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Foreword: International Space Science Institute (ISSI)
Workshop on the Earth’s Hydrological Cycle

Lennart Bengtsson

Received: 6 November 2013 / Accepted: 7 November 2013 / Published online: 13 December 2013
� Springer Science+Business Media Dordrecht 2013

Water is a central component in the Earth’s system. It is indispensable for life on Earth in

its present form and influences virtually every aspect of our planet’s life support system.

On relatively short time scales, atmospheric water vapor interacts with the atmospheric

circulation and is crucial in forming the Earth’s climate zones that determine where

habitable areas can exist. On the longest time scales of hundreds of millions of years, water

contributes to the lubrication of the movements of the tectonic plates, creating a pattern of

change that has shaped and is continuing to shape the Earth.

In the atmosphere, water vapor plays a key role in the Earth’s energy balance and

regulates the Earth’s climate in a significant way. Water vapor is the most powerful of the

greenhouse gases and serves to enhance the tropospheric temperature because water vapor

is physically and dynamically controlled by atmospheric temperature and atmospheric

circulation. The total amount of available water on the Earth amounts to some

1.5 9 109 km3. The dominant part of this, 1.4 9 109 km3, resides in the oceans. About

29 9 106 km3 are locked up in the land ice on Greenland and Antarctica, and some

15 9 106 km3 are estimated to exist as groundwater. If all the ice over the land and all the

glaciers were to melt, as has happened several times in the Earth’s history, the sea level

would rise by some 80 m. In comparison, the total amount of water vapor in the atmo-

sphere is small; it amounts to *25 kg/m2, or the equivalent of 25 mm water for each

column of air. Yet atmospheric water vapor is crucial for the Earth’s energy balance.

The annual mean global values of evaporation and precipitation are *1,000 mm of

water/m2. However, these values vary enormously in space and time from areas that are

almost completely dry to areas where the annual precipitation is more than an order of

magnitude larger than the global mean value. An evaporation of 1,000 mm of water/year

corresponds to 80 W/m2 in energy loss for the surface and a corresponding gain for the
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atmosphere when condensation takes place. This is the single largest component for

heating the atmosphere; it is even larger than the direct solar energy absorbed by the

atmosphere. This statement highlights the importance of the hydrological cycle for the

energy balance the atmosphere.

As water vapor is also an effective absorber of terrestrial radiation, it contributes sig-

nificantly to the regulation of the temperature of the lower atmosphere. The greenhouse

effect of water vapor is estimated to be *24 �C. However, water vapor has a residence

time of 7–8 days in the atmosphere and responds effectively to temperature through the

Clausius–Clapeyron (CC) relation. In the present situation, it is the increase of the long-

lasting greenhouse gases, namely CO2, CH4, N2O and the CFCs, that are the drivers of

climate change while water vapor generally acts as a positive feedback factor (Lacis et al.

2013). This is a fundamental factor in climate change. Model simulations suggest that

water vapor feedback can more than double the initial effect of the long-lasting greenhouse

gases.

With a population that has increased more the fourfold over the last 100 years and with

an infrastructure that has grown by more than a factor of ten, society at large has become

more exposed, in particular, to extremes in precipitation with associated flooding damages.

Society has also over time significantly increased the amount of water that is needed,

primarily for agriculture as well as for different kinds of industrial usage. This has con-

tributed to a severe lack of water in exposed regions, even affecting major water bodies

such as the Aral Sea and Lake Chad that have almost dried up completely during the last

decades because of excessive extraction of water.

Other potential problems are disruptions related to climate change. The most severe

prospects are systematic changes in weather zones such as a tendency for a poleward shift

of the extra-tropical storm tracks that is indicated in climate simulation studies; others are

the likelihood of more intense precipitation that will increase severe flooding. The pole-

ward shift of weather systems is expected to create regional water problems with increased

precipitation in some areas and decreased precipitation in other regions. Most severe here

are the increasing risks of persistent periods of droughts, preferentially in the subtropics of

both hemispheres (IPCC 2013).

In summary, society will have to cope with a multitude of disruptive events related to

the water cycle due both to natural and anthropogenic effects such as (1) extreme events of

heavy and persistent precipitation as well as extended periods of drought, which are all

possible within the present climate, (2) anthropogenic actions unrelated to weather and

climate, such as large-scale environmental changes caused by changing practices in large-

scale agriculture and forestry, and (3) changes in the water cycle as a consequence of

climate change. Presently the first two are dominant but gradually, as the climate system is

getting warmer, the third factor is expected to be of increasing importance.

A scientific assessment of the Earth’s hydrological cycle is a complex task which covers

a multitude of areas and applications. The scientific papers in the present volume address a

broad area of research related to the Earth’s Hydrological Cycle. They represent the

outcome of the third workshop within the ISSI Earth’s Science Programme. The workshop

took place from 6 to 10 February, 2012, in Bern, Switzerland, with the objective of

providing an in-depth overview of the Earth’s hydrological cycle. The participants in the

workshop were experts in a wide range of disciplines; they included geophysicists,

meteorologists, hydrologists, oceanographers and climate modelers.

The increase in the world’s population and the increasing need for food, energy and

natural resources have put increasing stress on the water requirements.

Reprinted from the journal
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Perhaps the most extreme effect of such a water stress is the almost complete

destruction of the world’s previously fourth largest lake, the Aral Sea. This is one of the

planet’s worst environmental disasters. Over a period of some 40 years, the lake has lost

more than 90 % of its area. The most likely reason for this is the massive agricultural

developments that have used more and more of the water in the catchment areas of the

Amu Darya and Syr Darya (Asokan and Destouni 2014).

As the extreme opposite effect, excessive flooding in rivers and in coastal areas is

causing significant economic costs and hardship to their populations. Two kinds of events

stand out. The first is mostly coupled to excessive precipitation in river catchments. This

occurs over all continents during the rainy season, often with devastating consequences.

The main cause is not necessarily higher precipitation but enhanced exposure to heavy

precipitation mainly due to increased population and increased occupation in exposed

areas. The second most important cause is related to coastal flooding that occurs in relation

to intense weather systems, in particular tropical cyclones. The coastal flooding in New

Orleans in 2005 and in New York in 2012 are prime examples of such events. Fortunately

due to the advances made in weather prediction in recent decades, the public was warned

several days in advance and evacuated the areas most at risk.

There is overwhelming evidence from theory (Held and Soden 2006, Stevens and Bony

2013) and from empirical and model studies (e.g., Allan 2014) that the atmospheric water

vapor content increases with increasing temperature since it varies according to the CC

relation. It also follows from theory that the horizontal transport of water vapor also scales

with the CC. This is a serious consequence, as it will affect regional precipitation; in areas

of convergence (such as the tropical convergence zone and at high latitudes), there will be

increased precipitation. Alternatively, it will also affect areas of divergence (such as the

subtropical regions), with the consequence of reduced precipitation. This response of the

water cycle to climate warming is probably one of the most severe consequences of climate

change, as it will amplify the extremes of the hydrological cycle. So far, because of the

large variability of precipitation in time and space, we are not yet able to show this from

observations but model results demonstrate this response clearly (e.g., Bengtsson 2011).

Even ocean circulation is affected as heavy precipitation will reduce salinity and thus

diminish ocean convection. And, in an analogous way, reduced precipitation over ocean

areas will increase salinity and increase ocean convection. Observations from ESA’s Soil

Moisture and Ocean Salinity satellite (SMOS) are providing new and exciting knowledge

(Reul et al. 2014) in this area. There is a wide range of methodological studies, mainly

related to the handling of the water cycle in climate models due to the fine structure of

precipitation processes in the atmosphere that present climate models cannot handle very

well (Foufola-Giorgiou 2014). Both satellite and ground-based radar information are of

special importance here and highlight the need for higher resolution in weather and climate

models.
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Review of Understanding of Earth’s Hydrological Cycle:
Observations, Theory and Modelling

Michael Rast • Johnny Johannessen • Wolfram Mauser

Received: 20 January 2014 / Accepted: 22 January 2014 / Published online: 11 March 2014
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Abstract Water is our most precious and arguably most undervalued natural resource. It

is essential for life on our planet, for food production and economic development.

Moreover, water plays a fundamental role in shaping weather and climate. However, with

the growing global population, the planet’s water resources are constantly under threat

from overuse and pollution. In addition, the effects of a changing climate are thought to be

leading to an increased frequency of extreme weather causing floods, landslides and

drought. The need to understand and monitor our environment and its resources, including

advancing our knowledge of the hydrological cycle, has never been more important and

apparent. The best approach to do so on a global scale is from space. This paper provides

an overview of the major components of the hydrological cycle, the status of their

observations from space and related data products and models for hydrological variable

retrievals. It also lists the current and planned satellite missions contributing to advancing

our understanding of the hydrological cycle on a global scale. Further details of the

hydrological cycle are substantiated in several of the other papers in this Special Issue.

Keywords Earth observation � Satellite remote sensing � Water cycle �
Hydrological cycle

1 Introduction

The water cycle of the Earth system and its variability at global, regional and local scales

are influenced by a range of processes and mutual interactions, feedback mechanisms and
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as well as affected by anthropogenic processes. The scales at which processes interact both

spatially and temporally vary across the atmosphere, the hydrosphere, the cryosphere and the

biosphere in a complex manner. The hydrological cycle is composed of different compo-

nents, which include evaporation from water surfaces and bare soil, evapotranspiration from

vegetated land, transport of water vapour in the atmosphere, cloud droplet formation and

cloud dynamics, the mechanisms leading to liquid and solid precipitation, the movement of

water and change in soil moisture in the unsaturated soil, including root dynamics, surface

and river run-off, and groundwater flow as schematically illustrated in Fig. 1. Oki and Kanae

(2006) give an overview of current knowledge on the world water resources.

The hydrological cycle is the basic purification mechanism for water on Earth as any

water constituents are left behind during the phase change from liquid water to water

vapour. For billions of years, this process supplied the land surface with freshwater, which

was and is the basis for life. The precipitated water dissolved minerals on its way through

the hydrological compartments to the oceans and thereby gradually increased ocean

salinity. Reliable and adequate supply of clean freshwater is essential to the survival of

humankind as well as to the maintenance of terrestrial biotic systems worldwide. However,

the rapidly growing human population increasingly stresses available water resources

(Ferguson and Maxwell 2012). Human water demand consists of (1) drinking water, (2)

sanitation and (3) industrial water and agricultural water to produce biomass for food, fibre,

energy and industrial materials. On the global average, the ratio between these three

sources of human water demand is approximately 3:4:92 (Turner et al. 2004). Human-

induced stresses on available water resources therefore are mainly connected to biomass

production through agriculture. Human biomass demand as well as the closely linked

agricultural water demand is expected to double by 2050 in order to supply a growing and

more prosperous global population with food, fibre, energy and industrial materials (Al-

exandratos and Bruinsma 2012; Mauser 2009). At this point, it becomes clear that agri-

cultural activities modify the closely coupled global hydrological and carbon cycle through

land-use changes, optimization of rainwater use by plants, irrigation, emission of green-

house gases, changing seasonal albedo and changing plant physiology caused by fertilizers.

Fig. 1 Schematic illustration of the hydrological cycle (courtesy of European Space Agency, Earth
Observation Graphic Bureau)

492 Surv Geophys (2014) 35:491–513
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Importantly, the expected increase in human water demand and the related change in land

use seem to occur faster than any anticipated effect of a changing climate on the avail-

ability of freshwater (Piao et al. 2007). To comprehend the combined effect of (and

interactions between) increasing human stresses on water supplies, land use and climate

change, the understanding of the hydrological cycle needs to be advanced on all inter-

connected scales from local to global.

Many regional and local studies already exist on how climate change is expected to

impact the different compartments of the hydrological cycle and how societies may best

adapt to these changes by changing land use, water storage or even water use itself

(Ludwig et al. 2008; Christensen et al. 2004; Fowler et al. 2007; Ludwig et al. 2008; Prasch

et al. 2013). The majority of these hydrological cycle studies, with few exceptions (e.g.,

Strengers et al. 2010; Zabel and Mauser 2013), treat this issue as a unidirectional cause–

effect chain, where a changing climate influences the regional and local hydrological cycle

and thereby affects water availability. Possible effects of dynamic, human-induced land

surface changes on the carbon cycle and regional and global water cycle, which in turn

may result in a changing climate, are, however, neglected here.

All components of the hydrological cycle are involved in different ways in climate

change, either by causing it or by reacting to it, sometimes amplifying each other’s action,

sometimes giving rise to negative feedbacks such as atmospheric cooling through larger

Sun shielding cloud formations from increased evaporation. Variations in the hydrological

cycle often take place at regional or even local scale (such as orographic variations in

precipitation, small-scale variations of soil physical properties, ecosystem composition or

run-off processes), but can still trigger modifications that have an upscale effect possibly

leading to global changes in the hydrological cycle. The mechanisms and magnitudes of

the feedbacks of local interferences with the hydrological cycle with the regional and

global hydrological cycle are complex, largely unknown and cannot satisfactorily be

explored with current Earth system models. The feedbacks, e.g., between precipitation,

land use, soil moisture and the resulting evapotranspiration, are especially challenging and

exhibit strong intermittency and interactions at all scales, which makes them often hard to

model with contemporary Earth system models. The strong, small-scale and nonlinear

dependency of the participating processes on topography, soil physical properties and plant

physiology makes it also hard to estimate their magnitudes from sparse rain gauge, sparser

soil moisture and even sparser evapotranspiration measurement networks.

Nevertheless, there are important research issues waiting to be addressed, which are

related to the hydrological cycle and its relation both to the carbon cycle and the global

climate system. They centre on the feedbacks between the accumulated effects of

increasing local human interferences with the hydrological cycle through more intense

agricultural use and the global climate system. Most relevant and probably most difficult to

understand and model is a possible change in precipitation patterns, which results from

land use and evapotranspiration changes in one region and which affects the local and

regional hydrological cycle as well as the water availability elsewhere through telecon-

nections in the global circulation. The described mechanism may be of extreme relevance

to the affected region in cases when rainfall is reduced below a critical value, where

agriculture becomes impossible. Besides the global climate, a substantial part of the global

population may thereby indirectly be affected by collective land-use activities in another

part of the globe. Current understanding of the hydrological cycle, its components and the

feedbacks with the carbon cycle and the climate system is not sufficient to approach this

and similar research questions related to the multi-scale hydrological cycle. Currently

available Earth system models both lack spatial resolution to be able to accumulate the

Surv Geophys (2014) 35:491–513 493
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nonlinear effects of the local human interferences with the hydrological cycle through land-

use changes and do not contain a detailed and realistic representation especially of the

terrestrial hydrological cycle and the strongly nonlinear response mainly of its components

soil and vegetation during times of water shortage. These important research issues can

hardly be addressed by most present hydrological models, which are often conceptual in

nature, calibrated to measured data to various degrees and often data poor in design. This is

the underlying reason why several authors recently suggest developing new hyper-resolu-

tion hydrological land surface models, which can be fully coupled to regional and global

climate models to combine global with regional hydrology. These models should be based

on first-order principles, close the terrestrial energy, water and carbon balance at all scales,

should be able to overcome these scale issues by coupling the very small with the very large

processes and should be able to tap the rich global data archives available through remote

sensing (Hibbard et al. 2010; Wood et al. 2011; Mauser and Bach 2009; Su et al. 2010).

However, research on these multi-scale issues is currently also severely hampered by

the lack of observations of key variables with adequate resolution related to hydrological

cycle change in space and time. The measurement of precipitation, for instance, either by

ground stations, radars or satellites, is still a challenging task at all spatial and temporal

scales that could hamper efforts devoted to understanding and modelling the hydrological

cycle and its variability. Surface soil moisture is one of the least observed variables and

only recently, with the advent of ESA’s Soil Moisture and Ocean Salinity (SMOS) mission,

became accessible to global spatio-temporal measurements with a very coarse spatial but

almost adequate temporal resolution.

Vegetation response to water stress and its effect on water release to the atmosphere has

to be inferred from models, which simulate evapotranspiration and vegetation surface

temperature, which can then be compared to remote sensing measurements under cloud-

free conditions. Moreover, the terrestrial snow and ice masses are important components of

the global climate system. Snow and ice influence the radiation and surface energy budget,

the moisture balance, gas and particle fluxes, precipitation, hydrology, and atmospheric

and oceanic circulation. These processes are coupled with the global climate system

through complex feedbacks that are not yet well understood. Improved observational data

are therefore needed for a better understanding and accurate quantification of the main

cryospheric processes and the corresponding representation of the cryosphere in climate

models (Lemke et al. 2007).

Remote sensing offers the possibility of delivering the kind of data that allows

observing with adequate resolution how key variables related to hydrological cycle change

in space and time. Most remote sensing measurements indirectly observe the hydrological

cycle and can only be utilized to their full potential when assimilated into appropriate

hydrological models. Some recent hydrological model developments have taken up this

task (Mauser and Bach 2009) and have shown how to assimilate remote sensing data

streams into hydrological models (Bach 2003). Nevertheless, hydrological land surface

models face the challenge of a future data-rich environment. They have to learn how to

assimilate on all scales globally available, high spatial resolution, frequent coverage

remote sensing data, e.g., from the operational Sentinel satellites of the European Com-

mission - European Space Agency (EC-ESA) Copernicus program. This is expected to

generate the necessary knowledge to successfully approach issues of the local to global

hydrological cycle as outlined above. Critical elements to accomplish this are related to (1)

the quality of the observing system, jointly combining the ground-based network and the

Earth observation (EO); (2) removal of major knowledge gaps; and (3) development and

implementation of high-quality hydrological models with the ability to assimilate EO data.

494 Surv Geophys (2014) 35:491–513
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The usefulness of remote sensing for assessing products beneficial for hydrological

monitoring dates back to the 1970s, when the potential of the infrared geostationary data

for rainfall and vegetation monitoring was first demonstrated as an important technology

for complementing and enhancing information from in situ observational systems. Over the

last three decades, the amount of relevant hydrological products derived from satellites has

increased, and they have been implemented in derivation of the majority of the Global

Climate Observing System’s (GCOS) and the Global Terrestrial Observing System’s

(GTOS) terrestrial and atmospheric Essential Climate Variables (ECVs) (see Table 1).

These include, in accordance with GCOS recommendations, precipitation, water vapour,

cloud properties, soil moisture, leaf area index, water level and estimates of ground water,

evapotranspiration, river discharge, ocean salinity, snow cover, albedo, glaciers and ice

caps, ice sheets, permafrost extent and seasonally frozen ground (GCOS 2003).

Each of these variables shown in italics can currently be estimated with the use of at

least one Earth observation system although possibly not in all cases with the requisite

spatial and temporal resolution for advancing the understanding of local to global feed-

backs in the hydrological cycle. However, adequate validation of the satellite data is

challenging and often limited implying retrievals lacking satisfactory uncertainty esti-

mates. Commonly, several systems have capabilities to derive identical parameters, and

implementation techniques for their merging and blending were suggested. As a result,

new integrated, multi-year data sets are being generated, taking advantage of the oppor-

tunity presented by the simultaneous operation of key satellites by Europe, Japan and the

USA. For instance, the ESA Climate Change Initiative (CCI) aims to demonstrate the full

potential of the long-term global Earth Observation archives as a significant and timely

contribution to the GCOS Essential Climate Variables (ECVs) databases required by

UNFCCC (United Nations Framework for Combating Climate Change). In its first phase,

the initiative is targeting the following hydrology-related variables: sea level, sea ice,

glaciers and ice caps, ice sheets and clouds. The ongoing discussion on possible operations

Table 1 GCOS essential climate variables, variables directly related to the hydrological cycle are marked
in italics

Atmosphere

Surface Air temperature; precipitation
Air pressure;
Surface radiation budget;
Wind speed and direction; water vapour

Upper air Earth radiation budget;
Upper air temperature;
Water vapour;
Cloud properties; Wind speed and direction

Composition Carbon dioxide, methane and other greenhouse gases (GHGs);
Ozone; Aerosol properties

Ocean

Surface Sea-surface temperature, sea-surface salinity, sea level, sea state, sea ice, ocean colour;
Carbon dioxide partial pressure

Sub-surface Temperature, salinity; current; nutrients; carbon; ocean tracer; phytoplankton

Terrestrial Lake level; snow cover; glacier and ice caps; albedo; land-cover fraction of absorbed
photo-synthetically active radiation; Leaf Area Index (LAI) biomass, fire disturbance; soil
moisture

Water use, ground water, river discharge
Permafrost and seasonally frozen ground
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of convoys and constellations is also expected to strengthen the value and use of the

satellite data for understanding and monitoring of the hydrological cycle.

The state-of-the-art overview of currently available EO products for hydrological

monitoring and modelling is provided in the following. Importantly, it is not aimed for

listing methodologies on how to implement such products in models, as this have been

extensively summarized elsewhere (Van Dijk and Renzullo 2011), but it clearly empha-

sizes the multidisciplinary aspects and complexity that jointly with the wide range of

spatial and temporal scales establish a significant demand on the observing system. The

individual papers presented in this issue provide further quantitative evidence of the

capability and limitation of the observing system.

2 Clouds and Precipitation

Cloud and precipitation systems tend to be somewhat random in character, and they are

usually small scale and also evolve very rapidly, especially during the summer in con-

vection regimes. These factors make clouds and precipitation difficult to quantify. Reliable

ground-based precipitation measurements are difficult to obtain over regional and global

scales because more than 70 % of the Earth’s surface is covered by ocean and lakes, and

additionally many countries are not equipped with precise rain measuring sensors (i.e., rain

gauges and/or radars). In such regions, regional and global scale precipitation measure-

ments from Earth Observation satellite systems are extremely valuable.

Over its lifetime of more than 15 years, the Tropical Rain Monitoring Mission (TRMM)

satellite has provided a wealth of information on tropical cyclones and short-duration

climate shifts such as El Niño (Curtis et al. 2007) and has proved to be an essential tool for

the measurement of precipitation. Current operational and research platforms form a

constellation that can be used for the routine generation of precipitation with nominal 3-h

temporal and 0.25-degree spatial resolution. Estimates derived at full resolution (4 km) are

available up to instantaneously, albeit more sporadically. However, TRMM misses low-

rate precipitation, e.g., drizzle, which is expected to contribute significantly to the total

precipitation in regions with low rainfall amounts. The upcoming Global Precipitation

Measurement (GPM) mission [e.g., http://pmm.nasa.gov/GPM] is a network of satellites

and will provide solid and liquid precipitation, including light precipitation. Full vertical

profiles of clouds and light and solid precipitation are being observed by CloudSat [http://

cloudsat.atmos.colostate.edu/] and will be further improved by EarthCARE (see, e.g.,

http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_

Explorers/EarthCARE/ESA_s_cloud_aerosol_and_radiation_mission). EarthCARE will provide

extended vertical cloud profiles with significantly higher sensitivity compared to CloudSat and

added Doppler capability for observation of vertical motion within clouds. Solid precipitation

and light precipitation will be measured together with full cloud profiles, and heavy precipitation

will be detected. In contrast to TRMM and GPM radar satellites, CloudSat and EarthCARE

which travel on polar orbits provide full global coverage.

The usefulness of radar systems capable of measuring precipitation (e.g., TRMM

Precipitation Radar and CloudSat Cloud Profiling Radar) has been demonstrated (Lonfat

et al. 2004). They provide a unique and crucial addition to our observational capabilities

for precipitation. The retrieval of precipitation at higher latitudes remains an open chal-

lenge. Problems include contamination by the surface background and low-level, frozen

precipitation.
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In the tropical oceans, large vertical salinity gradients can develop in the upper few

metres of the ocean after heavy rainfall as evidenced by Soloviev and Lukas (1996);

Schlüssel et al. (1997); and Wijesekera et al. (1999). Signatures of these intense precipi-

tation regimes can be detected in the SMOS Sea-Surface Salinity (SSS) data in the form of

freshwater patches, as clearly shown by Reul et al. (2013).

3 Soil Moisture

Numerous soil moisture products are available from active experiments (ERS, ASCAT)

(Naeimi et al. 2009; Wagner et al. 1999; Loew et al. 2006), or from passive sensors (AMSR-E,

SMOS) (Kerr et al. 2010; Njoku et al. 2003; Loew et al. 2013) and will be available as well

from combined passive/active microwave remote sensors (e.g., the planned Soil Moisture

Active Passive (SMAP) mission). These operate at coarser ([25 km) resolutions and span

altogether more than three decades of data. Recently, a multi-decadal blended dataset was

developed that is expected to further enhance the understanding of the water balance in

hydrological models (Dorigo et al. 2012; Liu et al. 2011).

The application of coarse resolution soil moisture data in hydrological models is con-

troversial. There seems to be no obvious approach in river run-off studies that would

explain under which conditions an improvement could be achieved. Recently, however,

several studies demonstrated positive impact when Soil Water Index (SWI) was assimi-

lated (Brocca et al. 2010a, b; Matgen et al. 2011; Meier et al. 2011; Wagner et al. 1999).

SWI represents the profile of soil moisture in the root zone which is the hydrological most

important zone in terms of run-off generation (Parajka et al. 2006).

Semi-operational products are also available at medium-resolution scale ([1 km) (Pathe

et al. 2009). Nevertheless, assimilation of such data into models was restricted by poor

radiometric resolution and revisit period. A soil moisture product from Sentinel-1 has been

foreseen with coverage every 6 days globally, nearly daily over Europe and Canada

(depending on latitude) (Hornacek et al. 2012). With its remarkably improved radiometric

accuracy, it has the potential to be of great benefit for data assimilation, anomaly and

threshold detection as well as direct input into models operating at medium-resolution

scales (Doubková et al. 2012).

4 Evapotranspiration

Neither evapotranspiration (ET) nor any of its components can be directly sensed from

satellites, as heat fluxes do not absorb nor emit electromagnetic signals directly. None-

theless, the last three decades have seen substantial progress in the combined field of

evaporation and remote sensing. Current methodologies concentrate on the derivation of

ET by combining some of the satellite-observable physical variables that are linked to the

evaporation process. Some of the existing algorithms differ in their purpose of application,

which to a certain extent defines the type of remote sensing data used and the amount of

required ancillary data. The majority use some form of thermal and visible data, with only

a few applying microwave observations. Some of these methodologies are fully empirical,

and others are based on more physically based calculations of ET via formulations like the

ones of Penman (1948), Monteith (1965), and Priestley and Taylor (1972), or focus on

solving the surface energy balance targeting the accurate determination of the sensible heat

flux (H). Most of the early methods were designed for local-scale studies and agricultural
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and water management practices, while more recent methodologies have started to pursue

the coverage of the entire globe. A general review of these methodologies can be found in

Courault et al. (2005); Kalma et al. (2008); Wang and Dickinson (2012) and Su et al.

(2010). Notice also that other methodologies based on relatively complex land surface

models are also producing global ET estimates for climatological applications (Strengers

et al. 2010; Zabel and Mauser 2013). Currently, they use remote sensing-derived parameter

fields in a rudimentary way, usually as temporally irregular medium spatial resolution land

use, the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) or LAI fields

from the MODIS or MERIS instruments. With the advent of higher spatial resolution

imaging spectrometers like the German Environmental Mapping and Analysis Program

(EnMAP), the assimilation of higher accuracy and more physiological parameters like,

e.g., chlorophyll content from remote sensing sources will potentially improve vegetation

parameterization (Rodriguez et al. 2011).

In the framework of the Global Energy and Water Cycle Experiment (GEWEX) Data

Assimilation Panel (GDAP) LandFlux-Eval initiative, the first satellite-based ET products

(reported as latent heat fluxes) and these other estimates have been inter-compared

(Jiménez et al. 2011; Mueller et al. 2013). As a contribution to LandFlux, the ESA

WACMOS-ET (WAter Cycle Multi-mission Observation Strategy-EvapoTranspiration)

project aims at advancing the improvement and characterization of ET estimates from

satellite observations, both at continental and regional scales. To this end, a cross-com-

parison, error assessment and validation exercise of a selection of state-of-art algorithms

will be undertaken at different spatial domains and resolutions (Mueller et al. 2013).

Over the ocean, changes in the evaporation can be indirectly inferred from observed

changes in sea-surface salinity derived from SMOS and Aquarius in areas of strong pre-

cipitation. Further details on this are found in Reul et al. (2013).

5 Ground Water Observations

An emerging application area is the use of the GRACE satellite mission, and its gravi-

metric measurements of mass changes, which are being used to quantify changes in

groundwater storages (Rodell and Famiglietti 2002) as well as melting of ice sheets and

glaciers. Plans are currently being formulated for GRACE Follow On and GRACE-II

missions, and it is expected that this area of research will continue to expand. The multiple

applications of GRACE data were summarized by Cazenave and Chen (2010).

6 Water Extent and Levels

Optical (MERIS, MODIS and AVHRR), active (ERS and Envisat) as well as passive

(SSM/I) microwave data were employed to estimate the extent of water bodies, floods and

volumes (Prigent et al. 2007), and the first global estimate of wetland extent and dynamics

over almost a decade was presented. Importantly, it was the combination of several

observation techniques and capitalizing on the strength of each of them that allowed

extracting the most from inundation characteristics.

Several semi-operational products exist at local to regional scales (*100 m–5 km)

mostly derived from synthetic aperture radar (SAR) sensors (ESA 2013). SAR sensors

demonstrated a great potential for the monitoring of open water bodies at medium-reso-

lution scale (Bartsch et al. 2007). Nevertheless, there is no operational product providing
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water body extent. In addition, the potential of monitoring inland water levels by using

radar altimeters mainly from ERS and Envisat became apparent to the extent that river and

lake heights have been produced on a global scale (ESA 2013).

Given the high revisit period, the Sentinel-1 sensor, which is planned to be launched

towards the end of 2014, holds a great potential for high-resolution water extent mapping

(http://www.esa.int/Our_Activities/Observing_the_Earth/GMES/Sentinel-1).

As for the oceans, areas of interest including the use of optical wavelengths to assess

ocean colour, i.e., phyto-plankton and other water borne materials (e.g., MERIS, MODIS,

SeaWIFS), and the exploration of radar altimetry to measure water levels in lakes and

rivers are aimed to be continued into the future. Regarding the latter, our knowledge of the

global dynamics of terrestrial surface waters and their interactions with coastal oceans in

estuaries is expected to significantly advance with the planned launch of the joint NASA–

CNES–CSA Surface Water Topography Mission (SWOT) in 2020 (http://swot.jpl.nasa.

gov/). By measuring water storage changes in all wetlands, lakes and reservoirs and

making it possible to estimate discharge in rivers more accurately, SWOT will contribute

to a fundamental understanding of the terrestrial branch of the global water cycle. SWOT

will also map wetlands and non-channelized flow.

7 Vegetation Stage

Optical vegetation indices and land-cover classifications, as well as passive and active

microwave derived estimates of vegetation water content, biomass and vegetation structure

can be used to initialize hydrological models. There seems to be a good understanding and

variety of independent algorithms that estimate vegetation stage by using data acquired in

optical, near-infrared and thermal-infrared spectrum or derived products such as fPAR or

LAI. Also, a variety of land-cover classification approaches have been employed in land

surface models that implement Normalized Difference Vegetation Index (NDVI) data from

AVHRR or SPOT/Vegetation. (DeFries 2008) gives an excellent review of the current

status and role of remote sensing on observing the terrestrial vegetation.

Synthetic data experiments undertaken with simulated Sentinel-2 data showed a

reduction in the uncertainty in Leaf Area Index (LAI) (Richter et al. 2012; Bach et al.

2012). Severe improvements are expected also in the land-cover classification in the future.

A variety of products is also derived from passive and active microwave observations that

include estimates of vegetation water content, biomass, or vegetation height and structure.

The latter can be used to estimate variables such as emissivity, canopy conductance and

vegetation roughness, which affect the partitioning of radiation into ET and other terms (Van

Dijk and Renzullo 2011). Further potentials for greater use of satellite microwave obser-

vations include parameterization of biomass, height or aerodynamic roughness. The possi-

bility to observe forest biomass has been proposed by the new Earth Explorer Mission

Biomass that uses P-band synthetic aperture polarimetric radar (ESA 2012).

Lastly, to gain a detailed knowledge about the observed medium and to improve

understanding of upcoming high-resolution Sentinel and potential Biomass mission, a

combination of airborne and terrestrial LiDAR observations is investigated (ESA 2012).

8 Water Vapour

A large variety of space-borne sensors are used to retrieve atmospheric profiles of humidity

or the water vapour column amount (microwave, infrared, optical, UV). SSM/I total
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column water vapour over ocean is mature for climate analysis. In addition, MERIS

observations have shown over time a significant potential for high spatial resolution total

column water vapour over land during daytime in clear sky, e.g., ESA DUE (Data User

Element) GlobVapour.

UV/VIS instruments provide independent means for total column water vapour retri-

evals, but these measurements are biased towards clear sky. Upper tropospheric humidity

(UTH) data sets provide a data source with high value for climate research.

Microwave sounding data sets from AMSU-B, MHS and SSM/T2 hold a great potential

to improve our knowledge on UTH—also allowing estimates of absolute humidity. The

availability of atmospheric temperature and humidity profiles for more than 30 years has

been identified as a critical issue (see, e.g., WMO, 2012 [http://www.wmo.int/pages/prog/

www/OSY/Meetings/Wshop-Impact-NWP-5/index.html).

9 Snow

Snow plays an important role in the regional and global hydrological system, since it acts as

temporary water storage. As a cause of large land surface albedo changes and because it is

highly variable both in time and space, dedicated measurements/monitoring systems are

needed. Satellite products have advantage over point-based measurements of the snow-related

parameters, especially due to their spatial coverage. The mass of seasonal snow (the snow

water equivalent, SWE) accumulated on land surfaces and the extent of the snow-covered area

are the principal variables in hydrology and for water resources applications (Rott 2013). They

are also essential for determining and modelling surface/atmosphere exchange of mass and

energy, and therefore of great importance for numerical weather prediction. Satellite-based

snow sensing techniques use visible/infrared (optical), active microwave (SAR) and passive

microwave sensing techniques (Frei et al. 2012; Botteron et al. 2013).

Operational snow cover products are commonly related to the fractional snow cover

(percentages of the coverage) and snow albedo. They are derived from operational geo-

stationary and numerous polar-orbiting satellite sensors, e.g., AVHRR, MODIS and VIIRS.

The use of active microwave (SAR) on ENVISAT and RADARSAT enables the detection

of wet snow, indicating melting processes. This information can be integrated in regional

hydrological monitoring activities (Bach et al. 2010). Imaging microwave radiometry

(SSM/I, AMSR-E) allows the global snow mass to be mapped every day or two at a spatial

resolution of about 25 km. SWE retrieval exploits the scattering losses in the (dry) snow

pack of the microwave radiation emitted by the soil below snow. The accuracy of SWE

retrieval is impaired by uncertainty in snow morphology (grain size, stratification).

Satellite scatterometer measurements at Ku-band are also sensitive to morphology of the

snow volume (Nghiem and Tsai 2001), suggesting that the active microwave measure-

ments support the characterization of snow scattering properties and thus improve the

retrieval of SWE by means of microwave radiometry. The Ku-band scatterometer aboard

flying with the second generation MetOp satellite is also used to measure ice sheet snow

accumulation, for the measurement of land snow mass at medium/low spatial resolutions

and for the characterization of the soil freeze/thaw cycle.

In order to account for improve remote sensing capabilities to measure snow parameters, the

validation with ground-based measurements and regional optimized algorithms to account for

variable landscape and physical properties effects are still a scientific challenge (IGOS 2007). It

is expected that the Sentinels will be beneficial due to their increased temporal coverage,

accessibility and ability to monitor snow cover and snow melting process.
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10 Permafrost

In the Northern Hemisphere, permafrost regions extend over about 23 million km2 (Zhang

et al. 2001).

Permafrost is currently monitored mainly by means of ground-based point measure-

ments. Remote sensing systems are used as complementary tools, to map surface features

of permafrost terrain and monitor their changes driven by climate warming. Surface

indicators of permafrost terrains that can be identified by remote sensing images include

pingos, thaw lakes and basins, retrogressive thaw slumps, thermo-erosional valleys, ther-

mokarst mounds, ice wedge polygons, beaded drainage, palsa fields, slope failures, and

rock glaciers (IGOS 2007). Precise topographical data are required for accurate geocoding

of the remote sensing imagery (optical and SAR) so that changes in permafrost features can

be tracked accurately. High resolution Digital Elevation Models (DEMs) are also required

for modelling hydrology, permafrost distribution, erosion and matter fluxes resulting from

permafrost degradation (McNamara et al. 1999). DEMs derived from current satellite

systems (e.g., ASTER DEM) are lacking the accuracy needed for these tasks.

11 Glaciers and Ice Caps

Precise data on surface topography of mountain glaciers, ice caps and outlet glaciers of ice

sheets are needed as basic information for ice dynamic models, mass balance models, and

regional hydrological and climate models. Vertical accuracy on the order of 5 m is

acceptable for most of these applications, except for some special ice dynamic models. The

requirements in vertical accuracy are more stringent for measuring changes in surface

topography to infer glacier mass balance through annual (goal) or multi-annual volume

changes. The typical requirement in vertical accuracy for this application is B1 m (elevation

change). There is still high uncertainty in the mass balance of the world’s glaciers and ice

caps (Lemke et al. 2007). This is due to the fact that accurate mass balance measurements

are made only on few glaciers worldwide (Dyurgerov et al. 2005). The representativeness of

this small sample is rather questionable, as there is a strong bias towards small glaciers that

are easily accessible. Extrapolating from these glaciers to global numbers causes large

uncertainty. To overcome this deficit requires spatially detailed, precise repeat measure-

ments of temporal changes in glacier surface topography for a large sample of the glaciers

worldwide. For calving glaciers, these measurements need to be complemented by estimates

of the calving flux to obtain the mass balance. In this context, radar altimetry and SAR

interferometry are providing highly important observations. The sustainability of these

observations is also promising in view of the Sentinel-1 and Sentinel-3 missions. The

limiting factor for use of SAR interferometry is the temporal variability of the radar signals

due to snow fall, drift and melting (Rott and Siegel 1997) as well as due to signal de-

correlation in zones of strong sea ice deformation such as along glacier margins.

12 Ice Sheet

Radar altimetry (ERS-RA, Envisat-RA), IceSat-1 and CryoSat 2 have been the main

sensors for precise measurements of surface topography on the ice sheets for estimating

volume changes. Because the accumulation rate on the main accumulation zones of the ice

sheets is rather small, the requirements in vertical accuracy of the repeat measurements are
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rather high (B10 cm/year minimum, B5 cm/year goal). Uncertainty of radar signal pen-

etration in firn and temporal trends in firn properties are reasons for differences in surface

elevation measured by radar and lidar (Brenner et al. 2007). Further uncertainties in

computing mass changes of the ice sheets result from variability of firn layer thickness,

caused by regional variability of accumulation and temperature (Helsen et al. 2008). These

are reasons for the rather large error bars in the mass balance estimates for Antarctica and

Greenland in the IPCC report (Lemke et al. 2007). Significant reduction in the uncertainty

can be expected by applying different altimetric systems in synergy.

A combination of SAR interferometry and satellite altimetry strengthens the retrieval

method and reduces the uncertainties that in turn allows for more detailed studies of

topographical and mass changes as well as surface velocity and associated deformation as

reported by Rignot et al. (1998) and Shepherd and Wingham (2002) showing that

dynamically related thinning is penetrating deep into the interior of the West Antarctic, Pine

Island and Thwaites drainage basins. The temporal variability and corresponding signal

decorrelation time are again a limiting factor regarding appropriate use of interferometry.

CryoSat (Wingman et al. 2006) is a separate mission developed mainly for measuring

ice sheet elevation and sea ice thickness and their changes. By accurately measuring

thickness change in both types of ice, CryoSat-2 will provide information to complete the

picture and lead to a better understanding of the role ice plays in the Earth system.

The planned Sentinel-1 mission is expected to offer unique operational and scientific

capacity due to its increase revisit period. Also, by a synergistic use of Sentinel-1 and the

other space-borne SAR missions, often operating at different wavelengths and modes,

certain ice types can be easily identified.

13 Sea Ice

Microwave satellite observations are routinely providing essential data on large-scale ice

concentration, area, type and large-scale motion. Moreover, measurement of the vertical

dimension of sea ice (ridges, freeboard, thickness, snow thickness) and thermodynamic

properties (temperature, heat flux) is possible by use of altimeters (e.g., IceSAT, CryoSat 2

for sea ice thickness[0.5 m) and infrared/microwave radiometers (e.g., SMOS for sea ice

thickness\0.5 m), although at varying degree of maturity with respect to retrieval accura-

cies. Many small-scale processes and phenomena related to sea ice deformation and marginal

ice zone thermodynamics can also be observed by high-resolution SAR (coupled with

optical/infrared images under cloud-free conditions), but there are no systematic and long-

term observations because the data coverage is insufficient. Snow depth and snow water

equivalent are also important variables in the presence of sea ice that need to be retrieved

more reliably from satellites. Data on snow depth can be obtained from satellite sensors such

as by combined use of IceSAT and CryoSat, and from optical (snow cover) and passive

microwave data (snow depth), or higher frequency (Ka band) SAR data, but the methods are

not adequately validated and need to be further carefully examined and improved.

14 Sea Level

Sea levels are rising in several places around the world potentially impacting human

populations (e.g., those living in coastal regions and on islands) and the natural environ-

ment (e.g., marine ecosystems). Global average sea level rose at an average rate of around
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1.7 mm per year in the twentieth century and at a satellite-measured average rate of about

3.2 mm per year from 1993 to 2009 (Meyssignac and Cazenave 2012), but no acceleration

has been noted in the period 1993–2013. It is unclear whether the increased rate reflects an

increase in the underlying long-term trend. Two main factors contribute to the observed sea-

level rise, notably thermal expansion from general warming of the ocean and enhanced

freshwater run-off from land-based ice due to increased melting. As such, long-term

observations of the global mean and spatial sea-level change jointly with mass changes of

the ice sheets and glaciers become of paramount importance for monitoring of the hydro-

logical cycles and constraining of the water budget between the glaciers and the ocean.

15 Sea-surface Salinity

A total of 86 % of the total global evaporation and 78 % of the precipitation occur over the

ocean (Schmitt 1995). As such, the ocean surface salinities have proven to be a much more

reliable indicator of the water cycle than many of the land-based measurements. Salinity,

moreover, is a fundamental ocean state variable and a major determinant, along with Sea-

Surface Temperature (SST), of the density of seawater; hence it is a crucial factor in ocean

circulation, which in turn has a major impact on climate (Schmitt 2008). Salinity vari-

ability at the sea surface also modulates or is modulated by heat, momentum and CO2

exchange between the ocean and atmosphere. Salinity is an important constraint in ocean

models and an indicator of freshwater capping. Sea-surface salinity (SSS) is correlated

with differences between precipitation and evaporation (P–E), and improved knowledge of

P–E would provide a better estimation of latent heat flux and improve characterization of

stratification of the near-surface ocean layer. Besides, SSS variability is also related to the

freezing and melting of sea ice and to freshwater river run-off. A better understanding of

all these phenomena will be fostered by the recent availability of synoptic measurements of

SSS thanks to the ESA SMOS (Font 2010) and NASA/CONAE Aquarius (Le Vine et al.

2010) satellites. Concurrently with the continuous improvements in the accuracy and

reliability of these data, a routine monitoring of Sea Surface Salinity (SSS) is becoming

possible for the first time thus allowing a quantitative characterization of the above-

mentioned processes and their mutual relationships in the context of the hydrological

cycle.

16 Freshwater Discharge for Large Mid-Latitude and Tropical Rivers

Occurrences of low salinity surface patches in tropical regions are closely related to the

presence of the estuaries of the world’s largest rivers in terms of fresh-water discharge

(Amazon, Congo, Orinoco, Niger) and the subsequent spreading of freshwater by the sur-

face oceanic circulation. The largest tropical river discharge regions have been studied using

satellite altimetry, SST and ocean colour, but each technique has limits in these fresh pool

regions, since salinity is the main controller of surface density in those areas. Now the

satellite sea surface salinity (SSS) missions bring the unique capability to directly detect and

track freshwater spatial gradients and lateral advection across the tropical oceans. The

spatial extent of the buoyant plumes of freshwater that form in the tropical seas due to

discharges from these world largest rivers can thus be temporally traced by SMOS/Aquarius

imagery with an unprecedented resolution (Reul et al. 2013) In particular, river-influenced
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low salinity waters behave as excellent tracers of the local oceanic circulation and can be a

very interesting proxy of subsurface properties (stratification, ocean heat content).

17 Conclusions and Observational Needs for the Future

Since the first experiments performed on assimilating data products derived from EO data

into hydrological modelling for practical purposes of water resources management in the

early 1980s (Ramamoorthi 1983), there seemed to be a prolonged pause. It is only now,

more than 30 years later, that there are signs that application into operational hydrological

models progresses rapidly (Van Dijk and Renzullo 2011). This is due to the fact that

remote sensing data availability for the complex and interdisciplinary task of hydrology

has long remained subcritical to capture the key multidisciplinary variables and their

mutual interactions and feedback. EO data availability is now, especially with the prospect

of the high-frequency global coverage with high-resolution satellite data, such as the ones

from the Sentinels, approaching a point where monitoring of the hydrological variability in

the context of a balanced Earth system approach is gradually becoming feasible (see

Table 2). Also, hydrological models of operational character and spanning longer time

intervals are increasingly becoming available. These models are optimized more and more

for the use and assimilation of EO products.

Nevertheless, still today, the main shortcomings in many cases are that derived

hydrological indices from so-called black-box models or conceptual models are not based

on physical principles and relationships. These black-box models have to be calibrated to

unknown and unconsidered circumstances in local and regional watersheds. Because of

calibration with historical data, they more or less lack predictive power. This makes their

use for any kind of long-range forecast difficult and for the necessary formulation of a

global hydrology impossible. In addition, the climate system is governed by the global

water and energy cycle, which is constituted of many interdependent and complex pro-

cesses, interactions and mutual feedbacks in the atmosphere, hydrosphere, cryosphere and

biosphere. Only a sound understanding of these processes will allow a quantitative and

accurate determination of hydrological variables from satellites. The new wealth of data

relevant for hydrological land surface processes studies, which originates from remote

sensing sources in turn allows us to abandon conceptual model approaches and further

develop hydrological models, which are based on first-order principles in the representa-

tion of hydrological land surface processes both in the physical and physiological domain.

The understanding of the complex hydrology of the Earth and its linkage with the

carbon cycle and the atmosphere will drive our ability to realistically model the local,

regional and global water cycle with high predictive skill and to thereby further reduce

uncertainties in climate and Earth system models. Besides the general need for better and

longer-term global data coverage at higher temporal and spatial resolutions to constrain

model projections, observational needs and areas of continuing difficulties to obtain

consistent observations and measurements include

• Improved observations of precipitation as the basic driver both for numerical weather

prediction and hydrological land surface models to quantify global and regional trends,

• Increased and continuous precipitation observations over the oceans,

• Improved satellite-based global measurements of land surface parameters and their

assimilation into dedicated high spatial resolution hydrological land surface models to

better quantify stream flow, soil moisture and evapotranspiration and the carbon cycle,
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• Enhanced ground water monitoring from satellite gravity observations,

• Enhanced monitoring of water quality, not only in coastal zones, but also over inland

water bodies and large rivers,

• Improved inputs from higher resolution space data for land snow- and ice inventories as

important water storage and frozen soil/permafrost monitoring,

• Inventories of data needed to do broad assessments of socio-economic trends of water

use (e.g., agricultural water demands),

• Improved assessment of the insights offered by the recent satellite monitoring of sea-

surface salinity regarding the oceanic branch of the hydrological cycle,

• Improved quantitative observation of river discharge,

• Enhanced monitoring of the surface albedo (from changes in snow, cover, sea ice

extent) and its influence on evaporation, cloud formation and precipitation.

The new generation of operational satellites is expected through their increased cov-

erage and temporal repeat observation capability to augment data availability and as such

further our understanding of the hydrological cycle, also helping to move towards a

quantitative closure of the water budget. Here, increased international collaboration and the

use of observations from many satellites and/or satellite constellations will constitute

important assets.
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Abstract The state of knowledge and outstanding challenges and opportunities in global

water cycle observations, research and modeling are briefly reviewed to set the stage for

the reasons behind the new thrusts promoted by the World Climate Research Programme

(WCRP) as Grand Challenges to be addressed on a 5- to 10-year time frame. Those focused

on water are led by the GEWEX (Global Energy and Water Exchanges) project. A number

of GEWEX science questions are being brought forward within GEWEX and the WCRP

under guidance of the Joint Scientific Committee. Here, we describe what are some

imperatives and opportunities for major advancements in observations, understanding,

modeling and product development for water resources and climate that will enable a wide

range of climate services and inform decisions on water resources management and

practices.

Keywords Global water cycle � Hydrological Cycle � WCRP � Precipitation � GEWEX �
Water resources � Climate Change � Climate extremes

1 Introduction

Driven mainly by solar heating, water is evaporated from ocean and land surfaces,

transported by winds, and condensed to form clouds and precipitation which falls to land

and oceans. Precipitation over land may be stored temporarily as snow or soil moisture,

while excess rainfall runs off and either forms streams and rivers, which discharge the

freshwater into the oceans, or infiltrates into the soil and percolates to depths to re-charge

the underground aquifers thereby completing the global water cycle (Trenberth et al.

2007a; Fig. 1). Associated with this water cycle, energy, salt within the oceans, and

nutrients and minerals over land are all transported and redistributed within the Earth
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climate system. Moreover, water is vital for human existence and is irreplaceable. It is

more than a natural resource that we exploit and often take for granted. Water plays a

crucial role in Earth’s climate, functioning of ecosystems and environment.

Many studies on the global water cycle deal with only specific aspects (see the review

by Trenberth et al. 2007a and other chapters in this monograph). Reliable data on the

surface water budget are often available only over certain regions. Relatively few studies

(e.g., Trenberth et al. 2007a, 2011; Oki and Kanae 2006) have attempted to provide a

synthesized, quantitative view of the global water cycle, and our quantitative knowledge of

the various components, and their variability of the global water cycle is still fairly limited

because of a lack of reliable data for surface evapotranspiration, oceanic precipitation,

terrestrial runoff and several other fields. Regional closure of the water cycle over many

large river basins has been attempted by Vinukollu et al. (2011) and Sahoo et al. (2011)

using satellite data but, unless adjusted, they do not adequately close the water budget, and

the imbalances highlight the outstanding observational and modeling limitations.

Satellite-based observations provide global coverage but may lack continuous coverage

in time and generally require some kind of algorithm to produce a geophysical product that

inevitably has limitations, so the result must be verified against other independent mea-

surements such as in situ observations. However, as the number of analyzed fields grows

with ever increasing satellite data products, it is vital for these to be properly evaluated and

documented for their strengths and weaknesses along with quantifying their uncertainties.

Some of the satellite-based observations limitations may be overcome with in situ

observations because they measure directly the quantity desired, but it is likely a spot
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measurement and its representativeness and calibration may not be sufficient to capture the

spatial characteristics, unless a sufficiently large number of such measurements are

obtained. Building and maintaining such large measurement networks have been chal-

lenging, especially over the developing regions of the world where such measurements are

needed most. Blended or hybrid satellite and in situ products are also growing in number

and attempt to capitalize on the strengths of each. Some are produced in a model frame-

work and may involve data assimilation. Nevertheless, with multiple products synthesized

in the framework of the overall water cycle, it is possible to make use of physical con-

straints inherent in a closed water budget, and physical models to help refine all compo-

nents that are not well observed, by taking their uncertainty into account.

2 The WCRP

The World Climate Research Programme (WCRP) mission is to facilitate analysis and

prediction of Earth system variability and change for use in an increasing range of practical

applications of direct relevance, benefit and value to society. The two overarching

objectives of the WCRP are

(1) to determine the predictability of climate and

(2) to determine the effect of human activities on climate.

Progress in understanding climate system variability and change makes it possible to

address its predictability and to use this predictive knowledge in developing adaptation and

mitigation strategies. Such strategies assist the global communities in responding to the

impacts of climate variability and change on major social and economic sectors including

food security, energy and transport, environment, health and water resources (Asrar et al.

2012a). The main foci of WCRP research are

• Observing changes in the components of the Earth system (atmosphere, oceans, land

and cryosphere) and in the interfaces among these components;

• Improving our knowledge and understanding of global and regional climate variability

and change and of the mechanisms responsible for this change;

• Assessing and attributing significant trends in global and regional climates;

• Developing and improving numerical models that are capable of simulating and

assessing the climate system for a wide range of space and time scales;

• Investigating the sensitivity of the climate system to natural and human-induced

forcing and estimating the changes resulting from specific disturbing influences.

The WCRP is sponsored by the World Meteorological Organization (WMO), the

International Council for Science (ICSU) and the Intergovernmental Oceanographic

Commission (IOC) of the United Nations Educational, Scientific and Cultural Organization

(UNESCO).

The World Climate Research Programme (WCRP) is organized as a network of core

and co-sponsored projects, working groups and cross-cutting initiatives. The current core

projects of WCRP are

• Climate and Cryosphere (CliC): The principal goal of CliC is to assess and quantify the

impacts of climatic variability and change on components of the cryosphere and their

consequences for the climate system and to determine the stability of the global

cryosphere.
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• Climate Variability and Predictability (CLIVAR): CLIVAR’s mission is to observe,

simulate and predict the Earth’s climate system with a focus on ocean–atmosphere

interactions in order to better understand climate variability, predictability and change.

• Global Energy and Water EXchanges (GEWEX): GEWEX was previously known as

the Global Energy and Water cycle Experiment but has recently been renamed although

with the same acronym. It focuses on the atmospheric, terrestrial, radiative,

hydrological and coupled processes and interactions that determine the global and

regional hydrological cycle, radiation and energy transitions and their involvement in

global changes such as increases in greenhouse gases.

• Stratospheric Processes And their Role in Climate (SPARC): SPARC has as its

principal focus research on the significant role played by stratospheric processes in the

Earth’s climate, with a particular emphasis on the interaction between chemistry and

climate.

There are also several working groups or councils on modeling and data that coordinate

climate observations, modeling and prediction activities across the entire WCRP. The

coordination of research among the physical, biogeochemical, socio-economic dimension

of global change research has been achieved through Earth System Science Partnership

(ESSP) which is being succeeded by a new initiative entitled ‘‘Future Earth: research for

global sustainability’’ http://www.icsu.org/future-earth.

The Joint Scientific Committee of the WCRP is considering several scientific Grand

Challenges that emerged from the consultation with the global scientific community at a

recent WCRP Open Science Conference to be the major foci for the WCRP activities

during the next decade (Asrar et al. 2012b). They include:

• Provision of skillful future climate information on regional scales

• Regional Sea-Level Rise

• Cryosphere response to climate change

• Improved understanding of the interactions of clouds, aerosols, precipitation, and

radiation and their contributions to climate sensitivity

• Past and future changes in water availability

• Science underpinning the prediction and attribution of extreme events.

Although global water cycle is affected by and affects all of these, we focus only on the

last two challenges that involve water and the hydrological cycle for this monograph.

3 The Global Water Budget and Hydrological Cycle

As the climate changes partly from human activities, the water cycle is also changing

(Trenberth 2011). Moreover, demand for water continues to increase owing to growing

population, enhanced agricultural and industrial development, and other human activities

such as transformation of landscape and construction of dams and reservoirs, so that very

little of the land surface remains in a natural state. This affects the disposition of water

when it hits the ground: how much runs off, and how much finds its way to rivers or

infiltrates into the soil and percolates to depths to replenish the underground water

reservoirs.

The adverse impact of such activities is not confined to quantity and distribution of

water, but also increasingly affects water quality. Water is used in various ways: such as

through irrigation or by consumption in other human activities; reservoirs and artificial
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lakes are used to store water, while dams and other structures are used to control water

flows in rivers. Water is heated and cooled and, as a strong solvent, it is polluted in many

areas.

Many physical scientists have tended to ignore the latter aspects and deal mainly with

the climate system either in its ‘‘natural’’ state or as changed by human activities by mainly

accounting for increased greenhouse gases and changing atmospheric particulates (IPCC

2007). Even in this somewhat simplified framework, it has been challenging to simulate the

hydrological cycle. For example, global reanalyses of most existing observations have

substantial shortcomings in representing the hydrological cycle (Trenberth et al. 2011).

Such shortcomings arise because, while observations are assimilated to ensure a realistic

representation of atmosphere and some Earth surface processes, the analysis increment

ensures that water is not conserved and sources of moisture for precipitation may come

from the increment and not evapotranspiration. Models generally have a lifetime of water

in the atmosphere that is too short, and this affects their ability to transport water vapor

onto land while they tend to recycle moisture locally more than observed.

The main impacts of a warmer climate on global water cycle include the following:

• With warming, higher atmospheric temperatures increase the water holding capacity of

the atmosphere by about 7 % per degree Celsius (e.g., Trenberth et al. 2003).

• Over the ocean where there is ample water supply, the relative humidity remains about

the same and hence the observed moisture goes up at about this rate: an increase in total

column water vapor of about 4 % since the 1970s (Trenberth et al. 2007b).

• Over land the response depends on the moisture supply.

• With more heat in the Earth system, the evaporation is enhanced resulting in more

precipitation. The rate of increase is estimated to be about 2 % per degree Celsius

warming (Trenberth 2011).

• Locally this means increased potential evapotranspiration, and in dry areas this means

drying and more intense and longer lasting droughts.

• Larger warming over land versus the ocean further changes monsoons.

• Precipitation occurs mainly from convergence of atmospheric moisture into the

weather system producing the precipitation, and hence increased water vapor leads to

more intense rains and snow, and potentially to more intense storms.

• More precipitation occurs as rain rather than snow.

• However, higher temperatures in winter over continents favor higher snowfalls.

• Snow pack melts quicker and sooner, leading to less snow pack in the spring.

• These conditions lead to earlier runoff and changes in peak streamflow. Hence, there is

a risk of more extremes, such as floods and droughts.

The pattern of observed changes, so far, indicates wetter conditions in higher latitudes

across Eurasia, east of the Rockies in North America, and in Argentina, but drier conditions

across much of the tropics and subtropics (IPCC 2007; Dai et al. 2009, 2011; Trenberth

2011), and this pattern is referred to as ‘‘The rich get rich and the poor get poorer’’

syndrome (the wet areas get wetter while the arid areas get drier). This pattern is projected

to continue into the future (IPCC 2007), including an increase in probability of the water-

related extremes (IPCC 2012).

Over land there is a strong negative correlation between precipitation and temperature

throughout the tropics and over continents in summer, but a positive correlation in the

extratropics in winter (Trenberth and Shea 2005). The latter arises from the baroclinic

storms that advect warm moist air ahead of and into the storm, combined with the ability of

warmer air to hold much more moisture. The former arises from the nature of the
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atmospheric circulation interactions with land. In cyclonic conditions, increased cloud and

rain provide more soil moisture and thus partitions the decreased surface energy more into

latent energy (higher evaporation) instead of sensible heat (lower temperatures). Anticy-

clonic conditions favor sunshine (more available energy), less rain and soil moisture, and

the larger surface energy raises temperatures instead of evaporating moisture. The result is

more likely either hot and dry or cool and wet conditions, but not the other options.

On global land, there is large variability in precipitation from year to year and decade to

decade associated especially with the El Niño-Southern Oscillation (ENSO) but there has

been an increase overall in land precipitation (Fig. 2). The two wettest years are 2010 and

2011. In particular, major flooding in Pakistan, Australia, and Colombia was associated

with record high sea surface temperatures (SSTs) in the second half of 2010 into 2011

(Trenberth 2012) and led to a dramatic drop in sea level of about 5 mm (Fig. 3). The

prospects for more intense precipitation but longer dry spells lead to the increased risk of

flooding and drought, which pose major challenges for the society at large and those who

have to manage water resources for food, fiber and energy production, and human con-

sumption and leisure. We therefore view observing, understanding, modeling and pre-

dicting the global water cycle as a grand science challenge.

4 Grand Challenges

A Grand Challenge should inspire the community to want to be involved; it needs to be

specific and focused while identifying barriers and ways to advance the science, and it

must capture the imaginations of funding agencies, science program managers and the

public. It should also provide a vehicle to encourage the different WCRP panels to interact

in pursuing a common goal. It must provide a way forward that is tractable, perhaps via

new observations (e.g., from satellites), computer and model advancements, and ideas. It

must matter, as shown by answers to questions on possible benefits to society by providing

Fig. 2 Annual mean anomalies in global land precipitation from 1900 to 2011 in mm; from NOAA.
http://www.ncdc.noaa.gov/sotc/global/2011/13
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the science-based information to address impacts of climate variability and change to food,

water, health, energy, biodiversity and so on.

The GEWEX Science Steering Group (SSG) has identified four GEWEX Science

Questions (GSQs). These emerged from in depth discussions and subsequent circulation to

all GEWEX Panel members for commentary. They were then posted on the GEWEX web
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site for open commentary. They have also been presented to the WCRP Joint Scientific

Committee for comment, and the outcome is what we present here. Three of these GSQs

deal with water and two of them are combined into a more general water resource Grand

Challenge for WCRP that also encompass scientific activities coordinated by the CliC,

CLIVAR and SPARC projects. This is outlined in Sect. 4.1 along with a number of more

specific questions. The third GSQ is part of a WCRP-wide theme of extremes, and those

extremes related to water are discussed in Sect. 4.2. The other GSQ relates to energy and

processes.

4.1 Grand Challenge on Water Resources

How can we better understand and predict precipitation variability and changes, and how

do changes in land surface and hydrology influence past and future changes in water

availability and security?

These questions focus on the exploitation of improved data sets of precipitation, soil

moisture, evapotranspiration, and related variables such as water storage and sea surface

salinity expected in the next 5 to 10 years. These will allow us to help close the water

budget over land and provide improved information for products related to water avail-

ability and quality for decision makers and for initializing climate predictions from seasons

to years in advance. The improvements will come from ongoing and planned satellite

missions (see below) as well as greater use of in situ observations; their evaluation and

analysis to document means, variability, patterns, extremes and probability density func-

tions; their use to confront models in new ways and to improve our understanding of

atmospheric and land surface processes that in turn improve simulations of precipitation;

and new techniques of data assimilation and forecasts that can lead to improved predictions

of the hydrological cycle across scales, from catchments to regions to the entire globe,

including hydrogeological aspects of ground water recharge. In particular, attention is

needed on the use of realistic land surface complexity with all anthropogenic effects taken

into account, instead of a fictitious natural environment. This encompasses all aspects of

global change, including water management, land-use and land-cover change, and

urbanization. The ecosystem response to climate variability and responsive vegetation to

such changes must be included, as must cryospheric changes such as dynamics of per-

mafrost, thawing and changes in mountain glaciers. The focus on these scientific questions

should lead to improved understanding and prediction of precipitation and water vari-

ability, enhance the evaluation of the vulnerability of water systems, especially to

extremes, which are vital for considerations of water security and can be used to increase

resilience through good management and governance.

The 21st century poses formidable challenges for the sustainable management of water

resources at all levels, from the local, regional to the global scale. Water is a basic

requirement for life, and effective water management is needed to provide some of soci-

ety’s most basic needs. However, demand for water resources is increasing, due to pop-

ulation growth and economic development, while water resources are under pressure

globally from over-abstraction and pollution. This is increasingly leading to competition

for water, at local, regional and international levels. Environmental change is adding

additional pressures. Consequently, there are growing issues of vulnerability and acces-

sibility to water, both of which are highly relevant for society. Anthropogenic influences

are changing land and water systems, redefining the state of drainage basins and the rivers

and groundwater aquifers that supply the bulk of renewable freshwater to society. Wide-

spread land-use changes, associated with population increases, urbanization, agricultural
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intensification and industrialization are changing hydrological systems in complex ways,

and on many of the world’s major rivers, water management is changing flows, often with

severe effects on downstream users, aquatic ecosystems and freshwater discharges to the

world’s seas and oceans. Superposed on these pressures, expected climate change and

climate variability can combine to create extreme and perhaps unprecedented conditions

which have high impact consequences for human populations, economic assets and critical

physical infrastructure. This unique combination of pressures has exposed weaknesses in

current water governance and management. It has increased the awareness of uncertainties,

the complexity of the systems to be managed, and the need for profound changes in policy

and management paradigms, as well as governance systems.

The World Climate Research Programme (WCRP) has a unique role to play in

developing the new scientific understanding and modeling and prediction tools needed for

a new era of global water management. WCRP mainly through GEWEX, and based on

significant contributions from CLIVAR and CliC projects, is well poised to motivate a new

generation of land surface and global hydrological models, building on recent develop-

ments in Earth observations, that represent the dynamics of major managed water systems.

The modeling activities have an equally important role in motivating a new generation of

weather-resolving climate models that are capable of simulating and potentially predicting

the basic modes of variability, whether arising from sea surface temperature and ocean,

land surface moisture, sea ice or other sources that are known to drive global precipitation

variability and extremes on seasonal to decadal time scales. Such prediction systems are

increasingly necessary to address regional impacts of climate change.

The vast majority of water comes from precipitation—either directly or indirectly

through runoff from distant locations. From a climate perspective, it is therefore an

imperative to understand the natural variability of precipitation in the system, as well as its

susceptibility to change from external forcings. Within GEWEX, the Global Precipitation

Climatology Project (GPCP) (Huffman et al. 2009) has been a focus of improving esti-

mates of precipitation. Because of its inherently intermittent nature, it is a major challenge

to determine precipitation amounts reliably with a few instantaneous observations of rates

such as from available satellites. Improved observations and analysis products related to

precipitation and the entire hydrological cycle and their use in evaluating and improving

weather, climate and hydrological models are important and tractable over the next 5 to

10 years.

The specific questions that will be addressed over the next 5–10 years include:

• How well can precipitation be described by various observing systems, and what basic

measurement deficiencies and model assumptions determine the uncertainty estimates at

various space and time scales? Despite the significant improvements in many observing

systems during the past two decades, the uncertainty in precipitation estimates lies not

only in the measurement error itself, but in the space/time interpolation of a naturally

discontinuous and intermittent field and/or in the assumptions needed to convert a

physical measurement from remote sensing into a precipitation amount. Critical water

source regions often reside in complex terrain where sampling issues, remote sensing

artifacts and limitations are compounded. The errors are not static but instead depend on

the nature of the precipitation itself. Focusing on the large-scale environment

responsible for the precipitation therefore holds hope to build not only better rainfall

products, but characterizing the uncertainties in a verifiable manner as well. Regional

hydroclimate projects provide detailed understanding that translate the large-scale

information into usable information for decision makers.
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• How do changes in climate affect the characteristics —(distribution, amount, intensity,

frequency, duration, type) of precipitation with particular emphasis on extremes of

droughts and floods? Increased temperatures and associated increases in lower

tropospheric water vapor, by making more water vapor available to storms, will very

likely increase the intensity of rains and snows, increasing risk of severe floods.

Changes in seasonality, shifts in monsoons, changes in snow-melt and runoff, and so on

are also part of this question which is elaborated on in the ‘‘extremes’’ science question.

• How do models become better and how much confidence do we have in global and

regional climate predictions of precipitation? A challenge to the Earth System science

community is to develop improved global models. Scientists are beginning to run

global climate models at sub-10-km resolution, resolving meso-scale weather including

the most extreme tropical storms. These need to be coupled to the ocean and land and

will require a new generation of parameterizations that better reflect what processes are

and are not resolved in such models. These models can potentially revolutionize our

ability to correct long-standing model biases, minimize the need for downscaling and

provide predictions of regional impacts and changes in extremes from months to

decades ahead. There is great need to quantify the uncertainty in precipitation

projections and predictions, especially at regional scales. Starting with improved

uncertainties in the climate observations of precipitation, new and improved

diagnostics must be developed to test the robustness of model predictions in different

regimes. Knowing the uncertainties is critical if predictions of the mean precipitation

and its distribution are to be used in local planning efforts.

• How do changes in the land surface and hydrology influence past and future changes in

water availability and security? While the land surface has small heat capacity and heat

moves slowly via conduction, the water flow and storage vary enormously. Land has a

wide variety of features, topography, vegetation cover and soil types and consists of a

mixture of natural and managed systems. Land plays a vital role in carbon and water

cycles, and ecosystems functions and services. Of particular need of attention is use of

realistic land surface complexity in hydrological models with all anthropogenic effects

included instead of a fictitious natural environment. This includes all aspects of global

change including water management, land-use and land-cover change and urbanization,

and their feedbacks to the climate system. There is a need to address terrestrial water

storage changes and close the water budget over land through exploitation of new

datasets, data assimilation, improved physical and biogeochemical understanding and

modeling skill across scales, from catchments to regional to global with links to the

entire hydrological cycle.

• How do changes in climate affect terrestrial ecosystems, hydrological processes, water

resources and water quality, especially water temperature? The ecosystem response to

climate variability and responsive vegetation must be included but is mostly neglected

in today’s climate models. Cryospheric changes such as permafrost thawing, changes in

the extent, duration and depth of seasonal snowpacks, and changes in mountain glaciers

must also be included. How changes in vegetation affect the hydrological cycle and

climate in turn are vital. Feedbacks, tipping points and extremes are of particular

concern to all economic sectors and regions, globally. The scientific knowledge of

water cycle should enhance the evaluation of the vulnerability of water systems,

especially to extremes, which is vital for considerations of water and food security and

can be used to increase their resilience through good management practices and

governance.
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• How can new observations lead to improvements in water management? Over the last

few decades, in situ observations of land surface hydrological variables, such as

streamflow, rainfall and snow have generally been in decline. Regional estimation of

evapotranspiration remains a significant challenge. At the same time, new observation

methods, such as weather radars, flux towers and satellite sensors have led to different

types of measurements, and challenges for their incorporation in the hydrological

models used for hydrological prediction and water management. One example is soil

moisture, which in most models essentially acts as a buffer between the land forcings

(mostly precipitation and evapotranspiration) and runoff, and whose characteristics are

defined by the internal model parameterizations that control runoff production.

Sustained measurements of soil moisture are critically important to understanding,

modeling and prediction of the water cycle.

• How can better climate models contribute to improvements in water management?

Regional precipitation predictions remain a challenge at all timescales from seasonal

forecasting out to centennial climate change. However, there are limited regions with

forecast skill on seasonal timescales, associated mainly with ENSO, and broad scale,

zonally averaged precipitation changes associated with climate change appear to be

detectable. The challenge now is to maximize the skill and reliability of predictions of

regional rainfall changes on all timescales, for all regions around the world. This

requires better understanding and model simulation of the tele-connections and drivers

of regional climate such as changes in the oceans and cryosphere that are relevant to

regional precipitation. Subsequent improved climate prediction systems and better

dissemination of climate prediction information must be developed to deliver the

envisioned information and their ultimate benefit to society.

Prospects for advancements are excellent on this Grand Challenge because of new

observations already underway and those planned for the ensuing decades and the growing

interest in climate predictions on all timescales. Key areas of development include

1. A new Global Precipitation Mission as detailed at http://pmm.nasa.gov/GPM.

‘‘Through improved measurements of precipitation globally, the GPM mission will

help to advance our understanding of Earth’s water and energy cycle, improve

forecasting of extreme events that cause natural hazards and disasters, and extend

current capabilities in using accurate and timely information of precipitation to

directly benefit society.’’ The joint US National Aeronautics and Space Adminis-

tration (NASA)/Japan Aerospace Exploration Agency (JAXA) mission’s Core

Observatory is scheduled for launch in 2014. Most of the world’s major space

agencies will participate in this mission through the contribution of constellation

satellites to obtain the desired revisit times to roughly 3 h, over the entire Earth.

2. Closely related missions such CloudSat (a NASA mission with components from the

Canadian Space Agency to measure clouds and light precipitation) and EarthCARE,

a European Space Agency (ESA) mission (http://www.esa.int/esaLP/SEM75

KTWLUG_LPearthcare_0.html) to advance our understanding of the role that

clouds and aerosols play in the climate system), due for launch late 2015, that will

make important contributions to the global precipitation estimates.

3. New satellite sensors such as soil moisture and ocean salinity (SMOS) (an ESA

mission to map soil moisture and sea surface salinity), Aquarius (a NASA/Space

Agency of Argentina mission to improve sea surface salinity) and future soil

moisture active passive (SMAP) data (a NASA mission dedicated to measuring soil
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moisture and the freeze/thaw cycle), produce or will produce estimates of near-

surface soil moisture that can be used to diagnose or update model estimates, and

Gravity Recovery and Climate Experiment (GRACE) (a joint NASA/German

Aerospace Center (DLR) mission to map gravity anomalies and thus detect changes

in water storage), now provides a nearly decade-long record of total water storage,

albeit at coarse spatial resolutions. The GRACE follow on mission is intended to

enhance the spatial resolution of such measurements and provide continuity of

measurements over the future decade. The planned surface water and ocean

topography (SWOT) mission will provide observations of lake and reservoir surface

area and levels, from which changes in storage of over 7,000 km3 of the estimated

8,000 km3 of reservoir storage globally will be available at 1–2-week intervals. In

addition, in situ observations from buoys to Argo floats will help close the water and

energy budgets over the oceans.

4. A dedicated snow hydrology mission such as ESA’s Cold Regions Hydrology High-

Resolution Observatory (CoReH2O) will enable better understanding of the role

snow hydrology plays in the regional/global water cycle, especially in mountainous

regions of the globe that depend mainly on snow as a source of fresh water for human

consumption, food production and industrial activities (e.g., California, Tibetan

Plateau, La Plata Basin, etc.).

5. Improvements in communication and data exchange policies help create higher

resolution global surface maps of precipitation and soil moisture based upon both

local very dense networks of high-resolution measurements as well as surface radar

networks where these are available. Significant gains are expected from high-

resolution gridded products being developed by GEWEX and other projects based on

in situ data as well as inventories of long-term in situ precipitation time series

focused on engagement of these data into validation, error estimation and

intercomparison efforts. The use of improved error statistics to develop new

blending algorithms and fusion techniques capable of bringing together precipitation

measurements with distinct error characteristics (e.g., gauges, radar, satellites and

models) into a consistent physical framework. Advances in data assimilation

techniques allow more precipitation information to be incorporated into Numerical

Weather Prediction models.

6. Estimates of fluxes of moisture from surface are improving through the use of flux

tower and other observations over land, feeding into improved estimates of

evapotranspiration as part of the GEWEX Landflux and ocean flux projects.

7. The production of an Integrated Water and Energy product by the GEWEX data and

assessments panel (GDAP) can be used to explore linkages between hydrology and

energy variables in the Earth System which in turn provides a much improved basis for

evaluating models on all aspects of the water cycle. Advanced diagnostic methods that

use the observed variables and their co-variability are used to diagnose not only problems

in the model output, but also assess model processes and potential improvements to these

processes in order to better represent the observed climate behavior.

8. Incorporate more realistic land surface hydrology into land surface models, including

water management, land management and land-use and land-cover change, as well as

improved process representation (including cryospheric processes). The envisioned

new information is expected to be revolutionary in terms of the management of trans-

boundary rivers, but current climate models have no mechanisms for use of this

information, since most do not represent the effects of water management.
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9. New methods must be developed to address water system vulnerability, particularly

to extremes. Quantification of the uncertainty in each of the elements of the global

water-balance, including the managed aspects, in a consistent manner is required.

Further, there is a need to communicate uncertainties, manage expectations, address

the needs of water management under uncertainty (e.g., building resilience).

10. Several other developments in modeling are progressing and advances appear likely.

These include development of improved precipitation downscaling methods,

particularly for mountainous and arid regions; evaluation of the hydrological

dynamics of land surface models with newly available data; prediction of stream

temperature as a diagnostic tool in land surface models; improving freshwater fluxes

to the world’s seas and oceans; and including the known climate feedbacks in off-line

land surface change assessments. Water demand models and assessments to land

surface and hydrological models must be linked at the global scale.

11. Demonstration of the usefulness of GEWEX, and Global Climate Observing System

(GCOS) and WCRP coordinated data products is required along with new tools and

provision of derived information for water resources management. The new tools

include cross-scale modeling, ensemble hydrological prediction, data assimilation,

and data analysis and visualization.

There are multiple benefits, and the results are critically important for society. In

addition to greatly improved knowledge about land water resources and ocean salinity, and

the causes of their variations, much improved models will allow better predictions of the

variability and change on all time scales from seasonal to centennial and from global to

continental to basin scales. Predictions with quantified uncertainties provide invaluable

information for water managers and users, including decision makers at many levels

associated with food and water security. These developments would naturally serve to push

WCRP research and development priorities, as users provide feedback on weaknesses and

further needs for information.

The information provided also feeds into the development of a ‘‘Global Drought

Information System’’. Such a system would provide a user anywhere in the world access to

information on our current understanding of drought in that region (e.g., role of ENSO,

Pacific Decadal Oscillation, global warming, etc.), the history of drought in that region

(with access to various data, time series, indices, etc.), current conditions (monitoring

results), the results of near real-time attribution (our understanding of the current condi-

tions) and regularly updated forecasts from months to years in advance (with consistent

estimates of uncertainties).

The system would naturally build on the various investments being made in observa-

tions (including reanalysis), drought research, and modeling and forecasting capabilities

(e.g., the various national and international multi-model ensemble (MME) efforts such as

the WMO lead center for long range forecasts: http://www.wmolc.org). The system would

be built hand-in-hand with the user community and would have to be sustainable and

refreshable as new datasets, better understanding and better modeling capabilities become

available. It would naturally serve to push WCRP research and development priorities, as

users provide feedback on weaknesses and further needs (analogous to how the weather

community is continuously being pushed for better weather forecasts). These are the

envisioned products and information to be provided by the network of organizations and

centers through Global Framework for Climate Services (GFCS) and Future Earth (WMO

2011; Asrar et al. 2012a).
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4.2 Grand Challenge on Water Extremes

How does a warming world affect climate extremes, especially droughts, floods and heat

waves, and how do land area processes, in particular, contribute?

A warming world is expected to alter the occurrence and magnitude of extremes such as

droughts, heavy rainfalls and floods, as well as the geographic distribution of rain and snow.

Such changes are related to an acceleration of the hydrological cycle and circulation changes

and include the direct impact of warmer conditions on atmospheric water vapor amounts,

rainfall intensity and snow-to-rain occurrence. How well are models able to handle extremes

and how can we improve their capability? New improved and updated data sets at high

frequency (e.g., hourly) are needed to properly characterize many of these facets of Earth’s

climate and to allow for assessment against comparable model data sets. New research

activities are needed to promote analyses quantifying which changes are consistent with our

expectations and how we can best contribute to improving their prediction in a future climate.

Confronting models with new observationally based products will lead to new metrics of

performance and highlight shortcomings and developmental needs that will focus field

experiments, process studies, numerical experimentation and model development. New

applications should be developed for improved tracking and warning systems, and assessing

changes in risk of drought, floods, river flow, storms, coastal sea-level surges and ocean waves.

There is major concern that the occurrence, character and intensity of extremes will

change in the future as the climate changes due to human activities, and this will have

enormous consequences for society and the environment. Yet addressing changing

extremes satisfactorily is a daunting task, and it will be difficult to keep up with society’s

expectations. As noted above, huge improvements in near-global spatial and temporal

coverage for precipitation, soil moisture and other hydrological variables provide oppor-

tunities for new datasets, products, improved models and model applications, making it an

opportune time to fully address extremes.

The climate system does not neatly package such extremes. Extremes may be highly

localized in time and in space. Drought in one region frequently means heavy precipitation

not that far away. The worst extremes are generally compound events which often are

consequences of a chain-of-events that may be related at the global scale despite their

regional implications. Flooding may be accentuated due to saturated soils from previous

storms and/or from snowmelt. Furthermore, coastal flooding may involve storm surge

effects, local precipitation and remote snowmelt signals.

Because of its importance, there are many efforts focusing at least in part on extremes

within WCRP. One focus is on drought, although there is certainly interest in other hydro-

meteorological extremes and related issues, such as statistical analyses. WCRP, mainly

through CLIVAR, also addresses tropical and extratropical cyclones and associated marine

storms as well as extreme sea-level variability and change that is connected to storm surges.

GEWEX with its focus on the water cycle and on land surface processes with strong obser-

vational capabilities from global to local and with numerous links with society is a natural

‘home’ for addressing many types of extremes. The question is what is missing and what can

be done within GEWEX to move ahead? The main GEWEX focal point is to increase efforts

on hydrometeorological extremes including drought, heat waves, cold outbreaks, floods,

storms and heavy precipitation events including hazardous winter snowfalls and hail.

The specific questions that will be addressed over the next 5–10 years include

• What are the short-term, mid-term and strategic requirements for the existing

observing systems and datasets, and which observations are needed to accurately
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quantify trends in the intensity and frequency of extremes on different space/time

scales? Despite a continuous improvement in most observing systems, high-frequency

information (e.g., hourly precipitation) required to properly assess extremes is often not

made available and shared. New satellite observations and the synthesis of all

observations will help and may free up some data. Metrics for quantifying extremes

need to be assessed, and new ones should be introduced to improve diagnostics of

extremes and scale them to different areas. It is necessary to determine for which

regions (national observing systems) the requirements are close to being satisfied and

where they are not. There is an urgent need for research on design, development and

maintaining optimum observing systems, the regular analysis of their adequacy/

inadequacy for future investments in such systems.

• How can models be improved in their simulation and predictions or projections of the

magnitude and frequency of extremes? Current models have difficulty in simulating the

hydrological cycle, and they typically have problems handling the diurnal cycle. Model

resolution is insufficient in most cases to simulate many of the extremes of interest,

including floods with scales of a few kilometers and even drought whose worst-affected

areas are typically in areas only of order a few 100 km or less. Model parameterizations

addressing precipitation, convection and clouds are insufficient for accurate simulation

and timing of many extreme events. Models need to be confronted with the new

observational products in innovative analyses and with new diagnostics and metrics of

performance. This includes numerical weather prediction and climate models. There

are conceptual difficulties in validating model results against observations, first of all

associated with (but not limited to) co-location in space and grid cell data versus point

measurements. Many observational products are developed independent of models so

that gridding projections and associated error characteristics are often different from

model-derived data products thus making their direct inter-comparisons very difficult if

not impossible. Focused investments by space agencies (e.g., ESA and NASA) to make

the observational products consistent and inter-comparable is quite timely. Such efforts

facilitate research on observations and make inter-comparisons with models much

easier and enhance the use of observations by the modeling community.

• How can the phenomena responsible for extremes be better simulated in models? Many

phenomena that are responsible for extremes are not well simulated in models; some

because of resolution (such as tropical storms and highly localized precipitation

events), but also others that are resolved (such as blocking anticyclones). As well as

statistical analyses, studies should examine the phenomena responsible for extremes,

whether and how well they are depicted in models, and how to overcome incompatible

resolution requirements. Developmental needs should be used to focus field programs,

process studies and numerical experimentation.

• How can we promote development of applications for improved tracking and warning

systems arising from extremes? It is essential to develop ways to better assess changes

in risk of drought, floods, river flow, storms, coastal sea-level surges and ocean waves.

Such information has the greatest benefit to society for management of risks associated

with these events to reduce their adverse impacts. In most cases, such applications will

be done in conjunction with the CLIVAR and CliC projects and made available through

networks sponsored by GFCS and other regional climate information systems.

Prospects for advancements are excellent on this question because of new observations,

research, modeling and prediction activities already underway and planned. A number of
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specific, short and near-term activities are envisioned that will enable progress on this

Grand Challenge. Key areas of development include

1. Utilization of the new global and regional datasets outlined above and from improved

data assessment (within the GEWEX Data and Assessments Panel) to better characterize

extremes on different spatial scales and, with the WCRP Modeling Council, promote

evaluations of model results, potentially with one or more workshops in 2014–15.

2. Ensure strong involvement in the Global Drought Information System. This focuses on

one particular type of extreme but the effort may also act as a prototype for dealing

with all types of extremes in the future. In particular, GEWEX and CLIVAR will

develop trackable actions on monitoring and quantification of the global distribution of

droughts and their trends using observational information, model development, land

area factors governing drought and societal interactions.

3. Facilitate a number of inter-comparison projects aimed at comparison of character-

istics of extremes in different data sets (in situ, reanalyses and satellites), and revealed

by different models.

4. Initiate a parallel activity centered on capabilities of statistical methodologies to deal

with the complexity of extremes, including their clustering in space and time and with

sparse and regionally unevenly distributed data.

5. Initiate multi-methods activities and encourage documentation and data inventory

centered on a few mega-extreme events (for example, catastrophic flooding, droughts,

unusual storm patterns) to enable further analysis with observations and models,

ensure that all their aspects are comprehensively addressed, and with special attention

on assessing their likelihood in the future. This activity may be facilitated by bringing

teams together and should build in flexibility with adaptable approaches as one learns

by doing. It has the advantage that the results are immediately relevant.

6. Examine cold season extremes such as snowstorms, rain-on-snow episodes, freezing

precipitation and prolonged cold weather events with CliC and other international and

national research programs/projects.

There are multiple benefits, and the results are important for society. Drought has

devastating consequences whenever and wherever it occurs. Water resources can be

strained, and adverse effects occur in agriculture. Heat waves are often but not always

linked with drought. Health effects can be profound. Prolonged cold weather episodes are a

critical feature of mid- and sub-polar latitudes in winter. They are disruptive and costly.

Isolated extreme rainfalls as well as continuous periods of heavy and moderate precipi-

tation occur everywhere with numerous impacts including flooding, devastation of eco-

systems and havoc in urban regions. Storms in different parts of the world are the means by

which precipitation, often linked with strong winds, occurs, and changes in their paths,

intensity and frequency have enormous consequences, sometimes devastating. Warming

conditions imply that regions accustomed to receiving snow should experience more rain,

and changing times of runoff and peak stream flow, with large consequences for ecosys-

tems, hydrological risks and water resources.

These examples highlight the importance of progress in the area of climate extremes,

both in terms of their observations and analysis, and in terms of improved modeling and

prediction. In summary, WCRP through GEWEX, CLIVAR and CliC and its seamless

modeling framework across space and time scales (e.g., Working Groups on Coupled

Modeling and Numerical Experimentation (WGCM and WGNE)) will focus great attention

on extremes, including research on detection and attributions of causes and consequences

of such events over the next 5–10 years. By doing so, it will be carrying out its very natural
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role of addressing the estimation, modeling, understanding and future projection of

extremes with a particular focus over land.

5 Conclusions

The successful implementation of WCRP Grand Challenges and associated science

questions described in this chapter depend significantly on GEWEX Imperatives: obser-

vations and data sets, their analysis, process studies, model development and exploitation,

applications, technology transfer to operationalize results, and research capacity devel-

opment and training of the next generation of scientists. They involve all of the GEWEX

panels and will benefit greatly from strong interactions with other WCRP projects such as

CLIVAR and CliC and other sister global change research programs such as the Inter-

national Geosphere-Biosphere Programme (IGBP), International Human Dimensions

(IHDP), etc.

Closure of the observed regional and global water budget over the past decade has

progressed significantly, but remains a major challenge. Thus it continues to be a science

imperative for the research community to better observe and understand all aspects of the

water cycle in order to improve models that can predict reliably its future variability and

change as a major source of information for decision makers for water resources, food

production and management of risks associated with extreme events. Many potential

products could be invaluable to water resource managers on several time horizons,

extending well beyond the 1-week weather scale to seasonal, inter-annual and decadal

predictions, and climate change projections.
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Abstract Robust and physically understandable responses of the global atmospheric water

cycle to a warming climate are presented. By considering interannual responses to changes in

surface temperature (T), observations and AMIP5 simulations agree on an increase in column

integrated water vapor at the rate 7 %/K (in line with the Clausius–Clapeyron equation) and

of precipitation at the rate 2–3 %/K (in line with energetic constraints). Using simple and

complex climate models, we demonstrate that radiative forcing by greenhouse gases is

currently suppressing global precipitation (P) at *-0.15 %/decade. Along with natural

variability, this can explain why observed trends in global P over the period 1988-2008 are

close to zero. Regional responses in the global water cycle are strongly constrained by

changes in moisture fluxes. Model simulations show an increased moisture flux into the

tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around

600 hPa with warming. Moisture transport explains an increase in P in the wet tropical

regions and small or negative changes in the dry regions of the subtropics in CMIP5 sim-

ulations of a warming climate. For AMIP5 simulations and satellite observations, the

heaviest 5-day rainfall totals increase in intensity at *15 %/K over the ocean with reduc-

tions at all percentiles over land. The climate change response in CMIP5 simulations shows

consistent increases in P over ocean and land for the highest intensities, close to the Clau-

sius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that

interannual variability over land may not be a good proxy for climate change. The local

changes in precipitation and its extremes are highly dependent upon small shifts in the large-

scale atmospheric circulation and regional feedbacks.
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1 Introduction

Recent occurrence of extreme weather across the globe (including flooding and drought)

relates to shifts in atmospheric and oceanic circulation patterns (e.g., the mid-latitude jet

stream or El Niño Southern Oscillation, ENSO) yet heightens concern upon the potential

for human influence on and vulnerability to such events (e.g., Peterson et al. 2012). The

frequency of damaging flooding and drought are projected to increase in the future based

upon detailed computer simulations of the climate system (Meehl et al. 2007) and backed

up by basic physics (Held and Soden 2006; O’Gorman et al. 2012); it is also vital that

projected responses of the water cycle are verified, where possible, by careful use of

homogeneous, well-characterized observations (Trenberth 2011).

The magnitude and rate of change in the regional hydrological cycle determine the

impacts suffered by infrastructure, agriculture and health. The distribution of rainfall (in

time and space), in particular for the extremes, is crucial in determining damage from

particular events. Time and space means of hydrological quantities may reflect aspects of

these changes, in particular for the amount of water potentially available for a region.

However, the relevance of changes in global mean quantities to local impacts is unclear.

Yet, without appreciation for the driving mechanisms at the largest spatial and temporal

scales, the robust nature of local projections is questionable at best. In this paper, our aim is

to identify the most important, robust and physically understandable responses in the

atmospheric hydrological cycle, exploiting climate model simulations and confronting

these with the globally available observational record.

2 Constraints upon Global Mean Precipitation Responses

The most robust climatic response to increasing temperatures is a rise in mean water vapor

near to Earth’s surface at *7 %/K, in line with the Clausius-Clapeyron equation (see

Sect. 2.3). Although changes in moisture are an important constraint upon regional changes

in precipitation and its extremes (discussed in Sect. 3), it has been known for some time

that the total amount of precipitation (P) increases with warming at a slower rate than

water vapor (*2–3 %/K), responding instead to a changing heat balance of the atmosphere

(Manabe and Wetherald 1975; Mitchell et al. 1987; Allen and Ingram 2002). The primary

physical basis for this is that a warming atmosphere radiates energy away more effectively,

particularly to the surface (e.g., Allan 2006; Stephens and Ellis 2008; Prata 2008).

To maintain energy balance in the atmosphere, this additional atmospheric net radiative

cooling to space and to the surface (DQatm) is primarily compensated for by extra latent

heating via precipitation (LDP) with changes in sensible heating of the atmosphere by the

surface, DSH, playing a more minor role (but see Lu and Cai (2009)):

LDP ¼ DQatm � DSH; ð1Þ

Surface evaporation (E) is similarly constrained by energy balance; Richter and Xie (2008)

find that climate models simulate small adjustments to boundary layer temperature,

humidity and wind speed that cause E to increase with warming below the rate expected

from the Clausius-Clapeyron equation (Lu and Cai 2009) and almost identically to the

P changes (as expected from the trivial moisture holding capacity of the atmosphere

relative to the moisture fluxes).

As discussed by O’Gorman et al (2012), radiative cooling above the lifting condensa-

tion level is in fact more directly related to precipitation since, when heating is applied
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within the boundary layer, adjustments through SH do become important (e.g., Ming et al.

2010). For simplicity, we here assume that the balance between atmospheric radiative

cooling and latent heating dominates. However, this simple balance between DP and

DQatmðDTÞ is complicated by a direct influence on atmospheric radiative cooling by the

radiative forcings responsible for determining temperature response in the first place

(Andrews et al. 2010; O’Gorman et al. 2012).

Global mean precipitation response, DP, is determined by a ‘‘slow’’ component set by

the global mean surface temperature change, DT , (denoted slow since it takes a long time

to heat up the oceans due to their dominating heat capacity) and a ‘‘fast’’ component (fDF)

in which the atmosphere (with its small heat capacity relative to the ocean) rapidly adjusts

to changes in top of atmosphere radiative forcing, DF (for simplicity, here defined as the

downward radiative heating into the top of the atmosphere), that is independent of DT

(Allen and Ingram 2002; Bala et al. 2010; Andrews et al. 2010; O’Gorman et al. 2012):

LDP� kDT � fDF: ð2Þ

In (2), L = 2.5 9 106 J kg-1 is the latent heat of vaporization and k * 2 W m-2 K-1 is

the response of atmospheric radiative cooling to surface temperature, qQatm/qT (e.g., Allan

2006; Lambert and Webb 2008; Andrews et al. 2010), set by the atmospheric temperature

and humidity lapse rates (e.g., moist adiabatic lapse rate with near-constant mean relative

humidity is a reasonable approximation).

The fast scaling parameter, f ¼ DFatm=DF, is the instantaneous radiative forcing expe-

rienced by the atmosphere, DFatm ¼ �DQatmðDFÞ, normalized by the top of atmosphere

radiative forcing (DF) and is specific to the nature of each radiative forcing component

(Andrews et al. 2010; Ming et al. 2010). For example, increases in atmospheric CO2 con-

centrations produce an instantaneous increase in radiative forcing at the top of the atmo-

sphere that is considerably larger than the increase in instantaneous (downward) radiative

forcing at the surface, DFsfc (e.g., Ramanathan 1981; Allan 2006), where

DF ¼ DFatm þ DFsfc. This causes a direct reduction in DP through the last term in (2), since

fCO2
*0.8 (Andrews et al. 2010) and a slower increase in DP through the resulting rises in DT

brought about by the positive radiative forcing. The timescale for kDT is increased for smaller

ocean heat uptake and a more positive overall climate feedback (see also McInerney and

Moyer 2012). The interaction between these two effects is fundamental in determining

the transient response of DP to DF, or hydrological sensitivity (Ming et al. 2010).

2.1 Simple Model of Global Precipitation

To illustrate the global constraint upon DP, a simple zero-dimensional energy budget

model is employed, based upon the approach of Hansen et al. (1981). A mixed-layer ocean

temperature perturbation DTm is computed as

dDTm

dt
¼ 1

Cm

ðDF � YDTm � DÞ; ð3Þ

where Cm = 4.218 9 108 J K-1 m-2 is the ocean mixed-layer heat capacity,

Y = 1.3 W m-2 K-1 is the climate feedback parameter, and

D ¼ cðDTm � DTDÞ=d; ð4Þ

is the diffusion of energy into the deep ocean (d = 500 m, c = 421.8 W K-1 m-1) where

deep ocean temperature, DTD is determined by dDTD=dt ¼ D=CD, where CD = 3.7962 9
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109 J K-1m-2 is the deep ocean heat capacity. Thus, DTm is determined by the radiative

forcing, the restoring flux relating to feedbacks, and diffusion of energy into the deep

ocean.

Observed DF is prescribed over the period 1850-2010, based upon the Model for the

Assessment of Greenhouse gas-Induced Climate Change (MAGICC) without carbon cycle

for anthropogenic forcings,1 and natural forcings are based upon the Goddard Institute for

Space Studies2 (e.g., Hansen et al. 2007) with simple extrapolation of some fields from

1990 onward (Fig. 1a). The model is initialized at 1850 as DTm ¼ DTD ¼ 0. Since the

(a) (b)

(c) (d)

Fig. 1 Changes in a radiative forcings (DF), b atmospheric radiative heating (DFatm) due to the top of
atmosphere radiative forcings using scaling factors from Andrews et al. (2010), c simulated temperature
response using a simple energy balance model compared with HadCRUT4 observations (95 % uncertainty
range) and d precipitation response (DP) using the simple energy balance model decomposed into fast and
slow components (‘‘-BC’’ denotes simulations without the effects of Black Carbon aerosol). In d, observed
slow response is also estimated using the HadCRUT4 DT; this is combined with the model fast responses to
provide an estimated total scaling (dotted lines)

1 http://www.cgd.ucar.edu/cas/wigley/magicc/.
2 http://data.giss.nasa.gov/modelforce/.
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purpose of this analysis is illustrative only, inaccuracies in the prescribed radiative forcings

and other model parameters are not considered a serious impediment.

To compute DP using our simple model, we combine (2) with (3–4) where f is pre-

scribed as in Table 1 and assuming that DT � DTm. Thus, DFatm is computed from DF at

each 1 year time step (Fig. 1b); forcing agents that do not interact with the atmosphere

(e.g., purely scattering SO4 aerosol) are assumed not to influence the fast DP responses.

The model simulated DT is depicted in Fig. 1c and compares favorably with observed

estimates from the HadCRUT4 observations (Morice et al. 2012). The fast and slow

(T-dependent) components of DP are computed from (2) using the model simulated DT and

DFatm in Fig. 1d. Also shown are estimates neglecting the fast response from Black Carbon

aerosol (-BC) and prescribing the HadCRUT4 DT for the slow component (dotted lines).

The slow DP component rises with DT at the rate 2 W m-2 K-1, as prescribed by the

parameter k, and is relatively insensitive to the inclusion of BC aerosol or error in simu-

lated DT (although the recent hiatus in global temperature rises since *2000 are not

captured). The fast component leads to reduced DP, which is enhanced by the inclusion of

BC (additional atmospheric absorption of radiative energy leading to atmospheric stabil-

ization and declining global DP). Overall, the total DP response shows little global trend,

consistent with recent observationally based estimates (Adler et al. 2008), although

responses to volcanic forcings can introduce apparent trends over decadal timescales.

Inaccuracies in the model parameters, including the scaling factors, k and f, will reduce the

realism of the simple model estimates. It is, therefore, instructive to progress from the

simple model on to the considerably more detailed depiction of global precipitation

changes simulated by coupled climate model simulations.

2.2 Transient Response in Global Precipitation in CMIP5 Models

The simulated transient climate response is illustrated in Fig. 2 which shows DP simulated

by fully coupled climate models (see details in Table 2) as part of the Coupled Model

Intercomparison Project-phase 5 (CMIP5; Taylor et al. 2011). Fig. 2a shows increases in

DP over the twenty-first century, rising by around 3-11 % over the period 2000-2100.

The RCP8.5 (Representative Concentration Pathways) scenario (an emissions pathway

leading to a radiative forcing of 8.5 W m-2 by 2100) simulates a larger response than the

more mitigating RCP4.5 scenario (as illustrated by the thick ensemble mean lines)

although there is considerable inter-ensemble spread. This is partly explained by the larger

DT response simulated by RCP8.5 as illustrated in Fig. 2b. A simple linear fit between DP

and DT produces a sensitivity of *1 %/K; this is smaller than implied by the scaling

parameter k in (2) since rising greenhouse gas concentrations are muting the overall DP

response to warming by heating the atmosphere.

For each scenario, there is also a large inter-model spread, since models with higher

climate sensitivities (and/or slower rates of ocean heat uptake) tend to warm more rapidly

Table 1 Prescribed values of atmospheric forcing scaling parameter f ¼ DFatm=DF

Forcing CO2 Other WMGHG O3 trop. O3 strat. SO4 (all) BB BC Solar

f 0.8 0.5 -0.3 0.0 0.0 -0.9 2.5 0.2

Well-Mixed Greenhouse Gases (WMGHG) includes CH4, N2O and CFCs; SO4 includes all sulfate aerosol
forcings (direct, indirect and volcanic). BB biomass burning aerosol, BC black carbon aerosol
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and therefore increase P through the slow response term in (2). However, the relationship

between DT and DP is not robust, particularly for the RCP8.5 scenario; this may be

explained by the fact that the RCP8.5 scenario is far from equilibrium by 2100 (e.g.,

McInerney and Moyer 2012), while the model simulations in the RCP4.5 scenario are

showing signs of a levelling off in DP (as DF ! 4:5 W m�2 after *2060). The INMCM4

model simulates a muted DP=DT response relative to other models, while the IPSL-

CM5A-LR and MRI-CGCM3 models simulate a slightly larger DP=DT response relative to

the other models (see Table 2 for definition of climate models). As noted, the actual DP is

also related to the direct influence of the radiative forcings upon atmospheric radiative

cooling (Andrews et al. 2010) while the timescale for change in DT is lengthened for

models with weaker ocean heat uptake and more positive feedback (e.g., Hansen et al.

2011). The contribution of natural variability, model diversity and scenario uncertainty to

precipitation projections is discussed further, in the context of the older CMIP3 model

simulations, by Hawkins and Sutton (2011)

To investigate the direct influence of radiative forcing on transient climate change, a

present-day AMIP5 simulation (observed sea surface temperature, SST, and sea ice distri-

bution are prescribed over the period 1979-2008) of the atmospheric component of the
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Fig. 2 a Changes in global mean precipitation (relative to 1988–2005) for CMIP5 climate simulations
(RCP4.5 and RCP8.5 future projections relative to the parent simulation from the historical simulations,
models 1–10 in Table 2). Observationally based GPCP precipitation anomalies are plotted for comparison.
Twenty-four month running means are applied. b 2080–2100 minus 1985–2005 global mean precipitation
change plotted relative to changes in global mean surface temperature for RCP4.5-historical and RCP8.5-
historical simulations. Model numbers in Table 2 are displayed, and a line of best fit to these values is shown
in black
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Hadley Centre Global Environment Model version 2 (HadGEM2) model (Collins et al.

