
Geophysical Monograph Series 

Including
IUGG Volumes

Maurice Ewing Volumes
Mineral Physics Volumes



Geophysical Monograph Series

134	 The North Atlantic Oscillation: Climatic Significance  
and Environmental Impact James W. Hurrell, Yochanan 
Kushnir, Geir Ottersen, and Martin Visbeck (Eds.)

135	 Prediction in Geomorphology Peter R. Wilcock  
and Richard M. Iverson (Eds.)

136	 The Central Atlantic Magmatic Province: Insights from 
Fragments of Pangea W. Hames, J. G. McHone, 
P. Renne, and C. Ruppel (Eds.)

137	 Earth’s Climate and Orbital Eccentricity: The Marine 
Isotope Stage 11 Question André W. Droxler, Richard  
Z. Poore, and Lloyd H. Burckle (Eds.)

138	 Inside the Subduction Factory John Eiler (Ed.)
139	 Volcanism and the Earth’s Atmosphere Alan Robock  

and Clive Oppenheimer (Eds.)
140	 Explosive Subaqueous Volcanism James D. L. White,  

John L. Smellie, and David A. Clague (Eds.)
141	 Solar Variability and Its Effects on Climate Judit M.  

Pap and Peter Fox (Eds.)
142	 Disturbances in Geospace: The Storm-Substorm 

Relationship A. Surjalal Sharma, Yohsuke Kamide,  
and Gurbax S. Lakhima (Eds.)

143	 Mt. Etna: Volcano Laboratory Alessandro Bonaccorso, 
Sonia Calvari, Mauro Coltelli, Ciro Del Negro,  
and Susanna Falsaperla (Eds.)

144	 The Subseafloor Biosphere at Mid-Ocean Ridges 
William S. D. Wilcock, Edward F. DeLong, Deborah S. 
Kelley, John A. Baross, and S. Craig Cary (Eds.)

145	 Timescales of the Paleomagnetic Field James E. T. 
Channell, Dennis V. Kent, William Lowrie, and Joseph 
G. Meert (Eds.)

146	 The Extreme Proterozoic: Geology, Geochemistry,  
and Climate Gregory S. Jenkins, Mark A. S. McMenamin, 
Christopher P. McKay, and Linda Sohl (Eds.)

147	 Earth’s Climate: The Ocean–Atmosphere Interaction 
Chunzai Wang, Shang-Ping Xie, and James  
A. Carton (Eds.)

148	 Mid-Ocean Ridges: Hydrothermal Interactions Between 
the Lithosphere and Oceans  Christopher R. German, 
Jian Lin, and Lindsay M. Parson (Eds.)

149	 Continent-Ocean Interactions Within East Asian 
Marginal Seas Peter Clift, Wolfgang Kuhnt, Pinxian 
Wang, and Dennis Hayes (Eds.)

150	 The State of the Planet: Frontiers and Challenges 
in‑Geophysics Robert Stephen John Sparks  
and Christopher John Hawkesworth (Eds.)

151	 The Cenozoic Southern Ocean: Tectonics, 
Sedimentation, and Climate Change Between Australia 
and Antarctica Neville Exon, James P. Kennett,  
and Mitchell Malone (Eds.)

152	 Sea Salt Aerosol Production: Mechanisms, Methods, 
Measurements, and Models Ernie R. Lewis and Stephen 
E. Schwartz 

153	 Ecosystems and Land Use Change Ruth S. DeFries, 
Gregory P. Anser, and Richard A. Houghton (Eds.)

154	 The Rocky Mountain Region—An Evolving Lithosphere: 
Tectonics, Geochemistry, and Geophysics  Karl E. 
Karlstrom and G. Randy Keller (Eds.)

155	 The Inner Magnetosphere: Physics and Modeling  Tuija 
I. Pulkkinen, Nikolai A. Tsyganenko, and Reiner H. W. 
Friedel (Eds.)

156	 Particle Acceleration in Astrophysical Plasmas: Geospace 
and Beyond Dennis Gallagher, James Horwitz, Joseph 
Perez, Robert Preece, and John Quenby (Eds.)

157	 Seismic Earth: Array Analysis of Broadband 
Seismograms Alan Levander and Guust Nolet (Eds.)

158	 The Nordic Seas: An Integrated Perspective Helge 
Drange, Trond Dokken, Tore Furevik, Rüdiger Gerdes, 
and Wolfgang Berger (Eds.)

159	 Inner Magnetosphere Interactions: New Perspectives 
From Imaging James Burch, Michael Schulz, and 
Harlan Spence (Eds.)

160	 Earth’s Deep Mantle: Structure, Composition, and 
Evolution Robert D. van der Hilst, Jay D. Bass, 
Jan Matas, and Jeannot Trampert (Eds.)

161	 Circulation in the Gulf of Mexico: Observations and 
Models Wilton Sturges and Alexis Lugo-Fernandez (Eds.)

162	 Dynamics of Fluids and Transport Through Fractured 
Rock Boris Faybishenko, Paul A. Witherspoon, and John 
Gale (Eds.)

163	 Remote Sensing of Northern Hydrology: Measuring 
Environmental Change Claude R. Duguay and Alain 
Pietroniro (Eds.)

164	 Archean Geodynamics and Environments Keith Benn, 
Jean-Claude Mareschal, and Kent C. Condie (Eds.)

165	 Solar Eruptions and Energetic Particles Natchimuthukonar 
Gopalswamy, Richard Mewaldt, and Jarmo Torsti (Eds.)

166	 Back-Arc Spreading Systems: Geological, Biological, 
Chemical, and Physical Interactions David M. 
Christie, Charles Fisher, Sang-Mook Lee, and  
Sharon Givens (Eds.)

167	 Recurrent Magnetic Storms: Corotating Solar 
Wind Streams Bruce Tsurutani, Robert McPherron, 
Walter Gonzalez, Gang Lu, José H. A. Sobral, and 
Natchimuthukonar Gopalswamy (Eds.)

168	 Earth’s Deep Water Cycle Steven D. Jacobsen and Suzan 
van der Lee (Eds.)

169	 Magnetic ULF Waves: Synthesis and New Directions 
Kazue Takahashi, Peter J. Chi, Richard E. Denton, and 
Robert L. Lysak (Eds.)

170	 Earthquakes: Radiated Energy and the Physics of 
Faulting Rachel Abercrombie, Art McGarr, Hiroo 
Kanamori, and Giulio Di Toro (Eds.)



Geophysical Monograph 171

Subsurface Hydrology: 
Data Integration for  

Properties and Processes
David W. Hyndman

Frederick D. Day-Lewis
Kamini Singha

Editors

  American Geophysical Union
Washington, DC



Published under the aegis of the AGU Books Board

Jean-Louis Bougeret, Chair; Gray E. Bebout, Cassandra G. Fesen, Carl T. Friedrichs, Ralf R. Haese, W. Berry Lyons, 	  
Kenneth R. Minschwaner, Andrew Nyblade, Darrell Strobel, and Chunzai Wang, members.

Library of Congress Cataloging-in-Publication Data

Subsurface hydrology : data integration for properties and processes / David W. Hyndman, Frederick D. Day-Lewis, 
Kamini Singha, editors.
       p. cm. --  (Geophysical monograph ; 171)
  ISBN 978-0-87590-437-5
 1.  Groundwater flow--Mathematical models.  I. Hyndman, David W. II. Day-Lewis, Frederick D. III. Singha, 
Kamini. IV. American Geophysical Union.
  GB1197.7.S84 2007
  551.49--dc22
                                                            2007017693

  ISBN 978-0-87590-437-5 

ISSN 0065-8448

Front cover image: Spectral analysis of the stream discharge hydrograph (top) for the Muskegon 
River in central-northern Michigan, USA, reveals a rich time-varying power spectrum (bottom). 
Direct comparison of the discharge power spectrum to that of precipitation or water table fluctua-
tions can provide significant insight into watershed processes. Courtesy of David W. Hyndman.

Copyright 2007 by the American Geophysical Union
2000 Florida Avenue, N.W.
Washington, DC 20009

Figures, tables and short excerpts may be reprinted in scientific books and journals if the source is properly cited.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is 
granted by the American Geophyscial Union for libraries and other users registered with the Copyright Clearance 
Center (CCC) Transactional Reporting Service, provided that the base fee of $1.50 per copy plus $0.35 per page is 
paid directly to CCC, 222 Rosewood Dr., Danvers, MA 01923. 0065-8448/07/$01.50+0.35.

This consent does not extend to other kinds of copying, such as copying for creating new collective works or for resale. 
The reproduction of multiple copies and the use of full articles or the use of extracts, including figures and tables, for 
commercial purposes requires permission from the American Geophysical Union.

Printed in the United States of America.



Contents

Preface
David W. Hyndman, Frederick D. Day-Lewis, and Kamini Singha. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  vii

Introduction
Kamini Singha, David W. Hyndman, and Frederick D. Day-Lewis. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

I. Approaches to Data Integration

A Review of Geostatistical Approaches to Data Fusion
Clayton V. Deutsch. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

On Stochastic Inverse Modeling
Peter K. Kitanidis. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19

II. Data Integration for Property Characterization

A Comparison of the Use of Radar Images and Neutron Probe Data to Determine  
the Horizontal Correlation Length of Water Content
Rosemary J. Knight, James D. Irving, Paulette Tercier, Gene J. Freeman,  
Chris J. Murray, and Mark L. Rockhold . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  31

Integrating Statistical Rock Physics and Sedimentology for Quantitative  
Seismic Interpretation
Per Avseth, Tapan Mukerji and Gary Mavko, and Ezequiel Gonzalez. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  45

A Geostatistical Approach to Integrating Data From Multiple and  
Diverse Sources: An Application to the Integration of Well Data,  
Geological Information, 3d/4d Geophysical and Reservoir-Dynamics  
Data in a North-Sea Reservoir
Jef Caers and Scarlet Castro. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61

A Geostatistical Data Assimilation Approach for Estimating Groundwater  
Plume Distributions From Multiple Monitoring Events
Anna M. Michalak and Shahar Shlomi . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  73

A Bayesian Approach for Combining Thermal and Hydraulic Data
Allan D. Woodbury . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  89

Fusion of Active and Passive Hydrologic and Geophysical Tomographic Surveys:  
The Future of Subsurface Characterization
Tian-Chyi Jim Yeh, Cheng Haw Lee, Kuo-Chin Hsu, and Yih-Chi Tan . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  109

III. Data Integration to Understand Hydrologic Processes

Evaluating Temporal and Spatial Variations in Recharge and Streamflow  
Using the Integrated Landscape Hydrology Model (ILHM) 
David W. Hyndman, Anthony D. Kendall, and Nicklaus R.H. Welty. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  121



Integrating Geophysical, Hydrochemical, and Hydrologic Data to  
Understand the Freshwater Resources on Nantucket Island, Massachusetts
Andee J. Marksamer, Mark A. Person, Frederick D. Day-Lewis, John W. Lane, Jr.,  
Denis Cohen, Brandon Dugan, Henk Kooi, and Mark Willett . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  143

Integrating Hydrologic and Geophysical Data to Constrain Coastal Surficial  
Aquifer Processes at Multiple Spatial and Temporal Scales 
Gregory M. Schultz, Carolyn Ruppel, and Patrick Fulton. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  161

Examining Watershed Processes Using Spectral Analysis Methods Including the  
Scaled-Windowed Fourier Transform
Anthony D. Kendall and David W. Hyndman . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  183

Integrated Multi-Scale Characterization of Ground-Water Flow and Chemical  
Transport in Fractured Crystalline Rock at the Mirror Lake Site, New Hampshire
Allen M. Shapiro, Paul A. Hsieh, William C. Burton, and Gregory J. Walsh. .  .  .  .  .  .  .  .  .  .  .  .  .  .  201

IV. Meta Analysis

Accounting for Tomographic Resolution in Estimating Hydrologic Properties  
from Geophysical Data
Kamini Singha, Frederick D. Day-Lewis, and Stephen Moysey. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  227

A Probabilistic Perspective on Nonlinear Model Inversion and Data Assimilation 
Dennis McLaughlin. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  243



vii

Preface

Groundwater is the principal source of drinking water 
for over 1.5 billion people. With increasing demands for 
potable water, continued threats to water quality, and grow-
ing concerns about climate change, the processes controlling 
groundwater availability are of paramount concern. There are 
also considerable concerns about the sustainability of ground-
water supplies, given that much of the water withdrawn from 
aquifers today was recharged thousands of years ago. Data 
about hydrologic properties controlling flow and transport 
are needed to predict and simulate water-resources manage-
ment practices, aquifer remediation, well-head protection, 
ecosystem management, and geologic isolation of radioactive 
waste. As the study of fundamental processes moves forward, 
we find that the physical processes of flow are complex at 
all scales, and furthermore are coupled with chemical and 
biological processes. In the 21st century, hydrologic scientists 
increasingly find themselves considering a diverse range of 
processes, data types, and analytical tools to help unravel 
processes controlling subsurface dynamics. 

Quantifying the nature of hydrogeologic processes such as 
fluid flow, contaminant transport, or groundwater-surface-
water interactions is difficult due to poor spatial sampling, 
heterogeneity at multiple scales, and time-varying properties. 
This book provides a series of examples where multiple data 
types have been integrated to better understand subsurface 
hydrology. We hope it serves to stimulate discussion and 
research on ways to improve our understanding on hydrologic 
processes, which are increasingly relevant as societal needs 
for clean water become more pressing. We thank the authors 
and reviewers of the chapters contained within this mono-
graph and Allan Graubard, our AGU acquisitions editor.

David W. Hyndman
Frederick D. Day-Lewis

Kamini Singha
Editors

Subsurface Hydrology: Data Integration for Properties and Processes
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Copyright 2007 by the American Geophysical Union.
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Understanding the processes that control water move-
ment in the subsurface has been recognized as a “grand 
challenge” in environmental science [National Research 
Council, 2001b]. Research into methods to estimate hydro-
logic parameters that control water movement extends at 
least back to Theis [1935], who worked simultaneously 
on methods to predict (forward model) aquifer response 
to pumping, and also to estimate (using an inverse model) 
the controlling hydrologic parameters—transmissivity and 
storativity. Seventy years after Theis’ pioneering work, 
hydrologists continue to use pumping tests and slug tests to 
characterize heterogeneous aquifers. Despite advances in 
modeling tools and inverse methods, aquifer characteriza-
tion remains an extremely difficult problem due to spatial 
heterogeneity, temporal variability, and coupling between 
chemical, physical, and biological processes. 

The concept of data integration (also called data fusion or 
data assimilation) involves merging multiple data types to 
develop more reliable predictive models, and to answer basic 
and applied science questions. In many applications, com-
binations of complementary data types has been shown to 
yield more information than analysis of more abundant data 
of a single type [National Research Council, 2000; National 
Research Council, 2001a]. Ideally, this would involve a 
seamless connection of field data across broad ranges of 
data types, temporal scales, and spatial scales from pores 

to watersheds and beyond. In practice, hydrologic measure-
ments tend to be either sparse, local, and representative of 
only small volumes of the subsurface, or integrated over 
large volumes making it difficult to characterize heteroge-
neous hydrologic parameters. As a result, there remains a 
need for cost-effective data sources, and novel approaches 
to integrate multiple data types that consider coupled pro-
cesses across multiple scales. Data integration is thus criti-
cal to improve our understanding of complex, multi-scale 
hydrologic processes, which often have feedbacks with 
other physical, chemical, and biological processes at mul-
tiple scales.  

Reliable predictions of future system behavior depend 
on our ability to develop models that accurately represent 
field conditions based on collected data, while simulating 
key processes with a sparse set of parameters. With limited 
data, the problem of model identification is generally poorly 
constrained; as additional data types are considered, how-
ever, the intersection between viable sets of models becomes 
smaller (Figure 1) and estimates of parameters and rates of 
processes in the field improve. Recognition of this synergy 
is evidenced by the increasing number of integrated analy-
ses of multiple data types, and a growing realization that 
simultaneous consideration of multiple data types, provides 
improved ways to characterize and monitor subsurface 
hydrologic properties and processes [e.g., Hubbard and 
Hornberger, 2006]. 

There are a wide range of data types that can be used to 
improve our understanding of hydrologic processes, ranging 
from direct estimates of hydrologic parameters (e.g., perme-

Fig. 1Fig. 1
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ameter measurements on cores or flowmeter measurements 
of hydraulic conductivity) to indirect information from geo-
logic maps, geophysical tomography, or quantities related to 
parameters of interest through physical models such as heat 
or solute transport. Table 1 provides a list of representative 
references where the listed data type is used to estimate 
parameters in subsurface models. This list is by no means 
exhaustive, but indicates the diversity of information sources 
used in hydrology. While data integration is increasingly 
implemented in hydrologic studies, it is also an active area 
of research due to the complexities of scale and measurement 
support volume, data weighting, model parameterization, 
realistic representation of geology in numerical models, and 
implementation of coupled-process numerical models.

This volume provides a broad sampling of papers that 
represent the current state of the science of data integration 
for subsurface hydrology. The premise underlying the col-
lected work in this volume is that simultaneous consideration 
of multiple data types allows for an improved understanding 

of subsurface hydrology. The monograph is divided into four 
sections: (1) approaches to quantitative data integration; (2) 
data integration for characterization of hydrologic properties; 
(3) data integration for understanding hydrologic processes; 
and (4) meta analysis. 

The first section includes papers on approaches to hydro-
logic data integration, which range from qualitative inter-
pretation of multiple data types to rigorous non-linear 
inversion of coupled-process numerical models. In the last 
few decades, non-linear regression models that estimate sub-
surface properties based on groundwater data [e.g., Neuman 
and Yakowitz, 1979; Gorelick, 1990; Gailey et al., 1991; 
Wagner, 1992; Poeter and Hill, 1997] have been developed 
and are built into commercially available modeling soft-
ware. Software packages such as PEST [Doherty, 2002] and 
UCODE [Poeter et al., 2005] allow for automated model 
calibration that includes multiple datasets (e.g., hydraulic 
heads and tracer concentrations). Often, regression model-
ing requires that the inverse problem be overdetermined; 
hence only a handful of parameters can be estimated, or 
zonal patterns of heterogeneity need to be defined a priori. 
Stochastic inversion methods provide alternatives to conven-
tional non-linear regression by seeking to identify multiple 
models that match a given dataset, thus yielding additional 
information on parameter uncertainty and how this trans-
lates into uncertainty in model predictions. Although papers 
on stochastic inversion abound in the hydrologic literature 
[e.g., Ginn and Cushman, 1990; Harvey and Gorelick, 1995; 
McLaughlin and Townley, 1996; Gomez-Hernandez et al., 
1997; Capilla and Gomez-Hernandez, 2003], widespread 
use of such methods has been hampered by the perceived 
complexity of these tools. In this volume, Deutsch provides 
an overview of common geostatistical approaches that were 
originally developed for petroleum and mineral problems 
but are applied with increasing frequency in subsurface 
hydrology. The author discusses practical aspects of geo-
statistical methods that range from estimation with sparse 
data and declustering, to integration of secondary data and 
complex geological structures. Kitanidis provides a review 
of a Bayesian framework for inversion of groundwater data, 

Table 1Table 1

Table 1. A partial list of information sources used for estimating hydrologic parameters or processes. 

Data Type Representative papers or books
Stratigraphic/sedimentologic information Weissmann and Fogg [1999], Koltermann and Gorelick [1992]
Temperature Anderson [2005], Stonestrom and Constantz [2003]
Geophysics Vereecken et al. [2006], Rubin and Hubbard [2006]
Isotopes Clark and Fritz [1997], Kaufmann et al. [1984] 
Geochemistry and microbiology Chappelle [2000], Kendall and McDonnell [1998] 
Hydraulic head Hill and Tiedeman [2007], Kitanidis [1997]
Solute concentrations Rubin [2003], Harvey and Gorelick [1995]
Remote sensing Hoffmann et al. [2003], Houser et al. [1998]

Figure 1. Sets of models can explain different data types. The 
intersection identifies the “best” model or models that represent the 
system across the integrated range of available data types. 
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with emphasis on estimating hydraulic parameters using 
head data; this paper describes a linear Gaussian stochastic 
inverse approach (often referred to as geostatistical inver-
sion) including the underlying concepts, mathematics, and 
applications. 

The second section of this monograph includes papers 
that use data integration methods to characterize hydro-
logic properties such as hydraulic conductivity, porosity, 
or fracture connectivity as well as parameters representing 
boundary conditions and contaminant release histories. The 
interest in estimating hydrologic properties is many-fold, 
including development of models that can be used to assess 
the risks that contamination poses to potential receptors or 
to evaluate rates of natural processes including recharge. 
The papers collected here represent work with different data 
across a range of settings. 

For vadose-zone applications, spatially variable water 
content controls flow in the subsurface. Extrapolation of 
these data to large spatial scales is complicated, however, 
given only direct measurements of water content. Knight et 
al. integrate neutron-probe and ground-penetrating radar 
data to assess specific geostatistical characteristics of water 
content data from Hanford, Washington, USA. This work 
moves toward more quantitative integration of surface GPR 
data in hydrologic studies, and offers insights into issues 
with the measurement support volume.

The hydrologic community has long benefited from shared 
interests and cross-pollination with petroleum engineering 
and exploration geophysics. This monograph includes two 
crossover papers from the petroleum community. Avseth et 
al. present a data integration method developed to charac-
terize lithologic facies in reservoirs. Their approach com-
bines geologic and seismic information using petrophysical 
relations within a Bayesian framework, while Caers and 
Castro present an application of a probabilistic approach to 
integrate geologic, facies, seismic, and well production data 
to characterization of a North Sea reservoir. To estimate 
geologic facies and match water and oil production data, 
they analyze static and dynamic data with multipoint geo-
statistical and perturbation methods. The work they present 
is applied to basin-scale fluid flow and reservoir dynamics; 
the methodologies, however, have direct application for 
hydrologic data integration. Multipoint geostatistics for data 
integration is still not commonly used in hydrology, despite 
work such as this that indicates its promise [e.g., Feyen and 
Caers, 2006].

Michalak and Shlomi contribute a theoretical framework 
for estimating the spatial and temporal evolution of solute 
plume distributions. This framework is based on geostatisti-
cal inverse modeling and multiple monitoring events, given 
knowledge about geological variability and other factors 

affecting solute transport, but without knowing the source 
location or release history. In their approach, concentration 
data can be used to reconstruct past plume distributions that 
are consistent with all available information. Woodbury pres-
ents the generalized inverse problem for heat and groundwa-
ter, as an example of how the Bayesian framework can be 
used for data integration. The paper includes two examples, 
one focusing on inversion of heat conduction for paleocli-
mate reconstructions, and the second focusing on ground-
water flow within the Edwards aquifer. 

In a vision paper, Yeh et al. discuss state-of-the-art tomo-
graphic approaches including both hydraulic tomography 
and electrical resistivity tomography. Several examples 
illustrate the benefits of combining multiple data types, 
such as hydraulic and tracer data. The authors then propose 
tomographic approaches to basin-scale hydrologic character-
ization; they suggest that natural hydrologic, geologic, and 
climatic stimuli (e.g., river-stage fluctuations, earthquakes, 
and lightning) can serve as hydrologic or geophysical pertur-
bations needed for regional-scale tomographic surveys (i.e., 
hydraulic, seismic, or electrical). 

In addition to characterizing physical or chemical proper-
ties that affect hydrologic processes, data integration meth-
ods are used to shed light on the processes themselves. The 
third section of the monograph is a collection of papers that 
demonstrate the use of diverse types of data to elucidate 
processes spanning subsurface-hydrologic research, from 
paleohydrology to watershed response to modern coastal 
aquifer dynamics. A range of data types (e.g., geochemical, 
isotopic, hydraulic, geophysical) and integration methods 
(i.e., spectral analysis, physically based numerical model-
ing, etc.) are considered. This range of topics is timely as 
we attempt to identify the influence of human activities 
associated with land use and climate change on hydrologic 
and ecological systems. 

Hyndman et al. illustrate the use of the new Integrated 
Landscape Hydrology Model (ILHM), which was devel-
oped to predict spatial and temporal variations in groundwa-
ter recharge at the watershed scale. This code simulates the 
redistribution of precipitation through the vegetation canopy, 
sediment surface, soil and sediment layers, and snow pack 
to various surface and subsurface pathways using a process-
based description of the water balance, based on GIS data 
and minimal use of site-specific parameters. A process-based 
simulation for a watershed in western Michigan, USA, illus-
trates the region’s strong seasonality in recharge rates; most of 
the precipitation and snowmelt becomes groundwater recharge 
from September through March, while virtually none of the 
precipitation during the growing season is recharged. 

The dynamics of coastal and island aquifers remain impor-
tant basic- and applied-science topics. Understanding inter-
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actions between aquifers, estuaries, and the coastal ocean 
requires consideration of many different data types collected 
over a range of temporal and spatial scales. Saltwater intru-
sion is a potential threat to many coastal and island aquifers, 
many of which are sole-source supplies of potable water. 
Marksamer et al. investigate the Nantucket Island aquifer in 
Massachusetts, USA, which extends deeper than expected 
given the current climate and water-table configuration. 
The authors use numerical modeling and multiple lines of 
evidence to test alternative paleohydrologic hypotheses to 
explain anomalous offshore freshwater and Nantucket’s deep 
freshwater lens. Working in the coastal region of the south-
eastern USA, Schultz et al. combine groundwater monitor-
ing, geochemical, electrical, electromagnetic, and vegetation 
mapping data to examine multi-scale, spatial and temporal 
coastal-aquifer dynamics. Target processes include salt-
water intrusion, submarsh groundwater discharge, salinity 
gradients at the ocean boundary, and possible pore-water 
free convection. 

The spectral content of hydrologic time series can provide 
insight into the time-scales of, and linkages between, impor-
tant natural processes. Kendall and Hyndman demonstrate 
how spectral analysis of hydrologic datasets can be used to 
better understand linkages between precipitation, stream-
flows, and groundwater levels for watersheds in northern 
lower Michigan, USA. This analysis shows non-stationary 
behavior in these hydrologic systems, including the large 
reductions in summer streamflows due to canopy intercep-
tion and evapotranspiration. 

Fractured rock is, perhaps, the most complicated hydro-
logic setting [National Research Council, 1996]. Fluid 
concentration data from many fractured rock sites do not 
follow standard advective-dispersive behavior, and new 
data integration approaches are needed to identify dominant 
processes and understand the role of permeability heteroge-
neity [National Research Council, 2000, 2001b]. Shapiro 
et al. present an example of data integration from the U.S. 
Geological Survey’s Fractured-Rock Hydrology research 
site, near Mirror Lake, New Hampshire, USA. The authors 
investigate anomalous solute-transport behavior at a variety 
of spatial scales using tracer and hydraulic testing as well 
as chemical sampling. Detailed borehole information and 
fracture mapping was integrated with the hydrologic data 
to clarify the geologic controls on f low and transport at 
each scale. 

The collection of studies in this volume clearly demon-
strates the value of data integration for hydrology; important 
limitations, however, remain. Recent work has underscored 
pitfalls and limitations of certain approaches or strategies 
used to combine data of different types. For example, addi-
tional work is needed to address the problems arising from 

model identification, non-linear feedbacks, uncertainty 
assessment, realistic characterization of geological vari-
ability, and discrepancies between the support volumes of 
different measurement types. The monograph’s fourth sec-
tion focuses on meta analysis and includes papers that reflect 
on opportunities for further research. Singha et al. discuss 
problems in the conversion of geophysical tomograms to 
hydrologic properties of interest. Although tomograms may 
provide qualitative information about hydrologic properties, 
the images have limited resolution and tend to be blurry ver-
sions of reality. The authors compare an analytical approach 
with a numerical approach to evaluate and address this prob-
lem. McLaughlin also discusses limitations associated with 
environmental data assimilation, in particular, problems that 
arise from the assumptions of linearity and normality on 
which most current approaches are based. He proposes that 
robust, rather than optimal, estimates should be sought, and 
that nonlinearity should be accepted and addressed. 

Given current attention to coupled physical and chemical 
processes, and the increasing importance of groundwater as 
a resource, there is a strong need for novel data integration 
methods in hydrology. With continued advances in computa-
tional resources and rapidly evolving software for numerical 
modeling and inversion, future data integration methods 
will be better able to resolve both the nature of subsurface 
heterogeneities and the rates of critical processes across the 
range of hydrologic scales. Such developments will provide 
tools to help scientists address questions that arise through 
interdisciplinary research, where the measurements and 
models incorporate a host of processes that were typically 
studied individually within single disciplines. We believe 
that the integration of data and methods from hydrology with 
those from other sciences will be an active area of future 
research as hydrologic problems are increasingly recognized 
as being complex and dynamic. Data integration methods 
can provide important advances in the study of water quality 
and quantity, which will both be imperative for future deci-
sion-making in water resources.
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A Review of Geostatistical Approaches to Data Fusion
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Geostatistics has evolved to a mature discipline with a well understood theoreti-­­
cal framework and a standard set of tools. The tools have been applied with many 
geospatial variables in many different contexts. This paper provides a brief review 
of geostatistical approaches to problems involving multiple data types in subsur-­­
face hydrology. The random function paradigm of geostatistics is presented. Bayes 
Law is the engine that permits multivariate spatial and remotely sensed data to be 
integrated. The required multivariate probabilities are often fit with the Gaussian 
distribution. There are many implementation decisions and practicalities of geo-­­
statistics. These include declustering, inference in presence of sparse data, dealing 
with many secondary data, and modeling complex geological features. Subjects of 
practical importance are reviewed.

1. INTRODUCTION

The word geostatistics commonly refers to the theory 
of regionalized variables and the related techniques that 
are used to predict rock properties at unsampled locations. 
Georges Matheron formalized this theory in the early 1960’s 
(Matheron, 1971). The development of geostatistics was 
led by engineers and geologists faced with real problems. 
They were searching for a consistent set of numerical tools 
that would help them with ore reserve estimation, reservoir 
performance forecasting, and site characterization.

At any instance in geological time, there is a single true 
distribution of rock properties over each study area. This 
true distribution is inaccessible with limited data and the 
chaotic nature of certain aspects of geological processes. 
Geostatistics strives to create numerical models that mimic 
the physically significant features of property variations.

Conventional mapping algorithms were devised to create 
smooth maps to reveal large-­­scale geologic trends; they 
are low pass filters that remove high frequency property 
variations. For practical problems of flow prediction, how-­­

ever, this variability has a large affect on the predicted 
response. Geostatistical simulation techniques, conversely, 
were devised with the goal to reproduce a realistic amount 
of variability, that is, create maps or realizations that are 
neither unique nor smooth. Although the small-scale vari-­­
ability of these realizations may mask large-scale trends, 
geostatistical simulation is more appropriate for predictions 
of subsurface flow.

Geostatistics is primarily concerned with constructing 
high-resolution 3-D models of categorical variables such as 
facies and continuous variables such as porosity and per-­­
meability. It is necessary to have hard truth measurements 
at some volumetric scale. All other data types including 
geophysical data are called soft data and must be calibrated 
to the hard data. It is neither possible nor optimal to con-­­
struct models at the resolution of the hard data. Models are 
generated at some intermediate geological modeling scale, 
and then scaled to an even coarser resolution for flow mod-­­
eling. An important goal of geostatistics is the creation of 
detailed numerical 3-D geologic models that simultaneously 
account for a wide range of relevant data of varying degrees 
of resolution, quality, and certainty. Much of geostatistics 
relates to data calibration and reconciling data types at dif-­­
ferent scales. This data integration or fusion is the focus of 
this review paper.

Subsurface Hydrology: Data Integration for Properties and Processes
Geophysical Monograph Series 171
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Geostatistical techniques allow alternative realizations to be 
generated. These realizations are often combined in a model 
of uncertainty, that is, they are processed through a numerical 
model of the response and the different outcomes are assem-­­
bled in a distribution of response uncertainty. Uncertainty is 
becoming an important goal of geostatistical studies.

Numerical models are rarely built in one step. A hierarchi-­­
cal framework is followed with different techniques and tools 
at each level. A typical scenario consists of (1) mapping large 
scale bounding surfaces with conventional or geostatistical 
techniques, (2) mapping trends of facies proportions within 
each major stratigraphic layer, (3) creating high resolution 
facies models within each layer reproducing the mapped 
trends, (4) assigning continuous rock properties such as 
porosity and permeability within each facies, and (5) post 
processing and upscaling the resulting high resolution mod-­­
els for flow simulation. The classical random function model 
formalism of geostatistics is presented first, then some of the 
practical implementation aspects are described.

2. RANDOM FUNCTION FORMALISM

We start by considering a regionalized variable such as a 
subsurface elevation, formation thickness, facies proportion, 
facies indicator, porosity or permeability. We denote a specific 
value as z. The uncertainty about an unsampled value z is mod-­­
eled through the probability distribution of a random variable 
(RV) Z. The probability distribution of Z after data condition-­­
ing is usually location-dependent; hence the notation Z(u), 
with u being the coordinate location vector. A random func-­­
tion (RF) is a set of RVs defined over some field of interest, 
e.g., Z(u), u ∈ study area A. Geostatistics is concerned with 
inference of statistics related to a random function (RF).

Inference of any statistic requires some repetitive sampling. 
For example, repetitive sampling of the variable z(u) is needed 
to evaluate the cumulative distribution function: F(u;z) = 
Prob{ Z(u) ≤ z } from experimental proportions. However, in 
most cases, at most one sample is available at any single loca-­­
tion u; therefore, the paradigm underlying statistical inference 
processes is to trade the unavailable replication at location u 
for replication over the sampling distribution of z-samples col-­­
lected at other locations within the same general area.

This trade of replication corresponds to the decision of 
stationarity. Stationarity is a property of the RF model, not 
of the underlying regionalized variable. Thus, it cannot be 
checked from data. The decision to pool data into statistics 
across facies is not refutable a priori from data; however, it 
can be shown inappropriate a posteriori if differentiation per 
facies is critical to the study.

The first and most important aspect of stationarity is the 
decision to pool data together for common processing. Another 

aspect of stationarity is a decision regarding the location-
dependency of statistical parameters. A common practical 
approach is to assume that key statistical parameters do not 
depend on location within reasonably defined geological 
populations.

The statistical paradigm faced by geostatisticians is one of 
multivariate statistics: the same variable at multiple locations 
and multiple secondary data. We could denote the secondary 
data as Y(u) and index Y if required to be clear regarding the 
number of secondary data. This is illustrated schematically 
in Plate 1.

The two wells and gridded seismic response on Plate 1 
illustrate the multivariate aspect of the problem faced by 
geostatisticians. We are interested in the uncertainty at a 
location that has not been drilled. The nearby data (n) consist 
of well and seismic data:

	 (n) = {z(uα),α=1,…,nw},{y(uβ’), β=1,…,ns}	 (1)

The uncertainty at a particular unsampled location must 
be inferred in light of the (n) conditioning data. A best 
estimate can be retrieved from the conditional distribu-­­
tion or it could be sampled by Monte Carlo simulation 
for alternative realizations. The standard approach to 
estimate conditional probabilities is Bayes Law, which has 
been used for more than 200 years. Bayes Law provides 
the arithmetic to infer the conditional distribution of the 
unsampled value z(u):

	 	 (2)

The numerator on the right side is an n+1 variate distribu-­­
tion of the unknown and the n data. The denominator on the 
right side is the n variate distribution of the conditioning 
data. The univariate distribution on the left side is what we 
are after–the conditional distribution of the unsampled value 
given the set of conditioning data (n).

Inference of the required multivariate distributions is vir-­­
tually impossible. There are no replications of the unsampled 
value with the data values and there are unlikely to be rep-­­
lications of the precise data configuration (n). Nevertheless, 
those multivariate probabilities are required for inference of 
the conditional distribution.

The required multivariate probabilities are calculated from 
either an analytical distribution model or from a large set of 
analogue data deemed representative (sometimes referred to as 
a training image). The conventional paradigm of geostatistics 
is to use analytical distributions with parameters inferred from 
the available data. The multivariate Gaussian distribution will 

Plate 1Plate 1
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Plate 1. Illustration of the typical case faced by geostatisticians: there are a limited number of locations with precise 
measurements (the two wells in this case) and secondary variables that are often on grids (one variable shown).
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be explained in the next section. The classical approach of 
variograms and kriging will be explained now.

Subsurface variables are heterogeneous. Their spatial vari-­­
ability is quantified by the variogram function:

	 	 (3)

2γ is variability and is in the units of variance, h is a vector 
distance, Z(u) is the random variable. The expected value 
is approximated by a discrete sum over the available pairs. 
The available data do not permit estimation of 2γ for many 
distance and direction lags. The function is fit to interpolate 
2γ for h-values that cannot be calculated.

Estimation can be formulated as an optimization problem. 
The linear estimate at unsampled location u0 is written:

	 	 (4)

m(u) is the location-dependent mean and the λs are weights 
that are calculated to minimize the expected error variance. 
The equations that lead to the optimal weights are referred to 
as the normal equations or the simple kriging equations:

	 	 (5)

The C(h) covariance values are derived from the vario-­­
gram through the relation C(h)=σ2-γ(h), which is valid with 
the assumption of stationarity. Relatively straightforward 
modifications are necessary if the decision of stationarity is 
relaxed. Constraints may be added to ensure unbiasedness 
without specifying the location-dependent mean; the modifi-­­

cations are straightforward. We can calculate the minimized 
error variance, but it has no practical meaning outside of the 
Gaussian context (see Section 3 below).

Estimates from Equation 4 are useful. They provide a 
useful means to construct a grid of estimates. These esti-­­
mates are used for resource assessment and visualization of 
geologic trends. The kriging formalism of Equations 4 and 5 
may be extended to multiple correlated variables. The result 
is cokriging. The estimate follows the same form; however, 
the covariance values must come from a mathematically 
valid model of coregionalization.

Kriging was state of the art in the late 1970s and early 
1980s. Geostatisticians have come to expect more from their 
numerical models: local and joint uncertainty. Equation 2 is 
valid. A multivariate distribution is required. The multivari-­­
ate Gaussian distribution is a remarkably tractable model that 
has come to be relied upon in geostatistical calculations.

3. MULTIVARIATE GAUSSIAN DISTRIBUTION

The multivariate probabilities required for inference of con-­­
tinuous variable uncertainty cannot be directly inferred from 
data. A multivariate Gaussian model is systematically adopted. 
The continuous variable is transformed to a Gaussian distribu-­­
tion, and then all multivariate distributions are assumed to be 
Gaussian. We would wish for alternative probabilistic models 
to choose from; however, the multivariate Gaussian prob-­­
ability distribution is remarkably tractable and used almost 
exclusively. Figure 1 illustrates transformation of a continuous 
variable from an arbitrary distribution to a Gaussian distri-­­
bution. The distributions are shown as cumulative distribu-­­

Fig. 1Fig. 1

Figure 1. Schematic illustration of normal score transform. The original Z- data are on the left and the Gaussian 
Y‑values are on the right. The top figures are the global CDFs and the bottom figures represent local CDFs. Quantiles 
are transformed using the global distribution (the three part blue line).
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tions. In Gaussian units (the right side), all distributions are 
Gaussian in shape. The uncertainty in original units must be 
established by back transformation. The transformation and 
back transformation are written as:

	 	 (6)

Figure 1 reveals an important point. All conditional dis-­­
tributions in Gaussian units are non-standard Gaussian, see 
the lower right. The quantiles of such distributions can be 
back transformed via the global transformation. Conditional 
distributions in original units are not Gaussian, but we can 
establish their shape numerically, that is, back transformation 
of many quantiles. The 99 percentiles would be a good start; 
more are required for a stable estimate of the variance.

The mean and variance of each conditional non-standard 
Gaussian distribution are calculated with the normal equa-­­
tions that are identical to the kriging equations given in equa-­­
tions 4 and 5. The stationary mean is set to 0.0 in Gaussian 
units and the variogram/covariance are calculated from the 
normal score transforms of the data. The variance of estima-­­
tion has particular meaning in the Gaussian case; it is the 
variance of the conditional distribution:

	 	 (7)

A small example will be developed at the expense of some 
space. This example is a classic illustration of modern geo-­­
statistical tools used to assess uncertainty.

3.1 Small Example

Consider a square grid of 101–16m grid cells that cover 
just over one regular Section of land. Let’s directly model 
porosity. The global representative distribution will be taken 
as lognormal with a mean m=0.15 and a standard deviation 
σ=0.075. The global representative distribution would be 
obtained by declustering and/or debiasing using the available 
well and seismic data. Consider an average data of 0.15 in 
the northwest corner of the area and a high data of 0.25 in 
the southeast corner of the area.

Uncertainty is characterized in Gaussian units. The trans-­­
formation to a standard Gaussian distribution is defined 
analytically in this case:

	 	 (8)

In our case α =−2.01 and β =0.472. The back transform is 
also defined analytically: z=exp(yβ+α). The porosity data 
values of 0.15 and 0.25 are transformed to 0.236 and 1.317, 
respectively.

A fitted variogram model of the Gaussian transformed 
values is required. This would be obtained from the available 
data and analogue information. The variogram will be taken 
as an exponential function with an effective range of 2000m: 
γ(h)=1-­exp(3h/2000). In fact, γ(h) is the semivariogram or 
one half of the variogram. Under a decision of stationarity, the 
covariance function is C(h)=1-­γ(h)=exp(3h/2000).

Local conditional distributions are defined everywhere by 
a local conditional mean and variance that are computed by 
simple kriging. Plate 2 shows these results. The locations of 
the wells are evident on the conditional variance map–the 
conditional variance is zero at the two well locations. These 
results are in Gaussian units. We back transform these condi-­­
tional distributions to original units by back transforming a 
large number of quantiles, say 200. Plate 3 shows maps of the 
conditional mean, conditional variance, P90 low value and P10 
high value in original units. Note how the conditional vari-­­
ance in original units is higher in the south and east because 
the mean is higher; the conditional variance in original units 
depends on the data as well as the data configuration.

Simulated realizations are required for two reasons. Firstly, 
they provide numerical models of heterogeneity for process 
evaluation. Secondly, they permit input uncertainty to be 
transferred to output uncertainty, for example, calculating 
uncertainty in resources or transport. There are a number of 
implementations that generate multiple realizations. Sequential 
methods such as sequential Gaussian simulation are popular.

Multiple realizations of porosity are generated by Gaussian 
simulation. Five realizations are shown on the left of Plate 
4. The two well data are reproduced by all realizations. The 
pore volume was calculated on each realization assuming a 
thickness of 10m. The distribution of pore volume is shown 
at the right of Plate 4. These realizations allow us to visualize 
heterogeneity as well as assess uncertainty. The realizations 
could be ranked by their pore volume and select realizations 
(say the ones with the P90, P50 and P10 outcomes) could be 
input to flow simulation.

This little example shows a hint of what geostatistics is 
aimed at. In practice, we must consider multiple stratigraphic 
layers, multiple facies, multiple data types, and multiple vari-­­
ables such as residual saturation and permeability. Some prac-­­
ticalities are addressed below.

3.2 Block Cokriging

An important practical reality of geostatistics is the pres-­­
ence of data with different type, noise content, and volume 

Plate 2Plate 2

Plate 3Plate 3

Plate 4Plate 4
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Plate 2. Map of the conditional mean (left side) and conditional variance (right side) for the Small Example.

Plate 3. Map of the conditional mean (upper left) and conditional variance (upper right) in original units. Maps of the 
P90 low value and P10 high values are shown in the lower left and right.
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Plate 4. Multiple realizations (5 out of 250) are illustrated on the left and a histogram of the OOIP for the 250 realiza-­­
tions is shown to the right.
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scale. We could invoke block cokriging to address these 
three critical issues. Different data types are handled with a 
cokriging and a model of coregionalization. Different volume 
scales of measurement are handled by block cokriging, that 
is, the use of volume averaged covariances. There are a num-­­
ber of inference problems and challenges with this approach: 
(1) linear averaging is assumed in Gaussian units, which is 
only correct if the original variable histograms are Gaussian 
in shape, (2) the point-scale statistics including histograms 
and variograms must be known, and (3) the noise content of 
each data source must also be known. This approach is valid 
and manageable in many cases. Nevertheless, these assump-­­
tions are serious and often lead practitioners to consider 
some simplifications. A number of practical implementa-­­
tion issues will now be discussed. These are unquestionably 
important for reasonable results in the combination of data 
with geostatistics.

4. PRACTICAL IMPLEMENTATION

4.1 Representative Statistics

Wells are not drilled to be statistically representative of 
the site; they are often intended as locations for production. 
Even in preliminary appraisal, there is a desire to delineate 
interesting areas of the site. It is critical to establish a repre-­­
sentative distribution for each variable being modeled. This 
includes facies proportions and the histograms of poros-­­
ity and permeability within each facies type. Declustering 
techniques weight the data such that wells drilled close 
together are given less weight. Wells drilled farther apart 
are given more weight. Declustering is suitable when there 
are sufficient data to sample areas of high and low quality. 
Sometimes there are too few wells. There may be areas of 
relatively poor reservoir quality that have not been drilled. 
Debiasing techniques are used to establish representative 
distributions based on a secondary variable such as seismic 
or a geologic trend. The results of declustering and debiasing 
include representative facies proportions and representative 
histograms of each continuous variable under consideration. 
A large-scale trend model may have been built for debias-­­
ing–this trend model will also come into subsequent geosta-­­
tistical calculations.

An essential feature of geostatistics is inference in pres-­­
ence of sparse data. We are faced with a paradox. A lack of 
data is precisely when a geostatistical model of uncertainty 
is warranted; however, it is also the case when inferring 
required parameters is difficult. Limiting ourselves to statis-­­
tics we can infer from the available data would be a mistake. 
We must often use analogue information related to spatial 
continuity, particularly in the vast interwell region. The 

spatial continuity in the vertical direction is relatively easy 
to infer even with limited well data. Horizontal to vertical 
anisotropy ratios based on the geologic setting can be useful 
to infer the horizontal continuity. The vertical variogram 
shape is used, but scaled according to a ratio. Figure 2 shows 
some typical ratios (Deutsch, 2003).

4.2 Hierarchical Modeling

A sequential approach is often followed for reservoir mod-­­
eling. The large-scale features are modeled first followed by 
smaller, more uncertain, features:
(1)	�E stablish the stratigraphic layers to model, that is, define 

the geometry of the container being modeled. A con-­­
ceptual model for the large scale continuity of facies 
and petrophysical properties within each major layer is 
chosen.

(2)	� The bounding surfaces are mapped. They may be simu-­­
lated with geostatistical techniques if they are associated 
with considerable uncertainty.

(3)	� The facies rock types are modeled by cell-based or 
object-based techniques within each stratigraphic layer 
(see below). Multiple realizations represent uncertainty 
in facies.

(4)	� The porosity and other petrophysical variables are mod-­­
eled on a by-facies basis. These may be modeled one 
after another or all together. Multiple realizations are 
used to represent uncertainty.

(5)	� The models are revised to match dynamic data such 
as pumping tests and flow history. Knowledge gained 
from trying to match this data may be coded as spatial 
constraints and the modeling repeated.

(6)	� These set of multiple realizations are input to flow and 
transport modeling or simply visualized to aid in deci-­­
sion making and resource assessment.

Fig. 2Fig. 2

Figure 2. Some typical horizontal-to-vertical anisotropy ratio 
conceptualized from available literature and experience. Such gen-­­
eralizations can be used to verify actual calculations and supple-­­
ment very sparse data.
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A detailed description of these steps is beyond the scope 
of this review paper, but some of the references are suitable. 
The book by Chiles and Delfiner (1999) is a comprehensive 
overview of geostatistical techniques. The book by Cressie 
(1991) presents a statistical perspective on this approach. The 
book by David (1977) is a practical mining approach. The 
two books by Deutsch (1998 and 2003) provide a software 
and petroleum perspective, respectively. Goovaerts (1997) 
provides another comprehensive overview of geostatisti-­­
cal techniques. Isaaks and Srivastava (1989) provide a nice 
introduction to basic concepts. Journel and Huijbregts (1978) 
provide a comprehensive theoretical presentation from a 
mining perspective. Kitanidis (2000) provides an introduc-­­
tion from a hydrogeologic perspective.

4.3 Facies Modeling

Facies are often important in reservoir modeling because 
the petrophysical properties of interest are highly correlated 
with facies type. Facies are distinguished by different grain 
size or different diagenetic alteration. The facies must have 
a significant control on the porosity and other properties of 
interest; otherwise, modeling the 3-D distribution of facies 
will be of little benefit since uncertainty will not be reduced 
and the resulting models will have no more predictive power. 
An additional constraint on the choice of facies is that they 
must have straightforward spatial variation patterns. The 
distribution of facies should be at least as easy to model as 
the direct prediction of petrophysical properties. Once the 
facies are defined, relevant data must be assembled and a 
3-D modeling technique selected.

The alternatives are (1) cell-based geostatistical model-­­
ing, (2) object-based stochastic modeling, or (3) determin-­­
istic mapping. Deterministic mapping is always preferred 
when there is sufficient evidence of the facies distribution 
to remove any doubt of the 3-D distribution. In many cases, 
there is evidence of geologic trends, which should be included 
in stochastic facies modeling.

Cell-based techniques are commonly applied to create facies 
models. The popularity of cell-based techniques is understand-­­
able: (1) local data are reproduced by construction, (2) the 
required statistical controls (variograms) may be inferred 
from limited well data, (3) soft seismic data and large-scale 
geological trends are handled straightforwardly, and (4) the 
results appear realistic for geological settings where there are 
no clear geologic facies geometries, that is, when the facies 
are diagenetically controlled or where the original depositional 
facies have complex variation patterns. Of course, when the 
facies appear to follow clear geometric patterns, such as sand-
filled abandoned channels or lithified dunes, object-based 
facies algorithms should be considered.

From a geological perspective, it is convenient to view 
reservoirs and aquifers from a chrono-stratigraphic perspec-­­
tive. The sedimentary architecture is considered in light of 
a hierarchical classification scheme. We consider modeling 
this genetic hierarchy of heterogeneities by surfaces and 
objects representing facies associations.

Despite the realism of object-based modeling, many res-­­
ervoirs show very complicated architectural element con-­­
figurations developed during meander migration punctuated 
by avulsion events. It is becoming increasingly common to 
attempt facies modeling in a manner that mimics original 
deposition and alteration. Like object-based modeling, there 
is a perception that these process-based models are difficult 
to condition to well data.

Image analysis based techniques using multiple point 
statistics have evolved to use the models generated by object- 
and process-based models as training images. The features 
of such models are imposed on 3-D geocellular models with 
multiple point statistics (Guardiano and Srivastava, 1992).

4.4 Secondary Data

The block cokriging approach mentioned above has lim-­­
ited applicability in presence of many secondary data at 
different scales. Inference of the required statistics is virtu-­­
ally impossible. Collocated cokriging simplifies the process 
to consider collocated secondary variables; however, there 
is no simple way to consider a large number of secondary 
variables simultaneously.

Many different variables must be considered: small scale 
well data, large-scale remotely sensed variables, interpreted 
trend-like variables, and other response variables. These data 
often cover different areas, provide data at different scales, 
and are variably correlated together. Conventional geostatisti-­­
cal techniques, such as the block cokriging mentioned above, 
incorporate the spatial structure but these techniques are 
cumbersome in the presence of many secondary variables. 
An increasingly common approach is to merge all secondary 
data into a single variable that contains all of the secondary 
variable information; this provides a conditional distribu-­­
tion. The spatial distribution of each variable is mapped with 
data of the same type of information; this provides a second 
conditional distribution. The two conditional distributions 
are merged to provide updated posterior distributions. This 
merging is done in Gaussian units and the variables must be 
back transformed for final analysis.

Two Gaussian conditional distributions may be merged 
to an updated Gaussian distribution assuming conditional 
independence of the two distributions. This type of Markov 
model is very common. The parameters of the updated 
Gaussian distribution are given by:
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	 	 (9)

This simple result is at the heart of much data integration. 
An important notion of data integration is that corroborating 
data cause the updated distributions to be non-convex. Figure 
3 shows three examples. In the first case, both distributions 
are high (m1=0.8, σ2

1=0.6, m2=1.0, σ2
2=0.4), that is, the 

mean values are greater than the global mean; therefore, the 
updated distribution is quite high (mu=1.21, σs

u=0.316). In 
the second case, one distribution is high and the other low 
(m1=-0.5, σ2

1=0.6, m2=0.5, σ2
2=0.6); therefore, the result is 

in the middle (mu=0.0, σs
u=0.429). In the third case, both 

distributions are low (m1=-0.8, σ2
1=0.6, m2=-1.0, σ2

2=0.4); 
therefore, the updated distribution is even lower (mu=-1.21, 
σs

u=0.316).
Recall that all of our data are transformed to Gaussian 

units, uncertainty is assessed, and the resulting uncertainty 
is back transformed to original units. Quantiles of local 
distributions can be back transformed or entire simulated 
realizations are back transformed. The multivariate Gaussian 
distribution is used routinely in geostatistics because it is 
straightforward to infer the required parameters with few 
data. Data integration and uncertainty prediction is relatively 
easy. Moreover, it is common that data within reasonably 
defined facies are often Gaussian. Nevertheless, we often 
seek an alternative to the Gaussian model to handle more 
complex features. The most common alternative is the indi-­­
cator formalism (Journel, 1983). 

4.5 Indicator Formalism

Indicators are applied to both continuous and categorical 
variables. A series of threshold values zc are used to dis-­­
cretize the range of variability of the continuous Z-variable. 
The indicator coding of continuous variables:

	 	 (10)

This amounts to coding the continuous data as a series of 
cumulative probability values. It is common to consider 
between 9 and 20 threshold values; less than 9 leads to poor 
resolution and greater than 20 leads to difficult inference of 
the required parameters and no significant increase in preci-­­
sion of calculated conditional distributions.

Variogram analysis is conducted for each threshold. This 
permits the continuity of the low and high values to be 
modeled differently. The variograms should be consistent 
since they are based on the same underlying continuous 
variable; however, they are more flexible than the simplistic 
Gaussian model. 

Fig. 3Fig. 3

Figure 3. Three examples of updating two conditional Gaussian 
distributions into updated distributions.
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Kriging is applied at each threshold with the correspond-­­
ing indicator variogram to directly calculate an estimate of 
the CDF value at the threshold values. This leads to a direct 
estimate of the conditional distribution. Figure 4 shows a 
schematic example. It is necessary to ensure that the esti-­­
mated CDF values form a valid distribution (non decreasing 
between 0 and 1) and to interpolate and extrapolate the CDF 
beyond the values predicted at the thresholds. These distribu-­­
tions can be used directly for uncertainty assessment or used 
in simulation to assess joint uncertainty.

The indicator coding for categorical variables is similar. 
Consider K facies. The data are coded as the probability of 
occurrence:

	 	 (11)

As with continuous variables, variograms are constructed for 
each of the K indicators. Kriging can be applied to predict 
the probability of each facies at an unsampled location. The 
probability estimates are corrected if necessary to ensure that 
they are non negative and sum to one. They are then used for 
uncertainty assessment or the simulation.

The hierarchical scheme described in Section 4.2 leads to 
multiple realizations of the study area under investigation. 
A variety of techniques, including indicator techniques, are 
used at different steps to arrive at a set of realizations that 
quantify the uncertainty. Each realization is a full specifi-­­
cation of the study area: location, geometry, internal facies 
and petrophysical properties. These realizations must be 
post processed.

4.6 Post Processing

Geostatistical models are useful for many purposes. The 
estimates at unsampled locations can be used directly for 
some decisions. The local uncertainty, that is, uncertainty 
at one location at a time is easily assembled from the mul-­­
tiple realizations. Maps can be made of P10 low values (the 
0.1 quantiles of the local distributions) and the P90 high 
values (the 0.9 quantiles). These maps reveal two important 
features: (1) when the P10 value is high, then the actual 
value is surely high–there is a 90% probability to be even 
higher, and (2) when the P90 value is low, then the actual 
value is surely low–there is a 90% probability to be even 
lower. The local conditional variance could also be mapped 
to summarize local uncertainty. Another summary statistic 
that can be useful is the probability for the true value to be 
within a percentage (say 15%) of the estimate. There is little 
uncertainty when this probability is high.

Local estimates and local uncertainty are useful; how-­­
ever, they do not tell us the uncertainty at multiple locations 
simultaneously. Whenever uncertainty at many locations is 
required, then simulated realizations must be used.

Estimates are smooth and often inappropriate for direct 
input into f low simulation; f low predictions are biased 
because the connectivity of high permeability f low con-­­
duits and low permeability flow baffles is not accounted for. 
Simulated realizations are more appropriate. They also carry 
a measure of uncertainty. The paradigm of probabilistic 
analysis is that the set realizations are processed through a 
transfer function to assess uncertainty in response variables, 
see Figure 5. 

Some response variables are straightforward such as vol-­­
umetric calculation of resources. In fact, the response of 
smooth estimated models should match the average of the 
simulated realizations. In most cases, the transfer function 
is non-linear. Resources above a critical threshold and the 
response of f low and transport modeling are non-linear 
transfer functions. The response of an average is not the same 
as the average response.

All realizations are processed through the transfer func-­­
tion. This provides a distribution of uncertainty in the 
response variables. There are times when the transfer func-­­
tion (flow simulation) is very CPU-demanding. Moreover, 
many different scenarios of the transfer function must be 
considered. It is intractable to process all of the realizations 
through all scenarios.

The realizations are ranked according to some easy to cal-­­
culate statistic such as the connected resource. Then, selected 
low, median, and high realizations are processed through the 
full transfer function. The ranking measure may be as simple 
as pore volume or as complex as the results of a fast flow 

Fig. 4Fig. 4

Fig. 5Fig. 5

Figure 4. Example of a probability distribution derived from the 
indicator formalism. Each probability estimate is derived from 
kriging the data coded at that threshold.
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simulation such as streamlines. A ranking measure of inter-­­
mediate complexity often suffices: the connected volume to 
well locations is a good intermediate measure.

The preceding discussion has focused on uncertainty. 
Another aspect of post processing is sensitivity analysis, 
that is, determining how sensitive the response variables 
are to each of the input parameters/variables. This is done 
by holding some parameters constant or with experimental 
design techniques.

5. FUTURE DIRECTIONS

Geostatistical techniques for data fusion are applied in 
subsurface hydrology and other areas of geological model-­­
ing. A number of alternatives exist; however, the classical 
geostatistical paradigm presented here has had a history of 
successful prediction, is applied regularly and will provide 
unquestioned value in future applications.

The main problems with the geostatistical approach are 
that (1) it is poorly constrained by geological knowledge 
and processes, and (2) many statistical parameters must be 
inferred. No approach is perfect and people often want a 
change from the tried, true and boring applications with con-­­
ventional techniques Alternatives are under consideration. 
Process-mimicking geological modeling, multiple point 
statistics, and data integration techniques provide interesting 
future directions.
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I review key concepts and equations related to the stochastic approach to inverse 
modeling. After going over the equations for linear inversing using geostatistical 
models, I discuss the challenge of striking a proper balance between resolution and 
noise suppression. Specifically the following questions are addressed: How closely 
to reproduce data; how much resolution to strive for; and how to evaluate realistic 
confidence intervals. It is argued that the geostatistical approach provides rigorous 
and systematic ways to deal with these important issues. 

