(Humphrey et al. ). There are thousands of users of this package. An example of VMD
visualization of the gradual stretching of modular adhesive protein contactin is presented in
> Fig. -. Preparation of a similar picture is not difficult if one uses a VMD guide (Hsin et al.
).

Caveat: It is interesting to note that an easy access toMD codes through a GUI is somewhat
dangerous: without investing too much time an inexperienced user may obtain (by trial-and-
error procedure) “reasonably” looking results that may be a completely wrong answer to the
problem (Knapp and Schreiner ). Thus, in the MD simulations of proteins a good deal of
time must be spent learning the theory and subtle features of this research method.

Review of Reviews

Since the very first proceedings of CECAM workshop in France devoted to models for protein
dynamics (Berendsen ), details of computer simulations of physical and biological systems
have been described in many comprehensive books. For example, a good starting point may
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⊡ Fig. -
A fragment of modular adhesive protein contactin, present in neuronal connections, visualized
using VMD code (Humphrey et al. ) (K. Mikulska, UMK, Poland)

be the book by Allen and Tildesley published in  (Allen and Tildesley ). It is devoted
mainly to simulations of liquids, but many methodological aspects of computational modeling
of physical systems are well covered. Elementary details of molecular simulations are presented
by Haile (). In a classical text by Rapaport () explanations of basic software and algo-
rithms may be found. The introductory book by Frenkel and Smit focuses on Monte Carlo
and molecular dynamics methodologies. The authors analyze algorithms and present useful
FORTRAN-based pseudocodes for basic algorithms (Frankel and Smit ) Broader aspects
of molecular modeling are covered by Leach (). In this book, besides main algorithms and
methods of computational chemistry and modeling methods of protein structure prediction,
free energy calculations, solvation, and drug design applications are presented. The book co-
authored byM. Karplus, one of the founding fathers ofMD simulations of proteins, is a valuable
source of information for everyone (Becker and Karplus ).

Excellent reviews on various aspects of biomolecular modeling are published quite often.
Here only a very concise, subjective, and limited review of the recent (i.e., published in
twenty-first century) reviews is presented, just to provide handy reference to further search
for relevant information.

A large body of proteins perform catalytic functions. MD calculations of enzymatic mech-
anisms are a great challenge to theory and the best strategy for simulations is a matter of
continuous debate. In reviews byWarshel (, ) the main aspects of proper understand-
ing of catalysis are described.Modeling of chemical reactions requires a special approach– some
possibilities are outlined in (van Speybroeck and Meier ) and a comprehensive review of
computational enzymology, largely based on QM/MMmethods, has recently appeared (Lons-
dale et al. ). Yet another class of problems arise when protein-protein interactions are
modeled (Elcock et al. ).

Basic methods and main applications of computer modeling of biosystems up to  are
presented in a comprehensive work by Schlick (), a review byGoodfellow et al. (Moraitakis
et al. ), a paper by Hansson and vanGunsteren (), and in the review by Kremer ().
Particularly interesting, but difficult due to special boundary conditions, are studies of mem-
brane proteins (Ash et al. ; Gumbart et al. ). The progress in this particular field is
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important, since receptor proteins are common and attractive drug targets. One can also find
reviews dedicated to application of simulations in narrow subdisciplines, such as biotechnology
(Aksimentiev et al. ).

A newer () account on methods, problems, and goals of biomolecular simulations is
given in a comprehensive article by Van Gunsteren (). Focused mainly on proteins, a very
informative paper by Adcock and McCammon provides an excellent description of methods
and key results fromMDmay be found. (Adcock andMcCammon ). Newmethodological
advances were also reviewed at the same time: Chu et al. popularize multiscale simulations
(Chu et al. ), while Elber et al. comment on the current literature on long time simulation
methods (Dal Peraro et al. ) and Liwo et al. on efficient methods of sampling of proteins’
conformational space (Liwo et al. ).

A lot of effort has been put in elaborating reliable and practical methods of calculating
changes in free energies (Christ et al. ; Kholmurodov et al. ;Meirovitch ; Pohorille
et al. ).The term “computational alchemy” has even been coined for some counterintuitive
but physically valid methods (Aleksandrov et al. ; Straatsma and McCammon ). Such
data are required, for instance, in drug design (Galeazzi ; Morra et al. ).

One can find specialized reviews of MD approach to biological problems (Avila et al. ;
Dodson et al. ) or to future nanotechnology applications of self-assembling systems (Klein
and Shinoda ). Interestingly enough, with the largest computer system currently available,
multimillion atom simulations are possible (Sanbonmatsu and Tung ). Prospects of the
computational approach to chemistry and biology are outlined in a comprehensive review by
Mulholland et al. (Van Der Kamp et al. ).

This field will surely profit from the use of the Internet. Some groups try to develop user-
friendly and even charming portals to the simulation software (Miller et al. ). Other
researchers, for example, the group of V. Daggett, invest in large-scale depositories of scien-
tific data stemming fromMD simulations (Simms et al. ). Sharing data, especially obtained
using advanced computer resources, is always a good idea. Such an “ocean” of numbers deserves
careful scrutiny. Hopefully, some scientific treasures will be fished-out in the near future.

Selected Examples of Applications of MD to Study Proteins

It is not possible in this short chapter to describe all current applications of simulations for
proteins dynamics studies. However, we point out selected, representative, widely discussed
problems where the MD methods have been used.

Protein Folding Studies

Proteins are synthesized as linear polymers, but for their function precise D structure is usually
necessary. The process of folding to such native structure is vigorously studied using molecu-
lar dynamics simulations (Freddolino et al. ; Schaeffer et al. ; Zhang et al. ). The
main obstacle in this research is still a very limited (–ns) timescale accessible for standard
modeling (Mayor et al. ; Scheraga et al. ). Only some benchmark, record calculations
achieved microseconds (Piana et al. ), including studies for very small systems such as a
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villin headpiece fragment, one of the most stable and fastest-folding naturally occurring pro-
teins (Duan and Kollman ; Ensign et al. ; Freddolino and Schulten ). Simulations
help to propose universal folding mechanisms and to determine intermediates, and to discover
bias introduced by approximate nature of force fields (Freddolino et al. , ). A lot of
effort is devoted to finding an intelligentmethod of “ab inito” protein folding (Ekonomiuk et al.
; Shakhnovich ). The progress may be checked by following the worldwide folding
competition CASP (Shi et al. ).

Protein-Drug Interactions and Docking

The pharmaceutical industry badly needs reliable theoretical methods for calculating ligand
binding affinities (Aqvist et al. ; Gallicchio and Levy ; Morra et al. ). The problem
is not easy, since many factors, for example, multiple binding sites, protein flexibility, and sol-
vent model, affect a small value of the free energy of binding (Deng and Roux ; Simonson
et al. ; Spyrakis et al. ). The chance of getting wrong results is high. However, in the
literature there are hundreds papers devoted to protein-drug interactions. The recent threat of
a bird flu pandemic triggered studies of interactions of neuraminidases or influenza A peptides
with antiviral drugs (Khurana et al. ; Le et al. ).The role of induced fit effects during lig-
and docking to steroid hormones binding receptors was analyzed by Cornell and Nam ().
MD may be used in an anticancer drug development (Lauria et al. ; Rosales-Hernandez
et al. ) or in studies of inhalation anesthetics interactions with proteins (Vemparala et al.
).

Spectroscopy Experiments

Spectroscopy is an extremely useful analytical and diagnostic technique with wide applica-
tions in chemistry, physics, life sciences, industry, and medicine. Molecular dynamics helps to
interpret experimental data. For example, Sen et al. used simulations to explain time-resolved
Stokes-shift experiments with biopolymers (Sen et al. ). Fluorescent proteins, especially
based on GFP, are often studied computationally. Recently Sun et al. applied QM/MM andMD
to explain dependence of Red Fluorescent Protein on pH of the environment (Sun et al. ).
Computational unfolding of Photoactive Yellow Protein may give useful hints for spectroscopic
studies (Vreede et al. ) as well as themodeling of visual pigments (Wanko et al. ). Quite
often the interpretation of NMR experiments profits from simulations, such as prediction of
nitroxide hyperfine coupling constants in solution (Houriez et al. ) or evaluation of rota-
tional diffusion constants from MD (Wong and Case ). On the other hand, the NMR spin
relaxation data help to improve force fields (Showalter and Bruschweiler ).

Functionally Important Motions (FIM)

Somemotions of proteins are critical for their proper functioning (Henzler-Wildman and Kern
). MD simulations may identify such modes. Relation of protein’s mechanics and func-
tion was reviewed in  by Schulten (Tajkhorshid et al. ), but since that time this group
studied new problems, for example, plant phototropism (Freddolino et al. a) and complete
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satellite Tobacco Mosaic Virus vibrations (Freddolino et al. b). Other groups investigated
large-scale motions in biosensors (Tatke et al. ), linker motions crucial for ligase (Liu and
Nussinov ), or retinal release from opsin (Wang and Duan ). Extraction of informa-
tion on FIM needs special methodology (Schuyler et al. ), such as Essential Dynamics
(Amadei et al. ) or Metadynamics (Biarnes et al. ), thus new ways of MD data analysis
are suggested (Hub and de Groot ).

Molecular Machines

Having such powerful computers at hand, we are ready to study molecular machines – proteins
or bio-complexes that perform some mechanical work during their activity cycle (Kolomeisky
and Fisher ; Scheres ). Rotations of parts of ATPase were studied by Ma et al. in ,
and molecular rotation in ATP synthase by Aksimentiev et al. in . Solvent-induced lid
opening in lipaseswas also analyzed computationally (Rehmet al. ). Later thewhole cellular
mechanics simulations were reviewed by Gao et al. ().

Mechanoselective ion channels may be considered as molecular machines, too, and ion
gating is better understood now due to MD (Vasquez et al. ). Simulations were applied
to the helicase motor (Dittrich and Schulten ; Flechsig and Mikhailov ; Yu et al.
) and perhaps to the most advanced (up to date) object: the ribosome (Becker et al. ;
Romanowska et al. ; Trylska ).

TheMechanism of Enzymatic Activity

Recent progress in computational enzymology is described in Lonsdale et al. (). Numer-
ous enzymes were studied usingMD simulations, for example, Peplowski et al. used the steered
MDmethod to enforce a ligand transport within the biotechnological enzyme nitrile hydratase
(Peplowski et al. ). In that way residues that may change catalytic properties of this met-
alloprotein have been indicated. Carloni et al. recently used the MD approach to explain the
mode of action of the famous group of signal G-proteins (Khafizov et al. ).

Transport Phenomena in Proteins

Heme proteins are popular objects of MD simulations (Banci ; Bikiel et al. ), since
transport processes of small gaseous ligands (O, NO, CO) are important for physiology, and
since they serve as a “test ground” for new methods. Myoglobin is even sometimes called a
“hydrogen atom” of MD simulations. Recently, two new members of the hemoglobin family
have been discovered, and studies of diffusion paths and free energy landscapes for neu-
roglobin (Orlowski and Nowak ) and cytoglobin were published (Orlowski and Nowak
). It seems that such systematic study allows for construction of a uniform picture of lig-
and migration pathways and the evolution of transport proteins structure (Cohen et al. )
(> Fig. -).

Due to its versatile role, nitric oxide transport within proteins is particularly intensively
studied (Marti et al. ).
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⊡ Fig. -
A comparison of low free energy regions (ILS/PMF maps, left) with oxygen diffusion paths in
Drosophila melanogaster hemoglobin (right) calculated by MD simulations – ns, CHARMM
force field, NAMD code (Phillips et al. ), L. Dams, W. Nowak (unpublished results). Figure was
prepared using the VMD code (Humphrey et al. )

Structure and Dynamics of Ion Channels and Porins

Dynamics and transport through ion channels and other pores in biological membranes is a
subject of vigorous research. Among many papers, the work on channel gating by M. Sansom’s
group (Beckstein et al. ) is worth mentioning as well as by B. Roux et al. in computational
studies of ion channels (Roux and Schulten ) and the paper on the ion conductance in a
potassium channel (Boiteux et al. ).

References to numerous computational studies of aquaporins may be found in a review
by Hub et al. (). Water transport in eye lenses has been recently investigated using
large-scale simulations by D.E. Shaw’s group (Ikeguchi ). At the same time, K. Schulten’s
team has watched carefully not only water transport phenomena (Zhu et al. ) but
also nanomechanics of RNA in nanopores (Khalili-Araghi et al. ; Miao and Schulten
).

Charge Transfer in Protein Complexes

Charge transfer (CT) and proton transport are very precisely tuned due to a protein struc-
ture. Such CT processes in photosynthetic complexes may be effectively modeled using both
quantum and classical method (Buda ). Proton translocations in proteins are well fol-
lowed by computer simulations (Cukier ). An application of the MD methods in studies
of biomimetic complexes having some prospective usage in bionanotechnology has been
published (Alvarez-Paggi et al. ).
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Protein-DNA Interactions

Transfer of information fromDNA to proteins and its impact on the whole cell activity is deter-
mined by protein-DNA interactions. Such complexes are difficult to model due to their size
and heterogeneity, but a good understanding of these systems is a key to genetics. MacKerell
andNilsson recently reviewed computational studies in this area (Mackerell andNilsson ).
Good examples of successfulMD applications are studies of p protein bindingmodes toDNA
quadruplexes (Ma and Levine ) or investigations that revealed fascinating details of the
mechanism of Lac repression (Villa et al. ).

Origins of Molecular Diseases

Applications of computer simulations in the areas related to medical problems are numer-
ous and have been financed by both public and private sources. Many diseases have well-
defined etiology, related to abnormalities in a protein structure, point mutations, etc. Such
“molecular diseases” are popular objects of the theoretical modeling (Papaleo and Invernizzi
).

The epidemic of BSE spawned the great interest in the prion protein research. Early sim-
ulations of folding (Kupfer et al. ; Sakudo et al. ) evolved into studies of membrane
bound complexes (DeMarco and Daggett ). Alzheimer’s disease is related to amyloid fiber
formation in the brain, and this process has also been successfully modeled (Kassler et al.
; Straub andThirumalai ; Urbanc et al. ). Less known are studies of transthyterin
(TTR) fibril formation (Rodrigues et al. ), since mutations in this thyroid hormone trans-
port protein are rare. However, the problem is serious, since the aggregation of TTR leads to a
lethal illness. It is necessary to note some brilliant studies of HIV virus fragments (Carnevale
et al. ), such as a flap opening of HIV- protease study by Tozzini et al. (). There
are examples of computational research on proteins involved in eye diseases such as primary
congenital glaucoma (Achary and Nagarajaram ), osteoporosis (Lee et al. ), and even
on contactin – a less known protein related to the autism spectrum disorder (Strzelecki et al.
).

Simulations of Single Molecule AFM Experiments

In the opinion of this author, computer modeling has excellent overlap with single molecule
experiments performed by Atomic Force Microscope (AFM). (Nowak and Marszalek ).
One of the first studies of ligand-antibody enforced dissociation was published in  by
Karplus et al. (Paci et al. ). Stretching of individual molecules by the AFM cantilever gives
unique nanomechanical force spectroscopy (Rief andGrubmuller ) thatmay be confronted
withMD simulations. Divergent time scales between experiments andmodeling are still a prob-
lem, as the quantitative agreement between calculated andmeasured forcemaxima is concerned
(Lee et al. ), but a good progress in this area is observed (Galera-Prat et al. ; Sotomayor
and Schulten ) and discovery through a virtual (Nowak et al. ) or a computational
microscope (Lee et al. ) is at hand.
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Conclusions and Future Directions

Computational chemistry is currently a well-established, fully functional branch of science.
Easy access to computers and high-quality, specialized computer codes result in myriad of
applications. There is a large, well-trained, and active community of computational chemists.
Results of calculations are useful, but difficult to obtain without the theoretical and computa-
tional approach. Virtually all chemical and a large body of biological systems may be modeled
using modern technologies.

It appears that computer simulations of proteins have a very bright future. There are
numerous new and promising investigations. Better computational power offers a possibility
of real-time calculations of dynamics. Haptic devices coupled to graphical workstations offer
a true “hands-on” experience with interactive molecular dynamics of proteins’ models (Knoll
and Mirzaei ). Electronic excited states of proteins are only a weakly explored area. The
methodology of MD simulations of photoexcited states is not well established yet (Kubiak and
Nowak ), but future applications for surewill include interactions of biological systemswith
light (Dittrich et al. ; Hayashi et al. ; Rossle and Frank ). Recently, good progress
in understanding protonic gating in the popular Green Fluorescent Protein chromophore has
been achieved through dynamical simulations (Olsen et al. ).

An interpretation of special experiments, such as high pressure studies (Paci ) or cryo
electron microscopy (Trabuco et al. ), may be fruitfully augmented by an application of
computational modeling. Computer scientists and physicists fight to enlarge the maximum
size of the simulated system. The whole virus all-atom simulation is not a record study any-
more (Sanbonmatsu and Tung ; Zink and Grubmuller ). It has been shown in Los
Alamos NL that  million atom protein simulations are technically possible (). Large
systems, such as big protein complexes in the living cell, will require coarse grained approaches
(Clementi ). A lot of insight comes from such modeling of membrane proteins (Ayton
et al. ; Sansom et al. ). Multiscale modeling is yet another line of methodological
progress (Nielsen et al. ; Tozzini ). Such techniques expand the timescale accessi-
ble for MD studies beyond  µs limit (Ayton et al. ; Chu et al. ; Sherwood et al.
). What is the best technological strategy for the optimum performance of MD sim-
ulations is a matter of fierce debate (Borell ). For example, D.E. Shaw has invested a
lot of resources in order to develop dedicated chips with record performance for special-
ized tasks (Klepeis et al. ). Other groups, such as K. Schulten’s team, prefer improving
algorithms and developing software for running calculations on very powerful, relatively inex-
pensive Graphical Processing Units, mass-produced for computer gaming (Hardy et al. ;
Stone et al. ; see http://www.nvidia.com/object/tesla_bio_workbench.html; Zhmurov et al.
).

Both approaches have difficulty with surpassing the grid computing idea. The “Fold-
ing@home” project created perhaps themost powerful computational device ever, and attracted
many young people to science (Pande et al. ). Hopefully, all these computational chemistry
modeling efforts will bring us a better understanding of nature and a better lives for all people.
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Abstract: Molecular dynamics (MD) simulations based on a classical force field are increas-
ingly being used to study the structure and dynamics of nucleic acids. Simulation studies are
limited by the accuracy of the force field description and by the time scale accessible by current
MD approaches. In the case of specific conformational transitions it is often possible to improve
the sampling of possible states by adding a biasing or umbrella potential along some coordi-
nate describing the conformational transition. It is also possible to extract the associated free
energy change along the reaction coordinate.The development of advanced sampling methods
such as the replica-exchange MD (REMD) approach allows significant enhancement of con-
formational sampling of nucleic acids. Recent applications of umbrella sampling and REMD
simulation as well as combinations of both methodologies on nucleic acids will be presented.
These approaches have the potential to tackle many open questions in structural biology such
as the role of nucleic acid structure during recognition and packing and the function of nucleic
acid fine structure and dynamics.

Introduction

Nucleic acids have essential functions in a variety of biological processes, including storage
of genetic information, replication of DNA, regulation of transcription, mRNA splicing, RNA
interference, and protein synthesis. Most cellular DNA adopts primarily a double-stranded
(B-form) helical structure and the interaction with proteins is mediated through major groove
or minor groove recognition. The accessibility of DNA is also controlled by the condensa-
tion with nuclear proteins (histones) to compact structures (nucleosomes and chromatin in
eukaryotes). Many cellular RNA molecules form more complex three-dimensional structures
compared toDNA that consist only partially of double-stranded, base-paired regions frequently
interrupted by extra-unmatched nucleotides, mismatched base pairs, bulge structures, or hair-
pin loop structures that cap the end of helices (Al-Hashimi and Walter ; Leontis and
Westhof ; Zacharias ).

In recent years, structural knowledge of RNA and RNA in complexes with proteins, small
organic ligands, and ions has increased dramatically since many new structures have been
solved by X-ray crystallography or Nuclear Magnetic Resonance (NMR) spectroscopy (Furtig
et al. ; Hall ; Steitz ). The rapid increase of structural information has also helped
to collect and better understand the types of interactions in folded nucleic acid structures and at
nucleic acid–ligand interfaces (Al-Hashimi andWalter ; Hall ). Since RNA and DNA
are of functional importance in many cellular structures, nucleic acids have also been increas-
ingly recognized as possible drug targets. In addition, nucleic acids themselves may serve as
drugs (DeJong et al. ;Wong et al. ; Zacharias ). However, the structural informa-
tion on folded nucleic acid structures as well as complexes with ligands alone does not allow us
to directly investigate the driving forces and energetic contributions to structure formation and
association. In addition, experimental high-resolution structure determination methods have
only a limited time resolution and allow only limited insights into the dynamics of nucleic acids
and the process of structure formation and association.

Molecular Dynamics Simulations of Nucleic Acids

For the theoretical investigation of nucleic acid structure and function the application of quan-
tummechanical approaches is currently limited by the large size and complexity of nucleic acids.
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However, computer simulation studies based on classical molecular mechanics force fields that
use the position of whole atoms as variables (instead of electrons and nuclei in case of quan-
tum mechanics) are used frequently to study the dynamics of nucleic acids (Cheatham ;
Mackerell andNilsson ;McDowell et al. ;Orozco et al. ). Simulations can comple-
ment experimental studies if the timescales or the molecular properties of interest are difficult
to access experimentally. In the current chapter we will focus on the application of advanced
sampling molecular dynamics (MD) methods to follow the dynamics of biomolecules at high
spatial and time resolution. These methods could be useful to study the driving forces of struc-
ture formation, provided that the force field to describe themolecular interactions is sufficiently
accurate.

Typically, MD simulation studies include the nucleic acid molecule at atomic resolution.
During the simulation Newton’s equations of motion are solved numerical in small time steps
of ∼– fs (–⋅− s). The interatomic interactions are described using a classical molecular
mechanics force field of the following form,

Vtot =
Nbonds
∑

i=

/ kb_i(bi − boi)

+

Nangles
∑

i=
/ kθ_i(θi − θoi)



+

Ndihedral
∑

i=

Nτ
∑

n=
kn( + cos(nτi + δni))

+

Npairs
∑

i≠ j
(

Ai j
/ri j −

Bi j
/ri j +

qi q j
/ri j)

The bonded terms (first three summations in the above equation) contain a sum over
all chemical bonds, all bond angles, and dihedral angles of the nucleic acid structures. Usu-
ally, simple quadratic penalty terms with appropriate force constants (kb and kθ , respectively)
are used to control the bond length (b) and bond angles (θ) variations of the molecules.
A linear combination of periodic functions is typically employed to control dihedral tor-
sion angles (τ). Additional non-bonded terms describe van der Waals and Coulomb inter-
actions (as a double sum over all non-bonded pairs of atoms, the last two terms in the
above equation). The form of the energy function allows a rapid evaluation of the poten-
tial energy of a molecule and calculation of gradients necessary for energy optimization and
molecular dynamics simulations based on a numerical solution of the classical equations of
motion.

Simulation studies on biomolecules require the inclusion of surrounding aqueous solvent
and ions. However, the inclusion of a sufficiently large number of explicit water molecules sig-
nificantly increases the computational demand.The possibility to implicitly account for solvent
effects in molecular mechanics calculations is of great interest because it would allow longer
simulation times and a better convergence of calculated thermodynamic averages. However, in
the present reviewwewill focus on simulation studies on nucleic acids with an explicit consider-
ation of surrounding ions and watermolecules. In order to account for long-range electrostatic
interactions most simulations employ particle mesh Ewald (PME) methods where the long-
range part of the electrostatic interaction is considered by an Ewald summation technique for
periodic systems (Darden et al. ).

Several molecular mechanics force fields are available for simulation studies on nucleic
acids. Among the most recent and best tested force fields are the Charmm (Foloppe and
MacKerell ; MacKerell and Banavali ) and the Amber parmBsc (Perez et al. a)
force fields. In particular, the parmBsc force field has been tested during very long sim-
ulations starting from B-DNA (Perez et al. b). The simulations gave good agreement
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with the B-DNA starting structure for simulations that were extended to more than  μs total
simulation time.

More recently, force fields that account approximately for electronic polarization due to
the strong electrostatic fields around nucleic acid molecules have become available (Babin
et al. ). Additional terms often in the form of field-induced dipoles on atoms are
used to approximately describe the deformation of the electron cloud due to an electro-
static field. It has been shown that such force field models can improve MD simulations of
DNA resulting in overall better agreement with available experimental data than the stan-
dard force field form with fixed partial charges on atoms and no additional polarization term
(Babin et al. ).

Efforts to systematically evaluate the accuracy of force fields and to study the fine struc-
ture of DNA on many different DNA sequences are underway (e.g., Lavery et al. ). Within
these studies fairly long MD simulations (> ns) have been performed on several B-DNA
duplex structures that contain all ten possible base pair steps and all possible sequential arrange-
ments of four consecutive base pairs (Lavery et al. ). Starting from standard B-DNA
these structures are equilibrated and simulated under identical conditions to allow direct com-
parison and extraction of sequence-dependent structural and dynamic features. This effort
could eventually lead to a comprehensive description of the sequence dependent flexibility
of DNA.

Nucleic acids are highly solvated systems and are surrounded by nonspecifically and specif-
ically bound ions that stabilize the poly-electrolyte character of the nucleic acid molecule.
A number of biophysical techniques allow the investigation of the effective charge of nucleic
acids and high-resolution X-ray crystallography can provide detailed spatial information on
specifically bound solvent molecules and ions. However, the dynamics of nucleic acid hydra-
tion and ion binding is difficult to study experimentally at high spatial and time resolution. MD
simulation studies have been extensively used to characterize the distribution and life times of
bound water molecules and ions in both DNA and RNA (reviewed in Hashem and Auffinger
).

In contrast to DNA, most RNA molecules are single stranded in a cell, which results in
the possible formation of a variety of secondary and tertiary structures. Many larger functional
biological assemblies contain not only proteins but also structured RNAcomponents (e.g., ribo-
somes, spliceosomes, and editosomes).Theflexibility of several RNAstructuralmotifs that form
building blocks for larger RNA containing biomolecules have been studied by MD simulations
on the nano-second time scale. Simulations on such motifs start typically from experimentally
determined structures and can give important insights into the dynamics and how it is coupled
to the function of RNA structural motifs.

Unfortunately, the conformational sampling during conventional (c)MD simulations is
strongly limited by the maximum simulation time that can currently be achieved. Even
simulations of hundreds of nanoseconds or few microseconds that are currently possi-
ble are often too short to observe significant conformational transitions or the refold-
ing of RNA or DNA structures. The poor sampling is due to kinetic trapping events in
low-energy regions of the conformational free energy surface. The rugged nature of the
energy hypersurface is in particular due to frequent atomic surface proximity inducing
hard core van-der-Walls repulsion and due to a restricted allowable set of rotamers in
the nucleic acid backbone dihedral angles. Thus, many interesting questions about non-
equilibrium dynamics of biomolecules cannot be resolved by current equilibrium cMD
simulations.
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Induced Conformational Changes During Molecular
Dynamics Simulations

In cases where one is interested in specific conformational transitions it is possible to overcome
the sampling problem by inducing a desired conformational change during a simulation.This is
possible if one can associate a specific parameter (reaction coordinate) with the conformational
change of interest. It is then possible to enforce structural transitions in MD simulations by
adding a penalty potential (called umbrella potential) that biases the sampled conformations
towards a desired state.The reaction coordinate can, for example, be the bending or stretching
of a DNAmolecule. Variants of this approach like targetedMD-simulations where one enforces
movement of atoms towards a desired target structure have also been developed (Sanbonmatsu
and Tung ).

Typically, in umbrella sampling simulations one adds a quadratic penalty term to the force
field for keeping sampled states close to a desired interval along the reaction coordinate. This
is then performed for many intervals (illustrated for the case of opening a DNA minor groove
(Zacharias ) in > Fig. -).

The consecutive sampling windows ensure a good probability of sampling along the gen-
eralized reaction coordinate. From the distributions of conformations within all the intervals
along the reaction coordinate it is possible to extract the associated free energy change for the
transition (> Fig. -). Then an optimal unbiased probability density along the generalized
coordinate can be recovered by statistical methods based on the analysis of weighted histograms
(WHAM, see reference Kumar et al. ). The corrected probability density in turn equates
the free energy along the generalized coordinate. The umbrella sampling methodology has
been applied frequently to study structural transitions in nucleic acid molecules in recent years.
Among these simulations are studies on the energetics of stacking and unstacking of nucleotides
(Norberg and Nilsson ) and looping out single bases within a duplex DNA (Giudice and
Lavery ; Giudice et al. ; Huang et al. ).

Nucleo-base looping out events are of significant biological importance because it forms
the mechanistic basis for repairing mispaired or damaged bases by a number of DNA repair
enzymes (Dalhus et al. ). In addition, many DNA-methylases induce looping out of
nucleo-bases to perform sequence specific methylation (Cheng and Blumenthal ). Several
umbrella sampling studies have been performed in order to calculate the free energy change
associated with looping out a stacked and paired base in duplex DNA and RNA (Barthel and
Zacharias ;Giudice andLavery ;Giudice et al. ;Hart et al. ;Huang et al. )
and using either a pseudo angular or dihedral angle reaction coordinate. The calculated free
energy in the range of – kcal mol− indicates that looping out a paired base in DNA is unfa-
vorable and corresponds to a rare event in case of free duplex DNA. In the case of looping out
extra unmatched bases stacked between neighboring base-paired duplex RNA a significantly
smaller barrier for looping out was found and it was possible to characterize stable confor-
mational substates such as base triples that formed during the looping out process (Barthel
and Zacharias ; Hart et al. ). The lower associated free energy of looping out extra
unmatched bases indicates that such conformations can be significantly populated and are in
equilibrium with stacked intra-helical states. In addition to localized structural transitions such
as looping out bases, the umbrella sampling method has also been used to study global defor-
mations of DNA and RNAmolecules.This includes inducedminor-groove opening and closing
(Zacharias ) as well as over- and under-twisting of duplex DNA (Kannan et al. ). The
opening of theminor groove is essential for the binding of severalDNA-binding proteins among



  Molecular Dynamics and Advanced Sampling Simulations of Nucleic Acids

them the prominent example of the TATA box binding transcription factors (Kim and Burley
; Nikolov et al. ). Simulation studies on duplexes with a central TATATA or AAATTT
sequence motif showed significant differences in the calculated free energies associated with
minor groove opening and a much smaller associated free energy change for the TATATA vs.
AAATTT case (see > Fig. -). The calculations indicated that the free energy change asso-
ciated with the deformation of DNA towards a form with an open minor groove (as seen in
several protein-DNA complexes) can be significant and depends on the sequence. It also allows
one to estimate the free energy contribution to the indirect readout of DNA due to differences
in deformability.
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⊡ Fig. -
Illustration of umbrella sampling simulations on induced minor groove opening in two DNA
sequences (according to reference ). The reaction coordinate for this simulationwas the distance
between twogroupsof backboneatomsonoppositeDNA strands (doublearrow). Thedistancewas
harmonically restrained to various values close to the reference distance dref (upper panel). Con-
formational snapshots observed during different stages of the umbrella sampling simulation are
shown as van der Waals representations (upper panel, atom color code) and the dref distance and
the helical axis directions (bold arrows) are indicated. In the lower panel the calculated free energy
changes vs. distance extracted from the umbrella sampling simulations for a self-complementary
′-CGCGAAATTTCGCG sequence (upper set of curves) and for the ′-CGCGTATATACGCG sequence
(smaller free energy changes) are indicated. The different line colors correspond to different sim-
ulation lengths ( and  ns per simulation window and combined data) in the forward direction
(increasing dref) and the dashed line represents the result for a backward simulation starting from
the DNA with the opened minor groove (further details in Zacharias )
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Replica-ExchangeMolecular Dynamics Simulations

The application of classical molecular dynamics (cMD) simulations for studying the dynamics
of biomolecules is limited by the accuracy of current force fields and the simulation time scale.
Biomolecules like peptides and nucleic acids can adopt a variety of locally stable conformations
that are separated by large energy barriers. Standard MD simulation at room temperature may
be kinetically trapped in one of these local minima and conformational transitions between sta-
ble states can therefore be rare events on currently accessible time scales. The replica exchange
(parallel tempering) technique is a widely used method to enhance conformational sampling
in Monte Carlo (MC) (Swendsen and Wang ) and MD simulations (Gnanakaran et al.
; Kaihsu ; Sugita and Okamoto ). In replica exchange simulations several copies
(replicas) of the system are simulated independently and simultaneously using classical MD or
MC methods at different simulation temperatures (or force fields: Hamiltonians). In standard
REMD, copies or replicas of the system are simulated at different temperature (T,T,T,….TN).
Each replica evolves independently and after preset intervals (in the range of –,MD-
steps∼– ps) an exchange of pairs of neighboring replica is attempted according to aMetropolis
acceptance criterion.

w(xi → x j) =  for Δ ≤ ;
w(xi → x j) = exp(−Δ) for Δ > 

where
Δ = (βi − β j) [E(r j) − E(ri)]

with β = /RT (R: gas constant and T: temperature) and E(r) representing the potential energy
of system for a given configuration.

The random walk in temperature allows conformations trapped in locally stable states (at a
low simulation temperature) to escape by exchanging with replicas at higher simulation tem-
perature. The REMD method has been successfully applied in folding simulations of several
peptides and mini-proteins (Kaihsu ) and has more recently also being used for studying
nucleic acids (Kannan and Zacharias a, ; Garcia and Paschek ; Villa et al. ;
Zhuang et al. ).

Recently, Kannan and Zacharias (a) applied the REMD method to study the folding
process of a DNA hairpin structure. Hairpin loops with a central GNA trinucleotide motif
(G, guanine; A, adenine; N, any nucleotide) have been found to form particularly stable struc-
tures (Yoshizawa et al. ). For example, the ′-GCGCAGC sequence in DNA forms a stable
tri-nucleotide hairpin loop (with a sheared G:A closing pair) flanked by a two base-pair stem
helix.The thermodynamic stability of the GCA trinucleotide loop, the influence of loop expan-
sion, the influence of closing and flanking sequences, and also the contribution of individual
hydrogen bonds and other non-bonded contacts to the folding stability have been studied
extensively (Moody and Bevilacqua ).

Temperature-based REMD with  replicas in explicit solvent was used to study the struc-
ture formations of the ′-GCGCAGC motif in DNA (Kannan and Zacharias a) starting
from single-stranded DNA. After an equilibration phase at constant pressure and temperature
the REMD simulations were conducted under constant volume using  replicas ranging in
temperature from  to  K.

During REMD simulations (each  ns), conformations in very close agreement with the
experimental hairpin structure appeared as dominant conformations during the final phase of
the REMD simulations (∼% at the lowest temperature replica). During REMD simulations
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already at a simulation time of  ns, conformations with an RMSD of ∼Å from experiment
were sampled. After ∼–ns simulation time conformations as close as .–.Å (heavy
atoms) with respect to the reference hairpin conformation were sampled as the dominant
conformational states (> Fig. -).

Simultaneous compaction and accumulation of folded structures was observed. Inter-
estingly, at early stages of the simulations a variety of central loop conformations but also
arrangements close to experiment were sampled before the fully folded structure appeared.The
analysis of intermediates at or shortly before the occurrence of fully folded hairpin structures
indicated the formation of near-native tri-nucleotide loop conformations (without fully formed
stem). Most of these intermediates included a stacking of the C and G bases, which was fur-
ther stabilized by hydrogen bonding to the A base. Folding to the native hairpin structure
appeared to occur almost simultaneously or quickly after the formation of the near-native tri-
nucleotide loop. The simulations suggest a folding mechanism where these intermediates can
rapidly proceed towards the fully folded hairpin and emphasizes the importance of loop and
stemnucleotide interactions for hairpin folding. In contrast to REMD, during cMD simulations
starting from the same single-strandedDNAmolecule no folding transitions to a structure close
to the experimental hairpin loop conformation were observed (Kannan and Zacharias a).
The root mean square deviation (RMSD) from the reference hairpin structure (heavy atoms)
remained around –Å in cMD simulations over the entire simulation time (> Fig. -) and
even during extended simulations of > ns. More recently, the folding of a similar DNA-
hairpin motif has been successfully achieved in very long continuous MD simulations (Portella
and Orozco ).

The REMDmethodology has also been used for simulation studies of an RNA hairpin and
for the folding of an RNA tetraloop r(′-GCUUCGGC) in explicit solvent starting from a fully
extended conformation using  replicas (Garcia and Paschek ). Apart from the folding
process, REMD simulations were used to study the effect of changing the loop sequence and
the closing base pair on the conformational distribution and on the thermostability of two
RNA hairpins that have similar structures (Villa et al. ). A variation of REMD, called serial
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⊡ Fig. -
(left panel) Heavy atom root mean square deviation (RMSD) of sampled DNA conformations (′-
GCGCAGC) from folded hairpin structure during a continuous MD simulation (upper graph) and a
T-REMD simulation (lower graph) vs. simulation time. (Right panel) Single stranded start structure
(left) and fully folded hairpin loop structure from the REMD simulation (green stick model, right
side) superimposed on to the experimental hairpin structure (blue color)
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replica exchange molecular dynamics (SREMD), has been employed to gain insight into the
folding intermediates of another common the RNA tetraloop hairpin with a central GCAA
loop sequence (Bowman et al. ).

Although the REMDmethodology improves sampling in the above discussed cases a draw-
back of the conventional temperature (T-)REMD is the rapid increase of the number of replicas
with increasing system size in order to cover a desired temperature range (Fukunishiet al. ).
The ratio of the standard deviation of the system potential energy (a measure of the energy
fluctuation) vs. average energy decreases with the square-root of the system size. Hence, to
achieve sufficient overlap of the energy distributions between replica runs at different temper-
atures (required to achieve a reasonable exchange acceptance ratio) the temperature “spacing”
between neighboring replicas is required to decrease with system size. Another drawback of
large numbers of replicas is the need to run longer simulations (or more exchanges) to allow
sufficient “travelling (diffusion)” or exchanges between high and low temperature replicas com-
pared to a small number of replicas. Especially in case of simulations that include a large number
of explicit watermolecules the rapid increase of the number of replicas in T-REMD simulations
limits the applicability to small bimolecular systems.

Instead of using the simulation temperature as a replica coordinate one can also use the force
field or Hamiltonian of the system as a replica-coordinate (Affentranger et al. ; Fukunishi
et al. ; Jang et al. ; Liu et al. ; Kannan and Zacharias b; Zacharias ).
In H-REMD simulations it is possible to modify only a part of the Hamiltonian along the
replica simulations. The advantage is that then exchanges between replicas depend only on
the part of the Hamiltonian that differs between replicas. Consequently, such approaches may
require much fewer replicas for efficient sampling compared with T-REMD. Various H-REMD
methods have been proposed mainly for peptides and proteins and demonstrated enhanced
conformational sampling can be achievedwith fewer replicas as compared to standardT-REMD
(Affentranger et al. ; Kannan and Zacharias b).

Combining Replica-Exchange and Umbrella
Sampling Simulations

Combining umbrella sampling with the replica exchanges is a variant of the H-REMDmethod
(Curuksu and Zacharias ; Sugita et al. ) and consists of periodically swapping confor-
mations between adjacent umbrella sampling windows i and j.The exchange criterion takes the
form of an equation of micro-reversibility that takes into account the conformational proba-
bility density of the two windows i and j, i.e., Boltzmann factors based on the biased potential
energy function of window i and window j. One advantage of coupling umbrella sampling with
replica exchanges (REUS) is due to the fact that in general there is no obvious best possible coor-
dinate for a given dynamical conformational transition (Sugita et al. ), especially when it
involves many degrees of freedom (typically bending and folding of biomolecules). As a conse-
quence itmay not be possible to overcome all relevant barriers within the phase space associated
to a given value of the generalised coordinate, i.e., within each umbrella window.The restriction
of sampling only a narrow range along a reaction coordinate can cause conformational trap-
ping of the sampled structures. Through periodic swaps between the sampling windows, the
conformations trapped in a low energy region of the conformational landscape easily diffuse to
neighboringwindowswith a different associated umbrella energy function.Hence, the neighbor
replicas provide an enhanced variety of conformations accessible to every sampling window
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in the limit of a high number of swaps between the windows. In the area of nucleic acids
this methodology has been applied, for example, in a study of dinucleotide stacking in DNA
(Norberg and Nilsson ) and in simulation studies on the free energy of bending of the kink
turn motif in RNA (Curuksu et al. a).

Simulation Studies on DNA Bending

Bent (i.e., curved) conformational states of DNA over several base pairs can be seen in many
protein-DNA complexes (Zacharias ), in nucleosomal organizations of eukaryotic genetic
material (Ong et al. ), in the prokaryotic nucleoles (Travers and Muskhelishvili ), and
in viral DNA packed in capsids (Garcia et al. ). Recent experimental studies employing
cyclization assays (Cloutier and Widom ), molecular force sensors (Shroff et al. ),
FRET (Fluorescence Resonance Energy Transfer) (Yuan et al. ), and AFM (Atomic Force
Mechanics) (Wiggins et al. ) experiments indicate that strong DNA bending may result in
base pair kinking and a smaller deformation energy than expected from simple elastic models.
The occurrence of sharp kinks in MD simulations of short minicircles was reported in Lankas
et al. () with the same DNA sequences as studied experimentally in Cloutier and Widom
().

DNA bending during MD simulations can be imposed by an appropriate restrain between
regions flanking the DNA region of interest (Curuksu and Zacharias ) or, alternatively, cir-
cularizing thisDNAsequence intominicircles (Lankas et al. ; >Fig. -). A full dynamical
pathway of nucleic acids global bending can also be characterized by MD simulations com-
bined with enhanced sampling (Curuksu et al. , b), such as the Umbrella Sampling
and Replica Exchange (REUS) method introduced in the previous paragraph.

To gain insight into the full dynamical pathway of DNA global bending, our laboratory has
carried out umbrella sampling by defining a generalized coordinate for bending short DNA
oligomers (Curuksu et al. , b). The bend angle is defined as an angle between two
screw axes of the double helical segments referred to as handles. To calculate each screw axis,
internucleotide rotation vectors are calculated for several neighboring dinucleotide stepswithin
a fragment of n base pairs. Each rotation vector is based on a rotation matrix that is the total
transformation from one nucleotide-fixed axis system into the coordinate frame of its neighbor-
ing nucleotide.The sum of the rotation vectors defines a vector “handle” oriented as a function
of (n–) specific inter-nucleotide rotations angles (Curuksu et al. ).

During the simulations described in ref. , four terminal base pairs at each end of a 
basepair duplex DNA molecule were included to define two (terminal) handles. The global
bend angle is given by the angle between the two handle vectors and a restraining potential of
the form V(θ) = k(θ − θref) was added to the force field (θ corresponds to the angle between
the two handles). Since the bend angle restraining potential depends on the position of many
atoms (because each handle is influenced by all the atoms that define the local axis system) the
restraining force is optimally distributed over all atoms that affect the bending angle. Simulation
of several nanoseconds per umbrella sampling window and periodical swapping of conforma-
tions between adjacent windows was carried out at regular intervals (every  ps). The global
bending angle can be smoothly restrained to values around ○ and up to ○ (the most extreme
DNA bending regimes as observed in nucleosomes are on the order of ○ for a  bp duplex
DNA). > Figure - illustrates the probability histograms of the rotation variable about the
long base pair axis between two adjacent base pairs (helical “roll” variable) that characterizes
kink motifs through which DNA fragmentsmay relax the bending stress (Curuksu et al. a;
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⊡ Fig. -
Geometrical methods to induce bending of nucleic acids molecules. (Left panel): “self bent” DNA
mini-circle system. (Right panels): duplex DNA oligonucleotide bent by the load imposed at its two
ends when restraining the angle between two vector-handles (Curuksu et al. ). The vector-
handles (local helical axis) are indicated as lines and the local axis vectors as short arrows
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⊡ Fig. -
(a) Time series of roll angle for base pair step CpG (dots) and propeller angle at base pair C:G
(line) in the regime of large induced bending angle (○) during umbrella sampling with replica-
exchange of the duplex d(CGCGCGCGCGCGCGC) . Roll values were averaged over four adjacent
umbrella windows. Base pair kink density histogram observed for simulation windows with large
DNA bending strain (–○) during umbrella sampling, with (b) and without replica exchanges
between neighboring sampling windows (c). Upper set of plots corresponds to roll fluctuations for
everypyrimidine-purinebasepair steps (CG)and thesecondsetofplots toeverypurine-pyrimidine
base pair steps GC in the oligomer (unpublished results and Curuksu et al. b)
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Lankas et al. ). Reversible partial unstacking events associated with strong local bending
kinks at central GC and CG steps were observed in several sampling windows of the REUS
application (results for the ○ bending window are shown in > Fig. -a) characterized by
a roll angle >○.

The base pair bend density histograms appeared as distributions with two maxima for the
two junctions that form a kink (CG in purple and GC in blue), which is not the case in the
umbrella sampling without replica exchange (> Fig. -b, c).This means that these two neigh-
boring junctions are both kinked during a significant part of the trajectory as in conventional
umbrella sampling (Curuksu et al. b) but can also adopt stacked conformations (no kink)
during another significant part of the same trajectory. This is also indicated in > Fig. -a,
which illustrates the bend angle of the CG junction and at the propeller twist of the base pair
intermediate between GC and CG (C:G) as a function of simulation time. Propeller
twist is the contra-rotation about the long base pair axis within one base pair and together
with the roll deformations above were shown to characterize a specific kink motif called type
II kink (Lankas et al. . The time-series for roll (purple dots) indicates a number of transi-
tions between large bend angles (∼○) and small bend angles (∼○) corresponding to the two
sub-maxima on the density plot (> Fig. -b) for the CG step. Moreover, these transitions
occur in concert with propeller transitions (black line) between values typical for B-form DNA
and values specific to the type II kink. Thus, the simulations suggested that type II kink is an
elastic reversible deformation, which could not have been deduced from a standard umbrella
sampling (Curuksu and Zacharias ) where no exchange between the sampling windows
took place. Clearly, type II kink appears as an important transient DNA motif at the regime of
bending probed in the induced bending simulations (up to bend angles of ○).

Conformational Transitions of Nucleic Acid Backbone States

Various phosphodiester backbone substates can be found in X-ray crystal structures of free
nucleic acids and in complexes with proteins (Djuranovic and Hartmann ; Varnai et al.
). In particular, the coupled ε (rotation around C′–O′ bond in C′–C′–O′-P) and
ζ (rotation around O′–P bond in C′–O′–P–O′) in gauche-/trans and in trans/gauche-
regimes, termed BI and BII substates, respectively, are frequent in crystal structures of freeDNA
(Varnai et al. ).

Since conformational transitions in dsDNAor dsRNAoften require transitions of backbone
dihedral angles, a generalized coordinate defined as a set of dihedral angles can in principle
promote more global transitions. For example, we have designed a replica exchange method
that employs different levels of a specific biasing potential (illustrated in > Fig. -) to induce
coupled transitions of the nucleic acid backbone dihedral angles ε/ζ along the replicas (Curuksu
and Zacharias ). The sampled conformations can exchange with a reference replica that is
controlled by the original force field.The choice of biasing potentials in the replicas can be either
fixed at the beginning of the simulation or optimized during an equilibration phase.The nucleic
acid dihedral angle dependent biasing potential that destabilizes a given ε/ζ combination takes
the following form (penalty term added to the original force field):

v i(ε, ζ) = k×
((x − r) −(R − r))


if r < x < R

(R − r) if x < r
 otherwise
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⊡ Fig. -
(a) Shape of the dihedral angle biasing potential in one dimension. The potential is constant (Emax)

between d and d and decreases continuously to zero for dihedral angles in the interval d,d as
well as d,d. Different levels of the BP were added to the force field to control replica runs during
BP-REMD simulations. (b) Shape of the BP in two dimensions (ε/ζ dihedral angles). The potential is
constant for ε/ζ dihedral combinations within radius r from the reference (marked by a cross) and
decreases smoothly to zero within radius R. (c) The upper panel indicates the initial placement of
the D biasing potential (bumps) illustrated in (b) on the complete D plane of possible ε/ζ dihe-
dral angles during BP-REMD simulations (labeled ). After an equilibration phase the placement of
additional bumps is illustrated (labeled , non-biased regimes are labeled ). The biasing level at all
placements is scaled along the replica coordinateduringBP-REMD simulations (see text for details)

where x =
√

(ε − εr) + (ζ − ζr) is the coordinate in the two dimensional ε/ζ phase-space
defined by taking the center of the ceiling (εr , ζr) as origin (see > Fig. -). r is the radius
of the ceiling and R the radius of the biasing potential. This function has the shape of a quasi-
Gaussianwith flat ceiling but does not use the computationally expensive exponential function.
The width and height of the potential can be independently chosen and different levels of the
potential (with different values of k or Emax) were used along the replicas to destabilize some
given ε/ζ substates.

In order to systematically cover the whole two dimensional plane of possible ε/ζ combina-
tions, a set of  regularly spaced positions of biasing potentials can be used (spaced by ○ in
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⊡ Fig. -
Comparison of ε/ζ backbone dihedral angle sampling at the abasic site (upper panels) and the
opposing adenine (lower panels) of the double stranded DNA with a central abasic site (Curuksu
and Zacharias ). Each dot in the plots corresponds to an ε/ζ pair of a conformation sampled
every . ps. The T-REMD simulations required  replicas and the BP-REMD was performed with
 replicas ( biasing levels). Only the sampling in the reference replica (at lowest temperature of
K in case of T-REMD and at the original force field in case of BP-REMD)

each of the two dihedral angles) (Curuksu and Zacharias ). In each dimension six different
sets of the following biasing potential parameters (d, d, d, d as in > Fig. -) were possible:
(○, ○, ○, ○); (○, ○, ○, ○); (○, ○, ○, ○); (○, ○, ○, ○); (○,
○, ○, ○); and (○, ○, ○, ○). In simulation studies described in reference ,
the width of each potential was ○ and the tail region of each potential was ○ (corresponding
to the difference between d and d or d and d, respectively). The sampling of conformations
within each of the  intervals could be monitored by collecting all ε/ζ pairs within each inter-
val. The variance of the sampled states within an interval was used to decide on positioning a
biasing potential at the corresponding ε/ζ location during an equilibrating simulation phase.

Test simulations on nucleic acid systems indicated that an Emax= . kcal⋅mol− was nec-
essary to allow for efficient nucleic acid backbone transitions and it was chosen as the highest
biasing level. During replica exchange simulations five replicas with Emax levels of  (reference
replica without biasing), , , , and  kcal⋅mol− were used, which resulted in an exchange
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Coupling of sampled ε/ζ dihedral angle substates and global bending of the abasic site []. (left
panel) Distribution of ε/ζ dihedral angles during BP-REMD (replica wih the original force field) at
the abasic site. The global bend angle of the DNA related to each ε/ζ dihedral angle regime is
indicated. (right panel) Illustration of the global bend angle in the BP-REMD simulation of a DNA
oligonucleotide with central abasic site

acceptance rate of ∼%. The method was applied (Curuksu and Zacharias ) to an exper-
imental structure of an abasic site embedded in double strand DNA (seven central base pairs
of a DNA abasic site deposited in the protein data bank: pdb-entry: HSS; Chen et al. ).
An abasic site occurs notably when chemical or radiation damage of DNA result in the loss
of a base in one strand leaving an unpaired base in the opposite strand (Demple and Harrison
). From conventional MD simulations it is known that abasic sites have significantly altered
dynamics compared to regular DNA (Fujimoto et al. ).

The abasic site system was investigated using cMD simulation ( ns, K), a T-REMD
simulation ( replicas) and using a  ns Biasing Potential Replica Exchange MDwith  replicas
(in the following termed BP-REMD). The dihedral biasing potential ( possible potentials)
was only applied to ε/ζ dihedral angles at the abasic site itself and the adenine nucleotide on the
opposite strand. All other nucleotides were only controlled by the original force field (in each
replica).Thus, dihedral angle sampling was focused on the sampling at the abasic site and at the
opposing adenine (> Fig. -).The cMD simulation indicated sampling of the (ε/ζ) BI region
at the abasic site (with a dominant sampling of the (−gauche/−gauche) regime (%) compared
to the standard (trans/−gauche) state). For the opposing adenine nucleotide bothBI and BII

states were sampled during cMD (not shown). Both the temperature REMD as well as the BP-
REMD showed much more extensive sampling of the possible (ε/ζ) pairs compared to cMD
on the same time scale (in the reference replica, > Fig. -). Both replica simulations predict
an even (∼:) distribution of the BI substates=(−gauche/ − gauche) versus (trans/−gauche) and
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also sampled several additional states (e.g., in BII region) both for the abasic site as well as for
the opposing adenine (not sampled in the cMD simulations).

The observed difference in sampling of the four major (ε/ζ) dihedral states demonstrated
that cMDandT-REMDapproaches undersampled (or did not sample at all) the (−gauche/trans)
and (−gauche/ + gauche) regimes for the abasic site and the (−gauche/ − gauche) and the
(−gauche/ + gauche) regime in the case of the opposing adenine. Application of the BP-REMD
methodology to a DNA with a central abasic site significantly improved sampling of the ε and
ζ dihedral angle substates compared to cMD simulations and also compared to T-REMD at
smaller computational costs. The coupling of the global structure of the DNA with a central
abasic site to the (ε/ζ) dihedral substate sampling is illustrated in > Fig. -. Each of the sam-
pled substate regions at the abasic site correlatedwith a different global bending geometry of the
DNAmolecule.This coupling may have important consequences for the recognition process of
damaged DNA by repair enzymes.

Conclusions

The focus of this chapter was the description of REMDmethods to improve umbrella sampling,
in combination with a specific biasing potential to promote dihedral transitions in nucleic acid
molecules. Replica exchanges between umbrella sampling windows avoid trapping of confor-
mations due to the restraining of the system with respect to a selected regime along a reaction
coordinate. This can significantly improve the free energy convergence of such calculations.
The technique has a wide range of possible applications to investigate the deformability of DNA
and RNAmolecules and to better understand its coupling to recognition by proteins and other
ligands.

The BP-REMD technique described here can help to better characterize available backbone
dihedral angle substates of nucleic acids and may yield a better understanding of the relation
between nucleic acid fine structure and how it is influenced by binding processes.
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Abstract: Mixed-quantum classical dynamics simulations have recently become an impor-
tant tool for investigations of time-dependent properties of electronically excited molecules,
including non-adiabatic effects occurring during internal conversion processes.The high com-
putational costs involved in such simulations have often led to simulation of model compounds
instead of the full biochemical system. This chapter reviews recent dynamics results obtained
for models of three classes of biologically relevant systems: protonated Schiff base chains as
models for the chromophore of rhodopsin proteins; nucleobases and heteroaromatic rings
as models for UV-excited nucleic acids; and formamide as a model for photoexcited peptide
bonds.

List of Abbreviations: BLA, Bond length alternation; BP, Bicycle pedal; bR, Bacteri-
orhodopsin; CAS, Complete active space; CASSCF, CAS self-consistent field; CASPT, CAS
second-order perturbation theory; DFT, Density functional theory; DFTB, Density functional
based tight binding; ESI, Electrospray ionization; FT, Folding table; GVB,PP, Generalized
valence bond in the perfect pairing approximation; HT, Hula-twist; LIIC, Linear interpola-
tion of internal coordinates; MALDI, Matrix-assisted, laser-desorption ionization; MCSCF,
Multiconfigurational self-consistent field; MCTDH, Multiconfigurational time-dependent
Hartree; MRCI, Multireference configuration interaction; MR-CIS, MRCI with single excita-
tions; MR-CISD, MRCI with single and double excitations; MXS, Minimum on the cross-
ing seam; NRBP, Non-rigid bicycle pedal; OBF, One bond flip; OM, Orthogonalization
model ; PSB, Protonated Schiff base; PSBn, PSB with n double bonds; QM/MM, Quantum-
mechanical/molecular-mechanical; Rh, Rhodopsin; ROKS, Restricted open-shell Kohn-Sham;
RPSB, Retinal protonated Schiff base; SA, State average; TDSE, Time-dependent Schroedinger
equation; UV, Ultraviolet;WC, Watson-Crick; ZPE, Zero point energy

Introduction

Photoelectronic excitation of organic molecules may trigger complex series of chemical and
physical events, which are activated not only by the excess of energy provided by the photon
but also by the reactive nature of the excited-state potential energy surfaces. While electronic
ground states normally present relatively high barriers for interconversion betweenminima and
strong adiabatic character, excited-state potential energy surfaces tend to show much lower
energy barriers and numerous crossings between adiabatic states. The low energy barriers
allow the molecule to explore geometric conformations that challenges the chemical intu-
ition. The state crossings bring the molecule to the limit of validity of the Born–Oppenheimer
approximation.

Between the photoabsorption and the formation of the final products, the electronic energy
excess may be converted into mechanical energy of molecular vibration, isomerization, and
dissociation, it may be dissipated as heat into the environment, or it may be reemitted with a
red-shifted wavenumber. A measure of how diverse and complex these processes are can be
seen from the fact that, depending on the molecule and on the excitation wavelength, they
span a range of more than ten orders of magnitude between a few tens of femtoseconds of a
radiationless decay and the milliseconds of the phosphorescent decay (Zewail ). Besides
their intrinsic interest in basic sciences, molecular photoactivated processes are relevant for
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important natural phenomena and technological applications. In terms of the natural phenom-
ena that will be discussed in this chapter, they constitute the first steps for the primary process
of vision (Wald ) and the remarkable photostability of the five natural nucleic acid bases
may have had important impact on life on Earth (Crespo-Hernandez et al. ).

In this chapter we will focus on dynamics simulations for photoexcited molecules and the
understanding these simulations may provide. Naturally, dynamics simulations are tailored to
answer questions related to time-dependent properties such as time constants of specific pro-
cesses. In addition, dynamics simulations show which regions of the configuration space are
explored and whether they are populated or not. For example, onemay frequently findmultiple
reaction pathways departing from the Franck-Condon region that are all energetically acces-
sible (Barbatti and Lischka ). While conventional static calculations with optimization of
stationary structures can reveal such pathways but only give indirect information on the impor-
tance of each one based on relative energies, dynamics simulations can, in principle, tell much
more precisely which one will be preferred and when it will be activated.

The applicability of excited-state dynamics simulations is still limited by its extreme com-
putational demands. Different from ground-state dynamics simulations for which good force-
fields and semi-empirical methods are available for computationally efficient simulations, the
treatment ofmolecules in excited states depends verymuchon costly electronic structure calcu-
lations and on hybrid methods like QM/MMapproaches.Moreover, when themolecule evolves
into state-crossing regions of the configuration space, non-adiabatic corrections are required
too (Worth andCederbaum ). Despite several attempts to develop semiempirical andDFT-
based methods to treat the molecule in such regions (Fabiano et al. b; Granucci et al. ;
Levine et al. ; Tapavicza et al. ), the most reliable approaches to date are based on the
multiconfiguration self-consistent field (MCSCF) andmultireference configuration interaction
(MRCI) ab initio levels.

Currently, most of the dynamics simulations for systems of chemical or biological interest
are performed with the on-the-fly approach, in which energy gradients and other properties are
computed as needed during the dynamics propagation. This avoids the cumbersome work of
building amultidimensional potential energy surface or being forced tomake educated guesses
about a few important degrees of freedom. The price to pay for the on-the-fly approach is the
lack of non-local information during the dynamics. Thus, the use of the on-the-fly, excited-
state dynamics simulation approach should be done with an awareness of the risk of improper
description of the zero-point energy and phase space distribution (Santoro et al. b). Luckily,
as soon as medium- and large-sized molecules move out of the Franck-Condon region, hot
species are formed and such quantum effects tend to be reduced.

In view of the computational costs of the on-the-fly, excited-state dynamics simulations,
these calculations are currently limited to few picoseconds of a ten- to twenty-atom molecule.
This is usually enough to investigate ultrafast internal conversion processes andwill be themain
topic of this chapter.

With the double aim of reducing computational costs as well as of understanding the most
basic constituents in photodynamics processes, it has been common to investigate model sys-
tems, which are supposed to be the minimal unit that can still reproduce the photodynamics
observed in the complete molecule. In the following sections, we shall review three classes of
molecules and their model systems: () protonated Schiff bases, models for rhodopsin chro-
mophores; () heteroaromatic rings, models for nucleic acid bases; and () formamide, model
for peptide bonds.
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Mixed Quantum-Classical Dynamics Simulations

Mixed quantum-classical approaches (Tully ) are themost popularmethods to perform on-
the-fly, excited-state dynamics simulations including non-adiabatic effects. In these approaches,
which include the multiple spawning (Ben-Nun et al. ), the surface hopping (Tully ),
and the Ehrenfest (Li et al. ) methods, the nuclear time evolution is treated classically by
means of Newton’s equations, while the time evolution of the population of each electronic
state is treated separately, within different degrees of approximation. In the surface hopping
method, the time evolution of the population is obtained in two steps: first, a non-adiabatic
transition probability between each pair of states is computed and a stochastic algorithm is
applied to decide in which state the classical trajectory is propagated in the next time step.
Second, statistics over a large set of independently computed trajectories allow acquisition of
the fraction of trajectories (occupation) in each state as a function of time.

Several procedures have been proposed to compute non-adiabatic transition probabilities
in the surface hopping approach, from the most simple one, which just assumes that the proba-
bility is the unity if the energy gap between two states is smaller than some threshold (Hayashi
et al. ), to more sophisticated approaches that take into account the variation of wave-
function coefficients (Fabiano et al. a) or compute the Landau-Zener transition probability
(Lasser and Swart ). One of the most reliable procedures for computing the non-adiabatic
transition probability is Tully’s fewest switches algorithm (Tully ). In this approach, the
time-dependent Schroedinger equation (TDSE) is integrated simultaneously to the classical tra-
jectory (Ferretti et al. ). To cope with the lack of non-local information introduced by the
on-the-fly approach, non-local terms in the TDSE are neglected and the nuclear wavefunction
is supposed to be entirely localized at the classical position determined by Newton’s equation.
Integration of this semi-classical version of the TDSE gives the adiabatic population of the states,
which are then used to compute the probability using the fewest switches formula.

The integration of the TDSE depends on non-adiabatic coupling terms connecting dif-
ferent states. If an adiabatic representation is used to expand the molecular wavefunction,
non-adiabatic coupling vectors need to be computed. Alternatively, if a diabatic representation
is used, non-diagonal Hamiltonian elements are required. Either way, the computation of the
non-adiabatic coupling terms are the bottleneck in non-adiabatic dynamics approaches. These
terms are usually not available for most of quantum chemical methods and, when they are, they
are computationally expensive with the cost increasing with the square of the number of states
(Pittner et al. ). These difficulties have motivated, on one hand, the search for approxi-
mated hopping algorithms as those mentioned above, and on the other hand the computation
of the coupling terms based onwavefunction overlaps (Fabiano et al. a; Granucci et al. ;
Hammes-Schiffer and Tully ; Pittner et al. ; Tapavicza et al. ; Werner et al. ).
We should also point out that the availability of analytical gradients and non-adiabatic cou-
pling vectors procedures atMRCI andMCSCF levels has been of great importance for dynamics
simulations (Dallos et al. ; Lischka et al. , ; Shepard ; Shepard et al. ).

One consequence of the hyperlocalization of the nuclear wavefunction in this approach
is that non-diagonal terms in the density matrix do not vanish with time as they should do
(Granucci and Persico ; Zhu et al. ). Decoherence can be imposed by applying an ad
hoc correction to the adiabatic population every time step (Granucci and Persico ), which
forces the non-diagonal terms in the density matrix to be reduced to zero within a certain time
constant.
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When a hopping event between two states takes place, this usually happens at a finite energy
gap. To keep the total energy constant in the subsequent trajectory, it is necessary to correct
the kinetic energy, for example, by rescaling the momentum or by adding more momentum to
the direction of the non-adiabatic coupling vector (Ferretti et al. ; Muller and Stock ).
It may also happen that the stochastic algorithm attempts to make a hop from a lower to an
upper state in a region where there is not enough energy to do so. Such cases have been usually
treated by forbidding the hopping occurrence (Ferretti et al. ).The momentum can be kept
or reversed afterwards. Another possibility is to take the time uncertainty principle to search
for a geometry nearby where the hopping is allowed (Jasper et al. ).

Because of the stochastic nature of the fewest switches surface hopping approach, trajec-
tories starting with the same initial conditions will give rise to different time development.
Moreover, the initial conditions should reflect the initial phase space distribution. Therefore,
the averages that define the state occupation should in principle be performed over this double
ensemble of trajectories starting in different points of the phase space, several times in each one.
Because of computational limitations, this procedure is usually reduced to a single ensemble of
trajectories starting only once in different points of the phase space.

The ensemble of initial conditions can be generated in a diversity of ways. For instance, the
simulation of an instantaneously excited wave packet into the Franck-Condon region may be
achieved by selecting geometries and velocities obtained from a dynamics in the grounds state,
with this dynamics performed for a period long enough as to allow an adequate sampling of the
phase space. Alternatively, each nuclear degree of freedom can be treated within the harmonic
approximation and a Wigner distribution can be built. In most of the applications discussed
here, the second alternative is used since it is expected to provide realistic initial conditions for
single molecules.

Several applications will be reviewed and discussed in the following sections. Specific infor-
mation about methods used will be given. Details can be found in the proper references. The
simulations carried out by the present authors have been performed with the Newton-X pro-
gram (Barbatti et al. a, b) for mixed quantum-classical dynamics simulations, interfaced
with the Columbus program (Lischka et al. , , ) forMRCI andMCSCF electronic
structure calculations.

Protonated Schiff Base Chains and Retinal

The PrimaryMechanism of Vision

Understanding the initial molecular mechanism of vision has been one of the most challenging
subjects in the area of computational science during the last four decades (Andruniow et al.
; Ben-Nun et al. ; Birge ; Frutos et al. ; Garavelli et al. b; González-Luque
et al. ; Hayashi et al. ; Logunov et al. ; Polli et al. ; Rohrig et al. ; Saam
et al. ; Send and Sundholm ; Szymczak et al. , ; Wanko et al. ; Warshel
; Warshel and Barboy ; Warshel and Chu ; Weingart et al. ). The photoiso-
merization of the retinal protonated Schiff base (RPSB), the chromophore of the visual pigment
rhodopsin (Rh) (Birge , ; Palings et al. ; Schoenlein et al. ; Wang et al. ),
followed by conformational changes in the protein is the primary event that initiates vision.
This reaction, involving cis-trans isomerization of -cis RPSB (> Fig. -) to its all-trans form
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belongs to the fastest photochemical reaction in nature (Birge ). Many theoretical studies
have been dedicated to the exploration of the nature of this process, however, the question of
the detailed mechanism and assignment of experimentally obtained lifetimes remains open,
mostly due to the fact that the structures of intermediates are unknown to a large extent. The
proper description of themechanism requires involvement of a high-level theoretical treatment,
which is especially challenging due to the large size of RPSB, the multireference character of the
electronic wavefunction in regions of interest, and the need of dynamics simulations. Besides
vision, photoisomerization in rhodopsin proteins is also important for proton pump processes
in archae microorganisms (Birge ).