2011) is conducted. A standard Atmospheric Models Intercomparison Project (AMIP5)

control run is used (CTL), in which realistic radiative forcings are prescribed, and compared

with an identical simulation but with greenhouse gases fixed at their 1978 levels (fGHG).

Figure 3a shows declining CTL minus fGHG global mean clear-sky outgoing longwave

radiation, OLRc (dOLRc/dt = -0.37 W m-2/dec, r = -0.79). This is explained by the

rising greenhouse gas concentrations in CTL (e.g., Allan 2006; Chung and Soden 2010)

which reduce the longwave radiative cooling of the atmosphere to space. A decreasing

trend in total (all-sky) atmospheric net radiative cooling to space and to the surface

(Fig. 3b) is less marked (dQatm/dt = -0.13 W m-2/dec, r = -0.32) since the presence of

high-altitude cloud masks the enhanced greenhouse effect of rising CO2 concentrations in

CTL. There are also substantial differences associated with differing internal variability

between experiments; this also explains most of the differences in P between CTL and

fGHG (Fig. 3c), but a declining trend is also discernible (dP/dt = -0.15 %/dec *-

0.14 W m-2/dec, r = -0.25). The clear correlation between DQatm and DP (r = 0.66) is

physically reasonable and primarily explained by internal variability differences between

simulations with only a small, yet detectable, fraction relating to the CO2 trend.

Table 2 Details of CMIP5 climate models simulations employed

Modelling centre Model References

(1) Beijing Climate Center BCC-CSM1-1 Wu et al. (2012)

(2) Canadian Centre for Climate Modelling
and Analysis

CanESM2 CanAM4 Arora et al. (2011)

(3) National Center for Atmospheric Research, USA CCSM4 Gent et al. (2011)

(4) Centre National de Recherches
Meteorologiques, France

CNRM-CM5 Voldoire et al. (2012)

(5) Met Office Hadley Centre, UK HadGEM2-ES
HadGEM2-A

Collins et al. (2011)

(6) Institute for Numerical Mathematics, Russia INMCM4 Volodin et al. (2010)

(7) Institut Pierre Simon Laplace, France IPSL-CM5A-LR Hourdin et al. (2012)

(8) Max Planck Institute for Meteorology, Germany MPI-ESM-LR Raddatz et al. (2007)

(9) Meteorological Research Institute, Japan MRI-CGCM3 Yukimoto et al. (2012)

(10) Norwegian Climate Centre NorESM1-M Zhang et al. (2012)

(11) Model for Interdisciplinary Research on
Climate, Japan

MIROC5 Watanabe et al. (2010)

(a) (b) (c)

Fig. 3 Global mean differences in a clear-sky outgoing longwave radiation (OLR), b net all-sky
atmospheric radiative cooling and c precipitation for HadGEM2-A AMIP5 simulations with observed
greenhouse gases (CTL) and fixed greenhouse gases (fGHG) with least squares fit trend lines. A 3-month
box-car average is applied to the time series
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This simple experiment illustrates that the direct radiative effect of rising greenhouse gas

concentrations is muting current trends in global P but that the influences may be difficult to

isolate from natural variability in the present-day climate. We now examine in more detail

how well simulations can capture current changes in the global hydrological cycle.

2.3 Current Changes in the Global Atmospheric Water Cycle

Observationally based estimates of global precipitation changes in Fig. 2a from the Global

Precipitation Climatology Project (GPCP), which combines infrared and microwave

satellite data over the ocean with infrared and rain-gauge observations over land (Huffman

et al. 2009), show substantial variability but little discernible trend, consistent with the

simple model results described in Fig. 1. Current changes in the global atmospheric water

cycle are now examined in more detail.

Figure 4a–b shows that, on interannual timescales, global mean column integrated water

vapor (W) is strongly coupled with T both in model simulations (here AMIP5 simulations

with specified observed SST and sea ice) and in observations (combined microwave satellite

data3 over ocean between 50�S–50�N and ERA Interim reanalysis simulations4 elsewhere)

and also from the HadCRUH surface specific humidity (q) dataset (Willett et al. 2008).

Table 3 shows that W rises at *7 %/K when considering interannual variability over the

period 1988-2008, similar to the Clausius-Clapeyron rate as previously demonstrated

(Wentz and Schabel 2000; Willett et al. 2008). Correlation between SSM/I-ERA Interim

W and independent HadCRUH q over the period 1989-2003 is remarkable (r = 0.86).

Reanalyses remain unable to adequately simulate global changes in the hydrological

cycle (e.g., Trenberth et al. 2011; John et al. 2009) as illustrated by the changes in W and P

in Fig. 4b–c. This primarily relates to changes in the observing system over the ocean (Dee

et al. 2011). Nevertheless, changes in T globally and W over land are thought to be

reasonable (Simmons et al. 2010) as are the simulated interannual changes in top of

atmosphere net radiation (Loeb et al. 2012) and within the atmosphere as depicted in

Fig. 4d. The satellite-based ISCCP (Zhang et al. 2004) and Surface Radiation Budget (SRB)

(Stackhouse Jr. et al. 2011) estimates of Qatm suffer from inaccurate changes in surface

fluxes, for example clear-sky surface longwave fluxes over land.

While coupled model simulations in Fig. 2a appear to underestimate the observed

GPCP variability, this is not the case for AMIP simulations in Fig. 4c. There is good

agreement for the positive interannual dP/dT relationship between GPCP and AMIP5 over

the period 1988-2008 (Table 3) although the robust nature of changes in precipitation

from satellite data over the ocean remains questionable prior to 1995 (Liu et al. 2012). It is

nevertheless encouraging that a global relationship between Qatm from ERA Interim and

P from GPCP emerges, broadly consistent with model simulations and close to unity

(Table 3) as anticipated from physical grounds (O’Gorman et al. 2012).

3 We use Scanning Multi-channel Microwave Radiometer (SMMR) and the Special Sensor Microwave
Imager (SSM/I) data that provide ocean retrievals of W and also ocean retrievals of P from the SSM/I
instruments on the F08/F11/F13 series of Defense Meteorological Satellite Program platforms (e.g., Wentz
and Schabel 2000; John et al. 2009).
4 Reanalyses combine weather forecast model simulations with available observations using data assimi-
lation to provide a 3-dimensional depiction of atmospheric properties, usually every 6 hours. The European
Centre for Medium-range Weather Forecasts (ECMWF) Interim reanalysis, ERA Interim, is a state of the art
reanalysis system covering the period 1979 to present, which for example assimilates vertical temperature
and humidity information from satellite and conventional observations. A detailed description is given by
Dee et al. (2011).
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Trends documented in Table 3 cover too short a record (1988-2008) to be physically

meaningful yet provide a useful comparison between AMIP5 simulations and observations.

Rapid warming from 1993-2002 (*0.4 K), after the eruption of Mt. Pinatubo in 1991, is

followed by static global mean T; it has been suggested that a shift in ocean circulation

may have contributed to this variability (e.g., Merrifield 2011; Gu and Adler 2012). A rise

in W over 1988-2008 of around 1 %/decade from SSM/I-ERA Interim and simulations is

equivalent to *5–6 %/K given the trend in T, slightly lower than anticipated from

Clausius-Clapeyron. Trends in global P (Table 3) are not statistically significant over the

period, consistent with expectations from the simple model in Sect. 2.1 However,

(a)

(b)

(c)

(d)

Fig. 4 Deseasonalized anomalies in a surface air temperature, b column integrated water vapor or specific
humidity, c precipitation and d atmospheric net radiative cooling for AMIP5 simulations (±1 inter-model
standard deviation, models 2 and 4–11 in Table 2) and observationally based estimates. All time series
anomalies are relative to the 1988–1996 base period (models are adjusted relative to the ensemble mean)
apart from SMMR (1983/1984 base period) and Advanced Microwave Scanning Radiometer-EOS (AMSR-
E) (mean adjusted to agree with mean SSM/I W and GPCP P over the period 2003–2008); 3-month averages
of anomalies are plotted. In a, the 95 % uncertainty range is shown for HadCRUT4 observations. In b and c,
the SMMR and SSM/I record uses the satellite microwave record over the 50�S–50�N oceans and ERA
Interim W or GPCP P data elsewhere. In d, the International Satellite Cloud Climatology Project - Flux
Dataset (ISCCP-FD) atmospheric radiative cooling anomalies are reduced by a factor of 3
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normalizing by dT/dt gives a sensitivity of 1–2 %/K, slightly lower than the interannual

relationship, dP/dT *2–3 %/K, and consistent with the influence of greenhouse gases on

supressing global rainfall via fast responses described in Sect. 2.2. The dP/dt response

when using SSM/I data over the oceans is larger than the GPCP only product (Fig. 4c).

Wentz et al. (2007) previously calculated a dP/dT sensitivity of 6 %/K over the period

1987-2006; the short length of this record, calibration uncertainty and lack of a mecha-

nism for removing the extra latent heat associated with large increases in P would suggest

that this is not a good proxy for the longer term response of P to warming.

3 Water Vapor and Regional Constraints on Precipitation

While global mean DP is found to rise in climate model projections, the changes are not

uniformly distributed across the globe. As outlined by Meehl et al. (2007) in a warming

climate, there is a tendency for

• the wet regions (inter-tropical convergence zones and higher latitudes) to become

wetter and the dry subtropical regions drier,

• an increase in the intensity of precipitation over most continental regions,

• an increase in occurrence of consecutive dry days over many lower latitude regions.

This is broadly consistent with results from early climate model experiments (e.g.,

Manabe and Wetherald 1980; Mitchell et al. 1987) and implies more damaging flooding

and drought in a warmer world (Trenberth 2011). Although there are large regions of the

globe for which the sign of future projections of DP are ambiguous (Meehl et al. 2007),

some of these regions are likely to experience only small DP relative to natural variability

(Power et al. 2011). The physical basis for these projections is now discussed.

Table 3 Relationship between global water vapor, temperature, precipitation and radiative cooling and
their trends based on linear regression over the 1988–2008 deseasonalized time series

Variables y x dy/dx r

dW/dT SSM/I-ERAINT HadCRUT4 6.42 ± 0.46 %/K 0.84*#

AMIP5 AMIP5 7.14 ± 0.24 %/K 0.96*#

dP/dT GPCP HadCRUT4 2.83 ± 0.92 %/K 0.32*#

AMIP5 AMIP5 2.52 ± 0.22 %/K 0.79*#

dQatm/dT ERAINT ERAINT 2.50 ± 0.29 W m-2/K 0.68*#

AMIP5 AMIP5 1.92 ± 0.16 W m-2/K 0.79*#

dP/dQatm GPCP ERAINT 1.09 ± 0.17 0.57*#

AMIP5 AMIP5 0.83 ± 0.03 0.95*#

dT/dt HadCRUT4 0.18 ± 0.02 K/dec 0.70*#

AMIP5 0.18 ± 0.02 K/dec 0.66#

dW/dt SSM/I-ERAINT 0.84 ± 0.20 %/dec 0.42#

AMIP5 1.17 ± 0.18 %/dec 0.59#

dP/dt GPCP 0.18 ± 0.25 %/dec 0.08

AMIP5 0.34 ± 0.09 %/dec 0.40

* Significant at the 95 % level allowing for autocorrelation; # correlations significant at the 95 % confidence
level assuming 20 degrees of freedom

ERAINT is the ECMWF Interim reanalysis
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3.1 Moisture Flux into Tropical Wet Regions

Water vapor exerts a powerful physical constraint on the global water cycle. It provides a

strongly positive feedback to climate change (Manabe and Wetherald 1967; Soden et al. 2005;

Willett et al. 2008; Ingram 2010) but also controls the atmospheric temperature lapse rate and

modulates radiative cooling (e.g., O’Gorman et al. 2012) and is central to the large-scale

regional responses in precipitation. In the broadest sense, water is transported in the atmo-

sphere by the tropical circulation from the dry, subtropical oceans (net moisture divergence) to

the wet, moisture convergence zones, and also to the higher latitudes (e.g., Bengtsson et al.

2011) and the continents (e.g., Trenberth et al. 2011). Rising W with warming (Table 3)

therefore indicates increased moisture flux (MF). Assuming that the magnitude of changes in

atmospheric moisture storage is negligible compared with the other terms, a simple moisture

balance dictates that MF balances precipitation minus evaporation (P - E):

P� E�MF: ð5Þ

Assuming, for now, that wind flows are unchanged, MF will simply vary with atmospheric

moisture, at the rate a * 7 %/K (Table 3). In fact, to reconcile the energetic constraints

upon global precipitation with the thermodynamic contraints upon water vapor, climate

models simulate a weakening of the tropical Walker circulation that is also evident in

observations and simulations of the twentieth century (Vecchi et al. 2006), while decadal

variability may cause temporary increases in the Walker circulation (Sohn et al. 2012).

Nevertheless, as argued by Held and Soden (2006), the simple assumptions in (5) imply an

enhancement of P - E patterns in climate model simulations (at least over the ocean

where moisture supply is unlimited) with warming

dðP� EÞ� �r � ðadT MFÞ� adTðP� EÞ: ð6Þ

This effect is illustrated in Fig. 5 which shows the changes in MF from the dry regions

(column mean downward vertical motion) to the wet regions (column mean upward ver-

tical motion) of the tropics defined by 6-hourly instantaneous fields (Zahn and Allan 2011).

MF is computed at each vertical level along the line dividing wet and dry regions.
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Fig. 5 Change in moisture flux from the dry to the wet regions of the tropics per K change in surface
temperature between a warm and cold months in ERA Interim and ECHAM5 (twentieth and twenty-first
centuries time slices) and for b the climate change response from twenty-first minus twentieth century
simulated by ECHAM5 (EH5). In a, moisture fluxes were computed separately for months with above and
below average tropical mean surface temperature; in forming the mean, each month of the year was ascribed
equal weighting. For the climate change response, the mean moisture fluxes were calculated and differenced
between (21C, 2069–2099) and (20C, 1959–1989)
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Changes in MF normalized by DT [kg/(s hPa K)] between cold and warm months are

plotted for ERA Interim in Fig. 5a. This shows increased inflow at low levels (maximum at

*950 hPa), but a significant compensating increase in mid-level outflow at around 600-

700 hPa as discussed by Zahn and Allan (2011). A similar response is evident for twentieth

century (20C, 1959-1989) and twenty-first century (21C, 2069-2099) time slice simu-

lations from a high resolution (0.5�) climate model, ECHAM5 (Roeckner et al. 2003), as

described by Zahn and Allan (2012). However, the model simulations indicate a higher

altitude for the maximum changes in moisture outflow and less vertical structure, which

may be influenced by the higher vertical resolution below altitudes of 500 hPa in ERA

Interim. Back and Bretherton (2006) suggest that meridional SST gradients determine the

altitude of outflow regionally and the nature of the differences in Fig. 5a merits future

analysis. Also shown in Fig. 5b is the 21C minus 20C change in MF into the wet region of

the tropics, normalized by DT ¼ 3:0K. The vertical structure of the climate change

response of MF is very similar to interannual variability shown in Fig. 5a where year to

year changes in T are relatively small (DT � 0:6 K).

3.2 Precipitation Response in the Wet and Dry Regions of the Tropics

It does not simply follow from (6) that P rises in the wet regions and declines in the dry

regions. Nevertheless, since DE changes are expected to be more spatially uniform than DP

changes, there is a strong expectation that the wet regions will become wetter and the dry

regions drier in the tropics, borne out by recent analysis of climate models (e.g., Chou et al.

2009) and limited observational evidence (e.g., Allan et al. 2010).

Figure 6 demonstrates that climate models indeed simulate an increase in P in the wet

regions ([70th percentile of P ordered by intensity, defined each month such that the

precise location of the wet region varies with time) and static or declining P in other (dry)

regions of the tropics. This definition of wet and dry regimes is based upon the analysis of

Allan et al. (2010) but is somewhat arbitrary. Mean P is about 8 mm/day in the wet regions

while the remaining regions are not completely dry (P * 1 mm/day). GPCP observations

(displayed since 1988 due to inhomogeneities before this date when SSM/I data was not

available) also show this contrasting wet/dry response as discussed by Liu et al. (2012).

Since this response is contingent on warming (enhancing P - E), this explains the flat-

tening off of P responses in the RCP4.5 simulations after around 2060 as T asymptotes.

Nevertheless, as discussed previously, the precise transient DP response is strongly

influenced by the fast forcing processes (fDF) in addition to the slow response to warming,

kDT (Andrews and Forster 2010; Wu et al. 2010).

3.3 Extremes of Precipitation

Within the wet regions, during heavy rainfall events, the atmosphere is typically precip-

itating more water over the course of a day than is contained in the atmospheric column at

a particular location; this underlines the vital role of moisture convergence in determining

intense rainfall rates (e.g., Trenberth 2011). While low-level moisture changes are indeed

thought to provide a strong constraint upon P intensification in a warming world, changes

in updraft velocity with warming explain the large range in simulated responses in the

tropics (e.g., O’Gorman and Schneider 2009; Allan et al. 2010; Sugiyama et al. 2010).

Observed relationships provide a powerful constraint upon future simulated responses in

extreme precipitation (O’Gorman 2012). Figure 7 displays observed and simulated
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precipitation responses, as a function of precipitation intensity (Pi), for the present day and

also the simulated climate change responses.

The 5-day P averages are constructed, and a deseasonalized intensity (i) distribution

constructed each month; 5-day averages are chosen to avoid structural inconsistencies

between data sets that occur at higher time resolutions (Liu and Allan 2012). The linear

regression of Pi is computed with respect to tropical mean T (deseasonalized anomalies)

and normalized by mean Pi to give units of %/K. Figure 7a illustrates the intensification of

P at the 99th percentile in both AMIP5 simulations and GPCP 1 Degree Daily (DD) V1.1

daily observations (Huffman et al. 2009) of around 15 %/K, larger than expected from

Clausius-Clapeyron scaling. At the lowest percentiles, Pi decreases with tropic-wide

warming, consistent with the monthly mean responses shown in Fig. 6.

The GPCP 1DD observations generally show a similar but more positive response than

the AMIP5 simulations (Fig. 7a), explained primarily by ocean regions, for Pi\99 %

(Fig. 7b). The SSM/I observations display a more positive sensitivity still for these per-

centiles and do not capture the decline in Pi\60 % with warming. This may be explained by

the limited sampling of low rain rates by the instantaneous overpasses (e.g., Liu and Allan

2012). GPCP gauge-based observations and AMIP5 simulations display remarkable

agreement over the land (Fig. 7c), consistent with monthly mean variability (Liu et al.

2012); for Pi\99 % the response is negative and explained by ENSO variability: during

warmer El Niño years, there is less rainfall on average over land (e.g., Gu et al. 2007).
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Fig. 6 Changes in tropical (30�S–30�N) mean precipitation (%) in a the wet regions (above the 70th
percentile of monthly precipitation) and in b the dry regions (below the 70th percentile) relative to the
1988–2005 period for the historical, RCP4.5 and RCP8.5 scenario simulations (thick lines denote 10-model
ensemble means, models 1–10 in Table 2) and the GPCP observations. A 24-month running mean is applied
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The climate change response of 5-day P extremes is compared with present-day sim-

ulations from the historical experiments in Fig. 7d–f. Consistent with the AMIP5 simu-

lations and observations, there is a tendency for the wet percentiles to become wetter

during warm months, while the dry percentiles become drier (Fig. 7d). Statistical uncer-

tainty is large for Pi\60 % over land (Fig. 7f), a likely result of the small and zero P totals in

this bin. The tropic-wide percentile responses in Fig. 7d are dominated by the ocean

regions (Fig. 7e). However, the climate change response (calculated as a percentile dis-

tribution difference between 2080 and 2099 RCP4.5 minus 1985-2005 historical simu-

lations) displays a more modest response compared with the present-day linear regression

applied to CMIP5 historical simulations (which are only slightly weaker than the AMIP5

simulations and observed relationships). The climate change response indicates a P99%

response of *6 %/K, close to that expected from the Clausius-Clapeyron relation.

For land regions, the climate change response of Pi to warming is more positive than the

present-day CMIP5 relationships (Fig. 7f) with P99% responses out to 2080-2100 again

close to that anticipated from Clausius-Clapeyron scaling. Thus, relationships derived

from present-day variability are not good proxies for the climate change responses, in

particular for the land regions. This is because ENSO variability enhances ocean P sensi-

tivity to warming and cooling, due to changing rainfall patterns, while it introduces a
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Fig. 7 Percentage responses of 5-day mean P to changes in tropical (30�S–30�N) mean T as a function of
P intensity percentiles in the present day (1998–2008, linear regression) for a the tropics, b tropical ocean
and c tropical land for AMIP5, GPCP 1DD and SSM/I and for the present and future in CMIP5 models
(historical 1985–2005 using linear regression) and RCP4.5 minus historical (2080–2100 minus 1985–2005
using differences in mean intensity distribution) for the d tropics, e tropical ocean and f tropical land. In all
cases, tropical (land and ocean) mean T is used. Shaded areas denotes ±1 standard deviation of inter-model
spread; vertical bars denote ±1 standard error in the linear regression for GPCP and SSM/I. Models 1–10 in
Table 2 are used
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negative relationship between P and T over land (Gu et al. 2007; Liu et al. 2012). The

climate change responses are consistent with an intensification of P at high percentiles,

close to the water vapor responses of around 6 %/K, and reduced P for the dry regions

(sub-tropical anticyclonic regimes) of net moisture export (e.g., Allan 2012), consistent

with Fig. 6.

3.4 Influence of Dynamical Changes on Precipitation and Its Extremes

At finer time and space scales, it is less clear what the precise response of extreme

precipitation to warming will be (Haerter et al. 2010). While the Clausius-Clapeyron

relation provides a broad constraint, additional local latent heating may invigorate storms

leading to a super-Clausius-Clapeyron scaling (Lenderink et al. 2011) while moisture

limitation and atmospheric stabilization associated with latent heating at larger scales may

result in responses below that anticipated from Clausius-Clapeyron (Haerter et al. 2010).

Knowledge of the precise time and space scales associated with the most damaging

flooding events is therefore crucial.

Changes in updraft velocity strongly influence the simulated P99.9 % response in the

tropics (Turner and Slingo 2009; O’Gorman and Schneider 2009; Allan et al. 2010); the

heaviest rainfall events are reliant on parametrized processes operating below the model

grid scale. At higher latitudes, where large-scale processes become dominant in explaining

intense precipitation, the simulated responses show greater consistency (O’Gorman and

Schneider 2009) although there is evidence that they underestimate the observed responses

(Min et al. 2011). In the UK, peak river flows during the winter-half of the year have been

found to be associated with Atmospheric Rivers (Lavers et al. 2011). These are long

(*1,000 km), narrow (*100 km) regions of strong water vapor transport in the warm

sector of extra-tropical cyclones that can result in intense rainfall when the moisture is

condensed, in particular following the uplift of the moisture-laden air-masses over

mountains (e.g., Dettinger et al. 2011).

Atmospheric reanalyses, such as ERA Interim, and current climate models are typically

able to resolve the large-scale processes associated with these flood-inducing events.

Figure 8 illustrates the specific humidity (q) structure associated with 14-year maximum

3-day P totals for grid points around the UK for present-day simulations and future projec-

tions. The present-day simulations are indeed associated with Atmospheric River structures.

The future projection in Fig. 8c simulates greater amounts of water vapor, consistent with

(a) (b) (c)

Fig. 8 Specific humidity (q) fields at 850 hPa associated with the highest 3-day precipitation total for grid
boxes within the UK region (7�W–3�E, 50–60�N) during the winter-half year (October-March) for
a HadGEM2-A AMIP simulations (1995–2008) and HadGEM2-ES RCP8.5 simulations over the periods
b 2006–2019 and c 2085–2098
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warmer T, but the dynamical structure is unlike the present-day cases and in fact delivers a

smaller 3-day P total (112 mm) than the present-day event simulated in Fig. 8b (152 mm).

While this is just an illustration, it nevertheless highlights the potential importance of both

dynamical and thermodynamic factors in influencing future changes in extreme rainfall. The

thermodynamic climate change component of such events is likely to be robust with the

Clausius-Clapeyron relation a reliable constraint. However, small changes in the jet stream

and storm track regions (and the overall dynamical character of intense rainfall-producing

events) may dominate the local response and therefore regional projections of the occurrence

of damaging flooding and drought remain a substantial challenge.

4 Conclusions

Global precipitation is projected to rise in the future primarily to maintain balance with

enhanced atmospheric radiative cooling as temperatures increase (Manabe and Wetherald

1975). This slow, well-constrained response of around *2–3 %/K is modulated by more

rapid adjustments to the radiative forcings, that are themselves responsible for current and

future warming, but which directly influence atmospheric radiative cooling (Andrews et al.

2010). An additional influence appears to relate to how far from equilibrium the climate

system is (McInerney and Moyer 2012). This is governed by the differing timescales of

adjustment by the land and ocean and the associated changes in energy and moisture fluxes

between them (Cao et al. 2012).

Regional changes in the hydrological cycle, of more importance for climate impacts, are

more strongly tied to (i) changes in moisture transports which are well constrained by the

Clausius-Clapeyron equation linking saturation vapor pressure with temperature and (ii)

small spatial movements in large-scale circulation systems which are highly uncertain.

This also applies to the local, extreme precipitation events which are strongly linked to the

rises in low-level moisture of around 7 %/K but are also influenced by changes in the

nature and spatial distribution of intense rainfall events.

The combination of the global changes in precipitation of around *2–3 %/K and

increased low-level moisture of *7 %/K leads to a general trend toward the wet regions

(Inter Tropical Convergence Zone and higher latitudes) becoming wetter and the dry

subtropics getting drier. In the margins, although projected responses appear ambiguous,

there are physical grounds for anticipating relatively small changes in P, signifying a

greater consensus on regional projections than previously thought (Power et al. 2011).

Nevertheless, local changes are highly dependent upon small shifts in position of large-

scale atmospheric circulation patterns and in the physical nature of rainfall regimes, in

particular for extremes. Hence, determining accurate responses in the hydrological cycle at

the scales required for impact models may be beyond the predictive capacity of climate

modelling. Thus, determining robust, large-scale, robust responses in the hydrological

cycle (e.g., Martin 2012) remain a crucial tool in understanding and planning for a

changing water cycle in the future.
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M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P,
Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance
of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. doi:10.1002/qj.828

Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water
resources of California. Water 3:445–478. doi:10.3390/w3020445

Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch
PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model
version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

Surv Geophys (2014) 35:533–552 549

12363Reprinted from the journal

http://badc.nerc.ac.uk/home
http://dx.doi.org/10.1029/2008JD010536
http://dx.doi.org/10.1029/2006JD007304
http://dx.doi.org/10.1007/s00382-011-1134-x
http://dx.doi.org/10.1007/s00382-011-1134-x
http://dx.doi.org/10.1088/1748-9326/5/2/025205
http://dx.doi.org/10.1088/1748-9326/5/2/025212
http://dx.doi.org/10.1029/2010GL043991
http://dx.doi.org/10.1029/2010GL046270
http://dx.doi.org/10.1029/2006GL026672
http://dx.doi.org/10.1007/s00382-009-0583-y
http://dx.doi.org/10.1111/j.1600-0870.2011.00534.x
http://dx.doi.org/10.1111/j.1600-0870.2011.00534.x
http://dx.doi.org/10.1088/1748-9326/7/3/034015
http://dx.doi.org/10.1088/1748-9326/7/3/034015
http://dx.doi.org/10.1029/2010GL042698
http://dx.doi.org/10.5194/gmdd-4-997-2011
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.3390/w3020445
http://dx.doi.org/10.1175/2011JCLI4083.1


Gu G, Adler RF (2012) Interdecadal variability/long-term changes in global precipitation patterns during the
past three decades: global warming and/or pacific decadal variability? Clim Dyn. doi:10.1007/
s00382-012-1443-8

Gu G, Adler RF, Huffman GJ, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal
and longer time scales derived from the GPCP monthly product. J Clim 20:4033–4046

Haerter JO, Berg P, Hagemann S (2010) Heavy rain intensity distributions on varying time scales and at
different temperatures. J Geophys Res 115:D17102

Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing
atmospheric carbon dioxide. Science 213:957–966. doi:10.1126/science.213.4511.957

Hansen J, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt GA, Russell G,
Aleinov I, Bauer S, Baum E, Cairns B, Canuto V, Chandler M, Cheng Y, Cohen A, Del Genio A,
Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Jonas J, Kelley M, Kiang NY, Koch D, Labow
G, Lerner J, Menon S, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Schmunk R,
Shindell D, Stone P, Sun S, Streets D, Tausnev N, Thresher D, Unger N, Yao M, Zhang S (2007)
Climate simulations for 1880-2003 with GISS modelE. Clim Dyn 29:661–696. doi:10.1007/
s00382-007-0255-8

Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications.
Atmos Chem Phys 11:13421–13449. doi:10.5194/acp-11-13421-2011

Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation
change. Clim Dyn 37:407–418. doi:10.1007/s00382-010-0810-6

Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim
19:5686–5699

Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I,
Dufresne JL, Lahellec A, Lefebvre MP, Roehrig R (2012) LMDZ5B: the atmospheric component of
the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn. doi:
10.1007/s00382-012-1343-y

Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version
2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

Ingram W (2010) A very simple model for the water vapour feedback on climate change. Q J R Meteorol
Soc 136:30–40. doi:10.1002/qj.546

John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to
tropical warming. Geophys Res Lett 36:L14702. doi:10.1029/2009GL038276

Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys
Res Lett 35:L16706. doi:10.1029/2008GL034838

Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ (2011) Winter floods in Britain are
connected to atmospheric rivers. Geophys Res Lett 38:L23803. doi:10.1029/2011GL049783

Lenderink G, Mok HY, Lee TC, van Oldenborgh GJ (2011) Scaling and trends of hourly precipitation
extremes in two different climate zones—Hong Kong and The Netherlands. Hydrol Earth Syst Sci
15:3033–3041. doi:10.5194/hess-15-3033-2011

Liu C, Allan RP (2012) Multisatellite observed responses of precipitation and its extremes to interannual
climate variability. J Geophys Res 117:D03101. doi:10.1029/2011JD016568

Liu C, Allan RP, Huffman GJ (2012) Co-variation of temperature and precipitation in CMIP5 models and
satellite observations. Geophys Res Lett 39:L13803. doi:10.1029/2012GL052093

Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012)
Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within
uncertainty. Nat Geosci 5:110–113. doi:10.1038/ngeo1375

Lu J, Cai M (2009) Stabilization of the atmospheric boundary layer and the muted global hydrological cycle
response to global warming. J Hydrometeorol 10:347–352. doi:10.1175/2008JHM1058.1

Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative
humidity. J Atmos Sci 24:241–259

Manabe S, Wetherald RT (1975) The effects of doubling the CO2 concentration on the climate of a general
circulation model. J Atmos Sci 32:3–15

Manabe S, Wetherald RT (1980) On the distribution of climate change resulting from an increase in CO2

content in the atmosphere. J Atmos Sci 37:99–118
Martin G (2012) Quantifying and reducing uncertainty in the large-scale responses of the water cycle. Surv

Geophys (accepted) doi:10.1007/s10712-012-9203-1
McInerney D, Moyer E (2012) Direct and disequilibrium effects on precipitation in transient climates.

Atmos Chem Phys Discuss 12:19649–19681. doi:10.5194/acpd-12-19649-2012
Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A,

Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. Climate change 2007:

550 Surv Geophys (2014) 35:533–552

123 64 Reprinted from the journal

http://dx.doi.org/10.1007/s00382-012-1443-8
http://dx.doi.org/10.1007/s00382-012-1443-8
http://dx.doi.org/10.1126/science.213.4511.957
http://dx.doi.org/10.1007/s00382-007-0255-8
http://dx.doi.org/10.1007/s00382-007-0255-8
http://dx.doi.org/10.5194/acp-11-13421-2011
http://dx.doi.org/10.1007/s00382-010-0810-6
http://dx.doi.org/10.1007/s00382-012-1343-y
http://dx.doi.org/10.1029/2009GL040000
http://dx.doi.org/10.1002/qj.546
http://dx.doi.org/10.1029/2009GL038276
http://dx.doi.org/10.1029/2008GL034838
http://dx.doi.org/10.1029/2011GL049783
http://dx.doi.org/10.5194/hess-15-3033-2011
http://dx.doi.org/10.1029/2011JD016568
http://dx.doi.org/10.1029/2012GL052093
http://dx.doi.org/10.1038/ngeo1375
http://dx.doi.org/10.1175/2008JHM1058.1
http://dx.doi.org/10.1007/s10712-012-9203-1
http://dx.doi.org/10.5194/acpd-12-19649-2012


the physical science basis. Contribution of working group I to the fourth assessment report of the
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 747–845

Merrifield MA (2011) A shift in western tropical Pacific Sea level trends during the 1990s. J Clim
24:4126–4138 doi:10.1175/2011JCLI3932.1

Min S, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes.
Nature 470:378–381

Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean
precipitation. Geophys Res Lett 37:L13701

Mitchell J, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of
results. Q J Roy Meteorol Soc 113:293–322

Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional
temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys
Res 117:D08101. doi:10.1029/2011JD017187

O’Gorman PA (2012) Sensitivity of tropical precipitation extremes to climate change. Nat Geosci
5:697–700 doi:10.1038/ngeo1568

O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations
of 21st-century climate change. Proc Nat Acad Sci 106:14773–14777

O’Gorman PA, Allan RP, Byrne MP, Previdi M (2012) Energetic constraints on precipitation under climate
change. Surv Geophys 33:585–608. doi:10.1007/s10712-011-9159-6

Peterson TC, Stott PA, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull
Am Meteorol Soc 93:1041–1067. doi:10.1175/BAMS-D-12-00021.1

Power SB, Delage F, Colman R, Moise A (2011) Consensus on twenty-first-century rainfall projections in
climate models more widespread than previously thought. J Clim 25:3792–3809

Prata F (2008) The climatological record of clear-sky longwave radiation at the earth’s surface: evidence for
water vapour feedback? Int J Remote Sens 29:5247–5263. doi:10.1080/01431160802036508

Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J
(2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-
first century? Clim Dyn 29:565–574. doi:10.1007/s00382-007-0247-8

Ramanathan V (1981) The role of ocean–atmosphere interactions in the CO2 climate problem. J Atmos Sci
38:918–930

Richter I, Xie SP (2008) The muted precipitation increase in global warming simulations: a surface
evaporation perspective. J Geophys Res 113:D24118. doi:10.1029/2008JD010561
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Abstract Despite their obvious environmental, societal and economic importance, our

understanding of the causes and magnitude of the variations in the global water cycle is

still unsatisfactory. Uncertainties in hydrological predictions from the current generation of

models pose a serious challenge to the reliability of forecasts and projections across time

and space scales. This paper provides an overview of the current issues and challenges in

modelling various aspects of the Earth’s hydrological cycle. These include: the global

water budget and water conservation, the role of model resolution and parametrisation of

precipitation-generating processes on the representation of the global and regional

hydrological cycle, representation of clouds and microphysical processes, rainfall vari-

ability, the influence of land–atmosphere coupling on rainfall patterns and their variability,

monsoon processes and teleconnections, and ocean and cryosphere modelling. We con-

clude that continued collaborative activity in the areas of model development across

timescales, process studies and climate change studies will provide better understanding of

how and why the hydrological cycle may change, and better estimation of uncertainty in

model projections of changes in the global water cycle.

Keywords Hydrological cycle � Moisture � Precipitation � Modelling

1 Introduction

The hydrological cycle is the process by which water travels from the Earth’s surface to the

atmosphere and then back to the surface again. The sun provides the energy for a continuous

exchange of moisture between the oceans, the land and the atmosphere. The atmospheric

water cycle is the driving force of weather and climate, and the spatial and temporal char-

acteristics of precipitation—too much, too little, at the wrong time, in the wrong place—have

profound effects on all aspects of life. Substantial changes in the global water cycle (GWC)

are an expected consequence of a warming climate. Such changes could prove a significant
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challenge for societies and ecosystems and impose substantial pressures on water manage-

ment, urban planning, agricultural production and tourism. Despite their obvious environ-

mental, societal and economic importance, our understanding of the causes and magnitude of

the variations in the GWC is still unsatisfactory. Key issues for climate change that hinge on

the global water cycle include: (1) the strength and variability of global and regional

hydrological cycles in a warmer world; (2) freshwater forcing and salinity budget of the

global oceans; (3) terrestrial ecosystems and their dependence on water availability; (4) the

fate of polar ice caps and glaciers with consequent sea level rise.

Uncertainties in hydrological predictions from the current generation of models pose a

serious challenge to the reliability of forecasts across timescale and space scale. On climate

timescales, the GWC is highlighted as a key source of uncertainty in the latest Intergov-

ernmental Panel on Climate Change (IPCC) report (Randall et al. 2007), and problems with

forecasting precipitation continue to affect measures of forecast accuracy. We require a

more holistic approach to understanding, modelling and predicting the global and regional

terrestrial water cycle and its role in the impacts of hazardous weather, climate variability

and climate change. This must extend from the prediction of hydrological extremes (floods

and droughts) to an integrated assessment of water, food and natural resources.

The growth of systematic errors in models remains one of the central problems in

producing accurate climate change projections for the next 50–100 years. Although great

advances have been made in global modelling in recent decades, there are still large

uncertainties in many processes, such as clouds, convection, and coupling to oceans and

the land surface. Such uncertainties are related to different physical parametrisations and to

model horizontal and vertical resolution. Global precipitation distribution, intensity and

variation on a range of timescales are also not well observed, particularly over oceans.

Similar systematic errors are seen on a range of timescales from Numerical Weather

Prediction (NWP)/seasonal/decadal/climate. ‘‘Seamless’’ model development, where the

same model configuration is developed and tested across all timescales (e.g., Martin et al.

2010), has been instrumental in diagnosing and reducing errors in tropical circulation and

precipitation. Increasing model resolution has also been shown to improve the distribution

of tropical precipitation. This will ultimately lead to better predictions and projections for

the GWC.

This paper provides an overview of the current issues and challenges in modelling

various aspects of the Earth’s hydrological cycle. These include: the global water budget

and water conservation, the role of model resolution and parametrisation of precipitation-

generating processes on the representation of the global and regional hydrological cycle,

representation of clouds and microphysical processes, rainfall variability, the influence of

land–atmosphere coupling on rainfall patterns and their variability, monsoon processes and

teleconnections, and ocean and cryosphere modelling. We include examples of studies

being done around the world which shed light on the relevant processes and limitations in

their modelling. We conclude that continued collaborative activity in the areas of model

development across timescales, process studies and climate change studies will provide

better understanding of how and why the hydrological cycle may change, and better

estimation of uncertainty in model projections of changes in the global water cycle.

2 Scientific Challenges in Modelling the Global Water Cycle

The main scientific challenges in modelling the global water cycle are now discussed, with

reference to research currently underway in a number of institutes around the world.
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2.1 Global Water Budget

A long-standing on-going challenge is to provide a reliable estimate of the annual mean

global water cycle. An estimate made by Trenberth et al. (2007) using observational data is

shown in Fig. 1. However, there are large uncertainties in many of the estimated numbers,

not least because quantitative knowledge of the various components and their variability is

still fairly limited because of a lack of reliable data for surface evaporation, oceanic

precipitation, terrestrial runoff and several other fields. A further challenge is to determine

the interannual and longer-term variability of this cycle, particularly those aspects that may

be associated with climate change.

Global warming is likely to intensify the global hydrological cycle and bring changes to

the water vapour transport, changing the magnitude and spatial distribution of freshwater

fluxes between atmosphere, land and sea ice into the ocean (e.g., Held and Soden 2006).

This, in turn, will modify the salinity distribution at the surface of the ocean and could

potentially alter the ocean circulation through effects on its density (Durack et al. 2012).

An appropriate representation of these fluxes by general circulation models (GCMs) is

essential in order to make confident projections of future characteristics of the thermo-

haline circulation, in particular its stability, under global warming conditions. It is there-

fore very important to investigate the skill of climate models to simulate large-scale water

vapour transports and their mechanisms.

Fig. 1 The hydrological cycle. Estimates of the main water reservoirs, given in plain font in 103 km3, and
the flow of moisture through the system, given in slant font (103 km3 year-1). From Trenberth et al. (2007),
their Fig. 1. � Copyright 2007 AMS (http://www.ametsoc.org/pubs/cr_2005.html)
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A water budget quantifies systematically the flows and reservoirs of water in the water

cycle based on the principle of the conservation of mass. That principle assumes that water

is neither created nor destroyed in the system. However, GCMs may be subject to para-

metrisation errors which affect water conservation and thus the closure of the water budget.

It is essential that such problems are addressed in order that reliable estimates of future

changes in the water cycle can be made. For example, Collins et al. (2011) showed a

budget diagram of long-term means of global water fluxes from the various sub-models in

a climate configuration of the Met Office Unified Model (MetUM), HadGEM2-AO. The

fluxes were shown to be close to equilibrium, with the exception of the atmosphere. This

apparent imbalance has been traced to a lack of water conservation in two areas of the

atmospheric model and has since been corrected (J. Rodriguez, personal communication,

May 2012). In addition, Collins et al. (2011) showed that a net freshwater flux field must be

applied to the ocean in order to balance the lack of iceberg-calving processes in the GCM

(see Sect. 2.3.4), a problem which is common to many climate models.

Global water conservation is usually represented with an equation that involves verti-

cally integrated quantities:

oW

ot
þrH �Q ¼ E � P

where the first term on the left-hand side represents the precipitable water tendency, the

second term represents the moisture flux divergence, E is the evapotranspiration from the

surface and P the precipitation at the surface. Excess of evaporation over precipitation is

balanced by the local rate of change of moisture storage and the loss through horizontal

advection. Budget equations like the one above have been used before to estimate quan-

tities like moisture, energy and momentum, deducing the fluxes as a residual, after com-

puting the other variables in the budget equation (e.g., Trenberth et al. 2007).

Rodrı́guez et al. (2011) used this method to estimate the freshwater fluxes from the

atmosphere and land surface over large-scale ocean basins, in both a range of MetUM

models and in reanalyses. This showed an excess of evaporation in the tropical-subtropical

Atlantic in the models, which is manifested mainly as a lack of water vapour imported

across the African boundary. Models also have difficulties in representing the surface

fluxes over the tropical-subtropical Pacific. The freshwater budget in this region suffers

from too much import of water vapour across the Indonesia boundary and an excessive

export of water vapour to the mid-latitude regions. This surplus of water vapour from the

tropical-subtropical regions makes, in turn, the surface fluxes over the oceans too fresh at

mid-latitudes and can also produce a fresh bias over the Southern Ocean.

The above errors are consistent with an excessively strong hydrological cycle. Water vapour

recycles between 12 and 24 % faster in climate models, compared with estimates from obser-

vations (Rodriguez et al. 2011). The shorter water vapour residence times in the GCMs are the

effect of a combination of an enhanced global precipitation rate and a deficit in the water content of

the atmosphere (e.g., Demory et al. 2012). These characteristics are related to the tendency for

models to rain more frequently and with less intensity than observed (Stephens et al. 2010).

The characteristics of the water cycle in various regions in the globe are now being

studied. Regional water budgets on different timescales are being evaluated, and the

capacity of the GCMs to simulate the workings of the water cycle in those areas is being

assessed. Preliminary analysis of the monthly mean water budget components in Central

Africa in a recent climate configuration of the MetUM (J. Rodriguez, personal commu-

nication, May 2012) suggests that, although the seasonal variability of rainfall is well

represented, the moisture convergence is underestimated for most of the year. This makes

556 Surv Geophys (2014) 35:553–575
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local evaporation the dominant source of model precipitation for most of the year, instead

of moisture convergence from large-scale circulation as suggested by reanalyses. This may

be related to model resolution, as discussed in the next section.

2.2 The Role of Model Resolution

It is widely believed that scale interactions (between short/small and long/large scales in

time and space, and vice versa) are an important feature of the climate system, particularly

in the tropics (e.g., Slingo et al. 2003). Consequently, a change in the resolution of a

climate model can be expected to affect the simulated climate, not only at the scale of the

grid point/time-step but also at much larger scales. Examples where such impacts have

been documented include the simulation of ocean eddies, and associated improvements in

the mean ocean state, in the Hadley Centre Coupled Eddy-permitting model (HadCEM;

Roberts et al. 2004), improvements in the simulated tropical climate due to the repre-

sentation of small-scale atmosphere–ocean interactions in the High-resolution Global

Environment Model (HiGEM; Shaffrey et al. 2009), and improvements in mid-latitude

variability through reduced North Atlantic SST biases (Scaife et al. 2011).

These and many other studies have resulted in several modelling centres actively

pursuing increased horizontal and vertical resolution in various components of both

regional and, increasingly, global models for a range of timescales. The results of some of

these advances are mentioned in the sub-sections of Sect. 2.3, while, in the next sub-

sections, we focus specifically on the relationship between model resolution and global

precipitation, and the issue of resolved versus parametrised processes.

2.2.1 Influence of Resolution on Global Precipitation

In order to understand the systematic impact of model resolution in the simulation of the

hydrological cycle, it is useful to use hierarchy of models with the same physical configu-

ration. Demory et al. (2012) used a series of simulations of the MetUM climate configuration

HadGEM1 (Martin et al. 2006) and a prototype configuration of HadGEM3 (Hewitt et al.

2011), with a wide range of horizontal resolutions, to investigate the impacts of resolution on

the mean simulated model precipitation at large spatial scales. Demory et al. (2012) found that

there is a redistribution of precipitation from ocean to land with resolution and that the ratio of

E to P over land decreases with resolution (Fig. 2, black dots and circles), bringing the ratio

closer to the range of observed values estimated by Trenberth et al. (2007, 2011). This

suggests that higher resolution models decrease moisture recycling over land.

These changes are associated with an increase in the transport of moisture from ocean to

land at higher resolution (red squares on Fig. 2). By decomposing the moisture conver-

gence into mean and transient (which is related to eddies) terms, it has been found that the

increased moisture convergence mainly comes from the mean flow, but that the transient

term, associated with storminess, becomes more important with increased resolution

(M.-E. Demory, personal communication, May 2012). Demory et al. (2012) conclude that a

resolution of at least 50 km is necessary to simulate the mean global hydrological cycle.

2.2.2 Resolved Versus Parametrised Processes in Models

With the increase in computing power in recent years, the influence of resolving hydro-

logical processes, compared with using physical parametrisations, on the distribution and

variability of precipitation in global models has become a key area of interest among
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modelling centres. Many groups are now using very high resolution (*km-scale) simu-

lations, in which convection is represented explicitly without the need for a convective

parametrisation scheme, in order to evaluate and understand the deficiencies in the sim-

ulations which use parametrised convection. Such studies reveal that convection para-

metrisations are often associated with poor representation of the diurnal cycle of

precipitation over land (e.g., Bechtold et al. 2004; Wang et al. 2007; Hohenegger et al.

2009; and see Sect. 2.3.1.2), over-persistence of light rain and too few dry days (e.g.,

Stephens et al. 2010; Kendon et al. 2012) and differences in the sign of simulated soil

moisture–precipitation feedback (e.g., Hohenegger et al. 2009; and Sect. 2.3.2).

Variability on longer timescales (e.g., 20–50 day variability associated with the Madden

Julian Oscillation (MJO), monsoon active/break cycles, etc.) is also often poorly repre-

sented in models (e.g., Kim et al. 2009), both in terms of total variance and also the

direction, speed and extent of propagation. Predicting such variations, and understanding

how they may change in a future climate, is crucially important to many tropical regions,

and is therefore a key area of research among modelling groups. ‘Cascade’, a UK con-

sortium project funded by the Natural Environment Research Council (NERC), seeks to

better understand the interaction between tropical convection at the cloud-system scale and

larger-scale processes including the MJO. Holloway et al. (2012) showed ‘Cascade’

simulations of the tropical atmosphere over a very large domain at several different hor-

izontal resolutions and with both parametrised and explicit convection versions for a

10-day MJO case study in April 2009. They found that the explicit convection simulations

had precipitation distributions that were much more similar to observations than the

Fig. 2 Evaporation to precipitation ratio (black dots) and moisture convergence to precipitation ratio
(red squares) over land for each member of HadGEM1-A (solid) and HadGEM3-A (clear) models with various
resolutions. The lines are extrapolated polynomial fits based on N48, N96 and N144 for HadGEM1-A and
N96, N216, N320 and N512 for HadGEM3-A. OBS corresponds to E/P estimates from Trenberth et al.
(2007, 2011). The grey bar includes estimates from previous studies. See Demory et al. (2012) for more
details. Figure provided by M-E Demory, May 2012
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simulations with parametrised convection, although they found that this did not necessarily

result in a better MJO simulation.

Comparing precipitation from a 1.5 km resolution regional model simulation over the

UK with gridded hourly radar rainfall, Kendon et al. (2012) showed that, although the

1.5 km model appears to have a tendency for heavy rain to be too intense, it gives a much

better representation of its spatial and temporal structure. With parametrised convection,

heavy rain events are not heavy enough and tend to be too persistent and widespread. There

are also not enough short-duration high-peak intensity events. These biases are signifi-

cantly reduced in the 1.5 km model. In addition, the 1.5 km simulation shows a much

better representation of the occurrence of dry days.

Similar discussions regarding model horizontal resolution concern the storage, move-

ment, and quality of water at and near the land surface. A recent opinion paper by Wood

et al. (2011) discusses the need for much higher horizontal resolution in continental- or

even global-scale models in order to include detailed information about these processes.

They suggest that ‘‘Adequately addressing critical water cycle science questions and

applications requires systems that are implemented globally at much higher resolutions, on

the order of 1 km, resolutions referred to as hyperresolution in the context of global land

surface models’’. However, they note the need for improvements in satellite remote sensor

resolution and the development of advanced downscaling methodologies, as well as

improvements to in situ observation networks, in order to support such a modelling effort.

We have described research which indicates that improving model horizontal resolution

can have significant benefits for modelling the hydrological cycle. However, improved

representation of hydrological processes through better physical parametrisations is also

crucial. This is discussed in the next section.

2.3 Representing Hydrological Processes and Phenomena

As mentioned in the introduction, although great advances have been made in global

modelling in recent decades, there are still large uncertainties in many processes, such as

clouds, convection, and coupling to oceans and the land surface. In the previous section,

we discussed the influence of model resolution on these uncertainties. In the next sub-

sections, we highlight the role of model physical parametrisations in the representation of

cloud microphysics, convection and precipitation processes, in the interactions between the

atmosphere and the land, the oceans and the cryosphere, and in the representation of one of

the largest seasonal phenomena in the hydrological cycle: the monsoons.

2.3.1 Clouds, Humidity and Radiation

The surface radiation balance is a key determinant of the intensity of the GWC. Decadal

variations in the surface radiation balance during the 20th century are reflected in the

variations in intensity of the GWC, but these are not captured in models. The simulation

of cloud processes and feedbacks by GCMs remains one of the most critical aspects of

climate modelling. In particular, cloud radiative feedbacks remain the primary source of

uncertainty for transient and equilibrium climate sensitivity estimates (e.g., Randall et al.

2007; Dufresne and Bony 2008) and play a critical role in anthropogenic aerosol-induced

climate forcing (Lohmann and Feichter 2005).

In addition, clouds play a key role in the hydrological cycle and in the large-scale

atmospheric circulation, at both planetary and regional scales. By affecting precipitation

and atmospheric dynamics, uncertainties in cloud and moist processes remain a major
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concern for virtually all aspects of climate modelling and climate change research. In a

context where the climate modelling community is increasingly focussing its efforts on

regional climate change impacts and biogeochemical (e.g., carbon and aerosols) climate

feedbacks, improving our understanding of cloud-climate interactions and assessing our

confidence in the simulation of cloud processes and feedbacks in climate models is

imperative.

In the following sub-subsections, we discuss current research on the parametrisation of

cloud and precipitation processes, we highlight common systematic errors such as failure

to reproduce the diurnal cycle of clouds and precipitation over land, and we discuss issues

surrounding the representation of hydrological processes in the mid-latitudes.

2.3.1.1 Model Representations of Cloud and Precipitation and Their Evaluation The

formulation of cloud microphysical parametrisations is very important for simulation of the

hydrological cycle and for model evolution because they modify the three-dimensional

structure of temperature and humidity directly (e.g., condensation/evaporation) or indi-

rectly by interacting with other parametrisations (e.g., radiation) and the large-scale

dynamics. Therefore, the evaluation and improvement of these parametrisations is crucial

to improving our weather forecasts or increasing our confidence in climate projections.

Improvements to the representation of clouds, humidity and radiation in models have

been a focus in several modelling groups in recent years (e.g., Collins et al. 2006; Wilson

et al. 2008; Salzmann et al. 2010). For example, in the MetUM, the new PC2 cloud scheme

(with prognostic cloud and condensate) improves cloud and humidity distributions and, in

combination with more advanced aerosol schemes, results in improved radiation balance

(Walters et al. 2011).

Model Intercomparison projects, including the Third Climate Model Intercomparison

Project (CMIP3), have always exhibited a large range of cloud-climate feedbacks (Webb

et al. 2006; Dufresne and Bony 2008). There are so many factors or physical processes that

may potentially contribute to this spread, that interpreting the origin of inter-model dif-

ferences has turned out to be difficult, and that designing specific observational tests to

assess the different feedbacks has remained elusive.

Satellites have proven to be very helpful tools for model evaluation because they

provide global or near-global coverage, thereby giving a representative sample of all

meteorological conditions. However, satellites do not measure directly those geophysical

quantities of interest, such as the amount or phase of cloud condensate. They measure the

intensity of radiation coming from a particular area and direction in a particular wave-

length range (Bodas-Salcedo et al. 2011). A great deal of research has been conducted into

producing satellite retrievals of many different geophysical variables, such as water

vapour, atmospheric temperature, cloud properties and land surface products (e.g., Chahine

et al. 2006; Wylie et al. 2005; Schaaf et al. 2002). Satellite retrievals have been used in

numerous studies to analyse the performance of NWP and climate models (e.g., Allan et al.

2007; Pincus et al. 2008).

In the last two decades, a different avenue has been followed to exploit satellite data in

model evaluation: the use of forward modelling of basic satellite measurements from

model fields (Bodas-Salcedo et al. 2011). Simulators have been developed that mimic the

observational process and essentially acknowledge the issue that a retrieval produced by a

satellite might not be directly comparable to a model variable, giving rise to multiple

values of geophysical quantities from different sensors and retrieval algorithms. A pilot

model intercomparison using the CFMIP Observation Simulator Package (COSP;
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Bodas-Salcedo et al. 2011) was carried out using four climate models. The study focussed

on a region in the north Pacific, characterised by a rich mixture of different cloud types,

and showed that, while all models capture the basic features of these diagnostics, they also

show a lack of low-level, non-precipitating cloud (cumulus congestus and mixed-phase

layered clouds). In future, this analysis will be extended to other models as part of the

second Cloud Feedback Intercomparison Project (CFMIP-2) which is part of CMIP5 (see

http://cfmip.metoffice.com/CFMIP2.html).

2.3.1.2 Diurnal Cycle of Clouds and Precipitation There is a vast amount of evidence

that shows that the diurnal cycle of precipitation is misrepresented in models (e.g., Dai and

Trenberth 2004; Bechtold et al. 2004; Stratton and Stirling 2011). All show that the peak in

precipitation and outgoing longwave radiation over land occurs several hours too early.

Realistic representation of the diurnal cycle of clouds and precipitation in models is

important because the diurnal cloud–sun correlation rectifies onto the mean radiation

balance, affecting climate simulation and weather prediction (Wang et al. 2007, and ref-

erences therein). Studies with high-resolution models which explicitly represent convec-

tion show improved representation of the diurnal cycle (e.g., Clark et al. 2007; Hohenegger

et al. 2009; Love et al. 2011; Kendon et al. 2012; and see Fig. 3), with convection peaking

later in the day. Studies with global climate models which use ‘‘superparametrisation’’

techniques (where thousands of embedded cloud-resolving models (CRMs) are used to

handle sub-grid cloud physics instead of parametrisations) show similar improvements in

the diurnal cycle of rainfall over land (e.g., Pritchard 2011).

Wang et al. (2007) attempted to address this shortcoming of convective parametrisa-

tions by changing the entrainment/detrainment rates for deep and shallow convection. They

found that this prolonged the development and reduced the strength of deep convection,

Fig. 3 Diurnal cycle of rainfall (mm/h) in radar and 1.5 and 12 km Regional Climate Models. Results
correspond to years 2003–2010 in the radar, and years 1990–1997 (solid) and 2000–2007 (dotted) in the
models. Plotted is the mean rainfall at each hour of the day, across all southern UK grid boxes and all
8 years in the respective data sets. From Kendon et al. (2012). � Copyright 2012 AMS (http://
www.ametsoc.org/pubs/cr_2005.html)
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thus delaying the mature phase and reducing the amplitude of the convective precipitation

diurnal cycle over the land. In addition, they also found changes in the temporal variability

of daily mean precipitation and the partitioning of stratiform and convective rainfall in the

model. Stratton and Stirling (2011) made a similar attempt by changing the deep con-

vective parametrisation over land in the MetUM to make the entrainment vary with the

height of the lifting condensation level. This reduced the depth of the convection early in

the day and delayed the development of deep convection by around 2 h, thereby improving

the timing of maximum precipitation. The amplitude of the diurnal harmonic of precipi-

tation was also improved. However, although the amount of precipitation in the evening

was increased, Stratton and Stirling (2011) noted that further improvements are required

for the decay phase of the diurnal cycle.

2.3.1.3 Precipitation in Mid-latitude Cyclones Mid-latitude cyclones are the primary

means of transporting energy and moisture poleward at mid-latitudes and can bring severe

weather in terms of heavy rain, leading to flooding, and damaging strong winds to major

population centres. Therefore, determining whether the physical parametrisation of clouds

and cloud properties used in models are providing realistic representations of these phe-

nomena is important. Recent studies have shown a response of the storm tracks in climate

change experiments, with the storm track moving poleward in some models (e.g., Meehl

et al. 2007). This seems to be accompanied by a consistent poleward shift of mid-latitude

precipitation (e.g., Held and Soden 2006). However, the poleward shift in the storm track is

not seen in all models or in all locations. Also, the change in the distribution of the

intensity of cyclones under climate change is not consistent across models, and the

mechanisms causing these changes are still unclear.

A good simulation of mid-latitude cyclones is a prerequisite to capturing the main

characteristics of extreme events in the present-day climate and to having confidence in the

response of cyclones to climate change. Field et al. (2011) assessed how well the cloud and

precipitation is predicted in the MetUM by physical parametrisations in the presence of an

accurate thermodynamic and dynamic representation of the atmosphere. The main dif-

ferences seen between the model and the satellite data were a lack of cloud above 2 km in

the model associated with the main precipitation region.

Representing mid-level layer cloud is a challenge for global models (e.g., Webb et al.

2001). One significant obstacle is that the thickness of model levels at altitudes of *15 km

is typically around 600 m, which is similar to the thickness of altostratus/cumulus layers

(Field et al. 2011). The second challenge is that even if thin mid-level supercooled liquid

cloud can be produced by a model, it will be efficiently transformed to ice by the ice

nucleation scheme and fall out. This formation of ice reduces both the lifetime and radi-

ative effect of these clouds. This has possible implications for the radiative effect of mid-

latitude cyclones on the climate system (Field et al. 2011). Increased vertical resolution is

now being implemented in many models, and studies such as Field et al. (2011) are

informing the development of microphysical parametrisation schemes.

2.3.2 Land–Atmosphere Interactions

The land surface is an important component of the climate system. It controls the parti-

tioning of available energy at the surface between sensible and latent heat, and the par-

titioning of available water between evaporation and runoff. The state of the land surface

has the potential to influence large-scale circulations (Taylor 2008). Variations in rainfall
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influence soil moisture and vegetation, which in turn affect the partition of surface heat and

moisture fluxes into the atmosphere. If the large-scale circulation is sensitive to surface

fluxes, and the surface responds to climate anomalies with sufficient amplitude and spatial

coherence, conditions for feedback may be met. Monsoon circulations potentially provide

these conditions, driven by gradients in ocean and land surface fluxes, with the transport of

oceanic moisture into the continent being sensitive to land surface conditions.

Taylor (2008) demonstrated that intraseasonal feedbacks can occur between soil

moisture and rainfall in monsoon regions such as West Africa (Fig. 4). Increases in soil

moisture associated with a wet spell induce a cool high pressure anomaly, favouring

Fig. 4 Evolution in time and longitude of the differences (wet minus dry) in intraseasonal composites
(defined by minima (wet) and maxima (dry) in filtered surface heat fluxes averaged over a 12.5�–17.5�N,
2.5�W–2.5�E subdomain), averaged between 12.5� and 17.5�N. a Meridional wind at 925 hPa (shaded;
m s-1) and cold cloud coverage at a threshold of -40 �C (contour; %). b Estimated surface heating (shaded;
W m-2) and 925-hPa temperature (contours; �C). From Taylor (2008). � Copyright 2008 AMS (http://
www.ametsoc.org/pubs/cr_2005.html)
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southerly flow to the west and northerly flow to the east. The induced meridional flow

influences rainfall via moisture advection, triggering a westward shift in rain, soil moisture,

and low-level temperature. Thus, maxima in cold cloud (indicating deep convection) tend

to follow maxima in southerly flow with a lag of the order of 1 day (Fig. 4a), and negative

surface heating anomalies due to increased convection, with associated negative low-level

temperature anomalies, also propagate westwards (Fig. 4b). Douville et al. (2001) dem-

onstrated that increased soil moisture over the Sahel region is also associated with

increased monsoon rainfall on the seasonal timescale. However, they also showed that the

South Asian monsoon does not respond in the same way. This is discussed further in Sect.

2.3.5.

Koster et al. (2004) queried whether there exist specific locations (‘‘hot spots’’) on the

Earth’s surface for which soil moisture anomalies have a substantial impact on precipi-

tation. In the Global Land Atmosphere Coupling Experiment (GLACE), a dozen climate

modelling groups performed the same highly controlled numerical experiment as part of a

coordinated comparison project, allowing a multi-model estimation of the regions on Earth

where precipitation is affected by soil moisture anomalies during Northern Hemisphere

summer. These included the central Great Plains of North America, the Sahel, equatorial

Africa, and India, and, to a lesser extent, South America, central Asia, and China. How-

ever, there was extensive inter-model variability in the strength and positioning of the ‘‘hot

spots’’, a reflection of ongoing uncertainty in the proper way to represent in models the

physical processes defining land–atmosphere coupling strength.

Comer and Best (2012) applied the GLACE approach to a recent climate configuration

of the MetUM and showed a significant strengthening of the atmosphere’s response to soil

moisture compared with the earlier version, HadAM3 (the third Hadley Centre Atmo-

spheric Model), which was one of the weakest of the models assessed in the GLACE

intercomparison project. This strengthening was particularly evident over the Sahel region

of Africa, which was identified by the GLACE project as a key ‘‘hot-spot’’ region for land–

atmosphere coupling (Koster et al. 2004). Comer and Best (2012) could not attribute this

improvement to developments in the land surface scheme; instead, it appeared to be mainly

due to improvements in the atmospheric parametrisations and possibly also the model’s

vertical resolution. In addition to testing the coupling strength in the updated model, Comer

and Best (2012) also demonstrated a dependency of the coupling strength on the way in

which soil parameters are specified.

Understanding the nature and timescale of land–atmosphere coupling is an area of

active research around the world. Various studies have shown that there may be both

positive and negative feedbacks between soil moisture and precipitation depending on the

time and space scales considered (e.g., Cook et al. 2006; Taylor 2008; Hohenegger et al.

2009; Schlemmer et al. 2012; and references therein). Observations and idealised mod-

elling studies are being used to improve our understanding of land–atmosphere interac-

tions. For example, Schlemmer et al. (2012) investigated the influence of soil moisture and

atmospheric stability on mid-latitude diurnal convection and land–atmosphere exchange

using an idealised cloud-resolving modelling framework and demonstrated a positive soil

moisture–precipitation feedback on a scale of 10–50 km. In contrast, Cook et al. (2006)

showed a negative soil moisture–precipitation feedback in southern Africa that was related

to stronger atmospheric stratification over wet soils and to the formation of anticyclonic

circulations that induced subsidence and divergence at the surface. Hohenegger et al.

(2009) found a similar stabilization of the atmospheric profile over wet soil in summertime

Europe. Furthermore, they found different signs of the soil moisture–precipitation feedback
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in simulations using parametrised convection and simulations using explicitly resolved

convection.

Increasing greenhouse gas concentrations are expected to enhance the interannual

variability of summer climate in Europe and other mid-latitude regions, potentially causing

more frequent heatwaves (e.g., Schär et al. 2004; Clark et al. 2010). Seneviratne et al.

(2006) showed that the increase in summer temperature variability predicted in central and

eastern Europe is mainly due to feedbacks between the land surface and the atmosphere.

Furthermore, they suggested that land–atmosphere interactions increase climate variability

in this region because climatic regimes in Europe shift northwards in response to

increasing greenhouse gas concentrations, creating a new transitional climate zone with

strong land–atmosphere coupling in central and eastern Europe. This highlights the crucial

role of land–atmosphere interactions in future climate change.

Several of the climate models participating in CMIP5 include dynamic vegetation

models (e.g., Collins et al. 2011). Systematic biases in the distribution and variability of

vegetation types in such models may affect surface fluxes of heat and moisture, which

themselves may influence atmospheric temperature and humidity profiles, thereby affect-

ing cloud formation. Large-scale circulation may also be affected, which could have an

impact on non-local sources of precipitation. Martin and Levine (2012) showed how South

Asian summer monsoon rainfall is affected by the inclusion of a dynamic vegetation

scheme in a member of the HadGEM2 model family. They found that systematic increases

in the bare soil fraction in key dust-producing regions, arising due to systematic dry rainfall

biases particularly over India, affected the monsoon circulation through changes in the

radiative balance, while changes in the needleleaf tree fraction over northern Eurasia also

affected the monsoon through changes in winter snow cover. Other work is also ongoing to

understand how such changes in the representation of the land surface during current and

past climate conditions may affect the projected changes in temperature and precipitation

in future.

2.3.3 Ocean–Atmosphere Processes and Interactions

The importance of coupled ocean–atmosphere interactions in climate variability and

change has long been established. Of particular importance is the simulation of the El

Nino–Southern Oscillation (ENSO), a coupled phenomenon whereby warming/cooling in

the tropical Pacific Ocean that takes place at intervals of 2–7 years is associated with a

large-scale tropical east–west seesaw in southern Pacific sea level surface pressure.

Although ENSO originates in the tropical Pacific, it affects global climate and weather

events such as drought/flooding and tropical storms. Therefore, understanding and pre-

dicting ENSO are crucial to both the scientific community and the public. Simulating the

time-mean properties in the tropics has continually been a challenge for coupled GCMs.

Though most models can internally generate the fundamental mechanisms that drive El

Niño properties, most models simulate a mean zonal equatorial wind stress that is too

strong and that has an annual amplitude that is also too strong (Guilyardi et al. 2009). This

has profound effects on ENSO behaviour in that it limits the regimes in which interannual

anomalies can develop.

Persistent systematic errors have been noted in several generations of global coupled

models (Randall et al. 2007). These include a double intertropical convergence zone

(ITCZ) pattern with excessive precipitation off the equator but insufficient precipitation on

the equator, which is often associated with an excessive and overly narrow sea surface

temperature (SST) cold tongue that extends too far west into the western Pacific. SST
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biases and poor variability are also seen in the tropical Atlantic and Indian Oceans,

affecting the simulation of monsoons in these regions, and also in the midlatitude regions

of the Atlantic and the Southern Ocean, affecting the storm tracks (e.g., Scaife et al. 2011).

Development of ocean models with improved vertical and horizontal resolution and

physical parametrisations, in parallel with similar development of their atmospheric

counterparts, is helping to reduce SST biases and improve variability (see Sect. 2.2). The

HadGEM2 Development Team (2011) showed how improvements in both the atmospheric

physical parametrisations (which resulted in improved near-surface winds across the

equatorial Pacific) and changes to the background vertical tracer diffusivity in the upper

500 m of the ocean led to improved SSTs and better simulation of ENSO in the HadGEM2

model family. Several recent climate configurations use the NEMO (Madec 2008) ocean

model (e.g., the MetUM (Hewitt et al. 2011), EC-Earth (Hazeleger et al. 2011) and

CNRM-CM5.1 (Voldoire et al. 2012)). This can also be associated with improved SSTs

(e.g., Fig. 5).

Ocean circulations are a key part of the global water cycle. The climate of Europe is

strongly influenced by the North Atlantic ocean circulation. Variations of the strength of

the Thermohaline Circulation (THC) or the Meridional Overturning Circulation (MOC) are

in several studies implicated as a main driver for decadal and longer timescale changes for

European and Northern hemisphere climate (e.g., Mignot et al. 2007, and references

therein). Likewise, variation in the THC is a commonly attributed mechanism for nonlinear

Fig. 5 Sea surface temperature (K) anomalies with respect to initial conditions for a HadGEM3 r1.1 and
b HadGEM1. From Hewitt et al. (2011). � Hewitt et al. (2011). This work is distributed under the Creative
Commons Attribution 3.0 License
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and abrupt (i.e. decadal scale) climate changes. Yet the observational and model under-

pinning of these hypotheses are at best sketchy making it very difficult to come to firm

conclusions. Reliable quantification of the variability and stability of the THC and its

atmospheric implications in the current and future climate are therefore a major challenge

in climate research.

Projects such as ‘‘Thermohaline Overturning—at Risk?’’ (THOR; http://www.eu-thor.

eu/THOR-in-short.532.0.html) and RAPID-WATCH: Monitoring the Atlantic Meridional

Overturning Circulation (http://www.noc.soton.ac.uk/rapid/rw/index.php) aim to improve

our understanding of the Atlantic MOC. Areas of current work include quantification of the

risk of future shutdown of the MOC driven by salinity changes in the North Atlantic and

Arctic Oceans under climate change. Under climate change, there may be an increase in

the amount of freshwater input into the North Atlantic Ocean due to increased precipitation

and melt water from the Greenland ice sheets. By reducing the density of the surface

waters, this could stop the sinking of dense water in the North Atlantic and lead to a slow

down or even a shutdown of the MOC (e.g., Mignot et al. 2007, and references therein).

Mechanisms of natural variability are also being investigated including interactions

between the MOC, extratropical salinity anomalies and the position of the inter-tropical

convergence zone on centennial timescales. As part of the RAPID-WATCH project, work

is underway using models to find variables that could be used to detect a significant trend in

the strength of the MOC earlier than is possible by observing it directly. Examples could

include temperatures and salinity in certain areas of the Nordic Seas.

2.3.4 The Role of the Cryosphere

The cryosphere encompasses the regions of the Earth’s surface where water is in solid

form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps and ice sheets, and

frozen ground (which includes permafrost). Although the more spectacular parts of the

hydrological cycle may be apparent in the tropics and subtropics, the cryosphere is an

integral part of the global climate system, with important linkages and feedbacks generated

through its influence on surface energy and moisture fluxes, clouds, precipitation,

hydrology, atmospheric and oceanic circulation (see papers included in Bengtsson et al.

2011).

Sea level rise is arguably the most certain consequence of a warming climate, due to

thermal expansion of water and the dependence of ice sheets and glaciers on low tem-

peratures. It is currently thought that melting of the major ice sheets contribute around

1.2 mm of the approx. 3 mm of annual sea level rise (Lemke et al. 2007). An under-

standing of how this will change in the future is a policy driver. The key issue is not

whether sea level will rise, but by how much and how fast. The West Antarctic ice sheet

and Greenland ice sheets each contain enough land-based ice to raise sea level directly by

several metres. The rapid disintegration of either of these ice sheets could cause sea level

rise that is too great, or too fast for many coastal populations and ecosystems to adapt to. In

addition to sea level rise, fresh water from melting of the Greenland ice sheet may con-

tribute to a slowdown of the North Atlantic overturning circulation.

The IPCC Fourth Assessment Report (Meehl et al. 2007) acknowledged that current

models do not adequately treat the dynamic response of ice sheets to climate change, and

that this is the largest uncertainty in assessing potential rapid sea level rise. Many current

climate models do not include an ice sheet model; in order to close the global water budget,

the accumulation of frozen water on the permanent ice sheets is often returned to the
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freshwater cycle via a freshwater flux field (invariant in time) that is applied to the ocean

(e.g., HadGEM2 Development Team 2011). This is necessary because there is no explicit

representation in the model of the flow of ice from accumulation regions to iceberg calving

at the coast.

The challenge for inclusion of ice sheets in GCMs is to develop the physical processes of

interaction between ice sheets and oceans. It is this interaction that has caused the thinning of

ice shelves and the speed-up of peripheral glaciers in both Greenland and Antarctica. The

West Antarctic ice sheet is grounded below sea level and 3 m of sea level rise could result with

glacial calving exceeding the supply of ice from the interior, as the coastline retreats pole-

ward. Ice sheet models (e.g., Rutt et al. 2009) are being used to investigate the contribution of

glacier speed-up and increased ice discharge as icebergs to sea level rise.

Mountain glaciers and ice caps include only a minor fraction of all water on Earth

bound in glacier ice (\1 %) compared with the Antarctic and Greenland ice sheets

([99 %), but their retreat has dominated the eustatic sea level contribution in the past

century (Meier et al. 2007). Mountain glacier schemes are being developed and used

alongside climate change models to make projections of future changes in sea level due to

volume changes in mountain glaciers and ice caps (e.g., Radić and Hock 2011).

Sea ice plays an important role in the climate system through high surface albedo,

insulating the ocean, and influencing the ocean salinity through brine rejection when ice

forms and surface freshening when ice melts. Changes in sea ice under a warming scenario

significantly influence the local water cycle. The Los Alamos sea ice model, CICE, has

been introduced into a number of climate models (e.g., Hewitt et al. 2011; Holland et al.

2012). The use of this community model means that implementations of new physics can

be shared but still allows different modelling centres to use different dynamics and

parametrisations, maintaining model diversity.

2.3.5 Global Monsoons

The monsoons in India, Africa, East Asia represent the largest seasonal redistribution of

water within the hydrological cycle. They are also crucial to the economies of those

countries and the livelihoods of the local population. Accurate predictions of monsoon

onset, variations within the season and the overall seasonal rainfall amount and its regional

distribution, and how these may change in the future, are required for effective agricultural

and water resource management. We therefore focus this sub-section on the wide-ranging

studies of monsoon processes that are underway around the world.

The monsoons are complex large-scale climate phenomena whose simulation has

proved a challenge for modellers for several decades. Many studies have shown sensitivity

to convection and boundary layer parametrisation (e.g., Mukhopadhyay et al. 2010 and

references therein; Hong 2010 and references therein), cloud microphysics and land sur-

face properties (e.g., Douville et al. 2001; Yasunari et al. 2006), as well as model resolution

(e.g., Kim et al. 2008). Idealised sensitivity experiments have shed light on the major

forcing regions, such as orographic forcing from the Himalayas and the Tibetan plateau

(e.g., Boos and Kuang 2010) and the western Ghats (e.g., Wang and Chang 2012), land–sea

contrasts between the Indian peninsula and the surrounding ocean, and sea surface tem-

perature forcing from the Arabian Sea, Bay of Bengal and the equatorial Indian Ocean

(Levine and Turner 2011).

Analysis of the impact of changes to convection parametrisation has provided insight

into how problems with the distribution of precipitation intensity affect mean monsoon

rainfall biases. For example, Mukhopadhyay et al. (2010) showed that different seasonal
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mean rainfall biases produced by different convection schemes applied within the same

mesoscale model could be attributed to differences in the spread of rainfall rates produced

by the schemes, which are related to differences in the amount and vertical distribution of

diabatic heating.

Boos and Kuang (2010) showed that the strength of the South Asian monsoon is

dependent on Himalayan orography, rather than elevated heating over the Tibetan Plateau.

Their model study suggested that, although Tibetan plateau heating locally enhances

rainfall along its southern edge, the large-scale South Asian summer monsoon circulation

is otherwise unaffected by removal of the plateau, provided that the narrow orography of

the Himalayas and adjacent mountain ranges is preserved. Additional observational and

model results presented by Boos and Kuang (2010) suggested that these mountains produce

a strong monsoon by insulating warm, moist air over continental India from the cold and

dry extratropics.

Strong South Asian summer monsoons depend on moisture fluxes across the Arabian

Sea. However, Arabian Sea cold SST biases are common in coupled models (Levine et al.

2012; and Fig. 6), and it has been shown that these significantly reduce monsoon rainfall

(Levine and Turner 2011). Model projections for future monsoons indicate generally small

positive changes in monsoon rainfall, while models also predict warming of Arabian Sea

surface temperatures of a similar order to the magnitude of typical climate model biases in

this region (Levine and Turner 2011). Therefore, it is possible that climate models with

relatively large cold biases in the Arabian Sea are potentially underestimating the impact of

greenhouse gas forcing and associated surface warming on the monsoon (Levine et al.

2012). Similarly, any models with warm Arabian Sea SST biases may overestimate

increases of monsoon rainfall in future climate scenarios as a result of excessive accel-

eration of evaporation.

As mentioned in Sect. 2.3.2, although the basic drivers of the South Asian and West

African monsoon systems are similar (i.e. the seasonal reversal of the land-sea temperature

contrast and the resulting inflow of warm, moist air from the tropical ocean onto the

landmass), the West African monsoon shows an additional significant dependence of

(a) (b)

Fig. 6 Monthly mean seasonal cycle of a monsoon rainfall (65–95�E, 10–30�N) in mm/day for 24 CMIP5
models (colours) compared with a range of observational estimates (OBS; thick black/grey lines), and
b Arabian Sea surface temperature (sea points within 50–75�E, 7.5–30�N) in K for CMIP5 models (colours)
and HadISST (Rayner et al. 2003; black line). See Levine et al. (2012) for more details. Figure provided by
R. C. Levine, May 2012
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rainfall on soil moisture on the seasonal timescale. Douville et al. (2001) showed that water

recycling (where increased evaporation from wetter soil enhances precipitation) has a

stronger influence on the West African monsoon than the South Asian monsoon because

the moisture convergence in the latter region is much larger and itself responds to increased

soil moisture in such a way as to counteract the local enhancement of precipitation. This

illustrates that the soil–precipitation feedback on the monsoons is regionally dependent.

Studies such as that of Turner and Slingo (2011) have indicated that the cooling

associated with increased Eurasian snow cover in boreal spring can be associated with

weakening of the Tibetan anticyclone and weaker upper level easterly winds over the

monsoon region in summer, as a result of the reduction in the tropospheric meridional

temperature gradient. However, Turner and Slingo (2011) noted that this response could be

reversed if the opposing changes over the Himalayas and Tibetan Plateau were dominant.

Martin and Levine (2012) demonstrated that the inclusion of dynamic vegetation in the

HadGEM2 model family generated a similar response through changes in the distribution

of needleleaf trees, and the resulting impact on snow cover, over northeast Eurasia.

Simulating monsoons, therefore, requires adequate representation of hydrological pro-

cesses in nearly all components of the climate system. Despite many decades of research

focused on these phenomena, they remain a challenge for model development.

3 Summary

The challenge to quantify and reduce uncertainty in the large-scale response of the global

water cycle is immense, not least because the hydrological cycle involves almost every

component of the climate system. In this review, we have attempted to demonstrate the

vast amount of research which is currently underway to improve our understanding of

hydrological cycle processes and their representation in models. This includes observa-

tional analyses, systematic increases in model resolution, parametrisation development,

inclusion of Earth system processes and idealised modeling studies.

The role of resolution in the representation of the hydrological cycle is complex: there is

evidence that global models require a horizontal resolution of at least 50 km in order to

represent the global hydrological cycle, while km-scale resolution facilitates realistic

representation of rainfall distribution and variability on a local scale, and may be required

for other areas of the hydrological cycle such as the storage and movement of water

through the land surface. Increased vertical resolution may also be required in order that

layer cloud processes can be represented.

The realism of rainfall in a model is a key indicator of its skill in representing the

underlying physical processes, and hence for projecting future changes in rainfall. In par-

ticular, the spatial and temporal structure of rainfall is arguably more important than the

absolute rainfall amount, which is typically used to assess model skill. We have highlighted

studies which indicate that explicit representation of convective processes can improve the

spatial and temporal structure of rainfall, but such models are still very expensive to run.

Therefore, there is a need for such experiments to inform the development of improved

parametrisations. Of particular interest in future will be whether models with explicit treat-

ment of convection show a change in the spatial and temporal characteristics of heavy rainfall

in a warmer climate, since this is unlikely to be captured by coarser resolution models.

Accurately predicting such changes is essential for estimating changes in flood risk.

Development and evaluation of new physical parametrisations across timescales from

daily/monthly/seasonal/decadal/centennial has been shown to be beneficial in several
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modelling centres. Seamless model development improves confidence in predictions across

all timescales and enables separation of local versus remote influences. Idealised modelling

studies are also useful for understanding hydrological cycle processes. As models become

increasing complex, it is essential that the interactions between model processes and their

systematic errors are understood and, where necessary, reduced, in order to facilitate

increase confidence in, and better interpretation of, model projections.

We have highlighted issues in understanding and modelling processes within all of the

components of the hydrological cycle, including atmosphere, land surface, ocean and

cryosphere, and in the interactions between them. Although there is a large amount of

research effort currently being expended in these different areas, there is a need for more

coordinated collaborative activity in order that all may benefit. Studies of phenomena such

as monsoons bring together several of these areas, as well as encompassing a wide range of

timescales.

Multi-model studies such as CMIP5 permit evaluation and quantification of uncertainty

in the response of the global water cycle to climate change. Systematic evaluation of the

sensitivity of climate change projections in CMIP5 models to particular physical para-

metrisations (e.g., convection), processes (e.g., Earth system) and resolution (horizontal

and vertical), along with the use of idealised climate change scenarios, will provide better

understanding of how and why the hydrological cycle may change, and better estimation of

uncertainty in model projections of changes in the global water cycle.
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Abstract A land data assimilation system (LDAS) can merge satellite observations (or

retrievals) of land surface hydrological conditions, including soil moisture, snow, and

terrestrial water storage (TWS), into a numerical model of land surface processes. In

theory, the output from such a system is superior to estimates based on the observations or

the model alone, thereby enhancing our ability to understand, monitor, and predict key

elements of the terrestrial water cycle. In practice, however, satellite observations do not

correspond directly to the water cycle variables of interest. The present paper addresses

various aspects of this seeming mismatch using examples drawn from recent research with

the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of

coarse-scale observations into higher-resolution land surface models, (2) the partitioning of

satellite observations (such as TWS retrievals) into their constituent water cycle compo-

nents, (3) the forward modeling of microwave brightness temperatures over land for

radiance-based soil moisture and snow assimilation, and (4) the selection of the most

relevant types of observations for the analysis of a specific water cycle variable that is not

observed (such as root zone soil moisture). The solution to these challenges involves the

careful construction of an observation operator that maps from the land surface model

variables of interest to the space of the assimilated observations.
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1 Introduction

The water cycle plays a crucial role in Earth’s climate and environment, yet there are still

large gaps in our understanding of its components, particularly at the land surface (Lahoz

and De Lannoy 2013; Trenberth and Asrar 2013). Over the past decade, there has been a

steady increase in the number and types of satellite observations (or retrievals) related to

land surface hydrological conditions, including soil moisture, snow, and terrestrial water

storage (TWS; Bartalis et al. 2007; Bruinsma et al. 2010; Clifford 2010; de Jeu et al. 2008;

Entekhabi et al. 2010; Foster et al. 2005, 2011; Gao et al. 2010; Hall and Riggs 2007; Hall

et al. 2010; Horwath et al. 2011; Kelly 2009; Kerr et al. 2010; Li et al. 2007; Liu et al.

2011b; Njoku et al. 2003; Parinussa et al. 2012; Pulliainen 2006; Rowlands et al. 2005,

2010; Swenson and Wahr 2006; Tedesco and Narvekar 2010; Tedesco et al. 2010; Wahr

et al. 2004).

These observations can be assimilated into land surface models to provide land surface

hydrological estimates that are generally superior to the satellite observations or model

estimates alone (Andreadis and Lettenmaier 2006; Crow and Wood 2003; De Lannoy et al.

2012; de Rosnay et al. 2012a, b; Draper et al. 2012; Drusch 2007; Dunne and Entekhabi

2006; Durand and Margulis 2008; Forman et al. 2012; Houborg et al. 2012; Li et al. 2012;

Liu et al. 2011a; Margulis et al. 2002; Pan and Wood 2006; Pan et al. 2008; Reichle and

Koster 2005; Reichle et al. 2007, 2009; Sahoo et al. 2012; Su et al. 2008, 2010; Zaitchik

et al. 2008).

However, land data assimilation systems must be designed carefully such that a number

of conceptual problems can be overcome and the potential improvements from data

assimilation can be realized. Earlier work addressed the bias between the satellite obser-

vations and model estimates within the assimilation system (De Lannoy et al. 2007; Drusch

et al. 2005; Kumar et al. 2012; Reichle and Koster 2004). Moreover, approaches to effi-

cient error modeling within the assimilation system, including adaptive methods, needed

to be developed (Crow and Reichle 2008; Crow and van den Berg 2010; Reichle et al.

2008a, b). An overview of some relevant earlier literature in the context of the ensemble-

based Goddard Earth Observing System Model, Version 5 (GEOS-5) land data assimilation

system (LDAS) developed at the NASA Global Modeling and Assimilation Office

(GMAO) is provided by Reichle et al. (2009).

Despite the early successes, the design and application of land data assimilation systems

still face additional conceptual problems. While land surface models are flexible in the

design and choice of model variables, satellite observations do not necessarily correspond

directly to the water cycle variables of interest. For example, space-borne microwave

observations can be converted into estimates of snow amount or surface soil moisture, but

the spatial resolution of such microwave-based retrievals is usually much coarser than

desired. Moreover, satellites typically observe electromagnetic properties such as back-

scatter and/or radiances (or brightness temperatures) that are only indirectly related to

snow amounts or soil moisture levels. Furthermore, satellite-observed backscatter and

radiances are at best sensitive to moisture in the top few centimeters of the soil. Infor-

mation on important water cycle components such as root zone soil moisture must

therefore be gained through even more indirect pathways in the land data assimilation

system.

The present paper addresses several major challenges that all relate to a seeming

mismatch between the assimilated observations and the water cycle variables of interest.

This mismatch can be overcome through the careful design of the land data assimilation

system. The conceptual challenges discussed here can be summarized as follows:
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1. How can coarse-scale satellite observations increase our knowledge of land surface

conditions at finer scales (horizontal downscaling), and how can unobserved areas be

updated using information from neighboring observations?

2. How can vertically integrated measurements (such as TWS) be partitioned into their

component variables within the assimilation system?

3. How can satellite radiances (rather than geophysical retrievals) be assimilated to

improve estimates of land surface hydrological conditions (e.g., soil moisture and

snow)?

4. How can the most relevant types of observations be selected for the analysis of a water

cycle component that is not observed (such as root zone soil moisture)?

The present paper illustrates each of these conceptual problems based on recent progress

using the GEOS-5 system for land surface hydrological data assimilation. The examples

use satellite observations of land surface water cycle components from the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging

Spectroradiometer (MODIS), the Gravity Recovery and Climate Experiment (GRACE)

mission, the Advanced Scatterometer (ASCAT), and the Soil Moisture Ocean Salinity

(SMOS) mission for the analysis of soil moisture (AMSR-E, ASCAT, SMOS, GRACE),

snow (AMSR-E, MODIS, GRACE), and TWS (GRACE). After a brief discussion of the

GEOS-5 LDAS, Sect. 2 provides details and references for the various satellite observa-

tions used in the examples. Section 3 addresses each of the above-mentioned challenge

questions in a separate subsection. Results are discussed and summarized in Sect. 4.

Finally, Sect. 5 provides conclusions and a brief outlook on future research directions.

2 Data and Methods

2.1 GEOS-5 Land Data Assimilation System

The GEOS-5 LDAS consists of the NASA Catchment land surface model and an imple-

mentation of the ensemble Kalman filter (EnKF; Evensen 2003). The GEOS-5 EnKF has

also been included in the NASA Land Information System, a comprehensive land surface

modeling and assimilation software framework, so that it can be used with a variety of land

surface models (Kumar et al. 2008a, b). A brief summary of the key characteristics of the

system is provided below. For a more comprehensive discussion, see Reichle et al. (2009)

and references therein.

The Catchment land surface model (hereinafter Catchment model; Ducharne et al. 2000;

Koster et al. 2000) differs from traditional, layer-based land surface models by including

an explicit treatment of the spatial variation within each hydrological catchment (or

computational element) of the soil water and water table depth, as well as its effect on

runoff and evaporation. Within each element, the vertical profile of soil water down to the

bedrock is given by the equilibrium soil moisture profile and the deviations from the

equilibrium profile. The deviations are described by excess and deficit variables for a

0–2 cm (or 0–5 cm) surface layer and for a ‘‘root zone’’ layer that extends from the surface

to a depth zR of 75 cm B zR B 100 cm depending on local soil conditions. The spatial

variability of soil moisture is diagnosed at each time step from the bulk water prognostic

variables and the statistics of the catchment topography. One key feature of the Catchment

model is the groundwater component implicit in the modeling of the water table depth

(through the modeling of the subsurface water profile down to the bedrock). This
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groundwater component is critically important for the assimilation of TWS retrievals

(Sect. 3.2).

The Catchment model also includes a state-of-the-art, multi-layer, global snow model

(Stieglitz et al. 2001). In each watershed, the evolution of the amount of water in the snow

pack (or snow water equivalent; SWE), the snow depth, and the snow heat content in

response to surface meteorological conditions and snow compaction is modeled using three

layers. The soil, vegetation, and snow model parameters used in the Catchment model are

from the NASA GEOS-5 global modeling system (Rienecker et al. 2008).

The EnKF is a Monte-Carlo variant of the Kalman filter, which sequentially updates

model forecasts in response to observations based on the relative uncertainty of the model

and the observations. The key idea behind the EnKF is that the relevant parts of the model

error covariance structure can be captured by a small ensemble of model trajectories. Each

member of the ensemble experiences perturbed instances of the observed forcing fields

(representing errors in the forcing data) and/or randomly generated noise that is added to

the model parameters and prognostic variables (representing errors in model physics and

parameters). The model error covariance matrices that are required for the filter update can

then be diagnosed from the ensemble at the update time. The EnKF is flexible in its

treatment of errors in model dynamics and parameters. It is also very suitable for modestly

nonlinear problems and has become a popular choice for land data assimilation (Andreadis

and Lettenmaier 2006; Durand and Margulis 2008; Kumar et al. 2008a, b; Pan and Wood

2006; Reichle et al. 2002a, b; Su et al. 2008; Zhou et al. 2006).

To realize the potential benefits from data assimilation, the assimilation system must be

supplied with appropriate input parameters for the description of model and observation

errors. For an ensemble-based system such as the GEOS-5 LDAS, for example, standard

deviations, spatial and temporal correlations, and cross-correlations must be specified for

the perturbations that are applied to each ensemble member. A detailed discussion of the

error parameters in the examples discussed here is beyond the scope of the paper. The

reader is referred to the references provided with each example as well as the overview

discussion of Reichle et al. (2009).

2.2 Assimilated Observations

The data assimilation examples discussed in this paper use various types of satellite

observations from a number of polar orbiting sensors/platforms, including passive and

active microwave observations (AMSR-E, SMOS, and ASCAT), visible and near-infrared

observations (MODIS), and gravimetric observations (GRACE).

AMSR-E, which operated with nominal performance between 2002 and 2011, is a

scanning, dual polarization radiometer that measured microwave emission from the Earth

at six frequencies (6.9, 10.7, 18.7, 23.9, 36.5, and 89.0 GHz), ranging in resolution from

*50 km at 6.9 GHz to *5 km at 89.0 GHz (Knowles et al. 2006). Its successor, AMSR2,

was launched in May 2012 (http://www.jaxa.jp/projects/sat/gcom_w/index_e.html). The

training and validation of the empirical microwave radiative transfer model for snow-

covered land surfaces in Sect. 3.3.2 uses the 10.7, 18.7, and 36.5 GHz AMSR-E brightness

temperatures, while the snow assimilation example in Sect. 3.1 uses SWE retrievals that

are based on the difference between the 18.7 and the 36.5 GHz brightness temperatures

(Kelly 2009). The soil moisture assimilation examples in Sect. 3.4 use surface (top 1 cm)

soil moisture retrievals that are derived from the 6.9 and 10.7 GHz brightness temperatures

(de Jeu et al. 2008; Njoku et al. 2003).
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SMOS was launched in 2009 and its Microwave Imaging Radiometer with Aperture

Synthesis (MIRAS) sensor provides multi-angular L-band (1.4 GHz) brightness tempera-

ture observations at horizontal and vertical polarization and a nominal spatial resolution of

43 km (Kerr et al. 2010). SMOS brightness temperatures are used in Sect. 3.3.1.

ASCAT is a 5.3 GHz radar system that illuminates the Earth’s surface and measures the

energy scattered back to the instrument. The ASCAT surface (top 1 cm) soil moisture

retrievals used in Sect. 3.4.2 are derived from these backscatter measurements (Bartalis

et al. 2007; Wagner et al. 1999) and are provided in units of degree of saturation.

MODIS (2000-present) provides visible and near-infrared observations from which

snow cover fraction (SCF) can be retrieved under clear-sky conditions (Hall and Riggs

2007). High-resolution (500 m) MODIS SCF retrievals are in Sect. 3.1.

Through the measurement of gravitational anomalies associated with the accumulation

(or loss) of mass near the Earth’s surface, GRACE provides approximately monthly, basin-

scale ([150,000 km2) estimates of variations in TWS, which includes snow, ice, surface

water, soil moisture, and groundwater (Bruinsma et al. 2010; Horwath et al. 2011; Rodell

et al. 2009; Rowlands et al. 2005, 2010; Swenson and Wahr 2006; Tang et al. 2010; Wahr

et al. 2004). The assimilation experiments of Sect. 3.2 use GRACE TWS retrievals.

2.3 Validation Data and Approach

For each of the examples presented in Sect. 3, the output from the assimilation system was

evaluated against independent data from various sources. In Sect. 3.1, in situ SWE mea-

surements from United States Department of Agriculture Snowpack Telemetry (SNOTEL;

Schaefer et al. 2007) network sites in Colorado were used for evaluation, along with snow

depth measurements from National Oceanic and Atmospheric Administration Cooperative

Observer Program (COOP; http://www.ncdc.noaa.gov) sites.

SWE estimates for the Mackenzie River basin, used for evaluation in Sect. 3.2, were

derived from the daily snow depth product of the Canadian Meteorological Centre (CMC)

daily snow analysis (Brasnett 1999; Brown and Brasnett 2010) at a horizontal resolution of

approximately 24 km. The CMC snow analysis is based on optimal interpolation of in situ

daily snow depth observations and aviation reports with a first-guess field generated from a

snow model driven by output from the CMC weather model. Using the snow class map

shown in Sturm et al. (1995), SWE estimates were obtained by multiplying the CMC snow

depths with the Sturm et al. (2010) snow densities. Furthermore, runoff estimates for the

Mackenzie River basin and its major sub-basins provided by the Global Runoff Data

Center (GRDC; http://www.bafg.de/GRDC) were used in Sect. 3.2.

The radiative transfer models of Sect. 3.3 were evaluated with AMSR-E and SMOS

microwave brightness temperatures using a split sample approach in which one portion of

the satellite brightness data was used for calibration or training and another, different

portion was used for evaluation.

In situ profile soil moisture observations used for evaluation in Sect. 3.4 are from the

United States Department of Agriculture Soil Climate Analysis Network (SCAN)/SNO-

TEL (Schaefer et al. 2007) network in the contiguous US and from the Murrumbidgee Soil

Moisture Monitoring Network (Smith et al. 2012) in Australia. Both sets of measurements

were subjected to extensive quality control steps, including automatic detection of prob-

lematic observations and a visual inspection of the time series prior to using the data for

evaluation.
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Metrics used for skill assessment include the bias, root mean square error (RMSE), and

time series correlation coefficient (R). When specified, anomalies were computed by

removing a seasonally varying climatology from the data before computing the metrics.

3 Results

3.1 Assimilation of Sparse and Coarse-Scale Observations

Snow is an important component of the land system because of its strong impact on the

land surface water and energy balance, weather, climate, and water resources (Barnett et al.

2005). However, land surface models often represent snow processes poorly. Satellite

observations of SWE can be retrieved from passive microwave sensors, but they are only

available at relatively coarse resolution. Moreover, SWE retrievals, like most satellite

observations, do not provide complete spatial and continuous temporal coverage due to

orbit or sensor limitations. The challenge is therefore to design an assimilation system that

can use coarse-scale satellite observations to provide enhanced model estimates at the finer

scales of interest (horizontal downscaling) and that can also propagate the information to

intermittently unobserved areas.

Using AMSR-E SWE retrievals and MODIS SCF observations, De Lannoy et al. (2010,

2012) developed a data assimilation and downscaling technique for estimating fine-scale

(1 km) snow fields using coarse-scale (25 km) SWE retrievals and fine-scale (500 m) SCF

retrievals for a domain in Northern Colorado, USA. In their study, the authors used the LIS

version of the GEOS-5 EnKF together with the Noah land surface model (Ek et al. 2003)

(rather than the GEOS-5 LDAS and the Catchment model used elsewhere in this paper).

The Noah model simulates a single snow layer with two prognostic variables for SWE and

snow depth. The default LIS soil, vegetation, and general parameter tables for Noah were

used, including a Noah-specific maximum snow albedo.

Figure 1 shows schematically how the coarse-scale SWE retrievals are used. The fine-

scale model grid is represented by the dashed lines in the figure. The coarse-scale grid of

the SWE observations is represented by the solid lines and light/dark gray shading, and the

center points of individual SWE retrievals are marked with crosses. Let us now consider

the analysis update of the fine-scale model grid cell indicated by the solid black square.

First, it is important to emphasize that the coarse-scale SWE retrievals are not compared

directly to the SWE estimate at the fine-scale model grid cell. Rather, the model SWE is

aggregated to the coarse grid of the retrievals, that is, the fine-scale model forecast is

mapped into the coarse-scale observation space. This aggregation is part of the observation

operator that maps the model states to the observations. Observation-minus-model-forecast

residuals (or innovations) are then computed at the coarse scale of the observation space.

The Kalman gain matrix transforms the (observation-space) innovations into the (model-

space) increments. It is computed from error correlations between the model states at the

fine scale and the model-predicted measurements at the coarse scale. Finally, the incre-

ments are added to the (fine-scale) model forecast in the analysis update. See De Lannoy

et al. (2010) for a discussion based on equations.

Second, multiple coarse-scale SWE retrievals in the vicinity of the fine-scale model grid

cell in question are used for the analysis update. Specifically, the update uses the three

coarse-scale SWE retrievals marked by black crosses that are within a given radius

(indicated by the white semi-circle) around the fine-scale model grid cell in question

(Fig. 1). Note that this model grid cell would be updated even if the SWE retrieval directly
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covering it were unavailable—the two neighboring SWE retrievals (dark gray shading)

would still contribute to the update. The connection between the neighboring SWE retri-

evals and the model grid cell in question relies on horizontal model error correlations that

are due to, for example, errors in large-scale model forcing fields such as snowfall or air

temperature.

To assimilate SCF, the Noah model snow depletion curve acts as the observation

operator that converts fine-scale modeled SWE into SCF estimates. Unlike binary indi-

cators of snow presence, the continuous SCF observations used here can thus be assimi-

lated with an EnKF, taking advantage of the distribution of SCF values across the

ensemble. Snow-free or fully snow-covered conditions in the model-forecast ensemble

were addressed by supplementing the EnKF with rule-based update procedures (De

Lannoy et al. 2012). If at a given time and location all members of the model-forecast

ensemble are snow-free but the SCF observation indicates the presence of snow, then a

nominal amount of snow is added to the model forecast. If all forecast ensemble members

have full snow cover and the observed SCF indicates less than full cover, then the model-

forecast SWE and snow depth are reduced by a fixed fraction.

Figure 2 shows several observed and modeled snow fields for one snow season. The top

row shows the coarse-scale (25 km) AMSR-E SWE retrievals, with data missing when the

satellite swath does not fully cover the study area. MODIS fine-scale estimates of SCF,

shown in the second row, are available only for clear-sky conditions. The bottom four rows

of Fig. 2 show that the assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS

SCF observations both result in realistic fine-scale spatial SWE patterns.

Through a quantitative validation of the assimilation results with independent mea-

surements at individual SNOTEL and COOP sites over the course of 8 years, De Lannoy

et al. (2012) demonstrate improvements from the assimilation of SWE and/or SCF retri-

evals in shallow snow packs, but not in deep snow packs (not shown). The validation also

shows that joint assimilation of SWE and SCF retrievals yields significantly improved

RMSE and correlation values. For example, the RMSE for SWE versus COOP site mea-

surements was reduced by 21 % (from 78 to 62 mm) through the joint assimilation of

satellite SWE and SCF retrievals. Furthermore, SCF assimilation was found to improve the

Fig. 1 Schematic of the
distributed (‘‘three-dimensional’’)
EnKF update used for the
assimilation of coarse-scale snow
observations. See text for details.
Adapted from De Lannoy et al.
(2010)

Surv Geophys (2014) 35:577–606 583

12397Reprinted from the journal



timing of the onset of the snow season, albeit without a net improvement of SWE esti-

mates. In areas of deep snow, however, AMSR-E retrievals are typically biased low and

require bias correction (or scaling of the observations) prior to data assimilation. De

Lannoy et al. (2012) also showed that the interannual SWE variations could not be

improved through the assimilation of AMSR-E because the AMSR-E retrievals lack

realistic interannual variability in deep snow packs. These deficiencies in the AMSR-E

SWE retrievals motivated the development of the empirical microwave radiative transfer

model (Sect. 3.3.2) toward a radiance-based snow analysis.