INTRODUCTION

Hydrogeologists, geophysicists, and other practitioners in 
the earth sciences rely heavily on data to infer properties of 
geologic formations with methods of analysis that fall under 
the general rubric of inverse methods. Each field has developed 
its own methods that reflect its special needs as well as the 
training and biases of its researchers. For example, someone 
trained in the solution of partial differential equations tends 
to see inverse problems differently from someone trained in 
statistics or linear algebra. 

Hydrogeologists have traditionally dealt with sparse data 
and, consequently, many of them have embraced and employed 
stochastic methods, such as regression or least squares, geo-
statistical, and Bayesian. Geophysicists, on the other hand, 
have focused on the analysis of large data sets usually through 
suitable deterministic approximations, such as inferring media 
properties from seismic or ground penetrating radar data. Both 
fields recognize that there is uncertainty in what hydrologists 
call the estimate and geophysicists call the model. However, 
with notable exceptions, the majority of geophysicists have 
been reluctant to use stochastic methods to quantify uncertainty 
or to select among the many possible solutions. Many of them 
believe that proponents of the stochastic approach are overeager 
to apply stochastic methods when what is really needed is a 
good deterministic approximation. Some of those who identify 

stochastic methods with classical statistics wonder how one can 
find a probability distribution, when information is insufficient 
to identify even a single solution.

Stochastic inverse methods have probably not been part of 
the curriculum of most hydrogeophysicists. The basic motiva-
tion for this chapter is to advocate the use of stochastic methods 
and encourage readers to incorporate them in their work. I 
believe that those most familiar with the data must be given 
the tools to analyze them. In the words of Birnbaum [1962], 
“... each scientist and interpreter of experimental results bears 
responsibility for his own concepts of evidence and his interpre-
tation of results...” Within the unavoidable space constraints, we 
will discuss the issue of uncertainty and the role of stochastic 
methods in a practical context. In particular, we will review 
the geostatistical inverse method [Kitanidis and Vomvoris, 
1983, Dagan, 1985, Hoeksema and Kitanidis, 1984, 1985, 1989, 
Rubin and Dagan, 1987a, 1987b, Wagner and Gorelick, 1989, 
Hoeksema and Clapp, 1990, and others] in the framework of 
empirical Bayes methods, the meaning of the equations, and 
the practical significance of the results.

It must be emphasized that this is not, by any means, a review 
of methods that have appeared in the literature or an apologia 
for the stochastic approach. It is simply a tutorial on select 
important concepts that could be useful to practitioners.

UNCERTAINTY AND STOCHASTIC METHODS

Mathematical models are valuable tools in describing the 
hydrogeology of a site, understanding groundwater flow 
and transport processes, evaluating the effectiveness of 
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management schemes, and making predictions. However, the 
parameters of these models must be inferred from data. For 
example, before using a numerical flow model, the conduc-
tivity and specific storage must be estimated at every block 
in the finite-difference mesh. A rich source of hydrogeologic 
data is piezometric head measurements. The literature on 
the subject of model calibration, parameter identification, 
history matching, or inverse modeling is voluminous (for 
example, see the reviews by Yeh, 1986, Carrera et al., 2005, 
or the book by Sun, 1994). The crucial issue is that the prob-
lem of specifying transmissivity in every block from sparse 
head observations is underdetermined, i.e., there are many 
solutions that are consistent with the data. The ambiguity is 
largely due to the scarcity of the data but is also inherent in 
the mathematics of typical inverse problems: a small range 
of values in the observed head is consistent with a larger 
range of transmissivity values. This characteristic is known 
as ill-posedness and results in non-uniqueness in the solution 
of the inverse problem. How does one pick the right answer? 
Isn’t one solution as good as another?

Certain formalisms [e.g., Tikhonov and Arsenin, 1977, 
Tikhonov et al., 1997, Backus and Gilbert, 1967, 1968, 
Guidici et al, 1995] focus on finding a solution, a task that 
may be achieved by:
1)	� imposing restrictions on the solution, such as assum-

ing that the domain is homogeneous, or consists of a 
few homogeneous zones, or that the solution is flat or 
smooth; or

2)	� making assumptions about available information, such 
as assuming that head is measured without error at every 
node of the model.

Such methods have their appeal in practice. However, the 
single answer they yield should not be confused with the 
“real thing”, which can be determined only when sufficient 
information is truly available. 

An alternative approach is to take up willingly and delib-
erately the multiplicity of solutions. Let us first see what we 
would like to achieve:
1)	� We would like to obtain a representative solution that 

contains features that are, in a sense, common to all 
possible solutions. For example, the many transmis-
sivity functions that reproduce head observations vary 
in the small-scale characteristics but share the same 
large-scale features. The representative solution should 
have only the common features and be free of details 
that, though consistent with the data, are not necessarily 
valid. The representative solution should be relatively 
simple, flat, or smooth, not because the actual transmis-
sivity function is necessarily so, but in view of the lack 
of information to resolve the small-scale characteristics. 
The representative solution takes the place of the single 

answer of the deterministic methodologies but does not 
claim to be the unique and true solution. It should be 
viewed as a good estimate. (Note that the term model, 
which is often used in geophysics to indicate an esti-
mate, here is used to indicate a conceptual or mathemati-
cal representation of a system.)

2)	� We would like to evaluate the range of possible values. 
For example, we would like to bracket between two values 
the possible value of the transmissivity at a location. The 
idea is that although the exact value is not known, one 
should be able to identify an interval that contains the 
true value with a high degree of assurance. Being able to 
identify such a confidence or credible interval is useful 
in faithfully representing what is really known about the 
transmissivity, in contrast to maintaining the illusion of 
a unique answer. A large interval is indicative of more 
uncertainty and may be a justification to seek more data. 
Very small intervals indicate the ideal case of sufficient 
information to obtain an almost unique solution.

3)	� A more ambitious objective is to identify many solu-
tions that are equally plausible candidates to be the 
actual transmissivity and collectively represent fairly 
the range of possible solutions. Each of these solutions is 
consistent with observations and other information, and 
is also sufficiently different from the others. By comput-
ing more and more of these solutions, one of them will 
approximate, in some sense, the actual solution. A set 
of such solutions can be used to perform risk analysis, 
which is roughly defined as the assessment, character-
ization, communication, and management of hazards. 
For example, one could evaluate the likelihood that the 
capture zone of a municipal well contains a neighbor-
ing contaminant plume and evaluate the chance that the 
contaminant levels in the extracted water may violate a 
water quality standard.

Stochastic methods are well suited and developed to meet 
these three objectives. Obviously, we do not have in mind 
classical statistics where probabilities are approximations 
to frequencies and are computed from repeated measure-
ments of the same or similar quantities. Instead, we refer to 
Bayesian statistics, where the probabilities represent state 
of knowledge or available information. The idea is that the 
unknown function, such as transmissivity over a region, is 
modeled as a random function exactly because there is insuf-
ficient information to model it as deterministic, rather than 
because repeated measurements indicate a statistical regu-
larity. For example, if we are asked to guess the porosity of 
an exotic material of which we know nothing, we may treat 
it as a random variable distributed uniformly in the interval 
0 to 1. This probability was not obtained from the analysis 
of a large data set but reflects that we know nothing other 
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than, by definition, the porosity must be between 0 and 1. If 
additional information is given, the probability distribution 
must change but, at every stage, the probability distribution 
must represent the available information. 

The distinction between probability and frequency has 
been made by, among others, Jaynes [2003] who emphasized 
that probability theory can be regarded as the “calculus of 
inductive reasoning”, or making inferences on the basis of 
incomplete information. This is not necessarily the same 
as the analysis of the frequencies of actual or (in the case 
of classical statistics) hypothesized repeated experiments. 
Furthermore, Jaynes [2003, p. 314] pointed out that “… 
consideration of random experiments is only one special-
ized application of probability theory, and not even the most 
important one; for probability theory as logic solves far 
more general problems of reasoning which have nothing to 
do with chance or randomness, but a great deal to do with 
the real world.”

There are, however, skeptics about the validity of probabil-
ity values thus obtained. In fact, one sometimes hears that 
this approach is inappropriate because certain events are not 
probabilistic or that there is not enough information to assign 
probabilities. I believe that these criticisms are largely due 
to inadequate understanding of the objectives of Bayesian 
methods. These methods make no claim of prescience but 
evaluate probabilities that ref lect available information. 
A Bayesian method to solve an inverse problem should be 
judged on the basis that it is a logical, systematic, and largely 
objective way to explore the range of possible solutions based 
on whatever data one considers. 

BAYES THEOREM

Let us now look at some mathematics, primarily for the 
purpose of making obvious the logical underpinnings of this 
approach. Bayes theorem is the centerpiece in the implemen-
tation of this approach. Let s be the unknown, an m -dimen-
sional vector that is typically obtained from the discretization 
of an unknown function. In the source-identification example 
to be discussed later, s is the vector obtained from the dis-
cretization of the function that represents the pumping rate 
in a certain well over a period of interest. We distinguish 
between the prior probability density function (pdf)  
and the posterior pdf , meaning prior and posterior in 
reference to some new data y, which is, for mathematical 
convenience, represented as an n -dimensional vector . In our 
example, y represents measurements in a well. The posterior 
is computed from the prior by weighting by the likelihood, 
which is the pdf of y given s, p(y | s): 

	 	 (1)

The normalization factor C is required to make the left-
hand side an appropriate probability density function (the 
integral should equal 1).

The simplicity of this formula belies some computational 
and conceptual challenges. Regarding computations, imple-
mentation of Bayes theorem in real-world inverse problems 
is more difficult than it appears because m, the length of 
s, can be very large. Thus, brute-force integrations are out 
of the question. However, in some special cases, the most 
prominent being the linear-Gaussian one that we will discuss 
later, efficient methods of solution are available.

 The most serious conceptual difficulty is the choice of the 
prior distribution because one may criticize it as subjective. 
However, it is possible to implement the approach in ways 
that leave little room for such criticism:
1.	� We may select distributions that are appropriately diffuse 

(or have large entropy) so that the results are primarily 
affected by the data, through the likelihood function. 
Those who criticize the use of Gaussian prior on the 
basis that the Gaussian distribution has high entropy 
fail to see that this feature is precisely what makes the 
Gaussian distribution appropriate. There may indeed be 
many cases that alternative distributions should be used; 
however, these distributions should also have the feature 
of large entropy while satisfying certain constraints. The 
topic is discussed in, for example, Christakos (1990).

2.	� We can select the prior on the basis of the data in what is 
known in a broader statistical context as empirical Bayes 
methodology (e.g., see Carlin and Louis, 2000). This 
approach is consistent with geostatistics (Matheron, 
1971), as previously discussed (Kitanidis, 1986), as 
well as other applied statistical modeling methods. In 
geostatistics, the semivariogram, which is involved in 
the parameterization of the prior pdf, is determined 
from information that includes the data. (Thus, the often 
heard statement that the estimation variance depends 
on the data configuration and not the data themselves 
is patently false. The variance depends on the semivar-
iogram which is selected from data.)

3.	�L ast but not least, we should remind ourselves that the 
skillful analysis of data is an art guided by sound scien-
tific principles and directed to the solution of practical 
problems. The selection of the prior, perhaps more than 
anything else, must be addressed in the context of an 
actual problem and of practical issues.

We will apply some of these ideas in a specific example.

LINEAR INVERSION

For illustration purposes, we will focus on linear inversion. 
The prevalence of linear inversion methods is justified by, 
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among others, their computational efficiency and versatility, 
although they should not monopolize the analysis because 
they are certainly not applicable to all cases. It is worth not-
ing that most “nonlinear” inversion methods used in practice 
involve application of the linear inversion equations, com-
bined with successive linearization [e.g., Kitanidis, 1995]. 
We will summarize the key assumptions and results.

Consider that s(x) is a function, such as the log-conductiv-
ity over a three-dimensional continuum or the pumping rate 
at a well over a period of time, to be estimated. Its structure 
is represented through the prior pdf . Our basic model 
is that s(x) can be represented as 

	 	 (2)

The first term is the prior mean, where fk(x)  are known 
functions and βk are unknown coefficients, k = 1,...K; the 
second term is a function characterized through a mean that 
is zero and a covariance function. In a sense, the first part 
is deterministic (precisely specified) and the second part is 
stochastic (specified through probabilities or averages). This 
model is popular in geostatistics and in other data analysis 
approaches. 

This representation, eq. (2), is quite versatile. For example, 
the zonation /regression approach is included as a special 
case: K is the number of zones,

	 ,	  

and we set the covariance of e equal to zero. In the regression 
approach, the variability is described through deterministic 
functions. In geostatistical approaches, one resolves vari-
ability mainly through the stochastic part and the simplest 
deterministic model is used, meaning K = 1 and f(x) = 1. 
After discretization (e.g., in the application of finite-differ-
ence and finite-element models), s(x) is represented through 
an m by 1 vector s. The mean of s is 

	 	 (3)

where X is a known m × K matrix, Xij = fj(xi), and b are K 
unknown drift coefficients. The covariance of s is 

	 	 (4)

In the geostatistical context, Q is parameterized through a 
semivariogram or generalized covariance function. In sum-
mary, Eq. (2) can be written, where e is has zero mean and 
covariance matrix Q,

	 s = Xb+e 	 (5)

The prior pdf is thus modeled as Gaussian with mean Xb 
and covariance matrix Q.

The observation vector y is related to the unknown vector 
s by the linear relation 

	 y = Hs + v	 (6)

where H is an n by m given matrix; v is a random vector of 
deviations between observations and model, probabilistically 
independent from s (or e), with mean zero and covariance 
matrix R. The Hs part is the values that would be predicted 
from the mathematical model for the data. In the absence 
of the v term, the model should reproduce the observations 
exactly. However, by introducing the v terms, we recognize 
that the model predictions may deviate from the observa-
tions because neither observations nor mathematical models 
are flawless. Examples, including application to affine and 
nonlinear problems, can be found in the literature, e.g., 
Snodgrass and Kitanidis (1997).

For now, let us consider Q and R as given. The posterior 
distribution of s is Gaussian with mean and covariance matrix 
that can be computed through the solution of linear systems. 
The negative logarithm of the posterior pdf is given by: 

	 	 (7)

The posterior mean in this case is the same with the value 
that maximizes the posterior pdf and can then be computed 
by minimizing (7) with respect to s and b. Note that the first 
term represents a penalty for not reproducing the data and the 
second term a penalty for deviating from the mean. 

We will summarize two solutions, which should yield 
identical results.

The ξ Form

The posterior mean is 

	 	 (8)

where the n by 1 vector ξ and the K by 1 vector  are found 
from the solution of:

	 	 (9)

Thus, the solution is obtained by solving a system of n + K 
linear equations. The coefficients are:

	 	 (10)
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The procedure to generate a conditional realization is as 
follows:

Generate an unconditional realization  with zero mean 
and covariance matrix Q and a realization of the measure-
ment error v with zero mean and covariance matrix R.

Then compute the conditional realization :

	 	 (11)

Where:  and  are obtained from the solution of a system of m 
+ K linear equations with the same number of unknowns: 

	 	 (12)

The Λ Form

The posterior mean is 

	 	 (13)

where Λ is m by n, which functions as a pseudo-inverse of 
H, and can be found, in conjunction with the K by m matrix 
M from the following system:

	 	 (14)

These equations are basically the cokriging equations of 
geostatistics.

To generate a conditional realization, one uses 

	 	 (15)

where Λ is the same as the one used to find the posterior 
mean.

Additionally, the posterior covariance matrix V may be 
computed as follows:

	 	 (16)

ILLUSTRATIVE EXAMPLE

For illustration, we will consider a relatively simple source 
identification problem. Consider two-dimensional flow in a 
homogeneous and isotropic aquifer. We consider an extrac-
tion well at a location with coordinates (0,0), i.e., the origin 
of the coordinate system. The hydraulic head satisfies the 
following partial differential equation. 

	 	 (17)

where t is time [T]; (x1,x2)are spatial coordinates [L]; φ is 
the (depth-averaged) head [L]; S is the storativity (or stor-
age coefficient) []; T is the transmissivity [L2/T]; s(t) is the 
extraction rate [L3/T]; and d(x) is the Dirac delta function 
[L-1]. Using the hydraulic diffusivity, , the equation 
can also be written 

	 	 (18)

The solution, for initial head φ0 and for an unbounded domain 
with level φ0 away from the well is: 

	 (19)

This can also be written in terms of the drawdown, 

  	 (20)

Consider the use of a monitoring well to determine whether a 
groundwater user has exceeded the water allocation. Our task 
is to estimate the pumping history at the extraction well, s(t), 
from head observation at a nearby monitoring well. Aquifer 
data and observation-well coordinates are: 

	 	 (21)

The drawdown observations are at 5-minute intervals start-
ing at t = 5 min and ending at 1000 min, for a total of 200 
observations. 

To solve, we will discretize the unknown pumping rate 
into 1-minute intervals and approximate the integral through 
a Riemann sum, with uniform partition t1< t2 <... < tm with 
increment Dt

	 	 (22)
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where J is the j for the maximum tj that does not exceed ti. 
Thus, 

	 	(23)

for .
It is reasonable to presume that the pumping should have a 

degree of continuity, since it is impractical to start and stop 
the pumps all the time. Even if the actual pumping schedule 
were intermittent and erratic, we are primarily interested in 
trends and not in catching every zigzag. This information is 
captured by the model:

	 	 (24)

This is the linear semivariogram (or generalized covariance 
function, Matheron, 1973) model of geostatistics which 
conveys the information that the s(t) function varies gradu-
ally over time. (More information and background on these 
models can be found in Kitanidis, 1997.) This model is, in 
many applications, a good starting point. 

The measurement errors are supposed to have the same 
variance and be independent of each other. Thus, the mea-
surement error covariance matrix is 

	 	 (25)

The two parameters θ1 and θ2 are called structural param-
eters. We have now parameterized the stochastic inverse 
problem and it is straightforward to apply the formulas of 
the previous section.

As parameter values for the basic case we will use 
θ1 = 3.22E -7 and θ2 = 1.05E -4 (we will discuss later the 
procedure that led to these particular values). Figure 1 
shows the best estimate, represented through the posterior 
mean, and the 95% confidence interval computed from the 
mean plus or minus two times the standard deviation. Note 
that, since this is a Bayesian procedure, the term credible 
interval might be preferable to the term confidence interval 
that originates in classical statistics. In any case, the intui-
tive meaning is that we anticipate that the actual values of 
the unknowns should be included in the interval with prob-
ability 95%. The estimate reproduces the data with mean 

square deviation between observed and predicted value 
equal to 4.95E -5.

Since this is a synthetic case, we know the actual pump-
ing rate that we used to generate the data (which were con-
taminated with random error with mean 0 and variance 
1.0E -4) and we plot it on figure 1 so that we can evaluate 
the effectiveness of the inverse method. The best estimate 
follows quite nicely the actual pumping rate. The confidence 
interval contains the actual pumping without being overly 
broad and thus provides a fair graphical representation of the 
uncertainty in the estimate. Thus, the overall performance 
of the inverse methodology is satisfactory, despite the fact 
that the model of structure that we adopted is not a particu-
larly good representation of the temporal structure of the 
actual function. The model with the linear semivariogram 
model that we adopted corresponds to a random walk while 
the actual function was piecewise constant. The reason the 
method worked despite the less than optimal choice of a 
model is that the adopted prior distribution is broadly inclu-
sive (i.e., it has high entropy) and thus the data, through the 
likelihood function, were not hindered from identifying a 
satisfactory solution.

Let us see how the results are affected if θ1 were to increase 
by three orders of magnitude over the base case. The new 
estimate reproduces the data more closely, the mean square 
deviation between observed and predicted value dropping to 
1.0E -9. However, the estimates are worse because they fluc-
tuate more, as shown in figure 2. That better reproduction of 
data goes with worse estimates may appear counterintuitive. 
However, consider that: (a) although data should be repro-
duced within their perceived accuracy, perfect reproduction 

Fig. 1Fig. 1

Fig. 2Fig. 2

Figure 1. Best estimate (solid line), confidence interval (dotted 
lines), and actual pumping rate (dash-dotted line) for base case of 
structural parameters.
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of imperfect data serves no useful purpose; (b) due to the 
ill-posedness in the mathematics of this inverse problem, one 
must change the estimate drastically to reproduce details in 
the data that are insubstantial in comparison to the observa-
tion error. Thus, overfitting of the data results in excessive 
fluctuations in the estimates and deterioration in the perfor-
mance of the inverse method.

Next, consider the effects of decreasing θ1 by three orders 
of magnitude over the base case, see figure 3. The estimate 
now reproduces the data less faithfully, the mean square 
deviation between observed and predicted value increasing 
to 2.9E -9. The lower value in θ1 has the effect of suppress-
ing fluctuations in the estimate but also sacrificing some 
of the resolution. 

The ratio θ1/θ2 affects the shape of the best estimate and 
degree of data fitting: the smaller this ratio, the flatter or less 
variable the solution but the less satisfactory the reproduction 
of the data. Using a large ratio allows good reproduction of 
the data but this does not necessarily mean a satisfactory 
solution. In fact, in this as well as most other applications, 
one can find many solutions that reproduce the data but most 
of them are not satisfactory because they are mostly noise.

Finally, consider the effect of parameter scaling. If both 
parameters are multiplied by the same factor a, the posterior 
variances are multiplied by a and the confidence interval is 
broadened by a factor equal to  (this follows directly from 
the equation that gives the posterior covariance, V), but the 
best estimate remains unaffected. Thus, the scaling of the 
two parameters fully controls the breadth of the confidence 
intervals, but has no consequence whatsoever on the repro-
duction of the observations.

SELECTION OF PARAMETERS

As the example has illustrated, the results of linear inver-
sion are affected by the structural parameters that are used 
to weigh data versus prior information or regularization. 
Selecting the right parameters is one of the most interesting 
and challenging aspects of inverse methods.

In practice, the most common method for parameter selec-
tion is probably ad hoc. For example, one may select θ2  based 
on one’s judgment of measurement error. Then, the other 
parameter θ1 may be selected to regularize the estimate, i.e., 
to suppress erratic fluctuations or noise in the estimate while 
hopefully maintaining sufficient resolution in the signal, i.e., 
the variability in the unknown function. This procedure is 
obviously subjective but it may work at the practical level if 
one knows how a solution should look.

In selecting the ratio θ1/θ2, one seeks a good trade-off 
between data fitting and resolution. The degree of meeting 
these conflicting objectives can be represented, for example, 
through the following metrics (other metrics could also be 
defined as appropriate in every case):

	 	 (26)

	 	 (27)

The first is small when the data is reproduced faithfully, which 
occurs when θ1/θ2 is large. The second represents the flatness 

Figure 2. Estimate (solid line) and actual (dash-dotted line) for 
under-regularized case.

Figure 3. Estimate (solid line) and actual (dash-dotted line) for 
over-regularized case.
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of the estimate, when s is defined in one dimension and a 
uniform grid; it is small when the estimate is relatively uni-
form and without many lumps, which is achieved when θ1/θ2 
is small. Thus, selection of θ1/θ2 can be viewed as seeking a 
good trade-off between two objectives: reproducing data and 
suppressing excessive fluctuations in the estimate.

Fortunately, statistical theory provides a simple, straight-
forward, objective, and general approach to selecting the 
parameters. The idea is to find the parameters that maximize 
the probability of the data. Using the same probabilistic 
model that we used to find the posterior of s, we can derive 
the pdf of y given the vector of structural parameters θ. Then, 
using a well-established approach, known as restricted maxi-
mum a posteriori probability, we can find the parameters that 
maximize this expression for the actual data. 

This method of finding the structural parameters is known 
and appreciated in statistics (see Edwards, 1992). Here, 
we must stress its relation to cross-validation and residual-
examination approaches (see Kitanidis, 1991, 1997, for inter-
polation methods) because it makes it easier to understand 
the meaning and value of the approach. This issue cannot 
be covered comprehensively here but we will take a peek at 
what residuals can tell us.

Consider an (n-K)× n matrix P so that PΦ = 0 and PΨPT 
is a diagonal matrix. Then, the transformed data 

	 d = Py	 (28)

have zero mean and covariance matrix PΨPT which is diagonal 
with entries  equal to the variances of d. Then ε values are 
found through normalization, . For example, the proce-
dure to find P can be summarized in the following MATLAB 
commands, which is given here in lieu of pseudocode:

T = null(PHI’)’; Pyy = T’*inv(T*PSI*T’)*T;
P = (orth(Pyy))’;

Note that P should be (n-K) by n and verify that the imposed 
conditions are met. The significance of the generated trans-
formed data (which play a role similar to that of residuals 
in regression) is that they allow us to test the model and 
fit its parameters. The ε values are supposed to have zero 
mean and variance 1. The restricted maximum likelihood 
approach can be seen as a method to select parameters so 
that the variance,

	 	 (29)

is indeed near 1. By doing so, we select the right scaling for 
the parameters and thus find proper confidence intervals. 

Also the method of restricted maximum likelihood finds the 
ratio of the parameters that optimizes the predictive ability 
of the model, in some average sense. Such a measure is cR 
(Kitanidis, 1991, 1997):

	 	 (30)

This is the geometric mean of the normalized variances of 
the delta residuals. The idea is that a good set of θ parameters 
should give small delta residuals, which can be measured 
by the value of cR. We will see how this method works by 
continuing with the example.

EXAMPLE CONTINUED

Application of the maximum likelihood methodology 
of the previous section yielded the parameter that we used 
as our base case, figure 1. This procedure is equivalent to 
finding the ratio θ1/θ2  that minimizes cR and scaling the two 
parameters so that Q2 =1.

In the upper half of figure 4 we show the value of cR as a 
function of θ1/θ2 and indicate by a small circle the point from 
the maximum likelihood procedure, where cR is minimum. 
In the lower half, we show how the actual mean square error 
(average of square differences between the actual and esti-
mated pumping rate)

	 	 (31)

varies with θ1/θ2, where si is actual value,  is the estimate 
(the posterior mean). The smaller the actual MSE, the better 
the estimate. This figure illustrates that cR is an excellent 
indicator of the accuracy of the estimate, because there is a 
strong correlation between cR and actual MSE. Of course, 
in practice one cannot evaluate the actual MSE, since the 
actual function is unknown, but one can always evaluate cR 
because it depends only on the data. This example verifies 
the usefulness of cR as a guide for selecting θ1/θ2. The flat-
ness of the actual MSE vs. θ1/θ2 function near its minimum 
indicates that there is a range of θ1/θ2 values that yield satis-
factory results and the minimum- cR method has identified 
one such value.

Next, we maintain θ1/θ2 at its maximum-likelihood value, 
which is 3.06E - 3, but vary each of the parameters individu-
ally. In the upper half of figure 5 we show Q2 as a function 
of θ2. The maximum-likelihood values give Q2 = 1, indicated 
on the graph by a small circle. In the lower half, we plot the 
mean square actual normalized error. In other words, for 
each value of θ2, we compute 

Fig. 4Fig. 4

Fig. 5Fig. 5
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	 	 (32)

where si is actual value,  is posterior mean, and  is pos-
terior variance. Ideally, MSNE should be near 1. If this ratio 
is much larger than 1, the confidence intervals are optimisti-
cally too narrow; if it is much smaller than 1, the confidence 
intervals are pessimistically too broad. Comparison of the 
two figures show that the MSNE is near 1 where Q2 is 1, 
indicating that Q2 is a good guide to whether the confidence 
intervals are properly scaled. In real-world applications, one 
cannot evaluate MSNE because the actual s is not known but 
one can be guided by the value of Q2 which depends only 
on the data.

 In the author’s opinion, this example illustrates that the 
mean square error computed from the inverse method (esti-
mation variance) can be a satisfactory measure of the reli-
ability of the estimate, provided that a good method has been 
used to select the parameters of the underlying model. The 

results of this example challenge the misguided notion that, 
unfortunately, has gained currency among geostatisticians, 
that the variance is necessarily highly subjective or even 
useless as a measure of reliability. Such a notion is perhaps 
a consequence of neglecting to use sound methods of param-
eter estimation and excessive preoccupation with the evils 
of “multigaussianity” and other red herrings. Of course, the 
estimation error is affected by modeling choices, but then 
so is the best estimate and everything else that we do. At a 
deeper level, many misunderstandings are caused by the fact 
that the mainstream of the geostatistics community either 
discards or only grudgingly accepts the Bayesian viewpoint 
that estimation, including inverse modeling, is all about 
management of available information.

It is worth mentioning that a method used in practice 
to determine the proper weighting is to plot a measure of 
roughness, Eq. (27) versus a measure of misfit, Eq. (26) and 
to select a point that gives a reasonable trade-off. This plot, 
known as the L-curve, is shown in figure 6, where the result 
from the cR-method is also shown as a small circle. It is hard 

Fig. 6Fig. 6

Figure 4. Validation criterion cR (upper) and actual mean square error (lower) expressed as functions of the ratio of 
structural parameters, θ1/θ2.
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to select parameters on the basis of the L-curve because, 
as figure 6 illustrates, the curve may look more like a “C” 
than an “L”. 

CONCLUDING REMARKS

Stochastic methods are well suited for the solution of 
algebraically underdetermined and mathematically ill-posed 
inverse problems. Probabilities should be interpreted within 
a Bayesian context as encoding available information, rather 
than frequencies. We have focused on linear inversion, where 
the relation between measurements and unknowns is linear 
and all probability distributions are Gaussian, but the basic 
ideas apply to other cases.

In virtually all methods used in practice, including the 
geostatistical approach, inverse modeling is set up as the 
minimization of an objective function that consists of two 
parts: the first part is a penalty for not reproducing the data 
and the second part is a penalty for not being consistent with 
prior information (or a regularization criterion). Prior infor-
mation is often expressed as a notion of uniformity, flatness, 
or smoothness of the estimate. The focus of inverse modeling 
is in the solution of this optimization problem, which can be 
quite challenging.

However, choices on the regularization scheme and the 
relative weighting of the two terms in the objective function 
have profound effects on the results of the inverse problem, 
when the data are information-poor as is usually the case in 

Figure 5. Validation criterion Q2 (upper) and actual mean square normalized error (lower) expressed as functions of 
the measurement-variance parameter θ2.

Figure 6. The tradeoff curve between a measure of roughness and 
a measure of misfit for a range of θ ratios. The solution from the 
cR method is shown as a circle. 
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hydrogeologic applications. The regularization and the rela-
tive weighting control the level of reproduction of detail in 
the obtained image and also the closeness of the estimated to 
the true values. By overweighting the data-reproduction pen-
alty, the data are reproduced more closely and more details 
appear in the image that is estimated from the optimization 
but the image is also more affected by spurious features. The 
challenge is to find weights that will allow the method to 
extract useful information from the data without being overly 
affected by errors that may produce artifacts. Schemes that 
are often employed by practitioners, like selecting a point 
on the L-curve that shows the trade-off between meeting 
the two objectives, can be inconclusive. Another challenge 
is to evaluate confidence intervals that in an objective sense 
reflect the range of possible error in the estimates. In inverse 
problems, which are algebraically underdetermined and 
mathematically ill-posed in the sense of Hadamard, the 
degree of data reproduction is a poor indicator of the accu-
racy of estimates—which is a big difference from classical 
least squares regression methods.

Within the context of stochastic methods, the geostatistical 
inverse method provides a rigorous and objective approach 
to meet these challenges. The prior information (or regular-
ization) and the measurement error are parameterized using 
2–3 structural parameters (or hyper-parameters) which are 
determined guided by the data. The method can be described 
in terms of two criteria. The first is an index of the actual error 
and thus needs to be minimized; this minimization determines 
the relative weighting of the two penalty terms (for not repro-
ducing data and for not being consistent with prior informa-
tion). The second criterion is an index of actual squared errors 
versus mean squared errors computed by the inverse problem 
so this ratio must be unity; this criterion scales the confidence 
intervals so that they are more realistic.
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A Comparison of the Use of Radar Images and Neutron 
Probe Data to Determine the Horizontal Correlation Length 

of Water Content

Rosemary J. Knight1, James D. Irving1, Paulette Tercier2, Gene J. Freeman3,  
Chris J. Murray3, and Mark L. Rockhold3

Surface-­­based ground-penetrating radar data were collected at the Hanford Site 
in Washington, U.S.A. to assess the use of radar reflection images as a means of 
quantifying the spatial variability of subsurface water content. Available at the 
selected test site were two sets of water content data derived from neutron probe 
measurements that had been made to a depth of ~18 m in 32 wells in 1980 and 1995. 
The comparison of probe-derived water content data, synthetic radar data, and the 
acquired radar data indicated a good correspondence between the changes in probe-
derived water content and the location of reflections in the radar data. Geostatistical 
analysis was conducted on the two sets of probe-derived water content values and 
the amplitudes of the reflections in the radar reflection image to determine the 
horizontal correlation length of water content. The experimental semivariograms 
for the water content data were fit with a single exponential model with a correla-­­
tion length of 10 m. The semivariogram for the radar data was fit with a nested 
structure containing a dominant long-range structure with a correlation length of 
14 m, and a smaller-scale structure with a correlation length of 0.3 m. Quantifying 
the scale triplet—the spacing, extent, and support—for the two forms of measure-­­
ment provided a framework for comparing and assessing the derived correlation 
structures. This approach also highlighted the importance of identifying methods 
for properly determining the scale of radar measurements required for the imaging 
of subsurface water content.

INTRODUCTION

One of the challenges in modeling the transport of con-­­
taminants in the vadose zone is acquiring the data required 
to adequately characterize the spatial variability of subsur-­­

face hydraulic properties. One approach is to determine the 
spatial and temporal variability in water content. The water 
content distribution can be an excellent indicator of soil 
texture, which strongly influences the unsaturated hydraulic 
properties controlling vadose zone contaminant transport 
behavior. Field-measured water content data can be used as 
soft data from which estimates of soil hydraulic properties 
can be inferred (Rockhold, 1999), and can provide very use-­­
ful information about possible migration pathways. 

When the subsurface region of interest extends tens of 
meters below the surface, water content data can be obtained 
by drilling wells and using neutron probe data to estimate 
water content with probe-specific relationships between 
neutron counts and water content. While such estimates are 
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considered to be reasonably accurate, the lateral spacing and 
number of wells is rarely sufficient to adequately constrain 
the lateral variation in water content. Additional problems 
with a reliance on information acquired in wells are the costs 
of drilling and casing, and the health, safety and environ-­­
mental risks associated with all forms of invasive sampling 
if information is required in regions with subsurface con-­­
tamination. The purpose of this study was to assess the use 
of surface-based ground-penetrating radar (GPR) to obtain 
information about the spatial variation in water content in 
the vadose zone. 

Surface-based GPR data are acquired by sending a pulse 
of high-frequency (1 MHz to 1 GHz) electromagnetic (EM) 
energy into the earth and recording energy reflected back to 
the surface from interfaces across which there are changes 
in electrical properties, most notably the dielectric constant 
κ. After processing, the location of these interfaces in the 
subsurface and the magnitude of reflected energy are dis-­­
played as reflections in the radar image. Our hypothesis is 
that the correlation structure seen in the radar image can be 
used to determine the correlation structure of the subsurface 
property determining κ.

The use of GPR data to obtain the lateral correlation length 
of a subsurface region was investigated in a field experi-­­
ment conducted by Rea and Knight (1998). In this study the 
geostatistical analysis of a binary digital photograph of a 
cliff-face was compared with the geostatistical analysis of the 
corresponding radar reflection image, acquired along the top 
of the cliff. A very similar lateral correlation structure was 
obtained for the two data sets (a nested structure with ranges 
of 0.5 m and 2.1 m for the photographic image, 0.8 m and 
2.0 m for the radar image), suggesting that the radar image 
was capturing information about the spatial variability seen 
in the photograph. In the study, the black and white pixels 
in the binary image were taken as corresponding to grain 
size, with the black indicating finer grained material. Given 
the fact that the cliff-face was unsaturated, the separation 
between black and white most likely corresponded to differ-­­
ences in water content as the finer grained materials would 
preferentially retain water. This suggests that the lateral cor-­­
relation structure seen in the radar reflections was capturing 
information about the spatial variability in water content. 

A more recent study by Dafflon et al. (2004), using a very 
similar approach, again found that the lateral correlation 
lengths derived from GPR data were consistent with those 
derived from the corresponding digital outcrop images. 
These authors note that the correlation lengths of the radar 
data tended to be 10–30% longer than those obtained for the 
digital images, but conclude, based on their field experiment 
and theoretical analysis, that “the geostatistical analysis of 
surface georadar data offers an easy, robust and reliable way 

to estimate the average lateral correlation structure of the 
shallow subsurface”.

In this study, we further explored the concept that geosta-­­
tistical analysis of a GPR image can yield estimates of the 
lateral correlation length of water content, by working at a 
site where detailed information was available about subsur-­­
face water content. In May 2000, we collected a GPR profile, 
30 m long and ~12 m deep, at a test site located within the 
U.S. Department of Energy Hanford Site in south-central 
Washington, U.S.A. Available at the test site were water 
content data derived from neutron probe measurements 
made in an array of wells in the years 1980 and 1995. The 
32 wells penetrating to a depth of ~18 m over a 16 m by 
16 m grid, with thousands of probe-derived water content 
measurements, provided an ideal data set for comparison 
with the radar data. Also available at the site were results 
from studies employing crosswell radar (Majer et al., 2001) 
which provided information about the magnitude of, and the 
controls on, subsurface electromagnetic properties. The first 
objective of our study was to determine whether the loca-­­
tions and amplitudes of the radar reflections corresponded 
to changes in water content. Our second objective was to 
compare the estimates of lateral correlation length obtained 
from analysis of the radar reflection image and neutron probe 
data. This comparison focused on the effect of the scale of 
the measurement on the determined correlation length. 

A rigorous assessment of the effect of measurement scale 
on the correlation structure obtained from our two forms of 
measurement would have required a full treatment of the spa-­­
tial characteristics of each measurement and the interaction 
of the measurement with the spatial variability of the sampled 
system; an analysis that required far more information than 
was available in this study. We instead adopted the concept 
of the “scale triplet”, defined by Bloschl and Sivapalan (1995) 
to include the spacing, extent, and support of a measurement, 
and considered our results in light of observations made 
in earlier publications by Journel and Huijbregts (1978), 
Gelhar (1993) and Western and Bloschl (1999). The extent 
is defined as the overall coverage of the measurements; the 
spacing is defined as the distance between samples; the sup-­­
port is defined as the volume sampled by the measurement. 
In general it has been found that the correlation length will 
be underestimated if the extent is too small, and will be 
overestimated if the spacing or support is too large. While 
the specific form of dependence of the determined correla-­­
tion length on measurement scale will depend on the spatial 
distribution of the parameter, the analysis of soil moisture 
data presented in Western and Bloschl (1999) suggests that 
significant bias will be introduced if 1) the extent is smaller 
than about 5 times the correlation length; 2) the spacing is 
greater than about twice the correlation length; and 3) the 
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support is greater than about 20% of the correlation length. 
In our study, the subsurface is stratified to some extent, so 
the correlation structure is anisotropic. For the analysis of 
data from such a system, the support dimension of the mea-­­
surement in both the horizontal and vertical direction will 
affect the derived horizontal correlation length (Journel and 
Huijbregts, 1978; Gelhar, 1993). The previous studies using 
geostatistical analysis of radar data to determine lateral 
correlation lengths did not address the impact of the scale of 
the radar measurement, but there is evidence that the radar-
derived correlation length is very sensitive to the vertical 
resolution of the data (Knight et al., 2004). We found in this 
study that the scale triplet provided a very useful framework 
for quantitatively describing the scale of measurement and 
for comparing the correlation structures derived from the 
two, very different, forms of measurement. 

DESCRIPTION OF THE FIELD SITE

The field site selected for this study is referred to as the 
Sisson and Lu Injection Test Site and was designed to moni-­­
tor the movement of water from a liquid injection point 
source in the unsaturated conditions at Hanford (Sisson 
and Lu, 1984; Fayer et al., 1995). The site is located in the 
south-eastern corner of the region referred to as the 200 East 
Area. Annual precipitation at Hanford is 16 cm/yr, which 
is representative of a semi-arid climate. The depth to the 
water table is approximately 80 m. Plant cover at the site is 
predominantly a shallow-rooted cheat grass with scattered, 
deep-rooted sagebrush and Russian thistle.

The test site consists of 32 metal-cased wells, 18 to 19 m 
deep, surrounding a central injection well that is 5 m deep. 
A plan view of the well locations is shown in Figure 1. Each 
well is referred to with a letter and number, with the letter 
designating the radial arm (A through H) and the number 
designating the approximate distance in meters from the 
central well. Also shown on this figure is the location of 
the line along which the GPR data were collected. The GPR 
profile, referred to as SISREF1, starts at well D8 and extends 
30 m in the northwest direction. We were unable to acquire 
radar data over the wells due to the metal casing.

A detailed discussion of the lithology of the test site and 
surrounding area is presented in the thesis by Smoot (1995). 
The sediments in the area consist of up to a few meters of 
Quaternary age aeolian silty sand overlying Pleistocene 
medium- to coarse-grained fluvial sands with interbedded 
gravelly sand and silt-sand layers. The test site is heteroge-­­
neous, consisting of layers and lenses of alluvial sediments 
ranging in grain size from silt to gravel that fall within the 
sand-dominated facies of the Hanford formation (DOE, 
2002). The spatial variation in the texture of the sediments 

can be expected to be a major control on the distribution of 
water in the vadose zone. 

WATER CONTENT DATA FROM NEUTRON PROBE 
MEASUREMENTS

Volumetric water content data are available from neutron 
probe measurements made in two field tests conducted at the 
Sisson and Lu site in June 1980 and February 1995. During 
each of the tests, neutron probe measurements were made 
both before and after an injection test. In the report by Fayer 
et al. (1995), the comment is made that “at a majority of 
depths the differences [in water content between the 1980 
and 1995 pre-injection tests] are less than 1 vol%, which is 
smaller than the calibration error of the probe”. We therefore 
presume, given the dry conditions at Hanford, that the data 
acquired before the injection tests in 1980 and 1995 are 
representative of the ambient water content distribution in 
the vadose zone during the radar survey, made in May 2000, 
prior to an injection test. Detailed descriptions of the 1980 
measurements are in Sisson and Lu (1984) and Fayer et al. 
(1995); descriptions of the 1995 measurements are in Fayer 
et al. (1995). More recent neutron probe measurements were 
made at the site in the summer of 2000, but data were not 
acquired in the top 4 m; we chose not to use these data due 
to the limited region of overlap with the GPR data.

The 1980 pre-injection neutron probe measurements were 
made in the 32 observation wells using a Campbell-Pacific 
neutron probe. Measurements were made from a depth of 0.3 

Fig. 1Fig. 1

Figure 1. A plan view of the well locations (solid circles) at the Sis-­­
son and Lu Injection Test Site. Thirty-two wells surround a central 
injection well. GPR data were acquired along a 30 m line labeled 
SISREF1 that starts at the well labeled D8.
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m to 18 m, with vertical sampling every 0.3 m. Neutron counts 
were recorded for 15 seconds at each sampling location. In 
order to obtain estimates of volumetric water content θw from 
the neutron probe data we used the calibration curve for the 
1980 probe that was determined by Fayer et al. (1995):

	 θw = (0.0182 C15 – 3.82) / 100	 (1)

where C15 represents the probe count over 15 seconds; Fayer 
et al. (1995) reported a correlation coefficient of 0.829 and 
a standard error in volumetric water content of ~2 to 3%. 
This calibration curve was developed using three calibration 
standards with volumetric water contents of 5%, 12% and 
20%. The material used for the standards was a mixture of 
sand and alumina trihydrate, placed in a container 1.5 m 
in diameter and 1.8 m high. The probe was run in a 0.15 m 
diameter steel casing to simulate the casing at the Sisson and 
Lu site. Full details of the procedure are given in Engelman 
et al. (1995) and in Fayer et al. (1995). 

In 1995 a Schlumberger compensated neutron tool was 
used to log the 32 wells prior to an injection experiment. In 
most wells the maximum depth of the measurements was 
18.29 m, but in a few of the wells the measurements were 
made to slightly greater depths up to 18.75 m. Measurements 
were made in all of the wells with vertical sampling every 6 
in (~0.15 m) and the data reported as volumetric water con-­­
tent. The calibration curve was not provided by the operators 
but is reported by Fayer et al. (1995) to have produced excel-­­
lent results in the dry range and a 1.4% error for a volumetric 
water content of 30%. In the 1995 data there is an unusually 
large spike in water content values in the top 1 m in a number 
of the wells. We attribute this to probe malfunction, so in our 
analysis used only the data below that interval.

In Figure 2 are shown the water content data (as % volu-­­
metric water content) from the 1980 and 1995 neutron probe 
measurements in well D8, the well that lies at the southeast 
end of the GPR profile. The water content values determined 
in 1980 and 1995 are very close; except for the spike in water 
content at the surface in the 1995 data. The main features 
in these two data sets are the pronounced increases in water 
content at depths of approximately 7.5 m and 11.5 m. 

GROUND PENETRATING RADAR DATA

A radar reflection image is a compilation of the radar 
traces recorded as transmitter and receiver antennas are 
moved across the surface of the earth. The arrival times and 
relative amplitudes of reflections in a single radar trace can 
be represented by the convolution of the source EM pulse 
(or wavelet) with a series of reflection coefficients, defined 
at each subsurface interface as: 

	 	 (2)

where subscripts 1 and 2 refer to the materials above and 
below the interface, respectively. Here, R represents the ratio 
of the amplitudes of reflected energy to incident energy for a 
normally incident EM wave at a planar interface, where the 
incident wave’s electric field is polarized perpendicular to 
the plane of incidence (referred to as TE mode). In order to 
convert the reflection amplitude data, recorded as a function 

Fig. 2Fig. 2

Figure 2. Water content values in well D8 obtained from neu-­­
tron probe measurements made in 1980 (triangles) and 1995 
(squares).
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of time, to a radar reflection image displayed in terms of 
depth, the velocity at which an EM wave travels through the 
subsurface must be known. The EM wave velocity v is equal 
to c/  where c is the speed of light (3.0 x 108 m/s). Note that 
both this expression for v and Equation 2 assume EM wave 
propagation through a material with relatively low electrical 
conductivity and with magnetic permeability equal to its 
value in free space. We believe this to be a valid assumption 
for our study given the dry conditions and reported composi-­­
tion of the sediments at the Hanford test site. 

The resolution of a radar image is determined by the fre-­­
quency f of the antennas and the subsurface EM velocity v. 
The vertical resolution of a radar measurement is commonly 
taken to be one quarter of the dominant wavelength λ of the 
transmitted EM pulse, where λ = v / f. The horizontal resolu-­­
tion is the Fresnel zone of the measurement, the width (W) 
of which can be approximated by the following expression 
(Yilmaz, 1987):

	 	 (3)

where d is the depth from which the energy is returned. 
Detailed discussion of the fundamental principles of GPR 
can be found in the publications by Daniels et al. (1988) and 
Davis and Annan (1989).

The GPR data (SISREF1) were collected along a 30 m 
survey line running northwest from well D8, as shown in 
Figure 1. We used a Sensors and Software Pulse EKKO IV 
GPR system with 100 MHz antennas. For the survey, the 
transmitter and receiver antennas were kept 0.5 m apart, and 
were moved down the survey line at a station spacing of 0.1 
m. Each recorded trace was stacked 64 times to ensure a high 
signal-to-noise ratio, and was sampled in time every 0.8 ns. 

A number of signal processing steps were taken in order 
to prepare the GPR data for interpretation and analysis. The 
first step involved shifting the traces in the data set to align 
them on the first arrival. This corrects for any time drift 
caused by temperature changes in the system electronics 
during the survey. Next, a 25-point residual median filter 
was applied to each trace in the data set to remove the low 
frequency transient (the “wow”) that underlies the GPR 
reflection signal. Trace amplitudes were then corrected using 
two methods. The first method involved applying a spherical 
and exponential compensation (SEC) gain to the data set to 
correct for the geometrical spreading of energy and attenu-­­
ation losses during propagation. The amount of exponential 
boosting was chosen such that the amplitudes of the reflec-­­
tions were roughly balanced in time. We also used automatic 
gain control (AGC) to balance the trace amplitudes so that 
the average signal strength in a time window was constant. 

We chose a window of 25-points and a maximum gain of 300 
for our AGC function. Following the procedure described in 
Rea and Knight (1998), we used the AGC-gained image in 
the geostatistical analysis of the reflection image. The SEC-
gained section, however, is more useful for comparison with 
the probe-derived water content data because the relative 
amplitudes of reflections are preserved. 

The SEC-gained radar section is shown in Figure 3. The 
position marked along the horizontal axis is the distance from 
well D8. The radar data contain the amplitude and arrival time 
of received energy, and are therefore displayed as a time sec-­­
tion with time along the left vertical axis. The energy arriving 
in the first 20 ns contains the high amplitude direct air and 
ground wave, and was therefore not considered in our analysis. 
Below this are a number of other continuous reflections, close 
to horizontal in orientation, which we interpret as imaging 
variation in the water content of the subsurface; a detailed 
analysis of these data is given in the following sections. There 
are two types of features seen in Figure 3 that have no rela-­­
tionship to subsurface properties: 1) The dipping reflection 
that cuts across the lower right region of the radar section was 
caused by energy reflecting off a fence post approximately 12 
m northeast of well D8 (to the right of the line as shown in 
Figure 3). 2) The multiple reflections in the lower half of the 
plot are a result of internal ringing within the GPR system 
or antennas. In addition, we also observe a difference in the 
character of the radar section at late times between 25 m and 
27 m; the data are noisier and the dominant frequency appears 
to be lower. We have no explanation for this, as there is no 
known surface or subsurface structure or disturbance that 
could cause this change. 

LINK BETWEEN WATER CONTENT AND THE 
RADAR REFLECTION IMAGE

The radar reflection image contains information about 
the way in which κ varies spatially throughout the sampled 
subsurface region. The key question for our study: Is this 
variation in κ, imaged in the radar data, directly related to 
variation in water content? A review of numerous laboratory 
studies, as provided in Knight (2001), shows that the domi-­­
nant factors controlling κ of a material are the water content, 
the volume fraction of high surface area materials (such as 
clays), and the geometry of the solid phase. However, given 
the large contrast between κ of water (80) and that of air 
(1) and commonly occurring solid components (typically 
5–12) it is often assumed that variation in κ is primarily due 
to variation in water content. 

Of specific relevance to our study are the results from the 
work of Majer et al. (2001) that show six images of EM slow-­­
ness (1/v) obtained from crosswell radar measurements made 

Fig. 3Fig. 3
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between four wells, approximately 4 m apart, at our study 
site at Hanford. The EM slowness in each pixel was used to 
determine κ and a good correlation was found between κ-
values near the wells and θw derived from the neutron probe 
data. This indicates that θw is the dominant control on κ at the 
Sisson and Lu site, an important result for our study. With an 
established link between κ and θw at a site, the acquisition of 
surface radar reflection data provides a way to obtain informa-­­
tion about the variation in subsurface water content. 

We further examined the link between water content and 
the radar reflection data at the field site by comparing the 
variation in water content in well D8, derived from the 1995 
neutron probe data, to the adjacent radar image. This requires 
converting the time section, shown in Figure 3 to a depth sec-­­
tion. The standard approach to making this conversion is to 
use estimates of subsurface velocity obtained from common 
midpoint (CMP) data. The CMP data that we acquired at the 
Sisson and Lu site were of such poor quality that we took an 
alternate approach. We used the water content data in D8 to 
determine the variation in subsurface EM wave velocity as a 
function of depth.

The first step was to convert θw to κ. To accurately model 
the relationship between θw and κ in any multi-component 
system requires using a theoretical approach that can incor-­­
porate information about volume fractions, geometries, and 
dielectric constants of all the solid and fluid components, 
and can account for physical and chemical interactions at 

the interfaces between the components. To do this we would 
need far more information than we had available. As an 
approximation, we used the empirically-derived Topp rela-­­
tionship (Topp et al., 1980):

	 κ = 3.03 + 9.30 (θw ) + 146.00 (θw )
2 – 76.70 (θw)3,	 (4)

obtaining values of κ that ranged from 3.8 to 7.0. We then 
used these κ–values to determine a model of the EM velocity 
at well D8 (v = c/ ). The velocity values were found to range 
from 0.11 to 0.16 m/ns, the same range reported by Majer et 
al. (2001), with an average velocity of 0.14 m/ns. The 1-D (i.e. 
varying with depth) velocity model at D8 was used to convert 
the radar time section to the depth section shown in Figure 4,
with the 1995 water content data from well D8 repeated for 
comparison. As shown in Equation (2), large changes in water 
content should cause high-amplitude reflections because of the 
corresponding large changes in κ. This can be seen in Figure 
4 at depths of 7.5 and 11.5 m. A qualitative comparison of the 
radar image and water content data suggests that there is also 
a correlation at other depths between changes in water content 
and the presence of radar reflections.

As a more rigorous way of comparing radar reflections 
and changes in water content, we generated the synthetic 
radar trace that would be produced by the κ-values (calcu-­­
lated using the Topp equation) at the location of well D8. 
We assumed a 100 MHz zero phase Ricker wavelet and 

Fig. 4Fig. 4

Figure 3. SEC-gained radar section. Well D8 is located at the right end of this section, with position from D8 given 
along the bottom. The vertical axis is in time, as in the form of the collected data.
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used a program written by Steve Cardimona (University of 
Missouri-Rolla) to simulate the 1-D propagation of an EM 
plane wave. The synthetic trace predicts the way in which 
changes in θw alone would be imaged in radar data. In Figure 
5 we compare the synthetic trace to the radar trace acquired 
adjacent to well D8; both traces have been repeated 10 times. 
As can be seen in the results shown in Figure 5, many of the 
features in the synthetic trace are present in the real data 
indicating that the amplitudes and locations of radar reflec-­­
tions correspond primarily to changes in subsurface θw; a 
result we expected given the findings of Majer et al. (2001). 
The fact that we do not see perfect agreement between the 
synthetic data and the acquired data is largely due to the 
inability of our convolution model to accurately represent 
all aspects of radar wave propagation. 

The observed correspondence between the radar reflection 
image and the changes in water content led to the conclusion 
that it would be appropriate to continue with the second part 
of this study, which involved the geostatistical analysis of the 
radar reflection image to obtain an estimate of the correlation 
length in water content. 

GEOSTATISTICAL ANALYSIS OF PROBE-DERIVED 
WATER CONTENT AND RADAR DATA: 

RESULTS AND DISCUSSION

We adopted a geostatistical framework as a means of quan-­­
tifying the correlation structure in the lateral direction in the 
radar image and in the probe-derived water content values. 

Specifically we obtained experimental semivariograms and 
addressed the question: How do the experimental semivar-­­
iograms and lateral correlation lengths obtained for the two 
forms of measurement compare?

The experimental semivariogram is described by the fol-­­
lowing equation (Journel and Huijbregts, 1978):

	 	 (5)

where h is the lag, or separation vector, between two data 
points z(xi+h) and z(xi), and N is the number of data pairs 
in each summation. As the separation distance increases 
the data points often tend to become less correlated and the 
semivariogram may be seen to flatten as γ reaches the sill 
or variance of the dataset. 

Semivariogram models are used to provide an analytic 
description of the experimental semivariogram. While the 
positive-definite functions commonly used in semivario-­­
gram modeling are usually selected based on an empirical 
fit of the data, a discussion of the theoretical basis for some 
of the functions used to fit semivariogram models is given 
by McBratney and Webster (1986). For modeling the data 
we used either a single or nested exponential model. The 
exponential model can be shown to describe the semivario-­­
gram which will result from a variety of processes such as 
first-order Markov processes (Agterberg, 1970; McBratney 
and Webster, 1986) and is the one that is often assumed by 
researchers in stochastic hydrology (Woodbury and Sudicky, 

Fig. 5Fig. 5

Figure 4. SEC-gained radar data converted to a depth section using the velocity model derived from water content 
measurements in well D8. The water content data acquired in 1995 are shown to the right of the radar section.
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1991). The nested exponential model is given by the follow-­­
ing equation:

    	 (6)

where C1 and C2 are weighting factors for λ1 and λ2 , the two 
correlation lengths (or integral scales) of the data set. The 
single exponential model is given by the above expression 
with C2= 0. The correlation length is the parameter that we 
used to describe the spatial structure of the data.

Semivariogram analysis was completed on the two water 
content data sets (which include all measured values of 
water content in the wells) using the program gamv found in 
GSLIB (Deutsch and Journel, 1998). The lag vector was in 
the horizontal plane for all sampled depths and set parallel 
to the northwest direction of the radar line. As an example 
of the data, we show in Figure 6 the transect from well D8 to 

well H8, displaying the 1980 and 1995 water content data as 
a function of depth in each well. We used a minimum length 
of 2 m for the lag vector. Due to the well arrangement and 
spacing, lags shorter than 2 m would have sampled a limited 
region with very few data points near the injection well. The 
maximum lag used was approximately one half the extent of 
the measurements. 

Table 1 contains the scale triplet for the neutron probe 
measurements used in the geostatistical analysis. The neutron 
probe measurements were made in wells separated by 2 m in 
a radial pattern. Given an analysis limited to the northwest 
direction, we define the horizontal spacing as the minimum 
value of 2 m. The vertical spacing is 0.3 m in the 1980 data 
and ~0.15 m in the 1995 data. The horizontal extent of both 
sets of neutron probe measurements is the 16 m of the line of 
wells; the vertical extent is the ~18 m depth of the wells. We 
did not have an accurate measure of the support for either the 

Fig. 6Fig. 6

Table 1Table 1

Figure 5. The water content data from well D8 were used to produce a synthetic radar trace using calculated dielectric 
constant values and a model of 1-D EM wave propagation. Shown are the water content data, reflection coefficients 
determined using Equation (2), a synthetic trace, and an acquired trace. The synthetic and acquired traces have been 
repeated 10 times. The comparison of the synthetic data to the acquired radar data illustrates the way in which the radar 
data capture the subsurface variation in water content.
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Campbell-Pacific probe used in 1980 or the Schlumberger 
tool used in 1995. It is commonly assumed that a neutron 
probe measurement is sensitive to an approximately spheri-­­

cal volume that may range from 0.1 m to 0.3 m in diameter, 
depending on soil water content (Haverkamp et al., 1984). 
We have therefore used an estimate of 0.1 to 0.3 m for the 
horizontal and vertical dimensions of the support volume for 
both of the probe-derived water content data sets. It is very 
likely that the two systems had different support volumes. 

The experimental and model semivariograms are shown 
in Figure 7a for the 1980 data and in Figure 7b for the 1995 
data. Each experimental semivariogram was normalized 
by the variance of the data set on which it was calculated. 
The water content semivariograms were both fit with single 
exponentials with a correlation length of 10 m. The results of 
the modeling for all of the data are given in Table 2.

Let us consider the result of a horizontal correlation length 
of 10 m in terms of the horizontal dimensions of the scale 
triplet, given in Table 1, for the neutron data. We conclude 
that both the horizontal spacing and the horizontal support 
are more than adequate; these measurement scales are much 
less than the determined correlation lengths. The horizontal 
extent of the neutron data, however, is not much greater than 
the determined correlation length so it might not be large 
enough. We do not see either semivariogram flattening as 
it would when reaching the sill. It is also important to note 
that the neutron probe data could not be used to accurately 
characterize shorter-range structure (on the order of a few 
meters or less) due to the horizontal spacing of the measure-­­
ments (determined by the spacing of the wells). 