The photochemical properties of RPSB have been studied theoretically, mostly by simu-
lation of model systems. Various mechanisms of the process were proposed in the literature,
related strongly to themodel used in investigations. In the last two decades, large effort has been
dedicated to the theoretical modeling of the Rh photo-behavior in the single-torsion motion
called one-bond flip (OBF) as the main isomerization mechanism.These predictions, however,
were based mostly on calculations of the minimum energy path or dynamics of the short PSB
model (Garavelli et al. ;Migani et al. ; Szymczak et al. ; Vreven et al. ;Weingart
et al. , ). On the other hand, investigations on longer PSB chains in earlier works by
Warshel (Warshel ;Warshel and Barboy ) or inmore recent investigations (Andruniow
et al. ; Frutos et al. ; Hayashi et al. ; Ishida et al. ; Polli et al. ; Saam et al.
; Szymczak et al. ) indicate that double-torsion mechanisms like bicycle pedal and
nonrigid or asynchronous bicycle pedal should be the main isomerization mechanisms. Also
our recent results (Szymczak et al. ), based on ab initio dynamics simulations of PSB
model (discussed below) strongly indicate that RPSB isomerizes in the excited state by per-
forming two concerted twist motions, from which only one tends to be continued during the
relaxation into the ground state. Torsional motions of similar character were observed in the
recent works by Buss and co-workers (Schapiro et al. ;Weingart et al. ), whose studies
were based on similar four double-bond models augmented by two additional methyl groups
in the C and C positions. It is also worth mentioning that QM/MM simulations of full RPSB
employing the restricted open-shell Kohn-Sham (ROKS) method (Rohrig et al. ) do not
support double-torsionsmechanism, pointing entirely toOBF as a way of performing photoiso-
merization in the Rh pocket. At the same time, QM/MMminimum energy path investigations
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of the same system (Gascon and Batista ) report non negligible involvement of four addi-
tional torsions to the main torsion in the isomerization process. The uncertainty among the
scientific community about the nature ofmechanism of RPSBphotoisomerization clearly shows
the need for further investigations in this field.

Model : PSB

The penta-,-dieneiminium cation (PSB) is the shortest of homologues that are investigated
to understand the basic principles of the excited state behavior of retinal. It is the first molecule
in the group reaching from methaniminium to retinal that features a double bond with further
conjugated double bonds on both sides. At the same time the molecule is small enough to still
be treated with high computational methods and medium-sized basis sets, even in dynamics.
Therefore it has been subject of extensive theoretical investigations, especially by the groups
of Robb, Buss, and Olivucci, which have contributed to the understanding of the excited state
behavior and deactivation pathways of PSB in gas and solvated phases (Barbatti et al. a,
; Garavelli et al. a; Keal et al. ; Migani et al. ; Szymczak et al. ; Weingart
et al. , ).

Most dynamics investigations of PSB have been performed on aCASSCF level including all
π orbitals in the active space with -G/-G∗ or similar basis sets.The gas phase dynamics of
PSB can be explained in a two-state, two-mode model (Garavelli et al. ; González-Luque
et al. ; Migani et al. ) involving the ground and the first excited (ππ∗) states and two
dominatingmotions, a torsion around the central double bond, and the adjustment of the bond
length alternation (BLA).

After vertical excitation into the first excited state the bond pattern adjusts to the changed
electronic structure. The double/single bond distinction of the ground state is lifted and the
BLA, being expressed as the difference between average single bond length and average double
bond length, which is somewhat positive at the beginning, drops quickly to a larger nega-
tive value. This is accompanied by a shift of the highest occupied orbitals, π and π∗. They are
separated from each other at the respective ends of the PSB molecule and, each occupied with
one electron, induce a torsional motion around the central double bond of the molecule, in
a mechanism known as one-bond-flip (Szymczak et al. ). This motion leads exactly to a
conical intersection that is reached at a perpendicular orientation of the two halves of the
molecule and small BLA. The excited state lifetime is about  fs. The high torsional momen-
tum leads to a quantum yield of isomerization of PSB after photoexcitation of about %,
regardless of the conformation the process started in, cis or trans. When restrictions are applied
to the extremes of PSB, another relaxation mechanism starts to compete with the one-bond-
flip (Szymczak et al. ). This mechanism, named folding table, involves the torsion around
the central bond occurring simultaneously to the semi-torsions around the other two formal
double bonds.

Surface hopping dynamics simulations of PSB with the semiempirical OMmethod (Keal
et al. ) show a picture very distinct from the CASSCF simulations. Depending on the choice
of active space, the excited state relaxation shows a bi-exponential decay profile of the S pop-
ulation, with a fast sub-picosecond time constant and a picosecond time constant. Overall, the
relaxation process is predicted to be larger than  fs, much slower than the  fs predicted by
CASSCF. Similar multi-exponential decay has also been described in wave packet propagation
on a two-dimensional surface model for RPSB (Santoro et al. b).
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Inclusion of a solvent has the potential to change the dynamics drastically. A wide, space-
requiring motion of a molecule would be hindered by collisions with the solvent molecules and
different deactivation channels, which are normally not accessed, can become the primary path.

To assess the steric environmental effects on the photochemical deactivation of PSB it was
embedded in a small sphere of n-hexane molecules at room temperature using a QM/MM
scheme (Ruckenbauer et al. ). The surface hopping dynamics simulations discussed here
were computed at theMRCIS(,)/SACASSCF(,)/G level, where  orbitals where frozen
during theMR-CIS procedure. For solvation, the same quantummechanical level was employed
and  n-hexanemolecules were introduced into the calculation using electrostatic embedding
with the OPLSAA/TIPP force field (Jorgensen and McDonald ).

The comparison of dynamics simulations in gas phase to simulations in n-hexane shows that
the relaxation process is not too much affected by solvation. PSB is still too small a molecule
to show steric hindering of the isomerization. > Figure -, right, shows a snapshot of one
trajectory for the twisted PSB in n-hexane. It clearly demonstrates that PSB rotates in a quite
volume conserving way, which minimizes the interactions with the solvent. As a consequence,
the lifetime is roughly the same in gas phase andn-hexane (> Fig. -, left), in n-hexane slightly
longer than in gas phase simulations, but the effect is limited to a difference of about  fs, which
is statistically not significant.

Model : PSB

The recent progress in computer capacity and in computational methods made it possible to
address by high-level ab initio dynamics more realistic models than the just-described PSB.
In one of our latest investigations (Szymczak et al. ), the photodynamics of the hepta-
,,-trieniminium cation (PSB) is investigated by performing extended on-the-fly surface
hopping dynamics calculations in vacuo. This compound exhibits a significantly enhanced
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torsional variability while keeping the computational effort for the on-the-fly surface hopping
calculations manageable so that good statistics within the framework of ab initio approaches
can be achieved. Similar to our previous work on PSB (Szymczak et al. ), mechanical
restrictions corresponding to the protein link on one PSB end and representing the remaining
RPSB molecule on the other were applied by increasing masses of corresponding hydrogens
to , amu. The constrained -cis isomer of PSB was investigated in order to model RPSB
in the rhodopsin; dynamics results for doubly restricted PSB were then compared to time-
dependent femtosecond-resolved experiments (Kochendoerfer andMathies ; Kukura et al.
; Peteanu et al. ; Schoenlein et al. ).

Dynamic simulationswere performed at CASSCF level. Eight electronswere included in the
calculations within an active space consisting of eight orbitals (four π and the corresponding
four π∗ orbitals) and averaged over two states [SA--CASSCF(,)]. To validate the correctness
of the method employed, calculations of the vertical excitation energies and conical intersec-
tions (MXS) were performed also at MRCI level. Additionally, calculations of LIIC paths from
the S minimum to the MXSs give similar, very satisfactory accord between different meth-
ods.Thus, the applied theoretical level has been carefully chosen and verified to balance quality
of the approach and the computational cost of few hundred thousands of quantum chemical
calculations (energies, gradients, and non-adiabatic coupling vectors).

The photorelaxation of PSBn chains is well described by the two-state, two-mode
model discussed in the previous section (Garavelli et al. ; González-Luque et al. ;
Migani et al. ). After photoexcitation, in the initial stage of the dynamics the PSBn sys-
tem relaxes by adjusting the bonds lengths, elongating the double bonds and shortening the
single bonds.This phase, common to all currently studied PSBn systems, has been described in
the previous section. After adjusting all bonds, PSBn proceeds to the second step of the dynam-
ics. The crossing seam is reached by skeletal torsions around one or more bonds. When the
molecular system switches from the excited state to the ground state it can either continue or
reverse its motion that led to the crossing seam and further relax to the final product geometry.

The kind of torsional motion taking place in PSB was assigned to one of five main groups
(see > Fig. -): one-bond flip (OBF), bicycle pedal (BP) (Warshel ), non-rigid bicy-
cle pedal (NRBP) (Warshel and Barboy ), hula-twist (HT) (Liu and Asato ), and
the recently proposed folding table (FT) (Szymczak et al. ) mechanisms. A classification
scheme was developed (Szymczak et al. , ) facilitating the automatic assignment of
these structures. It divides the analysis of the torsional dynamics into two stages: motions
driving the system to the conical intersection and motions after decaying to the ground state,
with independent possibility of investigation of the product formation. The advantage of the
proposed scheme is that this classification algorithm is general enough to be applied for the
massive amount of information coming from dynamics simulations. It can also be applied for
investigations of longer PSBs and can even be further used to study behavior of complete RPSB.

The analysis of the first stage of the process, the mechanisms leading -cis-PSB to the
seam of conical intersections, shows the coexistence of two groups of mechanisms.The first one
includes OBF and FT mechanisms and proceeds as such to produce a complete torsion around
only one bond, mostly around the one equivalent to the CC bond in RPSB. The other rota-
tion proceeds around theCC bond, however, its importance is significantly smaller (less than
% of cases featuring single torsion mechanism). All together, OBF and FT constitute around
one third of motions driving -cis-PSB to the conical intersection.The second group, double-
torsion mechanisms, is dominating and appears about twice as frequent as the single-torsion
group. It includes BP andNRBP,which are characterized by performing concerted twists around
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two bonds. Within this group twice as many trajectories feature the NRBP than the BP mecha-
nism. Not a single case of hula-twist motion was observed during the dynamics simulations of
-cis-PSB, no matter what was the degree of restrictions (Szymczak et al. ).

When returning to the ground state, the excess electronic energy is converted intomechan-
ical energy. In this vibrationally hot ground state there will be freedom to move into different
conformations, which in normal thermal situations are usually confined by high potential
energy barriers. Since the transfer of the mechanical energy to the protein will take at least
several picoseconds (Birge ), the motion in the hot ground state may be decisive for the
actual quantum yields. The behavior of PSB after decaying to the ground state was analyzed
from two points of view: firstly, whether themechanism bringing PSB to the intersection seam
is reversed or not after hopping; secondly, whether the initial motion results in the associated
products or not. Here we concentrate only on the double-torsion mechanisms.The most abun-
dant way of continuation of concerted double-torsion motions is not a complete continuation
or reversion, but partial continuation. Interestingly, the second torsion involved in concerted
motion is the one equivalent to the CC bond in RPSB. The same pattern was observed by
Buss and co-workers (Schapiro et al. ; Weingart et al. ), whose studies were based on
a similar four double-bond model PSB augmented by two additional methyl groups in the
C and C positions. On the hand, available studies on complete RPSB (Hayashi et al. ;
Ishida et al. ; Warshel ; Warshel and Barboy ) point to CC as the other tor-
sion involved in the concerted twist mechanism. This difference may suggest that either the
chain lengths of the systems studied is still too short for representing complete RPSB or that
the methyl group at the C plays important role in blocking the given torsion in the protein
pocket. The full continuation (rotation around both involved double-bonds) of double-torsion
group of mechanisms appears only in % of NRBP cases and % of the BP cases. But even
when full continuation is observed, the associated photoproduct is formed in half or less of the
cases because of the hot ground state isomerization processes. The overall picture that can be
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drawn from our simulations is the one in which -cis-PSB performs concerned twists around
two double bonds to reach the region of conical intersection of which only one is continued
after decaying to the ground state.

Although we expect that inclusion of at least one more double bond to PSB model may
affect the relative importance of mechanisms or may even reveal new mechanisms, one can
clearly see qualitative advance in comparison to the PSB case for revealing the role of multiple-
bond torsional mechanisms. The next natural step in this sequence of models of Rh and bR
chromophores investigations is to perform a full nonadiabatic dynamics for RPSB.

Current Status of the Field

The large improvement of computational capabilities opened new possibilities in the field of
studies of the excited state behavior of retinal and retinal model systems. Recent studies on the
subject of dynamics are basically going in two directions. First, they combine more extended
and completemodels of retinal with use of higher theoretical levels. Second, they focus on stud-
ies of environmental influence on the electronic structure and excited state behavior. For the
latter, two main features are of highest interest: the influence of charged groups on the spec-
tral sensitivity of retinal and the change in the mechanism leading to the conical intersection
when the molecule is restricted in a confined and restricted space. The problem of including
environmental effects on the static and dynamic properties of retinal and its models is mostly
addressed by using hybrid QM/MM methods. Other studies, as discussed in the previous sec-
tion, simulated themechanical constraints for themolecules bymeans of explicitly constraining
the movement of single atoms or groups.

As was previously mentioned, recent work by Schapiro et al. (), who employed the
PSB model augmented by two methyl groups, reports bicycle pedal mechanism involving the
equivalent of CC bond as a second torsion. Although, these findings are in line with others
based on PSB (Szymczak et al. ) and modified RPSB models (Ishida et al. ), simula-
tions involving complete RPSB suggest that theCC should be the secondary bondperforming
concerted torsion with CC. Hayashi et al. (), have performed CASSCFQM/MM surface
hopping dynamics for the complete retinal mechanically embedded in rhodopsin. Their anal-
ysis gave a picture in which isomerization around the CC double bond is accompanied by
coupled torsions around CC and CC. It is concluded (Hayashi et al. ) that the excited
state dynamics proceeds in such a way as to minimize interaction with the protein. On the
other hand, scaled CASSCF QM/MM dynamics simulations of a single trajectory of retinal in
bovine rhodopsin by Frutos et al. () suggested the action of steric constraints for the torsion
around CC. A quenching influence of protein was also proposed in the recent semiempirical
QM/MMmultiple spawning dynamics byMartinez and coworkers (Virshup et al. ).There,
in contrast to RPSB simulations in vacuo, environmental effect was predicted to create highly
directed dynamics leading to high yields of specific photoproducts. The same was concluded in
simulations employing the ROKS method (Rohrig et al. ), which predict OBF as the only
mechanism responsible for formation of all-trans RPSB.

As one can see in this brief review, despite important advances in the studies of retinal and
its models based on dynamics simulation methods achieved in the last years, there is still an
ongoing discussion about the mechanism of retinal isomerization in rhodopsin proteins, which
calls for further investigations.
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Heteroaromatic Rings and Nucleic Acid Bases

Photostability of DNA and RNA

The five natural nucleobases, adenine, guanine, cytosine, thymine, and uracil, absorb UV
radiation in the range of – nm (UVC band) and at higher energies of about  nm
(Abouaf et al. ; Clark and Tinoco ; Clark et al. ; Duggan et al. ; Middleton
et al. ).This radiation, mainly the UVC, which is not blocked by the ozone in the air, causes
DNA damage that, when not repaired by enzymatic mechanisms, may lead to mutagenesis and
carcinogenesis (Cadet and Berger ).

The five nucleobases are non-fluorescent species (Longworth et al. ), which implies
that the photo-energy is dissipated by means of ultrafast internal conversion. Time-resolved
spectroscopy experiments have shown that either in gas phase or in solution the time constant
for deactivation of the nucleobases excited at the  nm ππ∗

←S band is in the range of .–
 ps (Canuel et al. ; Crespo-Hernandez et al. ; Kang et al. ; Ullrich et al. ).
This means that pathways to conical intersections where radiationless decay occurs are easily
available from the Franck-Condon region.

The fact that nucleobases remain in reactive excited states only for a short time has been
taken as an indication of enhanced photostability against UV irradiation (Middleton et al. ;
Serrano-Andres and Merchan ). It may have happened that in the prebiotic era or in the
early stages of evolution of the genetic code, nucleobases showing ultrafast decay had a compet-
itive advantage against other chemical speciesmore prone to undergo photochemical reactions.
Indeed, one of the problems in understanding how life originated is to understand howchemical
reactions not controlled by biogenetic mechanisms could lead to a few key substances instead
of a multitude of chemicals, all of them with minor concentrations. It has been recently shown
(Powner et al. ) that one possible route for prebiotic formation of nucleotides possesses
as one of the steps an UV bath that could eliminate all but the nucleotides themselves, which
reinforce the hypothesis that the intrinsic photostability of the nucleobases played an important
role in the origin of life on Earth.

The mechanisms by which the nucleobases return to the ground state are subtly connected
to the molecular structure of these bases. For instance, simple tautomerization of adenine into
-aminopurine results in an increase of excited-state lifetime from . to  ps (Canuel et al.
). Methyl-substitution of cytosine or cytidine at C position increases the lifetime in water
solution by a factor of seven (Malone et al. ). Fluoro-substitution at the same site or acetyl-
substitution at N have even larger effects, increasing the lifetime from  ps to, respectively, 
and  ps (Malone et al. ). Double methyl substitution in positions N and N of thymine
increases its lifetime in gas phase from  ps (Canuel et al. ) to about  ps (He et al. ).
Similar effects were also reported for single and double methyl substitutions in uracil (He et al.
).

Protonation and deprotonation of the bases depending on the environmental conditions has
also influence on the excited-state lifetimes, although not so strong to make them fluorescent
(Longworth et al. ). For cytosine, for example, the lifetime in water solution is raised from 
to  ps when the pH is changed from . to  (Malone et al. ). For cytidine, the lifetime in
water solution is reduced from  to . pswhen the pH is changed from . to . (Malone et al.
). The excited-state lifetimes of nucleobases are dependent on the excitation wavenumber
aswell. For adenine, it increases from .ps to about . pswhen the pumpwavelength is changed
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from  to  nm (Chin et al. ). For --dimethyl thymine, it increases from about  to
 ps when the pump wavelength is changed from  to  nm (He et al. ).

A great deal of theoretical work has been dedicated to nucleobases and their derivatives to
identify conical intersections and reaction paths leading to them. In summary it has been found
that these conical intersections can be formed by four different mechanisms:

. Ring-puckering (Marian ; Perun et al. a). In these conical intersections, the pyrim-
idine ring is deformed into conformations that produce twisted bonds (Barbatti et al. ).
These conical intersections, which normally connect the ππ∗ to the ground state, have
the same origin as the twisted conical intersection in the methaniminium cation or the
twisted pyramidalized conical intersection in ethylene (Barbatti et al. ).They are usually
connected to the ππ∗ state at the Franck-Condon region by barrierless pathways (Merchan
et al. ). Out-of-plane amino andmethyl deformations observed in conical intersections
of adenine, cytosine, and thymine are caused by ring puckering as well.

. Carbonyl out-of-plane deformation (Matsika ). In these conical intersections the ring
remains planar, while the CO bond becomes almost perpendicular to the ring plane. The
paths connecting the Franck-Condon region to them show an up-hill profile, which should
decrease their efficiency for internal conversion (Zechmann and Barbatti ). This kind
of conical intersection is analogous to formamide (Antol et al. ) and formaldehyde
(Araujo et al. ) and connects the nOπ∗ state to the ground state.

. Ring-opening (Perun et al. b). These conical intersections are caused by stretching
of CN ring bonds and connect πσCN

∗ states to the ground state. Usually they appear in
low-energy regions but are separated from the Franck Condon by high barriers. They are
analogous to the stretched-pyramidalized conical intersection in themethaniminium cation
(Barbatti et al. ).

. NH stretching (Perun et al. b). These conical intersections connect the πσCH∗ and
the ground states. They are accompanied by small barriers to the ππ∗ state in the Franck-
Condon region. Several of such conical intersections are not available in the nucleotides
because of the hydrogen substitution by the sugar linkage.

Internal conversion may take place not only at the conical intersections of isolated nucle-
obases but also at intersections formed along the hydrogen bonds connecting base pairs. It has
been shown that a charge-transfer state crosses the ground state along the inter-pair hydrogen
transfer (Schultz et al. ). When this mechanism is compared between guanine-cytosine
Watson-Crick (WC) pair and other non-WC pairs formed by the same bases, it turns out that
the WC pair possesses the lowest energy crossings (Sobolewski et al. ). This has been
taken as an indication that inter-pairs internal-conversion may have constituted an evolution-
ary advantage for WC conformations. This hypothesis, however, has been disputed based on
experiments showing that single and double stranded DNA decay follow a similar kinetics
(Crespo-Hernandez et al. ). According to these experiments, initially excited state decays
to an exciplex state in less than  ps. The exciplex state involves stacked nucleobases and lives
for –ps before returning to the ground state via charge recombination.The stacking char-
acter of the exciplex state limits the damage to one single strand. The undamaged strand may
then be used as a template for the repairmechanisms (Crespo-Hernandez et al. ;Middleton
et al. ).

In the next sections we will focus on recent investigations of internal conversion in nucle-
obases and nucleobasemodels using dynamics simulations. First, we will explore aminopyrimi-
dine (> Fig. -), a model system that can help to understand how pyrimidine rings deactivate
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⊡ Fig. -
The five nucleobases and the heterocycle models aminopyrimidine and pyrrole. The connections
to the sugar in the nucleotides are indicated by the detached hydrogen atom

after UV excitation. Then, we will focus on pyrrole, to see how five-membered rings deactivate.
Finally, in > section “Current Status of the Field,” we will discuss dynamics simulations of the
nucelobases themselves.

Model : Aminopyrimidine

Pyrimidine rings are structural subunits of all five nucleobases. In fact, the strong UV absorp-
tion in the nm band is due to the ππ∗ transition in the pyrimidine ring of both pyrimidine
and purine nucleobases. For this reason, it is especially relevant to understand how internal
conversion takes place in these systems.

Conical intersections in aminopyrimidine are very similar to those in the pyrimidine ring
of adenine.The same is true for reaction paths connecting the Franck-Condon region to these
conical intersections (Barbatti and Lischka ; Barbatti et al. ). As can be expected from
simple inspection,main differences arise in the two carbon sites where the imidazole group con-
nects with pyrimidine to form the purine structure (> Fig. -). While in aminopyrimidine a
low energy conical intersection is formed by puckering of the C atom, this kind of deformation
is hindered in the C site of adenine. (Note that the numbering for aminopyrimidine indicated
in > Fig. - is not the conventional one, but that it is chosen to make the comparison to
adenine straightforward.)

A series of investigations have focused on dynamics simulations for aminopyrimidine
(Barbatti and Lischka ; Barbatti et al. ). As we discuss in this section, these results
show that in spite of the strong similarities between the electronic excited states of adenine and
aminopyrimidine, the restrictions imposed by the imidazole group make the dynamics of the
two species essentially distinct.
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Surface-hopping dynamics simulations was performed at SA--CASSCF(,)/-G∗ level
(Barbatti and Lischka ; Barbatti et al. ). First,  trajectories were started in the S
state.The molecule returned to the ground state in . ps. A second batch of  trajectories was
started in the S state. In this case, the S →S deactivation occurred in only  fs. The return to
the ground state took place again in about . ps.These time constants are too fast compared to
adenine, which has an excited-state lifetime of  ps (Canuel et al. ). In order to understand
the reason for the difference, we can look at the nuclear conformation at the S →S hopping
time. These conformations are show for all trajectories in > Fig. - projected on the θ − ϕ
Cremer–Pople space (Boeyens ; Cremer and Pople ). Each point in this space repre-
sents a different kind of puckering of a six-membered ring, constituting a very convenient way
to describe puckered conformations in heterocycles. As we can see in the figure, both sets of
trajectories (starting in S and starting in S states) return to the ground state preferentially at
conical intersections showing ring deformation at N and C sites, mainly at the screw-boat
conformation S. The hopping distribution is more broadly spread when the dynamics starts
in S, which can be explained by the energy excess. In this case, we can observe trajectories
returning to ground state at the boat conformation B, and even a few of them at the envelope
E conformation.

Since puckering at the C site is hindered in adenine by the imidazole group, the concen-
tration of hopping events involving deformation of this site in aminopyrimidine explains the
difference between the lifetimes of both species. Apparently, aminopyrimidine is decaying at
conical intersections not available in adenine.This hypothesis can be tested by restricting puck-
ering deformation at sites C and C of aminopyrimidine in a similar way as they are restricted
in adenine (Barbatti and Lischka ). To do so, the mass of the hydrogen atoms at these sites
is increased to  amu. as to emulate the moment of inertia imposed by an imidazole group.
Two new sets of  trajectories were run. One set starting in the S state and another set starting
in the S state. Results of this second set are shown for the first time in this work.

Mass-restricted trajectories starting in S returned to ground state in . ± . ps (Barbatti
et al. ). In spite of the good agreement with the  ps measured for adenine, the hopping
conformations are still concentrated in N and C deformations (> Fig. -). This occurs
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State occupation of mass-restricted aminopyrimidine starting in the S state

because the mass restrictions at C–H and C–H are decoupled. This is different in adenine,
where the ring imposes a strong correlation in the motion of these sites. The long lifetime of
mass-restricted aminopyrimidine in comparison to the non-restricted case is due to the longer
period that the molecule needs to tune the conical intersection coordinates. > Figure - also
shows that the hopping events of mass-restricted aminopyrimidine starting in the S state are
displaced in the direction of B, conformations.

Curiously, whenmass-restricted dynamics is started in the S state, the lifetime is increased
evenmore, to . ps (> Fig. -). Hopping events occur along the whole region connecting the
envelope E conformations to envelope E conformations indicating that a branch of crossing
seam exists in this region. Different from the other three sets of dynamics simulations, a sub-
stantial amount of hoping events occurs at the E conformation, which, as we shall review in
> section “Current Status of the Field,” is the main conformation accessed for adenine deacti-
vation (Barbatti and Lischka ). Note that two conditions were necessary to trigger internal
conversion in this region of the crossing seam, first the restriction of the C and C sites and
second the excess of energy of the S initial state.

Hopping events at S conical intersections, which are energetically accessible from
the Franck-Condon region, were not observed in any of the four sets of trajectories
(> Fig. -). Characteristically, S conformations imply a strong out-of-plane deformation
of the amino group. A plausible explanation for the lack of internal conversion in this region
of the crossing seem is that trajectories are trapped in other regions of the S surface before the
molecule has time to undergo this strong deformation. Results for aminopyrimidine starting in
S state without mass-restriction, but increasing the active space from (,) to (,) by addi-
tion of one more n orbital to the active space show that a fraction of trajectories (about %)
can access this conical intersection (Szymczak et al. ).

The effect of stacking interactions in DNA conformation has also been investigated in the
dynamics of aminopyrimidine interacting with guanine nucleobases (Nachtigallova et al. ).
The results show that the ring puckering process observed in gas phase is not restricted by the
neighbor molecules.
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Model : Pyrrole

Pyrrole cannot be directly regarded as a model for nucleobases. However, the understanding of
its UV-excited dynamics may bring insights of the role of the imidazole ring in the pyrimidine
bases adenine and guanine. Different from the pyrimidine subunit, which is responsible for
the UV absorption in the near UV region, both pyrrole and imidazole absorb at much shorter
wavelengths of about  nm (Daura et al. ; Devine et al. ). Because of this, it may be
expected that purine bases absorbing in the farUVregionmaypresent an excited state dynamics
similar to that of five-membered rings.

Pyrrole is a simple five-membered heterocyclic compound which undergoes a rapid non-
adiabatic deactivation (Lippert et al. ) with very low quantum yields (Shin ). It has
been proposed (Sobolewski and Domcke ) that deactivation occurs via a NH-stretching
mechanism along a πσ∗ excited state surface. Although it is certain that fast H fragments are
formed through this mechanism, it cannot explain experimental findings of slow H atoms and
other fragments such as HCN and CH (Blank et al. ; van den Brom et al. ; Wei et al.
). This means that another mechanism should occur in competition with the NH stretch-
ing, which was proposed to involve ring-puckering and ring-opening of the heterocyclic ring
(Barbatti et al. ; Poterya et al. ).

Non-adiabatic dynamics simulations for the pyrrole radical cation and other five-membered
rings were performed in reduced dimensionality by means of wave packet propagation using
the multiconfigurational time-dependent Hartree approach (MCTDH) together with the lin-
ear vibronic model, allowing a good reproduction of spectral features (Köppel et al. ;
Venkatesan et al. ). Wave packet dynamics simulations have also been performed focus-
ing on the NH-stretching reaction coordinate (Lan and Domcke ; Vallet et al. , )
revealing details of the reaction along this coordinate, especially of the dependence of the dis-
sociation branching ratios and time scales on the initially excited modes. These simulations in
reduced dimensionality predict a quantum yield for NH dissociation near to unity. Dynam-
ics simulations of pyrrole in its full dimensionality have been performed using surface hopping
approach (Vazdar et al. ). and, as we are going to discuss inmore detail next, it revealed that
other deactivation channels beyond the NH-stretching are activated. These channels involve
strong ring deformation. The adiabatic dynamics in the vibrationally excited ground state, also
discussed below (Sellner et al. ), showed that these ring deformation channels result in
photochemical products consistent with the heavy fragments experimentally observed.

Excited-state non-adiabatic dynamics simulations were performed for  trajectories in a
total simulation time of  fs with a time step of . fs (Vazdar et al. ). The dynamics
simulations have been calculated at theMR-CISD/SA--CASSCF(,) level of theory including
five electronic states (ground state, two ππ∗ states and two Rydberg π-s(σ∗) states).

After excitation to the S state, pyrrole depopulates via a series of conical intersections
between valence and Rydberg states in a very short time. The average adiabatic population of
ground and excited states as a function of time is presented in > Fig. -.

The analysis shows that the valence S state depopulates very quickly. After around  fs,
the average population of S and S states is identical. After  fs, the S state is completely
depopulated, while S and S state depopulate after ca  fs. The S state starts to depopulate
after ca  fs. After  fs, the dynamics is basically a two-state dynamics between ground and
first excited state.The complete population transfer to the ground state occurs within  fs.

The statistical analysis presented in >Fig. - reveals that %of trajectories follow theNH
stretching mechanism for deactivation into the ground state.The remaining % of trajectories
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Average adiabatic populations of trajectories for five states as a function of time after photoexci-
tation of pyrrole into the S state (Data from Vazdar et al. )
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Statistical analysis of different trajectory types in excited-state dynamics of pyrrole (Data from
Vazdar et al. )

undergo a ring deformationmechanism (% is ring puckering and % is ring opening). Finally,
% of trajectories do not deactivate during  fs of the dynamics simulation. Dynamics per-
formed with TDDFTmethod showed a very similar distribution of mechanisms (Barbatti et al.
b).

The observation of the ring deformation deactivation mechanism for a substantial number
of trajectories confirms that it can be the source of experimentally observed heavy fragments.
To verify this hypothesis, dynamics in the ground state should be performed. This is a spe-
cially challenging task because after deactivating, the photoenergy is converted into vibrational
energy. In this very hot vibrational ground state, pyrrole can reach strongly distorted geometries
and dissociate through several channels. Most of conventional quantum chemical methods are
not tailored to work under such extreme conditions.
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⊡ Fig. -
(a) Ring-puckered ring-opened S/S conical intersection (initial geometry of adiabatic ground
statedynamics for pyrrole); and (b) quantumyield within  ps of simulation (Data fromSellner et al.
)

This problem has been addressed by starting the hot ground state dynamics at a ring-
puckered ring-opened conical intersection (see > Fig. -a) using a wavefunction formed by
a combination of the generalized valence bond method in the perfect pairing approximation
(GVB-PP) and complete active space (CAS) (Sellner et al. ). The GVB-PP-CAS(,)/-
G∗ level applied to the gradient calculation for the dynamics has proven not only to be more
reliable concerning photoproducts but also much more stable during dynamics compared to
conventional SA--CAS(,) calculations. The results reported here have been calculated with
this GVB-PP-CAS(,) space. A hundred trajectories have been propagated for a maximal time
of  ps using a step size of . fs.

As the dynamics is started on a point in the crossing seam, special care has to be taken to
generate initial velocities. Two approaches have been employed, sampling initial velocities only
in the branching space and sampling random velocities in the complete space using weighted
Gaussian randomnumbers, both showing good correlation.The results discussed here are based
on the second approach. Translational and rotational contributions of these velocities were
removed, which have been rescaled to an energy of . eV. This energy is the sum of half of
the ZPE (. eV) and the energy difference between the Frank Condon point and the MXS
which is assumed to be converted from potential to kinetic energy.

The results show that besides pyrrole itself, two main photoproducts where obtained
within the simulation time (see > Fig. -b). These are NH=CH–CH and a biradical chain
(NH=CH–CH–CH=CH). A detailed analysis of the trajectories ending at these photoproducts
shows that the biradical chain is mainly a precursor to the substituted cyclopropene frag-
ment. The cyclization starts after  fs and the new ring formation occurs in an average time
of only  fs (see > Fig. -). Regarding the consequences on the experimentally observed
(cyclo)propene fragment, this shows that the ring formation can not only happen before the
dissociation into the HCN and CH fragments takes place, but seems to be the dominating
process.

Dissociation intoHxCN(x=,) and CH did not take place within the  ps simulation time
and it should occur on a longer timescale. The systematic investigation of the average bond
distances during the dynamics (Sellner et al. ), clearly reveals that cleavage of those bonds
yielding the experimentally observed fragments are more likely to occur than the cleavage of
bonds leading to non-observed fragments.
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Largest CCdistance inCH as a functionof time showing thedynamicsof the formationofNH=CH-
cyclopropene out of the biradical chain (Data from Sellner et al. )

Summarizing, non-adiabatic excited state dynamics of pyrrole showed two main deactiva-
tion mechanisms, the first one being the NH stretching explaining the (fast) hydrogen atoms
and the second one the ring deformation (including opening and puckering). Dynamics from
the puckered conical intersection showed that the second pathway is responsible for NH=CH–
CH and the biradical chain which can be seen as precursors to the experimentally observed
heavier fragments regarding their electronic structure and bonding situation.

Current Status of the Field

A relatively large number of investigations reporting dynamics simulations for nucleobases,
nucleobase tautomers, nucleotides, derivatives, WC pairs and quartets in different solvation
conditions has been published in the last years. Recent overviews of the field can be found
in Refs. (Alexandrova et al. ; Barbatti et al. a). In this section, we shortly review the
dynamics of isolated bases focusing onwhich relaxationmechanism these works have proposed
for each molecular system.

Adenine: In spite of a large number of different conical intersections that has been described
for this nucleobase (see Barbatti and Lischka  and references therein), theoretical analyses
have converged to two main pathways, one involving puckering of the C atom (envelope E)

and another one involving puckering of the C and C atoms along with out-of-plane displace-
ment of the amino group (screw-boat S). Surface hopping dynamics simulations based on
MR-CIS potential energy surfaces showed that adenine is trapped in envelope E geometries
much before it can reach other reaction pathways (Barbatti and Lischka ). Nevertheless,
a different result has been achieved by surface hopping simulations based on semiempirical
methods, with most of trajectories following the S pathway (Alexandrova et al. ; Fabiano
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and Thiel ). Dynamics simulations based on TD-DFTB surfaces indicated a intermedi-
ary situation with selective activation of the S and E pathways depending on the excitation
energy (Lei et al. ) and very long lifetime (Mitric et al. b).

Guanine: A series of investigations on guanine tautomers and derivatives in gas phase and
water employing surface hopping based on ROKS potential energy surfaces have shown that
out-of-plane distortions increase the non-adiabatic transition probability and induce the tran-
sition to the ground state in about  ps (see Santoro et al. a and references therein). Surface
hopping dynamics based on OM surfaces predicted a major role for processes involving C

puckering, with a lifetime of about . fs. Similar process has been observed at the ab initio level
(Barbatti et al. b). In the particular case of the enol form of guanine, simulations predicted
that OH dissociation channel is a major deactivation pathway (Langer et al. ).

Cytosine: Multiple spawning dynamics simulations based on CASSCF(,) surfaces pre-
dicted that deactivation of this nucleobase should occur in approximately . psmainly through
conical intersections involving out-of-plane distortions of the amino group (%) and with
minor contribution of the nOπ∗ (%) and of the ethylene (%) pathways (Hudock and
Martinez ). OM-based surface hopping dynamics, on the other hand, predicts that the
ethylene pathway should dominate the deactivation, which occurs in about . ps (Lan et al.
). Dynamics for this molecule computed with surface hopping at CASSCF surfaces predict
dominance of the nOπ∗ pathway (Barbatti et al. a; González-Vázquez and González ).

Thymine: This nucleobase has the longest lifetime among the five naturally occurring bases
(Canuel et al. ; Kang et al. ). Multiple spawning dynamics simulations based on
CASSCF surfaces have revealed that the source of this feature may be a trapping of thymine
in a minimum of the S state for a few picoseconds (Hudock et al. ). Surface hopping
dynamics based on the OMmethod, however, predict a very short stay in the S state (. ps)
and an overall excited-state lifetime of . ps (Lan et al. ). In this latter case, the decay
to S occurred mainly through the out-of-plane O conical intersection (%) and pathways
involving puckering at the C atom were observed in the other % of trajectories. Surface
hopping dynamics based on CASSCF surfaces agree with the multiple spawning results and
predicts that the nπ∗ S state will be populated after . ps (Gustavsson et al. ). Surface
hopping simulations also based onCASSCF surfaces, but starting at the transition state in the S
state, predict that both the ππ∗ S state (%) and the nπ ∗ S state should be populated (Astu-
riol et al. ). While according to (Gustavsson et al. ) trajectories should remain in the
nπ∗ S state for additional few picoseconds, results of (Asturiol et al. ) indicated that, inde-
pendently of the diabatic character, the S state should be depopulated in about . ps through
conical intersections involving puckering at the C atom.

Uracil: Similarly to thymine, multiple spawning CASSCF dynamics predict a long stay of
uracil in the S state (Hudock et al. ). Surface hopping OM dynamics, in contrast, predict
a very fast decay to S and an overall lifetime of about . ps with trajectories following out-of-
plane O pathways in % of the cases and puckering at C atom in the remaining % of the
cases (Lan et al. ). Wave packet propagation in a -D model surface also predicts a very
fast ππ∗

→ nπ∗ transition taking place in less than . ps (Improta et al. ). Surface hopping
dynamics simulations on ROKS surfaces in gas phase and in water favor deactivation through
the C puckering pathway (Nieber and Doltsinis ).

As we have seen, dynamics simulations carried out with different methods have often
presented conflicting results. This may be mainly attributed to differences between quantum-
chemical electronic structure methods used to compute the potential energy surface, rather
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than to the different non-adiabatic dynamics methods. More about the limitation of the meth-
odswill be discussed in the conclusions for this chapter. For now, wemay note that even though
dynamics simulations have not achieved a degree of agreement that would allow assigning spe-
cific relaxation mechanisms for each nucleobase, they have been able to reduce the possibilities
to a few mechanisms in each case.

Formamide and Peptide Bonds

Probing Photoexcitation of Proteins

The peptide linkage plays an important role in many biological processes and the knowl-
edge of how it interacts with ultraviolet light is of fundamental importance for understanding
biological activities in living organism. This holds in particular for interaction of peptides
with  nm excimer ArF laser due to its proximity to the absorption maximum of peptide
bonds (Gingell et al. ). This is an effect of considerable importance because ArF lasers are
widely used clinically for laser surgery (Mulcahy et al. ). It is shown, for instance, that
the peptide bond is the main target of irradiation in collagen and its scission is claimed to be
the most important photochemical reaction taking place during photorefractive keratectomy
(Torikai and Shibata ). Furthermore, the peptide group appears as the repeat unit in some
industrially important polymeric materials (Greenberg et al. ) and knowledge about the
mechanism of its interaction with ultraviolet light has implications for understanding crucial
factors influencing their photostability. The smallest molecule of the peptide prototype is for-
mamide (> Fig. -) and as such it has been frequently used as the simplestmodel for studying
fundamental aspects of photochemical and photophysical processes taking place in peptides
and proteins (Antol et al. , a, b; Back and Boden ; Kang and Kim ; Liu et al.
; Lundell et al. ). An overview of the recent studies related to the second topic will be
presented in > section “Model : Formamide” of this chapter.

Photoinduced fragmentation of charged small polypeptides has also been studied exten-
sively in recent years due to their importance in “soft” ionization methods such as MALDI and
ESI (Cui et al. ; Grégoire et al. ; Jeong et al. , ; Kang et al. ; Nolting
et al. ; Thompson et al. , ). Photo-dissociation dynamics of small protonated
peptides containing aromatic amino acids excited by  nm laser beams have been also
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⊡ Fig. -
Schematic presentation of a polypeptide chain with the peptide bond showed in bold (left), of for-
mamide (center) and of oxygen-protonated formamide (right). R and R stand for the amino acid
chains
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explored by pump/probe femtosecondmeasurements (Grégoire et al. , ; Nolting et al.
). However, the deactivation mechanism of possible pathways could not be derived, nei-
ther experimentally nor theoretically due to the size and complexity of the explored systems.
Concomitantly, several experimental and computational photoexcitation studies have been
undertaken on gas-phase protonated amino acids (Cui et al. ; Thompson et al. ).
This led to the proposition of a deactivation mechanism (Kang et al. , ) compatible
with experimental results obtained for small polypeptides containing aromatic amino acids
(Grégoire et al. , ; Nolting et al. ). A recent review on this topic is given in
Grégoire et al. (). With the aim of exploring possible alternative pathways of photodisso-
ciation of polypeptides we recently examined impact of protonation on fragmentation of the
peptide bond using protonated formamide as themodelmolecule (Antol et al. b).Themost
salient results from this work will be described in > section “Model : Protonated Formamide.”

Model : Formamide

Photodissociation of formamide has been studied in in the gas phase (Back and Boden ),
solution (Petersen et al. ) and in noble-gas matrices of argon and xenon (Lundell et al.
). In gas phase photolysis, CO, H and NH fragments with quantum yields of ., ., and
., respectively, were detected (Boden and Back ). Their formation was rationalized by
threemajor primary processes forming the productsNH+CO+H,HNCHO+H, andNH+CO.
Subsequently, Lundell et al. () reported that photolysis of formamide in the argon matrix by
 nm laser leads to formation of a weakly bound complex betweenNH andCO. Its formation
was ascribed to the breaking of theC–Nbond in formamide followed by hydrogen atom transfer
from the formyl radical HCO to the NH radical. On the other hand, when the formamide
was trapped into solid Xe matrix major photoproducts were H and HNCO. The change in
composition of the products was explained by intersystem crossing to the triplet state induced
by a strong external heavy-atom effect in the Xe matrix.

Themechanism of photodissociation in the gas phase has been also studied computationally
at various levels of theory (Back andBoden ; Liu et al. ; Lundell et al. ). For instance,
Liu and co-workers () considered themechanism of formamide photodissociation in the S
and the T excited states using the CASPT/CASSCFmethod.They located transition structures
for each of the paths presented by > Eqs. .–. and found that the transition structure for
C–N dissociation (> Eq. .) has the lowest energy on the S as well on the T potential energy
surfaces, indicating that this reaction path is the most probable one.

NHCHO + hν → NH + CO +H (.)
→ NHCO +H (.)
→ NHCHO +H (.)
→ NH + CO (.)
→ H +HNCO (.)

However, the full understanding of the photodeactivation process in addition to character-
ization of the energy minima of the reactants and products and the transition state structures,
requires also knowledge about minima on the crossing seams between involved excited states
and the ground state, as well as information about nuclear motion of atomic nuclei during the
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⊡ Fig. -
Fraction of trajectories for each state as a function of time after photoexcitation into (a) S initial
state; and (b) S initial state (Data from Antol et al. )

process.Therefore, we recently reexamined the reaction paths considered by Liu and coworkers
() for the S state taking into account both of these requirements and at higher level of
theory. In addition, photodissociation of formamide in the second excited singlet state was
considered also. The details of computational methods are given in Antol et al. (). Follow-
ing location of all critical points on the S and S surfaces, we turned to dynamic simulations,
which were carried by the direct trajectory surface hopping method based on the state average
SA--CASSCF(,)/-G(d) calculations. For each of the initial states, one hundred trajec-
tories were propagated for  ps. The average occupations of the S and S states are shown in
> Fig. -. It appears that the average occupation of the S state remains practically unchanged
for about  fs. After this initial stage, its occupation starts to decay exponentially. The lifetime
of the state was calculated to be  ±  fs. On the other hand depopulation of the S state
starts after only  fs and the overall estimated lifetime is  ±  fs. After passing through the
S/S conical intersection, formamide resides on the S surface only shortly and decays to the
ground state.

Analysis of the trajectories (> Fig. -) revealed that after excitation into the S state about
% of the examined trajectories followed the C–N dissociation channel. After reaching the
ground state, the energy of the system is transferred to translational motion of the HCO and
the NH radicals and to C–H dissociation from vibrationally hot CHO fragment, which finally
results in formation of NH and CO.

In addition to this channel, three additional types of trajectories were observed, but their
fractionwas found to bemuch lower. In trajectories of type II, themolecules decay to the ground
state either via the same C–N conical intersection as in the previous case, followed by back
formation of formamide on the S PES or return to the ground state via a nondissociative MXS
(Antol et al. ). In either case, no dissociation is observed within the simulation time. In
trajectories of type III, hoppings to the ground state cause activation of the C–H vibrations and
the molecule undergoes C–H bond streching. Full C–H dissociation, however, was observed in
only one trajectory. Finally, in % trajectories, formamide did not decay to the ground state
and did not dissociate within the simulation time.
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⊡ Fig. -
Photodeactivation paths observed during dynamics simulations of formamide starting at the (a)
S (nOπ∗) and at the; (b) S (ππ∗) states (Data from Antol et al. )

Following excitation to the second excited state, three types of trajectories were observed.
The dominant type, corresponding to % of the trajectories, is characterized by a very fast
C–N bond cleavage starting immediately after photoexcitation and still taking place on the S
surface. The deactivation to the S occurs in an average time of  fs. The system remains on
the S surface only for a short time and then switches to the S state in an average time of  fs.
Such fast S →S decay is opposite to the slow S →S decay observed when the initial state
was S. This is ascribed to the cooperative action of the energy transferred from the S state,
and the momentum acquired by the system along the C–N stretching coordinate during its
motion from the Franck-Condon region to the S/S conical intersection. A similar process has
been observed in the dynamics of protonated formamide (Antol et al. b) and the CHNH+


cation (Barbatti et al. a).

In addition to the C–N dissociation channel, two alternative types of trajectories, both of
them involving the C=O stretching mode, were observed, but their fraction was found to be
much lower.The first among them (trajectories of type II) is characterized by dissociation of the
oxygen atom and concomitant merging of all three potential energy surfaces. It corresponds to
% of all observed events. Finally, trajectories of type III (%) are best described as combina-
tion of the trajectories of types I and II. In this case, initial motion involves the C–O stretching
mode, but the C–O bond cleavage does not occur due to recombination of the molecule in the
S followed by C–N bond dissociation.

Model : Protonated Formamide

The most basic site of formamide in the ground, as well as in the excited state is the oxygen
atom (Antol et al. a). Therefore, in this section we shall restrict our discussion to the
photofragmentation of the O-protonated species (> Fig. -). The calculations were carried
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⊡ Fig. -
Photodeactivationpathsobservedduringdynamics simulationsofO-protonated formamide start-
ing at the (a) S (ππ∗) and at the; (b) S (nπ∗) states (Data from Antol et al. b)

out by means of the same computational approach used for the parent molecule, the SA--
CASSCF(,)/-G(d) method. A summary of dynamics calculations results are presented in
> Fig. -. More detailed discussion, including dynamics simulations of photodissociation of
N-protonated formamide, can be found in Antol et al. (b).

Examination of the results shows that dissociation of the O-protonated formamide from
the S state strongly resembles the mechanism of dissociation observed from the second excited
state in the neutral molecule, as expected, due to the fact that both states are of (ππ∗) charac-
ter. This is also reflected in considerable shortening of the calculated lifetime relative to that
calculated for the Sstate in the neutral molecule ( ±  fs vs.  ±  fs).

In searching for possible deactivation paths, three minima on the crossing seam between
S and S were found to be accessible without energy barrier indicating very fast dynamics.
The other interesting feature is that, in contrast to the neutral molecule, the MXS for the C–N
dissociation has the highest energy (> Fig. -). In spite of that, analysis of the calculated
trajectories revealed that this is the major dissociation channel. The reason for that lies in the
fact that this reaction path has the steepest “slope” in the Franck-Condon region (> Fig. -).
In other words, as the molecule in the Franck-Condon region does not have information about
energies of conical intersections, it selects the energetically most favorable reaction path and
not one leading to the most stable minimum on the crossing seem.The predominance of non-
adiabatic transitions near highest energy MXS has also been observed in photodissociation of
aminopyrimidine (Barbatti and Lischka ). In protonated formamide this deactivation path
is activated in % of trajectories. After reaching the ground state, the energy of the system is
transferred to translational motion of the HCOH and NH fragments in % of trajectories,
while in % of trajectories HCOH and NH recombine into the vibrationally excited starting
structure. Furthermore, in % of trajectories the proton transfer from theHCOH radical cation
to the NH radical occurs resulting in formation of the NH radical cation and HCO radical.

In addition to the C–N dissociation path, in % of trajectories the dissociation chan-
nel involving stretching of the C–O bond becomes activated. This dissociation path strongly
resembles the C–O dissociation channel from the second excited state of the neutral molecule
(trajectories of type II).
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Schematic presentation of reaction paths in photodissociation of oxygen protonated formamide.
MXSNH, MXSCO , and MXSCN denote minima on the crossing seam for dissociation of N–H, C=O, and
C–N bond, respectively. Geometries are optimized at the CASSCF(,)/-G(d) level (Data from
Antol et al. b)

Dissociation of theO-protonated formamide following excitation to the second excited state
is also interesting. It triggers a very fast switch ( fs) from the S to the S state via a highly pyra-
midalized non-dissociatedMXS (Antol et al. b), followed by activation of two dissociation
processes (C–O and C–N) on the S surface, with the C–O dissociation path being observed
in % of trajectories. It is interesting to note that the resulting branching ratio between C–O
and C–N dissociation pathway differs considerably from that observed upon photodissocia-
tion from the nπ∗ state in the neutral molecules in which the C–N dissociation was the major
photodissociation channel.Themajor reason for this behavior could be connected to the direc-
tion of the momentum along the C–O stretching coordinate inherited from the S/S conical
intersection in the O-protonated formamide. Another point worth of noting concerns forma-
tion of the OH radical, indicating that protonated formamide might be a precursor in the
photogeneration of potentially deleterious OH radical.

Current Status of the Field

One point of particular relevance in the photodynamics studies of formamide and peptides that
has not been considered in this section is the effect of the environment. Environmental effects
are expected to change the relative position of the electronic states, the position, and the topol-
ogy of the conical intersections (Burghardt and Hynes ). QM/MM dynamics simulations
of photodissociation of formamide embedded in argon matrix showed strong impact on the
outcome of the process. This was illustrated by formation of the : complex between ammo-
nia and CO and prevention of full separation of the NH●

 and HCO● subunits in the NH●

 +
HCO● radical pair. Also, the argonmatrix influenced the lifetime of the S state, which increased
by  fs relative to the gas phase (Eckert-Maksić et al. b). Another important issue that
deserves attention concerns the effect of substituents on the mechanism of photodissociation
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of formamide. Some experimental, as well as computational studies, on the effect of methyl
(Chen et al. ; Eckert-Maksić and Antol ; Liu ) and benzyl (Chen and Fang ;
Pei et al. ) substitutents related to this issue have been recently reviewed (Eckert-Maksić
et al. a). Finally, the possibility of intersystem crossing to the first triplet state has not been
fully explored. This holds, in particular, for photodissociation of formamide in matrices, but
also for photodissociation of higher analogues of formamide. This possibility, however, cannot
be considered by dynamic simulations because it demands propagation times that are too long.

Conclusions and Outlook

We have reviewed a series of investigations of π-conjugated molecules using mixed quantum-
classical dynamics simulations. All thesemolecules have been chosen asmodels for biologically
relevant systems. Dynamics simulations are able to provide information on time-dependent
phenomena,which can only be obtained in a very indirect way by conventional static quantum-
chemistry simulations. The main pieces of information brought by dynamics in excited states
are the time constants for the relaxation processes following the photoexcitation and the relative
importance of each available pathway.

In an effort to reduce computational demands, several levels of approximation are employed,
starting with the dynamics methodology itself, which propagates the nuclear motion classi-
cally for all degrees of freedom, while partially recovering the quantum information of the
non-adiabatic transitions between states. Although methodological progress has been achieved
by the development of the multiple spawning (Ben-Nun et al. ; Hack et al. ; Levine
et al. ) and MCTDH (Worth et al. ) approaches, the everyday method for tackling
dynamics simulations in excited state is still the surface hopping approach, mainly due to its
easy implementation and intuitive conceptual background.

At another level of approximation, simplified models have often been employed in substi-
tution of the full biochemical system. In this chapter, we have discussed protonated Schiff base
chains as models for the chomophore of rhodopsin proteins, heteroaromatic rings as models
for UV-excited nucleic acids, and formamide as a model for photoexcited peptide bonds. With
development of quantum chemical methods and computational resources, effective progress
has been achieved by taking larger models at higher theoretical levels. This process, however,
evolves very slowly and there are no perspectives of extending the quantum-mechanical treat-
ment much beyond the chromophore region of the system. Instead, the development of hybrid
methods, especially the quantum-mechanics/molecular-mechanics based approach, have been
demonstrated to be of great utility in accounting for the effects of the molecular environment
into the excited-state region of the molecule (Ciminelli et al. ; Hayashi et al. ; Levine
et al. ; Lin and Truhlar ). Recently, methods for treating the excited-state evolution
under the influence of an external electric field have been proposed (Jones et al. ; Mitric
et al. a; Yagi and Takatsuka ).They open the perspective of achieving a more complete
treatment of the photo-excitation phenomena, by, for example, taking into account the effect of
laser fields.

In a third level of approximations, the quantum chemical methods employed in dynamics
simulations are naturally much lower than those employed at conventional quantum chemical
calculations. As an example, dynamics simulations for molecules of biological interest are quite
restricted to the use of double-ζ basis sets. Moreover, it is common to have a poor treatment
of ionic states and non-adiabatic events, to neglect Rydberg states, and to neglect electron
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dynamic correlation. Although all these approximations are usually carefully employed by
extended comparisons to high-level benchmark data, dynamics results obtained under such
approximations should be regarded only as semi-quantitative.

Even in view of all these limitations, excited-state non-adiabatic dynamics simulations
based on mixed quantum-classical methods constitute a fascinating and active research field
providing essential information on the nature of molecular phenomena.
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  LEE-Induced DNA Damage: Theoretical Approaches to Modeling Experiment

Abstract: Low-energy electrons (LEE) have been experimentally found to result inDNAdam-
age such as base damage, base release, and strand breaks. This has engendered a considerable
number of theoretical studies of the mechanisms involved in the DNA damage. In this chapter,
we discuss the various pathways for LEE interaction with DNA and the theoretical treatments
most suited to unravel these pathways. For example, inelastic electron scattering produces exci-
tation, ionization, and transient negative ions (TNI) via shape, core-excited, and vibrational
Feshbach resonances, which can all lead to DNA damage. Each of these pathways is distin-
guished and pertinent to the experimental results and theoretical approaches used to explain
the results described. Shape resonances can be understood as interactionswith the electronwith
unoccupied molecular orbitals of neutral molecule, while core-excited states involve excitation
of inner shell electrons and can be treated with theoretical methods such as time-dependent
density functional theory (TD-DFT) or CASSCF. In treating the electron–molecule interac-
tion, special care is needed to distinguish between diffuse and valence states of the TNI. The
role of the vertical and adiabatic states of the radical anion is important as the electron adds
to the neutral molecular framework, and reactions induced likely occur before equilibration to
the adiabatic state. The effect of solvation is critical to both energetics of the interaction and
the nature of the TNI formed. For example, gas-phase calculations show diffuse dipole-bound
character for adenine, guanine, and cytosine anion radicals, but each of these is found to be in
a valence state in aqueous solution by experiment. DNA base anion radicals often show ground
states that are diffuse in character and that collapse to valence states on solvation. Such processes
are shown to be accounted for inclusion of the polarized continuum model (PCM) for solva-
tion. TD-DFT excited-state calculations including solvation show that the diffuse states rise
in energy on solvation as expected. For LEE in the aqueous phase, new energy states become
available such as conduction band or presolvated electrons, which may have sufficient energy
to cause DNA damage.

Introduction

The DNA sequence contains the information necessary for the functioning of all cellular pro-
cesses. Exposure of DNA to high-energy radiation leads to disruption of this sequence or actual
strand cleavage that results in potential mutagenic or lethal damage (Becker and Sevilla ,
; Swarts et al. ; Becker et al. , ; Li and Sevilla ; Swiderek ; Kumar
and Sevilla a, a, b; Sevilla and Bernhard ; Sanche ; Yokoya et al. ; Denifl
et al. ; von Sonntag ). In the early stage of the radiation-induced DNA damage, high-
energy radiation ionizes and excites each component of DNA (i.e., base, sugar, and phosphate
backbone) and the surrounding water molecules randomly and produces “holes,” secondary
electrons, and excited states (Kumar and Sevilla a, a, b; Sevilla and Bernhard ;
Sevilla et al. ).The hole (positive charge or radical cation), produced during ionization event
in DNA, transfers to the site in DNA with the lowest ionization energy. Of the four DNA bases
(adenine [A], guanine [G], cytosine [C], and thymine [T]), guanine is found to have the low-
est ionization potential (Kumar and Sevilla a; Hush and Cheung ; Orlov et al. ;
Yang et al. ; Steenken and Jovanovic ) and acts as the locus for hole transfer in DNA
(Becker and Sevilla , ; Swarts et al. ; Becker et al. ; Li and Sevilla ; Kumar
and Sevilla a, a, b; Sevilla and Bernhard ; Sevilla et al. ). The guanine rad-
ical cation (G�+

), formed on ionization, reacts further to produce oxidative DNA damage in
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the form of -oxoG (Burrows and Muller ; Cadet et al. ). A hole created on the sugar
phosphate backbone undergoes two competitive reactions: (a) formation of neutral sugar radi-
cal after deprotonation (–H+

) from the specific sites of the sugar ring (Becker et al. ; Shukla
et al. , ; Adhikary et al. , a, b, , ; Khanduri et al. ) and (b) hole
transfer to the nearby base inDNA followed by base-to-base transfer to guanine (Adhikary et al.
b). Secondary electrons formed by the ionizing event lose their kinetic energy, thermalize,
add toDNA, and transfer to the bases of highest electron affinities, i.e., the pyrimidines, T andC.
This produces the anion radicals (T�− and C�−

) (Sevilla et al. ). Secondary electrons before
thermalization possess substantial kinetic energy, which can lead to DNA damage. Such elec-
trons with kinetic energies below  eV are known as low-energy electrons (LEE) (Sanche ;
Pimblott et al. ; Pimblott and LaVerne ) and are produced in great numbers (∼ × 

electrons perMeV energy deposited) (International Commission on Radiation Units andMea-
surements ) along the tracks of the ionizing radiation. LEEs have been recognized as the
potential significant contributor to DNA damage. Collisions of LEEs with the aqueous medium
result in most being thermalized within − s to become solvated electrons. Those LEEs pro-
duced in or near DNA are able to damage DNA via resonant absorption processes (Kumar and
Sevilla a). In their pioneering work, Sanche and coworkers (Boudaïffa et al. ; Huels
et al. ; Sanche ; Zheng et al. , , ; Ptasińska and Sanche a, b) estab-
lished that LEEs are able to create single- and double-strand breaks (SSB and DSB) in plasmid
DNA through a dissociative electron attachment (DEA) mechanism.This finding initiated sev-
eral studies by a number of workers on the interaction of LEEs with DNA and its components
(Baccarelli et al. ; Sulzer et al. ; Bald et al. , ; König et al. ; Ptasińska et al.
a, ). A number of other recent reviews have focused on this important area of research
(Li and Sevilla ; Swiderek ; Kumar and Sevilla a, a, b; Sanche , ,
; Rak et al. ). The initial events induced in DNA by high-energy radiation discussed
above are summarized in > Fig. -. The events shown in > Fig. - follow the oxidative and
reductive processes that are initiated by radiation to the dominant end products formed.When
a number of the damage sites, shown in > Fig. -, are formed in proximity, a multiple dam-
age site (MDS) is formed. MDSs are often irreparable owing to the loss of DNA information
and the inability of enzymatic repair processes to recognize individual damages.They therefore
represent the most lethal type of damage.

Ionization, and to a lesser extent, excitation were in the past considered the primary causes
of DNA radiation damage. However, results have strongly implicated the role of low-energy
electrons in this damage, and their study has been of intense interest in recent times. In this
chapter, we will be focusing on the interaction of LEE with DNA, which leads to a variety of
physical and chemical changes in DNA. A number of efforts to elucidate the mechanisms of
LEE-induced DNA damage have been made in recent years employing theory (Li and Sevilla
; Kumar and Sevilla a, a; Rak et al. ; Simons ) and experiments (Sanche
, , ; Denifl et al. ; Boudaïffa et al. ; Huels et al. ; Zheng et al. ,
, ; Ptasińska and Sanche a, b; Baccarelli et al. ; Sulzer et al. ; Bald et al.
, ; König et al. ; Ptasińska et al. a, ; Rak et al. ). Recent efforts
have implicated the role of vibrational and electronic excited states in LEE interactions with
DNA. The advent of substantial computing power at low cost and the accessibility of com-
putational resources at national centers (Baker et al. ) allow the use of rigorous ab initio
quantum chemical methods such as density functional theory (DFT), Møller–Plesset perturba-
tion theory (MP), CCSD(T), andCASPT for DNA components. Such theoretical studies shed
light on the underlying mechanisms of LEE-induced DNA damage. The applicability of MP,
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CCSD(T), and CASPT methods are still limited to small-to-modest size molecules such as
DNA base pairs. However, DFT can be applied to larger molecular systems having as many
as a , atoms (Neese et al. ) and has been found suitable to handle electron–molecule
interaction processes (Schwabe and Grimme ; Zhao and Truhlar ; Shao et al. ).
In this chapter, we include a brief summary of the experimental findings and provide a detailed
description of the recent applications of theory toward the understanding of the mechanisms
of action of LEE-induced DNA damage.The chapter includes discussions of () shape and core-
excited resonances, () valence and dipole-bound states of DNA bases and their associated
electron affinities, () the best choice of the basis sets to tackle the valence and dipole-bound
radical anions, () effects of condensed phase on dipole-bound states, () single-strand breaks
formation in the ground state of the radical anion, () importance of the excited states of
radical anions (resonances) for LEE-induced DNA single-strand breaks formation, () LEE-
induced base release, and () the effect of solvation on the formation of LEE-induced strand
breaks.
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ProposedMechanism of LEE Induced DNA Strand Breaks

As briefly described in the introduction, low-energy electrons (LEE) are produced abundantly
during high-radiation events and are increasingly being recognized as potent DNA-damaging
agents. In fact, LEEs are found to be several times more damaging than photons that have simi-
lar energy.The pioneering series of experiments by Sanche and coworkers (Boudaïffa et al. ;
Huels et al. ;Martin et al. ; Panajotovic et al. ; Brun et al. ; Li et al. ; Zheng
et al. ; Abdoul-Carime et al. ), showed that LEEs in the – eV range produce single-
and double-strand breaks inDNA. In their first report (Boudaïffa et al. ), the plasmidDNA
(pGEM Zf(-)) was extracted from E. coli and hydrated to . water/base pair, and then irradi-
ated with LEE beam with kinetic energies – eV. From these experiments, it was concluded
that electrons having energy below the ionization limit of DNA (ca. .– eV [Hush and Che-
ung ; Orlov et al. ; Yang et al. ; Colson et al. ]) were able to cause SSB andDSB.
The corresponding yields of SSB andDSBwere found to be .× − and ×− strand breaks
per incident electron for  eV electrons. The yields of SSB and DSB in DNA depended on the
energy of the interacting electron and have been suggested to be caused by the rapid fragmenta-
tion reactions of transientmolecular resonances localized onDNAcomponents, i.e., base, sugar,
and phosphate back bone (Boudaïffa et al. ). In later experiments, Sanche and coworkers
(Martin et al. ; Panajotovic et al. ) found that –. eV electrons can effectively pro-
duce SSB in plasmid DNA with similar yields to those produced at far higher energies. (See
> Fig. -, where it is evident that the cross section for SSB formation at  eV is actually greater
than that found at  eV [Panajotovic et al. ].) They also found that .–. eV electrons
induce only SSB (Martin et al. ) (see Fig.  in Martin et al. []). Apparent resonances
for inducing SSB are found at . and . eV, characterizing the formation of transient negative
ion (TNI) at these energies (Martin et al. ). Due to low energies, these resonances were
interpreted as shape resonances (Martin et al. ). The SSB yield at . and . eV, found
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Effective cross sections (σ) for the formation of SSB in plasmid DNA by .–. eV electrons. The
peaks at  eV and around . eV (see shaded portion) correspond to shape resonances (Reprinted
with permission from Panajotovic et al. []. © () Radiation Research Society)



  LEE-Induced DNA Damage: Theoretical Approaches to Modeling Experiment

in Sanche’s work, were compared with electron capture cross sections of the DNA bases which
were assigned to π∗-shape resonances. The vertical attachment energies of DNA bases were
taken from electron transmission spectroscopy (ETS) (Aflatooni et al. ), and their peak
magnitudes were scaled to reflect the inverse energy dependence of the electron capture cross
sections. The lowest peak present at . eV in the modeled cross section was shifted by . eV
to match the SSB yield at . eV (Martin et al. ). A good agreement between the experi-
mental and simulated SSB yield between  and  eV certainly suggests the involvement of shape
resonances in creating LEE-induced single-strand breaks. Indeed from their studies of strand
breaks in plasmid DNA induced by – eV electrons (Huels et al. ; Martin et al. ;
Panajotovic et al. ), it was concluded that below  eV LEE-induced SSB occurs through
dissociative electron attachment (DEA) via shape resonances (Boudaïffa et al. ; Huels et al.
; Martin et al. ; Panajotovic et al. ; Brun et al. ), while between  and  eV,
the core-excited resonances induce SSB and DSB similar to those produced at far higher ener-
gies such as  eV.More recently, Illenberger and coworkers (Baccarelli et al. ; Sulzer et al.
; Bald et al. , ; König et al. ; Ptasińska et al. a, b, ; Abdoul-Carime
et al. a, b; Hanel et al. ) have contributed to the understanding of these processes by
showing that electron attachment directly to the phosphate moiety can lead to fragmentation
(Bald et al. ). The involvement of shape resonances to create molecular fragmentation in
DNA model compounds was also proposed in their work (Baccarelli et al. ; Sulzer et al.
; Bald et al. , ; König et al. ; Ptasińska et al. a, c, ). Recently, sev-
eral groups used scattering theory to help elucidate the nature of LEE interactions resulting in
DNAdamage (Caron and Sanche , , , ;Caron et al. ; Tonzani andGreene
b; Dora et al. ; Gianturco et al. ;Winstead andMcKoy ) through resonances.
The modeling of shape resonances, created during electron–molecule interaction, using theory
is discussed in > section “Resonance (TNI) Formation: A Molecular Orbital Approach”.