Of course, horizontal downscaling is not only important for snow assimilation. Low-

frequency passive microwave brightness temperature observations such those from AMSR-

E and SMOS (and the corresponding soil moisture retrievals) are at the coarse resolution of

*50 km. But for applications such as weather prediction, soil moisture estimates are

Fig. 2 SWE and SCF fields for 6 days (MMDDYYYY) in the winter of 2009–2010 for a 75 km by 100 km
domain (1 km resolution) in northern Colorado. Blue (white) colors indicate low (high) SWE or SCF, black
shading indicates no snow, and orange shading indicates no data. The top two rows show SWE and SCF
satellite observations. The remaining rows show SWE (rows 3 and 4) and SCF (rows 5 and 6) for the
ensemble Open Loop (EnsOL) forecast (no assimilation) and the analyses obtained through data assimilation
(DA) of SWE or SCF. Adapted from De Lannoy et al. (2012)
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needed at hydrometeorological scales of *10 km or better. Examples of soil moisture

downscaling based on data assimilation are provided by Reichle et al. (2001), Sahoo et al.

(2012), and Zhou et al. (2006). Also, Reichle and Koster (2003) addressed the propagation

of observational soil moisture information to unobserved regions.

3.2 Partitioning of Terrestrial Water Storage Observations

Passive microwave (e.g., AMSR-E) retrievals have been used in conjunction with land

surface models to better characterize snow (Sect. 3.1) and soil moisture (Sect. 3.4).

Gravimetric measurements such as from GRACE can provide monthly, basin-scale

([150,000 km2) estimates of changes in TWS (Sect. 2.2). Since TWS is vertically inte-

grated and includes groundwater, soil moisture, snow, and surface water, TWS retrievals

offer significant insights into the regional- and continental-scale water balance and,

through data assimilation, the potential to learn more about hydrological processes.

Besides the obvious spatial downscaling challenge presented by the basin-scale GRACE

TWS retrievals, another challenge for the assimilation of GRACE-based TWS is the

partitioning of the vertically integrated TWS retrievals into water cycle component vari-

ables. Like the horizontal downscaling of AMSR-E SWE retrievals discussed in the pre-

vious section, the partitioning of TWS retrievals can be accomplished through assimilation

using an appropriate observation operator. In this case, the observation operator aggregates

the fine-scale model estimates of soil moisture, groundwater, and snow to basin-scale TWS

estimates. This observation operator enables the computation of the observation-minus-

forecast residuals (or innovations) in the (basin-scale, TWS) space of the observations. The

observation operator is also needed for the computation of the Kalman gain that transforms

the innovations back into the space of the fine-scale model variables. Similarly, the

required temporal aggregation of the model output to the monthly scale of the assimilated

TWS retrievals is accomplished through the observation operator.

This concept was illustrated by Forman et al. (2012), who assimilated GRACE TWS

retrievals over the Mackenzie River basin located in northwestern Canada (Fig. 3) using an

updated version of the GEOS-5 LDAS developed by Zaitchik et al. (2008). The assimi-

lation estimates were evaluated against independent SWE and river discharge observations

(Sect. 2.3). Results suggest improved SWE estimates, including improved timing of the

subsequent ablation and runoff of the snow pack. For example, Fig. 4 shows the

improvements in SWE estimates resulting from the assimilation of GRACE TWS retri-

evals. The white bars represent model results without assimilation, whereas the gray bars

represent results with assimilation. The labels on the y-axis of each subplot represent sub-

basins of the Mackenzie River basin. As shown in Fig. 4, the assimilation of GRACE TWS

retrievals generally reduced the mean difference and RMSE between the model and the

independent CMC SWE estimates (Sect. 2.3). The reductions are greatest in the Liard

basin, where the greatest amount of snow accumulation occurs. Here, the mean difference

with the CMC estimates is reduced through GRACE data assimilation by 30 % (from 13.2

to 9.3 mm) and the RMSE is reduced by 18 % (from 24 to 19.6 mm). Smaller reductions

occur in the other sub-basins. The correlation coefficient of the SWE anomalies (not

shown) suggests a slight degree of degradation resulting from assimilation, but further

analysis shows there is no statistically significant difference at the 5 % level. In summary,

the assimilation of GRACE TWS information into the Catchment land surface model

reduces the mean difference and RMSE in SWE estimates without adversely impacting

estimates of interannual variability.
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Additional work was conducted to analyze modeled river discharge estimates against

ground-based gauging stations. The findings (not shown) suggest that the assimilation of

GRACE observations causes little or no change in the mean difference and RMSE of

modeled river discharge, but that small, statistically significant improvements in the

anomaly correlations were found. Improvements in the modeled river runoff anomalies are

attributed to a redistribution of the water mass from the snow pack during the accumulation

phase into the subsurface during the subsequent ablation and runoff phase. This redistri-

bution of water by the assimilation framework effectively retains water within the

hydrological basin for a longer period of time, which results in small but statistically

significant improvements in modeled estimates of river discharge.

Investigation of the analysis increments can provide valuable insights into the behavior

of the assimilation procedure and track how much and at what time water is being added to

or removed from the individual TWS components. The thin, solid line in Fig. 5 shows the

increments made to the subsurface water component. Averaged over the Mackenzie River

basin and the 7-year experiment period, a total of 12.5 mm of water has been added into

the subsurface by the assimilation procedure. This is most evident during the spring and

summer. The thick, dashed line in Fig. 5 shows the increments for SWE. Averaged over

time and space, SWE is removed during the accumulation phase with a small amount

added back during the ablation and runoff phase for a total SWE increment of -45.1 mm.

Acting together, the analysis increments to the subsurface water and SWE serve to reduce

mass during snow accumulation and then increase the mass during ablation and runoff.

These two phenomena essentially constrain the amplitude of the modeled TWS dynamics

to achieve better agreement of the model estimates with the GRACE retrievals.

Fig. 3 Map of the 1,800,000 km2 Mackenzie River Basin including GEOS-5 topography, sub-basin
delineation, and GRDC observation locations (solid dots). Adapted from Forman et al. (2012)
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The results shown in Figs. 4 and 5 imply that the assimilation procedure can effectively

partition the vertically integrated GRACE TWS retrievals into their snow and subsurface

water components. Houborg et al. (2012), Li et al. (2012), Su et al. (2010), and Zaitchik

et al. (2008) further investigated the horizontal, vertical, and temporal disaggregation of

GRACE TWS retrievals and reached similar conclusions for other basins in North America

and Europe in different climate zones. Collectively, the growing body of research suggests

Fig. 4 SWE statistics of a mean
difference and b RMSE for open
loop (OL; white) and assimilation
(DA; light gray) of GRACE
TWS retrievals relative to CMC
SWE estimates via Sturm et al.
(2010). Statistics are for the
Mackenzie River Basin (MRB)
and its sub-basins Liard (L),
Peace and Athabasca (P ? A),
Slave (S), and Bear and Peel
(B ? Pe) shown in Fig. 3.
Adapted from Forman et al.
(2012)

Fig. 5 Analysis increments for
the entire Mackenzie River basin
from GRACE TWS assimilation.
The thin, solid line represents the
subsurface water increments,
whereas the thick, dashed line
represents the SWE increments.
Adapted from Forman et al.
(2012)

Surv Geophys (2014) 35:577–606 587

123101Reprinted from the journal



that GRACE TWS assimilation can lead to better understanding of the hydrological cycle

in remote regions of the globe where ground-based observation collection is difficult, if not

impossible. This information could ultimately lead to improved freshwater resource

management as well as reduced uncertainty in river discharge.

3.3 Microwave Radiative Transfer Models for Radiance Data Assimilation

It is well established for atmospheric data assimilation systems that the assimilation of

satellite radiance observations is preferable to the assimilation of geophysical retrievals

(Eyre et al. 1993; Joiner and Dee 2000). The former approach incorporates the radiative

transfer model into the assimilation system and thereby avoids inconsistencies in the use of

ancillary data between the assimilation system and the (pre-processed) geophysical retri-

evals. For land data assimilation, however, the vast majority of publications assimilate

geophysical retrievals (Lahoz and De Lannoy 2013). In this section, we discuss the

development of forward radiative transfer models (RTMs) that convert land surface model

variables into microwave brightness temperatures. The first example presents such a model

for warm-season microwave brightness temperatures (Sect. 3.3.1). The second example

introduces a neural network approach to predict microwave brightness temperatures over

snow-covered land (Sect. 3.3.2).

3.3.1 Warm-Season, L-Band Radiative Transfer Modeling

Global observations of brightness temperatures (Tb) at L-band (1.4 GHz) are available

from the SMOS mission, and similar Tb observations are expected from the planned Soil

Moisture Active Passive (SMAP; Entekhabi et al. 2010) mission. In preparation for the

assimilation of Tb observations from SMOS and SMAP, De Lannoy et al. (2013) added a

physically based, warm-season microwave RTM to the GEOS-5 Catchment model. The

RTM is based on the commonly used, zero-order ‘‘tau-omega’’ approach that accounts for

microwave emission by the soil and the vegetation canopy as well as attenuation by the

vegetation. While the RTM is based on sound physical principles, determining the required

parameter values for the microwave roughness, scattering albedo, and vegetation optical

depth on a global scale is a serious challenge.

De Lannoy et al. (2013) collected three different sets of the literature values for the

L-band RTM parameters. ‘‘Lit1’’ refers to parameters that are proposed for the future

SMAP radiometer retrieval product, ‘‘Lit2’’ are parameters collected from the literature

studies using the L-band Microwave Emission of the Biosphere model (Wigneron et al.

2007) and related models, and ‘‘Lit3’’ is the same as Lit2 except that the microwave

roughness parameter is set to values used for SMOS monitoring in the European Centre for

Medium-Range Weather Forecasts (ECMWF). The three sets of parameters are illustrated

in Fig. 6, which shows the resulting microwave roughness (h), vegetation opacity (s), and

scattering albedo (x) by vegetation class. As can be seen from the figure, there are large

differences in h, s, and x between the three sets of the literature values. These differences

translate into climatological differences in the simulated brightness temperatures.

For example, Fig. 7a–c shows the differences between 1-year mean (July 1, 2010–July

1, 2011) model simulations (using the three different literature-based sets of RTM

parameters) and SMOS observations for H-polarized Tb at 42.5� incidence angle. Modeled

brightness temperatures are at 36 km resolution, commensurate with the resolution of the

SMOS observations. Brightness temperatures are screened for frozen soil conditions, snow

on the ground, heavy precipitation, proximity to open water surfaces, and radio-frequency
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interference. The figure shows that all three sets of the literature values for the RTM

parameters lead to substantial biases against SMOS observations, with Lit1 being too cold

(by 42.0 K on average) and Lit3 too warm (by 24.6 K on average). Even though Lit2

estimates are nearly unbiased in the global average, there are still significant regional

biases in the simulated Tbs, with an average absolute bias of 12.7 K. Since such biases

would interfere with the assimilation of satellite Tb, the RTM parameters need to be

calibrated to achieve climatologically unbiased Tb simulations.

The most important RTM parameters determining h, s, and x have been calibrated,

separately for each model grid cell, using multi-angular SMOS observations from July 1,

2011 to July 1, 2012. The calibration simultaneously minimizes, separately for each

location, the difference between the modeled and observed climatological mean values, the

difference between modeled and observed climatological standard deviations, and the

deviations of the optimized parameters from prior guesses (that is, from Lit1, Lit2, or Lit3

values). Through investigating a number of calibration scenarios, De Lannoy et al. (2013)

determined that it is best to simultaneously calibrate a subset of the RTM parameters that

most directly determine h, s, and x.

After calibration, global Tb simulations for the validation year (July 1, 2010–July 1,

2011) are largely unbiased for multiple incidence angles and both H- and V-polarization.

For example, Fig. 7d shows that the global average absolute bias is now just 2.7 K for

H-polarized Tb at 42.5� incidence angle. It should be emphasized that an RMSE of

approximately 10 K remains, which is partly due to seasonal biases and partly due to

random errors. The former will be addressed in the assimilation system through bias

estimation and correction, and the latter through the radiance-based soil moisture analysis.

Fig. 6 a Time-mean \h[ (July
1, 2010–July 1, 2011), b time-
mean \s[, and c time-invariant
x; (Lit1, Lit2 and Lit3) before
calibration, and (Cal) after
calibration, spatially averaged by
vegetation class. International
Geosphere-Biosphere Program
(IGBP) vegetation classes are
(ENF) Evergreen Needleleaf
Forest, (EBF) Evergreen
Broadleaf Forest, (DNF)
Deciduous Needleleaf Forest,
(DBF) Deciduous Broadleaf
Forest, (MXF) Mixed Forest,
(CSH) Closed Shrublands, (OSH)
Open Shrublands, (WSV) Woody
Savannas, (SAV) Savannas,
(GRS) Grasslands, (CRP)
Croplands, (CRN) Cropland and
Natural Vegetation, and (BAR)
Barren or Sparsely Vegetated.
Thin gray lines for Cal indicate
the spatial standard deviation
within each vegetation class.
Adapted from De Lannoy et al.
(2013)
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Fig. 7 Difference between 1-year (July 1, 2010–July 1, 2011) mean values of TbH(42.5�) in Kelvin from
GEOS-5 and SMOS observations for a Lit1, b Lit2, c Lit3, and d calibrated parameters. Within each
subplot, ‘‘avg(|.|)’’ indicates the average absolute difference across the globe (excluding regions impacted by
open water or radio-frequency interference that are shown in white). Adapted from De Lannoy et al. (2013)
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The calibrated parameters are shown in Fig. 6. Results suggest, for example, that the

roughness parameter (h) is too low in Lit1 and too high in Lit3. The calibrated vegetation

opacity (s) values distinguish clearly between high and low vegetation. The calibrated

scattering albedo (x) is increased over low vegetation, which reduces the vegetation effect

in the simulated Tb. In summary, the climatological calibration generates plausible

parameter values that are consistent with the underlying land modeling system.

3.3.2 Predicting Microwave Brightness Temperatures over Snow

As demonstrated in the previous section, the Catchment model (as do similar global land

surface models) supports the application of a physically based microwave RTM for warm-

season processes. However, the snow model components in global land surface models,

including that in the Catchment model, are usually too simplistic to support physically

based RTM modeling in the presence of snow. Specifically, global snow models lack

reliable estimates of snow microphysical properties (such as grain size, ice layers, and

depth hoar) which would be needed for physically based forward modeling of the

microwave brightness temperatures. Forman et al. (2013) therefore constructed an

empirical forward RTM for snow-covered land surfaces based on an Artificial Neural

Network (ANN).

The Catchment model state variables used as input to the ANN include the density and

temperature of the snowpack at multiple depths, the temperature of the underlying soil, the

overlying air, and the vegetative canopy, and the total amount of water equivalent within

the snowpack. In addition, a cumulative temperature gradient index (TGI) is used as a

proxy for snow grain size evolution in the presence of a vapor pressure gradient. Using the

above inputs, the ANN is trained and (independently) validated using 10.7, 18.7, and

36.5 GHz microwave brightness temperatures at H- and V-polarization from AMSR-E.

The independent validation is accomplished as follows: From the 9-year AMSR-E data

record, each single year is withheld in turn from the ANN training, and skill metrics for the

resulting ANN predictions are computed only against the AMSR-E data that have been

withheld from the ANN training.

Figure 8 demonstrates the performance of the ANN predictions relative to AMSR-E

measurements that were not used during training. The figure illustrates the overall ability

of the ANN to predict Tbs for the 10 GHz V-polarized channel. The ANN predictions are

essentially unbiased (relative to the AMSR-E measurements) across the 9-year period

(Fig. 8a). The RMSE is typically less than 5 K (Fig. 8b). In addition, the ANN demon-

strates skill in predicting interannual variability, with anomaly R values well above 0.5

over large parts of North America (Fig. 8c). Relatively low skill can be seen in areas along

the southern periphery, where the snowpack is relatively thin and ephemeral, as well as in

areas north of the boreal forest, where sub-grid scale lake ice (which is not modeled in the

land surface model) is common. In short, Fig. 8 suggests considerable skill by the ANN at

predicting interannual variability in 10 GHz V-polarized Tbs across North America with

negligible bias and a reasonable RMSE. The RMSE is somewhat higher but still reasonable

(less than 10 K) for the higher frequencies and for H-polarization Tb (see Figures 4–6 of

Forman et al. 2013).

Forman et al. (2013) also assessed the potential for using the ANN as a forward

observation operator in radiance-based snow assimilation. For this demonstration, the

observations are considered to be in the form of spectral differences in V-polarization

brightness temperatures, DTb : TbV(18 GHz) - TbV(36 GHz). Since DTb typically

increases with increasing SWE, this spectral difference is commonly used to estimate SWE
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in retrieval algorithms (Kelly 2009). For the demonstration of the radiance-based assim-

ilation considered here, observations of DTb imply that the resulting Kalman gain is

proportional to error correlations between modeled SWE and ANN predictions of DTb. To

Fig. 8 a Bias, b RMSE, and c anomaly R for ANN simulated 10 GHz V-polarized Tb from September 1,
2002 to September 1, 2011 versus AMSR-E observations not used in training. Anomaly R values not
statistically different from zero at the 95 % significance level based on a Fisher Z transform are shown in
gray. Such non-significant R values occur in only a few very small regions
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obtain analysis increments, the Kalman gain would be multiplied with innovations in DTb

(that is, the difference between actual AMSR-E observations of DTb and ANN predictions

of DTb).

The Kalman gain computed for February 6, 2003 ranges from -10 to 15 mm K-1 as

illustrated in Fig. 9. A gain of 1 mm K-1 equates to an increase of 1 mm in the posterior

(updated) modeled SWE for a 1 K innovation (that is, for a difference of 1 K between

AMSR-E DTb measurements and ANN DTb predictions). Similarly, a negative Kalman

gain in the presence of a positive-valued innovation would equate to a reduction in

modeled SWE. Most importantly, the results suggest that there is a nonzero error corre-

lation between the model SWE forecasts and the simulated DTb measurements across

much of the North American domain. Overall, the results suggest that the ANN could serve

as a computationally efficient observation operator for radiance-based snow data assimi-

lation at the continental scale.

3.4 Observation Selection for a Root Zone Soil Moisture Analysis

Knowledge of the amount of moisture stored in the root zone of the soil is important for

many applications related to the transfer of water, energy, and carbon between the land and

the atmosphere, including the assessment, monitoring, and prediction of drought (Sene-

viratne et al. 2010). At the global scale, soil moisture estimates are usually based on two

sources of information: (1) direct observations of surface soil moisture from satellite and

(2) observation-based precipitation forcing driving a numerical model of soil moisture

dynamics. However, neither surface soil moisture retrievals nor precipitation observations

provide direct measurements of soil moisture in the root zone. The selection of the most

relevant types of observations for a root zone soil moisture analysis therefore presents an

important conceptual problem.

A priori, it is not obvious whether the estimation of root zone soil moisture would

benefit more from the use of precipitation observations (as, for example, in the Global

Land Data Assimilation System; Rodell et al. 2003) or from the assimilation of surface soil

moisture retrievals (as, for example, illustrated by Reichle et al. 2007). This section pro-

vides examples of both approaches. First, a land surface reanalysis that relies on observed

precipitation is presented, followed by a root zone soil moisture analysis that is based on

the assimilation of surface soil moisture retrievals. Finally, the two sources of soil moisture

Fig. 9 Histogram of the Kalman
gain on February 6, 2003 for
SWE versus
DTb = [TbV(18 GHz) -
TbV(36 GHz)]
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information are merged and compared directly in a single system, and their relative con-

tributions to the skill of root zone soil moisture estimates are assessed.

3.4.1 Using Precipitation Observations

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a

state-of-the-art atmospheric reanalysis data product based on GEOS-5 that provides, in

addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and

runoff for 1979—present with a latency of about 1 month (Rienecker et al. 2011). A

supplemental and improved set of land surface hydrological fields (‘‘MERRA-Land’’) is

generated routinely using an improved version of the land component of the MERRA

system (Reichle et al. 2011; Reichle 2012). Specifically, the MERRA-Land estimates

benefit from corrections to the MERRA precipitation forcing with the global gauge-based

NOAA Climate Prediction Center ‘‘Unified’’ (CPCU) precipitation product and from

revised parameter values in the rainfall interception model, changes that effectively correct

for known limitations in the MERRA surface meteorological forcings.

With a few exceptions, the MERRA-Land data appear more accurate than the original

MERRA estimates and are thus recommended for those interested in using MERRA output

for land surface hydrological studies. As an example, Fig. 10 examines the drought con-

ditions experienced across the western United States and along the East Coast. The

MERRA and MERRA-Land drought indicator shown in the figure is derived by ranking,

separately for each grid cell, the normalized, monthly mean root zone soil moisture

anomalies for June, July, and August of 1980 through 2011 and converting the rank into

percentile units. For comparison, the drought severity assessed independently by U.S.

Drought Monitor is also shown. The figure clearly demonstrates that MERRA-Land data

are more consistent with the Drought Monitor than MERRA data.

Reichle et al. (2011) and Reichle (2012) provide a more comprehensive and quantitative

analysis of the skill (defined as the correlation coefficient of the anomaly time series with

independent observations) in land surface hydrological fields from MERRA, MERRA-

Land, and the latest global atmospheric reanalysis produced by ECWMF (ERA-I; Dee

et al. 2011). Figure 11 shows that MERRA-Land and ERA-I root zone soil moisture skills

(against in situ observations at 85 US stations) are comparable and significantly greater

than that of MERRA. Furthermore, the runoff skill (against naturalized stream flow

observations from 18 US basins) of MERRA-Land is typically higher than that of MERRA

and ERA-I (not shown). Throughout the northern hemisphere, MERRA and MERRA-Land

agree reasonably well with in situ snow depth measurements (from 583 stations) and with

SWE from an independent analysis (not shown). In summary, through observations-based

corrections of the MERRA precipitation forcing, MERRA-Land provides a supplemental

and significantly improved land surface reanalysis product.

3.4.2 Assimilating Surface Soil Moisture Retrievals

Satellite retrievals of surface soil moisture are not used in MERRA-Land but would almost

certainly have further improved the skill of root zone soil moisture estimates. Draper et al.

(2012) illustrate the potential gains from assimilating ASCAT (Bartalis et al. 2007; Wagner

et al. 1999) and 10.7 GHz AMSR-E Land Parameter Retrieval Model (LPRM; de Jeu et al.

2008) surface soil moisture retrievals. The retrievals are assimilated, both separately and

jointly, over 3.5 years into the GEOS-5 LDAS, using MERRA forcing and initial condi-

tions. Soil moisture skill is measured as the anomaly time series correlation coefficient
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Fig. 10 Drought indicator derived from (top left) MERRA and (bottom left) MERRA-Land root zone soil
moisture estimates for August 2002. Darker colors indicate more severe drought conditions. MERRA-Land
estimates are more consistent than MERRA estimates with an independent drought assessment from the US
Drought Monitor for August 13, 2002 (right)

Fig. 11 Skill (pentad anomaly
R; dimensionless) of MERRA,
MERRA-Land, and ERA-I
estimates (2002–2009) versus
SCAN in situ surface and root
zone soil moisture measurements
at 85 stations. Error bars indicate
approximate 95 % confidence
intervals. Adapted from Reichle
(2012)
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(R) with in situ soil moisture observations from the SCAN/SNOTEL network in the US (66

sites) and the Murrumbidgee Soil Moisture Monitoring Network in Australia (19 sites).

These 85 sites are surrounded by terrain with low topographic complexity based on data

provided with the ASCAT observations. Averaged over these sites, the ASCAT and

AMSR-E surface soil moisture retrievals have similar skill (Draper et al. 2012).

Figure 12 shows the estimated R values and their 95 % confidence intervals for root

zone soil moisture from the assimilation of ASCAT, AMSR-E, and both. The results are

benchmarked against an open loop (no assimilation) model integration and have been

averaged by land cover type (based on MODIS land cover classifications). Averaged across

all 85 sites, assimilating ASCAT and/or AMSR-E surface soil moisture retrievals signif-

icantly improved the root zone soil moisture skill (at the 5 % level). The mean skill was

increased from 0.45 for the open loop, to 0.55 for the assimilation of ASCAT, 0.54 for the

assimilation of AMSR-E, and 0.56 for the assimilation of both.

Assimilating the ASCAT or AMSR-E retrievals also improved the mean R value over

each individual land cover type, in most cases significantly. At the frequencies observed by

AMSR-E and ASCAT, dense vegetation limits the accuracy of soil moisture observations,

and so the improvements obtained over the mixed cover sites, which have 10–60 % trees or

wooded vegetation, are very encouraging. For each land cover type, the skill obtained from

the assimilation of ASCAT or AMSR-E retrievals was very similar. The combined

assimilation of ASCAT and AMSR-E retrievals generally matched or slightly exceeded the

mean R values from the single-sensor assimilation experiments.

Draper et al. (2012) also examined the contribution of the model skill and the obser-

vation skill to the skill of the assimilation estimates. The color surface in Fig. 13 shows the

skill improvements (DR) in root zone soil moisture, where DR is defined as the skill (R) of

the assimilation estimates (from the single-sensor assimilation of ASCAT or AMSR-E

retrievals) minus that of the open loop model estimates. The skill improvements are shown

as a function of the open loop model skill and the retrieval skill. Specifically, the ordinate

measures the skill of the open loop root zone soil moisture estimates, and the abscissa

measures the skill of the assimilated (ASCAT or AMSR-E) surface soil moisture retrievals.

Where the skill of the assimilated retrievals is no more than 0.2 less than the open loop skill

(below the dashed line), the assimilation improves the root zone soil moisture skill. The

improvements increase (up to 0.4) as the observation skill increases relative to that of the

Fig. 12 Mean skill for root zone soil moisture from the open loop (ensemble mean, no assimilation), and
the data assimilation (DA) of ASCAT, AMSR-E, and both surface soil moisture retrievals, averaged by land
cover class, with 95 % confidence intervals. The number of sites in each land cover class is given in the axis
labels. Skill is defined as the daily anomaly R value versus SCAN/SNOTEL and Murrumbidgee in situ
observations. Adapted from Draper et al. (2012)
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open loop (toward the bottom right hand corner). (The results are very similar if the

ordinate measures surface soil moisture skill; not shown). Figure 13 thus provides a

practical demonstration of the minimum skill required for soil moisture observations to be

beneficial in a land data assimilation system and confirms the findings obtained by Reichle

et al. (2008b) using synthetically generated observations. In summary, the assimilation of

active or passive microwave data significantly improves the model root zone soil moisture

estimates by a similar amount, even in cases where the assimilated surface soil moisture

retrievals are less skillful than the open loop soil moisture estimates.

3.4.3 Combining Precipitation Observations and Surface Soil Moisture Retrievals

Liu et al. (2011a) used both precipitation observations and surface soil moisture retrievals

within the GEOS-5 LDAS and investigated their relative contributions to the skill of root

zone soil moisture estimates. Relative to baseline soil moisture estimates from MERRA,

their study investigates soil moisture skill derived from (1) land model forcing corrections

based on large-scale, gauge-, and satellite-based precipitation observations and (2)

assimilation of surface soil moisture retrievals from AMSR-E. Three precipitation products

were used (separately) to correct the MERRA precipitation toward gauge- and satellite-

based observations: the NOAA Climate Prediction Center Merged Analysis of Precipita-

tion (CMAP) pentad product (‘‘standard’’ version), the Global Precipitation Climatology

Project (GPCP) version 2.1 pentad product, and the NOAA Climate Prediction Center

(CPC) daily unified precipitation analysis over the United States.

Fig. 13 Root zone soil moisture skill improvement (DR) from assimilating either ASCAT or AMSR-E
surface soil moisture retrievals as a function of (ordinate) the open loop model skill and (abscissa) the
observation skill. Skill improvement (DR) is defined as the skill of the assimilation product minus the open
loop skill, with skill based only on days with data available from both satellites. Skill is assessed versus
in situ measurements from the SCAN and Murrumbidgee networks. Significant improvements are found in
the area below the dashed line where the skill of the retrievals may be lower than that of the open loop by up
to 0.2. Adapted from Draper et al. (2012)
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Two different surface soil moisture retrieval products were assimilated into the GEOS-5

LDAS: (1) the operational NASA Level-2B AMSR-E ‘‘AE-Land’’ product (version V09)

archived at the National Snow and Ice Data Center (NSIDC; Njoku et al. 2003) and (2) the

AMSR-E LPRM product (de Jeu et al. 2008). Soil moisture skill is assessed using in situ

observations in the continental United States at the 37 single-profile sites within the SCAN

network for which skillful AMSR-E retrievals are available. As in Sect. 3.4.2, skill is

assessed in terms of the anomaly time series correlation coefficient R.

Figure 14 shows comparable average skill for surface soil moisture estimates from the

two AMSR-E products and from the Catchment model with MERRA precipitation forcing

without data assimilation. Consistent with the findings of Sect. 3.4.1, adding information

from precipitation observations increases soil moisture skills for surface and root zone soil

moisture. Consistent with the results of Sect. 3.4.2, assimilating satellite estimates of

surface soil moisture also increases soil moisture skills, again for surface and root zone soil

moisture. The salient result is that adding information from both sources (precipitation

observations and surface soil moisture retrievals) increases soil moisture skills by almost

the sum of the individual skill contributions, which demonstrates that precipitation cor-

rections and assimilation of satellite soil moisture retrievals contribute important and

largely independent amounts of information.

Liu et al. (2011a) also repeated their skill analysis against measurements from four

USDA Agricultural Research Service (‘‘CalVal’’) watersheds with high-quality distributed

sensor networks that measure surface soil moisture at the scale of land model and satellite

Fig. 14 Skill (daily anomaly R; dimensionless) versus SCAN in situ soil moisture measurements for
estimates from two AMSR-E retrieval datasets (NSIDC and LPRM), the Catchment model forced with four
different precipitation datasets (MERRA, CMAP, GPCP, and CPC), and the corresponding data assimilation
integrations (red bars: DA/NSIDC and blue bars: DA/LPRM). Average is based on 37 SCAN sites for
surface and 35 SCAN sites for root zone soil moisture. Error bars indicate approximate 95 % confidence.
Adapted from Liu et al. (2011a)
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estimates (Jackson et al. 2010). As expected, the skill of the satellite, model, and assim-

ilation estimates is higher when it is assessed against the multi-sensor CalVal observations

rather than against single-profile SCAN measurements (not shown). The relative skill

contributions by precipitation corrections and soil moisture retrieval assimilation, however,

remain unchanged (not shown). This corroborates the results shown in Fig. 14 which were

obtained with a larger network of single-profile sensors.

Taken together, the results of this section strongly suggest that future land surface

reanalysis efforts would benefit from the use of both precipitation observations and satellite

retrievals of surface soil moisture because both types of observations contribute significant

and largely independent amounts of information to the skill of root zone soil moisture in

the analysis. Moreover, both active and passive surface soil moisture retrievals should be

assimilated for maximum coverage and accuracy.

4 Summary and Discussion

The present study discussed several conceptual challenges in land surface hydrological

data assimilation as part of an effort toward improving our understanding of the Earth’s

hydrological cycle (Trenberth and Asrar 2013). The challenges arise from a seeming

mismatch between the assimilated observations and the water cycle variables of interest

that can be overcome through the careful design of the assimilation system. This was

illustrated with examples from recent research findings using the GEOS-5 LDAS.

The first challenge is the use of coarse-scale satellite observations to estimate land

surface fields at finer scales of interest. Such horizontal downscaling can be accomplished

by using a fine-scale land surface model and by defining an observation operator that maps

from the fine-scale model space to the space of the coarse-scale observations (Sect. 3.1). In

the presence of larger-scale model error correlations, the assimilation system can also

spread observational information to unobserved locations.

The second challenge is the partitioning of satellite observations (such as TWS retri-

evals) into their component variables. This partitioning can again be accomplished through

an observation operator. In the case of TWS assimilation, the observation operator maps

from the fine-scale model estimates of soil moisture and snow to basin-scale TWS (Sect.

3.2). The observation operator therefore enables the computation of the observation-minus-

forecast residuals (innovations). The observation operator is also needed for the compu-

tation of the Kalman gain matrix that transforms the observation-space (coarse-scale TWS)

innovations into the model-space (fine-scale soil moisture and snow) analysis increments.

The third challenge is the development of microwave RTMs for use as observation

operators in radiance-based data assimilation. Two examples were given. In the first

example, a global microwave RTM for warm-season, L-band brightness temperatures was

calibrated successfully using SMOS observations (Sect. 3.3.1). In the second example, an

empirical approach based on an artificial neural network yielded robust model simulations

of AMSR-E microwave brightness temperatures over snow-covered land at continental

scales (Sect. 3.3.2). In both cases, the results are very encouraging and constitute progress

toward replacing the commonly used assimilation of geophysical retrievals (such as SWE

or surface soil moisture retrievals) with the direct assimilation of satellite radiances. Note

that a radiance-based soil moisture analysis can partition the observational (brightness

temperature) information into increments of model soil moisture, soil temperature, and

vegetation water content (essentially, the model variables that most impact the brightness

temperature). In other words, the microwave RTM, acting as the observation operator,
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takes on a role that is conceptually similar to that of the observation operator used for the

partitioning of TWS information into its water cycle components (Sect. 3.2).

The fourth and final challenge addressed in the paper discusses the selection of the types

of observations that are most relevant for the analysis of poorly observed variables. For the

analysis of one such variable, root zone soil moisture, the use of gauge- and satellite-based

precipitation observations along with active and passive surface soil moisture retrievals

was investigated (Sect. 3.4). It was shown that the MERRA-Land surface reanalysis

provides better estimates of root zone soil moisture than MERRA due to the use of gauge-

based precipitation observations in MERRA-Land. Next, the potential skill gained from the

assimilation of surface soil moisture retrievals was investigated. It was demonstrated that

improved root zone soil moisture estimates can be obtained even where the skill of the

assimilated surface soil moisture retrievals is somewhat poorer than that of the model

estimates of surface soil moisture. For maximum coverage and accuracy, both active and

passive retrievals should be assimilated. Finally, it was shown that the use of precipitation

observations and the assimilation of surface soil moisture retrievals contribute significant

and largely independent amounts of root zone soil moisture information. Therefore, future

reanalyses should use both of these observation types. This finding is consistent with the

general expectation that using more observations in a data assimilation system will

improve its output.

In some cases (for example, Sects. 3.1 and 3.2), the appropriate observation operator

and assimilation system configuration entail that neighboring grid cells (or land model

tiles) are no longer computationally independent in the assimilation system, even if they

are independent in the land model (Reichle and Koster 2003). These computational

dependencies arise through spatially correlated perturbation fields or spatially distributed

analysis update calculations. Such ‘‘three-dimensional’’ land data assimilation systems

therefore necessitate greater computational resources than more simplistic, ‘‘one-dimen-

sional’’ assimilation systems where all model grid cells (or tiles) are treated independently.

It is assumed here that the purely technical challenge of computational demand can be

overcome with sophisticated software engineering and the increasing availability of

affordable and massively parallel computing architectures.

5 Conclusions and Outlook

The present paper focused on the seeming mismatch between satellite observations and the

water cycle variables of interest, and how a mismatch can be overcome through careful

design and application of a land data assimilation system. Responding to the challenge

questions of Sect. 1, we find that, if designed properly, a land data assimilation system can

enable

1. the horizontal downscaling of coarse-scale satellite observations,

2. the partitioning of vertically integrated satellite measurements such as TWS into their

water cycle components,

3. the direct assimilation of satellite radiances for soil moisture or snow analyses, and

4. the propagation of information from observed fields such as precipitation and surface

soil moisture into variables such as root zone soil moisture, that are of great interest

but are not directly observed by satellites.

Naturally, many challenges still lie ahead. State-of-the-art land data assimilation

algorithms are only now emerging in operational systems. Much of the recent progress has
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been achieved in so-called ‘‘off-line’’ (land-only) assimilation systems. These advances

need to be incorporated into the coupled land–atmosphere systems used in atmospheric

data assimilation and numerical weather prediction (NWP). Ground-breaking advances in

coupled land–atmosphere data assimilation are being made, for example, at ECMWF (de

Rosnay et al. 2012a, b). At the same time, the coupling of the GEOS-5 LDAS to the

GEOS-5 atmospheric data assimilation system is underway at the NASA GMAO.

Moreover, much of the progress in land data assimilation has been with systems that

assimilate only one type of observation, often surface soil moisture. In future, more

emphasis will need to be placed on the assimilation of multiple types of observations

within a single assimilation system, including observations of water cycle components

such as soil moisture, SWE, snow cover fraction, TWS, and precipitation.

Future development should also address the addition or improvement of runoff routing

and surface water storage model components in the global land surface models used in

NWP. The planned NASA Surface Water and Ocean Topography (SWOT; Durand et al.

2010) mission, for instance, will provide high-resolution observations of surface water

elevation. To improve our understanding of the global hydrological cycle, it will be crucial

to incorporate these new observations into global land data assimilation systems, building

on early studies such as those by Andreadis et al. (2007), Biancamaria et al. (2011), and

Durand et al. (2008).

Finally, the existing global land data assimilation systems will need to consider the

modeling of vegetation dynamics and the assimilation of current or planned satellite obser-

vations such as the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),

the Leaf Area Index (LAI), or the multi-angular Photochemical Reflectance Index (PRI)

(Albergel et al. 2010; Hilker et al. 2012; Kaminski et al. 2012; Knorr et al. 2010; Muñoz

Sabater et al. 2008; Stöckli et al. 2011). Furthermore, current microwave sensors already

provide observations of the freeze–thaw state of the landscape at coarse scales (Kim et al.

2010), and SMAP will provide much higher-resolution observations with continental cov-

erage (Entekhabi et al. 2010). These vegetation and freeze–thaw observations link the

hydrological and carbon cycles and should be used in global land data assimilation systems.
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Stöckli R, Rutishauser T, Baker I, Liniger MA, Denning AS (2011) A global reanalysis of vegetation
phenology. J Geophys Res 116:G03020. doi:10.1029/2010JG001545

Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global
applications. J Clim 8:1261–1283

Sturm M, Taras B, Liston GE, Derksen C, Jonas T, Lea J (2010) Estimating snow water equivalent using
snow depth data and climate classes. J Hydrometeorol 11:1380–1394

Su H, Yang Z-L, Niu G-Y, Dickinson RE (2008) Enhancing the estimation of continental-scale snow water
equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J Geophys Res
113:D08120. doi:10.1029/2007JD009232

Su H, Yang Z-L, Dickinson RE, Wilson CR, Niu G-Y (2010) Multisensor snow data assimilation at the
continental scale: the value of gravity recovery and climate experiment terrestrial water storage
information. J Geophys Res 115:D10104. doi:10.1029/2009JD013035

Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett
33:L08402. doi:10.1029/2005GL025285

Tang Q, Gao H, Yeh P, Oki T, Su F, Lettenmaier DP (2010) Dynamics of terrestrial water storage change
from satellite and surface observations and modeling. J Hydrometeorol 11:156–170

Tedesco M, Narvekar PS (2010) Assessment of the NASA AMSR-E SWE product. IEEE J Sel Top Appl
Earth Obs Remote Sens 3:141–159

Surv Geophys (2014) 35:577–606 605

123119Reprinted from the journal

http://dx.doi.org/10.1029/2006JD008033
http://dx.doi.org/10.1029/2007GL031986
http://dx.doi.org/10.1029/2007WR006357
http://dx.doi.org/10.1007/978-3-540-71056-1
http://dx.doi.org/10.1175/JCLI-D-10-05033.1
http://dx.doi.org/10.1175/JCLI-D-10-05033.1
http://gmao.gsfc.nasa.gov/pubs/
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.1175/BAMS-85-3-381
http://dx.doi.org/10.1038/nature08238
http://dx.doi.org/10.1029/2004GL021908
http://dx.doi.org/10.1029/2009JB006546
http://dx.doi.org/10.1016/j.advwatres.2012.08.007
http://dx.doi.org/10.1175/2007JTECHA930.1
http://dx.doi.org/10.1175/2007JTECHA930.1
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1029/2012WR011976
http://dx.doi.org/10.1029/2010JG001545
http://dx.doi.org/10.1029/2007JD009232
http://dx.doi.org/10.1029/2009JD013035
http://dx.doi.org/10.1029/2005GL025285
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Abstract Land surface processes and their initialisation are of crucial importance for

Numerical Weather Prediction (NWP). Current land data assimilation systems used to

initialise NWP models include snow depth analysis, soil moisture analysis, soil tempera-

ture and snow temperature analysis. This paper gives a review of different approaches used

in NWP to initialise land surface variables. It discusses the observation availability and

quality, and it addresses the combined use of conventional observations and satellite data.

Based on results from the European Centre for Medium-Range Weather Forecasts (EC-

MWF), results from different soil moisture and snow depth data assimilation schemes are

shown. Both surface fields and low-level atmospheric variables are highly sensitive to the

soil moisture and snow initialisation methods. Recent developments of ECMWF in soil

moisture and snow data assimilation improved surface and atmospheric forecast

performance.

Keywords Land surface · Data assimilation · Numerical weather prediction ·

Soil moisture · Snow

1 Introduction

Land surface processes determine the lower boundary conditions of the atmosphere, and

they represent a crucial component of the hydrological cycle (Mueller and Seneviratne

2012; Entekhabi et al 1999; Koster and Suarez 1992; Shukla and Mintz 1982). In

Numerical Weather Prediction (NWP) and climate models, surface–atmosphere interaction

processes are represented by Land Surface Models (LSMs). These models have been

improved considerably during the last two decades and, nowadays, they represent

exchanges of water and energy through the soil–plant–atmosphere continuum with a good
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consistency between land surface fluxes and soil moisture (Best et al. 2011; Balsamo et al.

2009; Krinner et al. 2005; de Rosnay et al. 2002).

Land surface initialisation is of crucial importance for NWP. A number of studies have

shown a significant impact of soil moisture conditions on weather forecast skill at short and

medium range (van den Hurk et al. 2008; Drusch and Viterbo 2007; Douville et al. 2000;

Mahfouf et al. 2000; Beljaars et al. 1996) as well as at seasonal range (Weisheimer et al.

2011; Koster et al. 2011, 2004). Cold processes are also a key component of the land–

surface interactions. Snow is characterised by a very high albedo and a low thermal

conductivity, and the snowpack constitutes a substantial water storage reservoir (De

Lannoy et al. 2012; Brown and Mote 2009; Barnett et al. 2005). Snow has a strong

influence on the summer water supply, and it affects the energy balance at the surface and

the surface–atmosphere interactions (Gong et al. 2004; Walland and Simmonds 1997). So,

initialisation of snow conditions has a large impact on the atmospheric forecast accuracy

(Drusch et al 2004; Brasnett 1999).

In this paper, methods used in operational NWP models to analyse LSMs’ prognostic

variables are reviewed. Section 2 describes current snow analysis approaches used in NWP

centres. It presents ground and satellite observations of snow that are relevant to operational

applications and shows results of snow data assimilation experiments. Based on results from

the European Centre for Medium-Range Weather Forecasts (ECMWF), the impact on the

atmospheric forecasts is presented and compared for different snow data assimilation

approaches. Section 3 reviews soil moisture analysis systems used for NWP applications. It

includes a discussion on the use of satellite data to analyse soil moisture. ECMWF results

are shown to illustrate the influence of different soil moisture analysis approaches on surface

and low-level atmospheric fields. Concluding remarks are given in Sect. 4.

2 Snow Analysis

2.1 Snow Forecast Models

Snow processes are parameterised in LSMs to account for a range of processes, including

snow accumulation on the ground, snow melting and snow compaction. The LSM used at

ECMWF is H-TESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchange over

Land) (ECMWF 2012; Balsamo et al. 2009; Viterbo and Beljaars 1995). H-TESSEL snow

parameterisation was revised in 2009 (Dutra et al. 2010). It now accounts for liquid water

content in the snowpack, and it includes a new snow density formulation that expresses the

fresh snow density as a function of wind speed and air temperature. Snow Cover Fraction

(SCF) and Snow Water Equivalent (SWE) are related by a depletion curve which depends

on snow density. So, H-TESSEL represents the SCF hysteresis between accumulation and

depletion periods (Dutra et al. 2010).

H-TESSEL has an explicit treatment of the snowpack evolution, and it uses a single-

layer snow model, in contrast to LSMs used at the United Kingdom Meteorological Office

(UKMO) or at Météo France, which include a multi-layered snow scheme (Best et al.

2011; Dutra et al. 2010; Boone et al. 2004). Like most other LSMs, H-TESSEL represents

the effects of snow on the surface roughness length and for sub-grid scale processes.

Current LSMs represent well the duration of snow cover; however, they still have large

uncertainties in terms of snow accumulation, due to inaccuracies in the meteorological

forcing and to imperfect model parameterisations (Essery et al. 2009; Boone et al. 2004).

Data assimilation approaches, by optimally combining models and observations, are
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expected to provide most accurate estimates of snow conditions (Pullen et al. 2011; Essery

et al. 2009; Drusch et al. 2004; Brasnett 1999).

2.2 Snow Observations

Snow data assimilation strongly relies on snow depth ground observations (Drusch et al.

2004; Brasnett 1999). A major source of snow depth measurements is that provided by

SYNOP stations (synoptic reports). These observations are available in near-real time

(NRT) on the Global Telecommunication System (GTS), so they are suitable for NWP

applications. In addition to SYNOP reports, most weather services maintain national snow

depth measurements networks. For example, the SNOTEL (SNOwpack TELemetry) net-

work provides snow depth measurements used in the NOAA (National Oceanic and

Atmospheric Administration) National Weather Service’s National Operational Hydrologic

Remote Sensing Center (NOHRSC) SNOw Data Assimilation System (SNODAS). The

NOAA COoperative Observer Program (COOP) also provides snow depth measurements

over North America. However, data gathered from National Networks are not available on

the GTS, and therefore, they are not suitable to be used in NWP snow analysis systems. In

Europe, several countries are currently making available their snow depth measurements to

the NWP community. The Swedish Meteorological and Hydrological Institute was the first

to release its national network snow depth data on the GTS from December 2010. These

data have been assimilated at ECMWF since March 2011 (de Rosnay et al. 2011a). Ground

measurements of snow depth provide a very accurate local information, however, because

of the variability of land surface and meteorological conditions, their representativeness can

be limited, particularly in heterogeneous and in mountainous areas. Besides, many areas are

sparsely observed (e.g., large areas in Siberia). Based on comparisons between pointwise

SYNOP snow depth data and snow survey data sets, Takala et al. (2011) estimated the

uncertainty of SYNOP snow depth data to be close to 0.12 m.

Satellite observations provide spatially integrated measurements with global coverage

which makes them of high interest to provide consistent snow information for climate and

NWP communities. SWE products based on passive microwave measurements, for

example, from AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing

System), product are available. However, retrieval algorithms are sensitive to many

parameters such as snow grain size distribution and snow liquid water content, which are

very difficult to estimate. Therefore, current satellite-based SWE products still have a

limited accuracy, particularly for deep snow conditions (Takala et al. 2011). Future sen-

sors, such as the proposed ESA (European Space Agency) Earth Explorer CoReH2O

mission, are designed to accurately retrieve SWE, using dual polarisation measurements at

frequencies optimal to separate grain size and SWE effects on the microwave emission

(Rott et al. 2009).

While there are still high uncertainties in SWE retrievals from space-borne sensors, it is

possible to estimate the Snow Cover Fraction with a good accuracy from Visible and Near

infrared measurements in cloud-free conditions (Brubaker et al. 2009). The Moderate

Resolution Imaging Spectroradiometer (MODIS) instruments provide high-resolution

(0.05°) daily observations of snow cover. The MODIS snow cover product is used in the

NASA (National Aeronautics and Space Administration)/NOAA Global Land Data

Assimilation System (GLDAS, Rodell and Houser 2004). The NOAA/NESDIS (National

Environmental Satellite, Data, and Information Service) Interactive Multi-sensor Snow and

Ice Mapping System (IMS) combines ground observations and satellite data from micro-

wave and visible sensors (using geostationary and polar orbiting satellites) to provide snow
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cover information in all weather conditions. It provides a binary information on snow

cover. In other words, it indicates if there is snow or not on the ground, but if there is snow,

it does not indicate the snow quantity on the ground. The IMS product is available daily for

the northern hemisphere (Helfrich et al. 2007; Brubaker et al. 2009; Ramsay 1998). It is

available from 1997 at a resolution of 24 km (Ramsay 1998) and from 2004 at 4 km

resolution (Helfrich et al. 2007). The NOAA NESDIS IMS snow cover product has been

used to analyse snow in NWP systems at ECMWF and the UKMO since 2004 and 2008,

respectively (Pullen et al. 2011; de Rosnay et al. 2011b; Drusch et al. 2004). It is also used

in the latest National Centers for Environmental Prediction (NCEP) Climate Forecast

System Reanalysis (CFSR) (Meng et al. 2012).

2.3 Snow Analysis Methods

A number of NWP centres recently developed snow analysis approaches to improve the

initialisation of snow variables, with expected impacts on the near surface weather

parameters.

The UKMO snow analysis was implemented in operations 2008. It entirely relies on the

NOAA NESDIS IMS 4 km Snow Cover information (Pullen et al. 2011). As part of the

IMS pre-processing, the 4-km product is interpolated on the Unified Model grid, and a

snow cover fraction is computed for each model grid point. To correct the model snow

depth prognostic variable, a simple update approach is used, as described by Pullen et al.

(2011). If the IMS product indicates snow-free conditions, the analysed snow depth is set to

zero. Otherwise, the IMS snow cover is compared to the model background. If IMS

indicates a region is snow covered and the model background agrees, the model is simply

cycled, that is, the analysed snow depth is set to the background snow depth. If IMS

indicates a region is covered by snow while the model background is snow free, the

analysed snow depth is computed as a function of the observed snow cover using a

logarithmic depletion curve.

The NASA/NOAA GLDAS snow analysis follows a similar approach along the same

line, using the MODIS snow cover product (Rodell and Houser 2004). The NCEP CFSR

reanalysis also relies on a simple update approach, with input data resulting from combined

IMS and Air Force Weather Agency’s snow depth analysis (SNODEP), as described by

Meng et al. (2012).

Most of other NWP services use SYNOP snow depth reports available on the GTS. The

snow analysis is a spatial interpolation of weighted background and observed snow depth.

The DWD (Deutscher Wetterdienst) assimilates SYNOP reports of snow depth using the

Cressman (1959) interpolation. The Cressman analysis accounts for weighting functions of

vertical and horizontal distances between observations and model grid points. The Cana-

dian Meteorological Center (CMC) uses a 2D Optimal Interpolation (OI) scheme

developed by Brasnett (1999). Similarly to the Cressman interpolation, the OI expresses

the observations weighting functions from vertical and horizontal structure functions. In

addition, it accounts for covariance matrices of background and observations errors which

enable to optimally combine model background and observations. At ECMWF, the latest

ECMWF Re-Analysis, ERA-Interim, uses a Cressman interpolation for the snow analysis

(Dee et al. 2011). The operational snow analysis relied on a Cressman interpolation for

more than 20 years until it was replaced by a 2D Optimal Interpolation in November 2010

(de Rosnay et al. 2011b). The ECMWF operational snow analysis is a two-step algorithm.

In the first step, a simple update scheme similar to the one used at NCEP or at the UKMO

is used to account for the IMS snow cover information. Grid boxes, which are snow free in
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the model background but are snow covered in the satellite-derived product, are updated

with a constant snow depth of 0.1 m of density 100 kg m−2. In the second step, obser-

vations from ground stations reports and snow-free satellite observations (which enter the

analysis with a snow depth equal to 0 m) are assimilated using an OI to produce the

analysed snow field.

As described above for CMC, DWD, ECMWF, NASA/NOAA and NCEP, NWP sys-

tems generally use simple data assimilation approaches to initialise snow depth, ranging

from simple update, Cressman Interpolation and Optimal Interpolation.

2.4 Results

Figure 1 shows snow depth analysis fields in north-east Asia on 30 October 2010, obtained

from the ECMWF Integrated Forecasting System when using a Cressman snow analysis

(top) and an OI snow analysis (bottom). A qualitative comparison shows that the Cressman

analysis produces disc-shaped spurious patterns of snow in northern Asia related to the

Cressman interpolation. The OI presents a smoother and more correct snow analysis

without spurious patterns. The Optimal Interpolation analysis makes a better use of

Fig. 1 Snow depth (cm) fields obtained using (top) a Cressman snow analysis from the operational
ECMWF Integrated Forecasting System and (bottom) an OI snow analysis as tested at ECMWF before
operational implementation, in northern Asia on 30 October 2010. SYNOP snow depth measurements are
reported (cm) in black on the figure
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SYNOP snow depth data than Cressman. The difference between the two analyses mainly

results from differences in the structure functions between OI and Cressman.

The 2009/2010 winter season, with cold and snowy conditions in the northern hemisphere

(Cohen et al. 2010), highlighted the importance of good-quality snow analysis (de Rosnay

et al. 2011b). Figure 2 shows the impact of different snow analysis configurations on the

forecast 1000 hPa geopotential height error for the winter 2009–2010. Figure 2a shows the

impact of the OI snow analysis compared to the Cressman snow analysis, with both schemes

using SYNOP and IMS snow cover data at 24 km resolution. Figure 2b shows the impact of

the revised ECMWF analysis implemented in 2010 compared to the previous analysis. The

old analysis uses Cressman and observations from the SYNOP network and the IMS 24 km

product. The new analysis relies on the OI and uses observations from SYNOP and the 4-km

snow cover IMS product. The new analysis also accounts for an improved pre-processing and

quality control of the IMS NESDIS data. In particular, based on an altitude threshold of

1500 m, the use of the IMS data is switched off in mountainous areas. Replacing the

Cressman snow analysis by the OI has a relatively neutral impact on the atmospheric cir-

culation, although a slight non-significant improvement can be seen (Fig. 2a). The new

ECMWF snow analysis (Fig. 2b) has an overall positive impact on the atmospheric forecasts

skill, with root mean square error forecast for the 1000 hPa geopotential height improved by

1–4 % in the short range (forecasts until day 4). Figures 1 and 2 illustrate that the combined

improvements of the analysis approach (OI vs Cressman) and data pre-processing and quality

control (IMS snow cover product resolution and altitude threshold) lead to improve both the

snow depth fields and the low-level atmospheric forecast.

3 Soil Moisture Analysis

3.1 History of Soil Moisture Analysis for NWP

In the absence of a near-real-time global network for providing soil moisture information,

using screen-level data has been the only source of information that has been continuously

(a)
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Fig. 2 Normalised root mean square forecast error difference for the ECMWF 1,000 hPa geopotential for
(a) Cressman minus OI snow analyses, both using the SYNOP reports and the 24-km NOAA NESDIS IMS
snow cover product and (b) Cressman minus OI, with OI using SYNOP and 4-km NOAA NESDIS IMS
snow cover data (new ECMWF snow analysis) and Cressman using SYNOP and the 24-km IMS product
(old ECMWF snow analysis). Statistics are computed based on daily analyses at 00 UTC from 01 December
2009 to 28 February 2010. Vertical bars show the 90 % confidence interval. The x-axis shows the forecast
range from 0 to 10 days. Positive impact of the OI analysis compared to the Cressman analysis is shown by
positive values
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available from the SYNOP network for NWP soil moisture analysis systems. As shown by

Mahfouf (1991), it provides indirect, but relevant information to analyse soil moisture. So,

most of the current operational soil moisture analysis systems rely on analysed screen-level

variables (2-m temperature and relative humidity).

In 1994, a nudging approach was implemented at ECMWF to analyse soil moisture,

using the lowest atmospheric level specific humidity analysis increments. It was the first

NWP centre to implement a soil moisture analysis scheme, mainly to prevent the soil

moisture from drifting to unrealistic dry conditions in summer time. However, the nudging

scheme was not accounting for processes that modulate the relation between soil moisture

and specific humidity. So, soil moisture increments were affected by systematic biases with

successive negative and positives increments at both the diurnal and seasonal scales

(Mahfouf et al. 2000).

In 1999, the nudging soil moisture analysis was replaced by a 1D Optimal Interpolation

analysis, as originally proposed by Mahfouf (1991). The OI soil moisture analysis

implementation at ECMWF and evaluation are detailed in Douville et al. (2000) and

Mahfouf et al. (2000). The OI soil moisture analysis relies on the relation between soil

moisture and screen-level temperature and relative humidity. When soil moisture is

underestimated, air temperature is expected to be overestimated and air humidity under-

estimated. In contrast, when soil moisture is overestimated, screen-level air temperature is

too low and air humidity too large. Based on this relation between soil moisture and

screen-level parameters, the soil moisture correction is computed as a function of the

screen-level parameters correction. So, a dedicated screen-level parameters analysis was

implemented, based on an OI approach, and its increments are then used as input of the soil

moisture analysis (Mahfouf et al. 2000). The same method has been used to analyse soil

temperature and snow temperature using the screen-level air temperature increments. The

OI soil moisture and temperature analysis has been widely used for NWP applications in

several NWP centres. It was used at ECMWF for operational NWP from July 1999 to

November 2010. It has been used in ECMWF re-analyses ERA-40 (Uppala et al. 2005) and

is still in use for ERA-Interim (Dee et al. 2011). An OI soil moisture analysis is currently

used at Météo France (Giard and Bazile 2000), Environment Canada (Bélair et al. 2003)

and in the High Resolution Limited Area Model (HIRLAM) (Rodrı́guez et al. 2003).

As shown by Drusch et al. (2009), the OI soil moisture analysis improves screen-level

parameters forecasts, without, however, any positive impact on soil moisture. Furthermore,

an important weakness of the OI approach is its lack of flexibility to easily account for new

types of data including new generations of satellite data (Mahfouf et al. 2009). Also, it uses

calibrated coefficients that would require to be updated for each change in the LSM. The

OI, by using fixed coefficients, does not account for local processes such as cloud cover or

soil moisture conditions that influence the coupling strength between soil moisture and

screen-level parameters and therefore the magnitude of the increments (de Rosnay et al

2012).

Several NWP centres started to investigate the use of satellite data to analyse soil

moisture, using a range of approaches based on simplified EKF (Draper et al. 2011) or the

equivalent simplified 2D-Var (Balsamo et al. 2007), as well as EKF and an Ensemble

Kalman Filter (Reichle et al. 2002, 2008). At Météo France, an offline EKF approach was

evaluated, and the impact of ASCAT (Advanced SCATterometer) soil moisture data

assimilation on the low-level atmospheric parameters was addressed (Mahfouf 2010). A

limited impact of the EKF soil moisture analysis on relative humidity and air temperature

was found. A simplified Extended Kalman Filter (EKF) soil moisture analysis, using

screen-level parameters information, was implemented operationally at the German
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Weather Service (Deutscher Wetterdienst) in 2000 (Hess 2001). Along the same line,

ECMWF developed a point-scale simplified EKF soil moisture analysis (Seuffert et al.

2004). Preliminary investigations at local scale showed that the OI and the EKF soil

moisture analyses give similar results when they both use screen-level parameters (Seuffert

et al. 2004). The ECMWF simplified EKF soil moisture analysis was extended to be used

at global scale (Drusch et al. 2009) and implemented in operations in 2010 (de Rosnay

et al. 2012).

In the following section, differences between EKF and OI soil moisture analyses are

presented in terms of soil moisture increments and low-level atmospheric parameters

forecasts.

3.2 Comparison Between the OI and EKF Soil Moisture Analyses

de Rosnay et al. (2012) quantified monthly mean global soil moisture increments for both

the OI and the EKF schemes for an entire annual cycle. They showed that the OI scheme

systematically adds water to the soil. The global monthly mean value of the OI analysis

increments was shown to be 5.5 mm, which represents a substantial and unrealistic con-

tribution to the global water cycle. In contrast, the EKF global mean soil moisture analysis

increments are much smaller, representing more reasonable global monthly mean incre-

ments of 0.5 mm. The reduction in increments between the EKF and the OI is mainly due

to a systematic reduction in increments below the first layer. The OI increments computed

for the first layer are amplified for deeper layers in proportion to the layer thickness,

explaining the overestimation of the OI increments. In contrast, the EKF dynamical esti-

mates, based on perturbed simulations, allow optimising soil moisture increments at

different depths to match screen-level observations according to the strength of the local

and current soil–vegetation–atmosphere coupling. The EKF accounts for additional con-

trols due to meteorological forcing and soil moisture conditions. Thereby, it prevents

undesirable and excessive soil moisture corrections (de Rosnay et al. 2012). Figure 3

illustrates monthly mean increments accumulated in the first metre of soil, for August

2009. In agreement with de Rosnay et al. (2012), it shows that larger increments are

accumulated into the soil with the OI than with the EKF analysis scheme. It is, however,

interesting to note that large increments remain with the EKF in the US Great Plains and in

South America, showing these regions are affected by systematic soil moisture bias in the

LSM. Further investigation will be carried out in the future to address this feature.

The impact of the soil moisture analysis scheme on analysed soil moisture was also

studied using ground data from SMOSMANIA (Soil Moisture Observing System-Meteo-

rological Automatic Network Integrated Application) (Calvet et al. 2007). de Rosnay et al.

(2012) showed that ECMWF soil moisture is generally in good agreement with ground

observations, with mean correlations higher than 0.78. Using the EKF instead of the OI

scheme improves significantly the soil moisture analysis, with mean correlation between

ECMWF and ground truth soil moisture higher than 0.84 when the EKF soil moisture

analysis is used (de Rosnay et al. 2012).

Figure 4 shows the monthly mean impact of the EKF soil moisture analysis on the 36-h

forecast of 2-m temperature at 0000 UTC for July-August-September 2009. It shows the

difference in temperature error (in K) between the OI and EKF experiments. Positive

values indicate that the EKF generally improves the 2-m temperature forecasts compared

to the OI soil moisture analysis. It is consistent with the results shown by de Rosnay et al.

(2012) to indicate that in most areas the 2-m temperature errors for OI are larger than the
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EKF errors, showing that the EKF soil moisture analysis has a slight positive impact on the

2-m temperature forecast.

3.3 Use of Satellite Data to Analyse Soil Moisture

In the past few years, several new space-borne microwave sensors have been developed to

estimate soil moisture from space. They provide spatially integrated information on surface

soil moisture at a scale relevant to NWP models. The active sensor ASCAT on MetOp was

launched in 2006 (Bartalis et al. 2007). The EUMETSAT (European Organisation for the

Exploitation of Meteorological Satellites) ASCAT surface soil moisture product is the first

operational soil moisture product. It is available in near-real time, and it has been moni-

tored operationally at ECMWF since September 2009 (de Rosnay et al. 2012). Scipal et al.

(2008) evaluated the impact of scatterometer soil moisture products (from the European

Remote-Sensing ERS) data assimilation in a simple nudging scheme. They showed that,

compared to the model “open-loop” (without data assimilation), ASCAT soil moisture data

Fig. 3 Accumulated soil water increments (in mm) in the first metre of soil for August 2009, with the OI
(top) and EKF (bottom) analyses
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assimilation improves the model soil moisture and screen-level parameters. However, they

found that compared to the OI soil moisture analysis, ASCAT soil moisture nudging

scheme has a slightly negative impact on the atmospheric forecasts. De Rosnay et al.

(2012) evaluated the use of ASCAT soil moisture data in the EKF soil moisture analysis,

showing a neutral impact on both soil moisture and screen-level parameters forecasts. At

the UKMO, Dharssi et al. (2011) investigated ASCAT surface soil moisture data assimi-

lation using a simple nudging scheme, as already used at the UKMO to analyse soil

moisture from screen-level parameter information. They showed that assimilating ASCAT

data, in addition to screen-level information in their nudging scheme, improves soil

moisture analysis and forecasts scores of screen-level parameters in the tropics, in Aus-

tralia and in North America. Based on their positive evaluation results, ASCAT soil

moisture nudging was implemented in operations in July 2010 at the UKMO.

The ESA SMOS (Soil Moisture and Ocean Salinity) mission was launched in 2009

(Kerr et al. 2007). Based on L-band passive microwave measurements, SMOS is the first

mission dedicated to soil moisture remote sensing. The future NASA (National Aero-

nautics and Space Administration) SMAP (Soil Moisture Active and Passive) mission,

planned to be launched in 2015, will be a soil moisture mission that combines active and

passive microwave measurements to provide global soil moisture and freeze/thaw state

(Entekhabi et al. 2010). ECMWF plays a major role in developing and investigating the use

of new satellite data for soil moisture analysis. SMOS brightness temperature product has

been monitored in near-real time since November 2010, as described in Sabater et al.

(2011). Work toward assimilation of SMOS data over land is ongoing.

An extensive evaluation and comparison between SMOS, ASCAT and ECMWF soil

moisture was conducted by Albergel et al. (2012), using existing soil moisture networks in

Europe, Africa, Australia and the USA. Using more than 200 stations to evaluate the

remotely sensed and analysed soil moisture products in contrasted climate conditions, the

authors showed that (1) SMOS and ASCAT soil moisture products are of similar quality,

with annual mean correlation 0.53 for ASCAT and 0.54 for SMOS, and (2) the analysed

product is of better quality than the satellite products with 0.70 averaged correlation value.

Fig. 4 Mean difference of monthly mean 36-h forecasts (12 UTC) error in 2-m temperature (in K) between
the OI and the EKF soil moisture analysis schemes for July–August–September. Greenish colours indicate
an improvement of the EKF compared to the OI, while reddish colours indicate a degradation
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Draper et al. (2012) recently investigated combined data assimilation, using an Ensemble

Kalman Filter, of active and passive soil moisture satellite data. They evaluated the impact

of soil moisture products data assimilation on the analysed soil moisture. They showed

that, although correlation with ground data was better for the LSM than for the satellite

data, data assimilation still has a positive impact on the analysed soil moisture. Their study

confirms the potential of satellite-based soil moisture data for NWP applications.

4 Conclusion

This paper presented the current status of data assimilation systems used to initialise land

surface variables for Numerical Weather Prediction. Different approaches used to analyse

soil moisture and snow depth in Numerical Weather Prediction (NWP) systems were

reviewed. Based on ECMWF experiments, analysis results and atmospheric forecast

impact were presented for different land surface data assimilation approaches.

Snow processes strongly influence the hydrological cycle, and they have a large impact

on the energy budget. So, accurate initialisation of snow depth for NWP applications is

highly relevant. Snow analysis schemes currently used for operational NWP rely on simple

approaches. Using the NOAA IMS snow cover product, a simple update approach is used

at the UKMO. The NCEP latest reanalysis and the GLDAS also use a simple update

approach using combined IMS/SNODEP products and the MODIS snow cover product,

respectively. The German meteorological service relies on a Cressman interpolation and

used the SYNOP snow depth reports. Since 1999 the Canadian Meteorological Center uses

a 2D Optimal Interpolation to assimilate SYNOP snow depth observations. At ECMWF

both SYNOP observations and the IMS snow cover data are assimilated. A Cressman

Interpolation was used for more than 20 years before it was recently replaced by an

Optimal Interpolation in 2010.

A qualitative comparison between snow depth fields illustrated differences between the

Cressman and the Optimal Interpolation snow depth analyses. In contrast to Cressman, the

Optimal Interpolation accounts for the model background and the observations errors,

which allows to optimally combine model background and observations. So, by improving

the structure functions, the Optimal Interpolation makes a better use of the observations

than the Cressman interpolation. The quantitative impact of the snow analysis scheme on

the atmospheric forecast was illustrated using ECMWF results. The revised ECMWF snow

analysis, using an Optimal Interpolation and SYNOP observations combined with the 4-km

IMS snow cover data and improved observation pre-processing and quality control, was

compared to the old ECMWF snow analysis based on a Cressman interpolation that uses

SYNOP and the 24-km IMS snow cover products without quality control. Results showed

that the root mean square error forecast of the 1,000 hPa geopotential height in the northern

hemisphere is reduced by 1–4 % in the short range (until forecast day 4) for the winter

2009–2010. This significant and large-scale impact of the snow analysis on the atmo-

spheric forecast illustrates the major importance of the snow analysis for Numerical

Weather Prediction applications. SWE products from satellite sensors are not yet used in

NWP although they have a potential to provide reliable and near-real-time information on

snow mass. It is expected that Snow Water Equivalent products quality will be improved in

the next few years. Potential future satellite missions such as the proposed ESA CoReH2O

mission are expected to provide SWE estimates from space with an improved accuracy

compared to current products.
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Concerning soil moisture, most NWP centres use a 1-D Optimal Interpolation analysis

to initialise soil moisture, based on a dedicated screen-level parameters analysis. Both the

German meteorological service and ECMWF use an Extended Kalman Filter soil moisture

analysis in operations. The Extended Kalman Filter soil moisture analysis is based on a

dedicated screen-level parameters analysis. Whereas the 1D Optimal Interpolation soil

moisture analysis uses screen-level analysis increments as input of the soil moisture

analysis, the Extended Kalman Filter, as implemented at ECMWF, uses analysed screen-

level fields as input observations of the soil moisture analysis. ECMWF experiments

showed that the Extended Kalman Filter soil moisture analysis consistently reduces, by

5 mm per month at global scale, the soil moisture increments compared to the Optimal

Interpolation, and it slightly improves both soil moisture and screen-level parameters

analyses and forecasts. The ECMWF soil moisture analysis evaluation against ground

measurements from the SMOSMANIA network showed an improved correlation from 0.78

for the Optimal Interpolation to 0.84 for the Extended Kalman Filter soil moisture analysis.

The Extended Kalman Filter analysis also makes it possible to combine screen-level

parameters and satellite data, such as ASCAT or SMOS, to analyse soil moisture. Previous

results with ASCAT data assimilation were discussed in this paper. ECMWF results

showed a neutral impact of ASCAT data assimilation in the Extended Kalman Filter on

both soil moisture and screen-level parameters. However, recent improvements in the

ASCAT soil moisture products and in bias correction are expected to improve the impact

of using ASCAT soil moisture data. In contrast to other centres, which mainly use Optimal

Interpolation or Extended Kalman Filter approaches, the UKMO, soil moisture analysis

relies on a simple nudging scheme. ASCAT soil moisture data assimilation was shown to

have a positive impact on the screen-level parameters forecast at the UKMO, leading to

operational ASCAT soil moisture assimilation from 2010. Developments are ongoing at

the UKMO to replace their current nudging scheme by an Extended Kalman Filter

approach which will open possibilities to combine different types of observations in their

soil moisture analysis.

Kalman Filter–based land surface analysis systems (Ensemble or Extended), used in

several NWP centres, either in research or operationally, open a wide range of further

development possibilities, including exploiting new satellite surface data and products for

the assimilation of soil moisture (e.g., SMOS or the future SMAP). At ECMWF an

extension of the Extended Kalman Filter to analyse additional variables, such as snow

temperature, snow mass and vegetation parameters, is planned for investigation in the near

future.
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McNally A, Monge-Sanz B, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN,
Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation
system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

Dharssi I, Bovis K, Macpherson B, Jones C (2011) Operational assimilation of ASCAT surface soil wetness
at the met office. Hydrol Earth Syst Sci 15:2729–2746. doi:10.5194/hess-15-2729-2011

Douville H, Mahfouf JF, Beljaars A (2000) Evaluation of optimal interpolation and nudging techniques for
soil moisture analysis using FIFE data. Mon Weather Rev 128:1733–1756

Draper C, Mahfouf JF, Walker JP (2011) Root zone soil moisture from the assimilation of scree-level
variables and remotely sensed soil moisture. J Geophys Res 116:d02127. doi:10.1029/2010JD013829

Draper C, Reichle R, De Lannoy G, Liu Q (2012) Assimilation of passive and active microwave soil
moisture retrievals. Geophys Res Lett 39:l04401. doi:10.1029/2011GL050655

DruschM,Viterbo P (2007)Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: a
study on the impact on the forecast quality and analyzed soil moisture. Mon Weather Rev 135:300–314

Surv Geophys (2014) 35:607–621 619

123133Reprinted from the journal



Drusch M, Vasiljevic D, Viterbo P (2004) ECMWF s global snow analysis: assessment and revision based
on satellite observations. J Appl Meteorol 43:1282–1294

Drusch M, Scipal K, de Rosnay P, Balsamo G, Andersson E, Bougeault P, Viterbo P (2009) Towards a
Kalman filter based soil moisture analysis system for the operational ECMWF Integrated Forecast
System. Geophys Res Lett 36:110401. doi:10.1029/2009GL037716

Dutra E, Balsamo G, Viterbo P, Miranda P, Beljaars A, Schär C, Elder K (2010) An improved snow scheme
for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916.
doi:10.1175/2010JHM1249.1

ECMWF (2012) IFS documentation Cy37r2 operational implementation 18 May 2011. available at
http://wwwecmwfint/research/ifsdocs/CY37r2

Entekhabi D, Asrar G, Betts A, Beven K, Bras R, Duffy C, Dunne T, Koster R, Lettenmaier D, DB ML,
Shuttleworth W, van Genuchten M, Wei MY, Wood E (1999) An agenda for land surface hydrology
research and a call for the second international hydrological decade. Bull AmMeteorol Soc 10:2043–2058

Entekhabi D, Njoku E, O’Neill P, Kellog K, Crow W, Edelstein W, Entin J, Goodman S, Jackson T, Johnson
J, Kimball J, Piepmeier J, Koster R, Martin N, McDonald K, Moghaddam M, Moran S, Reichle R, Shi J,
Spencer M, Thurman S, Tsang L, Van Zyl J (2010) The soil moisture active passive (SMAP) mission.
Proc IEEE 98(5):704–716

Essery RLH, Rutter N, Pomeroy J, Baxter R, Stähli M, Gustafsson D, Barr A, Bartlett P, Elder K (2009)
SNOWMIP2: an evaluation of forest snow process simulations. Bull Am Meteorol Soc 90:1120–1135.
doi:10.1175/2009BAMS2629.1

Giard D, Bazile E (2000) Implementation of a new assimilation scheme for soil and surface variables in a
global NWP model. Mon Weather Rev 128:997–1015

Gong G, Entekhabi D, Cohen J, Robinson D (2004) Sensitivity of atmospheric response to modeled snow
anomaly characteristics. J Geophys Res 109:d06107. doi:10.1029/2003JD004160

Helfrich SR, McNamara D, Ramsay B, Baldwin T, Kasheta T (2007) Enhancements to, and forthcoming
developments in the interactive multisensor snow and ice mapping system, (IMS). Hydrol Process
21:1576–1586. doi:10.1002/hyp.6720

Hess R (2001) Assimilation of screen-level observations by variational soil moisture analysis. Meteorol
Atmos Phys 77:145–154

Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela M, Font J, Reul N, Gruhier
C, Juglea S, Drinkwater M, Hahne A, Martı́n-Neira M, Mecklenburg S (2007) The SMOS mission: new
tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687

Koster R, Mahanama P, Yamada T, Balsamo G, Berg A, Boisserie M, Dirmeyer P, Doblas-Reyes F, Drewitt
G, Gordon C, Guo Z, Jeong J, Lee W, Li Z, Luo L, Malyshev S, Merryfield W, Seneviratne S, Stanelle
T, van den Hurk B, Vitart F, Wood E (2011) The second phase of the global land-atmosphere coupling
experiment: soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12:805–822

Koster RD, Suarez MJ (1992) Modeling the land surface boundary in climate models as a composite of
independent vegetation stands. J Geophys Res 97:2697–2715

Koster RD, Dirmeyer P, Guo Z, Bonan G, Cox P, Gordon C, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu
C, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud Y, Taylor C,
Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and
precipitation. Sciences 305:1138–1140
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Abstract This paper reviews the conceptual problems limiting our current knowledge of

the hydrological cycle over land. We start from the premise that to understand the

hydrological cycle we need to make observations and develop dynamic models that

encapsulate our understanding. Yet, neither the observations nor the models could give a

complete picture of the hydrological cycle. Data assimilation combines observational and

model information and adds value to both the model and the observations, yielding

increasingly consistent and complete estimates of hydrological components. In this review

paper we provide a historical perspective of conceptual problems and discuss state-of-the-

art hydrological observing, modelling and data assimilation systems.

Keywords Hydrological cycle � Earth observation � Land surface models �
Data assimilation

1 Introduction

The water stored on land is a key variable controlling numerous processes and feedback

loops within the climate system (see, e.g., Dirmeyer 2000; Koster et al. 2004a, b; Sene-

viratne et al. 2010). It constrains plant transpiration and photosynthesis and thus is of major

relevance for the Earth’s water and energy cycles and impacts the exchanges of trace gases

on land, including carbon dioxide. Figure 1, from IPCC (2007), provides an overview of

the main terrestrial components and exchanges within the climate system. This shows the

complexity of land processes and feedbacks, to a large extent owing to the high spatial
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Météo-France, CNRM/GMGEC/CARMA, 42 avenue Gaspard Coriolis, 31100 Toulouse, France

G. J. M. De Lannoy
Global Modeling and Assimilation Office (Code 610.1), NASA/GSFC, Greenbelt, MD, USA
e-mail: Gabrielle.Delannoy@nasa.gov

123

DOI 10.1007/978-94-017-8789-5_8
Reprinted from Surveys in Geophysics Journal, DOI 10.1007/s10712-013-9221-7

137Reprinted from the journal



variability in soils, vegetation and topography (ranging from metres to kilometres). Pro-

cesses affecting the amount of water stored on land, for example, precipitation and radi-

ation, have spatial scales of kilometres (e.g., associated with weather fronts) and have high

temporal variability (hours).

The amount of water stored in the unsaturated soil zone is generally referred to as soil

moisture, although the exact definition can vary depending on the context. Soil moisture is

one of the key geophysical variables for understanding the Earth’s hydrological cycle. It is

classed as an essential climate variable of the Global Climate Observing System (GCOS)

(GCOS-107, 2006).

Soil moisture determines the partitioning of incoming water into infiltration and run-off.

It directly affects plant growth and other organic processes and thus connects the water

cycle to the carbon cycle. Run-off and base flow from the soil profile determine river flows

and flooding, which connects hydrology with hydraulics. Soil moisture also has a signif-

icant impact on the partitioning of water and heat fluxes (latent and sensible heat), thereby

connecting the hydrological (i.e. water) cycle with the energy cycle.

Soil moisture is a source of water for the atmosphere through evapotranspiration from

land. Evapotranspiration is a major component of the continental water cycle, as it returns

as much as 60 % of the whole land precipitation back to the atmosphere (e.g., Oki and

Kanae 2006). Furthermore, evapotranspiration is also an important energy flux (Trenberth

et al. 2009) and is connected to the surface skin and soil temperature, which make up other

important state variables of the land surface system. Together, soil moisture, temperature

and their impacts on the water, energy and carbon cycle play a major role in climate-

change projections (IPCC 2007; Seneviratne et al. 2010). Snow on land is another

important variable affecting the global energy and water budgets, because of its high

albedo, low thermal conductivity, considerable spatial and temporal variation and medium-

term capacity for water storage.

Fig. 1 Global climate system. Figure from IPCC (2007)
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Quantifying the land state and fluxes and understanding soil moisture–temperature and

soil moisture–precipitation couplings allow a better representation of hydrological pro-

cesses in climate models and significantly help to reduce uncertainties in future climate

scenarios, in particular regarding changes in climate variability and extreme events, and

ecosystem/agricultural impacts (Seneviratne et al. 2010). This understanding is also cru-

cially important for improving short-range numerical weather prediction (NWP) capabil-

ities, in particularly regarding prediction of convective precipitation (Sherwood 1999;

Adams et al. 2011, and references therein).

Hydrological observations are prone to errors and are discrete in space and time with

the result that the information provided by these observations has gaps. Figure 2 shows an

example of gaps in satellite observations. It is desirable to fill gaps in the observed

information using additional information and computational techniques. Algorithms or

models to fill in information gaps should organize, summarize and propagate the infor-

mation from observations in an objective and consistent way. A simple approach such as

linear interpolation could be a reasonably accurate ‘‘model’’, when observations are dense

enough. However, linear interpolation may not be consistent with our advanced under-

standing of how the land surface behaves. A more realistic approach would be to fill in the

gaps using a land surface model (LSM). While observations give an instantaneous view of

the land surface, LSMs provide continuous estimates, based on physical laws that are

derived from historical observations. These models are not perfect, and gaps in their

structure, parametrization or initialization can be filled in with observations.

Fig. 2 Plot representing retrieved soil moisture data from the Soil Moisture Ocean Salinity (SMOS, Kerr
et al. 2010) mission for August 3, 2012 (top left panel), August 10, 2012 (top right panel), August 17, 2012
(bottom left panel), and August 25, 2012 (bottom right panel), based on the observational geometry from
ascending orbits from SMOS (units of m3 m-3). Blue denotes relatively wet values; red denotes relatively
dry values. The uncoloured (i.e. grey) areas over land represent gaps between the satellite orbits.
Noteworthy are the sparse SMOS observations over Scandinavia, where retrievals from remotely sensed
observations are particularly difficult, when the land is covered with snow, ice, forest, water bodies or rocks
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Data assimilation (Kalnay 2003) provides an intelligent method to fill in the observa-

tional gaps using a model or to steer models using observations. By intelligent, it is meant

an ‘‘objective’’ way which makes use of quantitative concepts (e.g., mathematical) for

combining imperfect information. By combining observational and model information,

data assimilation can be used to test the self-consistency and error characteristics of this

information (Talagrand 2010b).

In this paper we focus on off-line land data assimilation, where the LSM is uncoupled

from an atmospheric model. By using an uncoupled LSM, it can be forced with more

observation-based forcings, rather than often inaccurate atmospheric analyses, and less

computational resources are needed. The uncoupled approach can be regarded as a first

step towards the land data assimilation goal of coupling an LSM to an atmospheric model

to improve predictions at weather, seasonal and climate timescales (Palmer et al. 2008).

In this paper we discuss observations (Sect. 2), models (Sect. 3) and data assimilation

methods (Sect. 4) used in the studies of the hydrological cycle and provide illustrative

examples, with a focus on soil moisture. We pay special attention to the conceptual

problems and key challenges associated with making use of observational and model

information of the land surface in data assimilation systems (Sect. 5). We finish by pro-

viding conclusions (Sect. 6).

2 Observations of the Hydrological Cycle

Observations of the hydrological cycle are commonly divided into conventional obser-

vations (e.g., in situ ground-based measurements such as screen-level relative humidity)

and remotely sensed observations (e.g., satellite or aircraft microwave observations). These

data sets are complementary: conventional observations have relatively high spatio-tem-

poral resolution (order metres and minutes) but only have local coverage, so have poor

representativity for a large area; satellite observations have relatively low spatio-temporal

resolution but have global coverage, so have good representativity for a large area. In situ

observations are typically used as ground truth for calibration and validation of remote

sensing products, and model and assimilation results.

Table 1 gives an overview of satellite sensors and missions that contribute to our current

understanding of the hydrological cycle or may potentially contribute to this understanding

in the near future. Depending on the observed wavelengths, the orbit altitude and design

details, there are large differences in horizontal, vertical and temporal resolution of each

observation type. For example, satellite-based observations of soil moisture are made using

passive and active microwave instruments. The horizontal resolution of these sensors

ranges from 50 to 10 km; the temporal resolution is about one observation every 2–3 days,

depending on the location on Earth. These instruments typically penetrate the first few

millimetres to centimetres of the soil: a few millimetres for the X-band (8–12 GHz, e.g.,

Advanced Microwave Sounding Radiometer for EOS, AMSR-E; Njoku and Chan 2006);

*1 cm for the C-band (4–8 GHz, e.g., AMSR-E; Advanced SCATterometer, ASCAT;

Bartalis et al. 2007); and *5 cm for the L-band (1–2 GHz, e.g., Soil Moisture Ocean

Salinity, SMOS; Kerr et al. 2010). An immediate conceptual problem is to estimate soil

moisture of actual interest in the root zone (1 m) at a finer resolution. For this, observa-

tional information needs to be transferred from the surface layer to the root zone (e.g.,

Calvet et al. 1998; Sabater et al. 2007; De Lannoy et al. 2007a; Draper et al. 2012) and

downscaled from the coarse scale to finer scales (Reichle et al. 2001a; Pan et al. 2009;
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De Lannoy et al. 2010; Sahoo et al. 2013) typically using a land surface model (discussed

in Sect. 3) and/or land data assimilation (discussed in Sect. 4).

With the design of new sensors, one aims to gain resolution, increase the sensitivity to

the variables of interest and reduce instrument errors (USGEO 2010). Examples of new

missions for soil moisture observations are the SMOS and SMAP (Soil Moisture Active

and Passive) missions, both using L-band sensors and designed with a target uncertainty

Table 1 Characteristics of hydrological observations potentially available within the next decade
(see ‘‘Appendix’’ for details of sensor acronyms)

Hydrological
quantity

Remote
sensing
technique

Timescale Spatial
scale

Accuracy considerations Examples of
sensors

Precipitation Thermal
infrared

Hourly 4 km Tropical convective clouds
only

GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 1 km

15 days 60 m

Passive
microwave

3 h 10 km Land calibration problems TRMM, SSMI,
AMSR-E, GPM

Active
microwave

Daily 10 m Land calibration problems TRMM, GPM

Surface soil
moisture

Passive
microwave

1–3 days 25–50 km Limited to sparse
vegetation, low
topographic relief

AMSR-E, SMOS,
Aquarius, SMAP

Active
microwave

3 days 3 km Significant noise from
vegetation and roughness

ERS, JERS,
Radarsat,
ASCAT

30 days 10 m

Surface skin
temperature

Thermal
infrared

1 h 4 km Soil/vegetation average,
cloud contamination

GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 1 km

15 days 60 m

Snow cover Visible/
thermal
infrared

1 h 4 km Cloud contamination,
vegetation masking,
bright soil problems

GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 500 m–
1 km

15 days 30–60 m

Snow water
equivalent
(SWE)

Passive
microwave

1–3 days 10 km Limited depth penetration AMSR-E

Active
microwave

30 days 100 m Limited spatial coverage SnoSat, SCLP,
Cryosat-2,
CoreH2O

Water level/
velocity

Laser 10 days 100 m Cloud penetration problems ICESAT,
ICESAT2,
SWOT,
DESDynl

Radar 30 days 1 km Limited to large rivers TOPEX/
POSEIDON

Total water
storage
changes

Gravity
changes

30 days 1,000 km Bulk water storage change GRACE, GOCS,
GRACEII

Evaporation 1 h 4 km Significant assumptions GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 1 km

15 days 60 m

Table updated from Houser et al. (2010)
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lower than that of earlier missions, like AMSR-E and ASCAT. In November 2009, the

ESA Earth Explorer mission SMOS was launched followed by another L-band mission,

NASA/CONAE Aquarius (Le Vine et al. 2006), in June 2011. Aquarius measures various

elements of the hydrological cycle, and its coarse resolution makes it less attractive for soil

moisture estimation. The NASA mission SMAP is focused on soil moisture and freeze–

thaw detection and is scheduled for launch in 2014 (Entekhabi et al. 2010a). To illustrate

the importance of soil moisture information, Table 2 identifies key benefits from satellite

soil moisture measurements.

A special issue on soil moisture from the SMOS mission has recently appeared in the IEEE

Transactions on Geoscience and Remote Sensing (Kerr et al. 2012a). The papers in this

special issue describe the SMOS mission (Mecklenburg et al. 2012); the radiometric per-

formance (Kainulainen et al. 2012); the SMOS soil moisture retrieval algorithm (Kerr et al.

2012b; Mattar et al. 2012); the impact of radio frequency interference (RFI) on the SMOS

soil moisture measurements (Castro et al. 2012; Misra and Ruf 2012; Oliva et al. 2012);

Table 2 Key benefits expected from satellite soil moisture observations

Area Products Comment

Meteorology NWP models Soil moisture plays a fundamental role in the transfer of water and
energy between the surface and the atmosphere. Introduction of
this variable in current NWP models will allow improving
predictions, especially important under adverse meteorological
conditions

Climatology Models Variability of the soil moisture time series with a long integration
period may provide relevant information for the study of climate
change

Risk
Management

Flooding risk map The soil’s risk of flooding is significantly conditioned by the
amount of water stored in the vadose zone. The generation of this
type of products will require the inclusion of soil moisture data in
hydrological and NWP models (precipitation predictions)

Fire risk map The risk of fire is determined by several factors, including
meteorological, geophysical and biophysical factors. The
information on soil moisture may be directly assimilated in
drawing up fire risk maps as they provide direct information on
evapotranspiration, water content assimilated by vegetation and
quality of vegetation

Famine risk map The merging of geopolitical, meteorological/climatological
information and data in the quality and estimates of agricultural
and/or marine products (derived with the help of soil moisture
data) may be of great use in early prediction of famine episodes
in areas of Earth where resources are scarce

Drought risk model Analysing soil moisture trends in large areas may serve to generate
drought models, along with data from other sensors

Agriculture Agricultural
production
estimate

On the basis of soil moisture data and by means of the application
of hydrological models, it is possible to determine the amount of
water assimilated by the vegetation, a value that is very useful for
estimating agricultural production

Hydrology Models The content of water stored in the soil is an important parameter to
be taken into consideration in any hydrological model, as it is an
indispensable variable in understanding the water cycle

Table adapted from http://www.cp34-smos.icm.csic.es/index.htm
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soil processes in boreal regions (Rautiainen et al. 2012); disaggregation of SMOS data

(Merlin et al. 2012); and various aspects of the validation of SMOS soil moisture data (Al

Bitar et al. 2012; Bircher et al. 2012; dall’Amico et al. 2012; Jackson et al. 2012; Lacava et al.

2012; Mialon et al. 2012; Peischl et al. 2012b; Rowlandson et al. 2012; Sanchez et al. 2012;

Schlenz et al. 2012; Schwank et al. 2012).

In view of the applications discussed later in this paper, we briefly mention that snow

measurements are often provided by AMSR-E to measure snow water equivalent (SWE),

and MODIS (MODerate resolution Imaging Spectroradiometer, Morisette et al. 2002) to

give a picture of the snow-covered area. Finally, it is worth to mention GRACE (Gravity

Recovery And Climate Experiment, Tapley et al. 2004) for its ability to measure an

integrated water quantity of soil moisture and snow, as well as water in deeper layers.

Satellite instruments do not measure directly hydrological parameters. What they

measure is photon counts (level 0 data). Algorithms then transform the level 0 data into

radiances (level 1 data). Subsequently, using retrieval techniques (Rodgers 2000), retri-

evals of layer quantities (e.g., of soil moisture) or integrated amounts (e.g., total water

storage) are derived (level 2 data). Fields derived from manipulation of level 2 data, for

example, by interpolation to a common grid are termed level 3 data. Analyses derived from

the assimilation of level 1 and/or 2 data are termed level 4 data.

Satellite observations (from level 0 and up) have associated with them a number of

errors, including random and systematic errors in the measurement, and the error of rep-

resentativeness (or representativity). Random errors (sometimes termed precision) have the

property that averaging the data can reduce them. This is not the case of the systematic

error or bias (sometimes termed accuracy). The error of representativeness is associated

with the extent to which the measurement represents a point or volume in space. In land

surface measurements, the error of representativeness is important to consider in com-

parisons of coarse-scale satellite data with point data.

Satellite-based hydrological data are becoming increasingly available, although little

progress has been made in understanding their observational errors. Evaluation of the

accuracy of land surface satellite data is a challenge, and novel methods to characterize

their errors are being applied. Examples include triple collocation (e.g., Scipal et al. 2008;

Dorigo et al. 2010; Parinussa et al. 2011); the R-metrics approach (Crow 2007; Crow and

Zhan 2007; Crow et al. 2010); and data assimilation (Houser et al. 2010, and references

therein).

A number of in situ network and airborne hydrological studies have been set up in the

last decade for evaluation of satellite data. Examples of in situ networks include

SMOSMANIA in France (Calvet et al. 2007; Albergel et al. 2009); NVE (Norges vassd-

rags-og energidirektorat, Norwegian Water Resources and Energy Directorate) in Norway

(http://www.nve.no/en/); several large-scale (larger than 10,000 km2) networks in the USA

and elsewhere (see Table 1 in Crow et al. 2012); and several local- to regional-scale (larger

than 100 km2, smaller than 10,000 km2) networks in the USA and elsewhere (see Table 2

in Crow et al. 2012). In situ soil moisture data from various networks across the world are

consolidated in the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.

at/insitu). As of January 2013, the ISMN includes data from 37 networks—Table 3 pro-

vides details. An example of an airborne study on evaluation of satellite data is the

Australian Airborne Cal/Val Experiments for SMOS (AACE, Peischl et al. 2012a). An

example of in situ ground-based station data used to evaluate satellite data is SMOSREX

(de Rosnay et al. 2006). The temporal scale of in situ platforms ranges from minutes to

hours; the spatial scale of in situ platforms ranges from tens of metres (individual stations)

to thousands of kilometres (regional-scale networks). Along with the availability of dense
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Table 3 Contributing networks to the International Soil Moisture Network (ISMN)

Name Country Stations Website

AACES Australia 49 http://www.moisturemap.monash.
edu.au/

AMMA Benin, Niger, Mali 7 http://amma-international.org/

ARM USA 25 http://www.arm.gov

AWDN USA 50 http://www.hprcc.unl.edu/awdn/

CALABRIA Italy 5 http://www.cfcalabria.it

CAMPANIA Italy 2 http://www.regione.campania.it/

CHINA China 40

COSMOS USA, Germany,
Switzerland,
France, Brasil, Kenya,
UK, Mexico

67 http://cosmos.hwr.arizona.edu/

FLUXNET-AMERIFLUX USA 2 http://www.fluxnet.ornl.gov/
fluxnet/index.cfm

FMI Finland 1 http://fmiarc.fmi.fi/

GTK Finland 7

HOBE Denmark 30 http://www.hobe.dk/

HSC_SELMACHEON Korea 1 http://www.hsc.re.kr

HYDROL-NET_PERUGIA Italy 1 http://www.dica.unipg.it/DICA

HYU_CHEONGMICHEON Korea 1 http://wrrsl.hanyang.ac.kr/html/
introduction.htm

ICN USA 19 http://www.isws.illinois.edu/warm

IIT_KANPUR India 1 http://www.iitk.ac.in

IOWA USA 6

MAQU China 20

MetEROBS Italy 1 http://mistrals.sedoo.fr/HyMeX/
Plateform-search?datsId=532

MOL-RAO Germany 2 http://www.dwd.de/mol

MONGOLIA Mongolia 44

OZNET Australia 52 http://www.oznet.org.au/

REMEDHUS Spain 23 http://campus.usal.es/*hidrus/

RUSWET-AGRO Former Soviet Union 78

RUSWET-GRASS Former Soviet Union 122

RUSWET-VALDAI Former Soviet Union 3

SCAN USA 182 http://www.wcc.nrcs.usda.gov/scan/

SMOSMANIA France 21 http://www.hymex.org/

SNOTEL USA 374 http://www.wcc.nrcs.usda.gov/snow/

SWEX_POLAND Poland 6

UDC_SMOS Germany 11 http://www.geographie.uni-
muenchen.de/department/fiona/
forschung/projekte/index.php?
projekt_id=103

UMBRIA Italy 7 http://www.cfumbria.it/
http://hydrology.irpi.cnr.it/

UMSUOL Italy 1
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in situ data for validation, it is also important to select appropriate validation measures

(Entekhabi et al. 2010b).

The assimilation of satellite data for land surface applications has only gained signifi-

cance in the last decade; it started later than atmospheric and oceanographic data assim-

ilation (see various chapters in Lahoz et al. 2010a). This can be attributed to: (1) a lack of

dedicated land surface state (water and energy) remote sensing instruments; (2) inadequate

retrieval algorithms for deriving global land surface information from remote sensing

observations; and (3) a lack of mature techniques to objectively improve and constrain land

surface model predictions using remote sensing data.

3 Models of the Hydrological Cycle

As discussed above, observational information has gaps in space and time. It is desirable to

fill in these observational gaps using a model. Such models can range from simple linear

interpolation to full land surface models (LSMs). Land surface processes are part of the

global processes controlling the Earth, which are typically represented in global general

circulation models (GCMs). The land component in these models is represented in (largely

physically based) LSMs, which simulate the water and energy balance over land using

simple algebraic equations or more complex systems of partial differential equations. The

main state variables of these models include the water content and temperature of soil

moisture, snow and vegetation. These variables are referred to as prognostic state vari-

ables. Changes in these state variables account for fluxes, for example, evapotranspiration

and run-off, which are referred to as diagnostic state variables.

Most land surface models used in GCMs view the soil column as the fundamental hydro-

logical unit, ignoring the role of, for example, topography on spatially variable processes

(Stieglitz et al. 1997) to limit the complexity and computations for these coupled models.

During the last decades, LSMs have become increasingly complex to accommodate for better

understood processes, like snow and vegetation. Along with a more complex structure often

comes a more complex parametrization, and several authors (Beven 1989; Duan et al. 1992)

have stated that LSMs are over-parametrized given the data typically available for calibration.

At larger scales, these models often rely on satellite-observed parameters, such as greenness and

LAI (leaf area index). For field-scale studies, the LSMs are usually calibrated to specific

circumstances to limit systematic prediction errors. Model calibration or parameter estimation

relies on observed data and can be defined as a specific type of data assimilation (Nichols 2010).

Many LSMs have been developed and enhanced since the mid-1990s, with varying

features, such as sub-grid variability, community-wide input, advanced physical repre-

sentations and compatibility with atmospheric models (Houser et al. 2010). Some examples

of widely used LSMs are the NCAR Community Land Model (CLM) (Oleson et al. 2010);

the Variable Infiltration Capacity (VIC) Model (Liang et al. 1994); the Noah Model (Ek

Table 3 continued

Name Country Stations Website

USCRN USA 114 http://www.ncdc.noaa.gov/crn/

USDA-ARS USA 4

VAS Spain 3 http://nimbus.uv.es/

Table adapted from http://www.ipf.tuwien.ac.at/insitu/index.php/insitu-networks.html
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et al. 2003); the Catchment LSM (Koster et al. 2000); the TOPMODEL-based Land

Atmosphere Transfer Scheme (TOPLATS) model (Famiglietti and Wood 1994); the

Hydrology-Tiled European Centre for Medium-range Weather Forecasts (ECMWF)

Scheme for Surface Exchange over Land (H-TESSEL) model (Balsamo et al. 2009); the

SURFEX model (Le Moigne 2009); the Interaction between Soil Biosphere and Atmo-

sphere (ISBA) model (Noilhan and Mahfouf 1996); and the Joint UK Land Environment

Simulator (JULES) model (Best et al. 2011; Clark et al. 2011a). An example of an inte-

grated system is the NASA Land Information System (LIS), which offers the capability to

simulate with different models, observations and data assimilation techniques (Kumar et al.

2008).

An LSM has several elements, including a soil moisture scheme, a snow scheme, a

rainfall–run-off scheme and a routing/hydraulic scheme. The soil moisture scheme can take

several forms, such as explicit numerical solutions of Richards’ equations over multiple

discretized layers (e.g., in CLM), or using a force-restore method (e.g., Deardorff 1977,

used in SURFEX), or other more non-traditional approaches, such as a soil moisture

calculation as a deviation from the equilibrium soil moisture profile between the surface

and the water table (Catchment LSM). The different profile structures involve different

state variables, for example, describing soil moisture at the surface (superficial volumetric

water content) or describing soil moisture over the root zone (mean volumetric content of

the root zone). The coupling strength between the surface and deeper soil layers is a

sensitive point for successful propagation of surface observations to deeper layers (Kumar

et al. 2009).

The presence of snow covering the ground and vegetation can greatly influence the

energy and mass transfers between the land surface and the atmosphere. Notably, the snow

layer modifies the radiative balance by increasing the albedo. Furthermore, the amount of

water stored in the snowpack has an important impact on water availability in the spring

time. The prognostic variables in most snow schemes include variables related to snow

water equivalent (SWE), including snow depth and density, and the snow heat content.

These variables most often determine the diagnostics such as snow area extent and albedo.

The snow scheme can have one layer, or several layers. In a one-layer scheme, the

evolution of the snow water equivalent of the snow reservoir depends on the precipitation

of snow (a source) and the snow sublimation from the snow surface (a sink). Multi-layer

schemes are often designed to have intermediate complexity, having simplified physical

parametrizations based on those of highly detailed internal-process snow models, while

having computational requirements resembling those of single-layer schemes (Loth et al.

1993; Lynch-Stieglitz 1994; Sun et al. 1999).

A number of approaches have been implemented for rainfall–run-off schemes. Water

that cannot be stored in the soil profile either runs off over land (Horton run-off, e.g.,

Decharme and Douville 2006) or gravitationally drains out of the profile (Mahfouf and

Noilhan 1996; Boone 1999). The TOPMODEL run-off approach combines key distributed

effects of channel network topology and dynamic contributing areas for run-off generation

(Beven and Kirkby 1979; Silvapalan et al. 1987). This formalism takes explicit account of

topographic heterogeneities (Decharme et al. 2006; Decharme and Douville 2006, 2007).

Run-off and drainage exiting from hydrological models can be used as a boundary to

hydraulic models that predict river flow and potential flooding (Matgen et al. 2010).

A hydraulic flood routing scheme uses numerical methods to solve simultaneously the

equations of continuity and momentum for a fluid (see, e.g., Guo 2006). It is often applied

to a river network, typically in a hierarchy including hillslope routing, sub-network routing

and main channel routing. An example of a routing scheme is the river transport model
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developed for the NCAR Community Land Model (CLM) (Branstetter and Erickson III

2003, and references therein). A river transport model is also useful because it can be used

to evaluate the performance of an LSM against gauge station data.