Semivariogram analysis in the horizontal direction was 
completed on the AGC-gained radar data using the program 
gam found in GSLIB (Deutsch and Journel, 1998). The 

Fig. 7Fig. 7

Table 2Table 2

Table 1. The horizontal and vertical spacing, extent and support volume for the neutron probe and radar measurements.

1980 Neutron Probe 1995 Neutron Probe Radar Radar-­migrated
Spacing
    horizontal 2 m 2 m 0.1 m 0.1 m
    vertical 0.3 m ~0.15 m 0.1 m 0.1 m
Extent
    horizontal 16 m 16 m 30 m 30 m
    vertical ~18 m ~18 m 9.87 m 10 m
Support
    horizontal ~0.1–0.3 m ~0.1–0.3 m ~2-6 m ~1.3 m
    vertical ~0.1–0.3 m ~0.1–0.3 m 0.35 m 0.35 m

Figure 7. The experimental (symbols) and modeled (line) semi-­­
variograms calculated along the northwest direction for the 
probe-derived water content data from (a) 1980 and (b) 1995. 
Both experimental semivariograms were modeled with a single 
exponential model with a correlation length of 10 m. 

Table 2. The parameters obtained in modeling of the water content 
and radar experimental semivariograms with single (for the water 
content data) and nested (for the radar data) exponential models. 

Dataset C1 λ1 (m) C2 λ2 (m)

1980 θw 1 10 ---- ----
1995 θw 1 10 ---- ----
radar 0.2 0.3 0.80 14
radar-migrated 0.13 0.6 0.87 14
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data values that were used were the recorded amplitudes 
of received energy, as done in the study by Rea and Knight 
(1998); more details on the geostatistical analysis of radar 
data can be found in that reference. The semivariogram 
analysis was conducted over the 30 m length of the radar 
section and across the depth interval of 1.76 to 11.63 m. The 
lag vector was horizontal, with zero tolerance on the vector 
direction. As suggested by Journel and Huijbregts (1978), we 
limited the lag vector to one half the extent of the measure-­­
ments, so the maximum lag used was 15 m. Semivariogram 
analysis of radar images, conducted with a lag vector in 
the vertical direction, contains no useful information about 
subsurface properties because the length scale associated 
with the radar wavelet itself dominates the results. This is 
discussed in the paper by Rea and Knight (1998).

Table 1 contains the scale triplet for the analyzed radar 
data. The horizontal spacing of the radar measurements is 
the trace spacing of 0.1 m. The vertical sampling interval is 
set in terms of time and is 0.8 ns; this converts to a vertical 
spacing of 0.1 m using an EM velocity at the site of 0.14 m/ns. 
The horizontal and vertical extents of the radar measure-­­
ments used in the geostatistical analysis are 30 m and 9.87 
m respectively. The values given for the support of the radar 
measurements are the horizontal and vertical resolution of 
the data. These values were calculated using the expressions, 
given earlier, that are commonly used but are simplified 
representations of the support of the radar measurement. 
Accurately determining the support of any geophysical mea-­­
surement is a highly non-linear problem, as the support 
depends on the measured subsurface properties. Using the 
average value for v of 0.14 m/ns found at the Sisson and Lu 
site, the vertical resolution with the 100 MHz system is 0.35 
m (similar to the support of the neutron measurement); the 
horizontal resolution (Fresnel zone) ranges from ~2 m at a 
depth of 1 m to ~6 m at a depth of 12 m. 

The radar experimental semivariogram is shown in 
Figure 8, with the semivariograms for the water content data 
included for comparison. It was fit with a nested exponential 
model (shown as the solid line in Figure 9) containing a 
dominant long-range structure with a correlation length of 14 
m, and a smaller-scale structure with a correlation length of 
0.3 m. Although the GPR profile suggests that some reflec-­­
tions have even longer spatial correlation lengths, the 14 m 
correlation length represents the entire profile rather than 
any particular depth-discrete layer or zone.

Let us now consider the results from geostatistical analysis 
of the radar data, in light of the horizontal spacing, extent 
and support of the measurement, given in Table 1. The rela-­­
tively small horizontal spacing and large horizontal extent 
of the radar data should be sufficient to determine, with-­­
out bias, a horizontal correlation length of 0.3 m; but the 

horizontal support dimension is much too large. While it is 
possible that there is short-range subsurface structure that 
was imaged with the radar data, we conclude that we could 
not have accurately quantified it. If we compare the other 
determined horizontal correlation length of 14 m to the radar 
measurement scales, it is clear that the horizontal spacing 
of the radar data is adequate. As with the neutron probe 
data, however, we suspect that the horizontal extent is too 
limited to accurately determine the correlation length that 
we have estimated. Given the expected form of dependence 
of apparent correlation length on extent, the radar data, with 
an extent larger than that of the neutron data, should provide 
a correlation length that is greater than that determined from 
the neutron data, as observed. 

The horizontal support dimension of the radar data var-­­
ies from approximately 2 to 6 m; whether this is adequate 
is questionable, but can be further assessed by processing 
of the radar data so as to reduce the support. We migrated 
the data using phase shift migration (Gazdag, 1978) and the 
velocity model from well D-8. The migration process serves 
to reposition reflection events to their true subsurface loca-­­
tions, thereby improving the resolution of the image. With 
seismic data, migration can reduce the horizontal resolution 
to a theoretical limit of λ/2. The radiation pattern of the 
radar antennas is such that the resolution cannot reach this 
limit but rather approaches the theoretical limit given by the 
expression in Berkhout (1984; page 175) for limited aperture 
seismic data. Using this relationship along with the expres-­­
sion for the antenna radiation pattern given in Annan and 
Cosway (1994) we calculated an improved horizontal resolu-­­
tion in our migrated image that ranges from approximately 
1.0 m to 2.1 m with an average value of 1.3 m.

With this reduced horizontal support dimension, we 
repeated the geostatistical analysis of the radar image and 
obtained the model results given in Table 2. We found no 

Fig. 8Fig. 8

Fig. 9Fig. 9

Figure 8. The experimental semivariogram for the radar data 
(circles). The water content semivariograms for 1980 (triangles) 
and 1995 (squares) are repeated for comparison. 
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change in the longer correlation length of 14 m, suggesting 
that the horizontal dimension of the support of the radar data 
both before and after migration was sufficient to accurately 
determine the 14 m correlation length. (If the 14 m estimate 
had been biased due to support we should have seen a varia-­­
tion in the apparent value with a change in the support.) In 
contrast, we did find a change in the shorter correlation 
length. We conclude that neither of the radar data sets has 
the horizontal support dimension required to accurately 
estimate the parameters of the sub-meter structure. However, 
the radar data suggest that a sub-meter structure is present, 
which cannot be detected at all in the semivariogram of the 
probe-derived water content data due to the coarser horizon-­­
tal spacing of the probe data.

The final measurement scale that we consider is the verti-­­
cal support. As discussed in Knight et al. (2004), what has 
been observed in practice in anisotropic systems is a radar-
derived lateral correlation length that is very sensitive to 
changes in the vertical resolution of the radar data; as the 
dominant frequency of the transmitted EM pulse decreased 
(resulting in a loss of vertical resolution or increase in verti-­­
cal support), the estimated correlation length increased. In 
our study, the vertical supports for the neutron probe and 
radar measurements are very similar; we therefore do not 
anticipate significant differences in the determined correla-­­
tion structure due to differences in vertical support.

The methodology developed by Rea and Knight (1998) 
for the geostatistical analysis of radar data has a critical 
underlying assumption: the correlation structure seen in the 
radar reflection image represents the correlation structure 
of the subsurface property governing the variation in κ; in 
this study, water content. It is important to emphasize that 
the radar reflection image does not correspond directly to 
an image of water content, but to an image of changes in 
water content. The reflection image can be represented (as an 

approximation) by the convolution of the radar wavelet with 
a subsurface model of reflection coefficients. The transform 
to reflection coefficients from subsurface water content acts 
like a vertical differencing filter, disrupting the spatial con-­­
tinuity of θw in the horizontal direction. The extent to which 
the correlation structure of the radar reflections represents 
the correlation structure of θw will therefore depend on the 
extent to which the convolution with the radar wavelet recov-­­
ers, through spatial averaging, the continuity in θw. This is 
the link to the vertical resolution of the measurement.

An alternate approach would be to determine the horizon-­­
tal correlation structure of the radar stack velocity (rather 
than the radar reflections), as done by Oldenborger et al. 
(2003). While there is a more direct link from subsurface 
properties to radar velocity than to radar reflections, it is 
extremely time-consuming to acquire and analyze radar data 
to obtain velocities, there can be a high level of uncertainty in 
the estimates of velocity in many geologic environments, and 
this approach results in a subsurface image that has much 
poorer resolution than is present in a radar reflection image. 
We therefore chose to focus in this study, and in our ongoing 
research, on the use of radar reflections alone to represent 
the variation in subsurface water content.

CONCLUSIONS

The Sisson and Lu test site, with the large volume of probe-
derived water content data, is an ideal site for developing 
ways of using geophysical data to address characterization 
needs at Hanford and contaminated sites elsewhere. Our 
study using surface-based GPR, and the study of Majer and 
others (2001) using crosswell radar, indicate that there is a 
close link at Hanford between water content and κ of sub-­­
surface sediments. This results in a correspondence between 
the location of changes in θw and the location of reflections 
in a radar image. We therefore conclude that surface-based 
GPR can be very useful at Hanford as a way to map changes 
in θw, observed in well measurements, away from the well 
locations. This alone could provide valuable information 
about the spatial distribution in θw, a key factor in predict-­­
ing the fate and transport of contaminants in the unsaturated 
zone at the Hanford site. In order to use GPR in this way at 
other sites, an essential step is to first determine that changes 
in θw are the dominant cause of the reflections in the radar 
data. While this is commonly assumed, given the strong 
dependence of κ on θw seen in laboratory data, the use of 
θw data from a site to produce a synthetic radar section for 
comparison with acquired data is an excellent way to check 
this critical assumption. 

In the second part of our study, we determined the hori-­­
zontal correlation length of the radar reflection image and 

Figure 9. The experimental (circles) and modeled (line) semivario-­­
gram for the radar data. The data were modeled with a nested expo-­­
nential model with two correlation lengths of 0.3 m and 14 m.
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compared this to the horizontal correlation length of the 
probe-derived water content data. We found that geostatisti-­­
cal analysis of the radar reflection image yielded a correlation 
structure similar to that obtained from neutron probe-derived 
θw values, and provided additional evidence of structure 
at the sub-meter scale. As a framework for comparing the 
results from the two forms of measurement, we focused on 
the effects of the scale of measurement. We conclude that 
the derived horizontal correlation lengths are likely to be 
too low, given the limited horizontal extent of both the neu-­­
tron probe data and the radar data. In general, however, it is 
likely that the measurement scales that can be achieved with 
GPR data can lead to more accurate estimates of correlation 
length than can be obtained with other forms of well-based 
measurements. 

We recognize that further work is required in order to 
fully understand the general applicability of the geostatistical 
analysis of radar images for characterizing the spatial distri-­­
bution in subsurface water content. One of the key challenges 
is developing an improved understanding of the link between 
the correlation structure of the reflections, which correspond 
to changes in water content, and the correlation structure in 
water content. While it has been shown that the spatial aver-­­
aging of the GPR wavelet can lead to a close correspondence 
between the reflection image and the distribution of water 
content (Knight et al., 2004), we lack a basis for predicting 
the accuracy of the radar-derived correlation length. 

What do the results of this study suggest about the use 
of radar reflection images for characterizing the horizontal 
correlation length of subsurface water content? We conclude 
that although radar data clearly contain information about 
the spatial distribution of water content, they, like all forms 
of measurement, are highly sensitive to the scale (spacing, 
extent, support) of the measurement. Thus critical questions 
that remain to be answered are: How can we define the “cor-­­
rect” radar measurement scales to use in order to recover the 
desired correlation structure? How can these measurement 
scales be determined for a specific field site? We are confi-­­
dent that continued research at well-characterized field sites 
will ultimately allow us to use radar reflection images to 
describe the correlation structure of the subsurface.
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This paper presents an integrated approach for seismic reservoir characteriza-
tion that can be applied both in petroleum exploration and in hydrological sub-
surface analysis. We integrate fundamental concepts and models of rock physics, 
sedimentology, statistical pattern recognition, and information theory, with seis-
mic inversions and geostatistics. Rock physics models enable us to link seismic 
amplitudes to geological facies and reservoir properties. Seismic imaging brings 
indirect, noninvasive, but nevertheless spatially exhaustive information about the 
reservoir properties that are not available from well data alone. Classification and 
estimation methods based on computational statistical techniques such as non-
parametric Bayesian classification, Monte Carlo simulations and bootstrap, help 
to quantitatively measure the interpretation uncertainty and the mis-classification 
risk at each spatial location. Geostatistical stochastic simulations incorporate 
the spatial correlation and the small scale variability which is hard to capture 
with only seismic information because of the limits of resolution. Combining 
deterministic physical models with statistical techniques has provided us with a 
successful way of performing quantitative interpretation and estimation of reser-
voir properties from seismic data. These formulations identify not only the most 
likely interpretation but also the uncertainty of the interpretation, and serve as a 
guide for quantitative decision analysis. The methodology shown in this article 
is applied successfully to map petroleum reservoirs, and the examples are from 
relatively deeply buried oil fields. However, we suggest that this approach can 
also be carried out for improved characterization of shallow hydrologic aquifers 
using shallow seismic or GPR data.
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1. INTRODUCTION

In petroleum geophysics our main goal is to discover more 
oil or gas, to optimize new well locations or to improve 
petroleum recovery. Within hydrology and hydrogeophysics, 
major goals include mapping the best aquifers, optimizing 
water production, or attempting to detect non-aqueous phase 
liquid contamination. The bottom line in both disciplines is 
to quantify and reduce uncertainties in subsurface explora-
tion, characterization, and management.

Both petroleum geologists and geohydrologists recognize 
that subsurface heterogeneity delineation is a key factor in 
reliable reservoir or aquifer characterization and subsurface 
remediation. Heterogeneities occur at various scales, and 
can include variations in lithology, pore fluids, clay content, 
porosity, pressure and temperature. Increased global demand 
for petroleum and water has resulted in a deliberate search 
for these vital resources in more complex and subtle reser-
voirs. Heightened environmental awareness has increased 
the needs for effective site remediation. Accordingly, there 
has been a quest for more quantitative seismic methods 
and improved understanding of seismic data, beyond the 
conventional geometric structural and stratigraphic inter-
pretations. The quantitative information in seismic ampli-
tudes opens up new gates for reservoir characterization and 
monitoring including the predictability of pore fluid types, 
fluid saturation, lithologies, and pore pressure [e.g., Lumley, 
2001; Castagna et al., 1998; Ursin et al., 1996]. Some of the 
methods used in seismic reservoir characterization are purely 
statistical, based on multivariate techniques [e.g., Fournier, 
1989]. Others are deterministic, based on physical models 
(theoretical, laboratory). Each group of techniques can have 
some degree of success depending on the particular study. 
The optimum strategy is to combine the best of each method 
to generate results much more powerful than would be possi-
ble from purely statistical or purely deterministic techniques 
alone. Some of the pioneering work that combined rock 
physics with statistical techniques includes Doyen [1988], 
Lucet and Mavko [1991], Doyen and Guidish [1992], and 
Mukerji et al. [1998]. Combined applications of geophys-
ics, rock physics, and statistical techniques for hydrological 
investigations include the early works of Rubin et al. [1992], 
and Copty et al. [1993], followed amongst others by Poeter 
et al. [1997], Ezzedine et al. [1999], Hyndman et al. [2000], 
Hubbard and Rubin [2000], Chen et al. [2001], and Tronicke 
and Holliger [2005]. Some recent works where combined 
methodologies have been used for petroleum reservoir char-
acterization, include among others, Avseth [2000], Avseth et 
al. [2001], Mukerji et al. [2001b], Caers et al. [2001], Eidsvik 
et al. [2004], and Bachrach and Dutta [2004]. Bachrach 
and Mukerji [2005] used shallow seismic reflections with 

crosswell radar tomography and geostatistics for aquifer 
characterization. Gonzalez [2005] combined rock phys-
ics with seismic inversion and multipoint geostatisics to 
predict lithofacies from seismic data. In this paper we will 
concentrate on statistical rock physics methodology. Other 
companion papers in the volume describe modern geostatiti-
cal methods including multipoint geostatistics for subsurface 
characterization.

Subsurface property estimation from remote geophysical 
measurements is always subject to uncertainty because of 
many inevitable difficulties and ambiguities in data acqui-
sition, processing, and interpretation. It is therefore neces-
sary to express quantitatively the information content, and 
uncertainty in rock property estimation from seismic data. 
Statistical probability density functions (pdfs) give us one 
way to describe quantitatively the state of our knowledge 
about the targeted rock properties, and the relations between 
rock properties and seismic signatures, including their inher-
ent uncertainty. The pdfs may be estimated from available 
training data. The training set often has to be extended or 
enhanced using physical models to derive pdfs for situations 
not sampled in the original training data. 

Additional data of a different kind can sometimes (but 
not always) bring in information that can help to reduce the 
uncertainty. For example, studies have shown that knowing 
shear wave velocities (Vs), in addition to pressure wave 
velocities (Vp), can help to resolve ambiguities in litho-
facies versus fluids identification. From seismic data aquired 
with varying reflection angle, which implies varying offset 
between seismic source and receivers, one can extract reflec-
tion amplitudes as a function of offset (AVO). These AVO 
attributes implicitly include shear information even though 
the recorded wave is a pressure wave, i.e., when only one 
component is acquired. The AVO gradient (proposed by 
Shuey, 1985) and the far-offset elastic impedance [Connolly, 
1998; Mukerji et al., 1998] are examples of such “physical 
attributes” that indirectly contain shear wave information. 
Shear wave information may also be obtained more explicitly 
from multi-component surveys, which, however, are costlier 
than conventional single component surveys. The use of 
seismic AVO technology is widely used in the petroleum 
industry to detect hydrocarbons, but has been rarely applied 
to shallow environmental characterizations. Waddell et al. 
[2002] used high-resolution seismic reflection data and AVO 
analysis to locate high concentrations of dense nonaqueous 
phase (DNAPL) contaminants at a naval waste location 
near Charleston, SC. Though the examples described here 
all use attributes extracted from seismic data, the principles 
of the methodology can be applied to interpret other geo-
physical measurements such as ground-penetrating radar or 
electrical resistivity. Baker [1998] applied AVO analysis to 
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GPR data in order to differentiate NAPL from stratigraphic 
changes. Bradford and Deeds [2006] demonstrated how a 
better understanding of the offset dependent reflectivity 
from GPR could improve the detectability and accuracy in 
GPR subsurface characterization. Our integrated, probabi-
listic approach could be complementary to the workflows 
suggested in these and other GPR studies.

When using statistical data-mining techniques it is wise 
to keep in mind some of the myths and pitfalls of these 
methods. It is a myth is that the more attributes we throw in, 
the more effective will be the statistical effort. More attri-
butes are useful only if they can contribute more informa-
tion about the goal of the data-mining exercise. Otherwise 
they can do more harm than good. No statistical data-
mining technique is so powerful that it can substitute for 
‘domain knowledge’ and expertise in reservoir analysis and 
physical modeling, whether it is within petroleum geosci-
ence or within hydrology.

Below, we go through the essential steps of the methodol-
ogy, suggesting a workflow that we have found useful in our 
efforts to perform seismic reservoir characterization. Next, 
we go into more details of each step, and illustrate these with 
representative examples from North Sea oil fields. In spite of 
a lack of hydrologic case examples, for each of the steps we 
attempt to keep a link to hydrologic challenges and aquifer 
characterization, both with reference to other work as well 
as simple suggestions and recommendations. 

2. WORK FLOW

The statistical rock physics methodology [Mukerji et al., 
2001a] described in this paper may be broadly divided in to 
four phases or steps (see flow chart, Plate 1): 

Briefly, first, the well log information is analyzed to iden-
tify and define characteristic facies. These are classes of 
lithologies or sedimentary facies saturated with various 
pore fluid types. Prior to and during this step, it is impor-
tant to do appropriate quality control and corrections of the 
petrophysical log data. Basic rock physics relations such as 
velocity-porosity, and Vp-Vs are defined for the facies. (If 
using other geophysical measurements, the appropriate rock-
physics relations such as resistivity, and dielectric properties 
have to be defined for the facies.) This step is fundamental 
because it links the rock and fluid properties to the seismic 
parameters. Without this link we will not be able to obtain 
a deterministic and physical understanding of the seismic 
signatures. Since we want to exploit the shear wave velocity 
(Vs) information in the seismic data, we also need to estab-
lish the link between facies and Vs. If this information is not 
available from well log data, there exist empirical formulas 
to estimate Vs from Vp. If an expected pore fluid scenario is 

not encountered in the wells, one can perform fluid substitu-
tion using Gassmann theory. 

After the rock physics analysis of well log data, we per-
form Monte Carlo simulation of the rock physics properties 
(Vp, Vs, density) and computation of the facies dependent 
statistical pdfs for various possible seismic attributes of 
interest (e.g., reflectivity, AVO gradient, near and far offset 
impedance, anisotropy parameters etc.) Rock physics model-
ing is used to extend the pdfs to situations not encountered 
in the wells (e.g., different f luid saturations, lithologies, 
presence of fractures). 

Following this, the seismic data (attributes) from seismic 
inversion or analyses (e.g., AVO analyses, impedance inver-
sion, etc.) are used in a Bayesian classification technique to 
extend the facies defined in the wells to all voxels within 
the seismic attribute cube. Calibrating the attributes with 
the probability distributions defined at well locations allows 
us to obtain a measure of the probability of occurrence of 
each facies. 

Finally, geostatistics is used to include the spatial correla-
tion, represented by the variograms or multipoint statistics, 
and the small scale variability, which is not captured in seis-
mic data because of its limited resolution. Geostatistics can 
also be used at the initial stage to create spatial realizations 
of lithofacies consistent with the spatial correlation.

3. THE ROCK PHYSICS LINK BETWEEN SEISMIC 
AND GEOLOGY

3.1. Facies Definition

Usually the information from wells is the most directly 
available observation of a reservoir or an aquifer. The well 
log data can help us to calibrate the band-limited seismic 
data to a local background trend, and to better understand 
the expected contrasts between different lithologies and pore 
fluid zones.

 For that reason, in many reservoir characterization proj-
ects, the first step is to define and to identify the facies that 
a priori we would like to delineate in the reservoir. In this 
paper we will use the term facies for categorical groups, 
not necessarily only by the lithology type, but also by some 
property or a collection of properties, as for example the 
combination of lithology and pores fluids. In an environ-
mental site characterization project, one facies could for 
instance be sands contaminated with trichloroethane, which 
potentially could be separated from water-filled sand facies 
[e.g., Waddell et al., 2002]. 

Using the available information at the well—cores, thin 
sections, geology, logs, production data—a facies indicator 
is assigned to each depth. It is convenient to do this process 

Plate 1Plate 1
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Plate 1. Schematic workflow for seismic reservoir characterization constrained by statistical rock physics and facies 
analysis of well log data.
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with one or a few key wells where the data and interpretation 
are most complete and reliable. In petroleum fields, normally 
a complete suite of logs including both compressional and 
shear sonics as well as density logs are available at the key 
wells. This allows us to establish a link between the facies 
and the seismic properties. However, in lack of sonic veloc-
ity logs, seismic velocities can also be derived from high 
resolution vertical seismic profiling (VSP) where the seismic 
source is placed in the well and the receiver is located at the 
surface. Empirical relationships can then be used to derive 
densities from velocities [Gardener et al., 1974]. This is 
exactly what Waddell et al. [2002] did in their environmem-
tal characterization of shallow sediments at an old naval 
site. They derived Vp and Vs for different facies from high 
resolution vertical seismic profiles (VSP) at well locations, 
and densities from empirical Vp-density relationsships. The 
criteria to define the facies depend on the targeted objective. 
In petroleum geophysics, for example, it could be to map 
different lithologies (sands-shales), to delineate fractures, 
to identify hydrocarbons, or changes in pressures and/or 
temperatures in a reservoir. Similar objectives are relevant 
within hydrogeophysics, where for instance contaminations 
are very important to map. It is a common practice to initiate 
the facies definition with exploratory crossplots between the 
logs looking for cluster separation. If there are poor separa-
tions in elastic properties for various facies at well log or VSP 
scale, there is likely no detectability at the seismic scale. In 
addition to elastic log data, other types of geologic infor-
mation can also help to define useful facies categories, for 
instance the gamma ray log, core samples and thin section 
images. Plate 2 shows the result of the facies definition in a 
set of well logs from a North Sea oil field. As can be seen, 
each depth point has been assigned to a particular facies.

The different physical conditions or facies of interest that 
we would like to identify may not always be adequately 
sampled in the initial well training data. It may be necessary, 
using rock physics concepts, to extend the training data, 
modeling the reservoir properties after simulating changes 
in fluids, saturation, sorting, clay content, etc. For instance, 
Waddell et al. [2002] used Gassmann theory (see below) to 
estimate the expected seismic properties of sands filled with 
contaminants away from the VSP measurements where sands 
were water-filled. 

3.2. Fluid Subsititution

Undoubtedly, the Gassmann theory is the most important 
and most frequently applied theory in rock physics [Mavko 
et al., 1998]. Gassmann’s equations allow us to predict the 
seismic properties of rocks saturated with hydrocarbons 
[e.g., Smith et al., 2003], or contaminants [e.g., Waddell et 

al., 2002], if we have only measured the properties of water 
saturated rocks. Seismic fluid sensitivity is determined by 
the combination of porosity and pore space stiffness. A softer 
rock will have a larger sensitivity to fluids than a stiffer rock 
at the same porosity. Gassmann’s relations simply and reli-
ably describe these effects:

	 ,	(1)

where Kmineral, Ksat, Kdry and Kfluid are the solid mineral, 
saturated rock, dry rock and pore fluid bulk moduli, respec-
tively, and φ is the rock or sediment porosity. The shear 
modulus is insensitive to pore fluids, hence the companion 
result:

	 ,	 (2)

where µsat and µdry are the saturated and dry rock shear mod-
uli, respectively. Gassmann’s equations (1) and (2) predict 
that for an isotropic rock, the rock bulk modulus will change 
if the fluid changes, but the rock shear modulus will not.

These dry and saturated moduli, in turn, are related to 
P-wave velocity  and S-wave velocity 

, where ρ is the bulk density given by

	 	 (3)

The fluid sensitivity is not uniquely related to porosity, but to 
the rock stiffness [Mavko et al., 1998]. Consequently, high-
porosity sands can be much stiffer than low-porosity sands 
due to cementation. More often, however, high porosity 
sands are softer than sands with lower porosity. Hence, the 
potential to apply Gassmann theory for fluid substitution in 
shallow, unconsolidated sediments is normally greater than 
what is the case for deeply buried or uplifted consolidated 
rocks that are commonly encountered in petroleum reser-
voirs. In any case, lithology substitution is as important as 
fluid substitution. 

3.3. Lithology Subsititution

 In addition to fluid changes, we need to understand the 
expected changes in texture and lithology of the rocks or 
sediments on which we perform fluid substitution [Smith et 
al., 2003]. For instance, diagenetic cement and clay lamina-
tion can have drastic effects on the dry rock frame as well 
as the fluid saturation pattern. In particular, clay effects 
may be very important in reservoir sandstones [Avseth et 
al., 2005].

Plate 2Plate 2
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Plate 2. “Classified” well logs (each depth level has been identified as belonging to a particular facies). φ is total poros-
ity and ρ is bulk density. 



AVSETH ET AL.    51

The most important reason for a rock physics—lithology link 
is to be able to calculate a correct dry frame in the Gassmann 
modelling (i.e., the correct relationship between stiffness and 
porosity). Furthermore, such models can be used for porosity 
prediction and lithology substitution. If we observe one type of 
sand at a well location , we may want to ask “what if” we have 
a different type of sand away from this well. A water aquifer 
with contaminants can have a different seismic response at two 
locations which is not related to the fluid properties, but to the 
change in for example sediment texture. 

In our attempt to link seismic properties to reservoir prop-
erties, rock physics models can be useful complements to 
well log data. There is a large collection of different models 
that can be applied as tools for this purpose [Mavko et al., 
1998]. For instance, the modified Hashin-Shtrikman upper 
and lower bounds have been found to be appropriate models 
to predict the seismic properties of sands and shales where 
the rock texture plays an important role in addition to the 
porosity [Avseth et al., 2005]:

	 	 (4)

where

K1, K2	 bulk moduli of individual phases
µ1, µ2	 shear moduli of individual phases
f1, f2	 volume fractions of individual phases

These formulas give us the effective bulk (KHS) and shear 
moduli (µHS), respectively, as a function of volume fractions 
of porous rock versus mineral. Upper and lower bounds are 
computed by interchanging which material is subscripted 1 
and which is subscripted 2. Generally, the expressions give 
the upper bound when the stiffest material (for instance the 
solid mineral) is subscripted 1 in the expressions above, and 
the lower bound when the softest material (for instance the 
porous sediment) is subscripted 1. 

The modified Hashin-Shtrikman upper and lower bounds 
serve as very useful interpolators between the mineral point 
(i.e. zero porosity) and the high-porosity end member, normally 
given by the critical porosity (i.e., the physical upper porosity 
limit for a grain assemblage; for sands approximately 0.4). 
The lower bound of this model is found to give a very good 
representation of friable sand with varying sorting, where the 
stiffest material (i.e. the solid grains) is located passively inside 

the softest material (i.e. the pore space of the sediment). The 
upper bound is found to be more representative of diagenesis, 
where the stiffest material is added at grain contacts, caus-
ing a larger stiffening effect on the rock frame. However, for 
initial grain cement, the Dvorkin-Nur contact cement model 
[Dvorkin and Nur, 1996] has been found to work better than 
the Hashin-Shtrikman upper bound [see Avseth et al., 2005]. 
The elastic moduli estimated from equation 4, together with 
densities, allow us to estimate seismic velocities as a function 
of rock or sediment texture, using equation 3.

Figure 1 summarizes the diagnostic rock physics models 
which relate rock microstructure of sands to elastic prop-
erties. These models allow us to predict the geometrical 
arrangement of grains and pore space in sands from seismic 
velocities and densities. For more detailed descriptions of 
various rock models, see Avseth et al. [2005].

4. UNCERTAINTY IN ROCK PROPERTY ESTIMATION

4.1. Monte Carlo Simulation

A key point in the methodology is the concept of the 
extended training data and derived distributions. Using 
deterministic rock physics models in conjunction with statis-
tical techniques allows us to extend the training data beyond 

Fig. 1Fig. 1

Figure 1. Rock physics models relating porosity and rock texture 
to seismic properties. The vertical axis could be any elastic moduli 
(bulk, K, or shear, µ) or seismic velocity (Vp or Vs), hence we 
have excluded any reference to units or absolute values. However, 
the elastic properties will increase from base to top. The figure 
includes only the high porosity range valid for unconsolidated or 
poorly consolidated sands/sandstones. The initial sand pack repre-
sents the high porosity end member, representative for a clean sand 
at deposition, also referred to as critical porosity. The reduction in 
porosity can either happen via sorting (pore filling material), via 
cementation around grains, or a combination of these two effects. 
In the former case, the elastic stiffness of the rock will increase 
more slowly with decreasing porosity than in the latter case. For 
more details on these diagnostic models, see Avseth et al. [2005].
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what is just observed at the well, and derive the distribu-
tion of properties for scenarios not sampled in the original 
training data. For example, the well logs may have data for 
brine-saturated sandstones. Using Gassmann’s equation 
(described above) we can compute the Vp, Vs and density for 
the same sandstones saturated with a different fluid (say air). 
Assuming that the well log data extended by rock physics 
modeling are sampling most possible values of Vp, Vs, and 
density for the study area, it is possible to fill the Vp-Vs-
density space by generating additional points using corre-
lated Monte Carlo simulation. Usually sequential simulation 
steps are used to generate correlated samples. For example, 
one strategy is to take Vp as the “base property”, and use 
the available data to derive the Vp-Vs and Vp-density regres-
sions. Then, Monte Carlo simulation is applied drawing val-
ues of Vp from the data derived non-parametric cumulative 
distribution function; then using the derived regressions, 
the corresponding Vs and density are simulated (allowing 
Gaussian variations around the regressions). This gives a 
realization of a correlated (Vp, Vs, density) sample. Instead 
of using regressions, a better approach is to draw Vs from 
the conditional distributions of Vs for each given Vp sample 
simulated in the first step. Given sufficient training data, the 
conditional distributions of Vs for different Vp bins can be 
pre-computed. Either way, a large number of points spanning 
the intrinsic variability (which gives rise to uncertainty) can 
be generated, respecting the Vp-Vs, and Vp-density data 
derived correspondence, as well as the distribution of the 
original data. This implicitly relies on Walther’s law in geol-
ogy that relates vertical variability to lateral variabilty within 
conformable stratigraphic sequences. At this step we have 
a non-parametric estimate of the multivariate distribution 
of Vp, Vs, and density for each group or facies of interest. 
Again, if the geophysical measurements are non-seismic, 
we need to estimate the distribution of the relevant property, 
e.g., dielectric or resistivity, using log data and appropriate 
rock physics models.

Next, to establish the link with the seismic information, 
seismic observables and attributes are theoretically calcu-
lated using the “extended” (through rock physics models and 
Monte Carlo simulation) log-based training data. An attri-
bute is any characteristic that can be extracted from the seis-
mic data. Although the methodology that we are presenting 
is completely general, in this paper only seismic attributes 
with some “physical meaning” are considered. This type of 
seismic attribute has a well defined physical relation with 
the reservoir properties, and can be either calculated using 
the well logs (Vp, Vs, density) or extracted from the seismic 
(e.g., with inversion, or AVO techniques).

Not all seismic attributes respond equally to different res-
ervoir properties. Therefore the optimum seismic attribute 

or combination of seismic attributes to be used depends on 
the particular reservoir and the targeted facies or pore fluid 
classification problem. Maybe the easiest (but not the most 
rigorously objective) way to select the “best” attributes (when 
there are only a few of them) is by doing a visual inspection 
of color-coded comparative histogram plots of each attribute 
or cross plots of possible combinations between them, color-
coding the points based on the facies to which they belong. 
A more quantitative approach is described in the section on 
information theory.

Plate 3a shows an example of a crossplot of two differ-
ent seismic attributes, acoustic impedance (AI) vs. elastic 
impedance at 30 degrees (EI) calculated with well logs. 
Acoustic impedance (near–offset impedance) is the product 
of density and Vp, and is the impedance seen by a vertically 
propagating P-wave normal to the layers. Elastic impedance 
(far-offset impedance) is the approximate effective imped-
ance seen by the wave traveling at non-normal incidence, 
and is a function of Vp, density, Vs, as well as the angle 
of incidence [Connolly, 1998; Mukerji et al., 1998]. These 
impedance attributes can be computed from well logs (Vp, 
Vs, and density logs), and can also be extracted from seismic 
data that have been stacked at different angles. Inverting 
the near angle stack gives the acoustic impedance while 
inverting a far-angle stack gives the elastic impedance at the 
corresponding angle. As can be seen in Plate 3a, there are 
three color-coded groups: oil sandstones, brine sandstones, 
and shales, clearly well separated in this AI-EI plane. On 
the other hand, if a single attribute is used (equivalent to 
projecting the points over one of the axes) it is not possible 
to completely discriminate the three groups. The computa-
tion of seismic attributes and their pdfs from log data serves 
as a feasibility check to decide which attributes should be 
extracted from the field seismic data. In the initial explora-
tion stages, this kind of feasibility study may also be used as 
a guide for designing the right survey that would be suitable 
for extracting the most promising attributes.

During this process of computing attributes it may be pos-
sible to find that not all the a priori defined facies, based on 
petrophysical and log data, can actually be separated in the 
seismic attributes space. In that case it is necessary to consider 
the union or division of some of the facies. Looking carefully 
at Plate 3a, we can identify different symbol shapes (triangles, 
circles, etc.) within each color-coded group. A priori, eight 
groups were defined, but it is clear that not all were separable 
with the proposed seismic attributes. In practice splitting or 
combining categories is done quantitatively using cluster 
analysis techniques. However, completely unsupervised clus-
ter analysis usually gives poorer results than supervised learn-
ing, where clusters are defined based on expert knowledge 
(i.e., petrophysical and geologic expertise). When splitting 

Plate 3Plate 3
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or combining facies, it is not enough to analyze the attribute 
crossplots; it is also necessary to justify the decisions with 
geologic or production observations in order to attempt to 
avoid problems with the data (acquisition, processing, noise, 
etc.) that may drive the analysis to wrong conclusions.

4.2. Probability Density Functions (PDFs)

From the point distribution in the seismic attribute space, 
the probability density functions (pdfs), [univariate (one 
attribute) or multivariate (combinations of attributes)], for 
each defined facies are estimated. In the simplest sense, an 
empirical pdf can be thought of as a normalized and smoothed 
histogram. In practice, to obtain the pdfs it is necessary to 
discretize the space where they will be calculated, and use 
a kernel (window) function for smoothing. Plate 3b shows 
the bivariate example of this process. In the pdf estimation, 
there has to be a compromise between the discretization and 
the smoothing. With too many cells, the pdfs would be too 
specific to the particularities of the input sample, and would 
not generalize to other data. With too much smoothing, the 
data variability would not be captured, and the discrimina-
tion between groups would be washed away. To choose these 
two parameters, a set of classification tests has to be done 
with a data validation subgroup. In spaces with few dimen-
sions (attributes), the pdf calculation is not very difficult, 
although there are some non-trivial details in the process 
(smoothness, grid definition, limits extrapolation, etc.) that 
have to be carefully handled. On the other hand, in a space 
with high dimensionality, non-parametric pdf estimation is 
computationally highly demanding, and may not be very reli-
able due to sparse data. Other classification methods, such as 
K-nearest neighbors, neural networks, or classification trees 
have to be used in such situations.

4.3. Information Theory and Attribute Selections

Statistical information theory gives us simple yet powerful 
tools to quantify the information that each attribute can bring 
to discriminate the different facies [Mavko and Mukerji, 
1998]. Using Shannon’s information entropy concepts [e.g., 
Cover and Thomas, 1991] it is possible to select the “best” 
attributes as the one (or more) that most reduce the uncer-
tainty in the reservoir properties identification. The quantity 
of information of a reservoir property “X”, that an attribute 
“A” has, can be defined as:

	 I(X|A) = H(X)-H(X|A) 	 (5)

where H(X) is the information entropy, a statistical param-
eter that quantifies the intrinsic variability of X, without 

knowing the attribute A. H(X) can be computed from the 
pdf, p(X), of X [Cover and Thomas, 1991]:

	 H(X) = -Σp(xi)log[p(x i)] .	 (6)

H(X|A) is the conditional mean entropy of X given A, that 
is, the average uncertainty on X after observing A. The 
concept of information entropy which originated in statistics 
and communication theory has found applications in diverse 
fields such as computational chemistry, linguistics, bioinfor-
matics and genetics.

The information I(X|A) can be interpreted as the reduc-
tion in the uncertainty of the reservoir property X, due to 
observing the attribute A. Therefore, a quantitative criterion 
to select the best attribute (or combination of attributes) is to 
choose the one (or ones) that maximize I(X|A) [Takahashi, 
2000]. The reduction in information entropy and uncer-
tainty by additional data can be shown by the following 
example. The relationships between porosity, Vp, and Vs 
of a particular reservoir are described by the trivariate pdf 
shown in Plate 4a. Conditioning of porosity information by 
velocities is summarized in Plate 4b. The unconditional prior 
pdf of porosity (blue curve) changes to narrower and taller 
conditional pdfs, p(porosity|Vp), and p(porosity|Vp, Vs) by 
velocity information. The velocity observation decreases 
the spread and variability (and hence uncertainty) about the 
porosity. This decrease in uncertainty is quantified by the 
information entropy. The prior information entropy about 
the porosity, computed from its unconditional pdf is 3.44. 
This decreases to 3.06 with Vp alone, and to 2.89 with both 
Vp, and Vs.

5. SEISMIC INFORMATION

Seismic attributes, which include reflectivities, velocities, 
impedances, and others, are derived from seismic data using 
different processing, analyses, or inversion techniques. Ways 
to obtain attributes from seismic data are topics of ongoing 
research and discussion. There are different algorithms for 
seismic inversion, each with its pros and cons. The com-
mon, fundamental goal of any inversion algorithm is is to 
estimate elastic parameters from the seismic data that will 
minimize the difference between the observed seismic data 
and a forward seismic model, and these results are used in 
the following reservoir characterization. However, there are 
many pitfalls: In order to build a good forward model, one 
needs to know a lot about the subsurface prior to the seismic 
inversion and parameter estimation. Here, well log data and 
information about local and regional geology are essen-
tial. The seismic inversion procedure suffers from a poor a 
priori earth model. There are many different scenarios that 

Plate 4Plate 4
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Plate 3. (a) Acoustic and elastic (30°) impedance (m/s.g/cm3) 
calculated theoretically from well logs. The color of each point cor-
responds to the facies to which it belongs. The ellipses are drawn by 
eye, to approximately represent the clusters. (b) Probability density 
function (pdf) contours generated with the data of (b) extended by 
Monte Carlo simulation. Notice that on the crossplot (a) the density 
of points can be obscured since points can overlap. The density in 
(b) is computed by smoothing a binned, normalized, 2-d histogram 
of the points generated by Monte-Carlo simulation. 

Plate 4. Iso-surface of trivariate nonparametric pdf estimate for 
porosity, Vp, and Vs (a). Conditioning of porosity pdf (b) by Vp, 
and Vs information, corresponding to the trivariate pdf.
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can give the same seismic signature (i.e., non-uniqueness). 
Also, we need to have a good estimation of the seismic 
wavelet in order to obtain a reliable layer inversion from the 
seismic data. Moreover, the quality of the seismic data is 
critical for a robust inversion. Seismic processing seeks to 
increase the quality and the signal-to-noise ratio of the data. 
If this process is done poorly, the seismic inversion can fail 
to provide reliable results. In some cases, seismic data can 
show acquisition or processing footprints that may hide the 
reservoir reality. In other cases, these effects can influence 
the absolute values of seismic amplitudes but maintain their 
relative variations, which in the end could still be of real 
interest for discrimination and classification of reservoir 
properties. In general terms, having “good data” increases 
the probability of deriving reliable interpretations.

The seismic attributes derived from elastic seismic inver-
sion respond to the reservoir interval properties (e.g., acoustic 
impedance, elastic impedance). However, we can also extract 
seismic attributes that respond to interface properties—con-
trasts between layers (e.g., AVO attributes). This technique 
is less time consuming, since it does not involve wavelet 
estimation and only minimal forward seismic modeling. The 
amplitudes are picked directly from seismic horizons in com-
mon depth point (CDP) gathers or from near and far stack 
seismic sections. Then, these amplitudes are used to calcu-
late appropriate AVO attributes which are then calibrated to 
the corresponding Monte-Carlo simulated AVO pdfs from 
the well log data [Avseth et al., 2001; Houck, 2002]. Plate 5a 
presents an example of physical seismic attributes of contrast 
at an interface: the AVO attributes defined by Shuey [1985], 
normal incidence P-to-P reflectivity R0 (intercept) and G 
(gradient). The topography follows the traveltime interpreta-
tion of the seismic horizon along which the attributes were 
estimated from seismic AVO analyses. Plate 5b, a different 
example, shows acoustic and elastic impedance volumes 
resulting from inversion of near-offset and far-offset seismic 
partial stacks [Mukerji et al., 2001]. 

As mentioned above, a detailed analysis of well log data 
and other geologic information is essential prior to the seis-
mic data analysis, both in order to build a realistic prior 
model for the seismic inversion as well as to create realistic 
training data for the following classification. However, the 
attribute values derived from the seismic data are not always 
equal to the attribute values derived from the well logs. The 
reasons for those differences include the simplifications of 
the models used to derive the analytical expressions; imper-
fections in the data processing; and arbitrary scaling of the 
field amplitudes. Additionally, an important issue is that the 
measurement scales of the seismic and well logs are very dif-
ferent. The seismic responds to reservoir property averages 
that are not always well approximated by upscaling from the 

well logs. Due to these discrepancies, it is not possible (in 
general) to use directly the pdfs calculated with the well logs 
for classifying the attributes extracted from the seismic. In 
order to avoid the differences between the attributes com-
puted with the well logs and the attributes extracted from the 
seismic, the classification system has to be generated with 
the traces nearest to the wells (taking into account devia-
tions). Another option, when there are few available well 
data, is to recalibrate the pdfs derived from the seismic with 
the corresponding pdfs calculated from the well logs.

6. STATISTICAL CLASSIFICATION

When we have calibrated pdfs and seismically derived 
attributes, we can classify the volume or horizon of seismic 
attributes. These classes which we refer to as facies (defined 
in the first step) depend on the target—i.e., the classes could 
represent different lithologies, fluid types, uncontaminated 
versus contaminated sediments, fractures versus unfractured 
rock, etc. In other words, we want to “convert” the elastic 
parameters estimated from the seismic data into reservoir or 
aquifer properties, and create facies probability maps. There 
are many statistical methods to do pattern recognition or 
attributes classification [e.g., Fukunaga, 1990; Duda et al., 
2000; Hastie et al., 2001; Bishop, 2006]. For example: linear 
and quadratic discriminant analysis (this only considers the 
mean and covariances of the reference pdfs), application of 
neural network or decision trees, or the use of the Bayes cri-
terion with the obtained pdfs. With the Bayes classification 
method, the conditional probability of each group given one 
or a combination of attributes is calculated, and the sample 
is classified as belonging to the group that has the highest 
probability. Bayesian classification provides a maximum a 
posteriori (MAP) estimate of class as well as the uncertainty 
of the classification represented by the probabilities for each 
facies. When dealing with a few attributes (less than 5 or 6) 
Bayesian classification amounts to a table look up into the 
multivariate joint probability table computed in the previ-
ous step, followed by a normalization of the values so that 
they sum to one. This non-parametric Bayes classification 
works well with a few attributes, as is the case here where 
we have two seismic attributes. When dealing with a large 
number of attributes (more than 5 say), other parametric or 
semi-parametric methods of Bayesian classification have to 
be used. Plate 6 shows examples of results of applying the 
non-parametric Bayesian classification procedures to seismic 
attributes for two different cases. Plate 6a is the result of 
classifying the R0 and G AVO attributes shown in Plate 5a, 
while Plate 6b shows iso-probability surfaces obtained after 
Bayesian classification of the near and far offset impedances 
shown in Plate 5b. It is important to keep in mind that such 

Plate 5Plate 5
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Plate 5. (a) P wave Shuey’s AVO attributes (colors): To the left 
is R0 (intercept), that is the zero-offset reflectivity of P-waves 
propagating and reflecting at vertical incidence, when the seismic 
source and the receiver are at the same location. Blue colors are 
representative of relatively high impedance values, while yellow 
is relatively low values. To the right is the AVO gradient, G, that 
is a scaled difference between the far-offset reflectivity (when the 
wave propagates and reflects at around 30 degrees incidence) and 
the zero-offset reflectivity. The yellow colours are relatively high 
negative gradients, whereas blue are relatively weak gradients. 
The topography follows the traveltime interpretation of the seismic 
horizon along which the reflectivity and gradient were estimated 
from AVO analyses of prestack data. (b) Acoustic and elastic 
impedance (at 30o) volumes. These two attributes respond to the 
reservoir interval properties. The far-offset elastic impedance 
implicitly contains shear wave information. These were estimated 
by impedance inversion of partial stacks. Red colors represent 
relatively low impedance, yellows represent intermediate values, 
while cyan and blue represent relatively high impedances.

Plate 6. (a) Areas with more probability of find oil sands (red) and 
shales (blue), resulting from the Bayesian classification using the P 
wave AVO attributes R0 and G in Plate 5a. The topography follows 
the interpretation (travel time) of the seismic horizon (amplitudes) 
used to calculate the attributes. (b) Isoprobability surfaces resulting 
from applying a statistical classification process (nonparametric 
Bayesian) using the acoustic and elastic impedance in Plate 5b.
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Plate 7. (a) The same vertical section (position) taken from different indicator stochastic simulation realizations. The 
red colors correspond to the oil sand facies. (b) Vertical section of the probability volume of finding oil sands obtained 
after geostatistical simulations. The yellow color indicates areas with higher probabilities. The geostatistical simula-
tion updates the seismically derived probability (e.g., Plate 6) by accounting for the spatial correlation and small-scale 
variability in well logs.
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probability surface visualizations do not show the actual 
sand (or shale) bodies but show the probability of the bodies 
having that spatial location and distribution.

By including geostatistics techniques of stochastic simu-
lation in the analysis, we can take into account the spatial 
correlation (through the variogram) of reservoir properties. 
It can also attempt to reproduce the expected small scale 
variability, that cannot be detected with only the seis-
mic data, but are seen in the well log data. Geostatistical 
analyses require estimation of spatial variograms which 
measure how different reservoir properties are correlated 
in space. Modern geostatistical techniques use not only 
the traditional two-point spatial correlation, but can also 
incorporate multi-point spatial statistics. As an example 
of the traditional two-point geostatistics, we show results 
from the geostatistical technique of indicator simulation. 
This technique generates multiple equiprobable realizations 
of facies in the reservoir and includes the seismic attribute 
classification results as soft indicators. Plate 7a presents 
a particular vertical section of the multiple equiprobable 
volumes (realizations) generated with indicator simulation. 
The figure clearly shows the characteristic variability of 
the stochastic process. For this example, the seismic attri-
butes acoustic and elastic impedance volumes of Plate 5b 
were used as soft indicators, and two wells within the cube 
were used as hard indicators. The Markov-Bayes indicator 
formalism [Deutsch and Journel, 1998] was used to obtain 
the posterior conditional pdfs, including the facies spatial 
correlation through the indicator variograms. Plate 7b 
shows the result of this updating of the prior pdfs, P(facies 
| attributes), i.e. the probability of a facies given the attri-
butes, to the posterior pdfs, P(facies | attributes, indicators 
information), i.e. the probability of a facies given attributes 
and the indicators data obtained from the well logs. In other 
words, the sections shown in Plate 7b correspond to the 
probability of each point to belong to a particular facies, 
oil sands in this case. It is calculated from the statistics 
of a large number of geostatistical realizations. This is an 
empirical Bayes approach without any priors on the param-
eters of the indicator variograms. As was mentioned, this 
type of result is an extension of the facies classification 
process described before, where the spatial correlation and 
small variability were included, in two and three dimen-
sions. Modern methods go beyond the two-point methods 
and combine rock physics with multiple point geostatistics 
simulations [Gonzalez, 2005].

Some applications will require the pdfs (e.g., risks assess-
ment for well placement) while others will need the stochas-
tic realizations of actual reservoir properties drawn from the 
pdfs (e.g., reservoir flow simulations). 

7. CONCLUSIONS 

We presented in this paper concepts and methodologies 
that combine techniques of rock physics modeling, statisti-
cal pattern recognition and Bayesian classification, seismic 
AVO and impedance inversion, and geostatistics to quantify 
and reduce uncertainties in the reservoir characterization. 
The steps are summarized in the flow scheme in Plate 1 
and include:
•	 �Linking rock physics properties to observed and expected 

geologic facies and pore f luid scenarios (Plate 2 and 
Figure 1). 

•	 �Statistical rock physics and estimation of facies con-
ditioned pdfs of seismic attributes from well log data 
(Plate 3)

•	 �Selection of seismic attribute or attribute combinations 
based on information content for the target (Plate 4).

•	 �Estimation of attributes from seismic data using various 
inversion methods (Plate 5). 

•	 �Bayesian classification of the volumes of seismic attri-
butes into facies categories based on facies-conditioned, 
calibrated pdfs (Plate 6).

•	 �Integrating spatial variability estimated from well-logs 
and training images using geostatistics (Plate 7). 

The final products of this integrated technique are the 
spatial distribution of probabilities of reservoir fluids and 
facies, and stochastic realizations of the reservoir proper-
ties (Plate 7). In this way, not only do we obtain the most 
probable facies, but we can also quantify the uncertainty of 
the interpretation.

We have applied this integrated approach to do seismic res-
ervoir characterization and shown how we can successfully 
predict hydrocarbons from seismic data. The same methodol-
ogy could be applied to seismic, GPR, or electrical resistivity 
data for hydrologic aquifer characterization. The economic 
infrastructure is very different in the two disciplines, and 
large 3D seismic surveys are not common in hydrogeophys-
ics. Nevertheless, the goals of hydrologists are very similar 
to those of petroleum geophysicists, which is to predict and 
map occurances of resources essential (or dangerous) to 
human life. Hence, we hope this effort to transfer technology 
across the discipline boundaries may motivate increased use 
of seismic data in hydrology. 
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Introduction 

Modeling the subsurface is an inherently difficult task 
due to limited access and lack of direct observation of the 
complex medium under investigation. Nevertheless, practi-­­
cal engineering questions often call for a full 3D modeling 
of subsurface heterogeneity, whether the task is to maximize 
production of an oil reservoir or to optimize storage of water 
during dry seasons in an aquifer storage and recovery pro-­­
cess. While the goal of modeling and the nature of fluid flow 
may be different between the field of petroleum and hydro-­­
geology, each deals with a similar heterogeneous medium 
and faces similar questions in model building. 

Modeling aquifers or reservoirs requires integrating 
diverse sources of information into a single model (e.g., 
Deutsch, 2003, Caers, 2005). One faces many challenges 
in doing so, most related to the issue of scale, since the unit 
grid cell size of the model is different from the scale of infor-­­
mation provided by each source of information. Each such 
source informs the aquifer or reservoir at a different scale 
of observation. Secondly, models contain several geological 
building blocks, such as a structural model (fault/horizons), 
3D distribution of facies types, petrophysical properties 
(porosity and permeability) per facies, fluid distributions 
and fluid properties, etc.; each building block needs to be 
constrained to the available data. 

Under such complex conditions, a probabilistic approach 
is desired for several reasons; first and foremost because 
the data gathered do not uniquely and deterministically 
determine the geological heterogeneity of the subsurface. 

Probabilistic models allow a more flexible integration of 
data than deterministic ones. In fact, deterministic modeling 
can be regarded as a special case of probabilistic modeling 
where all probabilities have been set to 1 or 0. Instead, we 
will present a method where the information content of 
each data source is coded into a probability value, then, a 
probabilistic framework for combining these elementary 
probabilities into a joint probabilistic statement based on all 
data sources is applied. From this joint probability, several 
realizations (reservoir models) are drawn. We will dem-­­
onstrate the flexibility of our approach that may include a 
wide variety of prior geological models (no assumptions of 
multi-­­Gaussianity are needed) and can include a variety of 
diverse data sources, including time-varying data.

The ensemble of such reservoir models reflects the lack 
of data and knowledge to exactly and uniquely quantify 
the subsurface, hence quantify uncertainty. Recognizing 
that there are many aspects to subsurface modeling, many 
of them covered in this volume, this paper focuses on an 
application of this probabilistic data integration approach 
demonstrated on modeling complex fluvial channels in a 
prominent North Sea reservoir case. The paper can be seen 
as one of the state-of-the-art approaches to modeling oil & 
gas reservoirs (see also Caers et al., 2006). 

Subsurface data and spatial modeling

Several sources of information may be available to quan-­­
tify the subsurface heterogeneity and model the spatial 
distribution of rock properties. We will divide them into two 
groups: static data and dynamic data. Two major sources 
of static data are (1) data derived from wells, either from 
drilling, such as cores or from logs and (2) data obtained 
via geophysical surveys. Dynamic data are data that vary 
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over time. In the context of producing reservoirs these consist 
of well and interference (pumping) tests, flow meter data, 
data from permanent downhole gauges, historical pressure 
and production data and time-lapse seismic (4D seismic) 
obtained from the reservoir.

The Prior Geological Scenario

The ensemble of such data allows geologists to interpret the 
nature of the depositional system present. Such interpretation 
is crucial since it will determine the level of heterogeneity 
of the resulting models. For example, one may calculate and 
model a variogram of permeability from the available well 
data (if possible) and use it as a measure of spatial continuity 
in building permeability realizations by means of geostatisti-­­
cal methods. In the petroleum industry, kriging for stand-alone 
interpolation is no longer used to map petrophysical or facies 
properties, due to the well-documented effect that produces 
overly smooth permeability and porosity models, and conse-­­
quently biased flow predictions (Journel and Alabert, 1990; 
Srivastava, 1992, Deutsch, 2003, Caers, 2005). Instead, we 
rely on stochastic simulation to generate multiple reservoir 
models, each reproducing the variogram modeled/interpreted 
from the field. However, it should be understood that while 
some geostatistical simulation algorithms only require a var-­­
iogram (and histogram,) as input, these algorithms/models 
make additional model assumptions (often hidden to the less 
informed user), such as that of multi-Gaussianity of the spa-­­
tial variable under study. The multi-Gaussian assumption 
constrains considerable the type of spatial continuity of the 
simulated spatial variable. Reservoir models drawn under 
multi-Gaussian assumptions exhibit “maximum entropy”, 
i.e. the extremes are maximally uncorrelated for the given 
variogram or spatial covariance. This property is unrealistic 
for real geological depositional systems. 

Hence, modern spatial modeling techniques rely on more 
geologically realistic and explicit representations of hetero-­­
geneity by means of a 3D training image. In the practice 
of building models, it has been determined that traditional 
variogram-based methods are largely inadequate to model 
realistic geological heterogeneity, particularly when such 
heterogeneity is dominated by the spatial distribution of 
facies (see Feyen and Caers, 2006). In such cases, the distinct 
difference in petrophysical properties of facies bodies with 
specific geometries (e.g. curvi-linear), connectivities and 
mutual associations (overlap, erosion) can not be captured 
by a simple two-point statistical measure such as the vario-­­
gram. In fact, it has been shown by means of examples (see 
Strebelle, 2000, Caers, 2005; Feyen and Caers, 2006) that 
strongly different geological depositional systems yield the 
exact same variogram.

In the field of multiple-point geostatistics, one no longer 
represents spatial continuity by an explicit parametric model 
(e.g. variogram parameters and multi-Gaussian law) but 
by means of a 3D geological analog, or training image. A 
training image is an explicit 3D conceptual representation 
of the subsurface geological scenario reflecting, at least 
conceptually, all available geological information on facies 
distribution deemed relevant (see Caers and Zhang, 2004). 
The training image is a conceptual model, which means that 
it is not a reservoir model as such. It need not be constrained 
locally to well or seismic data. Instead it needs to reflect 
the type of geological patterns that are thought to be pres-­­
ent in the subsurface (channels, elliptical lenses, barchains, 
etc.). Training images can be created from outcrop data, by 
means of deterministic process-based techniques, stochastic 
object-based techniques, or a geologists’ conceptual rendi-­­
tions of subsurface properties. The idea of multiple-point 
geostatistics is to generate facies realizations by anchoring 
the geological patterns of the training image to subsurface 
data, be it static and/or dynamic data as will be explained in 
more detail further on.