Electron–Molecule Interaction Events

Electron–molecule interactions give rise to energetic species that result in physical and, sub-
sequently, chemical changes in the parent molecule. The initial energy of the interacting
electron is critical to the formation of such species. Understanding the physical and chemi-
cal changes induced requires an understanding of the underlying fundamental processes that
govern the electron–molecule interaction. One of the most important of these interactions is
dissociative electron attachment (DEA), which may result in DNA strand breaks discussed in
> section “Proposed Mechanism of LEE Induced DNA Strand Breaks”. A scheme that depicts
the various paths available during electron–molecule interaction is shown in > Fig. -. The
collision of an electron with molecule involves two types of interactions: (a) direct scattering
and (b) resonant interactions. In nonresonance electron–molecule scattering (direct scattering),
the electron interacts with the molecule for a very short time (typically less than ca. −s), i.e.,
approximately the transit time for an electron through the dimensions of a molecular frame-
work. A state with angular momentum such as a p state can extend the time of the resonance.
Depending on the energy transferred from electron to the molecule during collision, the direct
scattering is known as: (a) elastic, if no kinetic energy is transferred to the internal degrees
of freedom (electronic, rotational, and vibrational) of the parent molecule, and (b) inelastic,
if some part of the electron energy is transferred to the molecule and excites these internal
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Schematic diagram showing the scattering and resonant attachment events taking place during
electron–molecule interactions

degrees of freedom. In an elastic collision, only kinetic energy can be transferred through the
conservation of momentum. However, no significant kinetic energy is transferred in an elastic
collision owing to the small mass of the electron, which is negligible compared to the mass of
themolecule. Inelastic scattering can result in ionization as well as vibrational and/or electronic
excitation, as shown in > Fig. -.

In resonant interactions, the electron–molecule interaction lasts for a longer time (∼−

−s) and results in the formation of transient negative ions (TNI) of several types discussed
in > section “Resonance (TNI) Formation: A Molecular Orbital Approach”. Once these res-
onances are formed, they may decay via: (a) autodetachment, in which the electron is emitted
from the negative ion (M−

)

∗ resulting M∗ and e−; (b) dissociative electron attachment (DEA),
in which the negative ion (M−

)

∗ stabilizes by dissociating one of its chemical bonds to form
anion and neutral fragments; and (c) radiative cooling, which means the negative ion (M−

)

∗ is
stabilized by emission of one or more photons. This last process does not usually occur in the
gas phase as the lifetimes are short owing to processes (a) and (b).

For the DEA process (b), the time needed to stretch a specific bond in its neutral poten-
tial energy surface (PES) so that it crosses the repulsive anion surface is usually less than the
vibrational period of that bond. On the basis of the timescale, DEA and autodetachment are
clearly in competition with each other. Such electron resonances are well described in the lit-
erature (Schulz a, b; Lane ; Sanche ; Jordan and Burrow ; Simons and Jordan
; Simons ;Modelli andMartin ;Wetzel and Brauman ; Chen andGallup ;
McConkey et al. ; Hotop et al. ). Since the TNI formation can occur in the contin-
uum, special care is needed to handle these problems in any theoretical treatment. Quantum
chemical methods employing compact basis sets (Chen and Gallup ) have been used to
study the nature and properties of TNIs/resonances by several groups such as Burrow (Jordan
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and Burrow ), Jordon (Jordan and Burrow ; Simons and Jordan ), Simons (Simons
and Jordan ; Simons ), andModelli (Modelli andMartin ).This method has been
widely used and can give reasonable estimates of the energetics involved. However, the scatter-
ing phenomenon can only be approximated by such approaches.The present chapter elucidates
the mechanism of DNA damage caused by resonant interaction events only.

Resonance (TNI) Formation: A Molecular Orbital Approach

From the above discussion we see that electron–molecule interactions can lead to transient
negative ion (TNI) formation and subsequently to a variety of chemical changes.OnTNI forma-
tion, an extra electron is captured into the unoccupied molecular orbital (UMO) of the neutral
molecule, and a shape or core-excited resonance results (see > Fig. -).

Shape resonances: In a shape resonance, an extra electron occupies a normally unoccupied
(vacant)MOwithout perturbing the inner electronic configuration of the parentmolecule.This
results in the formation of a transient negative ion (TNI) (Schulz a, b; Lane ; Sanche
) (see > Fig. -b). In a time-dependent picture, such TNIs (Schulz a, b) are formed
by an electron transition from the continuum (e + M) to a quasi-discrete state of the transient
molecular anion (M−

)

∗. Because electron attachment is rapid with respect to nuclear motion,
the negative ion (M−

)

∗ is formed at the geometry of the neutral molecule. Shape resonances
are also known as “single-”or “one-particle, no-hole” resonances. Generally, they occur at low
energies (– eV) and have lifetimes in the range − to − s. Longer lifetimes may occur
if attachment is followed by vibrational motion into portions of the nuclear potential surface
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Schematic diagram showing the electronic configuration of a neutral (a) and transient negative
ion (TNI) (b, c). The interacting electron initially captures into the unoccupied MOs of the neutral
molecule resulting in TNI formation via: (a) shape resonance or (c) core-excited resonance. For a
shape resonance, the electron can interact with any unoccupied MO. The SOMO was the empty
LUMO before the LEE interaction. In core-excited resonance, on electron interaction an electronic
transition takesplace froman inner shell to the vacantMOs creating a “hole”(+ charge) in the inner
shell, shown by an arrow (c). The upanddownarrows show the occupancy of themolecular orbitals
(MOs) with electrons of α and β spins. HOMO highest occupied molecular orbital, LUMO lowest
unoccupied molecular orbital, SOMO singly occupied molecular orbital
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lying below that of the neutral, where the electron cannot autodetach. Shape resonances may
result in a dissociative electron attachment (DEA) process forming an anion fragment and a
neutral fragment.

Core-excited resonances: A core-excited resonance is formed when an interacting elec-
tron excites one of the core electrons of the parent molecule, resulting in a hole in the inner
filled MOs and two electrons, an extra electron and one from the core, in unoccupied MOs
(see > Fig. -c). Such resonances are also known as “two-particle, one-hole” resonances.
Core-excited resonances occur typically above  eV; those lying below the “parent” molecu-
lar excited state are known as “Feshbach resonances” and may have lifetimes comparable to
vibrational periods. If they lie above the parent, they are called “core-excited shape resonances”
(Schulz a) and generally havemuch shorter lifetimes because of decay into the parent state.
Thus, core-excited shape resonances exhibit a negative electron affinity, relative to the excited
parent, whereas Feshbach resonances have a small positive electron affinity (Schulz a).
Core-excited resonances are highly energetic and have been suggested to play a role in double-
strand breaks in DNA (Huels et al. ; Martin et al. ; Panajotovic et al. ; Brun et al.
).

Vibrational Feshbach resonances (VFRs): In a vibrational Feshbach resonance, the interac-
tion of a slow electron takes the form of a virtual excitation of a vibrational level of the neutral
molecule with capture of the electron (Hotop et al. ; Dessent et al. ). For the zero
point vibration, the maximum probability of interaction of the electron with parent molecule
occurs at zero energy. If the dipole moment of the neutral molecule exceeds the critical value
of approximately  Debye, the impinging electron may be trapped into the diffuse bound state,
which provides a much longer timescale for the electron to stay near the molecule (Hotop et al.
; Dessent et al. ; Illenberger ), and VFRs may appear as shown in > Fig. -.
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Here, the PES of the anion lies close to, but below, the neutral surface, and the lowest vibra-
tional levels of the dipole-bound anion are located just below the corresponding vibrational
levels of the neutral. These long-lived VFRs appear as narrow features below the vibrational
thresholds in elastic or vibrationally inelastic electron scattering cross sections (Hotop et al.
). VFRs may also decay through the dissociative electron attachment mechanism. For an
excellent, detailed overview, see reviews by Schulz (a, b) and Hotop et al. ().

Recently, an excellent example of the synergy of vibrational Feshbach resonances with
dipole-bound anion states of uracil and thymine in DEA of N–H bond has been reported
by Burrow et al. (Burrow et al. ; Scheer et al. ). Sharp peaks (< eV) in the disso-
ciative electron attachment cross sections of uracil and thymine were assigned as vibrational
Feshbach resonances (Burrow et al. ; Scheer et al. ). Methylation at N or N site of
these bases selectively eliminates the hydrogen atom (H) loss at the site of methyl substitu-
tion and thus allows for site assignments of DEA yield with energy of the LEE. At  eV, the H
loss occurred from the N site, while at . eV, the H loss occurred from the N site (Ptasińska
et al. a), indicating the involvement of two distinct DEA pathways (Ptasińska et al. a;
Burrow et al. ) for dissociation. Using quantum chemical calculations and very diffuse basis
sets –G(d) augmentedwith four Gaussian sets of (s, px, py, pz) orbitals with scale factors of
., ., ., and ., Burrow et al. () showed that an excess electron is bound
in the electric dipole potential field of the uracil molecule resulting a dipole-bound anion state
(DBS), which lies below the neutral state of the uracil (see > Fig. -). From > Fig. - (left),
we see that the DBS and the σ∗ (N-H) anion state can mix by symmetry, and this coupling
allows LEEs to excite the N–H bond vibrations.
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This results in H loss in uracil ((U-H)− + H�), (see Fig.  of Burrow et al. []). LEE
resonances at . and . eV were identified with the second and third vibrational levels for
the N–H bond stretch (see > Fig. -).

Shape Resonances of DNA Bases

As pointed out above, when LEEs are captured in the virtual (unfilled) orbitals of the parent
(neutral) molecule, a transient negative ion formation results known as a “shape resonance.”
These resonances are generally unstable with respect to the autodetachment and therefore pos-
sess negative electron affinity, i.e., the anion state lies above the neutral state of the molecule.
In the gas phase, they are commonly studied by electron transmission spectroscopy (ETS). In
ETS, a signal consisting of the derivative with respect to energy of the electron beam current
transmitted through a gas cell is plotted as a function of electron kinetic energy. The energies
of the resonances are termed as electron vertical attachment energies (VAEs) and are always
found positive by ETS experiment (Aflatooni et al. ; Schulz a, b; Jordan and Burrow
; Simons and Jordan ; Allan ). In this chapter, we will refer to such states as having
negative vertical electron affinities. To our knowledge, there are no experimental available LEE
scattering data for a complete DNA fragment (composing base, sugar, and phosphate). How-
ever, there are ETS results for the DNA/RNA bases, i.e., adenine, cytosine, thymine, uracil, and
guanine reported by Aflatooni et al. ().

FromETS experiments (Aflatooni et al. ), Aflatooni et al. showed that energies required
to attach an electron into the lowest empty valencemolecular orbitals of all the bases are positive.
This means that all the bases have negative valence vertical electron affinity (<). The vertically
formed anions of pyrimidines bases (C, T, andU) were found to bemore stable than the purines
(G and A) by ca. . eV. The ETS spectra of U, T, C, G, and A are shown in > Fig. -. The
spectra in > Fig. - arise due to the occupation of the lowest empty π∗-MOs of the parent
molecules by the electron.The vertical lines on the spectra (> Fig. -) show the position of the
vertical attachment energies. For guanine anion, the ETS (shown in > Fig. -) was observed
for its enol tautomer (for details see Aflatooni et al. []). For each of these molecules, three
VAEs, associated with the three lowest vacant π

∗, π
∗, and π

∗ MOs, were determined. The
VAEs ., ., and . eV for uracil; ., ., and . eV for thymine; ., ., and . eV
for cytosine; ., ., and . eV for adenine; and ., ., and . eV for guanine(enol)
tautomer were determined by ETS.

The VAEs of bases were also predicted using theoretical methods such as semiempirical
Pariser–Parr–Pople (PPP) (Compton et al. ; Younkin et al. ) and ab initio methods
(Sevilla et al. ). Since these anion states are metastable with respect to the autodetachment
of the electron, special care was taken in the aforementioned theoretical approaches to han-
dle these anion states by employing confined basis set, Koopmans’ theorem approximation,
and empirical determination of parameters to scale the theoretical results to the experimentally
measured anion state energies for other compounds. Sevilla et al. () used calculated values
for VAEs of benzene, naphthalene, pyridine, pyrimidines, and uracil, which have experimen-
tally known values to scale theoretically calculated VAEs for the DNA bases. A comparison of
the experimental VAEs of the bases to those predicted theoretically is presented in > Table -.
From > Table -, we see that the calculated VAE values are in excellent agreement with
experimental VAEs and the difference between theory and experiment lies in the range
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⊡ Fig. -
ETS spectra of uracil, thymine, cytosine, guanine, and adenine. The experimentally determined π∗

anion state energies are indicated by vertical lines (Reprinted with permission fromAflatooni et al.
[]. © () American Chemical Society)

.–. eV. The PPP method only shows a qualitative agreement with the experiment.
Recently, the resonance energies of DNA/RNA bases, including deoxynucleosides and
deoxynucleotides, were studied using scattering theory (Winstead andMcKoy ; Gianturco
and Lucchese ; Tonzani and Greene a; Yalunin and Leble ). The calculated val-
ues (Gianturco and Lucchese ; Tonzani and Greene a; Yalunin and Leble ) were
found to be several electronvolts more than the experimental ETS values (Aflatooni et al. );
however, the first π

∗ resonance energies reported by Winstead and McKoy () were in
reasonable agreementwith experiment (Aflatooni et al. ) for uracil, thymine, and cytosine.

Recently, we studied the vertical attachment energies of ′-thymidine monophosphate
(′-dTMP) using the density function theory (DFT) BLYP/-G∗ method (Kumar and Sevilla
). A nucleotide such as ′-dTMP represents the smallest fragment of DNA containing
all three components: base, sugar, and phosphate. This study was carried out with a view to
draw some fruitful insights about the nature and location of the “shape resonances” during
transient negative ion (TNI) formation. In this study, the five lowest unoccupied molecular
orbitals (LUMOs) along with the highest occupied molecular orbital (HOMO) of the neutral
′-dTMPH were considered.The BLYP/-G∗ method predicted HOMO and the lowest two
UMOs as π-type localizing on the thymine base, while the third, fourth, and fifth UMOs as
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⊡ Table -
Experimental (ETS) and theoretical vertical attachment energies (VAEs) in uracil and the DNA
basesa,b

Vertical attachment energies (eV)
Theory

Compound Assignment Exp. (ETS) PPP Sevilla et al. () –G∗/–G

Uracil π∗ . . . .
π∗ . . – .
π∗ . . – .

Thymine π∗ . – . .
π∗ . – – .
π∗ . – – .

Cytosine π∗ . – . .
π∗ . – – .
π∗ . – – .

Adenine π∗ . . . .
π∗ . . – .
π∗ . . – .

Guanine (keto) π∗ – . . .
π∗ – . – .
π∗ – . – .

Guanine (enol) π∗ . – – .
π∗ . – – .
π∗ . – – .

aSee Aflatooni et al. ().
bValues correspond to negative electron affinities.

σ-type localized on the phosphate (PO) group, the sugar moiety, and on the sugar-phosphate
group, respectively (see > Fig. -). The BLYP/-G∗ calculated orbital energies in eV of
HOMO and the five LUMOs are −.(π), −.(π∗), .(π∗), .(σ∗), .(σ∗), and
.(σ∗), respectively (see > Fig. -). From ETS and the theoretical calculations discussed
above, it is evident that within Koopmans’ theorem approximation, the vertical attachment
energies (VAEs) are equivalent to the virtual orbital energies (VOEs). But these VOEs calculated
at the Hartree–Fock or DFT(BLYP) levels are appreciably overestimated by several electron-
volts and thus need scaling to appropriately represent the measuredVAEs (Aflatooni et al. ;
Sevilla et al. ). Using this procedure, Modelli () proposed an equation for appropri-
ate scaling of BLYP results for π∗ resonances. Using Modelli’s equation (Modelli ), the
scaled VOEs of corresponding BLYP/-G∗ computed LUMOs of ′-dTMPH are found to
be .(π

∗), .(π
∗), .(σ

∗), .(σ
∗), and .(σ

∗) eV, respectively (Kumar and Sevilla
). The calculated lowest two VAEs .(π

∗) and .(π
∗) are in reasonable agreement

with those reported by Aflatooni et al. () using ETS of thymine, as shown in > Table -.
This theoretical calculation predicts that for energies of less than  eV there are UMOs on
base, sugar, and phosphate available to capture the LEE. The theoretical procedure of scaling
of orbital energies of neutral LUMOs gives good estimates of the resonance energies; however,
it has several drawbacks, e.g., (a) during TNI formation, the UMOs of the neutral molecule can
be perturbed and can reorder the UMOs energies so they are not as in the neutral molecule and
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Orbital Energy (eV)MOs Scaled VOE (eV)

1.78 2.64

1.27 2.23

0.73 1.80

0.43 1.56 (1.71)

−0.84

−6.24

LUMO + 4 (σ3∗)

LUMO + 3 (σ2∗)

LUMO + 2 (σ1∗)

LUMO + 1 (π2∗)

LUMO (π1∗)

HOMO (π)

0.53 (0.29)

⊡ Fig. -
Molecular orbital plots of neural ′-dTMPH, calculated using the BLYP/-G∗ method. BLYP/-
G∗ calculated orbital energies along with scaled values are given in electronvolts. The experi-
mental VOEsof thymine (Aflatooni et al. ) aregiven in electronvolts (inparentheses) (Reprinted
with permission from Kumar and Sevilla []. © () American Chemical Society)

(b) this procedure gives no information about core-excited resonances. In this context, the
excited-state calculations for the TNI provide the only convenient means to rectify these
drawbacks.This will be discussed in > section “Excited States of TNI (Resonance Formation)”.

A summary of the semantics of electron molecular resonances occurring in the gas phase
have been described by Schulz (a) (see > Table -) with relevance to the condense phase.
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⊡ Table -
Semantics of electron-molecular resonancesa

Characteristics

Energy vis-a-vis Gas Condensed
Resonancea “Parent”a parenta phasea phase

Shape ( particle,  hole) Ground
electronic
state (GS)

Above parent
(– eV)

Yes Yes

Core-
excited (
particles, 
hole)

Feshbach Mostly
Rydberg ES

Below parent (ca.
. eV)

Yes No

Shape Valence ES Above parent Yes Yes

(– eV)

Vibrational Feshbachb (VFR) Vibrational
level of GS

Below Yes No

aTerminology adapted from Schulz (a). GS ground electronic state, ES excited electronic state.
b Hotop et al. ().

Electron Attachment to DNA/RNA Bases in Gas-Phase

The energy change on electron attachment to a molecule is described as the electron affinity
of that molecule. Upon electron attachment to the neutral molecule (M), the geometry of the
neutral molecule undergoes nuclear relaxation with adiabatic anion (M−

) formation. Electron
attachment to the neutral molecule without a nuclear relaxation gives vertical electron affinity
(VEA), and on nuclear relaxation the overall energy change gives the adiabatic electron affinity
(AEA). The energy needed to detach an electron from the adiabatic anion without relaxation
of the resulting neutral molecule is termed as vertical detachment energy (VDE). Depending on
the stability of the anion formation with respect to the neutral molecule, a molecule has positive
or negative electron affinity (VEA and AEA) values (see > Fig. -). The various processes
taking place during electron attachment to a molecule (M) are shown in > Fig. -.

From theory (Compton et al. ; Younkin et al. ; Sevilla et al. ; Winstead and
McKoy ; Gianturco and Lucchese ; Tonzani and Greene a; Yalunin and Leble
; Kumar and Sevilla ) and experiment (Aflatooni et al. ) it is well established
that all the DNA/RNA bases have negative vertical electron affinity (VEA) values in gas phase.
The adiabatic electron affinities (AEA) of these bases were also studied using anion photoelec-
tron spectroscopy by Bowen (Hendricks et al. , ) and Weinkauf (Schiedt et al. ),
and Rydberg electron transfer (RET) experiments by Schermann (Desfancois et al. , )
and their coworkers. These experiments showed the formation of stable dipole-bound anion of
uracil, thymine, and cytosine having AEA in the range of .–. eV (see > Table -). The
experimentally estimated dipole-bound AEA of uracil ∼ meV and thymine ∼ meV were
found to be in excellent agreement with the theoretically predicted dipole-bound AEA values
 and meVof the corresponding bases byOyler andAdamowicz (, ) using SCF and
MP methods in combination with a very diffuse basis set. In recent years, density functional
theory (DFT) and CCSD(T) methods were also applied to evaluate the electron affinities (EAs)
of the bases (Li et al. ; Vera and Pierini ; Puiatti et al. ; Wesolowski et al. ;
Bachorz et al. ). The DFT-calculated positive electron affinity values for the pyrimidines
are overestimated by about . eV (see > Table -). From theory and experiment it is now
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⊡ Fig. -
Potential energy surfaces (PES) of an anion formation (M−) after electron (e−) attachment to the
neutral molecule (M). When the energy of an anion (M−) lies below the neutral molecule, positive
electron affinity is observed (left); otherwise themolecule is said to have negative electron affinity
(right). Energy changes shown for an electron attachment or detachment event are: () the verti-
cal electron affinity (VEA), () the adiabatic electron affinity (AEA), and () the vertical detachment
energy (VDE). The VDE and VEA impose the upper and lower bounds to AEA

well established that VEA of the bases are negative and the AEA of U, T, and C are near zero
and still negative for A and G. The best estimated theoretical electron affinities of bases along
with their experimental values are presented in > Table -.

Choice of the Basis Set

From the discussions in the preceding sections, it is clear from theory and experiment that
vertical electron affinities of all the nucleic acid bases are negative while the adiabatic electron
affinities of pyrimidines are near zero.This means that an electron is unbound with the bases in
the vertical state (TNI formation) and very loosely bound into the diffuse orbital of the bases
in the adiabatic state, and in both the cases the choice of the basis set is crucial in determining
the electron attachment process. The extent of the electron density localization with respect to
the molecular frame for “dipole-bound” and “valence-bound” states can only be treated by an
appropriate selection of the basis set. Generally, the basis set needed in a calculation consists of
valence and extended (double- and triple-ζ) basis, which is further augmented with polariza-
tion and diffuse functions. While the polarization functions are important to study molecules
with strained chemical bonds (Simons ), diffuse functions are necessary for dealing with
anions or Rydberg type of species. In calculations for “dipole-bound” anions, the valence basis
set must be augmented with very diffuse functions to successfully describe the system. Such
basis sets were employed by Burrow et al. () in the study of VFRs of thymine and uracil,
and by Oyler and Adamowicz (, ) for estimating the dipole-bound adiabatic binding
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⊡ Table -
Selected theoretical and experimental gas-phase electron affinities of DNA/RNA bases (eV)

AEA
VEA DB(meV)a,b,c Valence

Bases Experiment Theory Experiment Theory Experiment DFT Ab initio

U −.d −.e  ± b f ca. g .h .i

−.j –  ± c .k

T −.d −.e  ± b l ca. g .h .m

– –  ± c – –

C −.d −.e  ± c – −.h −.i

−.j – –

A −.d −.e  ± a – – −.h –

−.j – – –

G (−.)d −.n – – – −.h −.o

aDipole bound (DB) (Desfancois et al. ).
bDipole-bound (DB) (Hendricks et al. ; Schiedt et al. ).
cDipole-bound (DB) (Schiedt et al. ).
dElectron transmission spectroscopy (ETS) results due toAflatooni et al. (). ForG, VEAwas estimated for keto tau-
tomer from enol tautomer experimental value (−. eV) plus the calculated difference in total energies between
the two tautomers (. eV).
eBLYP/-G(df,p) values due to Vera and Pierini () and Wetmore et al. ().
fOyler and Adamowicz ().
gEstimated from stable valence anion complexes, e.g.; U(Ar)− (Hendricks et al. ).
hBest estimates from DFT basis set dependence study due to Li et al. (). The DFT values are generally overesti-
mated by . eV.
iCalculated using CBS-Q (Li et al. ).
jRydberg electron transfer spectroscopy (RET) results due to Periquet et al. ().
kBachorz et al. ().
lOyler and Adamowicz ().
mCCSD(T) correction to MP complete basis set (CBS) limit including ZPE correction. See Svozil et al. ().
nBest estimates from BLYP/DV+(D) trends for other bases (Li et al. ).
oHaranczyk and Gutowski ().

energy of excess electrons to uracil and thymine. At times, the diffuseness of the basis functions
is inadequate and the dipole-bound state mixes with the valence-bound state of the molecule
(see Fig.  in Oyler and Adamowicz []). If the energy of the dipole-bound and valence-
bound states is equal, such a mixture could represent a proper solution for the molecular anion
radical.

Diffuse functions are not a good choice for dealing with virtual “valence” states in TNIs or
the available energies for shape resonances in the continuum. Any ab initio calculation employ-
ing the variational methodwith diffuse functions for amolecule with a negative electron affinity
will fail and result in an unbound electron in the continuum at zero energy as the lowest energy
state. Thus, the calculation of the negative electron affinity is not properly treated by a varia-
tional method. Nevertheless, virtual TNI states can be estimated with the use of compact basis
sets such as -G∗ as these compact basis sets avoid mixing with dipole-bound states and the
continuum. Calculations using compact basis sets, when scaled, can provide good estimates of
the virtual “valence” states in reasonable agreementwith experiment. Further, these calculations
can provide insights into the nature of such intermediate states and mechanisms of action of
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LEE in the induction of chemical change.The use of the compact basis set in the study of reso-
nances (TNIs) is well documented in the literature (Jordan and Burrow ; Simons and Jordan
; Simons ; Modelli andMartin ; Staiey and Strnad ). Using compact -G(d)
to very diffuse -++G(d,p) basis sets, Li et al. () calculated the negative valence elec-
tron affinities of the bases. Their calculated SOMO surfaces of the DNA bases demonstrated
that while the compact basis set represents the valence type π∗-anions (the SOMO surfaces
reside on the molecular frame) and give good estimates of negative electron affinities, the use
of extended basis sets results in a collapse of the electron-binding energy to near zero, which
is expected for the continuum and dipole-bound states. SOMO surfaces for extended basis sets
show the characteristics of the dipole-bound state with the electron density residing away from
the molecular frame. In the extreme of extension of the basis set, the electron would reside in
the continuum, or if themolecule has a dipole, a weakly bound electron in a dipole-bound state.

Effect of Solvation (Condensed Media)

The discussion above describes the events of electron–molecule interaction in the gas phase.
However, in condensed aqueous media, the nature of these processes is significantly altered.
For example, dipole-bound states are not likely to be present as they are suppressed by the sur-
rounding medium, and this is confirmed from the photoelectron spectroscopy of the hydrated
uracil, thymine, cytosine, and adenine (Schiedt et al. ; Eustis et al. ) as the photoelec-
tron spectra are blue-shifted with the increase of the number of hydrated water molecules and
show valence-bound anion formation. For a visual inspection of this phenomenon, we plot-
ted the LUMO and SOMO surfaces of guanine in neutral and anion radical states, using the
BLYP/-++G(d,p) method in gas phase, and in aqueous media using polarized contin-
uummodel (PCM). The LUMO and SOMO surfaces in the gas phase and in the solvated phase
of guanine in neutral and in anion radical states are shown in > Fig. -. From > Fig. -,
it is inferred that LUMO and SOMO represent a dipole-bound state (Li et al. ) in the gas
phase (see > Fig. -a, c), which is destabilized under the influence of the full solvation and
becomes the valence bound state (see > Fig. -b, d).

The solvent has a number of other effects on TNIs. First, relaxation of an excited TNI in the
condensed media is rapid owing to the coupling with the high density of states in the matrix
such as vibrational and phonon modes. Coupling to matrix energy levels quickly deactivates
the excited vibrational states (within – ps). Further, the dielectric of the medium changes
the energetics of the TNI first by the fast dielectric response, and as nuclear relaxation and
reorientation takes place in the matrix, the full dielectric response ensues. The fast electronic
response accounts for ca.  eV of stabilization and the slow dielectric response can account for
several electronvolts. This stabilization can move the TNI (resonances) from the continuum
into a valence-bound state. As a result, the autodissociation pathway is diminished or stopped
altogether. In this context, it is worth considering the effect of secondary electrons generated by
radiation damage to liquid water surrounding the DNA. It is found that on thermalization,
the spatial extent of radiation-produced electrons in liquid water is in the range of – Å
in what is considered the conduction band (Galduel et al. ; Crowell and Bartels ). In
solution, the electron has several energy states (see > Table -), all lower than in the gas
phase (see > Fig. -). The ground or the lowest energy state for the electron is the fully sol-
vated electron (e−aq), which is stabilized by several electronvolts of solvation energy.The electron
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⊡ Fig. -
BLYP/-++G(d,p)-calculated lowest unoccupied molecular orbital (LUMO) of neutral guanine
in gas phase (a) and in solution (b). The singly occupiedmolecular orbital (SOMO) of guanine anion
radical in gas phase (c) and in solution (d). The dipole-bound anion in (a, c) becomes a π∗-valence
anion in (b, d). The effect of full solvation was considered through the use of polarized continuum
model (PCM) considering the optimized gas-phase geometries

⊡ Table -
Electron type based on their energies in gas phase and in liquid water

Electron type Medium Energy (eV)

LEE Gas phase  to 

Thermalized electron Gas phase .a

LEE Water − to 

Thermalized electrons Water

Conduction band (presolvated electron [e−pre]) −

p-state (excited state of solvated electron) −

Solvated electron −.

aEnergy at  K.

can be excited to a p-state and a conduction band, which are – eV higher in energy. For the
electron–molecule interaction the energy of the electron (see >Table -)makes for a number
of possible interaction types.

The TNI of DNA stabilized in solution over a TNI of DNA in the gas phase is shown
in > Fig. -. Once formed in solution, the TNI will undergo solvent reorganization, which
liberates additional solvation energy. This occurs within a hundred picoseconds and results in
stabilization by several electronvolts. For a stable (adiabatic) anion radical to be formed, the
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⊡ Fig. -
Schematic diagram showing the addition of LEE to DNA in gas phase (e−gas) and in liquid water
via pre-hydrated electrons (e−pre) from the conduction band and by LEE addition. In the gas phase,
LEE (e−gas) can be captured into one of the UMOs of DNA (shown as SOMO after the e−gas capture)
creating theTNI (DNA−�∗

gas ). ATNI formed in the liquidwater (DNA−�∗
aq ) isquickly solvated resulting in

the adiabatic DNA radical anion (DNA−�
aq). The energy of the adiabatic radical anion must be below

the energy of the solvated electron (e−aq) to be stable to electron loss to water. For clarity, the MOs
of DNA below the HDMO (highest doubly occupied MOs) and above the SOMO are not shown in
the figure. (Figure based in part fromWang et al. )

energy must be below the energy of the solvated electron (e−aq), as shown in > Fig. -. The
adiabatically solvatedDNA radical anion (DNA�−

) can subsequently undergo protonation reac-
tions on pyrimidines for further stabilization, but will not undergo a strand break. The reaction
of the TNI to form aDNA strand breakmust take place before solvation to form the stable anion
radical. This allows only a short time window for the reaction to take place.

Because of the importance of solvation to the reactivity of electrons, studies of electrons
in water at various energy states are needed. A few recent studies (Wang et al. ; Orlando
et al. ) have appeared. The first (Wang et al. ) reported the plasmid DNA damage by
the prehydrated electron (e−pre) (energy of the conduction band in > Fig. -). The electrons
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were generated by water excitation using two UV photon laser pulses. The TNI formation was
reported to result in fast DEA processes, resulting in strand breaks. This work is the first to
suggest conduction band electrons (e−pre) would be reactive in this manner. The results appear
problematic because the concentrations of the solutes may not have been high enough to scav-
enge sufficient extremely short lived (. ps) prehydrated electrons. Confirmation experiments
are needed to verify this very interesting result. LEE-induced damage in hydrated A- and B-
DNA has also recently been studied by Orlando et al. () using elastic scattering of – eV
electrons. In this study, a featureless amplitude build up of elastic scattered electrons on the
sugar and phosphate groups was observed for all energy ranges from  to  eV.

Proposed Theoretical Models of DNADamage

After the discovery that low energy (– eV) electrons induced single- and double-strand
breaks in plasmid DNA (Boudaïffa et al. ), a number of theoretical studies have attempted
to elucidate the mechanism of LEE induction of DNA strand breaks. As the calculation of the
entire DNA molecule at the ab initio or DFT levels is currently prohibitive; fragments of DNA
structure usually including the base, sugar and phosphate attached at ′- and ′- ends of the
sugar ring have been treated.

Thefirstmechanism for LEE-induced SSBswas proposed by Simons and coworkers employ-
ing a Hartree–Fock (UHF) level of theory and -+G∗ basis set (Barrios et al. ). In their
study, they considered ′-cytidine mono phosphate (′-dCMPH) as a model of DNA and stud-
ied the ground-state potential energy surfaces (PESs) of the C′–O′ bond dissociation in the
neutral and in radical anion states, and at each C′–O′ , bond increment the geometries were
fully optimized. The calculations suggest a shape resonance, i.e., the initial attachment of the
excess electron on the π∗ virtual molecular orbital localized on the cytosine base. During the
C′–O′ bond elongation process on the PES of the anion radical, the excess electron, captured
on the base, was found to be transferred to the C′–O′ bond region (joining the sugar and
phosphate groups) at the transition state. From the calculated energy profile of C′–O′ bond
dissociation, the energy barrier was estimated to be ca.  kcal/mol and the fragmentation pro-
cess was found to be exothermic in nature. Based on this study, the authors proposed an indirect
mechanism of SSB in which an electron transfers from base (π∗) to break the remote (σ∗) C–O
bond. Here, we note that the statement “indirect mechanism” is not related to the terms direct
and indirect effect of radiation-induced DNA damage. This first theoretical calculation clearly
predicted that SSBs can occur below  eV as later found in LEE experiments (Martin et al. ;
Panajotovic et al. ).While groundbreaking in nature, this study had several drawbacks: (a)
it did not consider the higher energy shape resonances; (b) it considered the adiabatic state of
the radical anion for the bond fragmentation, not the TNI, which is the initial state of the shape
resonance formation as discussed in the > section “Shape Resonances of DNA Bases”; and (c)
it was not clear whether the proposed mechanism was pertinent to the actual DNA environ-
ment, where the bases are stacked over each other and the electron transfer process between
the bases is likely preferred over the electron transfer process to the sugar phosphate region
(Wagenknecht ).

Just after Simons’swork (Barrios et al. ), Li, Sevilla, and Sanche (Xi et al. ) proposed
that the direct attachment of the excess electron to the sugar phosphate backbone of the DNA
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⊡ Fig. -
Sugar–phosphate–sugar (S-P-S)model representing a section ofDNA backbone. Electron-induced
bond dissociations at the ′ and ′-ends of the model are investigated. Figure modified accord-
ing to the spin density distribution shown in Li and Sevilla (), which showed no valence state
but a dipole-bound precursor (Reprinted with permission from Xi et al. []. © () American
Chemical Society)

maycreate the SSB.To investigate this process, theymodeled the sugar–phosphate–sugar (S-P-S)
backbone of the DNA without bases attached to the sugar ring (see > Fig. -). Because of
the large size of the model, they used the ONIOM approach to optimize the geometry of the
S-P-S model shown in > Fig. -. In the ONIOM treatment, BLYP/-+G(d) level of the-
ory was used for the critical bond cleavage atoms (higher layer), and the semiempirical AM
method was used for the rest of the atoms (lower layer). In their treatment, they calculated the
PESs of the C′–O′and C′–O′ bonds dissociation of the S-P-S model in their neutral and
anionic radical states. The study showed that in the radical anion state, the ′- and ′-C–O
bonds cleavage occurred with a low activation barrier (ca.  kcal/mol) in comparison to the
neutral state.The bond dissociation process for radical anion was found to be highly favorable
thermodynamically (see > Fig. -). This work suggested that a vibrational excitation of the
C–O bond could capture an electron and lead to a strand break. An important aspect about the
nature of an excess electron association into the sugar phosphate region showed the formation
of the dipole-bound anion state rather than the valence anion state, which is expected as only
electronic excited states are expected to be available for electron capture in the sugar phosphate
structure.

In a recent work (Kumar and Sevilla ), the interaction of LEE with a model for DNA
(′-dTMPH) was studied at the BLYP level of theory considering both the vertical (TNI) and
the adiabatic states of the radical anion. Since the TNI (shape resonance) formation has only a
short life time of − to − s, the study was performed with the hypothesis that SSBs may
occur before as well as after molecular relaxation, as shown in > Scheme -.

In this calculation, the potential energy surface (PES) for C′–O′ bond dissociation of ′-
dTMPH in vertical and adiabatic states was calculated using both compact (-G∗) and diffuse
(-++G∗∗) basis sets. At each step on the PES, the singly occupied molecular orbital (SOMO)
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was plotted to observe the pattern of the excess electron localization on the molecular frame.
To elucidate the mechanism of SSB, the PES was scanned by stretching the C′–O′ bond from
the equilibrium bond length of the neutral and anion radical of ′-dTMPH to  Å in the incre-
ments of . Å. On the vertical radical anion (TNI) PES, the C′–O′ bond was scanned by
maintaining the remainder of the geometry in the neutral state; however, on the adiabatic state,
the geometry was optimized at each step of the bond elongation on the PES.The BLYP/-G∗

and BLYP/-++G∗∗ calculated PESs of C′–O′ bond dissociation are shown in
> Figs. - and > -, respectively. On the adiabatic surface, both methods gave simi-
lar barrier heights, i.e., . and . kcal/mol for the C′–O′ bond dissociation. The SOMO,
which is initially localized on the thymine as expected (Becker et al. ; Li and Sevilla ;
Kumar and Sevilla a), transfers to the C′–O′ bond region only after the transition state
for the C′–O′ bond rupture. For the vertical PES, BLYP/-G∗ theory predicted the bar-
rier height for C′–O′ bond dissociation as  kcal/mol, while the corresponding barrier was
predicted to be  kcal/mol at the BLYP/-++G∗∗ level of theory. An important feature of
this study is that in the vertical state excess electron begins transferring smoothly into the C′–
O′ bond region before the TS during bond elongation process; however, in the adiabatic state

0.0

−8.0
1.45 1.5 1.6 1.7

C5,–O5, (Å)
1.8 1.9 2.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

kcal/mol

B3LYP/6-31G∗

17.6
16.5

22.5

25.5
24.4

Vertical PES

TS

20.7

14.8

10.8

4.8

0.7

−7.4

1.78Å

Adiabatic PES

15.5

⊡ Fig. -
BLYP/-G∗-calculated adiabatic and vertical potential energy surfaces (PESs) of C′–O′ bond
dissociationof ′-dTMPHradical anion. Energiesanddistancesaregiven in kcal/mol andangstroms
(Å), respectively. The singly occupied molecular orbital (SOMO) is also shown (Reprinted with
permission from Kumar and Sevilla []. © () American Chemical Society)



LEE-Induced DNA Damage: Theoretical Approaches to Modeling Experiment  

−6.0
−5.8

−4.0

−2.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0.0

1.45 1.5

0.6

4.8
5.7

4.5

0.5

10.2

13.5
14.4

19.1

21.7

8.2 kcal/mol

10.9

18.0
Vertical PES

1.6 1.7 1.8 1.9 2.0

C5,–O5, (Å)

1.78Å
Adiabatic PES

TS

kcal/mol

B3LYP/6-31++G∗∗

⊡ Fig. -
BLYP/-++G∗∗-calculated adiabatic and vertical potential energy surfaces (PESs) of C′–O′
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angstroms (Å), respectively. The singly occupiedmolecular orbital (SOMO) is also shown (Reprinted
with permission from Kumar and Sevilla []. © () American Chemical Society)

electron transfer takes place from base to C′–O′ bond region after the TS (see SOMO plots
in > Figs. - and > -). The facile electron transfer from base to sugar in the vertical
state supports the hypothesis that the transiently bound electron in the TNI (shape resonance)
results in SSBs in DNA without the need for significant molecular relaxation. From this work,
it was also inferred that TNI formation may excite some specific vibrational mode which has
the lower barrier for the bond fragmentation, as already proposed by Burrow et al. (Aflatooni
et al. ; Jordan and Burrow ) and Sanche et al. (Levesque et al. ). It is also noted that
on timescale appropriate for the transition state (<− s) (Zewail ), specific vibrational
motions may dominate. Therefore, on TNI formation a vibrational excitation of the C′–O′

bond would need only a small or negligible barrier for the bond dissociation. In this model,
the incoming LEE must vibrationally excite the C′–O′ bond during the TNI (shape reso-
nance) at thymine base. Since this mechanism seems improbable, alternatively, the LEE may
directly attach into the phosphate group in an UMO and create such a vibrational excitation
through resonance formation on phosphate. From the computed vertical attachment energies
of ′-dTMPH, shown in > Fig. -, it is evident that < eV UMOs on phosphate group and
base are available to capture LEEs (Kumar and Sevilla ). Thus, it is quite possible that on
TNI formation these UMOs will excite the vibrational mode and result in SSBs.
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Excited States of TNI (Resonance Formation)

The theoretical model (Kumar and Sevilla ) of LEE attachment to the LUMO leading to
strand break formation provides one pathway that TNI formation can lead to DNA strand
breaks, but it ignores the role of shape resonances that are available at – eV and above (esti-
mated from the vertical attachment energies of the UMOs of ′-dTMPH, see > Fig. - and
Kumar and Sevilla []). It is well known that during electron–molecule interactions, a
variety of excited states can be involved. Therefore, the study of excited states of the TNI,
that model resonance states formed on the electron attachment to the parent molecule, can
be pursued to better understand LEE interactions in DNA. With this in mind, we studied the
excited states of anion radical of ′-dTMPH (as a model of DNA) using time-dependent (TD)
density functional theory (Kumar and Sevilla b). The geometries of ′-dTMPH in their
neutral and anion radical state were fully optimized using the BLYP/-G∗ method.The low-
est excited states of the TNI were calculated using TD-BLYP and TD-BHandHLYP methods
using the -G∗ basis set. In this study, a compact basis set (-G∗) was employed to avoid
the mixing of the valence states with the dipole-bound states and continuum (Li et al. ).
The assumption of this work is that the TNI (resonance) formation is equivalent to an excited
state of the electron adduct of the parent molecule. Further, the applicability of both function-
als was tested for a number of anion radicals for which experimental and theoretical values
were available (for details see the supporting information of Kumar and Sevilla [b]). Also,
the transition energies, calculated using both the methods, were compared with the available
shape resonance energies of adenine, thymine, cytosine, and uracil, as determined from the
ETS experiment (Aflatooni et al. ), and ′-dTMPH with their scaled vertical attachment
energies (see > Table -). From > Table -, we see that both the methods provide rea-
sonable estimates of shape resonance energies of the bases. However, for ′-dTMPH radical
anion, the BLYP method was found to largely underestimate the transition energies, while the
BHandHLYP method was found to give more realistic values. The problem with the BLYP
method in underestimating the long-range Coulomb interactions in charge transfer states is
well documented in the literature, and this arises from the small contribution of the Hartree–
Fock exchange (%) in the BLYP functional (Dreuw and Head-Gordon ). However, for
this case, the charge transfer state is not created during the excitation because only the excess
electron transfers between the nominally neutral portions of the molecule; this is another limi-
tation of the BLYP functional. In view of this, we employed the BHandHLYP/-G∗ method
to compute the excitation energies of ′-dTMPH radical anion in the vertical and adiabatic
states.

In this study, the ground- and excited-state potential energy surfaces were generated by
scanning the C′–O′ bond from their equilibrium bond length in neutral and anion radical
state to  Å in the step size of . Å. At each fixed C′–O′ bond length, the lowest excited
states were calculated. The excited states of the TNI of ′-dTMPH, calculated at the optimized
geometry of the neutral ′-dTMPH, are shown in > Fig. -. The TD-BHandHLYP/-
G∗ calculated three lowest transition energies of TNI were found to be π(T) → σ(PO)

∗,
π(T) → π(T)∗, and π(T) → σ(S)∗ in nature, and the corresponding transition energies are
., ., and . eV, respectively. The calculated π(T) → π(T)∗ transition energy . eV is
in good agreement with those calculated using ETS experiment of thymine (see > Table -
and > Fig. -). From the ground-state surface, it is evident that SOMO is localized on the
base as found from the ESR (electron spin resonance) experiments (Sevilla et al. ). From
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⊡ Table -
Vertical excitation energies (ΔE, eV) of transient negative ion (TNI) of DNA/RNA bases calculated
using TD-BLYP/-G∗ and TD-BHandHLYP/-G∗ methods and their comparison with available
experimental valuesa

ΔE
Transition Molecule BLYP BHandHLYP Expb,c

– Uracil – – . (π
∗)

π → π∗ . . . (π
∗)

π → π∗ . . . (π
∗)

– Thymine – – . (π
∗)

π → π∗ . . . (π
∗)

π → π∗ . . . (π
∗)

– Cytosine – – . (π
∗)

π → π∗ . . . (π
∗)

π → π∗ . . . (π
∗)

– Adenine – – . (π
∗)

π → π∗ . . . (π
∗)

π → π∗ . . . (π
∗)

– ′-dTMPHd – – (. T)d

π → π∗ . . (. T)d

π → σ∗e . . (. PO)
d

π → σ∗e . . (. S)d

aTransition energies of radical anions were calculated at the optimized neutral geometry of themolecules.
bEnergies of the shape resonances in the electron transmission spectroscopy (ETS) experiment (Aflatooni et al. ).
cπ

∗ corresponds to the energy of the singly occupiedmolecular orbital (SOMO) and its differencewithπ
∗ andπ

∗

orbital energies gives the estimate of the transition energies.
dScaled BLYP orbital energies (VOE) (Kumar and Sevilla ).
eElectron transfers from thymine (π) to PO and sugar (σ)part of ′-dTMPH (Reprintedwith permission fromKumar
and Sevilla [b]. © () American Chemical Society).

the nature of the PES in the ground state, we see that the ground state surface (lowest surface,
in > Fig. -) shows the bound character and attains the transition state at . Å with a bar-
rier height of . kcal/mol (see > Fig. -). The second and third surfaces corresponding to
π(T)→ π(T)∗ and π(T)→ σ(S)∗ transitions also exhibit the bound character. However, the first
surface, which is a π(T)→ σ(PO)

∗ type, shows a dissociative nature.
Such a dissociative nature of π→ σ∗ transitions in excited states is well documented in the

literature (Domcke and Sobolewski ; Sobolewski and Domcke ; Ashfold et al. ).
The presence of π(T) → σ(PO)

∗ transition < eV clearly indicates that LEEs with this energy
can directly attach to the sugar–phosphate group during TNI formation and result in a prompt
SSB formation inDNA.This transition is dark in nature and cannot be populated directly; how-
ever, it can be populated through vibronic coupling when the neighboring π(T) → π(T)∗ state
lies at . eV.The coupling of π∗ andσ∗ surfaces leads to a facile strand break formation within
picoseconds. Recently, Sanche and coworkers (Martin et al. ; Panajotovic et al. ) stud-
ied the yields of SSB and DSB induced by – eV electrons and found two peaks near . ± .
and . eV, respectively. Our calculated transitions at . and . eV are in reasonable agreement
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Lower curve: Potential energy surface (PES) of the ′-dTMPH transient negative ion (TNI) calculated
in the neutral optimized geometry of ′-dTMPH with C′–O′ bond elongation. SOMO is shown at
selected points. Upper curves: calculated vertical excitation energies of the radical anion at each
point along the PES; MOs involved in excitations are also shown. Energies and distances are given
in electronvolts andangstroms, respectively. The lowestππ∗ state (triangles) and lowestπσ∗ states
(square) are shown (Reprinted with permission fromKumar and Sevilla [b]. © () American
Chemical Society)

to the experimental observation. Further, the σ∗ nature of shape resonance localized on the
phosphate group in ′-dTMPH radical anion is also supported from the recent experimental
study carried out by Burrow et al. () for the temporary anion states of trimethyl phosphate
and several P=O groups containing compounds. The electron-scattering study of the A and B
forms of DNA concluded that electrons with energies between  and  eV had the largest prob-
ability of electron capture on the phosphate group versus on the other components of the DNA
(Caron and Sanche ). Experiments reported by Illenberger and coworkers (König et al.
) showed that C–O bond rupture is caused by LEE that directly attach to the phosphate
group.

More recently, the above study was extended to radical anions of a series of nucleoside
diphosphate: ′-deoxyguanosine-′,′-diphosphate(′,′-dGDP); ′-deoxyadenosine-′,′-
diphosphate (′,′-dADP); ′-deoxythymidine-′,′-diphosphate(′,′-dTDP); and ′-
deoxycytidine-′,′-diphosphate (′,′-dCDP). The excited states of these species in gas phase
and in the condensed phase in their TNI and adiabatic states were calculated using the
BHandHLYP/-G∗ method (Kumar and Sevilla ). The geometries of each species (′,′-
dGDP, ′,′-dADP, ′,′-dTDP, and ′,′-dCDP) in their neutral and radical anionic states, in
the gas phase, and in the presence of two and three water molecules were fully optimized at the
BLYP/-G∗ level of theory. In this work, the nature of the resonances under the influence of
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the bulk solvent was modeled by the use of integral equation formalism-polarized continuum
model (IEF-PCM) on the optimized hydrated geometries in the neutral and radical anion states.
To the best of our information, this was the first study that showed that while in the gas phase
the dissociative (σ∗) state is accessible by LEEs, in solution these states are blue-shifted toward
higher energy and are not accessible by LEEs having energy under  eV.This phenomenon iswell
understood from the photoelectron spectroscopy of the solvated anions. It is well known that
under solvation, anions become energetically more stable (see discussion in > section “Effect
of Solvation (Condensed Media)”) and a higher detachment energy (VDE) is needed in solu-
tion in comparison to the gas phase. As a result, the photoelectron spectra of solvated anions
have their peaks blue-shifted (Simons ; Schiedt et al. ; Eustis et al. ) in comparison
to their gas phase spectra.

In this work, the lowest vertical π → π∗, π → σ∗ excited states and core excitation of each
of the molecules in gas phase and in solution were calculated. As an example, we present the
excited states of TNI of ′, ′-dADP in the gas phase and in solvation in > Fig. -. In the
gas phase, the lowest three transitions of ′,′-dADP are π(A) → π(A)∗, π(A) → σ(′-PO)

∗,
andπ(A) → σ(′-PO)

∗ in nature and the corresponding transition energies are ., ., and
. eV, respectively. The first transition, S, occurs from SOMO(π) → (α and α)MOs
on the adenine base.The other two transitions, S and S, occur from SOMO(π) to ′- and ′-
ends of the PO group. These transitions are singly dominant transitions and each has ca. %
contribution. In > Fig. -, we present the excited states of TNI of fully solvated ′,′-dADP+
HO. In this case, we found the two lowest transitions (S and S) areπ(A) → π(A)∗ in nature
and the corresponding transition energies are . and . eV, respectively. Interestingly, the
transitions π(A) → σ(′-PO)

∗ and π(A) → σ(′-PO)
∗ are blue-shifted under solvation

toward high energy in comparison to their corresponding gas-phase values (see > Fig. -).
This phenomenon is observed for all the cases studied here (for details see Kumar and Sevilla
[]).

Since π → σ∗ states, localized on ′- and ′-ends of the PO group, are dissociative in
nature, they are of particular interest.Therefore, we also calculated the variation of the transition
energies of these states in: () gas-phase, () with discrete water molecules, and () and () in
the presence of bulk solvent with two dielectric constant values ε = . and ., respectively,
for TNI and their adiabatic states. As an example, the plot of the variation of transition energies
of π → σ(′-PO)

∗ with increasing solvation is shown in > Fig. -. From > Fig. -, it
is evident that transition energies for the π → σ∗ states increase with increasing solvation and
become less accessible by LEEs< eV.This conclusion is also supported by the earlier conclusion
of Sevilla et al. () that diffuse states are destabilized under the influence of the solvation.
Therefore, from this work we conclude that σ∗ states lie in the range of .–. eV (in the gas
phase) and are in close agreement with the experimental threshold value of . ± . eV for
creating SSBs (Martin et al. ; Panajotovic et al. ). However, the most important point
we can draw from this work is that in solution these dissociative (σ∗) states increase in energy
by several electronvolts. This clearly suggests that solvation of DNA would reduce the direct
cleavage of DNA by LEEs in the energy range of – eV.

Recently,Leszczynski andcoworkers (Baoet al. ;Guet al. )used theBLYP/DZP++
method to study the C′–O′ and C′–O′ bond cleavage in pyrimidine nucleotides anion rad-
ical in their adiabatic states. This work supported the mechanism suggested by Simons
and coworkers (Barrios et al. ). An alternative mechanism using the concept of
electron-induced proton transfer mechanism was proposed by Dabkowska et al. ()
considering a cytosine nucleotide as a model of DNA for creating SSBs in DNA. In this model,
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two electrons and a proton add to the cytosine base, which then undergoes proton transfer from
the sugar C′ site to the base subsequently resulting in strand cleavage. Such a mechanismmay
be active in radiation damage regions where several excess electrons and protons are produced
in a small spatial region, i.e., a spur. In addition to these works, a number of other studies related
to the LEE-induced DNA damage have appeared over the last few years (Zhang et al. ; Xie
et al. ; Takayanagi et al. ; Solomun et al. ; Solomun and Skalicky ).

LEE Induced Base Release

In addition to LEE-induced SSBs and DSBs in DNA, glycosidic bond cleavage (base release)
induced by LEE has also been experimentally observed by Sanche and coworkers (Zheng et al.
, , ) aswell as by Illenberger and coworkers (Ptasińska et al. ; Abdoul-Carime
et al. b). LEEs with – eV energy were found to be effective in causing base release in
thymidine, as well as in the DNA sequence ′-TpTpT-′ (Zheng et al. , ). The initial
quantum yield for thymine release in thymidine was found to be .× − pre-incident electron
(Zheng et al. ). The conversion of thymidine into thymine and sugar was proposed due to
the localization of LEEs into the antibonding MOs of N-C′ (glycosidic) bond which leads
either to homolytic or hetereolytic cleavage of the N–C′ bond joining the thymine and sugar
ring (Zheng et al. ).

Using the BLYP/DZP++ method, Schaefer and coworkers (Gu et al. ), calculated
the ground-state adiabatic PESs for the N–C′ bond dissociation considering the radical
anions of ′-deoxyribothymidine (dT) and ′-deoxyribocytidine (dC). Subsequently, a detailed
analysis of the base release process in dC, dT, and deoxyadenosine in two conformations,
i.e., dA (with internal hydrogen bonding) and dA (without hydrogen bond) was carried
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TD-BHandHLYP/-G∗ computed transition energies in TNI state of ′,′-dADP in gas phase (left)
and aqueous solution (right). The effect of bulk water solvent was considered using IEF-PCMmodel
on the trihydrated ′,′-dA�−DP system. Transition from SOMO to different MOs (shape resonance)
are shown. Transition energies are given in electronvolts (Reprinted with permission from Kumar
and Sevilla []. © () Wiley-VCH Verlag GmbH & Co. KGaAWeinheim)
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out by Li, Sanche, and Sevilla (Xi et al. ) using BLYP/-+G(d) level of theory. This
work provided some insight into the relative energies of N–C′ (glycosidic) bond dissocia-
tion of these molecules in their neutral and anion radical states in gas phase as well as in the
presence of bulk solvent via the PCM method. This study showed that LEEs in fact greatly
weakened the N–C′ bond strength of these molecules in comparison to their correspond-
ing bond strength in neutral state. The bond dissociation energy of the N–C′ bond in gas
phase is found to be exergonic for dA (ΔG = − kcal/mol) and dT (ΔG = − kcal/mol),
and is endergonic for dC (ΔG =  kcal/mol). The PESs for the N–C′ bond dissociation
of these molecules are shown in > Fig. -. From > Fig. -, it is clearly evident that
the barrier for the N–C′ bond dissociation is located between  and  kcal/mol for all
the molecules. The experimental value for LEE-induced thymine release in dT of about 
eV (ca.  kcal/mol) (Zheng et al. , , ; Ptasińska et al. ; Abdoul-Carime
et al. b) is in good agreement with the calculated value of barrier for thymine release
in dT ( kcal/mol) (see > Fig. -). From the SOMO, it was found that in adiabatic
states all the molecules showed the valence bound π∗ state. Also, on the PES as the N–
C′ bond extends from its equilibrium value, the π∗ (valence state) crosses the antibond-
ing σ∗ dissociative state at transition state and excess electron localized on N–C′ bond
region creating a negative nitrogen site on the base and a free radical at C′ site on the
sugar ring.
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Variation of transition energies (eV) of theπ → σ(′-PO)∗ excited state of nucleotides in adiabatic
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Radiation Research Society)

Effect of Solvation on Strand Break Formation

In comparison to gas-phase investigations, studies concerning electron-induced strand breaks
under the influence of solvation are few in number. From pulse radiolysis experiments, it is
well known that solvated electrons do not cause strand breaks upon attachment to DNA in
an aqueous environment (von Sonntag ; Nabben et al. ); this is discussed in detail in
> section “Effect of Solvation (Condensed Media)”. Most theoretical studies to date have
assumed adiabatic systems andhave attempted to explain the effect of solvation on strand breaks
using polarized continuum model (Simons ; Barrios et al. ; Xi et al. ; Bao et al.
; Gu et al. ; Xi et al. ).Though the PCMmodel is adequate for bulk solvent effects,
it neglects the specific local interactions and hydrogen-bonding energetics, which are substan-
tial contributions to solvation energetics and are critical in determining reaction pathways.This
level of sophistication is usually avoided owing to the increase in complexity of the treatment.

In order to gain an understanding of the influence of specific hydrogen-bonding effects in
an aqueous environment on potential strand breaks, we considered (Kumar and Sevilla )
a ′-dTMP that includes a solvation shell of  waters and a sodium counterion to neutralize
the phosphate group. Using this hydrated (′-dTMPNa +  HO) model, we calculated the
adiabatic PES of C′–O′ bond dissociation in the neutral and radical anion states using the
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BLYP/-G∗∗ level of theory. On the PES of radical anion state, we also plotted the SOMO
at each step of the C′–O′ bond elongation. This calculation showed that the solvent has a
pronounced effect which would essentially eliminate strand break formation. The barrier for
the C′–O′ bond dissociation in the radical state was found to be  kcal/mol.This is in accord
with the experimental finding that aqueous electrons do not cause strand breaks.

Very interestingly, we found that SOMO initially localized on the π∗ MO on thymine was
still localized on the thymine at the TS. However, in gas phase (see > Figs. - and > -),
the SOMO transferred to the σ∗ C′–O′ bond at the TS. The BLYP/-G∗∗ calculated AEA
and VDE of ′-dTMPNa +  HO in full solvent using PCM was found to be . and . eV,
respectively. This study confirmed that in comparison to the gas-phase, the vertical detach-
ment energies (VDEs) of the ′-dTMP radical anion in the solvated environment is enhanced
appreciably (. eV), which shows that the excess electron in the solvated anion radical is
highly stable toward electron detachment. Recently, the ′- and ′-C–O bond rupture in cyto-
sine monophosphate was studied by Schyman et al. () in the aqueous environment using
a molecular dynamics study. The authors also found a higher barrier for the ′- and ′-C–O
bond rupture. In another study, Schyman and Laaksonen () studied the C′–O′ bond dis-
sociation in guanine ′-monophosphate (′-GMPH) radical anion in gas phase as well as in
the presence of  water molecules using the BLYP/DZP++ method. In this calculation, the
authors found dipole-bound state for gas phase, which was expected. Surprisingly they also
reported dipole-bound state for the hydrated system. As has already been mentioned, in solu-
tion diffuse states such as dipole-bound states are destabilized relative to valence-bound states,
which become lower in energy (see > Fig. - and Li et al. []).This is already well estab-
lished experimentally from the photoelectron spectroscopy of nucleic acid bases (Schiedt et al.
) as well as from theoretical calculations (Li et al. ). Thus, the calculation of Schyman
and Laaksonen () for hydrated ′-GMPH radical anion is considered to be problematic.

More recently, Loos et al. () calculated the C′–O′ bond cleavage of the radical anion of
-deoxycytidine-′-monophosphatemoiety (′-dCMPH) in single- and double-strandedDNA
(′-CCC-′ sequence) in gas phase using the QM/MM approach.The authors also reported the
dipole-bound diffuse state localized near the phosphate group. They did not, however, report
the initial attachment of the excess electron on the cytosine. Thus, the approach which may be
applicable to the gas phase is not predictive for the condensed phase. A similar calculation was
already done by Simons and coworkers (Anusiewicz et al. ) considering a single-strand
CCC sequence. Due to the large size of the system, they considered the ONIOM approach.
The central nucleotide was treated with the UHF method with a -+G∗ basis set; however,
the two terminal nucleotides were treated at the lower level using a -G∗ basis set. In this
calculation, the initial attachment of an excess electron was found to be localized on the π∗

MOs of the middle cytosine showing valence-bound nature as expected from ESR experiments
(Sevilla et al. ). A recent report by Kobyłecka et al. () also showed a valence-bound
anion formation on thymine in the DNA π-stacked system using the MP/aug-cc-pVDZ
method.

Very recently, Park et al. () investigated the DNA damage caused by LEE for nucleotides
and short oligonucleotides in the solid state. The samples of TpTpT were irradiated with
monoenergetic electrons of energy  eV and subsequently analyzed by high-performance
liquid chromatography (HPLC) and mass spectrometry. The study showed that about %
of the total damage was identified as ,-dihydrothymine and % damage involved the
phosphodiester–sugar (C–O) bond and the N-glycosidic bond (CN) dissociation. However, in
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a similar type of study (Li et al. ), the total damage (base release and C–O bond cleavage)
was found to undergo a twofold decrease for the following trimer sequences in the order: TTT
>TCT >TAT >TGT.The nonmodified base release was found to be –% of the total damage
and mainly occurred from the terminal sites of the trimers. The phosphodiester–sugar (C–O)
bond cleavage was found to be only –%. Both the studies certainly conclude that an excess
electron initially attached to the base forms a stable radical anion, which protonates to form
,-dihydrothymine as observed in a variety of ESR experiments on hydrated DNA samples
(Sevilla et al. ; Gregoli et al. ). Once localized to the base, no transfer to phosphodiester–
sugar bond region is likely, as discussed in > sections “Effect of Solvation (CondensedMedia)”
and > “ProposedTheoretical Models of DNADamage”.Thus, SSBs are not produced from the
adiabatic base anion radicals by reductive cleavage.

Using BLYP/DZP++ level of theory, Gu et al. (a, b) reported the C′–O′ , C′–O′ σ

bond and N-glycosidic bond dissociation energies of anion radicals of ′-deoxycytidine-
′,′-diphosphate (′,′-dCMP), ′-deoxythymidine-′,′-diphosphate (′,′-dTMP), and
′-deoxyguanosine-′,′-diphosphate (′,′-dGMP) in gas phase and in aqueous media using
the PCM model. For ′,′-dCMP and ′,′-dTMP, the order of bond dissociation energy was
found to be C′–O′ <C′–O′ <N-glycosidic bond, and the calculated energies lie in the range
ca. – kcal/mol for both gas phase and in aqueous solution. For ′,′-dGMP, the energies for
breaking the corresponding bonds in the gas phase were calculated to be – kcal/mol, while
in aqueous solution, the energies decrease appreciably than their gas-phase values and lie in the
range ca. – kcal/mol, which indicates that C′–O′ bonds are more susceptible for cleavage
than C′–O′ bonds. However, these activated processes are unlikely in aqueous solutions since
the faster protonation reactions of the anion radicals will outcompete such processes as pointed
out above.