Most LSMs are soil–vegetation–atmosphere transfer (SVAT) models, where the veg-

etation is not a truly dynamic component. Recently, coupling of hydrological or SVAT

models with vegetation models has received some attention, to serve more specific eco-

logical, biochemical or agricultural purposes. Dynamic vegetation models are used to

simulate the evolution of vegetation cover, photosynthesis, carbon and nutrient inventories

and the fluxes of water, CO2, CH4, N2O, volatile organic carbon and fire-related emissions

between the land surface and atmosphere. Illustrative examples of vegetation models are

the Land biosphere Process and eXchange (LPX) model (Wania 2007; Spahni et al. 2010)

and the CoupModel (Gustafsson et al. 2004; Jansson and Karlberg 2004; Jansson et al.

2005, 2008; Karlberg et al. 2006, 2007; Klemedtsson et al. 2008; Norman et al. 2008;

Svensson et al. 2008).

There are a number of potential problems with LSMs that can cause errors in the

forecast. These include components that cause ‘‘model error’’ and components that cause

‘‘predictability error’’. Components that cause ‘‘model error’’ are as follows: incomplete

description of physical processes perhaps done for computational efficiency, perhaps a

reflection of incomplete knowledge; inaccurate parameters; and inaccurate forcings.

Components that cause ‘‘predictability error’’ are inaccurate initial states and boundaries.

All these problems are the subject of research in the land surface modelling and assimi-

lation community.

4 Data Assimilation of the Hydrological Cycle

4.1 Introduction

The only practical way to observe the land surface on continental to global scales is by

satellite remote sensing. However, this cannot provide information on the entire system,

and measurements only represent a snapshot in time. Land surface models can predict

spatial/temporal land system variations, but these predictions are often poor, due to model

initialization, parameter and forcing errors and inadequate model physics and/or resolution.

A way forward is to merge the observational and model information through data

assimilation (Kalnay 2003).

Mathematics provides rules for combining information objectively, based on principles

which aim to maximize (or minimize) a quantity (e.g., a ‘‘penalty function’’) or on

established statistical concepts (e.g., Bayesian methods) that relate prior information

(understanding, which comes from prior combination of observations and models), with

new information (e.g., an extra observation). The merged product, termed the posterior

estimate or an analysis, adds value to both observational and model information. The data

assimilation methodology takes account of the different nature (e.g., spatio-temporal res-

olution) of the observational and model information, using an observation operator (see,

e.g., Talagrand 2010a).

Assimilation of land surface observations is at an earlier stage than, for example,

assimilation of atmospheric observations (see various chapters in Lahoz et al. 2010a).

However, during the past decade, land data assimilation has been a very active field of

research. Land data assimilation considers both ground-based in situ data and satellite data.

Often, satellite land surface data are assimilated and the process validated using in situ
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measurements. Assimilated satellite observations include retrievals of land surface tem-

perature, soil moisture, snow water equivalent (SWE) and snow cover area (e.g., Van den

Hurk et al. 2002; Andreadis and Lettenmaier 2006; Slater and Clark 2006; Bosilovich et al.

2007; Dong et al. 2007; Drusch 2007; Ni-Meister 2008; Reichle et al. 2008; Houser et al.

2010). Houser (2003) discusses the assimilation of land surface retrieved quantities and

radiances. Early reviews of land data assimilation have been provided by McLaughlin

(2002), Reichle (2008), Moradkhani (2008) and Houser et al. (2010).

Land data assimilation uses observations to constrain the physical parametrizations and

initialization of land surface states critical for seasonal-to-interannual prediction. These

constraints can be imposed in four ways: (1) by forcing the land surface primarily by

observations (such as precipitation and radiation), often severe atmospheric NWP land

surface forcing biases can be avoided (e.g., Saha et al. 2010; Reichle et al. 2011); (2) by

employing innovative land surface data assimilation techniques, observations of land

surface storages (such as snow, soil temperature and moisture) can be used to constrain

unrealistic simulated storages (e.g., Houser et al. 2010; Reichle et al. 2013); (3) by tuning

adjustable parameters (e.g., Pauwels et al. 2009; Vrugt et al. 2012); and (4) the land surface

physical structure itself can be improved through the data assimilation process when the

constant confrontation of model states against observations returns useful information

about structural deficits. Integration of soil moisture information from satellite instruments,

and ground-based and in situ observations of the land surface, using land data assimilation,

provides a comprehensive picture of the state and variability of the land surface.

4.2 Data Assimilation Methods

Three methods are commonly used for land data assimilation (Houser et al. 2010): vari-

ational (3- and 4-dimensional, 3D-Var and 4D-Var); sequential (Kalman filter (KF) and

Extended Kalman filter (EKF)); and ensemble (Ensemble Kalman filter, EnKF). Bouttier

and Courtier (1999) provide details of these methods. Talagrand (2010a) and Kalnay

(2010) discuss more recent developments in variational methods and ensemble methods,

respectively.

In the 3-D variational (3D-Var) method, a minimization algorithm is used to find a

model state, x, that minimizes the misfit between x and the background state xb, and also

between the observation predictions H(x) and the observations y. The observation operator

H maps the model state x to the measurement space, where y resides. In 3D-Var, we seek

the minimum with respect to x of the penalty function, J, given by Eq. (1). The first term on

the right hand side (Jb) quantifies the misfit to the background term, and the second term

(Jo) is the misfit to the observations. If the observation operator is linear (written H), the

penalty function, J, is quadratic and is guaranteed to have a unique minimum.

J ¼ 1

2
½x� xb�TB�1½x� xb� þ 1

2
½y� HðxÞ�TR�1½y� HðxÞ� ð1Þ

4-D variational (4D-Var) assimilation is an extension of 3D-Var in which the temporal

dimension is included, that is, 4D-Var is a smoother. In 4D-Var, observations are used at

their correct time. 4D-Var has two new features compared to 3D-Var. First, it includes a

model operator, M, that carries out the evolution forward in time. The first derivative, or

differential, of M, M, is the tangent linear model (if M is linear, represented by M, its

derivative is M). The transpose of the tangent linear model operator, MT, integrates the

adjoint variables backward in time. The tangent linear model is only defined under the

condition that the function J defined by Eq. (1) be differentiable—this is the tangent linear

634 Surv Geophys (2014) 35:623–660

123 148 Reprinted from the journal



hypothesis. Second, J can include an extra term in which the model errors associated with

the model’s temporal evolution are accounted for. In the formulation of Zupanski (1997),

an analogous term involving Q-1 is included in J, where Q is the model error covariance.

Examples for the land surface using variational methods include Calvet et al. (1998) and

Reichle et al. (2001a). Note that variational methods are very common for parameter

estimation (e.g., Dumont et al. 2012), but with replacement of the misfit to the background

with a misfit to prior parameter guesses.

In the Kalman filter (KF), a recursive sequential algorithm is applied to evolve a

forecast, xf, and an analysis, xa, as well as their respective error covariance matrices, Pf and

Pa. The KF equations are (subscripts denote the time step) as follows:

xf
n ¼Mn�1xa

n�1; ð2aÞ

Pf
n ¼Mn�1Pa

n�1MT
n�1 þQn�1; ð2bÞ

xa
n ¼ xf

n þKn½yn �Hnxf
n�; ð2cÞ

Kn ¼ Pf
nHT

n ½Rn þHnPf
nHT

n �
�1; ð2dÞ

Pa
n ¼ ½I�KnHn�Pf

n: ð2eÞ

Equation (2a) represents the forecast of the model fields from time step n - 1 to n,

while Eq. (2b) calculates the forecast error covariance from the analysis error covariance

Pa and the model error covariance Q. Equations (2c) and (2e) are the analysis steps, using

the Kalman gain defined in Eq. (2d). Q and Pa are assumed to be uncorrelated. For

optimality, all errors must be uncorrelated in time.

The KF can be generalized to nonlinear H and M operators, although in this case neither

the optimality of the analysis nor the equivalence with 4D-Var holds. The resulting

equations are known as the Extended Kalman filter (EKF) as, for example, used for the

land surface by Boulet et al. (2002), Reichle et al. (2002b), Matgen et al. (2010), Rüdiger

et al. (2010) and de Rosnay et al. (2012b).

The Ensemble Kalman filter, EnKF, uses a Monte Carlo ensemble of short-range

forecasts to estimate Pf. The estimation becomes more accurate as the ensemble size

increases. The EnKF is more general than the EKF to the extent that it does not require

validity of the tangent linear hypothesis. Evensen (2003) provides a comprehensive review

of the theory and numerical implementation of the EnKF. Examples for the land surface

are identified in Table 4 (see below).

The Particle Filter (PF) is also an ensemble method. It does not require a specific form

for the state distribution but, typically, a re-sampling algorithm needs to be applied (van

Leeuwen 2009). Because PF methods typically make no assumptions of linearity in the

model equations or that model and observational errors are Gaussian, they are well suited

to deal with the land surface where model evolution is highly nonlinear, and model and

observational errors can be non-Gaussian. The PF has been applied in hydrology to esti-

mate model parameters and state variables (e.g., Moradkhani et al. 2005a; Weerts and El

Serafy 2006; Plaza et al. 2012; Vrugt et al. 2012).

4.3 Representation of Errors

Representation of errors is fundamental to data assimilation. One needs to consider errors

in observations, background information and model (see Eqs. (1, 2a–e) above for identi-

fication of the error covariance matrices mentioned in the following). R, the observational
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Table 4 Selected studies on land surface data assimilation, sorted by assimilated observation type

Observation State Parameter/model

EnKF/EnKS Other

Soil moisture,
retrievals

Reichle and Koster
(2005), Ni-Meister et al.
(2006), Reichle et al.
(2007, 2008), Kumar
et al. (2009), Pan and
Wood (2010), Liu et al.
(2011), Han et al.
(2012a), Draper et al.
(2012), Sahoo et al.
(2013)

Houser et al. (1998),
Pauwels et al. (2002),
Paniconi et al. (2003),
Francois et al. (2003),
Hurkmans et al. (2006),
Parajka et al. (2006),
Crow (2007), Crow and
Bolten (2007), Parada
and Liang (2008), Crow
and van den Berg
(2010), Draper et al.
(2009), Mahfouf
(2010), Dharssi et al.
(2011), de Rosnay et al.
(2012a, b)

Santanello et al. (2007),
Ines and Mohanty
(2009), Pauwels et al.
(2009)

Soil moisture, in situ Sabater et al. (2007), De
Lannoy et al. (2007a,
2009), Camporese et al.
(2009), Monsivais-
Huerteroet et al. (2010),
Han et al. (2012a)

Calvet et al. (1998),
Wingeron et al. (1999),
Walker et al. (2001b,
2002)

Boulet et al. (2002), De
Lannoy et al. (2006),
Vereecken et al. (2008),
Loew and Mauser
(2008), Nagarajanar
et al. (2011)

Snow cover or
albedo, retrievals

Clark et al. (2006), Su
et al. (2008, 2010), De
Lannoy et al. (2012),
Arsenault et al. (2013)

Rodell and Houser
(2004), Zaitchik and
Rodell (2009), Saha
et al. (2010), de Rosnay
et al. (2012a, b)

Essery and Pomeroy
(2004), Déry et al.
(2005), Kolberg and
Gottschalk (2010),
Dumont et al. (2012)

Snow water
equivalent,
retrievals or in situ

Andreadis and
Lettenmaier (2006),
Slater and Clark (2006),
Dong et al. (2007),
De Lannoy et al. (2010,
2012), He et al. (2012)

Brasnett (1999), Sun et al.
(2004), Drusch et al.
(2004)

Clark and Vrugt (2006),
Clark et al. (2011b),
Su et al. (2011)

Backscatter, from soil
or vegetation

Flores et al. (2012) Hoeben and Troch
(2000), Zhan et al.
(2006)

Marzahn and Ludwig
(2009), Nearing et al.
(2010)

Brightness
temperature, for
soil or vegetation

Margulis et al. (2002),
Reichle et al. (2002a),
Crow (2003), Crow and
Wood (2003), Dunne
and Entekhabi (2006)

Entekhabi et al. (1994),
Galantowicz et al.
(1999), Crosson et al.
(2002), Reichle et al.
(2001a, b), Jones et al.
(2003), Wilker et al.
(2006), Balsamo et al.
(2006), Loew et al.
(2009), Dumedah et al.
(2011)

Zhang et al. (2011),
Montzka et al. (2012),
De Lannoy et al. (2013)

Brightness
temperature, for
snow

Durand and Margulis
(2007), Durand et al.
(2009)

DeChant and Moradkhani
(2010)

Tedesco et al. (2010),
Vachon et al. (2010),
Forman et al. (2012a)
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error covariance matrix, is typically assumed to be diagonal, although this is not always

justified. R includes errors of the measurements themselves, E, and errors of representa-

tiveness, F; R = E ? F. B is the background error covariance matrix in variational

methods (the analogue in the KF and ensemble methods is Pf); its diagonal elements

determine the relative weight of the forecasts, and its off-diagonal elements determine how

information is spread spatially. Estimating B or Pf is a key part of the data assimilation

method (Bannister 2008a, b). Estimating model error Q is a research topic.

In the EnKF, the background (or forecast) errors are represented by the spread of the

ensemble. This simplifies the computation of Pf, implicitly accounts for the model error

Q and avoids the calculation of Eq. (2b). For land data assimilation, the relative fraction of

Table 4 continued

Observation State Parameter/model

EnKF/EnKS Other

Surface soil or skin
temperature,
evapotranspiration,
retrievals or in situ

Pipunic et al. (2008),
Ghent et al. (2010),
Reichle et al. (2010),
Xu et al. (2011)

Castelli et al. (1999),
Lakshmi (2000),
Boni et al. (2001),
Schuurmans et al.
(2003), Bosilovich et al.
(2007), Renzullo et al.
(2008), Sini et al.
(2008), Meng et al.
(2009), Barrett and
Renzullo (2009),
Mackaro et al. (2011)

Caparrini et al. (2004),
Kalma et al. (2008),
Gutmann and Small
(2010)

Water stage,
retrievals

Andreadis et al. (2007),
Durand et al. (2008),
Biancamaria et al.
(2010)

Matgen et al. (2010),
Giustarini et al. (2011)

Montanari et al. (2009)

Terrestrial water
storage, retrievals

Zaitchik et al. (2008), Su
et al. (2010), Li et al.
(2012), Forman et al.
(2012b)

– Günter (2008), Lo et al.
(2010)

Discharge, gauge Weerts and El Serafy
(2006), Vrugt et al.
(2006), Pauwels and De
Lannoy (2006, 2009)

Aubert et al. (2003),
Moradkhani et al.
(2005a), Seo et al.
(2009), Lee et al.
(2011), Vrugt et al.
(2012)

Madsen (2003),
Moradkhani et al.
(2005b), Montanari and
Toth (2007), Vrugt
et al. (2008), Quets
et al. (2010)

Leaf area index,
remotely sensed

Pauwels et al. (2006),
Nearing et al. (2012)

Jarlan et al. (2008),
Albergel et al. (2010),
Rüdiger et al. (2010)

Lewis et al. (2012)

Screen-level
observations

– Balsamo et al. (2004),
Seuffert et al. (2004),
Drusch and Viterbo
(2007), Mahfouf et al.
(2009), Draper et al.
(2011), Mahfouf and
Bliznak (2011)

–

Synthetic observation studies are classified by the observation type that is mirrored. For land surface
(-coupled) state updating, the studies are divided into sets using either the EnKF or EnKS (Ensemble
Kalman Smoother) and those using any other assimilation technique. For parameter and model structure
updating, examples relate to either forward models or land surface(-coupled) models
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the observation error R and the model error Q (associated with the temporal evolution of

the model) is often tuned or adaptively updated (e.g., Desroziers et al. 2005; Reichle et al.

2008).

In general, in data assimilation, errors are assumed to be Gaussian. The most funda-

mental justification for assuming Gaussian errors, which is entirely pragmatic, is the rel-

ative simplicity and ease of implementation of statistical linear estimation under these

conditions. Because Gaussian probability distribution functions are fully determined by

their mean and variance, the solution of the data assimilation problem becomes compu-

tationally practical. Note that the assumption of a Gaussian distribution is often not jus-

tified in land data assimilation applications.

Typically, there are biases between different observations, and between observations

and model (see, e.g., Ménard 2010). These biases are spatially and temporally varying, and

it is a major challenge to estimate and correct them. Despite this, and mainly for pragmatic

reasons, in data assimilation it is often assumed that errors are unbiased. For NWP many

assimilation schemes now incorporate a bias correction, and various techniques have been

developed to correct observations to remove biases (e.g., Dee 2005); these methods are

now being applied to land data assimilation (De Lannoy et al. 2007a, b).

4.4 Advantages and Disadvantages of Assimilation Methods

The feasibility of 4D-Var has been demonstrated in NWP systems (see, e.g., Simmons and

Hollingsworth 2002). Its main advantage is that it considers observations over a time

window that is generally much longer than the model time step, that is, it is a smoothing

algorithm. This allows more observations to constrain the system and, considering satellite

coverage, increases the geographical area influenced by the data. For nonlinear systems (as

is generally the case for the land surface), this feature of 4D-Var, together with the non-

diagonal nature of the adjoint operator which transfers information from observed regions

to unobserved regions, reduces the weight of the background error covariance matrix in the

final 4D-Var analysis compared to the KF analysis (for linear systems, the general

equivalence between 4D-Var and the KF implies that the same weight is given to all data in

both systems).

In contrast to the above advantages of 4D-Var, three weaknesses must be mentioned.

First, its numerical cost is very high compared to approximate versions of the KF or

ensemble methods. Second, its formalism cannot determine the analysis error directly;

rather, it has to be computed from the inverse of the Hessian matrix (again, this procedure

is prohibitive in both computation time and memory). Finally, its formalism requires the

calculation of the adjoint model, which is time-consuming and may be difficult for a

system such as the land surface which exhibits nonlinearities and on–off processes (e.g.,

presence or lack of snow).

The EKF is capable of handling some departure from Gaussian distributions of model

errors and nonlinearity of the model operator. However, if the model becomes too non-

linear or the errors become highly skewed or non-Gaussian, the trajectories computed by

the EKF will become inaccurate.

The EnKF is attractive as, for example, it requires no derivation of a tangent linear

operator or adjoint equations and no integrations backward in time, as for 4D-Var (see

Evensen 2003). The EnKF also provides a cost-effective representation of the background

error covariance matrix, Pf. Several issues need to be considered in developing the EnKF:

(1) ensemble size; (2) ensemble collapse; (3) correlation model for Pf, including locali-

zation (see, e.g., Kalnay 2010); and (4) specification of model errors.
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The major drawback of the above techniques is the underlying assumption that the

model states have a Gaussian distribution. The PF does not require a specific form for the

state distribution, but its major drawback is that distribution of particle weights quickly

becomes skewed, and a re-sampling algorithm needs to be applied.

The EnKF and PF are complementary. This complementarity makes a hybrid EnKF/PF

version highly attractive for systems that can exhibit nonlinear and non-Gaussian features,

an example being the land surface. For example, the EnKF could be used as an efficient

sampling tool to create an ensemble of particles with optimal characteristics with respect to

observations. The PF methodology could then be applied on that ensemble afterwards to

resolve nonlinearity and non-Gaussianity in the system. This method is getting increased

attention (see, e.g., Kotecha and Djurić 2003).

4.5 Example of a Land Data Assimilation System

For illustrative purposes, we describe the elements of the NILU SURFEX-EnKF land data

assimilation system (Lahoz et al. 2010b). These elements are the following: (1) a data

assimilation scheme (mainly variants of the EnKF, but also variants of the PF, and the

EKF); (2) a land surface model (SURFEX model developed at Météo-France, Le Moigne

2009); (3) observations; (4) the observation operator; and (5) error characteristics for the

model and the observations.

The SURFEX model used at NILU (and at Météo-France) can be run in uncoupled or

coupled mode. It includes the following elements:

• A soil and vegetation scheme: ISBA and ISBA-A-gs;

• A water surface scheme: COARE/ECUME (Coupled Ocean–Atmosphere Response

Experiment/Exchange Coefficients from Unified Multi-campaign Estimates) for the

sea; FLAKE for inland water;

• Urban and artificial areas: Town Energy Balance—TEB model;

• A surface boundary layer (SBL) scheme;

• Chemistry and aerosols;

• A land use database: ECOCLIMAP.

Figure 3 illustrates how SURFEX works. During a model time step, each surface grid

box receives from the atmosphere the following information: upper air temperature, spe-

cific humidity, horizontal wind components, pressure, total precipitation, long-wave

radiation, short-wave direct and diffuse radiation and, possibly, concentrations of chemical

species and dust. In return, SURFEX computes averaged fluxes of momentum, sensible and

latent heat, and, possibly, chemical species and dust fluxes. These fluxes are then sent back

to the atmosphere with the addition of radiative terms like surface temperature, surface

direct and diffuse albedo, and surface emissivity.

The above information transferred to the atmosphere from the land surface provides the

lower boundary conditions for the radiation and turbulent schemes in an atmospheric

model coupled to SURFEX or forced by SURFEX output. In SURFEX, each grid box is

made up of four adjacent surfaces: one for nature, one for urban areas, one for sea or ocean

and one for lake, identified by the global ECOCLIMAP land database. The SURFEX fluxes

are the average of the fluxes computed over nature, town, sea/ocean or lake, weighted by

their respective fraction.

The assimilation system at NILU is illustrated in Fig. 4 with reference to the EnKF. It

can assimilate the following data: (1) 2-m screen-level temperature (T2m) and 2-m screen-

level relative humidity (RH2m) provided, for example, by the SYNOP/CANARI
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(Code d’Analyse Nécessaire à Arpege pour ses Rejets et son Initialisation; Taillefer 2002)

analysis; and (2) superficial soil moisture content data from satellites (e.g., from ASCAT,

AMSR-E and SMOS). The control variables (Nichols 2010) of the NILU land DA system

are the following:

• Surface temperature;

• Mean surface temperature;

• Superficial volumetric water content;

• Mean volumetric water content of the root zone.

Fig. 3 Exchanges between the atmosphere and land surface implemented in the SURFEX LSM. See text.
Based on Le Moigne (2009)

Fig. 4 Schematic of the NILU SURFEX-EnKF land DA system methodology. From Lahoz et al. (2010b)
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4.6 Data Assimilation Research Applications

Table 4 shows a selection of studies using a variety of observation types to improve the

land surface state or the state in a hydraulic, vegetation or snow model coupled to it.

Because of its success in highly nonlinear land surface modelling (Reichle 2008), the

EnKF has gained a lot of attention. Therefore, state estimation studies using an EnKF or

EnKS (Ensemble Kalman Smoother, where the time integration is done forwards and

backwards) are organized separately from those that use any other assimilation technique

(e.g., variational, optimal interpolation). Also shown are a few examples on parameter

estimation in land surface or forward models. While this review focuses on state estima-

tion, parameter estimation and forcing correction are of utmost importance in land surface

models. Land surface models are not chaotic and thus benefit less from state estimation

than atmospheric or oceanic applications. By contrast, parameters and forcings determine

the major part of the land surface model uncertainty, and great advances can be expected

from combining state, bias, parameter and forcing estimation (Moradkhani et al. 2005b; De

Lannoy et al. 2006; Vrugt et al. 2012). Here, we discuss a number of soil moisture and

snow-related studies done mainly for state updating, with particular attention to the con-

ceptual problems they address. Examples on evapotranspiration, surface or skin temper-

ature, LAI (leaf area index), discharge and water stage assimilation are also provided in

Table 4, but not discussed in detail.

4.6.1 Single-column Applications

To explore the possibilities and limitations of assimilation schemes, numerous studies have

first explored single point-scale or grid cell-scale applications. For soil moisture assimi-

lation, conceptual problems include the propagation of information from the surface to the

entire soil profile; the optimization of assimilation techniques and update frequencies; and

the identification of an allowable level of uncertainty in surface observations to be useful in

a data assimilation scheme, mostly in view of satellite sensor design.

Georgakakos and Baumer (1996) performed a sensitivity study to document the impact

of observation noise on Kalman filter (KF) results. Calvet et al. (1998) and Wingeron et al.

(1999) assimilated surface soil moisture data from a soil profile in the highly instrumented

field site of the Monitoring the Usable soil Reservoir EXperiment (MUREX) in France to

update root zone soil moisture using variational approaches and investigated the impor-

tance of assimilation windows and observation frequencies. Similarly, Li and Islam (1999)

studied the effect of assimilation frequency while directly inserting gravimetric mea-

surements as surrogates for remote sensing data, and Aubert et al. (2003) suggested that a

1-week soil moisture update is sufficient. Walker et al. (2001a) showed in a synthetic

profile study that the KF was superior to direct insertion. In a subsequent study with real

data from the Nerrigundah catchment in Australia, Walker et al. (2001b) articulated the

idea that soil moisture assimilation can solve issues with errors in forcings or initial

conditions, but not errors caused by problems in the physics of the soil model.

De Lannoy et al. (2007a) used an EnKF to study vertical information propagation, and

the effect of assimilation depth and frequency for an extensive set of soil profiles in an

USDA field in Beltsville, USA. This study highlighted the effect of bias propagation

through the profile and the need for bias estimation, a conceptual problem that was

addressed with a two-stage forecast and bias filter (De Lannoy et al. 2007a, b). At the same

time, Sabater et al. (2007) studied the concept of propagating surface observations to

deeper model layers using different types of filtering, using ground data from the Surface
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Monitoring of the Soil Reservoir EXperiment, SMOSREX. Camporese et al. (2009) set up

synthetic soil profile assimilation experiments studying the effect of uncertainties,

ensemble size, bias and other factors with an EnKF. Because of the large impact of

parameters and forcings on soil moisture errors and biases, assimilation schemes have paid

increasing attention to including parameter estimation along with state updating, as, for

example, illustrated in Monsivais-Huerteroet et al. (2010). At present, EnKF filtering

experiments are being conducted at point-scales to further identify and address conceptual

problems with soil profile estimation, using surface observations (see, e.g., Han et al.

2012a).

Another important conceptual problem with soil moisture assimilation, initially

addressed in a point-scale setting, is the direct assimilation of radiances or assimilation

using an observation operator. This is done to avoid inconsistencies between auxiliary

information that would be used in retrievals and that used in the land surface models.

Entekhabi et al. (1994) estimated 1-m-deep bare soil moisture profiles using synthetic

microwave brightness temperatures. This work was extended by Galantowicz et al. (1999)

using eight days of L-band brightness temperature (Tb) data collected from a test plot in

Beltsville, USA. Pathmathevan et al. (2003) assimilated microwave observations with a

variational technique, but using a heuristic optimization, rather than an adjoint. Crosson

et al. (2002) tested Tb assimilation at the point-scale with an EKF and showed that biases

could not be overcome through assimilation. Crow (2003) successfully assimilated Tb for

soil moisture and showed improvements at the plot-scale, using either synthetic or real field

data. Crow analysed the EnKF performance in terms of the assumptions that underlie the

KF. Crow and Wood (2003) also used the EnKF at two sites within the Southern Great

Plains 1997 (SGP97) experimental domain and reported that Tb data assimilation was able

to correct for rainfall errors. Wilker et al. (2006) highlighted the difficulty in mapping

heterogeneous soil moisture into Tb using a forward operator and identified the repre-

sentativeness errors associated with these data. Similar to the above studies, Hoeben and

Troch (2000) used a KF including a forward backscatter model to explore the direct

assimilation of radar microwave signals to estimate soil moisture profiles.

Snow data assimilation has conceptual problems inherent to the cumulative and temporary

nature of this variable. Slater and Clark (2006) illustrated how a square root EnKF could

improve the snow state at in situ sites in Colorado during the accumulation and melt phase.

They also identified the temporal correlation in snowpacks and showed how it could limit the

efficiency of filtering if not accounted for properly. In a synthetic study, Liston and Hiemstra

(2008) proposed a technique to update snow retroactively, which would be useful for re-

analysis applications, if observations would only be available at the end of the snow season.

In situ snow data assimilation is performed operationally (see Sect. 4.7 below), usually with

simple assimilation techniques. An example where both the snow state and parameters were

estimated using an EnKF in a 1-D setting is given by Su et al. (2011).

A number of point- or single-grid-scale studies have tried to relate brightness temper-

ature data to snowpack characteristics (Durand et al. 2008; Andreadis et al. 2008), in

preparation for Tb assimilation. Many of these studies highlight the large sensitivity of

snowpack estimates to model parameters (Davenport et al. 2012), which makes both

forward simulation and inversion of Tb observations for SWE estimation a difficult task.

4.6.2 Distributed Applications

The most obvious advantage of remotely sensed observations is the possibility of per-

forming large-scale and spatially distributed assimilation. It should be recognized,
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however, that despite the spatial coverage of data, for computational reasons assimilation is

often performed per column, that is, using a 1-D filter. When the vertical columns (of snow

or soil) are horizontally connected through the model physics or assimilation statistics, this

is referred to as 3-D assimilation.

The assimilation of catchment-distributed soil moisture has often focused on the

improvement of the state or initial conditions (Pauwels et al. 2001, 2002) and parameters in

order to improve spatially integrated fluxes, such as discharge. However, it is also possible

to use soil moisture assimilation to correct rainfall estimates (Crow and Ryu 2009). At the

global scale, soil moisture assimilation will become increasingly important when coupled

to the atmosphere for climate and seasonal predictions.

Spatially distributed studies initially focused on assimilation of retrievals with simple

techniques and gradually developed towards more complex schemes, with the inclusion of

forward models (observation operators) to directly assimilate, for example, microwave

observations. Initial soil moisture retrieval studies explored the performance of different

filter techniques, such as Newtonian nudging, statistical correction and statistical inter-

polation (Houser et al. 1998; Pauwels et al. 2001; Paniconi et al. 2003; Hurkmans et al.

2006), while during the last decade, variational and KF-based assimilation largely domi-

nated this research field because of the proven robustness and flexibility of these latter

techniques (Reichle et al. 2002a, b).

A typical conceptual problem with spatially distributed assimilation is the use of coarse-

scale remotely sensed data to infer fine-scale information. There are many static disag-

gregation techniques that use auxiliary information to perform such a downscaling outside

the assimilation scheme. Performing dynamic disaggregation within the assimilation

scheme remains a research challenge. The latter concept consists of a 3-D filter with

inclusion of spatially correlated (fine-scale) state and (coarse-scale) observation prediction

errors and has been addressed in EnKF frameworks by Reichle et al. (2001b, 2013),

Reichle and Koster (2003), Pan et al. (2009), De Lannoy et al. (2010) and Sahoo et al.

(2013).

An important issue connected to 3-D filtering for disaggregation is the use of local

observations to update neighbouring locations, for example, to propagate from observed

swaths to unobserved locations. Often, this problem is solved with spatial interpolation or

by relying on horizontal connections in the model equations (Walker et al. 2002). Alter-

natively, such horizontal information propagation can be done within an assimilation

scheme that provides accurate error correlations between observed and non-observed

observations and forecasts (Reichle and Koster 2003; De Lannoy et al. 2012). De Lannoy

et al. (2009) used an adaptive KF to identify such spatial correlations, along with the

magnitude of the forecast error, to optimize filter performance. Han et al. (2012b) studied

the effect of spatial correlations in an OSSE (observing system simulation experiment)

with a local ensemble transform Kalman filter. Filter technical issues such as update

frequency (Walker and Houser 2004) and error estimation have also been addressed in a

spatial context. Reichle and Koster (2005) demonstrated the validity of the concept that

assimilation results should be better than either the model or observations alone. After

re-scaling satellite observations from AMSR-E and SMMR to take bias out of the system,

Reichle et al. (2007) showed that satellite observations can contribute valuable informa-

tion, even if they are not accurate. Reichle et al. (2009) further assessed the quality of

assimilation products as a function of retrieval and land surface model uncertainty in an

OSSE and showed that soil moisture retrievals can have slightly less skill than the land

surface model and still contribute to an overall higher skill in the assimilation product. This

was confirmed in a real data assimilation study by Draper et al. (2012).
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The importance of correctly specifying random errors and biases is a major conceptual

challenge in the optimization of distributed assimilation systems. Bias mitigation has

become a regular part of most soil moisture data assimilation systems (Reichle and Koster

2004; Drusch et al. 2005; Kumar et al. 2012; Sahoo et al. 2013), and random error

specifications for soil moisture data assimilation have been studied through adaptive fil-

tering (Crow and van Loon 2006; Reichle et al. 2008).

Another idea with potential benefit is multi-sensor assimilation for soil moisture esti-

mation. As an example, Draper et al. (2012) showed how both active (ASCAT) and passive

(AMSR-E) microwave retrievals can contribute to a similar improvement in assimilation

results. Combining improved precipitation data with soil moisture retrieval assimilation

(Liu et al. 2011) and combining discharge (Pauwels and De Lannoy 2006), temperature or

LAI with soil moisture assimilation are other avenues that have been exploited for

hydrological assimilation.

As already indicated for single-column applications, a major conceptual problem is the

direct assimilation of brightness temperatures (Tb) or backscatter observations from

satellite missions for soil moisture estimation. Reichle et al. (2001a, b) presented pio-

neering studies with a 3-D variational scheme to assimilate and disaggregate synthetic or

real brightness temperatures over the SGP97 study area, while Margulis et al. (2002) used

an EnKF and Dunne and Entekhabi (2006) compared an EnKF with an EnKS for the same

Tb assimilation problem. Walker et al. (2002) also assimilated Tb directly, but from SMMR

and using an EKF over Australia. Using a variational scheme, and with inclusion of both a

land surface temperature and microwave brightness temperature observation operator,

Barrett and Renzullo (2009) showed that both thermal (AVHRR) and microwave (AMSR-

E) satellite observations can provide effective observational constraints on the modelled

profile and on surface soil moisture. There are only a few studies on spatially distributed

backscatter assimilation, but in a recent OSSE using an EnKF, Flores et al. (2012) showed

the potential of the L-band radar information expected from the future SMAP mission.

For snow, spatially distributed assimilation studies include snow cover area (or snow

cover fraction) and snow water equivalent (SWE) assimilation. A correct specification of

the snow-covered area is important to represent feedbacks from the land to the atmosphere,

while a good estimate of the actual amount of snow in the snowpack is of crucial

importance for flood, drought and discharge predictions (He et al. 2012). Snow cover

observations are typically fine-scale visible/near infrared observations that are only

available in cloud-free areas, while SWE measurements are typically more inaccurate

retrievals from Tb observations at a coarse scale (see Table 1). It can be expected that

multi-sensor assimilation could help to further snow estimation (De Lannoy et al. 2012).

Because of its binary nature, snow cover in terms of the presence or absence of snow

cannot be assimilated with filters that rely on continuous variables. Instead, rule-based

algorithms have been proposed (Rodell and Houser 2004; Zaitchik and Rodell 2009; Roy

et al. 2010). However, the snow cover fraction (SCF) is a more continuous variable that has

been assimilated with KF-based algorithms (Clark et al. 2006; Su et al. 2008; De Lannoy

et al. 2012). When assimilating SCF with a Kalman filter, there is a need to relate SCF to

the actual SWE state variable through an observation operator, often defined as a snow

depletion curve. It is also possible to use visible/near infrared snow albedo observations to

update snow parameters such as grain size (Dumont et al. 2012).

The two dominant conceptual problems with satellite-based SWE assimilation are the

coarse-scale nature and high uncertainty of the measurements. Initial attempts to assimilate

SMMR or AMSR-E SWE retrievals only yielded marginal success (Andreadis and

Lettenmaier 2006; Dong et al. 2007), because of retrieval errors due to signal saturation,
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presence of liquid water in the snowpack and multiple other factors. To address the coarse-

scale issue, De Lannoy et al. (2010) proposed several 3-D filter options to disaggregate

SWE data and propagate data from observed swaths to unobserved regions. These tech-

niques showed great benefit in a synthetic data study. When using real AMSR-E retrievals

(De Lannoy et al. 2012), and with bias mitigation through re-scaling added to the system,

the assimilation analyses were affected by a lack of a realistic interannual signal in the

retrievals.

To address the problems with SWE retrieval accuracy, the potential of direct radiance

assimilation has been investigated (Durand and Margulis 2006; Andreadis et al. 2008;

Durand et al. 2009; DeChant and Moradkhani 2010). However, these efforts rely on a good

description of the snowpack in the land surface model, which is not always available for

large-scale applications. To address this, Forman et al. (2013) developed an artificial neural

network as a computationally attractive forward model in readiness for large-scale radiance

assimilation. In preparation for the future SMAP mission, freeze–thaw assimilation (Bateni

et al. 2013) has been investigated, because of its importance in understanding the carbon

cycle.

The above studies update either snow or soil moisture separately. A major challenge for

land data assimilation is making use of total water storage (TWS) observations from

GRACE, which include soil moisture, snow and other water components at a very coarse

scale (Table 1). Total water storage can be decomposed into soil and snow components and

disaggregated to finer scales (Zaitchik et al. 2008; Su et al. 2010; Forman et al. 2012;

Li et al. 2012; Reichle et al. 2013).

4.7 Towards Operational Land Data Assimilation

Land surface processes and their initialization are of crucial importance to address the

challenge of seamless prediction from weather to seasonal and climate timescales (Palmer

et al. 2008). It is well established that high skill in short- and medium-range forecasts of

temperature and humidity over land requires proper initialization of soil moisture (Beljaars

et al. 1996; Douville et al. 2000; Mahfouf et al. 2000; Drusch and Viterbo 2007; van den

Hurk et al. 2008). A similar impact from soil moisture has been established for seasonal

forecasts (Koster et al. 2004a, b, 2011; Weisheimer et al. 2011). Initialization of snow

conditions also has a significant impact on forecast accuracy at weather timescales

(Brasnett 1999; Drusch et al. 2004). Operational land data assimilation has initially focused

on ingesting precipitation observations (e.g., Saha et al. 2010; Reichle et al. 2011), but

improved snow and soil moisture state updates are now emerging, as documented, for

example, for the ECMWF Integrated Forecasting System by de Rosnay et al. (2012a).

An unprecedented operational land data assimilation product will be provided by the

Global Modeling and Assimilation Office (NASA GMAO) in the form of a level 4 satellite-

based soil moisture product (Reichle et al. 2012; De Lannoy et al. 2013). The assimilation

of SMAP brightness temperatures into the Goddard Earth Observing System land surface

model will yield a global root zone soil moisture product.

5 Conceptual Problems and Key Challenges

To summarize, the conceptual problems in our understanding of the hydrological cycle

over land can be grouped by observing, modelling and data assimilation systems. These are

outlined below.
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5.1 Assimilated Observations

• To be useful for model development and assimilation, the dominant modes (in space

and time) of the land system must be sampled;

• To be efficient for state updating, observations need to be available at a reasonable time

interval to capture short-term dynamical variations (cf. the importance of satellite

overpass frequency; Walker and Houser 2004; Pan and Wood 2010);

• Observations must be collected in long enough historical records to identify long-term,

climatological, statistics for bias mitigation (Reichle and Koster 2004) or trend

identification;

• Observations need to be sampled at different spatial scales to capture both local and

global processes;

• There is a need to have a reasonable signal-to-noise ratio (e.g., SMAP’s target of

brightness temperature uncertainty is 1.3 K; Entekhabi et al. 2010a), and an uncertainty

in the error description appropriate for scientific studies;

• There is a need to relate observations to key system state variables, that is, there needs

to be system observability.

5.2 Forward and Retrieval Models, with Particular Reference to Radiances

and Backscatter Processes

• To achieve appropriate retrieval accuracy, there is a need to use advanced methods to

describe physical processes in radiative transfer models (RTMs);

• When assimilating radiances at large scales (e.g., from microwave sensors), there is a

need for calibration of RTMs (De Lannoy et al. 2013; Forman et al. 2013).

5.3 Land Surface Models

• There is a need to use advanced methods to describe physical processes (this limits

structural uncertainty) and couple land surface models with models describing more

specialized processes such as run-off routing, dynamic vegetation or snow (Pauwels

et al. 2006);

• There is a need for consistent global parameter datasets to limit predictive uncertainty

due to parameter uncertainty;

• There is a need for high-quality forcing data (this limits input uncertainty), mainly for

precipitation (Maggioni et al. 2011; Reichle et al. 2011).

5.4 Data Assimilation Challenges

• There is a need to fill in the spatial and temporal gaps in observations (Reichle and

Koster 2003; De Lannoy et al. 2012);

• There is a need to disaggregate data in space and time and into their individual

components (Forman et al. 2012; Reichle et al. 2013);

• There is a need to ingest directly radiances or backscatter information (as opposed to

retrievals) to avoid inconsistencies between auxiliary information in retrievals and land

surface models (Crow and Wood 2003; Durand et al. 2009; Flores et al. 2012);
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• There is a need to exploit the simultaneous use of multiple sensors (Pan et al. 2008;

Draper et al. 2012) and explore the capabilities of new sensors (Andreadis et al. 2007;

Durand et al. 2008);

• There is a need to combine state and input (forcing) information with parameter

updates (Moradkhani et al. 2005b; Liu et al. 2011; Vrugt et al. 2012);

• There is a need to explore advanced filtering techniques, for example, the use of the

particle filter to account for non-Gaussian errors (Plaza et al. 2012);

• There is a need to improve the representation of observation and forecast errors, and to

specify biases in observational and model information (De Lannoy et al. 2007b; Crow

and Reichle 2008; Reichle et al. 2008; De Lannoy et al. 2009; Crow and van den Berg

2010);

• There is a need to preserve water balance in the land system (Pan and Wood 2006;

Yilmaz et al. 2011) and draw lessons from the information in the assimilation

increments;

• There is a need to have access to adequate computational resources.

5.5 Validation

• Needs ground observations with substantial spatial and temporal coverage;

• Needs tools to address scaling and representativeness errors (Crow et al. 2012);

• Needs appropriate and effective validation metrics (Entekhabi et al. 2010b).

6 Conclusions

To understand the hydrological cycle over land, we need to make observations and develop

models that encapsulate our understanding. These models have a basis on the information

gathered from observations, as well as on previous experience, and are used to project our

understanding into the future by making predictions. A crucial element in this procedure is

confronting models with observations. Data assimilation, which combines observational

and model information, provides an objective method to confront models against obser-

vations and add value to both the model and the observations. Data assimilation adds value

to observations by filling the gaps between them and adds value to models by constraining

them with observations. In this paper, we touch on the main conceptual problems that limit

a full integration of land surface models and observations by reviewing progress in land

surface data assimilation research over the last decade.

Collectively, the advent of new satellite missions, the increasing attention to forecast

uncertainty due to errors in the land surface model structure, parameters and input, and the

development of advanced assimilation techniques will eventually close the largest gaps in

our understanding of the hydrological cycle over land.
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Appendix: Sensor acronyms

AACE Australian Airborne Cal/Val Experiments (for SMOS)

AMSR Advanced Microwave Sounding Radiometer on EOS Aqua

ASCAT Advanced SCATterometer

ASTER Advanced Spaceborne Thermal Emission and reflection Radiometer

AVHRR Advanced Very High Resolution Radiometer

CONAE COmisión Nacional de Actividades Espaciales (National Space

Activities Commission)—Argentina Space Agency

CoReH2O COld REgions Hydrology high-resolution Observatory

ERS European Research Satellite

ESA European Space Agency

GOES Geostationary Operational Environmental Satellite

GPM Global Precipitation Measurement

GRACE Gravity Recovery And Climate Experiment

JERS Japanese Earth Resources Satellite

MODIS MODerate resolution Imaging Spectroradiometer

MUREX Monitoring of the Usable Reservoir EXperiment

NASA National Aeronautics and Space Administration

SCLP Snow and Cold Land Process

SMAP Soil Moisture Active and Passive

SMMR Scanning Multichannel Microwave Radiometer

SMOS Soil Moisture and Ocean Salinity

SMOSMANIA Soil Moisture Observing System-Meteorological Automatic Network

Integrated Application

SMOSREX Surface MOnitoring of the Soil Reservoir EXperiment

SSM/I Special Sensor Microwave Imager

SWOT Surface Water Ocean Topography

TRMM Tropical Rainfall Measuring Mission
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Peischl S, Walker JP, Rüdiger C, Ye N, Kerr YH, Kim E, Bandara R, Allahmoradi M (2012a) The AACES
field experiments: SMOS calibration and validation across the Murrumbidgee River catchment. Hydrol
Earth Syst Sci 16:1697–1708

Peischl S, Walker JP, Ryu D, Kerr YH, Panciera R, Rüdiger C (2012b) Wheat canopy structure and surface
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Abstract The Arctic plays a fundamental role in the climate system and shows signifi-

cant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accel-

erated changes in the Arctic are already observed, including elevated air and ocean

temperatures, declines of the summer sea ice extent and sea ice thickness influencing the

albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of

surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and

Arctic is expected to undergo changes although to date it is challenging to accurately

quantify this. Moreover, changes in the temperature and salinity of surface waters in the

Arctic Ocean and Nordic Seas may also influence the flow of dense water through the

Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional

overturning circulation with a lead time of around 10 years (Hawkins and Sutton in

Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas

have far reaching influences on regional and global environment and climate variability,

thus emphasizing the need for advanced quantitative understanding of the ocean circulation

and transport variability in the high latitude and Arctic Ocean. In this respect, this study

combines in situ hydrographical data, surface drifter data and direct current meter mea-

surements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-

based geoid in order to estimate and assess the quality, usefulness and validity of the new

GOCE-derived mean dynamic topography for studies of the ocean circulation and transport

estimates in the Nordic Seas and Arctic Ocean.
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1 Introduction

Changes in the dynamic topography and ocean circulation between the northern Atlantic

Ocean and the Arctic Ocean result from variations in the atmospheric forcing field and

convective overturning combined with changes in freshwater runoff and their pathways, mean

sea level, sea ice deformation and water mass transformation. The ocean circulation in this

region has been subject to investigations since Helland-Hansen and Nansen (1909). In gen-

eral, it can be characterized by four regional circulation regimes and cross-regional exchanges

and volume transports, namely the Northeast Atlantic, the Labrador Sea and Canadian

archipelago, the Nordic and Barents Seas and the Arctic Ocean, as illustrated in Fig. 1.

Accurate knowledge of the ocean transport variability together with understanding of

the water mass transformations within and across these regions is highly needed to quantify

changes in the overturning circulation with acceptable uncertainty. The Atlantic meridional

overturning circulation is, among other factors, influenced by: variations in the upper ocean

and sea ice interaction; ice sheet mass changes and their effect on the regional sea-level

change; changes in freshwater fluxes and pathways; and variability in the large-scale

atmospheric pressure field. For instance, changes in the pathways of the freshwater from

the Eurasian runoff forced by shifts in the Arctic Oscillation can lead to increased trapping

of freshwater in the Arctic Ocean as presented by Morison et al. (2012) that, in turn, may

alter the thermohaline circulation in the sub-Arctic Seas.

Using a new combination of the ice cloud and land elevation satellite (ICESat) laser

altimeter and the gravity recovery and climate experiment (GRACE) satellites, along with

traditional hydrography, Morison et al. (2012) were able to show that the dominant

freshwater changes from 2005 to 2008 were an increase in surface freshwater in the

Canada basin balanced by a decrease in the Eurasian basin. These changes were due to a

cyclonic (anticlockwise) shift in the ocean pathway of the Eurasian runoff forced by

strengthening of the west-to-east Northern Hemisphere atmospheric circulation corre-

sponding to a strengthening of the Arctic Oscillation index. These findings are confirmed in

recent results presented by McPhee (2013) and Koldunov et al. (2013). In addition, the

regional sea level jointly obtained from tide gauges and ERS-1, 2 and Envisat altimeter

satellites together with the gravity field and ocean dynamic topography observations from

GRACE and GOCE have also recently allowed new innovative studies of the climate-

critical mass changes and freshwater flux variations in the high latitude and Arctic Ocean

(e.g., Cheng et al. 2013; Prandi et al. 2012; Henry et al. 2012; Knudsen et al. 2011).

In this paper, a new GOCE-based geoid and mean dynamic topography (MDT) for the

high latitude and Arctic Ocean is obtained, assessed and compared to independent steric

height observations and state-of-the-art MDTs. Furthermore, comparisons of surface

velocity and transport in the Nordic Seas, based on the combination of GOCE gradiometer

gravity estimates and in situ hydrographic data, are done with estimates from several

forced coupled sea ice–ocean models, ocean surface drifter data and direct measurements.

The new findings and results are presented according to the ocean dynamic topography in

Sect. 2, ocean surface circulation in Sect. 3 and volume transport in Sect. 4. A summary

follows in Sect. 5.
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2 Ocean Dynamic Topography

Measurements of the sea surface height have been routinely obtained from satellite

altimeter missions, such as the TOPEX/POSEIDON (Fu et al. 2001; Shum et al. 2010), in

the last 20 years. Today, the annual mean sea surface (MSS) height derived from altimetry

is known with millimeter accuracy (e.g., Cazenave et al. 2009) in the open ocean. In

addition, knowledge of the marine geoid has drastically improved thanks to satellite

gravity measurements from the NASA GRACE (Maximenko et al. 2009) and ESA GOCE

(Johannessen et al. 2003; Bingham et al. 2011; Knudsen et al. 2011) missions in the last

decade. In turn, the MDT, which is simply the difference between the mean sea surface

height (MSS) and the geoid (G) (both referenced to the same ellipsoid as illustrated in

Fig. 1 General circulation of the Arctic Ocean, Nordic Seas, and North Atlantic. Bottom contours are 1000
and 3000 m outlining the shelves and basins. Red arrows represent Atlantic Waters, which reside in the
surface in the Nordic Seas and submerged in the Arctic Ocean. Blue arrows represent Polar Water, residing
in the surface. The Norwegian Sea comprises the Norwegian Basin, while Lofoten Basin, while the Nordic
Seas are the Norwegian, Iceland and Greenland Seas. Circulation patterns based on AMAP (1998) and
Furevik and Nilsen (2005)
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Fig. 2), can now be determined with new and unprecedented accuracy around &3 cm at

100 km spatial resolution (Bruinsma et al. 2013). In comparison to the use of the reference

geoid obtained from the Earth Gravitational Model 2008 (EGM2008), this yields a factor 2

improvement in the MDT at this spatial resolution. However, this accuracy is not neces-

sarily applicable to the Arctic Ocean and the neighboring sub-Arctic seas due to the

presence of sea ice, lack of Jason altimeter coverage and shorter dominant spatial scales.

The GOCE high-level processing facility (HPF) delivers the level-2 global gravity

model from which geoid heights can be determined (Koop et al. 2007; Bingham et al.

2011). Based on 12 months of GOCE data acquired in the time interval November 01,

2009 to April 14, 2011, three versions of GOCE gravity model are made available: the

direct (DIR) approach; the spacewise (SPW) approach; and the timewise (TW) approach.

More details of these gravity field models can be obtained from Bruinsma et al. (2010) and

Pail et al. (2011). In addition, so-called combination models such as the EIGEN-6C (Förste

et al. 2011) that combines the GOCE data with terrestrial data have been developed. In this

paper, we apply the EIGEN-6C gravity model for the computation of the MDT. The

corresponding geoid is determined in the mean-tide system and relative to a Topex-

ellipsoid. This ensures consistency with the Technical University of Denmark (TUD) MSS

data set referenced to the time period 1993–2009 (Andersen and Knudsen 2009). Sub-

sequent to subtracting the geoid from the MSS, filtering was carried out eliminating the

short wavelength geoid signals, in order to obtain a useful estimate of the MDT. This

filtering was carried out using a 80-km Gaussian filter to preserve the upper bound of the

mesoscale features in the study area. (Note that Knudsen et al. (2011) applied a 140-km

Gaussian filter to determine the global ocean MDT.) In the forthcoming, we refer to this as

the GOCE-based geoid and MDT.

Isolines of constant MDT (MSS-G) are usually considered as a stream function for the

large-scale ocean surface circulation, which the surface geostrophic currents are directed

along. In the Northern Hemisphere (Southern Hemisphere), the flow is clockwise (anti-

clockwise) around the topographic high. The magnitude of the global spatial MDT vari-

ations is around 2–3 meters, which is about two orders of magnitude smaller than the

global spatial changes in the marine geoid and the MSS. This makes the computation of the

MDT and the handling of errors challenging as it is easy to fail to exploit all of the details

in the geoid and the MSS when calculating the MDT because of the need to obtain a

smooth solution. Herein, the separation of the MDT from the MSS and the geoid is carried

out in the space domain, where the MSS is usually represented using processing tools that

are available at the dedicated ESA GOCE User Toolbox (GUT); see Web site http://earth.

esa.int/gut/.

The GOCE-based MDT shape and spatial pattern representing the mean from 1993 to

2009 for the North Atlantic, Nordic Seas and the Arctic Ocean is shown in Fig. 3. The total

MDT elevation range from the high in the Arctic Ocean to the low in the subpolar gyre in

the North Atlantic reaches about 0.9 m. The regional shape of the MDT with the orien-

tation of the dominant slopes in the different sub-domains reveals the presence of the main

circulation pathways in: (1) the subpolar gyre south of Greenland; (2) the inflow of Atlantic

Water, respectively, between Iceland and the Faroe Islands and between the Faroe and

Shetland Islands; (3) the continuous northward flowing Atlantic Water toward the Arctic

Ocean; (4) the southward flowing East Greenland Current (EGC); (5) the Beaufort Gyre;

and (6) the transpolar drift in the Arctic Ocean.

The MDT in the Arctic Ocean may display some characteristic features that are caused

by problems in the data coverage. Both the GOCE data and the altimeter data do not cover

the Arctic Ocean entirely, so within 300–400 km from the pole, the data coverage is
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insufficient to calculate a reliable MDT. Also, the presence of sea ice may hamper the

computation of the MSS and hence the MDT. Though care is taken to avoid erroneous data

some of the data that have been used to calculate the MSS may represent the top of the sea

ice floes rather than the sea surface. In particular, off the coasts of the Canadian Archi-

pelago and northern Greenland the high values of the GOCE MDT may be caused by the

influence of the permanent and thick sea ice cover.

The Arctic Ocean displays an elevation change reaching up to about 0.45 m associated

with the high in the Beaufort Gyre, and with the corresponding dominant orientation of the

slope mostly aligned from Siberia to the northern shores of Greenland. According to Steele

and Ermold (2007), the dynamic height in the Arctic Ocean is predominantly influenced by

salinity. In the Nordic Seas, the general shape of the MDT favors the cyclonic circulation

pattern displaying steepest MDT slopes of 0.4 m/100 km between the Faroe and Shetland

Islands, along the northwest coast of Norway and in the northern part of the EGC. In

comparison, the slope across the Gulf Stream reaches 1 m/100 km. This spatial pattern in

the MDT agrees well with the spatial pattern in the mean steric height derived from

hydrographic data (Nilsen et al. 2008) for the period 1950–2010, respectively, referenced

to 500, 1,000 and 1,500 m as shown in Figs. 4 and 5b.

The steric height calculation is done according to Siegismund et al. (2007), where the

steric height is referenced to a constant density q0 from salinity of 35 and temperature of

0 �C. More information on the concept and application of the steric height is given by

Tomczak and Godfrey (2003). The difference in these height fields primarily reveals the

effect of the vertical distribution of temperature and salinity in the upper 1500 m, pre-

dominantly influenced by the advection and spreading of the Atlantic Water. Apart from

the changes occurring in the Lofoten Basin, the overall structure remains largely

unchanged when the density structures from 1,000 to 1,500 m are included. This suggests

that the baroclinic circulation in the Nordic Seas is driven by the temperature and salinity

structures of the Atlantic Water in the upper 1,000 m.

In the Nordic Seas, the total range in the MDT derived from the combined GOCE and

altimetry data is around 0.50–0.55 m as seen in Fig. 5a. In comparison, the range of the

mean steric height of 0.30 m (Fig. 5b) suggests that there might be a significant contri-

bution to the MDT pattern from the large-scale atmospheric pressure field and the deep

barotropic currents in some of the sub-basins. Siegismund et al. (2007) moreover con-

cluded that the seasonal cycle of the steric height (for the period 1950–1999) is predom-

inantly associated with the temperature variations in agreement with previous studies on

global scale (e.g., Gill and Niiler 1973; Stammer 1997; Mork and Skagseth 2005). By

subtracting the hydrographic-based steric height associated with the baroclinic structure in

Fig. 2 Schematic illustration of
the relationship between the
absolute and mean dynamic
topography (ADT and MDT), the
mean sea surface and the geoid
referenced to the same ellipsoid.
Note the difference between the
instantaneous sea surface and the
MDT
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the water masses from the GOCE-based MDT, an estimate of the barotropic contribution to

the MDT is derived as shown in Fig. 5c. The barotropic contribution contains distinct

elevation changes of about 10 cm having pattern consistent with the known barotropic

cyclonic circulations in the Greenland Sea, the Lofoten Basin and in the Norwegian Sea

(Nøst and Isachsen 2003). Evidence of this cyclonic barotropic circulation in the Nor-

wegian Sea has also been observed from Argo floats in the intermediate waters below the

Norwegian Atlantic Current (Søiland et al. 2008). In summary, the assessment of the

GOCE-derived MDT for the Nordic Seas and the Arctic Ocean is promising.

In view of the promising GOCE-based results presented above, they are also providing a

new opportunity for inter-comparison and validation of coupled sea ice-ocean models and

reanalyses fields. As specified in Table 1, the three models used in this inter-comparison

study include the regional setup of the ATL (MITgcm) model (Serra et al. 2010); the

MICOM model (Sandø et al. 2012); and the HYCOM model (Bleck 2002; Sakov et al.

2012). The models are either forced by the 6 hourly NCEP reanalysis field (ATL and

MICOM) or the ERA Interim field (HYCOM).

Ignoring the offset in the mean MDT, the three coupled sea ice–ocean models in general

reproduce comparable overall spatial structure of the MDT in the Arctic Ocean, the Nordic Seas

and the North Atlantic, notably the high in the Beaufort Gyre and the depressions in the Nordic

Seas and the subpolar gyre (Fig. 6). The model highs in the Beaufort Gyre are circular and

located toward the deep Canadian Basin with decreasing values toward the Eurasian Basin,

providing an elevation difference of 0.5–0.6 m. The MICOM-field, however, has a gyre that

extends into the Eurasian Basin. In comparison, the GOCE-based elevated feature in the

Beaufort Sea is shifted more toward the Canadian Archipelago, while the total elevation

Fig. 3 Mean dynamic topography (MDT) derived from the GOCE gradiometer data (release 3) and
altimetry (from 1993 to 2009) with a spatial resolution of about 100 km. Color bar is in units of meter. The
structures in the North Pacific are not investigated further in this paper. Note that the GOCE data (release 4)
available since March 2013 are more accurate due to more than a doubling in the amount of data
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difference remains the same. This shift in location is in agreement with the recent findings by

Kwok and Morison (2011) and Morison et al. (2012). Overall, the MDT patterns in the model

fields for the Arctic Ocean are in reasonably good agreement with the GOCE-based MDT map.

In the central domain of the Norwegian-Greenland Seas, the suppression of the MDT in the

three models corresponding to the large-scale cyclonic circulation pattern with the northward

flowing Norwegian-North Atlantic Current (NwAC) and the southward flowing EGC is con-

sistent in location. On the other hand the magnitudes and spatial structures of the suppression

differ between the models as well as in comparison with the GOCE-based MDT pattern. The

largest suppression is found in the ATL model with a deviation from the average of -0.6 m in

the northern Greenland Sea being almost twice as large as in the GOCE-based MDT in the same

area. Similar tendencies are seen in the subpolar gyre, although the difference in the minima

between the ATL model and the GOCE-based MDT now is reduced by a factor of 2.

The most prominent discrepancies are the mismatch in the MDT along the Canadian

Archipelago and northern Greenland coast, and the models lack of higher elevations associated

with the spread of AW in the Norwegian Sea, notably around the Vøring Plateau. The former

Fig. 4 Observed mean steric height for the period 1950–2008 for the reference depths a 500 m, b 1,000 m
and c 1,500 m. The color-scale increment is in cm
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might be related to the presence of thicker multiyear sea ice that could influence the estimation

of the MSS and thus the GOCE-based MDT. Kwok and Morrison (2011) did not reveal this

particular high in the MDT confined to the coastal region from IceSAT data. The latter is related

to the topographic steering of the baroclinic western branch of the NwAC (Nilsen and Nilsen

2007), as well as eddy transport of buoyant waters from the slope branch of the NwAC into the

Lofoten Basin (Rossby et al. 2009), which are both challenging to model. Furthermore,

although totally lacking the broadness of the NwAC, the ATL model is the only model with the

doming of the densest waters of the Nordic Seas placed in the correct basin, the Greenland

Basin.

These differences in magnitude and spatial structure of the model and GOCE-based MDTs

imply different strengths and orientations of the slopes in the MDT. In turn, the mean surface

geostrophic currents are expected to have discrepancies that subsequently will lead to differences

in the estimation of the associated transport of water masses. This is further assessed in the next

sections.

Fig. 5 a MDT derived from combined GOCE and altimetry, b steric height derived from the in situ
hydrographic database where the white areas in the 1,500 m reference steric height (see Fig. 4) are filled
with steric height values representing every 100 m from 1,400 to 500 m, and c difference between (a) and
(b). The color bars represent the height contours in unit of cm. Note the different color ranges
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3 Surface Circulation

With access to the new GOCE-based MDT with unprecedented accuracy, the uncertainties

in mean ocean circulation and transport estimation are expected to improve. The mean

surface geostrophic velocities are computed from the MDT, under the assumption of

geostrophic balance;

us ¼
�g

f
:
oMDT

oy
ð1Þ

vs ¼
g

f
:
oMDT

ox
ð2Þ

where us and vs are components of the surface geostrophic velocity, g is the acceleration

due to gravity, f is the Coriolis parameter, and x and y are the longitudinal and latitudinal

coordinates. The corresponding surface geostrophic current derived from the GOCE MDT

for the Nordic Seas over the period 1993–2009 is shown in Fig. 7 and compared to the

independently derived CNES_CLS09 MDT Rio et al. 2011 and Maximenko et al. 2009

(which both are using a GRACE-based geoid model together with in situ Argo floats and

surface drifter data integrated over the 17-year period from 1992 to 2009), as well as the

climatological mean surface velocities (predominantly based on drifters in the Nordic Seas

from 1991 to 2010) from the surface drifter data (http://www.aoml.noaa.gov/phod/dac/

drifter_climatology.html).

The large-scale cyclonic surface circulation regime is well-reproduced in all three fields.

However, while the strongest mean surface currents of the inflowing Atlantic Water to the

Norwegian Sea reaching nearly 0.20 m/s are derived from the GOCE MDT, the inflow in the

other two surface current fields is clearly weaker with maximum speed not much more than

0.10 m/s. Moreover, it is only the GOCE-based surface geostrophic current that reveals distinct

Table 1 Characterization of the three coupled sea ice–ocean models used for inter-comparison to the
GOCE-derived MDT and mean surface geostrophic current

Model
run

Region Spatial
resolution

Period Vertical grid, # of
layers, forcing

ATL12 Atlantic Ocean north of 33�S
including the Nordic Seas and
the Arctic Ocean. Uses
ETOPO 2-min resolution
bathymetry

*8 km 1948–2009
Hindcast

z-coordinates,
50 levels,
NCEP—6 h

MICOM North of 30�S with Nordic Seas
and Arctic Ocean included.
Uses ETOPO 1 5-min
resolution bathymetry

*15 km 1948–2007
Hindcast

Isopycnal,
35 layers,
NCEP—6 h

HYCOM High latitude- Arctic Ocean.
Uses GEBCO 1-min
resolution bathymetry

*12–16 km 1993–2010
Hindcast

Hybrid
coordinates,

28 layers,
ERA Interim—

6 h

ETOPO 2-min Earth’s relief data set with a grid size of 20 by 20, from NOAA Geophysical Data Center

NCEP relates to US National Centers for Environmental Prediction

GEBCO 1-min Earth’s relief data set with a grid size of 10 by 10, from UNESCO and IOC

ERA relates to European Center for Medium-Range Weather Forecasting Reanalyses
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expressions of cyclonic circulation in the Greenland Basin, Norwegian Basin and Iceland Sea,

as well as the broadening of the NwAC over the Vøring Plateau and in the Lofoten Basin, i.e.,

signs of a proper western (baroclinic) branch of the northward flowing Atlantic Water. From this

inter-comparison and assessment, it is therefore evident that the GOCE-based geoid provides a

reliable representation of the MDT and mean ocean surface circulation in the Nordic Seas.

Evidently, this is further supported by the mean surface circulation pattern derived from the

climatology of the surface drifter data as shown in Fig. 7d.

A comparison of the speed of the GOCE-based mean surface geostrophic currents and

corresponding model-based currents for the Nordic Seas is shown in Fig. 8. In general, it

must be emphasized that the finer spatial model resolution versus GOCE may favor

stronger simulated surface speeds. All models indicate intensified currents at the inflows

from the northeast Atlantic Ocean, and in the boundary (slope) currents of the Nordic Seas.

The ATL model shows a strengthened component of internal circulation in the Nordic

Seas, by very strong currents along all the margins. Regarding the currents over the mid-

ocean ridges and other internal topographic features, it is only the MICOM run that shows

signs of reproducing the level of intensification shown in the GOCE-based speeds, however

only at one location, the Mohn Ridge (as also noticed in Fig. 7d).

Fig. 6 MDT fields referenced to the full-region average: a the HYCOM MDT (free run) from 1993 to 2010,
b the ATL from 1993 to 2009, c the MICOM from 1993 to 2007, and d the GOCE-based MDT from 1993 to
2009. The color bars are in meters. All the fields are interpolated to a 0.25� resolution grid

670 Surv Geophys (2014) 35:661–679

123 184 Reprinted from the journal



For a more detailed study of the seasonal variability induced by the altimetric obser-

vations, the surface slopes and meridional velocities across 75�N are presented in Fig. 9

together with the model-derived fields. The seasonal mean meridional velocities are esti-

mated by replacing MDT in Eq. (2) with absolute dynamic topography (ADT). Note that

ADT is determined as the sum of MDT and monthly mean sea-level anomaly (SLA) data.

The new high-resolution SLA data (obtained from the French CLS-led Sea Level Climate

Change Initiative project funded by ESA) are referenced to the time period 1993–2009 and

hence consistent with the DTU MSS data used in the calculation of GOCE MDT.

The main expected features of the flow toward and from the Fram Strait is revealed by

the mean velocities: the two branch northward flowing West Spitsbergen Current (WSC)

around 8� and 15�E; the strong southbound EGC at 10�W; and some minor, possibly

cyclonic, circulation features around 0�E, likely related to circulation in the Boreas Basin.

Seasonal differences are most pronounced in the WSC. Both branches are strongest in

wintertime, with a near doubling of the easternmost branch, which is due to the general

(wind driven) intensification of the circulation in the region. This is consistent with

velocity retrievals and transport estimates reported by Mork and Skagseth (2005). The

western frontal branch stays relatively strong also during the rest of the year, likely due to

the summertime spread of buoyant surface water from the coast to the front (as seen further

south in the NwAC; Nilsen and Falck 2006), maintaining a steep frontal surface slope.

In comparison, the model-based MDT slopes along 75�N and the corresponding

meridional geostrophic velocities across the same latitude consistently reveal that the ATL

model has the steepest surface slopes and hence the strongest flow field for both the

northward flowing NwAC as well as the southward flowing EGC. Moreover, it is only the

ATL model that reproduces the double peak in the WSC current in agreement with the

mean and seasonal observation-based findings.

4 Volume Transport

By combining the GOCE-derived MDT and altimetric sea-level anomalies (SLA) with the

comprehensive hydrographic database, an estimate of the mean and variable transport of

Atlantic Water entering the Nordic seas is obtained for the period 1993–2011 at a spatial

resolution of 100 km. Using 44 CTD-sections in the Faroe north section normally taken to

represent the Iceland-Faroe Ridge (IFR) inflow (Hansen et al. 2010), 84 CTD-sections for

the Faroe–Shetland Channel (FSC) and 76 CTD-sections taken along the Svinøy section

(see Fig. 8 for locations), the baroclinic velocity structures in the Atlantic Water defined by

salinity values S[35 were estimated across these sections. Combined with the barotropic

velocity values, the absolute velocities are then retrieved, and when these are multiplied by

the area covered by the Atlantic Water, we obtain estimates of the corresponding volume

transports of Atlantic Water across the 3 sections (see Table 2).

From the combination of GOCE, altimetry and hydrography, the mean inflows of

Atlantic Water across the IFR and through the FSC are estimated to approximately 3.5 and

4.1 Sv, respectively (1 Sv = 106 m3 s-1). The former is in very good agreement with

Hansen et al. (2010), but too low compared to Østerhus et al. (2005), while the latter is too

high compared to Østerhus et al. (2005) and too low compared to Sandø et al. (2012). In

comparison, the mean transport of the two branches of Atlantic Water crossing the Svinøy

section, e.g., the Norwegian Atlantic Slope Current (NwASC) and the Norwegian Atlantic

Front Current (NwAFC) is, respectively, 3.9 Sv and 3.0 Sv. The latter value is in

acceptable agreement with previous transport estimates for the NwASC reported by Mork
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and Skagseth (2010); Orvik and Skagseth (2003, 2005); Skagseth et al. (2008); and Orvik

et al. (2001) as documented in Table 2, taking into account the slight differences in the

integration periods. On the other hand, the total combined GOCE-based and hydrographic

transport estimates across the Svinøy section is about 35 % larger than other reported

findings (e.g., 6.9 vs. 5.1 Sv).

In comparison, the mean (1993–2007) transports estimated from the three models across

these sections show quite different values as noticed in Table 2. One explanation for this is

partly related to the definition and choice of layers for the transport estimations. For

instance, Sandø et al. (2012) defines the Atlantic Water (AW) as water in model layers

above the pycnocline (sigma_2 \ 36.9 kg m-3), which is representative of the interface

between inflowing and outflowing waters throughout the integration. In contrast, Berx et al.

(2013) simply uses T[3 �C as definition for the AW in their calculation of the transport of

AW across the IFR section. The best agreement between the model and the combined

GOCE-based and hydrographic data is clearly obtained for the ATL simulation with

transport estimates across the IFR and FSC of 3.5 and 4.2 Sv, respectively.

Fig. 7 Mean surface geostrophic velocities shown by vectors superimposed on corresponding mean
dynamic topography (MDT) derived from a GOCE, b CNES_CLS09, c Maximenko et al. (2009), and
d mean surface velocity vectors derived from the climatology of the global surface drifter data. Color scale
indicates the MDT in cm for (a) to (c) and speed in cm/s for (d). Current-vector scale shown in the lower
right corner
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For the Svinøy section, the comparison is, in general, less satisfactory. The HYCOM

model clearly underestimates the observed transport of 5.1 Sv reported by Mork and

Skagseth (2010) as well as the GOCE-based estimate of 6.9 Sv. This is mainly due to a

mis-location of the NwAFC in the HYCOM simulation as seen in Fig. 8a. In contrast, the

MICOM and ATL models, having comparable mean transport estimates in the range of

8.2–8.5 Sv overestimate both the GOCE-based estimate and the transport reported by

Mork and Skagseth (2010). Overall, this large spread in mean transport estimates implies

significant differences in the mean northward advection of heat and salt to the Nordic Seas

and Arctic Ocean. This, in turn, affects both the evaporation–precipitation fluxes and

convective overturning in the Norwegian and Greenland Seas. Further studies are needed

to investigate the accuracies of these transport estimates.

Fig. 8 Inter-comparison of models and GOCE-based mean absolute surface geostrophic velocity from a the
HYCOM model from 1993 to 2010, b the ATL model from 1993 to 2009, c the MICOM model from 1993 to
2007 and d GOCE. The color bars are in cm/s. The three black dotted lines mark the position of the Faroe
north section, the Faroe–Shetland Channel section and the Svinøy section
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Taking benefit of the temporal variability observed in the SLA and hydrographic data,

the mean and seasonal cycle in the transport of the inflowing Atlantic Water for the period

1993–2009 can also be estimated and inter-compared as shown in Fig. 10.

On average, the NwASC contains approximately 57 % (or 3.9 Sv) of the total mean

volume transport across the Svinøy section of about 6.9 Sv. The mean seasonal variability

reveals a pattern with largest transports (9.3 Sv) in winter being 70 % larger than the

summer transport minimum (5.4 Sv). Moreover, the mean seasonal NwASC transport

always exceeds the mean seasonal NwAFC transport, while the latter displays a narrower

range of seasonal variability in the volume transport. This suggests that the seasonal

changes of the transport across the Svinøy section are predominantly controlled by sea-

sonal changes in the transport of the NwASC.

The partitioning of these total transport estimates (both in the mean and seasonal

signals) into the respective barotropic and baroclinic components is shown in Fig. 10b, c

and reveals distinct differences. While the transport in the NwASC is dominated by the

barotropic flow as expected along the shelf break at the Svinøy section, the transport of the

NwAFC, in contrast, is clearly larger in the baroclinic component with the exception of the

autumn period.

These GOCE-based estimates together with high-quality in situ hydrographic data are

providing new and promising abilities to examine the seasonal transport variability (total as

well as barotropic and baroclinic components) across key-selected sections. As such, it is

also providing an important tool for validations of model circulation and transports

between the northeast Atlantic Ocean and the Nordic Seas and Arctic Ocean.

Fig. 9 Climatologies of (a, b) dynamic topography across 75�N and (c, d) corresponding meridional
absolute geostrophic velocities: (a, c) seasonal climatologies from combined GOCE-based MDT and
altimetry and (b, d) comparison of GOCE-based MDT with MDT from ATL12, MICOM and HYCOM.
Note that in (b), each MDT is referenced to its full-region average as defined in Fig. 6
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5 Summary

In combination with in situ hydrographical data, surface drifters and current meter mea-

surements, coupled sea ice—ocean models and the latest GOCE-derived geoid and MDT

(Pail et al. 2011), the paper has investigated the quality, usefulness and validity of the new

GOCE data for studies of the ocean circulation and transports in the Nordic Seas and Arctic

Ocean. Using the GOCE data from release number 3 (based on 12 months of GOCE data in

the time interval 1 November 2009 to 2014 April 2011), the gravity model from the direct

approach yields the computation of the GOCE- based geoid, and jointly with the DTU10

MSS data (based on the integration over the period 1993–2011, Knudsen et al. 2011), the

MDT (MSS-G) representing the same 18-year integration period has been calculated. In

summary, the following key findings and results are highlighted:

1. New knowledge of the shape and spatial pattern of the MDT is derived at a spatial

resolution of around 100 km and with an accuracy of around 4–5 cm which is superior

to previous existing MDTs for this region.

2. Combined with the steric height estimated from hydrographic data, the pure barotropic

contribution to the MDT shows distinct features in consistence with known deep

barotropic circulations in the Norwegian and Greenland Seas.

3. The new GOCE-based MDT and surface geostrophic currents compare favorably with

existing independent surface velocity calculations derived from combined altimeter

data, in situ observations and gravity field models.

4. The transport estimates, both in the mean and seasonal signals, are also favoring the

combined use of the GOCE-based surface geostrophic current and hydrographic data.

Table 2 Comparison of volume transport estimates from combined GOCE, altimetry and in situ hydrog-
raphy to previous studies as well as estimates from simulation models for the Island-Faroe Ridge (IFR),
Faroe–Shetland Channel (FSC), NwAFC, NwASC in the Svinøy Section and the total Svinøy Section

Source Data Period IFR

[Sv]

FSC

[Sv]

Svinøy [Sv]

NwAFC NwASC Total

The current study GOCE ? Altim. ? hydr. 1993–2011 3.5 4.1 3.0 3.9 6.9

Mork and Skagseth

(2010)

Altim. ? hydr. 1993–2009 1.7 3.4 5.1

Skagseth et al. (2008) Current meter 1995–2006 4.3

Orvik and Skagseth

(2005)

Curr. meters 1995–1999 4.2

Orvik and Skagseth

(2003)

Curr. meters 1998–2000 4.4

Orvik et al. (2001) Curr. meters ? ADCP

? hydr.

1995–1999 3.4 4.2 7.6

Berx et al. (2013) Altm. ? ADCP ? hydro 1995–2009 3.5

Østerhus et al. (2005) Bottom ADCP ? hydr. 1999–2001 3.8 3.8

Hansen et al. (2010) Bottom ADCP ? hydr. 1997–2008 3.5

Sandø et al. (2012) MICOM model 1994–2007 4.7* 4.7

The current study HYCOM model 1993–2007 1.8 1.5 2.0 0.6 2.6

The current study MICOM model 1993–2007 3.5 6.9 3.5 5.0 8.5

The current study ATL model 1993–2007 3.5 4.2 3.5 4.7 8.2

* Only from 1997 to 2007
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5. New understanding of the relationship between the MDT, the mean surface

geostrophic current and the magnitude of the mean ocean volume transport has been

derived for the seasonal variability with regard to the inflow of Atlantic Water to the

Norwegian Sea at the Svinøy section.

6. The NwASC contains approximately 60 % of the total volume flux across the Svinøy

section with a distinct transport maximum in winter (Dec–Jan) and a minimum in

summer (Jun–Aug). This transport is moreover dominated by the barotropic

component.

7. These data and findings are also excellent for assessment and validation of model-

based retrieval of the MDT, the surface geostrophic current and the volume transport

across selected sections and straits.

Overall, the findings add new insight into the ocean circulation and transport between

the northeast Atlantic Ocean and the Arctic Ocean. They are also considered to be highly

valuable for further studies of the regional sea-level change in the Nordic Seas and the

Arctic Ocean, notable via the contribution of steric height and changes in the volume

transport. Consistent use of the GOCE data for assimilation as suggested by Haines et al.

(2011) might also become feasible in near future.

Moreover, as gravity measurements provide an integrated view of the mass variations,

their interpretation in terms of mass transport is inherently multidisciplinary. Satellite

Fig. 10 Mean annual and mean seasonal total volume transport estimates (a), the respective barotropic
components (b) and baroclinic components (c) for the Svinøy section including the NwASC and the
NwAFC for the period 1993–2010 based on combined use of GOCE, altimetry and in situ hydrography data.
The grayscale legend is shown in (a)
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gravimetry (such as combined GRACE and GOCE) is thus a vital component of a mult-

isensor Earth-observing system, which complements and relates observations of different

Earth system constituents in a common and consistent global framework (Panet et al.

2012). Being closely related to changes in sea level, ocean transports, glaciers and ice caps,

future mass change observations from satellites (at a 100 km scale not resolved by GRACE

today) have the potential to significantly advance the ability to monitor seasonal-to annual-

to decadal variability in ocean mass transport.

Acknowledgments The work presented in this paper has partly been supported by European Union 7th
Framework Program through the MONARCH-A Collaborative Project, FP7-Space-2009-1 contract no.
242446. In addition, it has been supported by the Research Council of Norway funded projects Number
200408 (SATICE) and number 212020 (GOCE MDT) and the (ESA/NRS) PRODEX project IGOCE,
contract number 90377. The study was also partly funded by the Centre for Climate Dynamics at the
Bjerknes Centre.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Pro-
gramme (AMAP), Oslo, Norway, 859 pp

Andersen OB, Knudsen P (2009) The DNSC08 mean sea surface and mean dynamic topography. J Geophys
Res 114:C11. doi:10.1029/2008JC005179

Berx B, Hansen B, Østerhus S, Larsen KM, Sherwin T, Jochumsen K (2013) Combining in situ measure-
ments and altimetry to estimate volume, heat and salt transport variability through the Faroe Shetland
Channel. Ocean Sci 9. doi:10.5194/os-9-639-2013

Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state
geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633

Bleck Rainer (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordi-
nates. Ocean Model 4(1):55–88

Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O and Neumayer H (2010) GOCE
gravity field recovery by means of the direct numerical method, presented at the ESA Living Planet
Symposium, 27th June–2nd July 2010, Bergen, Norway; See also: earth.esa.int/GOCE

Bruinsma SL, Förste C, Abrikosov O, Marty J-C, Rio M-H, Mulet S, Bonvalot S (2013) The new ESA
satellite-only gravity field model via the direct approach. Geophy Res Lett 40:1–6. doi:10.1002/grl.
50716

Cazenave et al (2009) Sea level budget over 2003–2008: a re-evaluation from GRACE space gravimetry,
satellite altimetry and Argo. Global Planet Change 65(1–2):83–88

Cheng YO, Andersen and Knudsen P (2013) Evaluation of gridded and along-track altimetric data in the
Arctic Ocean for climate research, submitted to Marine Geodesy

Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine, JM, Neumayer
KH, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—A new combined global
gravity field model including GOCE data from the collaboration of GFZPotsdam and GRGS-Toulouse;
Geophysical Research Abstracts, vol. 13, EGU2011-3242-2, EGU General Assembly

Fu L–L, Cheng B, Qiu B (2001) 25-day period large-scale oscillations in the Argentine Basin revealed by
the TOPEX/POSEIDON altimeter. J Phys Oceanogr 31:506–517

Furevik T, Nilsen JEØ (2005) Large-scale atmospheric circulation variability and its impacts on the Nordic
Seas ocean climate—a review. In: The Nordic Seas: an integrated perspective. AGU Geophysical
Monograph Series, vol 158. pp 105–136

Gill AE, Niiler PP (1973) The theory of seasonal variability in the ocean. Deep Sea Res 20:141–177
Haines K, Johannessen JA, Knudsen P, Lea D, Rio MH, Bertino L, Davidson F, Hernandez F (2011) An

ocean modelling and assimilation guide to using GOCE geoid products. Ocean Sci 7(1):151–164
Hansen B, Hatun H, Kristiansen R, Olsen SM, Østerhus S (2010) Stability and forcing of the Iceland-Faroe

inflow of water, heat, and salt to the Arctic. Ocean Sci 6:1013–1026

Surv Geophys (2014) 35:661–679 677

123191Reprinted from the journal

http://dx.doi.org/10.1029/2008JC005179
http://dx.doi.org/10.5194/os-9-639-2013
http://dx.doi.org/10.1029/2010GL045633
http://dx.doi.org/10.1002/grl.50716
http://dx.doi.org/10.1002/grl.50716


Hawkins E, Sutton R (2008) Geophys Res Lett 35:L11603. doi:10.1029/2008GL034059
Helland-Hansen B, Nansen F (1909) The Norwegian Sea: its physical oceanography based upon the Nor-

wegian Researches 1900–1904, Report on Norwegian Fishery and Marine Investigation, vol. II. The
Royal Department of Trade, Navigation and Industries, Mallingske, Kristiania, pp 390

Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012)
Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic
Ocean: contribution of the steric and mass components. J Geophys Res 117(C6):C06 023. doi:10.1029/
2011JC007706

Johannessen JA, Balmino G, Le Provost C, Rummel R, Sabadini R, Sünkel H, Tscherning CC, Visser P,
Woodworth P, Hughes CW, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H,
Drinkwater M (2003) The European gravity field and steady-state ocean circulation explorer satellite
mission: impact in Geophysics. Surv Geophy 24:339–386

Knudsen P, Bingham R, Andersen O, Rio Marie-Helene (2011) A global mean dynamic topography and
ocean circulation estimation using a preliminary GOCE gravity model. J Geodesy. doi:10.1007/
s00190-011-0485-8

Koldunov NV, Serra N, Kohl A, Stammer D, Henry O, Prandi P, Cazenave A, Knudsen P, Andersen OB,
Gao Y, Johannessen JA (2013) Arctic Ocean Sea Surface Height variability during the last 40 years, to
be submitted to JGR

Koop R, Gruber T, Rummel R (2007) The status of the GOCE highlevel processing facility (HPF). In:
Proceedings of the 3rd GOCE User Workshop, pp 199–204, European Space Research Institute,
European Space Agency, Frascati, Italy

Kwok R, Morison J (2011) Dynamic topography of the ice-covered Arctic Ocean from ICESat. Geophys Res
Lett 38(2):L02 501. doi:10.1029/2010GL046063

Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B
(2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three
different techniques. J Atmos Ocean Tech 26(9):1910–1919

Mcphee MG (2013) Intensification of geostrophic currents in the Canada Basin, Arctic Ocean. J Climate 26.
doi:10.1175/JCLI-D-12-00289.1

Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I, Andersen R, Steele M (2012) Changing Arctic
Ocean freshwater pathways. Nature 481(7379):66–70. doi:10.1038/nature10705

Mork KA, Skagseth Ø (2005) Annual sea surface height variability in the Nordic Seas, in The Nordic Seas:
An Integrated Perspective, Geophys Monogr Ser, vol. 158, edited by H. Drange et al. pp. 51–64, AGU,
Washington, DC

Mork KA, Skagseth Ø (2010) A quantitative description of the Norwegian Atlantic current by combining
altimetry and hydrography. Ocean Sci 6:901–911. doi:10.5194/os-6-901-2010

Nilsen JEØ, Hatun H, Mork KA and Valdimarsson H (2008) The NISE Data Set. Technical Report 08-01,
Faroese Fisheries Laboratory, Box 3051, Torshavn, Faroe Islands

Nilsen JEØ, Falck E (2006) Variation of mixed layer properties in the Norwegian Sea for the period
1948–1999. Prog Oceanogr 70:58–90. doi:10.1016/j.pocean.2006.03.014

Nilsen JEØ, Nilsen F (2007) The Atlantic water flow along the Vøring plateau: detecting frontal structures in
oceanic station time series. Deep Sea Res Part 1 54(3):297–319. doi:10.1016/j.dSV.2006.12.012

Nøst OA, Isachsen PE (2003) The large-scale time-mean ocean circulation in the Nordic seas and Arctic
Ocean estimated from simplified dynamics. J Mar Res 61:175–210

Orvik KA, Skagseth Ø (2003) Monitoring the Norwegian Atlantic slope current using a single moored
current meter. Cont Shelf Res 23:159–176

Orvik KA, Skagseth Ø (2005) Heat flux variations in the eastern Norwegian Atlantic current toward the
Arctic from moored instruments, 1995–2005. Geophys Res Lett 32:L14610. doi:10.1029/
2005GL023487

Orvik KA, Skagseth Ø, Mork M (2001) Atlantic inflow to the Nordic Seas: current structure and volume
fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999. Deep-Sea
Res I:48. doi:10.1016/S0967-0637(00)00038-8

Østerhus S, Turrrell WR, Jónsson S, Hansen B (2005) Measured volume, heat, and salt fluxes from the
Atlantic to the Arctic Mediterranean. Geophys Res Lett 32:L07603. doi:10.1029/2004GL022188

Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W-D, Hoeck E, Reguzzoni M, Brockmann
JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning CC (2011)
First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843

Panet I, Flury J, Biancale R, Gruber T, Johannessen JA, van den Broeke MR, van Dam P, Gegout T, Hughes
CW, Ramillien G, Sasgen I, Seoane L, Thomas M (2012) Earth system mass transport mission
(e.motion): a concept for future earth gravity field measurements from space. Surv Geophy. doi:10.
1007/s1072-012-9209-8

678 Surv Geophys (2014) 35:661–679

123 192 Reprinted from the journal

http://dx.doi.org/10.1029/2008GL034059
http://dx.doi.org/10.1029/2011JC007706
http://dx.doi.org/10.1029/2011JC007706
http://dx.doi.org/10.1007/s00190-011-0485-8
http://dx.doi.org/10.1007/s00190-011-0485-8
http://dx.doi.org/10.1029/2010GL046063
http://dx.doi.org/10.1175/JCLI-D-12-00289.1
http://dx.doi.org/10.1038/nature10705
http://dx.doi.org/10.5194/os-6-901-2010
http://dx.doi.org/10.1016/j.pocean.2006.03.014
http://dx.doi.org/10.1016/j.dSV.2006.12.012
http://dx.doi.org/10.1029/2005GL023487
http://dx.doi.org/10.1029/2005GL023487
http://dx.doi.org/10.1016/S0967-0637(00)00038-8
http://dx.doi.org/10.1029/2004GL022188
http://dx.doi.org/10.1007/s1072-012-9209-8
http://dx.doi.org/10.1007/s1072-012-9209-8


Prandi P, Ablain M, Cazenave A, Picot N (2012) Sea level variability in the Arctic Ocean observed by
satellite altimetry. Ocean Sci Discuss 9(4):2375–2401. doi:10.5194/osd-9-2375-2012

Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed
from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res
116:C07018. doi:10.1029/2010JC006505

Rossby T, Ozhigin V, Ivshin V, Bacon S (2009) An isopycnal view of the Nordic Seas hydrography with
focus on properties of the Lofoten Basin. Deep Sea Res Part 1 56:1955–1971. doi:10.1016/j.dsr.2009.
07.005

Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A (2012) TOPAZ4: an ocean-sea ice data
assimilation system for the North Atlantic and Arctic. Ocean Sci 8:633–656. doi:10.5194/os-8-633-
2012

Sandø AB, Nilsen JEØ, Eldevik T, Bentsen M (2012) Mechanisms for variable North Atlantic–Nordic seas
exchanges. J Geophys Res 117:C12006. doi:10.1029/2012JC008177
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Abstract While it is well known that the ocean is one of the most important component

of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the

ocean is also the primary reservoir for freshwater transport to the atmosphere and largest

component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and

Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the

first space-borne measurements of the sea surface salinity (SSS). In this paper, we present

examples demonstrating how SMOS-derived SSS data are being used to better characterize

N. Reul � S. Fournier � B. Chapron � Y. Quilfen
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key land–ocean and atmosphere–ocean interaction processes that occur within the marine

hydrological cycle. In particular, SMOS with its ocean mapping capability provides

observations across the world’s largest tropical ocean fresh pool regions, and we discuss

from intraseasonal to interannual precipitation impacts as well as large-scale river runoff

from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-

satellite analyses of these new surface salinity data sets combined with sea surface tem-

perature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall

estimates, and in situ observations are shown to yield new freshwater budget insight.

Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to

examine the response of the upper ocean to tropical cyclone passage including the potential

role that a freshwater-induced upper ocean barrier layer may play in modulating surface

cooling and enthalpy flux in tropical cyclone track regions.

Keywords Sea surface salinity � SMOS satellite � Passive microwave remote

sensing � Oceanic freshwater cycle

1 Introduction

Salinity is known to play an important role in the dynamics of the ocean’s thermohaline

overturning circulation and in large-scale atmosphere–ocean climate signals such as the El Nino

Southern Oscillation (ENSO), and is the key freshwater tracer within the oceanic component of

the global hydrologic cycle, a branch that comprises most of the global precipitation and

evaporation as well as the river runoff (Schmitt 2008). Multi-decadal sea surface salinity (SSS)

trends have been documented in tropical and high latitudes and associated with signatures of

evaporation or precipitation variation that are consistent with global warming scenarios (e.g.,

Dickson et al. 2002; Gordon and Guilivi 2008; Morrow et al. 2008; Cravatte et al. 2009; Yu

2011; Durack et al. 2012; Terray et al. 2011). These studies highlight the need for well-sampled

SSS time series both for monitoring the change and to improve the basic understanding of the

respective roles of the atmosphere and ocean dynamics, thermodynamics, air–sea interaction,

and land–ocean interaction in the global water cycle context.

Our basic knowledge of the global SSS distribution is derived from the compilations of

all available oceanographic data collected over time (e.g., Boyer and Levitus 2002). The

SSS in situ observing system has expanded significantly during the last decade due mostly

to the full deployment of the Argo profiling float array and now provides a monthly SSS

estimate on a grid of roughly 300–400 km2. Notwithstanding these recent gains, this

sampling density is still too sparse to resolve climatologically important intraseasonal,

seasonal, and interannual to decadal signals at the 300-km spatial scale within which SSS

is known to vary significantly (Lagerloef et al. 2010). The recent launches of the ESA/Soil

Moisture and Ocean Salinity (SMOS, see Kerr et al. 2010; Font et al. 2010) and NASA/

Aquarius SAC-D (Lagerloef et al. 2008; Lagerloef 2012) mission satellites represent

contributions toward filling this gap using passive microwave remote sensing.

Salinity remote sensing is based on the measurement of sea surface microwave emission at

the lower end of the microwave spectrum and from a surface skin layer having a thickness of

O(1 cm). This emission depends partly on the dielectric constant of sea water, which in turn

can be related to salinity and temperature. Thus, given sea surface temperature (SST), theory

predicts some ability to invert SSS information. In practice, however, numerous additional

external factors (extra-terrestrial sources, atmosphere, ionosphere, and surface roughness)

also contribute to the satellite-observed emission, and these must be corrected to allow
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accurate ocean salinity estimates. The SMOS and Aquarius sensors are both ocean micro-

wave radiometers operating at a frequency of *1.4 GHz (L-band, wavelength of 21 cm), a

band chosen for the relatively strong sensitivity to change in salinity and because this is a

transmission-free, or protected, frequency. An additional and important benefit for this choice

is minimization of atmospheric signal contributions.

Based on the observed SSS variability and need to better resolve it, the satellite missions

aim to produce salinity estimates with an accuracy of 0.1–0.2 over the so-called Global

Ocean Data Assimilation Experiment scales of 100 km, 1 month or 200 km, and 10 days.

This is a challenging objective for several reasons. First, the sensitivity of L-band

brightness temperatures to variations in SSS is on average 0.5 degK per salinity scale. This

sensitivity is very weak given that spatial and temporal variability in open ocean SSS does

not exceed several units and that the instrument noise is typically 2–5 degK. Note that

salinity computations are based on the Practical Salinity Scale PSS-78 and reported with no

units (United Nations Educational, Scientific and Cultural Organization 1985). Second,

there are many geophysical sources of brightness at L-band that corrupt the salinity signal,

and correction models for these factors have uncertain accuracy. Moreover, the technical

approach developed in order to achieve adequate radiometric accuracy and spatiotemporal

resolution for SMOS is polarimetric interferometric radiometry, the first such space-borne

system. The complex SMOS image reconstruction data processing includes contamination

by different errors and induces residual inaccuracies in SSS estimates. Finally, there is

significant radio frequency interference emanating from sources along the many coastlines

that contaminate data collected over many ocean regions. Nevertheless, much work at ESA

SMOS level 2 expert centers and the CNES/IFREMER Centre Aval de Traitement des

Données SMOS (CATDS) has addressed these issues, leading to the first global satellite

SSS estimates (Font et al. 2013; Reul et al. 2012; Boutin et al. 2012a).

Two examples of monthly composite SMOS SSS maps are shown in Fig. 1. They show

salient basin scale features, including the elevated salinity in the Atlantic relative to the

other basins, and the general correspondence of lower SSS with known river runoff and

tropical precipitation regions. SMOS data validation efforts using in situ observations

reveal an overall SSS accuracy on the order of 0.3 (Boutin et al. 2012a; Reul et al. 2012;

Banks et al. 2012; Font et al. 2013), but with degraded quality at high latitudes partly

because of reduced sensitivity in colder waters. While further improvements are in pro-

gress, many interesting features of the global SSS could be already evidenced.

This paper reviews preliminary results addressing several key applications of these new

satellite SSS data. Given the reduced SMOS sensitivity in cold waters, the focus is on tropical

ocean data where SMOS measurements have proven to be the most accurate. We also attempt

to highlight combined use of other satellite and in situ observations (altimetry, SST, ocean

color, river discharge, evaporation, and precipitation). It is shown that these new data are

proving useful in the monitoring of intraseasonal to interannual variability across major

tropical freshwater pools of the world ocean. SMOS-detected SSS freshening events within

intense precipitation zones (e.g., the Inter Tropical Convergence Zone) are also shown to

provide promising new information related to the ocean surface response to rainfall. Finally,

SMOS SSS data are used to address interactions between wind-driven phenomena, such as

upwelling and tropical cyclones (TCs), and some of the world’s largest fresh pools. The data

sets used in these cases are described in Sect. 2. SMOS monitoring capabilities for the major

tropical river plumes are given in Sect. 3. In Sects. 4 and 5, we illustrate rain impacts detected

in SMOS SSS data; then, their application improved the understanding of freshwater pools

interaction with the atmosphere. Conclusions and perspectives are given in Sect. 6.
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2 Data

A range of satellite and in situ data sets are used in the present study with focus on the

years 2010–2012 following the SMOS launch date. The data products are described below.

2.1 SMOS SSS Data

SMOS (Soil Moisture and Ocean Salinity) is the European Space Agency (ESA)’s water

mission (Kerr et al. 2010; Mecklenburg et al. 2012), an Earth Explorer Opportunity

Mission approved under the Living Planet Program. SMOS was launched in November

2009, and the technical approach developed to achieve adequate radiometric accuracy, as

well as spatial and temporal resolution compromising between land and ocean science

requirements, is polarimetric interferometric radiometry (Ruf et al. 1988; Font et al. 2010)

at L-band (frequency of *1.4 GHz). ESA produces so-called level 2 SSS, or L2 products,

which correspond to instantaneous SSS retrievals under the satellite swath.

In the present study, level 2 SMOS SSS are from the first SMOS/ESA annual repro-

cessing campaign in which ESA level 1 v5.04 and level 2 v5.50 processors have been used.

In these versions, significant improvements with respect to the flaws discovered in the first

Fig. 1 Monthly composites of the sea surface salinity at a spatial resolution of 0.5� 9 0.5� deduced from
SMOS data (CATDS v2) for the months of March (Upper) and August (Lower) 2010
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products (e.g., Reul et al. 2012) have been implemented (see a complete description in the

Algorithm Theoretical Basis Document (ATBD) available at http://www.argans.co.uk/

smos/docs/deliverables/). Nevertheless, accuracy of these instantaneous SSS retrievals is

rather low (*0.6–1.7), and space–time averaging of the level 2 products is needed

(so-called level 3 SSS) to decrease the noise level in the retrievals.

Here, we used two types of composite SSS level 3 products generated in laboratories

participating to the Expertise Center of the Centre Aval de Traitement des Données SMOS

(CATDS, http://www.catds.fr), which is the French ground segment for the SMOS data.

These products are built either from ESA level 1 products (Reul and Tenerelli 2011) or

from ESA level 2 products (Boutin et al. 2012b).

These research products aim at assessing the quality of SMOS operational products

(ESA level 2 and CATDS-OP level 3) and at studying new processing to be implemented

in the future in operational chains. Main characteristics of these products are detailed in

Table 1. CEC-IFREMER products have been used in Sects. 3, and 5, CEC-LOCEAN

products in Sect. 4.

Overall accuracy of the 10-day composite products at 25-km resolution is on the order

of 0.3 practical salinity scale in the tropical oceans (Reul and Tenerelli 2011).

2.2 Ocean Surface Currents

Here, we used the 1/3� resolution global surface current products from Ocean Surface

Current Analyses Real time (OSCAR) (Bonjean and Lagerloef 2002; http://www.oscar.

noaa.gov), directly calculated from satellite altimetry and ocean vector winds.

Table 1 Summary of characteristics of CATDS-CEC SSS level 3 products

CEC-IFREMER CEC-LOCEAN

SSS retrieval method SSS retrieved from first Stokes
parameter (Reul and Tenerelli
2011)

SSS retrieved from polarized Tbs
along dwell lines using an iterative
retrieval (see ESA L2OS ATBD)

Region of the instrument
field of view (FOV)
considered for SSS
retrieval

Alias free field of view only Alias free field of view (AFFOV) and
extended AFFOV along dwell lines
with at least 130 Tb data samples in
AFFOV (*±300 km from the
swath center)

Tb filtering method Determined from interorbit
consistency in incidence angles
classes and thresholding

Determined from consistency along
dwell lines as reported in ESA level
2 products

Galactic model Geometrical optics model Kirchoff’s approx. scattering at 3 m/s

Roughness/foam models Empirical adjustment of Tb
dependencies to wind speed

Empirical adjustment of parameters in
roughness model and foam coverage
models (Yin et al. 2012)

Calibration Single ocean target transformation
(OTT) ? daily 5� 9 5�
adjustment wrt World Ocean 2001
SSS climatology

Variable OTT (every 2 weeks
synchronized with noise injection
radiometer as defined in ESA
reprocessing)

Average Simple average Average weighted by theoretical error
on retrieved SSS and spatial
resolution
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The OSCAR data processing system calculates sea surface velocities from satellite

altimetry (AVISO), vector wind fields (QuikSCAT), as well as from sea surface temper-

ature (Reynolds–Smith) using quasi-steady geostrophic, local wind-driven, and thermal

wind dynamics. Near real-time velocities are calculated both on a 1� 9 1� and 1/3� 9 1/3�
grid and on a *5-day time base over the global ocean. Surface currents are provided on the

OSCAR Web site (http://www.oscar.noaa.gov) starting from 1992 along with validations

with drifters and moorings. The 1/3� resolution is available for FTP download through

ftp://esr.org/pub/datasets/SfcCurrents/ThirdDegree.

2.3 Rain, Evaporation and River Discharge Data

To estimate the rain rate over the oceans, we used three different satellite products.

One is the monthly Tropical Rainfall Measuring Mission (TRMM) Composite Clima-

tology (TCC) of surface precipitation based on 13 years of data from the TRMM. The TCC

takes advantage of the information from multiple estimates of precipitation from TRMM to

construct mean value maps over the tropics (36�N–36�S) for each month of the year at 0.5�
latitude–longitude resolution. The first-time use of both active and passive microwave

instruments on board TRMM has made it the foremost satellite for the study of precipi-

tation in the tropics and has led to a better understanding of the underlying physics and

distribution of precipitation in this region. The products are available at NASA Goddard

Space Flight Center Global Change Master Directory (http://gcmd.nasa.gov).