It should be noted that any spatial continuity model, 
whether variogram or training image is the result of an 
interpretation or choice. While such interpretation/choice is 
always subjective, it represents information/expertise that 
needs to be integrated together with other reservoir data. In 
general, all methods of data integration and model building 
rely on such subjective interpretation whether this is done 

Figure 1. Facies succession along the various vertical and horizon-­­
tal wells (black = sand, grey = shale). (x = North, y = East, z = Up). 
All Figures (1–7) are shown in depositional coordinates, i.e. after 
flattening the originally faulted and folded reservoir structure.
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explicit (e.g. training image) or implicit (e.g. variogram 
with the implicit multi-Gaussian assumptions). It is often 
incorrectly stated that variogram-based modeling provides 
a more objective way to model than training images, since 
the former are directly inferred from data. Even if one could 
get a permeability variogram from very sparse well-data, any 
3D model building requires more than a variogram, since the 
construction of any 2D or 3D “image” calls for the specifi-­­
cation of all higher-order statistics present in the image. For 
example, when building a 3D model using a variogram, the 
higher order moments are frozen in the assumption of multi-
Gaussianity when a Gaussian-type method is applied. In 
mapping kriging estimates, the higher moments are enforced 
through the smoothing implicit to kriging (or any other inter-­­
polation scheme). There is no escape to assuming the full 
joint distribution at all spatial locations of the variable being 
modeled, even in a deterministic approach. With training 
image-based modeling one simply states these higher-order 
statistics more explicitly as training image patterns, instead 
of hiding them in mathematical model that may be geologi-­­
cally unrealistic.

In the case of the North Sea reservoir (NSR), several 
well-logs sets are available providing an interpretation of 
the facies succession (sand/no-sand) along the well as well 

as porosity and permeability measurement, and several key 
rock physics properties such as P‑wave and S‑wave veloci-­­
ties (Fig. 1). A 3D training image was built by means of an 
unconstrained object simulation technique which was used to 
generate fluvial-type channels with dimensions derived from 
the well-log data as well as from analog outcrop information 
deemed representative for the reservoir under investigation 
(Fig. 2). Note that all models and data are shown in a depo-­­
sitional coordinate system transformed from the original 
faulted and folded reservoir structure.

Seismic Data

Geophysical data provides an exhaustive but indirect quan-­­
tification of the 3D geological variability be it of the reservoir 
structure or of the reservoir rock property variations. While 
current geophysical surveys (seismic mostly in oil and gas 
reservoirs) are now fully 3D, they still only provide indirect 
information in terms of amplitude variations. 

Moreover, the vertical and horizontal scale of information 
provided by seismic data is usually larger than the unit grid 
cell size on which one builds a detailed model of facies and 
petrophysical properties. For example in the NSR (reservoir 
unit between 25–40m thickness) the seismic data provides 

Fig. 1Fig. 1

Fig. 2Fig. 2

Figure 2. 3D training image of a f luvial channel system reflecting channels with varying length, thickness and 
width—right image shows selected cross sections. (black = channel sand, grey = background shale)
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information at a scale much larger than the unit grid cell 
of the high-resolution model (see next section) which is 
25x25x0.8 meter. The seismic surveys for this reservoir 
provides a vertical scale of information of roughly 25m 
and horizontal scale of observation of 500m (based on the 
Fresnel zone). The small-scale channel geometries that are 
known to affect reservoir flow, as well as the detailed facies 
variation interpreted from wells (Fig. 1) need to be included 
by building high-resolution models (higher resolution than 
the scale of information provided by seismic). Due to the 
limited resolution of geophysical data, one often calibrates 
the seismic data into a facies-probability cube using a rock-
physics and/or statistical calibration method of choice. This 
cube contains in each grid cell of the high-resolution model 
the probability of occurrence of each facies type. In general 
terms, such calibration needs to account for the indirect-­­
ness of information provided by the seismic as well as the 
scale difference between seismic and higher resolution well 
data. Several statistical regression techniques can be used 
to obtain such a probability cube. More specifically, for the 
NSR, a sand probability cube was created by calibrating both 
3D and 4D (3D + time) information with sand data from 
wells (see Andersen et al., 2006 for how this was done at 
NSR). Fig. 3 shows this cube. 

Dynamic Data

Next to static data, information on reservoir dynamics 
through pressure and flow data of various kinds are avail-­­

able and grouped under the term “dynamic data”. Such data 
provide direct information of the actual process of interest: 
subsurface f low. The NSR has been in production since 
1993; since then several injector wells (gas and water) have 
been drilled to sustain reservoir pressure. However, such 
injection also leads to breakthrough of water in oil produc-­­
ing wells. The breakthrough times and subsequent ratio of 
water produced compared to the total volume of fluid pro-­­
duced, or water-cut, as well as the cumulative oil produced 
are excellent indicators of reservoir connectivity (or lack 
thereof). However, the integration in the reservoir model 
jointly with the well-log, seismic and geological interpreta-­­
tion calls for the iterative solution of an inverse problem as 
elaborated below. 

Integration of static and dynamic data 

Building a High-­Resolution Geo-­Cellular Model 

The task is now to integrate the well-log data, facies prob-­­
ability cube derived from 3D/4D seismic, the geological 
interpretation depicted in the training image and the produc-­­
tion data obtained from the various producing wells to create 
several alternative reservoir models. These models will be 
termed “equiprobable” referring to the fact that they are all 
consistent with the prior geological information (training 
image) and match the available data. To achieve this we 
propose the workflow depicted in Fig. 4 where each step is 
elaborated in more detail. 

In this NSR, the reservoir structure (horizon and fault net-­­
work) is fairly well-known from seismic. The major uncer-­­
tain driver for subsurface flow is the stratigraphic position 
of the sand channels and their mutual connectivity. A high-
resolution model of sand channels is built that integrates 
all available static data. We will show step-wise how this is 
done, each time integrating more data into the model. 

To build a high-resolution facies model, the multi-point 
geostatistical algorithm “snesim” (Strebelle, 2002) is 
used. This algorithm is a particular implementation of a 
larger family of stochastic simulation algorithms known as 
“sequential simulation algorithms”. In sequential simulation 
one simulates the facies type or petrophysical property one 
grid cell at a time, whereby the next grid cell simulation is 
constrained/conditioned by all previously simulated values 
as well as any “hard” data (hard data in this case are the 
facies observations from wells). To simulate each cell, the 
sequential simulation algorithm calls for the inference of the 
conditional probability P(A|B) where A is the unknown vari-­­
able to be simulated, e.g. “sand facies occurrence” or “per-­­
meability less than 50 millidarcies” and B are the hard data 
(from wells) and previously simulated nodes. In snesim, this 

Fig. 3Fig. 3

Fig. 4Fig. 4

Figure 3. sand channel probability cube derived from 3D and 4D 
seismic data (from Andersen et al., 2006). The cube is shown in 
depositional coordinates (obtained after flattening the reservoir 
structure), not in actual reservoir coordinates. 
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conditional probability is inferred directly from the train-­­
ing image (see Strebelle, 2002 for a detailed description). 
In more traditional sequential simulation methods, such as 
sequential Gaussian simulation, this conditional probability 
would be derived by means of kriging, which requires the 
specification of a variogram model and the assumption of a 
multi-variate Gaussian spatial law. 

Fig. 5 shows several high-resolution realizations of sand 
distribution generated with snesim. These realizations are 
constrained to the facies observations from wells and reflect 
fairly accurately the type of channels depicted in the 3D 
training image. In addition, the models are constrained to a 
vertical proportion variation with increasing occurrence of 
sand channels towards the bottom of the reservoir, as evident 
from Fig. 5. 

Next, we show how this facies model can be further con-­­
strained by the facies probability cube derived from 3D/4D 
seismic. In a similar notation as above, we denote this facies 
probability as P(A|C), i.e. the cube specifies the probability 
of sand occurrence at each location given the seismic data 
C. C could denote either the co-located seismic datum or any 
set of values near the location where variable A needs to be 
simulated. The sequential simulation is extended as follows 
to include the facies probability cube. At each location to be 
simulated one has now two probabilities, P(A|B) as inferred 
from the training image, and P(A|C) obtained by calibration 

with the seismic data. These two probabilities are then com-­­
bined into a single probability P(A|B,C) from which then a 
simulated facies type is drawn in sequential simulation. To 
combine both probabilities we rely on Journel’s tau model 
(Journel, 2003). The tau model states that P(A| B,C) can 
exactly be decomposed into P(A|B) and P(A|C) using the 
following equations 

	 	 (1)

	 	

The tau-parameters in (1) model the mutual redundancy of 
both data sources B and C in predicting A. For example if 
τ1 = 0, then Pr(A|B) is ignored in the calculation of P(A|B,C); 
when τ1 = τ2 = 1 the data are equally redundant. Expression 
(1) is exact in the sense that any joint conditional probabil-­­
ity can be decomposed as shown in expression (1), without 
approximation. In practice the tau-values are not known 
a-priori and may require a tedious estimation procedure 
(Krishnan, 2005). However, for the application in question 

Fig. 5Fig. 5

Figure 4. workflow to integrate static and dynamic data (after Caers et al., 2006). 
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it has been shown that setting both values to unity is often 
a robust choice (Caers and Hoffman, 2006, Strebelle et al., 
2003). 

The strength of the tau model over more traditional 
Bayesian approaches that rely specification of prior and 
likelihood densities is that it divides the problem of data 
integration into easier sub-problems, i.e. the separate speci-­­
fication of P(A| a single data source). P(A| a single data 
source) can be any distribution function serves as an explicit 
quantification of the information content of each data source 
on the unknown variable A being modeled. It would be too 
difficult to directly state P(A| all data sources) through 
Bayes’ rule unless one relies on unrealistic assumptions of 
multi-Gaussianity (often in both prior and likelihood) and 
conditional independence between data sources or data 
errors. 

Fig. 6 shows several realizations of the facies distribution 
constrained now to the well-log data, seismic derived prob-­­
ability cube and reflecting the channel objects of the train-­­
ing image. Note how, compared to Fig. 5, these models are 
constrained by probability cube.

Once the facies geometry is defined, a constant perme-­­
ability and porosity value is assigned to the two facies. While 
internal variations in petrophysical properties per facies may 
exist, they have little impact on the actual flow response of 

the reservoir model. These constant values were derived 
from core data.

Iterative Calibration With Dynamic Data 

Unlike geophysical data, production data are less spatially 
exhaustive in the sense that their coverage does span as much 
of 3D space as geophysical data do. Moreover, they may 
vary considerably over time. Hence, it would be difficult to 
turn production data directly into a “facies probability cube” 
as was done for seismic data. A second problem relates to 
flow simulation. In order to evaluate how well the high-
resolution models generated in Fig. 6 match the production 
data from the field, a flow simulation model is required. 
For flow simulation, one has to specify the various initial, 
boundary and well conditions, the fluid properties as well 
as the permeability and porosity in each grid cell. Current-
day flow simulators can handle 105 cell models, typically, 
depending on the complexity of the flow problem. In most 
cases, a flow simulator can handle models with grid cells 
much less than the typical high resolution models which 
contain 106–107 cells. This means that the model needs to 
be coarsened (upscaled), (Fig. 4). Such coarsening is often 
difficult since one has to preserve as much as possible the 
connectivity of the high resolution model. For the NSR a 

Fig. 6Fig. 6

Figure 5. three realizations on a high resolution grid of 96x128x70 with unit cell size of 25x25x0.8m. The models are 
constrained to well facies data only. Realizations are in depositional coordinates, not in actual reservoir thicknesses. 
(black = channel sand, grey = background shale)
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coarsening ratio of 2:2:5 was deemed accurate enough for 
the purpose at hand. 

The coarsened model is subject to flow simulation (Fig. 
4), from which a mismatch between simulated production 
and field production data can be calculated. In this case we 
calculate the mismatch with the water and oil production in 
the producing wells which has been evaluated to be sensitive 
to the position of the channels in the model. In most cases 
there will be a considerable mismatch, as shown in Fig. 8. 
The latter is not necessarily due to the fact that the high-
resolution model is wrong, but because of the large remain-­­
ing uncertainty in building such high-resolution model with 
limited data. The next step is to adjust the model to match 
production data. Such adjustment in the petroleum literature 
is also termed “history matching”. This process of history 
matching cannot be done arbitrarily. Indeed, one cannot 
randomly or arbitrarily change the flow simulation models as 
this could potentially destroy the data conditioning and geo-­­
logical interpretation of the original high-resolution model 
(see Caers, 2005 for an example). The ill-posedness of the 
inverse problem may make it possible to obtain an excellent 
match at the cost of geological realism of the model. Instead 
any adjustment should be consistent with the geological 
interpretation (prior geological scenario) in the sense that 

one should still end up with a history match model that 
contains patterns similar to the training image. Moreover, 
any adjustment should not violate the well data constraints 
or become incompatible with the seismic probability cube by 
generating consistently sand channels where a low seismic 
derived probability occurs. Models that are more realistic in 
terms of geology tend to predict better future performance 
which is after all the ultimate goal of model building. 

We therefore consider the history matching problem as a 
search problem as follows. Amongst all possible realizations 
of the high-resolution facies model, termed “the prior model 
space” one needs to find those that match the production 
data, i.e. the “posterior model space”. Formulating the prob-­­
lem as a search problem will by construction result in history 
matched models that also honor the static data. However, the 
search needs to be efficient (not a simple acceptance/rejec-­­
tion type search) since the prior model space can be large 
(contains millions of possible reservoir models) and since 
flow simulation is CPU expensive (approximately one hour 
for the NSR for a single flow simulation on a typical PC). 
To achieve such efficient search we employ a relatively new 
search method termed probability perturbation method” 
(PPM), see Fig. 4 (Caers, 2003 for the original idea and, 
Caers and Hoffman, 2006, for a discussion of this method 

Figure 6. Three realizations constrained to the facies probability cube as well as well facies data. (black = channel 
sand, grey = background shale)
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within a Bayesian context and example demonstrations on 
the efficiency). 
To explain briefly the PPM method, consider a binary spatial 
variable (sand vs no-sand) 

described by an indicator random function model is given 
as: 

	 	 (2)

where u = (x, y, z)  reservoir, is the spatial location of the 
node, and i(u) = 1 means that

channel sand occurs at location u, while i(u) = 0 indicates 
non-channel occurrence. An initial non-history matched 
model constrained to well-log and seismic data of Fig. 3 
is then denoted as i(0)(u). To perturb this initial model one 
introduces a new probability termed P(A|D), where D rep-­­
resents the set of production data. 

	 P(A|D) = (1-rD) i(0)(u) + rDP(A)  [0,1] 	 (3)

The expression is a function of the initial realization, i(0)(u), 
a free parameter rD and the prior probability, P(A). To cre-­­
ate a perturbation of the initial model, one simply runs the 
snesim algorithm anew, now with two probability cubes as 
input, namely, P(A|C) from 3D/4D seismic and P(A|D) from 
the above equation with a given dimensionless parameter, 
rD  [0, 1], which control how much the initial realization 
will be perturbed. The algorithm combines at each node to 
be simulated three difference probabilities each related to 

a different source of information using Journel’s tau model 
(tau’s equal to one) 

	 	 (4)

	 	

To better understand why a perturbation is created and assess 
the impact of the parameter rD, consider the two limiting 
cases when rD = 1 and rD = 0. When rD = 0, P(A|D) = i(0)(u), 
hence according to the tau-equation (4), P(A,B,C,D) = i(0)(u), 
no perturbation is made and when rD = 1, P(A|D) = P(A) 
which will result in, i(1)(u), which is another realization 
that is equally probably to be drawn as i(0)(u) (essentially 
another reservoir model out of the search space is selected). 
The parameter rD, therefore, defines a perturbation of an 
initial realization into another equiprobable realization. It 
is shown (Caers, 2003) that regardless of the value of rD, 
each realization i(rD)(u) is consistent with the static data and 
training image, in other words, each i(rD)(u) is a sample of 
the prior search space in Bayesian context (see Caers and 
Hoffman, 2006). 

There may exist a value of rD, such that i(rD)(u) will match 
the production data better than the initial realization. Finding 
the optimum realization, i(rDopt)(u), is a problem parameter-­­
ized by only one free parameter, rD; therefore, the optimum 
realization is selected using a simple one-dimensional opti-­­
mization routine. The parameter rD can be made spatially 

Figure 7. Initial model and history matched model both cut along a fault. (black = channel sand, grey = background shale)
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varying which results in the regional probability perturbation 
methods (Hoffman and Caers, 2005). An iterative procedure 
to find a history matched model is then created by in each 
step setting the optimal i(rDopt)(u) as the next initial model 
and iterate by changing the random seed. 

The PPM was applied to NSR resulting in a perturbation 
of the simulated channel bodies until they are positioned 
such that the production history (water-cut and cumulative 
oil production) is matched. Prior to starting this proce-­­
dure, it was established, by means of a simple sensitivity 
study that the position of channel bodies had a consider-­­
able impact on production response. Fig. 7 shows an initial 
realization and a history matched realization. As is obvious, 
both reflect the same geological concept. Several realiza-­­
tions that match static and dynamic data can be generated 
simply by starting the iterative process each time with a 
different initial model. It took on average 50 flow simula-­­
tions to create one matched model. Fig. 8 shows that the 
history match was successful. Fig. 9 show the history match 
of 5 realizations.

Conclusions 

This paper illustrates the versatility of probabilistic 
modeling to integrate various diverse sources of data in 
modeling subsurface formations. A probabilistic model-­­
ing approach is convenient in integrating data that inform 
the reservoir at different scale because probabilities are 
essentially unit-free values that inform how accurately 
each data source informs the variable being modeled. 
As evidenced in this paper and others case studies in the 
reference list, this approach is not merely an academic 
exercise on a small synthetic case; rather, it is practical 
and can be applied to the modeling of large subsurface 
reservoirs. 

Key features of this method that made such practical appli-­­
cation possible are:
• �It does not rely on variogram-based models since they are 

inadequate in modeling distinct facies geometries. A var-­­
iogram-based approach for modeling permeability fields 
would never be able to model, nor predict the complex 

Fig. 7Fig. 7

Fig. 8Fig. 8

Fig. 9Fig. 9

Figure 8. History match results showing a considerable improvement in matching both water and oil production for the 
dedicated wells for NSR. Actual rates (y-axis) cannot be shown and are scaled appropriately. 
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flow through channels in the subsurface. Therefore, a 3D 
training image approach is used that allows the geologist 
to explicitly state the prior geological scenario (concep-­­
tual model), compatible with his/her interpretation of the 
actual subsurface heterogeneity, without being bounded 
by the limitations of parsimonious mathematical models. 
Many training images may be constructed ref lecting 
uncertainty in the interpretation of such concept.

• �It does not rely on any geological and physically unrealis-­­
tic multi-Gaussian assumptions or independence assump-­­
tions, neither in prior models or likelihood. Instead, a 
divide-and-conquer approach is taken via the tau-model 
that requires the explicit specification of the information 
content of each data source through any type of prob-­­
ability distribution. The tau-model provides a solution 
for combining these diverse sources into a single joint 
probabilistic statement about the unknown. However, 
in the end one is interested in the samples (reservoir 
models) simulated from these probability distributions 
as they are the ones used in flow simulation for reservoir 
performance prediction, reservoir engineering and man-­­
agement planning.

• �It relies on a flexible and efficient search method, termed 
probability perturbation method (PPM) that allows 
searching for model realizations in the prior model space 
that match the time-varying dynamic data. PPM does not 
require the specification of derivatives (sensitivity coef-­­
ficients) which are specific to the forward model being 
used and may be difficult to obtain. Moreover the latter 
methods only apply to continuous variables (derivates 
must exist) and have no bearing on discrete systems such 
as the case for f luvial system in NSR and many other 
types of depositional systems.
While the technique is shown for modeling facies geom-­­

etries, current research focuses on extending the same 
principles to other reservoir properties, most importantly 
the reservoir structural model which often has an order-one 
impact on reservoir flow behavior.

Acknowledgements. We thank Norsk Hydro for their time, data 
and expertise in modeling the NSR used as illustration for this 
paper.

Figure 9. Flow response of five history matched models. Actual rates (y-axis) cannot be shown and are scaled appropriately. 
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Knowledge of the distribution of groundwater contaminant plumes is needed to 
avoid pumping contaminated water, assess past exposure to contamination, and 
design remediation schemes to contain or treat the contaminated area. In most 
field cases, however, contamination is discovered by a small number of fortuitously 
located wells, and the full distribution of the plume is never known. This paper 
presents a stochastic geostatistical data assimilation approach capable of estimating 
the plume distribution at any time before, during or after the monitoring history of 
a site. The approach uses concentration data from all available monitoring events 
and results in plume estimates that are also consistent with groundwater flow and 
transport at the affected site. One of the unique features of the approach is that 
measurements taken at times subsequent to the time for which the plume is to be 
estimated can be used as an additional constraint on the plume distribution. The 
method is demonstrated using two hypothetical examples. In the first example, the 
distribution of a plume is estimated based on multiple sampling events from a sparse 
monitoring network. In the second example, the plume distribution is recovered 
using temporal breakthrough curves from downgradient monitoring wells. 

1. Introduction

The recognition of the risk to human health and the 
environment associated with groundwater contamination 
has increased dramatically over the past several decades. 
Groundwater management in proximity to contaminated 
areas aims to avoid or minimize pumping of contaminated 
water, contain the plume within a specified area, assess past 
exposure to compromised water supplies, and/or treat the 
contaminated groundwater to reduce contaminant levels to 
within an acceptable threshold. These tasks require knowl-­
edge of the spatial and temporal distribution of chemical 
concentrations in the plume. In most practical situations, 

however, groundwater contamination is detected by a small 
number of fortuitously-­located groundwater wells or moni-­
toring locations, and the full spatial distribution of the plume 
is almost never known. To overcome this data limitation, 
interpolation tools are often used to estimate the plume dis-­
tribution using the available concentration measurements. In 
typical cases where concentration data are limited, however, 
plume distributions estimated through interpolation often 
do not represent the true plume distribution adequately (e.g. 
Shlomi and Michalak [2007]). 

In field applications, other forms of data that can inform 
the plume distribution are often also collected. In many 
cases, data available at field sites include information on the 
flow and transport in the affected aquifer and concentration 
data taken either before or after the time at which the plume 
distribution is to be estimated. Historical concentration mea-­
surements and transport information theoretically provide a 

Subsurface Hydrology: Data Integration for Properties and Processes
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strong constraint on possible plume shapes and distributions. 
As will be described in more detail in Section 2, however, 
interpolation methods are not well equipped to assimilate 
this additional data into the estimation of the plume distri-­
bution. Existing data assimilation approaches can overcome 
this limitation by allowing transport information to be used, 
but often require prior information on contaminant source 
locations and/or release histories and cannot make use of 
measurements taken after the time at which the plume is to 
be estimated. 

The availability of improved methods for plume estima-­
tion would have a substantial impact on the management 
of contaminated groundwater resources, by improving our 
ability to avoid pumping contaminated water, amending the 
design of groundwater remediation alternatives, and provid-­
ing a framework for monitoring remediation progress. The 
high cost associated with groundwater monitoring and the 
high risks posed by these contaminants contribute to the 
importance of developing robust estimation techniques that 
take into account diverse types of data for plume tracking 
and delineation. 

In this paper, we present a data assimilation approach 
for estimating the full spatiotemporal distribution of a con-­
taminant plume. The method integrates concentration mea-­
surements taken at different times and locations as well as 
knowledge of the flow and transport in the affected aquifer. 
Key features of the proposed methods are that the plume 
estimate at any given time is conditioned on both earlier and 
subsequent measurements and the source location or timing 
need not be known, thereby extending the applicability of 
the proposed approaches. At present, the method assumes 
that transport can be represented by a linear transport model, 
and that flow and transport at the site are either known or 
that transport model errors can be described using an error 
covariance structure. Also, the method as formulated in this 
paper is applicable to conservative tracers. 

2. Current Approaches to Plume Estimation

There is a vast body of literature on the development and 
application of estimation and data assimilation approaches 
for subsurface applications. The majority of work has focused 
on the estimation of the physical properties of the subsurface, 
such as, for example, hydraulic conductivity distributions. 
Although the immediate aim of these approaches is not to 
estimate plume distributions, the ultimate goal is to help 
predict tracer transport, and tracer concentration data are 
often used as a constraint in the estimation. A brief discus-­
sion of these approaches is presented in Section 2.1. A wide 
range of data assimilation tools have also been used for 
various hydrological applications including plume estimation 

and monitoring network design, and some of the methods 
have strong analogies to the tools proposed here. These are 
briefly described in Section 2.2. Section 2.3 presents a short 
description of geostatistical kriging tools and their variations 
proposed specifically for plume estimation. The methods 
proposed here are based on inverse modeling tools originally 
developed for contaminant source identification, and a short 
description of these tools is provided in Section 2.4. 

2.1. Parameter Estimation in Subsurface Hydrology

The estimation of subsurface parameter distributions has 
been the focus of substantial research. These approaches aim 
to provide optimal representations of subsurface parameter 
distributions and their associated uncertainty, given limited 
observations of related quantities. For example, quantities 
such as hydraulic conductivity or transmissivity can be 
estimated from any combination of sparse measurements of 
these same quantities, hydraulic head distributions, tracer 
concentrations, breakthrough curves, etc. These methods 
have evolved over the last three decades from simple inter-­
polation of measured property values, to data assimilation 
methods that account for other measured parameters such as 
hydraulic head, and later, tracer concentrations. Linear and 
nonlinear methods have been proposed for assimilating the 
various sources of information into the estimation process. 
Reviews of such applications in subsurface hydrology and 
petroleum engineering are available in McLaughlin and 
Townley [1996] and de Marsily et al. [1999], among others. 
An intercomparison of seven linear and nonlinear geostatisti-­
cally based inverse approaches for estimating the transmis-­
sivity distribution in an aquifer is presented in Zimmerman 
et al. [1998]. 

Although the ultimate goal of these approaches is to 
improve predictions of tracer transport, the primary focus 
has most often been on the uncertainty associated with 
the physical subsurface parameter distribution, and not on 
estimating the distribution of existing plumes. The methods 
proposed in this paper can also contribute to the prediction 
of contaminant transport, but the primary objective is to 
estimate the plume at one or multiple specific points in time 
during the monitoring history of a site, given a known flow 
and transport field. 

2.2. Kalman Filtering and Other Data Assimilation 
Approaches in Hydrology

McLaughlin [2002] provides an introduction to, and review 
of, the application of statistical interpolation, filtering and 
smoothing to hydrological applications. Kalman filtering 
applications in groundwater flow modeling are reviewed 
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in Eigbe et al. [1998]. In general terms, for the problem 
examined here, interpolation approaches use measurements 
taken at a single time to estimate the spatial distribution of 
a parameter. Filtering approaches are applied when histori-­
cal measurements are used the inform the current or future 
distribution of a parameter. Smoothing aims to assimilate 
data gathered throughout the monitoring history of a site to 
estimate the parameter distribution at one historical point 
in time. The methods proposed in this work are closely 
related to the least-­squared filtering and smoothing methods 
described in McLaughlin [2002], but the priors are defined 
based on the spatial autocorrelation of the plume distribution, 
instead of representing a prior estimate of the concentration 
distribution within the domain. 

A related topic was examined in McLaughlin et al. 
[1993] and Graham and McLaughlin [1991], who applied 
an extended Kalman filter developed by Graham and 
McLaughlin [1989a,b] to sequentially update estimates of 
plume distributions at field sites by using hydraulic conduc-­
tivity, hydraulic head and concentration measurements. This 
approach involved the simultaneous estimation of the subsur-­
face parameters and the most recent plume distribution. The 
plume distribution is informed by measurements taken at or 
before the time at which the plume is to be estimated. 

Kalman filtering and related approaches have also been 
applied for groundwater monitoring network design, where 
the goal is often to minimize the uncertainty associated with 
the current or future distribution of a tracer plume. These 
approaches have the ability to use information on the flow 
and transport in contaminated aquifers in a data assimila-­
tion framework to estimate plume distributions. Loaiciga 
[1989] used transport information to quantify the covari-­
ance between plume concentrations at different times and 
locations, and used this information to select optimal moni-­
toring locations. In this approach, historical concentration 
measurements are used to inform future plume distributions. 
Similarly, Herrera and Pinder [2005] recently proposed 
a Kalman filtering approach that maps information from 
past measurements to the current time in a method aimed 
at locating optimal sampling locations. This recent study 
also made assumptions about the location and timing of the 
initial contaminant release, and incorporated uncertainty 
in the transport model in the form of a spatial covariance 
of transport properties such as hydraulic conductivities. 
Chang and Jin [2005] also examined the impact of model 
uncertainty on sequential estimates of the plume distribu-­
tion in a Kalman filtering framework, but assumed that the 
source of the contamination was exactly known. As such, all 
uncertainty was the result of errors in the transport model, 
which were parameterized using a system error covari-­
ance structure which was assumed known. Zou and Parr 

[1995] also applied a Kalman filter starting with a known 
initial plume distribution. The transport model error was 
represented as a white Gaussian noise process. All of these 
past works implemented various forms of a linear Kalman 
filter (e.g. Gelb [1974]), a Bayesian approach where a prior 
distribution is defined by forecasting the plume distribution 
from a previous time at which measurements were taken, and 
the posterior distribution represents a compromise between 
this prior and information supplied by new observations at 
the current time. 

All of the above monitoring network design approaches 
except that of Loaiciga [1989] require knowledge of either the 
contaminant source location and release history, or an initial 
plume distribution. In the cases of Zou and Parr [1995] and 
Chang and Jin [2005], this distribution was exactly known, 
whereas Herrera and Pinder [2005] assumed that the source 
locations were known, but presented a statistical model for 
the uncertainty associated with the release history of the 
sources. In addition, all the above methods allow informa-­
tion to propagate forward in time through the Kalman filter-­
ing procedure, but no information propagates from later to 
earlier times. As such, if the contaminant distribution at a 
particular time is to be estimated, measurements taken after 
that time cannot be used to constrain the estimate. 

2.3. Interpolation Approaches

Many current methods for estimating plume distribu-­
tions rely on interpolation of concentration measurements 
taken at the time at which the plume needs to be estimated. 
Geostatistical kriging is a popular method for estimating 
plume distributions that can use measurements at sampled 
locations, incorporate trends, and take advantage of measure-­
ments of certain other related variables (e.g. in a cokriging 
framework). Spatial analysis can be performed to identify 
spatial trends and variogram structures to be used in the 
estimation process. Variants and extensions of kriging can 
be used to introduce some additional information into geo-­
statistical analyses (e.g. Diggle et al. [1998]; Figueira et 
al. [2001]; Kitanidis and Shen [1996]; Saito and Goovaerts 
[2001]), and a review of these approaches is presented in 
Shlomi and Michalak [2007]. 

However, many types of supplementary physical data, such 
as knowledge about the groundwater flow and transport in 
the aquifer or concentration data taken at different times 
cannot be used directly in kriging. Data taken at different 
times must either be ignored, or the plume must be assumed 
to be at a relative steady state in order to incorporate differ-­
ent measurement periods within an interpolation framework. 
Alternatively, the differential equations describing contami-­
nant flow and transport can potentially be used to define 
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spatio-­temporal covariance functions for interpolation (e.g. 
Kolovos et al. [2004]). 

Overall, current interpolation methods for estimating the 
spatial and/or temporal distribution of contaminant plumes 
do not take into account all information available about the 
transport properties of the affected aquifer, and are most eas-­
ily applicable with measurements taken at a single time. 

2.4. Geostatistical Inverse Modeling and Extensions

The method proposed in this work leverages recent 
advances in geostatistical contaminant source identifica-­
tion to develop novel tools aimed at estimating plume dis-­
tributions. Inverse methods applied to contaminant source 
identification use modeling and statistical tools to determine 
the historical distribution of observed contamination, the 
location of contaminant sources, or the release history from 
a known source. Reviews of existing methods are avail-­
able in Atmadja and Bagtzoglou [2001b] and Michalak and 
Kitanidis [2004]. 

One subset of inverse methods focuses on determining the 
values of a small number of parameters describing the source 
of a contaminant such as, for example, the location and 
magnitude of a steady-­state point source, and may include 
additional parameters such as the times at which the release 
began and ended. 

More directly related to the proposed methods, a sec-­
ond subset of existing contaminant source identification 
tools uses a function estimate to characterize the historical 
contaminant distribution, source location, or release his-­
tory. In this case, the contaminant distribution or source 
description is not limited to a small set number of fixed 
parameters, but can instead vary in space and/or in time. 
This category includes methods that use a deterministic 
approach and others that offer a stochastic approach to the 
problem. Deterministic approaches include Tikhonov regu-­
larization [Skaggs and Kabala, 1994, 1998; Liu and Ball, 
1999; Neupauer et al., 2000], quasi-­reversibility [Skaggs 
and Kabala, 1995; Bagtzoglou and Atmadja, 2003], non-
regularized non-­linear least squares [Alapati and Kabala, 
2000], the progressive genetic algorithm method [Aral et 
al. 2001], and the Marching-­Jury Backward Beam Equation 
method [Atmadja and Bagtzoglou, 2001a; Bagtzoglou and 
Atmadja, 2003]. Although these methods provide an estimate 
of a source location or release given certain assumptions, 
they cannot be used to directly quantify the uncertainty 
associated with that estimate. In stochastic approaches, 
parameters are viewed as jointly distributed random fields, 
and estimation uncertainty is recognized and its importance 
can be determined. Two stochastic approaches that offer a 
function estimate have been proposed to address the prob-­

lem of source identification: geostatistical inverse modeling 
[Snodgrass and Kitanidis, 1997; Michalak and Kitanidis, 
2002, 2003, 2004a,b; Butera and Tanda, 2003] and the mini-­
mum relative entropy method [Woodbury and Ulrych, 1996; 
Woodbury et al., 1998; Neupauer et al., 2000]. 

These stochastic approaches are particularly useful for 
potential application to improving plume estimation, because 
they allow the information content of concentration measure-­
ments taken at different times to be directly evaluated. This 
information can, in turn, be used to determine the precision 
with which the plume distribution can be estimated. In addi-­
tion, these methods are not limited to instantaneous or point 
releases. The applicability of geostatistical inverse methods 
to multidimensional solute transport has already been dem-­
onstrated for heterogeneous media [Michalak and Kitanidis, 
2004a; Shlomi and Michalak, 2007] and is similar in form to 
geostatistical kriging, making it amenable to the development 
of a stochastic method for identifying the spatiotemporal dis-­
tribution of groundwater contamination. The approach aims 
to assimilate knowledge of the transport properties of the 
affected aquifer and concentration measurements from any 
number of times and locations. Of particular relevance to the 
current work, Michalak and Kitanidis [2004a] demonstrated 
the ability of geostatistical inverse modeling to estimate the 
historical distribution of a contaminant plume using a set of 
measured concentrations at a subsequent time. 

In recent work, Shlomi and Michalak [2007] developed a 
theoretical framework for incorporating flow and transport 
information for estimating the plume distribution within 
a deterministically-­heterogeneous aquifer contaminated 
by a single point source with an unknown time-­dependent 
contaminant release history. In that work, a hypothetical 
heterogeneous aquifer was contaminated, and the resulting 
plume was sampled at a single time at a small number of 
wells. These observations were used to infer the full plume 
distribution using existing geostatistical kriging tools as 
well as two new proposed methods that incorporate flow and 
transport information. The authors concluded that, although 
geostatistical kriging reproduced the available measure-­
ments, it was unable to represent the true distribution of the 
plume. The proposed methods used the same limited concen-­
tration information to first estimate the release history of the 
contaminant into the aquifer, and then use this release and 
its associated uncertainty to map the plume at the time when 
measurements were taken. The method assumed a known 
deterministic transport model and knowledge of the location 
of the point source. This approach was able to reproduce the 
true plume shape accurately, and the estimated uncertainty 
was substantially lower relative to the kriging estimate. 

The method proposed here is based on the principle of 
inverse/forward modeling presented in Shlomi and Michalak 
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[2007]. However, no assumptions are made about the loca-­
tion or nature of the source of contamination, and observa-­
tions taken at multiple times can be used to constrain the 
contaminant distribution at any time before, during or after 
monitoring episodes. The proposed method allows measure-­
ments taken at downgradient locations and/or future times 
to provide additional constraints on the estimated plume 
distribution. This feature makes the approach applicable 
to a wide range of problems, such as the estimation of the 
spatio-­temporal evolution of a plume based on measured 
downgradient breakthrough curves, or the assessment of 
historical exposure to groundwater contamination. 

3. Methodology

The methodology presented in this work entails the assimi-­
lation of concentration measurements taken throughout the 
monitoring history of the affected site, making use of an avail-­
able transport model for the aquifer. The proposed method 
makes use of tools developed for geostatistical contaminant 
source identification, plume estimation, adjoint state model-­
ing methods, and Kalman filtering / smoothing to provide a 
framework for assimilating concentration data and knowledge 
of flow and transport in the affected aquifer to estimate the 
spatio-­temporal evolution of contaminant plumes. 

Two approaches are presented. The first involves the sequen-­
tial integration of concentration data within a Kalman filtering 
(forward in time) and Kalman smoothing (backward in time) 
framework, and is outlined in Plate 1. This is the preferred 
approach in cases where the incremental effect of additional 
data is to be evaluated or when additional data are made avail-­
able after initial estimates are made. This first algorithm may 
also be computationally more efficient for certain transport 
models. The second approach, illustrated in Plate 2, builds on 
the inverse/forward modeling approach proposed by Shlomi 
and Michalak [2007], mapping all available measurements 
to the time at which monitoring began, and mapping this 
estimated historical contaminant distribution to the time at 
which the plume is to be estimated. This second approach is 
more computationally efficient when the plume distribution 
at multiple times is to be estimated or when measurements 
are taken at many distinct times (as in the second example 
presented in this paper). The two approaches are mathemati-­
cally very similar and the choice between them will be based 
primarily on implementation considerations, although other 
minor differences are discussed in Section 5. Both approaches 
treat the plume distribution as a random function, yielding 
quantitative uncertainty estimates in addition to descriptions 
of the plume distributions. 

In the following method descriptions, the temporal domain 
has been discretized as  where  

refers to the time for which we wish to obtain an estimate of 
the plume, and all other indices refer to times at which con-­
centration measurements were taken. As described below, the 
methods can be applied regardless of whether measurements 
are also available at time . The discretized plume distribu-­
tions at different times  are termed , and the available 
measurements are referred to as . Note that the number 
of measurements does not have to be the same for all mea-­
surement times, and the method can make use of multiple 
measurement times before and after the estimation time. 

3.1. Use Data Sequentially — Kalman Filtering and 
Smoothing Approach

The first approach is conceptually related to the Kalman 
filtering approaches discussed in Section 2.2 and involves 
the sequential assimilation of measurements, starting from 
the earliest observations and stepping forward through the 
different measurement times until the time for which the 
plume is to be estimated (Plate 1). Unlike existing methods, 
however, this approach also takes advantage of geostatistical 
inverse modeling tools developed by Michalak and Kitanidis 
[2004a] to assimilate measurements taken after the estima-­
tion time. 

The method starts by estimating the plume distribution, 
denoted by the  vector , at the time when monitor-­
ing began, t1, using only the measurements taken at that time, 
denoted by the  vector , in a geostatistical kriging 
framework (step 1 in Plate 1). The system of linear equations 
can be expressed as: 

	 	 (1)

where S is an  matrix representing the subsampling 
of the  plume at locations where measurements are avail-­
able (this is in effect a sensitivity matrix populated with ones 
and zeros), Q is the  geostatistical spatial covariance 
matrix of the discretized plume distribution  at time , R 
is the  model-­data mismatch covariance (which 
represents measurement errors and can sometimes also be 
used to describe transport model error statistics), X is an 

 matrix of known base functions defining the geo-­
statistical model of the spatial trend of , and the resulting 
Λ and M are used to define the best estimate and uncertainty 
covariance of ,  and , respectively:

	 	 (2)

Plate  1Plate  1

Plate 2Plate 2
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Plate 1. Schematic illustration of Kalman filtering / smoothing approach for sequential data assimilation for plume 
delineation. The step numbers listed in the text are indicated in parentheses. 

Plate 2. Schematic illustration of inverse/forward modeling for assimilation of multiple datasets for plume delineation. 
The step numbers listed in the text are indicated in parentheses. 
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Although written slightly differently, this system is simply 
a traditional set of kriging equations with either a constant 
or variable trend (depending on the form of X). 

In subsequent steps, the estimate of the earlier plume and 
its uncertainty are used to define a prior estimate of the 
plume distribution  at the next sampling time, , making 
use of the transport information provided by the numerical or 
analytical model of the affected aquifer (step 2a in Plate 1): 

	 	 (3)

where  represents the  sensitivity matrix of 
the discretized plume distribution at time  to that at time

, and  becomes the prior estimate of the distribution . 
Note that the definition of the sensitivity matrix  relies 
on the linearity of the transport model, and the method would 
need to be modified for nonlinear transport. The matrix  
is square if the plume is estimated at the same locations for 
both times and can be obtained by a sequence of runs of the 
model representing transport at the site. This prior estimate 
is updated in a Kalman filtering step using measurements 
taken at time  (step 2b in Plate 1). This corresponds to find-­
ing the minimum of a least-­squared optimization objective 
function:

	 	 (4)

where S is now an  matrix representing the sub-­
sampling of the  plume at the  measurement locations, 
and R is the  model-­data mismatch covariance 
of the new set of observations. Note that these can have dif-­
ferent dimensions than in equation (1) if the configuration 
and/or quality of the monitoring network changes over time. 
This objective function can be represented as the linear 
system of equations:

	 	 (5)

which has the solution:

	 	 (6)

where  can be thought of as a typical Kalman gain matrix, 
and  is the final a posteriori estimate of the distribution 

. Note that there is no matrix M of Lagrange multipliers 

in this set of equations because the a priori distribution is 
known and defined by . 

This Kalman filtering continues until the time for which 
the plume distribution is to be estimated, . For the last 
Kalman filtering step, the prior estimate is obtained from the 
most recent earlier distribution  by (step 3a in Plate 1):

	 	 (7)

If data are available at time , the Bayesian updating step 
takes the form (step 3b in Plate 1):

	 	 (8)

	 	 (9)

The estimate at time  is then further refined by making 
use of any available observations taken at a time later than 
the estimation time, in a Kalman smoother step (step 4 in 
Plate 1). The objective function for this Bayesian update is:

	 	 (10)

where  are the  measurements taken at any later time(s) 
,  is an  matrix representing the sen-­

sitivity of these later measurements to the full discretized 
distribution at time , and all other terms are defined analo-­
gously to the ones in the previous objective functions. Note 
that  can include measurements from more than one time 
later than . The minimum of this objective function can be 
expressed as a linear system of equations:

	 	 (11)

where the final estimate of the plume distribution at time  
is expressed as:

	 	 (12)

where the prime denotes the estimate of  after the second 
Bayesian updating step. 

Note that the use of S in the above equations assumes that 
the sampled points are a subset of the estimation points, 
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which is not a requirement of the method, but this notation 
was used here for convenience of illustration. In addition, 
the estimation points do not necessarily need to be on a 
grid, although this is convenient for contouring software. 
This method allows for sequential refinement of estimates 
as additional data become available, which may present 
computational savings for some numerical models relative 
to the second method presented below. 

For the special case where the time at which the plume is 
to be estimated either (i) equals the time at which the latest 
measurements were taken or (ii) is after the time at which 
the last measurements were taken, the method is analogous 
to kriging the earliest measurements and running a Kalman 
filter that sequentially predicts the plume at the next mea-­
surement time and conditions the plume distribution on 
new observations as they become available (e.g. Loaiciga 
[1989]). 

3.2. Use all Data Simultaneously — Inverse/Forward 
Modeling Approach

The second approach builds on the inverse/forward mod-­
eling method recently proposed by Shlomi and Michalak 
[2007]. The original method was applied to the estimation 
of the timing and intensity of a contaminant release into an 
aquifer, and this information was used in combination with 
an available transport model to estimate a plume distribution. 
Note that Shlomi and Michalak [2007] ultimately recom-­
mended the use of a second approach (Transport-­Enhanced 
Kriging, TrEK) for this problem, which allowed for separate 
covariance structures to be defined for the temporal source 
release history and spatial plume distribution. In the current 
work, no assumptions are made about the nature of the source 
of contamination. Therefore, the inverse/forward modeling 
approach, which focuses on a single covariance structure 
(the spatial autocorrelation of the plume distribution, in this 
case), is a more appropriate basis for the proposed method. 

For the method presented here, we apply an inverse/for-­
ward modeling approach to first estimate the plume distri-­
bution at the time when monitoring began (i.e. the time at 
which the first measurements were taken) using all available 
measurements from all monitoring episodes. This estimate 
is then used to recover the plume distribution at a given later 
time using the available transport model (Plate 2). As in the 
approach presented in Section 3.1, the approach begins by 
estimating the plume at the start of monitoring; unlike the 
first approach, however, all measurements taken at all times 
are used simultaneously to inform this estimate. The esti-­
mate is consistent with all measurements taken at all times. 

For the general case where measurements are available 
before, at, and after the time at which the plume is to be 

estimated, the objective function is expressed as (step 1 in 
Plate 2): 

	 	 (13)

where  is the  vector of all available concentration 
data , R is the  model-­data 
mismatch covariance matrix of all available measurements, 
Q is the geostatistical spatial covariance of the discretized 
plume distribution  at time ,  is the geostatistical 
model of the trend, and

	 	 (14)

	 	 (15)

where S is a matrix representing the subsampling of the  
plume at locations where measurements are available,  
represents the  sensitivity matrix of each of the  
measurements to the discretized concentration distribution 
at time , and the other  matrices are defined analogously. 
The sensitivity information is again based on linear transport, 
and is obtained through the implementation of a numerical 
or analytical groundwater flow and transport model (e.g. 
Michalak and Kitanidis [2004a]). Equation (13) represents 
a geostatistical inverse problem, where the distribution  is 
estimated based on the dual criterion of generating a plume 
that is consistent with all available measurements  and that 
exhibits spatial autocorrelation structure consistent with Q 
and . 

The solution to this system of equations is obtained by 
minimizing equation (13) with respect to  and . The solu-­
tion can be expressed as a system of linear equations: 

	 	 (16)

where  and M are used to estimate  and its a posteriori 
covariance: 

	 	 (17)

The estimate of the plume  at time , is then obtained by 
mapping the estimate  and its covariance structure forward 
in time (step 2 in Plate 2): 
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	 	 (18)

where  is the  sensitivity matrix of the dis-­
cretized plume distribution at time  to that at time . 

For the special case where the time at which the plume is 
to be estimated either (i) equals the time at which the latest 
measurements were taken or (ii) is after the time at which the 
last measurements were taken, the data vector and sensitivity 
matrix become:

	 	 (19)

For the special case where no measurements are available for 
the time at which the plume distribution is to be estimated, 
the data vector and sensitivity matrix do not include this time 
step, but the equations remain unchanged. For the case where 
the time at which the plume is to be estimated precedes any 
sampling, the method is similar to the work presented in 
Michalak and Kitanidis [2004a] where a spatial array of 
measurements was used to estimate the previous distribu-­
tion of a plume. In this case, the data vector and sensitivity 
matrix become:

	 	 (20)

and the objective function is then written to estimate  
directly. 

In the general case, the method can be applied to estimate 
the contaminant distribution at any time, integrating trans-­
port and concentration information from all available times. 
As such, this second approach may be more numerically 
efficient if samples were taken at many different times, or if 
the plume distribution is to be estimated at multiple times. 
Note that if the total number of samples is very high, the 
inversion of the  matrix in equation (16) 
required to solve for  and M may become computationally 
prohibitive, in which case the first approach would be more 
appropriate. 

4. Applications

Two sample applications are presented. The first represents 
the estimation of the spatial distribution of a plume using mul-­
tiple sets of measurements taken at different times. The second 
represents the estimation of the temporal evolution of a plume 
based on measured breakthrough curve information. 

4.1. Estimate Plume From Monitoring Network Observations

This example involves the estimation of a contaminant 
plume distribution in a confined aquifer at a time  
days after monitoring of the aquifer began. Measurements 
are assumed to have taken place at four distinct times,  
days,  days,  days, and  days. 
At each time, 12 measurements were taken on a regular grid. 
A hypothetical example was chosen to illustrate and verify 
the capabilities of the methods in a setup where the true 
concentration distributions are known. The Kalman filter 
and smoother approach (Section 3.1) was implemented for 
this first example. 

The conductivity field for this aquifer, originally used in 
Michalak and Kitanidis [2004a], was generated for a rect-­
angular domain using the numerical spectral approach of 
Dykaar and Kitanidis [1992a,b]. Although a multi-­Gaussian 
representation of the hydraulic conductivity heterogeneity 
was used here, this was done for simplicity, and is not a 
requirement for the application of the proposed methods. 
All four boundaries of this aquifer were defined as constant 
head, with a 0.034 m/m head gradient in the West to East 
direction, and a 0.0067 m/m gradient in the North to South 
direction, inducing flow mainly toward the East with a minor 
component toward the South. MODFLOW-­2000 [Harbaugh 
et al., 2000] was used to calculate the flow field. 

The numerical transport model MT3DMS [Zheng and 
Wang, 1999] was used to simulate the spatio-­temporal evo-­
lution of the plume and to obtain the sensitivity matrices 
required to apply the model. Figure 1 shows the solute dis-­
tribution at the four times when measurements were taken, 
with time  representing the time of the first sampling 
event. Data collected at each sampling time at the locations 
indicated on the plumes in Figure 1 were used to recover the 
spatial distribution at time  days. 

The sensitivity matrices required to implement the Kalman 
filter / smoother approach were calculated on a grid of 946 
points (43 × 22 cells). This grid also represents the discretiza-­
tion at which the plume was estimated. The transport model 
was run repeatedly, each time simulating a plume developing 
from a single unit concentration in one grid cell. This plume 
was sampled at time Dt = 800 days, the time intervals between 
sampling episodes. Note that the method does not require 
a regular sampling interval in time. By running the model 
sequentially for each grid cell, the various H matrices were 
populated, representing the sensitivity of each location in the 
aquifer to the concentration at a previous time and location. 
Assuming a steady state flow regime and making use of the 
linearity of the transport model, the base sensitivity matrix 
calculated for Dt = 800 days could be used to calculate the 
sensitivity over other time intervals . Separate 

Fig. 1Fig. 1
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runs for each time interval would have been required if the 
flow were not assumed to be steady state. 

The spatial covariance structure of the plume distribution 
at time  days was estimated using an exhaustive sam-­
ple from that distribution. In a real situation, this covariance 
would be estimated using a Restricted Maximum Likelihood 
approach as discussed in Kitanidis [1995] and Michalak and 
Kitanidis [2004a] using only the sampled concentrations, 
but we opted to use the full plume distribution here to help 
isolate the behavior of the proposed method. The length (l) 
and sill  parameters for an exponential covariance model 
were estimated to be:

	 	

where

	 	 (21)

and h is the separation distance between two points. The 
plume was assumed to have random, normally distributed 
measurement error with  ppm, corresponding to 
an idealized case with no transport model error. 

The approach described in Section 3.1 was used to esti-­
mate the plume at time  days at m = 946 points 
throughout the domain. Figure 2 shows the best estimate of 
the plume at the required time, as well as the standard error 
of estimation, defined as the square root of the diagonal 
element of . 

Figure 3 and 4 show the estimates for the equivalent case 
obtained by ordinary kriging and Kalman filtering (but with-­
out Kalman smoothing), respectively. The ordinary kriging 
estimate uses only the data  taken at time , because data 
collected at other times and transport information cannot be 
directly included in kriging. The spatial covariance parameters 
used for kriging the  measurements for time  were:

	 	

The Kalman filtering estimate uses measurements taken 
before  and at the time  at which the plume is to be 
estimated, but not any subsequent measurements , yield-­
ing results that are similar to those that would be obtained 
using the approach of Loaiciga [1989]. 

4.2. Estimate Plume Evolution From Downgradient 
Breakthrough Curves

The second application presents the recovery of the tem-­
poral evolution of the spatial distribution of a groundwater 
plume based on breakthrough curves measured at a small 

Fig. 2Fig. 2

Fig. 3Fig. 3

Fig. 4Fig. 4

Figure 1. Spatial and temporal evolution of plume used in sample 
applications. The circles indicate sampling locations for Example 1. 
Samples were taken only at the times presented in these panels. 
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number of wells. Unlike the first example presented, existing 
methods such as Kalman filtering or geostatistical interpo-­
lation would not have been practical for this application, 
because samples are never taken within the area where the 
plume distribution is to be estimated. 

The experimental setup is similar to the first application. 
The domain is identical, with a net flow from West to East 
and from North to South. The simulated plume is also identi-­
cal to that used in the first application, and is presented in 
Figure 1 for times  days. Unlike 
in the first application, however, the plume is not sampled 
at these times, but breakthrough curves are instead mea-­
sured at seven monitoring wells located on the downgradi-­
ent boundary of the domain at times  days, where 

 400. The well locations and breakthrough curves 
are presented in Figure 5. 

The breakthrough curves are used in the approach 
described in Section 3.2 to first estimate the plume at time 

 days, assuming that the measurements have a small 
normally distributed random error with  ppm. This 
estimate and its covariance structure are then used to obtain 
estimates for time  1600 days by applying equation (18). 
Note that the time of 1600 days was selected to correspond 

to the time examined in Example 1. Once the plume at time 
 days is estimated, the plume at any other time can be 

estimated by applying equation (18) repeatedly for all the 
times of interest, with different matrices  corresponding 
to the sensitivities of the plumes at these various times to the 
plume distribution at time   days. The resulting plume 
estimate at time  1600 days is presented in Figure 6, 
along with the locations of the breakthrough curve monitor-­
ing wells. Conversely to the first application, this represents 
an estimate based on a large numbers of sampling times at a 
small number of sampling locations that are not in the vicin-­
ity of the plume that is to be estimated. 

5. Method performance and applicability

The two approaches presented in this work are designed 
to estimate the spatial distribution of a groundwater con-­
taminant plume through assimilation of concentration mea-­
surements taken throughout the monitoring history of a site 
and knowledge of the flow and transport in the aquifer. The 
presented approaches yield accurate results in the sense that 
the actual deviations of the best estimate from the true plume 
are correctly characterized by the estimation uncertainty. 

Fig. 5Fig. 5

Fig. 6Fig. 6

Figure 2. Example 1: Recovered plume distribution for time 
 days using Kalman filtering / smoothing approach, 

incorporating information from all four sampling times. The uncer-­
tainty is expressed as one standard deviation of the estimation 
uncertainty. Sampling locations are shown for reference. 

Figure 3. Example 1: Recovered plume distribution for time 
ti = 1600 days using ordinary kriging, only incorporating informa-­
tion from measurements taken at time ti = 1600 days. The uncer-­
tainty is expressed as one standard deviation of the estimation 
uncertainty . 
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Geostatistical interpolation approaches can only incorpo-­
rate information from concentration measurements taken 
at the time when the estimate is sought, or at times close 
enough to the estimation time such that the plume distribu-­
tion can be approximated as unchanged. As can be seen from 
Figure 3, interpolation approaches cannot capture the shape 
and extent of a groundwater contaminant plume in cases 
where the monitoring network is sparse, the plume hot spots 
do not correspond to monitoring locations, and/or the plume 
is highly heterogeneous. 

A Kalman filtering approach can incorporate transport 
information as well as any measurements taken prior to the 
time for which the plume is to be estimated. As can be seen 
by comparing Figure 4 to Figure 2, however, measurements 
taken at times subsequent to the estimation time provide 
additional constraints on the plume distribution that cannot 
be incorporated in a Kalman filtering approach. 

The presented Kalman filtering/smoothing and inverse/
forward modeling approaches, on the other hand, can assimi-­
late all concentration data. A practical aspect of this advan-­
tage is the option to take additional measurements to increase 
the accuracy of the estimate of a historical plume that was 
not thoroughly monitored at the time of interest. 

In addition, existing plume estimation methods are only 
directly applicable if the monitoring network samples the 
plume while it is in the region of the domain that we are 
interested in. The two proposed approaches, on the other 
hand, can also make use of breakthrough curves measured 
at downgradient locations to estimate the spatio-­temporal 
distribution of contaminant plumes. Although not specifi-­
cally demonstrated through an example here, the data used 
in Examples 1 and 2 could also have been used concur-­
rently without requiring any modifications to the proposed 
approaches. 

The spatial distribution of the uncertainty is also quite 
different for the proposed approaches relative to kriging. 
Whereas for kriging the uncertainty grows uniformly and 
monotonically away from measurement locations (Figure 3), 
the uncertainty associated with the proposed approaches is 
related both to the measurement locations and to the sensi-­
tivity of various locations within the aquifer to one another, 
as expressed through the H matrices (Figure 2). As a result, 
even poorly sampled areas can have relatively low uncer-­
tainty if they have a weak hydrologic connection to the 
locations where contamination was detected. 

The two approaches presented here are mathematically very 
similar, and the selection of a method should be based primarily 
on computational considerations. From a conceptual perspec-­
tive, the difference between the two approaches is in estimating 
the  trend parameters of . Whereas in the Kalman filter-­
ing/smoothing approach the estimate of  is based only on the 
measurements taken at time , in the inverse/forward modeling 
approach all measurements contribute to this estimate. This dif-­

Figure 4. Example 1: Recovered plume distribution for time 
 days using Kalman filter (but no Kalman smoother 

step). This estimate incorporates information from times t = {0, 
800,1600} days. The uncertainty is expressed as one standard 
deviation of the estimation uncertainty. 

Figure 5. Example 2: Breakthrough curves at observation wells 
located on the East boundary of the plume domain. The transverse 
coordinates of the wells are listed in the legend and presented in 
Figure 6. 
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ference is only expected to be important if these  parameters 
are themselves of interest in the analysis. 

As mentioned in Section 1, the proposed methods, as 
presented in the current work, rely on several assumptions. 
The definition of the sensitivity matrices H relies on a 
linear formulation of transport in the aquifer. In addition, 
the methods are currently set up for conservative tracers, 
although some forms of reactive transport, such as linear 
reaction kinetics, would only require minor modifications 
to the presented methods. Although the use of a multi-
Gaussian representation of the physical heterogeneity of the 
aquifer is not required (see Section 4.1), the heterogeneity 
of the plume distribution at the earliest time when measure-­
ments are taken is modeled as a second-­order stationary 
process. We have not found this to be a strong limitation 
in practice even for highly heterogeneous non-­Gaussian 
hydraulic conductivity distributions (results not shown), 
but this assumption will need to be evaluated explicitly in 
future applications. 

The presented approaches assume that the flow and trans-­
port in the aquifer are either known or that transport model 
errors can be described using an error covariance structure. 

The presented examples represent idealized cases with low 
measurement error and do not explicitly include transport 
model error. In field cases, the f low and transport in an 
aquifer are never fully characterized, and this uncertainty 
will have a substantial impact on the estimated plume dis-­
tribution. Although a full treatment of transport uncertainty 
is beyond the scope of this paper, two sensitivity analyses 
were conducted to assess the impact of errors in the model’s 
ability to reproduce available measurements. In the first 
sensitivity analysis (Figure 7), the measurement error was 
increased to a variance of , and random 
errors with this variance were added to all measurements. 
If transport errors are present, then measurements cannot 
be reproduced perfectly, and this error is often parameter-­
ized as an additional measurement error. As can be seen 
in Figure 7, the two main impacts of the increased error 
are less detail in the best estimate relative to the low error 
case (Figure 2), and higher uncertainty in the estimate. 
In the second sensitivity analysis (Figure 8), we defined 
a spatially correlated model-­data mismatch error because 
transport errors are expected to have spatially-­correlated 
impacts on the measurements (e.g. Chang and Jin [2005]). 