ESR work by Becker et al. (, ) has found evidence for both phosphodiester–sugar
(C–O) bond cleavage and P–O bond cleavage (see > Scheme -). In these experiments, free
radicals formed from  MeV/nucleon O+ ion beam irradiation of DNA samples at  K
were analyzed by the ESR and a new phosphorus-centered radical species was identified by
its large P parallel hyperfine coupling of about  G (Becker et al. ). The radical was
identified as a phosphoryl radical, which was produced by the direct dissociation of the P–O
bond. However, the yield of this radical was found to be very small (.% of the total radicals).
In other experiments, DNA samples were irradiated by Ar and Ar ion beams and these two
types of radicals were again identified by ESR at  K (Becker et al. ). These radicals were
produced from dissociation of the C-O and P–O bonds at the C′ of the sugar moiety.The yield
of the C′-dephos radical produced by C–O bond dissociation was estimated as %, while the
ROPO�−

 produced by P–O bond dissociation was estimated to be %.
Very recently, a mechanism of SSB by P–O bond fragmentation in DNA was proposed by

Rak et al. () using BLYP/-++G∗∗ level of theory. In their model, the authors proposed
that LEE initially attached to the thymine, which is subsequently protonated at the C position
of the thymine to produce the dihydro-′-thymyl radical. In the next event, intramolecular
hydrogen atom transfer takes place from C′ or C′ sites of sugar ring to the C site of the
thymine, and finally the P–O bond is broken. However, from the calculated kinetic and ther-
modynamic barriers related to the P–O bond fragmentation, the authors concluded that the
proposed mechanism was not favorable over the LEE-induced C–O bond fragmentation. ESR
studies in solution suggest protonation at C of the thymine anion radical is favored, and the
most favored reaction path for the C′ radical in aqueous media is by phosphate loss, i.e., C–O
bond cleavage.
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Conclusions

Our understanding of the interaction of low-energy electrons with DNAhas increased substan-
tially over the past few years. From experiment it is clear that single- and double-strand breaks,
base damage, and base release are all direct results of DEA. For strand breaks, addition of an
electron to the base and the sugar phosphate backbone can lead to strand breaks from shape
and core-excited resonances. From their higher energies and nature, core-excited resonances
are those likely to be involved in double-strand breaks. Simple vibrational excitations have been
shown to provide the necessary excitation when combined with an even  eV electron to result
in strand cleavage. While much work presented in this chapter has focused on the DNA com-
ponents without surroundings (“gas phase” calculations), these calculations often give diffuse
states (dipole-bound electrons and continuum states) as ground states for the system.Theoret-
ical treatments of DNA systems, relevant to biology, must include the aqueous phase, including
specificwater hydrogen bonding, as well as the base stacking and counterion placement. In such
systems, diffuse states are greatly destabilized and valence-bound states dominate. Theoretical
methods such as DFT with various solvation models are now able to treat more complex and
more biologically relevant systems. In the future, improved techniques should provide a better
understanding of the actions of LEEs with the DNA in a biological environment.
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Abstract: A comprehensive analysis of the benefits and pitfalls of quantum chemical meth-
ods used to determine the structures, properties, and functions of DNA and RNA fragments
is presented. Main emphasis is given to the application of different ab initio quantum chemi-
cal methods. An overview of computations reveals that quantum chemical methods provide an
important means to investigate structures and interactions in nucleic acids. However, judicious
selection of computational approach is necessary, depending upon the nature of the problem
under investigation.

Introduction

Over the past several decades investigations of the structure and property of nucleic acids have
been an important subject of scientific research. Such investigations have beenmotivated by the
fundamental roles played by RNA and DNA in biology.

Deoxyribonucleic acid (DNA)has been considered to be the central biologymolecule, being
the depository of genetic information, where hereditary information (of higher-level life forms)
is encoded in the form of specific sequences of hydrogen bonds formed between the purine
(adenine and guanine) and complementary pyrimidine (thymine and cytosine) bases. Obvi-
ously, any permanent variation in the hydrogen bonding pattern may change the function and
can even be lethal (especially when specific mutations accumulate). On the other hand all kinds
of beneficialmutations, ranging from small-scalemutations (such as pointmutations, insertions
and deletions) to large-scale mutations (such as chromosomal translocations), are the driving
force of evolution. This demands that the structural integrity of DNA be maintained for the
identity of each and every organism. It is, however, notable that the biology of DNA does not
depend only on the “digital” information of the base sequence. In reality, key aspects of DNA
storage in the chromatin and all major aspects of DNA-based control of gene expression are
regulated by the subtle sequence-dependent variability of conformational and physicochem-
ical properties of DNA double helix, which is definitely everything else than just a regular
double helix.

RNA was, until the s, considered a boring and unimportant cousin of DNA. However,
since earth-shaking discovery of RNAcatalysis in  (Guerrier-Takada et al. ; Kruger et al.
)( Nobel Prize for chemistry, Cech and Altman), major RNA discoveries keep coming
one after another. We now assume that the RNAmolecule is likely the primary molecule of life,
the first modern replicator, which in later stages of primary evolution created chemically more
stable DNA for better coding and proteins for more diverse catalysis. Since the early stages of
evolution, RNA has kept control over many key processes in cellular life while also acquiring
new functions. Thus, in the last two decades in biology and biochemistry much of the research
focus shifted from DNA to RNA (not reflected by adequate efforts in the field of computational
chemistry), as exemplified, e.g., by the  Nobel Prize in Physiology and Medicine awarded
to Fire andMello for their  discovery of RNA interference (Fire et al. ) and Chem-
istry Nobel Prize to Ramakrishan, Steitz and Yonath for solving (in ) the atomic-resolution
structures of the most formidable molecular machine, the ribosome (Ban et al. ;Wimberly
et al. ). A ribosome is a large RNA assembly that has been in the course of evolution sup-
plemented by dozens of ribosomal proteins. It is now well established that while less than %
of the genomic DNA codes protein sequences, over % of the genome is actually transcribed
into RNAduring the cellular life, most of it (obviously besides genes coding, e.g., ribosomal and
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transfer RNAs) as non-coding RNA molecules of yet unknown function. In other words, what
was not a long time ago considered as “junk” DNA with no obvious role has emerged as DNA
template coding for critically important regulatory RNAs that probably affect every corner of
gene expression and regulation. One example is the discovery of small RNAmolecules (micro-
RNA) that regulate gene expression at multiple levels.The structural versatility and complexity
of RNA molecules is incomparably larger than the the variability of DNA.

Although the research related to nucleic acids has grown manyfold, giving rise to vari-
ous distinct research fields, the age-old question as to the origin of life on earth remains to
be answered. We do not know if it was a spontaneous process which, over the period of time,
evolved into the current form on earth or it was endowed from outer space. In fact, we still do
not know all the species present on our planet. The existence of different simple molecules,
which can be precursers of genetic monomers, such as water, carbon mono and dioxides,
formaldehyde, nitrogen, hydrogen cyanide, hydrogen sulfide, and methane, have been shown
in cometary comas (Mix ). The purine base adenine has been observed in asteroids and
comets. The existence of significant amounts of HCN and HNC molecules in the interstellar
space is well known (Ishii et al. ). Tennekes et al. () have measured the distribution of
these isomers (HCN and HNC) in the protostellar dust core. Smith et al. () have discussed
the formation of small HCN-oligomers in the interstellar clouds. It has been demonstrated
experimentally that under certain conditions adenine can be formed from the pentameriza-
tion of HCN in the solid, liquid and gas phases (Miller and Urey ; Ponnamperuma et al.
). Based on the appearance of the brown-orange color as the consequence of impacts of
comet P/Shoemaker-Levy  on the planet in , the presence of HCN polymers has been
speculated on Jupiter (Matthews ).The coloration of the Saturn has also been speculated to
be due to the presence of HCN polymer. To understand prebiotic adenine synthesis, Glaser et al.
() recently performed theoretical calculations on the pyrimidine ring formation of mono-
cyclic HCN-pentamers and found that the key steps proceed without any catalysts producing
the purine ring under photolytic conditions and no activation barrier was involved.

It is a valid assumption to speculate that life on earth probably evolved under acute harsh
environments including the presence of different kinds of irradiations. Therefore, it is expected
that several structural transformations/refinements with respect to genetic code preservation
must have taken place. Survival of the fittest prevailed over the period of time in evolution,
thereby bringing the purine and pyrimidine bases as the genetic molecules. Further, since these
molecules absorb ultraviolet (UV) irradiation, some sort of mechanism was needed to avoid
the excited state photo reactions.Thiswas probably achieved through the ultrashort excited state
lifetimes of nucleic acid bases (Harpe and Kohler ; Middleton et al. ; Serrano-Andres
and Merchan ; Shukla and Leszczynski , ). Recent state-of-the-art investigations
have suggested that such ultrafast excitation processes are achieved through internal conversion
where excited and ground state potential energy surfaces conically intersect (Barbatti et al. ;
Bisgaard et al. ; de Vries and Hobza ; Harpe and Kohler ; Kohler ; Middleton
et al. ; Serrano-Andres and Merchan ; Shukla and Leszczynski , ; Yamazaki
et al. ). And thus, the absorbed energy is efficiently dissipated in the form of heat.Therefore,
it is not unexpected that accurate structural determination of nucleic acids and their fragments
have been one of the fundamental areas of research. Another obvious precondition that has to
be fulfilled in the initial selection of a nucleobase is its inability to tautomerize in aqueous
solution, as tautomerswouldbias anynucleobase-basedgenetic codeaswell asRNAfolding; thus
none of the native nucleobases tautomerize under biochemical conditions to any appreciable
amount.
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Computational quantum chemical techniques are fast becoming an attractive alternative to
the expensive and time-consuming experimental methods in determining the structures and
activities of molecular systems. Although we would like to state that modeling of the exact
experimental environment, in particular the large biological systems in vivo, is not yet pos-
sible, computational methods can still provide reliable predictions and thus can be useful to
experimentalists. Theoretical methods are especially attractive in the area where experimental
measurements are still not possible, e.g., the determination of excited state geometries of com-
plex molecular systems. For the smaller molecular species one can routinely apply a high level
of electron correlated methods and large basis sets, however, for larger molecular systems one
has tomake a compromise between the level of theory and the basis set and thus with computa-
tional accuracy. Experimental determination of excited state geometries of complex molecules
like nucleic acid bases is still not possible; only some limited information such as possibility of
excited state nonplanarity can be deduced. On the other hand, quantitative information about
the excited state geometries can be obtained using the reliable theoretical level, although one
has to make a compromise between the theoretical method and the size of the system under
investigation. Further, while there was some indication about the amino group nonplanarity in
nucleic acid bases in the crystal environment (McMullan et al. ), quantitative prediction
about amino group nonplanarity was obtained through the quantum mechanical calculations
about a decade ago (Leszczynski ). It should be noted that such nonplanarity in the gas
phase of molecules using experiment was obtained by Dong and Miller in  (Dong and
Miller ). However, we believe that theoretical and experimental methods are complemen-
tary to each other, and a judicious decision is needed for their efficient application. One of the
classical examples would be the tautomerism in guanine.

It is well known that due to the lowest ionization energy among nucleic acid bases, guanine
is the primary target for nucleic acid damage by ionizing irradiation (Crespo-Hernandez et al.
; Lin et al. ). Further, low-energy electrons can also cause the strand break (Boudaffa
et al. ; Gu et al. ; Kumar and Sevilla ). A recent experimental study on single-
strand DNA oligonucleotide suggests that there is a linear correlation between the low-energy
electron-induced DNA damage and the presence of the guanine molecules in the sequence
(Solomun et al. ). Further, guanine can potentially form the most diverse set of energeti-
cally accessible rare tautomers in non-polar environments. Initially, based upon the infra-red
(IR) spectroscopic analysis of guanine in the argon matrix the presence of equal proportions of
keto and enol forms was suggested (Sheina et al. ). But, the canonical form of guanine dom-
inates in the polar solvent (Leszczynski ). Theoretical methods have generally predicted
that the keto-NH tautomer of guanine is the most stable in the gas phase, but the keto-NH
tautomer dominated in the water solution. At the MP and CCSD(T) levels alongwith several
large basis sets, the four low-energy tautomers of guanine (keto-NH, keto-NH and cis- and
trans- forms of enol-NH) have been shown to bewithin  kcal/mol of energy (Gorb et al. ).
The assignments of resonance-enhancedmultiphoton ionization spectra of laser-desorbed, jet-
cooled guanine have suggested the presence of four tautomers of guanine (Mons et al. ; Nir
et al. ). Based upon the comparison of IR spectra of thermally vaporized guanine trapped
in helium droplets with that of computed vibrational frequencies at the MP level with the -
++G(d,p) and aug-cc-pVDZ basis sets, Choi andMiller () have assigned the presence of
keto-NH, keto-NH, and cis- and trans-forms of enol-NH tautomer of guanine. The results
of guanine in helium droplets necessitated the reassignment of earlier RPI data and accord-
ingly, based upon the comparison of experimental and theoretical results, Mons et al. (),
found the presence of enol-NH-trans, enol-NH and two rotamers of the keto-NH-imino
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tautomers of guanine in the supersonic jet-beam. Thus, in the new assigned RPI spectra the
stable keto-NH and keto-NH tautomers of guanine are not present. The high level of the-
oretical calculations (Chen and Li ; Marian ) on guanine tautomers also supported
the reassignment of the RPI spectra of guanine tautomers in the supersonic jet cooled beam
and suggested the presence of efficient nonradiative deactivation channels as the reason for the
missing of spectral origins of the stable tautomers in the RPI experiments. Recently, Zhou
et al. () have performed a comprehensive investigation of guanine tautomers using the
VUV photoionization technique, where the gas phase of guanine was obtained at the both
the thermal vaporization and laser desorption methods. It was revealed that the method used
to generate the gas phase sample of guanine has significant influence on the population of
tautomers in the experiment. Consequently, it was found that in the thermal vaporization,
a maximum of five most stable tautomers are populated and these results are in agreement
with that obtained in the helium droplet experiment. On the other hand, when the laser des-
orption technique was used to make a gas phase sample of guanine, up to seven tautomers
are populated. As noted above, however, guanine for obvious reasons does not tautomerize in
biochemically relevant environments, as convincingly shown more than a decade ago also by
advanced computational methods (Colominas et al. ). Eventual computations suggesting
formation of tautomers of natural bases in water are to be dismissed and are at odds with all
other experimental data.

Another unique feature of QMmethods is their capability to reveal relation betweenmolec-
ular structures and molecular energies at the level of direct (contact, gas phase, electronic
structures) interactions. This concerns mainly the two fundamental interactions, base stack-
ing and base pairing. Stacking interactions play an important role in the biological structure,
providing both thermodynamics stability and structuring of nucleic acids. For example, base
stacking is assumed to be the primary determinant of sequence-dependence of B-DNA struc-
ture and flexibility, which is the single most important feature of DNA that enters all of DNAs
molecular interactions, genetic material storage, replication and gene expression.The sequence
dependence of DNA (and the role of base stacking) has been intensely studied. Despite this, all
the experimental and theoretical research failed to provide clear rules allowing to predict the
fine B-DNA structural variability from sequence (Calladine ; Dickerson and Drew ;
Sponer and Kypr ; Suzuki et al. ; Wing et al. ; Yanagi et al. ). The research in
this area has been stalled for some time and perhaps improved description of stacking with the
help of modern QMmethods could bring some new ideas.

Base pairing (extended beyond the base – base interactions) is especially interesting in large
functional RNAs, where it determines their architectures and gives very strict constraints on
RNA evolutionary patterns (Leontis et al. ; Sponer et al. ; Stombaugh et al. ; Zirbel
et al. ). Large RNAmolecules are organized as complex (and often very dynamical) jigsaw
puzzles, where the exact shapes of the base pairs determine function and thus also allowable
mutations (isostericity principle). Nevertheless, recent studies also indicate a non-negligible
role of energy of molecular interactions supplementing the basic isostericity principle (Zirbel
et al. ).

Although stacking interactions are important and high level ab initio methods are needed to
account for such interactions, it is only possible to use thesemethods tomodel systems and very
small fragments of large biomolecules, even using the large computational resources.Therefore,
especially force fieldmethods (andQM/MMmethod to certain extent) aremainly used to study
larger biopolymers and other large biological systems. Nevertheless, QM calculations remain
instrumental in reference studies on the nature and magnitude of molecular interactions in
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nucleic acids and in verification of the othermethods.Quantum chemical calculations provided
the ultimate answer about the physico-chemical nature of base stacking and characterizedmany
other features of nucleobase interactions (Hobza and Sponer ; Morgado et al. ; Svozil
et al. ).

Hydrogen Bonding and Stacking Interactions in Nucleic Acids

The most fundamental roles of nucleic acid bases (nucleobases) in biology and chemistry is
their involvement in two qualitatively different mutual interactions: hydrogen bonding (base
pairing) and aromatic base stacking.

The base pairing is utilizing the H-bond donor and acceptor capabilities of nucleobase exo-
cyclic groups and ring nitrogen atoms. In RNA molecules, the base pairing also involves the
sugar ribose which, in contrast to DNA deoxyribose, possesses hydroxyl group in the ′ posi-
tion (Leontis et al. ; Sponer et al. a, , , ; Stombaugh et al. ). The
′-hydroxyl group is a powerful donor and acceptor of hydrogen bonds. In fact, key RNA
base pair families utilize the ′-OH group for base pairing and these extended base pairs are
known as sugar-edge (SE) base pairs or interactions. Many important “SE” base pairs include
no direct base to base H-bonds and yet they are crucially important for folding of complex
functional non-coding RNA molecules and ribonucleoprotein particles. By non-coding RNAs
we mean RNA molecules that are not translated to proteins via messenger RNA and perform
different functions instead. Note that recent research highlighted that while less than % of
the human genome directly codes for proteins, at least % of the genomic DNA is actu-
ally transcribed into RNA. Thus, majority of the genome encodes non-coding RNAs that play
absolutely essential roles in life and evolution (many of the RNA functions have yet to be dis-
covered but they are assumed to be key players in fine regulation of gene expression), which
is a finding that has truly revolutionized biology in recent years. The largest non-coding RNAs
are, obviously, ribosomal RNAs. The most important RNA tertiary interactions (A-minor and
P-interactions) are base pairs, triads, and quartets mediated by base-sugar and sugar-sugar
interactions (Sponer et al. ). Recently, the RNA base pairing classification was extended to
include base-phosphate (BPh) interactions, after recognizing that ∼% of nucleotides in ribo-
some are involved with BPh interactions with other proximal or distal nucleotides while these
interactions bring important evolutionary constraints (Zirbel et al. ).

Base stacking occurs between the aromatic faces of the nucleic acid bases and is at least
equally as important as base pairing, for both thermodynamics stabilization and shaping
of nucleic acids. Stacking is responsible for the local conformational variations and other
sequence-dependent properties of B-DNA.Unambiguous classification of base stacking ismiss-
ing. One of the reasons is flexibility of base stacking, as the stacked bases can always slide and
twist over a range of mutual stacked geometries, being not fixed by the individual H-bonds
(note, however, that many complex RNA base pairs also possesses complex conformational
space with multiple competing conformations). While classification of base pairing could have
been done purely by considering structural data (i.e., geometries seen in X-ray structures)
classification of base stacking will likely require appropriate energy analyzes.

The ab initio QM technique can be used to determine optimal structures of molecular
clusters and to calculate energies for any single geometry of the cluster. QM calculations pro-
vide molecular wave functions, which can be used to derive physicochemical properties, such
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as vibrational spectra, dipole and higher multipole moments, polarizabilites, proton affinities,
NMR parameters and others. Nevertheless, the main achievement of QM calculations was the
description of the nature and energetics of nucleobase interactions. This is because the leading
experimental approaches of structural biology, that is, mainly X-ray crystallography, provide
purely structural data. Information about energetics of molecular interactions can be inferred
only indirectly while the interpretation of structural data ignoring energetics of molecular
interactions is often misleading.

QM calculations can help to understand the role of molecular interactions in nucleic acids
because of their capability to give a direct link between structures and energies. Nevertheless,
QM calculations are always done on small systems and typically in the gas phase, that is far
from real environments and structural contexts. To make meaningful QM computations with
biological relevance, we need to follow several rules (Svozil et al. ).

First, we need tomake the strategic decision whether our computations aim to be indirectly
or directly relevant to biology. By indirect relevance we mean for example the use of QM calcu-
lations for parameterization or validation of other methods (mainly the molecular mechanical
force fields) or for basic understanding of the physical chemistry of interactions. By direct rel-
evance we mean applications that range from calculations of some specific interaction patterns
seen in structural studies (Sponer et al. ) through combined QM-bioinformatics studies
aimed at classifying interactions (Sponer et al. ; Zirbel et al. ) up to QM/MM calcu-
lations of RNA catalysis (Banáš et al. ). Then, there are at least three tactical issues that
need to be very carefully decided. We need to select the level of calculations, i.e., primarily the
method and basis set. Equally important is the appropriate choice or preparation of geometries
used in computations. Inappropriate geometries may easily blow up the whole effort and result
in computations that are misleading (Svozil et al. ). Finally, the results should be properly
interpreted. We also need to separately consider applications that deal with nucleic acid bases
but are directed to other areas of science (basic physico-chemical experiments, origin of life
studies, adsorption on surfaces, supramolecular assemblies, etc.)

Level of Computations

Let us assume that we have a dimer of two nucleic acid bases, A and B, with a given geometry.
For that geometry, the interaction energy between A and B, ΔEA. . .B , is the energy difference
between the total electronic energy of the dimer EA. . .B and the electronic energies EA and EB

of isolated bases.

ΔEAB
= EAB

− EA
− EB (.)

The interaction energy reflects a hypothetical dimerization process at  K and is not mea-
surable. In order to be related to experimental dissociation energies D and enthalpies of
formation, the deformation energy of monomers and the zero-point vibration energy must
be included. The zero-point energies and enthalpy and entropy contributions at nonzero tem-
perature are usually calculated in the harmonic approximation. Since base-pair complexes are
weak, anharmonicity can play an important role, especially for stacked systems and particularly
at higher temperatures. Nevertheless, except for direct comparison with gas phase experiment,
interaction energy evaluation is the sufficient outcome of QM analysis.
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Methods suitable for base stacking and base pairing calculations have been discussedmany
times (Morgado et al. ; Sponer et al. ; Svozil et al. ) and will thus be only briefly
noted here. With modern computers, we have methods that are satisfactorily accurate.

Base stacking stabilization is dominated by the intermolecular electron correlation effects
(i.e., the dispersion energy). Therefore, stacking calculations must be done with inclusion of
electron correlation effects and with large basis sets of atomic orbitals. The dispersion energy is
created in the space between the interacting monomers that are separated by ∼.–.Å. This
space needs to be covered by atomic orbitals, dictating the use of diffuse-polarized basis sets.
H-bonded complexes are not dominated by the dispersion energy, albeit it is still a very signif-
icant contribution. Thus, HF calculations or computations with “dispersion-neglecting” DFT
methods, while not being accurate, are not entirely incorrect. When including electron cor-
relation, higher-angular momentum functions are important for base pairing, since the space
between the interacting monomers is bridged by H-atoms so the requirement for the diffusivity
of atomic orbitals is not as strict as for stacking.

The best accuracy is achieved by complete basis set (CBS) extrapolationmethods,when two
systematically improved basis sets are applied and the data is then extrapolated.The interaction
energy computations, even with large basis sets, need to be corrected for basis set superposition
error (BSSE). We oppose suggestions to ignore the BSSE correction or to attempt only its par-
tial inclusion while assuming that the numbers can be correct due to error cancellation. This
is a risky game. It is much better to provide BSSE-corrected numbers where a solid estimate of
the underestimation of the interaction is typically possible. Fortunately, the CBS calculations
are intrinsically BSSE-free. Similarly, computations with modern parameterized DFT-Dmeth-
ods (see below) do not require BSSE correction, since it is indirectly (effectively) included via
parameterization.

H-bonded complexes are rather well described by the MP method while for aromatic
stacking this method typically significantly overshoots the stabilization. Thus, for stacking
higher-order electron correlations are quite important.

Gold Standard

Within the variation (supramolecular) approach, definitely the method of choice for interac-
tion energies would be the coupled cluster CCSD(T) method (in which the single and double
excitations are evaluated iteratively while the triple excitations are included in a non-iterative
way). The CCSD(T) method yields a significant portion of the correlation energy. The MP
method, including the double electron excitations at the second order of perturbation theory,
overestimates the correlation interaction energy for stacking, as noted above.

The determination of a CBS limit of CCSD(T) calculations is still difficult. Until recently, the
CCSD(T) calculations for larger complexes were performed only with medium basis sets (e.g.
-G∗) and even these calculations were at the computer limits. Thus, the gold standard in
base stacking and pairing calculations is the method sometimes abbreviated as CBS(T), which
utilizes the similar basis set dependence of the CCSD(T) andMP energies.Thus, the difference
between CCSD(T) andMP interaction energies (ΔECCSD(T)

−ΔEMP) exhibits small basis set
dependence and the CCSD(T)/CBS interaction energy can be approximated as

ΔECCSD(T)
CBS = ΔEMP

CBS + (ΔE
CCSD(T)

− ΔEMP
)∣medium basis set ,
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which is abbreviated as CBS(T) to distinguish from full CCSD(T)/CBS computation (Sponer
et al. , ). Various extrapolation schemes have been suggested for the determina-
tion of the ΔEMP

CBS term; the one proposed by Halkier et al. () is the most widely
used.

For aromatic stacking interactions the ΔCCSD(T) correction term is systematically non-
negligible (repulsive) and should never be omitted. ForH-bonding interactions, the ΔCCSD(T)
correction term is typically very small (Sponer et al. , , ).

Other Approaches

Earlier calculations on base stacking were done with the MP method utilizing the modified
-G∗(.) basis set (Hobza and Sponer ; Sponer et al. b, ). The polarization d-
functions of the standard -G∗ basis with an exponent of . were replaced by more diffuse
ones with an exponent of ., allowing inclusion of a major part of the dispersion energy.
While the MP/-G∗ (.) method is now outdated, the main conclusions reached by the
MP/-G∗(.) studies remain valid.

DFTmethods were for years not recommended for stacking calculations, because common
DFT methods (based on the local density, its gradient, and the local kinetic-energy density)
notoriously fail to capture the (non-local) dispersion energy (Hobza et al. ; Kristyán and
Pulay ).

This is a common feature of all LDA and GGA functionals, not excluding even the most
advanced meta-GGA functionals. Many recent DFT methods provide much better results for
dispersion-controlled complexes (Zhao and Truhlar ).

Nevertheless, we still suggest use of caution (and testing) in their application to stacking
complexes. An alternative (which can achieve, at least for now, better accuracy andmajor speed
up) is based on augmenting the DFT energy by an empirical London dispersion energy term
(Elstner et al. ; Grimme ; Jurecka et al. ).

To correct for the overlap effects the dispersion energy is damped by distance-dependent
damping function. The dispersion energy, represented by the C/R formula, is calculated sep-
arately from the DFT calculation and is simply added to the DFT energy. The disadvantage
of DFT-D methods is obviously the need to combine electronic structure calculations with
classical “force field” correction term, which also affects the transferability of these methods.
Thus thesemethods are expected to be surpassed in the future by “true” DFT-based dispersion-
including methods; however for the moment it seems to us that DFT-D is more satisfactory for
routine calculations of nucleobase interactions. One present difficulty is that we have so many
new methods in the literature that is difficult to choose. This issue is beyond the scope of this
chapter and we refer the reader to specialized literature (Banáš et al. ; Sponer et al. ).
We hope that standard (optimal) wide-spectrum dispersion-including DFTmethods will soon
be identified.

Interaction energies can also be obtained by perturbationmethods, as a sumof perturbation
contributions. The Symmetry Adapted Perturbation Theory (SAPT) provides the interaction
energy as a sum of first-, second- and higher-order perturbation terms (Heßelmann et al.
; Jeziorski et al. ). The first-order contribution contains the electrostatic and exchange
energies while the second-order term includes induction and dispersion energies. The charge
transfer energy is included in the second-order induction energy and higher-order contribu-
tions. SAPT (with extended basis sets) yields accurate values of the energy components and also
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of the total interaction energies.The determination of the interaction energy is straightforward
and is not biased by additional theoretical problems, such as the BSSE inherent to variational
methods. The broad use of SAPT is, however, hampered by large computer requirements. A
significant improvement was reached by the combination of SAPT and DFT theories (Jeziorski
et al. ).TheDFT-SAPT approach has been rather routinely used for base – base calculations.
Whenmaking SAPT decompositions, it is extremely important to use well-defined geometries,
as the SAPT components are exceptionally sensitive to inter-monomer separation, much more
than the total interaction energies. SAPTdecompositions can be spoiled by inappropriate choice
of geometries (Sponer et al. ). Note also that from the biological point of view, what pri-
marily matters are the interaction energies. Thus the usefulness of decompositions should not
be over-interpreted (Sponer et al. ).

Geometries

Quantum-chemical calculations can provide meaningful data only when the energies are
derived at appropriate geometries.

The easiest systems to deal with are well-behaved base pairs where gradient optimization
leads to relevant structures. Modern QM programs allow easy gradient optimizations of base
pairs, where all coordinates (or parameters) are optimized. Standard optimizations are not cor-
rected for BSSE. Some earlier studies where base pairs were optimized in a step-by-stepmanner
are of historical interest only. Since the optimization itself is more computer-demanding than
the subsequent interaction energy evaluation, very often a better level of theory (level X) is
used for interaction energy calculation than for optimization (level Y). This is abbreviated as
X//Y. For example, the abbreviationMP/aug-cc-pVTZ//MP/cc-pVDZ indicates that the opti-
mized structurewas obtained at theMP/cc-pVDZ levelwhile the energies were derived for this
optimized geometry at the MP/aug-cc-pVTZ level.

The gradient optimization is good for systems with well-defined local minima while the
minima correspond to the biochemically relevant structures. Stacking patterns seen in nucleic
acids do not correspond to minima on the potential energy surfaces of isolated stacked dimers
and thus conformational scanning is preferred. Further, gradient optimizations of dispersion-
controlled clusters are affected by enormous BSSE, unless a very large basis sets are used. With
lower quality methods the structures are unstable and convert to H-bonded ones. In addition,
gradient optimizations of stacked dimers lead to puckering of the aromatic ring (Hobza and
Sponer ).This is usually not desirable since in real environments the nucleobases have some
interactions at both their sides, probably preventing such puckering.Thus, stacking calculations
are mostly carried out as a series of single points with fixed geometries and rigid monomers
(Sponer et al. b, ).

An attractive option is to take structures from experimental (X-ray) studies (Sponer et al.
). However, usual accuracy of these experiments does not guarantee their straightforward
utilization inQMenergy computations. First, it is not advisable to directly usemonomer geome-
tries from PDB files of NAX-ray structures. Due to limited resolution themonomer geometries
carry limited experimental information about monomer geometries while the bases are often
deformed after the refinement. Such deformed monomer geometries frustrate the electronic
structure. It is necessary to replace (for example via overlay) the monomers from the PDB files
via QM-optimized monomers.
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In addition, intermolecular X-ray geometries may cause substantial errors in calculations.
Especially drastic distortions of the calculated energies can be introduced by steric clashes in the
refined crystal structures (Sponer and Kypr ). A real nightmare occurs when the X-ray base
stacks are effectively vertically compressed or extended due to inaccurate determination of the
interbase angles (propeller twist, base pair roll, etc). This requires a case-by-case judgment and
some experience with crystallography. Note that a rather small error in the interbase distances
(whichmay still be tolerable from the geometry point of view) can lead to a considerable energy
artifact. This is when the geometry falls into a region of interatomic distances where the short-
range repulsion starts to dominate.The calculated energy is a highly nonlinear function of the
interatomic distance (Sponer et al. ).

Similarly, H-bonded base pairs are sensitive to experimental geometry errors due to the gen-
uine close contact betweenH-bondpartners. Besides data and refinement errors a bad geometry
can result from the presence of two or more local substates. Substates cannot be distinguished
except as having nominal resolution better than ∼ Å.The refined geometry reflects an averaged
geometry which may have very poor energy. Fiber diffraction models cannot be recommended
for direct calculations (Svozil et al. ).

We would like to caution against using averaged (D-bioinformatics) geometries, as they
can represent unrealistic single structures from the energy point of view. It is always advisable
to generate a range of structures around such geometries and to analyze the properties of the
potential energy surfaces. Actually, an open question remains whether the base stacking can be
characterizedby some single representative geometry.Most likely stacking states correspond to a
range of populated geometries, as evidenced, for example, by significant coordinate fluctuations
seen for stacked bases in explicit solvent molecular dynamics simulations (Svozil et al. ).

We are interested in analyzes of specific interactions which are neither stacking nor
H-bonding and are substantially affected by the overall topology of the studied systems. The
best approach is to fix the intermolecular geometry of interest (typically using a set of three
dihedrals and two valence angles plus one intermonomer distance per each dimer) and then
relax the monomers intramolecularly (Sponer andHobza ; Sponer et al. ; Vlieghe et al.
). This approach has been applied in studies of cross-strand close amino group contacts in
B-DNA, DNA-drug interactions, bifurcated H-bonds, out-of-plane H-bonds and some other
interactions. If a steric clash is suspected, then the intermonomer distance can again be varied
(Sponer and Hobza ; Sponer et al. ; Vlieghe et al. ).

A specific problem is represented by the complex RNA base pairing patterns involving the
sugar edges (Sponer et al. a, b, ). Many of these base pairs have multiple minima. For
many of them, the functional (observed) structures do not correspond to any intrinsic gas phase
minimum energy structures, since they are constrained by other interactions and the overall
RNA topology. Some base pairs can be intrinsically water-mediated.Huge problems in compu-
tations can be created by the sugar hydroxyl group in position ′, which normally is involved in
the covalent backbone chain. One option is ′-methylation. In some cases the phosphate groups
participate in the interactions and need to be included in computations. This creates problems
due to a strong ionic nature of the associated interactions which are, in real systems, obviously
attenuated by solvent screening. Close to insurmountable electrostatic problems arise when
more than one phosphate directly participates in the interaction. Thus, QM studies of RNA
base pairs often require applications of sophisticated geometrical constraints which need to be
implemented case by case. For non-neutral systems, even optimizations upon inclusion of con-
tinuum solvent could be a viable option. The situation is further complicated by very limited
resolution of the experimental structures of folded RNAs (not mentioning ribosome) and their
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dynamical nature.This can lead to large coordinate errors (including poorly refined syn vs. anti
orientation of the bases or incorrect sugar puckers).Thus, studies of RNAbase pairs are far from
routine. Studies of geometries that are substantially rearranged compared to the experimental
structures are of a little value, similar to studies neglecting the sugar rings for base pairs where
the ′-OH groups are directly involved in base pairing.

When gradient optimization is carried out, the monomer geometries are changed upon
complexation.This is due tomutual adaptations of the monomers that improve the intermolec-
ular interaction at the expense of the intramolecular energy terms. Some of the deformations
can be directly related to the binding strength. However, for larger systems, some monomer
rearrangements reflect rather long-range effects. For example, there could be a substantial re-
orientation of the flexible sugar-phosphate backbone upon complex formation.Thus, real defor-
mations consist of two contributions. Direct deformations (always present) reflect the strength
of the binding and may be complemented by various indirect larger-scale conformational rear-
rangements. Besides real deformations, the BSSE contributes to the deformationwhen standard
gradient optimization is applied. The BSSE contribution is obviously a computational artifact.

As explained above, the interaction energies of the optimized complexes should be a pos-
teriori corrected for the BSSE using the geometry of the complex and dimer-centered basis
set. Then we separately calculate the deformation energy using the monomer basis sets, as dif-
ference of monomer energies in the deformed (complex) and optimized (isolated) monomer
geometries.

EA
Def = E

A(dimer geometry)
− EA(monomer geometry)

Thus, the interaction energy of a dimer is defined in the following way:

ΔEA. . .B
= EA. . .B

− (EA
+ EB
) + EA

Def + E
B
Def .

The first three energies are calculated in a dimer-centered basis set. The intramolecular
deformation energy actually cancels a large part of the intermolecular energy improvement
caused by mutual monomer adaptations.

In some of the literature, the authors include deformation energy formally as part of the
BSSE correction. We consider this a weird option which may substantially spoil the interpre-
tation of the results. Although it might look more sophisticated mathematically, this approach
is misleading, mixing apples and oranges, and is especially unsuitable for larger systems such
as base pairs and other fragments of biopolymers (Sponer et al. ). In fact, the integrated
expression is, after formal rearrangements, entirely identical to the above definition, which
in addition is older (Sponer et al. a), i.e., the correction was commonly known before
researchers started to include deformations into BSSE correction. Second, while BSSE is a
mathematical artifact, monomer deformations are not. They correspond to fundamental prop-
erties of the studied clusters including their vibrational spectra and polarization/charge transfer
effects.Thus, it is useful to evaluate the magnitude of the monomer deformations explicitly. For
flexible systemswith large indirect rearrangements (as explained above) any formal inclusion of
the deformation term into the BSSE correction ismeaningless.Thus, albeit widespread, for base
pairs and larger systems of chemical and biological interest, this approach it is not appropriate
(Szalewicz and Jeziorski ).

An alternative approach is to use counterpoise-corrected gradient optimization where the
BSSE is removed in each gradient iteration, althoughwith a substantial increase of the computer
requirements. It eliminates the BSSE part of the deformation energies while true deformations
persist.
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In base pairing studies the deformation energy can be calculated either with respect to the
planar monomers, thus neglecting the amino group nonplanarity, or with respect to nonpla-
nar bases. These two numbers differ simply by the difference between energies of planar and
noplanar monomers and can be easily compared when needed (Sponer et al. ).

Interpreting the Computations

QMcalculations (on nucleobase dimers) reveal the binding energy between two bases in the gas
phase, i.e., in complete isolation.They thus describe the intrinsic interactions of the systemswith
no perturbation by external effects such as solvent. The intrinsic intermolecular stabilities are
directly linked to molecular structures and can be derived in any selected geometry. However,
the gas phase interaction energies donot correspond to the stability of the interactions in nucleic
acids, asmeasured by thermodynamics experiments. It is not possible to easily correlate the QM
calculations with measured base pairing and stacking stabilities in nucleic acids. The apparent
(measured) strength of the base-base interactions in nucleic acids in various experiments is
determined by a complex interplay of many factors and the intrinsic base–base term is only one
of them. Many researchers incorrectly believe that the experiments reflect the “true” stabilities
of base–base interactions and vice versa.

A textbook example of complexity of molecular interactions is stacking of consecutive pro-
tonated cytosines. This is a highly repulsive interaction in the gas phase due to a charge–charge
repulsion (Sponer et al. c). Nevertheless, in intercalated i-DNA quadruplex, stacking of a
set of consecutive closely spaced protonated cytosines occurs (Gehring et al. ). The i-DNA
tetraplex is paired via cytosine – protonated (N) cytosine base pairs, each possessing charge
+. Both cytosines are equivalent in X-ray and NMR experiments suggesting rather fast intra-
basepair proton switches (Chen et al. ). Two duplexes intercalate to form the tetraplex.
Stability of i-motif is due to this massive accumulation of closely spaced protonated base pairs.
In i-DNA, the vertical repulsion between consecutive protonated base pairs is counterbalanced
by solvent screening effects and possibly specific interactionswith the anionic backbone (Spack-
ova et al. ). Thus i-DNA indeed has, in contrast to other DNAs, repulsive intrinsic stacking
energy terms.This example clearly demonstrates the actual magnitude of mutual compensation
ofmolecular interactions in nucleic acids.The i-DNAstability contradicts the gas phase stacking
energy calculations and demonstrates why we cannot use these calculations to directly predict
DNA stability. However, the relation can be also reversed. It is not possible to unambiguously
evaluate the intrinsic stacking energetics based on thermodynamics studies of nucleic acids.
There is no unambiguous way to decompose the measured free energies into separate terms
that would correspond to stacking, base pairing, etc. In other words, we cannot make straight-
forward extrapolation from gas phase to nucleic acids while, conversely, studies of nucleic acids
bring no unambiguous information about the intrinsic base–base terms.

To show the full complexity of molecular interactions, let us underline that the screening
is specific for i-DNA. Strikingly contrasting i-DNA is the behavior of consecutive protonated
cytosines in C+-G.C triples of Pyr-Pur.Pyr triplexes. Consecutive protonated cytosines would
be needed to recognize consecutive guanines in the second strand (Soliva et al. ). The ver-
tical position of protonated cytosines in triplex would adopt arrangement closely resembling
i-DNA and also planar H-bonding of the third-strand protonated cytosines to N of second-
strand guanines resembles the i-DNA base pairing. However, this sharply destabilizes the DNA
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triplex, and even two or three consecutive CH+ are not tolerated. This indicates that in triplex
the screening of the vertical electrostatic repulsion by the backbone and solvent is less efficient
than in i-DNA. Thus in this particular case of i-DNA and triplexes we cannot transfer experi-
ence concerning nucleobase interactions between two DNA forms. Each case should be studied
separately. In other words, a given type of base pairing and base stacking may have entirely
opposite roles in different nucleic acid forms. A given interaction may be a crucial stabiliz-
ing factor for one type of nucleic acid architecture (protonation of consecutive cytosines in the
i-motif) while it may be even not tolerated in another architecture. This illustrates that there is
no way to design some ultimate experiments to decide about the common nature of base stack-
ing in nucleic acids.This simply is a wrong question. In order to understand the interactions in
nucleic acids, we need to consider a wide range of systems and the gas phase data represent an
important part of the overall picture.

It is nevertheless clear that proper inclusion of solvent screening could help in interpreta-
tion of the QM data. Unfortunately, accurate inclusion of solvent effects into QM calculations
is difficult. One option is to extend the studied system by a finite set of explicit watermolecules.
Such calculations still deal with a gas phase molecular cluster and do not correspond to bulk
hydration. The cluster hydration patterns differ from those in water where the first shell waters
interact with the second shell, etc., and the whole system is dynamical, as evidenced by large-
scale explicit solvent simulations of nucleic acids. In a small cluster, individual water molecules
will form bridges and zippers between bases in order tomaximize the number of H-bonds.The
hydration picture in solution (MD data) and X-ray structures is different and reveals simple
non-cooperative in-plane hydration of the polar nucleobase sites (the nitrogens and oxygens).
Water binding sites in common hydration sites around nucleic acids have water binding times
∼– ps. In complex RNA molecules or in molecular complexes, some hydration sites may
be occupied by tightly bound water molecules (Réblová et al. ). A substantial problem
of cluster calculations is that the potential energy surface contains a large number of minima
and, without an efficient sampling technique, it is virtually impossible to verify the true global
minimum (Kabelác and Hobza ).

The other option is to include the solvent as a polarizable continuum. QM methods con-
sider effects of the continuum on the electronic structure of the solute molecules, in contrast
to classical continuum approaches. The outcomes are quite sensitive to the choice of param-
eters such as the atomic radii used to define the “solute” cavity; no universal accurate set of
“true” radii can be established. The continuum calculations may be combined with cluster cal-
culations, where the first hydration shell is treated explicitly. Even if QM continuum solvent
calculation is properly performed, such calculations are not sufficient to achieve a direct corre-
spondence with thermodynamics experiments. In practice we are neglecting, for example, the
loss of degrees of freedom upon duplex formation, all effects associated with the presence of
sugar-phosphate backbone including the only partial exposure of the bases to the solvent, etc.
In addition, different base sequences are likely associatedwith different solute flexibilities (some
base pair step sequences are stiff, others flexible) whichwill contribute to the free energy balance
via solute entropy contributions. Reliable evaluation of these contributions is outside the appli-
cability of available computational methods. Thus, the continuum solvent calculations should
be considered just as rough estimates of the attenuation of the electrostatic contributions to the
free energy upon solvation, which are still far from fully competent free energy computations.

All of the above-mentioned considerations explain why the QM calculations on base stack-
ing and base pairing do not (and should not) correlate with the measured thermodynamics
properties of nucleic acids.Therefore, QMcalculations and intrinsic interaction energies should



Computational Modeling of DNA and RNA Fragments  

never be interpreted as straightforward determinants of nucleic acid stabilities. This naive
over-interpretation of otherwise very valuable computed data can discredit the computations.
There is a plenty of evidence suggesting that the role of molecular interactions in thermody-
namics stabilization of even the simplest duplex nucleic acids is more complex than usually
assumed, and results from tiny, irregular, and case-specific interplays of all molecular forces,
where literally a single specific hydration site or pocket can change the balance. Even simple
basemodifications and substitutions, as small as deletions of a single exocyclic group, may have
complex and, at first sight, mutually contradicting context-dependent impacts on the mea-
sured thermodynamics stabilities that cannot be a priori predicted (Chen and Turner ;
Siegfried et al. ).

We nevertheless suggest that this enormous complexity of molecular interactions defines
new roles for modern computations, combing well-calibrated simulation approaches and accu-
rate QM calculations. The calculations can provide key insights into the tricky games of
molecular interactions that are shaping up the molecules with their associated free energies
and that are not fully understandable based on purely experimental approaches (Kopitz et al.
; Yildirim and Turner ; Yildirim et al. ).

Conclusion

QM calculations represent the leading tool to study intrinsic molecular interactions in nucleic
acids, such as base stacking and base pairing. However, the QM data should not be over-
interpreted and any extrapolation tonucleic acids requires proper consideration of the gas phase
nature of QM calculations. In addition, in order to obtain meaningful QM data, basic method-
ological requirements must be fulfilled. These include, in addition to the obvious selection of
appropriate level of calculations, very careful selection or determination of geometries, which
is discussed in detail in this chapter.
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Abstract: This review summarizes computational studies devoted to interactions of metal
cations with nucleobases, nucleotides, and short oligonucleotides considered as DNA/RNA
models. Since this topic is complex, basically only the results obtained using ab initio and DFT
methods are discussed. Part I focusesmainly on the interactions of the isolated baseswithmetal
cations in bare, hydrated, and ligated forms. First, interactions of bare cations with nucleobases
in gas phase approach are mentioned. Later, solvation effects using polarizable continuum
models are analyzed and a comparison with explicitly hydrated ions is presented. In Part II,
adducts of alkalimetal,metal of alkaline earth, and zinc groupmetal cationswith canonical base
pairs are discussed. A separate section is devoted to platinum complexes related to anticancer
treatment. Stacked bases and larger systems are discussed in last section. Here, semiempirical
methods andmolecular modeling are also discussed due to extensive size of studied complexes.

Introduction

This chapter provides a brief overview of recent model calculations and simulations of metal
interactions with nucleic acid (NA) bases, base pairs, and short oligomers. For historical rea-
sons alkali metals andmetals of alkaline earth are discussed first. All possible forms (or models)
of the metal cations are considered, starting with bare cations, which have been studied mostly
in earlier papers. In addition, complexes with hydrated or ligated cations investigated in more
recent works are also reviewed. Despite the simplicity of bare cations and the fact that their
bonding energies are overestimated due to an exaggerated contribution of Coulomb interac-
tion, these models enable a clear insight into basic bonding characteristics and other electronic
properties.Many studies have focused on transitionmetal complexes,motivated by known anti-
cancer activity of cisplatin and related metallodrugs. While in the binding of alkali metals the
electrostatic contribution dominates, the coordination covalent character is also an important
term in the complexes of transition metals.

In general, the structure and function of DNA are dependent on metal ions. These ions can
interact with many sites in DNA (Saenger ; Sigel ), including the phosphate groups,
the sugar moiety, and the DNA bases. While metal cations usually interact with the phosphate
group and, to a lesser extent, with the bases, cation–base interactions are expected to be involved
in many important biophysical processes, such as different stabilization of DNA triple helices
(Potaman and Soyfer ), stabilization of quadruple helices (Hud et al. ), and stabilization
of the ribose-base stacking in Z-DNA (Egli and Gessner ). It is assumed that the interac-
tion of a divalent cation with the base can cause significant polarization of the bases associated
with stabilization of certain H-bonded DNA base pairs and other interactions (Anwander et al.
; Egli and Gessner ; Hud et al. ). However, the most ions do not interact with
nucleic acids in a direct manner but rather contribute to an unspecific loose ion atmosphere
around the nucleic acids (Chu et al. ). Note that while theoretical studies usually deal with
binding of cations to DNA, the RNA cation binding is much more biochemically important
and diverse. Many folded RNAs contain indispensable specific structural ions that may also be
directly involved in RNA catalysis (Banas et al. ; Draper et al. ; Lilley and Eckstein
).

In the DNA double helix, the known sites for the cation coordination are mainly the N
atoms of purines, while a simultaneous interactionwith theO atomof guanine is also acknowl-
edged. Some other sites, such as N of cytosine and N of adenine, are blocked by the hydrogen
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bonding. It should be noted that the metal cation interactions are not restricted only to the
DNAbases.The cation can simultaneously interactwith the phosphate group and is usually sur-
rounded by water molecules or by various ligands. The coordinated metal cations can interact
with the DNA base directly (inner-sphere coordination) or a water molecule can link the DNA
base with the metal cation (outer-sphere coordination) (Egli et al. ; Sigel ). Experimen-
tal studies on ′-monophosphates revealed the following order of macrochelate coordination
involving the N position of purines: GMP > IMP (I - inosine) >AMP (Sigel ). This order
was explained as a result of different basicity of the N sites of guanosine, inosine, and adenine.
It also correlates with the dipole moments of DNA bases.

Properties of Metal Adducts with Nucleobases

Interaction of Bare Cations with Bases

Thefirstmodels investigated in connection withmetal–nucleobases interactions employed bare
cations. One of the pioneering studies on this topic was published in  by Rozsnyai and
Ladik (Rozsnyai and Ladik ), who considered the influence of water and divalent ions on
base pairing. This paper was followed by del Bene’s ab initio calculations (Del Bene ). She
explored interactions of isolated Li+ cation with all DNA bases. In this early work, all the basic
features of modern quantum chemical calculations are already present – the structures were
optimized at the HF/STO-G level with single point calculations (SP) using the double-zeta
basis set (-G). As the most stable adduct, the [Li-(Gua-O,N)]+ chelate was established
(with association energy of . kcal/mol) followed by cytosine complex [Li-(Cyt-O,N)]+

(. kcal/mol). The interaction energy of the most stable adenine conformer [Li-(Ade-N)]+

was estimated to be substantially lower – about . kcal/mol. These energies clearly demon-
strate the dominant role of monopole (the cation)–dipole moment (the nucleobases) electro-
static interaction. In the study, both O and O thymine complexes were predicted to be more
stable than the adenine adducts by about  kcal/mol. Soon after this keystone study, another
work dealing with interactions of the A-T and G-C base pairs with the Li+ cation appeared
(Del Bene ). In the most stable Li+-A-T conformer, the Li cation was coordinated to the
O site of thymine. In the G-C pair, the N position of guanine was preferred by  kcal/mol
over O, N chelate structure. We address here one important point: The numbers above, as
well as most other numbers in this part, refer to gas phase interactions of metal cations with
nucleic acids components. Such interactions are dominated by ionic electrostatic effects, which
drastically become (almost completely) extinct in nucleic acids as well as in typical bioinorganic
experiments. This must be kept in mind when interpreting the results. For more discussion of
various aspects of the interplay between the gas phase interactions and real systems (see Burda
et al. ; Petrov and Lamm ; Schmidt et al. ; Šponer et al. ).

Metal coordination sites in natural nucleotides are: (a) oxygen atoms of phosphate groups
where cations neutralize the negative charge (these sites can be considered quite unspecific
for any cation); (b) hydroxyl groups of sugar moiety usually chosen by alkali metals or met-
als of alkaline earth; (c) nitrogen atoms of heterocyclic bases – especially N, N, and N
atoms of purine and N of pyrimidine bases, which exhibit large affinity to cations or gener-
ally electrophilles (in DNA/RNA oligomeric sequences only sites in minor or major grooves
are accessible for interactions; this means that solely the N and N sites of purine bases are
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⊡ Table -
Preferred sites for metalation and protonation

Base Coordination Protonation

Adenine N>N N>N

Cytosine N N

Guanine N>N N>N

Thymine, uracil O>O O>O

available for the interactions); and (d) oxygens of keto-groups (O of cytosine, O of guanine
and O, O of thymine and uracil) as positions for binding of “hard” cations, e.g., alkali metals
(and less frequently for transition metal).

Comparing cation coordination and protonation of these active sites, large similarities can
be noticed in the case of guanine, cf. >Table -. On the contrary,more remarkable differences
are observed for adenine, uracil, or thymine.

Coordination of theMg+ cation to purineDNAbases was recently explored inmany exper-
imental as well as computational studies (e.g., Elmahdaoui and Tajmirriahi ; Sychrovsky
et al. ), where bonding properties of selected mono- and divalent metal cations with N
position of guanine and adenine were examined.

The interaction of baremonovalent (alkalimetals and coinagemetals) and divalent (alkaline
earth and zinc group metals) cations with the N site of purine NA bases was examined in gas
phase using MP/-G(d,p)//HF/-G(d,p) level of theory (Burda et al. ). A graphical
illustration of the dependence of the coordination distance on the atomic number of the cations
is displayed in > Fig. -. The intermolecular M-N distance monotonically increase with the
atomic numbers for the alkali metals andmetals of alkaline earths (cf. > Fig. -).This increase
of the distances is more pronounced for the alkali metalswhere it exceeds  Å.The calculatedM-
N distances for both types of metals correlate well with the known ionic radii, e.g., Lide ().
The influence of the relativity for the s and p electrons (Cs+, Ba+) is not as pronounced as
for the d electrons (Au+, Hg+) (Pyykko ).

The stabilization energies of base...M complexes were determined according to the formula:

ΔEStab
= − [ECompl ex

− (Ebase
BSSE − E

metal
BSSE )] + ΔE

base
de f orm (.)

Here, Ebase
BSSE represents total energy of the base (adenine or guanine) within the basis

set superposition error (BSSE) scheme of Boys Bernardi (). The results are displayed
in > Fig. -, and it is evident that the values for guanine complexes are systematically larger
than those of adenine.This is due to the larger dipolemoment of guanine and themore favorable
orientation of the ions and guanine dipole moment, as can be seen in > Fig. - a and c. The
stabilization energies of the complexes with divalent ions are larger than those with monovalent
ions and, as can be expected, the stabilization energies decrease with increasing atomic number
of the metal ions. The only exception is revealed for the Au+ and Hg+ complexes, where, due
to the more pronounced relativistic effects, the respective stabilization energies are larger than
the energies of the preceding cations (Ag+ and Cd+).

In the coinage and zinc-group metal complexes, the bonding interaction is markedly
stronger in comparison with coordination of the Ia and IIa metals. This is due to the pres-
ence of lower-energy vacant s-orbitals (compared with the same orbitals of the alkali metals),
enabling to some extent the dative bonding into these orbitals from the occupied orbitals of the
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⊡ Fig. -
Metal-base distances for Ia, Ibmonovalent, and IIa and IIb divalent cations interactingwithN (and
O) guanine and adenine sites

bases. This leads to the increase of covalent character of the interaction that explains the basic
difference between coordination of K+ and Cu+ cations.

Complexes with a Li+ bare cation were computationally explored in gas phase by Ruso
et al. () at the DFT(BLYP) level within several basis sets. They found that the most sta-
ble complex of adenine and lithium is imino-tautomer with N, N coordination. In this way,
a five-membered chelate is formed where the Li+-N bond is . Å and Li+-N distance is
.Å. The remaining explored (amino) structures, [Li-(Ade-N,N)]+ , [Li-(Ade-N,N)]+,
and [Li-(Ade-N)]+, lie about , , and  kcal/mol higher on the potential energy surface.
In the guanine adducts, the most stable structure is [Li-(Gua-O,N)]+, followed by chelate
[Li-(Gua-N,N)]+, its enol form, and the enol form of the (O,N)-chelate, which are , ,
and  kcal/mol less stable.The interaction of lithiumcationwith uracil yields complexeswith an
energy difference lower than that revealed between corresponding isolated isomers but the sta-
bility order remains unchanged.The most stable complex with uracil is [Li-(Ura-O)]+ adduct
(cf. > Fig. -). The chelate structures [Li-(Ura-O,N)]+ and [Li-(Ura-O,N)]+ lie about 
and  kcal/mol above the global minimum and the [Li-(Ura-O)]+ adduct is about  kcal/mol
above the O-conformer. This fact clearly shows the electrostatic origin of the interaction when
one considers the direction of the uracil dipole moment. In the case of thymine, a similar
picture is revealed, only the differences are slightly smaller. The relative energy of two higher-
lying tautomers with respect to [Li-(Thy-O)]+ adduct are  kcal/mol for (O,N)-chelate and
 kcal/mol for (N,O)-chelate. In the cytosine complexes, the [Li-(Cyt-O,N)]+structure is
the most stable minimum followed by enol tautomer of [Li-(Cyt-N,O)]+ , and the enol form
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⊡ Fig. -
Structure of the [Li-(Ura-O,N)]+ cation (enol form of O,N-chelate)

of [Li-(Cyt-O,N)]+ (whereN proton is transferred toO site).These two complexes lie about
 and  kcal/mol higher on the potential energy surface.

The coordination of divalent metal cations with the phosphate group of various nucleotides
(GMP, AMP, UMP, and CMP) was studied by Varnali (Varnali and Tozumcalgan ). In her
study a semiempirical PM method was used. From the results it follows that the most stable
metal adducts are formed with the phosphate group of AMP, closely followed by CMP for all
explored metals.

The calculations of the NMR spin-spin coupling constants and the NMR shifts of the
direct and water-mediated binding of a divalent metal cations to guanine were performed
by Sychrovský (Sychrovsky et al. ). The intermolecular coupling constants ()J(X, O)
and ()J(X, N) (X =Mg+, Zn+) were unambiguously assigned to the specific binding motif
of the hydrated cation with O and N sites of guanine. The calculated coupling constants
()J(Mg, O) and ()J(Zn, O) were . and −.Hz for the inner-shell complex where the
cation is directly interacting with the guanine O position. For the inner-shell coordination
of the cation at nitrogen N, the calculated coupling constants ()J(Mg,N) and ()J(Zn,N)
were . and −.Hz, respectively. When the cation binding is water-mediated, the corre-
sponding coupling constants are zero. The calculated NMR shifts δ(N)=−. and −. ppm
upon the coordination of Mg+ and Zn+ ion are similar to the NMR shift of . ppm toward
the high field measured by Tanaka (Tanaka et al. ) for the coordination of Cd+to the
N-guanine site.

The BLYP/-+G(df,p) level was used to explore geometry of all possible adducts orig-
inating from the interaction of Cu+ cation with the most stable tautomers of DNA and RNA
free bases (Marino et al. ). Several attachment sites for both purine and pyrimidine bases
have been taken into account for possible formation of both mono-adducts and chelates. The
copper ion (II) has the highest affinity for the most stable tautomer of guanine base.

Also, a comparison of various divalent metal cation complexes (Zn+, Cu+, Ni+) with
hypoxanthine and uracil was performed byMatsubara (Matsubara andHirao ).TheBLYP
level stabilization energies of both M(II)-hypoxanthine and M(II)-uracil complexes reflect the
strength of the M–N(base) interaction, giving the same sequence Zn+ >Cu+ >Ni+ for
both bases.
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Metal Interactions in Implicit Solvent Model

The calculated interaction energies of the bare cations with nucleobases reveal large over-
estimation of the electrostatic interaction in comparison with experimental samples. This
overestimation is clearly due to the uncompensated charge of the bare cation since cations in
water solution are surrounded by solvent molecules. In this way the charge of the cation is
screened and the electrostatic part of the metal–base interaction is substantially reduced. The
role of electrostatic contribution in the case of the Pt-base coordination will be demonstrated
later. As the approach of PCMmodels is very popular there are a large number of such studies.
Here only a few recent works will be mentioned.

In  Ai published a study (Ai et al. ) on tautomer equilibrium of adenine in the
presence of Zn+ cation at the DFT level (BLYP/-+G**). It was found that the [Zn-(Ade-
N,N)]+ imino complex is the most stable structure in accord with the gas phase calculations
of Kabeláč (Kabeláč and Hobza ). The latter calculations explored tautomers of all DNA
bases in the presence of Na+, Mg+, and Zn+ bare cations evaluated at the RI-MP/TZVPP
level of theory.

Metal cation binding to deoxyguanosine monophosphate was examined by Bouř
(Andrushchenko and Bouř ). Infrared spectra of complexes with Na+, Mg+, Ca+, Ni+,
Cu+, Zn+, and Cd+ cations were recorded and interpreted on the basis of density functional
theory. The solvation effects were simulated by PCM and cluster models (combined explicit
solvent and PCM). The coordination to the guanine N position was considered and obtained
calculated spectra predict a blue-shift of the characteristic , cm− frequency, in accord with
experimental data. Binding to the phosphate group causes significant spectral changes in the
sugar-phosphate vibration region but also notable frequency shifts of the carbonyl vibrations.
The Cu+ and Zn+ cations induced the largest changes in measured vibrational absorption,
which corresponds to the computationally determined strong interaction energies in the N-
complexes. The Cu+ binding to guanine was revealed to be a two-step process, which was also
confirmed by the microcalorimetry titration curve.

Another study on interaction of bare cations with metabolite of purine bases – uric acid
should bementioned (Allen et al. ).The geometries of the complexes of Li+, Na+, K+, Be+,
Mg+, and Ca+metal cations with various nucleophilic sites of uric acid were optimized at the
BLYP/-++G(d,p) level. Single point energy calculations were performed at the MP/-
++G(d,p) level. It was found that cations mainly form chelate structures with a bidentate
coordination. In the gas phase, the most preferred position for the interaction of Li+, Na+,
and K+monovalent cations is between the N and O sites, while all divalent cations prefer
coordination between the N and O sites of the urate. The influence of aqueous solvent on
the relative stability of various complexes was examined by PCM model. The BSSE corrected
interaction energies were also determined. It was found that aqueous solution has a signifi-
cant impact on the relative stability of complexes. The global minimum of urate with Mg+and
Ca+cations is represented by the O,N-chelates in analogy with monovalent cations. More-
over, the relative energy differences are very small. Especially for the Ca+structures, practically
energies of all conformers are in the range of  kcal/mol.Themost stable structures are depicted
in > Fig. -.

The binding of first-row transition metal monocations (Sc+–Cu+) to N of guanine and N
or N of adenine nucleobases was studied using the DFT approach with BLYP functional. The
electrostatic character of these interactions is mainly represented by metal-ligand repulsion.
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⊡ Fig. -
The optimized structures of themetal complexeswith urate (a) (O,N)-chelate, (b) (O,N)-chelate

The M+-guanine binding energies are about – kcal/mol larger than those of M+-adenine,
the differences decreasing along the row of these metal cations (Noguera et al. ).

Interactions of Explicitly Hydrated Cations

Another approach to a more realistic description of metal cation interactions with nucleobases
is represented by a model of the explicitly hydrated cations – usually up to hexacoordinated
cations.

Hydrated Alkaline Earth and Zinc-Group Metal Cations

One of the first studies on this topic was published by Šponer et al. (). In this study, pen-
taaqua divalent cation adducts (of Mg+, Ca+, Sr+, Ba+, Zn+, Cd+, and Hg+) to the
N position of guanine were explored at the MP/-G*//HF/-G* level. Quasi-relativistic-
pseudopotentialswere used for the description of the cations.The interaction between hydrated
cation and guanine is significantly reduced compared to the guanine-unsolvated cation model,
cf. > Table -. The cations of IIb group together with Mg+ are tightly bound to the N atom
of guanine, whereas the O site is involved in H-bonding with the aqua ligands from the metal
hydration shell. The cations with greater radius (Ca+, Sr+, and Ba+) prefer simultaneous
coordination to the N and O atoms of the base. Also, the cation–guanine distance increases
with the atomic number. The energy difference between the N and N-O types of coordina-
tion is rather small. Relativistic effects are apparent in the case of Hg+, similar to the complexes
with a bare cation, reported above (Burda et al. ).The Zn+andMg+cations show different
balance between the cation–base and cation–water interactions.While the Zn+cation is bound
more tightly to the base ( kcal/mol) and its water shell is more flexible ( kcal/mol), a differ-
ent situation (with stronger metal–water binding) was found in theMg+ complex.The binding
energy of the Mg(HO)+ cation with the N position of guanine in GC pair is approximately
 and binding energy of five water molecules with Mg(GC) complex is about  kcal/mol.
The different binding picture for Zn+ and Mg+ cations can be partly explained as a shift
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⊡ Table -
Interaction energies in the complexes of solvated cation (Mw)-(N) purine (G/tG/A)

ΔEMw−G ΔEMw−tG ΔEMG bare ΔEMw−A ΔEMA bare

Mg+ −. −. −. −. −.

Ca+ −. −. −. −. −.

Sr+ −. − – . −.

Ba+ −. −. −. −. −.

Zn+ −. −. −. −. −.

Cd+
−. −. −. −. −.

Hg+ −. −. −. −. −.

from the interaction between nucleobase and hydrated cation (Mg+) toward the hydration
of a metalated base (Zn).

From > Table - it follows that, despite the substantial reduction of the M–N interac-
tion energy, the ratio of the energy values for guanine and adenine remains approximately two,
similar to the results obtained in the study of the bare cations (Burda et al. ). This confirms
the dominant role of the electrostatic term in these complexes. In platinum complexes a sub-
stantially higher covalent contribution is demonstrated in the limit of total charge going to zero
(cf. > Figs. - and > Fig. -, below).

The question, which coordination mode of hydrated Mg cation with DNA is dominant
(direct metal-N coordination or indirect interaction by water molecule through the polarized
H-bonding), was addressed by Bandyopadhyay (Bandyopadhyay and Bhattacharyya ).
Based on HF and DFT calculations the authors show that both binding modes are of similar
importance.

The tautomeric equilibrium and hydrogen bonding in nucleotide ′-deoxyguanosine
monophosphate in interaction with hydrated [Mg(HO)]+ cation were studied at the
MP/cc-pVDZ//BLYP/cc-pVDZ and BLYP/aug-cc-pVTZ//BLYP/cc-pVDZ levels of theory
by Kosenkov et al. (). The Mg+ ion forms two inner-shell contacts with the nucleotide,
similar to small phosphorylated molecules under physiological conditions. The hydrated mag-
nesium cation in the presence of the phosphate group can change the guanine tautomeric
equilibrium in comparison to free guanine. The canonical O-oxo form of guanine is more
stable (by – kcal/mol) than the O-hydroxo form in anti-conformation. The interaction with
the Mg+ ion is capable of suppressing a spontaneous transient formation of the rare tautomer.

A very interesting case was revealed when a thioguanine base was explored (Šponer et al.
). In accord with the Pearson HSAB principle (Parr and Pearson ), a stronger inter-
action with the S site of thioguanine is observed for the heavier transition metal cations, as
can be seen by comparing columns ΔEMw−G and ΔEMw−tG in > Table -. While in the case
of alkaline earth cations (Mg+, Ca+) even mild weakening of the bonding energy is visible, a
very robust adduct is formed with the Hg+ cation. This very firm coordination is also partially
the consequence of a smaller number of water molecules in the first hydration shell. Due to the
strong Hg–S coordination two water molecules are pushed out from the hydration shell. The
optimized (S,N)-chelate structure resembles the situation of bare cations, cf. > Fig. -b.
However, a shorter Hg–S distance (.Å) was obtained comparing the Hg–N bond (. Å).
A similar chelate structure was also found in the Cd+ complex, despite the coordination
with four water molecules, cf. > Fig. -c. But a slightly longer Cd–S distance (. Å) than
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⊡ Fig. -
Different cases of hydrated-metal coordination to thioguanine: (a) Zn+, (b) Hg+ , and (c) Cd+

Cd–N (.Å) was obtained in this structure. In the remaining complexes no direct metal–
sulfur interactionwas found at theHF/-G* optimization level. Nevertheless, at theDFT level,
a slightly different coordination pattern is revealed for Mg and Zn cations. The preferred struc-
ture contains six coordinated cation spheres, but only with four water molecules, similar to the
chelate arrangement of the Cd+ complex (Šponer et al. ) as shown in the > Fig. -c.

Šponer et al. investigated possible binding of hydrated cations to nucleobases in a cation–π
manner but concluded that such interactions are very unlikely in nucleic acids as they are
out-competed by conventional cation binding patterns. The suggestion of the existence of
cation–π interactions in DNA was shown to be a case of misinterpretation of structural data
(Šponer et al. ).