The second type of satellite rain rate estimates that we used in the present study are the so-

called ‘‘TRMM and Other Satellites’’ (3B42) products, obtained through the NASA/Giov-

anni server (http://reason.gsfc.nasa.gov/OPS/Giovanni). The 3B42 estimates are 3 hourly at a

spatial resolution of 0.25� with spatial extent covering a global belt (-180�W–180�E)

extending from 50�S to 50�N latitude. The major inputs into the 3B42 algorithm are IR data

from geostationary satellites and Passive Microwave data from the TRMM microwave

imager (TMI), special sensor microwave imager (SSM/I), Advanced Microwave Sounding

Unit (AMSU), and Advanced Microwave Sounding Radiometer-Earth Observing System

(AMSR-E).

The Special Sensor Microwave Imager (SSM/I) F16 and F17 orbits cross SMOS orbits

within -20 min and ?40 min. Hence, numerous SMOS level 2 are collocated with SSMI

rain rates (RR) within this range of time. In addition to the TRMM 3B42 products, we

therefore used SSM/Is data sets to perform colocations between SMOS SSS and rain

estimates. SSM/Is RR version 7 was used and downloaded from http://www.remss.com.

The evaporation (E) data set was taken from the version 3 products of the Objectively

Analyzed air-sea Fluxes (OAFlux) project (Yu and Weller 2007).

Finally, the discharge data for the Amazon, Orinoco, and Congo rivers were obtained

from the Environmental Research Observatory HYBAM (geodynamical, hydrological, and

biogeochemical control of erosion/alteration and material transport in the Amazon basin)

Web site (http://www.ore-hybam.org/).

2.4 Ocean Color Products

To study the spatiotemporal coherency between SSS signals from some major tropical

river plumes and ocean color properties, we used the level 3 daily, 4-km resolution esti-

mates of the absorption coefficient of colored detrital matter (CDM) at 443 nm. These

products processed and distributed by ACRI-ST GlobColour service are supported by the

EU FP7 MyOcean2 and the ESA GlobColour Projects, using ESA ENVISAT MERIS data,
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NASA MODIS and SeaWiFS data. These products have been averaged at the SMOS L3

product 0.25� resolution, with a 10-day running mean.

2.5 In Situ Data

Salinity measurements from Argo floats are provided by the Coriolis data center (http://

www.coriolis.eu.org/). The upper ocean salinity values recorded between 4- and 10-m

depth will be referred to as Argo SSS following Boutin et al. (2012b).

Global SSS maps are derived from delayed time quality checked in situ measurements

(Argo and ship) by IFREMER/LPO, Laboratoire de Physique des Oceans, using the In Situ

Analysis System (ISAS) optimal interpolation (D7CA2S0 re-analysis product) (see a

method description on http://wwz.ifremer.fr/lpo/SO-Argo-France/Products/Global-Ocean-

T-S/Monthly-fields-2004-2010 and in (Gaillard et al. 2009)). The choice for the time and

space scales used in that method results from a compromise between what is known

of ocean time and space scales and what can actually be resolved with the Argo array

(3�, 10 days); two length scales are considered: the first one is isotropic and equal to

300 km, the second one is set equal to 4 times the average Rossby radius of deformation of

the area. As a result, we expect these maps being smoother, especially in tropical areas,

than SMOS SSS maps averaged over 0.25� 9 0.25� or 1� 9 1�.

3 SMOS Monitoring of the Major Tropical Atlantic River Plumes

Rivers are important variables in oceanography as their freshwater affects SSS and the

buoyancy of the surface layer, and they represent a source of materials exotic to the ocean

and important to biological activity. Obviously, they are key hydrologic components of the

freshwater exchanges between land and ocean. Despite this importance, tracing major

tropical river water (e.g., Amazon, Congo, and Ganges) over large distances has not been

straightforward previously principally because of a lack of SSS observations. Tracing those

very large rivers over great distances now become an important endeavor, as sufficient data

are available from surface salinity sensors placed aboard satellites.

Occurrence of patches of low surface salinity (\35 practical salinity scales) in the

tropical Atlantic Ocean is closely related to the presence of the mouths of the world’s

largest rivers in terms of freshwater discharge (e.g., Amazon, Congo, and Orinoco) and

their subsequent spreading of freshwater by the upper ocean circulation. Another key

freshwater source here is the Inter Tropical Convergence Zone (ITCZ), associated with

relatively intense precipitation that migrates latitudinally over the tropical Atlantic

throughout the year (Binet and Marchal 1993). One of these major low-salinity pools is

formed by the Amazon and Orinoco river plumes spreading offshore from the South

America northeastern coasts, and influencing a large fraction of the western tropical North

Atlantic (Neumann 1969; Lentz 1995; Muller-Karger et al. 1988; Dessier and Donguy

1994). The Gulf of Guinea situated in the northeastern equatorial Atlantic is also an

important location for the freshwater budget in the tropical Atlantic. It is a region of intense

precipitation with as much as 30 cm of rain falling per month during the rainy season (Yoo

and Carton 1988). Furthermore, into this area flows the Congo River, the largest freshwater

input to any eastern ocean boundary. These large-scale low-salinity ‘‘lenses’’ at the tropical

Atlantic surface can be traced over distances ranging from several hundred up to thousands

of kilometers in the upper ocean. They are characterized by very distinct and in general

strong seasonally varying spatial extents.
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3.1 Amazon and Orinoco River Plume Monitoring

The Amazon is the world’s largest river in terms of freshwater discharge (Milliman and

Meade 1983; Perry et al. 1996). It drains a large fraction of the South American continent,

discharging on average 1.55 ± 0.13 9 105 m3 s-1 of freshwater into the equatorial

Atlantic Ocean (Perry et al.1996). This is about 15 % of the estimated global river dis-

charge on an annual basis. The Amazon River is by far the largest single source of

terrestrial freshwater to the ocean and contributes about 30 % of total river discharge to the

Atlantic Ocean (Wisser et al. 2010). The structure of the Amazon plume is strongly

influenced by a variety of physical processes, which are present on the northern Brazilian

shelf: the North Brazil Current (Flagg et al. 1986; Richardson and McKee 1984), trade

winds (Hellerman and Rosenstein 1983) and strong currents associated with the tide

(Nittrouer and Demaster 1986). These physical processes play a very significant role in the

dispersal and spreading of Amazon discharge (freshwater and suspended sediment) on the

northern continental shelf of South America.

Previous studies have shown that Amazon plume water can be traced offshore and

northwestward along the north Brazilian coast, covering most of the continental shelf from

11�S to 5�N (Muller-Karger et al. 1988, 1995) into the Caribbean (e.g., Steven and Brooks

1972; Froelich et al. 1978; Hellweger and Gordon 2002; Cherubin and Richardson 2007),

and over 1,000 km eastward into the North Atlantic depending on the season. Beyond this

region, the Amazon’s water has been traced northwestward into the Caribbean Sea and

eastward in the North Atlantic (Muller-Karger et al. 1988, 1995; Johns et al. 1990; Hell-

weger and Gordon 2002). Hydrographic surveys by Lentz and Limeburner (1995) revealed

that the Amazon plume over the shelf is typically 3–10 m thick and between 80 and

[200 km wide. Beyond the shelf, freshwater within the plume gradually attenuates with

depth as it travels away from the source, with a penetration depth of 40–45 m as far as

2,600 km offshore (Hellweger and Gordon 2002; Hu et al. 2004).

Both chlorophyll (Chl) concentration and primary productivity are the greatest in the

river plume–ocean transition zone, where the bulk of heavy sediments are deposited (Smith

and Demaster 1996). The combination of riverine nutrient input and increased irradiance

availability creates a highly productive transition zone, the location of which varies with

the discharge from the river. High phytoplankton biomass and productivity of over

25 mg Chl-a m-3and 8 g cm-2 day-1, respectively, are found in this transition region

(Smith and Demaster 1996). Because of this, the North Brazil shelf acts as a significant

sink for atmospheric CO2 (Ternon et al. 2000).

The northwestern tropical Atlantic is also an area where another major river in the

world, the Orinoco, enters the ocean. The Orinoco River originates in the southern part of

Venezuela and discharges waters from about 31 major and 2000 minor tributaries into the

western tropical Atlantic. These waters are most of the time transported into the south-

eastern Caribbean sea, and during the rainy season, a larger but unquantified fraction of the

plume also flows east around Trinidad and Tobago into the Caribbean. The Orinoco is

considered to be the third largest river in the world in terms of volumetric discharge (after

the Amazon and the Congo), discharging an average of *3.6 9 104 m3 s-1 (Meade et al.

1983; Muller-Karger et al. 1989; Vörösmarty et al. 1998). Low discharge occurs during the

dry season (January–May) and high discharge during the rainy season (July–October) as a

result of the meridional migration of the ITCZ.

The freshwater discharges from the Amazon and Orinoco Rivers spread outward into

the western equatorial Atlantic Ocean while continually mixing with surrounding salty

ocean surface water. The averaged geographical distribution of the low-salinity signatures
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of the Amazon and Orinoco River plumes can be revealed with historical in situ surface

salinity data. However, only satellite remote sensing data are known to provide means to

monitor the wide surface dispersal of these two fresh pools, with ocean color data being the

first to illustrate Amazon plume reach to well beyond 1,000 km (Muller-Karger et al.

1988). Since these first observations, the application of ocean color, altimetry, and SST

satellite mapping in this region has increased in its sophistication, showing the ability to

track surface plume area (e.g., Hu et al. 2004; Molleri et al. 2010), fronts along the shelf to

the northwest (Baklouti et al. 2007), and northward propagating eddies or waves shed near

the North Brazil Current (NBC) retro reflection region, the so-called NBC rings (Ffield

2005; Goni and Johns 2001; Garzoli et al. 2004). In each case, the satellite data are able to

provide time-resolved information on advective processes up to certain limits that include

cloud cover, minor SST and ocean color gradients, non-conservative dilution processes for

the ocean color to salinity conversions (Salisbury et al. 2011), and baroclinicity and

subgrid variability of the altimetry sea surface height anomaly tracking of the NBC rings.

As first evidenced by Reul et al. 2009, passive remote sensing data at low microwave

frequencies can be successively used to complement these more ‘‘classical’’ satellite

observations to better follow the temporal evolution and spatial distribution of surface

salinity within and adjacent to the Amazon River plume.

To illustrate this new capability, we first show in Fig. 2 comparisons between collocated

SMOS SSS and in situ conductivity–temperature–depth (CTD) measurements acquired

during the Geotraces West Atlantic cruise leg 2 across the Amazon River plume in June

2010. This campaign was conducted on RV Pelagia in the frame of the GEOTRACES

international program (see http://www.geotraces.org/).

Comparison between satellite and 3-m depth in situ SSS data reveals an overall good

agreement with a standard deviation of the difference SSSSMOS–SSSCTD of *0.45. In

particular, the strong gradient and *3-unit drop observed as the R/V Pelagia leg crossed

the Amazon River plume is well detected by the satellite observations.

New SSS products from satellite platforms such as SMOS allow in particular to gain

insights into the advection pathways of the freshwater Amazon and Orinoco rivers plume

along surface currents. For the first time, SMOS sampling capability thus enables imaging

the plume structure almost every 3 days with a spatial resolution of about 40 km.

Fig. 2 a Black dots: location of the CTD stations conducted during the Geotraces West Atlantic cruise leg 2
(RV Pelagia) from 11 June to 5 July superimposed on the SMOS averaged SSS from June 12 to July 5, 2010.
b Colocated surface salinity between SMOS and in situ data along the leg. SMOS data have been averaged
at 50-km resolution with a ±5-day running temporal window
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Combining SMOS SSS with altimeter-derived geostrophic currents and wind-driven

(Ekman) estimated motions (Lagerloef et al. 1999), the advection of the spatial patterns of

low salinity discharged from the major river mouths can now be analyzed systematically

with an unprecedented resolution.

As illustrated by the Fig. 3 and by the animation available at http://www.ifremer.fr/

naiad/salinityremotesensing.ifremer.fr/altimetry_amazon_atl.gif, a very good visual con-

sistency is found between the geostrophic and Ekman surface current pattern estimates and

the SMOS SSS spatiotemporal distribution along the year.

Mignot et al. (2007) show a long-term seasonal to monthly climatology that highlights

two freshwater offshore pathways—the north passage to the warm pool and eastward

entrainment into the North Equatorial Counter Current (NECC)—but they cannot clearly

confirm or track this laterally with time in a given year.

SMOS SSS data combined with altimetry and surface wind information now enable to

follow the spatiotemporal evolution of the plume along these two freshwater offshore

pathways.

As illustrated in Fig. 3 (top), the surface freshwater dispersal patterns of the Amazon

River plume are closely connected to the surface current topology derived from the merged

altimeter and wind field product. As also evidenced earlier from several hydrographic

surveys (e.g., Hellweger and Gordon 2002), it is clearly apparent in the satellite imagery

that the NBC rings are key factors in modulating the freshwater pathways of the Amazon

plume from the river mouth at the equator toward higher latitudes up to 20�–22�N.

Eastward entrainment of low-salinity water from the mouth of the Amazon River into

the NECC is also evident in the SMOS data for the second half of the year 2010 (see Fig. 3,

bottom). During that period, freshwater dispersal structure exhibits a zonal wavy pattern

centered around * 8�N induced by current instability waves shed near the NBC retro-

flection region (52�W, 8�N). To analyze the freshwater plume transport and the evolution

of salinity along Lagrangian paths following such wavy patterns, hypothetical drifters were

dropped around the mouth of the river at the beginning of June and temporally advected

with the surface currents deduced from merged altimeter and wind products. The evolution

of SSS from SMOS L-band and AMSR-E C-band sensors (see Reul et al. 2009 for details

on the AMSR-E SSS product), sea surface temperature analysis products and merged

MERIS-MODIS colored dissolved organic matter (CDOM) absorption coefficient was

estimated by interpolating the data in space and time along the path of such drifters.

As further illustrated by the example shown in Fig. 4, it takes approximately 6 months

to cover a distance of 3,700 km for a freshwater particle (SSS * 26–28) in the proximity

of the Amazon mouth to relax to an open ocean surface salinity of *36. At the beginning

of the period, the low SSS of water particles is modulated by mixing processes with saltier

waters transported westward by the NBC rings shed at the NBC retroflection. The particle-

following SSS signal modulation observed here is clearly consistent with the ocean color

signal (anti-correlated with SSS), fresher water being systematically associated with col-

ored waters showing high CDOM values, typical of the brackish plume waters. The drifter

is then advected eastward along the NECC, remixed with ‘‘younger’’ advected plume

waters in August and reached an eastern position slightly north of 8�N–38�W with an SSS

of about 32 at the beginning of October. The SSS change along the drifter pathway is

progressively and quasi-linearly relaxing to the open ocean values during the next 3-month

period.

The link between the SSS and ocean color properties moreover enables investigations of

the interactions between bio-optical and bio-chemical properties of the ocean and hydro-

logical fluxes of terrestrial origin. Along with the freshwater, the Amazon provides the
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largest riverine flux of suspended (1,200 Mt year-1) and dissolved matter (287 Mt year-1),

which includes a dissolved organic matter (DOM) flux of 139 Mt year-1 (Meybeck and

Ragu 1997). These fluxes can have a dramatic effect on regional ecology as they represent

potential subsidies of organic carbon, nutrients, and light attenuation into an otherwise

oligotrophic environment (Muller-Karger et al. 1995).

In the regions closest to the Amazon plume, light attenuation by suspended detritus acts

as the main limitation to phytoplankton growth (DeMaster et al. 1996). Away from this

region, as mineral detritus is removed by sinking, absorption attributable to organic

Fig. 3 Major pathways for the freshwater Amazon–Orinoco River plume detected by SMOS in 2010.
Surface salinity fields from SMOS are superimposed with coinciding surface OSCAR currents estimated
from altimetry and surface wind data. Top: the freshwater Amazon River plume is advected northwestward
along the Brazilian Shelf by the North Brazilian Current (NBC) during boreal spring. Bottom: during boreal
summer to fall period, the Amazon plume is carried eastward by the NECC. Note also the signal from the
Orinoco River plume extending northeastward along the southern lesser Antilles. In both plots, the thick
black curve is indicating the 35 SSS contour
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substances begins to dominate the attenuation of light in surface waters. Del Vecchio and

Subramaniam (2004) studied such conditions in the Amazon plume and characterized the

relative contributions of CDOM, particulate organic material, and phytoplankton to the

total absorption field. In the coastal ocean adjacent to river sources, CDOM tends to behave

as a freshwater tracer, decreasing away from the river source with increasing salinity.

Linear correlations between CDOM and salinity in river plume waters are well docu-

mented in the ocean color literature with reported relationships robust enough to allow

salinity retrievals from CDOM and vice versa (e.g., Ferrari and Dowell 1998; Palacios

et al. 2009; D’Sa et al. 2002; Conmy et al. 2009).

Linearity in the CDOM–salinity relationship implies conservative mixing dominated by

two distinct endmembers. Departures from linearity can occur when additional water

masses are present (Blough and Del Vecchio 2002), or by in situ subsidies of CDOM

released via net phytoplankton growth (Yamashita and Tanoue 2004; Twardowski and

Donaghay 2001), microbial utilization (e.g., Moran et al. 1999; Obernosterer and Herndl

2000), or photochemical oxidation (e.g., Miller and Zepp 1995).

Based upon preliminary satellite microwave SSS data from AMSR-E sensor and ocean

color products, Salisbury et al. (2011) recently demonstrated the spatial coherence between

surface salinity and the absorption coefficient of CDOM at 443 nm in the Amazon and

Orinoco river plume-influenced waters. Given the new SMOS data, the spatial and tem-

poral coherence between SSS and optical properties of the river plumes, e.g., CDOM, can

now be systematically analyzed.

As illustrated in Fig. 5, the amplitude of the annual cycle of the Amazon River dis-

charge peaks in June–July and was apparently more important in 2010 and 2011 compared

to the averaged ‘‘climatological’’ cycle since 1968. In comparison, the discharge from

Orinoco is much lower and peaks in September. Based upon the Amazon River discharge

Fig. 4 Top: spatiotemporal evolution of the location of an hypothetical drifter (white dots) dropped at 52�W
6�N at the beginning of June 2010 and advected with surface currents estimated from altimetry and surface
winds (arrows). Superimposed are the ±5 days averaged daily SSS fields from SMOS and the surface
currents (black arrows). Bottom: time series of the colocalized SSS from SMOS (blue) and from AMSR-E
(cyan), the analyzed SST (red), and the merged daily CDOM (black) along the drifter path
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cycle, four main periods can be distinguished as shown in Fig. 6. From November to April

(low flow and ascending periods), the plume is carried northwestward with the NBC, while

the summer and fall display a plume mostly carried eastward as the seasonal NECC

retroflection strengthens. In comparison, the spatial pattern in the distributions of the

CDOM is in general very similar to SSS during the river discharge seasonal cycle.

However, the CDOM patterns can deviate from the SSS patterns at large distances from the

mouth of the river for some period of the seasonal cycle. This is particularly evident in the

region around the northern Antilles and the Caribbean during the high-flow season of 2010

(Fig. 6, third panel from top) whereby high CDOM values are detected north of the low-

salinity plume extent (contours at SSS = 35.5 on the right panels), suggesting the presence

of dissolved organic matter concentrations that are non-correlated with the Amazon River

plume dilution. Altogether, this demonstrates the strength in combining satellite SSS

observations with complementary satellite observations in order to better characterize the

variability of the pathway of freshwater runoff along with the corresponding mixing

processes at seasonal to interannual time scales.

Quasi-linear relationships between SMOS SSS and the MERIS/MODIS CDOM

absorption coefficient (acdm) estimated for year 2010 are illustrated in Fig. 7. Acdm

values were averaged over SSS bins with 0.5 bin width. As evidenced, while CDOM

mixing processes seem to be conservative on average, clear departure from linearity is

observed below 30 pss during the descending and low-flow seasons. This fact potentially

indicates changes in the endmember values at the mouths of the rivers and tributaries and/

or illustrate the occurrence of non-conservative mixing processes as listed above. Thanks

to the new satellite observations, departure from conservative mixing and the interannual

sources of variability will be certainly more detailed in the next future.

Fig. 5 Amazon (blue) and Orinoco (red) river discharge cycles measured, respectively, at Obidos and
Bolivar gauges, during the period 2010–2012. The black curve is showing the Amazon River discharge
climatology from 1968 to 2012
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3.2 Eastern Tropical Atlantic Freshwater Pools Monitoring

The eastern tropical Atlantic (ETA) Ocean 8�W–12�E, 6�N–20�S is a region of intense

upwelling and where the second largest river in the world, the Congo, enters the ocean

NBC

NBC

NECC + 
NBCR

Minimal
extension

Maximal
extension

MERIS/MODISSMOS

Fig. 6 Seasonal cycle of the freshwater Amazon and Orinoco river plume signals for year 2010. Left: SSS
from SMOS averaged over the different periods of the discharge cycle. From top to bottom: low flow
(November–January); ascending flow (February–April); high flow (May–July); descending flow (August–
October). Right: corresponding CDOM absorption coefficient averaged from the merged MERIS/MODIS
products. The color bar is logarithmic in unit of 1/m
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together with the Niger, Volta and numerous other smaller rivers (Fig. 8). In addition,

intense precipitations also decrease SSS in the Guinea current and northeastern Gulf of

Guinea (Hisard 1980; Merle 1980). The ETA is therefore characterized with a highly

complex hydrographic system, largely influenced by the Congo River, intense precipita-

tion, and strong seasonal coastal and equatorial upwelling in the boreal summer.

Maximum discharge from the Congo River occurs in December and minimum discharge in

March through April. The outflow is hardly detectable from SST or sea level data. In chloro-

phyll, however, the mouth of the Congo River shows a strong signal all year round with large

plumes extending offshore. While these ocean color signals highlight real oceanographic

features of the plume, frequent cloud cover found in this region during the rainy season strongly

inhibits the spatiotemporal evolution of the Congo plume structure to be monitored.

Hitherto the knowledge about the seasonal extension and spreading of the Congo River

plume is therefore mainly relying on dedicated in situ surveys (e.g., see Meulenbergh 1968;

Fig. 7 aCDOM(490) to SMOS SSS dependence in the western tropical North Atlantic averaged over years
2010–2012 for all seasons of the Amazon River Discharge cycle (Top) and for each season separately
(bottom). In the upper panel, the mean aCDOM(490) per 0.5 bins is shown as a solid black line ±1 standard
deviation (vertical bars)
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Koleshnikov 1973;Bornhold 1973; Wauthy 1977;Van Bennekom and Jager 1978; Eisma and

Van Bennekom 1978; Van Bennekom and Berger 1984; Piton and Wacongne 1985; Braga

et al. 2004; Reverdin et al. 2007; Vangriesheim et al. 2009; Lefèvre 2009). However, the

ensemble of in situ SSS data collected during the period 1977–2002 in the ETA is sparse, and

only enabled retrievals of low-resolution (1� 9 1�) monthly climatology of the SSS field

(Reverdin et al. 2007), as displayed in Fig. 9. Note that since 2003, the in situ SSS sampling

has however improved with the increasing deployments and operations of Argo floats.

The monthly averaged SMOS SSS maps shown in Fig. 10 were generated by combining

SSS data over the SMOS 3-year life period. As evidenced in detail by these maps, con-

sistent with historical in situ observations, the Congo River plume is spreading north-

westward along the coast and mixes with southwestward flowing freshwater from the bight

of Biafra during February and March (Koleshnikov 1973; Wauthy 1977). In May (Van

Bennekom and Jager 1978), June–July (Bornhold 1973; Wauthy 1977), and August

(Koleshnikov 1973), the two fresh pools are disconnected with the Congo plume directed

in westerly direction, extending up to 800–1,000 km offshore, as far as 8�E. In November,

a ‘‘jet stream’’ of low-salinity water is ejected from the estuary with a large velocity and

protrudes in WNW direction (Wauthy 1977). The plume extent can also show southward

and southwestward legs depending on the prevailing windstress in the Angola Basin (Van

Bennekom and Berger 1984; Dessier and Donguy 1994).

The dispersal patterns of the Congo River plume during all seasons can mostly be

included inside the rectangle domain shown in Fig. 8. The 10-day running mean time

series of the SMOS SSS averaged over that spatial domain is shown in Fig. 11 together

with the time series of the river discharge measured at Brazaville gauge station during the

period 2010–2012. Maxima in the averaged SSS within that region occur regularly in

August at the time of the Congo River minimum discharge. Minima in SSS (detected

Fig. 8 Map of SMOS SSS in the Gulf of Guinea and Southeast Atlantic Ocean indicating the two largest
pools of low-salinity waters in the eastern tropical Atlantic: the Bight of Biafra (Guinean waters) and the
Congo River plume. The map was generated by averaging SMOS data over 2010–2012 considering only
data acquired during months of April
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around April), however, lag by approximately 4 months the maxima in the river discharge

at Brazaville station (found around December–January). These lags probably indicate the

time for the freshwater masses to be transported from Brazaville to the river mouth and

then to be further advected by surface currents far offshore. However, the interannual

variability in the amplitude of the seasonal cycle of SSS and river discharge are not

correlated. While the river discharge reached significantly different minimum values of

*3.3 9 104m3/s and *2.3 9 104m3/s in 2010 and 2011, respectively, the maxima in the

averaged SSS are constantly found at *35.5 pss. Similarly, the maximum discharge level

of *5.8 9 104m3/s measured over the period is found in January 2012, while the mini-

mum in the averaged SSS (*31.9) occurred in April 2011.

While understanding the observed satellite SSS trend in that region is still an under-

going activity, combining satellite information on surface currents, SST, rain rates and SSS

together with river discharge levels will certainly help in the near future to better quantify

the sources of variability in the local hydrological cycle of the Gulf of Guinea. The

terrestrial and atmospheric hydrological fluxes in this region also act as a dominant

modulator of the local fishery. The regular SMOS SSS data can therefore help to better

understand the mechanisms involved in the biophysical interplay and its relevance for the

fishery with potentially significant socioeconomic impact in that region.

In addition, similarly to the Amazon–Orinoco River plumes, conservative mixing laws

for bio-optical properties of the major river plume in the ETA region can now be sys-

tematically studied using SMOS data as shown in Fig. 12. Examples of the conservative

mixing linear laws for the CDOM coefficient deduced only from space-borne measure-

ments are shown for year 2010 around the Congo and Niger rivers.

Fig. 9 Maps of the monthly averaged SSS in the ETA derived from the ensemble of in situ measurements
collected during the period 1977–2002 and used to build up Reverdin et al. (2007) climatology
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4 Precipitation Signatures in SSS Data from Space

Large vertical gradients can develop in the upper few meters of the ocean after a heavy

rainfall, as first evidenced during the Tropical Oceans-Global Atmosphere Coupled

Ocean–Atmosphere Response Experiment (TOGA COARE) (Soloviev and Lukas 1996;

Fig. 10 2010–2012 Monthly averaged seasonal cycle of surface salinity in the eastern tropical Atlantic
derived from SMOS observations

Fig. 11 Times series of (i) the SMOS SSS averaged over the spatial domain (3�–14�E;10�–2�S) illustrated
by the black rectangle in Fig. 8 (blue) and (ii) of the Congo discharge level measured at Brazaville (black)
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Schlössel et al. 1997; Wijesekera et al. 1999). The downward freshwater flux at the sea

surface establishes a haline diffusive molecular layer (or freshwater skin of the ocean)

(Katsaros and Buettner 1969) that is characterized by a salinity gradient, with salinity

differences across this freshwater skin sometimes greater than 4 salinity units. The residual

effects of the rain-induced skin layers can even be stronger at the highest rain rates

(Schlössel et al. 1997). This freshwater skin stabilizes the near-surface layer (Ostapoff

et al. 1973) and tends to dampen free convection in the upper oceanic boundary layer.

These conditions motivate the development of autonomous SSS drifters able to monitor

the salinity at less than 50-cm depth. Using such instruments, Reverdin et al. (2012)

documented salinity freshening between 15-cm and 50-cm depth in the tropical oceans.

Sudden salinity decreases are often associated with local rainfall and vertical salinity

gradients that last for a few hours, depending, among other factors, on wind speed con-

ditions. The haline molecular diffusion layer that is established in the upper ocean during

rainfall can thus be important for the radiometric observation of the sea surface at low

microwave frequencies. At centimeter wavelengths, the dielectric constant is modified by

the sea surface salinity (e.g., Klein and Swift 1977; Yueh et al. 2001) and any change of the

latter might cause interpretation problems when comparing remotely measured surface

salinity at these frequencies to deeper in situ measurements.

Hence, under rainy conditions (or just after a rainfall), the satellite-derived SSS better

characterizes the salinity at the ocean–atmosphere interface rather than the 1–10-m deep

in situ samples. Whether accumulated precipitation can be estimated from changes in

salinity at the ocean surface as observed from space remains, however, an open question, as

assumptions have to be made about the penetration depth of the freshwater. In addition,

assimilation of the new satellite SSS data into ocean circulation models having limited

vertical resolution also challenges our modeling perspectives concerning the dynamics of

the first centimeters to first meter of the ocean surface.

In the following section, we discuss signatures of precipitation detected in the new

SMOS SSS data. First, the strong SSS spatiotemporal variability associated with rain

Fig. 12 aCDOM(490) to SMOS SSS dependence in the eastern tropical Atlantic averaged over year 2010 for
the Congo(Top) and Niger (Bottom) River Plumes. The mean aCDOM(490) per 0.5 bins is shown as a solid
black line ±1 standard deviation (vertical bars)
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events as seen both by space-borne and in situ sensors in the Pacific Ocean Inter Tropical

Convergence Zone is presented. Second, it is revealed that the SSS from space is sys-

tematically showing lower values (negative bias) with respect to the deeper 5–10 m depth

of Argo upper salinity in this area. These effects are shown to be statistically correlated

with rain. Third, long-lived, large-area, and large-amplitude SMOS SSS anomaly patterns

in the tropical Atlantic are shown to follow local anomaly patterns in the evaporation–

precipitation (E–P) budget. Finally, some preliminary results concerning the interannual

variability of the SMOS SSS signal in the Indian and in the tropical Pacific oceans and

connections to key climate indexes will be presented and discussed.

4.1 SSS Temporal Variability Associated with Rain Events

Although satellite observations provide a better sampling of the global ocean than the

in situ observing systems, such as the Argo float array, individual SSS measurements are

obtained in rainy regions with a strong temporal variability seen on both SMOS and Argo

SSS. In Fig. 13, we show such an example of colocated SMOS and Argo profiler mea-

surements in the Inter Tropical Convergence Zone of the Tropical Pacific, indicating a

significant surface freshening associated with a rain event. On August 11, 2010, the Argo

float WMO id#4900325 detected a freshening of 0.9 between 20- and 5.5-m depth

(Fig. 13a). In contrast, the Argo profile derived on 22 August shows that the salinity

between 30- and 5-m depth is much more homogeneous with more saline water at 5-m

depth compared to the one recorded on 11 August.

The TRMM satellite rain rate (RR) estimates averaged over a 2� 9 2� box centered on

the Argo float location indicate a significant rain rate of 1–2 mm h-1on 11 August that

lasted for at least a day before the Argo profile raised to the surface (Fig. 13c). Contrarily,

negligible precipitation occurred on 22 August and during the preceding week. The first

SMOS pass collocated with the 11 August Argo profile (Fig. 13a) was acquired also during

rainy conditions and showed a low SSS of *32.8 (0.1 saltier than the Argo SSS taken

6:30 h later, Fig. 13c). The second SMOS pass on the 16 August occurred under non-rainy

condition (Fig. 13c) and is 0.5 saltier. Consistent with the 22 August Argo profile

(Fig. 13b) observations, the collocated SMOS SSS during these rain-free conditions

(Fig. 13c) are also significantly saltier by 0.4–0.6. The large SSS variation (0.7) measured

by this Argo float at a 10-day interval and by the collocated SMOS measurements over

several SMOS passes clearly demonstrates the influence of the rain timing on the SMOS-

Argo SSS differences.

4.2 Systematically Fresher Skin SSS in Rainy Regions

The SMOS SSS map averaged over July–September 2010 is compared to optimally

interpolated in situ ISAS map averaged over the same period shown in Fig. 14. At large

scale, SSS spatial variability sensed by SMOS is consistent with ISAS. A striking visual

feature of the SMOS SSS map compared to the ISAS map in the tropics is the freshest SSS

in the North Tropical Pacific, under the location of the ITCZ (particularly west of 120�W).

When SMOS SSS are precisely colocated around Argo SSS in various regions of the

global ocean (see Boutin et al. 2012a, b), a more negative bias (*-0.1 than in other

regions) and larger standard deviation are systematically observed between 5� and 15�N in

the Pacific Ocean with respect to other regions (Table 2).

To investigate whether a systematic negative bias of *0.1 between the satellite skin

depth SSS and the *5-m depth Argo floats data could be related to rain-induced vertical
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stratification, a triple collocation between Argo, SMOS level 2 products (at *40-km

resolution, non-averaged in time) and SSMI satellite rain rate (RR) data was conducted.

SMOS and SSMI RR data were colocated within a temporal window of -40 min and

?80 min, while a ±5-day windows was considered to colocate SMOS and Argo data.

The theoretical error on the SMOS SSS retrieved level 2 data used in this colocation

exercise is *0.5. Without any RR sorting, the statistical distribution of the differences DSSS

is skewed toward negative values (Fig. 15, Table 3); when only SMOS non-rainy events are

considered, the negative skewness disappears, and statistics of the SMOS–Argo differences

in the tropical Pacific Ocean become close to the ones in the subtropical Atlantic Ocean

(Tables 2, 3). Largest skewness toward negatives differences is obtained when only SMOS

SSS close to rain events are considered. For these rainy SMOS cases, we find a negative

dependency of the SMOS–Argo SSS differences with respect to SSMIs RR of -0.17

pss/mm-1 h, i.e., a freshening of 1.7 for a SSM/I RR of 10 mm h-1(Boutin et al. 2012a, b).

The non-sorting of SMOS measurements close in time with rain events in SMOS–Argo

collocated data sets (within 10 days and 100 km) is responsible for (1) a mean -0.1 negative

bias over 3 months between 5� and 15�N in the tropical Pacific region with respect to non-

rainy conditions and with respect to the subtropical Atlantic region and (2) a negative

skewness of the statistical distribution of SMOS minus Argo SSS difference (Fig. 15). Given

that the whole set of SMOS–Argo collocations also includes the situations with rainy Argo

measurements collocated with non-rainy SMOS measurements, these results indicate a
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Fig. 13 Two successive Argo profiles taken by float 4900325 (blue curve) in the eastern tropical Pacific on
a 11 August 20:00 UTC (latitude = 12.4�N; longitude = 117.6�W) and b 22 August 6:52 UTC (latitude:
12.2�N; longitude: 117.8�W). Mean SMOS SSS collocated within a 5-day window and a radii of 50 km with
these profiles are indicated by red dashed point. In each case, two SMOS passes have participated to these
collocations: mean SMOS SSS corresponding to each pass is indicated as red filled point. The corresponding
ISAS SSS in August is indicated by the green point. The time series of the 3-hourly satellite rain rate from
TRMM 3B42 and averaged over (11�–13�N; 116�–118�W) is provided in (c). The time at which SMOS and
Argo acquired SSS data is indicated by red and blue dots, respectively
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systematic freshening of SMOS SSS in rainy conditions and are likely a signature of the

vertical salinity stratification between the first centimeter of the sea surface layer sampled by

SMOS and the 5-m depth sampled by Argo. For more detail on the vertical SSS stratification

induced by rain, the reader is also referred to Boutin et al. (2012b).

4.3 SSS as a Tracer of the Evaporation–Precipitation Budget in the Oceanic Mixed

Layer

The SMOS-derived SSS can also be used to investigate the consistency between observed

SSS variability and the evaporation minus precipitation budget in the ITCZ of the tropical

Fig. 14 Maps of SSS averaged from July to September 2010, derived from (top) SMOS ascending and
descending orbits and ISAS (bottom)
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Atlantic based upon the SSS and SST relationship in the ocean mixed layer (OML). The

salt conservation budget in the OML with depth h can be expressed as follows (Michel

et al. 2007; Yu 2010, 2011):

oS

ot
¼ ðE � P� RÞS

h
� u~ � rS� CðweÞ

weðS� ShÞ
h

þ kr2S ð1Þ

where S is the surface salinity, t is time, E and P the evaporation and precipitation rates,

respectively, R the freshwater input by river runoffs, h the mixed layer depth, u~ the

(vertically averaged) current vector within the OML, and we the vertical entrainment rate.

Table 2 Comparison of SMOS SSS (10 day, 100 9 100 km2 average) values, in pss, collocated with a
total of N Argo upper depth measurements

Mean (DSSS) Std (DSSS) N

Subtropical Atlantic Ocean (15�–30�N; 45�–30�W) -0.13 0.28 206

Tropical Pacific Ocean (5�–15�N; 180�–110�W) -0.23 0.35 692

Southern Indian Ocean (40�–30�S; 70�–90�E) 0.04 0.39 114

Southern Pacific Ocean (50�–40�S; 180�–100�W) -0.08 0.51 467

DSSS = SSSsmos - SSSargo Only SMOS ascending orbits are considered. Std (DSSS) primarily reflects the
decreasing signal to noise ratio with decreasing SST. Note that subtropical Atlantic Ocean and tropical
Pacific Ocean have similar SST

Fig. 15 Statistical distribution of SSS differences DSSS = SSSsmos - SSSargo in the tropical Pacific Ocean
for various sorting on colocated SSSM/I rain rates. Blue: all collocations (without any rain sorting); green:
for non-rainy cases (SSM/I rain rates less than 0.1 mm h-1); red: rainy cases (SSM/I rain rates larger than
0.1 mm h-1). Corresponding statistics are indicated in Table 3

Table 3 Statistics for the SSS differences DSSS = SSSsmos - SSSargoas a function of rain rate (RR) in the
northern tropical Pacific Ocean

Mean
(DSSS)

Std
(DSSS)

Skew
(DSSS)

N
(DSSS)

Tropical Pacific (5�–15�N; 110�–180�W)

All colocations -0.20 0.62 -0.38 38,543

No rain (RR \ 0.1 mm h-1) -0.13 0.56 0.01 29,084

Rainy (RR C 0.1 mm h-1) -0.40 0.73 -0.58 9,459
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Sh is the salinity just below the OML, k is the horizontal diffusivity coefficient

(k * 2,000 ms-2). The total entrainment term must be treated differently in case of

upward or downward entrainment, so it is multiplied by a step function C in Eq. (1).

Indeed, when additional water is included into the mixed layer, its properties are affected

by mixing with the deeper layer: C(we) = we if we [ 0. On the contrary, if water is

removed from the mixed layer, the properties of the remaining water are conserved and

only its depth h can change: C(we) = 0 if we \ 0. The vertical processes are conveniently

represented by a single entrainment term, consisting of the vertical Ekman advection and

the OML conditions.

The first term in the right-hand side of Eq. (1) is the net freshwater flux. The impact of

this flux on the surface water strongly depends on the salinity itself. Moreover, SSS has no

direct feedback on the surface flux. These particularities have important consequences on

the salt budget and on the duration of SSS anomalies. The second term is the horizontal

advection of salinity by surface currents that can be separated into a wind-induced com-

ponent, the Ekman transport, and the geostrophic current. Ekman transport is due to wind

friction on the sea surface, which is rotated by the Coriolis force as it penetrates in depth.

The Ekman layer depth is systematically lower than the mixed layer depth, because both

increases with the wind stress, although the depth of the mixed layer also deepens in

response to other processes. Thus, the Ekman transport occurs entirely in the OML. In

addition, the geostrophic current that arises from the balance between the horizontal

pressure force and the Coriolis force can usually be considered constant, with the mixed

layer resulting from the homogeneous density structure.

The value of the SMOS SSS at a fixed point, S(t, r), is obtained by averaging individual

SMOS swath SSS measurements over a considerable time interval (t - s/2, t ? s/2), say

10 days, which is enough to filter out noise in the SSS. Suppose that the climate mean, or

norm, of this SSS (provided by climatology) is Sðt; rÞ ¼ Soðt; rÞ. In the following, we

define the SSS anomaly as the departure of the SSS from the norm:

DSðt; rÞ ¼ Sðt; rÞ � Soðt; rÞ

Following approaches traditionally used for studying large-area SST anomalies (Piterbarg,

and Ostrovskii 1997), a formal definition can be introduced for the large-area SSS

anomalies. For example, large-area and large-amplitude SSS anomaly comprises the

connected components of the set:

fðx; yÞ : DSðt; rÞj j[ STg

where r = (x, y) and ST is a threshold that can be taken either as a fixed salinity value, for

example, 0.2 pss or as a function of the standard deviation of SSS anomalies, rS, for

example, 0.5 rS. This choice for the threshold depends on the magnitude of the anomaly of

interest.

In the tropical Atlantic, Michel et al. (2007) and Yu (2011) have shown that the

dominant terms of the mixed layer salinity balance are horizontal advection by Ekman and

geostrophic currents and the atmospheric forcing fluxes (E – P - R). In that context, the

salinity balance equation in the OML can be simplified as follows:

oS

ot
ffi ðE � P� RÞS

h
� u~ � rS ð2Þ

Using OSCAR surface current products (which comprise contributions of both Ekman and

geostrophic currents), the horizontal salt advection term u~ � rS can be deduced from
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SMOS observations. The following residual SSS anomaly can then be estimated from

SMOS temporal observations of salinity S(t, r) at point r following:

DSðt; rÞ ¼ Sðt; rÞ � Soðt; rÞ � u~ðt; rÞ � rSðt; rÞ ð3Þ

According to the simplified salinity balance (Eq. 2), a priori valid for the tropical Atlantic,

the resulting SSS anomaly given by Eq. 3 shall be strongly correlated with the net

freshwater flux forcing term. Examples for such SSS anomaly analysis are shown in

Fig. 16 for a selected point in the middle of the north tropical Atlantic (16�N–35�W). From

TRMM precipitation and OAFLUX daily evaporation fluxes, large-area P and E anomalies

were also evaluated:

DPðt; rÞ ¼ Pðt; rÞ � Poðt; rÞ

DEðt; rÞ ¼ Eðt; rÞ � Eoðt; rÞ

where Po and Eo are the local climate mean for the precipitation and evaporation.

As illustrated in Fig. 16 (middle right panel), very significant long-lived negative DS(t, r)

values are detected in SMOS anomalies at the selected point in the north tropical Atlantic during

September/October months (days 250–300) of 2010. Apparently, this happened just after a

strong positive anomaly in the precipitation rate as detected from TRMM during the passage of

the ITCZ in August (bottom right panel).

The spatiotemporal consistency between the large-area and large-amplitude S, P and E

anomalies can be further analyzed over all the tropical Atlantic. This is illustrated in

Fig. 17 for two selected months of 2010. The spatial distribution of the large-area and

long-lived (monthly averaged) SSS anomalies generally matches well the spatial patterns

for the large E–P anomalies. In particular, north–south oscillation in DS(t, r) around the

ITCZ (centered on 5�N in March and 8�N in July) follows the DE–DP(t, r) far from the

Amazon plume area, with negative DS(r, t) corresponding to positive DP(t, r) and positive

DS(r, t) found in region of positive DE(t, r). The average relationship between SMOS SSS

anomalies and the corresponding anomalies in the net atmospheric freshwater flux in the

tropical Atlantic (defined here by 5�S–20�N;75�W–15�E) was further evaluated over year

2010 by binning DS(t, r) values as function of DE–DP(t, r) as shown in Fig. 18.

Despite a significant scatter in the data, the results clearly indicate the strong coherency

between SMOS SSS anomalies and the evaporation minus precipitation flux signal in the

tropical Atlantic. On average, SMOS SSS are thus systematically fresher than the SSS

climatology when precipitation rate exceed evaporation rate with respect climatological

means, and vice versa. As expected by the skin layer effects (Zhang and Zhang 2012),

satellite SSS anomalies are weakly sensitive to excess evaporation showing an almost

constant value whatever positive values for DE-DP. Nevertheless, and as discussed in Sect.

4, the average 0.3 salinity unit excess amplitude found for DS in evaporative zones is

significantly larger than the expected evaporation-induced effect on the satellite

*0.01 pss. The source for such observed signal amplitude is not yet understood. Other

physical processes, not yet well accounted for in the SSS retrieval algorithm, may sys-

tematically affect the L-band brightness temperature in strongly evaporative zone (e.g.,

skin effects in SST, badly accounted for roughness effects at low winds).

Nevertheless, Fig. 18 clearly shows that SSS anomalies become increasingly negative

as the precipitation anomalies progressively exceed the evaporation anomalies.

This shows that it is important to monitor SSS from space in the rainy regions as it

makes a good oceanic rain gauge for the changing water cycle (Cravatte et al. 2009; Yu

2011; Terray et al. 2011), and therefore help to maintain a continuous observation network
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in these key regions of the marine branch of the global hydrological cycle. In that context,

SMOS SSS may therefore be an interesting data set for assimilation into ocean models in

the perspective of better constraining oceanic precipitation forcing terms.

4.4 Large-scale SSS Interannual Variability in Tropical Indian and Pacific Oceans

In the Indian and Pacific oceans, the precipitation impact on the large-scale SSS variability

can also be observed from SMOS and ISAS monthly maps.

The 2010–2011 period was characterized by a strong La Niña event lasting from July

2010 to March 2011 and by an Indian Ocean Dipole (IOD) index in negative phase in

September–November 2010 and in positive phase during about the same months in 2011

(see Fig. 19). Such events are known to generate large-scale SSS signatures in the tropics

(e.g., Gouriou and Delcroix 2002; Singh et al. 2011; Grunseich et al. 2011) and are clearly

depicted in the SSS signals in both the ISAS and the SMOS monthly difference maps

between 2010 and 2011 for both July and November (Fig. 20).

Fig. 16 Top left: SMOS 10-day SSS field in June 2010. Top right: time series of the surface salinity S(t) at
the black point shown in the top left figure (35�W; 16�N). Red: SMOS SSS, blue curve: local mean
climatological annual cycle at that point So(t). The resulting time series for the SMOS anomaly DSSS at that
point is shown in the middle panel, right plot. The green horizontal lines are indicating ± one standard
deviation of the local SSS anomalies, rS. In the middle and bottom left panels, we show the corresponding
OAFlux evaporation and TRMM 3B42 precipitation field (mm/day). The time series of the precipitation
anomaly at the point is shown in the bottom right panel
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Fig. 17 Maps of the monthly averaged large-amplitude SSS anomalies deduced from SMOS data for 2
selected months of 2010 (Top: month of March 2010. Bottom: month of July 2010). The threshold value
used to derive the anomaly is defined by 1 rS, the local standard deviation of SMOS anomaly. Superimposed
are the contours of the large positive amplitude precipitation anomalies (blue) and positive evaporation
anomalies (red)

Fig. 18 Average relationship between SMOS SSS anomalies and the net atmospheric freshwater flux
anomalies DE–DP in the tropical Atlantic (defined here by 5�S–20�N;75�W–15�E) over year 2010
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The differences in rain rate as derived from SSM/I F17 sensor between 2011 and 2010

for several selected months as shown in Fig. 21 further demonstrate that part of the

observed SSS interannual variability for July and November is associated with large

precipitations anomalies during previous months, associated with displacements of the

ITCZ and of the South Pacific Convergence Zone. In the Indian Ocean, SSS differences

DSSS = SSS2011 - SSS2010 observed in November indicate saltier SSS in 2010 than in

2011 in the eastern equatorial Indian Ocean within the band [10�–0�S; 70�–95�E] asso-

ciated with a smaller rain rate (RR2010 \ RR2011) in the surrounding region during pre-

ceding months, as evidenced by the rain rate difference on the October and November

maps shown in Fig. 21. Between *10�S and 20�S, SSS are fresher in 2010 than in 2011;

this is associated with higher precipitation in 2010 than in 2011(RR2011 \ RR2010) in the

Fig. 19 Time series of SST anomalies in the four Niño regions from http://www.cpc.ncep.noaa.gov/data/
indices/sstoi.indices in 2010–2011 and corresponding Indian Ocean Dipole (IOD) Index (SST difference
between eastern and western equatorial Indian Ocean) from the Australian bureau of Meteorology (BOM)

Fig. 20 Differences in the monthly averaged SSS between year 2011 and 2010 for months of July (left) and
November (right). Top panels show the DSSS = SSS2011 - SSS2010 results obtained from in situ OI
analysis products ISAS and bottom ones from SMOS data
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eastern basin but not over the whole basin. Patterns of positive SSS anomalies in the

eastern equatorial Indian Ocean and negative anomalies in the eastern part of the region

south of *10�S are quite consistent with SSS anomalies already reported during negative

IOD coupled with a strong La Niña event (see Fig. 8 of Grunseich et al. 2011).

Although patterns of 2011–2010 SSS differences are similar on SMOS and ISAS

monthly maps, the differences are often more contrasted in the SMOS data (e.g., Fig. 20,

left part and Fig. 22).

This originates from fresher SSS seen in the SMOS SSS maps than in the ISAS SSS

maps (Fig. 22). In addition, the spatial extent of the low SSS region appears wider in the

SMOS map, as illustrated in Fig. 22 left, around 8�N. This is possibly due to the in situ

Fig. 21 Rain rate differences DRR = RR2011 - RR2010 derived from SSM/I F17 between 2011 and 2010
for months of June (top left); July (bottom left), October (top right), and November (bottom right)

Fig. 22 Left: July 2010 SSS maps in the northern tropical Pacific Ocean from ISAS (top) and SMOS
(bottom). Right: June 2010 SSS maps in south Pacific–Indian tropics from ISAS (top) and SMOS (bottom).
In both top panels, the small black dots represent the locations of the in situ data samples used in the
objective analysis. The purple square on the right figure indicates the region where the drifter discusses in
Fig. 23 evolved
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measurements undersampling and/or smoothing by the OI applied to the ISAS. In

addition, the SMOS freshening could be linked to the different depth of the mea-

surements (SMOS at 1 cm and in situ SSS measured at several meters depths) as

described in Sects. 4.1 and 4.2.

Finally, to illustrate the potential impact of the vertical stratification effect on the DSSS

differences between satellite and in situ, we compare along the drifter trajectory the salinity

measured at 45-cm depth by a surface float (Reverdin et al. 2012) in the 2010 rainy western

Pacific with monthly SSS maps (Fig. 23). The drifter SSS data clearly indicate a large

signature of rainy events, with typical freshening events 1 pss for more than 1 day. The

ISAS SSS is on the upper range of the drifter SSS, while monthly SMOS SSS is sys-

tematically on the lower range in this rainy region. While more work is certainly needed to

determine the physical sources for these observed differences, the vertical SSS stratifica-

tion associated with rain events, as illustrated by this case, is a likely contributor to the

different signatures in the interannual SSS variability as detected by the SMOS satellite

SSS data and the Argo data.

These preliminary results confirms the capability of L-band radiometry in detecting

large SSS signals and their low-frequency variability (here over a 2-year period), in spite of

much noisier satellite than in situ measurements. In general, this results from much better

satellite-based temporal coverage and with a better spatial resolution, thus offering com-

plementary information to existing in situ measurements.

Fig. 23 Top: trajectory of a surface velocity program (SVP) float in the western Pacific region measuring
conductivity and temperature at 45-cm depth. Bottom: SSS along the drifter trajectory measured by the
drifter (green), derived from SMOS monthly map (blue), from ISAS monthly map (red)
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5 Fresh Pool Interactions with Wind-driven Processes

In this section, two specific SMOS observation cases of wind-driven phenomena are

presented. The first example illustrates the erosion of the Far Eastern Pacific Fresh Pool by

the gap-wind-driven Panama upwelling processes, whereas the second focuses on the salty

wake left behind hurricanes after their passing over the Amazon–Orinoco river plumes.

5.1 An Example of Fresh Pool Erosion by Wind-driven Upwelling

The eastern tropical Pacific Ocean between about 120�W and South America is unique in

many respects. Lying in an environment predominantly influenced by the south and

northeastern trades and the doldrums, and seasonally affected by the winds from the

Caribbean, this region is characterized by complicated and large seasonal variations in the

wind field, current pattern, temperature and salinity structure.

The region exhibiting the lowest SSS of the tropical Pacific Ocean, the Eastern Pacific

Fresh Pool (EPFP), is found between the warm pool characterized by a mean sea SST

greater than 28 �C centered on 15�N along the coast of Central America and the cold and

fresh equatorial region, with SSS values lower than 33 pss off the Panama isthmus and

lower than 34 pss extending as far as 130�W from the equator to 15�N (Fig. 24).

The EPFP reflects both the conditions of excess precipitation over evaporation beneath

the ITCZ and inputs of freshwater from the Andes and Caribbean regions (Benway and

Mix 2004). Analysis of a recent gridded in situ SSS product (Delcroix et al. 2011) points

out that interannual variations are relatively weak in the EPFP but that seasonal variations

are the strongest within the tropical Pacific. Large-scale analysis suggests that the SSS

seasonal balance is mostly driven by precipitation in the part of the EPFP covered by the

ITCZ, but more complex in the far east as advection and entrainment become important

processes (Bingham et al. 2010; Alory et al. 2012).

By focusing on seasonal SSS variations along a well-sampled Voluntary Observing Ship

(VOS) line from Panama to Tahiti, Alory et al. (2012) recently showed that this fresh pool

dynamically responds to strong regional ocean–atmosphere–land interactions. First,

monsoon rains (and associated river runoff) give birth to the fresh pool in the Panama

Bight during summer and fall. Second, strong currents driven by topography-induced

winds extend the pool westward in winter, while it eventually disappears by mixing with

upwelled saltier waters to the east. These dynamic features also generate steep SSS fronts

at the edges of the fresh pool (sometimes larger than *4 pss/� of longitude at the eastern

edges).

These SSS fronts and the amplitude of their seasonal cycle are large enough to be

detected by the new SMOS satellite mission. Compared to in situ data, SMOS satellite data

provide a more homogeneous coverage with finer spatial resolution. Examples of SMOS

SSS maps averaged over 10 days and centered at selected dates in December 2010,

February and April 2011 are presented in Fig. 24. Remarkably, all the major features

observed with in situ VOS data as detailed in Alory et al. (2012) are well reproduced in the

SMOS analysis, notably the westward expansion of the fresh pool (SSS\33 pss) from 85�
W in December to 95�W in April, the steep SSS front east of the 32 pss isohaline and SSS

minimum of 28 pss in the Panama Bight in December, and the strong SSS increase to

around 35 pss in the Panama Bight in April. Moreover, SSS changes occurring between

December and April are qualitatively consistent with the expected effects of winter cli-

matological currents, including the Panama Bight upwelling.

Surv Geophys (2014) 35:681–722 711

123225Reprinted from the journal



The freshwater pool disruption as observed by SMOS in the Panama Bight (Fig. 24,

middle and bottom panels) is associated with the following processes: during the boreal

winter, as the ITCZ moves southward, the northeasterly Panama gap wind creates a

Fig. 24 10-Day averaged SMOS SSS fields centered on the December 28, 2010 (top), February 16, 2011
(middle), and April 3, 2011 (bottom). Small black arrows indicate the major surface currents, namely the
south equatorial current (SEC) and NECC. Thick black contour is indicating the 32 pss isohaline
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southwestward jet-like current in its path with a dipole of Ekman pumping/eddies on its

flanks. As a result, upwelling in the Panama Bight brings cold and salty waters to the

surface that erode the fresh pool on its eastern side while surface currents stretch the pool

westward.

Interestingly, SMOS data are also able to detect other meso-scale features in the region

around the fresh pool such as the near-equatorial SSS front or the local SSS maximum in

the Costa Rica dome.

Therefore, SMOS SSS data will help in exploring qualitatively the seasonal dynamics of

the fresh pools from their birth to their final erosion by wind-driven and turbulent processes

(surface current stirring and wind-driven upwelling). Quantifying the relative contribution

of the different mechanisms on SSS variations would require a model-based synergetic

data analysis scheme to establish the mixed layer salt budget. Also, the regional occurrence

of SSS fronts and barrier layers (de Boyer Montégut et al. 2007) suggests, by analogy with

the western tropical Pacific, a link between surface and subsurface salinity which could

give additional value to the satellite SSS data (Maes 2008; Bosc et al. 2009). As barrier

layers can play an active role on the tropical climate (e.g., Maes et al. 2002, 2005),

studying their impacts in the region seems worthwhile. This could be done through

regional modeling combined with the analysis of subsurface/surface in situ and satellite

data. Also, interannual variations of the fresh pool, even if quantitatively smaller than its

seasonal variations, need further investigation as ENSO is a strong climate driver in the

eastern Pacific. Now that 3 years of SMOS data are available, such type of analysis can be

initiated.

5.2 Fresh Pool Interactions with Tropical Cyclones

Because of the buoyant plume of freshwater that forms in the Atlantic due to discharge

from the Amazon and Orinoco rivers, the northwestern tropical Atlantic is a region where

the salt-driven upper ocean stratification may significantly impact ocean–atmosphere

interactions under tropical Cyclones. The spreading of the Amazon–Orinoco River plume

exhibits a seasonal cycle coinciding with the Atlantic hurricane season (1 June–30

November) with river influenced minimum salinities observed farthest eastward and

northwestward during the height of the hurricane season (mid-August to mid-October). As

shown by Ffield (2007), for the 1960–2000 time period, 60 and 68 % of all category 4 and

5 hurricanes, respectively, passed directly over the plume region, revealing that the most

destructive hurricanes may be influenced by plume–atmosphere interaction just prior to

reaching the Caribbean. Historical in situ data reveal that average ocean surface temper-

atures first encountered by tropical cyclones moving westward between 12� and 20�N is

only 26 �C, but upon reaching the northern reaches of the Amazon–Orinoco River plume

(e.g., see Fig. 25), the average SST encountered by tropical cyclones are 2 �C warmer.

These warm ocean surface temperatures may play a role in hurricane maintenance and

intensification since hurricanes can only form in extensive ocean areas with a surface

temperature greater than 25.5 deg C (Dare and McBride 2011). In addition, as shown by

Ffield (2007), the buoyant, and therefore stable, 10- to 60-m-thick layer of the plume can

mask the presence and influence of other ocean processes and features just below the

plume, in particular cool (during hurricane season) surface temperatures carried by NBC

rings. After shedding from the NBC retroflection, the 300–500-km-diameter anticyclonic

(clockwise) NBC rings pass northwestward through the Amazon–Orinoco River plume

toward the Caribbean. The limited observations reveal that at times the cool upper-layer

temperatures of the NBC rings are exposed to the atmosphere, while at other times, they
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are hidden just underneath warm plume water. Strong winds from the 300–1,000-km-

diameter cyclonic (counterclockwise) hurricanes might quickly erode a thin plume,

exposing several degrees-cooler NBC ring water to the surface, and potentially contrib-

uting to limit further development of hurricanes. As shown by Ffields (2007), the warm

temperatures associated with the low-salinity Amazon–Orinoco River plume and the rel-

atively cool temperatures associated with NBC rings are in close proximity to the passing

hurricanes. As such, they are expected to actively influence the hurricane maintenance and

intensification although the interaction is challenging to accurately quantify.

Vizy and Cook (2010) more recently studied the atmospheric response of the sum-

mertime large-scale climate to the Amazon/Orinoco plume sea surface temperature

anomaly forcing using a regional climate model. They performed simulations in the

presence or absence of the Amazon/Orinoco plume SST anomalies. Results from their

simulations indicate that the plume does significantly influence the frequency and intensity

of summertime storm systems over the Atlantic, consistent with Ffield (2007). The pres-

ence of the plume increases the average number of Atlantic basin storms per summer by

60 %. An increase in storm intensity also occurs, with a 61 % increase in the number of

storms that reach tropical storm and hurricane strength. Results from their simulations

suggest that Atlantic storms also tend to curve northward further west in the Atlantic basin

in the presence of the plume SST anomaly. These results support the premise that the warm

and low-salinity combined Amazon–Orinoco River plume play an important role in

modulating the air–sea interaction during hurricane passages in a manner similar to per-

sistent freshwater barriers layers.

For instance, when there is a freshwater barrier layer, such as in the northwestern

tropical Atlantic, mixing is restricted within shallower mixed layer and entrainment of cool

thermocline water into the mixed layer is reduced (e.g., Anderson et al. 1996; Vialard and

Delecluse 1998a, b; Foltz and McPhaden 2009). As discussed in Price (2009), if the net

salinity anomaly (freshwater layer thickness times salinity anomaly in the initial state) is as

Fig. 25 Two SMOS microwave satellite-derived SSS composite images of the Amazon plume region
revealing the SSS conditions a before and b after the passing of Hurricane Igor, a category 4 hurricane that
attained wind speeds of 136 knots in September 2010 during its passage over the plume. Color-coded circles
mark the successive hurricane eye positions. Seven days of data centered on a September 10, 2010 and
b September 22, 2010 have been averaged to construct the SSS images, which are smoothed by a 1� 9 1�
block average
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large as about 20 m, then the fresh layer will potentially inhibit vertical mixing signifi-

cantly. As the freshwater surface layer (halocline) of the Amazon and Orinoco river plumes

is warmer than the water below (Ffield 2007), salinity stratification acts to reduce the depth

of vertical mixing and thus sea surface cooling. The reduced cooling amplitude in the wake

of hurricanes passing over the Amazon and Orinoco river plumes, associated with thick

barrier layer (BL) effects, might be an important mechanism in favor of hurricane inten-

sification in that region. Similar impact of barrier layers on TC-induced sea surface cooling

has been recently evidenced for several case studies such as in the tropical Atlantic

(Balaguru et al. 2012), in the Bay of Bengal (Yu and McPhaden 2011; Neetu et al. 2012)

and in the tropical Northwest Pacific (Wang et al. 2011).

New insight into the interactions between such extreme atmospheric events and large-

scale fresh pools at the ocean surface has been gained from the satellite-based SSS

observations as recently reported by Grodsky et al. (2012). They used data from the

Aquarius/SAC-D and SMOS satellites to help elucidate the ocean response to hurricane

Katia, which crossed the Amazon plume in early fall 2011. As illustrated in their paper, the

Katia passage left a 1.5 pss high haline wake covering[105 km2 (in its impact on density,

the equivalent of a 3.5 �C cooling) due to mixing of the shallow BL.

As illustrated in Fig. 25, very similar observations were also detected from SMOS data

alone during the passage of the Category 4 hurricane Igor over the river plume in 2010.

The data evidence an erosion of the thin northern reach of the plume fresh surface layer by

Igor hurricane-induced mixing, covering an area of *89,000 km2 located on the storm

right-hand side, where SSS increases by *1 practical salinity scale while SST cools by

2–3 �C (not shown). On the left side of the storm, much smaller SSS and SST changes are

detected after the storm passage. The strong SSS increase in the hurricane wake within the

plume is explained by the erosion of the BL. This is supported by Argo profiles collected

within the plume (see Grodsky et al. 2012). Mixed layer salinity is lower by 2–4 pss than

the water beneath. The shallow haline stratification is destroyed by hurricane-forced

entrainment which is stronger on the right side of hurricane eye (Price 2009). It results in a

strong SSS signal. Although the hurricane strengthened further along the trajectory, the

SSS change is much weaker there corresponding to weak vertical salinity stratification

outside the plume.

As further discussed in Grodsky et al. 2012, the fresh (more buoyant) BL limits the

turbulent mixing and then the SST cooling in the plume, and thus preserved higher SST

and freshwater evaporation than outside. Combined with SST, the new satellite SSS data

thus provide a new and better tool to monitor the plume extent and quantify the upper

ocean responses to tropical cyclones with important implications for hurricane forecasting.

6 Conclusions and Perspectives

The ocean is the primary return conduit for water transported by the atmosphere. It is the

dominant element of the global water cycle, and clearly one of the most important com-

ponents of the climate system, with more than 1,100 times the heat capacity of the

atmosphere. Two new satellite sensors, the ESA SMOS and the NASA Aquarius SAC-D

missions, are now providing the first space-borne measurements of the SSS. Synergetic

analyses of the new surface salinity data sets together with sea surface temperature,

dynamic height and surface geostrophic currents from altimetry, near-surface wind, ocean

color, in situ observations, and rainfall estimates will certainly help clarify the freshwater

budget in key oceanic tropical areas.
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In this paper, we selected illustrative examples to review how the first SSS products

derived from the SMOS sensor can readily help to better characterize some of the key

processes of the marine branch of the global hydrological cycle. First, we illustrated the

new monitoring capabilities for some of the world’s largest oceanic freshwater pools

generated by the discharge of very large tropical rivers. In particular, we show how SMOS

SSS traces the freshwater signals from the Amazon–Orinoco and Congo river plumes.

River runoff is an important variable in oceanography as their freshwater affects SSS and

the buoyancy of the surface layer, and they represent a source of materials exotic to the

ocean and highly important to biological activity. Obviously, they are key hydrologic

components of the freshwater exchanges between the atmosphere, land, and ocean. Despite

this importance, tracing river freshwater transport over large distances has not been

straightforward previously principally because of a lack of SSS data. Tracing those very

large rivers over great distances now become an important endeavor, as sufficient data are

available from the SMOS and Aquarius sensors that can be further combined with satellite-

derived surface geostrophic current data.

Second, we evidenced key oceanic precipitation signatures in the SMOS SSS signal.

Satellite radiometry at L-band provides for the first time a global measure of the salinity at the

ocean–atmosphere interface (within the upper centimeters). Rain events induce freshening of

the ocean surface and are responsible for a high temporal variability in the SSS, consistently

detected by both in situ and space-borne sensors. Because of the vertical haline gradient

generated by the rain-induced freshening in the upper ocean, fresher surface waters are,

however, systematically found from space in rainy area compared with the 1–10-m depth

in situ data. These differences challenge calibration/validation activities of the satellite SSS in

high precipitation regions. Nevertheless, satellite SSS data certainly provide new information

about ocean–atmosphere interfacial freshwater fluxes in these conditions. This was evi-

denced by comparing spatial patterns and amplitudes of the large-scale SSS anomalies

estimated from the SMOS data and the net evaporation minus precipitation fluxes in the

tropical Atlantic. Under the Inter Tropical Convergence Zone and sufficiently far away from

the river runoff signals, residual SSS anomalies were shown to be highly correlated with the

Evaporation minus Precipitaion (E–P) anomalies. In particular, SSS anomalies become

increasingly negative as the precipitation anomalies progressively exceed the evaporation

anomalies. This demonstrate the importance of monitoring SSS from space in rainy regions,

suggesting that the interfacial SSS values might be a good large-scale oceanic rain gauge of

the global hydrological water cycle.

The interfacial character of the space-borne measurements also offers new information

of interest for ocean circulation models in the perspective of better constraining oceanic

precipitation forcing terms.

Finally, the SSS observations from SMOS satellite were used to reveal new aspects of

the main tropical fresh pool evolution and interaction with wind-driven atmospheric pro-

cesses. SMOS imagery thus captures how the large eastern Pacific fresh pool is system-

atically eroded at the end of the boreal summer on its eastern side by the wind-driven

Panama upwelling, which brings cold and salty waters to the surface. Prior to SMOS data

availability, the few existing studies of the eastern Pacific describing seasonal variations of

SSS did not investigate their cause beyond rainfall (e.g., Fiedler and Talley 2006). Thanks

to the new SMOS data, SSS variability associated with wind-driven processes in that

region, such as the Panama upwelling signal recently evidenced by Alory et al. (2012), can

now be characterized more deeply.

Because of the buoyant character of the freshwater that forms at the ocean surface due to

large river discharges or intense local precipitation, the upper ocean stratification in several
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key tropical oceans regions (e.g., northwestern tropical Atlantic, eastern and western Pacific

fresh pools, Bay of Bengal) is mostly controlled by salinity. In such freshwater pool regions, a

uniform density mixed layer is found to form the so-called Barrier Layers (BL) at shallower

depth than the uniform temperature layer. Because of stable halocline, the BL are acting to

inhibit surface cooling and vertical mixing under the action of surface wind stresses. Therefore,

there can be some feedback mechanisms between atmospheric, or terrestrial, freshwater fluxes

to the ocean and intense atmospheric processes. About 68 % of hurricanes that finally reached

category 4 and 5 have thus crossed the Amazon/Orinoco plume (Ffield 2007) where the

presence of Barrier Layers can enhance their growth rate by 50 % (Balaguru et al. 2012). Under

an intense hurricane, the halocline, which is above the thermocline, is first mixed. This produces

a SSS wake that is by a few pss saltier than initial SSS in the plume. By analyzing SMOS SSS

data before and after the passage of several intense hurricanes over the Amazon River plume in

2010 and 2011, SSS changes[1 pss over areas exceeding 105 km2 were detected. These abrupt

changes have implications for SSS climate, since SSS is more long-lived and not damped like

SST. In addition, destruction of the BL is apparently associated with a decreased SST cooling in

the plume that, in turn, preserves higher SST and evaporation than outside the BL. This

difference in SST cooling is explained by additional work required to mix the BL. Thus, BL

leads to a reduction in hurricane-induced surface cooling that favors hurricane intensification,

as the resulting elevated SST and high evaporation enhance the hurricane’s maximum potential

intensity. The geographic location and seasonality of the Amazon/Orinoco plume make hur-

ricane overpasses a frequent occurrence. Indeed, the expansion of the plume in August–

September coincides with the peak of the production of Cape Verde hurricanes, which includes

many of the most intense (category 4–5) hurricanes. Thus, the results presented here strongly

suggest that the role of the salinity stratification in mixed layer dynamics should be taken into

account when forecasting tropical cyclone growth over freshwater pools that are generating

thick BL (Amazon plume, Bay of Bengal, eastern and western Pacific fresh pools). The

availability of satellite SSS from Aquarius and SMOS along with in situ Argo measurements is

critical to making such model improvements practical.
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Hénocq C, Lavender S, Martin N, Martı́nez J, McCulloch M, Meirold-Mautner I, Mugerin C, Petitcolin
F, Portabella M, Sabia R, Talone M, Tenerelli J, Turiel A, Vergely JL, Waldteufel P, Yin X, Zine X,
Delwart S (2013) SMOS first data analysis for sea surface salinity determination. Int J Remote Sens.
doi:10.1080/01431161.2012.716541

Froelich PN, Atwood DK, Giese GS (1978) Influence of Amazon River discharge on surface salinity and
dissolved silicate concentration in the Caribbean Sea. Deep Sea Res 25(8):735–744

Gaillard F, Autret E, Thierry V, Galaup P, Coatanoan C, Loubrieu T (2009) Quality control of large Argo
datasets. J Atmos Ocean Tech 26:337–351

Garzoli SL, Ffield A, Johns WE, Yao Q (2004) North Brazil current retroflection and transports. J Geophys
Res 109:C01013

Goni GJ, Johns W (2001) A census of North Brazil current rings observed from T/P altimetry: 1992–1998.
Geophys Res Let 28(1):1–4

Gordon A, Guilivi CF (2008) Sea surface salinity trends over 50 years within the subtropical North Atlantic.
Oceanography 20(1):20–29

Gouriou Y, Delcroix T (2002) Seasonal and ENSO variations of sea surface salinity and temperature in the
South Pacific Convergence Zone during 1976–2000. J Geophys Res 107:3185

Grodsky SA, Reul N, Lagerloef G, Reverdin G, Carton JA, Chapron B, Quilfen Y, Kudryavtsev VN, Kao
HY (2012) Haline hurricane wake in the Amazon/Orinoco plume: a QUARIUS/SACD and SMOS
observations. Geophys Res Lett 39:L20603

Grunseich G, Subrahmanyam B, Murty VSN, Giese BS (2011) Sea surface salinity variability during the
Indian Ocean Dipole and ENSO events in the tropical Indian Ocean. J Geophys Res 116:C11013

Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error-estimates.
J Phys Oceanogr 13(7):1093–1104

Hellweger F, Gordon A (2002) Tracing Amazon River water into the Caribbean Sea. J Marine Res
60:537–549

Hisard P (1980) Observation de réponses de type ‘‘El Niño’’ dans l’Atlantique tropical oriental, Golfe de
Guinée. Oceanol Acta 3:69–78

Hu C, Montgomery ET, Schmitt RW, Muller-Karger FE (2004) The dispersal of the Amazon and Orinoco
River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats.
Deep Sea Res Part II 51:1151–1171

Johns WE, Lee TN, Schott FA, Zantopp RJ, Evans RH (1990) The north Brazil current retroflection:
seasonal structure and eddy variability. J Geophys Res 95:22103–22120

Katsaros KB, Buettner KJK (1969) Influence of rainfall on temperature and salinity at the Ocean surface.
J Appl Meteorol 8:15–18

Kerr Y, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela MJ, Font J, Reul N, Gruhier
C (2010) The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc
IEEE 98(5):666–687

Klein LA, Swift CT (1977) Improved model for dielectric constant of seawater at microwave frequencies.
IEEE Trans Antennas Propag 25:104–111

Koleshnikov AG (1973) Equalant I and Equalant II, physical oceanography. UNESCO Paris 1:1–289

Surv Geophys (2014) 35:681–722 719

123233Reprinted from the journal

http://dx.doi.org/10.1080/01431161.2012.716541


Lagerloef GSE (2012) Satellite mission monitors Ocean surface Salinity. Eos Trans AGU 93(25):233.
doi:10.1029/2012EO250001

Lagerloef GSE, Mitchum G, Lukas R, Niiler P (1999) Tropical Pacific near surface currents estimated from
altimeter, wind and drifter data. J Geophys Res 104:23313–23326

Lagerloef GSE, Colomb FR, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A,
Feldman G, Swift C (2008) The Aquarius/SAC-D mission: designed to meet the salinity remote-
sensing challenge. Oceanography 21(1):68–81

Lagerloef GSE, Boutin J, Chao Y, Delcroix T, Font J, Niiler P, Reul N, Riser S, Schmitt R, Stammer D,
Wentz F (2010) Resolving the global surface salinity field and variations by blending satellite and
in situ observations, Oceanobs’09: sustained Ocean observations and information for society, Venise,
Italy, 21–25 September 2009, ESA Publication WPP-306
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Abstract Asian summer monsoon sets in over India after the Intertropical Convergence

Zone moves across the equator to the northern hemisphere over the Indian Ocean. Sea

surface temperature (SST) anomalies on either side of the equator in Indian and Pacific

oceans are found related to the date of monsoon onset over Kerala (India). Droughts in the

June to September monsoon rainfall of India are followed by warm SST anomalies over

tropical Indian Ocean and cold SST anomalies over west Pacific Ocean. These anomalies

persist till the following monsoon which gives normal or excess rainfall (tropospheric

biennial oscillation). Thus, we do not get in India many successive drought years as in sub-

Saharan Africa, thanks to the ocean. Monsoon rainfall of India has a decadal variability in

the form of 30-year epochs of frequent (infrequent) drought monsoons occurring alter-

nately. Decadal oscillations of monsoon rainfall and the well-known decadal oscillation in

SST of the Atlantic Ocean (also of the Pacific Ocean) are found to run parallel with about

the same period close to 60 years and the same phase. In the active–break cycle of the

Asian summer monsoon, the ocean and the atmosphere are found to interact on the time

scale of 30–60 days. Net heat flux at the ocean surface, monsoon low-level jetstream (LLJ)

and the seasonally persisting shallow mixed layer of the ocean north of the LLJ axis play

important roles in this interaction. In an El Niño year, the LLJ extends eastwards up to the

date line creating an area of shallow ocean mixed layer there, which is hypothesised to

lengthen the active–break (AB) cycle typically from 1 month in a La Niña to 2 months in

an El Niño year. Indian monsoon droughts are known to be associated with El Niños, and

long break monsoon spells are found to be a major cause of monsoon droughts. In the

global warming scenario, the observed rapid warming of the equatorial Indian ocean SST

has caused the weakening of both the monsoon Hadley circulation and the monsoon LLJ
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which has been related to the observed rapid decreasing trend in the seasonal number of

monsoon depressions.

Keywords Monsoon onset � Active–break cycle � Rapid warming of

Indian Ocean � Decadal variability of monsoon � Tropospheric biennial

oscillation � Long break monsoon spells

1 Introduction

The continental land mass (Eurasia) north of India gets heated up, and a giant low pressure

area is created there in the low levels of the atmosphere in summer as the Sun moves to the

northern hemisphere. Six months later with the Sun overhead the southern oceans, radi-

ative heat loss cools this continental land mass when the giant low pressure area gets

replaced by a large high pressure area. In response to these large-scale surface pressure

changes on the continental scale, we get the summer and winter monsoons of south Asia.

That continental scale land–sea thermal contrast (a huge land and sea breeze system) is the

main reason that monsoons exist held sway since the time of Halley (1686). That the ocean

with its Intertropical Convergence Zone (ITCZ) and the deep convective (cumulonimbus)

clouds associated with it plays a major role in generating the deep monsoon wind systems

due to the heating of a deep layer of the atmosphere by the latent heat released in the ITCZ

clouds is increasingly being considered as the main driving force of the monsoons. The

modelling study by Chao and Chen (2001) and the discussions in the following section on

monsoon onset over south Asia show that ocean is as important as the land in the Asian

summer monsoon. Figures 1, 2 show that, as the ITCZ with its cloud systems moved from

south of the equator to north of it in the annual cycle, the winter monsoon wind system

changes to the summer monsoon wind system. Figure 2b shows the low-level jetstream

(LLJ) at 850 hPa level as a mean of several July and August months.

Summer monsoon rainfall is a precious natural resource for the countries of south Asia,

but it is highly variable in space and time. Prediction of monsoon rainfall 7–10 days in

advance (medium range) has great applications in agricultural operations. Planners par-

ticularly in the government require monthly and seasonal predictions (long range) and also

predictions of inter-annual and decadal scale variability of monsoon. Recent research has

shown that monsoon variability on these time scales is highly dependent on the ocean

below, particularly on sea surface temperature (SST). We have to understand the coupling

between the atmosphere and the ocean on these time scales by data analysis, process

studies and ocean–atmosphere coupled modelling. In this paper, some aspects of the role of

the ocean in the variability of the Indian Summer Monsoon Rainfall (ISMR) of June to

September will be presented and discussed.

2 Monsoon Onset Over India

In January, the centre of the warm pool of the tropical oceans lies over southwest Pacific

Ocean. In the annual cycle, the central region of the warm pool gets shifted to the north

Indian Ocean by May as may be seen from Fig. 3. This large-scale change in the ocean

SST is necessary for monsoon onset over south Asia. The warm pool of May attracts
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moisture convergence and over a period of more than a month builds up the vertically

integrated moisture content of the atmosphere over south Asia and the oceans around to

about 45 kilograms per square metre which is needed for monsoon onset to take place—

Pearce and Mohanty (1984) and Joseph et al. (2006). There is a fine structure to the

changes in the warm pool over north Indian Ocean. About 40 days (8 pentads) before the

monsoon onset over the southern state of India (Kerala), the central Bay of Bengal (BoB)

develops high SST and to its south, in the area of large north–south SST gradient, a band of

convective clouds form near the equator. These clouds cause westerly low-level winds to

its south and this cloud-wind system moves north during the following few pentads cooling

the ocean and in many years bringing onset of monsoon rains over southeast Asia. Later a

similar warming occurs in central Arabian Sea when a cloud band forms over south

Arabian Sea close to the equator and, as it develops and moves north, the cross-equatorial

LLJ as documented by Joseph and Raman (1966) and Findlater (1969) forms and inten-

sifies. These changes herald the monsoon onset over Kerala, at the southern tip of India.

Figure 4 shows the warming and cooling of the BoB and the Arabian Sea in association

with the monsoon onset during a typical year 2003. Pentad zero is the pentad around

monsoon onset over Kerala.

The birth of LLJ coincides with the time of monsoon onset over Kerala (Joseph et al.

2006), and it lasts during the four monsoon months June to September with major fluc-

tuations in its strength and spatial location during the active–break (AB) cycle of the

monsoon as shown by Joseph and Sijikumar (2004). Summer monsoon onset over south

Asia (Kerala) is found to be related to the time of transition across the equator of the ITCZ

over the Indian and west Pacific oceans from south of the equator to the north of it, which

is related to the large-scale SST anomalies in both these oceans around the equator as

(a)

(b)

Fig. 1 Outgoing longwave
radiation as mean of 1979–2010
a January and February and
b July and August
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shown by observational studies (Joseph et al. 1994, 2006) and modelling studies (Ju and

Slingo 1995; Soman and Slingo 1997; Annamalai et al. 2005). The correlation coefficient

between the date of monsoon onset over Kerala and the SST (Fig. 5) shows that when SST

anomaly is positive south of the equator and negative north of it, monsoon onset is delayed.

This correlation pattern has persistence of several months prior to the monsoon onset.

3 Active–Break Cycle of Monsoon

Monsoon has an active–break (AB) cycle of period varying between 30 and 60 days. This

is the most important intra-seasonal variability of the monsoon. There is a large volume of

observational and modelling studies that demonstrate the air–sea interactions associated

with the monsoon active–break cycle, an excellent review of which may be found in

Goswami (2005). During active monsoon spells, there is an east–west band of raining

convective clouds passing through India in the latitude belt 10�N–20�N from longitude

70�E extending beyond 120�E and the associated LLJ is located just south of this cloud

band from central Arabian sea through peninsular India and the BoB to the west Pacific

ocean. LLJ serves as a conduit for the transportation of the large quantity of moisture

needed for the monsoon rainfall of Asia and for providing the dynamics for the monsoon

(a)

(b)

Fig. 2 850 hPa wind as mean of 1979–2010. a January and February and b July and August
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rainfall (cyclonic vorticity in the low levels associated with the LLJ together with the

friction in the atmospheric boundary layer produce vertical upwards motion of the moist

monsoon air) and for the genesis of monsoon depressions in north BoB. When the cloud

band of the active monsoon passing through central India and the BoB weakens after a life

of 4 or 5 pentads, the LLJ shifts to a position south of India and the raining area gets

located around the equator. This is the beginning of the break phase of the monsoon when

rainfall becomes deficient over central India and the BoB. During this period of break

monsoon, north BoB warms and we get the next active monsoon spell. In a normal

monsoon season, there are 3 active–break cycles of average period of about 40 days. LLJ

(a)

(b)

Fig. 3 Warm pool a January and b May shown by the mean Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST) data set of 1961–1990. Note the north–westwards shift of the centre of the warm
pool from January to May

(a) (b)

(c) (d)

Fig. 4 The mean TRMM Microwave Imager (TMI) SST of pentads. a -7, b -5, c -2 and d 0 during the
year 2003
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and the convective cloud bands (represented by OLR) during active and break monsoon as

average of several such days are shown in Figs 6 and 7 of Joseph and Sijikumar (2004).

Joseph and Sabin (2008a) showed that the ocean interacts with the atmosphere in the

AB cycle of the Asian summer monsoon. Prior to the beginning of an AB cycle, the SST

anomaly over north BoB reaches maximum positive value. At this time, the positive SST

anomaly zone extends from the Arabian Sea to about longitude 150�E in the west Pacific

Ocean as may be seen in Fig. 6 taken from Joseph and Sabin (2008a) which gives the mean

SST anomaly of 11 AB cycles in the 8 pentads (of an average AB cycle of period 40 days).

In the SST gradient area to the south of maximum SST anomaly, a convective cloud band

forms after about a pentad that in the following 2–3 days generates an LLJ through

peninsular India and the active phase of the monsoon begins. The cloud band thus formed

(reducing the incident solar radiation) and the strong winds of the LLJ (by causing

evaporation at the ocean surface) cools the ocean there, when the convection weakens and

the LLJ moves south to an equatorial location in the Indian Ocean which has warmer SST,

where a new cloud band forms. This is the break monsoon phase. North BoB has large

amplitude SST variations in response to the net heat flux changes in the AB cycle as the

ocean mixed layer depth (MLD) there is shallow (typically 20 metres). See also Sengupta

et al. (2001). That convection forms in the SST gradient area has been shown empirically

by Shankar et al. (2007) and Sabin et al. (2012) and with modelling studies by Lindzen and

Nigam (1987) and Back and Bretherton (2009).

The eastwards extent of the LLJ is up to longitude 120�E in La Niña years. In El Niño

years, LLJ extends up to 180�E when between longitudes 120�E and 180�E the seasonal

(a)

(b)

Fig. 5 The correlation between the objective dates of monsoon onset over Kerala as derived by Pai and
Rajeevan (2009) and the HadISST of a January b April using data of the years 1971–2000
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scale cyclonic wind stress curl north of the LLJ axis is hypothesised to generate a large area

of shallow MLD there. During the AB cycle, this area warms rapidly and causes the active

phase convection to shift there from west of 120�E before moving to the equatorial Indian

ocean, thus prolonging the duration of the AB cycle. In the tropics, it is found that areas of

warmest SST attract moisture convergence, increase both the convection and the vertically

integrated moisture content of the atmosphere there. Available Argo data of Mixed Layer

Depth (MLD) and Quikscat surface wind data support the hypothesis made. Figure 7 gives

the surface wind anomaly of July and August as a composite of the latest 3 El Niños (2002,

2004 and 2009). The cyclonic wind area between longitudes 120�E and 180�E has shallow

MLD during the monsoon season of recent El Niño years as shown by ARGO data.

Fig. 6 TMI SST anomalies in degree Celsius of the 11 case composite AB cycle for pentads -2 to ?5. At 0
pentad, SST is maximum over north Bay of Bengal and to its east and west. Note the minimum SST over the
same area at pentad ?4

Fig. 7 Surface wind anomaly (Quikscat) July and August as mean of El Niños 2002, 2004 and 2009 minus
mean of non El Niño years 2000, 2001, 2003, 2005, 2006, 2007 and 2008
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Figure 8 gives a schematic of the hypothesis on the lengthening of the AB cycle in El

Niño years taken from Joseph and Jayakumar (2012) showing the locations of convection

in the AB cycle. In a La Niña case, convection shifts from central India and adjoining

oceans (area A) to the equatorial Indian ocean (area C) and then back to A. Convection

does not move to the west Pacific (area B) as the SST there with a thick MLD has no intra-

seasonal variability, but only a seasonal slow warming and thus has not warmed enough for

the convection to shift there. Thus, the AB cycle has short period of about a month. In an El

Niño case, convection moves from area A to area B where SST has warmed fast in the

intra-seasonal scale as the region is cloud free and with a shallow MLD. After convection

and typhoons are active there for about a month, SST cools and the convection shifts to

area C. While the convection is active over areas B and C, rainfall over central India is

reduced and we get long break monsoon spells as defined by Rajeevan et al. (2006).

Ocean–atmosphere interaction mechanism thus explains the difference in the period of

the AB cycle of the monsoon between El Niño and La Niña years. Inter-annual variations

ID

A
B

C

Fig. 8 Schematic diagram showing the location A, B and C of convection in the active–break cycle. In El
Niño years, convection shifts from A to B and then to C and back to A, in La Niña years from A to C and
back to A

Fig. 9 Standardised anomaly of the Indian Summer Monsoon Rainfall (ISMR) for the years 1871–2010
(data taken from the Indian Institute of Tropical Meteorology (IITM) website www.tropmet.res.in). ISMR is
the average June to September rainfall of 306 rainguages well distributed over India. Drought years are
marked in red
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in the thickness of MLD in the western Pacific Ocean play an important role. The

amplitude of the SST variations is large on the intra-seasonal time scale where the MLD is

shallow. SST variations are mainly in response to the varying net heat flux at the ocean

surface—Sengupta et al. (2001). That, in the intra-seasonal time scale, convection moves

to oceanic areas of higher SST in the tropics is an accepted hypothesis—see Hendon

(2005). Purely atmospheric mechanisms (e.g., MJO) have been proposed to explain the

lengthening of the AB cycle in El Niño years—e.g., Joseph et al. (2009). Indian monsoon

droughts are known to be associated with El Niños, and it is surmised that it is so mainly

because of the long AB cycles associated with El Niño.

4 Inter-annual and Decadal Variability of Monsoon

India gets three fourths of its annual rainfall from its summer monsoon taken as the period

01 June to 30 September. According to the India Meteorological Department, if the Indian

Summer Monsoon Rainfall (ISMR) goes below 10 % (about one standard deviation) of its

long-term average, it is declared as a drought year. ISMR had very little long-term trend

during the period of good rainfall measurements (1871 to date), but it had a prominent

decadal variability (see Fig. 9). During the 3 decade long DRY epochs 1901–1930 and

1961–1990, the monsoon scenario was bad, India having droughts on average once in

about 3 years. In contrast during the 3 decade long WET epochs 1871–1900 and

1931–1960, the frequency of droughts had been on average once in 10–20 years only.

Thus, during the 120 years 1871–1990, we had regular 30-year epochs alternating between

DRY and WET. Using the available network having a smaller number raingauge stations

over India, it was found that 1841–1870 was a DRY epoch. This regular epochal pattern

has undergone a change in recent years. The period 1991–2020 was expected to be a WET

epoch. Although the decade 1991–2000 had no monsoon droughts, during the next decade

beginning in 2001 we had three droughts (in 2002, 2004 and 2009).

Fig. 10 Mean HadISST anomaly of September to November after five severe drought monsoons of 1965,
1972, 1979, 1982 and 1987
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ISMR has large inter-annual variability as may be seen from Fig. 9. Generally, a

deficient monsoon year is followed by a normal or excess monsoon year, a sort of biennial

oscillation. This phenomenon has been called the tropospheric biennial oscillation (TBO)

in which the summer monsoons of India and Australia and the SST of the tropical Indian

and west Pacific oceans take part. Meehl (1997) has studied the observational aspects of

TBO, and Chang and Li (2000) have given a modelling study. Both these studies have

analysed the SST variations on the inter-annual time scale in relation to the heat balance on

this scale. The SST anomalies averaged for the five September to November periods

following 5 very severe Indian monsoon drought seasons of 1965, 1972, 1979, 1982 and

1987 are shown in Fig. 10. Soon after a season of monsoon drought, the SST of the ocean

around India (west Pacific Ocean) warms (cools) and this persists till the following

monsoon which has normal or excess ISMR. This is very good for India and makes it

different from Africa where drought years have plagued that continent during successive

(b)

(a)

Fig. 11 a 200 hPa vector wind (JJAS) as the mean of the WET epoch 1951–1960 showing the subtropical
jetstream. b Mean wind (JJAS) at 200 hPa of the DRY epoch 1965–1987 of frequent drought monsoons
minus the mean wind (JJAS) of the WET epoch 1951–1960 (wind anomaly). Magnitude of the wind is
shown by the shaded contours. The southwards shift of westerlies over south Asia as a wave number-3
trough in the DRY epoch may be seen
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years (10–15 consecutive years) as in the Sahelian drought incidences. Such an event is

described in the Bible when Egypt was ruled by Pharaohs, one of whom made biblical

Joseph governor of Egypt to manage the food problems in a 7-year-long drought episode.

The food managers of India have to store food grain to meet the needs of one or at most

two consecutive drought years only.

During the DRY epoch 1961–1990 reanalysed wind data showed that subtropical

westerlies of the upper troposphere moved to lower latitudes over south Asia as a wave

number-3 trough—see Fig. 11. During this epoch SST, monsoon convective heat source

Fig. 12 Correlation between ISMR and mean outgoing longwave radiation (OLR) of July and August using
data of 1979–2009 showing the two poles of convection (monsoon heat source). In drought monsoon years,
positive convection anomalies (negative OLR anomalies) are over west Pacific Ocean

Fig. 13 Correlation between ISMR and 200 hPa meridional wind of June to September showing the Asia–
Pacific wave (wave number 6). In drought monsoons, this wave has a trough over northwest India and
another trough close to Japanese Islands
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and mid-latitude upper tropospheric westerly winds interacted with each other leading to

large inter-annual variability of ISMR. Convective heat source anomalies had large east–

west oscillations inter-annually between Indian and west Pacific oceans—see Fig. 12.

These heat sources are hypothesised to generate large amplitude wave number-6 Rossby

waves in the mid-latitude westerlies which had opposite spatial phase in years of excess

and deficient ISMR as shown by Fig. 13 which gives the correlation between ISMR and

the meridional wind of 200 hPa level of June to September using data of the period

1961–1990. This large amplitude Rossby wave was named Asia Pacific Wave by Joseph

and Srinivasan (1999). The role of this Rossby wave in monsoon variability has been

studied by Ding and Wang (2005).

Analysis of SST time series showed that during DRY (WET) epochs, SST anomalies

were negative (positive) over areas in Pacific and Atlantic oceans between latitudes 30�N

and 60�N and the tropics to high latitude SST gradients over these oceans were large

(small). The SST variation in the Pacific Ocean (Atlantic Ocean) is the well-known Pacific

decadal oscillation—PDO (Atlantic multidecadal oscillation—AMDO). Decadal oscilla-

tions in ISMR and PDO/AMDO had about the same period and temporal phase. Can the

large SST gradient phase of PDO/AMDO induce westerly intrusions over south Asia and

create large inter-annual variability of ISMR? Modelling studies are needed.

(a)

(b)

Fig. 14 a HadISST of decade (2000–2009) minus (1950–1959) showing the rapid warming of the
equatorial Indian Ocean b the difference in OLR of (2003–2009) minus (1979–1985) in Watts per square
metre
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5 Rapid Warming of the Indian Ocean

In the global warming scenario, Joseph and Sabin (2008b) reported a rapid increase in the

SST of the equatorial Indian Ocean during the monsoon season from 1950 which resulted

in an increase in the convection over the area—Fig. 14a, b. This increased equatorial

convection resulted in the weakening of the monsoon Hadley circulation and the conse-

quent weakening of the LLJ and the Tropical Easterly Jetstream. The weakening of the LLJ

flowing through peninsular India (Fig. 15) could be the possible cause for the observed

decreasing trend in the frequency of monsoon depressions that form north of the LLJ in the

BoB. As may be seen from Fig. 16, the SST of June to September averaged over an area

bounded by latitudes 5�S to 5�N and longitudes 60�E to 90�E showed only a small

increasing trend during the period 1891–1960 and the number of monsoon depressions

(a)

(b)

Fig. 15 a The 850 hPa wind
flow showing the LLJ and a
monsoon depression vortex
cantered over north BoB b The
decreasing trend of the mean
850 hPa zonal wind (LLJ) of
June to September flowing
through peninsular India
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decreased slightly. But, from 1950 to 2010, SST had a rapid increasing trend, and corre-

spondingly, monsoon depressions showed rapid decreasing trend from about 10 depres-

sions in 1950s to about 3 in 2000s. In this connection, reference is drawn to the study by

Krishnamohan et al. (2012).

6 Summary and Conclusions

Latent heating of the atmosphere by the deep convection in the ITCZ of the tropical oceans

is as important if not more than by the solar heating of the Eurasian land mass in boreal

summer for the establishment of the Asian summer monsoon. Monsoon onset over south

Asia and its inter-annual variability are closely associated with the changes in SST of the

tropical Indian and Pacific Oceans. This paper has highlighted the importance of oceans in

the variability of Indian monsoon rainfall on intra-seasonal, inter-annual and inter-decadal

(a)

(b)

Fig. 16 a The warming trend of
the HadISST over the equatorial
Indian Ocean of the two periods
1891–1960 and 1951–2010 is
shown b The decreasing trend of
monsoon depression frequency
during the two periods
1891–1960 and 1950–2010 is
shown
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time scales. One of the major factors causing drought in ISMR is known to be the El Niño,

but it is not clear how monsoon and El Niño are physically related. The shallow MLD area

created over the west Pacific Ocean by the El Niño is hypothesised to cause long break

monsoon spells (long AB cycle) and thus create large negative anomalies in monsoon

rainfall of India. Modelling studies are required to verify this empirical finding. The paper

has also given a mechanism for the large inter-annual variability of ISMR during the

30-year-long dry epochs like 1961–1990 occurring during the cold phase of the Pacific

decadal oscillation/Atlantic multidecadal oscillation. This mechanism involves the inter-

action between the monsoon convective heat source and the southwards displaced mid-

latitude westerlies (and the subtropical jetstream) over south Asia. Modelling studies are

required to test this empirical finding also.
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Abstract Various land–atmosphere coupling mechanisms exist that may lead to large-

scale impacts on climate and hydrology. Some of them are still less understood and not

adequately represented in state-of-the-art climate modelling. But, as the current generation

of climate models enables consideration and implementation of important coupling pro-

cesses, the present study provides perspectives for the modelling of relevant climate–

hydrology interactions. On a more short-term perspective, these comprise anthropogenic

land use and especially irrigation, which has been shown that it may even affect remote

regions. On a long-term perspective, the coupling of hydrology to carbon cycle and veg-

etation becomes important, specifically the dynamics of permafrost and wetlands. Here, we

present a review of current knowledge combined with some exemplary studies from a

large-scale point of view. Therefore, we focus on climate–hydrology interactions that are

relevant on scales utilized in the current or forthcoming global and regional climate

modelling exercises.

Keywords Irrigation � Land atmosphere feedbacks � Land-use impacts �
Modelling perspectives � Permafrost and wetland dynamics

1 Introduction

The hydrological cycle plays a prominent role within the Earth system and is crucially

important to life on Earth including the human society. Thus, the current state of the

hydrological cycle and its future development are key issues in environmental research. In
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studies of global and regional climate change, climate models are the current operational

tools. Although the ability of climate models to simulate the various characteristics of the

climate or Earth system has considerably improved within the past decades, gaps or large

uncertainties in the representation of some specific processes still exist. Consequently,

there is a lot of room for improvement. In the following, we will focus on climate–

hydrology interactions and provide two major perspectives for their modelling within the

framework of Earth system models (ESMs). Here, only those interactions that are relevant

on scales utilized in the current or forthcoming global and regional climate modelling

exercises are considered.

Harding et al. (2011) give a general overview of current knowledge of the terrestrial

global water cycle. Here, they consider aspects of state-of-the-art global hydrology mod-

elling, past and projected future hydrological change in means and extremes, as well as

uncertainties in our understanding of the current global water cycle and how it will develop

in the future. But in those aspects, the feedback of terrestrial hydrology to the climate is

mostly not considered. In order to investigate the interactions between climate and

hydrology and how they may behave under climate change conditions, a coupled frame-

work is necessary where both components are adequately represented. Strong interactions

between the climate, hydrology and land use occur (Claussen 2004; Falloon and Betts

2010). The snow–climate feedback is well known and described (e.g., Cess et al. 1991).

However, feedbacks between CO2, vegetation, soil moisture, groundwater recharge and

climate are less well understood and are not well described in most climate and hydro-

logical models.

Soil moisture controls the partitioning of the available energy into latent and sensible

heat flux and conditions the amount of surface runoff. By controlling evapotranspiration, it

is linking the energy, water and carbon fluxes (Koster et al. 2004; Dirmeyer et al. 2006;

Seneviratne and Stöckli 2008). Seneviratne et al. (2006) stated that a northward shift of

climatic regimes in Europe due to climate change will result in a new transitional climate

zone between dry and wet climates with strong land–atmosphere coupling in central and

eastern Europe. They specifically highlight the importance of soil-moisture–temperature

feedbacks (in addition to soil-moisture–precipitation feedbacks) for future climate changes

over this region. A comprehensive review of soil moisture feedbacks is given by

Seneviratne et al. (2010). Their general principles are known (e.g., Koster et al. 2004,

2006; Teuling et al. 2009), even though there is still room for model improvement.

Soil moisture shows a high variability from daily to interannual timescales. An

appropriate knowledge of soil moisture conditions is important for the initialization and

quality of seasonal to yearly climate predictions. Fischer et al. (2007) indicated that the

record-breaking European heat wave in 2003 was enhanced by the large soil moisture

anomalies that were caused by a large precipitation deficit together with early vegetation

green-up in the months preceding the extreme summer event. Loew et al. (2009) showed

that these soil moisture anomalies were observable using remote sensing sensors. Conse-

quently, the impact of soil moisture memory on the climate is an important scientific topic

(e.g., Seneviratne et al. 2006) and is addressed specifically in the BMBF project MiKlip

PastLand where its value for seasonal to decadal prediction is investigated.

From the hydrological perspective, two major challenges for modelling climate–

hydrology interactions have currently arisen where we will shed some light on in the

following. On a more short-term perspective, these comprise anthropogenic land use and

especially irrigation. The coupling of hydrology to carbon cycle and vegetation is

important on the long-term perspective, specifically the dynamics of permafrost and

wetlands.
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While the process of anthropogenic emissions due to fossil fuel burning is fairly well

established in state-of-the-art climate model simulations, up to now, the possible impact of

land-use changes on the climate is mostly neglected in long-term climate simulation. Dale

(1997) reviewed the literature dealing with the relationship between land-use change and

climate change and concluded that in recent centuries, land-use change has had much

greater effects on ecological variables than has climate change. Pielke et al. (2002) doc-

umented that land-use change impacts regional and global climate through the surface-

energy budget, as well as through the carbon cycle, whereat the surface-energy budget

effects may be more important than the carbon-cycle effects. While this is valid for the past

climate, results of Cox et al. (2000) indicated that carbon-cycle feedbacks could signifi-

cantly accelerate climate change over the twenty-first century and pointed out the necessity

to consider the potentially large direct human influences on terrestrial carbon uptake

through changes in land cover and land management. Changes in the land surface (veg-

etation, soils, water) resulting from human activities can affect the regional climate through

shifts in radiation, cloudiness and surface temperature. Changes in vegetation cover affect

surface energy and water balances at the regional scale, so that the impact of land-use

change may be very significant for the regional climate over time periods of decades or

longer (Denman et al. 2007). The effects of a specific land-use change on the climate

depend on the surrounding environment and climate characteristics as a regional modelling

study of Gao et al. (2003) over China has shown.

An extreme anthropogenic impact on the local hydrology is the practice of irrigation.