Fig. 7Fig. 7

Fig. 8Fig. 8
Figure 6. Example 2: Recovered plume distribution at time 

 days using inverse / forward modeling approach. The 
uncertainty is expressed as one standard deviation of the estima-­
tion uncertainty. Breakthrough curve measurement locations are 
shown for reference. 

Figure 7. Example 1: Sensitivity analysis with high measurement 
error . Recovered plume distribution for time 

 days using Kalman filtering / smoothing approach. The 
uncertainty is expressed as one standard deviation of the estima-­
tion uncertainty. 
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The variance remained , but this error was 
assumed to have an exponential covariance with a correla-­
tion length equal to that of the actual plume at the estimation 
time (l = 100m). Errors with these same characteristics were 
added to the measurements. In field cases, the correlation 
length of transport errors could be estimated from tracer 
experiments by performing a variogram analysis on the dif-­
ference between actual and predicted tracer concentrations 
at monitoring wells. In the presented example, the spatial 
covariance of the error term had little impact on the best 
estimate and its associated uncertainty. For both sensitivity 
analyses, the estimates were accurate in the sense that the 
error of the estimate relative to the actual plume was consis-­
tent with the estimated uncertainty. These sensitivity analy-­
ses are intended as an illustration of the effect of increased 
uncertainty on the ability of the methods to obtain accurate 
estimates. They are not a substitute for the estimation meth-­
ods described in Section 2.1 that are designed specifically 
for characterizing the uncertainty associated with subsurface 
flow and transport parameters. 

Both approaches involve the inversion of matrices of size 
defined by the number of measurements being used to update 

the estimate of the plume distribution. When a very large 
number of measurements is available, the inverse/forward 
modeling approach may become computationally prohibitive 
because it requires the inversion of a matrix with dimensions 
slightly larger than the total number of measurements taken 
at all times. The Kalman filtering/smoothing approach is 
therefore preferable in these cicumstances. For the case of a 
finely discretized spatial domain, the matrix multiplications 
required to obtain the components of the linear system of 
equations may themselves become computationally expen-­
sive, and may need to be implemented as a series of products 
of smaller arrays. In the case where even such a multi-­step 
approach is prohibitive (e.g. if the transport model has mil-­
lions of nodes), more sophisticated numerical optimization 
methods such as ensemble or variational approaches would 
need to be implemented. 

6. Conclusions

The methods presented in this paper make it possible to 
assimilate concentration data taken throughout the moni-­
toring history of a site and knowledge of the groundwater 
f low and transport in the affected aquifer to estimate the 
distribution of a contaminant plume at any time during 
or prior to monitoring. The proposed methods produce 
estimates that are conditioned not only on measurements 
concurrent to the estimation time and/or measurements 
taken prior to the estimation time, but can also take full 
advantage of subsequent concentration data. In addi-­
tion, knowledge of the source of contamination is not 
required. These differences allow for more accurate and 
precise estimates when monitoring continues after the 
time for which the plume estimate is sought, and make 
the approaches applicable to a new set of problems. For 
example, as presented in this work, the breakthrough 
curve at a few downgradient monitoring wells can be used 
to estimate the spatio-­temporal evolution of a plume. 

Finally, although a full statistical analysis of the impact 
of transport model uncertainty is beyond the scope of the 
current work, real field sites involve complex uncertainty 
in the transport parameters. Future work will focus on 
explicitly characterizing and accounting for this uncer-­
tainty. Parameter estimation methods such as the ones 
described in Section 2.1 could be used to characterize 
the uncertainty of the f low and transport fields given 
available measurements, and tools for incorporating this 
information into the derived methodology could then be 
developed. Alternately, the flow and transport parameters 
could be estimated together with the plume distribution 
(e.g. McLaughlin et al., [1993]), and such tools are the 
subject of ongoing research. 

Figure 8. Example 1: Sensitivity analysis with spatially correlated 
model-data mismatch error . Recov-­
ered plume distribution for time  days using Kalman 
filtering / smoothing approach. The uncertainty is expressed as 
one standard deviation of the estimation uncertainty. 
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Incorporating temperatures into a modeling effort can take many forms, and both 
temperatures and hydrologic data can be combined qualitatively and quantitatively. 
In the latter category, the least formal would be in calibration, followed by param-
eter estimation and finally by full-inversion. This paper discusses information-
based (specifically Bayesian) approaches of incorporating hydraulic parameters 
and potentials like temperature and hydraulic head together in a formal procedure. 
This paper reviews the generalized inverse problem for groundwater and heat; dis-
cusses Bayesian solutions to inverse problems; empirical and hierarchical Bayes, 
upscaling and cokriging and Bayesian interpolation. Along these lines, a list of 
suggested references is provided, along with suitable mentioning of benchmark 
papers, monographs and textbooks on the subject. 

The technique described in this paper revolves around shallow, low-temperature 
groundwater flow systems; and that entails steady 2-D fluid and heat flow. The 
methodology utilizes a perturbation technique to linearize and then couple the 
governing equations. For the perturbation approach to work, fluid properties must 
be decoupled from the temperature field. Once this is done, and through the finite 
element method, a block-linear system of data, kernel, and model parameters is 
developed. 

Two end-members and one set of joint inverse examples are presented. The 
two end-members are pure heat conduction (an application of Bayesian inversion 
to Paleoclimate reconstructions), and a pure-groundwater problem which is an 
example application to the Edwards Aquifer in Texas. Lastly, generic examples of 
combinations of transmissivity, hydraulic head and temperatures are presented.

Subsurface Hydrology: Data Integration for Properties and Processes
Geophysical Monograph Series 171
Copyright 2007 by the American Geophysical Union.
10.1029/171GM09

1. Introduction

This paper is about a Bayesian approach to the solution 
of the joint-groundwater and thermal inverse problem. 
The reader should note that inasmuch as it is an overview, 
some details are omitted for the sake of the “big picture”. 
Not all of the relevant literature is cited. Also, this paper 

does assume some knowledge on the part of the reader but 
hopefully it will fit in nicely to some of the other papers 
within this monograph. Finally, this paper presents the 
author’s view. It is unabashedly Bayesian and may not be 
agreed to by all. 

It may be no longer necessary to justify the use of tem-
peratures in hydrogeological studies, but there are a num-
ber of compelling reasons for doing this and perhaps it is 
worthwhile to repeat these here. A recent paper by Anderson 
(2005) reviews the essentials of heat and groundwater trans-
port and also contains numerous references. A great textbook 
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chapter can be found in Domenico and Schwartz (1990), and 
a favorite is a textbook, “Thermal Geophysics” by Jessop 
(1990). An excellent monograph is that of Beck et al. (1989) 
“Hydrogeological Regimes and Their Subsurface Thermal 
Effects”. Pioneering work in thermal and groundwater 
effects can be found in Garven and Freeze (1984), Smith 
and Chapman (1983) and Hunt et al. (1996). These references 
are by no means exhaustive and serve only to indicate the 
importance of thermal and groundwater interactions. 

Hydrological site characterization remains a significant 
challenge in hydrogeology. Numerical models have been 
widely employed to simulate the responses of groundwater 
systems under various stresses. One well recognized dif-
ficulty for groundwater model applications (and indeed any 
modeling application) is to obtain sufficient and reliable 
hydrogeological parameters. Aquifers are often highly 
heterogeneous and the large spatial variability of a ground-
water system controls the distributions of hydraulic heads, 
contaminants, temperature and other potentials of interest. 
In practice, there are usually insufficient measurements of 
hydraulic parameters for a comprehensive site characteriza-
tion. A common remedy is for practitioners to subdivide an 
aquifer into a relatively small number of constant property 
zones; perhaps a conceptualization that should be con-
sidered at odds with nearly three decades of research in 
stochastic hydrology. 

Difficulties associated with direct measurements of all the 
hydrologic parameters needed for physically-based math-
ematical models are well known. Equally well known are 
the challenges in trying to adjust parameters within precon-
ceived limits until model output at selected points matches 
observed values. Quite often questions are raised as to the 
uniqueness and optimality of these models. A major focus of 
research over almost three decades has been directed towards 
inversion techniques and/or parameter estimation as a way 
of both automatic calibration and as a statistical procedure to 
quantify the reliability of parameter estimates (see reviews 
by Ginn and Cushman, 1990; and McLaughlin and Townley, 
1996, 1997; Kitanidis, 1997). A “true” inverse problem (one 
that involves functionals and an exploration of infinite model 
spaces) is ill-posed, and this is characterized by instability-
and non-uniqueness (Ulrych and Sacchi, 2005). 

Traditionally, inverse techniques in hydrogeology rely 
on measurements of hydraulic conductivity and hydraulic 
heads, and they employ the groundwater flow equation for 
interpretation. Measurements of hydraulic head, hydraulic 
conductivity (or transmissivity), seepage flux, and the like 
could be inputs to an inverse algorithm, and fitted hydrau-
lic conductivity (or other parameters) become the output, 
along with the parameter covariance structure. Relatively 
few works have gone beyond this approach to introduce 

additional information such as tracer data (cf., Carrera et al., 
1993), or geophysical measurements (Woodbury and Smith, 
1988; Rubin et al., 1992; Hyndman et al., 1994; Hyndman and 
Gorelick, 1996; Copty and Rubin, 1995; Hubbard et al., 1997; 
Rubin, 2003; Rubin and Hubbard, 2005). Unfortunately, the 
sophistication of inverse algorithms cannot replace informa-
tion and data. This recognition is well demonstrated in the 
pioneering work of Carrera and Neuman (1986) where it is 
shown that the instability and non-uniqueness of solutions to 
the inverse problems can only be eliminated by introducing 
additional measurements and information. The challenge of 
course, is to find inexpensive and reliable sources of infor-
mation, and to find ways to combine them. 

The conjunctive use of temperature and hydrogeological 
data for site characterization has the potential to reduce 
some of the concerns that have been raised. This potential 
is evident from published works relating thermal-energy 
transport to the aquifer’s hydrogeological features, and from 
studies that attempted using temperature data for site char-
acterization. Note that the thermal and hydraulic head fields 
are linked by the fluid specific discharge. This linkage is 
discussed further below. 

Subsurface temperatures are one example of a source of 
information that is dependent on the same hydraulic param-
eters that governs groundwater flow. In the same way we uti-
lize chemical tracers, we can utilize downhole temperatures. 
In addition, the linkage between the two is physical and not 
empirical. The basic idea behind a joint-hydrological/thermal 
inversion scheme is to exploit the sensitivity of the thermal 
field to hydrogeologic parameters. Woodbury et al. (1987) 
and Woodbury and Smith (1988) used a joint estimation 
of hydrogeological data and temperature measurements to 
characterize site hydraulic parameters. Wang et al. (1989) 
proposed a generalized least-squares approach for solving 
thegroundwater inverse problem using both hydraulic param-
eters and thermal parameters (see also Beck et al., 1989). 
These studies show that within a system with significant 
permeability, groundwater movement can redistribute heat, 
greatly disturbing the conductive thermal regime. Subsurface 
temperature distributions and groundwater movement are 
interrelated and groundwater temperature can be used to 
infer hydraulic parameters. Both Wang et al. (1989) and 
Woodbury and Smith (1988) solved for the full-nonlinear 
parameter estimation, but were limited in the actual num-
ber of unknowns sought. Parameters were viewed as being 
“effective” values over a large number of grid blocks. 

In recent publications (cf. Woodbury and Sudicky, 1992; 
Woodbury and Rubin, 2000; Ulrych et al., 2001; Jiang et al., 
2005, Painter et al., 2006; Woodbury and Ferguson, 2006) a 
full-Bayesian approach was used to obtain parameter esti-
mates and variances. The “full-Bayesian” approach signifies 
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that both parameter and hyperparameter determination may 
be involved. It is the viewpoint of this paper that the full-
Bayesian techniques mentioned can be successfully adapted 
to the inverse problem of coupled groundwater and heat flow. 
In the following sections the basic concepts of heat and fluid 
transfer in porous media are reviewed, followed by an adap-
tation of a “full-Bayesian” approach for coupled, but linear 
inversion of hydraulic head and thermal data. Specifically, 
the following are dealt with in this paper 
1. � A background including the pertinent governing equa-

tions 
2. � A section on the generalized inverse problem for ground-

water and heat 
3. � Bayesian solutions to inverse problems 
4. � Bayesian solutions to linear interpolation of log-transmis-

sivity data 
5. � Empirical Bayes and hyperparameter estimation by 

ABIC 
6. � Hierarchical Bayesian solutions 
7. � Upscaling and cokriging 
8. � Perturbation solutions and Bayes conditioning of ground-

water and temperature data 
9. � Some comments on the non-linear problem 

Two end-member and one set of joint inverse examples are 
presented. The two end-members are pure heat conduction 
(an application of Bayesian inversion to Paleoclimate recon-
structions), and groundwater problem which is an example 
application to the Edwards Aquifer in Texas. Lastly, generic 
examples of combinations of transmissivity, hydraulic head 
and temperatures are presented. 

2. Background: Governing Equations 

An active groundwater system redirects heat flow from the 
Earth’s interior. Heat is transferred through porous media by 
conduction, advection and radiation. Conductive transport 
occurs both in the solid medium and fluid, and is dominated 
by the properties of the porous medium and fluid, and the 
temperature gradient. Advective transfer occurs under the 
influence of moving groundwater. Within a system with high 
permeability, groundwater can redistribute heat, disturbing 
what would ordinarily be a conductive thermal regime. In 
shallow subsurface environments radiative transfer is neg-
ligible and is usually neglected. A review of studies which 
consider various aspects of coupled f luid f low and heat 
transfer in regions with ‘normal’ geothermal gradients is 
given by Domenico and Schwartz (1990). 

Buoyancy effects, viscosity coupling to hydraulic conduc-
tivity, and thermal dispersion due to groundwater velocity 
fluctuations are important physical phenomena to consider. 
In Figure 1, both density and viscosity are important fluid 

parameters. But, for the conditions encountered in a shallow, 
low-temperature groundwater system, the thermal properties 
of the medium could be considered independent of tempera-
ture (see Figure 2 for shallow continental U.S. subsurface 
temperatures). Note on Figures 2 and then 1, that a change 
from 0 °C to 20 °C produces about a 20% reduction in vis-
cosity. Considering that the range of temperatures across any 
one aquifer would be much smaller, this viscosity coupling 
to hydraulic conductivity could be a minor effect. 

The reader should note that in the case of deep regional 
groundwater flow systems, the density and viscosity of water 
would vary significantly with temperature. In addition, in 
some groundwater-surface water investigations, the viscos-
ity-temperature effect can be the dominant factor altering the 
flow system (Constantz et al., 1994). Viscous dissipation of 
energy may also be neglected due to low groundwater veloc-
ity and an equilibrium state is assumed to be reached instan-
taneously between the fluid and the solid aquifer matrix. 
Note that thermal dispersion is often ignored in thermal 
applications (e.g. Ferguson and Woodbury, 2005b), which 
has been postulated by some researchers (for example Sauty 
et al., 1982) as being equivalent to hydrodynamic dispersion 
in mass transport. However, the physical processes are dif-
ferent and strong arguments can be made for its omission 
(Bear and Corapcioglu, 1984). At the present time, the effect 
of thermal dispersion is still an open question, but perhaps 
of secondary importance. 

A two or three-dimensional groundwater advection-con-
duction heat transport equation can be represented as a 
series of linked-partial differential equations and constitutive 
relationships (see Bear, 1972; Bear and Corapcioglu, 1981). 
The inverse algorithms presented herein are based on the 
assumptions of a low-temperature, shallow groundwater 
system and steady-flow behavior (see Section 9.0). Other 

Fig 1Fig 1

Fig 2Fig 2

Figure 1. Density and viscosity of water and a function of tem-
perature (see Woodbury and Smith, 1985).
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forms of the partial differential equations are certainly pos-
sible. Transient expressions involving other process such as 
deformation within the porous media are developed in Bear 
and Corapcioglu (1981). For a complete discussion of the 
equations referred to below the reader is referred to Smith 
and Chapman (1983). 

3. Groundwater and Heat: The Inverse Problem

A solution of the inverse problem requires that both the 
forward and inverse problems must be clearly defined. A for-
ward problem is set up by constructing a functional relation-
ship to predict physical data, given a set of input parameters 
to a physical model. The goal of inverse theory is to use a 
discrete and finite set of noisy observations to elicit some 
information model m (Ulrych and Sacchi, 2005). For many 
physical problems the data and the model are related through 
a linear functional. However, in groundwater hydrology, 
when a parametric approach and a numerical scheme are 
used to solve the governing equations, a non-linear func-
tional results; for example: 

	 	 (1)

where  is a non-linear functional relating h, the potential 
(e.g., hydraulic head ), x, a vector of grid coordinates in 
a numerical scheme and m, the actual model parameters, 
which could consist of hydraulic conductivities, boundary 
fluxes, sources and sinks, and so on. 

In applications of the inverse involving observed data, 
hydraulic heads have uncertainties associated with their 

values, resulting from interpolation or measurement errors. 
In these cases (1) takes the form: 

	  v	 (2)

where h* is the data (interpolated or measured values of 
hydraulic head ), and v is a vector of residuals. 

When a numerical scheme is used to solve the functional 
(1), it can take the form (e.g.. steady flow): 

	 	 (3)

Where A is a matrix, dependent upon a set of parameters, 
b a vector of right hand side terms, and h is a vector of 
computed potentials at nodal grid points. The inverse, then, 
can be posed as an optimization problem. For example, J 
below is a functional to be minimized, with respect to other 
constraints. A generalized L2 norm can introduced as (after 
Neuman and Yakowitz, 1979): 

	 	 (4)

where the above terms are defined as: Vh and Vm are head 
and model covariance matrices, m is a vector of log-conduc-
tivities determined by the inverse method, m* is a vector of 
observed or estimated parameters, h* is a vector of observed 
or estimated hydraulic heads, and γ is a scaling factor, which 
may be unknown. Vh and Vm are defined based on the char-
acteristics of the data set and the numerical mesh. If h* and 

Figure 2. Shallow groundwater temperatures at depths of 10 to 20 m. (Reprinted from Physical and Chemical Hydrogeol-
ogy by P. A. Domenico and F. W. Schwartz, John Wiley and Sons, Copyright (1990), with permission from Elsevier).
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m* are estimated, along with Vh and Vm, then γ =1. With an 
unknown γ we recognize that we may have knowledge about 
the structure of the covariance matrices but not their magni-
tudes. Equation (4) can be derived from a maximum likeli-
hood consideration for a Gaussian distribution (Carrera and 
Neuman, 1986), but one does not have to assume any under-
lying statistical distributions of h or m to apply the norm. 
The objective function can also be viewed as a weighted sum 
of L2 prediction error (heads) and L2 solution simplicity. 

3.1. The Geometry of Non-Uniqueness

Equation (4) represents a constrained non-linear optimiza-
tion problem and a large number of optimization techniques 
can be used to solve it. Some methods require that derivatives 
of the objective function with respect to model parameters 
be calculated, others do not (see Figure 3;  after Sambridge 
and Mosegaard, 2002). On this Figure, methods to the right 
hand side offer more thorough explorations of model space 
but require more computational resources. The derivative or 
gradient based methods on the left of the figure are usually 
faster than non-gradient methods but may diverge (fail to 
find an answer), or converge to a local rather than a global 
minimum. Cooley’s (1977) classic work describes instances 
of this type of problem. A non-linear inverse problem may 
have a complex functional surface, and there is no guaran-
tee that any technique will converge to a global minimum. 
Gradient methods work best if the initial guess is linearly 
close to the solution. To investigate non-uniqueness it would 
be desirable to repeat the procedure many times with dif-
ferent initial guesses, and perhaps decluster the results (for 
example, Vasco et al., 1996). Rath et al. (2006) use a gradi-
ent-based approach to solving the linked-groundwater and 
heat transport inverse problem. Their approach notes that 
the calculation of the Jacobian matrix is computationally 
expense and propose an automatic differentiation method. 

In inverse problems it is now common to consider both 
measured values and unknown model parameters as uncer-
tain (see Woodbury and Ulrych, 1998; Ulrych et al., 2001). 
In a probabilistic approach, we assume that the model can be 
viewed as a random variable with each model estimate being 
a realization of a random process. The “true” model is then 
considered as the expected value of these random variables 
which, in general, will be dependent and describable in terms 
of a multivariate pdf. The model estimation problem can 
now be approached from the viewpoint of probability theory. 
Given an estimate of the pdf of the model, subject to new 
information in the form of a sample (data), we “update” the 
prior pdf with this information. The result of this exercise is 
still in the form of a pdf but we can obtain an estimate of the 
model by computing expected values. A detailed discussion 

of information-based methods (specifically Bayes) is pre-
sented in section 4. Additional discussions of the concepts 
presented below, as well as of the differences between Bayes, 
maximum likelihood, and minimum relative entropy (MRE) 
estimators, is provided by Ulrych et al. (2001). 

Because (2) is non-linear in its parameters the posterior 
probability distribution function will in general be non-
Gaussian, and the maximum likelihood point of a non-
Gaussian objective function may not yield the most sensible 
parameter estimates. Gaussian distributions are symmetric, 
so the maximum likelihood point always coincides with the 
mean value. For an arbitrary non-linear surface (for example, 
multi-modal, skewed ) the maximum likelihood point can be 
quite far from the mean value. Figure 4  shows schematic dia-
grams of probability surfaces for several non-linear problems 
(after Mosegaard and Tarantola, 2002). This figure shows an 
objective function that has several local minima, or points of 
non-convexity with a well defined global minimum. Plotted 
on this figure are data d on the y axis, one model parameter 
on the x axis and a functional relationship given by some 
form of d = g(m). This relationship could be linear or non-
linear. Also shown on Figure 4 is a shaded ellipse represent-
ing, say the confidence limits on the model parameter and the 
observation error. This ellipse is given by the model pdf. A 
plot of s(m) on the figure represents the resulting posterior 
pdf of the model parameters as a result of combination of the 
prior model parameters, data, and functional relationship. 

Plots (a) and (b) of Figure 4 show linear or linearizable 
problems with one solution, (c) shows a finite range of solu-
tions. Plot (d) shows a problem with (possibly) an infinite 
range of solutions. It is the goal of inverse theory to condi-
tion the norm in such away that will yield features like (a), 

Fig 3Fig 3

Fig 4Fig 4

Figure 3. Overview of solution methods from Sambridge and 
Mosegaard, 2002



94     Combining Temperature and Hydraulic Data

with a well defined solution. As Mosegaard and Tarantola 
(2002) note what is important is not the intrinsic nature of 
the non-linearity of the relationship but how linear is the 
relationship inside the domain of significant probability. 
Please refer to Mosegaard and Tarantola (2002) for a more 
complete discussion. 

The techniques proposed in this overview utilize an 
approach that results in Figure (4b), a linearizable problem. 
Once linearized, the governing equations for f luid f low 
and heat can be rendered into a form that constitutes a lin-
ear inverse problem and we will attack this with Bayesian 
methods. For an alternate treatment of the coupled heat and 

groundwater inverse using a non-linear Bayesian maximum 
aposteriori (MAP) technique, see Rath et al. (2006). 

4. Bayesian Solution To Inverse Problems

As mentioned in the introduction, it is our goal to recon-
struct a vector of hydrogeologic model parameters from 
observations of hydraulic heads and temperatures. To so 
called ‘Bayesians’, inverse problems are problems of infer-
ence and this is the philosophy adopted in this work to cir-
cumvent the aforementioned concerns about poorly posed 
problems. 

Figure 4. Illustration of the four domains of linearity. Plotted on this figure are data d on the y axis, one model param-
eter on the x axis and a functional relationship given by some form of d = g(m). This relationship could be linear or 
non-linear. Also shown is a shaded ellipse representing, say the outer fringes of the ranges of model parameters and the 
observation errors. This ellipse is given by the model pdf. A plot of σ(m) on the figure represents the resulting posterior 
pdf of the model parameters as a result of combination of the prior model parameters, data, and functional relationship. 
(Reprinted from Mosegaard, K. and A. Tarantola, 2002, Probabilistic Approaches to Inverse Problems, International 
Handbook of Earthquake and Engineering Seismology, Vol 81A, 237-265, with permission of Elsevier).
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Much has been written on the subject of Bayesian infer-
ence and different points of view apply (for review see 
Ulrych et al., 2001). The reader will note that a “Full-
Bayesian “ approach signifies that the inference problem 
will consist of both primary parameter and hyperparameter 
estimation (Mohammad-Djafari, 1996; Woodbury and 
Rubin, 2000; Woodbury and Ulrych, 2000); Ulrych et al., 
2001). 

Bayesian inference supposes that an observer can define 
a prior probability-density function (pdf) for some random 
variable m. This pdf, p(m), can in principle, be defined on 
the basis of personal experience or judgment. Bayes’ rule 
(for example; Ulrych et al., 2001) quantifies how the prior 
pdf can be changed, or updated on the basis of measure-
ments. The updated prior pdf is then referred to as the 
‘posterior’ pdf. However, applications of Bayesian prob-
ability theory have been hampered by the precise meaning 
and interpretation of probabilities and controversy sur-
rounding the appropriate choice of prior pdfs. An orthodox 
view of probabilities dictates that frequencies measured 
in an experiment are equated to probabilities and ‘prior’ 
information is not allowed. An alternative viewpoint of 
probability, denoted as the Jaynes-Cox viewpoint by Jowitt 
(Jowitt, 1979), is one in which probabilities are equated 
with the degree of plausibility of a proposition and may 
have no frequency interpretation whatsoever. A necessary 
component of the Jaynes-Cox view is the ‘principle of 
maximum entropy’ (PME). This forces all observers who 
possess common information to produce consistent results 
(Woodbury and Ulrych, 1998) and replaces the need for 
subjective prior information in the Bayesian approach. 

Woodbury and Ulrych (1993), Woodbury et al. (1995) and 
Woodbury (1997; 2004) deal with the estimation of appro-
priate prior pdf’s for hydrogeologic applications. As shown 
by Woodbury and Ulrych (1993), p(m) may have the form 
of a multivariate-truncated exponential distribution. This 
pdf preserves the statistical independence of the param-
eters. That is, if no correlation is known beforehand the 
maximum entropy principle does not inject any correlation 
into the result. In this manner p(m) has the most freedom 
in assigning realizations of the process. It is important to 
note that the above approach (PME) of determining p(m) 
is the one which is the most uncommitted with respect to 
unknown information. 

Simply stated, Bayes’ rule is 

	 Posterior ∝ Likelihood × Prior 	

Consider a vector of observed data d*. If the conditional 
pdf of d* given m and some prior information I, is given by 
p(d*  m,I), then Bayes’ rule states that 

	 	 (5)

In the above, p(m|I) is the prior probability density of the 
model parameters, given some form of prior information, 

I, and p(d*|m, I) is the likelihood of observing d* given the 
model parameters and the prior information. This latter term 
is often referred to as a ‘direct’ as opposed to a subjective 
pdf. The term on the left hand side is called the posterior 
probability (after measurements are taken into account). 
Finally the term in the denominator is a constant that ensures 
the posterior is normalized, but is also the actual pdf of 
observing a set of data, with the uncertainty in the model 
parameters taken into account. 

In the sections below we will outline how the various con-
ditional pdfs and the prior information are defined and show 
how we can use Bayes’ rule to reconstruct a vector of model 
parameters from heads and temperature data. 

4.1. Notes on Empirical and Hierarchical Bayes

Returning to the previous section it is desirable to include 
in Bayes’ theorem some measure of the certainty we have 
in assigning the prior pdf; term (2) in the numerator of 
equation (5). In realistic cases more may be known about 
the form of the underlying pdf of the model (say, Gaussian) 
than its magnitude , or other parameters governing the 
pdf. The parameters that are part of the pdf but which are 
uncertain are called ‘hyperparameters’. It is also most often 
the case that the variance in the noise,  is unknown. 
Suppose that the form of the pdf is known, but the values 
of the ‘hyperparameters’ such as s, σd, σY, λ (prior mean 
values, noise standard deviation, model scale factor, inte-
gral scale, respectively) are not. In these cases it may be 
desirable to generate a series of updated <m> values for a 
wide range of covariances of different magnitudes. It would 
then remain a problem to choose which candidate solution 
is ‘best’ in some sense. 

Mohammad-Djafari (1996) also details many strategies 
with respect to this problem. One interesting technique, 
as detailed by Jaynes and others (for example Kitanidis, 
1986; Loredo, 1990; Rubin and Dagan, 1992; Woodbury 
and Rubin, 2000) treats the hyperparameters as ‘nuisance’ 
parameters that are “removed” from further consideration 
by integration over these parameters (marginalization). This 
entire process is referred to as ‘hierarchical Bayes’, and was 
the approach adopted by Jiang et al. (2004) for their fluid 
flow inversion of the Edwards Aquifer. 

Recently, Hou and Rubin (2005) derived a multivari-
ate truncated Gaussian pdf, based on the principle of 
minimum relative entropy (MRE). Then with a likelihood 
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function appropriate for the time-dependent Richard’s 
equation, they developed the posterior non-linear pdf 
based on Bayes theorem. Observational noise was treated 
as a hyperparameter and its effect was removed by mar-
ginalization. Moments of the resulting pdf were computed 
by Latin hypercube and Monte Carlo simulations. This 
above example is an excellent illustration of the combina-
tion of hierarchical Bayes and MRE for a non-linear, time 
dependent problem. 

In ‘empirical’ Bayes, the prior pdf is based on information 
contained in the input data. In these cases the truth of the 
prior may be considered irrelevant and is used to constrain 
the solution to a desired form. In empirical Bayes the hyper-
parameters themselves are estimated by an external criteria. 
Examples of both empirical and hierarchical Bayes are given 
later in this paper. 

5. Likelihood Function for Hydraulic 
Heads and Temperatures

Consider a numerical model for the hydraulic head predic-
tions in an aquifer. Equation (3) is now written in terms of a 
general non-linear model of the type 

	 	 (6)

for i = 1…N where N is the number of predicted ‘data’ points 
and x = (x, y, z). Here, f1(x) depends upon a series of param-
eters m which could consist of log-transmissivities, f lux 
conditions and the like. 

In the case where head measurements are taken, the asso-
ciated noise-corrupted case is 

	 	 (7)

Where the data  consist of a collection of discrete values 
of hydraulic heads and ei is the noise. 

The inverse problem consists of trying to reconstruct 
the parameter vector m, based on the observed data. As 
mentioned, the inverse problem is viewed in a Bayesian 
context; that is the inversion is viewed as a problem of 
inference. In order to solve the inference problem, we will 
use a Bayesian framework to ‘update’ a prior probability 
based on new information in the form of a data sample. 
To apply Bayes’ Theorem we need to determine a pdf for 
the noise which is consistent with our understanding about 
its nature. Note, that if one could predict the ‘true’ data, 
the difference between di and  is just ei. If it is assumed 
that the noise has a value e given prior information I, and 
if the second moment of the noise is known, s1, then an 
application of the maximum entropy principle leads to 

a Gaussian distribution for e (Bretthorst, 1988; Kapur, 
1989; Rubin, 2005): 

	 	 (8)

Here s1 is taken as the root mean square (RMS) noise level 
and (8) is the least informative prior probability density for 
the noise that is consistent with the given second moment. 
Note that the central limit theorem leads to the Gaussian 
form (Jaynes, 1983) even if the second-moment of the noise 
is not known. In this work (shown later), we treat the noise 
explicitly as an unknown in Bayes’ theorem and then proceed 
to integrate its effects out. 

Having a pdf for the noise and adopting the notation that ei 
is the noise at distance xi, one can apply the product rule of 
probability theory (assuming independence) to derive the pdf 
that one would obtain a set of noise values e1, e2,…eN): 

	 p(e1, e2,…eN 	 (9)

Kapur (1989) shows that (9) arises naturally in the multivariate 
case when entropy is maximized with correlations unknown. 

Consider another non-linear model for the temperatures, 
of the type 

	 dj = f2(xj, m)	

for an additional M points and the associated noise-corrupted 
case is 

	 	 (10)

Here, the model f2(xj, m) describes the physics of thermal 
transport and also depends on the same parameters m, as in 
f1(x, m); namely the transmissivity, boundary conditions and 
the like. In this case the noise variance is different than the 
first N values and is equal to . The data in this case are M 
observed values of temperature. 

In a similar line of reasoning with (9), the noise pdf now 
becomes 

	

×

	 (11)
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Again, if the ‘true’ model is known, the difference 
between the data and the model is described by the noise. 
Taking into account (7) and (10) the pdf that one obtains a 
set of data , given a set of parameters 
and prior information, is proportional to the likelihood 
function, L: 

	
×

	 (12)

or, 

	 (13)

A non-linear least-squares approach would begin by by 
minimizing the combined sums in the argument in the expo-
nential of (13). The equivalent maximum likelihood proce-
dure finds the parameter set that maximizes the logarithm 
of (13). Neither approach incorporates prior information 
about the model parameters. On the other hand, the Bayesian 
methodology readily lends itself to the problem of updating 
prior probabilities based on uncertain field measurements. 
For example, Kitanidis (1986) and Woodbury and Rubin 
(2000) outlined the Bayesian approach in which relevant 
prior information about the model is incorporated. In the 
current work we adopt a similar approach but following the 
suggestions of Jaynes and others (for example Kitanidis, 
1986; Loredo, 1990; Rubin and Dagan, 1992; Woodbury 
and Rubin, 2000; Hou and Rubin, 2005) we can treat the 
two noise variances ,  as ‘nuisance’ parameters that are 
“removed” from further consideration by integration over 
these parameters (marginalization). This point is discussed 
further below in section (8). 

6. The Linear Inverse and Application to 
Interpolation

In (12) above, the functions f1 and f2 are general in form. 
Here, (and just looking at one term) we investigate a special 
form for f1, namely linear in transformation. In matrix-vector 
form, the data and the model can be related through a linear 
kernel. Hence, 

	  v	 (14)

where 
• � d* N × 1 vector of observed values, the ‘data’; 
• � G N × M matrix of coefficients; 
• � m M × 1 vector of unknown-actual values of the data, the 

‘model’; 
• � v N × 1 vector of random observational errors, and 
G  is a kernel which transforms data in , the data space, 
to , the model space. 

Let us assume the following statistics on the model m and 
the noise vector  consistent with the Bayesian framework. 
The noise  is random with a mean of zero and a covariance 
Cd: 

	 	 (15)

	 	 (16)

If  represents measurement error, say independent and 
identically distributed (iid), then Cd is a diagonal matrix of 
variances of the observations, . The model m is random 
and characterized with a prior mean s, and covariance Cm, 
which physically represents the correlation or spatial vari-
ability of the model m. 

	 	 (17)

	 	 (18)

Cm is commonly represented by an exponential correlation 
structure 

	 	 (19)

where the usual definitions apply, in that  is the variance 
of say, 1n(K), λ is the integral scale and k and l refer to two 
points in question. 

If the combination of forward modeling and measurement 
errors are assumed Gaussian, then the probability of observ-
ing a set of data d* given the model parameters is (Tarantola, 
1987, p 68): 

	 	 (20)

Here N is the length of vector d*. If the prior distribution of 
the model is also assumed to be Gaussian then 
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   	(21)

Here, Tarantola (1987) illustrates the important result that 
if the forward modeling is linear, i.e., if d = Gm, and if the 
above likelihood and prior information are both Gaussian, 
then the posterior density of m is Gaussian. The resulting 
posterior pdf  is Gaussian: 

	 	 (22)

The first two moments of this pdf are given by Tarantola 
(1997, eq 1.93) 

	 	 (23)

	 	 (24)

where < m > and Cq are the expected value and covariance 
of the posterior pdf, respectively. These results are well 
known. 

6.1. Bayesian Resolution

For Gaussian priors and noise, the Bayes’ maximum a 
posterior solution (23) can also be written as (Tarantola, 
1987, p73): 

	 	 (25)

If we define a resolution operator mest = Rmtrue and subtract-
ing s from (25) yields 

	 	

It can be shown that in the above (Tarantola, 1987, p 200): 

	 	 (26)

Notice that if the posterior covariance of m is zero then 
R = I and we have perfect resolution, regardless of the prior. 
Note also that as prior information is introduced the resolu-
tion is essentially a variance ratio. In other words, resolution 
can described as: (Tarantola, 1987, p. 63): “First, a param-
eter is well resolved by the data set if its posterior error 
bar is much smaller than the prior one. More generally, if 
its posterior marginal probability density is significantly 

different from the prior one. If, for example, the prior and 
posterior densities are identical, the parameter is completely 
unresolved.” 

6.2. Linear Interpolation by Bayesian Update

Bayesian updating methods provide an alternate philoso-
phy to kriging for the characterization of input variables of 
a stochastic mathematical model. In this approach a priori 
values of statistical parameters (for instance, mean and cova-
riance) are assumed on subjective grounds or by analysis of 
a data base from a geologically similar area. As measure-
ments become available during site investigations ‘updated’ 
estimates of these parameters are generated. 

The Bayesian interpolation scheme naturally follows from 
the above section on Bayes theorem and the reader is referred 
to Woodbury (1989) for further details. Let us assume that 
measurements of a stochastic-random variable m, are made 
at N locations in a discretized flow domain. The problem is 
to interpolate the N measured values to M − N other points 
and closely reproduce the data points themselves at the mea-
surement locations. Therefore, the N measurements of the 
variable are used to estimate M values of m by linear inver-
sion. Here, the N measurements of the variable form a vector 
d* which is referred to as the observed ‘data’. The M values 
of m are the ‘model’. The data are mathematically formed 
as linear combinations of the model and random noise. In 
this case, G is a kernel which transforms data in ℜN, the 
data space, to ℜM, the model space, and consists of 1’s and 
0’s. Suppose there are i = 1,…… N measurement points and 
j = 1…… M interpolated points, where N << M. Where the 
i′th measurement point corresponds to an interpolated point, 
Gij = 1, otherwise Gij is zero. 

Applications of the Bayesian updating approach for 
interpolating spatial data can be found in Kennedy and 
Woodbury (2002, 2005). In the latter study, Bayesian 
updating was successfully used to generate the heteroge-
neous log-transmissivity field for a vast area of Manitoba’s 
Carbonate Aquifer from geostatistics of the underlying 
data. The dataset of transmissivity was compiled from 
measurements from formal pump tests but the majority was 
estimated from numerous, but highly uncertain specific 
capacity tests. Even with such a variable quality dataset, 
Bayesian updating was successfully used to generate the 
transmissivity field and subsequent hydraulic conductiv-
ity field for the Carbonate Aquifer. Without any further 
adjustments in this hydraulic conductivity, the model was 
successfully calibrated. However, for the deeper Sandstone 
Aquifer, where the data were clustered in an eastern 
freshwater region, the Bayesian Updating method simply 
assigned a smooth field equal to its prior mean. 
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7. Empirical Bayes and Hyperparameter 
Estimation by ABIC

As mentioned,Cm is often represented with an exponential 
autocovariance and can play a crucial role in determining an 
inverse solution. However, the actual statistical parameters 
embedded into the prior pdf, such as the mean s, the variance 

 and the integral scale λ may not be well know, and may 
be difficult to estimate. The idea behind the empirical Bayes 
approach is that the prior is based on information contained 
in the input data. As Ulrych et al. (2001) discuss, in this case, 
the ‘truth’ of the prior may be considered irrelevant. It is used 
to constrain the solution to a form that is a priori known to 
be the desired one. The empirical Bayes approach has been 
shown to provide many useful solutions in geophysics. For 
example, the computation of a high resolution DFT (Sacchi 
et al., 1998) and the compensation of aperture effects in com-
puting the Radon transform (Sacchi and Ulrych , 1995). The 
Japanese literature is rich in many successful applications 
(For example, Mitsuhata et al., 2001). 

Note that the term in the denominator of (5) represents the 
actual pdf of observing a set of data, with the uncertainty in 
the model parameters taken into account. In the empirical 
Bayes approach it also depends on any hyperparameters that 
may be embedded into the prior, for example: 

	 (27)

(if three hyperparameters are present). Suppose we have 
two assumptions related to the prior information, say that 

; we would naturally select I1 over I2 as a 
more appropriate candidate for the prior information. 

The particular approach that is described is based on 
the work of Akaike (1980) whose contributions have had 
a huge influence on the field of probability and statistics, 
and is based on the AIC and the ABIC criteria. A much 
more advanced presentation can be found in Matsuoka and 
Ulrych (1986). In essence, the AIC is a criterion based on 
the Kullback-Leibler information measure. The minimum 
AIC, AIC(k)|min, is the optimal compromise between errors 
in parameter estimation and errors in fitting of the model. 
For normally distributed errors 

	 	 (28)

where  is the residual sum of squares or, in our case, the 
variance of the residuals that are computed as the difference 
between the actual and the computed potentials and k is the 
number of free parameters. 

The first term in the above expression is related to the 
sample variance and decreases with the number of param-

eters. The second is related to the fact that the error of fitting 
the parameters increase with their number. The minimum of 
the AIC allows the computation of the appropriate number of 
parameters, a particularly difficult task in problems such as 
fitting of time series models. The ABIC is similar to the AIC 
in form and is computed in terms of the Bayesian likelihood 
defined in equation (5) 

	 	 (29)

Here, Nh is the number of hyperparameters in the minimiza-
tion and the hyperparameters are evaluated at the minimum 
value of the ABIC. In this way, p(d*|I) is maximized for a 
given set of hyperparameters. 

For the linear inverse problem with Gaussian priors and 
likelihood, Mitsuhata (2004) showed that: 

	
×

	 (30)

Where Cdp = GCmGT + Cd. 
For the simulations in this paper, it is assumed that there 

are two principle hyperparameters of interest. The first 
is , the noise in the observed data, such that Cd = 
I. Second, there is a scale parameter for the correlation 
matrix; i.e., Cc  = Cm. This means that the form of the prior 
model covariance is known, but not the hyperparameter . 
Embedded within the correlation matrix Cc is the hyperpa-
rameter, λ (see equation 19) the integral scale. In Woodbury 
and Ferguson (2006), determination of this quantity was not 
carried out, and they chose instead to fix this quantity in any 
one analysis and then select the model set that minimizes the 
ABIC from various inversion runs. 

Using (30) the ABIC is 

	 (31)

assuming two hyperparameters, 2Nh = 4. In the above, terms 
two and three both depend on  and . The procedure for 
determining the ABIC is as follows: 
• � input a starting value for  and . 
• � form Cdp and compute its determinant. 
• � form  and minimize the ABIC for 

 using a Golden search method holding  fixed. 
• � compute <m>and estimate  from the misfit between 

computed and observed temperatures. 
• � if  converges to a stipulated tolerance then step out of 

the loop, otherwise go back to (2) above 
• � the iterations are complete and then compute the final 

model, covariances, the ABIC, resolution and so on. 
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This procedure accounts for the uncertainty in  in any 
one iteration by including its variablity in terms two and 
three in (31). Although a determinant of the matrix Cdp is 
required, this is only of the order of the number of data points 
and for under-determined inverse problems is usually much 
smaller than the number of model parameters. 

7.1. Application of the Empirical Bayes to Paleoclimate 
Studies

A challenging issue in physical sciences is the recovery 
of past ground surface temperature (GST) changes from 
temperature measurements taken in boreholes. Note that 
one-dimensional heat conduction in a homogeneous medium 
can be represented in a discrete form as: d* = Gm + e where, 
m is an N length vector of ground surface temperatures, 
mN + 1 = v0 is a time-invariant average-surface temperature 
and mN + 2 = a is the geothermal gradient. The matrix G 
contains a sub-matrix H which are the data kernels from 
the discretization and columns of 1’s and zi values that are 
appended and correspond to the N + 1, N + 2 locations in 
m. The vector d* contains the actual downhole tempera-
ture measurements at various locations zi, i = 1, M  (see 
Woodbury and Ferguson, 2006; Kennedy et al., 2000). e is 
a vector of random measurement error. An example inver-
sion based on the ABIC solution comes from Woodbury and 
Ferguson (2006). In this application the ABIC technique is 
used to reconstruct past climate based on downhole ther-
mal measurements. The reconstructed GST record shows 
(Figure 5)  warming between 1800 and 1949 of approxi-
mately 0.6° K, with the maximum rate of warming occurring 
between 1900 and 1949. During the middle of the twentieth 
century, there is very minor cooling in the reconstructed 
GST record (1950’s and 1970’s) and then a sharp rise at 
the end of the century to about 1.0° K. These results are 
consistent with other researchers in the climate change area 
and with instrumental records in the latter half on the 20th 
century (Beltrami et al., 2003). 

8. Hierarchical Bayesian Approach to 
Linear Inversion

Recall the solution to Bayes’ theorem for the case of 
Gaussian priors and a linear functional transformation, (22) 
noting that, of course, 

	 	 (32)

But consider that we have a set of hyperparameters (s, , 
λ,  = u), then 

	 	 (33)

Changing the order of integration results in 

	 	 (34)

However, the term within the bracket is equal to (23) and 
therefore (32) becomes 

	 (35)

If the data errors are iid then 

	(36)

Similarly the covariance, Cq is 

    	 (37)

Since <m> and Cq are functions of u (eqn. 23) , the integra-
tion of (36) and (37) involving the hyperparameters must be 
carried out through some form of numerical integration. 

The above integrations can be accomplished using the 
Monte Carlo method and the concept of importance sam-
pling. The integrals posed by (36) and (37) are evaluated by 
generating a series of random model vectors using a multi-
variate random number generator with p(u) as the pdf. The 
reader will note that while it is conceptually appealing to 
evaluate (36) and (37), this approach is restricted to a small 
number of hyperparameters due to computer storage and 
computational overheads. The fundamental problem then is 
how to specify, in a logical and consistent manner, the prior 
pdfs for these hyperparameters. This subject is discussed 
more fully in Woodbury and Ulrych (2000). See also Hou 
and Rubin (2005) for an example of hierarchical Bayes with 
Monte Carlo simulations. 

9. Steady-State Groundwater and Thermal 
Inversion

The basic methodology that we will be following with 
respect to groundwater inversion is through a stochastic-lin-
earized approach detailed in Woodbury and Ulrych (2000) 
and Jiang et al., (2004). The essence of their approach is 
presented here (see also Hoeksema and Kitanidis, 1984). The 
hydraulic head φ and the aquifer transmissivity T satisfy the 
following partial differential equation in terms of the log-
transmissivity, Y = 1n(T). 

	 	 (38)

Fig 5Fig 5
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The above equation is separated into deterministic and 
stochastic terms. Letting φ = H + h and Y = F + f, where 
H is the expected value of the hydraulic head field, h is a 
zero-mean head perturbation; F is the expected Y value 
which is not necessarily a constant and f is a zero-mean 
log-transmissivity perturbation. After some manipulation, 
the hydraulic head field φ becomes the sum of two separate 
linearly superimposed solutions, one related to the solution 
to the mean head, H

	 	 (39)

and the other to the solution of the perturbation, h 

	 	 (40)

Equation (40) can be solved by the finite element method 
and takes the form 

	 	 (41)

where A, B, and C are constant matrices, h is a vector of non-
boundary hydraulic head perturbations, and hB is a vector 
of boundary node head perturbations. These are considered 
to be known and are typically set to zero. Solving for the 

hydraulic head perturbations at measurement points, and 
after some manipulation yields: 

	 	 (42)

where v is a vector of hydraulic heads at discrete points, H is a 
vector of conditioned hydraulic heads (solution to [39]), s is a 
vector of prior conditional-expected ln(T) and m is the model 
vector, the unknown ln(T) in the aquifer. The matrix D is a 
simple Boolean matrix (consists of 1’s and 0’s) that filters out 
the computed values of heads at points other than those cor-
responding to measurement points. When the left hand side v 
is replaced with the actual values of hydraulic heads observed, 
the system (42) has the same form as d* = Gm. 

The temperature perturbation is viewed as mainly being 
caused by groundwater velocity variations, which result 
from ln(T) fluctuations. Woodbury (1998) and Jiang and 
Woodbury (2006) developed the linearized formulation 
between ln(T) and the temperature perturbations. According 
to Darcy’s law, the components of the specific discharge are 
formulated as 

	 	

and 

	 	

In terms of transmissivity, 

	 	

Here B is the aquifer thickness. 
Since Y = F + f and a = 1/B . Hence, 

	 	

If we define 

	 	

However, φ = H + h and linearizing (neglecting products 
of perturbation): 

	 	

For simplicity, we will work with one dimension for illus-
tration. For the steady-state flow of heat in an aquifer, 

	 	

Figure 5. Average of 221 ground surface temperature (GST) recon-
structions over Canada. See legend for description of the various 
lines. See also Woodbury and Ferguson(2006)
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Let the temperature field be decomposed into the linear 
superposition of a temperature field produced from a mean 
solution and a perturbation, θ = T + ζ and defining ρfcf = c, 
then after neglecting the products of perturbations and tak-
ing expected values, 

	 	

and 

	 	

where 

	 	

Applying the finite element approach in two dimensions yields 

	 	 (43)

where M is a global stiffness matrix, N is a constant matrix 
related to conditional-expected temperatures, ∅ is a constant 
matrix related to mean head and mean temperature, ζ, h and 
f are vectors of perturbation temperatures, heads and ln T, 
respectively. In the next section, it will be shown how both 
groundwater flow and heat transport can be used either col-
lectively, or singularly to invert for log-conductivity. 

10. Simultaneous Groundwater and 
Thermal Inversion

This section presents a brief condensation of the work 
of Jiang and Woodbury (2006). The joint use of hydraulic 
head and temperature measurements in the Bayesian update 
procedure can be accomplished in a single step. Finite ele-
ment solutions to the stochastic ground-water and thermal 
equations can be combinedinto the following system, 

	 (44)

where M is a global stiffness matrix, N is a constant matrix 
related to conditional-expected temperature, ∅ is a constant 
matrix related to mean head and mean temperature in the 
aquifer. This equation (44) and that of (42) can be combined 
into a single block system which is the same form as d = Gm. 
See Jiang and Woodbury (2006). 

11. Example Applications

11.1. Bayes Update, Upscaling and Groundwater Inversion

The Bayesian inversion method has been applied to one 
of the most strategically important aquifers in the United 
States; the Edwards Aquifer in south-central Texas (Figure 
6;  see Jiang et al., 2004). For a more complete discussion 
on all the simulations presented here the reader is referred 
to Painter et al. (2006). A treatise on the Edwards Aquifer, 
including more recent data, and the simulations presented 
here (and considering the karst conduits present), is pre-
sented in Lindgren et al. (2004). 

The Edwards Aquifer covers an area of about 10,000 km2 
is virtually the sole source of drinking water for the city of 
San Antonio. Well-developed secondary porosity and per-
meability has formed within the aquifer, which is a karstic 
limestone. Recharge to the aquifer comes mainly from 
stream losses in the outcrop areas of the Edwards Aquifer. 
Discharge occurs by pumping wells and at major springs, 
such as Comal, and these can be at great distances from the 
recharge areas (240 km). 

Inverse simulations of this aquifer, using any method, 
would be a daunting task. As Painter et al. (2006) note the 
aquifer is highly heterogeneous, with a variance in ln(K) 
of 6.4 in the confined areas and 9.7 in the thinner outcrop 
(recharge) zone. The hydraulic conductivities varying by 
more than six orders of magnitude through the study area. 

Painter et al. (2006) outlined in their paper a comparison of 
three methods of estimating transmissivity in highly hetero-
geneous aquifers (see Figure 7).  In method one, simple krig-
ing is used to interpolate transmissivity data over the aquifer 
region. These data consist primarily of single-well specific 
capacity tests. The reader should note here that simple kriging 
and the Baysian updating method (should and do) generate 
similar interpolated fields. The main difference is that krig-
ing will honor the actual observation values while Bayesian 
updating may not. In method two, an upscaling/cokriging 
approach removed most of the systematic bias as in indicated 
in method one. The essence of the upscaling procedure is 
detailed in Painter et al. (2006) and is also shown on Figure 
8.  Geostatistics of local scale specific capacity tests are first 
obtained and then realizations of this field are generated in 
each cell block of a numerical grid. Grid blocks were success-
fully removed from simulated conductivity fields and effective 
transmissivity values were calculated. These simulated values 
were then analyzed statistically and through cokriging these 
effective values were conditioned on the local-scale values. 
Finally, in method three, the Bayesian inversion further con-
ditioned and reduced the mean residuals by more than a factor 
of ten to about 2.5% of the total head variation in the aquifer. 

Fig 6Fig 6

Fig 7Fig 7

Fig 8Fig 8
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This agreement demonstrates the utility of the Bayesian meth-
odology on a highly heterogeneous aquifer. Figure 9  from 
Painter et al. (2006) shows the value for hydraulic conductivity 
in each grid cell as produced by a upscaling and cokriging, 
and by Bayesian updating. Locations of major springs are 
indicated. Note that the two plots have different grey scales. 
Again, Figure 7 shows that this latter hydraulic conductivity 
field produced excellent results. 

11.2. Example Generic Inversions

Jiang and Woodbury (2006) applied the procedure to a 
series of test cases, in which the actual values of ln (T), 
hydraulic head and temperature are generated with known 
values of stochastic parameters. Samples (50 and 100 points) 
were randomly taken from the fictitious aquifer. Basic sta-
tistics of the sampled data were used to derive pdfs of the 
hyperparameters (Figure 10).  

Jiang and Woodbury (2006) show that joint use of ln (T), 
head and temperature data in the procedure aids the refine-
ment of ln (T) estimation for sy (standard deviation in ln (T)) 
of up to 2.0. Also, conjunctive use of ln (T) and tempera-
ture measurements (in absence of head data) is showed to 
improve ln (T) estimation (even for sy up to 2) in comparison 
to the updated ln (T) field conditioned on ln (T) alone. The 
resolution of reconstructed ln (T) field based on temperature 
measurements decreases as the variation of the true ln (T) 
field increases (Figure 11).  These results suggest that low-
cost temperature measurements are a promising data source 

Fig 9Fig 9

Fig 10Fig 10

Fig 11Fig 11

Figure 6. Edwards Aquifer region, courtesy of Edwards Aquifer Authority, 2002. Courtesy of the Edwards Aquifer 
Authority, 2007.

Figure 7. Computed versus observed hydraulic heads for various 
hydraulic conductivity models of the aquifer. After Painter, S., Wood-
bury, A. D. and Y. Jiang, 2006, Transmissivity Estimation for Highly 
Heterogeneous Aquifers: Comparison of Three Methods Applied to 
the Edwards Aquifer, Hydrogeology Journal, in press 2007, with kind 
permission of Springer Science and Business Media.
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for site characterization, which can be accomplished through 
the full-Bayesian methodology. 

12. Discussion and Conclusions

Incorporating temperatures into a modeling effort can take 
many forms, and both temperatures and hydrologic data can 
be combined qualitatively and quantitatively. In the latter 
category, the least formal would be in calibration, followed 
by parameter estimation and finally by full-inversion. This 
paper is about a Bayesian approach to the solution of the 
joint-groundwater and thermal inverse problem. Along these 
lines, a list of suggested references is provided, along with 
suitable mentioning of benchmark papers, monographs and 
textbooks on the subject. 

The technique described in this paper revolves around 
shallow, low-temperature groundwater flow systems; and 
that entails steady 2-D fluid and heat flow. The methodology 
utilizes a perturbation technique to linearize and then couple 
the governing equations. For the perturbation approach to 
work, fluid properties must be decoupled from the tempera-
ture field. Once this is done, and through the finite element 
method, a block-linear system of data, kernel, and model 
parameters is developed. The assumptions related to viscos-
ity and density may not be universally applicable. 

Two end-member and one set of joint inverse examples are 
presented. The two end-members are pure heat conduction 

(an application of Bayesian inversion to Paleoclimate recon-
structions), and groundwater problem which is an example 
application to the Edwards Aquifer in Texas. Lastly, generic 
examples of combinations of transmissivity, hydraulic head 
and temperatures are presented. 

The work by Jiang et al. (2004) is important in that it 
shows that the perturbation and linearized approach seems to 
work well over large ranges of variability in log transmissiv-
ity. Jiang et al. (2004) detail these simulations and also out-
line under what conditions the approach would likely break 
down. Painter et al. (2006) and Jiang and Woodbury (2006) 
also confirm and reenforce the idea that it may be possible 
to effectively “image” aquifers and provide the kinds of 
details necessary for mass transport calculations. Finally, 
it shows that it may also be possible to combine various 
levels and combinations of hydraulic and thermal data. The 
thermal part of the method has not been tested in a field site 
though, and a logical extension is to apply the technique in Figure 8. Illustration of the cokriging and upscaling procedure 

for the Edwards Aquifer. After Painter, S., Woodbury, A. D. and Y. 
Jiang, 2006, Transmissivity Estimation for Highly Heterogeneous Aqui-
fers: Comparison of Three Methods Applied to the Edwards Aquifer, 
Hydrogeology Journal, in press 2007, with kind permission of Springer 
Science and Business Media.

Figure 9. Expected value for hydraulic conductivity in each grid cell 
as produced by a upscaling and cokriging, and by Bayesian updating. 
The hydraulic conductivity from upscaling and cokriging was used 
to set the prior distribution in the Bayesian updating, as described 
in the text. Locations of major springs are indicated. Note that the 
two plots have different color scales. After Painter, S., Woodbury, A. 
D. and Y. Jiang, 2006, Transmissivity Estimation for Highly Heteroge-
neous Aquifers: Comparison of Three Methods Applied to the Edwards 
Aquifer, Hydrogeology Journal, in press 2007, with kind permission of 
Springer Science and Business Media.
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a case-study. Other extensions are possible and those are to 
peruse 3-D examples, possibly with an upscaling procedure 
proposed by Painter et al. (2006). 