Complexes of Hydrated Copper Cations with Guanine

Interaction of hydratedCu(I)/Cu(II) cationswith guanine represents another interesting system
that has been explored. In this case, redox properties under hydration and complexation can be
compared to copper complexes with water and ammonium ligands (Burda et al. ; Pavelka
et al. ). One of the examined features of the copper complexes involves the number of coor-
dinated ligands.While the Cu(I) complexes prefer two-coordinated structures, the geometry of
Cu(II) complexes usually has the coordination number four or five, in accord with the small
inorganic copper complexes studied previously (Pavelka and Burda ; Pavelka et al. ).
Also, the affinity of various active sites of the metalated guanine for watermolecules in compar-
ison with a non-metalated (isolated) base was explored. The resulting preference for individual
conformers determined at the BLYP/-++G(df,pd) level can be seen in > Table -,
and the most stable structures are displayed in > Fig. -. The affinity of the isolated base was
explored by Poltev et al. (), who used empirical potentials. They found that in the case of
hydration of guanine with a single watermolecule, the global minimum structure has one water
molecule between the O and N sites, followed by the N–Nwater adduct. Unfortunately, the
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⊡ Table -
The relative differences of ΔG and ΔEStab and Cu–N and Cu–O binding energies for the selected
conformers in kcal/mol

Conformer ΔG ΔEStab E(Cu–N) E(Cu–O)

 . −. . .

 . −. . .

 . −. . .

 . −. . .

 . −. . .

⊡ Fig. -
The most stable conformers of [Cu(HO)(N-guanine)]+ complex

N position was not considered. In another study (Colominas et al. ) various tautomeric
forms of guanine and cytosine and their influence on Watson-Crick H-bonding were studied.
From these results, it is clear that there is no substantial change due to the polarization effects
of Cu(I) cation revealed by semiempirical methods, in comparison with the MP approach.
Another comparison concerns metal-N bonding energies where our earlier works on metal
coordination to purine DNA bases can be used (Burda et al. , ). Despite the fact that in
the earlier investigations only bare cations were considered at theMP/-G(d)//HF/-G(d)
level, the relative interaction energies are similar to the analogous energies of these hydrated
structures.

The adducts of the hydrated copper(II) cation with guanine were explored in the study of
Pavelka (Pavelka et al. ). Various numbers of water molecules were considered in combi-
nation with the different coordination pattern of the Cu+ cation.Themost stable structures are
summarized in > Table - and displayed in > Fig. -.The full set of investigated structures
can be viewed in the original paper (Pavelka et al. ).

From this study it follows that the penta-coordination of Cu(II) in these complexes is visibly
less convenient than that in the case of the small inorganic complexes (for both purely aqua lig-
ands (Burda et al. ) or mixed aqua-ammine ligands (Pavelka and Burda )). The Cu(I)
complexes do not create chelate structures since the linear monoaqua-form with the remain-
ing water molecules in the solvation shell is substantially more stable. In the monoaqua Cu(I)
and Cu(II) complexes, the strength of Cu–N bond (−/− kcal/mol for Cu(I)/Cu(II)) and
Cu–O(aq) bond (−/ kcal/mol) roughly follow a formal electrostatic relationship. Higher
preference for N coordination in the Cu(II) complex is related to the possibility of the higher
electron transfer of more polarizable nitrogen atom.
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⊡ Table -
Relative differences of Gibbs energies ΔG and stabilization energies ΔEstab (in kcal/mol) with
respect to global minima structure. Abbreviation c.n. corresponds to the type of coordination and
struct. is used for identification of the optimized structure in > Fig. -

System c.n. struct. ΔGtotal ΔΔEstab

[CuG(HO)]+  b . .

chel j . .

chel k . .

chel g . .

CuG(HO)]+  a . .

chel w . .

chel y . .

chel h . .

⊡ Fig. -
The most stable structures in complexes with four and five watermolecules

Interactionwith PlatinumMetal Complexes

One of the most frequently studied metals in connection with nucleobases is platinum.
Since the late s, when B. Rosenberg published his series of studies on anticancer activ-
ity of cisplatin (Rosenberg et al. , ) much effort has been devoted to this compound
and its derivatives, as well as other transition metal complexes where similar activities can be
expected. Early calculations were performed by Basch et al. () and by Lipinski (). Since
then a vast number of studies can be found in the literature on this topic. Many DFT and
ab initio calculations were performed, especially on platinum interactions with nucleobases,
nucleotides, and other DNAmodels. One of the important questions that had to be solved con-
cerned tautomeric equilibria due to the possible point mutations. This topic was addressed in
several studies considering various nucleobases. Because metallodrugs are generally expected
to coordinate predominately in the major groove of genomic DNA, the discussion starts with
the interaction in N position of purine bases.
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The Tautomeric Equilibriumof the Metalated Nucleobases

Several platinum complexes with varying total charge were explored at the BLYP/-G(d)
level (Burda et al. ): neutral trans-dichloro-diamine-platinum, + charged trans-triamine-
chloro-platinum, and + charged tetraamine-platinum.Two tautomers of guanine were consid-
ered – keto and enol forms as well as N-amino and syn- and anti-imino forms of adenine. In
this way the role of electrostatic contribution could be elucidated.Despite the calculations were
performed in gas phase, the bonding energy and tautomeric relations in solvent can be easily
estimated (i.e., extrapolated). In > Fig. -, the relative tautomeric stabilization energies are
displayed.

From this figure it follows that the trans-imino-tautomer of adenine is better stabilized
under platination, which could lead tomispairing. In the case of guanine, the regular keto form
ismore stable in the case of charged complexes.Moreover, the enol preference in the electroneu-
tral complex is caused by additional H-bonding stabilization between platinum ligand (aqua or
chloro) with hydrogen from the enol group (cf. > Fig. -a), whichmay not be present in sol-
vent due to competitive H-bonding interactions. This study in general suggests that the largest
part of the tautomeric effects of the Nplatination is due to gas phase effects, which are assumed
to be annihilated in real condensed phase conditions.

Šponer (Šponer et al. ) explored metalation of the exocyclic amino group of cytosine
and adenine nucleobases by Pt(II) andHg(II) complexes.Metalation induces protonation of the
N site of cytosine and N atom of adenine. Hence, it causes a proton shift from an exocyclic to
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⊡ Fig. -
Stabilization energies of the platinum-base complexes in dependence on the total charge of the
(a) adenine and (b) guanine complex
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⊡ Fig. -
Structure of platinum(II) complexes with (a) enol-tautomer of guanine and (b) trans-imino-
tautomer of adenine

an endocyclic N atom (similar to situation in > Fig. -b). In this way the metal-assisted pro-
cess can lead to the generation of rare nucleobase tautomers.The calculations demonstrate that
metalation of the exocyclic amino group of nucleobases significantly increases the protonation
energy of the aromatic rings of nucleobases by about – kcal/mol for the Pt(II) adduct and
by about – kcal/mol for the Hg(II) adduct. This study demonstrates a tautomeric shift that
is caused by changes of the electronic structure of nucleobases and is unrelated to electrostatic
effects.Thus, the authors suggested separating purely electrostatic effects fromnon-electrostatic
(molecular orbital) contributions. The former are expected to be unimportant in aqueous solu-
tion or x-ray crystallography experiments, where the systems are overall strictly neutral. The
non-electrostatic contributions are assumed to remain insensitive to the environment and are
fully expressed under usual experimental conditions.

Rare tautomers of -methyluracil (MeUH) and -methylthymine (MeTH) in coordination
with Pt(II) complexes were explored by van derWijst et al. (). Comparing the calculations
in gas phase and water, the influence of the solvation effects can be estimated. These authors
also showed that relative stabilization energies of the Pt(II) complexes with various tautomers
ofMeUHand -MeTHdiffer from the isolated tautomers.This leads to the conclusion that some
rare tautomers may become favored under metalation.

Interaction of Nucleobases with Half-Sandwich Ru(II) Complexes

Recently, computations on ruthenium complexes with nucleobases were published by Futera
(Futera et al. ). In his comprehensive study interactions of piano-stool ruthenium met-
allodrug with nucleobases were investigated. In the same study the reaction profile of the
chloro-ligand replacement by water molecule and the role of the arene-ring size were also
explored. From the point of this review, an important part of Futera’s study deals with inter-
actions of Ru(II) with various sites of all the nucleobases in vacuum and under implicit solvent
model. For the optimized structures, the bonding and stabilization energies were determined.
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⊡ Table -
Bonding and stabilization energies (in kcal/mol); for easier comparison of various adducts, total
energies (in a.u.) are also presented (bz means benzene, cymmeans p-cymene ligand)

Ru(bz)(Ade-N) Ru(bz)(Ade-N) Ru(bz)(Ade-N) Ru(cym)(Ade-N)

Adenine in vacuo COSMO in vacuo COSMO in vacuo COSMO in vacuo COSMO

ΔEBE (ade) –. –. –. –. –. –. –. –.

ΔEStab . . . . . . . .

ETotal +  –. –. –. –. –. –.

Guanine Ru(bz)(Gua-N) Ru(bz)(Gua-N) Ru(bz)(Gua-N) Ru(cym)(Gua-N)

ΔEBE (gua) –. –. –. –. –. –. –. –.

ΔEStab . . . . . . . .

ETotal +  –. –. –. –. –. –.

Cytosine Ru(bz)(Cyt-N) Ru(bz)(Cyt-N) Ru(bz)(Cyt-O)

ΔEBE (cyt) –. –. –. –. –. –.

ΔEStab . . . . . .

ETotal +  –. –. –. –. –. –.

Thymine Ru(bz)(Thy-N) Ru(bz)(Thy-N) Ru(bz)(Thy-O) Ru(bz)(Thy-O)

ΔEBE (thy) –. –. –. –. –. –. –. –.

ΔEStab . . . . . . . .

ETotal +  –. –. –. –. –. –. –. –.

Uracil Ru(bz)(Ura-N) Ru(bz)(Ura-N) Ru(bz)(Ura-O) Ru(cym)(Ura-O)

ΔEBE (ura) –. –. –. –. –. –. –. –.

ΔEStab . . . . . . . .

ETotal +  –. –. –. –. –. –. –. –.

Characteristics of the most stable conformers are summarized in > Table -. In order to
make a comparison between various conformers easier, the total energies are also included.
From > Table - it follows that, in the case of purine bases, the most stable adenine structure
(Ru+-(Ade-N) conformer) differs from the most stable guanine complex (Ru+-(Gua-N)
conformer), as revealed in the gas-phase calculations. Nevertheless, in the PCM model, the
N-conformer represents the most stable form of the both purine nucleobases. This change of
adenine global minimum follows from the general reduction of the electrostatic forces, which
are substantially screened in PCM approaches. In gas phase, the Ru+-(Ade-N) coordination is
enhanced by favorable orientation of the adenine dipole moment of about .D (determined
at the MP/-++G(d,p), gas-phase level) aiming in the N–C direction while the guanine
dipole of .D points in the N–N direction, as can be seen in > Fig. -. An even larger
dipole moment was predicted for the N-guanine tautomer with proton transferred to N atom
(μ = .D).This dipole value correlates with the fact that the Ru-(Gua-N) adduct exhibits the
highest ΔEBE(Ru-(base-N)) bonding energy among all the explored complexes (interestingly,
in both gas phase and PCM approach). The effect of decreased electrostatic enhancement is
responsible for the change in energy preference in the case of cytosine adducts.The Ru+-(Cyt-
O) structure becomes the least stable in water (by more than  kcal/mol) and the most stable
adduct is Ru+-(Cyt-N), closely followed by the Ru+-(Cyt-N) complex with practically the
same stabilization and total electronic energies.The thymine and uracil bases favor theN coor-
dination regardless the environment. This preference is in accord with different orientation of
the dipolemoment of uracil and thymine in comparisonwith cytosine (cf. >Fig. -). Another
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computational study dealing with the interaction of different forms of ruthenium complexes
with DNA bases was published in  (Besker et al. ). Here, similar bonding energies (in
comparison to Futera’s work) were obtained for relevant structures in both gas phase and PCM.

The molecular mechanism for the replacement of chloro-ligand by water and subsequently
of aqua-ligand by nucleobase was also explored by Futera (Futera et al. ). Similar to the
platination process, the hydration reaction is mildly endoergic (ΔG=  kcal/mol). Formation
of the guanine adduct is exoergic by ca.  kcal/mol. Nevertheless, all these reactions are faster
in the case of the rutheniumcomplex (in equimolar concentrations) since the activation barriers
are lower, e.g., the values for replacement of both adenine and guanine are about  kcal/mol
while in the cisplatin case analogous barriers are ca.  kcal/mol (cf. > Table -). Moreover,
while a “simple” mechanism was found in the adenine reaction (as displayed in > Fig. -a),
a two-step reaction mechanism was suggested for the guanine replacement (> Fig. -b).
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(a) Reaction coordinate for replacement of water by adenine and (b) guanine
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⊡ Fig. -
Reaction energy profile of the free energies for dissociation of N–C′ glycoside bond of dGuo,
dGuo(H)+, and dGuo(Pt)+ in solvent

In these mechanisms, a lower activation barrier for adenine replacement corresponds to a
higher rate constant (. vs. .M.s−). Nevertheless, since the minimum associated with the
reaction coordination (“direct reactant”) is about  kcal/mol higher than the globalminimum, it
means the concentration of the form corresponding to this local minimumwill be three orders
of magnitude lower (according to the Boltzmann equilibrium law). A different situation occurs
for analogous local minimum of guanine. Here the instant concentration (equilibrium occur-
rence) of the local reaction minimum is comparable to the global minimum and, therefore, the
real reaction rate will actually be substantially higher for the process of guanine replacement.

Osmium complexes were also considered as possible metallodrugs. The hydrogenation
energies of various nitrogen heterocycles in the presence of osmium tetraoxide were investi-
gated and published byDeubel ().While hydrogenation of pyrimidine bases is exothermic,
the C–C bond in purine bases does not have a tendency to hydrogenate.

An interesting study on the difference between protonation and metalation of the N posi-
tion of deoxyguanosine was published by Baik et al. (). While under protonation the
glycoside N–C′ bond breaks, the Pt(II) adduct does not change the strength of the glycosidic
bond substantially, as can be noticed from the > Fig. -.



Metal Interactionswith Nucleobases, Base Pairs, and Oligomer Sequences  

TheMetal Coordination toMultiple Nucleobase Systems

Interactionwith Base Pairs

Metal Cations From Ia, Ib, IIa, and IIb Groups

The influence of metal coordination from the major groove on the enhancement of base pairing
was explored by Burda et al. (). The energy decomposition for these systems requires, in
addition to total stabilization and pair energies, the non-additive three-body contribution.

The studied complexes were partitioned into three subsytems: the two bases (B, B) and a
metal cation (M).The total stabilization energy (ΔEStab

) is, within the BSSE counterpoise error,
defined as:

ΔEStab
= −{E(B, B,M) − [E(B, gB, gM) + E(gB, B, gM) + E(gB, gB,M)]} (.)

where E(B, B, M) represents total energy of the whole complex, and, e.g., E(B, gB, gM)
is a total energy of the base Bin presence of the basis functions on ghost systems B and M.
Alternatively, the total stabilization energy ΔE can be expressed in terms of pair stabilization
energies and the three-body contribution:

ΔEStab
= E(B − B) + E(B −M) + E(B −M) + E() (.)

where each pair-stabilization energy is calculated within the BSSE scheme. For example, the
E(B–B) energy can be determined from formula:

E(B − B) = −{E(B, B, gM) − [E(B, gB, gM) + E(gB, B, gM)]} (.)

In addition to these pairwise energies, interactions of one subsystem of the complex (metal
or pyrimidine) with the remaining part were also evaluated.The interaction of thymine with a
(metal + adenine) subsystem can be determined as:

E(MA− T) = −{E(A,T ,M) − [E(A, gT ,M) + E(gA,T , gM)]} (.)

The whole system can be regarded as a composition of a strongly bonded metal cation–
purine base part plus twoweak interactions:metal cation–remote pyrimidine base andWatson-
Crick H-bonded base pair. The latter two terms represent only a small perturbation of the
first one, and their mutual influence is basically very small. Therefore, it is not surprising that
similar geometry and energy parameters for metal coordination were obtained, comparing
with the same characteristics found in ref. Burda et al. (). Also, the obtained geometries
match well with the results reported by Anwander et al. () for complexes with Ca+, Mg+,
and Zn+. Some small differences originate from the smaller basis set they used: e.g., too
short distances between the purine base and the metal cation, especially for the Zn+ com-
plexes (our calculations predict . Å for the Zn+GC complex, while Anwander reported
.Å).

The metal cation significantly influences the geometry of the base pair. The (C)O...H–
N(G)H-bond lengths in the GC complexes are systematically reduced, in comparison with the
isolated pair. This reduction is largest for bivalent ions (. Å). The central H-bond N–H...N
remains practically unchanged, and the third N–H...O H-bond, which is closest to the metal
cation, is significantly lengthened in comparison with the isolated GC pair. The elongation is
again the largest for bivalent ions (. Å in Zn+GC and Mg+GC). In the AT pair, the metal
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cations affect the H-bonds in a different way.The (T)O...H–N(A) H-bond, which is closer to
the metal-ion coordination site, shows substantial shortening (.Å in complexes with Zn+

andMg+), while the other H-bond (N–H...N) is lengthened (by .Å in Zn+AT complex).
The geometric rearrangements of the pair structures can be regarded as the rotation around the
center of the pyrimidine ring towards themetal cation in the case of the AT pair, and away from
it in the case of the GC pair.

Basically, the same dependencies of the stabilization energies on increasing atomic numbers
of metal cations are observed inmetal-purine-pyrimidine complexes as in previously published
metal-purine species (Burda et al. ). Stabilization energies of complexes with divalent ions
are larger than those of monovalent ions, andM-GC stabilization energies are larger than those
for M-AT complexes. Both conclusions reflect the dominant role of the ion-dipole electrostatic
contribution to the stabilization energy of these complexes.

Compared with the study of Anwander (Anwander et al. ), very close agreement was
obtained for complexes of Ca+ with base pairs (within  kcal/mol). However, larger differ-
ences were found in Mg+– containing systems (≈ kcalMg+-AT and ≈ kcalMg+-GC;
the values in Burda’s work describe larger stabilization for both base pairs). However, the use
of a minimal basis set (MBS) for zinc (all-electron calculations) nearly doubles the stability
(ΔEHF(MBS:Zn+-GC) =  kcal/mol versus Burda’s ΔEHF(AREP:Zn+-GC) =  kcal/mol
and ΔEHF(MBS:Zn+-AT) =  kcal/mol versus ΔEHF(AREP:Zn+-AT) =  kcal/mol).

The H-bond WC interactions in the AT pair within the geometries of M-AT com-
plexes are systematically weakened in comparison with the isolated optimized AT pair
(ΔEMP = . kcal/mol). This weakening, which is larger for divalent ions amounts to about
 kcal/mol, leads to AT pairing energy of ca.  kcal/mol. A similar weakening of H-bonds was
expected to occur in the M-GC complexes. However, it was found that ΔEMP of H-bonds in
the GC pair within theM-GC complexes are a little stronger (with Ca+ – Ba+exceptions) than
those of the H-bonds in the isolated GC pair (ΔEMP =−. kcal/mol). It can be shown that
these changes correspond to the geometry deformation under the metal coordination. Nev-
ertheless, from the energy decomposition it can be concluded that H-bond strength of GC
or AT pair, calculated as a pairwise interaction energy within the optimized M-GC or M-AT
complexes, is influenced only slightly by cations.

However, metal cations bound to the WC base pairs dramatically (directly or indirectly)
change many characteristics of the base pairing. Actually, one should consider not pairwise
energies of the G-C and A-T pairs but the MG-C and MA-T H-bonding energies, and these
values are systematically higher – up to kcal/mol forA-T and  kcal/mol forG-CH-bonding
in the presence of the Zn+cation.This amounts to nearly two times enhancement of the original
base pairing energy ( > Table -).

Similar conclusions are also reported in other studies on the metal–nucleobases inter-
actions. Trimer base arrangement was explored using a similar computational model. The
enhancement of G.GC(rH), G.GC(H), A.AT(rH), T.AT(H) and some other base interactions
including reverse Hoogsteen pairs GG(rH) and AA(rH) was proved in the presence of Li+ and
Ca+ cations (Šponer et al. ). A study on the strength of H-bonding of WC base pairing
under metalation at various active sites of bases concluded that the N(Adenine) site available
in the minor groove has higher chances for platination, in comparison with the N-site of the
base (Zhang and Huang ).

An interesting idea is related to a replacement of proton in H-bonding by metal. In this
way the non-canonical A–C base pair was examined with the coinage metal cations (Cu+, Ag+,



Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences  

⊡ Table -
Enhancement of Watson-Crick base pairing energy under the metalation. (energies calculated at
theMP/-G** level)

Metal E(M-A) E(A-T) E(M-AT) E(MA-T) E(M-A-T) E(M-G) E(G-C) E(M-GC) E(MG-C) E(M-G-C)

Cu+ –. –. –. –. –. –. –. –. –. –.

Ag+ –. –. –. –. –. –. –. –. –. –.

Au+ –. –. –. –. –. –. –. –. –. –.

Zn+ –. –. –. –. –. –. –. –. –. –.

Cd+ –. –. –. –. –. –. –. –. –. –.

Hg+ –. –. –. –. –. –. –. –. –. –.

Mg+ –. –. –. –. –. –. –. –. –. –.

Ca+ –. –. –. –. –. –. –. –. –. –.

Sr+ –. –. –. –. –.

Ba+ –. –. –. –. –. –. –. –. –. –.

⊡ Fig. -
Cytosine-M+-Adenine complexes, M= (Cu, Ag, Au)

and Au+) used as a bridge between both bases (Šponer et al. ), cf. > Fig. -. The pos-
sibility of additional water coordination to metal was also considered. In the original paper it
is concluded that these metal-bridged complexes are substantially more stable than the origi-
nal (protonated) base pair. The water coordination does not influence the strength of the metal
bridge substantially, nevertheless, its presence has some impact on the geometry of the com-
plexes. Comparing bonding properties of all three metal cations, it was found that the Ag cation
coordinates relatively weakly, which is in good accord with previous results (Burda et al. ,
). The slightly shorter bond length of d(M-N-Adenine) than d(M-N-Cytosine) contra-
dicts the estimated bonding energies since ΔEM−A is smaller than ΔEM−C .This can be explained
by two facts: (a) the electrostatic contribution to the metal coordination is much smaller in the
adenine case (see the size and orientation of the dipole moments of both bases in > Fig. -),
and (b) the metal-cytosine interaction cannot be considered purely of the M–N character and
simultaneously, the M–O contribution plays non-negligible role.

The results of investigation on Cu+/Cu+ interaction with AT and GC pairs were published
by Sodupe’s group (Noguera et al. , ). The influence of metal cations coordinated to
N position of guanine on the intermolecular proton-transfer reaction in the guanine-cytosine
base pair was studied with the BLYP density functional. Gas phase metal cation interaction
stabilizes the ion pair structure derived from the N(G) → N(C) single-proton-transfer reac-
tion, the effects being more pronounced for the divalent cation than for the monovalent one.
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For Cu+-GC, the reaction is largely favored due to both electrostatic and oxidative effects.
Hydration of the metal cation reverts this trend due to the screening of electrostatic effects.

In the section on interaction of hydrated metal complexes, the Šponer study (Šponer et al.
) was mentioned where, in addition, to purine nucleobases the GC, AT, and AA base pairs
were also considered. Since the metal–purine base interaction is not substantially influenced
by the remote pyrimidine base, we will focus on base pair enhancement and some changes
observed in comparison with the study on bare metal cations complexes (Burda et al. ).
The strength of the guanine-cytosineWatson-Crick base pair is enhanced by ca. –% due to
the coordination of the hydrated cation, while in the case of bare cations this enhancement was
about –%. From > Table - it follows that the bare cations deform the base pair geom-
etry more noticeably than the hydrated cations. Only in the Ba+ case, the hydration sphere is
H-bonded to the O site more strongly than in other cations, decreasing the GC base pairing
energy.

In addition, an interesting comparison of Zn+ and Mg+ hydrated cations in Pu-Pu-Py
triplexes was carried out (Šponer et al. ), where a hydrated metal is coordinated to the N
position of purine base attached to theWatson-Crick base pair. Using this model,metal-assisted
triplex stabilization was studied. It was shown that in both A.A and G.G the Hoogsteen pairing
is strengthened undermetalation.A substantially stronger enhancement of (MG).G pairingwas
revealed (. and . kcal/mol for Mg+ and Zn+ cations, respectively), in comparison with
similar adenine structureswhere practically no additional stabilizationwas detected (only about
. kcal/mol for bothmetal cations). In another study (Šponer et al. ), amore extended set of
divalent metal cations (Mg+, Ca+, Sr+, Ba+, Zn+, Cd+, and Hg+) hydrated by five water
molecules was explored with rAA and AT base pairs interacting with the N site of adenine,
confirming the previously obtained results.

Schreiber et al. (Schreiber and Gonzalez ) explored the Ag(I) adducts with DNA base
and the influence of Ag(I) coordination for adenine-cytosine mispairing. Their calculations
showed that in gas phase the canonical form of cytosine is stabilized upon metalation, whereas
the lowest energy structure of Ag-adenine corresponds to the imino tautomer. The most sta-
ble metalated adenine-cytosine mispair was formed from the canonical cytosine and adenine
tautomers. Other types of A–C pairs (e.g., reverse Wobble) were found much less stable. The
same authors also performed an interesting study dealing with the role of the Ag(I) cation on
electronic spectra of the A–C pairs using a very accurateMS-CASPT approach (Schreiber and
Gonzalez ).

Interestingly, possibilities of so-called M-DNA crosslink stabilization of GC base pairs by
divalent zinc have been investigated by Fuentes-Cabrera et al. ().

⊡ Table -
Difference in base-pair energies under the metalation (in kcal/mol)

ΔEGC (hydr) ΔEGC (bare)
Mg+ –. –.

Ca+ –. –.

Sr+ –. –

Ba+ –. –.

Zn+ –. –.

Cd+ –. –.

Hg+ –. –.
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Enhancement of Base Pairing by Pt Complexes

Several interesting studies related to platinum metal interactions with base pairs and the
influence of metal complexes on the strength of pairing should be mentioned.

Molecular structures of several Pt complexes with theWatson-Crick AT and GC base pairs
were optimized using the BLYP method.The interaction energies were analyzed using BLYP,
and MP approaches (Burda et al. ). Platination causes some distortion in the H-bond
arrangement of the base pairs. The pyrimidine bases rotate around their center of mass under
the influence of the charged Pt entities. This effect is quite general and was already discussed
above (Burda et al. ; Šponer et al. , ). The metal-binding affects the strength of
individual H-bonds involved in the base pairing.

It was concluded that ligands attached to the Pt(II) cation form strong intramolecular H-
bondswith the X exocyclic site of purine bases.The adenine amino group adopts a pronounced
pyramidal geometry and its nitrogen serves as H-bond acceptor for the ammine ligands of
cisplatin.

The Pt-binding has a comparable effect on the base pairing stability as binding of hydrated
metals of IIa and IIb groups. In the electroneutral form, the Pt-adduct does not influence the
base pair stability. Charged Pt adducts substantially strengthen the stability of G.C base pair via
polarization effects. The influence of the + charged Pt-adduct is even larger compared with
hydrated metals of IIa and IIb groups. No such polarization effects have been revealed for the
A.T base pair. However, gas phase stability of this pair is effectively enhanced by long-range
electrostatic interaction between the charged metal group and thymine.

The dependence of the stabilization and Pt-N bonding energies on the total charge of the
complex is displayed in > Fig. -a. Here, the role of electrostatic contributions is clearly
demonstrated for both kinds of energies. Interestingly, in electroneutral complexes, the Pt-N
bonding energies are similar in guanine and adenine structures (≈kcal/mol). In> Fig. -b,
the base pairing energies are drawn showing that the geometry deformations do not influ-
ence these values. Nevertheless, the interaction of metalated purine base with pyrimidine base
is substantially strengthened, especially in charged complexes (e.g., in complexes of hydrated
cisplatin).

It is important to point out that the effect of base pair stabilization enhancement due to
cation binding has been confirmed experimentally by Sigel and Lippert ().

Zilberberg et al. reported the influence of chelated cisplatin complex with guanine(O,N)
onWatson-Crick base pairing (Zilberberg et al. ). In such chelate structures, more distinct
perturbation of base pairing was revealed. However, such chelate binding pattern is unlikely to
be relevant to real ds-DNA conditions.

Interactions of Hydrated Cations with Nucleotides

Šponer et al. () studied the coordination of hydrated zinc and magnesium group diva-
lent cations to the N position of purine nucleotides. They showed that the sugar-phosphate
backbone provides significant screening of the charge of the metal, while the backbone geom-
etry is affected by the cation. Polarized water molecules of the cation hydration shell form very
strong hydrogen bridges between the cation and the anionic oxygen atoms of the phosphate
group.Weaker hydrogen bonds are formed between the cation hydration shell and the exocyclic
purine X atoms. The cation binding to N of adenosine monophosphate forces the adenine
amino group to adopt non-planar conformation. Its nitrogen atom serves as an H-acceptor
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⊡ Fig. -
(a) The stabilization and metalation M–N energies; (b) enhancement of the Watson-Crick pairing
energies for AT and GC base pairs

for a water molecule from the cation hydration shell. Cation binding to N does not lead
to any major changes in the geometry of the base pairing. However, the stability of the base
pairing can be increased by polarization of the purine base by the cation and by long-range
electrostatic attraction between the hydrated cation and the other nucleobase. The stability of
guanine-cytosineWatson-Crick base pairing is enhanced by the polarization mechanismwhile
the stability of the adenine-thymine Watson-Crick base pair is amplified by the electrostatic
effects as shown in the case of base pairs model discussed previously (Burda et al. ). Also,
the guanine-guanine reverse-Hoogsteen base pairing is stabilized by both contributions while
the adenine-adenine reverse-Hoogsteen system is not influenced by the cation. Binding of a
cation to theN of guanine promotes transfer of itsH proton to theN acceptor site of cytosine.
However, the negatively charged backbone exerts a significant screening effect on this poten-
tially mutagenic process, and the probability of such a proton transfer in DNA should be only
moderately enhanced by a cation binding.

A comprehensive study dealing with a coordination of hydrated cations Zn(II) and Mg(II)
to guanosine ′ monophosphate was performed by Gresh (Gresh et al. ) in order to obtain
parameters for polarizable molecular mechanics for metal – DNA and RNA simulations.

Inner-shell binding of selected hydrated metal ions (Mg+, Cu+, Zn+, and Cd+) to
the guanine N position was investigated in relation to outer- and inner-shell binding to an
anionic phosphate group (Rulíšek and Šponer ). The study was focused on the mutual
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interplay between the metal-phosphate and metal-nucleobase binding and the role of non-
electrostatic effects in the metal binding. The analysis of the equilibrium structures and the
energy decompositions reveal that these effects substantially contribute to the differences
in the coordination behavior of the studied metal ions. The Zn+ and Cd+ cations show
a clear preference (compared to Mg+) to bind to N of guanine. The selectivity amounts
to approximately – kcal/mol. This energy difference is sufficient to provide enough bind-
ing selectivity in the condensed phase where the dominant pair electrostatic terms (ion–ion,
molecule-ion) are attenuated. Cu+ shows even stronger relative preference for N binding
and it also has different coordination requirements. The nucleobase’s N metal binding causes
approximately – kcal/mol destabilization of the metal-phosphate outer-shell binding, due
to non-electrostatic effects.

Metal Interactions with Stacked Bases

Cisplatin bridges between two consequent bases (,-GpG) are believed to be the key structure
for triggering the apoptotic process. Recently, several studies on these cross-linked structures
have been published.The properties of Pt-bridges were explored (Burda and Leszczynski ;
Zeizinger et al. ) showing that relatively strong Pt-N coordination is formed.The process
of aqua ligand replacement by nucleobase is mildly exoergic in both steps forming: (a) a mono-
functional adduct and, consequently, (b) the cross-linked structure. Stabilization energies of the
Pt-GG, Pt-GA, andPt-AA bridges are given in >Table -.The relative amount of these values
correlates well with the relative abundance of individual structures in real samples, assuming
the gas phase calculations require some additional rescaling in correspondence to the reduced
electrostatic interactions in solvent.

The influence of the sugar phosphate backbone on the strength of Pt-bridge was also exam-
ined (Zeizinger et al. ). Some additional stabilization of the Pt cross-linked structures
appeared as a result of the interaction between negatively charged phosphate group and the
Pt cation.

One of the first papers studying transition states of the replacement aqua ligand by nucle-
obase was published by Chval (Chval and Sip ). His model was based on the gas phase
calculations, and the estimated activation barrier is too low in comparison with experimental
value. This situation was improved in studies of Raber (Raber et al. ) and Baik (Baik et al.
).They have taken into account the hydration effects employing an implicit solvent model.
Raber’s results in particular are in fairly good accordwith experimental data. Activation barriers
of monoaqua and diaqua Pt(II) complexes are summarized in > Table - for both guanine
and adenine replacement of the first and second leaving (aqua) ligand.

⊡ Table -
Stabilization energies of the Pt-cross-linked structures (in kcal/mol)

ΔEstab(MP)

Pt-aA .

Pt-aAG .

Pt-aG .
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⊡ Table -
Substitution energies for the aqua ligand replacement by purine base (in kcal/mol)

chloro-aqua Diaqua

st step

Guanine .a .a

.b .b

c .c

.d

Adenine .a .a

.b .b

.c .c

nd step

GG hh .a

.e

GA hh .a

aRef. Raber et al. 
bRef. Baik et al. 
cRef. Chval and Sip 
dRef. Arpalahti and Lippert , and
eRef. Bancroft et al. 

Metal Adducts in Oligomeric Sequences

The infrared (IR) and vibrational circular dichroism (VCD) spectra of guanosine-′-hydrazide
have been measured and analyzed on the basis of ab initio modeling (Setnicka et al. ).
The BLYP/-G(d,p) calculations predict that guanine, forming a clear solution in deuterated
DMSO, is present in monomeric form in this solvent, whereas strong gelation in a phosphate
buffer is due to the formation of a guanine-quartet structure. Here, the four bases are linked by
hydrogen-bonded guaninemoieties and stabilized by an alkalimetal cation.TheDFTprediction
of the IR and VCD spectra are based on the nearly planar quartet structure, which is slightly
distorted from theCh symmetry.The guanine bases interact via fourHoogsteen-type hydrogen
bonds and a sodium cation is positioned in the middle of the guanine quartet. The obtained
results are in very good agreement with the experimental spectra, indicating that calculated
structure is the highly probable in the gel state.

The guanine quartets were also examined by Gu and Leszczynski (). The normal
four-stranded Hoogsteen-bonded G-quartet structures were optimized in the gas-phase with
monovalent cations obtaining the stability order Li+ >Na+ >K+. However, after the correction
on solvent effects, the stability sequence of the monovalent cation-guanine-tetrad complexes
follows the opposite trend K+

>Na+ >Li+ . The preferential binding of potassium over sodium
and lithium in water solutions reproduces the experimental ion selectivity of the guanine
quadruplex. Moreover, weak stabilization energy of the K+–G-quartet in the coplanar form
corresponds with the fact that the potassium cation tends to locate between two successive
quartets. These results are in accord with the study of Hud et al. () on the ion selectivity
of the guanine quartets in water solutions, which are governed by the relative free energies of
hydration.The experimental data on the cation-oxygen distances in the sodium ion complex are
.± . Å.This value matches the HF value of .Å.The slightly shorter Na+−O distance
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was predicted by the DFT approach together with a significant shortening of the hydrogen
bonds suggesting an overestimation of the H-bonding in the guanine quartets at the DFT level.
A comprehensive study on metal–quartet interactions was published by Meyer et al. (). It
should be noted, however, that, in principle, accurate studies of quadruplex–ion interactions
would require inclusion of the whole solvated quadruplex fragment, due to the unique balance
of molecular interactions in this important noncanonical DNA (Šponer and Spackova ).

A similar topic was examined by Ida (Ida andWu ). In this study, molecular dynamics
was employed exploring G-quadruplex stabilized by Na and Rb cations, which were found to
be tightly bound to a quadruplex structure. Moreover, in d(G()T()G() sequences the Na+

ions are found to be located in the diagonal T- loop region of the G-quadruplex, which is
formed by two strands of d(GTG) sequence. The authors proposed that the loop Na+ ion
is located above the terminal G-quartet, coordinating to four guanine O atoms from the ter-
minal G-quartet and one O atom from a loop thymine base and one water molecule.The Na+

coordination was also supported by quantum chemical calculations on Na chemical shifts.
Larger systems like metal adducts to oligomer sequences ormetal interactions with a higher

number (n> ) of nucleobases are difficult to treat using standard quantum chemical tools.
Therefore, most of these studies are performed with combined QM/MM or classical MM and
MD simulations.

Montrel et al. () compared experimentally observed coordination of metal ions toDNA
oligonucleotides using electrostatic potential (EP) along the helix.Their calculations have been
performed for three different models of the oligonucleotide duplex [d(CGCGAATTCGCG)]
using several variants of EP calculations, including a solution of non-linear Poisson-Boltzmann
equation (NPBE). The N atom of guanine adjacent to the adenine base was recognized as the
most negative site in the major groove.

The influence of sodium cations and chain length on the structure and dynamics of single
strand DNA of polythymidylate was studied using molecular dynamics simulations (Martinez
et al. ). The base stacking interaction increases with the length of the oligomeric chain of
the strand. Sodium ions interact with the phosphate groups as well as with keto oxygens of the
thymine bases. Formation of simultaneous phosphate and keto complexes were observed for
one of the sodium ions with lifetimes around  ns.

The Poison-Boltzmann solvent model was used for examination of polynucleotides
(Korolev et al. ) in the presence of K+, Na+ and Mg+ cations. The stability of rare tau-
tomers for N metalated cytosine in environments with various dielectric constant from gas
phase (ε = ) to implicit watermodel (ε = ) is revealed in the study ofMonajjemi et al. ().

Conclusion

In this review the results of recent investigations on metal interactions with nucleobases, base
pairs, and some largermodels (including base stacking or oligomer sequences) are summarized.

The studies dealing with metal cations (in naked, hydrated, and ligated forms) provide var-
ious details on their interactions with nucleobases, however, such models are in many cases
oversimplified. Despite the fact that some sites on the isolated nucleobase (especially in ade-
nine) exhibit higher affinity to metal cations, in a DNA helix not all of them are available for
interactions since they are involved in H-bonding (purine N site) or in the glycosidic bond
(N site).
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All forms of metal cations enhance the Watson-Crick base pairing interaction if their posi-
tive charge is not fully compensated.The different mechanism for the A.T and G.C adducts was
revealed.While in A.T the direct electrostatic link between remote thymine (negatively charged
O) and metal cation exists, in the G.C pair the non-additive, three-body term is important
since the positively charged NH exo-group is in the proximity of the metal cation.

Clearly, metalation at the N position leads tomany new, exceptional properties of the stud-
ied systems that are dependent on characteristics of involvedmetals. Some of themare discussed
in detail in this text.
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Abstract: Quantitative structure–activity relationship (QSAR)modeling is themajor chemin-
formatics approach to exploring and exploiting the dependency of chemical, biological, toxico-
logical, or other types of activities or properties on their molecular features. QSAR modeling
has been traditionally used as a lead optimization approach in drug discovery research. How-
ever, in recent years QSAR modeling found broader applications in hit and lead discovery by
themeans of virtual screening as well as in the area of drug-like property prediction, and chem-
ical risk assessment. These developments have been enabled by the improved protocols for
model development and most importantly, model validation that focus on developing mod-
els with independently validated external prediction power. This chapter reviews the predictive
QSAR modeling workflow developed in this laboratory that incorporates rigorous procedures
for QSAR model development, validation, and application to virtual screening. It also provides
several examples of the workflow application to the identification of experimentally confirmed
hit compounds as well as to chemical toxicity modeling. We believe that methods and applica-
tions considered in this chapter will be of interest and value to researchers working in the field
of computational drug discovery and environmental chemical risk assessment.

QSARMethodology: Summary of Approaches for Model
Building and Validation

In order to find new leads in the process of drug design and discovery, there is a need for effi-
cient and robust computational procedures that can be used to screen chemical databases and
virtual libraries against molecules with known activities or properties. For this purpose, quanti-
tative structure–activity relationship (QSAR) analysis is widely used. QSARmodeling provides
an effective way for establishing and exploiting the relationship between chemical structures
and their biological actions toward the development of novel drug candidates. Theoretically,
QSAR analysis is the application of mathematical and statistical methods for the development
of models for the prediction of biological activities or properties of compounds. Formally, a
QSAR model can be expressed in the following generic format:

Predicted Biological Activity = Function (Chemical Structure) (.)

A QSAR procedure tries to minimize the error of prediction, for example, in the form of
the sum of squares between predicted and observed activities. The process of QSAR model
development can be divided into three parts: data preparation, data analysis, and model val-
idation (> Fig. -). Model validation should include establishment of model applicability
domain (AD). Recently, the European Organization for Economic Co-operation and Devel-
opment (OECD) developed a set of principles for the development and validation of QSAR
models,which, in particular, requires “appropriate measures of goodness-of-fit, robustness, and
predictivity” (Organisation ). The OECD guidance document especially emphasizes that
QSAR models should be rigorously validated using external sets of compounds that were not
used in the model development.

Data Preparation

The first part of QSAR analysis includes selection of a molecular dataset for QSAR stud-
ies, acquiring or calculation of molecular descriptors (quantities characterizing molecular
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DATA PREPARATION

QSAR MODEL DEVELOPMENT

Searching for a chemical / biological / toxicological target.
Finding / Compiling a dataset.
Dataset curation.
Selection and calculation of descriptors.
Selection of a machine-learning computational procedure(-s)
Division of a dataset multiple times into external evaluation and modeling sets.  

VALIDATION OF QSAR MODELS

Dividing the modeling set multiple times into training and test sets.
Building models using training sets. 
Validating models using test sets.
For combi-QSAR, repeat the previous two steps for each pair of descriptor set and 
computational procedure. 
Select models with acceptable statistics for external validation.
Run Y-randomization test to avoid overfitting and chance correlation.

Consensus prediction of the external evaluation set within the AD. 
Find optimal Z-cutoffs by using two criteria: precision of consensus prediction and coverage.

VIRTUAL SCREENING OF CHEMICAL DATABASES

Similarity search using training or modeling set(s) with Z-cutoff.
Consensus prediction of theremaining compounds with QSAR models.

⊡ Fig. -
Major steps of QSARmodeling

structures), and selection of a QSAR (statistical analysis and correlation) method. Datasets for
QSAR studies can be found in research papers or electronic databases available either publicly
(PubChem ; BindingDB (Liu et al. ); ChEMBL ; DSSTox ; NIMH Psychoac-
tive Drug Screening (PDSP) ) or commercially (e.g., Wombat (Olah et al. ) or MDDR
); more examples are given in a recent review (Oprea and Tropsha ). The dataset
should include biological activity values for all compounds (e.g., binding energies to a recep-
tor, or inhibition constants IC, or in case of toxicity modeling, lethal concentration in water
LC, or lethal dose LD, etc.) preferably measured in the same lab using the same experimen-
tal method. If these experimental data are not available from one lab or one source, and the
correlation between measurements made in different labs or by different methods cannot be
established, they may not be used directly in QSAR studies. Instead, compounds in the dataset
should be given a rank or assigned to categories of activities: for example, a compound can be
very active, moderately active, or inactive. In the majority of such cases, binary classification
is used, in which a compound is classified as either active or inactive. Another situation may
arise, when compounds in the dataset naturally belong to different classes, for example, they
are ligands to different receptors. In this case, the types of ligand specificity for a target can be
considered as classes of compound activities, and the goal of QSAR analysis becomes to achieve
accurate prediction of the target specificity for a new compound.
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According to the nature of the activity data, QSAR studies can be divided into continuous
(activities, i.e., response variable, takes many different values from within some interval), cate-
gory (activities are represented by ranks or ordinal numbers), and classification (activities are
different types of biological properties which cannot be rank ordered) approaches.

Prior to QSAR modeling, a dataset should be curated, that is, all structures should be veri-
fied with respect to their correct representation in the dataset; structures containing atoms, for
which there are no parameters for descriptor calculation should be removed; structures con-
sisting of several disconnected parts should be removed; salts should be removed; a problem of
isomerism should be addressed; and duplicate structures should be removed. There are differ-
ent tools available for dataset curation. For example,Molecular Operating Environment (MOE)
() includes DatabaseWash tool. It allows changing molecules’ names, adding or removing
hydrogen atoms, removing salts and heavy atoms, even if they are covalently connected to the
rest of the molecule, and changing or generating the tautomers and protomers (cf. the MOE
manual for more details). Various database curation tools are included in ChemAxon ()
as well. If commercial software tools such as MOE are unavailable (notably, ChemAxon soft-
ware is free to academic investigators), one can use standard UNIX/LINUX tools to perform
some of the dataset cleaning tasks (Tropsha and Golbraikh ). It is important to have some
freely available molecular format converters such as OpenBabel () or MolConverter from
ChemAxon (). Major procedures for database curation are discussed in our recent paper
(Fourches et al. ).

After the dataset is selected and curated, the next task is the acquisition or calculation of
descriptors. According to an excellent monograph titled Handbook of Molecular Descriptors by
Roberto Todeschini and Vivian Consonni () molecular descriptors can be grouped into
zero-dimensional [D] (sometimes referred to as constitutional descriptors), one-dimensional
[D] (e.g., counts of differentmolecular groups, physicochemical properties of compounds, etc),
two-dimensional [D] (invariants of molecular graphs, e.g., connectivity indices, information
indices, counts of paths and walks, etc.), three-dimensional [D], which are based on geo-
metrical spatial properties of molecules [e.g., Comparative Molecular Field Analysis (CoMFA)
descriptors (Tripos ) which are values of steric and electrostatic fields around aligned
molecules, and different CoMFA-like descriptors (Klebe ; Kubinyi et al. ; Robinson
et al. )], and some other descriptors. Some descriptors can be experimental or calculated
physicochemical properties of molecules such as molecular weight, molar refraction, energies
of HOMO and LUMO, normal boiling point, octanol/water partition coefficient, molecular
surface, molecular volume, etc.

Herein, we will not discuss different types of descriptors in detail but mention briefly major
descriptor software. Most of descriptors included in the Handbook of Molecular Descriptors
(Todeschini and Consonni ) can be calculated by the Dragon software (Dragon ).
Molconn-Z () is anotherwidely used descriptor calculation software which calculatesmore
than  descriptors. A relatively small, but diverse set of molecular descriptors can be cal-
culated by the MOE () software. Chirality molecular topological descriptors (CMTDs)
developed in our laboratory append Ddescriptors by conformation-independent chirality and
ZE-isomerism topological indices (Golbraikh and Tropsha ; Golbraikh et al. , ).
Another group of descriptors frequently used in our laboratory is atom-pair (AP) descriptors
(Carhart et al. ). Each descriptor is defined as a count of pairs of atoms of certain types being
away from each other on a certain topological distance (D AP descriptors) or a Euclidean dis-
tance within certain intervals (D AP descriptors); chirality AP descriptors can be calculated as
well (Kovatcheva et al. ).
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Many descriptors calculated from the knowledge of D structure of molecules (D descrip-
tors) have been developed and published as well. Although these are inherently more rigorous,
one should keep in mind that their calculation is much more time and resource consuming. In
many QSAR applications, the calculation of D descriptors should be preceded by conforma-
tional search and D structure alignment.However, even for rigid compounds, it is not generally
known whether the alignment corresponds to real positions of molecules in the receptor bind-
ing site (Cherkasov ). There are different conformational analysis and pharmacophore
modeling tools included in molecular modeling packages such as MOE (), Sybyl (there
are LINUX and MS Windows versions) (Tripos ), Discovery Studio (), LigandScout
(), etc. It has been demonstrated that in many cases QSARmodels based on D descriptors
have comparable (or even superior) predictivity than models based on D descriptors (Bures
and Martin ; Golbraikh et al. ; Hoffman et al. ; Zheng and Tropsha ). Thus
when D QSAR studies are necessary, if possible, D alignment of molecules should be prefer-
ably obtained by docking studies. VolSurf (Crivori et al. ; Cruciani et al. ) andGRIND
(Pastor et al. ) descriptors are examples of alignment-free D descriptors. But their calcu-
lation still requires extensive conformational analysis of molecules. Both VolSurf and GRIND
descriptors are available in Sybyl (VolSurf and Almond modules) (Tripos ). Various types
of descriptors can be calculated by different modules of Schrodinger software (). Virtually,
any molecular modeling software package contains sets of its own descriptors and there are
many other descriptors not mentioned here that can be found in the specialized literature.

There are sets of descriptors that take values of zero or one depending on the presence or
absence of certain predefinedmolecular features (or fragments) such as oxygen atoms, aromatic
rings, rings, double bonds, triple bonds, halogens, and so on.These sets of descriptors are called
molecular fingerprints or structural keys. Such descriptors can be represented by bit strings
and many are found in popular software packages. For instance, several different sets of such
descriptors are included in MOE (), Sybyl (Tripos ), and others, and examples of their
use can be found in the published literature (McGregor and Pallai ; Waller ). Molec-
ular holograms are similar to fingerprints; however, they use counts of features rather than
their presence or absence. For example, holograms are included in the Sybyl HQSAR module
(Tripos ). There are also more recent approaches when molecular features are not pre-
defined a priori (as fingerprints discussed above) but are identified for each specific dataset.
For example, frequent subgraph mining approaches developed independently at the Univer-
sity of North Carolina (Huan et al. ) and at the Louis Pasteur University in Strasbourg
(Horvath et al. ) can find all frequent closed subgraphs (i.e., subgraph descriptors) for given
datasets of compounds described as chemical graphs. A large and diverse set of D descriptors
can be generated byMOLD software (Hong et al. ) available from FDA. A wide variety of
descriptors are included in ADRIANA software (Gasteiger ).

Prior to QSAR studies, processing of descriptors is required. It includes: exclusion of
descriptors having the same value for all compounds in the dataset as well as duplicate descrip-
tors. To avoid higher influence on QSAR models of descriptors with higher variance, all
descriptors are usually normalized (in most cases, range scaling or autoscaling is used). Molec-
ular holograms or AP descriptors do not need to be normalized. Molecular field values around
molecules are also not normalized. Preferably, descriptors with low variance and one of the
highly correlated pair of descriptors should be excluded as well.

Finally, data for QSAR model development can be represented in a form of a table
(see > Table -), in which each compound is a row and each descriptor as well as activity
is a column.
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⊡ Table -
QSAR table

Compound Descriptor  Descriptor  … Descriptor N Activity

 X X … XN Y
 X X … XN Y
… … … … … …

M XM XM … XMN YM

The Problem of Outliers

Success of QSARmodeling depends on the appropriate selection of a dataset for QSAR studies.
In a recent editorial of the Journal of Chemical Information and Modeling, Maggiora ()
noticed that one of the main deficiencies of many chemical datasets is that they do not fully
satisfy the main hypothesis underlying all QSAR studies: Similar compounds are expected to
have similar biological activities or properties. Maggiora defines the “cliffs” in the descriptor
space where the properties change so rapidly, that, in fact adding or deleting one small chemical
group can lead to a dramatic change in the compound’s property. In other words, small changes
of descriptor values can lead to large changes in molecular properties. Generally, in this case
there could be not just one outlier, but a subset of compounds properties of which are different
from those on the other “side” of the cliff. In other words, cliffs are areas where the main QSAR
hypothesis does not hold. So cliff detection remains a major QSAR problem that has not been
adequately addressed in most of the reported studies.

There are two types of outliers we must be aware of: leverage (or structural) outliers and
activity outliers. In case of activity outliers the problem of “cliffs” should be addressed as well.
Recently, different approaches to find activity outliers have been published (Bajorath et al. ;
Guha and Van Drie a,b; Sisay et al. ). We have suggested that Grubb’s (Environmen-
tal Protection Agency ) and Dixon’s (Fallon et al. ) statistical tests can be used to find
activity outliers (Tropsha andGolbraikh ). Structural outliers can be defined as compounds
that are largely dissimilar to all other compounds in the descriptor space.The methods of find-
ing them are similar to finding compounds out of QSARmodel applicability domains (Tropsha
and Golbraikh ) that is discussed below.

QSARModel Development

The ultimate goal of QSAR analysis is the development of validated models for accurate and
precise prediction of biological activities of compounds which could be potential leads in the
process of drug discovery. Eventually, predictions should be confirmed by experimental valida-
tion. The general QSAR modeling workflow is represented in > Fig. -. Following the data
curation step, we start by randomly selecting a fraction of compounds (typically, –%) as
an external evaluation set.The Sphere Exclusion protocol implemented in our laboratory (Gol-
braikh and Tropsha ; Golbraikh et al. ) is then used to rationally divide the remaining
subset of compounds (the modeling set) multiple times into pairs of training and test sets that
are used for model development and validation, respectively. We employ multiple QSAR tech-
niques based on the combinatorial exploration of all possible pairs of descriptor sets and various
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⊡ Fig. -
Predictive QSARmodeling workflow

supervised data analysis techniques (combi-QSAR) (> Fig. -) and select models character-
ized by high accuracy in predicting both training and test sets data. Validatedmodels are finally
tested using the external evaluation set. The critical step of the external validation is the use
of applicability domains (ADs). If external validation demonstrates the significant predictive
power of the models, we employ them for virtual screening of available chemical databases
(e.g., ZINC (Irwin and Shoichet )) to identify putative active compounds and work with
collaborators who could validate such hits experimentally. The entire approach is described in
detail in several recent papers and reviews (Tropsha ; Tropsha and Golbraikh ).

QSARMethods

QSAR modeling techniques employ various methods of multidimensional data analysis as
well as supervised machine learning used in different areas of research in natural and social
sciences such as biological sciences, geography, psychology, medicine, economics, signal pro-
cessing, speech recognition, forensic studies, etc. Herein, it is impossible to discuss all the
methods used in QSAR analysis. Instead, we will name only some of them. All these meth-
ods can be classified into linear and nonlinear approaches. Linear methods include simple and
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⊡ Fig. -
Combinatorial QSARmodeling

multiple linear regression (MLR), principal component regression (PCR), partial least squares
(PLS), etc. The main distinctive characteristic of these methods is the linearity of the function
approximating the biological activity (see > Eq. .) of their arguments (which are molecular
descriptors). In linear discriminant analysis (LDA), linear combinations of descriptors are built,
which define hyperplanes that separate representative points of different classes of compounds
in the multidimensional descriptor space.

Nonlinearmethods can be based derived from linear or based onmore complex approaches
that predict compound activities from their descriptors by themeans of nonlinear relationships.
For example, if nonlinear terms (like squares, products, or logarithms of some descriptors)
are added to a linear regression, it becomes nonlinear regression. Many nonlinear methods
are derived from linear methods via transforming them by a so-called kernel trick. Calcula-
tions are executed in a so-called feature space where linear methods are applied.The advantage
of these methods is that there is no need to directly calculate the transformation functions.
Examples of such methods include non-linear support vector machines (SVMs) and support
vector regression (SVR) methods (Berk ; Vapnik ), nonlinear discriminant analysis,
kernel-PCA, kernel-PLS, etc. In the multidimensional feature space, SVM builds a soft mar-
gin hyperplane, which separates points belonging to two different classes, or more hyperplanes
to separate points of larger number of classes. In contrast, SVR builds a hyperplane such that
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as many points as possible are within the margin. Good SVM tutorial was written by Burges
(), and SVR tutorial by Smola and Schoelkopf (). Other non-linear methods include
k-nearest neighbors QSAR, in which the activity of a compound is predicted as a (weighted)
average of activities of its nearest neighbors. k-nearest neighbormethods can include stochastic
(Zheng and Tropsha ) or stepwise variable (descriptor) selection (Ajmani et al. ).

Another large group of generally nonlinear methods are artificial neural networks (ANNs)
(Neural Networks ; Salt et al. ; Zupan and Gasteiger ). Ensembles of ANNs can
make use of bagging and boosting approaches (Agrafiotis et al. ). ANNs consist of groups of
artificial neurons. In feed-forward back-propagation neural networks (Neural Networks ),
neurons are organized in input, hidden, and output layers. Input layer neurons receive descrip-
tor values of compounds, which are passed with different weights to the hidden layer neurons.
A neuron activation function is then applied at each neuron to the sum of weighted inputs, and
the results are passed to the output layer neurons, which calculate predicted activities of com-
pounds. During training process, parameters of neuron functions and weights are adjusted so
that the total error of predictions is minimized. There are network architectures with multiple
hidden layers.

Recursive partitioning (RP) methods build decision trees in order to precisely assign com-
pounds to their classes.The tree consists of one root node containing all objects (compounds),
intermediate (or decision), and leaf (terminal) nodes. A measure of node purity is introduced;
for example, it could be the ratio of counts of compounds belonging to majority and minority
class in a node. At each node, the procedure tries to partition the data to increase the puritymea-
sure, that is, to make the difference between sum of child node purities and parent node purity
as higher as possible. Analysis is based on descriptor value distributions between classes at the
node. If such a partition at the node is impossible, it becomes a leaf node.Additional criteriamay
be imposed on the minimum number of compounds in a leaf node, etc. Compounds in each
node satisfy certain descriptor criteria. After growing, some leaves are consecutively removed
based on the improvement of classification at them (so-called pruning of a tree).Without prun-
ing, the tree could be overfitted. Prediction process consists of moving a query compound up
the tree (based on its descriptor values) until it reaches a leaf node. Predicted class of a com-
pound is defined as that of the majority class in this node.There are also RP regressionmethods
which are used, if response variable is continuous. There are several RP algorithms widely used
such as Classification and Regression Trees (CART (Berk )), C. (Quinlan ), C.
(), etc.

RandomForestmethods (Breiman ; RandomForests ) construct ensembles of trees
based onmultiple random selections of subsets of descriptors and bootstrapping of compounds.
The compounds not selected in a particular bootstrapping are considered as a so-called out of
bag set, and used as the test set. The trees are not pruned. Best trees in the forest are chosen
for consensus prediction of external compounds.The method can include bagging (Berk ;
Breiman ) and boosting (Berk ; Breiman ) approaches.

Target Functions

Based on the nature of the response variable, QSAR approaches can be grouped into classifica-
tion, category, or continuous QSAR (vide infra). Classes are different from categories in a sense
that the former cannot be ordered in any scientifically meaningful way, while the latter can be
rank ordered.
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Continuous QSARModels

We suggested that the following validation criteria should be used for continuous QSARmodels
(Tropsha and Golbraikh ): () leave-one-out (LOO) cross-validated q (which is also used
as the target function, that is, it is optimized by the QSAR modeling procedure) () square of
the correlation coefficient R (R

) between the predicted and observed activities of the test set;
() coefficients of determination (predicted versus observed activities R

, and observed versus
predicted activities R′


 for the test set) for regressions through the origin; () slopes k and k′ of

regression lines through the origin (predicted versus observed activities, and observed versus
predicted activities for the test set). In our studies, we consider models acceptable, if they have
() q > .; () R

> .; () (R
− R

)/R
< . and . ≤ k ≤ . or (R

− R′

)/R

< .
and . ≤ k′ ≤ .; () ∣R

 − R′

 ∣ < .. Sometimes, stricter criteria are used (Tropsha and

Golbraikh ).
In some papers, other criteria are used. For example, sometimes standard error of prediction

is used instead of (or together with) R. Standard error of prediction itself makes no sense until
we compare it with the standard deviation for activities of the test set, which brings us back to
the correlation coefficients. If used, mean absolute error (MAE) should be compared with the
mean absolute deviation from the mean. Sometimes, F-ratio is calculated, which is the variance
explained by the model divided by the unexplained variance. It is believed that the higher is
the F-ratio, the better is the model. We suppose that when F-ratio is used, it must be always
accompanied by the corresponding p-value.

Frequently, especially for linear models such as developed with multiple linear regression
(MLR) or partial least squares (PLS) the adjusted R is used:

R
adj =  − ( − R


)

n − 
n − c − 

, (.)

where n is the number of compounds in the dataset, and c is the number of variables (descrip-
tors or principal components) included in the regression equation. It should be recognized that
R
ad j ≤ R

.The higher the number of explanatory variables c is, the lower R
ad j is. R


ad j is partic-

ularly important for linear QSAR models developed with variable selection. R
ad j is not a good

criterion for variable selection kNN QSAR models, since contrary to regression methods, in
the kNN algorithm descriptors are just selected or not selected, that is, their weights are either
zero or one. As a result, much larger set of descriptors is selected by the kNN procedure than,
for example, by stepwise regression.

Target Functions and Validation Criteria for Classification QSARModels

We consider a classification QSAR model predictive, if the prediction accuracy characterized
by the correct classification rate (CCR) for each class is sufficiently large:

CCRclass =
N corr

class

N total
class

(.)

and the p-value for each CCRclassvalue is not higher than a predefined threshold (in case of
two classes, the CCRclass threshold should not be lower than .–., and generally, for any
number of classes, p-value should not be higher than . for each class).
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For the classification QSAR with K classes, we shall use the following criterion

CCR =

K

K
∑

i=
CCRi =


K

K
∑

i=

N corr
k

N total
k

(.)

along with the correct classification rate for each class (see > Eq. .). Criterion (> .)
is correct for both balanced and imbalanced (biased) datasets (i.e., when the number of com-
pounds of each class is different). For imbalanced datasets, formula N(corr)/N(total), where
N(corr) and N(total) are the number of compounds predicted correctly and the total number
of compounds in the dataset) is incorrect. QSAR procedure should maximize the CCR value
calculated according to > Eq. ., and at the same time it should be penalized by too high
differences between CCR values for different classes.

Target Functions and Validation Criteria for Category QSARModels

Category QSAR with more than two classes should use target functions and validation criteria
other than those used in classification QSAR. These target functions and validation criteria
should consider errors as differences between predicted and observed categories, or increasing
functions of these differences. The total error of prediction over all compounds is the sum of
all errors of predictions for individual compounds. Let ni j be the number of compounds of
category i assigned by a model to category j(i, j = , . . .,K). Then the total error is calculated
as follows:

E =
K
∑

i=

K
∑

j=
ni j f (∣i − j∣) . (.)

where f (∣i − j∣) is the increasing function of errors. In case of biased datasets, it would be
important to normalize the errors for compounds of category i on the number of compounds
in this category:

E =
K
∑

i=


Ni

K
∑

j=
ni j f (∣i − j∣) . (.)

where Ni is the number of compounds of category i. QSAR procedure should minimize the
total error of prediction calculated with > Eqs. . or > .. In practice, the accuracy can
be defined as A =  − E/Eexp, where Eexp is the expected total error. Thus, QSAR procedure
should maximize the target function A penalized by too high differences between CCR values
for different classes.

More detailed consideration of target functions and validation criteria as well as different
aspects of cost-sensitive learning, weighting, penalties, as well as threshold moving in QSAR
studies are discussed in our recent review (Tropsha and Golbraikh ). General aspects of
cost-sensitive learning are discussed by Elkan (The Foundations ) and Chen et al. ().
Oversampling of the minority class, that is, inclusion of compounds of the minority class in the
dataset more than once, is considered by Yen and Lee (), and Kubat and Matwin ().
The opposite approach, called undersampling, that is, removing part of the majority class from
the dataset, is considered by Japkowicz (). Usingmoving threshold for dividing compounds
into active and inactive classes when continuous property values are available but one desires to
use classificationmodeling approaches is considered by Zhou and Liu (). InQSAR studies,
threshold is usually moved toward the larger class, which is easier to predict correctly.
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Applicability Domains

Here we are approaching an extremely important problem of QSAR studies:model applicability
domain (AD). Formally, a QSAR model can predict the target property for any compound for
which chemical descriptors can be calculated.However, if a compound is highly dissimilar from
all compounds of the modeling set, reliable prediction of its activity is unlikely to be realized.
A concept of AD was developed and used to avoid such an unjustified extrapolation in activity
prediction. Applicability domains are one of the areas of intensive research. Different methods
of defining AD exist. Among others, the following definitions are considered by Jaworska and
colleagues (, ).

Descriptor-range-based AD. AD is defined as a hyperparallelepiped in the descriptor space
in which representative points are distributed (Netzeva et al. ; Nikolova-Jeliazkova and
Jaworska ; Saliner et al. ). Dimensionality of the hyperparallelepiped is equal to the
number of descriptors, and the size of each dimension is defined by the minimum and maxi-
mum values of the corresponding descriptor or it stretches beyond these limits to some extent
up to predefined thresholds.

Geometric Methods: Convex Hull AD. AD is defined as a convex hull of points in the multidi-
mensional descriptor space (Fechner et al. ).

The drawbacks of these definitions are as follows. Generally, the representative points are
distributed not in the entire hyperparallelepiped or convex hull, but only in a small part of it.
Another drawback is that structural outliers in the dataset can enormously increase the size of
the hyperparallelepiped, and the area around the outlier will contain no other points. Conse-
quently, for many compounds within the hyperparallelepiped or convex hull, prediction will be
unreliable. Besides, if the number of linearly independent descriptors exceeds the number of
compounds, the convex hull is not unique.

Leverage-based AD. Leverage for a compound is defined as the corresponding diagonal ele-
ment of the hat matrix (Afantitis et al. ). A compound is defined as outside of the AD, if
its leverage L is higher than K/N, where K is the number of descriptors and N is the number
of compounds. The drawbacks of the leverage-based AD are as follows. (a) for each external
compound, it is necessary to recalculate leverage; (b) if there are cavities in the representative
point distribution area, a query compound the representative point of which is in this area will
be considered to be within the AD, while in fact it is far from all other compounds (Tropsha
and Golbraikh ).

Distance-based AD. In our studies, the AD is defined as the Euclidean distance threshold DT
between a query compound and its closest k-nearest neighbors of the training set. It is calculated
as follows:

DT = ȳ + Zσ (.)