Over 18 % of total cultivated land is irrigated (Fischer et al. 2007); additionally, much

nonagricultural land has been substantially modified by human activities. Conversion of

land to agriculture not only impacts the local evaporation and hydrological response, but

may also influence the distribution of rainfall and evaporative demand in the surrounding

landscape as well as have remote impacts on the large-scale circulation. The latter will be

considered in more detail in Sect. 2. Agriculture and urban development have increased

substantially in the past century and will continue to develop in the twenty-first century.

Therefore, any assessment of the world’s water resources must take into account both the

direct and indirect influences of land-use changes and the exploitation of the riverine

system.

Earth’s climate is determined to a large extent by greenhouse gases (GHG) in the

atmosphere, which influence the radiation budget and thus the energy balance of the planet.

Thus, fluxes that may change the atmospheric GHG content are of great importance in

climate change research. Apart from water vapour and anthropogenic GHG, various

components of the global carbon cycle, especially CO2 and CH4, play a significant role. In

recent years, estimates for the amount of carbon stored in soils have attracted more and

more attention, and here especially the consideration of the vast permafrost regions

increased numbers drastically (Tarnocai et al. 2009; Zimov et al. 2006; Schuur et al. 2008;

McGuire et al. 2009). Permafrost, being defined as ground that is at or below zero degrees

Celsius for more than two consecutive years, affects roughly one-quarter of the northern

hemisphere (Brown et al. 1997). It is believed to store between 1,400 and 1,800 Pg of C in

the upper few metres of the soil (Schuur et al. 2008), which would be twice the amount of

the atmosphere’s content. The high northern latitudes are one of the critical regions of

anthropogenic climate change, where the observed warming is clearly above average due

to the so-called Arctic Amplification (Solomon et al. 2007; ACIA 2005). Climate model

simulations project this trend to continue (Serreze and Barry 2011). The combination of the

high C stocks in subarctic and arctic soils with the pronounced warming in the affected

regions could thus lead to a positive feedback through the release of formerly trapped,
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‘deep-frozen’ C into the atmosphere, when near-surface permafrost thaws. For the thawed

soils and their biogeochemistry, it is decisive whether dry or wet conditions predominate:

Aerobic decomposition is relatively fast and leads to the release of CO2, while anaerobic

decomposition is much slower and leads to the release of CH4 as the main product of the

combustion of organic soil material. Therefore, not only the soil’s temperature but also its

moisture status and specifically the presence of wetlands are important for the assessment

of the biogeochemical response to climatic conditions and thus should be represented in

climate or ESMs in a realistic and process-based manner. Thus, the adequate representation

of permafrost hydrology is a necessary and challenging task in climate modelling, which

will be considered in more detail in Sect. 3.

2 Impact of Anthropogenic Land Use, Especially Irrigation, on Climate

Several studies (e.g., Gordon et al. 2005; Piao et al. 2007; Rost et al. 2008a, b) demon-

strated that land cover conversions and water withdrawals have already noticeably changed

the partitioning of terrestrial precipitation into evapotranspiration and runoff. Gerten

(2013) estimated that these direct human impacts have increased the global river discharge

by about 5 %, which is caused by the associated reduction in evapotranspiration.

Regionally, the implications of anthropogenic land use may be much larger. Partially, even

opposite effects (increased evapotranspiration, reduced runoff) may be induced by land-use

change (Destouni et al. 2013) or irrigation (Gerten et al. 2008).

Observations and model studies in tropical forests have shown effects of changing

surface energy and water balance on the state of the atmosphere. For example, Marengo

and Nobre (2001) found that the removal of vegetation led to decreases in precipitation,

evapotranspiration and moisture convergence in central and northern Amazonia. Oyama

and Nobre (2004) showed that the removal of vegetation in north-east Brazil would sub-

stantially decrease precipitation. Other model studies indicated that increased boreal forest

reduces the effects of snow albedo and causes regional warming (Denman et al. 2007).

Related to the latter, e.g., Göttel et al. (2008) investigated the influence of changed veg-

etation fields on the projected regional climate over the Barents Sea region in an off-line

coupling experiment with the regional climate model (RCM) REMO and the dynamic

vegetation model LPJ-GUESS (Sitch et al. 2003). They projected a forest ratio increase

and a shift of the tree line to higher altitudes and latitudes caused by a warmer climate with

longer snow-free periods and growing season lengths. The feedback effects to the climate

of these changes were one order of magnitude lower than the effects of the greenhouse gas

forcing. A further warming in spring could be attributed to the snow-albedo effect, while a

cooling in summer was dedicated to changes in roughness length, enhanced transpiration

and changes in surface albedo. A more extreme study was conducted by Bathiany et al.

(2010) who investigated the effect of large-scale changes in forest cover on global climate.

They completely removed tropical forest within the ESM of the Max Planck Institute for

Meteorology (MPI-ESM), which resulted in a simulated 0.4 K warming due to an increase

in CO2 concentrations and a decrease in tropical evapotranspiration. A similar experiment

for the high northern latitudes led to a global cooling of 0.25 K in case of complete

deforestation and an equally large warming in case of afforestation. In both cases, the

involved albedo changes (snow-masking effect) are the main drivers of the temperature

change.

Land-use changes such as deforestation may have a substantial climate impact in areas

located close to strong climatic gradients, such as tropical regions as well as arid and
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semiarid regions. In this respect, Africa is one of the ‘hot spot’ areas. Taylor et al. (2002)

stated that the climatic impacts of land-use change in the Sahel region are likely to increase

rapidly in the coming years. So far, the effect of deforestation and reduced vegetation cover

associated with land-use change in Africa has mainly been studied with coarse-grid

(300 km resolution or coarser) global climate models in the form of time slice experiments

and idealized forcing (see, e.g., Feddema et al. 2005). With these coarse resolution models,

effects on the local and regional climate can usually not be resolved. For this purpose,

RCMs are an adequate tool, such as done by Paeth et al. (2009) for West Africa who

conducted long-term transient climate change experiments with the RCM REMO at 50 km

resolution over West Africa where they forced their simulations with increasing green-

house gas concentrations and land-use changes until 2050. Their results indicate that

significant future changes in the near-surface climate may be caused by land-use changes.

A specific form of land use is irrigation, which can considerably affect the regional

climate (Boucher et al. 2004; Lobell et al. 2009) and whose feedbacks onto rainfall

(ter Maat et al. 2006) may become especially important where irrigation coincides with

areas of global hot spots for land surface–atmosphere feedbacks. Koster et al. (2004)

identified the Sahel zone as one of the hot spot areas for the feedback of surface soil

wetness to subsequent rainfall. In this semiarid region, irrigation is not a major agricultural

practice, but an increase in dryland agriculture is possible which is sensitive to rainfall

totals. A study of Taylor et al. (2002) showed that future likely changes in land cover could

result in a reduction of nearly 10 % in rainfall. Another hot spot of soil moisture–pre-

cipitation coupling is located over India (Koster et al. 2004). The Indian subcontinent is

one of the most intensely irrigated regions (Fig. 1a) in the world (Sacks et al. 2009), and

many studies have shown the role of irrigation in modifying the local climate through

feedback mechanisms (e.g., De Rosnay et al. 2003; Douglas et al. 2006, 2009; Lee et al.

2009). Effects of irrigation, embedded in South Asian Summer Monsoon (SASM), affect

22 % of world’s population and hence play a crucial role in modifying the water resources,

agriculture, economics and human mortality of the region. Therefore, this topic is covered

separately in the following Sect. 2.1.

2.1 Impact of Irrigation on the South Asian Summer Monsoon (SASM)

As mentioned above, the effects of irrigation on local climate through feedback mecha-

nisms are well known from earlier studies. Saeed et al. (2011) found that REMO is able to

reproduce the general characteristics of the SASM; however, over the land areas of north-

west India and Pakistan, a systematic warm temperature bias of more than 5 �C can be

noticed (Fig. 2a, c). The too enhanced simulation of the heat low (Fig. 2) is a common

systematic error that is present in many regional climate models applied over South Asia

(Lucas-Picher et al. 2011). For more than a decade, this heat low is used as an important

predictor for SASM rainfall (Singh et al. 1995). The major part of this heat low region falls

inside the densely irrigated Indus basin (Fig. 1b), which is the largest contiguous irrigation

network in the world, and its surface water is heavily manipulated by building large dams,

link canals, watercourses, etc., hence resulting in modification of the amount of water in

the soil (Khan et al. 2008). It is estimated that the Indus River drains only one-eighth of the

*400 km3 water that annually falls on the basin in the form of rain and snow, with the

remainder used mostly for irrigation and returned to the atmosphere by evapotranspiration

(ET) (Karim and Veizer 2002).

Saeed et al. (2009) applied the regional climate model REMO (Jacob et al. 2007) over

South Asia at a resolution of � degree (*55 km) domain, forced with lateral boundary
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conditions obtained from the European Centre for Medium Range Weather Forecasts

reanalysis (ERA40) (Uppala et al. 2005). In order to take into account the effect of

irrigation, a map of areas equipped for irrigation (Fig. 1a; Siebert et al. 2005) was used in

the simulation and the results for four SASM summer months June, July, August and

September (JJAS) were presented. For the potentially irrigated fraction of a grid box, the

Fig. 1 a Fraction of area equipped for irrigation in South Asia based on the reference year 2000 (Siebert
et al. 2005). b Locations of Indus and Ganges catchments at 0.5� resolution
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soil wetness was increased to a critical value in each time step, so that potential ET can

occur. In this way, it is assumed that irrigation is conducted to fulfil optimal conditions for

the vegetation/crops, allowing them to transpire at a potential rate. Note that the main

results will not change if water for irrigation is limited by available water from the rivers

(Saeed et al. 2012).

In the REMO simulation without irrigation, the overestimation of the heat low (too high

temperature, too low pressure; Fig. 2) resulted in increased differential heating between

ocean and land, and therefore the overestimation of winds entering into the plains of the

Indian subcontinent from the Arabian Sea. This causes a situation unfavourable for

westward propagating currents from Bay of Bengal to intrude deep into western India and

Pakistan. Therefore, less moisture is advected causing an underestimation of precipitation

over this area as well. When irrigation is accounted for, a more realistic behaviour of the

simulated climate is yielded. Figures 3 and 4 compare the changes in the REMO simu-

lation with irrigation (Fig. 3b, d) to the reference simulation without irrigation (Fig. 3a, c).

An improvement of simulated temperature and MSLP can be seen over the whole region,

but statistically significant and most pronounced changes are present over Indus, Ganges

(Fig. 1b) and southern India (Fig. 4a, b). For these regions, the standard REMO version

simulated the largest systematic biases (Fig. 2); hence, the irrigation led to a better

Fig. 2 Simulated (upper panels) and observed (lower panels) summer climatologies (JJAS) for the period
1961–2000: 2 m temperature [�C] (left, REMO and data of Willmott and Matsuura 2009) and mean sea-
level pressure [hPa] (right, REMO and ERA40). The white circles indicate the heat low region
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representation of these variables. Figure 4c indicates a significant increase in ET over the

whole subcontinent region, again with largest increase over Indus and southern India.

The reduced differential heating of the land relative to the ocean leads to a reduction in

the too strong westerly winds from the Arabian Sea into the Indian plains (Fig. 4d). This

creates conditions favourable for monsoon depressions originating from the Bay of Bengal

to intrude deep into the land up to western India and Pakistan. Saeed et al. (2009) could

illustrate this behaviour for the development and movement of several monsoon depres-

sions that brought rainfall to the western part of the Indian peninsula and that have been

Fig. 3 Simulated REMO summer climatologies (JJAS) for the period 1989–1992: 2 m temperature [�C],
a reference, b REMO with irrigation; and mean sea-level pressure [hPa], c reference, d REMO with
irrigation
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discussed in earlier published literature. Figure 5 shows one of these cases that occurred

from 19 to 21 September 1991 (Mahajan et al. 1995). All these cases have in common that,

in the REMO simulation without irrigation, a depression forms in the Bay of Bengal, but it

stops at the east coast of India and dissolves. Only in the simulation with irrigation, the

depression is able to travel deep into land towards western India and Pakistan and to

transport moisture and precipitation into these regions, such as it has been observed.

Together with the increased local recycling of moisture due to the increased ET, this leads

to an increase in precipitation over central/western India and Pakistan, which reduces the

dry precipitation bias in this area.

For the same two model set-ups of REMO, i.e. with and without the representation of

irrigation, climate change simulations have been conducted over the South Asian model

domain following the A1B emission scenario (Gerten et al. 2011). Figure 6 shows that for

the projected 2-m temperature changes (2085–2099 minus 1985–1999), REMO without

Fig. 4 Differences in several variables from the REMO simulations with and without irrigation averaged
for the summer (JJAS) 1989–1992: a mean sea-level pressure (hPa), b 2 m temperature (�C),
c evapotranspiration (mm/day) and d 850 hPa winds. The shaded blue areas indicate significant differences
at the 90 % level from a two-tailed t test
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irrigation projects an increase of more than 4 �C in general and more than 6 �C over the

central Indian region. In contrast, the REMO simulation with irrigation projects much less

warming, with a temperature increase ranging from 2 to 4 �C. This highlights the role of

irrigation in attenuating the climate change signal over the South Asian region. Thus, it can

be concluded that the irrigation performed over the twentieth century may have already

masked recent climate change signals over this region.

2.2 Conclusions and Perspectives for the Impact of Irrigation on Climate

The results presented in Sect. 2.1 signify the role of irrigation in effecting the local

temperature, which in turn effects large-scale circulations and precipitation of the SASM.

Fig. 5 Simulated development and movement of a monsoon depression that has been observed within the
period from 18 to 22 September 1991: The panels show the MSLP (mean sea level pressure) contour lines at
999 hPa around the centre of the depression as simulated by REMO without (left) and with (right) irrigation

Fig. 6 Projected 2 m temperature changes (2085–2099 minus 1985–1999) in �C for REMO without
(left panel) and with irrigation (right panel)
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They also show the potential of irrigation for mitigating climate change effects in the

SASM region. The present neglect of irrigation was the main cause of the systematic

REMO model error over the heat low region in NW India and Pakistan that led to a too

enhanced formation (too warm, too deep) of this heat low. The representation of irrigation

has caused the removal of this bias. Similar biases in other RCMs (Lucas-Picher et al.

2011) suggest that they are also related to the missing irrigation process. Consequently, the

representation of water used for irrigation in climate models is necessary for the realistic

simulation of SASM circulation and associated rainfall. This, together with taking into

account land-use change, has also been emphasized by Gordon et al. (2005) for the global

scale.

The impact of resolution on the irrigation effects upon the SASM has not been explicitly

considered up to now. In a recent study of Tuinenburg et al. (2013), consistent results to

those presented in Sect. 2.1 were found across an ensemble of three RCMs and one GCM.

Here, the application of irrigation on a large scale led to changes in the large-scale cir-

culation, in which moisture shifted away from the Ganges plain towards the Indus basin

and Pakistan. This has confirmed the results found by Puma and Cook (2010) and Asharaf

et al. (2012). But generally, a higher resolution leads to an improved simulation of the

SASM. Kumar et al. (2013) summarized that most of the GCM studies focusing on the

Indian monsoon region concluded that GCMs have difficulties in simulating the mean

monsoon climate over India. Due to their coarse horizontal resolution, GCMs have limi-

tations in simulating the complex orographic precipitation over India. Also, several RCM

studies have been carried out to simulate the summer monsoon over South Asia, whereat

all have reported an improvement in the simulation of SASM spatial and temporal dis-

tribution compared to coarser global models (Kumar et al. 2013).

Eighty percentage of Indus basin river flows are attributed to the melt of snow and

glacier. Considering the large impact of irrigation on SASM behaviour, one can assume

that under global warming the changes in the timings of water inflows would shift towards

earlier months, hence causing changes in cropping patterns and subsequently irrigation. As

irrigation is impacting the climate change signal over the SASM, changes in irrigation

patterns over the Indus basin will also affect the SASM circulation and associated rainfall

under climate change. Therefore, not only irrigation itself but also changes in irrigation

patterns need to be regarded for climate change studies over the SASM region.

While irrigation seems to have a positive mitigating impact on the SASM climate, the

picture looks different for areas where the human consumption of water leads to drying and

shrinking of surface waters (Asokan et al. 2010). Here, the associated decrease in evap-

oration from these surface waters counteracts the direct irrigation effect of increasing

evapotranspiration in irrigated land areas. A very prominent example is the Aral Sea,

which was the fourth largest lake on the globe until 1960, with a surface area of about

68,000 km2. But, large irrigation activities in many parts of Middle Asia were mainly

responsible for the catastrophic desiccation of the Aral Sea within the last five decades (see

Breckle and Geldyeva (2012) and references therein). How irrigation has affected the

current climate or may affect the future climate under global warming conditions in other

regions is an important subject for future studies. In this respect, a first ESM study was

provided by Guimberteau et al. (2012). Irrigation also causes groundwater depletion over

many areas of the globe (Döll et al. 2012). How this may affect climate and water resources

is a prospect for future studies as the current knowledge of the impacts of changing

groundwater on climate is limited.
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3 Permafrost

Permafrost and wetlands are two focal points in the coupling of hydrology to biogeo-

chemical processes under climate change conditions. A large part (*24 %) of the northern

hemisphere terrestrial land surface is underlain by permafrost (French 1990) that is mainly

situated in high latitudes (Fig. 7). Here, climate warming is more pronounced than else-

where and is very likely to continue to do in the future according to Solomon et al. (2007).

Permafrost soils build a globally relevant carbon reservoir as they store large amounts of

deep-frozen organic material with high carbon contents. If permafrost thaws under global

warming conditions, the stored carbon can be decomposed and released to the atmosphere

as additional greenhouse gas, which will lead to a positive feedback. Consequently, rel-

evant scientific questions are the following: How fast, how deep and to what temperature

are permafrost soils going to thaw in the future?

Fig. 7 Distribution of permafrost areas in the Arctic according to the International Permafrost Association
(1998)
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In Sect. 3.1, relevant hydrological processes are described that occur in permafrost areas

and that should preferably represented in models simulating interactions of permafrost

hydrology with vegetation, climate and the carbon cycle. The current state of the repre-

sentation of permafrost processes in ESMs is tackled in Sect. 3.2, while Sect. 3.3 deals with

the specific topic of wetlands.

3.1 Basic Hydrological Processes in Permafrost Areas

Apart from climatic cold conditions, the occurrence of permafrost is largely controlled by

physiographic features such as aspect, slope and elevation. Other factors such as soil types,

soil moisture, vegetation cover and disturbances (e.g., wildfire) can also influence the

distribution of permafrost (Haugen et al. 1982; Yoshikawa et al. 2002). The most basic

process in permafrost areas is the seasonal melting and freezing of soil water in the

presence of continuously frozen ground below a certain depth. The depth to which the soil

is thawed is called the active layer. Regions that are affected by permafrost or extensive

seasonal ground freezing show a specific behaviour of important hydrological variables:

(1) Soil moisture is often rather high in near-surface layers, despite low precipitation rates

in many regions; (2) river discharge observations display very low wintertime values; and

(3) surface runoff shows a steep spring peak after snowmelt that can deliver a substantial

part of the annual total runoff (Swenson et al. 2012). Several reasons are responsible for

these features, which will be described below.

Firstly, the phase change exerts a drop in liquid water content, and the freezing front can

be seen as a water sink within the soil. This leads to the development of a gradient in liquid

water content and thus induces water movement towards the freezing front. This process is

called cryosuction. It leads to unique characteristics of soil moisture in regions with

permafrost and extensive seasonal ground freezing, namely to the increase in total soil

moisture in the upper layers as well as to the development of large ice bodies in the ground

(see also description of ice wedges below).

Secondly, the permeability for liquid water flow is reduced in frozen soils. This might

be the main and most obvious effect frozen soil exerts on hydrology (Niu and Yang 2006).

According to Staehli et al. (1999), there are two possible pathways for the flow of liquid

water when soil temperature is below 0 �C. Transport channels for slow water flows are

provided by thin films of adsorptive and capillary water, which are still existing in liquid

phase and whose amount depends mainly on soil texture type. Alternatively, fast water

movement is possible through air-filled macropores. Soils contain such pores through

structural variations like cracks, holes and channels, e.g., from dead roots and soil

inhabitants like worms.

Nearly impermeable soil layers can develop due to the freezing of the soil during winter

and spring seasons (Koren et al. 1999) as ice bodies in the ground impede liquid water

movement through blocking of the pore space (Swenson et al. 2012). Moreover, a strongly

frozen soil will contain only very limited amounts of unfrozen water so that the ability of

the subsurface material to conduct liquid water, i.e. the hydraulic conductivity, is

decreased, yet not totally set to zero.

Frozen ground and snow cover also influence rainfall–runoff partitioning, the timing of

spring runoff and the amount of soil moisture that subsequently is available for evapo-

transpiration in spring and summer (Koren et al. 1999). For the infiltration of surface water

into the soil, the above-explained principles lead to the same general behaviour as for the

hydraulic conductivity, as the infiltration process is lastly determined by the soil’s ability to

conduct water away from the surface. Nevertheless, infiltration can vary even more than
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the conductivity. When considering two areas with the same climatic conditions, several

other locally variable factors influence infiltration:

• Soil texture.

• Orography and slope.

• Snow: thicker snow cover leads to enhanced insulation and thus weaker freezing of the

soil, and vice versa.

• Vegetation: similar effects as snow, via weaker or stronger insulating properties of the

vegetation cover, and via its roots’ effects on the soil structure.

These influencing factors can lead to patterned areas with surface-water-impeding zones

in some parts, and with permeable zones, where conditions for infiltration are much more

favourable, in others. In consequence, the impact of frozen soil on infiltration and on

hydraulic conductivity is strongly scale dependent (Niu and Yang 2006; Koren et al. 1999).

Thus, it is important to notice that the falling below the 0 �C threshold does not lead to a

complete blocking of infiltration and percolation. These characteristics complicate the

implementation of cold regions’ soil processes in land surface schemes for climate and

Earth system modelling.

The response of the soil to freezing leads to specific variations in the annual cycle of soil

hydrology. The snowmelt, which is usually constrained to a very short period of sometimes

less than two weeks, delivers a large water input to the land surface, which at this time of

the year is still frozen. Infiltration capacity is thus low, and much of the snowmelt water is

channelled into surface runoff. The thawing of the active layer begins immediately upon

the completion of snowmelt (Boike et al. 1998), dependent upon a number of factors

including soil material, duration of snow cover, soil moisture and ice content, and con-

vection of heat by groundwater (Woo 1986). The beginning of the thawing coincides with

high surface moisture values, and ice melting in near-surface layers occurs on the top of

still frozen, and thus less permeable, deeper layers. Consequently, subsurface water flows

are weak, and high soil moisture values develop within the still thin thawed upper layers.

Refreezing of infiltrated snowmelt water also contributes to this (Swenson et al. 2012).

Over the course of the warm summer season, the thawing and deepening of the active layer

increase the water-holding capacity of the soil, resulting in a decreasing surface water

contribution during precipitation events and a steadily increasing baseflow contribution

(Hinzman and Kane 1991). The latter is a lateral slow subsurface runoff that can develop as

the permafrost table forms a barrier to the deeper soil, where again water cannot easily

percolate. Due to the enlarged water storage and increased baseflow, upper soil layers can

also become drier in this part of the year. The autumn precipitation often coincides with the

start of the freezing season; thus, again high surface runoff rates are produced, yet much

lower than in spring. During winter, the decreased hydraulic conductivity in frozen soils

leads to the observed very low winter baseflow. Permafrost degradation due to a warming

trend will likely lead to a decreasing seasonal variability of water flows (Frampton et al.

2011), whereat results of Frampton et al. (2013) show that total runoff will first increase

and then decrease as the permafrost degradation progresses further to total thaw.

Apart from the above-mentioned effects of the soil processes on hydrological quantities,

perennially frozen ground shows some unique features that are examples for processes that

act on both long and short timescales and that are often highly nonlinear. Massive ice

wedges are one of these features, which occur in permafrost-dominated landscapes (French

1990). Water enters the soils through frost cracks and, through volume expansion during

freeze-up, further increases the cavities in the ground. Cryosuction leads to movement of

unfrozen, supercooled water towards the freezing front, and, over time, the ice body can
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grow to reach several metres in height and thickness. This process happens very slow and

lasts many years to decades (French 1990). Ice wedges (and other ice bodies) are the reason

for the often oversaturated ice contents in permafrost soils and can be seen as long-term

storages of both energy and water in the climate system.

However, the presence of ice wedges may also lead to abrupt changes that occur on the

landscape scale when large ice bodies in the soil, after a period of relatively slow and

constant warming, collapse in sudden events, e.g., due to intense rain events that bring high

heat inputs into the ground. This might lead to considerable change in the landscape in the

form of severe soil subsidence, opening of channels and coastal erosion. Belonging to these

phenomena are the so-called thermokarst lakes that develop when formerly stable per-

mafrost thaws at the top due to perturbation (e.g., a fire event), and soil subsidence and

melting ground ice lead to the formation of a lake (see, e.g., French 2007). This describes a

particular process of wetland formation (see also Sect. 3.3). On the other hand, these

thermokarst lakes may also drain by catastrophic outflow following lake tapping due to the

expansion of adjacent basins or truncation by coastal retreat (see, e.g., Mackay 1988;

Walker 1978; Romanovskii et al. 2000). Cycles of slow build-up of ice masses in the

ground and relatively short-term collapses in conjunction with the implied morphological

changes have happened ever since. Yet, since the atmosphere is warming, and since the

atmospheric moisture transport from mid- to high northern latitudes as well as precipitation

and circulation patterns is believed to change with anthropogenic climate change, these

events might become more abundant in the future. This again has implications for the

carbon cycle, as erosion events always bring formerly bound carbon back into the cycle.

3.2 Representation of Permafrost Processes in ESMs

The climate modelling community has a long history in systematic model intercomparison

through the climate model intercomparison projects (CMIPs; Meehl et al. 2000). Results

from CMIPs provide a good overview of the respective state of ESM model accuracy and

performance. Koven et al. (2012) analysed the performance of ESMs from the most recent

CMIP5 exercise over permafrost areas. They found that the CMIP5 models have a wide

range of behaviours under the current climate, with many failing to agree with fundamental

aspects of the observed soil thermal regime at high latitudes. This is partially related to the

fact that most of these models do not include permafrost-specific processes, not even the

most basic process of freezing and melting of soil water. Moreover, the land surface

parameterizations used in GCMs usually do not adequately resolve the soil conditions

(Walsh et al. 2005), which often rely on either point measurements or information derived

from satellite data.

Although a good understanding of many permafrost-related hydrological processes

exists at the point and hillslope scales, this knowledge had not been adequately or sys-

tematically incorporated even into process-based mesoscale hydrological models

(Vörösmarty et al. 1993) for a long time. Models on point/hillslope scales were generally

constrained to one-dimensional domains of vertical extent only (Riseborough et al. 2008),

which usually could not be upscaled to larger scales due the complexity of physical

interactions in permafrost regions. Also, Bolton (2006) has identified a lack of process-

based hydrology models that adequately simulate the soil moisture dynamics at the

watershed scale and also include a realistic land–atmosphere exchange in permafrost-

dominated regions. But, such models are required to bridge the gap between the point/

hillslope scale understanding and the scale of RCMs and GCMs by capturing the hydro-

logical behaviour and variation in individual watersheds. Recent developments started to
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fill this gap (see, e.g., Schramm et al. 2007; Bense et al. 2009; Frampton et al. 2011),

thereby responding to the need for an increased realism of numerical permafrost models

highlighted by Riseborough et al. (2008) and Woo et al. (2008).

As the development of mesoscale permafrost-related hydrology models has only gained

momentum within the last years, it is not surprising that the situation is comparable or even

worse for climate models. Until recently, the representation of frozen ground physics, as

well as of above-mentioned characteristics (Sect. 3.1) like reduced permeability of frozen

soil and impeded infiltration of spring melt water, was, if at all, represented in a rather

simplified way. An intercomparison study of different land surface schemes especially with

respect to cold regions’ climate and hydrology revealed large differences between the

models, even in case the implementation of frozen ground physics was constructed in a

similar way (Luo et al. 2003). Due to missing processes and related deficiencies of their

land surface schemes, climate models often show substantial biases in hydrological vari-

ables over high northern latitudes (Luo et al. 2003; Swenson et al. 2012). Therefore, large

efforts are ongoing to extend ESMs in this respect, in order to improve simulated soil

moisture profiles and associated ice contents, river discharge, surface and subsurface

runoff. The ESM improvement over permafrost areas is, e.g., one of the research objectives

of the European Union Project PAGE21 (http://www.page21.org).

Given the substantial range in the level of complexity and advancement of permafrost-

related processes implemented in the ESMs, the large variety of results from the CMIP5

models is not surprising (see Fig. 8; Koven et al. 2012). The most comprehensive ESM land

surface schemes include freezing and melting of soil water, the dependency of soil thermal

properties on water and ice content, multilayer snow schemes with snow on the top of the soil

instead of blending upper soil layers and snow and the representation of soil organic matter

(e.g., the Community Land Model (CLM) of Lawrence et al. 2011). In contrast, many models

incorporate only few of these processes. Soil hydrology is assessed using multilayer schemes

that compute vertical flows using Richards law (Richards 1931) or some of its derivations

(e.g., Oleson et al. 2004), thereby replacing more and more the formerly used bucket schemes.

The reduced permeability can thus be considered via coupling of soil thermodynamics and

hydrology, i.e. hydraulic properties are functions of liquid soil water content only, instead of

the total water content. This is refined in some models through the implementation of a

freezing point depression. Reduction in infiltration at the surface is partially assessed, ranging

from very simple approaches like total blocking soils in case of freezing to the consideration

of subgrid scale variability, based on power law relationships between infiltration and the

degree of soil freezing. Examples for global ESM land surface schemes that are in various

states of ongoing development are CLASS (Verseghy 1991), ORCHIDEE (Gouttevin et al.

2012), JSBACH (Ekici et al. 2013) and JULES (Best et al. 2011). The latter three also

participate in the Page21 (http://www.page21.eu) model improvement activities. One of the

planned Page21 improvements is the development of a global scheme for the formation and

drainage of thermokarst lakes that has not been implemented in any ESM up to now.

It is important to note that also for models that represent the same processes the results

may diverge markedly. This can be attributed to differences in parameterization schemes

and the choice of parameters, e.g., soil column depth and thickness of its layers, as well as

to the choice of input data, e.g., soil porosity or heat capacity of the soil’s dry material. In

addition, initial conditions play a role due to the long spin-up times of model soils. These

may comprise several years for liquid and frozen soil water content, several years

(de Ridder 2008) up to two decades for soil temperature and several centuries to millennia

for soil carbon storages (Wutzler and Reichstein 2007; Hashimoto et al. 2011). In this

respect, Christensen (1999) pointed out the importance of an adequate initialization of soil
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temperature and soil moisture in climate modelling experiments. An inadequate initiali-

zation of these fields may lead to transient signals that have to be suppressed as much as

possible in modern numerical climate experiments as climate sensitivity experiments

operate with quite small signals.

3.3 Wetlands

Thawing permafrost will also contribute to the formation (French 2007) or disappearance

(Smith et al. 2005) of wetlands that currently cover about 6–8 % of the land surface. Note

that available global wetland observations span a range of potential wetland coverages,

partially due to their different wetland definitions which they are based on (see Stacke and

Hagemann 2012). Despite this, they agree on many large-scale patterns that can be seen in

Fig. 9 showing the ensemble mean coverage of wetlands based on four different data sets.

Due to their function as water storage, the majority of research studies found that wetlands

regulate river discharge, mitigate flood events and show increased evapotranspiration

compared to other land cover types (Bullock and Acreman 2003). However, some

exceptions to this general behaviour have been reported (van der Velde et al. 2013) where

evapotranspiration is less efficient for wetlands than for other land cover types. The

extension of wetlands determines the area where anoxic decomposition instead of oxic

decomposition may take place. While CO2 is released under oxic conditions, the anoxic

decomposition yields methane that is a far more active greenhouse gas than CO2. Here, the

water level is an important factor for the wetland’s biogeochemistry which results in

carbon sequestration or decomposition (e.g., O’Connor et al. 2010, and references therein).

Generally, an increase in wetland area will lead to an enhanced methane production. On

the other hand, a decrease will reduce moisture fluxes to the atmosphere and may lead to a

reduction in precipitation. Thus, their future development is of major interest in climate

change studies.

While most studies identify wetlands as net carbon sinks for today’s climate conditions

(Bohn et al. 2007; Gorham 1991; Friborg et al. 2003), a number of studies concluded that

some wetlands might turn into carbon sources in a warmer climate (St-Hilaire et al. 2010;

Gorham 1991) due to higher productivity of methane-releasing microbes. Several recent

Fig. 8 Simulated total permafrost area for historical twentieth-century climate and future climate following
the RCP8.5 scenario for various CMIP5 models. Figure is taken from Koven et al. (2012)
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studies suspected wetlands to play an important role during the periods of climate change

(e.g., Ringeval et al. 2011; Gedney et al. 2004; Levin et al. 2000). However, the repre-

sentation of the wetland’s spatial extent and its temporal variations is still a weak point in

today’s ESMs and needs to be improved by a better simulation of their hydrological cycle

(O’Connor et al. 2010; Ringeval et al. 2010).

However, even without consideration of the carbon cycle, the wetland hydrology in

itself is an important key factor in the climate system. Wetlands are often related to regions

with open surface water and saturated soil. Such regions have to be considered in ESMs

because of their potential feedbacks to the atmosphere (Coe and Bonan 1997). The effect

of open water surfaces on the energy and water balance was investigated by several

modelling studies, e.g., Bonan (1995) and Mishra et al. (2010), who reported a significant

impact of wetlands on the local climate. Generally, they found a cooling of the surface in

wetland-dominated regions due to increased evapotranspiration, as well as an increase in

the latent heat flux and a decrease in the sensible heat flux. Eventually, this could result in

increased precipitation rates as shown by Coe and Bonan (1997) and Krinner et al. (2012).

Furthermore, wetlands interact in several ways with the hydrological cycle of their sur-

rounding area. Most studies report wetlands to regulate river flow, mitigate flood events

and recharge groundwater (Bullock and Acreman 2003). These observations are consistent

with a modelling study by Mishra et al. (2010) who found decreased surface runoff in

wetland-dominated regions. However, the range of possible hydrological impacts of

wetlands is rather large and depends strongly on additional conditions such as topography

and soil properties. This is emphasized by several studies that describe different wetland

impacts such as an increased effect on flood peaks and no or a discharging impact on

groundwater (Bullock and Acreman 2003). All of these processes are of great interest for

impact studies that investigate how climate change might affect the water storage capac-

ities in a region or the characteristics of river flooding.

The modelling of the hydrological cycle in wetlands and their extent dynamics has

motivated a large number of modelling studies. Generally, most models follow one of two

Fig. 9 Observed wetland fraction at 0.5� resolution obtained from the ensemble mean of four global
wetland data sets (see Stacke and Hagemann 2012)
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main approaches for the hydrological representation of wetlands. One approach is con-

cerned with the redistribution of soil moisture in the model grid cell. A widely used

example is TOPMODEL (Beven and Kirkby 1979). In this approach a topographical index

is computed that depends on the drainage of a given area routed through a point and its

slope. This index is then applied to determine the position of the local water table at that

point relative to the mean water table of the whole grid cell. The grid cell fraction where

the subgrid soil moisture exceeds the soil moisture storage capacity of the grid cell is then

regarded as a wetland. The TOPMODEL approach was used and improved in several

studies (e.g., Barling et al. 1994; Gedney et al. 2004; Bohn et al. 2007; Kleinen et al. 2012)

and is able to compute changes in wetland extent as well. While this approach is an elegant

solution, it has one major problem. As the wetland fraction depends on the redistribution of

the mean grid cell soil moisture, it follows that there is an upper boundary for the maxi-

mum water depth and wetland fraction. For the extreme case of a grid cell with zero slope,

no wetland can emerge because the mean soil moisture can obviously not exceed the

maximum soil moisture capacity. However, observations indicate that flat regions appear

to be more suitable for wetland formation.

The second approach is the explicit modelling of surface water. In this case depressions

in the topography are identified and filled with water that results from a positive water

balance. On the one hand, this can be done on a continental scale (e.g., Coe 1997, 1998,

2000), but then the quality of the wetland representation is strongly limited by resolution of

the model. Alternatively, regional models allow for a higher resolution but then depend

strongly on detailed soil property information (e.g., Bowling and Lettenmaier 2010; Yu

et al. 2006) or are calibrated for specific catchments (e.g., Bohn et al. 2007). Decharme

et al. (2008, 2011) developed a global inundation model, but its focus is concentrated on

the representation of floodplains.

In contrast to these sophisticated approaches, Stacke and Hagemann (2012) developed a

somewhat simpler hydrological scheme that represents the global distribution and extent

variability of very different types of wetlands. The scheme was designed for the application

in complex ESMs on global scale with medium to coarse resolutions (50 km or coarser), as

the representation of surface water dynamics is—albeit important—not strongly developed

in such models. The global-scale hydrological scheme of Stacke and Hagemann (2012) has

been implemented in the Max Planck Institute for Meteorology Hydrology Model (MPI-HM).

It solves the water balance of wetlands and estimates their extent dynamically. The extent

depends on the balance of water flows in the wetlands and the slope distribution within the

grid cells. In contrast to most models, this scheme is not directly calibrated against wetland

extent observations. Using MPI-HM, the spatial distribution of simulated wetlands agreed

well with different global observations for present climate (Fig. 10). The best results were

achieved for the northern hemisphere where not only the wetland distribution pattern but

also their extent was simulated reasonably well. However, the wetland fraction in the

tropical parts of South America and Central Africa was strongly overestimated, which

seems to be related to an underestimation of potential evapotranspiration over wet tropical

areas by the Penman–Monteith method used in MPI-HM. The simulated extent dynamics

correlated well with monthly inundation variations obtained from satellites for most

locations. Also, the simulated river discharge was affected by wetlands, resulting in a delay

and mitigation of peak flows. Compared to simulations without wetlands, locally increased

evaporation and decreased river flow into the oceans were generated due to the imple-

mented wetland processes.
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4 Concluding Remark

In the present review, we have highlighted some noticeable deficiencies in climate mod-

elling with respect to the hydrological cycle, which provide perspectives for the modelling

of relevant interactions between climate and terrestrial hydrology. These interactions are

often imposed by different land–atmosphere coupling mechanisms. Over many regions, the

wet state of the soil (soil moisture, wetlands, irrigation) determines feedback character-

istics. These feedbacks not only impact the local scale but also often act on the large scale.

In this respect, human land use may affect remote regions as has been shown for irrigation

over the South Asian monsoon region. As the characteristic of associated feedbacks varies

for different regions and may change under future climate conditions, they have to be

regarded in respective modelling studies. The coupling to biogeochemistry, i.e. carbon

cycle and vegetation, is important to quantify feedbacks related to wetlands and perma-

frost. The representation of their complex dynamics within ESMs is a challenging task, but

it is nevertheless necessary to investigate ongoing and future climate changes over the

high-latitude regions.
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Göttel H, Alexander J, Keup-Thiel E, Rechid D, Hagemann S, Blome T, Wolf A, Jacob D (2008) Influence

of changed vegetations fields on regional climate simulations in the Barents Sea Region. Clim Change
87:35–50. doi:10.1007/s10584-007-9341-5

Gouttevin I, Krinner G, Ciais P, Polcher J, Legout C (2012) Multi-scale validation of a new soil freezing
scheme for a land-surface model with physically-based hydrology. Cryosphere 6:407–430.
doi:10.5194/tc-6-407-2012

760 Surv Geophys (2014) 35:739–764

123 Reprinted from the journal274

http://dx.doi.org/10.1029/2006GL026550
http://dx.doi.org/10.1016/j.gloplacha.2008.12.007
http://dx.doi.org/10.1016/j.gloplacha.2008.12.007
http://dx.doi.org/10.5194/gmdd-6-2655-2013
http://dx.doi.org/10.1016/j.jhydrol.2011.04.010
http://dx.doi.org/10.1002/ppp.3430010102
http://dx.doi.org/10.1029/2003GL017797
http://dx.doi.org/10.1029/2004GL020919
http://dx.doi.org/10.5194/hessd-10-4439-2013
http://dx.doi.org/10.1029/2008GL035258
http://dx.doi.org/10.2307/1941811
http://dx.doi.org/10.1007/s10584-007-9341-5
http://dx.doi.org/10.5194/tc-6-407-2012


Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset
of the Indian summer monsoon. Clim Dyn 39:1329–1348

Harding RJ, Best M, Blyth E, Hagemann S, Kabat P, Tallaksen LM, Warnaars T, Wiberg D, Weedon GP,
van Lanen H, Ludwig F, Haddeland I (2011) Current knowledge of the terrestrial global water cycle.
J Hydrometeorol 12:1149–1156. doi:10.1175/JHM-D-11-024.1

Hashimoto S, Wattenbach M, Smith P (2011) A new scheme for initializing process-based ecosystem
models by scaling soil carbon pools. Ecolog Model 222:3598–3602

Haugen RK, Slaughter CW, Howe KE, Dingman SL (1982) Hydrology and climatology of the Caribou-
Poker Creeks Research Watershed, Alaska, CRREL report 82-26, p 42

Hinzman LD, Kane DI (1991) Snow hydrology of a headwater arctic basin, 2. Conceptual analysis and
computer modeling. Water Resour Res 27(6):95–100

International Permafrost Association (1998) Circumpolar active-layer permafrost system (CAPS), version
1.0

Jacob D, Bärring L, Christensen OB, Christensen JH, Hagemann S, Hirschi M, Kjellström E, Lenderink G,
Rockel B, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-com-
parison of regional climate models for Europe: design of the experiments and model performance.
Clim Change 81(Suppl 1):31–52

Karim A, Veizer J (2002) Water balance of the Indus River Basin and moisture source in the Karakoram and
western Himalaya: implications from hydrogen and oxygen isotopes in river water. J Geophys Res
107(D18):4362. doi:10.1029/2000JD000253

Khan S, Rana T, Gabriel HF, Ullah M (2008) Hydrogeologic assessment of escalating groundwater
exploitation in the Indus Basin, Pakistan. Hydrogeol J 16:1635–1654. doi:10.1007/s10040-008-0336-8

Kleinen T, Brovkin V, Getzieh R (2012) A dynamic model of wetland extent and peat accumulation: results
for the Holocene. Biogeosciences 9:235–248. doi:10.5194/bg-9-235-2012

Koren V, Schaake J, Mitchell K, Duan OY, Chen F, Baker JM (1999) A parameterization of snowpack and
frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19585

Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence
D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud
YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between
soil moisture and precipitation. Science 305:1138–1140

Koster RD, Guo Z, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E,
Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson KW,
Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2006) GLACE: the global
land-atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610

Koven CD, Riley WJ, Stern A (2012) Analysis of permafrost thermal dynamics and response to climate
change in the CMIP5 Earth System Models. J Clim. doi:10.1175/JCLI-D-12-00228.1
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Abstract The increasing availability of precipitation observations from space, e.g., from

the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipita-

tion Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for

downscaling and multi-sensor data fusion that can handle large data sets in computationally

efficient ways while optimally reproducing desired properties of the underlying rainfall

fields. Of special interest is the reproduction of extreme precipitation intensities and gra-

dients, as these are directly relevant to hazard prediction. In this paper, we present a new

formalism for downscaling satellite precipitation observations, which explicitly allows for

the preservation of some key geometrical and statistical properties of spatial precipitation.

These include sharp intensity gradients (due to high-intensity regions embedded within

lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),

and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we

pose the downscaling problem as a discrete inverse problem and solve it via a regularized

variational approach (variational downscaling) where the regularization term is selected to

impose the desired smoothness in the solution while allowing for some steep gradients

(called ‘1-norm or total variation regularization). We demonstrate the duality between this

geometrically inspired solution and its Bayesian statistical interpretation, which is
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equivalent to assuming a Laplace prior distribution for the precipitation intensities in the

derivative (wavelet) space. When the observation operator is not known, we discuss the

effect of its misspecification and explore a previously proposed dictionary-based sparse

inverse downscaling methodology to indirectly learn the observation operator from a data

base of coincidental high- and low-resolution observations. The proposed method and ideas

are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

Keywords Sparsity � Inverse problems � ‘1-norm regularization � Non-smooth

convex optimization � Generalized Gaussian density � Extremes � Hurricanes

1 Introduction

Precipitation is one of the key components of the water cycle and, as such, it has been the

subject of intense research in the atmospheric and hydrologic sciences over the past

decades. While it still remains the most difficult variable to accurately predict in numerical

weather and climate models, its statistical space–time structure at multiple scales has been

extensively studied using several approaches (e.g., Lovejoy and Mandelbrot 1985; Lovejoy

and Schertzer 1990; Kumar and Foufoula-Georgiou 1993a, b; Deidda 2000; Harris et al.

2001; Venugopal et al. 2006a, b; Badas et al. 2006). These studies have documented a

considerable variability spread over a large range of space and timescales and an orga-

nization that manifests itself in power law spectra and more complex self-similar structures

expressed via nonlinear scaling of higher-order statistical moments (e.g., Lovejoy and

Schertzer 1990; Venugopal et al. 2006a). Stochastic models of multi-scale rainfall vari-

ability have been proposed based on inverse wavelet transforms (Perica and Foufoula-

Georgiou 1996), multiplicative cascades (Deidda 2000), exponential Langevin-type

models (Sapozhnikov and Foufoula-Georgiou 2007), among others.

The small-scale variability of precipitation (of the order of a few kms in space and a few

minutes in time) is known to have important implications for accurate prediction of

hydrologic extremes especially over small basins (e.g., Rebora et al. 2006a, b) and for the

prediction of the evolving larger-scale spatial organization of land–atmosphere fluxes in

coupled models (Nykanen et al. 2001). This small-scale precipitation variability, however,

is not typically available in many regions of the world where coverage with high-resolution

ground radars is absent or in mountainous regions where spatial gaps are present due to

radar blockage. It is also missing from climate model predictions that are typically run at

low resolution over larger areas of the world. As a result, methods for downscaling pre-

cipitation to enhance the resolution of incomplete or low-resolution observations from

space or numerical weather/climate model outputs continue to present a challenge of both

theoretical and practical interests.

To date, multiple passive and active ground-based (i.e., gauges and radars) and

spaceborne sensors (i.e., geostationary, polar and quasi-equatorial orbiting satellites) exist

that overlappingly measure precipitation with different space–time resolutions and accu-

racies. Sparsely populated networks of rain gauges provide relatively accurate point

measurements of precipitation continuously over time, while ground-based radars detect

precipitation in fine enough spatiotemporal scales (e.g., *6 min at 1 9 1 km) but over

limited areal extents. The ground-based radar data are among the most accurate and high-

resolution estimates of spatial rainfall. However, this source of information is subject to
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various shortcomings such as instrumental errors, beam blockage by orographic features,

and overshooting range effects (Krajewski and Smith 2002). The only civilian active

spaceborne Tropical Rainfall Measuring Mission-Precipitation Radar (PR) sensor (TRMM-

PR) provides high-resolution reflectivity of rainfall fields (i.e., *4 9 4 km) over a narrow

band in the tropics with relatively low temporal revisiting frequency compared to the other

passive spaceborne sensors of lower resolution. The forthcoming Global Precipitation

Measuring (GPM) Mission, a constellation of nine satellites, promises to deliver obser-

vations of high precision precipitation and cloud dynamics at a global scale (3-h revisiting

time) and over varying resolutions and create opportunities for improving climate mod-

eling and hazard prediction at local scales (Flaming 2004).

Precipitation observations from space are especially valuable in regions where no

ground observations are available either from rain gauges or from ground radars, such as

over the oceans or in underdeveloped regions of the world. It is over these regions,

however, that some extreme tropical storms develop for which high-resolution information

would provide important means for hazard prediction and warning as well as detailed

information on extremes, which could be used in nested models or in a data assimilation

setting. These tropical storms have distinct geometrical and statistical structures, as shown

below, posing extra demands on the methodologies of precipitation downscaling, data

fusion, and data assimilation.

As an illustrative example, Fig. 1 shows a snapshot of the two-dimensional rainfall

intensity patterns and the three-dimensional structure of precipitating clouds for typhoon

Neoguri, the first typhoon of the 2008 season in the western Pacific Ocean, on April 17,

2008, as observed by the TRMM-PR and the TRMM Microwave Imager (TMI). One

notices the geometrically structured precipitation bands embedded within the larger two-

dimensional storm system and the localized ‘‘towers’’ of high-intensity rainfall spatially

embedded within lower-intensity rainfall background. These localized high-intensity cells

and the steep sporadic gradients of precipitation intensity in such a storm are more clearly

demonstrated via a one-dimensional cross section as shown in Fig. 2. Specifically, Fig. 2b

Fig. 1 Left panel rainfall pattern of typhoon Neoguri in the western Pacific Ocean, on April 17, 2008. The
dark red bands indicate regions of the most intense rain. Rainfall rates in the inner swath are from TRMM’s-
PR, while in the outer swath from the TRMM Microwave Imager (TMI); Right panel the three-dimensional
structure of precipitating clouds for typhoon Neoguri as observed by the TRMM-PR. This figure illustrates
the need for a downscaling scheme that has the ability to reproduce steep rainfall gradients embedded within
the storm. Source: NASA’s Earth Observatory, available online through the TRMM extreme event image
archives (http://trmm.gsfc.nasa.gov)
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demonstrates how the typical circular bands of high rainfall intensity manifest themselves

into an almost piece-wise linear structure in the 1D cross section. How is this geometrical

structure to be reproduced in downscaling lower resolution and noisy observations of

tropical storms, say available at 10-km resolution, down to 1- or 2-km resolution products?

Moving from a geometrical description to a statistical description, we note that coherent

precipitation intensity areas (similar intensity in nearby pixels) will result in almost zero

values in a derivative space, while the abrupt changes in rainfall intensity (large gradients

and discontinuities) will project as high values. In other words, we expect to see a prob-

ability distribution in the derivative space that has a large mass close to zero and a few

large positive and negative values. Figure 3a shows the histogram of the derivatives of

precipitation intensities of hurricane Claudette in the horizontal (zonal) direction (com-

puted via a redundant orthogonal Haar wavelet transform, which is equivalent to using a

first-order difference discrete approximation). It is obvious that this histogram is consid-

erably different than a Gaussian probability distribution function (PDF) with a larger mass

around zero (capturing the large number of nearby pixels with similar intensity) and much

heavier tails than Gaussian (capturing the occasional very steep gradients). How can such a

statistical structure be explicitly incorporated in a precipitation downscaling scheme,

specifically for hurricanes and tropical storms?

The purpose of this paper is to present a new framework for precipitation downscaling

casting the problem as a discrete inverse problem and solving it via a variational
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Fig. 2 a A high-resolution (HR) snapshot of hurricane Claudette, 07-15-2003, 11:51:00 UTC as monitored
by NEXRAD station over Texas at resolution 1 9 1 km and b the field of the computed horizontal first-
order derivative using the Sobel filter. A horizontal cross section through the storm is shown in (c). One
observes how the particular geometrical structure of hurricane precipitation projects itself onto an almost
piece-wise linear one-dimensional function with sporadic large gradients embedded within regions of almost
constant rainfall
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regularization approach, which imposes constraints on the specific degree of smoothness

(regularity) of the precipitation fields. The proposed regularization is selected to allow the

preservation of large gradients while at the same time impose the desired smoothness on

the solution. The paper is structured as follows. In Sect. 2, the need for regularization is

explained with special emphasis on a total variation regularization scheme (‘1-norm in the

derivative space) in order to reproduce steep gradients and to preserve the heavy-tailed

structure of rainfall. In this Section, the statistical interpretation of the variational ‘1-norm

regularization is also explained. In particular, it is elucidated that the downscaled rainfall

fields obtained via ‘1-norm regularization in the derivative domain is equivalent to the

Bayesian maximum a posteriori (MAP) estimate with a Laplace prior distribution in the

precipitation derivatives, a special case of the generalized Gaussian distribution pðxÞ /
expð�kjxjaÞ with a = 1 (Ebtehaj and Foufoula-Georgiou 2011). Section 3 presents insights

into the problem of an unknown downgrading observation operator or kernel that ‘‘con-

verts’’ the high-resolution rainfall to the lower-resolution observations and discusses an

alternative methodology, dictionary-based sparse precipitation downscaling (SPaD),

developed in (Ebtehaj et al. 2012). In Sect. 4, we present a detailed implementation of our

variational downscaling (VarD) methodology in a tropical (hurricane) storm and compare

the results of VarD with those of the SPaD method. Finally, concluding remarks and

directions for future research are presented in Sect. 5.

2 Precipitation Downscaling as a Regularized Inverse Problem

2.1 Basic Concepts in the Continuous Space

Consider the true state (or signal) f(t) that is not known but is observed indirectly via a

measuring device, which imposes a smoothing on the original state and returns the

observation g(s). Let f(t) and g(s) relate via the following linear transformation:
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Fig. 3 a Histogram of the derivatives in the horizontal direction of the hurricane snapshot shown in Fig. 2.
The derivative coefficients are obtained by the Sobel operator that produces a second-order discrete
approximation of the field derivative. b Same histogram plotted on a log-probability scale showing the
empirical PDF (circles), the fitted generalized Gaussian PDF with parameter a = 0.85, the Gaussian PDF
(a = 2.0), and the Laplace density (a = 1.0) for comparison. Note that the assumption of a Laplace density
for the rainfall derivatives is theoretically consistent with the proposed ‘1-norm variational downscaling
framework
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Z1

0

Kðs; tÞf ðtÞdt ¼ gðsÞ 0; t� 1; ð1Þ

where K(s, t) is a known kernel, which downgrades the true state by damping its high-

resolution components and making it smoother. The problem of recovering f(t) knowing

the observation g(s) and the kernel K(s, t) is a well-studied inverse problem, known as the

Fredholm integral equation of the first kind. Inverse problems are by their nature ill-posed,

in the sense that they do not satisfy at least one of the following three conditions: (1)

existence of a solution, (2) uniqueness of the solution, and (3) stability in the solution, i.e.,

robustness to perturbations in the observation. It can be shown that the above inverse

problem is very sensitive to the observation noise, since high frequencies are amplified in

the inversion process (so-called inverse noise) and they can easily spoil and blow up the

solution (see Hansen 2010). In this sense, even a small but high-frequency random per-

turbation in g(s) can lead to a very large perturbation in the estimate of f(t). This is relevant

to the problem of reconstructing small-scale features in precipitation fields (downscaling)

from low-resolution noisy data, when the noise can be of low magnitude but high fre-

quency, e.g., discontinuities in overlapping regions of different sensors or instrument noise.

Therefore, naturally, if we define the distance between the observations and the true

state by the following residual Euclidean norm:

Rðf Þ ¼
Z 1

0

Kðs; tÞ f ðtÞ dt � gðsÞ
����

����
2

; ð2Þ

then minimizing R(f) alone does not guarantee a unique and stable solution of the inverse

problem. Rather, additional constraints have to be imposed to enforce some regularity (or

smoothness) of the solution and suppress some of the unwanted inverse noise components

leading to a unique and more stable solution. Let us denote by S(f) a smoothing norm,

which measures the desired regularity of f(t). Then, obtaining a unique and stable solution

to the inverse problem amounts to solving a variational minimization problem of the form

f ðtÞ ¼ argmin
f

Rðf Þ2 þ k2Sðf Þ
n o

; ð3Þ

The value of k (called the regularization parameter) is chosen as to provide a balance

between the weight given to fitting the observations, as measured by the magnitude of the

residual term R(f), and the degree of regularity of the solution measured by the smoothing

norm S(f). Common choices for S(f) are ‘2-norms of the function f(t) or its derivatives, i.e.,

Sðf Þ ¼ f ðdÞ
�� ��2

2
¼
Z1

0

f ðdÞðtÞ
�� ��2dt; d ¼ 0; 1; . . . ð4Þ

where f(d) denotes the dth order derivative of f. Another smoothing norm of specific interest

in the present study is the ‘1-norm of the gradient of f, that is,

STVðf Þ ¼ fk k1¼
Z1

0

f ð1ÞðtÞ
�� �� dt; ð5Þ

known as the Total Variation (TV) of the function f(t). Both the S(f) and STV(f) norms yield

robust solutions with desired regularities but the STV(f) penalizes local jumps and isolated
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singularities in a quite different way than the ‘2-norm of S(f). It is important to demonstrate

this point as it plays a key role in the proposed downscaling scheme.

Let us consider a piecewise linear function:

f ðtÞ ¼
0; 0� t\ 1

2
1� hð Þ

t
h
� 1�h

2h
; 1

2
1� hð Þ� t� 1

2
1þ hð Þ

1; 1
2

1þ hð Þ\t� 1

8<
: ; ð6Þ

as shown in Fig. 4. It can be shown that the smoothing norms associated with the ‘1 and ‘2-

norms of f(1)(t) satisfy:

f ð1Þ
�� ��

1
¼
Z 1

0

f ð1ÞðtÞ
�� ��dt ¼

Zh

0

1

h
dt ¼ 1 ð7Þ

while

f ð1Þ
�� ��2

2
¼
Z1

0

f ð1ÞðtÞ
�� ��2dt ¼

Z h

0

1

h2
dt ¼ 1

h
: ð8Þ

It is observed that the TV smoothing norm STVðf Þ ¼ f ð1Þ
�� ��

1
is independent of the slope

of the middle part of f(t) while the smoothing ‘2-norm is inversely proportional to h and, as

such, it severely penalizes steep gradients (when h is small). In other words, the ‘2-norm of

f(1) will not allow any steep gradients and will produce a very smooth solution. Clearly, this

is not desirable in solving an inverse problem associated with the reconstruction of small-

scale details in precipitation fields, such as in the hurricane storm shown in Fig. 2.

2.2 Discrete Representation

Writing Eq. (1) in a discrete form, the problem of downscaling amounts to estimating a

high-resolution (HR) state, denoted in an m-element vector as x 2 R
m, from its low-

resolution (LR) counterpart y 2 R
n, where m� n. It is assumed that this LR counterpart
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Fig. 4 A piecewise linear function f(t) with a slope f(1) = 1/h at the non-horizontal part. As it is easily

shown (see text), for this function, the ‘1(total variation)-norm f ð1Þ
�� ��

1
is constant and independent of

h while the ‘2-norm f ð1Þ
�� ��2

2
¼ 1=h goes to infinity as h goes to zero (i.e., for a very steep gradient). As a

result, the ‘2-norm solutions do not allow steep gradients, while the ‘1-norm does
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relates to the high-resolution (HR) state via a linear downgrading (e.g., a linear blurring

and/or downsampling1) operator H 2 R
m�n as follows:

y ¼ Hxþ v; ð9Þ

where v�N 0;Rð Þ is a zero-mean Gaussian error with covariance R. Due to the fact that

the dimension of y is less than that of x, the operator H is a rectangular matrix with more

columns than rows and thus solving problem (9) for x is an ill-posed inverse problem (an

under-determined system of equations with many solutions). As discussed above, we seek

to impose a proper regularization to make the inverse problem well posed.

Following the developments presented above in a continuous setting and replacing f(1)

with a discrete approximation derivative operator L, the choice of the smoothing ‘2-norm

regularization for S(x) becomes Lxk k2
2 while for the ‘1-norm becomes Lxk k1, where in

discrete space xk k2
2¼ Rm

i¼1 xij j2 and xk k1¼ Rm
i¼1 xij j.

Thus, the solution (HR state x) can be obtained by solving the following regularized

weighted least squares minimization problem:

x̂ ¼ argmin
x

1

2
y�Hxk k2

R�1þkSðxÞ
� �

; ð10Þ

It is clear that the smaller the value of k, the more weight is given to fitting the

observations (often resulting in data over-fitting), while a large value of k puts more weight

into preserving the underlying properties of the state of interest x, such as large gradients.

The goal is to find a good balance between the two terms. Currently, no closed form

method exists for the selection of this regularization parameter and the balance has to be

obtained via a problem-specific statistical cross validation (e.g., Hansen 2010). Note that

the problem in (10) with SðxÞ ¼ Lxk k1 is:

x̂ ¼ argmin
x

1

2
y�Hxk k2

R�1þk Lxk k1

� �
; ð11Þ

that is, a non-smooth convex optimization problem as the regularization term is non-

differentiable at the origin. As a result, the conventional iterative gradient methods do not

work and one has to use greedy methods (Mallat and Zhang 1993) or apply the recently

developed non-smooth optimization algorithms such as the iterative shrinkage thresholding

method (Tibshirani 1996), the basis pursuit method (Chen et al. 1998, 2001), the con-

strained quadratic programming (Figueiredo et al. 2007), the proximal gradient-based

methods (Beck and Teboulle 2009), or the interior point methods (Kim et al. 2007). In this

work, we have adopted the method suggested by Figueiredo et al. (2007).

2.3 Geometrical Versus Statistical Interpretation of the ‘1-Norm Regularized

Downscaling

As was discussed in the introduction, the motivation for introducing a new downscaling

framework lies in the desire to reproduce some geometrical but also some statistical

features of precipitation fields. Specifically, the question was posed as to how a down-

scaling scheme could be constructed that can reproduce both the abrupt localized gradients

1 Here, by downsampling, we mean to reduce the sampling rate of the rainfall observations by a factor
greater than one.
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and also the characteristic probability distribution of the precipitation intensity gradients

such as that displayed in Fig. 3a.

It can be shown that the solution of (10) obtained via ‘2-norm regularization (i.e.,

SðxÞ ¼ Lxk k2
2) is equivalent to the Bayesian maximum a posteriori (MAP) estimator where

the transformed variable Lx is well explained by a Gaussian distribution. On the other

hand, considering SðxÞ ¼ Lxk k1, the ‘1-norm regularized solution of (10), i.e., the solution

of Eq. (11), is the MAP estimator where Lx is well explained by the multivariate Laplace

distribution (the generalized Gaussian family with a = 1). In other words, the ‘1-regu-

larization implicitly assumes that the probability of Lx goes as exp �k Lxk k1

� �
(Lewicki

and Sejnowski 2000; Ebtehaj and Foufoula-Georgiou 2013). We note that for the storm of

Fig. 2, the estimated tail parameter a is 0.85 (see Fig. 3), which denotes that the pdf of Lx

goes as exp �k Lxk kaa
� �

, where xk kaa¼ Rm
i¼1 xij ja. This value of a implies that the Laplace

distribution (a = 1) is only an approximation of the true distribution of the analyzed

precipitation (see Fig. 3b for comparison), making thus the proposed ‘1-norm regulariza-

tion solution only an approximate solution in a statistical sense. Finding a solution via

regularized inverse estimation that satisfies a prior probability for (Lx) with a\ 1 requires

solving a non-convex optimization, which may suffer from local minima and may be hard

to solve for large-scale problems. For this reason, we limit our discussion to the ‘1-

regularization recognizing the slight sub-optimality of the solution for precipitation

applications but also its superiority relative to the Gaussian assumption about the rainfall

derivatives.

3 Working with an Unknown Downgrading Operator (H)

In the above formulation of the downscaling problem as an inverse problem, the down-

grading operator H is assumed to be linear and known a priori. A mathematically con-

venient form for the downgrading operator is to assume that it can be represented via a

linear convolution followed by downsampling. In other words, one may assume that the

low-resolution (LR) observation is obtained by applying an overlapping box (weighted)

averaging over the HR field and keeping one observation only, typically at the center, per

averaging box (downsampling). However, the downgrading operator is not generally

known in practice and its characterization might be sensor-dependent. Also often, this

operator is highly nonlinear (e.g., the relationship between the radiometer-observed

brightness temperature and the precipitation reflectivity observed by the radar) and its

linearization may introduce large estimation errors. This nonlinearity may also pose severe

challenges from the optimization point of view and may give rise to a hard non-convex

problem with many local minima (Bertsekas 1999).

To deal with the problem of an unknown downgrading operator, Ebtehaj et al. (2012)

proposed a dictionary-learning-based methodology that allows to implicitly incorporate the

downgrading effect via statistical learning without the need to explicitly characterize the

downgrading operator. In this methodology, the downgrading operator is being learned via

a dictionary of coincidental HR and LR observations (e.g., in practice, TRMM-PR, and

ground-based NEXRAD or TMI and NEXRAD). The methodology is explained in detail

by Ebtehaj et al. (2012) and is only briefly summarized herein.

In simple terms, the idea is to reconstruct a HR counterpart of the LR rainfall field based

on learning from a representative data base of previously observed coincidental LR and HR

rainfall fields (e.g., TRMM-PR and NEXRAD observations). As is evident, due to different
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underlying physics, the shape and patterns of rainfall intensities, viewed in a storm-scale

field of view, might be drastically dissimilar. However, the small-scale patterns of rainfall

when viewed over smaller windows might be repetitive and ‘‘similar’’ within different

regions of the same storm or within different storms. Therefore, the central idea is to

(a) collect a representative set of coincidentally observed LR and HR rainfall fields, with

some similarities in their underlying physics; (b) zoom down into small-scale patterns

(patches) of the given LR rainfall field; (c) for each patch, find few but very similar LR

patches in the collected data base; (d) for those similar LR patches, obtain the corre-

sponding HR patches in the data base and then reconstruct the HR counterparts of the LR

patch of interest based on an optimality criterion; and (e) repeat this procedure for all

possible patches and obtain a HR estimate for the observed LR rainfall field.

To be more specific, let us consider that the representative training set of N coincidental

pairs of LR and HR rainfall fields are denoted by Zi
l

� 	N

i¼1
and Zi

h

� 	N

i¼1
, respectively. As

previously explained, for each patch yl of the given LR rainfall field, we need to find a few

very similar patches in Zi
l

� 	N

i¼1
, where similarity is defined in terms of localized rainfall

fluctuations and not in the mean values of the rainfall patches. To this end, all of the LR

fields are projected (i.e., Zi
l ! Zi

h

� �0
) onto a redundant orthogonal basis (called feature

space) to capture the rainfall local fluctuations including horizontal and vertical edges (i.e.,

zonal and meridional) and curvatures. This was performed by Ebtehaj et al. (2012) via an

undecimated orthogonal Haar wavelet, which basically performs a high-pass filtering in

each direction using first- and second-order differencing. Then, all of the constituent

patches of the transformed LR fields in the data base were extracted, vectorized in a fixed

order, and then stored as columns of a matrix W, the so-called empirical LR-dictionary.

Clearly, for each coincidental pair Zi
l;Zi

h

� �
, a set of ‘‘residual fields’’ can be formed by

subtracting the LR fields from their HR counterparts via Ri
h ¼ Zi

h �QZi
l, where Q is a

readily available interpolation operator (e.g., a nearest-neighbor or bilinear, bicubic

interpolator). Notice that, these residual fields contain the rainfall variability and high-

frequency (fine spatial-scale) components that are not captured by the LR sensor and need

to be recovered. Therefore, all of the constituent patches rh of the residual fields can also be

collected, vectorized in a fixed order, and then stored in the columns of a matrix U, the so-

called HR-dictionary. Note that, by the explained construction, the empirical LR and HR

dictionaries share the same number of columns while there is a one-to-one correspondence

between them. In other words, while the columns of the W contain LR rainfall features, the

columns of the U contain the corresponding HR residuals, needed for the reconstruction of

the HR field.

The premise is that the local variability of any LR patch yl, denoted by y0l, in any storm

can be well approximated by a linear combination of the elements of the LR dictionary as

follows:

y0l ¼ Wcþ v; ð12Þ

where c is the vector of representation coefficients in the LR dictionary and v�N 0;Rð Þ
denotes the estimation error that can be well explained by a Gaussian density.

By analyzing a sample of 100 storms over Texas, it was documented by Ebtehaj et al.

(2012) that the vector of representation coefficients c in the LR dictionary is very sparse. In

other words, any desired local rainfall variability in the given LR field can be approximated

by a linear combination of only a few columns of the LR empirical dictionary (of the order

774 Surv Geophys (2014) 35:765–783

123 Reprinted from the journal288



of 3–5 elements). To impose this sparsity (called ‘‘group sparsity’’) in solving (12) for c,

the solution needs to be constrained via an ‘1-norm regularization as follows:

ĉ ¼ argmin
c

1

2
y0l �Wc
�� ��2

R�1þk ck k1

� �
: ð13Þ

Using the representation coefficients obtained from (13), one can recover the corre-

sponding residual fields (the details missed by the LR sensor) as follows:

r̂ ¼ Uĉ: ð14Þ
Having the estimated residual fields, the HR patch can be obtained as x̂ ¼ Qyl þ r̂.

Applying the same estimation methodology for all of the patches of the given LR rainfall

field, we can recover the entire HR rainfall field (see Ebtehaj et al. 2012). The most

important implication of the above framework is that we characterized the pair of ðW;UÞ
empirically without explicit access to the structure of the downgrading operator H, which

is the main advantage of this dictionary-based rainfall downscaling method versus the

previously explained approach. Since advantage was taken of the rainfall group sparsity

(and also implicitly of the sparsity of the precipitation fields themselves), the dictionary-

based downscaling methodology was termed SPaD.

4 Results from a Case Study

To demonstrate the proposed downscaling methodology, we have chosen a specific tropical

storm, hurricane Claudette, which occurred in July 2003. Claudette began as a tropical

wave in the eastern Caribbean on July 8, 2003 and moved quickly westward to the Gulf of

Mexico. It remained a tropical storm until just before making landfall in Port O’Conner,

Texas, when it quickly strengthened to a category 1 hurricane. Although Claudette pro-

duced moderate rainfall across southern Texas, peaking at approximately 6.5 inches

(165 mm), it maintained a tropical storm intensity for over 24 h after landfall with winds

gusting to 83 mph (134 km/h) at Victoria Regional Airport, Texas. The storm caused

excessive beach erosion and damages estimated at 180 million dollars. For this storm, we

have available data from a NEXRAD station in Houston, Texas, for which a snapshot at

11:51:00 (UTC) on July 15, 2003 is shown in Fig. 2.

The issues we want to examine here are the following: (1) the ability of the proposed

variational downscaling (VarD) scheme to reproduce the steep gradients in precipitation

intensities as evidenced by reproducing the tails of the PDF of intensity gradients; (2) the

effect of an unknown kernel (smoothing and downsampling operation imposed on the true

HR field by a sensor) on the downscaling scheme performance using the proposed

methodology; (3) a comparison of the VarD method with a local dictionary-based meth-

odology based on sparse representation (SPaD) as discussed in the previous section; and

(4) insights into the ability of the proposed VarD methodology and SPaD to reproduce not

only the extreme gradients but also the extreme rainfall intensities, i.e., the tails of the

rainfall intensity probability distribution functions (PDFs).

The original HR data at 1 9 1 km (Fig. 5a) were downgraded to 8 9 8 km LR

observations via a coarse-graining filter consisting of a simple box averaging of size 8 9 8

followed by downsampling with a factor of 8 (i.e., keeping one observation per box of

8 9 8 km). The resulting LR field is shown in Fig. 5b and is considered to be the field that

would be available to us from a satellite sensor. Figure 5c, d shows the results of
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downscaling the 8 9 8 km field to 1 9 1 km resolution using the VarD and SPaD

methodologies with ku0:05 L�THTR�1y
�� ��

1 in the original formulation of the problem

(11), where xk k1¼ max x1j j; . . .; xmj jð Þ. Note that in all of our experiments, we empirically

found that 0\k� 0:10 L�THTR�1y
�� ��

1 works well for rainfall downscaling in both
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Fig. 5 a Original HR base reflectivity snapshot at resolution 1 9 1 km over TX (hurricane Claudette,
08-16-2003, UTC 11:51:00); b The synthetic LR observation obtained by coarse graining of the field up to
scale 8 9 8 km (smoothing with an average filter of size 8 9 8 followed by downsampling by a factor 8);
c result of the downscaled field at resolution 1 9 1 km using the variational downscaling (VarD) method;
and d results of the dictionary-based sparse precipitation downscaling (SPaD) method at resolution
1 9 1 km; e intensities averaged over a bandwidth of 8 km centered at a cross section A-A in (a), displaying
the true HR field, the LR coarse-grained field (observations), and the two downscaled fields
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methods, while it can be shown that the solution of problem (11) is zero for all

k� L�THTR�1y
�� ��

1.

As discussed before, VarD assumes the downgrading operator H to be known. In our

case, we used as H the ‘‘true’’ operator, i.e., the same operator we used to coarse grain the

HR (1 9 1 km) reflectivity field to the LR (8 9 8 km) one. It is observed that the VarD

downscaled field has a smoother appearance than the original field (it does not have the

1 9 1 km pixelized appearance of the original HR field), which is not unexpected given

that the ‘1-regularization promotes smoothness in the solution while allowing for some

steep gradients as demonstrated in the illustrative example of Fig. 4. A one-dimensional

cross section shown in Fig. 5e confirms this observation and shows that the downscaled

field is much closer to the true field compared to the LR field.

Suppose now that the true filter H is not known and only the LR field is given without

guidance as to what ‘‘filtering’’ the sensor did to the HR field to return the LR observations.

As discussed in the previous section, and in Ebtehaj et al. (2012), we demonstrated that this

filter can be ‘‘learned’’ implicitly and locally using coincidental high- and low-resolution

images available for a number of similar storms. In that study, a sample of 100 HR summer

storms over Texas was used to construct a set of coincidental LR storms (using again a

simple box averaging and a downsampling operator). This hundred storm sample was then

used to compute the LR and HR dictionaries, which formed the basis of the SPaD method

as explained in the previous section. This same dictionary was used herein to recover the

1 9 1 km HR rainfall field of the Claudette storm from 8 9 8 km observations. The

results are shown in Fig. 5d.

In general, it is expected that the SPaD method will outperform the VarD method when

the operator H is not known at all or is locally varying, due, for example, to instrument

range effects or cloud interference or different performance of an instrument in low- versus

high-resolution rainfall intensities. However, it is noted that, since in our data base the LR

and HR fields relate to each other with a simple box averaging operator H (by construc-

tion), we expect that the dictionary-learning SPaD downscaling will perform comparably

to the VarD method. Extra information in SPaD will be gained by the localized nature of

the estimation methodology, which might reproduce extra high-frequency (small-scale)

features, obtained from the available dictionaries that may not be recovered in the VarD

approach.

To more quantitatively compare the two downscaled fields to the true underlying HR

field and to each other, we compare in Fig. 6 the PDF of the derivatives in the horizontal

direction in terms of their q–q plot (quantiles of the variable of interest vs. standard normal

quantiles). We observe that both methods are able to reproduce the heavy tails of the PDF

of the precipitation gradients, which are much thicker than those of the Gaussian PDF, and

thus, both methods are able to reproduce high gradients in the HR recovered field. VarD is

seen to slightly outperform SPaD in reproducing high positive gradients, not surprisingly

since, in VarD, the H operator was customized to this specific storm, while, in SPaD,

information from a suite of other storms was also used.

Turning our attention to the preservation of the statistics of the precipitation field itself,

we show in Fig. 7 the comparison of the PDFs of the LR rainfall field with that of the true

HR field and the downscaled fields. We recall that although the preservation of the thicker-

than-Gaussian (Laplace) tails in the PDF of precipitation intensity gradients is explicitly

incorporated in the ‘1-norm VarD downscaling methodology, no explicit preservation of

the extreme rainfall intensities themselves is accounted for. However, it is clear from

Fig. 7 that VarD performs satisfactorily in reproducing extreme rainfall intensities in the
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downscaled field and is able to enhance substantially the tails of the low-resolution rainfall

fields. One of the reasons for reproducing extreme rainfall intensities is that typically

extreme gradients are collocated with high rainfall intensities. This was observed and

documented by Perica and Foufoula-Georgiou (1996) and is also documented for the

Claudette storm in Fig. 8. So, indirectly, VarD is bound to preserve satisfactorily the tails

of the PDF of precipitation intensities. From Fig. 7, it is apparent that SPaD outperforms

VarD in preserving extreme rainfall. This is attributed to the fact that, in SPaD, the

operator is learned directly on the precipitation intensities, and not on the gradients,

allowing thus for a more direct reconstruction of extreme intensities, provided that such

extremes are available in the data base.

Table 1 presents a comparison of the downscaling methodologies in terms of several

quantitative metrics: the mean square error: MSE ¼ x� x̂k k2
2= xk k2

2, the maximum abso-

lute error: MAE ¼ x� x̂k k1= xk k1, the peak signal-to-noise ratio:

PSNR ¼ 20 log10 max x̂ð Þ=std x� x̂ð Þ½ 	, and the Kullback–Leibler divergence:

KLD pxjjpx̂ð Þ ¼ Ri ln pxðiÞ=px̂ðiÞ½ 	pxðiÞ or relative entropy metric, where px(i) and px̂ðiÞ are

the discrete probabilities of the true and estimated rainfall, respectively. The KLD is a non-

negative measure that represents a relative degree of closeness of two PDFs in terms of

their entropy, while smaller values signify a stronger degree of similarity. It can be seen

from Table 1 that both downscaling methods produce HR fields that are closer to the true

field compared to the LR field and that the VarD and SPaD methods considerably out-

perform the ‘‘naı̈ve’’ simple downscaling methods such as the result obtained by the

bicubic interpolation scheme. SPaD is seen to outperform VarD in terms of the entropy

metric (smaller KLD value) further speaking for the better reproduction of very extreme

rainfall intensities.

It is worth presenting here some extra insight into the effect of a misdiagnosed

observation filter H on the downscaled field. As shown in the illustrative example of Fig. 9,

when the observation operator is smoother (a Gaussian filter) as compared to the operator

used in the VarD downscaling (a box average filter), the downscaled field exhibits a
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blockiness coming from the mismatch between the assumed and true filters. In fact, this

blockiness provides a qualitative diagnostic of the filter mismatch, in that it picks up the

fact that the underlying true observation filter (the Gaussian in this case) was smoother than

the one used for recovery. Apart from the visual inspection of the downscaled field, Fig. 9

(caption) provides the comparison metrics that show the underperformance of this

downscaled field relatively to the one obtained using the correct filter (compare values with

those in Table 1). The possibility of developing a methodology to learn properties (e.g.,

smoothness and nonlinearity) of the underlying observation filter in the case that no

coincidental LR and HR data sets are available to apply the dictionary-based methodology

is appealing and warrants further exploration.
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5 Concluding Remarks

The problem of downscaling climate variables remains of interest as more spaceborne

observations become available and as the need to translate low-resolution (LR) climate

predictions to regional and local scales becomes essential for long-term planning purposes.

Of special interest are downscaling schemes that can accurately reproduce not only overall

statistical properties of rainfall but also specific features of interest, such as extreme

rainfall intensities and abrupt gradients. In this paper, such a precipitation downscaling

scheme was introduced using a formalism of inverse estimation and solving the (ill-posed)

inverse problem by imposing certain constraints that guarantee stability and uniqueness of

the solution while also enforcing a certain type of smoothness that allows for some abrupt

gradients. Mathematically, this inverse problem is solved via what is called an ‘1-norm or

total variation regularization. We showed the equivalence of the proposed total variation

regularized solution to a statistical maximum a posteriori (MAP) Bayesian solution, which

has a Laplace prior distribution in the derivative domain. We demonstrated the
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Table 1 Error statistics obtained by comparing the HR precipitation reflectivity image of Hurricane
Claudette (true) with the LR one, the downscaled fields via Bicubic interpolation, the VarD, and the SPaD
methodologies (see text for definition of these metrics)

Quality metrics

MSE y MAE PSNR KLD

Low. res. 0.305 0.260 17.834 0.089

Bicubic 0.275 0.246 18.742 0.113

VarD 0.194 0.172 22.539 0.065

SPaD 0.209 0.177 22.015 0.044

y MSE mean squared error, MAE mean absolute error, PSNR peak signal-to-noise ratio, KLD Kullback–
Leibler divergence
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performance of the proposed downscaling scheme on a tropical storm and concluded that it

was able to capture adequately both the extremes of rainfall intensities and gradients.

A practical challenge faced in applying the proposed methodology is that the obser-

vation operator (which relates the true unknown HR field to the LR observations) might not

be known. In fact, it might be even changing locally due to sensor properties as affected,

for example, by range or precipitation intensity and composition. If coincidental high- and

low-resolution fields are available in a data base, the data-driven dictionary-based meth-

odology introduced by Ebtehaj et al. (2012) offers promise and, although more compu-

tationally intensive, it might offer advantages in capturing more faithfully local details and

extremes. However, a lot more work is needed to understand the sensitivity of the dic-

tionary-based methodology to the selection of a data base from environments different than

the storm of interest, as well as when the observation filter relates nonlinearly to the

underlying field as is the case in problems of retrieval, i.e., estimation of precipitation

intensity from radiances recorded by the TRMM microwave imager.

The presence of statistical self-similarity (scaling) in spatial rainfall, manifesting in log–

log linearity in the Fourier or wavelet power spectra and also in higher-order statistical

moments, has been well documented by now (see discussion in the introduction). This

structure, often explained in the context of mono or multifractal formalisms, has guided the

development of several stochastic downscaling methodologies (e.g., Rebora et al. 2006a,

b; Perica and Foufoula-Georgiou 1996, among many others). The downscaled precipitation

fields produced by these models are, by construction, respecting the rainfall scaling laws;

however, they are not unique as multiple realizations of plausible high-resolution rainfall

fields with the same input parameters can be produced without following a specific opti-

mality criterion. On the other hand, the proposed downscaling methodologies produce

unique high-resolution rainfall fields based on the aforementioned optimality criteria that

also allow us to partially preserve the underlying non-Gaussian structure of the rainfall

fields. An important question that arises then is whether statistical scaling in rainfall fields,
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Fig. 9 VarD result for downscaling precipitation reflectivity from scale 8 9 8 to 1 9 1 km with a ‘‘wrong’’
observation operator. In this experiment, the imposed observation operator was a Gaussian filter of size
8 9 8 with standard deviation 2 while in downscaling, we assumed a uniform average filter of the same size.
It is clear from the result that the quality of downscaling is blocky and is severely deteriorated because of the
misspecification of the observation operator in the downscaling scheme. The selected quantitative measures
are as follows: MSE = 0.244; MAE = 0.220; PSNR: 22.0; and KLD = 0.075 (see Table 1)
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although not prescribed in our method, arises as an emergent property. The answer to this

question is not obvious. Our preliminary results (not reported herein) demonstrate that

statistical scaling indeed arises in both the ‘1-norm variational downscaling (VarD) and the

SPaD schemes. However, the power law exponents (of the variance of the wavelet coef-

ficients as a function of scale) and the variance of the wavelet coefficients at the smallest

scale (similar to the analysis in Perica and Foufoula-Georgiou 1996) seem to be lower than

those of the original fields. This might be due to the fact that, although our scheme is able

to accurately capture, much better than other statistical schemes, the magnitude of the

infrequent localized large gradients in precipitation fields, it might under-produce the

variability of the smaller gradients, reducing thus the overall variance. This is an issue that

is currently explored both from a theoretical perspective and via simulation, as in most

applications one is interested to preserve both the localized extremes but also the overall

variance of the smaller magnitude fluctuations.

The work presented herein falls within a larger research direction of using variational

regularization approaches or equivalently, Bayesian MAP estimators with heavy-tailed priors

in the derivative domain, for estimation problems in hydro-climatology, such as downscaling,

multi-sensor data fusion, retrieval, and data assimilation (see Ebtehaj and Foufoula-Georgiou

2013). A relatively small number of abrupt gradients within the field of interest or heavy-

tailed PDFs in the derivative domain are associated with the notion of sparsity, that is, the fact

that, when the state is projected in a suitable basis, most of the projection coefficients are close

to zero and only a few coefficients carry most of the state energy. Estimation problems of

sparse states (posed in an inverse estimation setting or in a variational setting of minimizing a

functional) require the use of ‘1-norm regularization, which results from imposing extra

constraints on the solution to enforce sparsity. Motivated by the need to preserve sharp

weather fronts in data assimilation of numerical weather prediction models, an ‘1-norm

regularized variational data assimilation methodology was recently proposed by Freitag et al.

(2012) and demonstrated in a simple setting using the advection equation for the state evo-

lution dynamics. In Ebtehaj and Foufoula-Georgiou (2013), data assimilation in the presence

of extreme gradients in the state variable was further analyzed using as illustrative example

the advection–diffusion equation that forms the basis of many hydro-meteorological prob-

lems, such as those dealing with the estimation of surface heat fluxes based on the assimilation

of land surface temperature (e.g., see Bateni and Entekhabi 2012). Application of these new

non-smooth variational methodologies in real data assimilation problems, and also in com-

bining data assimilation with downscaling of the state, is only in its infancy and is certain to

occupy the geophysical community in the years to come.
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Abstract Snow provides large seasonal storage of freshwater, and information about the

distribution of snow mass as snow water equivalent (SWE) is important for hydrological

planning and detecting climate change impacts. Large regional disagreements remain

between estimates from reanalyses, remote sensing and modelling. Assimilating passive

microwave information improves SWE estimates in many regions, but the assimilation

must account for how microwave scattering depends on snow stratigraphy. Physical snow

models can estimate snow stratigraphy, but users must consider the computational expense

of model complexity versus acceptable errors. Using data from the National Aeronautics

and Space Administration Cold Land Processes Experiment and the Helsinki University of

Technology microwave emission model of layered snowpacks, it is shown that simulations

of the brightness temperature difference between 19 and 37 GHz vertically polarised

microwaves are consistent with advanced microwave scanning radiometer-earth observing

system and special sensor microwave imager retrievals once known stratigraphic infor-

mation is used. Simulated brightness temperature differences for an individual snow profile

depend on the provided stratigraphic detail. Relative to a profile defined at the 10-cm

resolution of density and temperature measurements, the error introduced by simplification

to a single layer of average properties increases approximately linearly with snow mass. If

this brightness temperature error is converted into SWE using a traditional retrieval

method, then it is equivalent to ±13 mm SWE (7 % of total) at a depth of 100 cm. This

error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.
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1 Introduction

Snow is extremely important hydrologically, with more than one-sixth of the global

population situated in areas where snow precipitation is greater than half of annual runoff

(Barnett et al. 2005). Snow affects both timing and quantity of runoff as well as the surface

energy balance and atmospheric chemistry.

Currently, remote sensing products exist for snow-covered area (SCA), albedo, grain

size, surface contaminants, melt and snow water equivalent (SWE). Measurements of snow

surface properties such as SCA are regularly used (e.g., Brown and Mote 2009; Dye 2002;

Frei et al. 2003) and generally have more well-characterised uncertainties (Hall and Riggs

2007; Rittger et al. 2013) than estimates of bulk properties such as SWE.

Measurement of surface properties has allowed the identification of snow season

duration, surface melt (Koskinen et al. 1997) and a determination of snow’s contribution to

radiative feedback in response to warming (Flanner et al. 2011). In terms of hydrological

relevance, Painter et al. (2012) developed a Moderate Resolution Imaging Spectroradi-

ometer (MODIS) algorithm for determining radiative forcing from impurities in near-

surface snow. When realistic values of these radiative forcings were included in the

analysis of snow in south-western Colorado, it was estimated that the impurities reduced

snow cover duration by 21–51 days, increased peak outflow, changed the runoff profile and

reduced total seasonal runoff (Skiles et al. 2012).

Despite the successes of surface measurements, there remain large uncertainties in

global estimates of SWE, with regional disagreements between products derived from

remote sensing, general circulation models (GCMs) and reanalyses.

This study reviews continental-scale SWE products and describes the key techniques

and their relative strengths, including the assimilation of remotely sensed passive micro-

wave (PM) observations. A recent product that assimilates PM, Globsnow (Takala et al.

2011), is described in detail as it has been suggested as a suitable product for validation of

land surface models (LSMs (Hancock et al. 2013)).

The assimilation of PM observations requires an observation operator, which converts

the state vector of snow properties into a vector of observable microwave brightness

temperatures. In the case of Globsnow, the snow is described by density, grain size and

snow depth of a single layer. The observation operator is the Helsinki University of

Technology (HUT) radiative transfer model (Pulliainen et al. 1999), which produces a

brightness temperature difference between two PM channels, DTB, for comparison with

satellite retrievals.

Although Globsnow assumes a single homogeneous layer, snowpacks typically consist

of multiple layers that often feature complex stratigraphy which affects the radiative

transfer. The current Globsnow approach neglects this both in the radiative transfer sim-

ulation and in calculating the weighting function that determines the size of the PM-driven

update to the forecast.

Globsnow’s performance might be improved by the relaxation of the one-layer

assumption, and here the effect of this relaxation on simulated DTBs is assessed based on

realistic snow profiles obtained from the snowpits of the National Aeronautics and Space

Administration Cold Land Processes Experiment (NASA CLPX).

Section 2 reviews the historical methods of snow mass estimation, including separate

estimates from snow models, ground stations and PM. Section 3 introduces the principles

behind the assimilation of passive microwaves and details Globsnow, identifying its

simplified snow stratigraphy as a possible source of error and suggesting that layering

might be included in a future scheme.
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Section 4 describes the experiments, which attempt to assess the effect of realistic snow

layering on radiative transfer. Coincident satellite PM measurements are compared with

HUT simulations at CLPX, confirming that HUT simulations are close to observed values.

The effect of including or neglecting detailed snow layering is assessed by comparing DTB

simulations when snowpits are resampled to different layering profiles. Profiles include

between 1 and 5 layers, along with an N-layer case where layers are prescribed based on

the snowpit measurement resolution. The N-layer case is taken as truth, and the difference

in simulated DTBs for fewer-layer models relative to this truth allows statistical estimation

of the bias and variance introduced through simplification of stratigraphy to fewer layers,

which are reported as a function of snow depth and number of layers.

The results are related in Sect. 5 and discussed in Sect. 6 where it is indicated that

neglect of statigraphy may mean that Globsnow has unaccounted variance in its assimi-

lation step. The results have relevance to a user who may use these to calculate variance

introduced due to simplified stratigraphy, or alternatively may choose an optimal layering

structure based on the criteria of computational expense and acceptable levels of variance.

However, it is cautioned that these results are only derived for snow typical of that present

during CLPX.

2 Current Snow Mass Estimation

2.1 General Circulation Models and Reanalyses

Without the global coverage of space-based remote sensing, alternative methods of snow

mass estimation have relied on a combination of models and observations. Coupled GCMs

are a modelling approach and have been used to estimate SWE climatologies for current

conditions, and the spatial and temporal components of these climatologies have been

explored by Clifford (2010) and Roesch (2006) among others.

However, due to the chaotic nature of the system, fully coupled models are only capable

of estimating climatology and, in order to produce a time series corresponding to the real-

world realisation of weather, regular assimilation of observational data is required.

As such a number of reanalysis products have been produced, coupling LSMs which

simulate the snow cover with an atmospheric model. These reanalyses regularly assimilate

observations of both the atmosphere and the land surface, although no fully coupled land–

atmosphere reanalysis yet assimilates microwave radiances for the purpose of snow mass

estimation. Instead, in situ synoptic station measurements of snow depth and estimates of

SCA based on satellite data are used.

The full details of these reanalyses and their assimilation schemes are beyond the scope

of this paper; the reader is directed to the references in Table 1, which details selected

reanalyses and other gridded products which offer snow mass or snow depth.

A number of assessments of reanalysis performance in terms of snow variables have

been undertaken. Khan and Holko (2009) noted that reanalyses performed well in much of

the Aral Sea Basin, although there were underestimates of snow depth and SWE in

mountainous areas. Betts et al. (2009) determined that both the European Centre for

Medium Range Weather Forecasts (ECMWF) 40 year and Interim Reanalyses (ERA-40,

ERA-Interim) suffer from early snow melt out. Meanwhile, Clifford (2010) reported the

spatial and temporal characteristics of different approaches to snow mass estimation in

more detail, and that the potential for future improvements remains clear. Improved

modelling is one opportunity, with Salzmann and Mearns (2012) comparing SWE
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modelled by a number of higher resolution regional climate models (RCMs) with snow

telemetry observations in the Upper Colorado River Basin. Though the RCMs remained

too warm and dry with too little SWE, their simulations better matched observations than

the original reanalysis. However, biases remained even with these more computationally

expensive models.

2.2 Products Which Prioritise Snow

2.2.1 Surface Observations Only

Outside of reanalyses that attempt to produce complete time series of land and atmosphere

properties, a number of snow-specific products have been developed. The simplest

approach is to grid weather station snow depth records as performed by Dyer and Mote

(2006) in North America and Kitaev et al. (2002) in the Former Soviet Union (FSU). In

Kitaev et al.’s work, station number varied from 2 to 25 per 3� 9 5� grid square and

snow’s spatial variability within such areas means that large uncertainties are associated

with such sparse measurements. Chang et al. (2005) estimated that across the Northern

Great Plains, 10 measurements were required per 1� cell to reduce sampling error of snow

depth to ±5 cm, equivalent to a station density between 6 and 75 times higher than

available to Kitaev et al. Furthermore, the sampling distribution of snow stations was found

by Brasnett (1999) to be biased to low elevations.

Post hoc assessment of snow mass is possible using river discharge data, although this

approach suffers from large uncertainties due to unknowns related to inter-annual terres-

trial water storage, periods of river ice and non-snow contributions. This approach has

allowed attempts to test seasonal estimates of snow mass in some basins (e.g., Grippa et al.

2005; Rawlins et al. 2007; Yang et al. 2007) and to provide evidence in conjunction with

other snow products for intensification of the Arctic hydrological cycle in response to

global warming since 1950.

2.2.2 Land Surface Models Assimilating In Situ Observations

Simple areal averaging of snow depth observations cannot account for variation in areas

between point measurements, which can be driven by different elevation, meteorological

regime or land surface category. LSMs featuring a snow component are in principle able to

account for these effects and, furthermore, these models may assimilate measured snow

depths when available to improve the analysis.

Brown et al. (2003) used the Canadian Meteorological Centre’s analysis scheme

developed by Brasnett (1999) to generate a gridded time series of North American snow

depth and SWE. A simple snow model was driven by meteorological data from the EC-

MWF 15-year Reanalysis (ERA-15), with assimilation of 8,000 snow measurements per

day from the USA and Canada. This method relies on relatively intensive daily mea-

surements, for which the authors noted that availability drops off rapidly poleward

of 55� N.

A global estimate is published by the ECMWF using a similar approach, and a summary

and assessment is provided by Drusch et al. (2004). They note that the observational

stations are biased towards lower latitudes and lower elevations and that, without assim-

ilating remotely sensed information on snow-covered area, there are disagreements

between the estimated snow-covered areas, and from the Interactive Multisensor Snow and

Ice Mapping System (IMS) described in Ramsay (1998).
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2.3 Remote Sensing of Snow Mass

The approaches discussed in Sects. 2.1 and 2.2 have been used to estimate snow clima-

tologies and detect climatic changes, but their continued reliance on intensive in situ

measurements leaves large uncertainties in some regions. This justifies continued devel-

opment of remote sensing products, which can provide global coverage for improved

estimates of snow mass where station density is insufficient.

Beginning with the work of Frappart et al. (2006) and continuing with Niu et al. (2007)

and others, the Gravity Recovery and Climate Experiment (GRACE) gravimetry mission

has been used to estimate snow mass based on observing changes in Earth’s gravitational

field. GRACE responds directly to gravitational changes, suggesting that it should be well

suited to retrievals of deep snow or snow in forested areas where traditional remote sensing

has to see ‘through’ the trees. However, further modelling is required to control for other

changes in mass of the land surface associated with, for example, other forms of terrestrial

water storage. Additionally, GRACE is not suitable for high-resolution measurement with

Frappart et al. (2006)’s reported resolution being 660 km. Finally, it is not yet appropriate

for assessing long-term changes as the GRACE satellites were only launched in 2002.

As such, efforts for the remote sensing of snow mass have typically focussed on the passive

microwave regime, using frequencies near 19 and 37 GHz, for which there has been continuous

near-global coverage since the launch of the Scanning Multichannel Microwave Radiometer

(SMMR) on Nimbus-7 in late 1978. Many snow products typically utilise the Special Sensor

Microwave Imagers (SSM/I) (e.g., Tedesco et al. 2004a) and/or the Advanced Microwave

Scanning Radiometer-Earth Observing System (AMSR-E) (Tedesco et al. 2004b).

When observing a typical snowpack, the majority of radiation measured at these

wavelengths will have originated from the ground surface, with scattering within the snow

the dominant loss mechanism. This scattering is frequency dependent and increases with

the quantity of snow, allowing a determination of SWE from the difference between the

brightness temperatures in these two channels.

Figure 1 shows simulations of the brightness temperatures over a snowpack at 18.7 and

36.5 GHz horizontal polarisations viewed at 53�. Snow is assumed to be a homogeneous single

layer with properties based on those typical of Colorado snowpacks of under 120 cm depth

discussed in Davenport et al. (2012). As the amount of snow increases up to 500 mm SWE, the

brightness temperature at both frequencies falls, but it falls more quickly at the higher frequency.

By considering the difference in brightness temperatures between the two frequencies,

the effect of absolute temperature change is reduced and this led to the simplest approach

to SWE retrieval, often called the Chang Algorithm, which was originally developed for

SMMR (Chang et al. 1987), a general variant of which is as follows:

SWE ¼ A TB19H � TB37H þ Bð Þ ¼ AðDTB;H þ BÞ ð1Þ

where A and B are constants depending on the exact frequency of the channel and snow

properties, TB19H and TB37H are the recorded brightness temperatures at the available

channels nearest 19 and 37 GHz horizontal polarisation. Figure 1 shows this equation fit to

the first 100 mm SWE, and for this snow, the values are A = 2.54 mmSWE K-1 and B = 3 K.

Passive microwave measurements offer the advantage of being largely independent of

illumination conditions, precipitation or cloud cover, allowing night time measurements

when temperatures are likely to be lower and moisture within the snow is more likely to

have refrozen. However, the range of values which can be reliably sensed is limited at the

lower end by sensor precision, and, at higher values of SWE, the signal saturates (displayed
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in Fig. 1 as a flattening of the solid line). The limiting value of this saturation depends on

snow properties and was reported by Foster et al. (2005) to be 0.8 m depth.

In reality, the saturation level depends on the snow properties and on the definition of

saturation. For the snow properties shown in Fig. 1, saturation could be determined as the

point at which the SWE inverted from the brightness temperature difference using a linear

fit diverges by more than 10 % away from the true value. In this case, this occurs at a SWE

of 143 mm, equivalent to a depth of 79.4 cm which matches well with the value provided

by Foster et al. (2005).

An alternative definition of saturation accepts that a more complicated function may be

used to map observed brightness temperature difference to SWE. Under this definition,

saturation is the point at which the signal is no longer sufficiently sensitive to SWE. This

can be determined as the point at which error in inverted SWE, D SWE, exceeds some

acceptable value D SWEa. The sensitivity of brightness temperature difference DTB ¼
TB19H � TB37H to SWE is oDTB

oSWE
where the partial derivatives indicate that DTB is not

only a function of SWE. If the brightness temperature difference observation has a pre-

cision DðDTB;obsÞ, then the SWE at which saturation occurs is defined from:

oDTB

oSWE

����
SWE

� ��1

D DTB;obs

� �
[ D SWEa ð2Þ

Therefore, the saturation value depends on the acceptable uncertainty in SWE, the

precision of the observing system and the properties and uncertainties associated with the

Fig. 1 Simulated brightness temperature for a homogeneous snowpack as a function of snow water
equivalent (SWE) at the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-
E) channels near 19 and 37 GHz horizontal polarisation. Snowpack properties are averages from Cold Land
Processes Experiment (CLPX) snowpits where depth was \120 cm. Density of 170 kg m-3, grain size of
0.53 mm, snow temperature -4.6 �C and ground temperature -1.5 �C. The upper dashed lines show the
brightness temperature at 19H and 37H as labelled in the legend (centre left), the solid line is the difference
in brightness temperature between the two (see Eq. (1)), offset by 3 K to ensure that the value is zero when
no snow is present. The straight dash-dotted line is the best fit to the first 100 mm of SWE

Surv Geophys (2014) 35:785–812 791
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sensitivity of DTB to changes in SWE. This result holds for ideal snow and demonstrates

the possibility that the saturation value is not globally fixed. For example, with an

uncertainty of 2 K in observed brightness temperature difference and a SWE error

threshold of 10 mm for the uniform snowpack in Fig. 1, the saturation SWE rises to

195 mm, equivalent to 108 cm depth.

However, in real situations, this is non-trivial to determine, as simulating the radiative

transfer of actual snow profiles leads to additional uncertainty in DTBðSWEÞ which must

also be considered. Given an optimistic assessment of our ability to simulate radiative

transfer in snow and observational uncertainties, this saturation threshold will be assumed

to limit the utility of passive microwave measurements to snowpacks of\180 mm SWE or

under 1 metre in depth.

Davenport et al. (2012) showed clearly that the functional form of DTBðSWEÞ depends

on the microstructural properties of the snow. The physical basis of DTB’s sensitivity to

microstructural properties can be explored by assuming that the snow is a collection of

spheres in each other’s far fields, for which the single scattering properties can be cal-

culated from Mie theory. In particular, the single scattering albedo is actually a function of

the size parameter x ¼ 2pr
k where r is the radius of the scatterer and k the wavelength.

Single scattering properties for non-spherical grains have also been determined (Teschl

et al. 2010), although radiative transfer models (RTMs) generally assume sphericity.

Critically, it is the ratio of scatterer size to wavelength, which determines the single

scattering parameters, and so the retrieved signal is strongly affected by the size of the

scatterer as well as the wavelength of the light. Figure 2 shows the brightness temperature

differences assessed for snow with scatterer diameters ranging from 0.2 to 1.0 mm in

0.2 mm increments, and Table 2 shows how the Chang sensitivity depends strongly on this

value. Grains of 0.2 mm diameter are typical of fresh snowfall and 1.0 mm of moderate-

sized depth hoar at the bottom of snow layers, although larger and smaller sizes do occur.