As mentioned by Anderson (2005) “investigators are 
just starting to explore the full potential for using tem-
perature measurements in a wide variety of hydrogeologi-
cal settings. The utility of temperature measurements in 
estimating fluxes in ground water-stream systems is now 
well established”. Clearly, future developments in hydro-
geology will see amalgamations of techniques that depend 
on the acquisition of data from many different sources. 
Temperatures are one of those “new/old” data sets that will 
become commonly used, and will be seen as another tool in 
the practitioner’s toolbox. New developments in dataloggers 
and data acquisition are very encouraging and can allow for 
long-term collection of many data points. Likely new devel-
opments in long-term battery life will allow for an order of 

magnitude increase in data collection. Miniaturization of 
devices will continue and absolute measurement accuracy 
will also improve. But where does this leave us? The tech-
niques and modeling strategies must follow, and develop-
ments such as those by Bravo et al. (2002) are encouraging. 
These authors incorporated transient temperature data in 
their assessment of inflows in the Wilton, Wisconsin wet-
lands area. They showed that even when hydraulic head data 
alone are insufficient to constrain a calibration,addition of 
temperature and hydraulic information did in fact allow 
for convergence in a parameter estimation problem. This 
methodology should offer a wide benefit to others working 
in groundwater-wetland interactions. Such subjects will 
become increasing important as more hydrogeologists turn 
their attention to bio-chemical processes in Riparian and 
other zones. For example, a recent paper by Conant (2004) 
shows the utility of temperatures in delineating flows in 

Figure 10. True ln (T) field generated by multivariate Gaussian generator. After Jiang and Woodbury, (2006)
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stream hyporheric zones. Finally, the combination of hier-
archical Bayes and MRE as developed by Hou and Rubin 
(2005) looks most promising to deal with general problems 
involving time-dependent data. 
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This chapter first explains the need for high-resolution imaging techniques to 
characterize the subsurface, and then discusses difficulties of traditional charac-­
terization approaches, followed by a presentation of recent advances in hydrologic/
geophysical characterization of the subsurface: information fusion based on active 
tomographic survey concepts for field scale problems. It finally concludes with 
examples and propositions regarding how to collect and analyze data intelligently by 
exploiting natural recurrent events as energy sources for basin-­scale passive tomo-­
graphic surveys. The development of information fusion technologies that integrate 
traditional point measurements and active/passive hydrogeophysical tomographic 
surveys, as well as advances in sensor, computing, and information technologies 
may ultimately advance our capability of characterizing groundwater basins to 
achieve resolution far beyond the feat of current science and technology. 

1. INTRODUCTION

Spatial and temporal variations of subsurface processes 
are the rule rather than the exception. For instance, inflow 
(infiltration, recharge, seepage, regional inflows, etc.) and 
outflow (evaporation, seepage, regional outflows, etc.) are 
known to be sporadic and highly localized. The variability 
is controlled in part by the characteristics of basins, which 

are also heterogeneous at various scales. Currently, we lack 
the capability to economically obtain three-­dimensional 
(3-­D) subsurface information that portrays detailed distribu-­
tions of water and related properties, as well as the variable 
spatial and temporal processes. Such 3-­D information is 
necessary to improve our ability to understand and manage 
groundwater resources that are fundamental to the quality 
and viability of human life on Earth. 

Existing monitoring and characterization technologies 
can cover only a small fraction of the subsurface, and the 
resultant information cannot be used to reliably evaluate 
current and future drought and other water-­related condi-­
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tions. Subsurface sciences need a breakthrough approach 
or “instrument” to greatly expand and deepen our ability to 
“see into the Earth.” As its key scientific focus, this chapter 
will present recent successes of data fusion technologies 
for characterizing and monitoring the subsurface at field 
scales, and then present a vision and ambition to take on the 
challenge of developing a system for subsurface imaging at 
the basin scale. Here, field scale refers to areas of tens to 
hundreds of square meters, and those over hundreds to tens 
of thousands of square meters are considered to be basin 
scale (e.g., a groundwater basin). 

2. DIFFICULTIES OF TRADITIONAL APPROACHES

Quantitative analysis and prediction of subsurface fluid 
flow and solute transport requires the use of appropriate 
mathematical models that represent subsurface processes. 
These models generally rely on partial differential equa-­
tions (PDE) that express hydrologic, physical, and chemical 
principles of natural phenomena in the subsurface, extended 
over space and time. Hereafter, a forward problem (i.e., pre-­
diction) refers to solving PDEs for the system states in space 
and time, with known properties and given initial and bound-­
ary conditions. An inverse problem (i.e., characterization, 
parameter identification or estimation) refers to determining 
values of the system’s properties from information about 
excitations to the subsurface and observations (monitoring) 
of responses of state variables to those excitations. 

High-­resolution prediction demands high-­resolution 
information about the system’s properties and initial and 
boundary conditions. Similarly, high-­resolution inverse 
modeling requires detailed information about excitations 
to and responses of the system, as well as any pre-­existing 
information on system properties and states. The inherent 
spatial variation or 3-­D heterogeneity of properties at vari-­
ous scales (e.g., pores, lenses, strata, formations, and basins) 
greatly compounds the difficulties of site characterization 
and prediction. Traditional in-­situ borehole characterization 
and monitoring methods [i.e., core samples, slug tests, flow 
meter tests, aquifer tests, multi-­level samplers, wells, etc. see 
Domenico and Schwartz, 1990] are invasive and too costly 
to emplace in large numbers and significant depths through-­
out a basin. More critically, the “representativeness” of the 
properties estimated from these methods has recently been 
questioned by Butler [1997], Beckie and Harvey [2002], Wu 
et al. [2005], and others. 

Similarly, traditional inverse modeling of groundwa-­
ter models with distributed parameters based on sparsely 
observed responses over a large basin (or inverse modeling 
for short) fails to provide reliable information about the 
basin characteristics. Difficulties in collecting necessary 

and sufficient information that makes the inverse problem 
well posed are the sole cause of the failure. To understand 
the difficulties, we will consider the governing PDE for 
groundwater flow in aquifers [Bear, 1972]:

	 	 (1)

where h(x,t) is the hydraulic head which is a function of the 
position vector, x, and time, t; K(x) is the spatially varying 
hydraulic conductivity field; Ss (x) is the spatially varying 
specific storage field of the aquifer. As mentioned previously, 
a forward model solves the equation with known hydraulic 
conductivity and specific storage property fields for the 
hydraulic head in time and space, given initial and boundary 
conditions. A lack of complete information of the property 
fields, and initial and boundary conditions, makes the for-­
ward problem ill posed; many possible solutions exist, imply-­
ing that the predictions of groundwater state are uncertain.

For inverse modeling, equation (1) can be rewritten as a 
corresponding inverse PDE:

	 	 (2)

The unknowns in equation (2) are the hydraulic conductivity 
and the specific storage field, as opposed to the hydraulic head 
field as in equation (1). Also, notice that the aim of inverse 
modeling is to correctly determine these hydraulic properties. 
Prerequisites for a unique solution to equation (2) are: (i) the 
hydraulic heads everywhere in the solution domain for at least 
at two time levels, t and t'; and (ii) boundary K values. Then, 
we have a system of equations for K(x) and Ss (x):

	 (3)

According to system (3), the specific storage can be esti-­
mated only if the net inflow to a volume of the medium 
and the head change over time at the volume are known. 
Therefore, estimation of Ss at a given location, x, requires 
an observable temporal change in the hydraulic head at the 
location. These requirements are called necessary and suf-­
ficient conditions for the inversion of equation (2) [Yeh and 
Šimůnek, 2002]. If these conditions are specified, the inverse 
problem is mathematically well posed; it has a unique solu-­
tion, and the aquifer can be fully characterized. Otherwise, 
the problem is ill posed and characterization of the aquifer is 
uncertain. Note that the above statements implicitly assume 
that Darcy’s law is valid and the scales of the hydraulic 
head and K(x) and Ss (x) are consistent with the Darcian 
continuum assumption [Bear, 1972]. 
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Specification of these necessary and sufficient conditions 
is possible in well-­controlled laboratory and field experi-­
ments, but unlikely in any field-­scale problem. Without fully 
specifying these conditions, current inverse modeling efforts 
of basin-­scale aquifers have become so called model calibra-­
tion or history matching exercises that aim at fitting limited 
observed system responses. History matching, however, does 
not assure parameter correctness, and it thereby often yields 
highly subjective aquifer characterizations. Because of this 
uncertainty in aquifer characterization, as well as our inabil-­
ity to determine temporally and spatially varying boundary 
conditions (e.g., inflow and outflow) of the aquifers, many 
grossly misleading predictions of groundwater flow and con-­
taminant migration have been made. Our ability to validate 
a subsurface model as such has been seriously questioned 
[see Konikow and Bredehoeft, 1992; Oreskes et al., 1994; 
Bredehoeft, 2003], as has our ability to predict f low and 
solute migration in aquifers. Groundwater resources manage-­
ment virtually becomes a matter of political debate without 
much scientific basis. 

Undoubtedly, reducing uncertainty in groundwater 
resources management is our ultimate goal. It is, however, 
beyond the scope of this chapter. Instead, we will focus 
our discussion on the development of a new generation of 
technologies that can improve or perhaps revolutionize our 
characterization of aquifer properties over field and basin 
scales. Development of these technologies is a necessary step 
toward our final goal of reducing uncertainty in groundwater 
resources management.

3. DATA FUSION FOR FIELD-­SCALE PROBLEMS

3.1. Fusion of the Same Types of Information

Recently, viable alternatives to the traditional in-­situ bore-­
hole characterization and inverse modeling approaches have 
emerged, in which data from the traditional characterization 
and monitoring methods are supplemented with coverage 
of greater density from indirect, minimally-­invasive hydro-­
logic and geophysical tomographic surveys. These tomo-­
graphic surveys excite the subsurface at different locations 
and simultaneously monitor responses of the subsurface at a 
large number of other locations. These surveys thereby yield 
many pieces of partially “overlapped” information, which are 
used to constrain interpretation of data collected from each 
excitation. As a result, the final result is less uncertain. In 
fact, these tomographic surveys are analogous to CAT scan 
technology which produces a 3-­D picture of an object that 
is more detailed than a standard X-­ray, and which has been 
widely used in medical sciences to “see” into human bodies 
non-­invasively. 

To illustrate the concept and principle of the tomographic 
survey, consider a composite geologic medium that consists 
of two layers; each layer has a different hydraulic conduc-­
tivity value, K1 and K2, and the same thickness. Suppose 
the hydraulic conductivity values of the two layers are the 
unknowns to be determined. If a steady-­state flow experi-­
ment is conducted in which water f lows in the direction 
parallel to the layering and if the boundary heads and the 
total flux are measured, an effective hydraulic conductivity 
of the composite medium can be determined. It is an arith-­
metic mean of an infinite number of possible pairs of K1 and 
K2 values (i.e., Ka = 0.5́ (K1 + K2)). If the flow experiment 
is repeated again but allows the flow to enter perpendicular 
to bedding, the effective hydraulic conductivity becomes the 
harmonic mean of an infinite number of possible pairs of K1 
and K2 values (i.e., Kh = K1 K2/ (K1 + K2)). If now we inte-­
grate or “fuse” the information from these two experiments 
(i.e., solve the arithmetic mean and the harmonic mean equa-­
tions, simultaneously), the number of possible pairs of K1 
and K2 values becomes only two. This rudimentary example 
manifests that a tomographic survey—which collects data 
intelligently and analyzes data smartly—indeed provides 
additional information for an inverse problem being better 
posed, and hence reduces the number of possible solutions 
to the problem. However, both hydrologic and geophysical 
tomographic surveys are subject to the same noise and mea-­
surement errors issues that any traditional hydraulic tests or 
geophysical surveys confront.

In the following sections, we will discuss the tomographic 
survey concept applied to hydrologic and geophysical char-­
acterization of the subsurface at field scales. These tomo-­
graphic surveys rely on artificial stimuli (e.g., pumping or 
injection of water or air, injection of electric current, etc.) 
which can be well-­characterized but have limited area cov-­
erage. In hydrology, hydraulic, pneumatic as well as tracer 
tomography surveys have been developed recently. Likewise, 
seismic, acoustic, electromagnetic (EM) and other tomog-­
raphy surveys have emerged in geophysics. Our discussion, 
however, will focus on hydraulic tomography and electri-­
cal resistivity tomography only, and then a discussion will 
follow regarding the strengths and weaknesses of general 
hydrologic and geophysical tomography.

3.1.1. Hydraulic tomography (HT). Gottlieb and Dietrich 
[1995]; Renshaw [1996]; Vasco et al. [2000], Yeh and Liu, 
[2000]; Bohling et al. [2002]; McDermott et al. [2003]; 
Brauchler et al., 2003; Zhu and Yeh [2005 and 2006]; and 
others have developed new methods for aquifer character-­
ization, i.e., hydraulic tomography. A simple example of HT 
involves the installation of at least two wells in an aquifer. 
Using packers, each well is then partitioned into several 
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intervals along its depth. A sequential aquifer test is sub-­
sequently undertaken. During this test, water is injected or 
withdrawn (a pressure excitation) at a selected interval in a 
given well, and pressure responses of the subsurface are then 
monitored at other intervals at this well and the other well(s). 
This test thus produces a set of pressure excitation/response 
data of the subsurface. Afterward, the pump is moved to 
another interval and the test is repeated to collect another 
set of data. This test is applied to all of the intervals at all of 
the wells. The data sets from all the tests are then processed 
by an inverse model to estimate the spatial distribution of 
hydraulic properties of the aquifer. In other words, a set of 
pressure excitation/response data in HT is tantamount to an 
image of subsurface heterogeneity due to light emitting from 
a given location. Repetition of the test at different intervals 
merely takes many of these snapshots of the heterogeneity in 
the aquifer from different angles and directions. Synthesiz-­
ing all of the snapshots thus maps a 3-­D hydraulic property 
distribution of the tested volume. 

Using laboratory sandbox experiments and the HT algo-­
rithm by Yeh and Liu [2000], Liu et al. [2002] and Illman et 
al. [2006] demonstrated that steady-­state HT is an effective 
technique for depicting an aquifer’s heterogeneity with a 
limited number of invasive observations. Recently, Zhu and 
Yeh [2005] extended the analysis algorithm for steady-­state 
HT to transient HT, and thus both hydraulic conductivity and 
specific storage fields of aquifers can be estimated. Since 
great computational resources are required for analyzing 
data from transient HT, Zhu and Yeh [2006] adapted a tem-­
poral moment approach [Harvey and Gorelick, 1995a; Li et. 
al., 2005] to expedite the analysis. 

Although the capabilities of transient HT remains to be 
fully assessed in the field, results from sand box experi-­
ments by Liu et al. [2007] are encouraging. Not only did 
tomography identify the pattern of the hydraulic conductiv-­
ity heterogeneity, but also the variation of specific storage 
values in the sandbox. More importantly, they showed that 
using the identified spatially varying hydraulic conductivity 
and specific storage fields, they can predict temporal and 
spatial evolutions of the drawdown induced by independent 
hydraulic tests. Likewise, a recent application of HT to a well 
field at Montalto Uffugo Scalo, Italy, produced an estimated 
transimssivity field that is deemed consistent with the geol-­
ogy of the site [Straface et al., 2006].

HT can be used to image fracture connectivity in frac-­
tured aquifers as well. Figure 1 depicts a synthetic frac-­
tured aquifer in which two slanted boreholes intercept two 
orthogonal fractures. The hydraulic conductivity along the 
two boreholes was assumed to have been measured prior to 
a HT survey. Five separate pumping operations were then 
initiated at specified locations (see Figure 1) to reach five 

corresponding steady flow fields. During each flow field, 
pressures along the boreholes were monitored. Using these 
pressure data and the hydraulic conductivity measurements, 
the hydraulic conductivity distribution in the entire aquifer 
(Figure 2) was estimated with the HT algorithm by Zhu and 
Yeh [2005]. A comparison of Figures 1 and 2 suggests that 
HT is potentially a promising technology for mapping con-­
nectivity of fractures in aquifers.

3.1.2. Electrical resistivity tomography (ERT). Over the 
past few decades, the dc resistivity survey has been an inex-­
pensive and widely used technique for the investigation of 
near-­surface resistivity anomalies. It recently has become 
popular for the investigation of subsurface pollution prob-­
lems [NRC, 2000]. The classic analysis of a resistivity sur-­
vey relies on analytical formulas that assume a homogeneous 
earth to derive apparent resistivity. Generally speaking, the 
electric potential observed at a point in space is influenced 
by resistivity anomalies over the entire electric potential field 
created by a survey. In particular, resistivity anomalies near 
the transmitting and the receiving electrodes have greater 
influence. But a significant geologic anomaly anywhere 
within the entire electric current field can also have the 
same impact. Thus, the apparent resistivity can be highly 
misleading when derived from a potential measurement 
using the classical analysis. Similar findings were found in 
a recent study of traditional analyses of aquifer tests [Wu et 
al., 2005], which is analogous to the analysis of the apparent 
resistivity. Indeed, the conventional resistivity survey has 
been found virtually ineffective for environmental appli-­

Fig 1Fig 1

Fig 2Fig 2

Figure 1. The orthogonal fracture pattern and location of slanted 
pumping wells used in the numerical experiment. The hydraulic 
conductivity of the fracture (white) and that of the rock matrix 
(black) are 1m/m and 0.05 m/m, respectively.
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cations, where electrical resistivity anomalies are subtle, 
complex, and of a multiplicity of scales. 

Meanwhile, a contemporary electrical resistivity survey 
(i.e., ERT) has been designed to collect extensive electric 
potential data sets in multi-­dimensions in a tomograhic sur-­
vey fashion. The resistivity field is then estimated by inver-­
sion of the data sets using a model without the assumption of 
a homogeneous earth, and using a regularized optimization 
approach [e.g., Daily et al., 1992; Ellis and Oldenburg, 1994; 
Li and Oldenburg, 1994; and Zhang et al., 1995]. 

The general consensus for inverse modeling of resistiv-­
ity and hydrologic property fields is that prior information 
about geological structure, and some point measurements 
of parameters to be estimated, are essential to constrain the 
solution to the inverse problem [Oldenburg and Li, 1999; 
Li and Oldenburg 2000; Kitanidis, 1995, McLaughin, and 
Townley, 1996].

Recently, Yeh et al. [2002] developed a geostatistically-
based inverse approach for ERT that includes prior infor-­
mation, i.e. spatial statistics of the resistivity distribution 
of geologic media and point measurements of resistivity. 
Applications of this approach to field situations as well 
as laboratory and numerical experiments have proven its 
robustness [Yeh et al., 2006]. In particular, Englert et al. 
[2005] show that, when only scarce potential measurements 
are available, the geostatistically-­based approach yields 
better estimates than those using the classical regulariza-­
tion method. Accordingly, ERT is an appealing technology 
for imaging subsurface electrical resistivity anomalies. The 
resolution of the image nevertheless depends on the design 
of data collection network. For example, a surface electrode 

array detects only anomalies near the surface; a down-­hole 
array provides more accurate mapping of the anomalies at 
great depths. Higher-­resolution images can only be obtained 
if a spatially high-­resolution electric potential field is col-­
lected using a combination of densely distributed surface 
and down-­hole arrays.

3.1.3. Strengths and weakness of hydraulic and geophysi-­
cal tomographys. Geophysical tomography (e.g., ERT) gen-­
erally produces subsurface images at higher resolution than 
hydraulic or tracer tomography. This is attributed to relative 
inexpensiveness of geophysical sensors compared to hydro-­
logic sensors. Hence a greater number of geophysical sen-­
sors can be deployed to cover a given field site during a 
tomographic survey to collect more responses and in turn, 
the survey yields more detailed images. Geophysical sensors 
can also be easily implemented on the land surface with 
little invasive operation, whereas hydrologic sensors must be 
installed in boreholes. Such invasive borehole drilling opera-­
tions prohibit any dense deployment of hydrologic sensors.

In spite of its shortcomings, hydrologic tomography has its 
advantages over geophysical tomography for characteriza-­
tion of flow and solute transport processes and properties 
of geologic formations. Analysis of hydrologic tomography 
directly yields hydrologic properties. On the other hand, 
analysis of geophysical surveys yields electrical resistivity 
or permittivity, which has to be translated into hydrologic 
properties via some constitutive relation. This relation is 
often empirical, site specific, scale-­dependent, and perhaps 
ambiguous [Day-­Lewis et al., 2005, Moysey et al., 2005, 
Day-­Lewis, and Lane, 2004, etc.] and the translated hydro-­
logic properties, as such, could be misleading. Spatial vari-­
ability of the relation, as noticed by Yeh et al. [2002], further 
complicates this translation. 

3.2. Fusion of Different Types of Information

Both HT and ERT are typical examples of fusion of the 
same type of information. They are most appealing because 
only a small number of invasive operations are needed to 
obtain a comparable resolution of other conventional char-­
acterization methods. However, neither hydrologic nor geo-­
physical tomography alone provides perfect characterization 
of the subsurface. A tomographic survey merely makes 
the inverse problem better posed and reduces uncertainty 
associated with the traditional inverse modeling approaches. 
Taking advantage of the strength of a particular type of 
tomographic survey to compensate for the deficiencies of 
the other becomes a possible means to enhance the resolu-­
tion of a tomographic survey. This thinking thus promotes 
fusion of different types of hydrologic information, fusion 

Figure 2. The detected hydraulic conductivity field reflecting 
fracture pattern, based on the steady hydraulic tomography.
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of hydrologic and geophysical information, and fusion of 
hydraulic and tracer tomography to enhance our subsurface 
characterization, as discussed below.

3.2.1. Fusion of different types of hydrologic information. 
For decades, hydrologists have integrated different types of 
hydrologic information to obtain better hydrologic character-­
ization of the subsurface. For example, Harvey and Gorelick 
[1995b] estimated a hydraulic conductivity field using sparse 
measurements of hydraulic conductivity, heads and solute 
arrival time. They found that arrival time and head data 
yielded different estimates. Li and Yeh [1999] estimated the 
hydraulic conductivity field of variable saturated media con-­
ditioned on three types of measurements (i.e., pressure head, 
solute transport, and solute arrival time). They reported that 
steady state head measurements are most effective among 
the three types of measurements, while additional solute 
concentration data can enhance the estimates based on head 
measurements alone. Cirpka and Kitanidis [2001] used the 
first two temporal moments of solute data to estimate the 
hydraulic conductivity field. They recommended that the use 
of both head and tracer data could lead to better estimations 
of the hydraulic conductivity field.

For vadose zone problems, a study by Harter and Yeh 
[1996] suggested that conditioning the solution transport 
simulation using pressure head information improves pre-­
diction of plume migration. Yeh and Zhang [1996] reported 
that pressure data can benefit estimation of the saturated 
hydraulic conductivity field, while moisture content data 
enhance estimation of the pore-­size distribution parameter 
of the unsaturated hydraulic conductivity curve of the vadose 
zone. Finally, the use of both pressure and moisture data can 
result in better characterization of the vadose zone than using 
either one of them alone. 

Clearly, the worth of a type of data rests upon the type of 
property to be estimated. As an example, information of the 
hydraulic head gradient and specific discharge is critical to 
estimating hydraulic conductivity, because these data, along 
with Darcy’s law, define the hydraulic conductivity. By the 
same token, tracer data are most useful for estimating chemi-­
cal properties, porosity, and dispersivities. Tracer data alone 
are, however, less informative about the hydraulic conductiv-­
ity. The reason is rather straightforward: movement of tracers 
is governed by the velocity field if the dispersion process is 
omitted. Velocity is a function of the hydraulic conductivity, 
but also of the hydraulic gradient and the porosity. Without 
knowledge of all these controlling factors, estimation of the 
hydraulic conductivity can be highly uncertain when based 
on tracer data alone.

On the other hand, propagation of a pressure excitation is 
a diffusion process which generally smoothes out the effects 

of heterogeneity (analogous to an electric potential field). 
The migration of tracers is mainly controlled by advection, 
which is highly sensitive to variation in hydraulic conductiv-­
ity. Tracers are thus generally more sensitive to preferential 
flow paths even at small scales (not identical but similar to 
high-­frequency EM waves, such as ground penetrating radar) 
than the hydraulic head. Inclusion of tracer data, therefore, 
can enhance the estimate of the hydraulic conductivity based 
on the hydraulic head information alone. 

3.2.2. Fusion of hydrologic and geophysical information. 
Near-­surface geophysics has become increasingly popular 
and has played an important role in groundwater inves-­
tigations over the past few years [NRC, 2000, Rubin and 
Hubbard, 2005; Vereecken et al., 2006]. While geophysical 
surveys may not be suitable for mapping hydraulic proper-­
ties, they are desirable tools for detecting changes in the 
hydrologic state of geologic media. For instance, Binely et 
al. [1996] demonstrated that ERT can be used to monitor the 
breakthrough of chloride tracers in column experiments; 
Kemna et al. [2002], and Singha and Gorelick [2005] used 
ERT to monitor the migration of a tracer plume in porous 
media. Day-­Lewis et al. [2003, 2004] used time-­lapse radar 
tomography to monitor tracer migration in fractured rock. 
Ground penetrating radar (GPR) and self potential measure-­
ments were used by Endres et al. [2000], Bevan et al. [2003], 
Bevan et al. [2005], and Rizzo et al. [2004] to monitor water 
table responses during aquifer tests; ERT and GPR have been 
widely used to detect movement of moisture in the vadose 
zone [e.g., Daily et al., 1992 and Binley et al., 2001]. Cau-­
tion, however, was raised by Yeh et al. [2002] about using 
ERT to determine changes in moisture content in the vadose 
zone due to the inherent variability of the relation between 
moisture content and resistivity (i.e., parameters of Archie’s 
law). Nonetheless, Liu and Yeh [2004] develop a data fusion 
approach to overcome this difficulty, which includes in-­situ 
measurements of moisture content, resistivity, and param-­
eters of Archie’s law.

Success of these applications suggest that ERT, GPR, and 
other geophysical surveys may serve as cost-­effective tools 
for obtaining a large number of hydrologic responses of the 
subsurface over large areas. Spatially dense information of 
hydrologic responses is a prerequisite for a better hydrologic 
inversion (section 3.1). To achieve a better hydrologic inver-­
sion, it is therefore a logical step to couple geophysical sur-­
veys, for the purpose of monitoring states of the subsurface, 
with hydrologic inversion.

This information fusion idea was demonstrated by Yeh 
and Šimůnek [2002] for vadose zone monitoring and char-­
acterization. Specifically, they used ERT to monitor mois-­
ture evolution in the vadose zone during infiltration events. 
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Electrical potentials from ERT surveys were then analyzed 
for the moisture content distribution. During the analysis, 
point measurements of moisture content by neutron probes, 
core samples, and others were included, as well as their 
prior knowledge of the spatial statistics of the moisture dis-­
tribution. Inclusions of point measurements and the spatial 
statistics not only ensured a correct interpretation of the ERT 
results in terms of hydrologic and geologic contexts, but also 
expanded our knowledge about the true distribution of the 
moisture plume beyond the point measurement locations 
[e.g., Liu and Yeh, 2004]. As a result, this spatially-­extensive 
moisture information makes a hydrologic inversion better 
posed, and the estimates of hydrologic properties approach 
representative values. 

Better characterization of geologic media leads to a more 
accurate prediction of the migration of moisture and in turn, 
more accurate constraints for the ERT inversion during the 
monitoring of advancing moisture plumes. Using this itera-­
tive information fusion procedure and numerical examples, 
Yeh and Šimůnek [2002] demonstrated the feasibility of 
developing a cost-­effective monitoring, characterization, and 
prediction protocol for the vadose zone process. 

3.2.3. Fusion of hydraulic and tracer tomography. The 
potential of fusion of different types of tomography surveys 
for mapping residual DNAPL distribution was recently stud-­
ied by Zhu and Yeh [2005]. Figure 3a shows the DNAPL dis-­
tribution in a synthetic aquifer with four wells, and each well 
is partitioned into several injection or sampling ports (square 
and circle, respectively). A hydraulic and partitioning tracer 
tomography involves injection of water into the aquifer at one 
of the injection ports to establish a forced gradient flow field. 
Once a steady flow field is reached, a partitioning tracer is 
introduced into the aquifer at the same port. Steady flow 
pressure and the tracer breakthroughs are subsequently col-­
lected at the sampling ports of all wells. Afterward, the water 
and tracer injection operation is moved to another injection 
port and steady pressure and breakthroughs at all sampling 
ports are collected again. This operation is repeated until 
all the selected injection ports are used. Note that a differ-­
ent partitioning tracer is used for each tracer test. After the 
tests are completed, the pressure data collected during all 
the injection tests are first used to determine the hydraulic 
property distribution in the aquifer. This estimated hydrau-­
lic property field is subsequently used in the analysis of the 
partitioning tracer breakthrough data to map the distribution 
of the DNAPL in the aquifer. This is called hydraulic/parti-­
tioning tracer tomography (HPTT). 

Figure 3b shows the estimated DNAPL field using conven-­
tional direct measurements of DNAPL from the four wells 
and the kriging method. Using a traditional partitioning 

tracer test (injection of water and the tracer at only one port 
and monitoring the breakthroughs at the other ports), and 
analysis of the tracer breakthroughs assuming aquifer homo-­
geneity and without taking advantage of head information 
lead to an estimated DNAPL distribution shown in Figure 
3c. Figure 3d illustrates an estimated DNAPL distribution, 
using the partitioning tracer tomography (PTT) without any 
knowledge of the hydraulic heterogeneity of the aquifer or 
taking advantage of the hydraulic head information. Lastly, 
the DNAPL distribution resulting from the hydraulic/tracer 
tomography is plotted in Figure 3e. 

Among the approaches used to derive the results shown in 
Figures 3b, c, d and e, the direct sampling approach (Figure 
3b) yields the worst estimate. It detects DNAPL near sam-­
pling locations and extrapolates the sample values to its 

Fig 3Fig 3

Figure 3. An illustration of the benefit of hydraulic/tracer tomog-­
raphy: a) a synthetic true DNAPL distribution and samples and 
injection ports of the hydraulic/tracer tomography survey; b) esti-­
mated DNAPL distribution based on in-­situ borehole samples and 
geostatistics; c) the estimated distribution using the traditional 
single injection partitioning tracer test, without taking advantage of 
hydraulic head information; d) the estimated distribution based on 
partitioning tracer tomography alone without using the hydraulic 
head information; e) the estimated field using the hydraulic/tracer 
tomography.
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vicinity via the correlation structure, but fails to capture 
high DNAPL saturation areas between observation wells. A 
comparison of Figures 3c and d demonstrates the benefit of 
tracer tomography: tomographic surveys yield many pieces 
of “partially-­overlapped information” such that more detailed 
DNAPL distribution is identified. A comparison of Figures 
3d and e manifests the advantage of fusion of hydraulic and 
tracer tomography. That is, PTT alone can lead to erroneous 
estimates of the DNAPL field, which is attributed to the fact 
the tracer data from one injection test provide only an esti-­
mate of the specific discharge (Darcian velocity) field for the 
given flow scenario. This field is only weakly related to the 
hydraulic conductivity field unless the hydraulic head field 
or gradient is specified. While PTT produces many sets of 
the estimated velocity field, each velocity estimate (in turn, 
each DNAPL estimate) is independent from one another. 
Without conditioning each estimate using the available head 
information during each injection, each DNAPL estimate 
therefore can be inconsistent with the other. Thus, the final 
DNAPL estimate deteriorates. A conjunctive use of HT and 
PTT (i.e., HPTT) is thereby a superior approach for better 
DNAPL characterization. 

4. DATA FUSION FOR BASIN-­SCALE PROBLEMS

Undoubtedly, data fusion technologies are still evolving, 
but results of their current applications are encouraging. 
Tomographic surveys, in particular, are potentially the future 
for field-­scale as well as basin-­scale subsurface character-­
ization. In order to apply these technologies to imaging 
the subsurface at basin-­scale, strong and spatially varying 
hydrologic and geophysical excitations with wide area cover-­
age and/or significant depth penetration are needed, as are 
long-­term and spatially distributed monitoring of signals on 
the land surface and in the subsurface. Naturally recurrent 
stimuli (e. g., lightning, earthquakes, storm events, baro-­
metric variations, etc.) with frequent and spatially varying 
occurrences are ideal energy sources for “illuminating” the 
subsurface on many occasions and throughout the basin. 
They thereby can provide the opportunity for an ad hoc, 
progressive 3-­D tomographic survey. Below, we discuss 
some possibilities and present some numerical examples 
to illustrate the feasibility of exploiting naturally recurrent 
stimuli for a passive groundwater basin “CAT scan”. 

4.1. Fusion of the Same Types of Information

In this category of data fusion for basin-­scale characteriza-­
tion, the discussion is focused on innovative approaches that 
take advantage of river stage fluctuations, cloud-­to-­ground 
lightning strikes, and earthquakes. 

4.1.1. River-­stage tomography. The example given below 
illustrates the potential of using river stage fluctuations as 
energy sources for basin-­scale tomographic surveys. The 
influence of stage fluctuation of rivers on the groundwa-­
ter table and piezometric surfaces has been recognized for 
decades, as has been the exploitation of the relation between 
the temporal fluctuation of a river stage and that of the well 
hydrograph as an alternative to aquifer tests [e.g., Duffy, 
1978; Nevulis et al., 1989]. But the conventional analyses of 
the relation between river stage and well hydrograph again 
have relied on the assumption of aquifer homogeneity. The 
potential of using temporal and spatial variations in the 
stage of a river as an excitation source for basin-­scale aquifer 
characterization was not recognized until the development 
of HT. Yeh et al. [2004] were the first to propose the use of 
the river stage during a flood event (and well hydrographs 
observed at wells adjacent to the river) to map the spatial 
distribution of properties of underlying aquifers. They sug-­
gested that when a flood crest is migrating downstream at 
any given time, it creates a set of pressure responses at wells 
at different distances adjacent to the river. When the crest 
moves to another location, it produces another set of well 
hydrographs at all the observation wells along the stream. 
This is analogous to the HT survey. Following this concept, 
Xiang and Yeh [2005] successfully conducted numerical 
experiments that ratify this river stage tomography concept 
for characterizing large-­scale aquifers.

4.1.2. Lightning tomography. Cloud-­to-­ground (CG) light-­
ning strikes are a potential energy source for basin-­scale EM 
tomographic surveys. When lightning EM waves propagate 
through the subsurface, they will be modified by subsurface 
heterogeneity at various scales. By measuring these signals 
at different locations and depths (with distributed smart sen-­
sors), and then performing 3-­D inverse modeling, we can 
estimate electrical resistivity and dielectric constant fields of 
the subsurface, which are indications of geologic structure, 
hydrologic heterogeneity and chemical distributions in the 
subsurface. Collecting the signals from lightning strikes at 
many different locations is equivalent to conducting large-
scale EM tomographic surveys, if the amplitude and location 
of each strike is known. 

The exploitation of lightning, here, is different from the 
conventional magnetotelluric methods (MT). The EM waves 
for MT arise from lightning (above ~1 Hz) and electric cur-­
rents flowing in the ionosphere in huge rings around the 
magnetic poles (below ~1Hz). Because of its low frequency, 
MT has been used to explore the Earth and geologic basins 
at great depth, but at low resolution. The suggested lightning 
tomography takes advantage of the U.S. National Lightning 
Detection Network (NLDN) that can pin-­point the loca-­
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tion of each CG strike and provide its peak amplitude with 
good accuracy [Cummins et al., 1998a and b]. The light-­
ning tomography also takes advantage of the fact that CG 
lightning produces extremely large EM transients (source 
powers of 109 to 1010 watts) [Krider et al., 1976; Krider et al., 
1980; Krider, 1992] over a broad frequency range (< 1 to 107 
Hz). The great power over a broad frequency range implies 
that it is possible to image the subsurface at various scales 
over large areas. More importantly, locations of CG strikes 
vary. These facts facilitate lightning tomographic surveys of 
groundwater basins.

4.1.3. Earthquake tomography. Earthquakes provide 
another type of natural stimulus source that may be valuable 
for both conventional seismic tomography and large-­scale 
hydrologic tomography. Seismologists can use information 
from earthquakes to generate tomographic images of the 
subsurface [NRC, 2000]. Effects of earthquakes on ground-­
water levels or pressures have been investigated in the past 
as possible precursors for earthquakes. Few however, have 
explored the relation between groundwater fluctuations due 
to earthquakes and geologic heterogeneity, and exploited the 
relation for imaging 3-­D hydrologic heterogeneity in a basin. 
A recent study by Lin et al [2004], using pore-­elastic and 
visco-­elastic models and field data during the Chi-­Chi earth-­
quakes in Taiwan during 1999, showed that the propagation 
of groundwater pressure waves induced by earthquakes is 
indeed influenced by geologic structures and hydrologic het-­
erogeneity. They demonstrated that hydrologic properties of 
aquifers can be estimated using changes in groundwater lev-­
els before and after earthquakes. As a result, an earthquake 
of sufficient magnitude in a groundwater basin is analogous 
to an artificially induced excitation to an aquifer during an 
aquifer test, and the occurrence of successive earthquakes 
at different locations is similar to sequential excitations at 
different positions in the aquifer during HT. 

Also in this context, it should be noted that storms, storm 
tides, tidal waves and other types of naturally occurring 
aquifer loadings [e.g., DeWiest, 1965] take place frequently 
at different locations in groundwater basins. For each event, 
groundwater levels respond differently and spatially. Again, 
information about such disturbances and associated responses 
of aquifers in a basin is equivalent to a set of data collected 
during a large-­scale hydrologic test. Numerous occurrences 
of these disturbances originating at different locations, along 
with corresponding responses of the aquifers, thus constitute 
naturally occurring HT. 

A well hydrograph, of course, can be influenced by a vari-­
ety of factors (i.e., earth tides, external loadings, barometric 
pressure variations, precipitation, even by a passing train). 
Influences of each source generally bear the source signa-­

ture and characteristics (i.e., frequencies and amplitudes). 
The different components can be sorted out from a hydro-­
graph if the source characteristics are known. Despite these 
complications, water level fluctuations caused by pumping, 
barometric pressure variation, earth tides, etc. have been 
widely used to estimate aquifer properties in the past [e.g., 
Nevulis et al., 1989; Ritzi et al., 1991; Desbarats et al., 1999). 
The basic principle of these basin-­scale tomographic surveys 
is identical to traditional aquifer model calibrations. But the 
tomographic surveys collect and analyze data intelligently, 
and expand our traditional approaches to a new level. In fact, 
seismologists for decades have been using this rather intui-­
tive concept to pinpoint the earthquake epicenters. 

4.2 Fusion of Different Types of Information at Different 
Scales

Mapping basin-­scale hydrogeologic structures is the main 
objective of exploiting natural stimuli for basin-­scale tomog-­
raphy. A basin-­scale tomographic survey using only one type 
of natural stimuli will not be likely to yield a high-­resolution 
map of the structures, as well as meter-­scale features in the 
subsurface. Integrating surveys that use different types of 
natural stimuli are needed, as is integration of field-­scale 
tomography surveys that utilize different artificial stimuli 
and point measurements of different types of information. 
Adaptive fusion of these different types and scales of infor-­
mation thereby can provide the opportunity for an ad hoc, 
progressive 3-­D tomographic survey of a basin. As a result, 
we can “see” into a basin at a resolution that is beyond cur-­
rent technologies.

5. CONCLUSIONS

Mapping the subsurface using naturally recurring stimuli 
as basin-­scale hydrogeophysical tomographic surveys is an 
unexplored science and technology. Despite great potential 
in this new approach, a number of barriers exist. Such barri-­
ers, methodological in nature, include a lack of: 1) effective 
and robust stochastic approaches for fusion of different types 
of information at various scales, for data screening and dis-­
crimination, and for providing the best unbiased estimate and 
associated uncertainty; 2) efficient computational capability 
(e.g., data/knowledge-­driven adaptive parallel computing 
technology for processing the massive quantity of informa-­
tion); 3) smart sensor networks, which are driven by results 
of the stochastic information fusion and data, to collect appro-­
priate types of data at the right time, place, and frequency to 
minimize the likelihood of information overload. Of course, 
these are technological challenges. But it is our belief that 
rapid advances in electronics, sensor technologies, informa-­
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tion technology, computer engineering, and smart parallel 
network computing technologies will ultimately realize this 
innovative concept and idea. Seeing into groundwater basins 
at high resolutions will ultimately become possible. 
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Projections of climate and land use changes suggest that there will be significant 
alterations to the hydrology of the Upper Midwest. Forecasting those changes at 
regional scales requires new modeling tools that take advantage of increases in 
computational power and the latest GIS and remote-­sensing datasets. Because 
of the need to resolve fine-­scale processes, fully coupled numerical simulations 
of regional watersheds are still prohibitive. Although semi-­distributed lumped-
parameter models are an alternative, they are often not able to accurately forecast 
across a broad range of hydrologic conditions such as those associated with climate 
and land use changes. 

We have developed a loosely coupled suite of hydrologic codes called the 
Integrated Landscape Hydrology Model (ILHM), which combines readily avail-­
able numerical and energy- and mass-­balance modeling codes with novel routines. 
In this paper, the ILHM is used to predict hydrologic fluxes through a 130 km2 
portion of the Muskegon River Watershed in northern-­lower Michigan. We com-­
bine GIS maps of the land cover, soils, and sediments with a variety of gaged and 
remotely sensed data for this watershed to simulate evapotranspiration, groundwater 
recharge, and stream discharge from 1990–2004. These estimates are compared 
to measured stream discharge data to demonstrate the capability of the ILHM to 
provide reasonable predictions of groundwater recharge with minimal calibration. 
The results begin to illustrate critical differences in hydrologic processes due to 
land cover and climate variability, including a demonstration that approximately 
75% of precipitation becomes recharge during leaf-­off periods while almost no 
recharge occurs during the growing season. 

INTRODUCTION

Land use and climate changes are expected to alter the 
spatial and temporal distribution of groundwater recharge 
over the next century [Bourari et al., 1999; Houghton et al.; 

IPCC, 2001]. In the humid midwest, these changes could 
have far reaching consequences because recharge maintains 
groundwater supplies that are used as primary drinking water 
sources, and is critical to stream ecosystem health as ground-­
water is the main source of streamflow during dry periods. 
Despite the clear importance of groundwater recharge, its 
spatial and temporal distribution is generally poorly under-­
stood in humid regions. Many hydrologic modeling studies 
ignore both spatial and temporal variations in recharge rates, 
either because limited measurements of critical parameters 
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are available, or because existing modeling methods are not 
adequate to accurately evaluate these variations at the scales 
of interest. Integration of available hydrologic and landscape 
data can help improve estimates of historic recharge rates, and 
can then provide the basis for evaluating the range of impacts 
of anthropogenic alterations of the landscape and climate on 
future hydrological and ecological conditions. 

A range of approaches have been developed to estimate 
recharge rates based on relatively simple analysis of flows 
and levels in surface water, the unsaturated zone, and the 
saturated zone, as reviewed by Scanlon et al. [2002]. These 
methods include analyzing baseflows or tracer concentra-­
tions, developing estimates based on changes in groundwater 
levels (reviewed by Healy and Cook [2002]), and evaluating 
recharge through the unsaturated zone with lysimeters or 
well-­instrumented field sites. A variety of empirical models 
have also been developed to estimate recharge across a range 
of scales (e.g., Bogena et al., [2005]), which can provide esti-­
mates with varying degrees of reliability and spatial extent 
depending on the types, quality, and density of the input data 
[Scanlon et al., 2002]. 

Numerical models provide a powerful framework to inte-­
grate different data types for recharge estimation. Such models 
can be broadly categorized as lumped parameter models or 
process-­based models. Lumped-­parameter semi-­distributed 
models, such as SWAT [Arnold et al., 1993] and TOPMODEL 
[Bevan and Kirkby, 1979] have parameters that can be adjusted 
to fit measurements but can not necessarily be independently 
measured. As a result, such models tend to have difficulty pre-­
dicting flow in a new system without independent calibration, 
or projecting likely changes in a currently modeled system due 
to changes in factors including climate and land cover. 

Process-­based codes such as MODFLOW for groundwater 
flow are based on fully distributed parameters such as hydrau-­
lic conductivity, which can be independently measured based 
on laboratory analyses (e.g., Zhao et al. [2005]) or using field 
evaluations such as pump or slug tests. Unfortunately most 
groundwater codes are not designed to estimate recharge 
rates because they do not incorporate important landscape 
and unsaturated zone processes that are critical to redistribu-­
tion of precipitation from the soil surface and the vegetation 
canopy. 

To address this limitation, several codes have previously 
been developed to link MODFLOW or other groundwater 
codes to landscape or watershed codes that incorporate aspects 
of the hydrologic cycle beyond groundwater flow. For example, 
MODFLOW has been linked with SWAT [Sophocleous et al., 
2000] and HSPF [Said et al., 2005], which are both lumped-
parameter codes. A new Variably Saturated Flow (VSF) pack-­
age was developed as a MODFLOW module [Thoms et al., 
2006] to add unsaturated zone and overland flow processes to 

groundwater flow simulations, but the data and computational 
requirements appear to be too great for large watershed simu-­
lations based on our analysis of this code for the watershed 
presented in this paper.

A variety of process-­based models have also been developed 
to simulate fully coupled surface water, and variably saturated 
subsurface flow. Such codes, which include SUTRA3D [Voss 
and Provost, 2002], Mike-­SHE [DHI, 1993], WASH123D [Yeh 
and Huang, 2003], MODHMS [HydroGeoLogic Inc., 2003; 
Panday and Huyakorn, 2004], and InHM [VanderKwaak, 
1999; VanderKwaak and Loague, 2001], provide powerful 
tools to examine complex interactions between flow and 
transport across the range of natural conditions observed in 
the surface and subsurface. Unfortunately, the data require-­
ments and significant computational demands have generally 
limited the use of these codes to simulate flows through fairly 
small domains. 

In this paper, we present a new Integrated Landscape 
Hydrology Model (ILHM) to integrate widely available hydro-­
logic and landscape data in a synergistic and computationally 
efficient manner to assess temporal and spatial changes in 
important hydrologic processes. Since the focus of this mono-­
graph is data integration in hydrology, we begin by describing 
the watershed that we chose for testing and development of the 
code along with the available hydrologic and landscape data 
used in this simulation. This is followed by a detailed descrip-­
tion of the model development and results.

METHODS

Study Region: Cedar Creek Watershed 

The Cedar Creek Watershed, in southwestern Michigan 
(Figure 1), was chosen as a site to test the ILHM because it 
is one of our main field sites in an ongoing ecohydrological 
monitoring and modeling study. Cedar Creek flows through 
the lower half of the Muskegon River watershed (7,052 km2), 
where urbanization of previously agricultural and forested 
landscapes is projected to increase runoff volumes and the 
associated solute transport over the next 35 years based on an 
empirical model [Tang et al., 2005]. The spatial distribution of 
land uses within the Cedar Creek Watershed facilitates evalu-­
ation of differences in recharge associated with land cover 
types because the upstream portion of this area is dominated 
by agriculture while the downstream portion is predomi-­
nantly forested (Figure 2a). The quaternary geology ranges 
from medium and coarse-­textured glacial tills that drape the 
northern watershed, to glacial outwash and lacustrine sand and 
gravel in the central and southern watershed (Figure 2b). 

The groundwater source area, which we call a groundwater-­
shed, of Cedar Creek was delineated using a two-­layer ground-­

Fig. 1Fig. 1

Fig. 2Fig. 2
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water model of the region encompassing the Muskegon River 
Watershed (Figure 1). The groundwatershed (~130 km2) was 
used in addition to the surface watershed (~100 km2) for this 
study because regional modeling of the Grand Traverse Bay 
Watershed in Michigan by Boutt et al. [2001] indicated that 
surface-­and groundwatersheds can differ significantly. The 
regional Muskegon River groundwater model was developed 
by expanding the watershed boundaries to significant hydro-­
logic features (i.e., the next large stream or lake beyond the 
surface watershed) to avoid this issue at regional scales (Figure 
1). The groundwatershed boundary does fluctuate somewhat 
with both seasonal and long term climatic variations, but for 
simplicity in this study we have defined the groundwatershed 
using the steady-­state model.

Data Collection and Analysis

Before constructing the groundwater model for the 
expanded Muskegon River Watershed (MRW) region to 
define the Cedar Creek groundwatershed, we assembled 
the available landscape, hydrology, and climate data for the 
region into a geodatabase. In many parts of the world, the 
types of data used for this analysis are commonly available 
as a free download from internet sites. However, supple-­
mentary data such as flows and water levels beyond those 

available from the US Geological Survey will often need to 
be collected for model calibration or optimization. 

Hydrologic Data

Two pressure transducers installed in Cedar Creek 
recorded stream stage at hourly to sub-­hourly intervals 
[Wiley and Richards, unpublished data] from mid to late 
2002 through 2004. These surface water levels provide criti-­
cal information for this study. One transducer was installed 
in the northern, agricultural portion of the watershed, while 
the other was installed in forested land near the watershed 
outlet (See Figure 1). Stream discharge measurements [Wiley 
and Richards, unpublished data] were used to construct rat-­
ing curves between stage and discharge. The stage discharge 
relationships were developed between measured streamflows 
and concurrent water levels from the transducers. For the 
upper watershed site 19 stage discharge pairs were used, 
while 23 pairs were used for the lower watershed site. 

Groundwater levels for this region were collected from the 
Michigan Department of Environmental Quality (MDEQ) 
residential well database, as no monitoring well data are avail-­
able in this region except at our surface water-­groundwater 
interaction site adjacent to Cedar Creek. Unfortunately, the 
wells at this site are too close to the stream to provide useful 

Figure 1. On the left is a map for the Cedar Creek watershed (shaded) along with the groundwater contributing area to 
Cedar Creek (dashed outline). Also displayed on this map are locations of two stream gages, nine discharge measure-­
ment cross sections, and residential drinking water wells located within the watershed. On the right, a map of the lower 
peninsula of the state of Michigan shows the Cedar Creek watershed within the greater Muskegon River watershed. The 
boundary of a regional groundwater model of the Muskegon River is shown in bold on the state map. The precipitation 
and climate gage locations are Hesperia (H), and Fremont (F).



124     Using the Integrated Landscape Hydrology Model (ILHM)

information about groundwater levels for this watershed-
scale model testing. Observations were available from 99 
wells installed across the watershed during the simulation 
period in the MDEQ database. For each well, one static water 
level measurement was taken by the well driller at the time of 
installation. The static water level measurements were used 
in a preliminary calibration of an early version of the Cedar 
Creek groundwater model, but there is a significant amount 
of error associated with these water level measurements as a 
variety of methods were used by well drillers to identify the 
location of the well, the elevation of the ground surface, and 
the depth to water. Residential wells were not included in the 
model as extraction wells because most of the extracted water 
is assumed to return via septic systems and the remainder is 
assumed to be a very small component of the water budget 
for this region. There are no known irrigated agricultural 
areas within the Cedar Creek watershed. 

Geologic, Landscape, and  
Remote Sensing Data

We established a GIS database for the Cedar Creek region 
with topography, land use, hydrography, and hydrogeology 
characteristics. These GIS datasets were compiled from 
the Michigan Geographic Data Library, established by the 
Michigan Department of Environmental Quality. These 
datasets are assumed to be static for the purposes of this 
analysis.

Land surface elevations (see Figure 2d), which were 
defined based on the National Elevation Dataset 26.5 m digi-­

tal elevation model (DEM), were used for a range of model 
inputs. Flow direction and gradients for the overland flow 
and near surface soil moisture redistribution modules were 
calculated from the full-­resolution DEM and then upscaled. 
This 4x upscaled DEM was used to set the land surface 
elevation for the soil water balance model. The drainage 
network and lake boundaries were defined based on the 
Michigan Framework GIS dataset, with stream crossing 
elevations manually extracted from a digitized version of 
the USGS 1:24000 topography quadrangles. The watershed 
does not contain any large lakes that are connected to the 
stream system, thus lakes are not separately considered in 
the groundwater portion of the integrated model. 

The land cover distribution across the Cedar Creek model 
area (Figure 2) is taken from the Integrated Forest Monitoring 
Assessment and Prescription (IFMAP) coverage, which 
is a statewide digital land cover map with 30 m resolution 
derived from 1997–2000 LANDSAT data [MDNR, 2001]. 
This watershed is dominated by forested/openland/wetland 
land covers (60%), while 36% of the area is agricultural and 
the remaining 4% is urban. The IFMAP coverage provides 
inputs that are used in calculating evapotranspiration and 
overland flow. Land cover types are associated with tran-­
spiration estimates through a variety of terms including 
stomatal conductance, canopy height, and root depth, and 
with evaporation estimates through changes in canopy inter-­
ception, wind speed, and interception of incoming radiation. 
Overland flow is also associated with land cover through 
Manning’s roughness coefficients. The details of these con-­
nections are described in the modeling sub-­sections below. 

Figure 2. Static GIS datasets that were integrated into the ILHM framework. The datasets are a) land use/cover from 
IFMAP, b) quaternary geology from Farrand and Bell [1982], c) SSURGO soil textures, and d) land surface elevation 
from the NED 26.5 m DEM. 
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Hydrogeologic zones were parameterized according to a 
Quaternary Geology coverage of Farrand and Bell [1982] 
for the groundwater model along with the Soil Survey 
Geographic (SSURGO) database (see Figure 2), which was 
then mapped into saturated and unsaturated zone param-­
eters according to lookup tables based on literature values. 
The geometry of the aquifer base was interpolated between 
measured bedrock elevations by de-­clustered and polyno-­
mial-­detrended simple kriging of the elevations of the drift/
bedrock contact from oil and gas wells across the entire 
expanded Muskegon River model domain. Initial hydraulic 
conductivity values were assigned to the geologic zones 
based on an optimization of these parameters for the nearby 
Grand Traverse Bay watershed that has the same geologic 
zones [Boutt et al., 2001].

GIS grids of leaf area index (LAI), the ratio of one-­sided 
green leaf area to ground area [Myneni et al., 2002], were also 
used in calculations of potential evapotranspiration (PET), 
canopy interception, and solar radiation interception. For 
this study, we used remotely sensed LAI measurements from 
NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS) eight-­day averaged product. Spatially averaged 
LAI for both forest and agricultural land-­use types are plot-­
ted for 2003 and 2004 in Figure 3a. In cases where these 
data were not available (i.e., prior to 2000), we average all 
LAI grids for each Julian day and apply these multi-­year 
averages to the earlier periods. This will have little effect on 
our results because we are only comparing simulated and 
observed flows for mid 2001 through 2004 when all datasets 
are available. However, it is important to spin up the model 
using realistic data inputs because we found that it takes 
between two and three years before the model results are 
independent of the starting conditions. 

Climate Data

  Precipitation data was obtained from the NOAA gage at 
Hesperia, MI approximately 20 km NNW from the center 
of the Cedar Creek watershed (see locator map in Figure 1). 
This gage was chosen because lake effect precipitation is 
an important meteorological phenomenon in this area, and 
this gage lies at relatively the same distance from the Lake 
Michigan shoreline as the Cedar Creek watershed. NOAA 
data (shown in Figure 3b) included hourly precipitation 
totals, as well as daily measurements of new snowfall and 
snow pack depth. 

Other climate data, including hourly temperature, rela-­
tive humidity, wind speed, and incoming solar radia-­
tion (Figures 3c–f), were extracted from the Fremont, 
MI station of the Michigan Automated Weather Network 
(MAWN) (see Figure 1 for location). This climate network 
is operated by the Michigan State University Extension, the 
Michigan Agricultural Experiment Station and the Michigan 
Department of Agriculture. Since the MAWN data did not 
exist prior to 1996, from 1990–1995 we used the Julian-­day 
average of the available data.

Components of the Integrated Landscape 
Hydrology Model (ILHM)

Figure 4 illustrates our conceptual model of the most 
important hydrologic processes in the Cedar Creek water-­
shed, and diagrams the linkages between input datasets, 
ILHM modules, and model outputs. As mentioned earlier, 
this version of ILHM was developed by linking a novel 
landscape water balance model with a simple linear -delay 
unsaturated zone model and MODFLOW-­2000 [Harbaugh et 
al., 2000], the most commonly used groundwater flow code. 
The landscape and near-­surface portion of the ILHM com-­
bines several existing codes with a set of new modules, in 
order to speed development and to incorporate the full range 
of hydrologic processes. The canopy water balance model 

Fig. 3Fig. 3

Fig. 4Fig. 4

Figure 3. Time series data inputs to ILHM for 2003 and 2004: 
A) LAI of forest and agricultural land covers; B) monthly rain and 
snow along with daily average temperature, a horizontal line at 
0°C is included as a visual aid; C) weekly averaged windspeed and 
solar flux; D) inset of hourly windspeed and solar flux data from 
6/21/04 through 6/24/04; E) weekly averaged relative humidity 
(R.H) and temperature; F) inset of hourly R.H. and temperature 
from 6/21/04 through 6/24/04.



126     Using the Integrated Landscape Hydrology Model (ILHM)

is based on equations published in Chen et al. [2005]. The 
surface hydrology model, including infiltration and runoff 
routing, are modified from the Distributed model for Runoff, 
Evapotranspiration, and Antecedent soil Moisture (DREAM) 
model by Manfreda et al. [2005]. The snow pack is simulated 
using the UEB Snow Model by Tarboton and Luce [1996]. 
Soil moisture accounting along with near-­surface flows are 
handled by a set of codes we developed based on common 
unsaturated zone flow modeling methods. 

The ILHM suite calculates each term in the full water 
balance equation:

	 	 (1)

where DS is the change in soil moisture storage in the biologi-­
cally active soil zone, P is watershed available precipitation, 
T is transpiration, E is evaporation, Pc is deep percolation 
beneath the biologically active soil zone, Tr is lateral near-

surface unsaturated flow called throughflow, and Ex is the 
exfiltration from each cell, and R is precipitation excess 
runoff. For Equation 1 and the detailed water balance equa-­
tions presented in Appendix A, terms are in units of meters 
per unit time unless otherwise specified. 

The landscape portion of our model sequentially calculates 
the water balance along the paths water takes as it is redis-­
tributed from precipitation to various subsurface and surface 
pathways. Incoming rainfall is first subjected to canopy 
interception, while snow is routed directly to the snow pack 
model. Next, canopy thoughfall and snowmelt are applied 
to the soil surface. These new inputs are then combined 
with any water stored in surface depressions and allowed to 
infiltrate into the soil. Any excess water at this point enters 
surface depression storage up to the available capacity. 

Infiltrated moisture is added to the existing surficial soil 
layer budget, where it can then percolate downward under 
the influence of hydraulic gradients. Any moisture within the 

Figure 4. Conceptual model and simplified box diagram of the ILHM. The upper portion illustrates the predominant 
hydrologic fluxes currently simulated by ILHM. The lower portion of the figure shows the relationships between and 
among input datasets, models, and model outputs.
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first soil layer is then available for evaporation, along with 
any transpiration that may occur in any of the biologically-
active soil layers. Subsurface lateral throughflow is then 
calculated, which may cause moisture in down-­gradient 
cells to exceed saturation. At this point, moisture in the 
lowest biologically-­active soil layer may then percolate into 
the sediments beneath, where it becomes deep percolation. 
Remaining moisture in excess of saturation is exfiltrated 
back toward the surface where it also enters depression 
storage. 

Deep percolation is then delayed as a linear function of the 
thickness of the unsaturated zone, which is estimated based 
on a steady-­state run of the regional MRW groundwater 
model. The delayed percolation then becomes recharge to the 
three-­dimensional transient groundwater flow model when it 
crosses the water table. Water stored in surface depressions 
is then subjected to direct evaporation. If depression stor-­
age capacity is exceeded, the excess water becomes surface 
runoff. Baseflow discharge from the groundwater model is 
then combined with the surface runoff and throughflow to 
produce the complete simulated stream hydrograph. 

The landscape hydrology components of the model for 
Cedar Creek are simulated with a 177×153 grid at 106.3 m 
resolution. As shown in Figure 1, while the watersheds and 
groundwatersheds overlap for most of the modeling domain, 
some locations contribute only surface water or groundwater 
to Cedar Creek. To account for this, the landscape hydrology 
model is run for the entire domain while the unsaturated 
zone model only allows groundwater recharge in active cells 
of the saturated groundwater model, and the stream routing 
module only includes areas within the surface-­watershed of 
Cedar Creek.