Here, ȳ is the average Euclidean distance between each compound and its k-nearest neigh-
bors in the training set k is optimized in the course of QSAR modeling, and the distances are
calculated using descriptors selected by the optimized (model only), σ is the standard devi-
ation of these Euclidean distances, and Z is an arbitrary cutoff parameter defined by a user
(de Cerqueira et al. ; Hsieh et al. ; Kovatcheva et al. ; Zhang et al. ). We set
the default value of this parameter Z at ., which formally places the allowed distance thresh-
old at the mean plus one-half of the standard deviation. We also define the AD in the entire
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descriptor space. In this case, the same > Eq. . is used, k = , Z = ., and Euclidean dis-
tances are calculated using all descriptors. Thus, if the distance of the external compound from
its nearest neighbor in the training set within either the entire descriptor space or the selected
descriptor space exceeds these thresholds, the prediction is not made.We have also investigated
changes of predictive power by changing the values of Z-cutoff. We have found that in general,
starting from some Z-cutoff value, predictive power decreases while Z-cutoff value increases
(Zhu et al. ), as expected. Instead of Euclidean distances, other distances and similarity
measures can be used.

Consensus PredictionAD. Thepredicted activity of a query compound by an ensemble ofQSAR
models is calculated as the average over all predicted values. In binary QSAR modeling, each
model will predict the compound category as either  (inactive) or  (active); however, differ-
entmodels used in an ensemblemay yield inconsistent predictions. Consequently, the averaged
predicted activity value for an external compound resulting from the use of an ensemble ofmod-
els may fall anywhere within the [;] range. For classification and category QSAR, the average
predicted value is rounded to the closest integer (which is a class or category number); in the
case of imbalanced datasets, rounding can be done using the moving threshold (vide supra).
Predicted average classes or categories (before rounding) that are closer to the nearest integers
are considered more reliable since such value indicates higher concordance between different
models. For example, before rounding, one compound has the predicted value of ., but the
other has .. Hence, both compounds are predicted to belong to class  but the prediction
for the first compound is considered more reliable. Using these prediction values, additional
constraint on the AD can be defined by a threshold of the absolute difference between the pre-
dicted and the rounded predicted activity. There are several other definitions of AD (Jaworska
and Nikolova-Jeliazkova ; Tetko et al. ) based on probability density distributions,
distances to models, etc.

Y-randomization

To establish model robustness, Y-randomization (randomization of the response variable) test
should be used. This test consists of repeating all the calculations with scrambled activities of
the training set. Ideally, calculations should be repeated at least five (better, more) times. The
goal of this procedure is to establish whether models built with real activities of the training
set have good statistics not due to overfitting or chance correlation. If predictive power for the
training or the test set of all models built with randomized activities of the training set is signif-
icantly lower than that of models built with real activities of the training set, the latter ones are
considered reliable. Using different parameters of the model development procedure, multiple
QSAR models are built which have acceptable statistics. Suppose, the number of these models
is m. Y-randomization test can also give n models with acceptable statistics. For acceptance of
models developed with real activities of the training set, the condition n << m should be satis-
fied. In (Kovatcheva et al. ) and (de Cerqueira et al. ), we have introduced the measure
of robustness R =  − n/m. If R > ., the models are considered robust and their high pre-
dictive accuracy cannot be explained by the chance correlation or overfitting. Y-randomization
test is particularly important for small datasets. Unfortunately, in many publications on QSAR
studies, Y-randomization test is not carried out but all QSAR practitioners must be strongly
encouraged to use this simple procedure.
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External Validation

Our previous experience suggests that the consensus prediction, which is the average of pre-
dicted activities over all predictive models, always provides the most stable results (Zhang et al.
; Zhu et al. ), and thus naturally avoids the need for (the best) model selection based
on the statistics for the training and test sets.The consensus prediction of biological activity for
an external compound on the basis of several QSARmodels is more reliable and provides better
justification for the experimental exploration of hits.

External evaluation set compounds are predicted by models that have passed all validation
criteria described above. Each compound is predicted by models for which the compound is
within the AD. Actually, each external compound should be within the AD of the training set
within the entire descriptor space as well (vide supra). A useful parameter for consensus pre-
diction is the minimumnumber (or percentage) of models for which a compound is within the
AD; it is defined by the user. If the compound is found within the AD of a lower number of
models, it is considered to be outside of the AD. Prediction value is the average of predictions
by all models. If a compound is predicted by more than one model, standard deviation of all
predictions by these models is also calculated. For classification and category QSAR, the aver-
age prediction value is rounded to the closest integer (which is a class or category number); in
case of imbalanced datasets, rounding can be done using the moving threshold.

Predicted average classes or categories (before rounding), which are closer to the nearest
integers are consideredmore reliable (Zhang et al. ). Using these prediction values, AD can
be defined by a threshold of the absolute difference between predicted and rounded predicted
activity. For classification and category QSAR, the same prediction accuracy criteria are used
as for the training and test sets. The situation is more complex for the continuous QSAR. In
this case, if the range of activities of the external evaluation set is comparable to that for the
modeling set, criteria ()–() are used (see > section “Target Functions”). Sometimes, however,
the external evaluation set may have a much smaller range of activities than the modeling set,
so it could be impossible to obtain sufficiently large R value (and other acceptable statistical
characteristics) for it. In this case, we recommend using the mean absolute error (MAE) or the
standard error of prediction (SEP) as discussed in one of our previous publications (Tropsha
and Golbraikh ).

We have used consensus prediction in many studies (de Cerqueira et al. ; Kovatcheva
et al. ; Shen et al. ; Votano et al. ; Zhang et al. , ; Zhu et al. ) and
have shown that in most cases it gives better prediction and coverage than most of the individ-
ual predictive models. Thus, we recommend using consensus prediction for virtual screening
of chemical databases and combinatorial libraries for finding new lead compounds for drug
discovery.

“Good Practices” in QSARModeling: Examples of Models and Their
Application to Virtual Screening and Lead Identification

As discussed above, our experience in QSAR model development and validation has led us
to establishing a complex but straightforward workflow summarized in > Fig. -. The last
critical component of this workflow is the use of models to identify tentative active hits that
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should be validated in experimental laboratories, and we strongly encourage every computa-
tional scientist to use this ultimate model validation strategy. We note that this approach shifts
the emphasis from ensuring good (best) statistics for the model that fits known experimen-
tal data toward generating testable hypotheses about purported bioactive compounds. Thus,
the output of the modeling has exactly same format as the input, that is, chemical structures
and (predicted) activities making model interpretation and utilization completely seamless
for medicinal chemists. In our recent studies, we have been fortunate to recruit experimental
collaborators who have validated computational hits identified through our modeling of anti-
convulsants (Shen et al. ), HIV- reverse transcriptase inhibitors (Medina-Franco et al.
), D antagonists (Oloff et al. ), antitumor compounds (Zhang et al. ), beta-
lactamase inhibitors (Hsieh et al. ), geranylgeranyltransferase inhibitors (Peterson et al.
), and others. The discovery of novel bioactive chemical entities is the primary goal of
computational drug discovery, and the development of validated and predictive QSAR models
is critical to achieve this goal. We note that such studies could only be done if there is sufficient
data available for a series of tested compounds such that robust validatedmodels could be devel-
oped using the workflow described in > Fig. -. We present several examples of these studies
below to illustrate the use of QSAR models as virtual screening tools for lead identification.

QSAR-Aided Discovery of Novel Anticonvulsant Compounds

Wehave applied kNN (Zheng andTropsha ) and simulated annealing – partial least squares
(SA-PLS) (Cho et al. ) QSAR approaches to a dataset of  chemically diverse function-
alized amino acids (FAAs) with anticonvulsant activity that were synthesized previously, and
successful QSAR models of FAA anticonvulsants have been developed (Shen et al. ). Both
methods utilized multiple descriptors such as molecular connectivity indices or atom-pair
descriptors, which are derived from two-dimensional molecular topology. QSAR models with
high internal accuracy were generated,with leave-one-out cross-validated R

(q) values rang-
ing between . and ..The q values for the actual datasetwere significantly higher than those
obtained for the same dataset with randomly shuffled activity values, indicating that models
were statistically significant. The original dataset was further divided into several training and
test sets, and highly predictive models providing q values for the training sets greater than .
and R values for the test sets greater than ..

In the second phase of modeling, we have applied the validated QSAR models to mining
available chemical databases for new lead FAA anticonvulsant agents. Two databases have been
explored: the National Cancer Institute (nci ) and Maybridge () databases, including
(at the time of that study) , and , chemical structures, respectively. Database min-
ing was performed independently using ten individual QSARmodels that have been extensively
validated using several criteria of robustness and accuracy. Each individualmodel selected some
number of hits as a result of independent database mining, and the consensus hits (i.e., those
selected by all models) were further explored experimentally for their anticonvulsant activity.
As a result of computational screening of the NCI database,  compounds were selected as
potential anticonvulsant agents and submitted to our experimental collaborators. Of these 
compounds, our collaborators chose two for synthesis and evaluation; their choice was based
on the ease of synthesis and the fact that these two compounds had structural features that
would not be expected to be found in active compounds based on prior experience. Several
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additional compounds, which were close analogs of these two were either taken from the litera-
ture or designed in our collaborator’s laboratory. In total, seven compounds were resynthesized
and sent to the NIH for theMaximumElectroshock (MES) test (a standard test for the anticon-
vulsant activity, which was used for the training set compounds as well). The biological results
indicated that upon initial and secondary screening, five out of seven compounds tested showed
anticonvulsant activity with ED less than mg/kg, which is considered promising. Interest-
ingly, all seven compoundswere also found to be very active in the same tests performed on rats
(a complete set of experimental data on rats for the training set were not available, and therefore
no QSAR models for rats were built).

Mining of the Maybridge database yielded two additional promising compounds that were
synthesized and sent to theNIH for theMES anticonvulsant test. One of the compounds showed
moderate anticonvulsant activity of ED between  and mg/kg (in mice), while the other
was found to be a very potent anticonvulsant agent with ED of mg/kg in mice (ip). In sum-
mary, both compounds were found to be very active in bothmice and rats. > Figure - shows
chemical structures of experimentally confirmed hits that were identified by using validated
QSAR models for virtual screening as applied to the anticonvulsant dataset. It is important
to note that none of the compounds identified in external databases as potent anticonvulsants
and validated experimentally belong to the same class of FAA molecules as the training set.
This observation was very stimulating because it underscored the power of our methodology
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to identify potent anticonvulsants of novel chemical classes as compared to the training set
compounds, which is one of the most important goals of virtual screening.

QSAR-Enabled Discovery of Novel Anticancer Agents

A combined approach of validated QSAR modeling and virtual screening was successfully
applied to the discovery of novel tylophorine derivatives as anticancer agents (Zhang et al.
). QSARmodels have been initially developed for  chemically diverse phenathrene-based
tylophorine derivatives (PBTs) with known experimental EC using chemical topological
descriptors (calculatedwith theMolconn-Z program) and variable selection k-nearest neighbor
(kNN) method. Several validation protocols have been applied to achieve robust QSAR mod-
els. The original dataset was divided into multiple training and test sets, and the models were
considered acceptable only if the leave-one-out cross-validated R

(q) values were greater than
. for the training sets and the correlation coefficient R values were greater than . for the
test sets. Furthermore, the q values for the actual dataset were shown to be significantly higher
than those obtained for the same dataset with randomized target properties (Y-randomization
test), indicating that models were statistically significant. Ten best models were then employed
to mine a commercially available ChemDiv Database (ca. K compounds) resulting in 
consensus hits with moderate to high predicted activities. Ten structurally diverse hits were
experimentally tested and eight were confirmed active with the highest experimental EC of
. μM implying an exceptionally high hit rate (%).The same tenmodelswere further applied
to predict EC for four new PBTs, and the correlation coefficient (R) between the experimen-
tal and predicted EC for these compounds plus eight active consensus hits was shown to be
as high as ..

QSAR Enabled Discovery of Novel Geranylgeranyltransferase I
Inhibitors (GGTIs)

Theproper functioning of proteins often relies onposttranslationalmodification of the polypep-
tide leading to changes in chemical characteristics. Found at the extreme carboxyl terminus
of the protein, one posttranslational “program” utilized for over  proteins is the so-called
CaaX box, where “C” is a cysteine, “aa” is any aliphatic dipeptide, and “X” is the terminal
residue that directs which of two prenyl groups is added (Cox and Der ; Zhang and Casey
). Protein geranylgeranyltransferase type I (GGTase-I) transfers the -carbon geranylger-
anyl group to proteins including critical signaling molecules from many classes, for example,
the Ras superfamily (including K-Ras, Rho, Rap, Cdc, and Rac), several G-protein gamma
subunits, protein kinases (rhodopsin kinase, phosphorylase kinase, and GRK), and protein
phosphatases (Casey and Seabra ; Sebti and Hamilton ). Several GGTIs have been
developed that inhibit C lipid modification of GGTase-I substrates. GGTIs have been pri-
marily developed for use as cancer therapeutics, particularly in cancers that have high levels,
or activating mutations of geranylgeranylated proteins (Sebti and Hamilton ;Winter-Vann
and Casey ).

The pharmacological data for  GGTIs reported in (Peterson et al. ) were generated
as part of an iterative drug discovery program that led to GGTI-DU (Peterson et al. ).
The structure of GGTI-DU can be discussed in the context of the CaaL peptide framework.
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There is a free amide group, a spacer domain relating to the dialiphatic motif, and critical sul-
fur as found in the requisite cysteine residue of GGTase-I’s substrates. Four additional GGTIs
included in the data set were peptidomimetics as well. Importantly, the modeling set included
compounds with different (chemical scaffolds), which in theory (and as we have established in
our study, in practice) should have enabled the identification of chemically diverse hits from
virtual screening.

Three differentmodeling techniques have been used tomodel GGTIs following our general
combi-QSAR strategy (> Fig. -); the specific workflow as applied to the GGTI dataset is
shown in > Fig. -. As the first step of our QSAR-based virtual screening, the preliminary
filtering of the . million compounds in our screening library yielded  initial hits. This was
done by using the global applicability domain of all  GGTIs in the modeling set. After con-
sensus predictions by  validated kNNmodels, their predicted activities (pIC) were found
ranging from . to .. Only  hits, including two pairs of stereoisomers, showed high pre-
dicted activity (pIC > .) as well as high model coverage and were designated as the final
hits. Concurrently, two additional QSAR models were employed to reevaluate those  hits in
order to identify the consensus hits among all three methods. In the end, seven compounds
were prioritized for experimental validation based on high predicted activity, uniqueness of
structure, and availability.

Using purified recombinant GGTase-I as an enzyme source and GGpp and Ras-CVLL as
substrates, seven hit compounds were tested in vitro as a matter of the experimental validation.
The selection was based on high predicted activity, availability, and structural uniqueness. All
tested compounds showed inhibition of GGTase-I with the pIC ranging from . to .
(cf. > Fig. -).
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⊡ Fig. -
The predictive QSARmodeling workflow illustrated for GGTIs



  Predictive QSARModeling

−8 −7 −6 −5 −4 −3
0.0

0.2

0.4

0.6

0.8

1.0

log [cmpd], M

%
 A

ct
iv

ity

−8 −7 −6 −5 −4 −3
0.0

0.2

0.4

0.6

0.8

1.0

log [cmpd], M

%
 A

ct
iv

ity

NH2
CH3

CH3

CH3

H3C

O

NH

O

O O

O

O

GGTI-DU.sig3
ba

GGTI-DU.As2GGTI-DU.As2

GGTI-DU.En2GGTI-DU.En2

NH

O

NH

N

N N

N
N

NH

CH3

Cl

Cl

Cl

S
O

NN

⊡ Fig. -
Experimental validations of computational GGTI hits using GGTase-I in vitro activity assay. (a) Inhi-
bition curves; (b) Chemical structures of three representative confirmed hits; the novel scaffolds in
the structures are highlighted

The unexpected result was to identify several predicted actives that did not have a common
ring feature in their structure. In fact, seven highly ranked hits had no apparent relationship
with any of the training set molecules. They had furan, triazole, tetrazole, and pyridine cores
in their scaffolds while all non-peptidomimetic compounds of the training set were based on
a pyrazole core. Therefore, the seven hit compounds appeared to be the structurally novel hits.
> Figure -b shows chemical structures of the three representative confirmed hits with
novel scaffolds highlighted. This study reconfirmed the observation that we already empha-
sized earlier with anticonvulsant compounds that contrary to the common belief, QSAR-based
virtual screening is capable of identifying experimentally confirmed hit compounds with novel
scaffolds.

“Good Practices” in QSARModel Development: Applications to
Toxicity Modeling

Many compounds entering clinical studies do not survive as a good pharmacological lead to
become a marketed drug. Chemical toxicity and safety have been regarded as the major reason
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for attrition in the past decades (Kola and Landis ). However, evaluation of chemical
toxicity and safety in vivo at the early stage of drug discovery process is expensive and time
consuming. To replace the traditional animal toxicity testing and to understand the relevant
toxicological mechanisms, many in vitro toxicity screens and computational toxicity models
have been developed and implemented by academic institutes and pharmaceutical companies
(Cheeseman; Dash et al. ; Dix et al. ; Inglese et al. ; Park et al. ; Riley and
Kenna ; Valerio ; Yang et al. ). In the past  years, innovative technologies that
enable rapid synthesis and high throughput screening of large libraries of compounds have been
adopted for toxicity studies. As a result, there has been a huge increase in the number of com-
pounds and the associated testing data in different in vitro screens. With this data, it becomes
feasible to reveal the relationship between the high throughput in vitro toxicity testing results
and the low throughput in vivo low dose toxicity evaluation for the same set of compounds.
Understanding these relationships could help us delineate the mechanisms underlying animal
toxicity of chemicals as well as potentially improve our ability to predict chemical toxicity using
short-term bioassays.

The unique advantage of using a computational toxicity model in risk analysis is that a
chemical could be evaluated for its toxicity potential even before it is synthesized.The computa-
tional toxicity tools based on QSARmodels have been used to assist in predictive toxicological
profiling of pharmaceutical substances for understanding drug safety liabilities (Durham and
Pearl ; Jacobson-Kram and Contrera ; Muster et al. ; Valerio ), supporting
regulatory decision making on chemical safety and risk of toxicity (Bailey et al. ), and
are effectively enhancing an already rigorous US regulatory safety review of pharmaceutical
substances (Valerio ). Predictive QSAR models of chemical toxicity are beginning to be
used to evaluate compounds’ safety in the pharmaceutical industry and environmental agencies
(Durham and Pearl ; Snyder ). However, it has been reported that most QSAR models
do not work well for evaluating in vivo toxicity, especially for external compounds (Zvinavashe
et al. , ). Several reviewswere published recently that challenge the feasibility and relia-
bility of QSARmodels of chemical toxicity (Johnson ; Stouch et al. ). At the same time,
experimental data resulting from short-term high throughput screening assays are emerging
prompting the development of novel modeling approaches that can combine short-term assay
data and conventional chemical descriptors of molecules to develop enhanced QSAR models
of animal toxicity. We briefly review these emerging approaches and applications below.

Quantitative Structure In Vitro–In Vivo Relationship Modeling

To stress a broad appeal of the conventional QSAR approach, it should be made clear that from
the statistical viewpoint QSAR modeling is a special case of general statistical data mining and
datamodelingwhere the data is formatted to represent objects described bymultiple descriptors
and the robust correlation between descriptors and a target property (e.g., chemical toxicity in
vivo) is sought. In previous computational toxicology studies, additional physicochemicalprop-
erties, such as water partition coefficient (logP) (Klopman et al. ), water solubility (Stoner
et al. ), and melting point (Mayer and Reichenberg ) were used successfully to aug-
ment computed chemical descriptors and improve the predictive power of QSARmodels.These
studies suggest that using experimental results as descriptors in QSAR modeling could prove
beneficial. The already available and rapidly growing HTS data for large and diverse chemical
libraries makes it possible to extend the scope of the conventional QSAR in toxicity studies
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⊡ Fig. -
Combining chemical and biological profiles as descriptors in QSIIR modeling of chemical carcino-
genicity

by using in vitro testing results as additional biological descriptors. Therefore, in some of the
most recent toxicology studies, the relationships between various in vitro and in vivo toxicity
testing results were generated (Forsby and Blaauboer ; Piersma et al. ; Schirmer et al.
; Sjostrom et al. ). Based on these reports, we proposed a new modeling workflow
called Quantitative Structure In vitro–In vivo Relationship (QSIIR) and used it in animal tox-
icity modeling studies (Zhu et al. , ). The target properties of QSIIR modeling were
still biological activities, such as different toxicity end points, but the content and interpretation
of “descriptors” and the resulting models is different. This focus on the prediction of the same
target property from different (chemical, biological, and genomic) characteristics of environ-
mental agents affords an opportunity to most fully explore the source-to-outcome continuum
of the modern experimental toxicology using cheminformatics approaches. > Figure -
provides visual illustration of the integrated QSIIR approach to in vivo toxicity modeling.

Using “Hybrid”Descriptors for QSIIRModeling of Rodent Carcinogenicity

To explore efficient approaches for rapid evaluation of chemical toxicity and human health risk
of environmental compounds, the National Toxicology Program (NTP), in collaboration with
theNational Center for Chemical Genomics (NCGC) has initiated anHTSProject (Inglese et al.
; Thomas et al. ). The first batch of HTS results for a set of , compounds tested
in six human cell lines was released via PubChem. We have explored this data in terms of their



Predictive QSARModeling  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sensitivity Specificity Overall Predictivity

Chemical (MolConnZ)
Descriptors 

Chemical (MolConnZ)
Descriptors + Biological
(HTS) Descriptors

⊡ Fig. -
Comparison of the prediction power of QSTRmodels of chemical carcinogenicity for the indepen-
dent validation set using conventional versus hybrid descriptors

utility for predicting adverse health effects of the environmental agents (Zhu et al. ). Ini-
tially, the classification k-nearest neighbor (kNN) QSAR modeling method was applied to the
HTS data only for the curated dataset of  compounds. The resulting models had prediction
accuracies for training, test (containing  compounds together), and external validation (
compounds) sets as high as %, %, and %, respectively.We then asked if HTS results could
be of value in predicting rodent carcinogenicities. We identified  compounds for which data
were available from both the Berkeley Carcinogenic Potency Database and NTP-HTS studies.
We found that compounds classified by HTS as “actives” in at least one cell line were likely
to be rodent carcinogens (sensitivity %); however, HTS “inactives” were far less informative
(specificity %). Using chemical descriptors only, kNN QSAR modeling resulted in the over-
all external prediction accuracy of % for rodent carcinogenicity. Importantly, the prediction
accuracy of the model was significantly improved (to %) when chemical descriptors were
augmented by the HTS data, which were regarded as biological descriptors (> Fig. -). Thus,
our studies suggested, for the first time, that combining HTS profiles with conventional chem-
ical descriptors could considerably improve the predictive power of computational approaches
in chemical toxicology.

Using “Hybrid”Descriptors for the QSIIR Modeling of Rodent Acute Toxicity

We used the cell viability qHTS data from NCGC as mentioned in the above section for the
same , compounds but in  cell lines (Xia et al. ). Besides the carcinogenicity, we
asked if HTS results could be of value in predicting rodent acute toxicity (Sedykh et al. in
press). For this purpose, we have identified  of these compounds, for which rodent acute
toxicity data (i.e., toxic or nontoxic) was also available. The classification kNN QSAR model-
ing method was applied to these compounds using either chemical descriptors alone or as a
combination of chemical and qHTS biological (hybrid) descriptors as compound features. The
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Acute toxicity modeling. The ROC curves for conventional QSAR model (bold line) and different
hybrid models for the same external compounds.

external prediction accuracy of models built with chemical descriptors only was %. In con-
tract, the prediction accuracy was significantly improved to %whenusing hybrid descriptors.
The receiver operating characteristic (ROC) curves of conventional QSARmodels and different
hybrid models are shown in > Fig. -. The sensitivities and specificities of hybrid models are
clearly better than for conventional QSAR model for predicting the same external compounds.
Furthermore, the prediction coverage increased from % when using chemical descriptors
only to % when qHTS biological descriptors were also included. Our studies suggest that
combining HTS profiles, especially the dose-response qHTS results, with conventional chemi-
cal descriptors could considerably improve the predictive power of computational approaches
for rodent acute toxicity assessment.

Collaborative and Consensus Modeling of Aquatic Toxicity

We discuss below the results of a recent important study of aquatic toxicity (Zhu et al. ). In
our opinion, this particular studymay serve as a useful example to illustrate the complexity and
power of modern QSAR modeling approaches and highlight the importance of collaborative
and consensual model development.
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The combinational QSARmodeling approach has been applied to a diverse series of organic
compounds tested for aquatic toxicity in Tetrahymena pyriformis in the same laboratory over
nearly a decade (Aptula et al. ; Netzeva and Schultz ; Schultz ; Schultz andNetzeva
; Schultz et al. , , , a, b). The unique aspect of this research was that it
was conducted in collaboration between six academic groups specializing in cheminformatics
and computational toxicology. The common goals for our virtual collaboratory were to explore
the relative strengths of various QSAR approaches in their ability to develop robust and exter-
nally predictive models of this particular toxicity end point.We have endeavored to develop the
most statistically robust, validated, and externally predictive QSAR models of aquatic toxicity.
The members of our collaboratory included scientists from the University of North Carolina at
ChapelHill in the United States (UNC); University of Louis Pasteur (ULP) in France; University
of Insubria (UI) in Italy; University of Kalmar (UK) in Sweden; Virtual Computational Chem-
istry Laboratory (VCCLAB) in Germany; and the University of British Columbia (UBC) in
Canada. Each group relied on its own QSAR modeling approaches to develop toxicity models
using the same modeling set, and we agreed to evaluate the realistic model performance using
the same external validation set(s).

The T. pyriformis toxicity dataset used in this study was compiled from several publications
of the Schultz group as well as from data available at the Tetratox database Web site of (http://
www.vet.utk.edu/TETRATOX/). After deleting duplicates as well as several compounds with
conflicting test results and correcting several chemical structures in the original data sources,
our final dataset included  unique compounds. The dataset was randomly divided into two
parts: () the modeling set of  compounds; () the validation set including  compounds.
The former set was used for model development by each participating group and the latter
set was used to estimate the external prediction power of each model as a universal metric of
model performance. In addition, when this project was already well underway, a new dataset
had become available from the most recent publication by the Schultz group (Schultz et al.
). It provided us with an additional external set to evaluate the predictive power and relia-
bility of all QSARmodels. Among compounds reported in (Schultz et al. ) were unique,
that is, not present among the original set of  compounds; thus, these  compounds formed
the second independent validation set for our study.

Universal Statistical Figures of Merit for All Models

Different groups have employed different techniques and (sometimes) different statistical
parameters to evaluate the performance of models developed independently for the modeling
set (described below). To harmonize the results of this study, the same standard parameters were
chosen to describe each model’s performance as applied to the modeling and external test set
predictions. Thus, we have employedQ

abs (squared leave-one-out cross-validation correlation
coefficient) for the modeling set, R

abs (frequently described as coefficient of determination)
for the external validations sets, and MAE (mean absolute error) for the linear correlation
between predicted (Ypred) and experimental (Yexp) data (here, Y = pIGC); these parameters
are defined as follows:

Q
abs =  −∑

Y
(Yexp − YLOO)


/
∑

Y
(Yexp− < Y >exp) (.)

http://www.vet.utk.edu/TETRATOX/
http://www.vet.utk.edu/TETRATOX/
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R
abs =  −∑

Y
(Yexp − Ypred)


/
∑

Y
(Yexp− < Y >exp) (.)

MAE =
∑

Y
∣Y − Ypred ∣/n (.)

Many other statistical characteristics can be used to evaluate model performance; however,
we restricted ourselves to these three parameters that provide minimal but sufficient informa-
tion concerning anymodel’s ability to reproduce both the trends in experimental data for the test
sets as well asmean accuracy of predicting all experimental values.Themodelswere considered
acceptable if R

abs exceeded ..

Consensus QSARModels of Aquatic Toxicity; comparison Between
Methods andModels

The objective of this study from methodological prospective was to explore the suitability of
different QSARmodeling tools for the analysis of a dataset with an important toxicological end
point. Typically, such datasets are analyzed with one (or several) modeling techniques, with a
great emphasis on the (high value of) statistical parameters of the training set models. In this
study, we wentwell beyond themodeling studies reported in the original publications in several
respects. First, we have compiled all reported data on chemical toxicity against T. pyriformis in
a single large dataset and attempted to develop global QSAR models for the entire set. Second,
we have employed multiple QSAR modeling techniques thanks to the engagement of six col-
laborating groups. Third, we have focused on defining model performance criteria not only
using training set data but most importantly using external validation sets that were not used
inmodel development in anyway (unlike any common cross-validation procedure) (Gramatica
). This focus afforded us the opportunity to evaluate and compare all models using simple
and objective universal criteria of external predictive accuracy, which in our opinion is themost
important single figure of merit for a QSAR model that is of practical significance for exper-
imental toxicologists. Fourth, we have explored the significance of applicability domains and
the power of consensus modeling in maximizing the accuracy of external predictivity of our
models.

We believe that results of our analysis lend a strong support for our strategy. Indeed, all
models performed quite well for the training set with even the lowestQ

abs among them as high
as .. However, there was much greater variation between thesemodels when looking at their
(universal and objective) performance criteria as applied to the validation sets.

Of  QSAR approaches used in this study, nine implementedmethod-specific applicability
domains. Models that did not define the AD showed a reduced predictive accuracy for the val-
idation set II even though they yielded reasonable results for the validation set I. On average,
the use of applicability domains improved the performance of individual models although the
improvement came at the expense of the lower chemistry space coverage.

For the most part all models succeeded in achieving reasonable accuracy of external pre-
diction especially when using the AD. It then appeared natural to bring all models together to
explore the power of consensus prediction.Thus, the consensus modelwas constructed by averag-
ing all available predicted values taking into account the applicability domain of each individual
model. In this case, we could use only  of  models that had the AD defined. Since eachmodel
had its unique way of defining the AD, each external compound could be found within the AD
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of anywhere between one and nine models so for averaging we only used models covering the
compound. The advantage of this data treatment is that the overall coverage of the prediction
is still high because it was rare to have an external compound outside of the ADs of all avail-
able models.The results showed that the prediction accuracy for both the modeling set and the
validation sets was the best compared to any individual model.The same observation could be
made for the correlation coefficient R

abs . The coverage of this consensus model II was %
for all three data sets. This observation suggests that consensus models afford both high space
coverage and high accuracy of prediction

In summary, this study presents an example of a fruitful international collaboration between
researchers that use different techniques and approaches but share general principles of QSAR
model development and validation. Significantly, we did not make any assumptions about the
purported mechanisms of aquatic toxicity yet were able to develop statistically significant mod-
els for all experimentally tested compounds. In this regard it is relevant to cite an opinion
expressed in an earlier publication by T. Schultz that “models that accurately predict acute tox-
icity without first identifying toxic mechanisms are highly desirable” (Schultz ). However,
the most significant single result of our studies is the demonstrated superior performance of
the consensus modeling approach when all models are used concurrently and predictions from
individual models are averaged. We have shown that both the predictive accuracy and cover-
age of the final consensus QSAR models were superior as compared to these parameters for
individual models.The consensus models appeared robust in terms of being insensitive to both
incorporating individual models with low prediction accuracy and the inclusion or exclusion
of the AD. Another important result of this study is the power of addressing complex problems
in QSAR modeling by forming a virtual collaboratory of independent research groups leading
to the formulation and empirical testing of best modeling practices. This latter endeavor is espe-
cially critical in light of the growing interest of regulatory agencies to developing most reliable
and predictive models for environmental risk assessment (Yang et al. ) and placing such
models in the public domain.

Conclusions: Emerging Chemical/Biological Data and QSAR
Research Strategies

In the past  years, innovative technologies that enable rapid synthesis and high throughput
screening of large libraries of compounds have been adopted in almost allmajor pharmaceutical
and biotech companies. As a result, there has been a huge increase in the number of com-
pounds available on a routine basis to quickly screen for novel drug candidates against new
targets or pathways. In contrast, such technologies have rarely become available to the aca-
demic research community, thus limiting its ability to conduct large-scale chemical genetics
or chemical genomics research. The NIH Molecular Libraries Roadmap Initiative has changed
this situation by forming the national Molecular Library Screening Centers Network (MLSCN)
(Austin et al. ) with the results of screening assays made publicly available via PubChem
().These efforts have already led to the unprecedented growth of availabledatabases of bio-
logically tested compounds [cf. our recent review where we list about  available databases of
compounds with known bioactivity (Oprea and Tropsha )].
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This growth creates new challenges for QSAR modeling such as developing novel
approaches for the analysis and visualization of large databases of screening data, novel biolog-
ically relevant chemical diversity or similarity measures, and novel tools for virtual screening
of compound libraries to ensure high expected hit rates. Application studies discussed in this
chapter have established thatQSARmodels could be used successfully as virtual screening tools
to discover compounds with the desired biological activity in chemical databases or virtual
libraries (Hsieh et al. ; Oloff et al. ; Shen et al. ; Tropsha ; Tropsha and Zheng
; Zhang et al. ). The discovery of novel bioactive chemical entities is the primary goal
of computational drug discovery, and the development of validated and predictive QSARmod-
els is critical to achieve this goal. Due to the significant recent increase in publicly available
datasets of biologically active compounds and the critical need to improve the hit rate of exper-
imental compound screening there is a strong need in developing widely accessible and reliable
computational QSAR modeling techniques and specific end-point predictors.
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Abstract: A thorough antimicrobial reviewof an increasing number of reports reveals a broad
spectrum of research activity in the development practices that are used to treat a variety of
diseases. The quantitative relationship between chemical structure and biological activity has
received considerable attention in recent years because it allows one to predict theoretically
bioactivity without an inordinate amount of experimental time and effort. In this chapter we
collect and discuss critically published results concerning the QSAR research on antimicrobial
compounds. Finally, we present an updated perspective about the future trends in this area.

Introduction

Antimicrobial drugs are drugs designed to kill, or prevent the growth of microorganisms
(bacteria, fungi, and viruses). The development of antimicrobial agents for clinical use has
brought unquestionable benefit to individuals and society. Infectious diseases that were for-
merly often fatal became curable (Lerner ). However, antibiotics ultimately have lost their
original effectiveness as they have been used over time and resistant strains of bacteria have
been developed and there is thus an urgent need to identify novel, active chemotypes as leads
for better drug development (Cragg et al. ; Hall ; Mcdermott et al. ).

The versatility of bacterial populations to adapt to environmental toxicity and associated
facilities for transferring genetic material show that the antibiotic resistance a biological phe-
nomenon is inevitable and will continue to be a chronic medical condition. The appropriate
employment of antimicrobials in use and the continued development of new ones are vital to
protect the health of men and animals from pathogens (Mcdermott et al. ).

Natural products could play a crucial role in meeting this demand (Cragg and Newman
).The use of natural products for the treatment of human diseases is a practice that has been
used for a long time. It is estimated that % of medicines available for the current treatment
of diseases have been developed from natural sources (Cragg and Newman ; Shu ).
The knowledge generated as a result of the use of natural product derivatives of the higher
plants, microorganisms, and toxins animals was essential in the discovery of new drugs for
modern medical treatment.

In medicine, natural products provide high number of drugs useful in case of complex
chemical synthesis and can also serve as basic compound models of synthetic drugs or suitable
modifications that reduce its toxicity (Demain ).

The quantitative relationship between chemical structure and biological activity has
received considerable attention in recent years because it allows one to predict theoretically
bioactivity without an inordinate amount of experimental time and demanding efforts.

Computational methods for predicting compounds with specific pharmacodynamic, phar-
macokinetic, or toxicological properties are useful for facilitating drug discovery and drug
safety evaluation. The quantitative structure-activity relationship (QSAR) and quantitative
structure–property relationship (QSPR) methods are the most successfully used statistical
learning methods for predicting compounds with specific properties.

More recently, other statistical learning methods such as neural networks and support
vector machines have been explored for predicting compounds of higher structural diversity
than those covered by QSAR and QSPR approaches. These methods have shown promising
potential in a number of studies. Many attempts have been made to elucidate the QSAR of
antimicrobials by using different physicochemical parameters.
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This chapter is intended to review some of the strategies and current progresses in using
statistical learning methods for predicting compounds with specific desired properties in
antimicrobial activity.

General Overview of Methods Used in QSAR of Antimicrobial
Compounds

Antimicrobial Activity Determination

As microbiological methods incorporate viable test microorganisms, predictability of the
outcome is not always clear and subject to many environmental influences that may impact on
a given response. Hence, it is of the utmost importance that parameters such as plant collection,
validation of laboratory equipment, chemical analysis, and various intricacies of antimicrobial
investigations be carefully defined.

Although several methods are used to assess antimicrobial activity, the two most com-
mon methods used are disk diffusion and minimum inhibitory concentration (MIC) assays.
Generally disk diffusion studies are the method of choice due to their simplicity and capacity to
analyze a large number of test samples. Even though disk diffusion methodology is a quick sim-
ple means of screening for antimicrobial activity, it is a qualitative assay because it shows if there
is antimicrobial activity or not. The MIC measurement to determine antimicrobial activity is a
quantitative method based on the principle of contact of a test organism to a series of dilutions
of test substance. Assays involving MICmethodology are widely used and an accepted criterion
for measuring the susceptibility of organisms to inhibitors (Lambert and Pearson ).

Quantitative Structure–Activity Relationship (QSAR)

Quantitative structure–activity relationship (QSAR) analysis is in constant development since
the works of Hansch (Hansch and Fujita ) in early s. The QSAR methodology focuses
on finding a model, which allows one for correlating the activity to structure within a fam-
ily of compounds. QSAR studies can reduce the costly failures of drug candidates in clinical
trials by filtering the combinatorial libraries. Virtual filtering can eliminate compounds with
predicted toxic of poor pharmacokinetic properties (Hodgson ; van de Waterbeemd and
Gifford ) early in the pipeline.

Considering activity optimization, building target-specific structure-activity models based
on identified hits can guide high throughput screening (HTS), a recent technological improve-
ment in drug discovery pipeline, by rapidly screening the library for most promising candidates
(Dudek et al. ). Such focused screening can reduce the number of experiments and allows
for use of more complex and low throughput assays (Bajorath ). Interpretation of created
models gives insight into the chemical space in proximity of the hit compound. Feedback loops
of high-throughput and virtual screening, resulting in sequential screening approach (Lewis
), allow therefore for more rational progress toward high quality lead compounds. Later in
the drug discovery pipeline, accurate QSAR models constructed on the basis of the lead series
can assist in optimizing the lead (Prado-Prado et al. ).
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Main stages of a QSAR study can be divided into three groups, i.e., extracting descriptors
from molecular structure, choosing those informative in the context of the analyzed activity,
and, finally, using the values of the descriptors as independent variables to define a mapping
that correlates them with the activity in question (Dudek et al. ).

Generation of Molecular Descriptors from Structure

Compounds are defined by their structure, encoded as a set of atoms and covalent bonds
between them. However, the structure cannot be directly used for creating structure-activity
mappings because it does not usually contain in an explicit form the information that relates
to activity. Molecular descriptors accentuate different chemical properties implicit in the struc-
ture of the molecule and so those properties may correlate more directly with the activity. Such
properties range from physicochemical and quantum-chemical to geometrical and topological
features.

On the other hand,mostmethods of statistical data analysis employed to predict the activity
require as input numerical vectors of features of uniform length for all molecules. Chemi-
cal structures of compounds are diverse in size and nature and as such do not fit into this
model directly. Molecular descriptors convert the structure to the form of well-defined sets
of numerical values.

Selection of Relevant Molecular Descriptors

Although it is possible to generate hundreds or thousands of different molecular descriptors,
only some of them are significantly correlated with the activity. Furthermore, many of the
descriptors are intercorrelated. This has negative effects on several aspects of QSAR analysis.
Some statistical methods require that the number of compounds is significantly greater than the
number of descriptors and using large descriptor sets would require large datasets.Other meth-
ods, while capable of handling datasets with large descriptors to compounds ratios, nonetheless
suffer from loss of accuracy. Large number of descriptors also affect interpretability of the final
model. To tackle these problems, a wide range of methods for automated narrowing of the set
of descriptors to the most informative ones is used in QSAR analysis.

Mapping the Descriptors to Activity

Once the relevant molecular descriptors are computed and selected, the final task of creating a
function between their values and the analyzed activity can be carried out. The value quanti-
fying the activity is expressed as a function of the values of the descriptors. The most accurate
mapping function from somewide family of functions is usually fitted based on the information
available in the training set, i.e., compounds for which the activity is known. A wide range of
mapping function families can be used, including linear or nonlinear ones, and many methods
for carrying out the training to obtain the optimal function can be employed.



Quantitative Structure–Activity Relationships of Antimicrobial Compounds  

Descriptors Used in Antimicrobial Activity Studies

The QSAR techniques involve correlating the logarithm of the reciprocal molar concentra-
tion of a bioactive compounds required for a specific biological response such as ED (dose
of a drug that is pharmacologically effective for % of the population exposed to the drug
or a % response in a biological system that is exposed to the drug) or LD (Lethal Dose
%, dose that kills half population tested) values with linear free energy constants such as the
Hammett constant σ , a measure of aromatic substituent electronic effects; Taft polar constant
σ∗, a measure of substituent polar effects; the logarithm of the -octanol/water partition coef-
ficient (log P), a measure of hydrophobic-hydrophilic effects; and the Taft steric constant Es, a
measure of substituent steric effects, etc.

A very important role may be played by computer aided drug design techniques based on
multi-target quantitative structure–activity relationships (mt-QSAR) studies. It means that they
aremodels connecting the structure of drugswith the biological activity against different targets
(microbial species in the case of antimicrobial drugs) (Prado-Prado et al. , ). This
kind of study may also help in a multi objective optimization (MOOP) of desired properties or
activity of drugs against different targets; see for instance the recent works carried out by Cruz-
Monteagudo in the topic (Cruz-Monteagudo et al. a, b). In principle, up to date there are
over ,molecular descriptors that may be generalized and used to solve the former problem
(González et al. ;Kubinyi ;Marrero-Ponce et al. ; Todeschini andConsonni ).

Many of these indices are known as topological indices (TIs) or simply invariants of amolec-
ular graph, whose vertices are atoms weighed with physicochemical properties (mass, polarity,
electro negativity, or charge) (Estrada and Molina ).

QSAR Studies of Antimicrobial Compounds

Coumarins

As a result of the continuously growing interest for antimicrobial activity of coumarins
(Al-Haiza et al. ; Althaus et al. ; Galm et al. ; Hoult and Paya ; Kulkarni and
Patil , ; Laurin et al. ; Reusser and Dolak ; Rodighiero and Antonello ;
Vieira et al. ), a few coumarin antibiotics became candidates for human and veterinary
medicine applications. The most important representative is the -aminocoumarin derivative
novobiocin, the antibiotic that has been relatively recently approved for medical use in the USA
for SA infection treatment (Schmutz et al. ). Besides novobiocin, other coumarin deriva-
tives like eskuletin, umbelliferon, and related compounds possess antibacterial properties as
well (Heinrich et al. ). Antifungal activity has been attributed to some of the coumarin
derivatives, including coumarin (,-benzopyranone) itself (Mares ). Antimicrobial activity
of -nitrocoumarins and related compounds against Caudida albicans and Staphyloccus aureus
has been shown recently (Tisi et al. ).

Debeljak et al. () studied -nitrocoumarins and related compounds, in order to explore
their activity andmolecular properties that determine their antimicrobial effects. QSARmodels
involvedmost of the  descriptors extracted from semiempirical and density functional theory
(DFT) founded calculations have beenproposed. For the study, literature data containing results
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of microbiological activity screening of  coumarin derivatives against selected clinical isolates
of Caudida albicans and Staphyloccus aureus were selected. Candidate molecules were checked
by cross-validatedmodels, and selected derivatives were synthesized.Their antimicrobial activi-
ties were compared to antimicrobial activities of the representative derivatives from the original
set in terms of minimal inhibitory concentration (MIC). High ranking of descriptors consistent
with the degree of hydrolytic instability of selected compounds is common tomodels of antimi-
crobial activity against both microorganisms. However, descriptor ranking indicates different
antimicrobial mechanisms of action of chosen coumarin derivatives against selected microbial
species.

A set of  coumarins and coumarin derivatives with already reported antifungal activities
was selected and eleven attributes were generated in order to represent a relationship between
the physicochemical properties and their biological activities.The descriptors were used to per-
form artificial neural network (ANN) and to build a model for predicting effectiveness of the
new ones. With good correlation between the experimental and the predicted MIC values per-
taining to all the coumarins, the study paves the way for further researches about antifungal
activity of coumarins, and offers a powerful tool inmodeling and prediction of their bioactivities
(Soltani et al. ).

A series of new coumarin derivatives has been synthesized and the in vitro antimicrobial
activity against thirteen strains of bacteria and three fungal/yeast strains were screened. They
were shown to possess a wide range of activities from almost completely inactive compounds
to medium active ones (Dekić et al. ).

Benzamides

Benzamides are an important class of compounds that show various types of biological activities
(Itaru et al. ;Mrozik et al. ). Oxyclozanide was reported as an antihelmintic agent effec-
tive against Fasciola hepatica for the treatment of liver fluke infection (Mrozik et al. ).
The synthesis of some N-(ohydroxyphenyl) benzamides and phenylacetamides as possible
metabolites of antimicrobial active benzoxazoles has been reported (Sener et al. ).

A series of substituted benzamides were synthesized by (Kumar et al. ). The syn-
thesized compounds were evaluated for in vitro antibacterial activity against Gram-positive
Staphylococcus aureus, Bacillus subtilis and Gram-negative Escherichia coli, and in vitro anti-
fungal activity against Aspergillus ficcum and Aspergillus parasiticus. In antibacterial assay
minimum inhibitory concentrations (MIC)were determined, and the antifungal activity against
the fungal species was determined by serial dilution method. The structural characteris-
tics governing antibacterial activities of substituted benzamides were studied using QSAR
methodology. The results obtained indicate that the benzamides are effective against the
microbial species tested, and that the N-(-hydroxyphenyl)--methoxy--nitrobenzamide and
N-(-hydroxy--carbmethoxyphenyl)--benzyloxybenzamide are the most effective ones. A
general trend showed that the presence of electron-withdrawing groups (NO, Cl) leads to an
increase in the activity in comparison to the presence of electron releasing group. The results
showed that the antimicrobial activity could be modeled using the topological descriptors,
molecular connectivity indices ( χv and  χ), and Kiers shape index (κα). The low residual
activity and high cross-validated r values (rcv ) observed indicated the predictive ability of the
developed QSAR models.



Quantitative Structure–Activity Relationships of Antimicrobial Compounds  

Cinnamic Acid

Cinnamic acid plays an important role for the antimicrobial activity (Ahluwalia et al. ;
Christine et al. ; Cremlyn et al. , ). Derivatives of cinnamic acid, displaying a
broad spectrum of biological activity and low toxicity, are of interest for the purposes of creat-
ing new effective drugs based on them (Simonyan ). There are several studies on cinnamic
acid derivatives with antibacterial and antifungal activity (Ahmed et al. ; Lee andAhn ;
Ovale et al. ; Ramanan and Rao ; Srivastava et al. ; Tawata et al. ). Potential
antimicrobial activity of sorbic, cinnamic, and ricinoleic acid derivatives was reported some
time ago (Narasimhan et al. ). The synthesis and the correlation between physicochem-
ical properties and biological activity were carried out. Later, the evaluation of the in vitro
antimicrobial activity of over  compounds belonging to a series of esters, substituted deriva-
tives, and amides of cinnamic acid was performed by Narasimhan et al. and the investigation
of the relationship between their physicochemical properties and microbiological effects have
been widely discussed (Narasimhan et al. ). Quantitative structure–activity relationship
investigation with multiple linear regression analysis was applied to find a correlation between
different calculated physicochemical parameters of the compounds and biological activity.
All the compounds showed a good antibacterial activity against Gram-negative Escherichia
coli than Gram-positive Staphylococcus aureus and Bacillus subtilis. The chemical structure of
each compound was described by three groups of parameters: steric, electronic and hydropho-
bic which were selected due to their encouraging effect in describing antimicrobial activity
(Narasimhan et al. ). The quantitative models relating the structural features of cinnamic
acid derivatives and their antimicrobial activity showed thatGram-negative Escherichia coli and
Candida albicans (fungus) were the most sensitive microorganisms. The regression equations
obtained for the bacterial species showed the importance of constitutional parameter unsatu-
ration index (Ui), global topological charge index (JGT), and the lipophilic parameter log P in
contribution to antibacterial activity.

Flavanones

Among the drugs approved between  and  by either the United States Food and Drug
Administration (FDA) or comparable entities in other countries, drugs of natural origin pre-
dominated (%) in the area of antibacterials (Cragg and Newman ). A large number of
homoisoflavanones have been isolated from several hyacinthaceous genera including Eucomis
L’Hér., Merwilla Speta, Ledebouria Roth, Veltheimia Gled. and Drimiopsis Lindl. and Paxton
(Pohl et al. ). Homoisoflavanones belong to a small homogeneous group of naturally
occurring oxygen heterocycles which, within the Hyacinthaceae, are largely but not exclu-
sively restricted to the subfamily Hyacinthoideae. The few reports on the biological activity of
homoisoflavanones describe anti-inflammatory, antibacterial, antihistaminic, antimutagenic,
and angioprotective properties, and potent phosphodiesterase inhibition (Amschler et al. ;
Della Loggia et al. ; Heller and Tamm ).

Du Toit et al. () determinated the antibacterial activity of thirteen homoisoflavanones
isolated from six Hyacinthaceae species against Staphylococcus aureus. They also developed
a set of physicochemical parameters that would describe antibacterial activity for these and
future compounds. Stepwisemultiple linear regression analysis of the data yielded a statistically
significant two-component model (R

= ., p < .).



  Quantitative Structure–Activity Relationships of Antimicrobial Compounds

Phenolic Compounds

Natural and synthetic phenolic compounds were evaluated against oral bacteria. Thus, many
antimicrobial agents have been developed for the inhibition of halitosis bacteria and thus
for the treatment of oral malodor (Giertsen ; Greenstein et al. ; Hayashi et al.
; Loesche ). Antibacterial compounds such as chlorhexidine, cetylpyridinium chlo-
ride, triclosan, and chlorine dioxide have been tested either alone or in different com-
binations. However, most compounds have been known to induce undesired side effects
(Rule et al. ).

Greenberg et al. performed a systematic evaluation of various phenolic compounds
to develop a quantitative structure-active relationship (QSAR) (Greenberg et al. ).
They observed that a number of phenolic compounds in natural botanic extracts and flavors
demonstrated antimicrobial activity. Among them, eugenol, magnolol, honokiol, thymol, and
xanthorrhizol showed strong activity against oral bacteria. Magnolia bark extract, a traditional
Chinese medicine isolated from the stem bark of Magnolia officinalis, consists primarily of
magnolol and honokiol, the two phenolic isomers, and has a strong germ-kill activity against
oral bacteria.

In the QSAR approach applied for a range of about  phenolic compounds the lipophilicity
and steric effects were found to be two key factors in determining germ-kill activity (Greenberg
et al. ). The optimum lipophilicity, measured by the logarithm of the octanol/water parti-
tion coefficient, or log P, was found to be . forFusobacteriumnucleatum, aGram-negative type
of oral bacteria that causes bad breath.The optimum log P was found to be . for Streptococcus
mutans, a Gram-positive type of oral bacteria that causes tooth decay.

The steric effect of substituents ortho to the phenolic group was found to be critical in
reducing antibacterial activity despite having increased lipid solubility approaching the opti-
mum lipophilicity value. The antibacterial activity of phenolic compounds is likely exerted by
multiple functions, primarily comes from its capability to act as a nonionic surface-active agent
therefore disrupting the lipid–protein interface.

Furan Derivatives

Furan derivatives, both obtained from synthetic and natural sources, have much interest due
to the wide range of pharmaceutical applications they have shown (Hofnung et al. ; Khan
et al. ; Kupchan et al. ; Shevchenko ). A series of synthetic nitrofuranyl amides
showed good in vitro inhibitory activity againstMycobacterium tuberculosis (Tangallapally et al.
; Tomlin ) especially -nitro-furan--carboxylic acid N-[-(-benzylpiperazin--yl)-
benzyl]--nitrofuran--carboxamide and -methyl-N-phenylfuran--carboxamide.

Preparation of furan--carboxylic acid and derivatives and their assessment against a panel
of microorganisms including yeast-like fungi, bacteria, and algae were reported (Zanatta et al.
). Because some of the furan--carboxamides exhibited significant in vitro antimicrobial
activity, the synthesis and characterization of an extended and planned series of new furan-
-carboxamides was carried out (Zanatta et al. ). The obtained furan--carboxamides
were assessed against a panel of microorganisms including yeast, filamentous fungi, bacte-
ria, and algae. Preliminary antimicrobial activity assays of some of the furan--carboxamides
exhibited significant in vitro antimicrobial activity. QSAR investigation was applied to find
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a correlation between the different physicochemical parameters of the compounds studied
and their biological activity. Yeasts showed a negative correlation with the indicator vari-
ables IR , but Saccharomyces cerevisiae showed a better correlation with the steric and polar-
ity descriptors, Gram-positive and Gram-negative bacteria correlate with the increase of
the steric volume and the polarizability parameter and negatively correlated with hardness,
and filamentous fungi correlate with the increase of the steric volume and the polarity of
groups.

An interesting QSAR study of diacyl-hydrazine derivatives containing furan rings was con-
ducted and compared with the DFTmethod andAM-MOPACmethod (Zhang et al. ).The
DFT-optimized conformations and ESP-fitting charges of the target compounds were also used
for D-QSAR analysis, including CoMFA and CoMSIA.TheQSAR results were consistent with
the D-QSAR results, indicating that the electrostatic and hydrophobic properties of the target
compounds were significant to the biological activity.

mt-QSAR Studies

One limitation of almost QSAR models is that they predict the biological activity of drugs
against only one species of fungi, virus, bacteria or parasite species. Consequently, the devel-
opment of multitasking QSAR models (mt-QSAR) to predict drugs activity against different
species of antimicrobial agents is of vital importance.Thesemt-QSARs offer also a good oppor-
tunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and
complex drug-viral species databases. In very large CNs it is possible to use the Giant Com-
ponent (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity
function selectedmay strongly determines the final network obtained. Several mt-QSARmod-
els were reported to predict the antimicrobial activity against different fungi (González-Díaz
et al. ), bacteria (Prado-Prado et al. ), parasite (Prado-Prado et al. ), and virus
species (Prado-Prado et al. ) and to calculate the parameters for RNAs of both parasites
and hosts (González-Díaz et al. ).

For example, the most important limitation of antifungal QSAR models is that they pre-
dict the biological activity of drugs against only one fungal species due the fact that most
of the up-to-date reported molecular descriptors encode only information about the molec-
ular structure. Prado-Prado et al. calculated, within a unifying framework, the probabilities
of antifungal action of drugs against many different species based on spectral moment’s anal-
ysis (Prado-Prado et al. ). They calculated new multi-target spectral moments to fit a
QSAR model that predicts the antifungal activity of more than  drugs against  fungi
species. Linear discriminant analysis was used to classify drugs into two classes as active or
non-active against the different tested fungal species. Moreover, it was developed one single
unified equation explaining the antifungal activity of structurally heterogeneous series of com-
pounds against as many fungus species as possible (González-Díaz and Prado-Prado ;
González-Díaz et al. ).

In fact, other mt-QSAR approaches, with demonstrated usefulness, have been introduced
recently in medicinal chemistry (González-Díaz et al. ; Marrero-Ponce et al. ; Molina
et al. ). A Markov Model encoding molecular backbones information was introduced in
themethod named theMARCH-INSIDE,MARkovianCHemicals IN SIlicoDEsign (González-
Díaz et al.). This method allows one to introduce matrix invariants such as stochastic entropies,
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potentials, and spectral moments for the study of molecular properties (González-Díaz et al.
; Ramos de Armas et al. ) and they have been largely used for small molecule
mt-QSAR problems including the design of fluckicidal, anticancer, and antihypertensive drugs
(Prado-Prado et al. ). Applications to macromolecules have been restricted to the field of
RNA without applications to proteins (González-Díaz and Uriarte ; González-Díaz et al.
, ; Saiz-Urra et al. ).

The QSARmodels based on different MARCH-INSIDE indices may be very useful to opti-
mize important aspects such as activity, toxicity, or pharmacokinetics using one single model
in many bioorganic and medicinal chemistry problems such as estimation of anticoccidial
activity, modeling the interaction between drugs and HIV-packaging-region RNA, and pre-
dicting proteins and virus activity (González-Díaz et al. , ). In recent studies, the
MARCH-INSIDEmethodhas been extended to encompassmolecular environment, interesting
information in addition to molecular structure data (Cruz-Monteagudo et al. ).

Multiple applications of MARCH-INSIDE to classic QSAR, macromolecular QSAR, and
specially mt-QSAR were discussed (González-Díaz et al. , a, b; Mahiwal et al. ).

Finally, with the mt-QSAR methodology it is possible to predict the biological activity of
drugs inmore general situations than with the traditional QSARmodels, whose greatest limita-
tion is predicting the biological activity of drugs against only one microbial species. Then, this
methodology improves models and allows one to predict biological activity of many organic
compounds against a very large diversity of pathogens microorganisms.

Conclusions

During the last decade an increasing number of reports describe the antimicrobial activity of
several compounds. A review of the literature reveals the existence of a broad-spectrum of
research activity in the development practices that are used to treat a variety of diseases and
significant current progresses in using statistical learning methods for predicting compounds
of specific property in antimicrobial activity.

The quantitative relationship between chemical structure and biological activity allows one
to predict theoretically bioactivity without resorting to an inordinate amount of time and effort
making the experimental determinations. Many attempts have been performed to elucidate the
QSAR of antimicrobials by using different physicochemical parameters.

In this reviewwe have discussed published results concerning theQSAR research on antimi-
crobial properties of synthetic and natural compounds. Antifungal and antimicrobial activity of
some coumarin derivatives, various types of biological activities of benzamides, several studies
on cinnamic acid derivatives with antibacterial and antifungal activity, reports on the biological
activity of homoisoflavanones and phenolic compounds, as well as pharmaceutical applications
of furan derivatives have been shown.

The actual capabilities ofmultitaskingQSARmethodology andmt-QSARmodels to predict
drugs activity against different species of antimicrobial agents have also been revised.

It was been demonstrated that with the mt-QSAR methodology it is possible to predict the
biological activity of drugs in more general situations than with the traditional QSAR mod-
els, predicting biological activity of many organic compounds against a very large diversity of
pathogens microorganisms.
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Abstract: This chapter focuses on the computational investigations of light-induced chemical
reactions in different systems ranging from organic molecules in vacuo to chromophores in
complex protein environments. The aim is to show how the methods of computational pho-
tochemistry can be used to attain a molecular-level understanding of the mechanisms of
photochemical and photophysical transformations. Following a brief introduction to the field,
themost frequently used quantum chemicalmethods formapping excited state potential energy
surfaces and for studying the mechanism of photochemical reactions in isolated molecules are
outlined. In the following sections, such methods and concepts are further developed to allow
the investigation of photo-induced reactions in solution and in the protein environment.

Introduction

Since the early s, quantum chemical methods based on ab initio multiconfigurational
wavefunctions have been used to investigate the mechanisms of photochemical organic reac-
tions and have led to the development of the field of computational photochemistry (Bernardi
et al. b). As a consequence it is now possible, using available program packages (examples
of which include Molcas (Andersson et al. ; Aquilante et al. ), Gaussian (Frisch et al.
), Gamess-US (Gordon et al. ; Schmidt et al. ), Columbus (Lischka et al. ),
Molpro (Werner et al. ), and Q-Chem (Adams et al. ; Shao et al. )), to locate
excited state equilibrium structures, conical intersections, or singlet/triplet crossings, and map
ground or excited state minimum energy paths at a level of accuracy that often allows for com-
parison with spectral data (Kutateladze ; Olivucci and Sinicropi ).This offers chemists
a powerful tool to rationalize and predict such complex processes as the light-induced response
of a molecule.

There are two events that may happen when light energy is absorbed by a molecule:
wastage or exploitation. Some technological application may require molecules whose struc-
tures are unaffected by light absorption, those that efficiently dispose of the excess electronic
energy (e.g., through light emission and internal conversion). Other applications may require
molecules that exploit light to drive specific chemical, conformational and electronic changes
(e.g., through photochemical reactions or light-induced energy or electron transfer). It can be
easily recognized that nature provides many examples of effective light energy wastage and
exploitation. Therefore, the understanding of these events can be considered a basic require-
ment for the rational design of efficient photochemical reactions, artificial photosynthetic
systems, and molecular-level devices and machines. Below, we will present case studies from
small molecules in the gas phase to molecules in complex environments such as biological
photoreceptors.

The computational investigation of a light-induced reactive process requires the construc-
tion of the associatedphotochemical reaction path (Olivucci and Sinicropi ). In its simplest
form, this is defined by a branched minimum energy path that connects the Franck–Condon
(FC) point A∗ on the potential energy surface of the light-absorbing state with one (or more)
primary photoproduct (B) or original reactant (A). As illustrated in > Fig. - left, if the relax-
ation of A∗ leads to a stable excited state equilibrium species (structure B∗) this may form
a luminescent state, for instance a fluorescent state (FS), thus leading to radiative deactiva-
tion. High fluorescence quantum yields require long excited state lifetimes that, among other
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⊡ Fig. -
Schematic structure of the photochemical reaction path. Left: general structure of the excited state
energy surface in the vicinity of the Franck–Condon point. A∗ is geometrically identical to themin-
imum on the ground state, but has the electronic wave function of the excited state. The species
B∗ is a relaxed form of A∗ that may emit fluorescence and/or evolve towards a different region of
the excited state potential energy surface through the transition state (TS), producing a different
emitting or reactive species C∗. Right: intersecting ground and excited state potential energy sur-
faces. The arrows indicate the direction of the minimum energy path connecting A∗ to the conical
intersection (CI) and then to the photoproduct B or original reactant A

factors, could be imposed by high energy barriers restraining further evolution of B∗. If this
is not the case, B∗ can evolve beyond a transition state (TS), to produce a different excited
state species (C∗) that may also decay radiationally. If this is the case, one has an excited
state conformational or chemical change that might lead to a different fluorescence emission.
One of the most prominent examples of this so-called dual fluorescence is that produced by
-(N ,N-dimethylamino)benzonitrile in polar solvents (Grabowski et al. ). Alternatively
(see > Fig. - right), the excited state transition structure could connect B∗ to a point where
efficient radiationless decay (internal conversion) takes place. In the limiting case of a negli-
gible or non-existent barrier, A∗ may promptly reach such point on a picoseconds time-scale.
For internal conversion, this process is usually associated with regions where there is a limited
gap between ground and excited states, a large overlap between a low lying vibrational state of
the photoexcited molecule and a suitable ground state vibrational mode (Simons ). These
conditions are satisfied in the regions surrounding a conical intersection (CI).Therefore, evolu-
tion towards a CI leads to an efficient decay to the ground state (decay is common in the whole
region surrounding theCI). When the relaxation following decay results exclusively in reactant
back-formation (CI→A stream of arrows) one has internal conversion. In contrast, when the
ground state relaxation produces a novel species B (a primary photoproduct) by following a
different relaxation path, one has a photochemical event (left to right stream of arrows).

CIs provide a common key mechanistic entity for the description of a photochemical
reaction and ultrafast internal conversion (Turro et al. ). The potential energy surface
region surrounding each CI point can be seen as an efficient radiationless deactivation channel
(Bernardi et al. a; Migani and Olivucci ; Robb et al. ) that, in photochemistry, is
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called a funnel. A photochemical funnel (Braslavsky ) corresponds to a molecular struc-
ture in the vicinity of a CI that would decay within one half of a vibrational period. For this
reason computer simulations appear to be the only “direct” source of information about the
structure of a molecule in a funnel. Notice that one has a CI only when the ground and the
excited state have the same spin. If this is not the case and the electronic states have different
spins the process is called intersystem crossing (Simons ; Turro et al. ).

In > Fig. - we show that the entire “photochemical reaction path” is defined and com-
puted in terms of a set of connected minimum energy paths (MEP) corresponding to steepest
descent lines. In particular, the path starting at A∗ on the spectroscopic state and ending at the
photoproduct energy minimum B on the ground state energy surface is constructed by join-
ing two MEPs. A first MEP connects FC point to the CI. A second MEP connects the CI to
the photoproduct B. A third MEP can be computed that starts at CI and describes the reactant
reconstitution process responsible for partial return of the photoexcited species to the original
ground state minimum (i.e., internal conversion). The mapping of the excited state potential
energy surface of chemically different organic chromophores, strongly supports the idea that the
mechanistic scenario described above (i.e., involving decay at a CI), is common. This was first
realized after the developmentof CASSCF gradients (Schlegel andRobb ) in the early s,
and through a systematic computational research effort carried out in the s (Bernardi et al.
, ). Also a number of algorithms were developed in order to locate the conical intersec-
tions and characterize the associated geometries (Anglada and Bofill ; Bearpark et al. ;
De Vico et al. ; Farazdel and Dupuis ; Koga and Morokuma ; Levine et al. ;
Ragazos et al. ; Yarkony ). Since the conical intersections are high-dimensional enti-
ties and not single points, the algorithms minimize the energy along the intersection seam.The
points with the lowest energy of the seam are referred to as minimum energy conical intersec-
tions (MECI). The decay processes that are mediated by conical intersection are ultrafast and
therefore too fast to allow the molecule to travel along the seam to reach theMECI.Thus transi-
tions can occur at intersections which are higher in energy thanMECI. This idea prompted the
development of advanced methods to optimize stationary points along the multidimensional
seam of intersection and determine the structure of more extended segments of the crossing
(Laino and Passerone ; Sicilia et al. , ). A better way of defining the conical inter-
section point during the decay is to perform molecular dynamics simulation, which considers
the kinetic energy of the molecule and can explore different regions of the excited state surface
provided a number of different initial conditions. The methods solve the classical equations of
motions and use forces from electronic structure methods to move on a single potential energy
surface. In order to account for non-adiabatic transitions, a variety of approaches have been pro-
duced. Trajectory surface hopping algorithms are widely used to accomplish this task.They have
in common that a transition is induced, i.e., a hop between surfaces, when the non-adiabatic
coupling becomes strong. There are several examples where this surface hopping algorithm has
been successfully applied to study photochemical events (Barbatti and Lischka ; Barbatti
et al. ; Groenhof et al. , ; Schaefer et al. ; Schapiro et al. ; Virshup et al.
; Weingart ; Weingart et al. ). A more sophisticated approach that treats both
electrons and nuclei quantum mechanically was implemented by Martinez and co-workers
(Ben-Nun and Martinez ; Levine et al. ). Herein an additional basis function describ-
ing the nuclei is created or spawned (therefore the name “multiple-spawning”) when strong
non-adiabatic coupling between different states arises.