From Fig. 2 and Table 2, it can be seen that the saturation value of the signal will also

depend on the properties of the snow.

The Mie approach provides useful physical insight about scattering of radiation in snow,

but any observations of the structure of real snowpacks show that snow is a complex,

porous medium and as such these microstructural parameters are accounted for in a number

of ways, such as specific surface area (SSA), optical grain size and correlation length. The

optical grain size approximation comes from modelling the snow as a collection of spheres

in each other’s far fields, with the optical grain size defined as the spherical grain size

required to reproduce the optical properties of the real snow. This size can vary with

wavelength and with grain shape (Macke et al. 1996).

Grenfell and Warren (1999) found that if the optical properties of non-spherical snow

were modelled using spheres, then spheres with the same SSA best matched the optical

properties of the snow, for which the diameter can be determined from other properties

using;

Dq ¼
6M

qS
ð3Þ

where M is the total snow mass in a selected volume, q the snow density and S the total

ice–air interface area.

Correlation length is defined as the gradient of the spatial autocorrelation at a dis-

placement of zero, and like specific surface area is defined independently of grain shape. It

can be calculated from mean intercept lengths, by numerical analysis of the autocorrelation
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gradient, or by fitting to an assumed exponential autocorrelation function. There are also

functions for converting from correlation length to optical grain size (e.g., Mätzler 2000;

Wiesmann et al. 2000; Mätzler 2002).

3 Assimilation of Passive Microwave Observations to Improve Snow Mass Estimation

3.1 Assimilation of Passive Microwave Brightness Temperatures

Microwave-only algorithms retain large uncertainties due to issues with forest coverage

and changes in the scattering properties of snow, driven primarily by the snow’s micro-

structure. However, if these effects could be quantified, then an assimilation scheme would

be able to extract information from the retrieved brightness temperatures to improve a

snow analysis.

Sun et al. (2004) suggested a scheme, which forecasts the snow cover using a LSM

before assimilating SWE estimated from PM. They performed an experiment using a

synthetic truth generated by the LSM versus two alternative model runs with strongly

perturbed initial conditions, one of which assimilated observations from the truth using a

Kalman Filter, and one which was left to run as an open loop. They demonstrated that the

assimilation scheme returned the analysis state close to the truth within 1 week, and then a

Fig. 2 Brightness temperature
difference as a function of snow
water equivalent (SWE) for the
same snow properties as in
Fig. 1, except that grain diameter
is varied from 0.2 to 1.0 mm in
0.2 mm increments. The legend
(top left) indicates which line
style refers to each grain size
value. The shaded straight line is
the linear best fit to the first
50 mm SWE worth of the central
grain size value

Table 2 Chang sensitivity cal-
culated from the trend in bright-
ness temperature difference for
the first 100 mm of snow water
equivalent (SWE) for grain
diameters of 0.2–1.0 mm

The snow and surface properties
used are those from Fig. 1

Grain diameter
(mm)

Chang sensitivity
(mmSWE K-1)

0.2 14.64

0.4 4.18

0.6 2.47

0.8 1.85

1.0 1.55
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later study by Dong et al. (2007) simulated SWE in North America with and without the

assimilation of the SMMR SWE product. Assimilation of the SMMR product improved the

analysis where SWE \ 100 mm, provided the SMMR product was quality controlled.

However, this approach did not account for the changes in snow microstructure, which

affect the scattering, as the SMMR-based SWE product is based on a variant of the Chang

Algorithm. A more comprehensive approach is detailed in Durand and Margulis (2006),

who describe an Ensemble Kalman Filter (EnKF) approach of assimilating microwave

brightness temperatures.

The Kalman Filter approach consists of two steps to produce an analysis of the variables

of interest, which will be some vector xa whose components represent snow properties such

as the density and grain size of each snow layer. In the first step, the analysis xa
k�1 from the

previous time step tk�1 is propagated using a model M to produce a forecast xf
k:

xf tkð Þ ¼ Mk�1 xa tk�1ð Þ½ � ð4Þ
This forecast is then updated with reference to observations:

xa tkð Þ ¼ xf tkð Þ þKk yk � Hk xf tkð Þ
� �� �

ð5Þ

where yk is the observation vector and Hk is an operator, which converts the state vector

into an equivalent observation. In the case of snow remote sensing, it is some model of

snow’s radiative transfer that converts the known snow properties from the state vector into

a vector of observable brightness temperatures or some combination thereof. Kk is the

Kalman Gain, which acts as the weighting function and depends on the error covariances of

the forecast Pf and the observations Rk:

Kk ¼ Pf tkð ÞHT
k HkPf tkð ÞHT

k þ Rk

� ��1
: ð6Þ

Here Hk is the linearised approximation of the observation function Hk. It can be seen

that as observational error decreases, the Kalman gain increases and greater weight is

placed on the observations. The forecast error covariance PfðtkÞ consists of the model error

covariance Qk�1 and the error covariance introduced due to errors in the previous step’s

analysis, Paðtk�1Þ:

Pf tkð Þ ¼Mk�1Pa tk�1ð ÞMT
k�1 þQk�1 ð7Þ

where Mk�1 is the linearised approximation of the forecast operator M. Estimating this

component of the error covariance can be enormously computationally expensive, leading

to the attraction of the EnKF where a model ensemble allows the generation of statistics to

approximate Mk�1Pa tk�1ð ÞMT
k�1 and therefore allow the calculation of the Kalman Gain.

The Kalman Gain is also required to calculate the error covariance of new analysis

PaðtkÞ, which is reduced by the assimilation of observations relative to the forecast:

Pa tkð Þ ¼ I�KkHkð ÞPfðtkÞ ð8Þ
Durand and Margulis (2006) tested this approach with a synthetic experiment of

snowpack progression in the USA. The system truth was taken to be a single model run

with forcing perturbed by doubling the precipitation and adding autocorrelated noise to

mimic known issues of gauge undercatch. Synthetic passive microwave observations at

SSM/I or AMSR-E frequencies were simulated by the Microwave Emission Model of

Layered Snowpacks (MEMLs, Wiesmann and Mätzler (1999)) corrupted with 2 K white
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noise, and synthetic albedo observations were taken from the truth run with 5 % white

noise applied.

Forecasts were generated by an ensemble of 100 LSM replicates with perturbations

applied to forcing and model parameters, which allowed the mean forecast state and the

forecast error covariance to be determined from the ensemble statistics. Synthetic albedo

observations were assimilated daily at 1 pm and passive microwave observations at 1 am

to mimic MODIS and AMSR-E overpass times.

The regular assimilation of SSM/I frequencies alone significantly reduced both bias and

root mean square error (RMSE) of SWE by approximately 85 % relative to the open-loop

simulation. The EnKF approach also allowed an assessment of the contribution of each

channel, which indicated that the majority of the SWE improvement occurred due to the

assimilation of the 37-GHz channel at both polarisations. The 89-GHz channel appeared to

marginally worsen the SWE analysis by nudging it away from truth; however, it signifi-

cantly improved the grain size analysis, which was vital for the brightness temperature

simulations.

Having demonstrated the assimilation approach using a synthetic experiment, the later

work of Durand et al. (2008) used data from the University of Tokyo’s Ground Based

Microwave Radiometer (GBMR-7) and snowpits at NASA’s Cold Land Processes Experi-

ment (CLPX) to test the performance of the MEMLS radiative transfer model. Furthermore,

they were able to identify accuracy criteria for the snow state variables. They determined that

simulated optical grain size should be accurate within ±0.045 mm and the density of melt-

refreeze layers within ±40 kg m-3 in order for predicted brightness temperature errors to be

small enough that the assimilation procedure improves the analysis.

Further work has considered the effect of spatial scaling on the analysis, with different

spatial resolutions in LSMs and microwaves explored in De Lannoy et al. (2010), while

Andreadis et al. (2008) discuss how to account for snow’s spatial variability in an

assimilation scheme.

3.2 Globsnow

3.2.1 Methodology

The European Space Agency (ESA) Globsnow project’s aim is ‘production of global long

term records of snow parameters intended for climate research purposes on hemispherical

scale’ (Finnish Meteorological Institute 2012). The Globsnow SWE product is a system

where the prior state is estimated from field observations of snow depth, with updates

related to the satellite-observed brightness temperature difference (DTB;V) at vertical po-

larisation between channels near 19 GHz (T19 V) and 37 GHz (T37 V).

The use of a brightness temperature difference reduces the sensitivity of the satellite

observations to absolute temperatures; if non-snow surfaces are in the field of view and

they have the same emissivity at both 19 and 37 GHz, then their effect on the measured

brightness temperature difference is dependent only on the area they cover and is inde-

pendent of their temperature.

Globsnow produces maps of SWE across the Northern Hemisphere on a 25-km Equal

Area Scalable Earth (EASE) grid, with areas defined as too watery ([50 % open water) or

too mountainous (standard deviation of elevation [200 m) masked out. Largely based on

the approach of Pulliainen (2006), its methodology is explained in detail in Takala et al.

(2011) and proceeds as follows:
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1) The forecast snow depth map is generated by ordinary kriging between in situ snow

depth observations provided by the ECMWF and SCCONE (Snow Cover Changes Over

Northern Eurasia, Kitaev et al. 2002), and the in situ measurements are given an assumed

variance of 150 mm2 based on the comparison with coincident snow surveys. This forecast

map at time t contains the a priori snow depth D̂ref;t and its variance r2
D;ref;t.

2) At each grid point where a snow depth observation exists, the Helsinki University of

Technology radiative transfer model is used to simulate the brightness temperature dif-

ference DTB = T19V–T37V. The effect of vegetation is included in the radiative transfer,

dependent on forest cover fraction in Eurasia, or at 80 kg m-3 ha-1 stem volume in North

America. A single snow layer of 0.24 g cm-3 density is assumed, and snow depth is taken

from the in situ observation. Grain size is varied at each location i with the result obtained

according to the cost function:

min
d0;i

T19Vmod d0;i;Dref;i

� �
� T37Vmod d0;i;Dref;i

� �� �
� T19Vobs � T37Vobsð Þ

� �2n o
ð9Þ

where d0;i is the grain size at the ith location, which is allowed to vary and Dref,i is the

locally measured snow depth. The final grain size (d0) and its error variance (r2
d0;t) at each

measurement location come from the ensemble of the nearest stations (N = 6).

3) A full grain size map with variances is generated by kriging between the point grain

size estimates from step 2).

4) At each grid cell, the grain size value and an assumed constant density of

0.24 g cm-3 is used as input to the HUT radiative transfer model by varying the snow

depth Dt to obtain:

min
Dt

ðT19Vmod Dtð Þ � T37Vmod Dtð ÞÞ � T19Vobs � T37Vobsð Þ
rt

� �2

þ Dt � D̂ref;t

rD;ref;t

� �2
( )

ð10Þ

where the variance at time t, r2
t is obtained from a Taylor expansion of TBðDt; d0;tÞ with

respect to grain size, which leads to

r2
t ¼

oTB Dt; d0;t

� �
od0

� �2

r2
d0;t

ð11Þ

This variance provides the weighting of the microwave contribution, allowing a large cor-

rection to the forecast when the SWE sensitivity is high but introducing a large cost to microwave-

based adjustments when the signal is saturated with respect to SWE but oTB=od0 grows. This

effect is seen in Fig. 2 as the increasing spread in simulated DTB for different grain sizes.

3.2.2 Limitations of Globsnow

Globsnow was validated with independent in situ snow depth measurements from cam-

paigns in the Former Soviet Union, Finland and Canada. RMSE values of \40 mm were

found where SWE was below 150 mm, although errors increase for thicker snow.

Assimilating the passive microwave data was found to improve on the forecast, thus

demonstrating the utility of microwave retrievals.

Hancock et al. (2013) considered Globsnow and the Chang-based AMSR-E and SSM/I-

only SWE products for the purpose of assessing LSMs. The Chang-based products were

found to spike towards the end of the season, which was attributed to melt-refreeze cycles
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forming ice lenses which increase the effective grain size and cannot be accounted for in

the Chang-based approach which assumes a static snow microstructure.

However, a number of questionable assumptions remain in the Globsnow approach. The

assumption of constant density is not necessarily valid, as snow settles and increases in

density during the season due to metamorphism and overburden (Anderson 1976), and

variations in density or in the effect of vegetation are included through varying the grain

size parameter which is an unphysical approach. Furthermore, the snow depth forecast is

produced purely from interpolated observations, which as previously noted are biased

towards low latitudes, low altitudes and clearings in forests. These biases could be

accounted for by a LSM, which in addition to producing a snow depth forecast could also

produce a forecast of the density and grain size.

Durand et al. (2009) showed that even a relatively simple land surface model coupled to

a microwave emission model improved snow depth estimates once microwave brightness

temperatures were assimilated. The later work of Brucker et al. (2011) and Toure et al.

(2011) coupled the snow model Crocus (Brun et al. 1992) to the MEMLS radiative transfer

model and found that point observations of microwave brightness temperatures at both

H-pol and V-pol were generally well simulated. Brucker et al. (2011) noted that late season

grain growth was not well modelled in Crocus, and Toure et al. (2011) indicated that ice

lenses must be accounted for. On a larger geographical scale, Dechant and Moradkhani

(2011) reported that assimilating brightness temperatures with the SNOW-17 snow model

and a soil moisture model showed potential benefit for operational stream flow forecasting.

Naturally, increasing physical complexity leads to increased computational expense and

computational expense is also affected by the number of layers in the snow model. Most

land surface models typically limit the number of snow layers, with the ECMWF’s Tiled

ECMWF Scheme for Surface Exchange over Land (TESSEL) limited to one layer, whereas

the Joint UK Land Environment Simulator (JULES) can run up to a user-defined number of

layers, with new layers only introduced beyond certain thickness thresholds.

In reality, snowpacks almost always have distinct physical layers and this stratigraphic

contrast can have important effects on the radiative transfer. Lemmetyinen et al. (2010)

compared passive microwave measurements taken in situ with layered snow information

and found that the simulated brightness temperature was affected by whether or not snow

layering was included. These approaches used field-observed layer properties, but did not

consider how the radiative transfer model would perform if provided with profile infor-

mation as it would be output by a model.

This is assessed here through the experiments detailed in Sect. 4, where measured snow

profiles from CLPX snowpits are resampled to differing layering structures. After a scene

simulation experiment to confirm that the HUT radiative transfer model is able to repro-

duce observations within acceptable uncertainties, the simulated DTB;V values for each

snowpit when resampled to different layering structures are compared. This comparison

across a large number of snowpits allows estimation of the bias and variance introduced

when the layering structure is simplified.

4 Methods

4.1 The Cold Land Processes Experiment (CLPX) Resampled Snowpits

The CLPX dataset provides snow profiles from a large number of snowpits over four

intensive observation periods (IOPs). Two of these periods, IOP3 and IOP4, coincide with
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measurements of microwave brightness temperature from both SSM/I and AMSR-E and as

such these periods are assessed here. Snowpit profiles provided snow properties for HUT

radiative transfer simulations, which were compared with the satellite retrievals to confirm

HUT’s applicability.

Figure 3 shows the CLPX study area, largely in Colorado, USA, and the snowpits were

within the three mesoscale study areas (MSAs) each of which is approximately 25 by

25 km, the size to which AMSR-E and SSM/I 19 and 37 V brightness temperatures are

resampled.

For the first DTB;V simulations, snow profiles were produced with layers of 10 cm

thickness, limited by the spatial resolution of the temperature and density measurements.

These profiles are referred to here as the N-layer case and are assumed to represent truth. In

reality, snow layers are of irregular depth, but LSMs often feature prescribed layer depths

and the aim of this experiment is to compare LSM-like outputs.

Fig. 3 Map of Cold Land Processes Experiment (CLPX) area showing the mesoscale study areas (MSAs)
in which the snowpits were dug. (after http://www.nohrsc.nws.gov/*cline/clpx.html)
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Density and temperature were drawn directly from the field measurements, while the mean

of the minimum and maximum extent of the average common grain was taken as the grain size,

following Davenport et al. (2012). Grain sizes were reported by the observers by stratigraphic

layer, rather than at 10-cm intervals, and these were mass weighted onto the 10-cm profile.

As LSMs commonly feature a thin top layer to improve numerical handling of the

surface energy exchange, snowpits were resampled from the CLPX observational data with

and without a 2-cm surface layer. This did not affect any of the key results, and so

arbitrarily the case with a 2-cm surface layer is presented.

The snowpits were then resampled to profiles of 1–5 equally sized layers subject to a

minimum layer size of 10 cm, with the mass-weighted grain size, temperature and density

from the relevant observational layers applied to each of the resampled layers. Figure 4

illustrates sample layering profiles, where the 2-cm top layer is excluded from the layer

count, and for a snowpit of depth d, each of the n main layers is of depth ðd � 2Þ=n cm.

The minimum layer size criterion meant that, for example, a snowpit of 12 cm depth would

be identical in all layer cases and consist of a single 10-cm layer and the top 2-cm layer,

even in the 5- or N-layer cases.

This approach attempts to mimic a depth structure that might be output by an LSM. A

key feature is the prescribed layer thicknesses, as each layer depth can be determined

uniquely from the total snow depth, thus removing the need for layer thickness components

in the snow state vector. However, it is not necessarily representative of an individual LSM

snow scheme, as a variety exists, and rather than select some arbitrary combination of layer

sizes for each of the 1- to 5-layer schemes, a more simplistic approach was adopted.

Ground surface temperature was taken to be the temperature measured at 0 cm height.

Missing data were linearly interpolated, or if they were at the top or bottom of the pack,

then the nearest neighbouring value was used. If too many data were missing for this

interpolation, then the pit was removed from the analysis.

4.2 Comparison: Layered HUT Scene Simulation Versus Observations

The HUT performance was first assessed by simulating the scene brightness temperatures

based on the snowpit information, and comparing these simulations with satellite

Fig. 4 Example of the how snowpit data were restructured. The left-hand bar represents the observed
profile where depth and temperature are recorded for each 10 cm of the snow. The N-layer resampling
maintains 10 cm layer thicknesses but adds a 2-cm interaction layer at the surface, as is common in a
number of land surface models’ snow schemes. The other layering schemes apply a 2 cm top layer and then
evenly split the remaining snow depth, with density, snow and grain size mass-weighted according to the
observations. All layer structures from 1 to 5 inclusive were calculated, but only 1 and 5 are shown here for
simplicity

Surv Geophys (2014) 35:785–812 799

123Reprinted from the journal 313



retrievals. The multilayer implementation of the HUT model (Lemmetyinen et al. 2010)

simulated the brightness temperatures at 18.7 and 36.5 GHz vertical polarisation for each

snowpit with each of the layering structures described in Sect. 4.1. The brightness tem-

perature difference

DTB;V ¼ TB19V � TB37V ð12Þ

was considered throughout, for consistency with the Globsnow product. This offers the

further advantage of being less sensitive to errors in ground or exposed vegetation

temperatures.

In addition to the HUT simulations, a Chang algorithm output based on Eq. (1) and

using the CLPX coefficients reported in Sect. 2.3 was produced for each snowpit.

In each of the CLPX mesoscale study areas (MSAs), the snowpits were assumed to be

representative of the actual snowpack, such that the mean DTB;V of all of the snowpits

within the MSA represents the DTB;V contribution of the snow within that MSA. The scene

brightness temperature has contributions from snow, open ground and vegetation over

snow.

DTB;V;scene ¼ AopenDTB;V;open þ 1� FFð ÞAsnowDTB;V;snow ð13Þ

where A is the fractional area of the pixel that is either open or snow covered, and FF is the

forest fraction. With the assumption that DTB;open ¼ 0, the equation becomes

DTB;V;scene ¼ 1� FFð ÞAsnowDTB;V;snow ð14Þ

Since the distribution of the snowpit properties is assumed to match the distribution of

the snow within the scene, then the brightness temperature difference of the snow should

be equivalent to the average brightness temperature difference of the N snowpits.

DTB;V;scene ¼ ð1� FFÞAsnow

N

XN

i

DTB;V;i ð15Þ

where DTB;V;i is the brightness temperature difference between 18.7 and 36.5 GHz at

vertical polarisation for the ith snowpit.

Snow properties were assumed to be static throughout an Intensive Observation Period

(IOP) such that all measurements within each IOP could be used in the same analysis.

The fractional area of snow for each IOP and for each MSA was estimated by using the

8-day maximum extent snow cover map from MODIS, taken as the fraction of snow-

covered area divided by the total non-cloud-covered area. This offers the advantage of

minimising the effect of cloud cover, although can provide inconsistent results if signifi-

cant snowfall or melt occurs during the 8 days. The MODIS product is at 500 m spatial

resolution, so features 2,500 pixels within each 25-km passive microwave grid point.

Forest cover was estimated for each MSA using QuickSCAT data available from

Nilsson (2003) and the forest correction factor applied individually for each MSA. More

complex forest correction approaches exist, but are not adopted here.

Six sets of simulated scene DTB;V values were produced, for each of the layering

structures (1- to 5-layer plus the N-layer truth), and these were compared with SSM/I and

AMSR-E values, where all measurements within a day of each IOP period were recorded.

It should be noted that for IOP4, many snowpacks reported temperatures around the melt

point, suggesting the presence of liquid water, which acts to reduce the brightness tem-

perature difference through greater absorption and emission at both wavelengths. However,
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the percentage of snowpits that were noted by fieldworkers as ‘wet’ in the metadata did not

exceed 3 % in either period.

4.3 Comparison: N-layer Versus Fewer Layers of Stratigraphic Information

Using the same resampled snowpit data to represent realistic profiles as might be output by

an LSM, the DTB;V values simulated by the 1- to 5-layer simulations were assessed relative

to the N-layer simulations, which were assumed to be truth.

Uncertainty introduced into the DTB;V by simplification of the model layering was

determined from the difference between outputs for each of the 1- to 5-layer models versus

the N-layer model. Bias and standard deviation of these residuals is reported in Sect. 5.3

for each of the simpler models as a function of the model layer thickness.

5 Results and Analysis

5.1 Snow Properties at CLPX Sites

Table 3 summarises the main snow properties recorded from the snowpits and MODIS data,

including the number of relevant snowpits once those with insufficient data were deleted.

Notably, the snow in IOP4 during March was thicker than during IOP3 in February, although

the snow cover fraction had declined from universal coverage to around 80 %.

It should be noted that the average depth and SWE is not necessarily a good repre-

sentation, as the distribution of snowpit values is not symmetric, with a bias towards thin

pits in IOP3 and a bimodal distribution in IOP4, with a number of pits showing thin snow

(\50 cm) and thicker snow (*200 cm). The overall distribution is shown in Fig. 5

although thicker snow predominated at Rabbit Ears and Fraser and thinner snow at North

Park. Additionally, IOP3 saw generally cooler snow (-3.6 vs. -2.2 �C) and marginally

smaller average grain sizes (0.57 vs. 0.60 mm).

5.2 Simulated Scene Brightness Temperatures

Figure 6 shows the simulated scene DTB;V from Eq. (15), using the N-layer and 1-layer

HUT model compared with AMSR-E and SSM/I retrievals. Here, the scene is represented

by the average of all 3 MSAs. The difference between the N-layer and 1-layer simulations

is minimal (0.01 K in IOP3, 0.40 K in IOP4) compared with the difference between

simulations and observations, of approximately 3 K in IOP3 and 2 K in IOP4.

Table 4 shows the brightness temperature difference simulated using different model

layering profiles versus the observations. There is a negligible difference in the mean

simulated by different layering profiles. The overall Chang estimates are close to obser-

vations at IOP3, but are too high during IOP4. The Chang algorithm’s poorer performance

at individual MSAs (RMSE = 17 K) versus HUT (RMSE = 8 K) is hidden by the aver-

aging over the 3 MSAs. During IOP3, use of the Chang algorithm results in a large DTB;V

overestimate at Rabbit Ears MSA, which is counteracted by a large underestimate at North

Park MSA. During IOP4, a very large (32 K) overestimate by the Chang algorithm due to

saturation in the deep snowpits is partially offset by a 13-K underestimate at North Park.

The largest contributor to the HUT RMSE was due to a large underestimate during IOP4

at North Park, where simulated DTB;V were of order 1 K versus observed values of 14 K.
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This is consistent with the results of Davenport et al. (2012) for IOP4 and suggests that the

average snowpack was deeper than that sampled by the snowpits. The majority of North

Park snowpits occurred near roads and might therefore be biased towards thinner snow,

and excluding IOP4 North Park results, the HUT RMSE drops from 8 to 6 K, while Chang

increases from 17 to 18 K. The increase in Chang error is due to its North Park error being

an underestimate and therefore limited in size to below the 14-K observation.

A number of assumptions contribute to the uncertainty in the DTB;V estimates: static

snow properties, dry snowpits, a simplified vegetation model and unbiased sampling of the

real snow by the snowpits. Furthermore, other work (Picard et al. 2009) has found that

effective microwave grain size does not necessarily match that estimated by field obser-

vations. In the light of these assumptions, the HUT simulations are largely consistent with

the satellite observations and therefore justify continued assessment using this model.

The small differences in scene simulated DTB;V values when using the N-layer or 1-

layer HUT realisations does not necessarily indicate that they are equally valid, as the

averaging over a large number of simulations will suppress the variance. In the Globsnow

assimilation scheme, a single snow profile is taken to represent the snow at each grid point,

rather than the average of 59 profiles used here, and for a single simulation the output

DTB;V depends on the layering structure provided to the profile.

Table 3 Summary of snow input data for each intensive observation period (IOP) split by mesoscale study
area (MSA)

Dates MSA Snowpits Mean
depth (cm)

Mean
SWE (mm)

Snow
cover (%)

IOP3 20–25th February 2003 North Park 115 14.0 23.1 100

Rabbit Ears 18 225.6 580 100

Fraser 48 77.3 189 100

IOP4 26–30th March 2003 North Park 68 5.3 9.6 57

Rabbit Ears 44 229.0 758 100

Fraser 48 143.2 381 92

Fig. 5 Count of snowpits by depth for each intensive observation period (IOP)
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5.3 Differences Due to Layering Detail

It appears that for the CLPX pits, using the HUT radiative transfer model to generate the

scene brightness, temperature difference improves the simulation relative to using the

Chang algorithm approach. Furthermore, Lemmetyinen et al. (2010) reported that RMSE

and bias were reduced at these microwave channels when HUT accounted for the multiple

layering of snow, rather than using bulk averages in a single layer.

It was therefore assumed that the best simulation of DTB;V was provided by the HUT

model run with the N-layer realisation of the CLPX snowpit properties, and the perfor-

mance of simplified layer models should be compared to this. Here the same brightness

Fig. 6 Brightness temperature difference retrievals for special sensor microwave imager (SSM/I)
(triangles), advanced microwave scanning radiometer-earth observing system (AMSR-E) (squares) and
the average simulated snowpit data processed through the Helsinki University of Technology (HUT)
microwave emission model. HUT simulations are provided for the N-layer case (circles) and for a single-
layer case where all properties were averaged to one layer (diamonds). Legend in top right identifies marker
shapes and line styles

Table 4 Average brightness
temperature difference for each
intensive observation period
(IOP) as simulated by inverting
the Chang algorithm, using dif-
ferent numbers of layers in the
Helsinki University of Technol-
ogy (HUT) microwave emission
model, and the average retrievals
for advanced microwave scanning
radiometer-earth observing sys-
tem (AMSR-E) and special sensor
microwave imager (SSM/I)

TB(19H)-TB(37H) (K)

IOP3 IOP4

Chang 18.58 24.72

1-layer 20.23 13.86

2-layer 20.19 13.18

3-layer 20.24 13.31

4-layer 20.21 13.35

5-layer 20.23 13.32

N-layer 20.24 13.46

AMSR-E 16.03 15.71

SSM/I 18.40 15.64
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temperature simulations as in Sect. 5.2 were used, based on the CLPX snowpits as these

represent realistic snow profiles.

Simulated DTB;V was compared on a pit-by-pit basis, where the simulation for the

Chang algorithm and the 1- to 5-layer realisations of HUT were compared to the N-layer

output. Figure 7 demonstrates the comparison for the Chang algorithm and the 1- and

5-layer HUT output.

For these snow properties, the Chang estimate shows a low bias in simulated DTB across

much of the range, but a very large positive bias at high values of SWE. This is due to the

CLPX snow properties differing from those assumed by Chang for the low values of SWE

and by saturation of the signal at higher SWE values.

For the HUT simulations, bias is much smaller and scatter is reduced relative to the Chang

estimate. This scatter is an estimate of the uncertainty introduced by simplifying the model to

fewer layers. At the lowest brightness temperature differences, the scatter is zero as the minimum

layer depth criterion ensures that for pits of depth\12 cm, the 1-layer and N-layer realisations are

identical. The scatter is less prominent for IOP3 than for IOP4, possibly due to IOP4 featuring a

larger number of thicker snowpacks with potentially more complex stratigraphy.

In an assimilation system, the snow model may output a single profile for each grid

point, equivalent to a single point on the graphs in Fig. 7, and the deviation about the 1:1

line indicates that use of a simplified profile will lead to different simulated DTB;V values

relative to the best simulation provided by the N-layer realisation.

To quantify this deviation, the residuals from the 1:1 fit were considered, i.e. the values

DTB;i � DTB;N ¼ DTB;V

� �
ilayers
� DTB;V

� �
Nlayers

ð16Þ

where DTb;i is the brightness temperature difference simulated with i layers, i is an integer

from one to five, and DTB;V;Nlayers is the brightness temperature difference when a maxi-

mum of N-layers are included in the model profile. As throughout, DTB;V represents the

brightness temperature difference described in Eq. (1).

The bias and standard deviation varies with snow thickness and, as such, the residual in

Eq. (16) was returned as a function of layer thickness in the 1- to 5-layer models and the

results are shown in Fig. 8, where only snow pits of depths up to 100 cm are considered.

Beyond this value, signal saturation would reduce the weighting applied to the microwave

observational increment in an assimilation scheme, justifying the neglect of thicker pits.

It is apparent that, as layer thickness is increased, the average deviation from the N-layer

simulation (which contains layers of 10 cm thickness) increases, and there is also an

increase in bias, most likely due to layer boundary effects.

As the Globsnow approach is allowed to freely scale grain size at the snow depth

observation locations, it is plausible that it accounts for this bias by artificially increasing

the grain size depending on snow thickness. Changing the effective grain size is already

known to account for variation in vegetation outside the model assumptions.

This would have a secondary level effect on the Globsnow assimilation scheme, by

changing the variance of estimated grain size rd0;t in Eq. (11) if the ensemble of stations used

for the averaging have different snow depths (and therefore different grain size biases).

The main concern for the assimilation scheme, however, is the random variance that is

introduced, as this means that the simulated DTB;V;mod in the assimilation cost minimisation

function (Eq. (10)) should have additional variance associated with the neglect of snow

stratigraphy. This variance is not accounted for in Eq. (11), which defines the weight given

to the observational increment based on the estimated variance. Instead, it is calculated
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from the single-layer model’s brightness temperature sensitivity to grain size, and the

statistics of the ensemble of nearest station grain sizes.

It was suggested in Sect. 3.2.2 that future implementations of Globsnow might be

improved by using a LSM to provide grain size estimates in every grid cell, thus

accounting for regional changes in geography and meteorology that are beyond the

Globsnow kriging approach, and for the well-noted bias in observation location towards

low latitudes, altitudes and canopy cover.

Even if an LSM were to provide the snow state forecasts, the current weighting scheme

would not account for the variance introduced by its simplified layering relative to the

truth. The LSM could be allowed to increase in complexity and contain more layers, but

computational expense would rise both in the forecast step and in solving the update

equation as the snow state vector and relevant covariance matrices would grow to contain

more layer properties.

A user could apply the approach adopted here to estimate the extra variance introduced

to their simulations as a function of the snow depth and their layering structure. Taking the

Fig. 7 Brightness temperature differences simulated for each pit during intensive observation period (IOP)
3 (left) and IOP4 (right). The ordinate in each case is the simulated brightness temperature difference using
the N-layer model, and the abscissa shows the Chang output (top), 1-layer Helsinki University of
Technology model (HUT) output (centre) and 5-layer HUT (bottom) output as labelled. The dotted line is
the one-to-one correspondence line
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gradient of the standard deviation graph in Fig. 9, the increase in error due to thickening of

snow layers beyond 10 cm was found to be 0.053 ± 0.006 K cm-1. The total error from

loss of stratigraphic information can therefore be estimated from the snow depth and

number of layers and is presented as a function of SWE (calculated by applying the CLPX

average density for snowpits\100 cm depth) in Fig. 10 for snowpits whose stratigraphy is

averaged to 1, 2 or 3 layers.

Additionally, the estimated error in DTB;V can be interpreted as an estimate of the SWE

error for this regime where the roughly linear relationship between DTB and SWE holds,

similarly to Eq. (1) but for vertically rather than horizontally polarised microwaves.

DSWE=D DTB;V

� �
was calculated from linear regression of the known SWE and N-layer

calculated DTB;V values for the pits of depth \100 cm, and found to be 2.45 ±

0.09 mmSWE K-1, and so error in DTB;V, D DTB;V

� �
was converted into an approximate SWE

error using:

D SWE ¼ D SWE

D DTB;V

� �D DTB;V

� �
ð17Þ

For a CLPX snow profile of 100 cm depth (170 mm SWE), simplification of the stra-

tigraphy from the measurement resolution of 10 cm down to a single layer of average

properties leads to DTB;V simulations that contain a 4.8-K error related to the loss of

stratigraphic information, equivalent to 13 mm SWE (7 % of total). In a two-layer model,

this error would be reduced to 2.1 K (5.6 mm SWE, 3 % of total) and for a three-layer

model 1.2 K (3.3 mm SWE, 2 % of total).

The individual user must decide model detail based on the trade-off between precision

and computational expense, and it is hoped that this approach will inform such decisions. A

user might determine a given threshold for fractional or absolute error in SWE, and from

this information could determine the number of layers to use in their model based on the

snow depth.

Fig. 8 Residual between brightness temperature difference simulated for models with layer thickness
[10 cm versus the 10-cm layer simulation, and plotted as a function of this bulk layer thickness. All data
represented as open circles and snowpits of depth [100 cm are excluded
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6 Discussion and Conclusions

Snow is extremely important in terms of meteorology, climatology and hydrology. Its

surface properties can affect atmospheric chemistry and the energy balance, and an

abundance of remote sensing products with well-characterised errors assess a wide variety

of these surface properties, from grain size to contaminants to surface melt.

Snow water equivalent is of great interest, and estimates of SWE are most easily defined

as a remote sensing, model, reanalysis or station-based product. Each of these approaches

provides its own advantages, but each also has drawbacks: reanalyses and station-based

products suffer from sparse observations, models have uncertainties due to limitations in

Fig. 9 Bias in simulated brightness temperature difference for snow profiles of thicker layers, relative to an
N-layer model with 10 cm layer thicknesses, where error bars are 2-sigma (left). The standard deviation of
brightness temperature difference relative to an N-layer model is quantified as a function of layer size
(right), with an approximately linear increase in simulated DTB;V error as snow stratigraphy is simplified

into thicker layers

Fig. 10 Absolute error in snow
water equivalent (SWE)
introduced via simplification of
the Cold Land Processes
Experiment (CLPX) pit
stratigraphy from N-layers to
fewer layers, as a function of
total SWE. Lines represent output
using a one- (dotted line), two-
(dashed line) or three-layer (solid
line) snow profile as labelled in
legend (top left)
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the physical modelling of complex processes in snow, and remote sensing products are

global, but limited by signal saturation and do not provide a unique SWE solution on

inversion due to their high sensitivity to other snow properties.

Data assimilation techniques that use microwave information to update a forecast from

other sources have been suggested to improve snow mass estimation. ESA’s Globsnow

uses modern assimilation techniques to bring together ground observations and remote

sensing products and has shown that assimilating microwave measurements does improve

SWE estimates. Globsnow isolates and accounts for the snow microstructure’s contribution

through a grain size parameter, which is obtained by fitting ground measurements to

satellite retrievals while assuming a single homogeneous snow layer. The brightness

temperature observable chosen by Globsnow is the difference between brightness tem-

peratures at 19 and 37 GHz vertically polarised microwaves, DTB;V.

The Globsnow grain size estimate is reliant on point measurements of snow, which may

vary greatly over relatively small areas, and it is suggested that physically based snow

models could provide an alternate source of information to improve the inversion of the

passive microwave signal.

Snow forms in layers and its stratigraphy can be complex, though physical models are

capable of reproducing this layering. Lemmetyinen et al. (2010) and Durand et al. (2011)

showed that for simulation of brightness temperatures over small areas of snow, this

complexity can be an important contribution to the signal. Globsnow ignores this com-

plexity in determining the error covariance for weighting the observational increment in

the update step, and this might lead to suboptimal updates.

The HUT radiative transfer model used in Globsnow was able to simulate satellite-

observed DTB;V with an RMSE of 8 K, down from the 17 K RMSE associated with

estimates made using the Chang algorithm typical of stand-alone microwave SWE pro-

ducts. The HUT RMSE was 6 K excluding one site where it was believed that snowpits

were biased towards thin snow.

After confirming that the HUT radiative transfer model used in Globsnow was able to

simulate satellite-observed scene brightness temperatures at NASA’s CLPX, the HUT-

simulated DTB;V values for CLPX snowpits resampled to different layering structures were

compared. Simulated DTB;V for snow with the maximum possible level of stratigraphic

detail based on the 10-cm resolution of CLPX density and temperature measurements was

taken as truth, and deviations from this were treated as due to errors introduced by sim-

plification of the stratigraphy to fewer layers.

Removing layering detail leads to a bias in the simulated DTB;V, likely due to the

removal of reflection effects at layer boundaries and possibly due to nonlinearities in the

DTB;V response to snow grain size and density. Globsnow can freely vary the grain size

to account for this, but this is likely to have second-order effects on the assimilation

scheme.

Simulated DTB;V values for the same snowpit at different levels of layering detail were

found to vary, with the standard deviation increasing approximately linearly with snow

depth. For snow of depth 100 cm (172 mm SWE at the CLPX sites), the standard deviation

in simulated DTB;V values for a single-layer model versus the N-layer model was estimated

at 4.8 K, equivalent to approximately 13 mm SWE (7 % of total). Using two snow layers

reduced the DTB;V error to 2.1 K (5.6 mm SWE, 3 % of total).

Globsnow reports RMSE values of 40 mm for SWE \150 mm using a single-layer

version of HUT, and the values found here suggest that layering could be a notable

component of that RMSE.
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Several groups are working on coupling physical snow models with microwave emis-

sion models to improve estimates of SWE, and these error assessments are important to

help users decide on model complexity, which carries a potentially high computational

cost. This paper argues that this is a promising avenue for improving global estimates of

SWE, but that not accounting for the effects of detailed stratigraphy can introduce unac-

counted-for variance which degrades the performance of an assimilation scheme. The

approach adopted here quantifies this variance for the HUT radiative transfer model and

presents it in such a way that it could be used to determine the snow layering structure in an

LSM for use in an assimilation system.
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Abstract Changes in mass contained by mountain glaciers and ice caps can modify the

Earth’s hydrological cycle on multiple scales. On a global scale, the mass loss from

glaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is an

important contributor to and modulator of river flow. In light of strongly accelerated

worldwide glacier retreat, the associated glacier mass losses raise concerns over the sus-

tainability of water supplies in many parts of the world. Here, we review recent attempts to

quantify glacier mass changes and their effect on river runoff on regional and global scales.

We find that glacier runoff is defined ambiguously in the literature, hampering direct

comparison of findings on the importance of glacier contribution to runoff. Despite con-

sensus on the hydrological implications to be expected from projected future warming,

there is a pressing need for quantifying the associated regional-scale changes in glacier

runoff and responses in different climate regimes.

Keywords Glaciers � Mass balance � Glacier runoff � Sea-level rise �
Mass-balance observations � Glacier projections � Modeling

1 Introduction

Mountain glaciers and ice caps, covering 734,400 km2 on Earth (Gardner et al. 2013), are

an integral part of the Earth’s hydrological cycle affecting water balances on all spatial
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scales. Meier (1984) was the first to recognize that these glaciers outside the two vast ice

sheets in Antarctic and Greenland—though only comprising \ 1 % of the Earth’s total ice

volume—are major contributors to global sea-level rise due to worldwide glacier wastage

in response to global warming. Various studies have attempted to quantify the mass losses

of these ice bodies and their effect on rising sea level indicating that glaciers outside the ice

sheets have contributed between one-third and one-half of global sea-level rise during the

last decades (Dyurgerov and Meier 2005; Kaser et al. 2006; Cogley 2009a, b; Gardner et al.

2013). The glacier contribution to future sea-level rise is expected to remain significant as

the global temperature is expected to further increase (Lemke et al. 2007).

On regional and local scales, glaciers are significant contributors to seasonal riverflow,

serving as frozen reservoirs of water that supplement runoff during warm and dry periods

of low riverflow. The ongoing glacier retreat has important implications for downstream

river flows, regional water supplies, sustainability of aquatic ecosystems, and hydropower

generation (e.g., Kaser et al. 2010; Huss 2011; Immerzeel et al. 2010). Glacier runoff is

intrinsically linked to the glacier’s mass balance, the latter defined as the sum of its total

accumulation (mostly due to snowfall, windblown snow, avalanches, and condensation)

and ablation (mostly due to melt, calving of icebergs, wind erosion, evaporation, subli-

mation) over a stated period of time (Cogley et al. 2011). Note that mass loss is defined

negatively. Despite the importance of glaciers as modifiers of global and regional water

cycles, there are relatively few attempts to assess recent and project future glacier mass

changes and quantity their impacts on riverflow on global and regional scales.

Previous review-type publications have focused either on glacier mass changes and their

measurement (Braithwaite 2002; Cogley 2011) or on glacier runoff and its characteristics

(Jansson et al. 2003; Hock et al. 2005; Hock and Jansson 2005) generally focusing on local

catchment or glacier scales. In contrast, here we combine both themes to highlight the links

between glaciers and river runoff focusing exclusively on regional and global scales. Our

goal is to provide a critical overview of studies that have attempted to quantify recent and

future glacier mass changes and to assess the importance of these mass changes in

streamflow on larger scales. We only consider glaciers distinct from the two ice sheets in

Greenland and Antarctica. First, we will provide an overview on global glacier mass

balances including assessment techniques (Sect. 2) and modeling of recent and future

changes (Sect. 3). Then, we will discuss the characteristics and definition of glacier runoff

(Sect. 4) followed by a discussion of studies exploring the role of glaciers in regional and

global hydrology (Sect. 5).

2 Assessing glacier mass balance on regional and global scales

Simulating glacier runoff requires accurate modeling of the components of the glacier mass

balance which in turn requires mass-balance measurements for calibration and validation

of mass-balance models (Konz and Seibert 2010). Below, we will briefly introduce the

techniques for assessing glacier mass balance on global scales before reviewing the results

of assessments and projections.

2.1 Assessments by in situ mass-balance measurements

Until recently, all global assessments of the mass balance of glaciers relied on some form

of extrapolation of available glacier-wide mass-balance measurements. The most tradi-

tional of these techniques, the so-called glaciological method, is based on snow probings

814 Surv Geophys (2014) 35:813–837
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and ablation stake measurements (Østrem and Brugman 1991; Kaser et al. 2002; Zemp

et al. 2013), and provides a measure of the surface mass balance. The glacier-wide surface

mass balance is estimated from extrapolation of the point measurements over the glacier

surface. The earliest mass-balance measurements were taken on the Rhône Glacier, Swiss

Alps, providing intermittent observations during 1874–1908 (Mercanton 1916). Annual

mass-balance measurements have been taken at two stakes on Claridenfirn in Switzerland

since 1914 (Müller-Lemans et al. 1994). The longest continuous glacier-wide mass–bal-

ance time series exists for Storglaciären, Sweden, reaching back to 1945 (Zemp et al.

2010). In situ measurements of mass balance have been obtained for * 340 glaciers

worldwide, of which * 70 glaciers have continuous annual observations longer than

20 years (Dyurgerov 2010). The records of glacier mass balance are complied and dis-

tributed by the World Glacier Monitoring Service (WGMS, Zemp et al. 2009).

Dyurgerov and Meier (1997a, b) provided the first detailed assessment of annual glacier

mass balances on global and regional scales followed by updates in Dyurgerov (2002,

2003), Dyurgerov and Meier (2005), and Dyurgerov (2010). Global averages were

obtained from area-weighted specific mass balances of smaller subregions whose balances

were estimated from the single-glacier observations. A similar approach was taken by

Ohmura (2004), while Cogley (2005) used a different approach by applying a spatial

interpolation algorithm, fitting a second-degree polynomial to the single-glacier observa-

tions to extrapolate the mass-balance observations to all glacierized cells in a 1 9 1�
global grid. In contrast to Cogley (2005) who used only glaciological mass-balance

measurements, Cogley (2009a, b) also included geodetic observations (Sect. 3.2) from

more than 250 glaciers in the interpolation. His estimate was about 30 % more negative

than the one derived solely from direct measurements possibly due to a better represen-

tation of marine-terminating glaciers (which, in addition to surface melting, lose mass by

iceberg calving and submarine melting); however, it was questionable whether the dif-

ference represented adequately the global-average ablation by calving and submarine melt

(Cogley 2009a, b).

Three global estimates (Ohmura 2004; Dyurgerov and Meier 2005; Cogley 2005) were

synthesized into a ‘‘consensus estimate’’ (Kaser et al. 2006) that was used in the Fourth

Assessment of the Intergovernmental Panel on Climate Change (IPCC; Lemke et al. 2007).

Not surprisingly, since they were based on the same observations, the three assessments

agree well with each other. A glacier mass loss rate of 0.50 ± 0.18 mm sea-level equiv-

alent (SLE) year-1 was found for the period 1961–2004 and an increased rate of

0.77 ± 0.22 mm SLE year-1 for 1991–2004, thus a considerably higher mass loss rate

than found for both ice sheets together in both periods (Lemke et al. 2007). Gardner et al.

(2013) applied the methods of Cogley (2009a, b) to all glaciers other than the ice sheets

and found a mass loss rate of 1.37 ± 0.22 mm SLE year-1 (0.92 ± 0.34 mm SLE year-1

excluding the glaciers in the Antarctica and Greenlandic periphery) for the period

2003–2009, comparable to the estimate for 2006 by Meier et al. (2007) derived from the

interpolation of local glaciological records (1.11 ± 0.26 mm SLE year-1, Table 1).

All these assessments suffer from serious under sampling. Direct observations of glacier

mass changes exist on fewer than 1 % of the glaciers worldwide (* 300 out

of * 200,000). These are geographically biased with more than 60 % of the records

originating from the European Alps, Scandinavia, Western Canada and USA, and parts of

the former Soviet Union (Dyurgerov 2010). They are also biased toward smaller, land-

terminating glaciers in maritime climates. The assumption that very few benchmark gla-

ciers with observed mass balances over short-term time period (\ 10 years) are repre-

sentative for the region-wide mass balance over * 40 years is a major but inevitable
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limitation in these assessments. Another source of uncertainty is poor knowledge of glacier

inventory data at that time, i.e., data on glacier location and surface area. Nevertheless,

these assessments provide continuous annual or pentadal time series of mass balance

reaching back into the mid-twentieth century.

2.2 Assessments by geodetic method

With the geodetic method, the glacier mass balance is estimated by repeated mapping,

either by ground-based surveys or remote sensing (laser, radar altimetry, stereoscopic

imagery). The change in glacier volume (obtained from the difference in glacier surface

elevations over the glacier area) multiplied by the average density of the removed or added

material gives the change in glacier mass. In contrast to in situ measurements, geodetic

observations generally have good regional but poor temporal coverage, since surveys are

often separated by multi-annual to multi-decadal gaps. On the other hand, the geodetic

method can observe the mass changes of tidewater glaciers, which are not included in

traditional glaciological measurements.

Initially, geodetic surveys have been mostly used to assess the mass changes of indi-

vidual glaciers (Cogley 2009a, b); however, increasing availability of remote sensing data

(in particular satellite laser altimetry after the launch of ICESat in 2002) triggered a

number of studies covering entire glacier regions. Geodetic estimates of mass changes on

regional scale exist for Alaska (Arendt et al. 2002; airborne laser altimetry, Berthier et al.

2010; satellite remote sensing), Arctic Canada (Abdalati et al. 2004; airborne laser

altimetry; Gardner et al. 2011; satellite remote sensing), British Columbia (Schiefer et al.

2007; satellite radar altimetry), Svalbard (Nuth et al. 2010; Moholdt et al. 2010; satellite

laser altimetry), Iceland (Bjornsson et al. 2013; airborne and satellite remote sensing),

Russian High Arctic (Moholdt et al. 2012; satellite laser altimetry), Austrian Alps

(Lambrecht and Kuhn 2007; DEM from aerial photographs), Swiss Alps (Paul and

Haeberli 2008; satellite radar altimetry), parts of central Asia (Gardner et al. 2013; satellite

laser altimetry), Patagonia (Rignot et al. 2003; Willis et al. 2012; satellite remote sensing),

the peripheral glaciers in Greenland (Bolch et al. 2013; Gardner et al. 2013; satellite laser

altimetry), and the glaciers on the islands surrounding the Antarctic mainland (Gardner

et al. 2013; satellite laser altimetry). Most of these estimates are derived for relatively short

recent (after 2000) time periods.

2.3 Assessments using satellite gravimetry

Gravimetric measurements have become a popular tool to estimate glacier mass changes

since the launch of the satellites of the Gravity Recovery and Climate Experiment

(GRACE) in March 2002. GRACE consists of a pair of satellites orbiting together and

measuring variations in the terrestrial gravity field, therefore detecting mass movements.

The twin satellites orbit the Earth 15 times a day, recording minute variations in the Earth’s

gravitational pull. When passing over a region of larger gravity, the first satellite is pulled

ahead of the trailing satellite, thus increasing the distance between the satellites. Mass

changes are derived from the constantly changing distance between the twin satellites

combined with precise positioning measurements (Tapley et al. 2004).

GRACE observes mass changes with high temporal resolution (e.g., sub-monthly), but

the spatial resolution is relatively poor (roughly 100 9 100 km). In contrast to the methods

above, no density assumptions are needed because mass change is measured directly.

However, since the satellites detect the total mass changes over a large area, and are unable

Surv Geophys (2014) 35:813–837 817

123331Reprinted from the journal



to resolve individual components of the mass changes, the signal needs to be decomposed

in order to identify the signal due to glacier mass changes. The decomposition is relatively

complex and, because it relies on the accuracy of models used to simulate Earth system

processes (isostatic rebound, tectonics, hydrology, atmosphere), it may introduce large

uncertainties into the derived mass balances (e.g., Jacob et al. 2012).

GRACE-derived regional-scale mass balances have been reported for the Canadian

Arctic (Gardner et al. 2011), Alaska (Tamisiea et al. 2005; Chen et al. 2006; Luthcke et al.

2008; 2013; Wu et al. 2010), Patagonia (Chen et al. 2007; Ivins et al. 2011), and High

Mountain Asia (Matsuo and Heki 2010). Jacob et al. (2012) were the first to compute

GRACE-derived mass-balance estimates for all glacierized regions outside Greenland and

Antarctica, followed by Gardner et al. (2013) who updated their estimate and generated a

new one based on the methods of Wouters et al. (2008). These two analyses report a total

mass budget for these regions of -170 ± 32 Gt year-1 and -166 ± 37 Gt year-1,

respectively, for the period 2003–2009. Jacob et al. (2012) note that their results are

roughly 30 % smaller than the most recent available estimate at that time, obtained from

the interpolation of glaciologically derived in situ observations by Dyurgerov (2010).

2.4 Assessments by other approaches

2.4.1 AAR method

Bahr et al. (2009) derived global glacier mass changes using an approach based on the

observations of the accumulation area ratio (AAR), i.e., the ratio of the accumulation area

to the total glacier area. AAR is closely related to the mass balance of a glacier in the case

when calving and submarine melt are negligible (Dyurgerov and Meier 2005). AARs can

be relatively easily approximated from aerial and satellite observations of the end-of-

summer snowline. For a glacier in balance with the climate, the AAR is equal to its

equilibrium value, AAR0, whose average value from a sample of * 100 glaciers has been

found to be 58 % (Dyurgerov et al. 2009).

Glaciers with AAR \ AAR0 will retreat to higher elevations, typically over several

decades or longer, and the AAR may return to the equilibrium value. Using AAR obser-

vations of * 80 glaciers collected during 1997–2006, Bahr et al. (2009) computed a mean

AAR of 44 ± 2 %, with AAR \ AAR0 for most glaciers in the dataset. Mernild et al.

(2013) revised the methodology, expanded and updated their data, and found an average

AAR of 34 ± 3 %, for the period 2001–2010. Using the empirical relationship between the

ratio AAR/AAR0 and annual glacier mass balance, Mernild et al. (2013) reconstructed

pentadal global glacier mass balances for 1971–2010, showing a good agreement with

estimates from Cogley (2009b). However, they also found much larger uncertainties in the

global estimate than in the original study by Bahr et al. (2009).

This AAR-based approach has also been used to provide estimates of future glacier area

and volume changes assuming that the future climate resembles the one of the recent few

decades. Bahr et al. (2009) estimated that, even without additional atmospheric warming,

the volume of glaciers must shrink by 27 ± 5 % to return to a balanced mass budget.

Assuming that the total volume of the Earth’s glaciers and ice caps is 650 mm SLE

(Dyurgerov and Meier 2005), the fractional losses would raise global mean sea level by

184 ± 33 mm. With the updated AAR dataset and updated estimate of total glacier volume

(430 mm SLE by Huss and Farinotti 2012) and accounting for the larger errors due to

regional and global undersampling, Mernild et al. (2013) revised this estimate to

163 ± 69 mm. We note that, because of its simplicity, the AAR-based approach may only
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give an indication of future mass changes, and projections should preferably be addressed

by models describing the physical processes involved and using transient climate

scenarios.

2.4.2 Multi-method approach

Gardner et al. (2013) synthesized a consensus global mass-balance estimate for the period

October 2003–October 2009 by standardizing existing and generating new, regional esti-

mates for 19 individual glacierized regions (Fig. 1) while investigating the large dis-

crepancies between the estimates obtained from GRACE and those from interpolating local

glaciological records (Table 1). The analysis is based on a new globally complete glacier

inventory (Randolph Glacier Inventory, RGI, Arendt et al. 2012). ICESat and GRACE

estimates agreed well in large glacierized regions, where results from spatial interpolation

of local records tended to give considerably more negative mass budgets. Their analyses

suggest that available local glaciological records are negatively biased in larger regions,

indicating that previous assessments based on spatial interpolation (Sect. 2.1) may have

overestimated mass losses. GRACE results tend to have large uncertainties in regions with

little ice cover. Therefore, averages of available ICESat and GRACE estimates were

generally used for the larger glacierized areas while results from spatial interpolation of

local measurements updated from Cogley (2009a) were adopted for the smaller

(\ 5,000 km2) regions where the density of in situ measurements tends to be high.

Results show that all glaciers other than the ice sheets lost 259 ± 28 Gt year-1

accounting for 29 ± 13 % of the observed sea-level rise of 2.50 ± 0.54 mm SLE year-1

during 2003–2009, thus matching approximately the combined contribution of the two

large ice sheets (Shepard et al. 2012). Glacier mass was lost in all 19 regions during this

period with the largest losses from Arctic Canada, Alaska, and peripheral Greenland.

3 Modeling glacier mass balance on regional and global scales

State-of-the-art simulations and projections of global mass changes of glaciers and ice caps

have relied on low-complexity models of surface mass balance and glacier dynamics.

These modeling studies have commonly assumed that the main drivers of glacier mass

balance are air temperature and precipitation, while glacier dynamics, involved in changes

of glacier area and thickness, are assumed to be successfully simulated by scaling methods

(Bahr et al. 1997). In the following sections, we will briefly discuss a selection of the

modeling studies (listed in Tables 1 and 2), narrowing our review to the most recent studies

(last few years) and to those that used some type of meteorological/climate data. Meth-

odological approaches fall broadly into two categories: (1) models based on mass-balance

sensitivities to temperature and precipitation changes (e.g., Hock et al. 2009; Slangen et al.

2012), and (2) direct modeling of transient surface mass balance (e.g., Raper and Brai-

thwaite 2006; Radić and Hock 2011; Marzeion et al. 2012). Most of the latter studies have

used an ensemble of global climate model (GCMs) to provide climate forcing for their

models. The use of a multimodel ensemble is a common way to provide a range of

projections and uncertainties in any climate change impact studies. Also, studies that

evaluated GCM simulations of mean climate on global and regional scales have shown that

the multimodel ensemble average is superior to any individual model (e.g., Gleckler et al.

2008; Pierce et al. 2009).
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To account for glacier area changes, most models apply volume–area (or volume–

length) scaling, which states that the volume of a mountain glacier is proportional to its

area (or length) raised to a power (Bahr et al. 1997). Considering the lack of data required

for higher-order glacier dynamics models, these methods are shown to be a good first-order

approximation of glacier dynamics for the assessments of global-wide and region-wide

glacier mass changes (Radić et al. 2007, 2008; Adhikari and Marshall 2012). Though

simple, the approach allows modeling of the tendency of mountain glaciers to reach a new

equilibrium in a warming climate since the specific mass balance (i.e., mass change per

unit area) tends to become less negative as the glacier retreats from low-lying, high-

ablation altitudes.

3.1 Models based on mass-balance sensitivity

Mass-balance sensitivities refer to the changes in mass balance that result from instanta-

neous changes in temperature and precipitation, and are generally estimated from mass-

balance modeling of glaciers with mass-balance observations (e.g., Braithwaite and Zhang

2000; de Woul and Hock 2005). In combination with the data on temperature (DT) and

precipitation change (DP), glacier mass change (DM) over a time window (Dt) can be

obtained from
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Fig. 1 a Regional glacier area in % relative to the global glacier area of 744,430 km2 (Gardner et al.
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Inventory; Arendt et al. 2012). Some of the 19 primary regions from Randolph Glacier Inventory (black
polygons) are combined here. c Regional glacier volume in % relative to the global glacier volume of
522 mm SLE (Radić et al. 2013). d Regional contribution of glacier volume loss (%) to global volume loss
of 155 mm SLE projected for 2006–2100 as a mean of 14 GCMs with RCP4.5 (Radić et al. 2013). e Total
regional volume change of glaciers over 2006–2100, expressed in % of initial regional glacier volume, as a
mean projection from 14 GCMs with RCP4.5 (Radić et al. 2013). Here, each region’s pie size is proportional
to its regional volume change (therefore the sum over the pie sizes is not 100 %). Numbers in the pies
correspond to the regions in (b)
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DM

Dt
¼ S

d _b

dT
DT þ d _b

dP
DP

� �

where d _b
dT

and d _b
dP

are mass-balance sensitivities to temperature and precipitation change,

respectively, and S is glacier surface area (e.g., Hock et al. 2009). The specific mass-

balance rate, _b, is typically in m water equivalent (w.e.) year-1.

Several studies have found that glaciers in wetter or maritime climates tend to be more

sensitive to temperature and precipitation changes than subpolar glaciers or glaciers in

continental climates (e.g., Oerlemans and Fortuin 1992; Braithwaite and Zhang 1999; de

Woul and Hock 2005). Quantifying the relations between mass-balance sensitivities and

climate variables enables extrapolation of the sensitivities to glaciers without mass-balance

observations. For the purpose of projecting global glacier mass changes, this approach was

first applied in Gregory and Oerlemans (1998), further developed in Van de Wal and Wild

(2001), and recently used for regional projections of twenty-first century sea-level change

based on IPCC AR4 SRES scenarios (Slangen et al. 2012). In Slangen et al. (2012), the

mass balance sensitivity (d _b
dT

) is differentiated between summer and non-summer months,

accounting for seasonality in glacier mass balance. Future scenarios of temperature and

precipitation changes are taken from an ensemble of 12 global climate models (GCMs),

and the results for the A1B emission scenario show a glacier contribution to the twenty-

first century sea-level rise of 130–250 mm.

Hock et al. (2009) used a mass-balance sensitivity approach to reconstruct the average

global glacier mass balance spatially resolved on a 0.5� global glacier grid (Cogley 2003)

for the period 1961–2004 using gridded reanalysis temperature and precipitation trends. At

the time of publication, this study was the only alternative approach to spatial interpolation

of local mass-balance observations (Sect. 2.1). Their global estimate of 0.79 ± 0.34 mm

SLE year-1 was larger than the consensus estimate of 0.50 ± 0.22 mm SLE year-1 by

Kaser et al. (2006) for the same period, mainly due to large modeled mass loss of glaciers

Table 2 Overview of studies projecting global glacier mass changes for the twenty-first century

Period Projected SLE (mm) Climate Scenario Reference

All glaciers Excl. A ? G

2001–2100 46, 51 SRES A1B, 2 GCMs Raper and Braithwaite (2006)

2001–2100 124 ± 37 99 ± 33 SRES A1B, 10 GCMs Radić and Hock (2011)

2006–2100 148 ± 35 RCP2.6, 13 GCMs Marzeion et al. (2012)

2006–2100 166 ± 42 RCP4.5, 15 GCMs Marzeion et al. (2012)

2006–2100 175 ± 40 RCP6.0, 11 GCMs Marzeion et al. (2012)

2006–2100 217 ± 47 RCP8.5, 15 GCMs Marzeion et al. (2012)

2000–2099 159 ± 52 116 SRES A1B, 12 GCMs Slangen et al. (2012)

2001–2100 150 ± 37 114 ± 30 SRES A1B, 10 GCMs Radić et al. (2013)

2006–2100 155 ± 41 122 ± 36 RCP4.5, 14 GCMs Radić et al. (2013)

2006–2100 216 ± 44 167 ± 38 RCP8.5, 14 GCMs Radić et al. (2013)

2006–2099 73 ± 14a RCP8.5, 10 GCMs Hirabayashi et al. (2013)

2012–2099 102 ± 28 64 SRES A1B, 8 GCMs Giesen and Oerlemans (2013)

a Here calculated by subtracting the reported projections for the period 1948-2005 (25.9±1.4 mm SLE)
from the period 1948-2099 (99.0±14.9 mm SLE) in Hirabayashi et al. (2013).
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peripheral to the Antarctic ice sheet (28 % of the global estimate), where large temperature

sensitivities, temperature trends, and glacier area combined to yield large mass losses. In

contrast, the Gardner et al. (2013) ICESat analyses found very little mass loss for the

Antarctic periphery during 2003–2009.

3.2 Models of surface mass balance

This approach directly models the evolution of surface mass balance in time by simulating

surface melting and accumulation using climate data. Melt is most commonly modeled by

so-called degree-day models, mainly because of their simplicity and the fact that the positive

degree days are shown to be good indicators for glacier melt (Ohmura 2001; Hock 2003).

Raper and Braithwaite (2006) were the first to perform global-scale projections of glacier

mass balance based on a degree-day model. Resulting mass-balance gradients were regressed

against annual precipitation and summer temperature from gridded climatology, and the

relation applied to all 1� 9 1� grid cells with glaciers (Cogley 2003). Based on the initial,

calibrated equilibrium line altitudes (ELAs), upscaled glacier size distributions for each

glacier grid cell, and derived vertical extent for each glacier, the model was run by perturbing

the ELAs according to summer temperature anomalies. The resulting changes in total area

and area–altitude distribution were computed annually with a simple glacier geometry model

assuming a generic area–altitude distribution triangular in shape between its minimum and

maximum altitude. Driven by climate data from two GCMs with A1B emission scenario, the

projected sea-level rise for all glaciers, but excluding the glaciers peripheral to the Antarctic

and Greenland ice sheet, was 46 and 51 mm for 2001–2100 (Table 2).

Hirabayashi et al. (2010) used a degree-day model specifically designed to feed into a

global hydrological model. Consistent with the resolution of the latter model, the mass-

balance model was run with daily time steps and on a 0.5 9 0.5� grid, treating each grid

cell’s glacier area as one large glacier, but allowing for sub-grid elevation bands. The

model was initially used for the reconstruction of mass balance for the period 1948–2004,

where gridded datasets of daily precipitation and near-surface temperature (Hirabayashi

et al. 2005, 2008) were used as forcing. The modeled parameters were tuned to maximize

the match between modeled and observed mass balance from 110 glaciers (Dyurgerov and

Meier 2005); thus, the modeled global mass balance of 0.42 ± 0.15 mm SLE almost

replicated the consensus estimate from Kaser et al. (2006). Recently, the model has been

refined and run with the new Randolph glacier inventory (Arendt et al. 2012) to project

glacier mass changes in response to the more extreme climate scenario (RCP8.5) from 10

GCMs prepared for the IPCC AR5 (Hirabayashi et al. 2013). They projected global glacier

mass loss, excluding glaciers peripheral to the ice sheets, to be 73 ± 14 mm SLE for the

period 2006–2099 (Table 2).

Radić and Hock (2011) developed a global-scale mass-balance model for the elevation-

dependent mass balance of each individual glacier in the world glacier inventory by Cogley

(2009a). The inventory comprised * 120,000 glaciers, covering 40 % of the total global

glacier area. A degree-day model was calibrated using in situ mass-balance observation

from 36 glaciers. The parameter values for all other glaciers were derived from established

relationships with climate variables. Projections were made in response to downscaled

monthly temperature and precipitation scenarios of ten GCMs from IPCC AR4 based on

the A1B emission scenario. For the regions with incomplete glacier inventories, the pro-

jected volume changes were upscaled with a scaling relationship between regional ice

volume change and regional glacierized area. The multi-model mean suggested sea-level

rise of 112 ± 37 mm for the period 2001–2100. In a follow-up study, Radić et al. (2013)
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updated the projections by using the new Randolph Glacier Inventory (Arendt et al. 2012).

They modeled volume change for each glacier in response to transient spatially differ-

entiated temperature and precipitation projections from 14 GCMs with two emission

scenarios (RCP4.5 and RCP8.5) prepared for the IPCC AR5. Radić et al. (2013) arrived at

much higher values than Hirabayashi et al. (2013) for the period 2006–2100:

155 ± 41 mm SLE (RCP4.5) and 216 ± 44 mm SLE (RCP8.5), and projected the largest

regional mass losses from the Canadian and Russian Arctic, Alaska, and glaciers peripheral

to the Antarctic and Greenland ice sheets. Although small contributors to global volume

loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and

Western Canada and USA were projected to lose more than 80 % of their volume by 2100

(Fig. 1. Note that the region names are adopted from the Randolph Glacier Inventory).

Marzeion et al. (2012) applied a similar approach to model global mass balances to

reconstruct the mass changes in the past and project future glacier mass evolution. Fol-

lowing Radić and Hock (2011), they modeled the surface mass balance of each individual

glacier in the Randolph Glacier Inventory and coupled it with volume–area and volume–

length scaling to account for glacier dynamics. The model was validated by a cross

validation scheme using observed in situ and geodetic mass balances. When forced with

observed monthly precipitation and temperature data, the world’s glaciers are recon-

structed to have lost mass corresponding to 114 ± 5 mm SLE between 1902 and 2009.

Using projected temperature and precipitation anomalies for 2006–2100 from 15 GCMs

prepared for IPCC AR5, the glaciers are projected to lose 148 ± 35 mm SLE (scenario

RCP2.6), 166 ± 42 mm SLE (scenario RCP4.5), 175 ± 40 mm SLE (scenario RCP6.0),

and 217 ± 47 mm SLE (scenario RCP8.5). Based on the extended RCP scenarios, glaciers

are projected to approach a new equilibrium toward the end of the twenty-third century,

after having lost 248 ± 66 mm SLE (scenario RCP2.6), 313 ± 50 mm SLE (scenario

RCP4.5), or 424 ± 46 mm SLE (scenario RCP8.5).

Giesen and Oerlemans (2013) provided an alternative to the degree-day modeling

approaches and projected global glacier mass changes using a simplified surface energy

balance model. The model separates the melt energy into contributions from net solar radi-

ation (computed by multiplying the incoming solar radiation at the top of the atmosphere by

atmospheric transmissivity and subtracting the part of the incoming radiation that is reflected

by the surface) and all other fluxes expressed as a function of air temperature. The model was

calibrated on 89 glaciers with mass-balance observations, whose mass changes were then

projected in response to A1B emission scenario from 8 GCMs from IPCC AR4. Volume–area

scaling was applied to account for changes in glacier hypsometry. The simulated volume

changes from 89 glaciers were then statistically upscaled to all glaciers in Randolph Glacier

Inventory larger than 0.1 km2, resulting in 102 ± 28 mm SLE for the period 2012–2099.

3.3 Model limitations

The models above are subject to large simplifications necessary for operation on global

scales. Transferability of model parameters in time and space is questionable (e.g., Carenzo

et al. 2009; MacDougall and Flowers, 2011). In addition, some studies have pointed out

that variations in solar radiation have a significant effect on glacier mass changes (e.g.,

Ohmura et al. 2007; Huss et al. 2009). To address these concerns, a better approach than

the generally applied degree-day approach would be to apply a physically based mass-

balance model, accounting for all energy and mass fluxes at the glacier scale (Hock 2005).

These high-complexity models have been applied successfully on many individual glaciers

worldwide (e.g., Klok and Oerlemans 2002; Reijmer and Hock 2008; Mölg et al. 2009;
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Anderson et al. 2010). However, the models require detailed meteorological input data,

obtained at a glacier surface, which often are not available. Alternatively, these data can be

obtained by dynamical downscaling of climate reanalysis products, i.e., by running

mesoscale atmospheric models at high spatial resolution (less than 1 km in horizontal) over

a region of interest. This approach has only recently been attempted in studies of glacier

melt over a few summer seasons in Kilimanjaro and Karakoram (Mölg and Kaser 2011;

Collier et al. 2013). Despite promising results, the applicability of this approach in order to

simulate long-term surface mass balance on regional scale still needs to be investigated. In

addition, the validation of surface mass-balance models should ideally be performed on

sub-annual temporal scales, e.g., comparing modeled versus observed winter and summer

mass balances, rather than only annual net mass balances. However, very few glaciers with

annual mass-balance observations have the seasonally resolved components.

The representation of glacier dynamics using volume–area scaling remains a first-order

approximation that is necessitated by the lack of input and validation data needed for

physically based ice dynamics models. However, as shown by Lüthi (2009), volume–area

scaling has some serious shortcomings in modeling glacier volume evolution. Glacier flow

models of high complexity have been successfully applied on individual mountain glaciers

(e.g., Picasso et al. 2004; Deponti et al. 2006; Jouvet et al. 2009). However, it is chal-

lenging to simulate the flow of a full suite of glaciers within a region of complex topog-

raphy (Jarosch et al. 2012). Such ice-flow models require detailed information of the

underlying bedrock topography, which has been observed for fewer than 1 % of glaciers in

the world (Huss and Farinotti 2012). In the absence of abundant measured data on glacier

thickness and volume, various alternative approaches to derive ice thicknesses have

recently been developed (e.g., Clarke et al. 2012; Huss and Farinotti 2012; Linsbauer et al.

2012; McNabb et al. 2012). In particular, promising is the first globally complete dataset of

glacier bed topographies derived from inverse modeling by Huss and Farinotti (2012),

which will open new avenues for modeling glacier dynamics on the global scale.

To our knowledge, none of the current global-scale modeling studies of glacier volume

changes incorporates frontal ablation, i.e., mass loss by iceberg calving or submarine melt

of marine-terminating glaciers. Studies on marine-terminating ice caps have shown that

calving may account for roughly 30 % to the total ablation (e.g., Dowdeswell et al. 2002,

2008), a significant contribution if widely applicable. Burgess et al. (2013) found that

regional-scale losses by frontal ablation in Alaska are equivalent to 36 % of the total

annual net mass loss of the region. Gardner et al. (2013) estimated that the present-day

percentage of glacierized area (excluding the ice sheets) draining into the ocean

is * 35 %. Hence, the projections of volume loss, in which only the loss due to the surface

mass balance is modeled, represent a lower bound. However, estimates of frontal ablation

are scarce and lacking on a global scale. Nevertheless, it may be expected that the fraction

of total mass change due to frontal ablation will decrease as warming and terminus retreat

proceed (McNabb et al. 2012; Colgan et al. 2012).

4 Glacier runoff

4.1 Effects of glaciers on streamflow

Glaciers significantly modify streamflow both in quantity and timing, even with low

percentages of catchment ice cover (e.g., Meier and Tangborn 1961; Fountain and

Tangborn 1985; Chen and Ohmura 1990; Hopkinson and Young 1998; see Hock et al.
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2005 for review). Characteristics of glacier discharge include pronounced melt-induced

diurnal fluctuations with daily peaks reaching several fold the daily minimum flows during

precipitation-free days. Glacier runoff shows distinct seasonal variations with very low

winter flows and a larger and seasonally delayed summer peak compared to non-glacier-

ized basins. Hence, glaciers can sustain streamflow during dry summer months and

compensate for otherwise reduced flows. Year-to-year variability is dampened by the

presence of glaciers in a catchment with a minimum reached at 10–40 % of glacierization

(Lang, 1986). This so-called glacier compensation effect occurs when glacier runoff offsets

precipitation variations. Glaciers may also cause sudden floods, often referred to as Jo-

ekulhlaups, posing a potential hazard for downstream populations. Common causes include

subglacial volcanic eruptions or sudden drainage of moraine- or ice-dammed glacial lakes

(e.g., Lliboutry et al. 1977; Bjornsson 2002).

Annual runoff from a glacierized basin is a function of glacier mass balance, with years

of negative balance producing more runoff than years of positive balance. As climate

changes and causes specific glacier mass balances to become progressively more negative,

total glacier runoff will initially increase followed by a reduction in runoff totals as the

glaciers retreat (Janson et al. 2003). With high percentage of ice cover, the initial increase

in runoff can be substantial, considerably exceeding the runoff changes to be expected

from any other component of the water budget. Adalgeirsdottir et al. (2006) modeled an

increase in annual runoff from ice caps in Iceland of up to 60 % until about 2100 followed

by a rapid decrease thereafter. However, in the long term, the loss of ice will lead to lower

watershed yields of water. Observations from gauge records in glacierized basins show

both increases in runoff, for example, along the coast in southern Alaska (Neal et al. 2002)

or northwestern British Columbia (Fleming and Clarke 2003) and negative trends in

summer streamflow, for example in the southern Canadian Cordillera (Stahl and Moore

2006). The replacement of ice by temperate forest and alpine vegetation will further

decrease water yields.

In addition to contributing directly to runoff through ice wastage, glacier coverage

within a watershed decreases direct evaporation and plant transpiration, the combination of

which can result in substantially higher water yields for watersheds with glaciers compared

to unglacierized watersheds (Hood and Scott 2008). In addition, the proportion of

streamflow derived from glacial runoff has profound effects on physical (Kyle and Brabets

2001), biogeochemical (Hodson et al. 2008; Hood and Berner 2009; Bhatia et al. 2013),

and biological (Milner et al. 2000; Robinson et al. 2001) properties of streams. As a result,

changes in watershed glacial coverage also have the potential to alter riverine material

fluxes. For example, area-weighted watershed fluxes of soluble reactive phosphorus

decrease sharply with decreasing watershed glacial coverage (Hood and Scott 2008).

Recent evidence also suggests dissolved organic material contained in glacial runoff has a

microbial source and is highly labile to marine heterotrophs (Hodson et al. 2008; Hood

et al. 2009).

4.2 What is glacier runoff?

There is substantial ambiguity in the literature with respect to the way the importance of

glacier contribution to total runoff is quantified. Different concepts have been used

(Table 3), and the importance will depend on how glacier runoff is defined. First, in its

most general sense, glacier runoff is defined as the runoff from the glacierized area, and

hence it includes all runoff exiting a glacier usually in one or several streams at the glacier

terminus (Concept 1 in Table 3; Fig. 2). According to this definition, it is the residual in
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the water balance equation over the area of the glacier and corresponds to the quantity that

is directly measured by gauging the proglacial stream(s) at the glacier terminus. Thus,

glacier runoff includes the portion of all water inputs to the glacier through melt, rain, or

other inflow at the surface, laterally or subglacially that exit the glacier at the terminus.

Second, the term has also been used to describe only the component of runoff that

comes from the melting of the glacier itself, i.e., from glacier ice, snow, and firn (i.e., snow

that has survived at least one melt season but has not been transformed to glacier ice yet),

hence excluding any rainwater or other inflow to the glacier system (Concept 2). This

component is more accurately referred to as glacier meltwater runoff (Cogley et al. 2011).

Table 3 Different concepts found in the literature to assess the importance of glaciers in total river runoff.
Qg is glacier runoff, Pl is liquid precipitation, E is evaporation, M is melt, R is refreezing melt or rainwater,
and C is snow accumulation

Concept Equation Description

1a Qg = Mice,firn,snow-R ?Pl–E All runoff from glacierized area

2 Qg = Mice,firn,snow-R Glacier meltwater runoff

3 Qg = Mice/firn Ice/firn melt (melt from snow-free surface of
the glacier)

4 Qg = C–Mice,firn,snow-R (for Qg [ 0) Runoff from glacier net mass loss

5 Qg = C–Mice,firn,snow-R ? Pl–E As 4, but including other water balance components
(water balance approach)

6 Qg = C Runoff assuming balanced glacier mass budget
if the budget is negative

All quantities are integrated over the glacierized area
a Lateral or subglacial inflows/outflows are neglected here.

Fig. 2 a Schematic seasonal variation of total glacier runoff and its components following Concept 1
(Table 3), E is evaporation. b cumulative glacier mass balance in specific units (m w.e. year-1) showing a
year with negative annual balance. According to Concept 4 (Table 3), annual glacier runoff corresponds to
the annual mass loss
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It is important to note that this definition is not equivalent to the glacier’s mass balance

(budget) since it does not include the accumulation term but only the fraction of meltwater

that does not refreeze, and exits the glacier.

Third, sometimes glacier runoff is understood as the meltwater runoff originating solely

from ice/firn melt, i.e., melt of snow on the glacier is accounted for separately (Ko-

boltschnik et al. 2007; Weber et al. 2010). This definition is consistent with the view that

all other components (snow melt, rain etc.) would exist for the glacierized area even if the

glacier did not exist. Hence, only the excess water due to the presence of the glacier is

considered (Concept 3). This component is difficult to measure directly since it requires

detailed measurements of melt at the surface in concert with the observations of snow line

retreat and therefore is better quantified by mass-balance modeling which can separate the

components of mass change.

Glacier runoff following Concepts 1–3 will affect river runoff in a glacierized catch-

ment no matter whether or not the glacier over the time span considered had a positive, a

negative, or a balanced mass budget. In contrast, glacier runoff is sometimes defined as the

runoff component that is due to glacier net mass loss, hence referring only to the water

originating from the glacier volume (storage) change (Concept 4, Huss 2011). Lambrecht

and Mayer (2009) refer to this component as ‘‘excess discharge’’ since it constitutes

additional water due to the reduced storage volume of glaciers that is not available in

unglacierized catchments. Accordingly, in contrast to Concepts 1–3, glacier runoff is zero

when the glacier’s mass budget is balanced or positive, no matter how much meltwater is

leaving the glacier. Hence, a glacier only affects runoff if there is a net mass loss during the

considered time period. In this case, the glacier runoff is equivalent to the glacier’s

(negative) mass budget, which can be measured directly using the methods described in

Sect. 2. Some studies have extended this definition to include the balance of liquid pre-

cipitation and evaporation (Pl-E; Concept 5; Dyurgerov 2010). Finally, Kaser et al. (2010)

consider glacier mass loss assuming a balanced annual mass budget, i.e., water from net

mass loss is not considered. In this case, annual glacier runoff effectively corresponds to

annual snow accumulation (Concept 6).

In summary, definitions vary with respect to the inclusion of water not generated from

melt and whether snow accumulation is included. Snowmelt runoff from the glacier can be

substantial (Fig. 2) and is included in some, but excluded in other studies. It is obvious that

the absolute amounts of glacier runoff and the degree to which glacier runoff affects total

runoff of a glacierized catchment depend on the concept used in defining glacier runoff. It

is paramount that any investigations aimed at assessing the importance of glacier runoff in

total runoff clearly define the quantity used.

5 Assessing global-scale impacts of glaciers on the hydrological cycle

Analyses based on the observations or modeling in individual glacierized river basins have

highlighted the role of glaciers in the hydrological cycle and indicated significant hydro-

logical changes in response to climate change, including changes in total water amounts

and seasonality (e.g., Braun et al. 2000; Casassa et al. 2006; Rees and Collins 2006; Hagg

et al. 2006; Horton et al. 2006; Yao et al. 2007; Huss et al. 2008; Immerzeel et al. 2013;

Koboltschnik et al. 2008; Stahl and Moore 2006; Kobierska et al. 2013). However, few

studies have investigated the hydrological effects of glaciers on regional or global scales.

Dyurgerov (2010) updated an earlier study by Dyurgerov and Carter (2004) and

investigated the role of glaciers in freshwater inflow to the Arctic Ocean by comparing the
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estimates of river discharge from gauging stations to estimates of meltwater fluxes and

annual mass changes of all glaciers draining to the Arctic Ocean including the Greenland

ice sheet. Annual glacier runoff (Concept 5, Table 3) was found to have increased sub-

stantially from 1961 to 1992 to 1993–2006 (from 146 ± 338 to 202 ± 48 Gt a-1) while

glacier mass loss more than doubled. The increase in glacier runoff was the same order of

magnitude as the observed increase in river runoff (Bring and Destouni 2011), suggesting

an important role of glacier melt in Arctic freshwater budgets.

Neal et al. (2010) adopted a water balance approach to estimate the contribution of glacier

runoff to freshwater discharge into the Gulf of Alaska, a 420,230 km2 watershed covered

18 % by glaciers. Glacier runoff (Concept 1) contributed 47 % of the total runoff (870 km3

a-1), with 10 % originating from glacier net mass loss alone (Concept 4, Table 3).

Dyurgerov (2010) analyzed all available mass-balance profiles, which describe the

distribution of mass change with altitude, and found an increase in both accumulation and

ablation in the observed period (1961–2006), with major increases since the late 1980s, and

a steepening of the mass-balance gradient. The latter was attributed to an increase in

meltwater production at low elevations combined with more snow accumulation at higher

elevations and interpreted as evidence of an intensified hydrological cycle in times of

global warming.

Huss (2011) assessed the contribution of glaciers to runoff from large-scale drainage

basins in Europe with areas up to 800,000 km2 over the period 1908–2008 based on

modeled monthly mass budget estimates for all glaciers in the European Alps. The glacier

runoff defined as the water due to glacier mass change (Concept 4, Table 3) was computed

for each month and compared to monthly river runoff measured at gauges along the entire

river lengths. Although glacierization of the investigated basins did not exceed 1 % of the

total area, the maximum monthly glacier contributions during summer ranged from 4 to

25 % between catchments, indicating that seasonal glacier contributions can be significant

even in basins with little ice cover. Comeau et al. (2009) analyzed annual runoff in a large

catchment in Western Canada and found that reductions in glacier volume due to receding

glaciers (Concept 4, Table 3) contributed 3 % to total runoff during 1975–1998.

Kaser et al. (2010) performed the only global-scale study on the effects of glaciers on

freshwater resources and provided a first-order estimate of the role of glaciers to water

availability and their societal importance. For 18 large glacierized river basins, the fraction of

runoff that is seasonally delayed by glaciers was computed based on gridded climatologies

and theoretical considerations rather than glacier mass balance and runoff data. Monthly

accumulation was computed as a function of elevation using gridded climatological data from

the Climatic Research Unit (CRU). Assuming the glaciers to be in equilibrium with climate,

an equal amount of annual ablation was distributed to each month based on monthly air

temperatures. Any excess ablation beyond accumulation, for a given month, was considered

seasonally delayed glacier runoff and weighted with population to assess the societal impact

of delayed runoff. Results showed that seasonally delayed glacier runoff is most significant in

seasonally arid regions and of moderate importance in midlatitude basin, but negligible in

lowland basins affected by monsoon climates. This underlines the importance of climate

regimes in determining the importance of glaciers on runoff.

6 Synthesis and discussion

Accelerated glacier wastage in many parts of the world and the resulting impacts on sea-

level rise and water resources is a topic of global concern. Mass losses from the Earth’s
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mountain glaciers and ice caps contribute to the freshwater influx to the ocean and make up

one-third of recent sea-level rise (the remaining parts come in equal shares from ice sheet

mass losses and thermal expansion of seawater). They also influence the runoff charac-

teristics of glacierized basins with significant effects even at low levels of glacierization.

The expected changes in glacier runoff may be larger than those generally projected for

other components of the water cycle.

The main impacts of glacier wastage vary regionally. For sea-level rise, the most

important regions are found in high-latitude regions where large ice volumes are typical,

such as the Antarctic and Greenland peripheries, Canadian Arctic, Alaska, and the Russian

Arctic (Gardner et al. 2013). In contrast, mid- and low-latitude regions (e.g., European

Alps, Scandinavia, Tropical Andes, and Western Canada/USA) have relatively little ice

cover and therefore (except for the High Asian Mountains) less potential impact on sea-

level change. However, many of these regions have relatively large populations and the

hydrological consequences of glacier wastage are of concern.

Assessing and projecting the effects of glaciers on sea level and terrestrial hydrology

requires accurate assessments of the glacier mass balance and its components. In recent

years, much progress has been made in measuring glacier mass changes on regional and

global scales, mostly due to the launch of the ICESat and GRACE satellites in the

beginning of the twenty-first century. For the first time, regional scale mass-balance

observations were possible in regions with sparse local in situ observations. These results

will be valuable for calibration and validation of global hydrology models. Although the

traditional technique of extrapolating local observations is problematic in regions with

sparse data, as it can bias global results (Gardner et al. 2013), in situ measurements are

essential for calibration and validation of glacier mass-balance and runoff models.

Unfortunately, the number of mass-balance monitoring glaciers has declined in recent

years.

Until recently, the lack of basic inventory data was a major impediment in global mass-

balance assessments and projections resulting in large uncertainties in the results due to

necessary upscaling procedures or other workarounds (e.g., Raper and Braithwaite 2005;

Radić and Hock 2010). The recently completed Randolph Glacier Inventory, the first

globally complete glacier inventory (Arendt et al. 2012), is a major step forward toward

reducing uncertainties in global-scale studies. Also, for the first time, it has become pos-

sible to model global mass balances for each glacier in the world individually (Radić and

Hock 2011; Marzeion et al. 2012; Radić et al. 2013). However, there is a large range in the

twenty-first century projections from the three independent studies (Marzeion et al. 2012;

Radić et al. 2013 and Hirabayashi et al. 2013) that use the new inventory despite using the

same climate forcings (RCP scenarios) and largely overlapping selection of GCMs.

Hirabayashi et al. (2013) projections are at the low end. Results also indicate that previ-

ously found large uncertainty due to the choice of the GCMs (e.g., Radić and Hock 2011)

has not been reduced. Glacier models also still suffer from the omission of frontal ablation

(calving and submarine melt) due to the inherent difficulty in modeling these processes and

the lack of data to develop parameterizations suitable for regional scales.

For sea-level change calculations, rates of regional or global glacier net mass loss are

generally converted into sea-level equivalent simply by dividing the volume of water lost

by the ocean area (362.5 9 1012 m2, Cogley et al. 2011), thus neglecting the effects of

altering ocean area and terrestrial hydrology. The effect of flow of meltwater into

groundwater aquifers or enclosed basins rather than the oceans is virtually unknown and

should be addressed by coupling glacier mass-balance models with global hydrology

models. For future scenarios, it is important that hydrology models have the capacity to
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model glacier retreat. Few studies on local scales have incorporated simple parameter-

izations (Stahl et al. 2008; Huss et al. 2010) into their glacier runoff models; however,

while there are examples of macroscale models using glacier models for local applications

(Zhao et al. 2013), we are not aware of any current global-scale watershed models (e.g.,

Hanasaki et al. 2008; Wisser et al. 2010) incorporating glacier modeling in macroscale

applications. The Randolph Glacier Inventory will further facilitate the inclusion of glacier

mass changes into global hydrology models.

Many studies on various spatial scales have investigated the effects of glaciers on

hydrology under a warming climate. Generally, annual glacier runoff is found to increase

initially due to increased meltwater, followed by reduced flows as glaciers recede, and their

ability to augment flows diminishes. However, contradictory results are reported with

regard to the importance of glacier runoff relative to total runoff in glacierized catchments

(e.g., Weber et al. 2010; Huss 2011). While this can at least partially be attributed to

differences in physical factors such as climate regimes, catchment size, degree of glaci-

erization, or glacier mass change rates, these differences also depend on the way the glacier

runoff is quantified. In fact, studies on the relative importance of glaciers for runoff are

difficult to compare, because authors use different concepts to compute the contribution of

glaciers to runoff (Table 3). Definitions of glacier runoff fall into two principal categories

(Comeau et al. 2009): (1) those that only consider the net mass loss component of a glacier

due to glacier wastage, i.e., runoff is zero (Concept 4) or equal to Pl-E (Concept 5, Table 3)

if the glacier is in balance or gains mass, and (2) those that consider all meltwater origi-

nating from a glacier no matter the magnitude or sign of the mass budget (Concepts 1–3,

Table 3). It is obvious that for the concepts in (2), glacier runoff generally is much larger

than for the concepts in (1), and consequently the relative importance of glacier runoff to

total runoff will differ between these two categories.

Concepts based on net glacier mass loss are most useful over annual timescales as

they provide a measure for how much water is added to (or withdrawn from) the

hydrological cycle through glacier volume storage changes. In contrast, concepts con-

sidering all meltwater are useful on seasonal timescales in order to assess the effects of

glaciers on seasonal hydrographs. Precipitation that has fallen as snow is released later

during the melt season and hence modulates the seasonality of flow even if the glacier’s

annual mass budget is zero. Such concepts are also useful on longer timescales, for

example when physical properties of the meltwater, such as temperature or conductivity,

are of relevance.

Considering only ice or firn melt (Concept 3, Table 3) aims to isolate the effects of

glaciers on seasonal or annual flows compared to non-glacierized catchments. Thus, melt

of snow on the glacier surface is excluded from the glacier contribution because this

component also occurs in unglacierized catchments. However, this approach is not

unproblematic since typically some winter snow remains on the glacier by the end of each

melt season, a necessity for a glacier to survive. Hence, in contrast to unglacierized

regions, snowmelt from the glacier surface occurs over the entire length of the summer

(Fig. 2) and therefore is a characteristic feature of a glacier that is eliminated in Concept 3.

The surviving winter snow is also directly linked to the glacier system through subsequent

transformation of snow to ice.

Overall, all concepts found in the literature are legitimate, and the choice of concept

will depend on the purpose of the investigation. It is paramount that glacier runoff is

clearly defined to avoid confusion and allow fair comparison between studies.

830 Surv Geophys (2014) 35:813–837

123 344 Reprinted from the journal



7 Conclusions

In light of strongly accelerated glacier wastage, there is an urgent need for further

investigations quantifying and projecting the changes in glacier mass and runoff, and their

importance for the Earth’s hydrological cycle. We identify the following issues that need

special attention:

• The current decline of the in situ glacier monitoring programs is a matter of concern.

Although the remote sensing techniques have overcome many obstacles encountered by

the traditional in situ observations, the latter are essential for calibration and validation

of glacier mass-balance and runoff models.

• Despite the recent progress in the development of the global-scale glacier models, they

still suffer from the omission of physics-based simulation of glacier dynamics and

frontal ablation (calving and submarine melt).

• The effect of flow of meltwater into groundwater aquifers or enclosed basins is

virtually unknown and should be addressed by coupling glacier mass-balance models

with global hydrological models.

• For future scenarios, it is important that these hydrological models have the capacity to

model glacier retreat.

• It is essential that glacier runoff is clearly defined in studies aiming to quantify the

contribution of glacier runoff to streamflow to avoid confusion and facilitate fair

comparison between studies.
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gletschern in der Schweiz, Z. Gletscherkd Glazialgeol 30:141–160

Neal EG, Walter MT, Coffeen C (2002) Linking the Pacific Decadal Oscillation to seasonal stream dis-
charge patterns in southeast Alaska. J Hydrol 263:188–197

Surv Geophys (2014) 35:813–837 835

123349Reprinted from the journal

http://dx.doi.org/10.1016/j.jhydrol.2010.02.025
http://dx.doi.org/10.1029/2011JF002313
http://dx.doi.org/10.5194/tc-6-1295-2012
http://dx.doi.org/10.3189/2012JoG11J249
http://dx.doi.org/10.1126/science.226
http://dx.doi.org/10.1126/science.226
http://dx.doi.org/10.1126/science.1143906
http://dx.doi.org/10.1126/science.1143906
http://dx.doi.org/10.1016/j.rse.2010.06.008
http://dx.doi.org/10.1029/2012GL051466
http://dx.doi.org/10.1029/2011JD015669


Neal EG, Hood E, Smikrud K (2010) Contribution of glacier runoff to freshwater discharge into the Gulf of
Alaska. Geophys Res Lett 37:L06404. doi:10.1029/2010GL042385
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Abstract Flood waves moving along river systems are both a key determinant of globally

important biogeochemical and ecological processes and, at particular times and particular

places, a major environmental hazard. In developed countries, sophisticated observing

networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with

which to understand and model floods. However, at global scales, satellite data currently

provide the only means of undertaking such studies. At present, there is no satellite mission

dedicated to observing surface water dynamics and, therefore, surface water scientists

make use of a range of sensors developed for other purposes that are distinctly sub-optimal

for the task in hand. Nevertheless, by careful combination of the data available from

topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in

understanding some of the world’s major river, floodplain and wetland systems can be

made. This paper reviews the surface water data sets available to hydrologists on a global

scale and the recent progress made in the field. Further, the paper looks forward to the

proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for

the first time provide an instrument that meets the needs of the hydrology community.
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1 Introduction: Surface Water Floods in the Earth System

Flood waves moving along river systems are both a key determinant of globally important

biogeochemical and ecological processes and, at particular times and particular places, a

major environmental hazard. The time and length scales of such waves vary depending on

river basin area, basin shape, basin slope, geology, vegetation and land use. In the very

smallest urban catchments, rivers respond near instantaneously to rainfall, whilst in the

world’s largest river systems, there may a single annual flood pulse and river flood waves

may span whole continents. Such waves therefore vary in length from perhaps 1 to 1,000 s

of km and in duration from a few minutes to a whole year. Compared to their length, river

flood waves are extremely low amplitude: for example, the Amazon flood wave in the

middle reach of the river has a maximum amplitude of *12 m for a wave thousands of

kilometres in length. In most other basins, even catastrophic flash floods have amplitudes

much less than this, and typically, flood waves are just a few metres in height. Flood waves

are therefore shallow water phenomenon where typical horizontal length scales far exceed

those in the vertical. Hydraulically, most flood waves are gradually varying sub-critical

flows (Froude number \1) where the influence of downstream water level controls can

propagate upstream (the so-called backwater effect). Sub-critical hydrodynamics occur

because most river longitudinal slopes are low (typical river slopes are in the range

1–100 cm km-1) and change only gradually. Flood waves are translated with speed or

celerity, c, and attenuated by frictional losses such that in downstream sections, the hyd-

rograph is flattened out. Wave speeds vary with discharge (see NERC 1975) such that

maximum wave speed occurs at approximately two-thirds bankfull capacity (Knight and

Shiono 1996). Typical observed values for c reported by NERC (1975) and Bates et al.

(1998) for UK rivers are in the ranges 0.5–1.8 and 0.3–0.67 ms21, respectively.

Shallow water waves are described, in one dimension, by the Saint–Venant equation:
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where wave propagation is controlled by the balance of the various forces in Eq. 1. Here,

(i) represents the local inertia (or acceleration), (ii) represents the advective inertia, (iii)

represents the pressure differential, and (iv) and (v) account for the friction and bed slope,

respectively. The relative magnitude of these terms for different types of shallow water

flow is discussed in detail by Hunter et al. (2007), but in general, for sub-critical flow, the

advective inertia term (ii) can be disregarded, and the pressure differential, friction slope

and bed slope terms (iii, iv and v, respectively) are significantly more important than local

inertia. For super-critical flow however, where shocks, hydraulic jumps and bores may

exist, term (i) assumes much greater importance, and term (ii) cannot be disregarded.

This one-dimensional description is reasonable when flood waves are contained within

defined river channels; however, when bankfull height is exceeded and water is transferred

to floodplains and wetlands adjacent to the main channel, this description is insufficient.

Here, water flow paths cannot be predicted a priori and such flows are clearly two-

dimensional phenomena where flow spreads according to the hydraulic gradient and

floodplain topography, which may be exceedingly complex (see, for example, Nicholas

and Mitchell 2003). Floodplains and wetlands act as additional routes for flow conveyance

or areas of water storage. Even when floodplains convey flow, the typically higher friction
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and shallower depth means that flow velocities are usually significantly smaller than those

in the main channel. Typical river flows have velocities in the range 1–3 ms-1, whilst

floodplain flows in all but the most extreme events have velocity of \1 ms-1. Floodplain

storage therefore alters wave propagation and has important consequences for many

physical processes. Hence, whilst floodplains and wetlands cover only approximately 4 %

of the Earth’s land surface, they exert a critical influence on global biogeochemical cycles

(Richey et al. 2002; Frey and Smith 2005; Zhuang et al. 2009), terrestrial run-off to the

world’s oceans (Richey et al. 1989), sediment and nutrient transport (Beighley et al. 2008),

basinwide flood response (Turner-Gillespie et al. 2003) and global biodiversity (Tockner

and Stanford 2002) as a result of the multitude of landscapes generated by floodplain

geomorphologic complexity (Mertes et al. 1996). Moreover, over longer timescales,

floodplains and wetlands form sedimentary basins where significant oil and natural gas

reserves are found. It follows from this that surface water processes occur within, and are

mediated by, the wider catchment hydrological system (Destouni et al. 2010; Cvetkovic

et al. 2012) which also includes significant human activity (Destouni et al. 2013), and these

interactions become especially important when considering the role of water fluxes as

drivers of biogeochemical and ecological processes (e.g., Lyon et al. 2010).

Extreme floods can also be a significant natural hazard. According to the World Health

Organization EM-DAT natural hazards database (www.em-dat.be), in 2011 floods and

related hydrological hazards (e.g., wet mass landslides) accounted for over half of all

reported disasters and affected *140 million people (Guha-Sapir et al. 2012). In the UK

alone, 5 million people (i.e. 1 in 12 of the population) in 2 million properties live on coastal

and fluvial floodplains, and over 200,000 of these properties have less than the standard of

protection mandated by the UK government (1 in 75-year recurrence interval). The pro-

portion of at-risk population is likely to be similar in many other developed countries and

perhaps worse in developing nations, where risk is often poorly understood due to a lack of

numerical modelling supported by suitable hydrometric and topographic data sets.

Moreover, when they do inevitably occur, floods cause major social disruption, civil unrest,

economic loss and insurance sector bankruptcies (e.g., the floods in Mozambique, 2000;

New Orleans, 2005; Thailand, 2007; UK, 2007).

Surface water floods therefore play an important role in the Earth system, yet despite a

number of groundbreaking studies (e.g., Alsdorf et al. 2000; Hamilton et al. 2002; Mertes

et al. 1995), their dynamics at global scales remain poorly quantified through either ground

observations, satellite observations or modelling. For example, current estimates of global

inundated area from ground and satellite instruments vary from 1 to 12 million square

kilometres (Zhuang et al. 2009) and do not capture seasonal variation adequately. As a

consequence, estimates of the magnitude of other processes driven by such dynamics, such

as methane emissions from flooded wetlands, which are a significant contributor to global

atmospheric methane, also cannot be well estimated.

Given the importance of surface water floods in the Earth system over the last decade,

an increasing volume of research has been undertaken to better observe and understand the

above phenomena. The aim of this paper is to review this progress and look forward to

future satellite missions, which may further add to our knowledge.

The paper is organized as follows. In Sect. 2, we review the data sets currently available

to describe flood dynamics globally and the recent progress in combining these data to

further our understanding. At present, there is no satellite mission dedicated to making

these observations, and therefore, surface water scientists make use of a range of sensors

developed for other purposes that are distinctly sub-optimal for the task in hand. Never-

theless, by careful combination of the data available from topographic mapping,
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oceanographic, cryospheric and geodetic satellites, progress in understanding some of the

world’s major river, floodplain and wetland systems can be made. In Sect. 3, we describe

the proposed NASA/CNES Surface Water Ocean Topography (SWOT) satellite mission,

which would provide the first dedicated observing system for surface water by measuring

water height (h), water slope (oh=ox) and water height change over time (oh=ot) at *100-

m spatial resolution between 78�N and 78�S every 11 days. SWOT would not measure

river discharge directly, and instead, this would need to be estimated using a hydraulic

model driven by the SWOT water elevation observations. Constructing such a model

requires knowledge of the channel bathymetry, which may be poorly known for many

rivers, and estimation of the unknown channel friction. Section 4 therefore describes recent

studies that have explored data assimilation techniques that could use the anticipated

SWOT and existing observations to infer the unknown bathymetry and friction and hence

estimate discharge. Section 5 summarizes progress to date and future prospects for

research in this area.