The following sections describe the details of each set of 
processes simulated in the ILHM, with specific assumptions 
that were made for the Cedar Creek case. The mathematical 
descriptions and details about parameters are included in 
Appendix A.

Precipitation and Snowmelt 

Watershed available precipitation (P) is the sum of liquid 
rainfall and snowmelt. From late December through mid 
March, precipitation falls predominantly as snow in the 
Cedar Creek watershed. To model the storage and release of 
snow we used the UEB Snowmelt Model by Tarboton and 
Luce [1996], which is an explicit energy and water balance 
model designed to track three state variables: snow water 
equivalent, energy deficit (i.e., how much energy would 
be required to return the snow pack and soil layer to the 0 
degree C reference condition), and the snow surface age. 
This model is computationally efficient because it assumes 

no temperature gradient within the snow pack and the layer 
of soil with which it interacts. For ease of integration with 
the rest of the ILHM model suite, we ported the FORTRAN 
version of this snowmelt code into MATLAB. 

The full UEB model requires air temperature, wind speed, 
relative humidity, and solar insolation. The adjustable param-­
eters in this model component include the density of the 
snowpack, the thermal conductance of the snow, the liquid 
water holding capacity of the snowpack, and the depth of 
soil with which the snow thermally interacts. Preliminary 
calibration to snow depth data from a single year of record 
provided the parameter values shown in Table 1.

The current version of the ILHM only runs the UEB model 
if either the air temperature during a precipitation event is 
below freezing, or the snow water equivalent of the snow-­
pack is greater than 0.01 mm. Any water remaining in the 
snowpack below this amount of moisture is then applied to 
the surface as additional snowmelt. All available snowmelt 
calculated by the UEB model is then added to any liquid 
precipitation for each time step to become watershed avail-­
able precipitation (P).

Evaporation and Transpiration

The evaporation (E) and transpiration (T) terms of the 
water balance equation first require calculation of potential 
evaporation and transpiration. All evaporation and transpira-­
tion potentials, (canopy, depression, soil, and transpiration) 
are calculated using the modified Penman-­Monteith equation 
[Monteith, 1965] presented by Chen et al. [2005] and shown 
as Equation A1. For each separate potential, the aerodynamic 
resistance and resistance to vapor transport terms are modi-­
fied as described in the Appendix.

Evaporation and transpiration rates vary temporally 
according to land cover types through 8-­day LAI scenes, 
a stomatal conductance coverage, and soil texture. For the 
Cedar Creek watershed, which is small and has relatively 
brief surface water residence times, we assume that there 
is no open water evaporation. Work is ongoing to explicitly 
model this component of evaporation.

Incoming rainfall is first subjected to interception up to 
the water holding capacity of the canopy, which is related to 
LAI in the cell. Water storage in the canopy is simulated as a 

Table 1Table 1

Table 1. List of adjustable parameters in the UEB Snowmelt Model 
and their assumed primary calibration values. 

Parameter Units Value

Snow Density kg m-3 200
Liquid Holding Capacity - 0.15
Thermally Active Soil Depth m 1.0
Snow Thermal Conductance m hr-1 0.2
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separate storage layer, with losses only from evaporation. We 
assume that the largely deciduous canopy does not intercept 
snowfall. The canopy is also assumed to intercept a portion 
of the incoming solar radiation based on LAI. 

The evaporation of moisture in depression storage is calcu-­
lated after any infiltration and exfiltration (described below) 
in a given time step have occurred. Total depression storage 
capacity is determined by land use, soil texture, and slope 
class; a tabular reference of storage capacities can be found 
in Manfreda et al. [2005]. Depression evaporation occurs 
at the potential rate until depression storage is depleted. 
Evaporation from depressions and directly from soil is 
allowed only from the proportion of soil that is exposed to 
solar radiation, thus assuming no soil evaporation from the 
portion shaded by canopy or covered with snow or ice.

Direct soil evaporation is allowed only from the first soil 
layer, which is a reasonable assumption in this relatively 
humid region. Soil evaporation occurs at the lesser of calcu-­
lated potential rate or the soil exfiltration depth (discussed 
further in the Appendix following Equation A16). We are 
exploring alternative strategies for calculating evaporation 
using the model of Ritchie [1972]. The total transpiration 
in each cell T is calculated to be the sum of the root water 
uptake from each biologically active soil layer. We assume 
that transpiration only occurs above a dormant threshold 
temperature, which was chosen to be 40 degrees F for this 
study. Stomatal conductance is also assumed to be constant 
for this case, although we plan to incorporate variations due 
to changes in temperature, carbon dioxide concentrations, 
and soil moisture as described in Chen et al. [2005].

Infiltration, Percolation, Throughflow, and Exfiltration

For this study we assume the biologically active soil can 
be described by two layers, with a total thickness calculated 
according to Equation A14 as the depth above which 90% of 
the root mass lies. The first soil layer, from which evapora-­
tion occurs and that controls infiltration capacity, is on the 
order of several centimeters thick. Infiltration capacity is 
calculated as the greater of either the soil-­texture dependent 
saturated infiltration capacity, isat, or the first layer moisture 
deficit from saturation. We chose the maximum infiltra-­
tion rate to be (2 • isat) which determines the choice of the 
first soil layer thickness. This formulation produces similar 
results to empirical infiltration rate descriptions, and has 
the advantage that it does not require storm event tracking 
or single storm event modeling. 

Here we assume that isat can take either its nominal soil-
texture dependent value taken from literature values (see 
Appendix), or isat = 0 if the soil is frozen, which we only 
allow to occur in agricultural soils based on Schaetzl and 

Tomczak [2001]. The soil is assumed to be frozen if its tem-­
perature is below –0.25°C, measured by the MAWN station 
in Fremont at a depth of 10 cm. 

In addition, we assume that no infiltration occurs in cells 
classified as permanent water features. Although the water 
features in this watershed often cover only a small portion of 
each land-­use cell, our assumption may nevertheless be fairly 
realistic. The true physical system process is more accurately 
described as rapid percolation to a shallow water table fol-­
lowed by equally rapid rise and subsequent relaxation of the 
water table. The effect is a temporary increase in ground-­
water discharge that generally does not modify what is more 
traditionally called stream baseflow. Our stream gage data 
indicate that the characteristic time of this response may be 
on the order of twice the surface runoff response, or perhaps 
5–7 days. This does not allow for significant losses due to 
evapotranspiration, thus the combined increase in stream dis-­
charge due to percolation to the near-­stream water table and 
direct overland flow would be nearly equal to that expected 
from an assumption of zero infiltration. Streamflows in our 
model would thus be expected to peak higher and return to 
baseflow levels more rapidly than observed. 

Throughflow, defined here as lateral subsurface f low 
within the biologically active soil zone is calculated using a 
simplified Richards equation model. For a full development 
of the Richards equation, see [Hillel, 1980]. For purposes of 
computational efficiency, and in order to assure that the sub-­
surface redistribution of moisture occurs in only one dimen-­
sion, we assume that flow only occurs parallel to the dip of 
the slope and thus cannot flow uphill on the ~100 meter scale 
of our model cells. For environments where these assump-­
tions may be invalid, alternate two-­dimensional formulations 
could be substituted for this ILHM module given adequate 
computational resources. The van Genuchten model was 
used to calculate all soil-­moisture dependent properties 
[van Genuchten, 1980] with parameter values given in the 
Appendix. The downgradient cell is determined via the D8 
flow direction function [ESRI, 2003]. However, each cell 
can have more than one upgradient cell, thus throughflow 
is the summation of the shallow subsurface flow out of all 
upgradient cells.

Unsaturated Zone Delay

Deep percolation beneath the biologically-­active soil layer 
is delayed prior to becoming recharged as a linear function of 
the depth to the water table. The slope of this delay in units 
of days/meter, was determined from wells installed in the 
nearby Grand Traverse Bay Watershed, and was fixed at 2.5 
for this study. It is important to note that this would not be 
the same as a solute transport time through the unsaturated 
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zone. Delayed deep percolation then becomes recharge once 
it reaches the water table. The depth of the water table is 
assumed temporally invariant for the current version of the 
unsaturated zone delay module for ease of implementation. 
By fixing the depth of the water table for this purpose, we 
do not account for seasonal or trending differences in water 
travel times through the unsaturated zone. The seasonal dif-­
ferences in the depth of the water table are small (typically 
<1 meter) relative to average depths to water over most of the 
model domain. Locations very close to surface water features 
are an exception, but these areas comprise a small fraction of 
the total watershed area and thus will not significantly affect 
the dynamics of modeled recharge. 

Groundwater Model

The groundwater model for the expanded MRW was devel-­
oped using a suite of MATLAB utilities that we developed to 
create input files from GIS layers for MODFLOW. A regular 
grid of 1798×1865 cells (106.3 meters on a side) was used so 
that each cell directly overlies 16 Digital Elevation Model 
(DEM) cells. The vertical domain of this saturated zone 
model was then subdivided into two layers with approxi-­
mately equal saturated thicknesses based on the simulated 
water table in a single layer model. Automated parameter 
estimation routines were applied to an early version of the 
Cedar Creek groundwater and soil balance model to estimate 
hydraulic conductivity values for aquifer sediments in geo-­
logic zones parameterized using a digital map created from 
Farrand and Bell [1982]. 

The Cedar Creek model is a single layer with dimensions 
of 184×162 and cell size of 100 meters. In this case, a single 
vertical layer provided an adequate description of f lows 
through the Cedar Creek watershed, because it does not 
have significant vertical relief, extensive low-­permeability 
subsurface layers, high-­capacity pumping wells, or other 
features that tend to induce significant vertical head gradi-­
ents. Groundwater discharge to streams is calculated with 
the Stream Flow Routing (SFR) package in MODFLOW 
that routes water via the kinematic wave equation [Prudic 
et al., 2004]. 

Runoff and Stream Routing

Surface runoff is routed to the streams using an approach 
modified from that presented by Manfreda et al. [2005]. In 
this version of the code, we assume that runoff cannot rein-­
filtrate once it is generated. It is routed overland and through 
streams according to the D8 flowdirection algorithm in ARC 
[ESRI, 2003] with runoff times given by the velocities in each 
cell along the flowpath. Runoff is assumed to travel overland 

at a velocity given by the Kerby time of concentration equation 
[Kerby, 1959]. Once the runoff enters the stream channel its 
velocity is calculated using Manning’s Equation.

For this study, the hydraulic radius, r, for Manning’s 
Equation was determined as a function of discharge using 
low-­flow channel geometry measurements in and around 
the Cedar Creek watershed along with geometries reported 
by the USGS for their stream gages. Wetted perimeter was 
assumed equal to 2 × depth + width, while area was simply 
depth × width. A power law fit to these data produced the 
empirical relationship for this watershed:

	 	 (2)

with a correlation coefficient R2 of 0.77 (see Figure 5). Q in the 
above equation is the measured stream discharge in m3/s. 

While streamflow velocity can be dynamically calculated, 
for simplicity we have assumed a temporally constant vstream 
for each stream cell. To calculate vstream, we assume that 
each cell in the Cedar Creek watershed contributes a unit 
of runoff which is them routed to the gages using ARC’s 
flowaccumulation function. To rescale the output to match a 
typical discharge event in a stream cell (Qij), we multiply the 
measured Q at the outlet by the ratio of the flowaccumulation 
value in each cell (i, j) to that of the outlet:

	 	 (3)

Once vstream has been calculated, the flow time from each 
grid cell to the outlet(s) can be calculated using ARC’s flow-­
length function, which calculates the cost-­weighted distance 

Fig. 5Fig. 5

Figure 5. Plot of measured discharge versus hydraulic radius in 
streams in the greater Muskegon River Watershed and adjacent 
watersheds. The hydraulic radius calculation assumes rectangular 
cross-­section geometry. The power-­law fit to the data produced a 
correlation coefficient, R2, of 0.77.
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from each cell to the outlet. Here the weighting is the inverse 
of the velocity in seconds/meter. ARC then multiplies this 
“cost” by the distance traveled through each cell along the 
entire flowpath and outputs to the travel time to the outlet. 
The travel time grid is then used to transform the precipita-­
tion excess grid into a runoff hydrograph.

RESULTS 

The results of the ILHM simulation for the Cedar Creek 
watershed are discussed in the context of the broader goals 
of the code, which are the prediction of temporal and spatial 
variations in recharge with very little direct calibration of 
model parameters using readily available remote-­sensed and 
ground-­based data sources. All parameters for this predic-­
tion were based on literature values (Tables 2 and A1–A3), 
except for the UEB model parameters (Table 1) as well as 
two hydraulic conductivity values and one unsaturated zone 
delay parameter that were calibrated using a very early ver-­
sion of the model (Table 2). 

A plot of simulated versus observed heads (Figure 6) 
across this region shows a reasonable degree of agreement 
given the measurement uncertainty. Figure 6 shows no trend-­
ing bias between simulated and observed heads, though a 
slight high-­side bias is present at observed heads lower than 
approximately 200 meters. We would expect a higher degree 
of correlation between simulated and observed water levels 
in regions where pressure transducer data are available from 
wells, or if a parameter optimization were to be performed 
for this ILHM simulation.

Detailed evaluation of modeled flows is hampered by the 
lack of long duration stream gages with stable channels in 
the basin. All observed stream discharges were collected via 
established methods, however the rating curves for the two 
stream gages are currently inadequate to account for tempo-­
ral adjustments of the channel geometry after flood events. 
As is commonly the case, we have few high flow measure-­
ments, which limits the accuracy of our flows calculated 
from the rating curve during large floods. In addition, flows 
in the Lower Cedar gage from January through March appear 
to suffer from ice-­induced over-­pressurization not observed 
at the Upper Cedar gage. 

Despite almost no calibration of parameters in the near-
surface components of the ILHM code, the model provided 

a reasonable prediction of observed flows (Figure 7) for 
the two available gage sites in this 100 square kilometer 
watershed (Figure 1) during the fall and winter months. The 
ILHM also provided reasonable predictions of baseflow for 
this watershed system during the entire year. Because this 
prediction is based almost entirely on a set of widely avail-­
able meteorological inputs and GIS datasets combined with 
literature parameter values, the code appears suitable for 
directly simulating streamflows in ungaged basins. 

The close agreement between observed and simulated 
baseflow levels also suggests that the model is providing 
reasonable predictions of recharge, which provides base-­
flow in these streams during low flow periods. During May 
and October 2003, and January–March 2004, the ILHM-
simulated total f lows typically agreed with gaged values 
within 10% (when the lower Cedar gage was not affected by 
ice cover). Baseflow levels in the smaller upper Cedar catch-­
ment proved highly sensitive to hydraulic conductivity in 
the outwash sand/gravel zone (Figure 2a). The conductivity 
values presented in Table 2 should not be viewed as a fully 
calibrated parameter set, as optimization of the total stream-­
flow simulation is the subject of ongoing evaluation. 

Despite the limitations imposed by some parts the stream 
gage data, the values from April through December of 2003 
are reasonable for quantitative flow comparisons. During 
lower ET periods from April through early June and October 
through December, the ILHM-­simulated total f luxes are 
approximately 20% higher than calculated from the flow 
gages installed at both the Upper and Lower Cedar gage 
sites. ILHM-­simulated total fluxes during higher ET periods 
from June through October are much greater than observed, 
also likely due to an incomplete description of ET processes 
in this version of the ILHM code that is the subject of ongo-­
ing development. 

Table 2Table 2

Fig. 6Fig. 6

Fig. 7Fig. 7

Figure 6. Uncalibrated simulated vs. observed groundwater heads 
plotted on top of a 1:1 line. Observations are from 96 residential 
wells installed in the Cedar Creek Watershed between 1990 and 
2004 (see locations in Figure 1).

Table 2. List of calibrated parameters for the unsaturated and 
saturated groundwater models.

Parameter Units Value
Outwash conductivity m d-1 11.0
Till conductivity m d-1 4.4
Unsaturated zone delay d m-1 2.5
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A scatter plot of simulated versus observed flows at the 
two gages on a log-­log scale illustrates that most of the mod-­
erate to high flows in the system are reasonably described by 
the model (Figure 8). There is a larger degree of mismatch 
in the Upper Cedar Creek site, as illustrated by a significant 
amount of scatter about the 1:1 line. Simulated peak dis-­
charge values are similar to those that have been measured, 
however the simulated discharge peaks are narrower than 
observed. This temporal offset at near-­peak discharge, seen 
in Figure 7b, appears in Figure 8 as a tendency toward low 
simulated flows relative to observed values. These narrow 
simulated peaks are largely related to the simple nature of 
our stream routing package, and the unidirectional linkage 
between groundwater and surface water processes in this 
version of the ILHM code. The assumption of a temporally 
constant vstream results in average flow velocities lower than 
those that would be expected, with the effect that simulated 
peaks would be even sharper if vstream were a function of 
discharge. However, there are several known flow damping 
mechanisms, including f low through wetlands and bank 
exchange, which are not yet represented in this version of 
the code.

A map of the simulated average annual recharge across the 
watershed implies that agricultural areas may have higher 
recharge than forested areas according to this simulation 

(Figure 9). Several inter-­related factors combine to account 
for the simulated differences. Agricultural areas experience 
less canopy interception than forested areas due to lower 
LAI values. Although this increases the infiltration into 
agricultural soils, a resulting increase in transpiration tends 
to narrow the difference in recharge between these land use 
types. Our model may also under-­represent soil evaporation 
in agricultural soils because it does not incorporate solar 

Fig. 8Fig. 8

Fig. 9Fig. 9

Figure 7. A & C) Upper and B & D) Lower Cedar Creek stream discharges with simulated values shown in white and 
gage values in black calculated based on stage discharge relationships. Manually measured discharge values are shown 
as black circles. 

Figure 8. Uncalibrated simulated vs. observed flows for the Upper 
and Lower Cedar Creek gages plotted on top of a 1:1 line from 
approximately 20 manual discharge measurements taken at each 
of the upper and lower Cedar Creek gage locations. 
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heating of the shallow soil layer. This simulated difference is 
the subject of future evaluation across the much larger MRW 
where more flow data are available. 

The blocky nature of the simulated recharge in this map 
is mainly due to the large (1 km2) LAI cells. The effect of 
these coarse cells is to decrease forest LAI and increase 
agricultural LAI in regions with mixed land-­uses. We plan 
to resolve this issue through downscaling the LAI informa-­
tion by assuming that the measured LAI value is a linear 
combination of the LAI of forest and agricultural land-­uses 
represented by the much higher resolution IFMAP dataset. 
Thus unique “agricultural LAI” and “forested LAI” values 
can be approximated at the resolution of the IFMAP data 
constrained by the total measured LAI from MODIS.

Areas with low hydraulic conductivity soils experience 
reduced recharge (Figure 9), such as portions of the upper 
watershed to the south side of the stream where loams and 
silty loams are common (compare with the soils map in 
Figure 2c). In contrast, recharge can be greatly enhanced 
in internally drained regions. In this simulation we deac-­
tivated the runoff mechanism in internally drained areas, 
thus potentially increasing infiltration and shallow subsur-­
face flow. This may be very important in areas with mod-­
erate to low-­conductivity soils, but the internally drained 
areas in this watershed tended to also be sandy so the effect 
is only localized.

The Cedar Creek region experiences very little runoff from 
upland areas, which is consistent with the simulated map of 
precipitation excess (Figure 10). Nearly all the simulated 
precipitation excess in this watershed occurs in cells that 
are classified as “water” because there is no transpiration 
or percolation from those cells. The only cells with any sig-­
nificant precipitation excess that are not classified as water 
are in a region of lower conductivity sediments in the upper 
watershed. Despite a simple description of runoff processes, 
we do not expect significant runoff in most of the sediments 
across this watershed due to high infiltration capacities 
and saturated hydraulic conductivities. There is also very 
little simulated subsurface redistribution, or throughflow, 
throughout most of the watershed due to the highly conduc-­
tive soils and relatively gentle topography. This process is 
most active in areas with steep slopes or water tables very 
near the surface. 

The simulation provides evidence for a strong seasonality 
in recharge rates for the Cedar Creek watershed. The tem-­
poral variations in simulated deep percolation are shown 
in Figure 11. From September through March in the four 
illustrated years, the model predicts that approximately 
70–80% of watershed available precipitation will percolate 
into the deep aquifer sediments where it eventually recharges 
groundwater. In contrast, the simulations show virtually no 

Fig. 10Fig. 10

Fig. 11Fig. 11
Figure 9. ILHM-­simulated average annual recharge for the Cedar 
Creek watershed. Annual total precipitation averaged approxi-­
mately 83 cm during the period of simulation.

Figure 10. ILHM-­simulated average annual precipitation excess 
runoff for the Cedar Creek watershed. Annual total precipitation 
averaged approximately 83 cm during the period of simulation.
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deep percolation over the growing season from May through 
September for the same years, which is consistent with the 
statistical findings of Jayawickreme and Hyndman [2007]. 
This simulation indicates that agricultural areas have more 
recharge in the fall months than forested areas, while the 
opposite occurs with higher relative forest recharge in the 
spring months. This is reasonable as forests tend to have less 
extensive frozen soils during snowmelt periods [Schaetzl and 
Tomczak, 2001], and agricultural LAI often begins to decline 
earlier in the year than in forested areas. Although coniferous 
forests may transpire year round, they represent only a small 
percentage of the forested areas in this study region. 

Temporal variation in evaporation and transpiration are 
clearly the causes of most of the simulated variations in 
deep percolation because these are the primary loss pro-­
cesses. As Figure 12 illustrates, evaporation is generally 
a much smaller component of water loss in this watershed 
than transpiration, and this component is larger in forested 
land relative to agricultural land due to much higher forest 
canopy interception. Transpiration shows a stronger sea-­
sonal trend than evaporation, as it depends more strongly on 
LAI. Total agricultural transpiration is greater than that of 
forested areas despite much greater potential transpiration 
in forested areas. Agricultural areas experience less canopy 
interception than forests, and thus greater infiltration and 
higher average soil moisture. As a result, agricultural areas 
tend to transpire closer to their potential rate than forested 
areas. Unexpectedly, agricultural transpiration also rises in 
the spring more quickly than that of forested areas according 

to these model results due to the similarity in LAI values 
during early spring and higher stomatal conductance val-­
ues for agricultural areas relative to forests. As the LAI of 
forests increases in the late spring, the transpiration in these 
areas becomes larger than that of agricultural areas, until 
they reach approximate equality in late June that continues 
through the rest of the summer. Also during the summer, soil 
moisture levels reach their lowest point and often approach 
the permanent wilting point. As deep percolation cannot 
occur until the field capacity of the soils is reached, most of 
the water that does infiltrate the soil is transpired. Thus deep 
percolation is almost non-­existent during summer months 
according to these simulations. 

DISCUSSION and CONCLUSIONS

We present the development and testing of a new suite 
of loosely coupled process-­based codes that we call the 
Integrated Landscape Hydrology Model (ILHM). This 
modeling framework has several advantages over exist-­
ing coupled hydrology codes. It can simulate much larger 
domains than fully coupled process-­based codes, with fewer 
data requirements. In addition, the ILHM accounts for the 
processes and mass balance in a more rigorous manner than 
semi-­distributed codes, which tend to lump or oversimplify 
important watershed processes and use parameters that can-­
not be independently measured. The ILHM also facilitates 
model development via direct input of readily available GIS 
data, in contrast to the impractical level of manual data input 

Fig. 12Fig. 12

Figure 11. A) Monthly average deep percolation (bars) in the Cedar Creek watershed plotted with the ratio of perco-­
lation to total precipitation for each month (stars). B) Monthly difference in deep percolation between forested and 
agricultural land covers. 
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required for large domains from some existing process-­based 
models such as Mike-­SHE. Finally, ILHM is well-­suited for 
forecasting purposes because it allows forcing data and com-­
ponent process models to be interchangeable; thus a model 
developed and calibrated with current data can be rapidly 
converted to a forecast simulation by adding the appropriate 
component process code.

This new modeling framework was designed to make 
development of models for large domains as simple as pos-­
sible, while maintaining a rigorous fluid mass balance based 
on the primary processes that drive water movement over the 
landscape and through the subsurface. The approach is com-­
putationally efficient because it allows some processes to be 
simulated based on full numerical models while others can 
be described by simpler and thus faster water- and energy-
balance approaches. Due to the loose-­coupling framework, 
individual components can also be simulated at a variety 
of spatial and temporal scales appropriate to the individual 
processes. This framework also allows more rigorous simula-­
tion modules to be used in place of a simpler routine in cases 
where the additional computational burden provides neces-­
sary improvement in the model predictions. Alternatively, 
in cases where enough data exist to adequately describe a 
particular process, the data can be used in lieu of that process 
simulation module. 

As currently configured, ILHM is designed to simulate 
f lows through regions with connected surface water and 
groundwater regimes such as Cedar Creek. This test water-­
shed has a sub-­humid and temperate climate, with f low 
through a glacio-­fluvial aquifer, largely covered with decidu-­

ous forests, agricultural land, and small percentage of urban 
cover. Thus the code is expected to provide reasonable pre-­
dictions for similar environments in the sub-­humid Midwest. 
The general processes are the same in arid and montane 
regions; however alternate modules would likely provide 
more accurate simulations in such cases. In particular, some 
high-­relief environments may require a full two-­dimensional 
representation of overland flow, including depth-­dependent 
velocities for sheet or rill flow. Areas with large proportions 
of urban land uses will require additional modifications, 
especially when engineered storm water systems have a sig-­
nificant effect on the hydrograph shape after a storm event. 

In the Cedar Creek watershed, precipitation excess runoff 
routing and subsurface moisture redistribution are both 
largely inactive over most of the modeled domain and time-­
frame. As a result, the simulation results are similar even 
if these modules are not active for upland areas. Therefore, 
further testing in domains where these processes are respon-­
sible for a significantly larger percentage of the flow in a 
river system will be needed for these modules. The current 
unsaturated zone module is a very simple representation 
of hydrologic processes, thus we will explore the use of 
direct solution methods ranging from the Green-­Ampt model 
through the full Richards equations. Additionally, using 
MODFLOW or any finite difference scheme has the dis-­
advantage of requiring somewhat cumbersome rectangular 
grids that limit cell refinement at regional scales. However, 
ILHM can easily be altered to interface with a finite element 
code capable of representing and accounting for groundwater 
discharges to streams.

Figure 12. Average monthly evaporation (E), transpiration (T), and evapotranspiration (E+T) plotted for both forested 
and agricultural landscape as stacked bars along with the difference (Forest-­Agriculture) between the two land-­use 
types plotted as circles.
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The ILHM was tested in the Cedar Creek watershed 
because of the need for high-­resolution flow simulations 
that provide the interface between land use change models 
and ecohydrology models in the near future. This first eval-­
uation of the ILHM modeling framework demonstrated that 
these codes can reasonably predict groundwater recharge 
and streamflow through a 130 square kilometer water-­
shed with very little calibration using readily available 
data. The simulation represented overall basin recharge 
accurately, but it appears to have slightly overestimated 
recharge in agricultural areas. This is likely due to an 
inadequate representation of soil evaporation that will be 
addressed in a future version of the ILHM. The simulated 
hydrograph peaks are too narrow and decline more rapidly 
than is observed because the current surface water/ground-­
water linkage cannot represent bank storage and release 
processes, nor can the unidirectional coupling between 
surface water and groundwater fully represent near-­stream 
processes at our chosen spatial scales. Nevertheless, the 
recharge and streamflow predictions provide reasonable 
descriptions of system behavior and will be further refined 
in future versions of the ILHM applied to much larger 
domains.
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Appendix A: ILHM Model Development

Evaporation and Transpiration

The basis for our potential evaporation and transpiration 
calculations is the modified Penman-­Monteith equation 
[Monteith, 1965] presented by Chen et al. [2005]:

	 	 (A1)

Variables appearing in Equation A1 and others that are not 
explicitly defined in the text are explained in Table A1. In 

Equation A1, F is the net radiation flux, which is the prod-­
uct of total solar radiation measured at the MAWN gage 
multiplied by the albedo of each cell. Here we assume that 
albedo varies seasonally from a leaf-­off “brown albedo”, ab, 
condition to a peak growing season “green albedo”, ag value. 
When LAI = 0, albedo equals ab and increases linearly to ag 
until canopy closure is complete, which we assume occurs 
at LAI = 3. Thus albedo

	 	 (A2)

Values of ab and ag are provided in Table A2. ρ (kg m-3) is 
the density of moist air given by the ideal gas law: 

	 	 (A3)

The barometric pressure,Patm 
(Pa) is calculated according to 

the barometric formula [Berberan-­Santos et al., 1997]:

	 	 (A4)

where z is the elevation relative to mean sea level (m) given 
by the DEM. 
es (Pa) is calculated from the Goff-­Gratch equation [Goff 
and Gratch, 1946]:

	 (A5)

D (Pa K-1) is the slope of the saturated vapor pressure-
temperature curve, calculated as the numerical derivative of 
the Goff-­Gratch equation; e, the product of es and measured 
fractional relative humidity, is the ambient water vapor pres-­
sure; λv is the latent heat of vaporization for water (J kg-1) 
[Harrison, 1963]:

	 	 (A6)

and γ is the psychrometric coefficient (Pa K-1) [Brunt, 
1952]

	 .	 (A7)

Table A1Table A1

Table A2Table A2
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The canopy resistance to vapor transport, rci, (m s-1) is 
calculated as

	 	 (A8)

where gs is the stomatal conductance (s m-1). Values for 
maximum stomatal conductance were taken from Schulze 
et al. [1994]. Unlike Chen et al. [2005], the aerodynamic 
resistance,

 
rai (m s-1) is calculated based on canopy properties 

and height-­adjusted gaged wind speed [Allen et al., 1998]

	 	 (A9)

Because windspeed was only measured at one height, the 
effective measurement height is adjusted for canopy height. 
Here we assume that the height to which windspeed is 
adjusted, hmw is given by 

	 	 (A10)

where hc is the canopy height assumed constant for a given 
land cover (Table A2), and fo is a factor to move the adjusted 
wind height some distance above the canopy. The zero dis-­
placement height h0 is assumed to be  [Allen et al., 

1998]. lm is the roughness length for momentum transport 
(m) taken as  [Allen et al., 1998] (same as the zero 
displacement), and lv is the roughness length for vapor and 
heat transport (m) assumed to be  [Allen et al., 1998]. 
vwa is the measured wind speed (m s-1) adjusted for mea-­
surement height according to the wind profile power law 
assumption [Elliot et al., 1986].

	 	 (A11)

where vw is the raw measured wind speed (m s-1). 
In order to calculate evaporation from leaf surfaces Ec, sur-­

face depressions (Ed), and the soil (Es), Equation A1 is used 
but the two conductance terms are modified. rci is set to 0 for 
evaporation from leaf surfaces and surface depressions, and rai 
is calculated using a crop height of 2 cm for surface depression 
evaporation. To calculate surface soil layer evaporation, rci is 
replaced by rs given by [Choudhury and Monteith, 1988]:

	 	 (A12)

where le is the depth from the surface to the top of the evapo-­
rative layer of water (m), here assumed to be half the depth 
of the top soil layer, and Φ is the total porosity.

Table A1.  Parameters used in calculating PET.

Symbol Definition Units Value Source
Rd Gas constant of dry air J kg-1K-1 287.05 6
Rv Gas constant of water vapor J kg-1K-1 461.495 6
P0 Reference air pressure at mean sea level Pa 101,325 6

M Molar mass of dry air kg 0.029 6

g0 Gravitational acceleration at mean sea level and 44.5 °N latitude m s-2 9.80665 7

Rg Molar gas constant of dry air J mol-1 K-1 8.314 5
cp Constant-pressure specific heat of dry air J kg-1K-1 1006 6
Tst Steam-point temperature K 373.15 3
est es at the steam-point temperature Pa 101,325 3
hmv Measurement height of relative humidity m 2 -
hm0 Measurement height of windspeed m 2 -
f0 Arbitrary windspeed-at-height offset factor - 2 -

k Von-Karman constant - 0.41 1
αw Empirical windspeed-at-height power law coefficient - 0.143 2

t Soil tortuosity - 2 4
Dv Molecular diffusion coefficient for water vapor m2 s-1 2.5x10-5 4

1 Allen et al. [1998]
2 Elliot et al. [1986]
3 Goff and Gratch [1946]
4 Choudhury and Monteith [1988]
5 CODATA [2002]
6 Cengel and Boles [2001]
7 Halliday et al. [2004]
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The total transpiration in each cell T (m) is the sum of the 
root water uptake from each biologically active soil layer, 
T1 and T2. Following Manfreda et al. [2005], we assume in 
this version of the ILHM code that the actual transpiration is 
calculated from the potential value by linearly interpolating 
between 0 at the permanent wilting point and the potential 
rate at 75% of saturation according to:

   	 (A13)

where Si is the soil moisture (m) of the ith soil layer, Φ-33 is 
the permanent wilting point of the soil (Table A3) and li is 
the thickness of the ith soil layer (m). The term 

 
is a 

logical statement that returns a value of “1” if true and “0” if 
false. Porosity values, Φi are taken as a function of soil type 
as given by Table A3. Biologically active soil thickness is 
calculated as the depth above which 90% of the root mass lies 
using the asymptotic equation [Gale and Grigal, 1987]:

	 y = 1 - b d	 (A14)

where y is the cumulative root fraction at depth d=0.9 (cm) 
for this study; b is a land cover-­dependent parameter (Table 
A1). We use Equation A14 to solve for d with a fixed cumula-­
tive root fraction y=0.9. 

	 	 (A15)

Total evaporation E (m) is the sum of canopy evaporation, 
Ec, soil evaporation Es, and surface depression evaporation 

Ed. Soil evaporation is calculated according to Chen et al. 
[2005] as

	 	 (A16)

where ds is the soil-­controlled exfiltratio n depth (m) cal-­
culated by 

	 	 (A17)

and Dt is the model timestep length (s), while se is the 
soil desorptivity (m s-1/2), calculated as in Entekhabi and 
Eagleson [1989]:

	 	 (A18)

where ksat is the saturated hydraulic conductivity of the 
first soil layer (m s-1), m is the pore size distribution index 
assumed to be a function of soil texture (Table A3), and 

 is the fractional saturation. As in Manfreda 
et al. [2005], the closed canopy fraction ( fc) is defined by 
the empirical relationship [Eagleson, 1982]

	 	 (A19)

where µ is a constant for a given land cover type given by 
Table A1.

Calculating Ec requires a full canopy water balance model. 
The canopy water balance is calculated using:

Table A3Table A3

Table A2.  Land-Use parameters

Land-use Type

Symbol Definition Units Urban Ag Shrub Forest Wetlands
Open 
Water Bare Source

gs Stomatal 
Conductance

s/m 10.0 11.6 7.0 5.0 3.5 0.0 0.0 1

hc Canopy Height m 0.8 1.0 1.0 22.0 1.6 0.01 0.01 2

b Root Beta - 0.943 0.961 0.964 0.97 0.96 0.95 0.95 3

ag Green Albedo - 0.2 0.22 0.2 0.16 0.12 0.001 0.001 2

ac Brown Albedo - 0.36 0.4 0.28 0.24 0.4 0.001 0.001 2

µ Canopy-fraction 
parameter

- 0.1 0.45 0.35 0.65 0.5 0.0001 0.0001 4

1 Schulze et al. (1994).
2 Walko and Tremback (2005).
3 Jackson et al. (1994).
4 Manfreda (2005).
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	 	 (A20)

where DSc is canopy water storage (m). Incoming rainfall is 
first subjected to interception up to the water holding capac-­
ity of the canopy given by Dickinson et al. [1991]:

	 (m),	 (A21)

where LAI is the leaf area index (m2/m2). The available 
interception capacity of the canopy is then given by

	 .	 (A22)

Additionally, we modify the model of Chen et al. [2005] to 
allow some water to penetrate the canopy at all times based 
on the assumption that the canopy is not completely closed. 
Interception at time t is then

	 	 (A23)

Canopy evaporation, Ec is then calculated as in Manfreda 
et al. [2005] with

	 .	 (A25)

Surface depression evaporation, Ed occurs only when 
water is stored in surface depressions. At each time step, 
any water stored in surface depressions Sd from the previous 
timestep is added to throughfall from the canopy (or snow-­
melt from the UEB model) such that precipitation excess 
runoff, Re is given by

	 ,	 (A26)

where infiltration, Inf, is calculated as discussed below. Sd 
is then calculated as

	 	 (A27)

where Ex1 is the exfiltration out of the first soil layer and the 
depression storage capacity. Sdmax is assumed to be constant 
for a given combination of slope, land cover, and soil type 
(see table in Manfreda et al. [2005] using values from Liu et 
al. [2003]). Depression evaporation, Ed is then given by

	 .	 (A28)

Table A3.  Soil properties

Soil Texture Class

Symbol Definition Units Sand
Loamy  
Sand

Sandy 
Loam Silty Loam Loam Muck† Source

ksat Saturated 
Conductivity   

×10-6 m s-1 58.3 17.0 7.19 1.9 3.67 1.19 1

Φ Total Porosity - 0.437 0.437 0.453 0.501 0.463 0.398 1

θr Residual Water 
Content

- 0.020 0.035 0.041 0.015 0.027 0.068 1

isat Infiltration 
Capacity

×10-6 m s-1 58.3 17.0 7.19 1.9 3.67 1.19 2

Φ-33 Field Capacity - 0.14 0.15 0.2 0.28 0.25 0.25 2

Φ-10,000 Wilting Point - 0.07 0.07 0.09 0.10 0.11 0.16 2

α Van Genuchten 
parameter 

m-1 14.5 12.4 7.5 2.0 3.6 5.9 3

N Van Genucthen 
parameter

- 2.68 2.28 1.89 1.41 1.56 1.48 3

φb Bubbling 
Pressure 

m 0.073 0.087 0.147 0.208 0.112 0.281 1

m Pore Size 
Distribution

- 0.695 0.553 0.378 0.234 0.252 0.319 1

1 Stieglitz et al. [1997]
2 Saxton et al. [1986]
3 Carsel and Parrish [1988]
†Assumed same properties as sandy clay loam
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Infiltration, Percolation, Throughflow, 
and Exfiltration

The next three terms of the water balance (Equation 1), 
percolation, Pc; throughflow, Tr; and exfiltration Ex are 
calculated within the soil water balance model. First, the 
outputs of the canopy model, snowmelt model, and depres-­
sion storage model are used to calculate infiltration into the 
surface soil layer 

	 .	 (A29)

The infiltration capacity, ismax is a function of the moisture con-­
tent of the surface soil layer and is calculated according to

 	 	 (A30)

where l1 is the thickness of the first soil layer as defined 
previously, S1 is the moisture stored within the first soil layer, 
and isat is the saturated infiltration capacity, which can vary 
with time due to the influence of impermeable frozen soils. 

Infiltration is applied to the first soil layer, which can 
then percolate into the second layer. First, the soil moisture 
storage at the end of each timestep in the first layer is cal-­
culated as

	 	 (A31)

where P1 is the percolation of water from the first soil layer 
to the second. Note that T1 requires S1. To avoid having to 
solve the coupled equations, T1 is calculated using an inter-­
mediate value of S1

t = S1
t-1 + 1s - Es. Then S1 = S1

t- - T1, and 
S1

t+ = S1 + Tr1 - P1 + Ex2 - Ex1. Given S1, percolation into 
the second layer, P1 is given by

	 	 (A32)

where  and PDREAM is the percolation calculated 
according to Manfreda et al. [2005] given by:

	 (A34)

where . PDREAM effectively allows percolation 
only when soil moisture exceeds the field capacity given by 

.

The second-­layer soil moisture at the end of the timestep, 
(S2), is calculated similarly to Equation A31:	

	 ,	 (A35)

where T2 is calculated from the values of S2
t-1 at the previ-­

ous timestep. 

	 	 (A36)

is calculated from an intermediate value of S1
t-1 = S1

t-1 + 
P1 - T2. 

Throughflow out of a cell is calculated as 

	 (A37)

where the effective unsaturated hydraulic conductivity for 
subsurface flow in layer i is taken as the harmonic average 
of the unsaturated hydraulic conductivity in the cell, kθi 
(m s-1) and the down slope value kθidown; Dx is the model cell 
resolution (m);  is the vertical gradient in the down-­slope 
direction;  is the slope in meters of the moisture retention 
curve in layer i, and

	 	  

where  is the residual volumetric moisture content assumed 
to be a soil-­texture dependent property (see Table A3). The 
assumption that flow only occurs parallel to the dip of the 
slope requires that Trout ≥ 0. Tri is then calculated as

	 . 	 (A38)

Finally, Ex2 is calculated as the soil water in excess of 
saturation given by

	 .	 (A39)

This is then applied to the first layer prior to calculating 

	 .	 (A40)

Runoff Routing

Water exfiltrated from layer one is then applied to the 
surface depression model, thus R (m) is simply

	 	 (A41)
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which is then routed to the streams using an approach modi-­
fied from that presented by Manfreda et al. [2005]. Once 
generated, runoff cannot infiltrate and is instead routed 
overland and through streams according to the D8 flowdirec-­
tion algorithm in ARC [ESRI, 2003] with runoff times given 
by the velocities in each cell along the flowpath. Runoff is 
assumed to travel overland at a velocity given by the Kerby 
time of concentration equation [Kerby, 1959]

	 	 (A42)

where tcell is the time required to completely traverse a model 
cell (s), lcell is the length of the model cell (m), n is the dimen-­
sionless Manning’s Roughness coefficient (values from 
[McCuen, 2004]) and s is the fractional slope of the cell in 
the downslope direction. The velocity (m s-1) is then

	 .	 (A43)

Once the runoff enters the stream channel its velocity is 
calculated using Manning’s Equation [McCuen, 2004]

	 	 (A44)

where r is the hydraulic radius (m) given by the ratio of the 
stream cross-­sectional area to the wetted perimeter. 
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Integrating Geophysical, Hydrochemical, and Hydrologic 
Data to Understand the Freshwater Resources on Nantucket 

Island, Massachusetts

Andee J. Marksamer1, Mark A. Person1, Frederick D. Day-Lewis2,  
John W. Lane Jr.2, Denis Cohen1; Brandon Dugan3, Henk Kooi4, and Mark Willett5

In this study we integrate geophysical, hydrologic, and salinity data to understand 
the present-day and paleo-hydrology of the continental shelf near Nantucket Island, 
Massachusetts. Time-domain electromagnetic (TDEM) soundings collected across 
Nantucket and observed salinity profiles from wells indicate that the saltwater/fresh-
water interface is at least 120 m below sea-level in the northern and central portions 
of the island, far deeper than predicted (80 m) by modern sea-level conditions. 
TDEM soundings also indicate that higher salinity conditions exist on the southern 
end of the island. These findings suggest a relatively high-permeability environ-
ment. Paradoxically, a deep, scientific borehole (USGS 6001) on Nantucket Island, 
sampling Tertiary and Cretaceous aquifers, is over-pressured by about 0.08 MPa (8 
m excess head), which is suggestive of a relatively low-permeability environment. 
We constructed a series of two-dimensional, cross-sectional models of the paleohy-
drology of the Atlantic continental shelf near Nantucket to understand the flushing 
history and source of overpressure within this marine environment. We considered 
two mechanisms for the emplacement of freshwater: (1) meteoric recharge during sea-
level low stands; and (2) sub-ice-sheet and glacial-lake recharge during the last glacial 
maximum (LGM). Results indicate the sub-ice-sheet recharge from the Laurentide 
Ice Sheet was needed to account for the observed salinity/resistivity conditions and 
overpressures. Both TDEM soundings and model results indicate that a lateral transi-
tion from fresh to saltwater occurs near the southern terminus of the island due to ice 
sheet recharge. We also conclude that the overpressure beneath Nantucket represents, 
in part, “fossil pressure” associated with the LGM. 

INTRODUCTION

Many coastal aquifer systems on the Atlantic Continental 
Shelf offshore from New England, USA, have anomalous 
volumes of freshwater that extend far offshore (>20 km) 
[Hathaway et al., 1979; Kohout et al., 1977]; these volumes 
are difficult to explain based on modern sea-level conditions. 
On Nantucket Island, Massachusetts, for example, monitoring 
wells PT-12 and PT-13, installed to 90 and 110 meters below sea 
level (mbsl), respectively, and well USGS 6001, installed to 514 
mbsl, contain ground water with salinities of less than 1 part per 
thousand (ppt) within all permeable units (Fig. 1) [Folger et al., 

Fig. 1Fig. 1
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1978]. The observed freshwater below Nantucket is substantially 
deeper than would be expected based on the Ghyben-Herzberg 
principle [Drabbe and Badon-Ghyben, 1889; Herzberg, 1901; 
McWhorter and Sunada, 1993]. Given water-table elevations 
of about 2 m at wells PT-12 and PT-13, the Ghyben-Herzberg 
principle predicts that the freshwater/saltwater interface is 
approximately 80 m below sea level: 

	 ,	 (1)

where Z is depth of the freshwater/saltwater interface below sea-
level (L), ρf is density of freshwater (1000 kg/m3) (M/L3), ρs is 

density of saltwater (1025 kg/m3) (M/L3), and h is height of the 
water table above sea level (L). This is substantially shallower 
than the observed freshwater at 514 mbsl within USGS 6001. 

Inspection of long-term water-level records from wells 
located near Nantucket Island’s principle well fields in the 
center of the island reveal no declining trends over the last 
two decades; hence it is unlikely that this discrepancy results 
from mining of ground water by over-pumping. Indeed, the 
withdrawal rates represent less than 10% of the available 
recharge on the island. Unexpected freshwater has also been 
observed on Martha’s Vineyard, Massachusetts (to depths 
of 228 m), and even farther (>100 km) off the New Jersey 
coast (wells 6009, 6011, 6020) where pore waters with solute 
concentrations of less than 5 ppt have been noted within 
Pleistocene, Pliocene, Miocene, and Upper Cretaceous sand 
units [Kohout et al., 1977; Hathaway et al., 1979; Hall et al., 
1980] (Fig. 1). 

How and when was freshwater emplaced within the con-
fined aquifers beneath Nantucket Island? During Pleistocene 
sea-level low stands, hydraulic heads along the Massachusetts 
coast would have been far too low to drive meteoric water 
very far offshore [Kooi and Groen, 2001]; moreover, con-
fined aquifers south of Martha’s Vineyard and Nantucket 
outcrop or subcrop below sea level in Nantucket Sound, 
thus onshore recharge cannot be occurring presently. The 
fresh and brackish sub-seafloor pore waters that are present 
along the northeastern U.S. Atlantic coast can be considered 
key examples of paleo-ground water that was emplaced 
during Pleistocene sea-level low stands and escaped sali-
nization (e.g., f lushing with sea water) during Holocene 
sea-level rise [Hathaway et al., 1979; Meisler et al., 1984; 
Kooi and Leijnse, 2000; Person et al., 2003]. Several com-
peting mechanisms have been proposed to explain how paleo 
ground water is emplaced during glacial low-stand periods. 
Early studies considered the shore-normal hydraulic gradi-
ent associated with the topography of the continental shelf 
as the primary driving force for freshwater recharge during 
sea-level low stands [Meisler et al., 1984] (Fig. 2A). More 
recently, Groen et al. [2002] argued that local flow systems 
associated with secondary topography of the subaerially 
exposed and incised shelf are essential to emplace meteoric 
water far out onto the continental shelf (Fig. 2A), whereas 
Person et al. [2003] emphasized the role of sub-ice-sheet 
recharge (Fig. 2B). 

Several proglacial lakes formed following the last glacial 
maximum (LGM) as the Laurentide ice sheet retreated (Fig. 
3) [Uchupi et al., 2001]. Seepage from the proglacial lakes 
during the LGM in Nantucket Sound, Cape Cod Bay, Block 
Island Sound, and Long Island Sound (Fig. 3) could have 
provided extensive recharge to the confined aquifers of the 
continental shelf of New England. When the southern dams 

Fig. 2Fig. 2

Fig. 3Fig. 3

Figure 1. Location of wells on Nantucket Island, Martha’s Vineyard 
Island and the Atlantic Continental Shelf. Numbered squares on the 
Nantucket map indicate the location of time-domain electromagne-
tism (TDEM) soundings. Cross section A-A’ is associated with the 
cross section on Figure 6. Salinity profiles are shown of wells on the 
North Atlantic Continental Shelf. Bathymetry contours are in meters 
[Kohout et al., 1977; Folger et al., 1978; Hathaway et al., 1979; Hall et 
al., 1980]. Note the change in scale for wells PT-12 and PT-13.
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of the proglacial lakes failed, rapid sedimentation on the 
continental shelf would have also changed the land-surface 
morphology, created rapid sediment loading, and perhaps 
driven infiltration of freshwater [Uchupi et al., 2001] (Fig. 
2C). Local recharge could be facilitated by gaps in confining 
units due either to non-deposition or erosion. 

There is evidence that f lushing with freshwater has 
occurred on the continental shelf within the deep Cretaceous 
and Tertiary units on Nantucket during the recent past (USGS 
6001, Fig. 1). All permeable Cretaceous and Tertiary units 
within USGS 6001 contain freshwater; however, the pore 
waters within the thick low-permeability units show high 
salinities of up to 12–13 parts per thousand (ppt) and dis-
play vertical solute diffusion profiles. Interestingly, the thin 
confining units contain low-salinity pore water, which indi-
cates that vertical diffusion of the solutes has already run its 
course (Fig. 1–see salinity profile in well USGS 6001); hence 

the Tertiary and Cretaceous sand units once contained high 
salinity waters and were flushed with fresh ground water, 
but diffusive transport of saltwater within the thick, low-
permeability units has not yet reached equilibrium. Simple 
vertical diffusion models [Person et al., 2003] suggest that 
the flushing of the Tertiary and Cretaceous aquifers occurred 
as recently as 21 ka, about the time of the LGM.

In addition to anomalous amount of freshwater observed 
below Nantucket, ground-water elevations measured monthly 
as part of the National Water Information System for the U.S. 
Geologic Survey (USGS) [http://nwis.waterdata.usgs.gov/
nwis/gwlevels] have been used to identify elevated hydraulic 
heads within the deep Tertiary and Cretaceous units at well 
USGS 6001 on Nantucket. Hydraulic heads within USGS 
6001 are overpressured by up to 8m above sea level (0.08 
MPa) and 4m above the local ground-water table as shown in 
USGS 228 (Fig. 4). Smaller overpressure (approximately 0.3 
m) was also observed within a 228-m deep well (ENW-60) 
on Martha’s Vineyard [Kohout et al., 1988]. Even based on 
the water-table elevations of 7.5 m above sea level in the deep 
USGS 6001, the Ghyben-Herzberg principle still under pre-
dicts the amount of freshwater below Nantucket (predicted 
300 m versus observed 514 m). 

Overpressure observed in the Tertiary and Cretaceous 
deposits and the anomalous quantities of freshwater within 
those units represents a paradox. High fluid pressures are 

Fig. 4Fig. 4

Figure 2. Conceptual models for freshwater plumes: (a) lateral 
incursion of freshwater during the Pleistocene sea-level low stands 
[Meisler et al., 1984] and vertical infiltration of meteoric water 
induced by local flow cells on the Continental Shelf [Groen., 2002]; 
(b) sub-ice-sheet recharge from the Laurentide ice sheet [Person et 
al., 2003]; (c) infiltration beneath pro-glacial lakes.

Figure 3. Distribution of proglacial lakes and position of maxi-
mum ice sheet extent during the Late Quaternary on the Atlantic 
Continental Shelf [after Uchupi et al., 2001].
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typically suggestive of a low-permeability environment 
whereas the large quantities of freshwater beneath Nantucket 
are suggestive of a high-permeability system. However, 
the elevated heads in the Tertiary and Cretaceous aquifers 
beneath Nantucket may have occurred in the recent past as 
a result of rapid sedimentation following glaciation. Near-
lithostatic overpressures have been inferred offshore from 
New Jersey where sedimentation rates were high (~ 1 mm/
yr) and confining units are thick [Dugan and Flemings, 
2000]. Fluid-flow models by these authors demonstrated 
how overpressures offshore from New Jersey focus fluid 
migration along permeable sand layers; Dugan and Flemings 
[2000] argued that Late Pleistocene sedimentation was the 
sole mechanism responsible for high heads inferred from 
porosity data and laboratory experiments; however, it is 
also possible that the high heads are relic features created by 
extremely high hydraulic heads along the continental shelf 
due to glacial loading. 

To date most studies that have developed quantitative 
models of ground-water flow beneath ice sheets have utilized 
static representations of ice-sheet geometry and neglected 
the effects of hydromechanical loading [Boulton et al., 1995; 
Piotrowski, 1997; Person et al., 2003]; however, if the ice 
sheet overrides low-permeability sediments, or if rapid sedi-
mentation occurs following glaciation, then hydromechanical 
effects need to be simulated to account for the effect of load-
ing on ground-water flow [Lerche et al., 1997; Bekele et al., 
2003; Lemieux et al., 2006; Person et al., 2007]. Here we use 
variable-density, cross-sectional models of fluid flow, solute 
transport, and sediment loading to predict fluid pressures 
and solute distribution. The hydrostratigraphy represented 

in this model is based on detailed stratigraphic correlations 
between available wells on Nantucket Island and Martha’s 
Vineyard, as well as a series of offshore borings. These 
simulations are compared with time-domain electromagnetic 
(TDEM) soundings collected from across Nantucket and 
salinity profiles and hydraulic head pressures from wells on 
the island. This study helps to unravel the complex paleo-
hydrologic history associated with the LGM and subsequent 
sea level rise while also providing critical information about 
the distribution of the potable freshwater resources available 
to Nantucket Island.

STUDY AREA

Basement rocks beneath Nantucket Island consist of 
Triassic basalts overlain by 460 m of coastal plain sediments 
of Cretaceous, Tertiary, and Quaternary age [Folger et al., 
1978]. Cretaceous sediments on Nantucket range from 118 
to 457 mbsl (Fig. 1). The lower portion of that section con-
tains soft, unconsolidated layers of sand and clay, whereas 
the upper section is mostly clay with interbedded layers of 
sand [Folger et al., 1978]. Tertiary glauconitic green sand 
is regionally located above the Cretaceous package; these 
Tertiary sands have been penetrated by several wells across 
the island at 80–90 mbsl. Paleontologic studies have linked 
glauconitic green sand to a similar green sand unit observed 
on nearby Martha’s Vineyard at approximately 30 mbsl [Hall 
et al., 1980]. Folger et al. [1978] inferred 85 m of Pleistocene 
sediment overlying the green Tertiary sand within boring 
USGS 6001. Within the 85 m of Pleistocene sediment, Folger 
et al. [1978] identified mostly medium-to-coarse grained sand 
within several layers containing shell fragments up to 7 cm 
across at depths between 28 and 51 mbsl. The Wannacomet 
Water Company on Nantucket produces groundwater from 
these shelly layers. Folger et al. [1978] also describe two 
zones of either glacial till or weathered soil at 25 and 53 
mbsl. Wisconsin-aged glacio-lacustrine deposits of up to 
160-m thickness have been identified in Nantucket Sound 
just north of Nantucket Island [O’Hara and Oldale, 1987]; 
these deposits consist of mostly silt and clay. Similar glacio-
lacustrine deposits were observed throughout the western 
region of Cape Cod [Masterson et al., 1997]. It is likely that 
these deposits were part of Glacial Lake Nantucket, and 
therefore, likely extend south below Nantucket to the location 
of the terminal moraine. Highlands reaching 33 m above sea 
level in the central eastern portion of Nantucket Island are 
the remnants of the glacial moraine. Ice contact deposits are 
also found in this area [Oldale, 1985]. 

Nantucket’s demand for potable water has increased sig-
nificantly over the last two decades due to tourism and devel-
opment. One new well field has been brought on line (State 

Figure 4. Head data comparing the local water table elevation in well 
228 and Cretaceous aquifers in well 6001 beneath Nantucket Island 
between 1976–1993. The data indicated that the deep aquifers are 
anomalously pressured and disconnected from the water table flow 
system. The locations of the wells are shown on Figure 1.



MARKSAMER ET AL.    147

Forest) in the past decade and another is planned (North 
Pasture). The majority of Nantucket’s municipal potable 
water is supplied by well fields (PW-12 and PW-13) located 
within the central but narrowest portion of the island; this 
situation highlights the vital need to understand the distribu-
tion of freshwater across the island. Water-table elevations 
vary across the island from up to 3.5 m above sea level in 
the widest part of the island to less than 2 m at the narrowest 
part of the island where municipal wells tap into the island 
aquifers. The water table declines near the coastline where it 
is even with modern sea level. Numerical modeling, based on 
projected pumping increases, indicates that saltwater upcon-
ing could occur within municipal water wells before 2014 
[Person et al., 1998]; however, these models did not account 
for the presence of the potentially thick confining glacio-
lacustrine deposits from former Glacial Lake Nantucket nor 
the offshore freshwater. Nevertheless, these studies have 
led to increased interest in monitoring the distribution of 
freshwater and saltwater across the island. Understanding 
the regional system and emplacement mechanisms of the 
aquifers on Nantucket, will enable better design and imple-
mentation of a safe, efficient strategy to prevent migration 
of saltwater into potable water sources. 

GEOPHYSICAL DATA

The time-domain electromagnetic (TDEM) method 
[Nabighian and Macnae, 1991] is commonly used for 
ground-water resource evaluation [Fitterman and Stewart, 
1986], determination of the depth to the freshwater/saltwater 
interface [Fitterman and Deszcz-Pan, 1997], and mapping 
the horizontal extent of saline intrusions [Mills et al., 1988]. 
A TDEM sounding involves the application of a direct cur-
rent to an ungrounded transmitting coil, which is generally 
placed at the earth’s surface. The transmitter induces eddy 
currents in subsurface conductors. The current to the trans-
mitting coil is switched off, and the subsequent decay of the 
secondary fields produced by the eddy currents is recorded 
at a receiver coil. Inverse modeling of apparent-resistivity 
data from a single TDEM sounding yields estimates of 1-D 
(layered) resistivity structure, which provides insight into 
subsurface lithology and pore-fluid salinity. 

Although the TDEM results are useful for understanding 
subsurface variations in salinity, the method is limited in 
two important respects. First, the reliability of TDEM results 
decreases with depth. The maximum depth of investigation 
in this study is about 120 m based on sensitivity analysis con-
ducted for inversion results. Second, the TDEM soundings 

may not resolve thin layers or lenses that pinch out laterally, 
especially at depth

Geophysical Surveys

TDEM soundings were collected on Nantucket Island at 
10 sites in May 2002, and at an additional 6 sites in August 
2004 (Fig. 1). A Geonics PROTEM 471 system was used with 
a single-turn transmitter coil. For the 2002 data, soundings 
were conducted using currents of 2.5 to 3.0 amps in a 40-m 
by 40-m transmitter coil. In 2004, a current of 2.0 amps was 
used with a 60-m by 60-m transmitter coil. The receiver coil 
was coplanar with, and located in the center of, the transmit-
ter loop. The TDEM field data were processed using the 
commercial software package TEMIX. Sounding data were 
inverted using smoothness-constrained, 2-, 3-, and 4-layer 
models, depending on the shape of the sounding curves as 
shown in Fig. 5. Soundings include ultra high frequency 
(UHF) and very high frequency (VHF) measurements. 
Inversion results were interpreted for the depths to the fresh-
water/saltwater interface across the island.