Belowwe discuss selected case studies of a series of processes investigated bymeans of com-
putational photochemistry. We begin with isolated molecules in vacuum and conclude with
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⊡ Fig. -
Cartoon representation of the three-dimensional structures of three different photoresponsive
proteins. Left: GFPwith itsHBDI anionic chromophore.Center thebovinevisual pigment rhodopsin
together with the cationic PSB chromophore. Right: bacteriorhodopsin and its PSBAT chro-
mophore

chromophores in complex environments.The first case study focuses on reducedmodels of the
retinal chromophore of visual photoreceptors. Subsequently the photodenitrogenation, inter-
molecular charge transfer and hydrogen transfer in azoalkanes are described. The following
section deals with chromophores in complex environments. An overview will be given starting
with GFP and asFP which is a GFP-like protein (> Fig. -) whose fluorescence can be
switched on by Z/E photoisomerization. This is followed by an extensive discussion of a sim-
ulation of the photoisomerization of rhodopsin, a membrane protein characterized by seven
α-helices (> Fig. -). The cationic Rh chromophore is the -cis stereoisomer of the proto-
nated Schiff base of retinal (PSB), and is connected through one covalent bond to the Lys
residue. Upon absorption of visible light, PSB undergoes a Z/E photoisomerization and pro-
duces (stereoselectively) the corresponding all-trans chromophore (PSBAT), which ultimately
triggers the Rh activity (Kandori et al. ; Mathies and Lugtenburg ; Palczewski et al.
; Teller et al. ). Computational studies of bR, an archaeal rhodopsin with a red-shifted
absorptionmaximum (λamax) relative to Rh, andwith a PSBAT chromophore, rather than PSB,
are described. Another class of molecules that have been excessively studied by tools of compu-
tational photochemistry are the deoxyribonucleic acids (DNA).Wewill illustrate how quantum
chemistry is applied to unveil a mechanism of photodeactivation in a cytosine-guanine base
pair. In the next case study the calculation of absorption spectra, including solvent effects and
a novel method for taking vibrational contributions into account, is applied to coumarin C.
Finally, we highlight molecular dynamics simulations used to understand the isomerization
mechanism in retinal containing proteins (Rh and bR).
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Methods in Computational Photochemistry

Multiconfigurational Quantum Chemistry

Among the possible quantum chemical methodologies (e.g., semi-empirical or ab initio) used
to model excited state species, below we mainly deal with ab initio (i.e., from first principles of
quantum mechanics) approaches. In particular, to describe the evolution of intermediates and
species whose geometries are far from equilibrium, one employs ab initiomulticonfigurational
methods. These methods are based on the multideterminant configuration interaction ansatz
(i.e., where the electronic wavefunction is represented by a linear combination of determinants
rather than by a single determinant) being themethods of choice when, in a photochemical pro-
cess, a molecule rapidly changes its electronic structure and enters regions of crossing between
different potential energy surfaces. The favorable properties of these methods are: () the accu-
racy can be systematically improved until they provide the exact solution of the non-relativistic
Schrödinger equation (when a full-configuration interaction wavefunction and basis set close
to the Hartree limit are used), () they are unbiased in the sense that they do not contain empir-
ical parameters, and () they are suitable for dealing with potential energy surface crossings
between electronic states of the same or different spin-multiplicity (e.g., when the wavefunction
is written in terms of Slater determinants) and there is a rapid change of electronic structure.
The drawback is that these types of calculations are computationally expensive even though,
nowadays, progress is being made to extend their applicability (Aquilante et al. ).

The ab initio complete-active-space self-consistent-field (CASSCF) method (Roos ) is a
multiconfigurational method that offers maximum flexibility for an unbiased description of
the electronic and geometrical features of molecules in their ground and excited electronic
states. This is a particularly powerful method because the orbital coefficients are optimized
together with the weights of a linear combination of all possible configurations constructed
from a selected set of electrons and orbitals (Roos and Taylor ; Schmidt and Gordon
; Siegbahn et al. ). Furthermore, the CASSCF wavefunction can be used for subse-
quent second-order perturbation theory computations (CASPT) of the dynamic correlation
energy, (Andersson et al. ) ultimately allowing for a quantitative simulation and prediction
of excitation energies.

In order to illustrate the accuracy that one can reach by a CASPT//CASSCF protocol (the
‘//’ sign indicates that the molecular structure is determined (optimized) at the CASSCF level
but that the energy is computed at the CASPT level), we report the results of the simulation of
the observed gas-phase spectra of PSBAT in > Fig. - (Andruniow and Olivucci). The spec-
trum was simulated according to the procedure described in ref. Andruniow and Pawlikowski
(). The S→S electronic excitation is found to be nm at the CASPT//CASSCF/-G∗

level of theory (the -G∗ Pople-type acronym refers to the specific atomic basis set used in
the calculation). In  the experimental spectrum of PSBAT wasmeasured by Andersen and
co-workers showing several overlapping bands that were initially attributed to the vibrational
excitations in S (Nielsen et al. ). The most intense peak was at –nm meaning the
error of the CASPT//CASSCF protocol is nearly  kcal ⋅ mol−. However, very recently the
same group has repeated the gas phase measurement finding a remarkably broad absorption
with a flat top ranging from  to  nm (Rajput et al. ). By probing different retinal PSB
analogues it was shown that the broadness of the band is due to a highly flexible C–C–C–
C dihedral angle. The C–C bond connects the polyene chain with the β-ionone ring and
has either a s-cis or s-trans conformation. The shorter wavelength of  nm was assigned
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⊡ Fig. -
The S→S absorption band of gas-phase PSBAT computed on the basis of excited state CASSCF
frequency calculations (the frequencies have been scaled using a % factor). Top: the equilibrium
geometry of the PSBAT is computed at the CASSCF/-G∗ level of theory with a  electrons in 
orbitals active space. Left: experimental absorption spectra recorded by Andersen and co-workers
(Nielsen et al. ; Rajput et al. ). Right: simulation of the first order line spectra and of the
spectral band by Lorentzian fitting. The maximum “b” is assigned to the vertical transition and it
is <nm (∼ nm). The vertical excitation energy resulting in the predicted λamax value is com-
puted by single-point CASPT/-G∗ calculation on the CASSCF equilibrium geometry. Normal
modes involving mixed β-ionone ring and chain torsion and bending, as well as C–CH motion in
simulated spectrum are difficult to assign because of overlapping bands

to the s-cis-conformer and the longer wavelength of  nm to the s-trans-conformer. Com-
pared to the new absorption maximum the CASPT//CASSCF value is in very good agreement
(. kcal ⋅mol−).

The general assumption underlying the validity of the CASPT//CASSCF protocol is that
the CASSCF level of theory is accurate enough to provide qualitatively correct ground and
excited state equilibrium structures, and in particular, MEPs. Currently this is of practical
importance since only the CASSCF energy gradient can be evaluated analytically while the ana-
lytical CASPT gradients are not available for molecules of the size of interest in photobiology.
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CASSCF (green squares) and CASPT (blue squares) energy profiles for the electronic S state for the
torsional relaxation. The stream of arrows indicates the energetically favored relaxation path. A
change in shape of the reaction energy profiles after dynamic electron correlation correction (i.e.,
passing from CASSCF to CASPT) has also been documented in other systems. See a discussion in
ref. Sinicropi et al. () (Redrawn with permission from ref. Martin et al. )

This approximation is still awaiting a thorough evaluation. However, in certain cases, the equi-
librium structures on a CASPT potential energy surface may differ significantly from the same
structure calculated at theCASSCF level. In order to illustrate this point, the energy profile along
a CASPT//CASSCF minimum energy path computed for a simplified HBDI chromophore in
the excited state is compared to the CASSCF energy profile in > Fig. - (Martin et al. ).

Recently (Valsson and Filippi ) reported the photoisomerization of retinalmodels using
high-level quantum chemical methods, among others CASPT, which include dynamic elec-
tron correlation. The two and three double bond truncated retinal models optimized at the
CASPT level and numerical gradients. It was found that all bonds were equally lengthened
and therefore the rotation around several bonds became possible. However, not all of the rota-
tions lead to radiationless decay to the ground state. Some of the pathways on the excited state
involved single bond rotation up to ○ and ended up in energy wells on the excited state
(see > Fig. - left). This finding is in contrast with the widely accepted reaction coordinate
established at the CASSCF level which is driven subsequently by two uncoupledmodes.Thefirst
mode is responsible for the inversion of the bond length alternation in the excited state whereas
the second mode is mainly the rotation of the central double bond. It is shown that this path
also exists in the CASPT potential energy surface but it is reached rather from relaxing directly
out of the Franck–Condon point. These controversial results on retinal chromophore in vacuo
outline the importance of the dynamic electron correlation and the choice of the QM method
that need to be verified for more realistic models. The size of the chromophore models should
be extended towards the full retinal. However, the lack of the analytical gradients for CASPT
makes these calculations extremely computationally demanding.
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The difference between the CASPT and CASSCF geometries has also been investigated for
both ground and excited state models of the PSB chromophore. The main difference in the
results between these treatments is found in the ground state equilibrium geometry, where one
finds a bond length alternation (BLA) pattern along the polyene chain which is less pronounced
at the CASPT level (indicating amore extended delocalization) than at the CASSCF level (Page
and Olivucci ). However, these studies were carried out with limited basis sets. Recently,
different quantum chemical studies of the λamax of biological chromophores have employed den-
sity functional theory (DFT) rather than CASSCF ground state equilibrium geometries. For
PSB and PSBAT these levels yield significantly different BLA values. Blomgren et al. (Blom-
gren and Larsson ) have proposed that this difference originates from the dynamic electron
correlation which is (partially) included in DFT functionals.The changes in the BLA computed
for PSB are also reflected in the magnitude of the twisting of the C–C single bond with
respect to the backbone (see > Fig. -) and consequently in the conformation of the β-ionone
ring.The ring is nearly planar in the DFT geometry but highly twisted in the CASSCF geometry
as reported by Bravaya et al. (). Using the PBE/cc-pVDZ calculations these authors find
that PSB has two conformers featuring a −○ and +○ twisting of the C–C–C–C dihe-
dral angle corresponding to s-cis and s-trans isomers of the β-ionone ring, respectively. These
results can be compared with the CASSCF/-G∗ data presented by Cembran et al. ()
for the same chromophore. The CASSCF/-G∗ level of theory yields a single highly twisted
PSBAT conformer with a −○ C–C–C–C dihedral angle.

The gas-phase λamax (i.e., the corresponding vertical excitation energy) of PSB has
been computed with different protocols that are also a matter of debate. Using a mod-
ified multiconfiguration quasi-degenerate perturbation theory aug-MCQDPT for excita-
tion energies and DFT optimized geometry at PBE/cc-pVDZ level for PSB (Bravaya
et al. ) yields a  nm λamax, which appeared to be a very good estimate of the
experimentally observed value for the gas-phase PSB (∼ nm) (Nielsen et al. ).
In the light of the refined experimental absorption maximum at  nm (Rajput et al.
) the deviation is  kcal ⋅mol− . The use of a computationally consistent (i.e., with geo-
metry and energy computed using the same method) TDDFT//DFT protocol (TD-
BLYP/-+G∗//BLYP/-G) yields a  nm λamax (Wanko et al. ) and therefore
performs better than mixed wavefunction-based/density-functional approaches. Also the
CASPT/ANO//MP/-G∗∗ calculated result is far off (nm) which is based on a pro-
tonated PSB model rather than an alkylated (N-dimethyl) like in the aug-MCQDPT//PBE
study, which is more consistent with the measured chromophore. In contrast the CASPT//
CASSCF/-G∗ method yields  nm (Andruniow and Olivucci) which appears to be close
to the recent experimental excitation energy of  nm (Rajput et al. ). TDDFT is a method
that has much promise in studying excited states, but currently has limitations. It has been
shown to be effective when used to compute valence-excited states (Dreuw and Head-Gordon
). However, when the excited state being studied has charge transfer (CT) character (either
intermolecular or intramolecular) or if the molecule has an extendedπ system, TDDFT cannot
reliably predict excitation energies. It has failed to accurately describe the CT states of sev-
eral biologically relevant molecules, some of which include porphyrin complexes (Dreuw and
Head-Gordon ). The failure is extensive. Not only is the energy gap inaccurate but also the
topography of the excited state potential energy surface. This can be seen from the results of
a study conducted in our laboratory (Fantacci et al. ), the results of which are displayed
in > Fig. -. A MEP was calculated for a truncated model of the retinal chromophore (only
three conjugated double bonds were included) with CASSCF. Energies were then recalculated
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at geometries along the path using CASPT//CASSCF and various density functionals using
TDDFT//CASSCF. Near the FC point, where the wavefunction changes rapidly, a potential
energy well and maximum were found using TDDFT. These are features of an excited state
energy surface that would not be expected to be exhibited by a molecule that undergoes an
ultrafast femtosecond-scale photochemical reaction, so it is presumed that they are artifacts
resulting from the use of TDDFT.TheCASPT//CASSCF surface is more accurate, exhibiting a
plateau,with only aminuscule potential energy well. Another benchmark study came to similar
conclusions, finding that the use of TDDFT led to a qualitatively incorrect description of the
excited state potential at geometries distant from the FC point when the method was used on
model retinal chromophores (Wanko et al. ). The source of the problem can be attributed
to the CT nature of retinal’s first excited state.

Problems with TDDFT can be found at all points of a photochemical reaction path, from
the FC point to theCI. At theCI the quality of the immediately surrounding ground and excited
state potential energy surface (PES) is inaccurate (Levine et al. ). A CI must have two
branching directions (i.e., there must be two different motions that the molecule can undergo
that will cause the energies of the states to separate). TDDFT, in contrast, describes a CI where
only one branching direction lifts the degeneracy of states. An additional problem is that near
the CI the slope of the PES along the single degeneracy-lifting coordinate is much steeper than
that obtainedwithmore reliablemethods, as shown in the case of butadiene (Levine et al. ).

There are many reasons why TDDFT is not appropriate to study excited states, especially
when double excitation orCT states are involved. For further readingwe recommend the review
by Dreuw et al. (Dreuw and Head-Gordon ). CASPT is much more reliable, in terms of
accuracy, but cannot be used for optimizations, unless the molecule being studied is very small,
in which case numerical gradients can be calculated with CASPT. In the majority of cases,
though, the best compromise will be CASPT//CASSCF.

QM/MMMethodology

The quantum mechanical methods described above are limited in the application by the size of
the molecule. In  Warshel (Warshel and Levitt ) proposed a hybrid treatment, which
allowed to treat biological macromolecules such as proteins that are too large for quantum
chemical calculations. The idea is to divide the macromolecule into two or more subsystems
which have different sizes and functions. The smaller subsystem, where a change of electronic
structure or a chemical reaction occurs, is described by a quantummechanical (QM) approach
(i.e., by a suitable quantum chemical method), whereas the larger residual subsystem is treated
using a molecular mechanics (MM) force field. Fortunately, because photochemical reactions
are localized only to a specific area (i.e., the chromophore) electronic structure methods can
be applied to this significantly smaller region, and the remaining part can be treated on a lower
level such as a classical force field.This approach allows the study of large systems but also intro-
duces new problems, themost important of which regards the treatment of the frontier between
the two subsystems. In the past three decades much work has been done to solve this problem
and for a comprehensive outline the reader is referred to the review by Senn andThiel ().

Using the multiconfigurational approach combined with classical or molecular mechan-
ics treatment of the environment a CASPT//CASSCF/MM protocol was established (the
// separator has the same meaning as above). Thus geometry optimization and molecular
dynamics simulations are carried out at the CASSCF/MM level (this notation indicates that
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⊡ Fig. -
Energy profiles along the S photoisomerization coordinate of a simplified PSBmodel computed
at the CASPT//CASSCF/-G∗ level. The energy at the Franck–Condon point is taken as the ref-
erence for the comparison. The fluorescent state (FS) corresponds to the local minimum along the
TDDFT curve. The local maximum of the TDDFT curve corresponds to a model structure whose
dihedral angle around the central isomerizing double bondmeasures ○. There is nomaximumor
energy well along the CASSCF energy profile and these features are much less distinct along the
CASPT//CASSCF energy profile. In the PSB chromophore the value of the C–C–C–C dihe-
dral angle strongly affects the vertical excitation energy of the gas-phase retinal chromophore. By
changing it one can change the excitation energy by up to . eV. The PBE/cc-pVDZ bond alterna-
tion value is close to the value found for N-methyl--cis PSBR obtained by Sekharan et al. ()
with the MP method. As suggested by Wanko et al. () the hybrid exchange-correlation func-
tionals like the PBE used in the aforementioned work, should provide BLA values very close to
those computed at the CASPT level of theory. Also the similarity of MP/-G∗ and CASPT/-
G∗ equilibrium geometry was directly demonstrated for short retinal chromophore models (i.e.,
the pentadieniminium cation) (Page and Olivucci ). Of course, no CASPT optimization of the
full retinal chromophore with adequate (e.g., large ANO) basis sets has been reported up to now
and in our view the issue regarding the correct ground state geometry of the retinal chromophore
has still to be settled (Redrawn with permission from ref. Fantacci et al. )

the QM part of the molecule is described at the CASSCF level while the rest is described with
an MM force field such as AMBER (Case et al. ; Ponder and Case ), CHARMM,
(Brooks et al. ) or OPLS (Jorgensen and Tirado-Rives )). Of course, the application
of this methodology requires the construction of a suitable protein model. In order to study
the Rh pigment, a CASPT//CASSCF/AMBER protocol based on the QM/MM link-atom
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⊡ Fig. -
Main parts of a QM/MM model for Rh. The protein structure is usually obtained from the Protein
Data Bank (Berman et al. ). The QM part corresponds to the chromophore plus a part of the
side-chain of the amino acid that is linked to it. The QM/MM frontier region usually corresponds to
a weakly polarized C–C bond that, for Rh, is chosen to correspond to the Cδ–Cε bond of the Lys
side chain in Rh. In this bond the QM atom (Cε) is capped with an H link-atom and the MM atom
(Cδ) is held in place by MM potentials that are specifically parameterized for this region. This MM
parameterization of the QM/MM frontier region is specific to the chromophore and the side chain

electrostatic-embedding scheme (Senn andThiel ) (see > Fig. -) has been implemented
and successfully applied for the first time in our laboratory (Ferré and Olivucci a, b; Ferré
et al. ).

A meaningful calculation of the spectroscopic parameters can be achieved by running
a long time ground state QM/MM trajectory simulation and computing CASPT vertical
excitation energies at regular time intervals. In this way the λamax, fluorescence maximum
(λ f

max) or phosphorescence maximum could be obtained by averaging these results (for an
application of this concept using other quantum chemical methods see refs Hoffmann et al.
() and Pistolesi et al. ()). However, because of the cost of CASPT//CASSCF cal-
culations this strategy appears to be unpractical. The calculation of quantities such as the
λamax and λ f

max cannot be systematically carried out using this approach. Yet, as explicitly
mentioned above, the CASPT//CASSCF level of QM treatment is required if one wants an
unbiased and rigorous quantitative description of the electronic excited state of an organic
chromophore/fluorophore. One possible solution to this problem is to prepare a model of the
system that provides a sufficiently accurate representation of the time-averaged configuration of
the chromophore/fluorophore and its environment. Using this model the chromophore would
effectively feel the average steric and electrostatic field imposed by the protein.

The case studies given in > section “Case Studies of Chromophores Embedded in a Molec-
ular Environment” show that within certain accuracy QM/MMmodels are viable for different
proteins. Indeed, we have shown that models based on the experimental crystallographic



Ab Initio Investigation of Photochemical Reaction Mechanisms  

structure (i.e., where the protein is not fully relaxed or equilibrated) allow the prediction of
the spectroscopic parameters with an accuracy of a few kcal ⋅mol− for systems that differ in
protein structure and in the chemical nature of the chromophore/fluorophore.

Case Studies of Isolated Chromophores

Photoisomerization in a Rhodopsin Chromophore Model

The protonated Schiff base of -cis-retinal (PSB) is the chromophore in the visual receptor
rhodopsin. A light-induced cis/trans isomerization of the chromophore triggers the primary
event in vision, which is a series of conformational changes of the protein. This photoreaction
is considered as the archetype of a chemical reaction optimized by nature to achieve a spe-
cific molecular response. Hence, it was in focus of numerous computational and experimental
investigations.

The first detailed structure of the excited and ground state potential energy surfaces of the
rhodopsin chromophoremodelwas obtained for the three double-truncated -cis-retinal (db-
PSB). In particular the structure of the excited and ground state reaction path branches has
been fully elucidated. Furthermore the reduced dimension of the model (> Scheme -) has
allowed for the computations of ab-initio CASSCF semi-classical trajectories and the evaluation
of the excited state lifetime and time scale of the photochemical isomerization (Weingart et al.
).The results demonstrated that db-PSB provides a reasonable model for more realistic
structures. In particular, the two-state, two-mode nature of the reaction coordinate computed
and observed (both in solution and in the protein) is maintained in the minimal model and
the computed ultrafast excited state dynamics is still characterized by two different timescales
corresponding to a the initial stretching relaxation (i.e., an inversion of the single bond/double
bond length alternation) and to the following torsional deformation (about the central C−C

bond), respectively.
In > Fig. - we plot the branching plane vectors (X and X) at the conical intersection

of db-PSB model.The conical intersection structure features one highly twisted double bond
(about ○) and involves two electronic configurations, an ionic and a covalent state, that differ
for the transfer of one electron between the C−C−C− and −C−C−N fragments.
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⊡ Scheme -
Reduced models of PSB
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⊡ Fig. -
Branching (or g,h) plane vectors for the CI structure of db-PSB. The X and X vectors correspond
to thederivative coupling (or non-adiabatic coupling) andgradient differencevectorsbetween the
S and S states (Redrawn with permission from ref. Migani and Olivucci )
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⊡ Scheme -
Deformation of the CI geometry of db-PSB along the branching plane vectors X and X

From the structure of the branching plane it is apparent that in this molecule X and X

describe two types of processes. As shown in > Scheme -, motion along the X corre-
sponds to a coupled pyramidalization (wagging) modes at the C and C centers of the π-chain.
This motion allows for a widening of the C−C−C−C dihedral angle leading to a π-bond
breaking process. The X mode is characterized by a stretching deformation (a double bond
expansion and single bond contraction mode) of the N=C−C =C−C =C chain segment.
Thus, motion along the X direction would ultimately yield two structures that be represented
by (resonance) formulas with inverted single and double bonds and with the positive charge
shifted from the N-terminal to the C-terminal. These two ○ twisted structures will be less
stable than those generated by displacement along the wagging mode since the deformation
along X allows for reconstitution of the central double bond providing strong coupling with



Ab Initio Investigation of Photochemical Reaction Mechanisms  

0
8

9

10

11

12

13

14

15

16

0
0.1
0.2
0.3
0.4

H

H

H

HH

H

H H H H

H

N

N

HH

H

H H
+

+

0.5 C-C fragment

C-N fragment

0.6
0.7
0.8
0.9

1

60 120

C
ha

rg
es

180 240 300 360

ω / degrees

ΔE
 / 

kc
al

·m
ol

–1

⊡ Scheme -
Characterization of the topology around the CI of db-PSB by charge distribution of the model
chromophore and the energy profile

the Z/E double bond isomerization coordinate.Thus, structural analysis of the branching plane
suggests that upon decay from CI the molecule will generate the Z and E stereoisomers.

The analysis of the wavefunction, taken together with the analysis of the branching plane,
provides the basis for the rationalization of the electronic structure of the ground state energy
surface comprising the reactant and product valleys (and, eventually, the transition struc-
tures connecting them). The result of such an analysis for chromophore model db-PSB is
shown in > Scheme -, where the wavefunction is analyzed in terms of point charges of the
C−C−C− and –C−C−N fragments along a loop centered on the CI (angle ω) and lying
on the plane defined by the X and X modes. The charge distribution of the system demon-
strates the existence of two different regions. The first region ○< ω < ○, ○< ω < ○ is
characterized by a structure where the charge is mainly localized on the N-terminal part of the
molecule. The second region ○< ω < ○ is characterized by a structure where the positive
charge is mainly located on the C-terminal part of the molecule. The border between the two
regions corresponds to the electron transfer events between the two fragments. Notice that the
wavefunction changes are associated with the two minima in the energy gap diagram.

As we have previously underlined, the low-lying conical intersections could be only pro-
vided through the computation of the photochemical minimum energy path (MEP). However,
some cases have been documented where excited state reaction path does not necessarily hit
the lowest energy point belonging to the intersection space (IS) and the decay may not occur
in this region. One of these cases concerns the excited state relaxation path of the db-PSB
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⊡ Fig. -
The excited state reaction path of the cation db-PSB intercepts the conical intersection point
CI○ located ca.  kcal ⋅mol− above the minimum energy conical intersection CI○ . The values of
the relevant structural parameters are given in Å and degrees (Redrawn with permission from ref.
Migani and Olivucci )

chromophore. Indeed, the mapping of the low-lying segments of the IS for this chromophore
(see > Fig. -), by means of constrained MEP computations, demonstrated that it ends at
a conical intersection with a ca. ○ (CI○) twisted structure. The intersection space remains
then coincident with the reaction path up to the lowest energy intersection (CI○) that has a
○ twisted structure (Migani et al. ). Notice that in this situation the main locus of excited
state (S) decay is predicted to be CI○ .

In the follow-up study an extended model with four double bonds (db-PSB
in > Scheme -) confirmed the topological features found in db-PSB (Migani et al. ).
But it also shows expansion of the intersection space segment because of an increased number
of double bonds. In the db-PSB model there are two central double bonds. Twisting each of
them at a time and both simultaneously on the excited state can lead to CIs. One can expect
a topology of the IS space where these singly twisted CIs are connected by the doubly twisted
conical intersections. Indeed, two singly twisted CIs could be identified via IS steepest descent
path (ISDP) calculations starting from the doubly twisted CI-geometry T,T-CI (> Fig. -).
For nomenclature of these structures, the first letter describes the C–C and the second the
C–C double bond conformation, with T being a nearly ○ twisted dihedral. It shows that
one can smoothly change the amount of twisting about the C–C and C–C bonds without
leaving the IS.

In principle, two additional paths should also connect the complementary isomers of the
singly-twisted geometries with the doubly twisted structure. Starting at the same T,T-CI point
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these two CIs were found (> Fig. -) pointing to T,T-CI serving as a saddle point of index
 on the IS and not as a transition state. In > Fig. - we show that a D plot of the four
ISDPs suggests the existence of a low-lying, two-dimensional cross section (i.e., a surface) of
the IS space spanned by CI structures characterized by different degrees of twisting of the two
central bonds. This db-PSB model extends the picture of the S/S intersection due to the
fact that the bottom of the S energy surface of Rh is spanned by a fairly extended IS segment
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along the C–C–C–C torsion from ○ to ○. It should be noticed that certain sub-
stituents or a suitably designed molecular environment can change the energy profile favoring
one isomerization channel over the other or even stabilizing the central part of it.

Amore realistic chromophore model including all five double bonds of the polyene chain of
retinal (db-PSB in > Scheme -) was studied byGonzalez Luque et al. (). Aminimum
energy path (MEP) was computed at the CASSCF level of theory. Ten π-electrons included
in π-type orbitals with -G∗ basis set were employed. It should provide an unambiguous
cis/trans photoisomerization coordinate for PSB (and PSBT) under isolated conditions. This
coordinate suggests the dynamic behavior illustrated in > Fig. -, where ametastable species
performs many skeletal oscillations along an energy plateau before the reactive torsional modes
get fully populated.The plateaumay be assigned to the picosecond “fluorescent state” observed
in solution and therefore drastically reduces the efficiency of the photoisomerization compared
to the protein environment. A second basic feature of the computed path is the positive-charge
translocation along the chromophore framework. The positive charge was found to shift par-
tially from the N end to the C end of the models upon S → S photoexcitation and S in-plane
relaxation. The following twisting deformation leads to a complete translocation of the charge
that localizes on the fragment containing the C end as already demonstrated for the smaller
model db-PSB.

Initial Acceleration
Motion Towards

CI

CI

SP

FC

S1

Energy

⊡ Fig. -
Shape of the FC→ SP region of the S energy surface of db-pSB model
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Photofragmentation Through a Conical Intersection:
The Photodenitrogenation of a Bicyclic Azoalkane

Photo-induced denitrogenation of ,-diazabicyclo[..]hept--ene (DBH) has been the sub-
ject of debate ever since it was first reported by Solomon et al. (). The observed stere-
oselectivity in the nitrogen extrusion and housane formation processes was of particular
interest. The conical intersection structure which mediates the C–N α-cleavage is character-
ized by a linear-axial arrangement at the NNC moiety where one of the two CN bonds is still
intact (.Å) (Page and Olivucci ; Yamamoto et al. ). The branching plane vectors
X and X correspond to two orthogonal bending motions of the NNC angle, as illustrated
in > Fig. -.

When the CI structure is displaced along X and X, the CNN bendingmotions prompt the
formation of the ground state diazenyl diradical (DZ in the > Scheme -) either in the exo,
endo, or endo-exo forms, as illustrated in > Scheme -.

The electronic structure of the intersecting states of the α-CN bond cleavage of DBH is
illustrated in > Scheme -.The electronic configuration of the S state of the azoalkane corre-
sponds to a tetraradical configuration where two electrons are localized in each α-CN σ-orbital,
one electron in the excited nitrogen lone pair, and one electron residing in the p-orbital nitrogen
bound to the α-C.On the other hand, the electronic configuration of the ground state azoalkane
consists of a biradical in which the two α-CN σ-orbitals are singly occupied.

Reaction path calculations explain the observed inversion of stereoselectivity. It is ascribed
to an impulsive population of a vibrationalmode that triggers axial-to-equatorial ring inversion.
This idea is supported by classical molecular dynamics simulations. > Figure - reveals that
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⊡ Fig. -
Gradient difference (X) andderivative coupling (X) vectors for theCI structure ofDBH (illustrated
schematically in the inset). The vectors correspond to two orthogonal bendingmotions of the NNC
angle (Redrawn with permission from ref. Sinicropi et al. )
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⊡ Fig. -
Triplet DFT energy profiles along the molecular dynamics simulations started in the vicinity of the
CI structure of DBH. The snapshots demonstrate the molecular changes along the trajectory (This
figure is redrawn with permission from ref. Sinicropi et al. )

after a single oscillation (on a  fs timescale) in the direction of a transient bicyclic intermedi-
ate, themolecule reaches a strained structure that it can only relax following the initial direction
of motion. After  fs, the exo-axial DZ configuration is reached, followed by the axial to equa-
torial transition structure on an  fs timescale. Within  fs, the inverted configuration is
observed.

Charge Transfer and Intermolecular Hydrogen TransferMediated
by a Conical Intersection: Quenching the Fluorescence of Bicyclic
Azoalkanes

In contrast to DBH, the so-called “reluctant” azoalkanes are inert to photochem-
ical denitrogenation. One representative system is the ,-diazabicyclo[..]oct--ene
(DBO, > Scheme -). DBO exhibits a long-lived excited n,π∗-singlet state (on the order
of μs).

Using the ,-diazacyclopent--ene (pyrazoline) as amodel ofDBO allows the use of accurate
yet computationally demanding (expensive) methods. In combination with experimental evi-
dence, two mechanisms for quenching n,π∗ states were proposed (Sinicropi ; Sinicropi
et al. , , ). DBO is efficiently quenched by hydrogen donors (for instance by
solvents such as chloroform, methanol, and benzene) either via a concerted or a stepwise
process. DBO luminescence can be quenched by electron donors (e.g., with triethylamine),
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Potential energydiagramshowing the interplaybetweenground (S ) andexcited (S) state surfaces
in the fluorescence quenching of n,π* state chromophores due to an hydrogen donor or electron
donor species. The full and light arrows describe the concerted and stepwise energy wastage route

however, only through a concerted process. Calculations have been carried out using CHCl
and methanol to model hydrogen donors, and trimethylamine/dimethyl ether as strong/weak
electron donor solvents on the other hand. As shown in > Fig. -, both quenching routes
involve bimolecular photochemical reactions. Deactivation occurs through an S/S CI, located
halfway along the reaction coordinate, and prompting bifurcation.The first branch (represented
by full arrows) resembles a photophysical transformation and has been termed an “aborted”
photochemical transformation. The second branch (represented by light arrows) is associated
with production of a transient species that reverts to the original starting reactants by passage
through a low-lying transition state located on the ground state reaction coordinate (depicted
by a dashed curve). Thus, both routes correspond to a photochemical transformation, which
was initiated but never achieved.
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Themolecular structure of the characterized conical intersection thatmediates hydrogen abstrac-
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X and X vectors for the CI structure of pyrazoline + CHCl involved in the hydrogen abstraction
mechanism (Redrawn with permission from ref. Olivucci and Sinicropi )

The conical intersection for the hydrogen abstraction mechanism (in the presence of
CHCl) is characterized, with respect to the reactant pair, by shortening the H–N distance
(from . to .Å) and simultaneously lengthening the C–H distance (from . to .Å).
The structure on the conical intersection for this bimolecular reaction is given in > Fig. -,
whereas the degeneracy-lifting vectors are illustrated in > Fig. -.

Motion along X stretches the intermolecular N–H distance whereas displacement along
X causes an out-of-plane pyrazoline ring distortion, both translations lifting the degen-
eracy between the two states. Structural evolution along both displacements is illustrated
in > Scheme -. Translation along X leads to the radical pair (RP) while displacement
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Characterization of the topology around the CI of associated pyrazoline–dichloromethane model
pair

along −X leads to production of an unstable ion pair (IP). Evolution in the X and −X

directions leads to two equivalent ground state transition structures, featuring a distorted
pyrazoline ring.

An analysis of the wavefunction indicates that the n,π*-excited state correlates with the rad-
ical pair structure (derived from a complete hydrogen atom abstraction), whereas the ground
state correlates with the ion pair (derived from proton abstraction), see > Fig. -a. Although
this case study deals with bimolecular photochemical processes, it is in a sense similar to the
retinal PSB models as the electronic configurations describing the intersecting states are inter-
changed by charge transfer.The charge distribution of the system along a circular cross section –
spanning the plane defined by the X and X vectors and centered around CI – is displayed
in > Fig. -b with ω expressing the rotation. It reveals the existence of two distinct regions.
The first region (○ < ω < ○ and ○ < ω < ○) is characterized by an ion pair struc-
ture where the charge on the pyrazoline is positive while it is negative on CHCl. The second
region ○ < ω < ○ is characterized by a covalent structure. The border between the two
regions corresponds to two sudden electron transfer events, one from the CHCl anion to the
pyrazoline cation yielding the RP configuration (ω = ○) and the second in opposite direction
(ω = ○).

Themolecular structure of the conical intersection alongwith the degeneracy-lifting vectors
of the branching plane for the charge transfer process is given in > Fig. -. Notice that X

is dominated by an out of plane deformation of the pyrazoline ring whereas X is dominated
by the interfragment distance. The computed photochemical reaction path demonstrates that
the excited state branch of the photochemical reaction path is dominated by an decrease in
the distance between the pyrazoline and N(CH) fragments. After a low-lying excited state
barrier, the evolution along the path leads to the formation of an exciplex located in the vicinity
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(a) Modified state correlation diagram of the n,π*-excited state (ES) of pyrazoline + CHCl corre-
latingwith the radical pair (RP) derived fromhydrogen atomabstraction and the ground state (GS)
correlating with the ion pair (IP) derived from proton abstraction. (b) S fragment charges [au]
along a circular cross section centered at CI and spanning the branching plane (pyrazoline frag-
ment, open triangles; hydrogen atom, open squares; CHCl fragment, open circles) (Redrawn with
permission from ref. Sinicropi et al. )

of a conical intersection.The intersection is accessed when the distance between the pyrazoline
and nitrogen atoms of the amine is ca.  Å. In the exciplex, the computed amount of charge
transfer from the trimethylamine lone pair to the excited state half-vacant nonbonding orbital
of one pyrazoline nitrogen atom is about . electrons.

The exciplexN…N two-orbital/three-electron bond can be viewed as amixture of a covalent
(N=N●

⋯:NMe) and an ionic (N=N●−

⋯

+●NMe) electronic configurations. A steep rise of
the ground state energy surface towards the conical intersection is due to a destabilizing two-
orbital/four-electron repulsive interaction (N=N:⋯:NMe) (see > Fig. -).
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Case Studies of Chromophores Embedded in a Molecular
Environment

Green Fluorescent Proteins (GFP)

In  the Green Fluorescent Protein (GFP) was discovered in the jellyfish Aequorea Victo-
ria and became the first representative of the same named protein family (Shimomura ).
Its chromophore is p-hydroxybenzylideneimidazolinone (HBDI), enclosed in a β-barrel struc-
ture. It emits a green fluorescence light if exposed to blue light.The corresponding fluorescence
spectrum shows a single peak at  nm attributed to the anionic form of the chromophore. In
contrast, in water solution the HBDI anion shows a blue-shifted fluorescence that has a very
short lifetime.

The GFP chromophore has been studied extensively, both by means of experimental and
theoretical methods. Sinicropi et al. () performed the first QM/MM simulation of GFP
suitable for the quantitative evaluation of λamax and λ f

max. Calculations were done at the
CASPT//CASSCF/CHARMM level of theory with the -G∗ basis set because a previous
study (Martin et al. ) suggested that dynamic electron correlation is important to repro-
duce the observed quantities. The λamax was evaluated for the anionic ground state form in the
emitting state (state I) and in a modified I state with a disrupted hydrogen bond between the
chromophore and the closest water molecule (see > Fig. -).

For the full proteinmodel of the I state the calculated peaks for absorption and emission are
 and  nm, respectively, compared with the experimental values of  and  nm (Brejc
et al. ; Chattoraj et al. ) resulting in an error of less than  kcal ⋅mol− . A somewhat
better agreement with experimental data is achieved by Altoe et al. () using a similar com-
putational protocol. The calculations were performed at the CASPT//CASSCF/AMBER level
for the chromophore with the same basis set. Prior the QM/MM excited state calculation the
model was equilibrated byMD simulation.The authors calculated the absorption of  nm for
the I state (experimentally  nm).

TheGFPmodel (Sinicropi et al. ) shows that there is a charge translocation towards the
imidazolinonemoiety in the I state, indicating that the excited state is a charge transfer state. It is
shown that the hydrogen bond between the proximal water molecule and the phenoxy oxygen
of the chromophore localizes the negative charge on that oxygen atom. In fact, as reported
in > Fig. -, removing that watermolecule has a great effect on structure and energy, which
leads to a less stable structure ( kcal ⋅mol− higher in energy). A different effect is found when
comparing a protein model with the positively charged counter-ion Arg to a protein model
without it: the protein environment balances the counter-ion effect to the same extent in S and
S. A similar quenching effect is also observed for Rh (Strambi et al. ) (see below) despite
its very different protein and chromophore structure.

Another member of the GFP protein family is asFP, which was discovered inAnemonia
sulcata (Quillin et al. ). It fluoresces brightly at  nm after intense illumination at  nm
at room temperature.TheX-ray crystal structurewas obtained in  for the dark state at .Å
resolution. The chromophore was discovered to be the same as in GFP, and the initial hypoth-
esis for explaining the fluorescence was a Z/E photoisomerization because the chromophore
cavity can easily accommodate both the isomers, as was seen from the crystal structure. The
first QM/MM study on asFP was carried out by Grigorenko et al. (). The ground state
equilibrium structure was determined at the RHF/-G∗∗ and BLYP/-+G∗ level while the
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Right: Chromophore cavity of the model for the GFP fluorescent state I displaying the hydrogen
bond network and the values of the computed λfmax value. Left: The change in the hydrogen bond
network by disruption of the W–chromophore bond leads to a red shift in the predicted λfmax

excited state properties were studied at the CASSCF/AMBER level with the -+G∗ basis set
(with a  electron/ orbital active space). The QM region included the chromophore unit and
the sidechains of the His, Glu, and Arg residues, all of which are involved in the hydro-
gen bonding to the chromophore. For the HBDI moiety three options were considered: the E
anion, the Z anion, and the E zwitterion. The protein environment was shown to stabilize the
zwitterion with respect to the gas phase, which confirmed the importance of evaluating the role
of the protein matrix. The CASSCF vertical transition energies give support to the experimen-
tally based hypothesis that the dark state features an anionic or zwitterionic E conformation,
while the emitting state features an anionic Z-isomer formed upon light absorption by the E
ground state. However, it is known that the CASSCF vertical excitation energies are far from
being quantitative and may change dramatically for transitions to charge transfer states upon
CASPT correction.

A  study by Schäfer and coworkers (Schaefer et al. ) shed light on the photo-
chemical reaction path in asFP, finding many similarities with GFP. They used TDDFT to
establish the general features of the photocycle: after photon absorption the zwitterionic E dark
state chromophore is converted into the anionic Z form by proton transfer from the imida-
zolinone ring to the Glu side chain and E→Z isomerization. A proton wire connects the
chromophore cavity to the external solution in order to achieve protonation of the phenolate
oxygen, which leads to the neutral Z form. Another proton wire is able to release protons from
His to the solution along five residues and a buried water molecule. The proton transfer
seems to be important in preventing the reverse photochemical reaction that would result from
absorption of a second photon. Photoisomerization leading to changes in protonation states
seems to be a general principle exploited by evolution: both bR and PYP rely on the same
mechanism. Subsequently, the CASSCF method (Schaefer et al. ) was employed to gain
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deeper insight into the mechanism and its features at the atomic level. A QM/MMMD simula-
tion was performed, evaluating energies and forces of S and S at the CASSCF/-G level with
a six electron/six orbital active space to reduce the computational cost.TheQM region included
only the chromophore, and the OPLS force field was used for the rest of the system.The results
confirmed the conclusions of the previous paper in amore detailed way: the proton distribution
in the active site controls the possible photochemical pathways of the protein-embedded chro-
mophore.There are six different states, arising from the combination of E and Z conformations
with a neutral, anionic, or zwitterionic chromophore. To switch from the non-fluorescent to the
fluorescent state an E→ Z isomerization is required. It has been observed to happen only for
the neutral chromophore which is poorly populated.The fluorescent state is the zwitterionic Z
form reached upon protonation of Glu, but this state is also sparsely populated. These two
findings are in agreement with the observed low overall photoisomerization quantum yield of
asFP. Moreover, excitation of the neutral E chromophore should be performed with green
light otherwise the blue-shifted Z photoproduct would isomerize back. The neutral Z state is
more populated than the other Z forms, so the efficiency of the back reaction, i.e., the switching
off, is very high.

Understanding the Spectral Tuning in Retinal Proteins

Rhodopsin, the dim-light photoreceptor in vertebrate retina, belongs to the G-protein-coupled
receptor family. The -cis-retinal (PSB) that is covalently bound to Lysine  via a Schiff-
Base link serves as the chromophore (> Fig. -). Upon light absorption PSB undergoes a
stereoselective Z/E isomerization to the all-trans isomer, which leads to a protein-wide con-
formational change that initiates light perception. As summarized in > Fig. -, this is an
ultrafast photochemical reaction featuring a ∼ fs lifetime of the excited state and a  fs
appearence-time of the vibrationally hot intermediate photorhodopsin (photo-Rh). The first
isolable intermediate, bathorhodopsin (batho-Rh), is detected on a  ps time scale. Below we
review the results of recent research efforts to investigate the mechanism of the excited state
isomerization in Rh using a QM/MMmodel.

More than  years agoWarshel proposed, on the basis of semiempirical simulations, an iso-
merization mechanism that could explain how this process can occur in the restricted space of
the Rh binding pocket (Warshel ). Since two adjacent double bonds were found to isomer-
ize simultaneously themechanism reveal a so-called bicycle pedal motion. Due to the concerted
rotation of two double bonds in opposite directions the overall conformational change is min-
imized and hence this mechanism was found to be space-saving. The empirical valence bond
(EVB)method (Warshel and Levitt ) was used to compute the excited state potential energy
surface of the chromophore during a trajectory calculation where the steric effects of the pro-
tein matrix were modeled by specific restraints on the retinal atoms. Since then, Warshel and
his coworkers have improved the model employing better structural data and new computa-
tional developments (Warshel and Barboy ; Warshel and Chu ; Warshel et al. ).
The main refinement of the bicycle pedal mechanism was that the simultaneous rotation of the
adjacent double bonds is aborted at a twist of ○ and leads to the isomerization of only one
bond (Warshel and Barboy ).

Since the crystal structure of the rhodopsin protein became available in , a more accu-
rate description of the protein environment was available for computational investigation and
for the interpretation of the experimental data. In  Ferré and co-workers performed the
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⊡ Fig. -
Top: Observed λamax values and excited state lifetimes associated with the initial steps of the pho-
toisomerizationof Rh. Bottom: Schematic representation of the excited state isomerizationmotion
of PSB dominated by an asynchronous crankshaft structure deformation (Frutos et al. ) and
documented for a CASSCF/AMBERmodel of Rh

first QM/MM simulations using the ab initio CASPT//CASSCF/AMBER protocol applied to
the protein-embedded retinal chromophore in the excited state (Ferré and Olivucci b). In
this study the authors have truncated the retinal chromophore at the QM level to make the cal-
culation feasible. The authors used a five double-bond N to C retinal fragment. The CASSCF
level of theory was used to determine the ground state equilibrium structure with all  π-
electrons in  π-type orbitals comprising the active space. The protein was modeled with the
AMBER force field.

Starting from the HZX (Palczewski et al. ) crystallographic structure, it was shown
that the CASPT//CASSCF/AMBER protocol can be used to construct a Rh model featuring
the full retinal chromophore treated at the QM level.This model could reproduce the stationary
spectroscopic features (see > Fig. - top left for a comparison of the observed and computed
values, given in italics and plain text, respectively) with an error similar to the one found for
GFP systems described above. For instance, the λamax is reproduced with only  kcal ⋅ mol−

error ( nm versus  nm). But also the computation of the corresponding λamax in solution
employing the samemethodology led to an errorwithin kcal⋅mol− of the so-called opsin-shift
(the  nm λmax observed for PSB in methanol is red-shifted to  nm in Rh).

Furthermore we have been able to investigate the effect of water relocation inside the Rh
cavity (Strambi et al. ). A second water (W) had to be placed into the protein binding
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Top left: Energy profiles along the S photoisomerization coordinate of Rh computed at the
CASPT//CASSCF/AMBER level. The PSB structure on the right corresponds to the first isolable
intermediate batho-Rh. The values in italics correspond to observed values (See ref. Kukura et al.
). Bottom: Scaled-CASSCF S and S energy profiles and CASPT points along the S trajectory
of Rh. The S and S energy profiles are reported for two Rh models based on the HZX (red and

black lines) and U (orangeandgrey lines) crystallographic structures (M.M. Huntress, M. Olivucci,
unpublished data). The structure on the right represents the point of decay (conical intersection
structure) reached after ∼ fs time evolution. The vectors represent the velocities at the decay
point and clearly show a crankshaft-like motion at the center of the PSB backbone

pocket according to qualitative space filling and electrostatic considerations since the original
HZX crystallographic structure only showed the presence of one water molecule (W). How-
ever, the more recent and better resolved crystallographic structure (PDB Code: U) (Okada
et al. ) points to a different location and different hydrogen bonding for W. The sensi-
tivity of S→S excitation energies with respect to the position of W has been investigated by
constructing a new Rh model with the revised water placement. The results from the refined
structure indicate a fairly low sensitivity of the λamax to the significant geometrical change of the
salt bridge region, which suggests that there is a compensation mechanism that counteracts the
effects of this change on the λamax. Our analysis points to a displacement of the chromophore
to a cavity region with a larger positive electrostatic potential as a means to offset the effect
of the decrease in NH(+)–O(–) salt bridge distance. We have also compared the effect of a
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reduction of the full opsin model to a model with only the  amino acids of Palczewski’s cavity
(Palczewski et al. ), those that surround the retinal. It was found that the value predicted
for the S→ S excitation energy is substantially the same indicating that for Rh the charges of
distant residues are of minor importance for the optical absorption features of PSB. Of course,
we do not expect this to be a general result. Highly truncated protein models should always be
applied carefully until a systematic analysis is carried out to determine their limitations and
reliability.

In > Fig. - top left, we report the S branch of the photochemical reaction path of
Rh computed in terms of a relaxed scan driven by the torsional deformation of the react-
ing bond. Using this data we have located and assigned the S structure that corresponds to
transient fluorescent state I. We then located the structure of the lowest lying S/S CI (CI-
Rh) that also corresponds to the local S minimum. This structure displays a ∼○ twisted
C–C bond. Starting from the CI-Rh geometry, using standard optimization, the first stable
ground state intermediate bathorhodopsin (batho-Rh) has been located. It exhibits absorption
at  nm and features an all-trans-like chromophore structure (∼○ dihedral angle around
the C–C double bond). The computed structure of batho-Rh can be compared with the
structure that was experimentally derived by Mathies and coworkers (Kukura et al. ) by
femtosecond resolved resonance Raman spectroscopy (see > Fig. - top right). The com-
parison indicates that it is possible to predict the structure of an intermediate. Concerning
the photon energy of ∼ kcal ⋅ mol− that is efficiently stored in batho-Rh, the results of our
CASPT//CASSCF/AMBER energy profile show that we reproduce this quantity with an error
of  kcal ⋅mol−.

A mechanistic picture of the space-saving isomerization mechanism is derived from the
reaction path of the Rh QM/MM model and the associated structural deformation. The pre-
dominant change in the retinal geometry that occurs immediately after excitation leading to
the fluorescent state I is a bond length alteration (BLA) in the –C =C–C =C–C =C–
moiety. A complete inversion between single and double bonds is found at the geometry charac-
terizing the state I. The CI-Rh displays a highly helical structure compared with Rh and FS-Rh
and ismainly characterized by a large structural change in the –C =C–C =C–C =C–
moiety. Thus, the motion driving the S→ S decay is mainly torsional with a rotation of ∼○

(○→ ○) around the C =C bond, and ○ and ○ twisting around the C =C and
C =C bonds, respectively. Therefore, from a general point of view, during photoisomer-
ization the structural changes do not occur exclusively at the central double bond but also
involve the other two adjacent double bonds, which lead to a global change in the helicity of the
chromophore. A mechanism can be derived considering the largest changes. These involve the
torsion about the reactive bond C =C and about the adjacent C =C bond. As highlighted
in > Fig. - (bottom) these twisting deformations occur in opposite directions and results in
the rotation of the –CH–CH–moietywith respect to the remaining framework.Themechanism
confirms that the space-saving motion imposed by the tight Rh cavity is of the crankshaft type.
However, since the progression about the C =C bond ismore limited,we can talk of an asyn-
chronous crankshaft mechanism (Frutos et al. ). Furthermore, a comparison of the CI-Rh
structure with the batho-Rh structure establishes (consistent with the experimental data) that
the less twisted C =C reverts to its original stereochemistry after ground state relaxation, so
we can talk of an aborted asynchronous crankshaft mechanism.

Another widely studied retinal protein is bacteriorhodopsin (bR), a light-driven ion pump
discovered in Halobacterium salinarum in  (Oesterhelt and Stoeckenius ). It is a mem-
brane protein, which upon illumination generates and maintains a proton gradient across the



Ab Initio Investigation of Photochemical Reaction Mechanisms  

cell membrane (Oesterhelt and Stoeckenius ). The gradient can be used as a source of
energy, for example, by adenosine triphosphate synthase. bR shares some similarities with the
visual rhodopsin: seven transmembrane α-helices and a protonated Schiff base with lysine-
bound retinal as the chromophore. The X-ray crystal structure was first obtained at .Å
resolution in  (Grigorieff et al. ). By , the resolution had improved to . Å (Luecke
et al. ).The bRphotocycle consists of several intermediates labeledK, L,M,N, andO,which
were characterized by spectroscopy and trapped at low temperature in order to be studied by
crystallography (Balashov and Ebrey ; Lanyi ). Light absorption triggers the Z/E iso-
merization of the C =C double bond of the PSBAT chromophore. The bond isomerization
is completed at the K intermediate, yielding a -cis chromophore (PSB); the following ther-
mal relaxation leads to Schiff base proton transfer to the Asp counter-ion, in the L and M
steps. The proton flux is completed during the remaining part of the photocycle, along with
other accompanying proton transfers and protein structural changes.

The first ab initio QM/MM calculation on bR was reported by Hayashi et al. using multi-
configurational methods to evaluate the excited state properties (Hayashi and Ohmine ).
The protein model was based on the crystal structure determined by Luecke et al. () where
the missing residues were taken from the PDB structures BRD (Grigorieff et al. ), CW,
(Luecke et al. ) and QHJ (Belrhali et al. ).The geometry was optimized at the HF level,
using DZV and -G basis sets with polarization functions on oxygen atoms. CASSCF(,)
was employed to calculate retinal excitation energies. Five different models were built, each
with different atoms included in the QM region. The results demonstrated that the protein
environment affects the absorption properties of the chromophore. The side chains and the
water molecules in the binding pocket affect the geometry of the retinal, forcing a twisting of
the C =C double bond. The protein environment is anionic near the Schiff base, which
stabilizes the ground state with respect to the excited state, causing a blue shift of the S→ S
excitation energy.

Later the Schulten group (Hayashi et al. ) performed a further analysis to elucidate the
physical mechanisms of the observed spectroscopic tuning in the rhodopsin family. A compar-
ison between bR and the sensory rhodopsin II (sRII) was done to understand the origin of the
change in λamax from  nm in bR to  nm in SRII. This difference was observed experimen-
tally, in spite of the same chromophore in both proteins and the similar protein environments.
As in the previous work, a QM/MM methodology was employed, with AMBER as the MM
force field.The equilibrium geometries of the QM regions were computed at the HF/DZV level.
The excitation energies were evaluated with a CASSCF(,) wave function. The QM region
included the retinal, the retinal-bound lysine (starting from Cγ), and parts of the binding
pocket: two aspartic acid residues (starting from Cβ) and three water molecules.The compari-
son between bR and SRII was performed by calculating the contributions to the S–S excitation
energy: the total energy was rewritten as a sum of the energy of the isolated chromophore, the
electronic reorganization energy arising from themodification of the wave function in the pres-
ence of the protein, and the electrostatic interaction energy between protein and chromophore.
The results showed that the main contribution is electronic reorganization in the retinal and a
closer inspection of the structures showed a reduced counter-ion–Schiff base distance in sRII
compared with bR. This is the reason for the blue shift, consistent with the picture given in a
previous paper (Hayashi et al. ).

Another spectroscopic feature of the bR photocycle was addressed by the same group
in  (Hayashi et al. ). The early K and L intermediate models were built using MD
and refined with QM/MM optimization, following the same method as described above. The
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geometry optimization showed an increased chromophore distortion on passing from the
ground state to the K intermediate.Moreover, the local hydrogen bond network is perturbed: a
watermolecule is displaced and the hydrogen bond betweenThr andAsp is broken because
the latter group undergoes a conformational change. Another result of that change is the reduc-
tion of the distance between the Asp carboxyl group and the Schiff base, which is thought to
prompt the proton transfer in the following L-to-M process. Regarding the optical properties,
K and L intermediates are red-shiftedwith respect to the initial absorption of bR.The excitation
energies were evaluated at the CASSCF(,)//HF level, with a three state averaged calculation
followed by state specific computation for S and S. The theoretical results are in good agree-
mentwith the experimental red shift, even though the absolute values are quite different and the
spectroscopic shifts are overestimated. The reason for the shortcomings of the computational
theory in this case is the failure of the CASSCF method to account for dynamic correlation. An
analysis of the individual contributions to the total excitation energy allows one to pinpoint the
main factors affecting the spectroscopic shift. Chromophore distortion around the C =N and
C =C double bonds was found to be the main factor. It destabilizes S more than S, there-
fore reducing the energy gap. Another factor is the reduced electrostatic interaction between
protein and chromophore, which increases the S energy without affecting S, where the charge
is more delocalized towards the β-ionone ring. Nevertheless the geometry is optimized at the
HF level, which is known to overestimate bonding character, comparedwith post-SCFmethods,
which leads to a likely underestimation of bond torsion in the chromophore.

DeactivationMechanism in Cytosine-Guanine DNA Base Pair

Deoxyribonucleic acid (DNA) is a common biomolecule in all living organisms that con-
tains the genetic information used for their development and functioning. It is composed of
nucleotides, with backbonesmade of sugars and phosphate groups joined by ester bonds, form-
ing long polymer chains. Attached to each sugar is one of only four bases: adenine (A), cytosine
(C), guanine (G), and thymine (T).These bases belong to two types of organic molecules – ade-
nine and guanine are purines that are fused five- and six-membered heterocyclic compounds,
while cytosine and thymine are pyrimidines, which are six-membered rings. A pair of strands
is usually arranged in the shape of a double helix by strong hydrogen bonds between the bases
that stack upon each other. Due to the aromatic character of the nucleotide bases DNA absorbs
in the harmful ultraviolet (UV) region of the spectrum. Hence, UV irradiation is one sort of
mutagen that can damage DNA and subsequently lead to cancer. It is not surprising that DNA
and its building blocks have been extensively investigated by computational quantum chem-
istry. The full coverage of the applications goes beyond the scope of this book chapter. Instead
we are reporting an investigation using multiconfigurational ab initio calculations combined
with AMBER force field in a QM/MM approach to study ultrafast radiationless deactivation
mechanism of cytosine-guanine inter-strand base pair (Groenhof et al. ).

Groenhof et al. () used a multiconfigurational approach as part of the QM/MM setup
to study the inter-strand excited state proton transfer. One of the fastest deactivation processes
in DNA was related to the cytosine-guanine base pair occurring on sub-picosecond time-scale.
Therefore excited state molecular dynamics were employed to track this reaction. CASSCF
with a reduced active space of eight electrons in eight orbitals and a -G basis set was
employed to model the molecular dynamics of the photoactivated C–G base pair. A sur-
face hopping algorithm was used to detect a transition from the excited to the ground state.
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The crystal structure of the human DNA/topoisomerase I complex provided the initial coor-
dinates for the QM/MM simulations. In total,  base pairs of B-DNA molecule were used.
The partitioning of the system was done in a way that the cytosine-guanine base pair in
the center of the molecule was described at the QM level. The remainder of the system was
modeled with AMBER force field (Case et al. ). The chemical bonds between the bases
and the deoxyribose sugar rings connecting the QM and the MM subsystems were replaced
by constraints and the QM part was capped with two hydrogen link atoms. To equilibrate
the DNA and the solvent prior to the QM/MM simulations, the system was equilibrated
classically for , ps. The initial conditions for the excited-state simulations were obtained
by taking  frames at equal time intervals from an additional  ps ground state trajectory
at the CASSCF(,) level. In the excited state MD simulations, a time step of . fs was
used.

In consequence, the ultrafast photodeactivation mechanism of the cytosine-guanine base
pair was uncovered by the molecular dynamics simulations (see > Fig. -). The excitation
to the charge transfer state induces a transfer of a proton from guanine to cytosine within a few
femtoseconds. After the proton transfer, the system approaches the conical intersection seam
and returns to the ground state. However, within a few femtoseconds the seam is closed again,
and a second hop takes the system back to S where it stays until another hop occurs. Most
trajectories showed several hopping events between the S and S surfaces, with an average
excited state lifetime of  fs for the entire process.This can be rationalized by the topology of
the S–S intersection space (see > Fig. -). The proton transfer coordinate in the vicinity of
the S minimum is parallel to the extended hyperline and allows multiple transitions between
the crossing states.
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cytosine guanine

S1/ S0 conical
intersection

t = 82 fs

double
proton
transfer

t = 54 fs

t = 32 fs

proton
transfer
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⊡ Fig. -
Sequenceof events after theexcitation. Aproton is abstracted fromguanine and accepted by cyto-
sine. After thedecay to theground state via a conical intersection theproton returns to theguanine
base. The excess thermal energy that is released upon returning to S is responsible for sponta-
neous double proton transfer (at  fs) which leads to the formation of a different tautomeric state
of the base pair ( fs) (Redrawn with permission from ref. Groenhof et al. )
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⊡ Fig. -
Excited and ground state potential energy surface crossing of the cytosine-guanine base pair. The
two reaction coordinates are proton transfer and skeletal deformation of the bonds. The dashed

yellow and green lines schematically represent a path sampled in a typical trajectory on the S
and the S potential, respectively. Along the proton-transfer coordinate the system moves out of
Franck–Condon region to the minimum of the excited state. Due to the oscillations of the second
reaction coordinate the trajectory hits the seam more than once (Redrawn with permission from
ref. Groenhof et al. )

Absorption Spectra of a Coumarin in Solution

The calculation of absorption spectra is of great interest to chemists, since these spectra provide
awealth of information about themolecule, its environment and its properties. As a result of sol-
vent effects and solute-solvent interactions the spectra can be quiet complex. In addition, some
of the information can be convoluted under the broad bands. Nowadays, computational photo-
chemistry serves as a standard tool for spectroscopists, used to assign the experimental spectra.
Until recently the calculations yield simple stick absorption spectra, which show the excitation
energies and their relative intensities, without taking environmental effects into account. Recent
advances in quantum chemistry allow researchers to treat solvents and to calculate vibrational
contributions to the spectra. Here we present a case study of coumarin C (> Scheme -)
computed by TD-DFT including solvent effects considered by polarized continuum model
(PCM). Improta, Barone, and Santoro have studied the spectra in two different solvents: cyclo-
hexane and dimethylsulfoxide (DMSO) (Improta et al. ). Coumarin C was selected to
evaluate this novel methodology because it exhibits significantly different polarizabilities on its
ground and electronically excited states.Therefore solvents with different polarities lead to large
solvatochromic shifts that ought to be accounted for by the simulations.

The calculated stick absorption spectrum of the anti isomer of coumarin at K in cyclo-
hexane is shown in > Fig. - left. The authors employ an algorithm for automatic selection
of transitions between vibrational states since the full set is too computationally demanding.
After harmonic analysis the algorithm was used to select ⋅ transitions out of a total of 
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⊡ Fig. -
Calculated spectra of C in cyclohexane. Left:  K stick spectrum and its assignment including
transitions with one quantum in a single oscillator.Middle: A decomposition of the spectrum (thick
line) in its components, where Cn dominates collection of transitions to vibrational states with
the same number n of simultaneously excited oscillators. Right: Calculated spectra in cyclohexane
(blue) and DMSO (red) compared to the experimental spectra (black) (Redrawn with permission
from ref. Improta et al. )

states. For the convolution of the spectrum the full width at half maximum of a Gaussian was
chosen to match the main experimental bands. The spectrum was found to be unaltered when
calculated for K and also to be practically indistinguishable for the anti and syn isomers.
The line shapes of the calculated spectrum resemble its experimental counterpart as shown for
anti coumarin in cyclohexane (> Fig. - middle). The two-peak structure with a spacing
of , cm− is qualitatively reproduced. The first band is mainly due to the – transition
and a contribution from transitions to the single vibrationally excited state (C). However, the
computed spectrum is found to be blue-shifted by  cm−. The second band is composed of
contributions from transitions to the first (C), second (C), and third (C) vibrational states.
The only deviation from the experimental spectrum is manifested in the relative height of these
two bands.

In DMSO the spectrum consisting of an asymmetric broad band, extended towards the
blue wing of the maximum, is correctly reproduced by the simulation (> Fig. - right). This
proves the reliability of the calculated vibrational progression hidden within the band. How-
ever, similar to the case of cyclohexane, the spectrum is found to be red-shifted by cm−.The
authors ascribe the latter to the effect of dynamic solvent fluctuationswhich aremuchmore pro-
nounced in polar solvents. Finally, the DMSO→cyclohexane solvatochromic shift is estimated
to be only  cm− smaller than its experimental counterpart.
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Using this novel protocol Improta, Barone, and Santoro were able to simulate the spectrum
of coumarin C in different solution environments with a high degree of accuracy. Com-
plex band structures were reproduced for solvents of varying polarities with a computational
procedure feasible for large molecular systems.

Excited StateMolecular Dynamics

Tracking the Photoisomerization of Retinal in Different
Environments

The first attempts to study the photoisomerization of the retinal chromophore by using ab ini-
tio excited state molecular dynamics were reported by Robb and coworkers (Vreven et al. ;
Weingart et al. ) focusing on a model chromophore in the gas phase at the CASSCF level
of theory. A more recent work by Weingart, again for an isolated retinal model, has shown
that the quantum yield of the photoisomerization process depends critically on the initial reti-
nal configuration (Weingart ). In the resting state of bovine rhodopsin, the chromophore
deviates from planarity (Okada et al. ; Palczewski et al. ). By taking this retinal struc-
ture as a starting point for a series of excited state CASSCF semi-classical trajectories the author
found that % of the trajectories ended at the all-trans photoproduct. This result suggests that
selectivity and quantum efficiency might originate from strain imposed by steric interactions
between the chromophore and the protein before photon absorption.

Recently we have reported the first S trajectory computation for Rh carried out with a
scaled CASSCF force field that reproduces the static and transient spectroscopic parameters
(Frutos et al. ). Because of the immense cost of the CASPT gradients, their application in
trajectory computation is impossible for the retinal chromophore even if such a calculation is
limited to a few hundred femtoseconds. However, CASSCF energies not only fail to reproduce
the observed spectroscopic properties of Rh but also yield an energy profile that is too steep. In
order to overcome this problem and evaluate a realistic trajectory we noticed that scaling the
CASSCF isomerization energy profile along the S branch of the reaction path of > Fig. -
top left, yields a curve overlapping with the corresponding CASPT curve (Frutos et al. ).
As displayed in > Fig. - bottom left, the results show that this potential drives the chro-
mophore to the CI on a  fs time scale. This time scale is in line with the observed excited
state Rh lifetimes, which confirms the suitability of the scaled force field.

The assertion that a scaled CASSCF potential can approximate CASPT accuracy has
been assessed by single point CASPT//CASSCF/AMBER calculations along the trajectory.
In > Fig. - bottom-left we report the S potential energy along the computed trajectory.
Seven single point CASPT/-G∗/AMBER computations have been performed to validate
the scaled energy profile and to compute the correct S–S energy gap. The scaled CASSCF
energies remain close to the CASPT energies all along the trajectory supporting the accuracy
of our procedure.