2 Observing Global Flood Dynamics

An ideal set of measurements for observing global flood dynamics would comprise data

describing channel bathymetry, floodplain topography, river discharge, inundation extent,

water level and water storage at appropriate spatial and temporal resolutions as determined

by our understanding of flood wave physics outlined in Sect. 1. Determining these reso-

lutions in some situations, however, may not be straightforward. For example, we know

that floodplains consist of features such as former channels, levees, pans and crevasse

splays which give a complex microtopography that can affect both local-scale patterns and

larger-scale flow routing (see, for example, Neal et al. 2012). Similarly, on the basis of a

small number of unique and opportunistically acquired data sets, we know that water levels

in inundated floodplains and wetlands show significant variability in time over periods of

24 h and in space over length scales down to 10–100 m (see, for example, Nicholas and

Mitchell 2003; Bates et al. 2006; Alsdorf et al. 2007b), yet currently available observations

are incapable of capturing this. Appropriate sampling density will therefore vary with event

dynamics, which will be controlled to first order by basin size and climatology (Bian-

camaria et al. 2010) and complicated by such factors as basin shape, geology and land use.

Measurements can be taken either through ground observations or using remote sensing

platforms, and these are discussed in more detail below.

Ground observations of surface waters are made through discharge gauging stations;

however, these are located on main rivers only where flow is confined to a single channel

and can be fully sampled by a single measurement. Developed countries may have

extensive ground gauging networks with long records but, worldwide, the number of

gauges is declining (Vörösmarty 2002) and there can be significant barriers to data access.

Moreover, floodplains and wetlands, which may convey a significant quantity of the total

flow (e.g., Richey et al. 1989), are almost entirely ungauged. We therefore do not currently

possess a comprehensive and globally consistent observing system for surface water.

Nevertheless, at ground gauging sites, frequent water depth measurements can be taken to

centimetric precision and made available in near real time with appropriate telemetry

systems. If the gauge site is geodetically levelled, then absolute water elevation mea-

surements referenced to a local ellipsoid or global geoid are possible. Flow rating curves

constructed by fitting a relationship between repeated simultaneous measurements of flow

cross-sectional area, velocity and depth can then be used to determine discharge through
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time. Where rating curves have been carefully constructed and flows remain in channel,

then discharge can be estimated to an accuracy of perhaps 5–10 % (Fekete et al. 2012).

However, where flow is out of bank, such that small increases in water height lead to large

increases in discharge, where fewer observations are available to constrain the shape of the

rating curve, or where flow is so high that the rating curve needs to be extrapolated, then

errors may increase significantly. For example, Di Baldassarre and Montanari (2009)

conducted a quantitative assessment of the effect of rating curve uncertainty on river

discharge estimation for a reach of the River Po in Italy and found errors in the range

6.2–42.8 % at the 95 % significance level, with an average of 25.6 %. In an extensive

previous study, Pelletier (1987) reviewed 140 publications that quantified uncertainty in

river discharge and found errors in the range 8–20 %. Ground gauging stations typically

record data at intervals between 15 min and 1 day and are located between tens and

hundreds of kilometres apart, depending on the flashiness of the flow regime and the

purpose for which the network is being used. Ground observations of inundation extent can

be made, although the possible coverage is very limited and typically remote sensing

platforms offer a much better solution for this variable. No global ground-based topog-

raphy and channel bathymetry data sets currently exist, and this situation appears unlikely

to change in the future.

Global coverage is clearly much easier to attain using remote sensing platforms;

however, this may come at the expense of accuracy, and the orbit and instrument char-

acteristics of existing systems may provide only a partial view of river, floodplain and

wetland surface water dynamics. Indeed, satellite systems may often miss flood events

entirely due to their particular orbital period/revisit times. This is largely because the

satellite data used by surface water scientists come from either generic systems (e.g., the

optical Landsat sensors) or more bespoke systems designed for applications in different

geophysical fields such as oceanography, glaciology or geodesy. These systems are less

than ideal for observing surface water floods, but can, if carefully employed, yield

important insights at certain scales. Below, we discuss the available systems for measuring

floodplain topography, water elevation, inundation extent and water storage. No current or

planned future satellite system is capable of measuring either river bathymetry or discharge

directly.

2.1 Remote Measurements of Floodplain Topography

For local-, regional- and national-scale studies, a number of high accuracy and fine spatial

resolution systems are available for collecting remotely sensed terrain data. These include

aerial stereo-photogrammetry (Baltsavias 1999; Lane 2000; Westaway et al. 2003), air-

borne laser altimetry or LiDAR (Krabill et al. 1984; Gomes-Pereira and Wicherson 1999)

and airborne synthetic aperture radar (SAR) interferometry (Hodgson et al. 2003). LiDAR

instruments in particular are now capable of generating data at sub-metre spatial resolution

with vertical accuracy of *5 cm root mean square error (RMSE) over wide areas and are

ideal for flood modelling. For example, over 70 % of England and Wales is now mapped

using LiDAR. Such data are capable of capturing the complexity of floodplain microto-

pography and have vertical errors much lower than typical flood wave amplitudes.

Globally, however, comparable data do not exist, and the terrain data available to surface

water scientists are of much lower resolution and accuracy. A number of near-global

terrain models are available, but amongst the most useful for surface water scientists are

the measurements from the NASA Shuttle Radar Topography Mission (SRTM, Farr et al.

2007). SRTM was captured using an interferometric synthetic aperture radar flown on
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board the space shuttle in February 2000. SRTM was used to produce a digital elevation

model (DEM) from 56�S to 60�N at 3-arc-second (*90 m) spatial resolution. Average

global height accuracies vary between 5 and 9 m (Farr et al. 2007) with pixel-to-pixel

noise of *6 m (Rodriguez et al. 2006), and this is problematic given typical flood

amplitudes. The vertical error has been shown to be correlated with topographic relief with

large errors and data voids over high-relief terrain, whilst in the low-relief sites, such as

river valleys, floodplains and wetlands, errors are smaller (Falorni et al. 2005). However,

despite better accuracy over low-relief terrain, pixel-to-pixel noise is not reduced and the

X- and C-band radars used for the SRTM mission only partially penetrate vegetation

canopies such that for forested floodplains, the DEM is corrupted by vegetation artefacts.

Accordingly, the SRTM spatial resolution cannot capture the floodplain and wetland

microtopography that can be critical to an understanding of flow dynamics (see Trigg et al.

2012) and at their native resolution have noise that can be larger than the flood ‘‘signal’’.

Attempts at solving these problems by post-processing to remove the vegetation signal and

spatial averaging to reduce uncorrelated noise (Paz et al. 2010; Paiva et al. 2011, 2013)

have been attempted with limited success, and with careful handling, SRTM data have

been shown to be useful for some flood modelling problems (Sanders 2007; Wilson et al.

2007; Di Baldassarre et al. 2009; Neal et al. 2012).

Other global terrain data sets include the ASTER GDEM (global digital elevation

model), the SPOT 5 DEM and the forthcoming TanDEM-X products. ASTER GDEM is a

30-m spatial resolution DEM developed using stereo-photogrammetry and available from

83�S to 83�N. However, its accuracy of 17 m at the 95 % confidence level (Tachikawa

et al. 2011) means that SRTM has significant advantages for most flood modelling studies.

More promising perhaps is the TanDEM-X global DEM available from 2014 which will

use X-band synthetic aperture radar interferometry to create a global DEM with *12-m

spatial resolution and target accuracy of better than 2 m. Whilst potentially of greater

accuracy and resolution than SRTM, the use of X-band radars will mean that TanDEM-X

may still be corrupted by vegetation artefacts that may be difficult to fully remove even

with sophisticated processing techniques.

2.2 Remote Measurements of Inundation Extent

Globally available remote measurements of inundation extent are reviewed in detail by

Marcus and Fonstad (2008) and Schumann et al. (2012), and these are made principally

using (a) optical sensors; (b) passive microwave instruments; or (c) synthetic aperture

radars. Visible-band satellite imagery (e.g., 30-m resolution Landsat or coarser 250-m

resolution MODIS data) can detect floods (e.g., Bates et al. 1997); however, cloud cover

and restriction to daytime only operation may limit the utility of these data. Passive

microwave instruments, such as the scanning multichannel microwave radiometer

(SMMR), have good temporal but limited spatial resolution (6-day revisit time and 0.25�
pixels in the case of SMMR) that limits their use to particular types of study (see, for

example, Hamilton et al. 2002). For these reasons, SAR data are often preferred for flood

remote sensing.

SARs are active systems that emit microwave pulses at an oblique angle towards the

target. Open water acts as a specular reflector, and the microwave energy is reflected away

from the sensor so such areas appear as smooth areas of low backscatter in the resulting

imagery. Terrestrial land surfaces, by contrast, reflect the energy in many directions,

including back towards the sensor, and therefore appear as noisy high-backscatter zones.

These differences allow flood extent to be mapped using a variety of techniques to an
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accuracy of *1 pixel. Pixel sizes range from *3 to *100 m in space-borne imagery (e.g.,

Horritt 2000; Di Baldassarre et al. 2009), depending on the orbit revisit time, and can

potentially be excellent for flood extent determination. Misclassification errors do occur

however, with flattened and wet vegetation behaving, in certain situations, in the same way

as open water, and emergent vegetation disrupting the specular reflections in shallow open

water to appear more like dry land. Moreover, orbit repeat times may be low (3 days for

ASAR wide swath mode, 7–10 days for RADARSAT and 35 days for ERS-1 and ERS-2)

compared to the flood dynamics in many basins. From records of flood events all around

the world since 1985 collected by the Dartmouth Flood Observatory (http://www.

dartmouth.edu/*floods/archiveatlas/index.htm), it appears that the mean duration of floods

is around 9.5 days and the median duration is 5 days. Accordingly, there may only be a

low probability of a SAR overpass occurring simultaneously with a flood in all but the

largest river systems. Moreover, SAR sensors are designed to be all-purpose instruments

and may not be optimal for flood mapping (see, for example, Bates et al. 2004). Con-

stellations of satellites are likely to be the only way to achieve a suitable combination of

resolution and revisit frequency (Garcı́a-Pintado 2013). For example, the COSMO–Sky-

Med constellation can offer a revisit time as short as 12 h. The few studies to have obtained

simultaneous aerial photograph and satellite SAR data have shown that the accuracy of

satellite radars in classifying flood extent to be only of the order 80–85 % (Biggin and

Blyth 1996). As a consequence, significant research effort has been expended in devel-

oping sophisticated techniques to classify SAR imagery into wet and dry areas (see, for

example, Matgen et al. 2007; Mason et al. 2007; Giustarini et al. 2013).

Combining the observations of inundation extent available from optical, passive

microwave and active microwave systems, a number of researchers have developed global

floodplain and wetland inundation extent data sets. For example, Prigent et al. (2007) used

passive microwave land surface emissivities calculated from SSM/I and ISCCP observa-

tions, ERS scatterometer responses, and AVHRR visible and near-infrared reflectances

from 1993 to 2000 to calculate average monthly inundated fractions of equal-area grid cells

(0.25� 9 0.25� at the equator). Similarly, the Dartmouth Flood Observatory (http://

floodobservatory.colorado.edu/, see Adhikari et al. 2010) uses 250 m resolution MODIS

and other data, such as the SRTM Water Body Data set (SWBD), to map flooding in near

real time and from this compile an archive of large floods. Such data sets provide a first

comprehensive global view of surface water dynamics and flooding.

2.3 Remote Measurements of Water Elevation

Remote measurements of water surface elevation can be obtained from (a) profiling

altimeters such as the JASON and Topex–Poseidon radar altimeters or the Geoscience

Laser Altimeter System (GLAS) on board the ICESat satellite; (b) interferometric mea-

surements of water surface elevation change using pairs of synthetic aperture radar images;

and (c) the intersection of shorelines derived from inundation extent data (e.g., a satellite

SAR scene) with a suitable digital elevation model.

Satellite radar altimeters were primarily designed from oceanic studies and have a

footprint of *2 km and vertical accuracy of decimetres to metres (Birkett et al. 2011).

Such instruments also have wide (hundreds of kilometres) spacing between tracks which

miss many of the world’s rivers and most of the world’s lakes. Over the continental land

surface, such instruments therefore only record elevations over the very largest rivers;

however, sophisticated retracking algorithms have recently been developed (e.g., Berry

et al. 2005), which allow separation of water and other signals in mixed pixels. In this way,
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the elevation of smaller water bodies (*hundreds of metres across) can be obtained and

used for flood model validation (e.g., Wilson et al. 2007). The GLAS laser aboard the

ICESat satellite, although primarily designed to measure ice sheet topography, produced

data with a footprint of *70 m, which makes it more suitable for observing river water

levels than radar altimeters. However, GLAS only operated between 2003 and 2009 and

the laser instruments on board suffered from a number of technical issues such that only

limited data with track spacing similar to radar altimeters are available. Nevertheless, the

data have proved useful in particular areas of surface water science, such as geodetically

levelling river gauges in remote basins (Hall et al. 2012) and determining water surface

slopes in large unmonitored rivers (e.g., O’Loughlin et al. 2013).

As an alternative to profiling instruments, images of relative water height change over

time (qh/qt) can be obtained from interferometric analysis of pairs of coherent SAR scenes

taken from slightly different viewing geometries. Coregistration of the images to sub-pixel

accuracy and subtraction of the complex phase and amplitude for each image allows

surface displacement to be measured to centimetric accuracy. Such techniques were

originally developed for ground deformation and glaciological studies (see, for example,

Massonnet et al. 1993; Goldstein et al. 1993), but have subsequently been employed to map

surface waters in particular circumstances (see Alsdorf et al. 2000, 2001a, b). For open

water, specular reflection of the radar signal usually results in complete loss of temporal

coherence, but for inundated floodplains, where there is emergent vegetation, Alsdorf et al.

(2000) show that it is possible to obtain reliable repeat-pass interferometric measurements

because of the so-called double bounce effect whereby the radar path includes both water

and tree trunk surfaces. This allows relative water elevation change between images to be

mapped to *100-m resolution with centimetric accuracy and has been used to map

complex water height change patterns in the Amazon floodplain (Alsdorf et al. 2007b) and

to undertake rigorous testing of the ability of two-dimensional floodplain models to sim-

ulate the spatial and temporal dynamics of inundation (Jung et al. 2012).

Finally, from maps of inundation extent determined using the techniques outlined in

Sect. 2.2, estimates of water elevation can be obtained by intersecting the shoreline vector

with a suitable DEM. Such techniques are reviewed in detail by Schumann et al. (2009)

who note their utility for constraining hydraulic models. The accuracy of water elevation

data derived in this way clearly depends on both the quality of the image processing and

the resolution and accuracy of the DEM, but Schumann et al. (2010) show that useful

information for flood wave analysis can be obtained even when using low-resolution (75 m

pixel) ASAR wide swath mode images and the SRTM DEM. Moreover, Mason et al.

(2009) show that water elevations obtained by intersecting SAR imagery with DEM data

are better at discriminating between competing model formulations than inundation extent

data.

2.4 Remote Measurements of Water Storage

Change in water storage on the land surface can be measured either indirectly by calcu-

lating the implied volume difference between two flood extent measurements when

intersected with a suitable DEM or directly using observations of the Earth’s changing

gravity field. Data on the latter are available from the GRACE and GOCE satellite mis-

sions, although with limited spatial (*hundreds of kilometres) and temporal (*monthly)

resolution. In their raw state, such data may therefore not be terribly useful for surface

flood studies; however, Alsdorf et al. (2010) show that by carefully combining GRACE

data with information on precipitation, evaporation and inundation extent, it was possible
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to estimate floodplain inundation rate, water storage and drainage rate for six sections of

the Amazon main stem in Brazil. Whilst satellite gravimetry is of lower resolution than

many of the measurements discussed so far, water storage change is relevant to a range of

hydraulic, biogeochemical and ecological processes, and therefore, such data add usefully

to our knowledge of surface water processes.

3 The Proposed SWOT Satellite Mission

Section 2 demonstrates convincingly that no current satellite system can capture the detail

of surface flows in rivers, floodplains and wetlands (e.g., Alsdorf et al. 2000, 2007a; Bates

et al. 2006) and that we lack a comprehensive and consistent view of global surface water

dynamics at a scale commensurate with known process variability. In the absence of

reliable observations, it is also impossible to build, calibrate and validate models that can

be applied with confidence to river, floodplain and wetland systems. Whilst progress can be

made by carefully employing the data derived from topographic mapping, oceanographic,

cryospheric and geodetic satellites, the lack of a dedicated surface water observing mission

fundamentally limits our ability to map, model and understand surface water dynamics.

Against this background, NASA and CNES are currently developing a new satellite

mission to address this gap in the global observing system: the proposed Surface Water

Ocean Topography mission or SWOT (see http://swot.jpl.nasa.gov/).

SWOT is being designed as a small version of SRTM. Both are ‘‘interferometers’’ that

construct radar interferometric phase using one pass of two SAR antennae that are permanently

connected by a fixed baseline. The interferometric phase is a measurement of surface elevations,

i.e. topography of land and elevations of water. Because SWOT would use a Ka-band wave-

length, which is shorter than the C-band and X-band wavelengths used by SRTM, the SWOT

boom separating the two SAR antennae would be 10 m compared to the 60-m boom used by

SRTM. SWOT would use a near-nadir viewing geometry with look angles of well less than 10�.

In contrast, SRTM used *30�–58� look angles. This near-vertical geometry results in height

accuracies that would be at least an order of magnitude better than those of SRTM. The

proposed SWOT mission is expected to produce ±50 cm height accuracies per sampling

element (e.g., pixel). However, this viewing geometry would also result in a greater amount of

layover for SWOT compared to SRTM (layover results when higher elevations are mapped by

the SAR geometry into spatial locations closer to the radar). Also because of this viewing

geometry, the spatial samples would vary in size from potentially as small as 2.5 m 9 10 m to

as large as 10 m 9 70 m. The height error is normally distributed, so averaging samples

improves the height accuracy by 1=
pðmÞ, where m is the number of samples. For example, a

250 m 9 250 m lake sampled entirely by the finest spatial resolution would have a ±1 cm

height accuracy after averaging, whereas when sampled entirely by the coarsest spatial

resolution, the height accuracy is reduced to about ±5 cm.

The proposed SWOT mission is presently in ‘‘Phase A’’ of the NASA and CNES

mission development life cycle. An international science definition team is working with

SWOT project engineers and planners to define the required spatial, temporal and height

accuracies. These requirements are expected to allow sampling of rivers at least as small

as 100 m in channel width and perhaps smaller. Lakes and other water bodies

250 m 9 250 m in size and perhaps even smaller are also under consideration for the

mission design. To further help in defining the mission, an airborne version of SWOT has

been created. AirSWOT has initiated test flights and is expected to sample rivers, lake and

wetlands during 2013 and thereafter. Amongst the AirSWOT goals is to demonstrate the

Surv Geophys (2014) 35:839–852 847

123361Reprinted from the journal

http://swot.jpl.nasa.gov/


capability of the radar system to penetrate vegetation to the underlying water surface.

Given the radar design, both SWOT and AirSWOT are expected to penetrate vegetation

through canopy openings.

4 Inferring Remaining Unknown Variables Using DA

As noted above, no current or planned future satellite system is capable of measuring either

river bathymetry or discharge directly, and to determine discharge from space requires that

the river bathymetry and friction are known (see, for example, Smith 1997; Bjerklie et al.

2003). Discharge is a key variable for surface water science, for which we currently have

no globally consistent and comprehensive data. However, by combining dynamical

information on changing water level and flood extent derived from remote sensing with a

suitable hydraulic model, it may be possible to infer the unknown bathymetry and friction

and hence estimate discharge from space. Data assimilation provides the mathematical

framework for this analysis as it allows for optimal estimation of the unknown variables

given the observed data and the constraints provided by the physical laws encoded by the

model. To first order the problem of estimating, discharge from space can be illustrated by

the well-known Manning equation:

Q ¼
AR2=3S

1=2
f

n
ð2Þ

where Q is the discharge; A is the channel cross-sectional area; R is the hydraulic radius;

Sf is the water surface slope; and n is the Manning resistance coefficient which describes

all the frictional losses. Clearly, only Sf is observable from space, yet to estimate dis-

charge, we also need to know A, R and n. Early research in this area showed that if either

friction or bathymetry was assumed to be known, it was relatively easy to estimate the

remaining unknown variable (see, for example, Andreadis et al. 2007; Durand et al.

2008; Neal et al. 2009; Biancamaria et al. 2011; Yoon et al. 2012). However, Eq. 2

clearly shows that A, R and n trade-off against each other, which complicates the joint

estimation problem. Joint estimation therefore requires considerably more dynamical

information to isolate the differing effects of bathymetry and friction on water level

dynamics. However, recent research (e.g., Lai and Monnier 2009; Hostache et al. 2010;

Durand et al. 2010, submitted) is beginning to show that such joint estimation may

indeed be possible because friction and bathymetry vary in distinctive and different ways

in space and affect the various terms in the Saint–Venant equation (Eq. 1) in different

ways. Changing friction or bathymetry has different ‘‘signature’’ effects on water surface

height and slope change in time and space, and only a few combinations of both can fully

explain observations of floods with different wave speeds or water surface slopes.

Physically, water surface slopes respond only gradually to changing friction, whereas a

sudden change in channel capacity or bed slope can have a much more immediate effect

on the flow and wave propagation. Data assimilation methods can be developed to exploit

these differences and hence estimate unknown bathymetry and friction simultaneously

based only on repeated observations of water level and slope and an appropriate

dynamical model to obtain discharge. Key research questions are therefore exactly how

much water elevation and slope data are required and how much dynamical variation in

the observations is necessary to obtain a (near) unique solution.
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5 Conclusions

This paper has reviewed our understanding of global surface water flood dynamics and the

role such waves play in the Earth system. Flood waves are both a key determinant of

globally important biogeochemical and ecological processes and, at particular times and

particular places, a major environmental hazard. Despite this, the current global observing

system cannot capture the detail of surface flows in rivers, floodplains and wetlands, and

we lack a comprehensive and consistent view of global surface water dynamics at a scale

commensurate with known process variability. The paper demonstrates that by careful use

of the data obtained from remote sensing instruments designed for different geophysical

applications, progress can be made in our understanding of the surface water dynamics of a

number of major floodplain and wetland systems. Ultimately, however, a detailed under-

standing would only be possible with the launch of a dedicated satellite mission for surface

water carrying an instrument capable of capturing data of the right resolution and accuracy.

The proposed SWOT satellite mission would have the potential to address this need and

help answer new and exciting science questions that would be likely to revolutionize our

view of hydrology.
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Abstract The Arctic is subject to growing economic and political interest. Meanwhile, its

climate and water systems are in rapid transformation. In this paper, we review and extend

a set of studies on climate model results, hydro-climatic change, and hydrological moni-

toring systems. Results indicate that general circulation model (GCM) projections of

drainage basin temperature and precipitation have improved between two model genera-

tions. However, some inaccuracies remain for precipitation projections. When considering

geographical priorities for monitoring or adaptation efforts, our results indicate that future

projections by GCMs and recent observations diverge regarding the basins where tem-

perature and precipitation changes currently are the most pronounced and where they will

be so in the future. Regarding late twentieth-century discharge changes in major Arctic

rivers, data generally show excess of water relative to precipitation changes. This indicates

a possible contribution to sea-level rise of river water that was previously stored in per-

mafrost or groundwater. The river contribution to the increasing Arctic Ocean freshwater

inflow is similar in magnitude to the separate contribution from glaciers, which underlines

the importance of considering all possible sources of freshwater when assessing sea-level

change. We further investigate monitoring systems and find a lack of harmonized water

chemistry data, which limits the ability to understand the origin and transport of nutrients,

carbon and sediment to the sea. To provide adequate information for research and policy,

Arctic hydrological and hydrochemical monitoring needs to be extended, better integrated

and made more accessible. Further water-focused data and modeling efforts are required to

resolve the source of excess discharge in Arctic rivers. Finally, improvements in climate

model parameterizations are needed, in particular for precipitation projections.
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1 Introduction

A multitude of global changes, including climate change, are currently transforming the

Earth system. This is clearly evident in the Arctic, where surface temperatures over the last

half-century have increased at a rate of 50 % higher than the Northern Hemisphere average

(McBean et al. 2005), and where future climate change is expected to be the most pro-

nounced (Kattsov et al. 2005). Coupled to the changes in the physical environment, the

Arctic is also increasingly becoming a focal point of economic and geopolitical interest.

These transformations present a considerable challenge. The critical role of the Arctic in

the global climate system implies that Arctic changes will have far-reaching consequences

for, and feedbacks to, the entire Earth system (McGuire et al. 2006). For the Arctic region,

in turn, global-scale changes, regional and local environmental changes, and geopolitical

and economic changes all contribute to the societal need for adaptation, and to the need for

information and monitoring to guide that adaptation (Azcárate et al. 2013).

As an integrating, propagating and regulating factor, water plays a central role in the

changing Arctic and the wider global climate system. It is a shared component in the most

recognized Arctic indications of global change. These indications include rapidly dimin-

ishing extent of sea ice (Comiso et al. 2008; Stroeve et al. 2012a), increased mass loss from

glaciers (Kaser et al. 2006; Gardner et al. 2011), increasing river flows (Peterson et al.

2002, 2006; McClelland et al. 2006; Shiklomanov and Lammers 2009; Overeem and

Syvitski 2010) and increasing groundwater contribution to those flows (Smith et al. 2007),

permafrost degradation (Hinzman et al. 2005; White et al. 2007; Lyon and Destouni 2010;

Brutsaert and Hiyama 2012), ecosystem regime shifts (Smol et al. 2005; Karlsson et al.

2011), and shorter extent of snow cover season (Brown et al. 2010; Callaghan et al. 2011).

All these constitute water changes, some of which are fundamentally caused by the

overarching driving force of climate change. Some water changes, however, may also arise

due to direct human interference, for example, through freshwater abstractions for or losses

by food and energy production (Destouni et al. 2013), or clear-cutting of forests (Seitz

et al. 2013). Whether the driving forces are local or global, water changes require local

adaptation, for example, of infrastructure for energy, transport and buildings, of agricul-

tural and forestry practices, and of measures for food and water security (Nilsson et al.

2013).

A primary information basis for projections of large-scale climate change is the

ensemble of general circulation models (GCMs) that underlie the assessment reports of the

Intergovernmental Panel on Climate Change (IPCC). The two most recent full reports are

the Third Assessment Report (TAR; 2001) and the Fourth Assessment Report (AR4; 2007).

The fifth IPCC report (AR5) is currently being released, with the first working group

contribution published in September 2013.

The performance of GCMs in the Arctic has been the subject of extensive discussion.

Assessments of TAR and AR4 model performance have shown improvements between

successive generations of models, but also indicated that significant shortcomings remain

in simulating observed climate parameters (Christensen et al. 2007). There have been

several assessments of simulations of sea ice processes (Zhang and Walsh 2006; Overland

and Wang 2007; Stroeve et al. 2007; Eisenman et al. 2007; Holland et al. 2010; Stroeve

et al. 2012b), the surface radiation budget (Sorteberg et al. 2007; Boé et al. 2009) and

surface temperature (Lui et al. 2008) over the Arctic Ocean, but fewer studies of GCM

performance related to the continental part of the Arctic hydrological cycle on drainage

basin scales. Kattsov et al. (2007) analyzed the output of the AR4 model ensemble for four

major basins in the Pan-Arctic Drainage Region (PADB), and Roesch (2006) evaluated
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AR4 simulations of snow cover. Holland et al. (2007) investigated ten AR4 GCMs to

estimate change in the freshwater budget of the Arctic Ocean, including pan-Arctic scale

runoff, and Rawlins et al. (2010) used the same GCMs combined with reanalysis and

observational data in a pan-Arctic analysis of Arctic hydrological cycle intensification.

However, no basin-wise investigation and comparison of GCM results between the

TAR and AR4 has been performed for a larger set of basins within the PADB, and no

benchmark of AR4 GCM performance over such a set of basins exists for comparison with

the AR5 set of models. An evaluation of GCM projections in a hydrological context is

therefore motivated and would inform both the parameterization of land surface schemes in

GCMs, and the developers and end users of regional climate model and their results. In the

end, it would benefit anyone whose decisions are influenced by the reliability of water

change projections. Previous investigations into GCM agreement with hydro-climatic

observations, for other regions than the Arctic, have for instance revealed that GCM

projections of evapotranspiration may be more uncertain than originally thought (Mueller

et al. 2011).

Even if projections of the atmospheric components of the Arctic hydrological cycle

(AHC) were satisfactory, it is the translation of changes in these components to water

system changes in the landscape that is central to adaptation. Spatial planning, infra-

structure dimensioning and water resources planning all depend on reliable understanding

and projection of changes to water availability, river flows, flood and drought frequencies.

Therefore, considerable efforts have been directed toward understanding the complex

changes in Arctic surface and groundwater systems in the recent decades. Several inte-

grative system assessments (e.g., Vörösmarty et al. 2001; Serreze et al. 2006; Slater et al.

2007; Rawlins et al. 2009, 2010), together with numerous site-specific studies, have greatly

improved knowledge of the AHC. Nevertheless, a number of inconsistencies, gaps in

understanding and open questions still remain (Arctic-HYDRA consortium 2010). Definite

understanding of several AHC components, and how they are linked, is still lacking.

To remediate these shortcomings, and advance the development of GCMs and our

understanding of hydro-climatic change, relevant and accessible observations have a

central role. Advances in theories, models, scenarios and projections fundamentally rely on

observational data. The importance of data and observation systems has also recently been

emphasized at intergovernmental summits (GEO 2010) and recognized as one of five

‘‘grand challenges’’ for Earth system science and science policy over the next decade (Reid

et al. 2010; ICSU 2010). Constraints in the availability of data limit the ability to evaluate

projections, climate model parameterizations, and hypothesized changes and functions of

environmental systems. There is therefore a strong link between the output of GCMs,

observation systems and, in the end, the ability of society to plan for and adapt to

hydrological changes that affect industry, agriculture and water resource availability.

A primary class of environmental data required to assess AHC change is river discharge.

In addition, sediment and water chemistry data are needed to estimate the waterborne mass

fluxes of constituents in global biogeochemical cycles, such as carbon, nitrogen and

phosphorus. Besides their role in the global cycles, these elements are also directly related

to societal impacts through their links to eutrophication (Darracq et al. 2008), aquatic

habitat and ecosystem changes (Palmer et al. 2009), and feedbacks to climate change

(Lyon et al. 2010). The collection of such hydrological and hydrochemical data is normally

conducted through continuous monitoring programs by various government agencies.

However, in many countries, hydrological observation systems have been in decline during

recent decades. The extent of monitoring generally peaked around 1980, after the signif-

icant increases in monitoring efforts during the International Hydrological Decade
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1965–1974. Since then, budget constraints and failure to maintain existing systems have

resulted in a general decline in monitoring, something that has been reported in several

studies (Brown 2002; Fekete and Vörösmarty 2002; Maurer 2003; Hannerz 2008; FAO

2009).

The global trend of declining discharge monitoring is also evident in the Arctic

(Lammers et al. 2001; Shiklomanov et al. 2002; Hinzman et al. 2005; Walsh et al. 2005,

Arctic-HYDRA consortium 2010). The particular situation in the Arctic has received

relatively much attention in the scientific community, partly due to the rapid changes and

the general scientific interest in the region. Also, the accessibility to discharge data has

been improved more in the Arctic than in many other parts of the world. These

improvements are mostly due to a few concentrated international collaborations, several of

which were coordinated from the University of New Hampshire. Nevertheless, some of

these efforts are now several years in the past, and the accessibility to recent discharge data

that they initially provided has not always been sustained.

In contrast to the situation for discharge monitoring, a clear picture of the status of water

chemistry data has been lacking. Previous efforts have tried to assess the state of affairs for

certain parameters (e.g., Holmes et al. 2000, 2002; Raymond et al. 2007) and estimated the

quality of existing data (Zhulidov et al. 2000, 2003; Holmes et al. 2001). Although specific

data sets have been made accessible for parts of the PADB (e.g., Holmes et al. 2000;

Holmes and Peterson 2002), and in at least one case for the wider PADB (McClelland et al.

2008; data at http://www.arcticgreatrivers.org), no international repository and data host

exists for all accessible Arctic water chemistry data. Neither has any initiative yet been

launched to develop a common set of indicators, such as the Millennium Development

Goals-related UN Federated Water Monitoring System (FWMS) and its Key Water Indi-

cators Portal (KWIP).

The decline in station numbers and the lack of integrated hydrological and hydro-

chemical information, together with the grand challenge of improving Earth observation

systems, constitute an imperative to develop Arctic hydrological monitoring networks and

to ensure their relevance under conditions of climate change. This would enable

improvements in both GCMs and hydro-climatic change understanding.

The importance of the continental water system in Arctic and global change means that

the hydrological drainage basin is a fundamental and relevant spatial scale unit, both for

water management and adaptation, and for basic research (Pahl-Wostl 2007; UNECE

2009). In this paper, we therefore survey and review several components required to

provide reliable water information, and to do this consistently at drainage basin scales.

Basin-scale water information also has ensuing applications in understanding coupled

changes across other terrestrial, atmospheric and marine systems (e.g., Karlsson et al.

2011).

This review paper addresses the following three overarching topics:

• The reliability of GCM projections on the scale of main Arctic river basins, as base

information for understanding and for societal adaptation to Arctic climate and water

change;

• The recently observed changes to water flow and water budgets in the Arctic

hydrological cycle, and their potential consequences for both societal adaptation and

freshwater input to the Arctic Ocean; and

• The representativeness, accessibility and relevance of hydrological and hydrochemical

observation systems for assessing changes to water, sediment and hydrochemical fluxes

in the Arctic hydrological cycle.
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Furthermore, an ensuing question that relates to all of the above is: What critical gaps

and key limitations exist in each of these topics, and is there a basis to rationally prioritize

how to address those limitations by hydrological monitoring development?

We here synthesize information on these topics by integrating a set of previous studies

of Arctic hydro-climatic change (Bring and Destouni 2009, 2011, 2013; Dyurgerov et al.

2010). We also extend the results from these reports with an additional analysis of GCM

projection performance for major Arctic hydrological basins.

2 Methods Summary

In the following, we summarize the data and methods used in the synthesized previous studies

(Bring and Destouni 2009, 2011, 2013; Dyurgerov et al. 2010) and the novel extensions in this

paper. For a more detailed account of the methods used in the previous studies, we refer to the

aforementioned publications. We have in this review re-evaluated some of the previous results

by correcting observed precipitation data sets for gauge undercatch and orographic effects. To

this end, we used two global data sets by Adam and Lettenmaier (2003) and Adam et al. (2006).

However, as precipitation corrections in other cases have been known to result in overestimated

precipitation (Mächel et al. 2012), we here treat the originally reported observations and the

fully corrected values as two ends of a range. As we have no knowledge of the probability

distribution of values within this range, we treat the middle of the range (i.e., the average of the

original and the corrected values) as the best estimate of observed precipitation.

In general, the hydrological drainage basin has been the fundamental basis for the

investigations in this study. The drainage basin constitutes a physically consistent

boundary for closing the flow balance of water and the mass balances of constituents

transported by water, which makes it a relevant scale for addressing both science and

management problems.

In the paper, we focus primarily on the 14 largest watersheds in the PADB. Each of

them is at least 200,000 km2 in size, and their combined drainage covers 13.8 million km2

(green and blue basins in the map of the study area in Fig. 1). These 14 basins are

sufficiently large to allow an analysis of GCM data. Figure 2 shows the characteristic

temperature and precipitation conditions, and recent observed changes for those parame-

ters, in the 14 major basins.

The analyses in the surveyed and synthesized publications concern slightly varying time

periods and, in general, involve comparisons of time periods of different lengths. Although it

would be desirable to always compare the same time periods, the differences between the

surveyed publications are relatively small in this regard. Several publications also study the

longest possible period since 1990 for which there are data available, and compare that period

with the reference of 1961–1990. Since the recent period from 1991 to (near-) present time is

considerably shorter than the 30 years of the climatological reference period 1961–1990, we

here regard the changes from the latter to the recent period as deviations from the reference-

time climate and not necessarily as climate change. With inter-annual variability of various

magnitudes for different parameters and basins, the future 30-year climate starting from 1991

may differ from these shorter-term deviations.

2.1 GCM Projections Across Arctic Basins

We first examine two successive generations of GCMs, which form the basis for the two

latest available full IPCC assessment reports, the TAR and AR4. We here compare the
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14-basin average values of TAR and AR4 temperature and precipitation (downloaded from

http://www.ipcc-data.ch; included models summarized in Table 1) with observations

(CRU TS 2.1, Mitchell and Jones 2005) for the periods 1961–1990, 1991–2002 (obser-

vations) and projections for 2010–2039 (GCMs).

We then investigate in more detail the AR4 model results for the historical 20C3M

scenario and the period 1961–1990, by calculating three separate measures of model

performance: mean absolute error (MAE), mean bias error (MBE) and an index of model

performance (dr). For a given drainage basin, the MAE is defined as
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Fig. 1 Map indicating studied areas of the PADB. Bring and Destouni (2009) includes all areas within the
PADB, demarcated by the combined area of all colored basins and the dark gray area. MG&IC: Mountain
glaciers and ice caps; GRIS: Greenland ice sheet. Basin names are abbreviated as Ne Nelson, Ch Churchill,
Ma Mackenzie, Ko Kolyma, Kh Khatanga, Ol Olenek, Le Lena, Ya Yana, In Indigirka, Ye Yenisey, SD
Severnaya Dvina, Pe Pechora and Yu Yukon. Lambert azimuthal equal-area projection; approximate scale
1:150,000,000. Spatial resolution of basin outlines is 0.5�
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MAE ¼ 1

W

Xn

i¼1

wi eij j

where ei = Pi - Oi is the difference between the model-projected value Pi and the

observed value Oi for all cells i = 1, 2, … , n within the basin. The term wi denotes the

area-relative weight of each cell and W the sum of these weights. Similarly, the MBE

describes the area-weighted sum of the deviations of model projections from observations,

but retains the signs of the differences:

MBE ¼ 1

W

Xn

i¼1

wiei

In comparing models across several drainage basins or for several parameters, a

dimensionless index of model performance can complement the MAE and MBE, which are

both defined in the units of the studied model parameter. We therefore also calculate such a

dimensionless measure: the refined index of model performance dr, with values on a

unitless scale from -1 to 1 (worst to best). The dr index is comprehensively defined in

Willmott et al. (2012), and in their words, ‘‘[i]t indicates the sum of the magnitudes of the

differences between the model-predicted and observed deviations about the observed mean

relative to the sum of the magnitudes of the perfect model (Pi = Oi, for all i) and observed

deviations about the observed mean.’’

Fig. 2 Climate characteristics of
the 14 major Arctic basins. The top
panel shows average annual
temperature; the bottom one shows
annual average precipitation, for
the periods 1961–1990 and
1991–2009. Data from CRU
(Harris et al. 2013) and Willmott &
Matsuura (http://climate.geog.
udel.edu/*climate). Precipitation
values are averages of original data
and data with orographic and un-
dercatch corrections (Adam and
Lettenmaier 2003; Adam et al.
2006)
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For the analysis of MAE, MBE and dr, we use the mean of the CRU TS 3.1 (Harris et al.

2013) and Willmott & Matsuura 3.1 data sets (http://climate.geog.udel.edu/*climate) as a

benchmark against which to evaluate GCM output. By averaging two separate data sets,

our confidence in the reliability of the precipitation estimates increases, as different data

sets use slightly different approaches to calculate the same estimate.

Climate projections are critical to adaptation planning, for example, for long-term

planning of infrastructure, power production and agriculture. We therefore test whether

these projections agree with the observations of recent deviations with regard to which

Arctic drainage basins will be most affected by climate change. The aim is to investigate

whether a set of highly divergent future climate projections, together with recent obser-

vations of climate deviations, can form a consistent basis for prioritizing monitoring.

Under limited resources, one either has to rely on some degree of certainty in the distri-

bution of future changes and prioritize monitoring based on this distribution, or try to

harmonize the different possible bases for rational monitoring prioritization that may arise

from uncertain change projections.

In order to include as wide a spectrum of future climate change as possible over the next

half-century, we formulate for this analysis two alternate final stages of possible climates.

We select the five warmest or wettest models from the most severe IPCC Special Report on

Emission Scenarios (SRES) scenario (A2), and the five coldest or driest models from the

least severe scenario (B1). For details on the procedure and the selected models, we refer to

Bring and Destouni (2013). For these two cases, we analyze the relative distribution of

projected climate change severity across the 14 largest Arctic drainage basins and compare

this distribution with recent observed deviations from the 1961 to 1990 climate. We

emphasize here that, in absolute terms, we do expect divergence between the scenarios,

Table 1 GCMs included in the
analysis

Note that not all models have
data for all scenarios and
parameters investigated

TAR models AR4 models

CCCma BCM2

CSIRO CGHR

ECHAM4 CNCM3

GFDL99 CSMK3

HADCM3 ECHOG

NIES99 FGOALS

GFCM20

GFCM21

GIAOM

GIER

HADCM3

HADGEM

INCM3

IPCM4

MIHR

MIMR

MPEH5

MRCGCM

NCCCSM

NCPCM
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and between each scenario and observations. However, in terms of the geographical dis-

tribution of relative change or deviation intensity, divergence is not necessarily expected; if

such divergence in relative intensity prevails, it presents a main challenge for geographical

monitoring prioritization, as discussed further in Sect. 6.3.

2.2 Arctic Hydro-Climatic Change

Precipitation output from GCMs is used to further model other hydro-climatic changes,

most importantly runoff changes, at regional and finer scales. The usefulness of precipi-

tation projections for adaptation planning, such as dimensioning of infrastructure and

drainage systems, depends on this modeling and understanding of how the precipitation

changes are (and have previously) transferred to runoff and other hydro-climatic changes

in the landscape. We therefore here investigate how recently observed precipitation

deviation has related to runoff deviation for 13 major basins where runoff data are

accessible for 1961–1990 and 1991–2002, and compare these data on runoff deviation with

corresponding observations of precipitation deviation from the CRU TS 2.1 database.

To gain a more comprehensive understanding of total freshwater flux changes in the

Arctic system, we also perform an integrated assessment of freshwater inflow from both

rivers and glaciers to the Arctic Ocean. Separation of the freshwater flux contributions

from rivers and glaciers is here possible because the glaciated area of the major Arctic river

basins is very small. Instead, glaciers and ice caps mostly contribute their melt water

directly to the coast or through smaller watersheds. For the river component in this ana-

lysis, we therefore consider only major basins with negligible glacier area that drain to the

proper Arctic Ocean with a discharge of at least 10 km3/year. This drainage is a subset of

the whole PADB and includes 17 basins, of which 11 (green basins in Fig. 1) are in

common with the 14 major basins (green and blue basins in Fig. 1) in the GCM com-

parison discussed above, and the remainder are additional smaller river basins (red basins

in Fig. 1). We specifically investigate the periods 1961–1992 and 1993–2006, with the

period break coinciding with a marked increase in glacier mass loss. We combined dis-

charge data from the R-ArcticNET (Lammers et al. 2001), ArcticRIMS (http://rims.unh.

edu) and Water Survey of Canada HYDAT (Environment Canada 2004) databases. Glacier

data consist of data on annual direct mass balance observations carried out for mountain

glaciers and ice caps (MG&IC; marked with crosses in Fig. 1; Dyurgerov and Meier 2005;

Glazovsky and Macheret 2006; Fluctuations of Glaciers (FoG) 2008), and of several recent

modeling studies for the Greenland ice sheet (GRIS; light blue in Fig. 1; Rignot et al. 2008;

Hanna et al. 2008, 2009; Box et al. 2006; Mernild et al. 2009).

2.3 Pan-Arctic Drainage Basin Monitoring

Observations of discharge on various scales allow testing of water budgets, both for

different landscape types and for the land surface area in general, which is useful in

evaluating model assumptions and parameterizations. Water chemistry observations give

information on upstream sources, sinks and hydrological transport pathways of biogeo-

chemical constituents, and their changes. We therefore also synthesize and evaluate all

accessible discharge and water chemistry data for the PADB. The extent of accessible data

is presented in map form, illustrating the maximum length of time series and latest data

year for the PADB. We further summarize the characteristics of monitored and unmoni-

tored areas in North America, Europe and Asia and compare the differences between them.
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This synthesis shows whether the properties of areas that are monitored are represen-

tative of the unmonitored areas. This question is important, considering that extrapolation

from monitored to unmonitored areas will always be needed to some degree.

3 Results for GCM Projections Across Arctic Basins

Figure 3 illustrates GCM projections and Climatic Research Unit (CRU) observations

for the 14 major Arctic drainage basins (green and blue basins in Fig. 1; adapted from

Bring and Destouni 2011). Temperature projections are compatible with observed

deviations during the late twentieth and early twenty-first century, both for the TAR and

AR4, while precipitation projections indicate an increase that is hitherto not evident in

observations. The absolute GCM results compare well with the observations for tem-

perature, but the models generally overestimate precipitation. However, while the dif-

ference between temperature projections and observations has increased between the

TAR and AR4 model ensembles, precipitation projections have come closer to obser-

vations. Generally, GCM projections for temperature and precipitation have become

more precise in the AR4 ensemble, as the models in AR4 converge more closely on the

mean than do the TAR ensemble models.

Results from the error and performance analysis of the AR4 GCMs over the 14 largest

Arctic watersheds indicate that there is a large spread in error and relative performance

between the models used in the AR4 (Fig. 4). Although the inter-model variation in MAE

is similar for temperature and precipitation, the difference between the systematic over-

estimation of precipitation, evident in the above-zero MBE for all models but one, and the

relatively smaller systematic underestimation of temperature, evident in MBEs closer to

zero, mean that the model performance index is less variable and, for most models, better

for temperature than for precipitation.

For some basins, and for the pan-Arctic in general, an above-average model perfor-

mance in temperature simulation does not correlate particularly strongly with performance

in simulating precipitation (negative rank correlations for MAE and dr; Table 2). This

implies that choosing a ‘‘best’’ climate model for the Arctic or any of its major drainage

Fig. 3 Temperature (left) and precipitation (right) values for 1961–1990 and 1991–2002 for observations
and for 1961–1990 and 2010–2039 for GCM projections across 14 major Arctic basins. Error bars for GCM
projections indicate one standard deviation of different GCM results from the model ensemble mean. Error
bars for precipitation observations indicate upper and lower estimates, corresponding to uncorrected and
bias-corrected values, respectively
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basins is difficult if one wants to have consistently good model performance for both of

these parameters.

Model performance also varies considerably between the studied basins. The large

Mackenzie and Yenisey basins exhibit consistently good dr values for temperature, while

the dr of some models is considerably smaller for the Ob and Lena basins (not shown). In

contrast, temperature dr values for the relatively smaller and neighboring basins of Pechora

and Severnaya Dvina are poor for most models, indicating difficulties with temperature

simulations west of the Ural Mountains. This may be due to the relatively smaller size of

these basins, or the presence of natural low-frequency variation in the region (Hurrell and

van Loon 1997). Precipitation dr values are overall lower, with the lowest values for the

smaller Olenek and Severnaya Dvina basins, followed by the medium-sized Yukon basin,

and the highest for the large Ob, medium-sized Nelson and small Khatanga basins.

Furthermore, results from an analysis of bases for prioritization monitoring under

conditions of climate change (Bring and Destouni 2013) indicate that the basins with the

highest recently observed deviations of temperature and precipitation are not the same

basins that have the highest projected changes in future climate (rank correlations of basin

orders are close to zero, or negative; Table 3). Therefore, prioritizing monitoring to basins

Fig. 4 Mean absolute error
(MAE; top panel), mean bias
error (MBE; middle panel) and
model performance index (dr;
bottom panel) for 14 GCMs
across the PADB for 1961–1990

Table 2 Spearman’s rank correlation coefficient q between the pan-Arctic temperature and precipitation
values of MAE, MBE and dr

MAE MBE dr

q -0.13 0.41 -0.13
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with the strongest observed climate deviations is not reconcilable with prioritizing basins

with greatest anticipated future climate change. In this analysis, the question is not whether

models are able to reproduce observations, but whether the most (least) severe observed

deviations occur in the same places as the projected future most (least) severe changes. To

bring observed deviations in line with projections, continued increases are generally

needed but, for precipitation, the direction of deviations must in several cases be reversed

(Fig. 5). With ongoing climate change, continued increases in the same direction are

naturally expected, as observations and projections concern different time periods in this

analysis. Developing monitoring to capture such monotonous changes in magnitude is then

one possible strategy. However, the disagreement in relative severity across basins between

observations and GCM projections implies that alternative monitoring prioritization con-

siderations are also possible and rational, as discussed further in Sect. 6.3.

4 Results for Arctic Hydro-Climatic Change

In Bring and Destouni (2011), we have compared precipitation and discharge deviations

from the 1961 to 1990 climate average for the 14 major Arctic basins (green and blue

basins in Fig. 1). A key result from that analysis is that the discharge deviation relations to

the corresponding deviations in precipitation vary widely for the major basins in the PADB

(Table 4). The majority of basins exhibit excess flow deviation in relation to the
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observations and to 2040–2069 for GCM projections across 14 major Arctic basins. Error bars indicate the
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Table 3 Spearman’s correlation
of GCM-projected climate
change ranking with observed
climate change ranking

Scenario q

Temperature

Cool B1 0.01

Hot A2 -0.03

Precipitation

Dry B1 -0.13

Wet A2 -0.19

864 Surv Geophys (2014) 35:853–877

123 378 Reprinted from the journal



precipitation deviation; that is, after the 1961–1990 climate period, discharge has increased

more (or decreased less) than precipitation within each basin. These disagreements

between precipitation and discharge deviations are in some cases large. At the same time,

temperature has increased in the basins, which should lead to increased evapotranspiration

and therefore less runoff, not more. Previous studies have indeed indicated that Arctic

evapotranspiration has increased (Serreze et al. 2002; Park et al. 2008; Rawlins et al.

2010). Therefore, an essential question for forthcoming investigation is: where does the

extra discharge water come from?

In the present synthesis, we note that the same question also arises from an integrated

assessment of freshwater inflow to the Arctic Ocean (Dyurgerov et al. 2010). This

assessment is in line with other studies, which also indicate an increase in freshwater

inflow to the Arctic Ocean. However, the Dyurgerov et al. (2010) analysis further high-

lights that the magnitude of the increase in total flows from the 1961–1992 to the

1993–2006 period is similar for the Arctic river contributions (87 km3/year) as for the

Arctic glacier contributions (56 km3/year). Figure 6 shows a main implication of that

result for sea-level rise, underlining the importance of also accounting for river discharge

changes that are not related to glacial mass balance changes as a possible contributing

source for sea-level rise and freshening of the Arctic Ocean. However, determining

whether also the eustatic components of these increases are of similar magnitude requires

further and more refined analysis and modeling.

5 Results for Pan-Arctic Drainage Basin Monitoring

The earlier comprehensive analysis of pan-Arctic hydrological and hydrochemical moni-

toring by Bring and Destouni (2009) has shown a considerable difference between

accessible water chemistry monitoring and discharge monitoring. This difference concerns

both the total extent and the characteristics of the data. In general, discharge data are

Table 4 Changes to precipita-
tion (P) and discharge (Q) from
1961–1991 to 1991–2002 for 13
major Arctic basins (mm/year)

Positive values in the last column
indicate excess discharge, in
relation to precipitation

Basin DP DQ DQ - DP

Churchill -49.8 -69.7 -19.9

Indigirka -38.3 -3.0 35.3

Kolyma -13.9 -8.8 5.2

Lena -7.6 0.9 8.5

Mackenzie -32.1 -3.4 28.7

Nelson -1.0 0.1 1.1

Ob 18.3 9.6 -8.7

Olenek -2.7 80.7 83.4

Pechora 23.8 47.3 23.5

S Dvina 5.9 26.9 21.0

Yana -34.2 0.0 34.2

Yenisey 9.7 19.7 9.9

Yukon -26.7 16.6 43.3

Average basin value -11.4 9.0 20.4

Area-weighted pan-Arctic average -3.7 7.5 11.1
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available for a wide range of different hydrological basins, from small catchments of a few

square kilometers in size to the major river basins in the PADB. In contrast, accessible data

from water chemistry monitoring are limited to a much smaller set of stations, which cover

a significantly smaller area and also a much less complete range of basin sizes.

Figure 7 summarizes the accessible length of time series for discharge, and waterborne

sediment and carbon data in hydrologically monitored Arctic areas. The average length of

the time series for the various parameters, and the corresponding share of the PADB that is

monitored, is further summarized in Table 5.

Results from this analysis further show a marked difference in the characteristics of

monitored and unmonitored areas (Fig. 8). For example, monitored areas are distinctly

dominated by the taiga eco-region, while unmonitored areas are generally strongly defined

by tundra-type vegetation. This tendency is particularly evident for discharge monitoring in

all regions and for all monitoring parameters in Asia. The most balanced monitoring, in

terms of eco-region proportions, is for carbon monitoring in Europe, while the most

unbalanced monitoring is found in North America and Asia. Such regional monitoring

differences complicate the interpretation of observation data differences between different

parts of the PADB.

6 Discussion

Robust scientific understanding of climate and water systems requires access to relevant

information on changes to flows of water and waterborne constituents. Gaps in under-

standing and unreliability in GCM projections imply, for example, that costly dimen-

sioning decisions for infrastructure and buildings may be more or less risk-prone than

expected from the model results, or that changes in agricultural, and food and water

security conditions are not properly accounted for.

In this paper, we have aimed to contribute to a more complete picture of several of the

central components required for AHC change assessment and adaptation planning at

drainage basin scales. Specifically, we have investigated three overarching topics per-

taining to the relevance of GCM projections for Arctic drainage basins, the understanding

of hydro-climatic change in these basins beyond just precipitation and the spatiotemporal

basin coverage of Arctic hydrological and hydrochemical monitoring systems.
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6.1 GCM Projections Across Arctic Basins

Regarding the first investigation topic, on the relevance of GCM projections, the results

highlight the improvements in basin-scale climate model simulation of temperature and

precipitation between the TAR and AR4 generation of GCMs. However, the analysis also

identifies some remaining limitations in precipitation simulations.

b

1 - 10

11 - 20

21 - 40

41 - 70

71 - partly monitored

unmonitored or not accessible

ca

Fig. 7 Overview of the maximum length of accessible data series (years) for the pan-Arctic monitoring of
a water discharge, b sediment and c carbon. Cells containing stations with drainage areas smaller than five
cells are indicated as partly monitored

Fig. 8 Distribution of terrestrial eco-regions in monitored (M) and unmonitored (U) areas, by monitoring
parameter and continent

Table 5 Average length of time
series and monitored share of
total area for discharge, carbon
and sediment data in the PADB

Parameters Average time series
length (years)

Area
monitored (%)

Discharge 29 73

Sediment 7 63

Carbon 5 51
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Considerable advances have been made between the two successive generations of

model ensemble runs that underlie the latest available full IPCC Assessment Reports, the

TAR and the AR4. Examples include improved parameterization of land surface schemes

and snowpack, as well as the inclusion of canopy processes in most models (Randall et al.

2007). However, remaining uncertainties include the representation of cryospheric feed-

backs, which explain part of the range of model responses at mid- and high latitudes

(Randall et al. 2007).

These improvements are suggested by the fact that the results indicate a lower spread

among the ensemble members for the AR4 models and, in the case of precipitation, a

marked improvement in the agreement with absolute observed values. However, despite

the improvement in precision, accuracy remains insufficient for precipitation projections,

which, even if they were correct, are still difficult to translate to subsequent changes in the

water cycle without further and finer resolved hydrological modeling. The uncertainty in

observations, particularly gauge undercatch of solid precipitation due to wind (e.g., Yang

et al. 2005; Tian et al. 2007), may explain part of the remaining difference between

observations and the improved AR4 results.

The large span in model performance, evident from the explicit error and performance

analysis of AR4 models, also indicates that large uncertainties and shortcomings remain for

reliable simulations of hydro-climatic parameters on basin scales. The analysis furthermore

underlines that models may yield good output results on these scales for the wrong reasons.

For example, the pan-Arctic bias error (MBE) of temperature for the GIER model is close

to zero. This would place it at the top of a basin-scale simulation performance ranking

based on this measure. At the same time, the absolute error (MAE) and the performance

index (dr) for the same model are among the worst of the ensemble, implying large

deviations from observations at individual grid points, even though the deviations happen

to almost cancel out across the PADB.

The results for climate deviation and change severity across different basins further

indicate that the relative distribution of climate change simulated by AR4 GCM projections

does not agree with the relative distribution of currently observed climate deviations across

the major Arctic basins. This complicates the choice of a robust prioritization strategy for

hydrological monitoring development based on the reconciliation of observations and

projections for the assessment of which Arctic river basins that are/will be most affected by

climate change; this complication is further discussed in Sect. 6.3.

6.2 Arctic Hydro-Climatic Change

In the Arctic, certain counterintuitive hydro-climatic changes have caused extensive

investigation and discussion in the scientific community. The fact that most of the 13 major

rivers we study can be termed so-called excess rivers (i.e., the increase in discharge has

been greater than the increase in precipitation) is consistent with findings by Milliman et al.

(2008) for a related set of Arctic rivers. This and other studies (e.g., Dyurgerov and Carter

2004; McClelland et al. 2006; Smith et al. 2007; Lyon et al. 2009; Brutsaert and Hiyama

2012) indicate that both specific climatic and subsurface processes pertaining to the Arctic,

such as permafrost degradation, as well as other anthropogenic changes and general

atmospheric patterns, including increased moisture transport from outside the PADB, are

responsible for the range in discharge patterns. Changes in glacier mass balance cannot

explain the results of increasing river flows as the vast majority of Arctic glacier area and

volume is located outside the major river basins (Dyurgerov et al. 2010). However, the

relative importance of the different contributing factors is not definitely established.
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Undercatch of snow, in combination with increases in winter precipitation (Bulygina et al.

2009; Rawlins et al. 2009), is also a potential contributing factor.

The wide spread in discharge responses to precipitation changes indicates a need for

further concerted modeling and field investigation efforts aimed at increasing the process

knowledge of hydrological regimes particular to the Arctic domain, including the simu-

lations of evapotranspiration and permafrost processes, considering also the effects of scale

(Rennermalm et al. 2012). Improved parameterization, in particular with precipitation

focus, is also critical to the development of GCMs, and continued water-balance assess-

ments and closure experiments in Arctic catchments are motivated.

The extended water budget change over the entire PADB and its drainage into the

Arctic Ocean, including glacier contributions, also has implications for the global climate

system. The fact that the increase in the river freshwater contribution is of the same order

of magnitude as the increase in meltwater from MG&IC or from GRIS underlines the

importance of better understanding the reasons for the river flow changes, and the

potentially contributing components of frozen and liquid water storage changes in major

Arctic basins (e.g., Muskett and Romanovsky 2009). Such changes could have large

implications for the pan-Arctic hydro-climatic system, for example, through ground sub-

sidence from permafrost degradation and/or altered soil moisture conditions, but also

beyond the Arctic through contribution to sea-level rise and thermohaline circulation.

6.3 Pan-Arctic Drainage Basin Monitoring

The analysis of hydrological and hydrochemical data accessibility points to some major

shortcomings, but also to opportunities and results of relevance for future research and

monitoring improvements.

The synthesis of monitoring data shows a particular lack of water chemistry data,

whereas discharge data are more extensively accessible. The range of spatial monitoring

coverage, sampling frequency and length of time series for water chemistry data overall

compare negatively with the corresponding attributes for discharge data. Together, these

shortcomings imply that the full potential of translating existing discharge data to also

calculate mass fluxes of biogeochemically important water constituents is hindered.

Furthermore, the difference in characteristics of hydrologically monitored areas evident

from this analysis shows that existing monitoring data are not representative of the PADB

as a whole. This constitutes a limitation to the input/validation data, and thereby also to

reliability of the modeling that must be used to interpret and project AHC changes in

unmonitored areas. It also limits the ability to improve GCM parameterizations and land

surface schemes for the region, due to the lack of data to establish a ground truth to

compare with.

From the perspective of an integrative pan-Arctic analysis, the limited accessibility to

water chemistry data is remarkable, given the high profile of and international commitment

to research into Arctic environmental changes. While discharge data have been compiled

into pan-Arctic data sets [most importantly, R-ArcticNET (Lammers et al. 2001) and the

ARDB (http://ardb.bafg.de)] and also made accessible in near real time through the Arc-

ticRIMS project (http://rims.unh.edu), water chemistry data remain fragmented, although

the recent continuation of the PARTNERS project as the Arctic Great Rivers Observatory

(http://www.arcticgreatrivers.org) constitutes a substantial improvement.

Several factors may explain these results. Firstly, although the research community

emphasizes a system perspective on the pan-Arctic domain, no international body has

formal responsibility for an integrated water monitoring system. Instead, monitoring efforts
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must build upon undertakings by separate government agencies in at least the eight dif-

ferent nations of the Arctic Council, and for hydrology also Mongolia and Kazakhstan,

which constitute parts of the PADB. Even if all national hydrometeorological agencies

were committed to promoting a coordinated Arctic observation effort, domestic budget

limitations and conflicting information goals may still interfere with ambitions being met.

Secondly, public agencies that apply cost-recovery principles to their environmental

data may be reluctant to undermine this rule by freely sharing their data with international

repositories. Thirdly, in a previously isolated Arctic that is now rapidly becoming more

accessible to activities such as natural resource exploration, shipping and tourism, water

data may be viewed as increasingly sensitive information from both political and economic

perspectives. Occasionally, pressure from international organizations on member states to

disclose water chemistry information viewed as sensitive has rebounded and instead caused

delays in the progress of sharing other water data (Vladimir Ryabinin, personal

communication).

Despite these potential obstacles, member states of the Arctic Council have in the

Tromsø Declaration recently committed to facilitate data access. The organizational form

for this commitment is the Sustaining Arctic Observation Networks (SAON) process,

which is currently in its implementation phase. The European Commission has also

expressed support for SAON (European Commission 2008, 2012). It remains to be seen to

which extent the SAON process can contribute to increased accessibility to monitored

water chemistry data in the PADB, but it is now established as a platform for policy dialog

on Arctic monitoring issues, for example, through recurring Arctic Observation Summits.

To improve monitoring systems while considering climate change, and with limited

resources, one must develop a strategy to decide which areas that should be prioritized. If

GCM projections and observations were in agreement on which basins that are the most

affected by climate change, a natural prioritization basis would be the rank of these basins

by their relative intensity of change. However, the results in this study show that projec-

tions and observations diverge in this regard.

An alternative strategy may be to instead prioritize basins where the disagreement

between observations and projections is particularly large, as such a strategy would yield

important information on the hydro-climatic system functioning and changes regardless of

whether there is actual convergence of observations and projections in the end or not.

Alternatively, one could argue for prioritizing monitoring of basins with greater observed

deviations so far, as these are based on the actual measurements, and increased efforts at

understanding and adapting to them can be intrinsically motivated. With respect to pre-

cipitation deviations, such a prioritization is to some degree evident in the present distri-

bution of monitoring (greater observed deviations correlate with greater monitoring effort),

although this situation is most likely by coincidence rather than by design.

Based on the results in this study, one can thus argue for different rationales and

prioritization bases when planning for increased hydro-climatic monitoring efforts under

climate change conditions. These different rationales and prioritization bases point in

diverging directions, which underlines the importance of attempting to formulate win–win

or no-regret solutions (UNECE 2009) that also incorporate other parameters, in addition to

temperature and precipitation outputs of climate models, and to explicitly formulate water

information goals to be achieved. The results presented here can inform observation

assessments connected to strategic Arctic initiatives and programs, such as SAON and the

upcoming Third International Conference on Arctic Research Planning (ICARP III) in

2015, where continued evaluation of monitoring efforts will be a priority.
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6.4 General Discussion

The review of literature and analysis in this paper confirms a picture of advances in our

knowledge about the Arctic water environment and its functioning during recent decades.

Climate model advances have improved in precision and alignment with observations in

the Arctic, and numerous studies have contributed to a fuller understanding of hydro-

climatic changes. International efforts at making discharge information accessible, e.g.,

through the ArcticRIMS project, have contributed to a more timely access to river flow

data for a number of the major Arctic basins and sub-basins. Similarly, the PARTNERS

monitoring campaign (http://ecosystems.mbl.edu/partners), now semi-permanently estab-

lished as the Arctic Great Rivers Observatory (http://www.arcticgreatrivers.org), has

provided a multi-season data set of concentrations of a range of biogeochemical water

chemistry constituents for six major Arctic rivers. These developments, which coincide in

time with a growing focus on the Arctic as a place of large-scale geophysical and geo-

political changes, imply that our ability to understand the AHC has increased.

Nevertheless, considerable challenges for understanding and managing the rapidly

changing Arctic water system still remain. A critical priority must be to continue

improving the accessibility to water data, in particular for water chemistry, for the PADB.

Observations must be made at well-chosen places, with the choices and improvements

being based on clearly stated information goals, striving in their achievement for win–win

and no-regret approaches that do not rely on some single, most likely model scenario of

future hydro-climatic conditions. Improved coverage of unmonitored areas in the northern

rims of the PADB is also motivated, particularly as these areas are expected to become

increasingly accessible and also subject to exploration with a warming climate (Andreeva

1998). In addition, improved monitoring here may provide better insight into the total flux

of water constituents to the ocean from these areas, as near-ocean catchments have in other

regions been shown to contribute a disproportionately large share of coastal pollution in

relation to the drainage basin as a whole (Destouni et al. 2008).

7 Conclusions

In this paper, we have synthesized and investigated climate model projections, hydro-

climatic change understanding and adequacy of water flow and water chemistry obser-

vations in the PADB. The purpose has been to establish a quantitative picture of the status

of model results, hydro-climatic links and observations needed to understand and manage

water cycle changes in the Arctic. The main findings of the paper can be summarized in the

following conclusions:

• The precision in climate model projection of precipitation and temperature change on

drainage basin scales has improved between successive generations of the IPCC model

ensemble. Individual model performance varies greatly, and models can be right for the

wrong reasons when relatively large errors cancel out on large basin scales for some

models. Further investigation and benchmarking of model performance in the GCMs

that underlie the IPCC AR5 will show whether certain hydro-climatological model

shortcomings in the Arctic have been addressed.

• From the investigation into geographical consistency in the relative distribution of

climate deviations and changes, it follows that establishing regional priorities for

hydrological monitoring systems, with regard to the specific issue of climate changes in
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the Arctic, can currently not be achieved based solely on a reconciliation of

observations and projections. When taking different data and system/change perspec-

tives as starting points, different conclusions about what constitutes rational monitoring

priorities, and related strategies, arise.

• Hitherto observed deviations in precipitation do not translate into similar deviations in

discharge even over the large scales of the 13 studied basins. The discrepancy between

precipitation and discharge deviations, and the fact that this discrepancy principally is

expressed as excess in discharge compared to available precipitation, indicates that a

component of the discharge variation may be due to changes in permafrost or

groundwater storage. Potentially, these storage changes may also be a factor in the

general deviations between observations and GCM simulations noted above.

• Even though the increase in river inflow to the Arctic Ocean during 1993–2006 is small

in relative terms compared to the average flow for 1961–1992, in absolute terms it is of

the same order of magnitude as the meltwater increase from glaciers. As the river flow

changes are independent of the glacier contributions studied here, this underlines the

importance of also accounting for river discharge changes as a potentially contributing

source for sea-level rise and Arctic Ocean freshening.

• There is a lack of long-term and accessible water chemistry data for large parts of the

PADB, and discharge data are also limited for considerable areas. The data that are

accessible do not constitute a representative sample of the whole PADB environment.
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Azcárate J, Balfors B, Bring A, Destouni G (2013) Strategic environmental assessment and monitoring:
Arctic key gaps and bridging pathways. Environ Res Lett 8:044033
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Abstract Hydro-climatic changes driven by human land and water use, including water

use for irrigation, may be difficult to distinguish from the effects of global, natural and

anthropogenic climate change. This paper quantifies and compares the hydro-climatic

change effects of irrigation using a data-driven, basin-wise quantification approach in two

different irrigated world regions: the Aral Sea drainage basin in Central Asia and the Indian

Mahanadi River Basin draining into the Bay of Bengal. Results show that irrigation-driven

changes in evapotranspiration and latent heat fluxes and associated temperature changes at

the land surface may be greater in regions with small relative irrigation impacts on water

availability in the landscape (here represented by the Mahanadi River Basin) than in

regions with severe such impacts (here represented by the Aral region). Different per-

spectives on the continental part of Earth’s hydrological cycle may thus imply different

importance assessments of various drivers and impacts of hydro-climatic change.

Regardless of perspective, however, actual basin-wise water balance constraints should be

accounted to realistically understand and accurately quantify continental water change.

Keywords Hydro-climatic change � Irrigation � Evapotranspiration �
Surface temperature � Hydrological cycle � Hydrological catchment � Aral Sea � India

1 Introduction

Regional changes in land use and water use impact the Earth’s hydrological cycle in

different ways, which need to be distinguished and understood (Destouni et al. 2013), not

least in view of increasing food production demands for Earth’s growing human population

(Gordon et al. 2003). The hydrological impacts of land–water use changes, however, may
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be difficult to distinguish among different change drivers (e.g., agriculture, forest, irriga-

tion developments, various land-cover changes and/or land productivity changes) and from

the impacts of global, natural and anthropogenic climate change. Nevertheless, among

different regional land–water use changes, irrigation in particular has been found to greatly

enhance evapotranspiration (ET) (Gordon et al. 2005; Shibuo et al. 2007; Asokan et al.

2010), and thereby affect regional climate (Boucher et al. 2004; Kueppers et al. 2007;

Bonfils and Lobell 2007; Lobell et al. 2009; Destouni et al. 2010; Lee et al. 2011), as well

as future hydrological responses to forthcoming climate change (Jarsjö et al. 2012).

With regard to regional irrigation effects on hydro-climatic change, Destouni et al.

(2010) developed a hydrological approach to estimating irrigation-driven changes in ET,

latent heat flux (F) and surface temperature (T) and distinguishing these change contri-

butions from the regional effects of global climate change. The approach is data-driven and

relatively simple, utilizing seasonal differences in actually observed historic T changes

within a hydrological drainage basin, along with fundamental water balance constraints

that corresponding, historic water flux observations imply for the basin. Destouni et al.

(2010) specially developed and applied this basin-wise data-driven approach to the Central

Asian system of the Aral Sea and its drainage basin.

Irrigation effects on ET and other hydrological changes, however, can differ greatly

among hydrological basins in different world regions with different hydro-climatic con-

ditions (Destouni et al. 2013). As noted by Destouni et al. (2010), irrigation effects may

also differ between hydrological basins of different types (Vörösmarty et al. 2000), such as

an endorheic1 basin, draining into terminal surface waters like the Aral Sea, which depends

greatly on that specific regional runoff, and an exorheic2 type of basin, draining into the

ocean, which does not depend so much on the runoff from just one specific basin.

In view of such cross-regional differences, the present paper aims at comparatively testing

the applicability of the basin-wise data-driven approach proposed by Destouni et al. (2010) and

comparing its hydro-climatic change results across two different world regions: the Aral

region in Central Asia that includes the terminal Aral Sea and the endorheic Aral Sea drainage

basin draining into it, which has already been studied using this approach, and the Mahanadi

River Basin (MRB) in India, which is a novel application of the approach. The MRB is an

exorheic basin, draining into the Bay of Bengal, with monsoon-driven hydro-climatic con-

ditions and seasonality (Asokan et al. 2010) that differ greatly from those in the Aral Sea region

(Shibuo et al. 2007; Destouni et al. 2010). In addition to extending and testing the applicability

of the approach across different world regions, another main aim of this comparative study is to

investigate and identify which regional conditions may lead to large and important hydro-

climatic changes and impacts driven by irrigation. In the following sections, we first provide a

literature review (Sect. 2), followed by a description of sites and methodology in Sect. 3, cross-

regional results and their comparison in Sect. 4 and main conclusions in Sect. 5.

2 Literature Review

In general, vegetation interacts with climate to regulate the partitioning of precipitation

(P) into ET and runoff (R) at the land surface (Gordon et al. 2005; Douglas et al. 2006;

1 An endorheic basin is a closed drainage basin that retains water and allows no outflow to other external
bodies of water such as oceans, but converges instead into lakes. Here the water loss is through evaporation,
evapotranspiration and seepage.
2 An exorheic basin is a drainage basin that discharges into ocean.
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Donohue et al. 2007; Shibuo et al. 2007; Asokan et al. 2010; Destouni et al. 2013). In

addition to impacts from global climate change, human changes in land uses and water

uses that affect vegetation will also affect the Earth’s water cycle (Foley et al. 2005;

Shibuo et al. 2007; Piao et al. 2007; Weiskel et al. 2007; Wisser et al. 2010; Destouni et al.

2013). In particular, all agricultural developments that increase the cultivated area or

change the biomass production in a given land area, for instance by irrigation, are asso-

ciated with vegetation changes that will then also affect regional ET rates (Kvalevag et al.

2010; Destouni et al. 2013).

Previous studies have shown different types of land-use and water-use changes that may

lead to considerable hydro-climatic change. For instance, deforestation may decrease ET

and increase R, while opposite impacts may result from new forest establishment on

previously sparsely vegetated land (Vanlill et al. 1980; Gordon et al. 2005; Loarie et al.

2011). Furthermore, the conversion of natural unplowed land to cultivated land may often

increase ET (Loarie et al. 2011; Destouni et al. 2013), but such conversions may under

some conditions also decrease it (Schilling et al. 2008). A change from agriculture to forest

may further initially decrease ET (Qiu et al. 2011) and later increase it (Donohue et al.

2007). Regarding irrigation of agricultural areas, the direct withdrawal of freshwater for

the irrigation, in addition to the actual land irrigation itself, has been found to affect water

and vapor fluxes at the land surface, both globally (Foley et al. 2005; Gordon et al. 2005)

and regionally (Shibuo et al. 2007; Lobell et al. 2009; Asokan et al. 2010; Destouni et al.

2010; Lee et al. 2011; Törnqvist and Jarsjö 2012; Jarsjö et al. 2012). With close to one

billion people living in regions where irrigation is already used and may be used

increasingly in the future to further enhance agricultural yields and ensure food safety for

growing populations, it is important to understand and distinguish different aspects and

magnitudes of hydro-climatic changes and their water resource impacts driven by irrigation

under different regional conditions (Keiser et al. 2005; Lobell and Field 2007).

In order to realistically understand, project and efficiently mitigate or adapt to the

adverse hydrological effects of both global climate change and regional changes in land

use and water use, including irrigation, the dominant drivers, processes and effects need to

be understood and quantified across different scales, including the relevant water man-

agement scales, which are commonly those of regional drainage basins. Regionally, the

hydrological impacts from changes in global atmospheric circulation and climate overlap

with the impacts from regional irrigation and other land-use and water-use changes (Lobell

and Field 2007). This overlap makes it difficult to distinguish different hydrological cause

and effect relations (Milly et al. 2002; Piao et al. 2007; Destouni et al. 2008). However, the

topographical water divides that define regional drainage basins are also physical bound-

aries, which constrain reasonably well the flows of water and waterborne substances

through the landscape, and associated environmental impacts of man-made changes to

these flows (Jarsjö and Destouni 2004; Darracq et al. 2005; Shibuo et al. 2007; Destouni

and Darracq 2009; Törnqvist et al. 2011; Jarsjö et al. 2012; Visser et al. 2012; Destouni

et al. 2013). The understanding of and distinction between different hydrological change

components and their drivers and effects can therefore be greatly aided and improved by

honoring and accounting for the water flux constraints implied by the fundamental water

balance quantification ET = P - R - DS, which applies to all hydrological drainage

basins. Here, DS is water storage change within the basin, the effects of which are often

small so that this term may be neglected for long-term changes over temporal scales that

are much larger than the annual scale (Destouni et al. 2013).

The basin-wise water balance constraints imply that the ET, which is difficult to

measure and quantify on large scales, can be derived from directly measured P data across
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the basin surface and R data at the basin outlet, with storage change DS neglected for long-

term average ET. The focus on the quantification of large-scale ET is relevant both because

this is the main unmonitored and unknown water flux term in a basin-wise water balance

equation and because it is essential to quantify from different change perspectives on the

Earth’s hydrological cycle. One perspective may focus on the ET change effects on vapor

and latent heat fluxes, and associated temperature changes at the land surface, based on a

primary climatic change interest. Another perspective may focus on the ET change effects

on water availability and runoff in the landscape, based on a primary interest in water

resource changes and considering that ET represents the main consumptive loss of water

from the landscape. At any rate, without the basin-wise water balance constraints, ET

models can, for instance, yield errors of 30–50 % (Kite and Droogers 2000), compared

with errors of 10–15 % involved in the ET estimation from basin-scale water balance

closure (Asokan et al. 2010).

Recent technological possibilities, such as MODIS (King et al. 1992) and ET algorithm

techniques based on satellite remote sensing (Zhang et al. 2010), provide more tools for ET

change distinction and quantification. However, they can only be used for studying changes

in relatively recent time periods that overlap with the accessibility to these technologies

(Douglas et al. 2006; Cheng et al. 2011; Loarie et al. 2011). Furthermore, expected

increasing hydrological impacts of forthcoming global and regional changes constitute

another great quantification challenge (Milly et al. 2005; Groves et al. 2008; Bengtsson

2010; Jarsjö et al. 2012). Several scientific questions are open and require further investi-

gation in the context of future hydro-climatic change projection, including the large spatial

scale discrepancy between typical hydrological drainage basins and the coarse resolution of

general circulation models (GCMs) (Milly et al. 2005; Groves et al. 2008). However, also in

the context of future change, Jarsjö et al. (2012) have showed that historic hydro-climatic

change understanding, based on basin-scale, water balance-constrained hydrological

modeling, can be used for extending and constraining projections of future hydro-climatic

change. They compiled climate (T and P) change projections from an ensemble of different

GCMs, on a basin large enough to be sufficiently well resolved by the GCMs, and linked

these projections with basin-scale hydrological modeling, conditioned by data and water

balance-constrained resolution of historic hydro-climatic change drivers and effects in the

basin, in order to constraint future ET and R change quantifications.

With specific regard to irrigation as a driver of hydro-climatic change, the approach

developed by Destouni et al. (2010) could distinguish and quantify its effects among different

change drivers of changes in ET, latent heat flux (F) and T when applied to the whole Central

Asian system of the Aral Sea and its drainage basin. They used changes in ET from the drainage

basin area (DET), as previously calculated through distributed hydrological modeling (Shibuo

et al. 2007), and additional calculated changes of evaporation (E) from the Aral Sea itself (DE),

as well as of the shift from Aral Sea E to dried seabed ET as the Aral Sea shrank from the

beginning to the end of the twentieth century. Based on these results, they further calculated

corresponding changes in latent heat flux (DF) and surface temperature (DT) for the whole

regional system of the Aral Sea and its drainage basin. For the calculation of different

DT components and their association to different change drivers, Destouni et al. (2010) used a

difference in observed change of seasonal temperature between the growing and the non-

growing season in the region. This difference reflected an irrigation cooling effect during the

growing season, which was not present in the non-growing season without irrigation.

In the Aral Sea region, this cooling effect due to increased water vapor flux by

evapotranspiration from the irrigated areas was quantified to be -0.6 �C, a considerable

effect compared to the warming from the regional manifestation of global climate change,
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which was also quantified to be 1.2 �C (Destouni et al. 2010). However, in that region, an

additional warming effect of 0.5 �C also occurred, because the water withdrawal for

irrigation reduced the river runoff from the drainage basin into the terminal Aral Sea by

80 %. This led to dramatic Aral Sea shrinkage and associated warming due to smaller

E from the smaller Aral Sea surface, which to a large degree counteracted the regional

cooling effect of irrigation (Destouni et al. 2010). In the following, we will particularly

survey the cross-regional applicability and implications of this relatively simple, yet

potentially widely useful, basin-scale quantification approach to hydro-climatic irrigation

effects, by extending and applying it also to the exorheic and hydro-climatologically

monsoon-driven MRB in India and comparing the results with the previously investigated

endorheic Aral Sea drainage basin and region in Central Asia.

3 Methodology

3.1 Comparative Site Data

Figure 1 shows location maps, and Table 1 summarizes basin-scale data and water fluxes

for the MRB (with an area of 135,084 km2) and the Aral region (with a total area of

1,888,810 km2 for the Aral Sea and its drainage basin). The analysis focuses on the

twentieth-century historic time span of available hydro-climatic data and compares

changes from the beginning to the end of the century (see specific periods in Table 1). The

compared time periods are chosen to represent the hydro-climatic situation and associated

major land-use and water-use changes from the time before to the time after the con-

struction of Hirakud dam (shown in Fig. 1) for the MRB, and before and after the irrigation

development in the Aral Sea region. For the present new application of the approach to the

MRB, we use the same climate database (CRU TS 2.1 by Mitchell and Jones 2005) as in

the previous hydrological investigation and distributed modeling of this basin by Asokan

et al. (2010) and extend here the data analysis to also consider and utilize the seasonality of

surface temperature (T), precipitation (P) and their changes, as previously done and

reported for the Aral Sea region by Destouni et al. (2010).

With regard to irrigation, agricultural areas in the MRB are cultivated throughout the

whole year. The cropping seasons are broadly divided into Kharif, the Wet Season, and

Fig. 1 Maps of a Mahanadi River Basin (MRB) in India and b Aral region in Central Asia. The black line
shows the water divides of the basins. The red lines show the major rivers. The light and dark shades of blue
in b illustrate the outline of Aral Sea before and after (in 2005) its major shrinkage
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Rabi, the Dry Season. The Wet Season extends from June to November, and the Dry

Season extends from December to May. Out of the total annual irrigation water of 11 km3

(81 mm if normalized with drainage basin area) that is used for agriculture in the MRB,

7 km3 (52 mm) is available and utilized in the Wet Season and 4 km3 (29 mm) in the Dry

Season (Asokan 2005). For the Aral region, the growing season is from March to October,

while the remaining months of the year constitute the non-growing season. Figure 2

illustrates basin-average time series of annual average T (Fig. 2a) and P (Fig. 2b), and

Table 2 further shows the average seasonal T and P at the beginning and the end of

twentieth century for both regions.

The change (increase) in annual average T from the beginning to the end of the century

is 0.26 �C in the MRB and 1.1 �C in the Aral region. With regard to annual average P, its

change is a decrease of 60 mm per year in the MRB and an increase of 11 mm per year in

the Aral region. In the MRB, about 93 % of the total P occurs during the Wet Season. The

Dry Season crops hence depend mainly on irrigated agriculture even though less irrigation

water is available and used in this season (4 km3 or 29 mm) than in the Wet Season (7 km3

or 52 mm) (Asokan 2005). In the Aral region, P is much more evenly distributed between

the growing and the non-growing season, the temporal extents of which are primarily

determined by T rather than by P (Table 2).

Table 1 Summary of basin-scale data and flux results for the Mahanadi river basin (MRB) (from Asokan
et al. (2010) for 1901–1955, and new simulations with the same distributed hydrological model of the basin
for 1956–2000) and the Aral region (from Shibuo et al. (2007)—average results from two different
evapotranspiration models in that study; and Destouni et al. (2010), who extended the analysis and results
from the previous study to also include the Aral Sea itself and the evaporation from it)

Pre-reservoir Climate–irrigation Climate: hypothetical
scenario of only
climate change

Mahanadi River Basin 1901–1955 1956–2000 1956–2000

Data-given average temperature (�C) 25.19 25.45 25.45

Data-given annual average precipitation
(mm yr-1)

1,334 1,274 1,274

Total modeled ET (mm yr-1) 668 706 656

Data-given irrigation water-use within the
basin (mm yr-1)

– 81 –

Modeled runoff at basin outlet (mm yr-1) 666 568 618

Observed runoff at basin outlet (mm yr-1) – 515a –

Aral region 1901–1950 1983–2002 1983–2002

Data-given average temperature (�C) 7.5 8.6 8.6

Data-given annual average precipitation
(mm yr-1)

249 260 260

Total modeled ET from whole region—
Aral Sea and its drainage basin (mm yr-1)

250 265 260

Modeled irrigation water-use within the
basin (mm yr-1)

– 23 –

Modeled runoff from drainage basin into
Aral Sea (mm yr-1)

35 7 36

Observed runoff from drainage basin into the
Aral Sea (mm yr-1)

38 6 –

a Average runoff from available observations for the period 1990–2000 (Asokan 2005)
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Figure 3 shows the seasonal T changes and their spatial distribution in both regions.

Destouni et al. (2010) have already reported how they used the difference in seasonal

T change for the Aral region to distinguish and quantify different regional T change

components (DT) and their different drivers, and associated changes in ET (DET) and

latent heat flux (DF) in that region. In the following, we will follow the same approach to

also distinguish, quantify and directly compare with the previous Aral region results

corresponding change components and drivers within the MRB.

3.2 Estimating Irrigation Effects from Temperature Seasonality

In the MRB, the basin-average T increase during the Wet Season is 0.23 �C, which is

smaller than the T change of 0.30 �C during the Dry Season. From these seasonal change

differences, which are consistent with more irrigation water being used and thereby leading

to more cooling in the Wet Season (7 km3) than in the Dry Season (4 km3), along with the

Fig. 2 Annual average
temperature in degrees Celsius
(a) and precipitation in mm per
year (b) within the Mahanadi
River Basin (color red) and the
Aral Sea Region (color blue),
based on data from Mitchell and
Jones (2005). Running average
(10 years) is shown by the black
thin lines

Table 2 Average seasonal temperature and precipitation at the beginning and the end of twentieth century
for the Mahanadi River Basin (MRB) and the Aral region

Temperature (oC) Precipitation (mm yr-1)

Mahanadi River Basin 1901–1955 1956–2000 1901–1955 1956–2000

Dry season 24.44 24.74 198 190

Wet season 25.93 26.16 2,470 2,358

Aral region 1901–1950 1983–2002 1901–1950 1983–2002

Growing season 14.7 15.5 192 193

Non-growing season -0.1 1.54 354 381
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annual average T change (of 0.26 �C), we can quantify different DT components by

expressing the seasonal T changes as follows:

DTWS ¼ DTcl þ DTWS�irr ð1Þ

DTDS ¼ DTcl þ DTDS�irr ð2Þ

where DTWS-irr and DTDS-irr are the T change components due to the irrigation in the Wet

Season and the Dry Season, respectively; these are and should be different to reflect

different cooling due to the difference in the amount of water used for irrigation between

the two seasons. Furthermore, DTcl is the T change component due to the regional man-

ifestation of global climate change. As assumed by Destouni et al. (2010) for the Aral

region, the seasonality of the latter, climate change component DTcl can also in the MRB

be assumed to be relatively small (i.e., the change of T assumed to be more or less similar

even if T itself differs between different seasons), compared to the seasonality of T change

due to irrigation, which differs between the Wet Season and the Dry Season. With a DTcl

component that is relatively similar between the Wet Season and Dry Season, subtraction

of Eq. (2) from Eq. (1) yields:

Fig. 3 Changes in average seasonal surface temperature (DT) in degrees Celsius for the Mahanadi River
Basin (MRB) and the Aral region including the Aral Sea Drainage Basin and the Aral Sea. a The change
from 1901–1955 to 1956–2000 for the Wet Season in MRB. b The change from 1901–1955 to 1956–2000
for the Dry Season in MRB. c The change from 1901–1950 to 1983–2002 for the growing season in the Aral
region. d The change from 1901–1950 to 1983–2002 for non-growing season in the Aral region. All these
seasonal temperature changes (DT) are significant at least at the confidence level p = 0.999 (see Appendix,
Table 3). Source Mitchell and Jones (2005)
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DTWS � DTDS ¼ DTWS�irr � DTDS�irr ð3Þ

Inserting the data-given values of DTWS = 0.23 �C and DTDS = 0.30 �C in Eq. (3)

yields:

DTWS�irr � DTDS�irr ¼ �0:07�C
ð4Þ

The T change components due to the Wet Season and Dry Season irrigation are further

related to corresponding changes in latent heat flux DFWS-irr and DFDS-irr as follows:

DFWS�irr ¼
MaCpDTWS�irr

sa

ð5Þ

DFDS�irr ¼
MaCpDTDS�irr

sa

ð6Þ

where Ma is the regional air mass that is cooled by the extra ET of the applied irrigation

water, Cp is the specific heat capacity of the air and sa is the average regional residence

time of that air. Assuming, as done in Destouni et al. (2010), that the seasonal F and T

changes affect more or less the same regional air mass implies that

DTDS�irr ¼ DTWS�irr �
DFDS�irr

DFWS�irr

ð7Þ

The latent heat flux change due to irrigation in either season can in turn be calculated as

follows:

DFirr ¼ DETirrqWL ð8Þ

where DETirr is the corresponding evapotranspiration change due to irrigation, qw is the

water density assumed in present calculations to be 1,000 kg/m3 and L is the latent heat of

vaporization of 2,260 kJ/kg. Inserting Eq. (8) in Eq. (7) yields the seasonal DT components

as functions of the seasonal DET components:

DTDS�irr ¼ DTWS�irr �
DETDS�irr

DETWS�irr

ð9Þ

The ratio of the seasonal ET changes required to evaluate equation (9) can be estimated

from the quantities of irrigation water applied during the respective seasons, that is, 4 km3 for

Dry Season and 7 km3 for Wet Season (Asokan 2005). To investigate different possibilities of

how much of the applied irrigation water leads to actual ET increase in each season, we

consider two different scenarios for the seasonal ET change ratio. (1) The base scenario,

assuming zero water storage change over each season so that all applied irrigation water feeds

into the ET of each season and DETDS�irr

DETWS�irr
¼ 4

7
. (2) The test scenario, which accounts for the

possibility that some part of the total applied irrigation water of 7 km3 during the Wet Season

increases groundwater storage and/or adds to the runoff from the basin rather than feeding

into the ET and then assumes for comparative purposes the non-ET-contributing part to be

2 km3; this yields the ET change ratio as DETDS�irr

DETWS�irr
¼ 4

5
in this scenario.

The assumption of 2 km3 in the test scenario (2) represents a large (near maximum

possible) contribution of the used irrigation water during the Wet Season to storage change

in the basin and/or runoff from the basin, instead of to ET. This contribution is assumed to
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be zero in the base scenario (1; assuming that all irrigation water feeds into ET), and if it

were assumed C3 km3 in the comparative test scenario, the corresponding seasonal ET

change ratio would be DETDS�irr

DETWS�irr
� 1, implying equal or greater loss of irrigation water by

ET during the Dry Season, when less irrigation water is used, than during the Wet Season

when more irrigation water is used. This would in turn mean a greater cooling effect by an

irrigation-driven increase in ET and associated latent heat flux during the Dry Season than

during the Wet Season, which is inconsistent with available temperature observation data

(Tables 1, 2; Fig. 3). For the Dry Season, it is physically reasonable to assume in both

scenarios that all of the used irrigation water feeds into ET because runoff from the basin is

negligible and water storage is decreasing rather than increasing in the basin during this

season.

For the base scenario (1), Eq. (9) yields

DTDS�irr ¼
4

7
DTWS�irr ð10Þ

In addition, inserting Eq. (10) into Eq. (4) yields DTWS-irr = -0.16 �C and DTDS-irr

= -0.09 �C for the base scenario. Similarly, for the test scenario, Eq. (9) yields

DTDS�irr ¼
4

5
DTWS�irr ð11Þ

which, inserted in Eq. (4), yields DTWS-irr = -0.35 �C and DTDS-irr = -0.28 �C for the test

scenario.

For both scenarios, the annual average T change due to irrigation, DTann-irr, is obtained

as the temporal average of DTDS-irr and DTWS-irr. The regional manifestation of global

climate change, DTcl, can be calculated from either one of the Eqs. (1) or (2), given the

obtained DTWS-irr and DTDS-irr values, as well as from the relation DTcl = DTa - DTann-irr,

where DTa is the data-given value of annual average T change. There are thus three

different possibilities for calculating DTcl, and all of these possibilities must and do provide

the same resulting DTcl value for each scenario. Furthermore, with seasonal (and thereby

also corresponding average annual) DET components given directly from the assumptions

of the different scenarios [see the seasonal temperature change ratios that define the dif-

ferent scenarios in Eqs. (10)–(11)], associated seasonal (and average annual) latent heat

flux changes DF can be calculated from Eq. (8).

With regard to the DET and DF changes that are driven by the regional manifestation of

global climate change, however, one cannot calculate them in the same way as the irri-

gation-driven flux changes, from the climate-driven temperature change DTcl. The reason is

that DTcl quantifies the total climate-driven T change and not only the latent heat-related

DT contribution, whereas the DT components driven by irrigation are entirely due to the

latent heat flux changes implied by the regional irrigation. In order to also compare the

irrigation-driven DET and DF changes with those driven purely by the observed climate

change, we must use results from more complex, distributed hydrological modeling of a

hypothetical scenario of only climate (i.e., actually observed T and P) change, the results

from which are summarized in Table 1. The ET change result from this hypothetical

climate scenario is then used to quantify the climate-driven DET, and the associated latent

heat flux change DF can further be calculated from Eq. (8).

The total annual average changes of ET and F can finally be calculated as the sums of

the different (irrigation and climate change) components of DET and DF, respectively.

This DET result for the simple base and test scenarios can be compared with the
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corresponding DET result from the more complex, distributed hydrological modeling for

the realistic climate–irrigation simulation results (accounting for both climate and irriga-

tion changes) in Table 1. Furthermore, with the actual change in precipitation (DP) given

directly from observed data (Table 1), corresponding changes in runoff (DR) can also be

calculated from water balance consideration as DR = DP- DET for the base and test

scenarios and compared with the corresponding DR result from the climate–irrigation

simulation listed in Table 1. A comparison between the different DET and DR results for

the MRB quantifies the uncertainty associated with making different physically possible

DET assumptions: those in the base and test scenario of the presently applied, relatively

simple quantification approach, and that associated with the more complex hydrological

modeling of the MRB (results listed in Table 1, based on Asokan et al. 2010). Table 1

shows that also the latter, more complex model results are uncertain, as indicated by the

difference between the model result for R in the period 1956–2000 (568 mm/year) and

available R observation data for part of that time period (515 mm/year).

4 Cross-Regional Result Comparison and Discussion

For the MRB base scenario, the average annual irrigation effect on DT is obtained as DTann-

irr = -0.13 �C. From this result and the data-given total average annual T change,

DTa = 0.26 �C [significant (p = 0.999999), Appendix, Table 3], the DT contribution from

the regional manifestation of global climate change is obtained as DTcl = 0.39 �C. Sim-

ilarly, for the test scenario, DTann-irr = -0.32 �C and DTcl = 0.58 �C. Figure 4 summa-

rizes and illustrates the MRB results and compares them with those previously obtained for

the Aral region (with data-given total average annual T change here being DTa = 1.1 �C

[significant (p = 0.999999999), Appendix, Table 3].

The MRB scenario comparison in Fig. 4 shows greater T changes, both irrigation driven

and climate driven, in the test than in the base scenario. Both scenarios imply a consid-

erable regional cooling effect from irrigation in comparison with the total and the purely

climate-driven T changes in MRB and the irrigation-driven T change in the Aral region.

Furthermore, the total and purely climate-driven T changes are larger in the Aral region,

even though the net total cooling effect, when accounting for both the irrigation itself and

Fig. 4 Changes in surface
temperature (DT) in degrees
Celsius between same periods as
in Fig. 3 for the Mahanadi River
Basin (MRB) and the Aral
region. Error bars show 80 %
confidence intervals for the data-
given total average annual
T changes in both regions
(Appendix, Table 3)
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the associated Aral Sea desiccation, is much smaller in that region than in the MRB, both

in absolute terms and in relation to the climate-driven DT contribution. This cross-regional

comparison result is a direct effect of the endorheic nature of the Aral Sea drainage basin;

the pure irrigation-driven DT contribution is here a cooling of -0.6 �C (Destouni et al.

2010), and thus larger than in the MRB if one neglects the major surface water (Aral Sea)

shrinkage, which does not occur in an exorheic basin like the MRB.

Figure 5 further shows the cross-regional comparison of DET (significant at p = 0.90

confidence level in the Aral region and at p = 0.68 and p = 0.63 for the base and test

scenario, respectively, in the MRB) along with the associated DF results. The irrigation-

driven flux change contributions are much greater than the climate-driven ones in the

MRB, and somewhat smaller in the test than in the base scenario. The climate-driven flux

decreases in the MRB are due to the P decrease in that region (Table 1; significant at

p = 0.95 confidence level, Appendix, Table 3), which dominates the climate-driven DET

(and thereby also the corresponding DF) over the opposite DET effect of the regional

T increase. The corresponding flux changes in the Aral region are overall much smaller,

mainly because water fluxes, and thereby also the availability of annually renewable water,

are generally much smaller in that region than in the MRB (see Table 1; see also in

Appendix, Table 3 that the estimated R changes in the MRB are significant at p = 0.95 and

Fig. 5 Changes in
a evapotranspiration (DET) in
mm per year and b latent heat
flux (DF) in watts per meter
squared between same periods as
in Fig. 3 for the Mahanadi River
Basin (MRB) and the Aral
region. Error bars show 80 %
confidence intervals for DET in
both regions (Appendix, Table 3)
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p = 0.90 for the base and test scenario, respectively, and in the Aral region at p & 1,

while the P change in the latter is significant at p = 0.80).

Figure 6 further emphasizes the major differences in water availability between the two

regions, and the importance of this difference for the regional change magnitudes and their

implications from different perspectives on hydro-climatic change. In absolute terms, all

water flux changes are much smaller in the Aral region than in the MRB. Yet, the small

R and associated other water flux changes in the Aral region have led to one of the world’s

worst environmental disasters in modern times: the Aral Sea desiccation and associated

ecosystem collapse (Gaybullaev et al. 2012). Note then that the terminal Aral Sea is

entirely dependent on the runoff R into it from its own endorheic drainage basin; fur-

thermore, R constitutes an internal flux in that total land region, including both the Aral Sea

and its drainage basin, with net total water flux balance P - ET still being negative and

thus imbalanced at the end of the twentieth century (Table 1), so that the Aral Sea con-

tinued to shrink also after that time. In contrast, R from the MRB into the ocean, which is

not particularly dependent on just that basin discharge into it, is an external flux from the

MRB land system, with a net total water flux balance being P - ET - R, which was in

this region essentially zero and thus balanced at the end as in the beginning of the twentieth

century (Table 1).

In Fig. 6, the comparison of results for the MRB from the present, relatively simple

scenario approach and the more complex hydrological modeling (accounting also for

uncertainty in the latter implied by available regional R data listed in Table 1) indicates the

test scenario as the least extreme of the two simple scenarios with regard to R and water

availability changes in the landscape. However, with regard to T changes, the test scenario

implies a greater cooling effect of irrigation that masks an also greater climate-driven T

change (Fig. 4).

Fig. 6 Water flux changes (for precipitation, DP, evapotranspiration, DET, and runoff, DR) in mm per year
between the same periods as in Fig. 3 for the Mahanadi River Basin (MRB) and the Aral region. The results
for MRB that do not refer to any scenario, and those for the Aral region are from previous distributed
hydrological modeling as listed in Table 1. The magenta error bars for DR and DET from the previous
distributed hydrological modeling of MRB (left) show the possible error range associated with these results
if considering the available runoff observation data for part of the 1956–2000 instead of the modeled runoff
result for that period (Table 1); to maintain basin-scale water balance, the DR error range must also be
mirrored as a corresponding DET error range. Black error bars further show 80 % confidence intervals
(Appendix, Table 3) for the other DET and DR results, as well as for DP, for both regions
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5 Conclusion

The present quantification and cross-regional comparison of hydro-climatic change has

shown that significant differences in seasonal temperature changes, indicating the cooling

effects of irrigation, are exhibited in different land regions. The relatively simple approach

proposed by Destouni et al. (2010) may therefore be widely useful in distinguishing and

quantifying such irrigation effects. An important insight gained from the present com-

parative study is that irrigation-driven changes to the climatically important vapor and

latent heat fluxes and associated temperature change effects at the land surface may be

greater in land regions with small relative changes to water resource availability in the

landscape (like the MRB) than in regions with large such changes (like the Aral region).

The role and importance of various natural and anthropogenic change drivers and their

impacts may thus differ greatly both among different regions and between different per-

spectives on continental water change. A focus on vapor and latent heat fluxes and tem-

perature changes at the land–atmosphere interface represents one perspective on the

continental part of Earth’s hydrological cycle. Focus on the availability and flow of con-

tinental water in the landscape represents another such perspective. Regardless of per-

spective, however, the change constraints that are implied by basin-wise water balance

should be accounted for in order to accurately understand and quantify continental hydro-

climatic changes and their variability across different land regions.
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Appendix: Significance Testing

The null hypothesis tested is that there has been no change in the long-term average values

of investigated variables from the time period in the beginning to that in the end of the

twentieth century, with the periods being those listed in Table 1 for each region. The null

hypothesis is expressed as lb ¼ le ¼ l, where lb and le are the average values of each

investigated variable in the beginning and the end of the twentieth century, respectively.

The hypothesized same average value l for the two periods is estimated from available

data for the end-of-century period, that is, as l ¼ le. The alternative hypothesis that there

is significant change in the long-term average values between the two averaging time

periods is expressed as lb 6¼ le.

The standard normal test variable is as follows:

z ¼ x� lj j
r=

ffiffiffi
n
p

which is normally distributed with mean 0 (when the null hypothesis is true) and variance r2/n,

where r is the standard deviation of each investigated variable, estimated consistently with l
from available data for the end-of-century period with n being the sample size (number of

years with data in that period), x is the sample mean value in the beginning-of-century time

period and x� lj j is the absolute value of the difference between x and l. The value of the

standard normal test variable z is computed and listed for different investigated variables in

Table 3, along with the confidence level (p) at which the null hypothesis of no change is

rejected, and hence, the change in variable average value indicated by x� lj j is significant.
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