Within  fs the S system undergoes a ∼ kcal ⋅mol− energy decrease. Following this event
the potential energy decreases slowly and monotonically until, after  fs, a region of degen-
eracy located ∼ kcal ⋅ mol− below the Franck–Condon point is reached. Since the initial
motion is dominated by simultaneous double bond expansion and single bond contraction,
 kcal ⋅ mol− of vibrational energy must be initially located along this mode, which leads
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to complete inversion of the double bond/single bond character centered in the –C =C–
C =C–C =C– moiety. The analysis of the entire  fs S trajectory together with the
resulting backbone deformation depicted in > Fig. -, points to a space saving isomerization
mechanism that includes the previously proposed bicycle pedal or crankshaft coordinate.The –
C =C–C =C–C = segment of PSB twists with respect to the two remaining fragments,
namely the –NH=C–C =C–C = and the β-ionone ring, during the first – fs. Such
a motion is mainly characterized by a negative twist of the reactive –C =C– bond and a
positive twist of the –C–C– bond. At the critical  fs mark the nature of the motion changes.
The –C–C– twist stops and the –C =C bond adjacent to the reactive –C =C– bond
starts to twist in the positive direction. In other words, the =C–C = fragment rotates with
respect to the backbone, leading to an ○ twisted –C =C– bond and to amoderately twisted
(∼○) –C =C– bond after  fs. The nature of this motion is confirmed by plotting the lin-
ear momentum vectors in the – fs region. Further studies have revealed that this motion
may be an intrinsic property of the retinal chromophore (Schapiro et al. ).

A more recent CASSCF/AMBER trajectory study of the photoisomerization of Rh was
reported by Hayashi et al. (). The protein model was constructed based on the U crys-
tal structure. It was equilibrated using classical MD and provided, after a  ns equilibration, a
sample of  different starting points for the trajectory calculations. The polyene chain of the
retinal, including the double bond of the β-ionone ring, was treated at the CASSCF level using
a DZV basis set. The active space was composed of  π-electrons and  π-type orbitals. The
first two roots were averaged in the CASSCF wave function. In order to describe the interac-
tion between the QM part and the MM part, mechanical embedding was employed. This is an
important difference from the excited state trajectory presented above (Frutos et al. ) that
uses electrostatic embedding instead. In mechanical embedding the interaction between the
QM and the MM region is treated at the MM level, which is less accurate. However, the transi-
tion from the excited to the ground state was initiated using the energy difference as criterion,
namely when it was less than . kcal ⋅ mol− . In addition, a trajectory of isolated retinal was
calculated using a structure taken from the equilibrated rhodopsin.

It was found that all  CASSCF/AMBER trajectories decayed to the ground state within
 fs (the shorter time could be attributed to a lack of scaling and the unrealistically steep
CASSCF energy surface), which is of the same order of magnitude as the trajectory by Frutos
et al. (). Batho-Rh is formed in  cases and in one case a -cis isomer (isorhodopsin) is
produced by a bicycle pedal isomerization of C–C and C–C bond. However, an accom-
panying rotation of ○, on average, is found around C–C in the  trajectories showing
a crankshaft or aborted bicycle pedal-type mechanism, which is consistent with the previous
findings.

The first QM/MM trajectory computation describing the photoisomerization of bR was
reported by Hayashi et al. (). However, the selected QM part corresponded to a highly
reduced PSBAT chromophore featuring only three double bonds.This was described by a three
state averaged CASSCF wave function with  π-electrons in a  π-type orbitals active space
with a DZV basis set.TheMM part was described using AMBER for the protein and the TIPP
model for the water molecules. An ensemble of starting conditions was generated by a classi-
cal MD simulation of the resting state of bR at constant temperature (K). To compare the
effect of the protein on the photoisomerization, trajectories of the same retinal model were cal-
culated under vacuum. In total,  trajectories were performed to see if the high selectivity of
the isomerization could be reproduced in the absence of the protein environment. It was found
that the initial stretching relaxation is followed by a selective isomerization exclusively around
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the C–C bond. It should be mentioned that this double bond is the central one in the inves-
tigatedmodel.Hence, its preference for rotation compared with the terminal bonds is expected.
The analysis of the isomerization dynamics of the six isolated chromophore trajectories shows
that four trajectories isomerize around C–C and two around the terminal C–N bond.
The authors concluded that the high selectivity in bR is a result of the protein environment.

Conclusion

In this chapter we have presented a few selected computational photochemistry case studies
of model systems with increasing complexity, starting from isolated molecules that served as
models in early works. The photochemical reaction paths of these systems were examined in
mechanistic investigations, resulting in a general understanding of light-induced processes.
Towards the end of the chapter we have given more recent examples of steady state spectra,
minimum energy path calculations, and molecular dynamics simulations in different environ-
ments. More realistic models and rigorous simulation not only provided an explanation for
the photochemical events, but also allowed a comparison with experimental data: the shape
of spectra in solution can be convoluted, ab initio dynamics can predict excited state lifetimes
and quantum yields, and conical intersections of chromophores in proteins can be located. All
this reveals that the current stage of the tools of computational photochemistry are already
providing results with accuracy comparable to experimental observables.

Nevertheless, we have also shown that some questions remain open, needingmore accurate
treatments which are still not feasible to date.Therefore further breakthroughs in computational
photochemistry are anticipated. On one hand the development of quantum chemical methods
and algorithms for effective computations is expected in the near future, whereas an increase
of computational resources and computing power on the other hand ought to lead to another
bloom in this research field.
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Anomalous dispersion, 
Antibiotics, , 
Antibonding, , 
Antimicrobial, –
Antioxidant, 
Antisymmetry, , , , , , , , , ,

, 



 Index

Approximation, –, , , , , , ,
, , , , , , , , , ,
–
–adiabatic, 
–dipole, , 
–monopol, , 

Aquaporins, 
Aqueous electrons, 
Armchair, , , , , , , , –,

–
–edge, , , , , 
–GNR, , , 

Armchair graphene nanoribbons (AGNR), , ,
, , , , , 

Aromaticity, , 
Artificial neural network (ANN), 
Assisted model building with energy refinement

(AMBER), –, , , , , ,
–, , 

Assumption, –, , , 
Asymmetry, , , 
Atom

–approach, , , , 
–scheme, , 
–term, , , 
–type, , , , , 
–united, , , , –

Atom–atom potentials, –
–polarizable potentials, 

Atomic, , , 
–charge, –
–orbitals, 
–partitioning scheme, 

Atomic force microscope (AFM),
, 

Atomic force microscope (AFM) tip, 
Atomic force microscopy (AFM), ,

, 
Atoms-in-molecules, 
Au clusters, –
Aufbau/Abbau method, , 
Auger recombination, –
Autocorrelation function, 
Auxiliary density functional theory (ADFT),

–
Auxiliary density perturbation theory (ADPT), ,

–, 
Axial, 
Axial strain, –
Azoalkanes, , –

B
Bacteriorhodopsin, , 
Bader analysis, 
Badgers rule, 

Band
–area, 
–gap, , , , , , , , –,
–, –, –, –, ,
, , –, 

–half-width, 
–intensity, , 
–maximum, , , , 
–origin, , , –, 
–shape, –
–width, 

Base pair, –, –
Base pair enhancement, –, 
Base release, , , –, , 
Basin hopping algorithm, , , 
Basin hopping method, , , 
Basis functions, , , , , , , , 
Basis set, , , , , , , –, ,

, –, –, , , , , ,
, , , , , , –, , ,
, , , , , , , , , ,
, , –, , , , , ,
, , 
–Ahlrichs, 
–anion, , –, , 
–ANO, , , –, , , , , 
–auxiliary, , , , , 
–BSSE, –, –
–cage effect, , 
–calculations, , , 
–complete, , –
–contraction, , 
–convergence, , , , , , , 
–correlation-consistent, , –, ,
, 

–diffuse functions, , , , , , ,
–

–double-ζ, 
–Dunning, , , , , 
–electron correlation, 
–exponent, 
–extrapolation, –
–finite, , , 
–Gaussian function, 
–Gaussian type orbitals, , , 
–minimal, , , , 
–perturbation-dependent, , 
–plane waves, 
–polarization functions, , , , 
–Pople, , , –, 
–Rydberg states, , , –, , 
–Slater type orbitals, , 
–split-valence, 
–superposition error, 
–thermochemistry, 
–triple-ζ, , 
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Basis set superposition error (BSSE), , , ,
, , , –, , , , , ,
, 
–counterpoise correction, , , , , 
–excited states, –

B-DNA, , , 
Becke–Lee–Yang–Parr (BLYP), 
Beeman’s algorithm, –
Benchmark sets, , –, 
Bending, –, 
Benzamides, , 
Benzene ring, –, 
Benzonitrile, 
Benzorod, 
Berendsen barostat, 
Berendsen thermostat, –, , 
BFGS. See Broyden–Fletcher–Goldfarb–Shannon
Biasing potential replica exchange molecular

dynamics (BP-REMD), –
Bicycle pedal mechanism, 
Bioactive compound, 
Biomolecules, , , 
Bionanotechnology, 
Biopolymer, –
Biopolymer structure, 
Birefringence

–axial, 
–Buckingham, , , , , , , 
–circular, , , 
–Cotton–Mouton effect, –
–EFG induced, –
–electric-field-induced optical, 
–field-induced, 
–flexible molecules, –
–Jones, 
–Kerr (electro-optical) effect, 
–linear, 
–magnetochiral, 
–magneto-electric, 
–optical activity, 
–optically induced, 

Bloch theorem, , , , , 
Blue-shift, , 
BLYP. See Becke–Lee–Yang–Parr
BLYP, 
BN sheet, , , , , 
Bofill, , 
Bofill formula, 
Boltzmann average, , , 
Boltzmann distribution, 
Bond dissociation, , , , , –
Bonded interactions, , 
Bond length, , , , –, , , ,

, 
Bond length alternation (BLA), , , ,

, 

Bond-order potential, 
Born–Mayer–Huggins potential, 
Born–Oppenheimer approximation, , , , , , ,

, –, , , , –, , , , ,
, , , , –, , , , ,
, , 
–beyond, 
–molecular dynamics, 

Boundary atoms, 
BP-REMD. See Biasing potential replica exchange

molecular dynamics
Branching plane vector, , , 
Breaking point, 
Brillouin theorem, , 
Brillouin zone, , 
Brønsted acid, , 
Broyden–Fletcher–Goldfarb–Shannon (BFGS), ,

, , , , , , 
BSSE. See Basis set superposition error
Buckingham potential, , 
Buckling, , 
Buckminsterfullerene, , , , , , ,

, , 
Buckyball, , 

C
C, –, , , , , 
C, –, –, –, , , ,

–
C, , , , –, 
C, 
C, 
C, , , , 
Cadmium sulfide clusters, 
Cage structures, , 
Calculation, –, –, 
Canonical probability distribution, 
Carbon nanostructures, , , , , , 
Carbon nanotube, , , , –, –,

, –, 
Car-Parrinello, , 
Car-Parrinello molecular dynamics, 
Cartesian, internal, 
Casimir–Polderformul, 
CASPT

–accuracy, , , , , 
–p-benzosemiquinone, , 
–cytosine dimer, –, 
–electron correlation, 
–ethene, , 
–ethylene dimer, , 
–guanine, , , , , 
–level-shift, , 
–LiF, , 
–multi-state, , , , 
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–NABs, 
–psoralen, , , , , 
–size-extensivity, 
–thymine, , , , , , 
–water, , , , , 

CASSCF, , , 
–accuracy, , , , 
–active space, –, , , , ,
, 

–p-benzosemiquinone, –
–electron correlation, 
–ethene, , 
–guanine, , , , 
–NABs, 
–psoralen, , , 
–size-extensivity, 
–state average, –, , , 
–thymine, , 
–valence-Rydberg mixing, , , 
–water, , 

CASSI, , 
CASVB, 
Cauchy moments, , –, 
CC. See Correlation-consistent
CCD. See Coupled cluster
CCSD, 
CCSD(T), 
C′ -dephos radical, 
CdnTen, 
CdS, , , , , , 
CdSe, , , , , , , 
Center-of-mass

–coordinates, , 
–translation, –

Centrosymmetric structures, 
CFOUR, features, –
Chair conformer, 
Charge

–control, 
–distribution, , 
–transfer, , , , –, 
–transfer states, 

CHARMM. See Chemistry at HARvard
Macromolecular Mechanics

Chemical bond, –, , 
Chemical functionalization, , ,

, 
Chemical potential, 
Chemical-probe experiments, 
Chemical shift, , , , –,

, 
Cheminformatics, , 
Chemisorption, , , , , –
Chemistry at HARvard Macromolecular Mechanics

(CHARMM), –, , , , ,
, 

Chiral, –, , , 
–Chirality, , , , , , 
–molecules, , , , 

Cholesky decomposition, , 
Cinnamic acid, , 
Circular, , , , 
Circular dichroism, , , , , –,

–
–electronic, , , 
–magnetic, , , –
–rotational strength, 
–two-photon, –
–vibrational, , 

Cisplatin, , , , , 
cis/trans photoisomerization, 
Clamped-nuclei approximation, , –, 
Clar, –, 
Classical force fields, , 
Classical molecular dynamics, –, 
Classical reaction paths, 
Clathrate hydrate structure I lattice, 
Clausius–Mossotti relation, 
Clebsch–Gordan coefficient, 
Cleri–Rosato potential, , 
Cluster approach model, 
Cluster growth, , , , 
Clusters, –
Coarse graining, 
Coarse grain molecular dynamics, , , 
Coil-globule transition, 
Coinage metal, , 
Columbus, , 

–features, –
Cometary comas, 
Commutator, , 
Complementarity, –
Complete active space self-consistent field

(CASSCF), , –, –,
, 

Complete active space with second order
perturbation theory (CASPT), , , 

Complete basis set (CBS), 
Complete basis set (CBS) limit, , ,

–, 
Complex, , –, , –, –
Components, , 
Compression, , 
Computational drug discovery, , 
Computational enzymology, , 
Computational toxicology, , 
Computer modeling, , , , , 
Condensed phase, , , 
Condon approximation, 
Conduction-band electron, , 
Conductor-like screening model (CSMO), 
Configuration, –, , 



Index 

Configuration interaction (CI), , –,
–, 
–CIS, , 
–DCI, , 
–DFT/MRCI, 
–FCI, , , , 
–multireference, , –, –, ,
, , 

–Rydberg states, , , , , 
–SDCI, , , 
–size-extensivity, , 

Configuration-state functions (CSFs), , , 
Confinement effect, , , 
Conformation, , , –, , –, 
Conformational sampling, , , 
Conformational space annealing, 
Conformational transitions, , , , ,

–
Conical intersection, , , –,

–, –, –, , , ,
–, , , 

Conjugated systems, 
Conjugate gradient method, 
Conjugate gradients algorithm, 
Consistent valence force field (CVFF), ,

, 
Contact contributions, , , , 
Continuous transformation of the origin of the

current density (CTOCD), 
Continuum, , , , –, , ,

, 
Continuum model, –
Convergence

–basis set, 
–coordinates, , 
–criteria, , , , 
–optimizations, 
–perturbation series, , 
–SCF, , , , 

Coordinates, –
–branching and intersection space, , 
–Cartesian, , , –, , , , ,
–, , 

–Cartesian redundant, 
–center-of-mass, , 
–cluster, , 
–Coriolis coupling, 
–frozen, 
–internal, , , , , , –, , ,
, , 
–delocalized, , –, –,

–, 
–natural, , , , 
–redundant, , , , 

–internal redundant, , 
–mass-weighted, , 

–nuclear, , 
–performance, 
–reaction, , , 
–spherical polar, , 
–vibrational, 
–X-ray diffraction, 
–Z-matrix, , , 

Coordination number, , –
Copper-aminoxidase, 
Corannulene, 
Core-electron spectroscopy, 
Core-excited resonance, –,

, 
Core-excited shape resonances, 
Core/shell particles, 
Correlation

–effects, , , , , , 
–basis sets, –, 
–core, 
–dynamic, , , , , , 
–energy, , , –, , , , ,

, 
–exchange, , 
–Fermi, , 
–HF, 
–large-range, 
–left-right, 
–long-range, 
–nondynamic, , 
–Rydberg states, , , , 
–short-range, , , 
–static, , 

–energy, 
–hole, , , 
–time, 

Correlation-consistent (CC), 
COSMO. See Conductor-like screening model
Cotton–Mouton effect (CME), ,

–
Coulomb, , , 

–coefficient, 
–correlation, 
–coupling matrix, 
–energy, , , , 
–hole, , , , , 
–integrals, 
–interaction, , , –, , , , , , 
–matrix, –
–norm, 
–potential, , , 
–vector, 

Coulomb’s law, 
Coumarin C, , –
Coumarins, –, 
Counterpoise correction (CP), , , , ,

, , , , 



 Index

Coupled cluster (CCD), , 
–accuracy, , , , , , , 
–CC, , , 
–CCSD, , , , , , , –, 
–CCSD(T), , 
–cross section, 
–EOM-CC, , , , , –
–heat of formation, 
–NABs, 
–non-variational, 
–nuclear coupling constant, 
–PCM, , –, 
–PCM-CC, , –, 

Coupling coefficient, , 
Covalent bond, 
Covalent functionalization, , 
Crack propagation, 
Critical exponents, –
Critical phenomena, –, 
Critical point, 
Crossover operation, 
Cross section, 
Crystal

–calculation, 
–energy, , , –, –
–molecular, –, 
–structure, , , , –

Crystallization, 
Crystallographic database, 
Crystallography, –
Cu clusters, –
Curie temperature, , , , –
Curvature effects, , 
CVFF. See Consistent valence force field
Cytochromes, , , –, , , 
Cytosine (C), –, , , –, ,

, , , , , , , , ,
, –, , , , , ,
, 
–dimer, –, 

Cytosine-guanine base pair, , –

D
DALTON, 

–features, 
Damping function, –, 
Darwin term, , 
Data analysis, , –
DBIPs. See Double bonds in pentagons
DCACP. See Dispersion-corrected atom-centered

potential
Dc-optical rectification, 
Dc-pockels effect, 
Dc-shg, 
Decahedral, , , 

 Defect, , 
 Defect, , 
Deformation, , 

–energy, , 
Degenerate four wave mixing (DFWM), 
Degrees of freedom, , , , , , , ,

, , , , 
–vibrational, 

DeMon, , , –, , –, ,
, 

Density, , 
–fitting, , –, , , , , 
–functional, 
–matrix elements, 

Density-functional based tight-binding method
(DFTB), , , , , –, 

Density-functional methods, 
Density functional theory (DFT), , , , ,

, –, , , –, , , ,
, , , , , , , , –,
, , , , , , , , , ,
, , , , , , , , –,
, , 
–accuracy, , , , , 
–asymptotic behaviour, 
–auxiliary, –
–π−π stacking, , 
–conjugated systems, 
–correlation effects, 
–Coulomb, 
–DCACP, 
–DFT-D, , –, , , , 
–DFT-D, 
–DFT/MRCI, , 
–dispersion, 
–dispersion interaction, 
–excited states, , , , , , 
–fullerenes, , –
–functional, –, , , , 
–functional choice, 
–functional total energy, 
–generalized gradient approximation, 
–H-bond, 
–hybrid-GGA, 
–hyperfine coupling constants, 
–hyperfine interaction, , 
–hyperpolarizability, , 
–interaction, , , , 
–Jacob’s ladder, , 
–Kohn-Sham, –
–LCGTO-DFT, , 
–local density approximation (LDA), ,
, 

–magnetizability, –
–method, , , , 
–nuclear shielding constant, 
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–nuclear Zeeman interaction, 
–polarizability, 
–self-interaction, 
–sodium cluster, , –
–spin-orbit coupling constant, 
–time-dependent, , , , , , , 
–time-dependent-DFT (TD-DFT), 
–van der Waals, , 
–weak, , –

Density-functional tight-binding method (DFTB),
–, , , , 

Density matrix, , , , 
–perturbed, , 

Deoxynucleosides and deoxynucleotides, 
Deoxyribonucleic acid (DNA), , , , ,

, , –, , –
–bases, , , , –, , 
–bending, –
–damage, –
–hairpin, , 

Dependence, , , , , , , , 
Depolarization ratio, , , 
Deposition, , , 
Descriptors, –, 
DFT. See Density functional theory
DFTB. See Density-functional tight-binding method
DGAUSS, , 
Diamagnetic, , , 

–contribution, , , , 
–hypermagnetizability, 
–magnetizability, , , 
–shielding, , 
–spin-orbit, , , 

–contribution, 
–operator, , 

Diamagnetism, 
Diamond, , , , 
,-Diazabicyclo[..]hept--ene (DBH), –
,-Diazabicyclo[..]oct--ene (DBO),

, 
Dielectric constant, , , , , 
Dielectric properties, 
Diels–Alder reaction, , 
Diffraction limit, 
Diffuse functions, , –
Diffuse states, , , , 
Diffusion coefficient, 
,-Dihydrothymine, , 
DIIS. See Direct inversion of the iterative subspace
Dimensionality of materials, 
Dioxygen activation by enzymes, , 
Dioxygen consumption, , , , , 
Dipole, , 

–approximation, , , 
–bound, , , , , –, ,
, , 

–CO, 
–derivative, 
–electric, , , , , , , –,
–

–excited state, , , , , –, ,
, –, , 

–IR spectrum, , 
–magnetic, , 
–moment, , , –, –, , , ,
, , , , , , , –, ,
, , , , , –, , 

–nitromethane, 
–oscillating, 
–psoralen, , , , , , 

Dipole bound anion state (DBS), , 
Dipole-dipole interaction, , , , , 
Dirac, 

–delta function, , 
–electron, 
–equation, 
–notation, , 
–point, , 
–theory, 

Dirac–Hartree–Fock method, , 
Directed walk, , 
Direct inversion of the iterative subspace (DIIS),

–, , 
Dispersion, –

–DCACP, 
–DFT-D, –
–force field, 
–HFD, 
–interaction, , , 
–MP, 

Dispersion-corrected atom-centered potential
(DCACP), 

Dispersion interaction, 
Dispersionless state, 
Displacement, , , –, –, –,

, , 
Dissociation, , , , , , , –,

, , 
Dissociative electron attachment (DEA), , ,

, , , , 
Distributed multipoles, –
Distributed polarizabilities, , , , 
Distribution methods

–distributed multipole analysis (DMA), , 
–Williams–Stone–Misquitta (WSM) method,
, –

Divacancy, 
DKn, 
DMOL, 
DNA. See Deoxyribonucleic acid
Docking, , –, 
Double bonds in pentagons (DBIPs), , , 
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Double helix, 
Double hybrid functionals, , , 
Double-strand breaks (DSB), , , , ,

, , , 
Drug design, 
Drugs, , , , , , 
D structures, –
D structures, , –
D structures, –
Dummy atom, 
Dunning, 
Dynamic electron correlation, , , 
Dynamics, , , , –
Dynamics simulations, –, –,

–, –

E
ECEPP. See Empirical conformational energy

program for peptides
ECP. See Effective core potential
Edge states, , , , , , 
Effective core potential (ECP), , , , ,

, 
Effective ESR, –
Effective Hamiltonian, , , , , 
EFG. See Electric field gradient
EFISH. See Electric field induced second harmonic
Eigenfunction

–angular momentum, , , , 
–Fock operator, , , 
–Hamiltonian, , , , , , , –, –,
, , , , 

–level shift, 
–reduced density matrix, 
–spin, , , , , , , , , , 
–Sz , , 

Eigenvalue, , , , , , 
–angular momentum, 
–eigenvector following algorithm, , 
–equation, , , , 
–FCI, 
–Hamiltonian, , , , , , , , , , ,
, , , , , , , , , 

–Hessian, –, , , , –, ,
–, 

–level shift, 
–negative, –, , , , 
–positive, , 
–problem, , , , , , 
–Roothaan’s equations, , 
–shift parameter, 
–spin, , 

Einstein coefficients, 
Einstein relation, 
Einstein summation convention, , 

Elastic moduli, 
Elastic properties, –
Electric dipole, , , –, , –,

, –
–electric quadrupole, , , 
–magnetic dipole, , , , 

Electric field, 
Electric field gradient (EFG), , , –,

, , , 
Electric field induced second harmonic

(EFISH), 
Electric quadrupole, , , , , ,

, 
Electric second harmonic generation (ESHG),

, 
Electromagnetic interference, 
Electromechanical properties, –
Electron, , , , , , , , , 

–adiabatic, , 
–affinity, , , , , , , –
–correlation, , , , , , , , ,
, , , , 

–density, , , , , , , ,
–, , 
–ground state, , 
–normalization, 
–polarizability, 

–diffraction, , , 
–distribution, , 
–plots, 
–vertical, 

Electronic properties, , , , –, ,
, , , , , 

Electronic shell, , 
Electronic structure, , , , 
Electron-molecule interaction, , ,

–, , , 
Electron spin resonance (ESR), , , 
Electron spin-Zeeman interaction, , 
Electron transmission spectroscopy (ETS), ,

–, , , 
Electro-optic effect, 
Electro-optic Pockels effect (EOPE), , 
Electrostatic interactions, , , , , ,

, 
Electrostatics, –, , 
Embedded atom method, , , , 
Embedded atom models, 
Embedding, , 
Emission

–cytosine dimer, 
–DNA, 
–psoralen, –
–spectrum, 
–thymine, 
–vertical, , , , , , 
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Empirical conformational energy program for
peptides (ECEPP), , –

Empirical potential, –, , ,
–, 

ENDOR spectroscopy, 
Energy

–basis set, 
–bottom-of-the-well, 
–correlated method, 
–DFT, 
–electronic, , 
–expansion, –
–function, , , 
–minimum, 
–nonbonded, 
–potential, , , , , , , 
–psoralen, 
–rotational, 
–sublimation, 
–term, , , , , , , , 
–torsion, 
–total, , , , 
–transfer, , , 
–translational, 
–vibrational, 

Enthalpy, , , 
–of formation, , 
–molar, 
–standard, , 

Entropy, , , , , , 
Enzyme, , , , , 
EOM-CC. See Equations-of-motion coupled cluster
Equation-of-motion, , , 
Equations-of-motion coupled cluster (EOM-CC),

, , , 
Equilibrium constant, 
ESHG. See Electric second harmonic generation
ESR

–effective spin, –
–spectrum, , 

Ethene, , , , , 
Euler equation, 
Ewald sum, 
Exact enumeration technique, , –,

, 
Exchange, , , 

–correlation, , , , , , , , 
–auxiliary functions, 
–coefficient, , 
–derivative, , 
–energy, , , , , ,

–, 
–functional, , 
–kernel, 
–PBE, 
–potential, , , , , 

–energy, 
–hole, , 
–potential, 

Excimer, –, 
–cytosine dimer, , , 

Exciplex, 
Excitation, , , , , , , ,

–, , , 
–accuracy, , , –, , 
–CIS, 
–energy, –, –, , –, ,
, , –, , , –, , ,
, , –

–level-shift, , 
–psoralen, , 
–Rydberg, , 
–in solute, 
–valence, , 
–vertical, , , , , 

Excited states, , –, , , , , ,
, , , –, , , , –,
–, , , , , –
–anion, , –
–basis set, –, , , , –
–BSSE, –
–calculations, –
–charge transfer, 
–cytosine dimer, –
–environmental effects, , 
–multiconfigurational, , –, –,
–, –, 

–nomenclature, 
–programs, , 
–psoralen, –, –
–Rydberg, , , –, 
–thymine, –
–valence, , , , , 

Exciton, 
Excitonic polariton, , 
Exciton longitudinal-transverse

splitting, 
Excluded volume effect, –
Exclusion principle, , 
Expansion, , , , , , , ,

, 
Exp- potential, 
Extinction coefficient, 
Extrapolation, , , , , –,

–

F
Face centered cubic (fcc), 

–lattice, , 
–truncated octahedron, 

Faceted surface, 
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FAD. See Flavin adenine dinucleotide
Faraday effect, 
Fast Fourier transform, 
FCI. See Full configuration-interaction
FCP. See Function counterpoise method
Femtosecond processes, 
Fe-porphyrin, 
Fermi

–contact, , , , , , , 
–correlation, , 
–golden rule, , , 
–hole, , , 

Ferroelectricity, 
Feshbach resonances, , , 
FIM. See Functionally important motions
Fine structure constant, 
Finite field technique, , 

–drawbacks, 
Finite size effects, –, 
Finnis–Sinclair potential, 
Firefly features, 
First hyperpolarizability, 
First principles methods, , , ,

, 
Fitness function, 
Fitness parameter, 
Flash vacuum pyrolysis (FVP), , 
Flavanones, 
Flavin adenine dinucleotide (FAD), –, ,

, 
Fluorescence, , , –, , , , ,

, , , , , , , ,
–
–excimer, 

Fock, , , , ,
, 
–corrected, 
–effects, 
–eigenfunction, , 
–matrix, , 
–matrix representation, , 
–operator, , , 

Fold, , –, –, , 
Force, 

–AMBER, 
–constant, , , , , , ,
, 

–dispersion, , 
–electrostatic, 
–external, , 
–field, , , , , , 
–geometry optimization, 
–GROMOS, 
–Hessian matrix, 
–Hooke’s law, 

–intermolecular, 
–intramolecular, 
–scaling, 

Force-extension curve, , ,
, 

Force field, , , , , , –, ,
–, , –, –, , , ,
, , , –, –, , ,
–, , , , –, , ,
, , –, 

Force intermolecular, , , 
Force spectroscopy, 
Force-temperature diagram, 
Formamide, , , –
Formation energy, , , , , , ,

, 
FORS. See Full orbital reaction space
Fourier amplitudes, 
Fourier transform, 
Fragment deformation energy, 
Franck Condon (FC)

–factors, 
–geometry, , , , , 
–point, , , , , 
–principle, , 
–rule, 
–transition, 

Free-energy perturbation method,
, 

Freely jointed chain, , 
Frenkel principle, 
Frequencies, , –
Frequency-dependent, , , –, , ,

, –
Frequency-dependent density susceptibility

(FDDS), 
Frequency(time)-independent, 
Frozen localized orbitals, 
Fukui functions, 
Full configuration-interaction (FCI), 
Fullerene, , –, , , –, –,

–, –, , , , 
–bromofullerene, 
–dimetallofullerene, , , 
–endohedral metallofullerene, , , ,
–, , 

–fluorofullerene, 
–fullerene derivative, , , –,
, 

–higher fullerene, , , , , –,
–

–hydrofullerene, 
–“insoluble” fullerene, , , 
–isomers, , , , , ,
–



Index 

–LCGTO-DFT, 
–non-IPR fullerene, ,
, 

Full orbital reaction space (FORS), 
Function, , –, , , –, , ,

, , , , –, , 
Functional

–BB, , , 
–BBK, –
–BHandH, 
–BH&HLYP, 
–BHLYP, 
–BLYP, , , , , , , , , ,
, , , , , –

–BLYP, , , , 
–BLYP, , , , , –, , ,
, –, , , , , , , ,
, , –, 

–BMK, 
–BP, 
–BP, 
–BPLYP, 
–BPW, , , 
–BPW , 
–BPW, 
–CAMBLYP, 
–CAM-BLYP, , 
–derivative, , 
–Dirac, , 
–double hybrid, , , 
–exchange-correlation, , ,
, 

–GGA, , –, , 
–gradient-corrected, 
–HFLYP, 
–HMGGA, , , , –
–HTCH, 
–hybrid, 
–hybrid-GGA, , 
–hyper-GGA, 
–Jacob’s ladder, –, 
–kinetic energy, 
–LDA, , 
–magnetic properties, , ,
, 

–meta-GGA, 
–MHGGA, 
–MPWBK, , , , 
–MPWK, , , , , 
–MPWKCIS, , , , 
–MPWPBE, , 
–MPWPW, , 
–OBLYP, 
–OLYP, , , 
–OPBE, , 

–PBE, , , , –, , , ,
, 

–PBEKCIS, 
–PBELYP, , 
–PBEPBE, , , , , –, , 
–PW, , , , 
–PWB, 
–PWBK, , 
–PWBK, 
–PWLYP, 
–range-separated hybrid, 
–theory, –
–total energy, , 
–TPSS, –, –, –, 
–TPSSh, , –, –, 
–TPSSKCIS, 
–VWN, , 
–XBK, 

Functionalization, , 
Functionally important motions (FIM),

–
Function counterpoise method (FCP), 
Furan derivatives, –
Furocoumarins, , , ,

, 
FVP. See Flash vacuum pyrolysis

G
GaAs, 
GaAs, , 
GaAs, , –
GaAs, 
GaAs, , 
GaAs clusters, , , , 
GAMESS, 
GAMESS-UK

–features, –
GAMESS-US, 

–features, –
GanAsn, , 
Gap state, , 
Gauge

–correction, 
–Coulomb, , 
–dependence, 
–gauge invariance, –, 
–invariance, 
–length, , –
–length gauge, –
–modified velocity gauge, 
–origin, , , , , , , , ,
, , , 

–velocity, , , 
–velocity gauge, –
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Gauge invariant atomic orbitals (GIAOs), ,
, 

Gauge origin, , , , , , , , ,
, , , 

Gaussian, , , , , 
–chain, –
–function, , , , , , 
–web page, 

Gaussian-type functions, 
–contracted, , 
–four-center integrals, 
–LCGTO, –, 
–primitive, , 

GDIIS, –
General conservation law, 
Generalized gradient approximation (GGA), ,

, , , 
Generalized valence bond method, 
Generating function technique, –
Genetic algorithm, , , , , , ,

, 
Geometric mixing, 
Geometric shell, 
Geometry

–constrained, , , 
–,-dichloroethane, –
–enforced, 
–experimental, , , 
–external force, –
–formaldehyde, 
–molecular clusters, –
–optimization, , , , , –, –,
–, –, , , , , , ,
, , , , 
–fullerene, 
–modernite, 

–output, , 
–symmetry, 
–transition state, 

GGA. See Generalized gradient approximation
Giant fullerenes, , , –
GIAOs. See Gauge invariant atomic orbitals
Gibbs free energy, 
Global minimum, , 
Global optimization, –, , 
Global search algorithms, , , , 
Glucose oxidase (GO), , , –, ,

, , 
Glue potential, 
Glycosidic bond, , 
Golden cages, 
GPU, 
Gradient, , , , , , , –, ,

–, –, , –, , , ,
, , , , , , , , , , ,
–, 

Graphane, , , 
Graphene, , –, , , , –, ,

, –, , , –, , ,
–, –
–nanodots, , , , 
–nanoribbons, –, –, , ,
–

Graphene nanoribbon (GNR), –, , ,
, , –

Graphite, –, , , 
Greedy search method, 
Green-fluorescent protein (GFP), , –
Green’s function formalism, 
Green’s functions, 
GRN junction, 
GROMACS. See GROningen MAchine for Chemical

Simulation
GROMOS. See GROningen MOlecular Simulation

package
GROningen MAchine for Chemical Simulation

(GROMACS), , , 
GROningen MOlecular Simulation package

(GROMOS), –
Ground state, , , , , , –, , , , ,

, , , , , , , , –,
, , , , , , , , –,
–, –, –, , , , –,
, , –, , , 
–energy, , , , , , 
–Hamiltonian, , , , , , 
–structure, –, –, , 

Group theory, , 
Growth sequence analysis, 
Guanine(G), , , , , , , ,

–, , , , , , –,
, , , , , , , –,
–
–MEP, , 

Gupta potential, , , , ,
, 

Gyromagnetic ratio, 

H
Half-metallic behavior, , 
HAlO, –
Halogen bond, 
Hamilton, 
Hamiltonian, , , , –, , , ,

–, –, , , –, , ,
, , , , , , 
–Breit–Pauli, –, , , , 
–clamped nuclei, –
–Coulomb, –, , , , 
–diagonalization, , 
–diatomic, , –, 



Index 

–Dirac, 
–eigenvalue problem, , , 
–electronic, –, –, , , 
–expectation value, , 
–hardness, 
–matrix, , , , 
–matrix elements, , 
–multistate effective, 
–nuclear, , –, , , , 
–PCM, 
–perturbation theory, , , 
–semi-empirical, –
–spherical polar coordinates, , 

Hamiltonian replica exchange molecular dynamics
(H-REMD), 

Hammond postulate, 
Hanging drop method, 
Hansel–Vogel potential, 
Hard-and-soft-acids-and-base (HSAB)

principle, 
Hardness, 
Hard-sphere, 
Harmonic oscillator, –, 

–potential energy, 
Hartree, –, , , 

–approximation, 
–product, 

Hartree-Fock (HF) method, , , , , ,
–, , , , , , , , , ,
, , , 
–accuracy, , , , 
–dispersion corrected, 
–dissociation, 
–equations, , , 
–exchange, , , , , –, , 
–limit, , , 
–method, , , , , , , ,
, 

–orbitals, 
–restricted, , , , 
–restricted open-shell, , 
–restricted, RHF, 
–time-dependent, 
–unrestricted, , , , 
–wave function, –

H-bond, , 
Heat of formation

–calculations, 
–FO, , 
–FO, , 
–HSO, –
–natural orbitals, 
–perturbation theory, 
–potential energy surface, 
–reaction, 

Heisenberg, 

Heisenberg Hamiltonian, 
Helium atom, 
Helium droplet, , 
Hellman–Feynman theorem, , ,

, 
Heme-O system, 
Heme proteins, 
Hemoglobin, , , , , ,

–
Herzberg–Teller expansion, 
Hessian, , , 

–approximate, , 
–diagonalization, 
–eigenvalue, , , , , , , , ,
–
–negative, , , 
–positive, , 

–eigenvector, , –, , , , 
–mass-weighted, , 
–matrix, 
–positive-definite, , , 
–update

–BFGS, , , , , 
–Bofill, , 
–Murtagh-Sargeant, , , 
–Powell, –

–weight derivative, , 
Heterofullerenes, 
Hexaanion, , –
Hexagonal close packed, 
Hexagonal index, 
Hexcadecapole, 
HgnTen, 
Hierarchy of methods, 
Highest occupied molecular orbital (HOMO), ,

, –
High performance liquid chromatography

(HPLC), 
High-resolution transmission electron microscopy

(HRTEM), , , , 
Histidine ligand, 
Hohenberg–Kohn theorem, , ,

, 
Homodesmotic, 
Homology modelling, –
HOMO-LUMO gap, , –, –, ,

, 
Homotops, 
Honeycomb lattice, 
Hooke’s law, 
Hopping energy, 
Host-guest, , –, , –, 
HPLC. See High performance liquid

chromatography
H-REMD. See Hamiltonian replica exchange

molecular dynamics
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HRTEM. See High-resolution transmission electron
microscopy

HSAB principle. See Hard-and-soft-acids-and-base
(HSAB) principle

Hubbard-U, , , 
Huckel theory, 
Hybrid descriptors, –
Hybrid functionals, , , , , , 
Hybrid GNR junction, 
Hybridization, , , 
Hydrated cation, , –, –
Hydration, , , –
Hydrocarbon, , , , , ,

, 
Hydrogenation, –, –
Hydrogen bond, , , –, , , , ,

, , , , , , , –
–intermolecular interactions, 
–length, 
–weak, 

Hydrogen storage, 
Hydrogen-transfer, , –
-Hydroxybenzylidene-,-dimethylimidazoline

(HBDI), , , , 
HyperChem web page, 
Hyperfine coupling constants, , 
Hyperfine coupling tensors, ,

–
Hyperpolarizability, , –, , ,

–
Hypersurface deformation methods, 
Hypersurface deformation technique, 
Hypervirial relationship, 

I
Icosahedral, , , –
Icosahedran, , , 
i-DNA, , 
III-V semiconductors, 
II-VI semiconductors, 
Impact ionization, –
Implicit solvent, –, , 
InAs, 
Index of epitaxy, 
Individual gauge for localized orbitals (IGLO), 
Infrared, , , 
Infrared (IR) intensity, 
InP, , , 
In-solvent, 
Intensity-dependent refractive index (IDRI), 
Interaction, , , , , , , , ,

, , , 
–atom-atom, 
–Coulomb, , , , , 
–electrostatic, , , , , 

–energy, –, , , , , –, ,
, –, 

–intermolecular, , , , , 
–intramolecular, , –
–potentials, , , 
–resonance, 
–site, , 
–torsion, , 
–van der Waals, , , , 

Interaction energy components
–charge-transfer, –
–deformation energy, 
–dispersion, –
–electrostatic, , 
–exchange-repulsion, , , 
–induction, –
–van der Waals, 

Interaction-induced effects, 
π−π Interactions, 
Interatomic interactions, 
Intermolecular interactions, , , , , ,

, –, 
–dispersion interaction, 
–electrostatic, , 
–electrostatic interaction, 
–van der Waals, 

Internal conversion, , , , , , , ,
, , –, 

Intersystem crossing, , , , , ,
–, , 
–intramolecular interactions, 

Intramolecular
–charge transfer, 
–dispersion effects, 
–force, 
–H-bond, 
–hydrogen bond, 
–interaction, 
–vibrational relaxation, 

Intruder states, , 
Inverse coordination number, 
Ion channel, , 
Ionic bonding, 
Ionization energy, 
Ionization potential, , , , 
Ion mobility, 
IPR. See Isolated pentagon rule
Irreducible representation, , , ,

, 
IR spectrum

–combination bands, 
–,-dichloroethane, –
–FT-IR, , 
–hot bands, 
–intensity, , , 
–overtone bands, 
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–scaling, , , , –
–selection rule, 

Isodesmic, , , , 
Isogyric, 
Isolated pentagon rule (IPR), , –, , ,
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–distributed multipole expansion, 
Multipole moments, –, ,

, 
Multireference, 
Multireference approach, , 
Multireference CI (MRCI), 
Multi-reference methods, 
Multiscale methods, , 
Multiscale simulations, 
Multi target quantitative structure–activity

relationships (mt-QSARs), , –
Multi-walled carbon nanotubes (MWCNT), –,

, , 
Multi-walled nanotube, 
Murrell–Mottram potential, 
Mutation, , 
Mutation operator, 
MWCNT. See Multi-walle d carbon nanotubes
Myoglobin, , , , , , , ,

, 
Mystery of brain, 

N
Na clusters, , –
NAMD, , 
Nanobelt, , –, 
Nanobud, 
Nano-capsules, –
Nanocomposite, –

Nanocup, 
Nanoelectromechanical systems (NEMS), 
Nanohorn, 
Nanomechanics, 
Nano-onion, 
Nanoparticles, –, 
Nanoribbons, , , , , –, ,

, –
Nanoscience, , , , 
Nanotechnology, , , , , , 
Nanotori, 
Nanotube, , –, , 
Nanowire, , –, 
Natural orbitals, , 
Natural products, 
Nature of consciousness, 
Near-degeneracy, , 
NEMS. See Nanoelectromechanical systems
Neutron diffraction, 
Newton–Raphson method, –, , , ,

, 
–shift parameter, –

Ni clusters, –
NICS. See Nucleus independent chemical shift
Ni–Cu clusters, 
Nitromethane, 
NMR spectrum, , , , –, 

–anisotropy, , , , , –, ,
, 

–basis set, , , –, , , –,
–, , , , , , , ,
, 

–chemical shift, , , 
–contact contributions, , 
–diamagnetic contribution, , , , 
–diamagnetic spin-orbit, –, 
–Fermi-contact, , , , , , , 
–isotropy, , , , , , , , ,
, , , , , , , 

–non-adiabatic effects, 
–one-electron, , , 
–one-photon absorption, , –
–paramagnetic contribution, , , –
–paramagnetic spin-orbit, , 
–polarizability, , –, , –, ,
–, 

–spectrum shielding, constant, , –,
, , , , 

–spin-dipolar term, 
–spin-orbit approximation, 
–spin-orbit interaction, 
–spin-spin coupling constant, , –
–transition moment, , –, 

Noble gas clusters, 
NOE. See Nuclear Overhauser effect
Non-additive contribution, 



 Index

Non-adiabatic coupling, , 
Non-adiabatic effects, 

–reactions, , 
Nonbonded interactions, –
Non-collinear, , , 
Nondynamic, 
Nonmetallicity, 
Normalization, 
Normal mode, , , , , , ,

, 
Normal model, 
Normconserving pseudopotentials,

–
Nose-bath, 
Nose–Hoover barostat, –
Nose–Hoover thermostat, –,

, 
Nose–Hoover thermostat chain, 
Notation, , , , 
NP-hard problem, 
Nuclear coupling constant, , 
Nuclear magnetic, , , , , ,

–, 
Nuclear magnetic resonance (NMR), , , ,

, , 
–effective spin, , 

Nuclear magnetic resonance (NMR) spectroscopy,
, , , , , , , , ,
–, , 

Nuclear Overhauser effect (NOE), , ,
, 

Nuclear quadrupole moments, 
Nucleic acid, , , –, –, –,

–
Nucleic acid bases, , 
Nucleobase, –, , , –,

–
Nucleus independent chemical shift (NICS),

, 
Numerical integration, , , , ,

, 
NWCHEM, 

–features, –

O
Octupole, 
Oligomer, –
OMx, AM-D, PM-D, 
One-electron, , ,

, 
–approximation, , , , –
–basis set, , , , , , , , 
–effective potential, 
–operator, 
–wave function, , 

One-photon
–absorption, 
–probability, 
–transition, , 

ONIOM, , 
Open-shell system, , , –, 
Operator

–angular momentum, , , , 
–core-Hamiltonian, , 
–Coulomb, 
–diamagnetic magnetizability, , , 
–diamagnetic shielding, , 
–diamagnetic spin-orbit, –
–electric dipole, , , 
–electric field gradient, , –,
–, 

–electric quadrupole, , , 
–exchange, 
–Fermi contact, , , , 
–Fock, , , 
–Hamilton, , , 
–kinetic energy, , 
–linear momentum, , 
–magnetic dipole, , , , , –,
, , , 

–momentum, , –, 
–NMR effective spin, –, 
–optical rectification, , 
–paramagnetic spin-orbit, , 
–potential energy, 
–spin-dipole, , , , 
–spin-orbit interaction, 
–spin-Zeeman, , , , –

OPLS. See Optimized potentials for liquid
simulations

Opsin shift, 
Optical

–activity, , 
–basis set, –, , 
–dispersion, , , 
–electron correlation, , , , 
–flexible molecules, –, 
–properties, –, –
–rectification, , 
–rotation, –, 
–transitions, , , 

Optimization algorithms, 
Optimized potentials for liquid simulations (OPLS),

, , , 
π- Orbital axis vector (POAV), –

–analysis, 
–pyramidalization angle, 

π- Orbital misalignment, , , 
Orbitals

–active, , , 
–antibonding, , 



Index 

–atomic, , , , , , , , , –, ,
, , , , , , , , 

–bonding, 
–canonical, 
–delocalized, 
–energy, , , , , , 
–frozen, 
–Hartree–Fock, , , 
–HOMO, 
–hydrogen, , 
–inactive, 
–Kohn–Sham, , , , –, , 
–localized, 
–London, , –, , 
–lone-pair, , 
–LUMO, 
–MC-SCF, , 
–molecular, , , , , , , , , ,
, , , , , , , 

–nonbonding, 
–occupied, , , , , 
–orthonormality, 
–relaxation, 
–Rydberg, , , 
–secondary, 
–spin-orbital, , , , , , –, –, ,
, , 

–valence, , 
–virtual, , , , 

ORCA features, –
Organic crystals, –, 

–polarization in organic crystals, –
Origin dependence, , , , 
Oscillating, , 
Oscillator strength

–calculations, 
–Rydberg states, , 

Overlap
–integral, , , –
–matrix, , , 

Oxidation, 

P
Pairwise energy, , 
Parallel random tunneling, 
Parallel tempering, 
Paramagnetic contribution, , , –
Paramagnetic spin-orbit, , 
Paramagnetism, 
Parameters, –
Parametric Method  (PM), , , , , ,

, , , 
Parametric Method  (PM), , , 
Parametrization, 
Partition function, , , , 

Passivated nanowire, , 
Path integral MD, 
Pauli exclusion principle, 
Pauli principle, , , , , 
PBEPBE, 
PC. See Polycarbonate
PCM. See Polarizable continuum model
PCM-CC, reference state, 
PCM-HF equations, 
Peapod, 
Penrose–Hameroff model, 
Peptide bond, –
Perfluoroalkylation, , , , –
Performance, –
Periodic boundary condition, , , 
Persistence length, 
Perturbation, 

–dependent, , 
–expansion, , , 
–Møller–Plesset, –
–theory, , , , , , –, , –, ,
, , 
–auxiliary density, , –
–polarization expansion, , , 
–self-consistent, 
–series convergence, 
–supermolecular approach, , 

PES. See Potential energy surface
Phase problem, 
Phase space, 
Phase transition, 
Phenolic compounds, –
Phosphorescence, , 

–decay time, 
–radiative lifetime, , 

Phosphoryl transfer, , 
Photochemistry, , , , , 
Photodeactivation path, , ,

, 
Photodenitrogenation, , –
Photodissociation, , 
Photoelectron spectra, 
Photoelectron spectroscopy, 
Photoexcitation, –
Photoexcited states, 
Photoisomerization, , –
Photoluminescence (PL), , , ,

–, 
Photoreceptor, , , 
Photosensitizers, 
Photostability, –
Physisorption, 
Piano-stool complex, 
PL. See Photoluminescence
Plane-wave basis set, , 
Plane waves, , , , , , 



 Index

Plasticity, 
PM-D, 
PMMA. See Poly(methyl methacrylate)
Pockels effect, , –
Poisson–Boltzmann equation, , , 
Polarizability(ies), , , , , –, ,

–, , –, , , , , ,
, , , –, , 
–ADFT, 
–anisotropy, , , , , –, ,
, 

–basis set, , , –, , , –,
–, , , , , , , ,
, 

–calculations, , , , , , ,
–, , , , –, , , ,
–, , , , –

–Casimir–Polder formula, 
–DFT, , , , , , , , ,
, 

–electric dipole, , , –, ,
–, , –
–electric quadrupole, , , 
–magnetic dipole, , , , 

–electron correlation, , , , , ,
, , , , 

–expansion, 
–frequency-dependent, , , –, ,
, , –

–helium atom, 
–isotropic average, , 
–sodium clusters, 
–static, , , , , , , , , 

Polarizable continuum model (PCM), , , ,
, , , , –
–accuracy, , 
–EOM-CC, –
–equations, 
–excited state, 
–PCM-CC, 

Polarization functions, , 
Poly(methyl methacrylate) (PMMA), , ,

–
Polycarbonate (PC), , , –, –
Polymer, –, 
Poly-N-vinylcarbazole (PVK), , , –
Polypeptide, , –
Pople, 
Pople–Nesbet equations, 
Positive and negative dielectric constant, 
Post Hartree–Fock methods, , , , , ,

, , , , , 
Postprocessing, –
Potential

–empirical, 
–energy, , , , , , 

–energy surface, , , 
–function, , , , , , , 
–Lennard–Jones, , , 
–nonbonded, , 
–rotation, , , –, 

Potential energy surface (PES), , , , , ,
, –, , , , –, ,
, 
–local, , 
–minimum, –
–scan, 

Potential of mean force, 
PQS, web page, 
Pressure, , 
Prolateness parameter, , 
Propagator approach, , 
Property, , 

–optimized, 
Protein, , , , –, –

–conformation, 
Protein-DNA interactions, 
Protein folding, , –
Protein-protein interaction, –
Protonated formamide, –
Protonated Schiff base, , , –, 
Protonation, –
Pseudopotentials, , –
PSI, features, –
Psoralen, –, –, , –
Pt-bridge, 
Pt cross-link, 
PVK. See Poly-N-vinylcarbazole
Pyracylene, 
Pyramidalization, 

–angle, –, , , , , –
Pyrrole, –

Q
QCFF/PI, , , , , , , 
Q-Chem, 

–web page, 
qHTS, , 
QMC. See Quantum Monte Carlo
QM/MM method, –, , , , ,

, , –, , , ,
–, 

QM/QM’, 
QTAIM. See Quantum theory of atoms in molecules
Quadrature

–grid points, 
–weight, 

Quadruplex, , 
Quadrupole, 

–moment, , , 
–electric, , , , , 



Index 

–induced, 
–nuclear, , , , 

Quantitative structure-activity relationship (QSAR),
–

Quantum, –, , , , 
–annealing, 
–chemistry, , , , , , 
–confinement effect, , 

Quantum dots, , 
–nano-composite material, –

Quantum mechanical/Molecular mechanical
(QM/MM), , –

Quantum mechanics, , , , , , ,
–, –, 

Quantum Monte Carlo (QMC), 
Quantum potential models, 
Quantum theory of atoms in molecules (QTAIM),

–
Quantum yield, , , , 
Quasispherical, , 
Quasi static equilibrium, 

R
Radial breathing mode (RBM), 
Radial distance, –, , –
Radial distribution function, 
Raman

–depolarization ratio, 
–intensity, , , , , , –
–scattering, 

–anti-Stokes, 
–stokes, , , 

–selection rules, 
–spectrum

–band intensity, 
–,-dichloroethane, –

Random walk, 
Range-separated hybrid (RSH+MP), 
Rational functional optimization (RFO), , ,

, –, 
Rayleigh scattering, , 
Rb–Cs clusters, 
RBM. See Radial breathing mode
Reaction

–coordinate, , , , , , 
–Diels–Alder, –
–HCN ↔HNC, , , 
–path, , , 

Reactive bond-order potential, 
Reciprocal space, 
Recommendations, –
Rectification, , 
Reduction, 
Reference interaction site model (RISM), –
Refractive index, , , , , 

Relative energy, , , , , , , 
Relativistic effects, , , , , , ,

, 
Relativistic mass correction, 
Relaxation, , , , , , –, 
REMD. See Replica exchange molecular dynamics
Replica exchange method, 
Replica exchange molecular dynamics (REMD),

–, , 
Replica exchange umbrella sampling (REUS),

–, 
Resolution-of-the-identity (RI), , ,

–, 
Resonance, , –, , –, ,

, , , –, 
Response

–equations
–iterative procedure, 
–residual vector, 
–tolerance, , 

–function, 
–conjugation relations, , 
–cubic, , , , , , , 
–damped, , , 
–frequency-dependent, –, , 
–frequency(time)-independent, 
–Kleinman symmetry, 
–linear, –, –, , , , ,

, , , , , 
–permutation relations, , 
–poles, , , 
–properties, , , , , , , 
–quadratic, –, , , , , ,

, , , , , 
–residue, , , , , , ,

, 
–residues, , –, 
–static, , –, , 
–theory, –

–theory, –
–damped, , , 

Restraint, , , –, , , ,
, 

Retinal model, , –
Retinal protonated Schiff Base (RPSB), ,

, 
REUS. See Replica exchange umbrella sampling
R-factor, 
Rhodopsin, , –, , ,

, 
Ribosome, , , 
Rigid-body motion, 
Rigid-rotor model, 
Ring puckering, , 
RISM. See Reference interaction site model
RMBH, 
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RMS distance, 
RNA, –
Rotational

–effect, 
–fine structure, , 
–g-tensor, –
–rotatory strength, 

–two-photon, 
–spectrum, , , , 
–spin-rotation constants, 
–strength, , , , , , 
–translation, , , , 

Rotatory strength, , , 
Rugby ball, 
Rydberg state, 

S
SAPT. See Symmetry adapted perturbation theory
SASAWs. See Self attracting-self avoiding walk
Sawtooth-like GNR, , , , 
Sawtooth-like nanoribbon, , 
Scalar electrostatic potential, , 
Scaled quantum mechanical (SQM), ,

–, 
Scattering, , –, –, , 

–elastic, 
–inelastic, 
–Raman, 

–anti-Stokes, 
–stokes, 

–Rayleigh, 
SCC-DFTB, 
Schlegel diagram, , , 
Schrödinger equation, , , , , , , , ,

, , , , , , 
–time-dependent, , , , , , 

SCRF. See Self-consistent reaction field
SCS-MP, , , 
SCSN-MP, 
Second derivative, , –, , , ,

, 
Second harmonic generation, , , 
Second quantization, , , 
Secular problem, –
Selection rules, , 

–IR, 
–Raman, 
–symmetry, 

Self attracting-self avoiding walk (SASAWs), 
Self avoiding walk, –, , 
Self-consistent, 

–convergence, , , 
–field, , 

–convergence, 
–energy, , 

Self-consistent perturbation theory, 
Self-consistent reaction field (SCRF), , ,

, 
Self purification, 
Semi-Ab initio, 
Semi-classical methods, 
Semiconductor, , , , , , 

–clusters, –
Semiempirical methods, , , , , , ,

–, , , , , , , , ,
, , , , 

Sensors, , , 
Shape analysis, 
Shape resonance, , , , , ,

–, , , , –, 
Shielding, , –, , 
Shift parameter, –, , , 
Si, 
SiC. See Silicon carbide
Silicon carbide (SiC), –, –,

–
Silicon clusters, , –, , 
Similarity function, –
Simplification, , 
Simulated annealing, , , , ,

, 
Simulation, , , , , , , , ,

–
–Monte Carlo (MC), , , , ,
, 

Si nanowire, , , 
Single-centre technique, 
Single-point calculations, , 
Single-strand breaks (SSB), –, –,

, , , 
Singlet/triplet crossing, . See also Intersystem

crossing
Single-walled carbon nanotubes (SWNTs), ,

–, –, –, –, , –,
, , , –

Singly occupied molecular orbital (SOMO), ,
–, , –, 

Singular value decomposition (SVD), 
Skew pentagonal pyramid (SPP) motif, , 
Slater, –, , 

–determinant, , , , –, –, , ,
, 

–eigenvalue, 
–functions, , –, , , , , 
–rules, , , , 
–spin, , , –, , , , , 
–spin-orbital, , , , –

Slater determinant, , , 
Slater-type functions, , 
Small-gap materials, 
SMD. See Steered molecular dynamics
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Smoothing technique, 
SMx models, 
Sodium, , 

–cluster
–polarizability, 
–symmetry, 

Solute-solvent, –, 
–intermolecular interactions, , ,
, 

Solvation, –, , , –, ,
–
–effects, , , , 

Solvent-accessible surface, , , , 
Solvent effects

–accuracy, , , 
–Born formula, 
–cavity, –, , , 
–charging process, , 
–continuum models, –, 
–COSMO, , , , 
–C-PCM, 
–electron correlation, , 
–electrostatic contribution, , 
–excited state, , 
–free energy of solvation, , , 
–generalized Born model, 
–Hamiltonian, 
–Kirkwood model, 
–Langevin dipole model, 
–Marcus partition, 
–molecular dynamics, , 
–multipole expansion, 
–non-electrostatic contribution, 
–non-electrostatic terms, , 
–non-equilibrium, , 
–Onsager model, , 
–PCM, , , –
–Pekar partition, 
–PTD approach, 
–PTDE approach, 
–PTE approach, 
–QM/MM approach, , 
–reference state, 
–RISM, –
–shape, , 
–volume, , 

SOPPA, 
SOS-MP, 
Spartan, web page, 
Spatial distribution function, –
Spectral tuning, –
Spectroscopy, , , , 
Spherical cluster, 
Spin, , 

–contamination, , , 
–density, , 

–DFT, , , –
–dipolar term, 
–dipole operators, , , 
–isomer, 
–moment, 
–orbit/orbital, , , –, , 
–polarized, , , , , 
–states, , –
–transition, 

Spin-orbit approximation, 
Spin-orbit coupling, –
Spin-orbit interaction, , , , , ,

, 
–diamagnetic, –
–operator, , , –
–paramagnetic, 

Spin-spin coupling, 
Spintronic, , 
Spin–Zeeman contribution, , , , –
Spin–Zeeman operator, , 
Spiral algorithm, , 
Split-valence, 
Spontaneous magnetization, 
SQM. See Scaled quantum mechanical
Stability function, , , 
Stabilization energy, , , , ,

–, , , , 
Stacked bases, , 
Stacking interaction, –
π–π Stacking, , , –, 
Standard state, , 
State, , , , –, , , , , , –, ,

, , , –, 
Static properties, 
Stationary point, , , , , , ,

, 
Steepest descent, –, , 
Steered molecular dynamics (SMD), 
Steric strain, –, 
Stillinger–Weber potential, , –
Stone–Wales defect, , , 
Structural properties, , –
Structural stability, 
Structure, –, , , 

–factor, 
–optimization, 

Sugar-edge, 
Sumanene, 
Sum-over-states, –, , , , , 

–expansion, 
Supercapacitor, 
Supermolecular approach, , , 
Supermolecule, –
Superoxide anion, , , 
Surface hopping, , , , 
Surface reconstruction, , , 



 Index

Surface-to-volume ratio, , , 
Sutton–Chen potential, , 
SVD. See Singular value decomposition
SWNTs. See Single-walled carbon nanotubes
Symmetry, , , , , , , , , ,

, , , , , , , , , ,
, , –, 

Symmetry adapted perturbation theory (SAPT), ,
–, , , , , , 
–based on density functional theory
(SAPT(DFT)), –

T
Tautomers, , , , , , , ,

, 
Taylor series, 
TBMD. See Tight-binding molecular dynamics
TDDFT. See Time dependent density

functional theory
Temperature Replica Exchange Molecular Dynamics

(T-REMD), , , –
Tersoff potential, 
Tetrahedral, 
Tetraradical configuration, 
Theory, , , , , , , , ,

–, , , , , 
Thermal de Broglie wavelength, 
Thermodynamics, , , , , 
Thermostats, –, 
Thioguanine, , 
Third harmonic generation, 
THJ. See Triple hexagon junction
Thole-type model for water (TTM-F, TTM-F), 
Thomas–Reiche–Kuhn sum rule, 
Three-body contribution, 
Three-photon absorption, 
’-Thymidine mono-phosphate (’-dTMP),

–, –, –
Thymine (T), –, , , –,

–, , , , , , –,
, , , , , 

Ti clusters, , , 
Tight-binding approximation, 
Tight-binding Hamiltonian, , , 
Tight-binding molecular dynamics (TBMD), ,

–, , , , 
Time correlation function, , 
Time-dependent, , 
Time dependent density functional theory

(TD-DFT), , , , , –,
, 

Time-dependent Hartree–Fock (TDHF), , 
Time evolution, , 
Time scale, –
Timestep, –, , –

Topological descriptors, 
Topological ring defect, –
Torsion, –
Torsional interactions, 
TPSS, 
Trajectory surface hopping algorithm, 
Transferability, , 
Transient negative ions (TNI), , –,

–
Transition

–allowed, 
–amplitudes, , 
–forbidden, 
–metals, , 
–moment, , , , , –, 
–one-photon, 
–phosphorescence, 
–state, , , , , , , , 

–Diels-Alder reaction, 
–LST approach, 
–PES scan, 
–QST approach, 

–strength, 
–three-photon, , 
–two-photon, , , , 

Translation, center-of-mass, –, 
Transmission electron microscope (TEM), , ,

, , 
Transthyterin (TTR), 
T-REMD. See Temperature replica exchange

molecular dynamics
Triple

–BSSE, 
–CC, 

Triple hexagon junction (THJ), ,
, 

Triplet instability, 
Triplet-singlet transition, 
TTR. See Transthyterin
Turbomole, web page, 
Two-photon absorption, –

–cross section, 
Two state, 

U
Ultrafast process, , 
Ultrasoft pseudopotentials, 
Umbrella sampling, , , –
Unitary transformation, 
Unpassivated nanowire, , 
UNRES, 
Uracil (U), , , , –, –,

, 
UV absorption, , 
UV spectra, 



Index 

V
Vacancy, , , 

–defect, , , , 
Valence, 

–bond theory, 
–excitation, 

Valence-band hole, 
Valence bound, –, ,

, 
Vanderbilt pseudopotentials, 
van der Waals

–coefficient, 
–interaction, , 
–interactions, , , 

van der Waals density functional (vdW-DF), 
Variationality, , , , , 
Variational principle, –, , , 
VASP. See Vienna ab initio simulation package
VDOS. See Vibrational density of states
vdW-DF. See van der Waals density functional
Vector, , , , , , , , , , , 

–coupling coefficient, 
Velocity rescaling, 
Velocity Verlet algorithm, –, , 
Verdet constant, , 
Verlet algorithm, –, , , 
Vertical attachment energies (VAEs), ,

–, , , , , , 
Vibration, 

–analysis, , 
–anharmonicity, , 
–assigning bands, , , 
–centre of mass, –
–correction

–temperature-dependent, 
–zero-point, , , 

–excited state, 
–frequencies, , –
–frequency, , , , 

–scaling, 
–frequency weight derivative, , 
–fundamental frequency, 
–harmonic, , 
–linear molecule, 
–mode

–antisymmetric, 
–symmetric, , 

–normal mode, –, , , , , 
–scaling factor

–global, 
–SQM, 

Vibrational density of states (VDOS), , ,
–, 

Vibrational Feshbach resonances (VFR), , ,
, 

Vibration frequency, , , , 

Vibration-rotation spectra, 
Vienna ab initio simulation package (VASP),

, 
Virtual orbital energies (VOEs), , 
Virtual screening, , –, 
Visualization, , , , 
Visual molecular dynamics (VMD),

, 
VMD. See Visual molecular dynamics

W
Water

–model, , 
–molecule, , , 

Water cages
–pentagonal dodecahedron (HO), –
–tetrakai-decahedron (HO), –

Water clusters (HO)n
–n=, –
–n=, –
–n=, –
–n=, –
–n=, –
–n=, –
–n=, –
–n=, –
–n=, –
– ≤ n ≤ , –
–n=, , , , 
–n=, , , 
–n=, , , 
–n=, , , 
–n=, , , –

–interior & all-surface minima, , 
–vibrational spectra, –

–n= isomers, 
–vibrational spectra, –

Watson–Crick pair, , ,
–, 

Wave function, –, –, , ,
, , , , , , , , –,
–
–antisymmetry, , , , , , 
–many-particle, 
–multireference, 
–normalization, 
–nuclear, , 
–one-electron, 
–one-particle, , , , , 
–open-shell, 
–restricted, , 
–theory, , , 
–unrestricted, 

Wavepacket dynamics, 
Weight derivative, –



 Index

Weighted histogram analysis method
(WHAM), 

Weyl tableaux, 
WHAM. See Weighted histogram analysis method
Wigner, 

––j symbol, 
Worm like chain, , 

X
X-ray diffraction, , , , , , ,

, , 

Y
Young diagram, , , 
Young’s modulus, , , ,

–

Z
ZAPT. See Z-averaged perturbation theory
Z-averaged perturbation theory (ZAPT), 
Zeeman interaction, , , 

–rotational effect, 

ZEKE. See Zero electron kinetic energy
Zeolite, , –, –, , 
Z/E photoisomerization, , , . See also

cis/trans photoisomerization
Zerner’s modification of the intermediate neglect

of differential overlap approach (ZINDO), 
Zero electron kinetic energy (ZEKE), 
Zero-field splitting, , –

–basis, 
–contributions, –

Zero-point vibration energy,
, 

ZGNR. See Zigzag graphene nanoribbons
Zig-zag, , , , –, , , , ,

, , , 
Zigzag edge, , , , , , ,

, 
Zigzag graphene nanoribbons (ZGNR),

, , , , , , , , ,
, 

Zincblende lattice, 
ZINDO. See Zerner’s modification of the

intermediate neglect of differential overlap
approach

Z-matrix, , , , 
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