Geophysical Results

TDEM soundings collected along a north-south transect 
across Nantucket indicate that the freshwater/saltwater inter-
face may be approximately 120 m below the surface in the 
northern and central portions of the island (Fig. 6). Saltwater 
was identified at shallower depths in the southern portion of 
the island (e.g., 35–45 mbsl). The southward shallowing of 
the saltwater may result from pumping of municipal water 
supply wells. It is also possible that the freshwater/saltwater 
interface is shallower along the southern portion of the island 
because the glacio-lacustrine deposit does not extend that 
far south, and therefore, the interface may have equilibrated 
locally with modern sea-level conditions. Based on observa-
tions from the Wannacomet Water Company, the northern 
portion of the island near Nantucket Harbor contains thick 
low-permeability sediments. These low-permeability sedi-
ments may be responsible for preserving the deep freshwa-
ter/saltwater interface in that area. Interestingly, results from 
two TDEM locations (Sites 14 and 15 on Fig. 1) indicate at 
depths of 80 and 120 m, respectively, a resistivity too high 
for a sand to be saturated with true seawater. This could be a 
transition zone or possibly saltwater trapped within a confin-
ing unit. It is, however, possible that freshwater exists below 
these depths as the maximum penetration for the TDEMS 
soundings is approximately 120 m. The position of the fresh-

1The use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. 
Government.

1The use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. 
Government.

Fig. 5Fig. 5

Fig. 6Fig. 6
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water/saltwater interface based on the Ghyben-Herzberg 
principle is indicated by the dashed line shown on Fig. 6.

MATHEMATICAL MODELING

A two-dimensional, cross-sectional, finite-element model 
was developed extending from Nantucket Sound, through 
Nantucket Island, to the continental slope approximately 
250 km southeast of Nantucket (Plate 1a). The purpose of 
the model was to test how sea-level changes, rapid sediment 
loading following deglaciation, and increased ground-water 
recharge from beneath the Laurentide Ice Sheet and from 
Glacial Lake Nantucket may have influenced the hydrau-

lic heads and the spatial distribution of fresh ground water 
beneath Nantucket. We begin by presenting results that evalu-
ate whether or not sea-level oscillations alone could have 
produced the anomalous freshwater and hydraulic heads 
observed beneath Nantucket. We then consider what impact 
the Laurentide Ice Sheet and Glacial Lake Nantucket may 
have had on this system. 

The governing ground-water flow equation used to quan-
tify the Pleistocene hydrogeology of the Atlantic Continental 
Shelf in New England is:

,	 (2)

Plate 1Plate 1

Figure 5. TDEM sounding data and 3-layer inversion results for (a) Site 12 and (b) Site 14 shown on Figure 1. Sounding 
include ultra high frequency (UHF) and very high frequency (VHF) measurements.
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where t is time (T), ∇ is the nabla operator, K is the hydraulic 
conductivity tensor (L/T), h is equivalent freshwater hydrau-
lic head (L), ρice is ice density (M/L3), ρs is bulk sediment 
density (M/L3), L is the elevation of the sediment-water 
interface (L), ρr is the relative fluid density (M/L3), ρf is the 
fluid density (M/L3), η is the elevation of the top of the ice 
sheet (L), and SS is the specific storage (L-1). The relative 
fluid density, viscosity, and hydraulic conductivity are:

	 ,	  (3a)

	 , and	 (3b)

	 ,	 (3c)

where ρo and µo are the reference density (M/L3) and vis-
cosity (M/L⋅T) at standard state (0 MPa, 0.0 mg/l dissolved 
solids), respectively, k is the permeability (L2), μf is the water 
viscosity (M/L⋅T) and g is the acceleration due to gravity 
(L2/T). Equation 2 is capable of representing ground-water 

flow induced by water-table gradients, spatial variations in 
subsurface fluid density as well as sediment and ice-sheet 
loading [Person et al., 2007].

Thermodynamic equations of state are required to com-
pute the density and viscosity of ground water at elevated 
temperature, pressure, and salinity conditions. We assume 
isothermal conditions for these cross-sectional model runs; 
this assumption is warranted given that the basin was rela-
tively thin (<1200 m). We use the equations of state of Kestin 
et al. [1981] that are capable of representing fluid density 
and viscosity. 

Transient, advective-dispersive solute transport beneath 
Nantucket Island is represented by:

	 , 	 (4)

where C is solute concentration (mass fraction), v is the 
seepage velocity (x- and z-directions) (L/T), and D is the 
advection-dispersion tensor (L2/T) for the porous medium. 
Equation 4 neglects the effects of solute transport due to 
porosity changes associated with sediment and ice-sheet 
loading, which are expected to be small. 

The Darcy flux used in the solute transport equation was 
computed using a variable-density formulation:

	 , and 	 (5)

 	 ,	 (6)

where Kx and Kz are the principal components of the hydrau-
lic conductivity in the x- and z-directions (L/T). The compo-
nents of the advection-dispersion tensor are given by:

	 	

	  and	  (7)

	 ,	

where αL is the longitudinal dispersivity (L) , αT is the trans-
verse dispersivity (L), , and Ds is the solute molec-
ular diffusion coefficient (L2/T). The solute transport and 
flow equations are formally coupled through the equations 
of state for fluid density and viscosity; however, the non-lin-
earity is relatively weak and the two equations can be solved 
separately and sequentially while stepping through time. 

Figure 6. Cross section across Nantucket Island showing the posi-
tion of the freshwater-saltwater interface estimated by 8 TDEM 
soundings. The estimated water table elevation and predicted 
position the freshwater-saltwater interface based using the Ghy-
ben-Herzberg equation (equation 1) is show by a dashed line. The 
soundings suggest that a lateral transition from fresh to saltwater 
occurs beneath Nantucket Island from north to south. The location 
of the cross section is shown on Figure 1.
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Boundary conditions for the ground-water flow equation 
include a specified-head (water-table) condition at the Earth’s 
surface and no-flow boundaries along the bottom and sides of 
the solution domain. The specified-head condition varies in 
time depending on sea-level, topography, and glacial position. 
Boundary conditions for solute transport equations include a 
constant concentration of 0.0 or 35 ppt depending on whether 
the local land-surface elevation is above or below sea level. 
No solute flux boundary conditions were imposed along the 
sides and base of the sedimentary basin. 

The fluid flow equation is solved by the finite-element 
method. We solve the solute transport equation using the 
modified method of characteristics algorithm [Zheng and 
Bennet, 1995]. Three-node triangular elements are used 
to discretize the solution domain and the resulting set of 
algebraic equations is solved using Gaussian elimination. 
The solution domain is discretized using 12,030 triangular 
elements composed of 6,167 nodes. The elements size in the 
x-direction from vary between about 300 m in the western 
portion of the mesh in the vicinity of Nantucket, to 22 km in 
the eastern portion of the mesh near the continental slope. 
Element size in the z-direction varies between less than 1 m 
and approximately 300 m. We refined the grid within confin-
ing units to minimize numerical dispersion. The number of 
nodes in each vertical column ranges between 18 and 92.

The stratigraphy of the cross section is based on boring 
logs on Nantucket [Kohout et al., 1977], Atlantic Coring 
Margin Coring project (AMCOR) wells [Hathaway et 
al., 1979], and Continental Offshore Stratigraphic Tests 
(COST) wells G-1 and G-2 located in Georges Bank east of 
Cape Cod [Scholle and Wenkam, 1982; Schlee and Fritsch, 
1982]. The stratigraphy was divided into five types of 
sediment including Tertiary and Cretaceous sands, shallow 
outwash sands, silts, clays, and limestone (Plate 1b), which 
consists of a wide range of porosities and permeabilities. 
We do not represent the sand and clay as being continuous 
as we found a lack of lateral correlation between aquifers 
and confining units in closely spaced wells (e.g., ENW-
50 and USGS 6001). Porosity and permeability had to be 
assigned to each unit. Over the depth range considered (1.2 

km) these properties can vary considerably, even within a 
lithologic unit due to mechanical compaction and diage-
netic processes associated with burial; these effects can 
amount to orders-of-magnitude changes in the permeability 
of the sediment at depth. Although the relationship between 
porosity and permeability is complex, some studies have 
shown that there is a rough log-linear relationship [Neuzil, 
1994; Shenhav, 1971; and Lucia, 1995]. We assume the 
log-linear relationship 

	 log10(kmax) = a + bφ,	  (8)

where kmax is the maximum permeability in a lithologic 
unit (L2), φ is porosity (L3/L3) and a and b are empirical 
coefficients [Table 1]. Several studies [Garven, 1989; and 
Corbet and Bethke, 1992] have assumed a similar log-lin-
ear relationship between porosity and permeability in their 
numerical simulations. To apply this relationship, it is neces-
sary to assume a compaction curve within the sediment. We 
relate porosity to effective stress and compressibility using 
a relationship presented by Hubbert and Rubey [1959] and 
Bethke and Corbet [1988]:

	 φ=φoe
(-βσe),	 (9)

where φo is the initial porosity (L3/L3), φ is the porosity at the 
maximum effective stress (L3/L3), β is the bulk compress-
ibility of the sediment (L2/N), and σe is the effective stress 
(N/L2). σe can be calculated based on Terzaghi’s principle:

	 σe = σv – P,	  (10)

where σv is the total vertical stress (N/L2) or overburden 
stress and P is the pore pressure (N/L2). The pore pressure, 
assuming hydrostatic conditions, is

	 P= (h-z)ρ og,	  (11)

where h is the hydraulic head (L), z is the depth (L), ρo is 
the base density of the fluid (M/L3) and g is the acceleration 

Table 1Table 1

Table 1. Input parameters for porosity, permeability and effective stress relationships

Sediment Type
Compressibility  
m2/N

Φo
a

m3/m3

ab

log (m2)
bb

log (m2)

Clay
Silt
Tertiary and Cretaceous Sands
Shallow Outwash Sands and Glacial Till
Limestone

8.0x10-8

8.0x10-8

4.0x10-8

4.0x10-8

5.0x10-8

0.48
0.35
0.40
0.35
0.40

-20
-17
-15
-16
-17

4.0
4.2
7.4
8.4
5.0

a Initial porosity of the sediment
b a and b parameters used in the permeability-porosity relationship in equation 8.0
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due to gravity (L/T2). The total vertical stress or overburden 
stress is estimated by 

	 ,	  (12)

where ρs is the bulk density of the sediment (M/L3) and ρf 
is the density of the fluid (M/L3). Compressibilities, initial 
porosities and a and b parameters used in the permeability-
porosity relationship are shown on Table 1. Porosity-depth 
profiles are shown on Plate 1c. A specific storage of 8.0 x 
10-5 m-1 was applied to clays, while 8.0 x 10-6 m-1 was used 
as the specific storage of the other more permeable units. 
Permeability ranged in the clay units from 8.3 x 10-19 m2 to 
9.7 x 10-20 m2. Cretaceous and Tertiary sand permeability 
ranged from 9.1 x 10-13 m2 to 1.0 x 10-13 m2. Shallow outwash 
sand and glacial till permeability ranged from 8.7 x 10-14 m2 
to 5.0 x 10-14 m2, and silt permeability ranged from 2.9 x 
10-16 m2 to 1.0 x 10-16 m2. Specific storage and permeability 
parameters are consist with published values each sediment 
type [Freeze and Cherry, 1979].

It has been suggested that confining units beneath 
Nantucket have undergone deformation as a result of gla-
cio-tectonic activity associated with the advancement of the 
Laurentide Ice Sheet [Oldale and O’Hara, 1984]. Oldale 
and O’Hara [1984] identified Cretaceous units that have 
been thrusted laterally by as much as 1.5 km on Nantucket. 
Boulton and Cabon [1995] described how high pore pres-
sure and low effective stress are commonly associated with 
glacio-tectonic features such as those observed on Nantucket 
Island. It is possible that thrust faulting has created per-
meability conduits through deep confining units beneath 
Nantucket that are not represented in our model.  

Glacial Lake Nantucket catastrophically drained approxi-
mately 17,000 years ago [Uchupi et al., 2001]. This would have 
released large volumes of sediment that could have resulted 
in high sedimentation rates on the shelf and massive debris 
flows on the outer shelf and slope [Uchupi et al., 2001]. This 
period of rapid sedimentation was simulated in our model by 
allowing a portion of the upper Pleistocene elements in our 
mesh to grow until it attained modern Pleistocene elevations 
after the Laurentide Ice Sheet retreated. We updated the con-
centration and hydraulic heads of the top nodes using the sea 
level elevation, land surface elevation and ice sheet thickness. 
Although actual sedimentation rates immediately following 
the drainage of Glacial Lake Nantucket are unknown, the 
majority of glacial lakes associated with the Laurentide Ice 
Sheet drained within 4,000 years of Glacial Lake Nantucket 
[Uchupi et al., 2001]; therefore, we allowed our mesh to grow 
to modern topography for 4,000 years from 17,000–13,000 
years ago. Sedimentation rates within the simulation during 
that time ranged from 0 m/yr to 0.055 m/yr depending on 

where deposition was observed on the cross section (Fig. 7). 
Sedimentation rates were highest near the continental slope 
where Pleistocene sediments were the thickest. 

Numerical Simulations

The first model is constructed to test the hypothesis that 
sea-level variations alone could produce the excess heads 
and anomalous freshwater beneath Nantucket. Pleistocene 
sea level varied by as much as 120 m with a period of 40 
k.y. to 100 k.y. and an average sea level of approximately 40 
m below modern sea level [Shackleton, 1987; Raymo et al., 
1989, 1997; Vail and Hardenbol, 1979; Summerhayes, 1986; 
Haq et al., 1987; Shackleton and Opdyke, 1973; Hays et al., 
1976; Clark, 1994; Imbrie, 1985; Peltier, 1998]. A sea-level 
boundary condition is applied during the simulation using 
a sine curve with an amplitude of 60 m, a period of 100,000 
years, and set so that average sea level during the Pleistocene 
would have been 40 m below modern. Sea level during 
glacial maximum is set to 120 mbsl. A local sea-level curve 
for New England [Redfield and Rubin, 1962; Oldale and 
O’Hara, 1980; Gutierrez et al., 2003] was used from 16 ka 
to present (Fig. 8). An initial sea water salinity condition was 
assigned deep Tertiary and Cretaceous sand and clay units 
while shallower outwash sands and silts were assigned fresh 
pore waters. An initial hydrostatic head boundary condition 
(consistent with local topography) was used to initial heads 
for the flow equation. The simulation was run for a total of 
1.8 million years to reconstruct the Pleistocene and Holocene 
hydrologic conditions (Fig. 8a). 

Our second model incorporates the effects of the ice sheet 
and glacial lake boundary conditions during the last 21 ka. 

Fig. 7Fig. 7

Fig. 8Fig. 8

Figure 7. The change in continental shelf elevation between 17 ka 
and present. (a) Comparison of pre-17 ka topography and modern 
topography and seafloor elevation of the cross section. (b) Sedi-
mentation rates from 17ka to 13 ka along the cross section.
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The thickness of the ice sheet was estimated using a polyno-
mial expression presented by van der Veen [1999]:

	 	  (13)

where H is the maximum ice-sheet thickness at a particular 
time step (L); Lice is the ice sheet length at that time step 
(L); x is the distance from the margin of the basin (L); zls is 
the local elevation of the land surface (L); and η is ice-sheet 
elevation above sea level at distance x from the margin of 
the basin (L). The advance of the ice sheet is represented 
such that the ice sheet builds up slowly from 28 ka to the 
glacial maximum at 20 ka (Fig. 9a). The ice sheet remains 
at the glacial maximum from 20ka to 18ka. The ice sheet is 
allowed to retreat at 18 ka. As the glacier retreats, Glacial 
Lake Nantucket forms and is present until 17 ka, after which 
it drains (Fig. 9a) [Uchupi et al., 2001]. During the simula-
tion, the ice sheet attains a maximum thickness of 1800 m 
for our section, which is consistent with maximum ice sheet 
thicknesses for southern New England [Denton and Hughes, 
1981]. The glacier is allowed to extend 70 km along the cross 
section to the central portion of Nantucket (Fig. 9b). This is 
the approximate location of the glacial terminal moraines, 
which represent the maximum extent of the glacier. While 

the glacier is present, we apply a specified-head boundary 
condition along the top boundary assuming that the head 
at the base of the glacier is equal to 90% the local ice sheet 
elevation due to fluid-ice density differences [Boulton et al. 
1995; Person et al. 2003]. A hydraulic head of 10 m above 
sea level was applied as a boundary condition when Glacial 
Lake Nantucket was present (Fig. 9b) [Uchupi et al., 2001]. 
The loading and head caused by the glacier and glacial lake 
affect the effective stress within the underlying sedimentary 
layers; the changes in effective stress will change the poros-
ity (Eq. 9) and permeability (Eq. 8). We permitted infiltra-
tion to exceed the local melting rate due to the effects of a 
up-gradient esker systems [Shreve, 1985].

It has been suggested that shallow permafrost conditions 
existed along the margin of the Laurentide Ice Sheet in New 
England [Oldale and O’Hara, 1984]. The permafrost would 
have significantly decreased the permeability of those sedi-
ments [Person et al., 2007]. To replicate the permafrost, the 
permeability of the upper boundary nodes which are above 
sea level but not located below the ice sheet is decreased to 
10-20 m2 during the advance of the ice sheet and during the 
glacial maximum. This approach represents a simplifica-
tion of the actual heat transfer involved during freezing and 
thawing of permafrost [Person et al., 2007]. The ice sheet 
simulation was run for 1.8 million years using the same 

Fig. 9Fig. 9

Figure 8. (a) Pleistocene sea-level curve represented using a sine 
function with an amplitude of 60 m and a period of 100,000 years. 
(b) Sea-level was set to 120 mbsl for glacial maximum. A local 
sea-level curve was used for 16 ka to present [Redfield and Rubin, 
1962; Oldale and O‘Hara, 1980; Gutierrez et al., 2003].

Figure 9. (a) Timing of the advance and retreat of the ice sheet and 
glacial lake. (b) The elevations of the ice sheet, glacial lake, early 
Pleistocene topography and sea-level while the ice sheet or glacial 
lake are present.
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Plate 1. (a) The location of cross section used in the cross-sectional model. (b) Stratigraphy of the cross section. 
(c) Porosity depth relationship for each stratigraphic unit described in (b).

Plate 2. (a) Present-day salinity concentrations from the variable sea-level simulation (b) ice sheet simulation and 
(c) constant sea-level simulations. (d) Comparison of solute profiles from the variable sea level (a), ice sheet (b), constant 
sea level and (c) simulation with the observed solute profile from USGS 6001 well. The lateral position of the salinity-
depth plot is indicated on Plate 2a-c by the black line segment.



154     DATA INTEGRATION IN SUBSURFACE HYDROLOGY

sea-level variations used in the sea-level simulation (Fig. 
8). The salinity profile from USGS 6001 on Nantucket and 
the results of the TDEM experiments were used as ground 
truth for comparison with our numerical experiments. We 
ran more than 50 simulations using a range of different 
permeabilities, porosities, and specific storages representa-
tive of continental shelf deposits to better understand what 
parameters controlled overpressure and salinity distributions 
on the shelf. A relatively narrow range of values were able to 
produce both the observed salinity distribution and excess 
heads. Below we represent one set of parameters that we 
found was consistent with the observed data. We consider 
the appropriateness of these parameters in the discussion 
section. 

Simulation Results and Discussion 

Solute concentrations using surface boundary condi-
tions that represent only the effects of sea-level fluctuations 
(referred to herein as the ‘variable sea-level’ simulation) 
indicate that freshwater is located only within shallow sedi-
ments (<100 m) on Nantucket and at even shallower depths 
on the southern side of the island (Plate 2a). Permeable units 
at depths of greater than 200 m contain solute concentrations 
greater than 10 ppt and are not consistent with the solute con-
centrations observed within USGS 6001 or interpreted from 
TDEM soundings. The emplacement of freshwater in deep 
confined aquifers was only preserved in Nantucket Sound 
within 20 km of where the confined aquifers outcropped. 
This conclusion was reached regardless of the permeabil-
ity/porosity parameters selected from the 50 simulations we 
completed. These results indicate that meteoric flushing of 
the Atlantic Continental Shelf during the sea-level lowstands 
of the Pleistocene cannot be the sole mechanism responsible 
for the distribution of freshwater beneath Nantucket. 

The simulations, which include sub-ice-sheet recharge and 
glacial lake recharge (referred to herein as the ‘ice sheet’ 
simulation), show significant flushing beneath Nantucket 
compared to the variable sea-level simulation (Plate 2b). 
Freshwater of solute concentrations of less 1 ppt are pre-
dicted within permeable units at depths greater than 300 
mbsl. Deep low-permeability clays exhibit solute concentra-
tions with diffusional profiles similar to that shown in USGS 
6001. Simulations indicate that a small tongue of slightly 
saltier (approximately 6 ppt) water invades into the shallow 
subsurface (<200 m) on the southern end of the island; this 
is qualitatively consistent with the TDEM results, which 
similarly indicate that saltwater is found at shallower depths 
on the southern side of the island. Thus, the higher salinity 
conditions here may result from paleohydrologic conditions 
rather than recent pumping of nearby municipal wells. Our 

models suggest that the transition between fresh to saltwater 
exists near the southern end of the island.

For comparison, we also present one simulation in which 
the cross-sectional model is permitted to equilibrate with 
modern sea-level conditions. Here we run our cross sectional 
model for 1.8 million years using a modern sea level (referred 
to herein as the ‘constant sea-level’ simulation) to predict 
salinity distribution for the Atlantic continental shelf. This 
resulted in seawater salinity within pore spaces of sediments 
everywhere on the continental shelf that is below sea level 
today. Only beneath Nantucket Island was freshwater found. 
Results are consistent with the Ghyben-Herzberg approxima-
tion where freshwater/saltwater interface beneath Nantucket 
is located at approximately 120 mbsl. (Plate 2c). 

As noted above, the deep Cretaceous and Tertiary aquifers 
on Nantucket are observed to be overpressured by up to 0.08 
MPa (8 m above sea level). The observed overpressures 
cannot be explained by topographically driven f low, for 
lack of sub-aerial recharge from the mainland. Computed 
freshwater heads within deep permeable sediments from the 
variable sea-level simulation varied between -0.5 and 2.3 m 
in different sand lithologic units beneath Nantucket Island 
(Plate 3); these anomalous heads were generated, in part, 
by Late Pleistocene sedimentation. Results of the ice sheet 
simulation produce heads that vary from 4.5 to 25.4 m (Plate 
3). Negative computed heads are due to: (1) an imposed sea 
level boundary condition which is significantly lower than 
modern levels and (2) a continental shelf aquifer system 
has not fully equilibrated to modern sea-level conditions. 
Since the USGS 6001 is open to all units below 120 mbsl, 
observed overpressure at that well represents the average of 
all permeable units below 120 mbsl. The average freshwater 
hydraulic heads for these Cretaceous and Tertiary aquifers 
from the variable sea-level simulation was only 0.56 m. 
Because shallow water-table elevations across Nantucket are 
approximately 3 m above sea level, no overpressure would 
be observed in USGS 6001 in this simulation. However, the 
average freshwater head from those units in the ice sheet 
simulation is 15.1 m; this would produce overpressures in 
USGS 6001 that are 11 m above the local water table, a value 
that is similar (though not identical) to the observed 4 m of 
overpressure in that well. 

These modeling results indicate that sediment loading 
associated with the high sedimentation rates of the late 
Pleistocene was not solely responsible for the overpres-
sure observed beneath Nantucket. Hydraulic heads within 
sediment below the continental slope are pressured by up 
to 126 m more within the ice sheet simulation compared 
to the sea-level only simulation (Plate 3). Given that both 
simulations were subjected to the same sediment loading, the 
additional overpressures predicted within the ice sheet run 

Plate 2Plate 2

Plate 3Plate 3
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Plate 3. (a) Computed equivalent freshwater hydraulic head from the variable sea-level simulation and (b) ice sheet 
simulation. Hydraulic heads are reported in meters above sea level. Solid circles represent pressure heads at specific 
locations. Open circles represent average pressure heads over the length of only the permeable lithologies.

Plate 4. The evolution of hydraulic heads through time in the ice sheet simulation. (a) Hydraulic head at 245 ka. (b) Hy-
draulic head at glacial maximum 20 ka. (c) Hydraulic head at 12 ka. (d) Hydraulic head at modern 0 ka. The thickness 
of the sedimentary pile changes between (b) and (c) due to rapid sedimentation associated with the breaching of Glacial 
Lake Nantucket at 17 ka. Note the change in scale in each plot.
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must have originated from the diffusion of high hydraulic 
heads from the adjacent aquifers during ice-sheet glaciation. 
The observed excess heads (USGS 6001) thus are inferred 
to be preserved, fossil hydraulic heads associated with the 
ice-sheet loading during the LGM. In their sensitivity study 
of ice sheet loading within sedimentary basins, Person et 
al. [2007] and Bense and Person [2006] observed this phe-
nomenon. 

The preservation of excess head is illustrated by plotting 
temporal variations in head during the Pleistocene (Plate 4) 
for our ice-sheet simulation. Hydraulic heads remained low 
throughout the cross section under normal sea level condi-
tions (Plate 4a). Hydraulic heads within the aquifers below 
Nantucket became overpressured by up to 1281 m (Plate 
4b) while the ice sheet was present. The lateral transfer of 
this pressure decreased the effective stress within sediments 
that were experiencing less overburden pressure (i.e. areas 
not covered by ice). The decrease in effective stress then 
caused an increase in the effective permeability of the sedi-
ment and allowed high pressure to transfer into even deeper 
sediments below the continental slope. Deep aquifers near 
the continental slope became pressured by up to 381 m as the 
ice sheet reached its maximum extent on the continental shelf 
(Plate 4b). At that point the high fluid pressures diffused 
into the surrounding clay units. After the ice sheet retreated, 
the low-permeability clays retained elevated fluid pressure. 
Fluid pressures subsequently increased due to sediment load-
ing associated with the drainage of Glacial Lake Nantucket 
and the retreat of the ice sheet. Fluid pressures reached a 
maximum of 556 m within clay units below the continental 
slope (Plate 4c). After sedimentation ceased (approximately 
12,000 years ago), heads within the confining units on the 
slope slowly dissipated while some of the elevated heads also 
got transferred back beneath Nantucket (Plate 4d). 

It is also interesting to note that effective stresses below 
Nantucket decreased to zero while the ice sheet was present. 
This may have allowed thrust features to form associated 
with the advance of the ice sheet. Ice sheet thrust features 
were observed on Nantucket Island and Martha’s Vineyard 
by Oldale and O’Hara [1984]. These thrust faults may have 
helped transport glacial melt water into deeper aquifers 
below Nantucket.

We can calculate a response time for the clay to predict 
the time required for the high hydraulic heads to diffuse out 
of the clay:

	 	 (14)

where Lsed is the length or thickness of the sediment unit 
(L); SS is the specific storage of the confining unit (L-1); 
K is the hydraulic conductivity of the sediment (L/T) and 

τ is the response time (T). Permeability can be converted 
to hydraulic conductivity using equation 3c. Based on the 
thickness of the deep clay unit, approximately 275 m, the 
Ss of 8.0x10-5 m-1 and a hydraulic conductivity of 10-12 m/s, 
the time to dissipate the excess head would be approximately 
200,000 years. This means that high heads emplaced within 
the clay units during glacial maximum would not have had 
enough time to dissipate and equilibrate with modern sea-
level conditions and therefore would retain a fossil head. 
These high head pressures in the deep clay units can later-
ally transfer pressure through deep permeable sand units to 
beneath Nantucket. Although the computed heads beneath 
Nantucket Island are about twice as large, it does show that 
there is high potential for thick low permeable units on the 
continental slope to transfer fossil pressures to the near shore 
environment.

The response time of the clay units in the cross section 
and their associated flushing ability of the sands are highly 
dependent on permeability and compressibility of the sedi-
ment. Had we raised the permeability or lowered compress-
ibility of the confining units by an order of magnitude, the 
confining units would have flushed too much and simula-
tions would not reproduce the salinity profiles and observed 
overpressures beneath Nantucket Island. Although the per-
meability of the sediment units is reasonable, it may have 
been possible to obtain similar results using a different cross 
section where clay units where thicker and the permeability 
of the clay was higher. Lack of well data in the area of the 
cross section has made it difficult to predict the stratigraphy 
and continuity of the units especially at depth. The stratig-
raphy at depth is based on wells located in Georges Bank, 
located 200 km east-southeast of Nantucket. Our cross sec-
tion extends only 1200 mbsl. The sediment column near 
Georges Bank, located east of this cross section is much 
deeper (> 5000 mbsl) [Scholle and Wenkam, 1982; Schlee 
and Fritsch, 1983]. It is possible that had we deepened our 
cross section to include these units, we might have found 
that they also contribute to overpressure observed beneath 
Nantucket. 

CONCLUSIONS

Our study demonstrates the utility of integrating geophysi-
cal, hydrochemical, and hydrologic data sets with numerical 
modeling to resolve recharge mechanisms for freshwater 
emplacement on New England’s continental shelf and to bet-
ter understand the origin of overpressure beneath Nantucket. 
The geophysical data is a cost-effective method to obtain 
spatial information regarding the salinity concentrations 
beneath Nantucket Island that could not be obtained eas-
ily by drilling. It provided valuable, qualitative insight for 

Plate 4Plate 4
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construction of numerical ground-water models; moreover, 
the geophysical data were used to help evaluate models that 
might explain the observed modern hydrologic conditions on 
Nantucket. This work points toward future, fully integrated 
analyses, in which geophysical data might provide quantita-
tive information for model calibration through regression 
methods. Integrating the hydrochemical and hydrological 
data sets with the numerical modeling allowed us to inves-
tigate the relationship between hydromechanical loading of 
the Laurentide Ice Sheet and sediment loading associated 
with the high sedimentation rate of the late Pleistocene and 
the hydrologic response of the continental shelf resulting 
from variable sea-level changes and increased recharge from 
the LGM.

The TDEM soundings indicate a freshwater/saltwater tran-
sition or interface at about 120 mbsl on Nantucket, whereas 
the solute diffusion profile from USGS 6001 and our numeri-
cal modeling indicate a deeper interface. This apparent 
inconsistency can be explained by either (1) the presence 
of trapped, saline water in confining units, or (2) confin-
ing units that include substantial low-resistivity clay. The 
approximate maximum depth of investigation for the TDEM 
surveys is about 120 m; thus any deeper transitions back 
to freshwater would not be detected by the geophysics. 
The presence of low-resistivity confining units would also 
explain sounding results from TDEM sites 14 and 15, where 
the resistivity was too high for saltwater-saturated sands but 
too low for freshwater-saturated sands.

Results of the numerical modeling indicate that the high 
hydraulic heads associated with the Laurentide Ice Sheet 
and Glacial Lake Nantucket substantially influenced the 
distribution of freshwater beneath Nantucket and the fluid 
pressure distribution across the continental shelf. Although 
sea level varied substantially during the Pleistocene, hydrau-
lic heads experienced during sea-level low stands would not 
have been high enough to flush salty waters from the deep 
Cretaceous and Tertiary aquifers below Nantucket. Both 
TDEM soundings and mathematical model results suggest 
the transition from fresh to saltwater within confined aquifers 
of the Atlantic Continental Shelf occurs near the southern 
terminus of Nantucket Island.

Both the loading associated with the Laurentide Ice Sheet 
and the high sedimentation rates associated with the late 
Pleistocene had profound effects on the hydraulic heads on 
the continental shelf. We believe that we have found, perhaps 
for the first time, evidence of “fossil pressures” from late 
Pleistocene glaciation. Large amounts of freshwater were 
emplaced during the glacial maximum when extremely 
high hydraulic heads were present on the continental shelf. 
Long response times of low-permeability clays facilitate 
the retention of high pressures induced during the glacial 

maximum. As the ice sheet retreats and sedimentation rates 
increase on the shelf, fluid pressures continue to increase. 
After sedimentation rates decrease, high pressures gener-
ated in these deep clays could easily have been laterally 
transferred toward shallower sediment near the coastline. 
The high heads observed in well USGS 6001 may be the 
first recorded observations of fossil heads from the LGM. 
Previous evidence for sub-ice-sheet recharge comes entirely 
from geochemical and environmental isotopic data [Boulton 
et al., 1995; Piotrowski, 1997; Siegel and Mandle, 1984; and 
Grasby et al., 2000]. 

The results of this study have important implications 
for all New England coastal aquifers in that (1) freshwater 
resources cannot be inferred by modern sea-level conditions, 
and (2) glacial recharge and high sedimentation rates in the 
Late Pleistocene may substantially control the modern spatial 
distribution of freshwater. We found that late Pleistocene 
recharge rates were at least 10 times greater than present day 
conditions. This phenomenon may also account for unusu-
ally freshwater observed at significant depths offshore from 
New Jersey and New York [Hathaway et al., 1979; Kohout 
et al., 1988] as well as the high fluid pressures observed on 
the continental slope [Dugan and Flemings, 2000]. 
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Integrating Hydrologic and Geophysical Data to Constrain 
Coastal Surficial Aquifer Processes at Multiple Spatial and 

Temporal Scales 

Gregory M. Schultz1, Carolyn Ruppel2*, and Patrick Fulton3

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

Since 1997, repeated, coincident geophysical surveys and extensive hydrologic stud-­­
ies in shallow monitoring wells have been used to study static and dynamic processes 
associated with surface water-­­groundwater interaction at a range of spatial scales at 
the estuarine and ocean boundaries of an undeveloped, permeable barrier island in the 
Georgia part of the U.S. South Atlantic Bight. Because geophysical and hydrologic data 
measure different parameters, at different resolution and precision, and over vastly dif-­­
ferent spatial scales, reconciling the coincident data or even combining complementary 
data sets has required a range of approaches. This study uses geophysical imaging and 
inversion, hydrogeochemical analyses and well-based groundwater monitoring, and, 
in some cases, limited vegetation mapping to demonstrate the utility of an integrative, 
multidisciplinary approach for elucidating groundwater processes at spatial scales (tens 
to thousands of meters) that are often difficult to capture with traditional hydrologic 
approaches. The case studies highlight regional aquifer characteristics, varying degrees 
of lateral saltwater intrusion at estuarine boundaries, complex subsurface salinity gra-­­
dients at the ocean boundary, and imaging of submarsh groundwater discharge and 
possible free convection in the pore waters of a clastic marsh. This study also documents 
the use of geophysical techniques for detecting temporal changes in groundwater salin-­­
ity regimes under natural (not forced) gradients at intratidal to interannual (1998–2000 
Southeastern U.S.A. drought) time scales. 

1. Introduction

A key challenge for hydrologic research is the devel-­­
opment of the quantitative and predictive tools needed to 

understand the response of aquifers to changes in forc-­­
ing variables over a wide range of spatial and temporal 
scales. Concurrent with the increased emphasis on mea-­­
suring spatiotemporal changes in aquifers has been the 
recognition of the need for a systems approach that links 
physical, chemical, and biological processes through the 
application of multidisciplinary characterization methods. 
In this paper, which is in part based directly on Schultz and 
Ruppel [2000] and Schultz [2002], we describe the integra-­­
tion of hydrologic (physical and chemical) and geophysi-­­
cal methods to study coastal surficial aquifer processes at 
spatial scales of centimeters to kilometers and at temporal 
scales ranging from subtidal to interannual, as depicted in 
Figure 1. While a key motivation for our work has been 
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understanding surface water-­­groundwater interactions and 
the connection of complex biogeochemical and ecological 
processes and physical parameters in the coastal zone, this 
paper uses the coastal zone data sets merely as examples to 
explore integration and reconciliation of geophysical and 
hydrologic data and novel applications of geophysical data 
particularly for monitoring. 

From the beginning of this research in 1997, the studies 
described here were designed to combine standard hydro-­­
logic methods and noninvasive geophysical surveys using 
a strategy that permits coincident sampling of similar pro-­­
cesses and variables at comparable and often nested spatial 
scales. This philosophical approach contrasts with that of 
some other studies: Typically, geophysical data are used to 
constrain hydrologic parameters, but with little groundtruth-­­
ing of the results. In another common application, geophysi-­­
cal data provide contextual (regional) information needed 
to enhance interpretation of sparse data acquired in discrete 
groundwater monitoring wells. Only rarely are geophysical 
data trusted enough to guide large-scale, process-based, 
hydrologic interpretations or decisions about instrument-­­

ing individual sites with monitoring well networks. Both 
outcomes have emerged from the approach adopted in our 
studies. 

2. Overlapping Hydrologic and 
Geophysical Methods

2.1 Hydrologic Methods

The standard hydrologic methods (water level monitor-­­
ing, groundwater temperature and conductivity measure-­­
ments, hydrogeochemical analyses, aquifer testing) used 
for this study were applied in several small (up to 20 wells) 
monitoring well networks that make up groups of networks 
consisting of a total of more than 65 wells and piezometers 
we have installed in this part of the South Atlantic Bight 
(SAB) between 1997 and 2003. Details of monitoring well 
and multilevel sampler installation are provided by Schultz 
and Ruppel [2002] and Snyder et al. [2004]. All of the ~4.5 
m deep monitoring wells on which this study relies are 
narrow diameter (1.25˝ to 2˝) Schedule 40 PVC and were 
installed using minimally disruptive techniques, either by 
hand-augering or vibracoring in permeable upland areas and 
adjacent clastic salt marshes. Screened intervals for upland 
monitoring wells were placed within the fully saturated zone, 
and commercial, well-sorted, coarse (20–20 fill) sand was 
emplaced adjacent to the well screens to act as a filter pack 
between the fine-grained aquifer sands (d10 =120 µm) and 
the well. Tamped native backfill in the annular space above 
the screened interval ensures mechanical and hydrologic 
coupling between the aquifer and the monitoring well and 
prevents the introduction of non-native materials that could 
affect the aquifer in the environmentally protected areas in 
which we conduct our surveys. 

To protect against annular flow, special near-surface seal-­­
ing methods were devised for this high salinity environment 
(e.g., Schultz [2002]). Annular flow, in addition to wellhead 
protection, was a particular concern in areas that experience 
periodic tidal inundation, and we used outer PVC casings 
that stood 1 m or more above the ground surface and that 
were sunk in cement around the top of the monitoring wells 
to prevent the wells from being overtopped by tidal waters 
in these locations.

The vibracoring methods we used after 2001 provided 
continuous sediment cores for use in laboratory analysis 
of hydraulic parameters. Extracted sediment samples from 
vibracores and auger cuttings were archived and formally 
described using Munsell soil color coding and textural clas-­­
sifications. Geophysical surveys were often used to guide 
well placement, and additional wells were sometimes added 
to networks over several years to meet specific scientific 

Figure 1. Summary of the spatial and temporal scales relevant to 
hydrogeophysical studies and the resolving power of geophysi-­­
cal data and groundwater hydrologic data. Geophysical data can 
integrate over large spatial scales, but only repeated geophysical 
surveys can integrate over significant time scales. Hydrologic 
data are often affected by processes occurring over long durations 
relative to the sampling time of measurements and inherently 
integrate over multiple time scales, but are usually acquired at 
discrete points in monitoring wells or piezometers. Only when 
discrete hydrologic observations are interpolated over larger 
continuous domains can hydrology alone constrain processes at 
larger spatial scales. By combining geophysical and hydrologic 
approaches, the data requirements necessary for resolving sys-­­
tem-level processes over various spatial and temporal scales can 
be sharply reduced. 
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objectives. In some cases, we used ancillary, temporary, 
instrumented piezometers installed in tidal creeks adjacent 
to monitoring well networks for periods of weeks to months 
to measure surface water properties and monitor processes 
(e.g., tidal fluctuations) that affected surficial aquifers in 
adjacent uplands. The construction, installation, and use of 
the few multiport sampling wells used for these studies are 
described by Snyder et al. [2004].

2.2 Geophysical Methods

Geophysical methods have been successfully applied in a 
range of hydrologic investigations of coastal (e.g., Van Dam 
and Maeulankamp, 1967; Roy and Elliot, 1980; Goldman 
et al., 1991; Frohlich and Urish, 2002; Greenwood et al., 
2006), barrier island (e.g., Bugg and Lloyd, 1976; Stewart, 
1988; Urish and Frohlich, 1990; Ruppel et al., 2000), and 
deltaic aquifers (e.g., Ebraheem et al., 1997; Collins and 
Easley, 1999). Geo-electromagnetic methods (electro-­­
magnetic induction, resistivity, and ground penetrating 
radar) are among the most frequently used in these settings 
because of their ability to detect variations in pore water 
conductivity in the near surface. For this study, we acquired 
data sets using proven, off-the-shelf electrical and electro-­­
magnetic (EM) instrumentation along survey lines and in 
two-dimensional areas that overlap our shallow monitor-­­
ing well networks. Repeated occupation of survey sites 
permitted compilations of time-series of geophysical data 
for quantification of changes in the physics and chemistry 
of the subsurface.

Noninvasive geophysical techniques provide an effective 
alternative to in situ sampling and subsequent interpolation 
of point data collected in monitoring wells. Despite the 
growing use of hydrogeophysical techniques, the relationship 
between geophysical and hydrological properties and their 
covariance remain elusive. For example, geo-electromagnetic 
methods yield measurements of the volume average bulk 
conductivity (e.g., EM and resistivity) or dielectric permit-­­
tivity (e.g., ground penetrating radar) of the subsurface. Yet 
universal relationships between the measured geophysical 
parameters and required hydrogeologic properties (porosity, 
hydraulic conductivity, etc.) are difficult to come by.

2.2.1 Electromagnetic induction (terrain conductivity). We 
use slingram-type, frequency-domain EM induction instru-­­
ments to record apparent conductivity to nominal depths of 
6 m (Geonics EM31) and 10 to 40 m (Geonics EM34), cor-­­
responding to the respective instrument frequency ranges 
[McNeill, 1980]. EM methods have been widely applied 
in the mapping of saltwater intrusion and Dupuit-Ghyben-
Herzberg lens morphology (e.g, Stewart, 1988; Anthony, 

1992; Ruppel et al., 2000). For the studies described in this 
paper, we also use EM data to quantify changes in the depth 
to the water table and the groundwater salinity distribution 
due to dynamic forcing of natural hydraulic gradients (e.g., 
tidal pumping). 

EM data were collected along transects from tens of meters 
to 3000 m long, with the instrumentation operated in verti-­­
cal and horizontal dipole modes. The terrain conductivity 
instruments generate a time-varying EM field in the trans-­­
mitter coil, which in turn induces very small currents in the 
earth, giving rise to a secondary EM field. The ratio of the 
secondary to primary EM fields provides a measure of the 
apparent conductivity of the subsurface material. At suffi-­­
ciently low frequencies, certain assumptions (low induction 
number approximation) allow for relatively simple solutions 
for mutual coupling between induction loops. In areas with 
high conductivity, measured values are no longer linearly 
related to the true apparent conductivities, and more com-­­
plex data inversions like those included in the commercial 
EMIX34 [Stoyer and Butler, 1994] package or described by 
Schultz and Ruppel [2005] must be implemented. 

2.2.2 DC resistivity. DC resistivity surveys in dipole-
dipole or Wenner mapping mode were used for near-surface 
measurements to ~10 m depth. Deeper (to ~30 m depth) 
constraints on conductivity structure were obtained using 
Schlumberger vertical electrical soundings (VES). Like 
EM methods, DC resistivity methods take advantage of dif-­­
ferences in conductivity (inverse of apparent resistivity) to 
map lateral and vertical variations in near-surface hydrologic 
and lithologic units. In traditional DC resistivity surveys, 
small currents I (up to 1.2 A for our system) introduced 
into the ground through a pair of steel electrodes driven 
approximately 15 cm deep produce a potential difference 
∆V between a second pair of electrodes. The results yield 
a measure of resistivity, which is resistance multiplied by 
a length scale. For these studies, we conducted both labor-
intensive surveys with 4 electrodes that were moved for each 
measurement and automated multinode surveys with up to 
24 electrodes controlled by switching software to generate 
multiple combinations of current and potential electrodes for 
the chosen array configuration. 

Schlumberger VES surveys yield a single vertical resistiv-­­
ity model characterized by different resistivities and thick-­­
nesses for one or more layers overlying a half space. To 
interpret Schlumberger soundings we used the linear digital 
filters of Guptasarma [1982] and inverted for two- or three-
layer conductivity structures. Dipole-dipole and Wenner 
mapping surveys produce a pseudo-section “image” of the 
subsurface that must be inverted to yield an accurate repre-­­
sentation of subsurface structure. Such mapping surveys can 
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corroborate the results of EM surveys, but lack the penetra-­­
tion depth of EM methods and can experience problems asso-­­
ciated with voltage overloads, galvanic coupling, and resistive 
shielding near the ground surface [Van Nostrand and Cook, 
1966]. For this study, we present resistivity pseudo-section 
inversions based on the commercial RESIX software [Inman, 
1975] and the public domain ProfileR software provided by 
A. Binley (pers. comm., 2003).

2.2.3 Ground penetrating radar (GPR). GPR surveys 
involve the introduction of radar waves directly into the 
ground through a transmitting antenna and reception of the 
returned signal through a receiving antenna. When imple-­­
mented in bistatic (i.e., fixed source-receiver separation) 
mode, GPR yields an image of reflectors in the uppermost 
tens of meters of sediment, with penetration depth dependent 
on antenna frequency and the dielectric permittivity of the 
medium. GPR is used to image subsurface geology, to con-­­
strain the top of high conductivity (saltwater) layers, and, 
in some cases, to locate the water table. The greater resolu-­­
tion of radar waves in shallow unsaturated or freshwater 
saturated sandy sediments renders GPR more suitable than 
traditional acoustic (seismic) methods for constraining the 
fine-scale lithologic and stratigraphic structures that define 
flow pathways for the surficial aquifer. 

2.3 Integration of Hydrologic and Geophysical Data

Most hydrologic studies rely on invasive sampling, par-­­
ticularly the installation of monitoring wells or piezometers 
and direct sampling or invasive monitoring of groundwater 
properties. Major problems with these techniques include 
high cost, the difficulty of interpolating between discrete 
sampling points, and the need to extrapolate sparse data 
collected at length scales of 10‑2 to 102 m up to ecosystem or 
watershed scales (102 to 105 m) [Sudicky, 1986; Millham and 
Howes, 1995]. Traditional hydrologic techniques, focused 
as they are on vertical boreholes, also have limited utility at 
sites at which hydrogeologic boundaries are arrayed verti-­­
cally, rather than horizontally, or at which flow fields have 
strong vertical, not horizontal, components (Figure 2). At the 
edge of tidally-influenced surficial aquifers in coastal zone 
settings, vertical flow and vertical hydrogeologic boundaries 
provide a challenge for studies that rely solely on monitoring 
wells or piezometers. Once hydrologic data are acquired, an 
additional challenge is resolving aquifer properties, particu-­­
larly with respect to horizontal heterogeneity. For example, 
the success of 3D geostatistical approaches in capturing 
such heterogeneity is often limited not only by the vertical 
nature of borehole data and the difficulty of obtaining high 
data density in the horizontal direction [Phillips and Wilson, 

1989], but also by the poor capacity of classical geostatistical 
techniques (e.g., co-kriging) to handle data of different densi-­­
ties in the vertical and horizontal directions. Dagan [1986] 
summarizes these issues most succinctly, demonstrating that 
hydrologic parameter estimates are inherently dependent on 
the measurement, computation, and integration scales of a 
particular groundwater problem.

Hydrogeophysical techniques—the application of geophys-­­
ical remote sensing to hydrologic problems—provide a pow-­­
erful approach to characterizing the features of sedimentary 
aquifer systems. Like standard hydrologic data, geophysical 
data lack direct information at the range of spatial scales 
of interest for many problems: Most geophysical methods 
detect only contrasts in physical properties, not the absolute 
properties themselves. Geophysical survey techniques also 
have limited resolving power that depends on the spacing of 
measurements, the electromagnetic or acoustic frequency 
of the technique (where applicable), and the characteristics 
of the site. Geophysical observations are obtained using 
spatial arrays that average over an area or volume between 
the sources and sensors, unlike many hydrologic results that 
average only over the sediments adjacent to a well screen 
or the area close to the sampling port in a multiport well. 
Nonuniqueness in the interpretation of geophysical data 
also presents a formidable challenge. Such nonuniqueness 
arises from a variety of factors. Most fundamentally, a fea-­­
ture with particular material properties buried at one depth 
might produce the same geophysical anomaly as a feature 
with different properties buried at a greater or shallower 
depth. Furthermore, propagation of electric and electromag-­­
netic energy in the subsurface depends on material proper-­­
ties, the frequency of the source, and other factors, and the 
amplitude of the energy received is affected nonlinearly by 
the medium. 

The relatively innovative approach of coupling hydrologic 
and geophysical techniques for aquifer characterization at 
a variety of spatiotemporal scales can address some of the 
shortcomings of analyses based exclusively on either hydro-­­
logic or geophysical data. At the same time, new difficulties 
arise when data sets that measure such different parameters, 
have different resolution, and require different types and 
degrees of interpretation are combined. Researchers have 
had success with data fusion techniques that use geophysi-­­
cal data to improve hydrologic results (e.g., McKenna and 
Poeter, 1995; Chen et al., 2004), with applying geostatistical 
techniques to more robustly connect geophysical obser-­­
vations to hydrogeologic parameters (e.g., Hyndman and 
Gorelick, 1996; Yeh et al., 2002), and with using geophysical 
data to infer the average degree of spatial variability (cor-­­
relation structure) in aquifers [Knight et al., 1997; Hubbard 
et al., 1999]. In the studies presented here, we move away 

Fig 2Fig 2



SCHULTZ ET AL.    165

from the focus on using geophysical data to constrain the 
hydrogeologic parameters required as inputs for numerical 
modeling studies or as descriptors of the scales of aquifer 
heterogeneity. Instead, we develop interpretations that rec-­­
oncile geophysical and hydrologic data to elucidate static and 
dynamic processes in surface water-groundwater interaction 
and groundwater hydrology. 

3. Characterization of Coastal Aquifer 
Structure: Spatial Variability

As the transition from land to sea, coastal zones are impor-­­
tant for both classical and marine hydrogeology because they 
contain the regions in which fresh groundwater of largely 
meteoric origin and saline waters of marine origin meet in 
the subsurface. For decades, coastal groundwater hydrolo-­­
gists primarily studied the regional freshwater-saltwater 
interface to assess fresh groundwater reserves and seawater 
intrusion (e.g., Bear et al., 1999; Fisher, 2005) caused by 
natural or anthropogenic processes. In recent years, much of 
the coastal zone hydrologic research has shifted to focus on 
submarine groundwater discharge and groundwater flux to 
the coastal oceans. Such processes are studied at scales rang-­­
ing from local field sites (101 to 102 m) to entire watersheds 
(104 to 105 m) and often rely on highly accurate geochemical 
methods applied to small volume samples. 

While the focus of coastal hydrology and hydrogeochem-­­
istry has shifted to characterizing shallow flow and trans-­­

port processes, the cutting-edge is research that attempts 
truly multidisciplinary, multi-scale approaches that fun-­­
damentally link the health of ecological and biological 
systems (e.g., marsh grass communities, crab and oyster 
populations) to the physical and chemical factors that affect 
critical estuarine and shallow nearshore ocean habitats. This 
is in part the emphasis of some coastal zone Long Term 
Ecological Research (LTER) programs around the world. 
Such integrative hydrologic studies require consideration of 
the interaction between surface (surface water flow, hydro-­­
meteorology, ecological zonation) and subsurface processes 
(groundwater flow and transport, redox zonation, bioirri-­­
gation) and the interplay between physical, chemical, and 
biological systems at scales ranging from that of pores to 
basins. Already, critical studies at a variety of spatial scales 
have demonstrated the influence of groundwater and pore 
water fluxes on nutrient and contaminant fluxes, sediment 
oxidation potential, and pH (e.g., Chalmers, 1982; Howes 
et al., 1986; Nuttle and Harvey, 1988; Snyder et al., 2004) 
and microbiological processes, estuarine biology, and the 
distribution of rooted macrophytes [Hemond and Fifield, 
1982; Harvey et al., 1995; Thibodeau et al., 1998; Osgood 
and Zieman, 1998; Snyder et al., 2004]. 

3.1. Regional Scale: Lens Aquifer 

To provide both local- and regional-scale data, geophysi-­­
cal and hydrologic surveys (Figure 3) were conducted at 5 

Fig 3Fig 3

Figure 2. Schematic showing the disparity between and overlap in the relative scales of typical surface, downhole, 
and laboratory measurements. Geophysical data such as EM, resistivity, or GPR are acquired over one-, two, or three-
dimensional regions to provide constraints on contrasts in bulk physical properties to depths that are dependent on the 
method and the properties of the geologic media. Hydrologic methods, which range in spatial scale from the laboratory 
analyses of sediment or pore fluid samples to cross-well tests, average over relatively small spatial scales, but provide a 
more direct measure of hydrologic processes and properties. Repeated co-located and coincident hydrologic and geophysi-­­
cal data acquisition can add a temporal dimension to data sets for characterization of dynamic hydrologic processes. 
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field-scale sites (Figure 4) on a sparsely inhabited and largely 
undeveloped barrier island in the SAB. Sapelo Island, which 
measures ~16 km long and from 2 to 5 km in width, is one of 
six low-lying Sea Islands separated from the Georgia main-­­
land by a 4- to 6-km-wide expanse of salt marshes and tidal 
rivers (Figure 3). The island has a late Pleistocene sedimen-­­
tary core consisting mostly of well-sorted, clean, fine sands 
and rimming marsh muds. Holocene beach sand deposits 
formed by longshore currents and wave action fringe the 
seaward side of the island. The regional confining layer at 
the base of the surficial aquifer is a 4- to 30-m-thick blue 

clay layer whose top lies at an average depth of ~12 to 13 m 
below ground surface [Lens, 1981; Schultz, 2002; G. Hebeler, 
pers. comm., 2002]. 

The part of the SAB occupied by Sapelo Island is a mixed 
energy environment with semi-diurnal tides having aver-­­
age amplitude of ~2.4 m and mean spring tide range of 3.4 
m [Chalmers, 1997]. The horizontal location of the tidal 
boundary varies by less than 2 m near subvertical tidal creek 
bluffs to more than 100 m on shallowly-sloping beach faces 
[Schultz, 2002], The most substantial hydrologic inputs to the 
island aquifer systems on the Georgia coast include infiltra-­­
tion of rainwater and displaced groundwater that is pumped 
from the deep Floridan aquifer and discharged at the surface. 
Sapelo Island is relatively pristine and inhabited by fewer 
than 100 people, meaning that the impact of deep pumping 
on eventual infiltration into the surficial aquifer is much 
more limited than on many other barrier islands in the SAB. 
Infiltration of precipitation is by far the most important input 
to the surficial aquifer in our study area, but it is of course 
dependent on spatial variations in vegetation interception 
and surface retention. 

To characterize the two-dimensional, island-scale distri-­­
bution of freshwater and saline water beneath Sapelo Island 
we acquired geophysical data on unpaved roads that run 
both perpendicular and parallel to the long axis of the island 
(Figure 3). At selected sites, we also conducted resistivity 
sounding surveys to constrain the one-dimensional (vertical) 
conductivity structure.

3.1.1. DC resistivity results. To constrain the bulk vertical 
electrical conductivity structure at discrete points along a 
cross-island transect, Schlumberger VES data were acquired 
at sites (Figure 3) near the island-estuary interface (VES1) 
on the landward side of Sapelo Island, in center of the island 
(VES2), and at the island-ocean interface (VES3). The mor-­­
phology of the raw Schlumberger curves is consistent with 
high resistivity material near the surface and dramatically 
lower resistivity at depth. Based on this observation and the 
assumption that the data should reveal information about the 
layering of unsaturated, freshwater-saturated, and saline-
saturated sediments, we assume a three-layer model and 
vary the conductivities and thicknesses of the layers in a 
forward model to obtain a match to the observations. Note 
that the interpretation of electric sounding data is non-unique 
(equivalence), and a layer of intermediate conductivity sand-­­
wiched between an overlying low conductivity and underly-­­
ing high conductivity layer can often be difficult to resolve 
(suppression). 

Results of the VES interpretations are detailed in Plate 1. 
For the survey closest to the island-estuary margin (VES1), 
forward modeling yielded a best-fit resistivity structure 

Fig 4Fig 4

Plate 1Plate 1

Figure 3. Location maps for the regional and local-scale studies. 
(a) Map showing the location of Sapelo Island near the center of 
the South Atlantic Bight. (b) Location of monitoring well network 
sites and focused geophysical surveys, some of which were com-­­
pleted at designated sites of the Georgia Coastal Ecosystems (GCE) 
Long Term Ecological Research (LTER) program. Sites discussed 
here are at the island-estuary (Kenan Field, Moses Hammock or 
GCE 10), island-marsh (North Sapelo or GCE 3) and island-ocean 
margins (Old Beach Road). VES, EM, and GPR surveys were also 
conducted along unpaved east-west trending roads. 
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consistent with a low conductivity (σ1=0.6 mS m−1; unsatu-­­
rated?) layer of 2.0 m thickness over a 6.5-m-thick transitional 
layer (σ2=2.2 mS m−1) and a higher conductivity (σ3=18–25 
mS m−1; saline saturated?) halfspace. The thickness of the 
unsaturated surface layer is confirmed by static (non-tidally 
influenced) water levels measured in shallow monitoring 
wells located elsewhere (e.g., Kenan Field, see below) on the 
estuary side of the island. The center of the island (VES2) 
has a gross vertical conductivity structure similar to that at 
the island-estuary interface (VES1), but with a much thicker 
intermediate layer that presumably corresponds to the zone 
of freshwater saturation. The analysis of the VES2 data 
yields a 2.8-m-thick unsaturated layer (σ1=0.55 mS m‑1) 

with an underlying intermediate conductivity (σ2=4.7 mS 
m‑1) layer ~28-m-thick and a halfspace with conductivity of 
21 mS m−1. The VES3 survey conducted on the ocean side 
of the island reveals saline saturated sediments at shallow 
depths. Forward modeling yields a 1.9‑m‑thick resistive layer 
of σ1=3.77 mS m‑1 underlain by a layer with σ2=110 mS m‑1 
and a halfspace with σ3=510 mS m‑1. Overall, the results 
shown in Plate 1b suggest the presence of only a thin veneer 
of freshwater beneath the Holocene sediments on the Atlantic 
side of Sapelo Island. 

The different halfspace conductivities determined by the 3 
VES surveys reflect several factors. First, there is significant 
lateral variation in the shallow conductivity structure across 

Figure 4. Detailed maps of the well network sites at (a) Moses Hammock (MH), (b) Kenan Field (KF), (c) North Sapelo 
(NS), and (d) Old Beach Road (OBR). Circles indicate locations of shallow monitoring wells, gray dashed lines show 
geophysical transects, and black rectangles on (a) denote various outbuildings associated with the seasonal hunt camp. 
Inset in (b) shows enhanced view of monitoring well transect. Geophysical surveys were primarily conducted coincident 
with the monitoring well networks, which are oriented perpendicular to the local island boundary.
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the island owing to the morphology of the freshwater lens 
and varying degrees of saline intrusion at the island’s bound-­­
aries. Second, interpretation of resistivity curves in terms of 
layered structure may lump together different thicknesses 
of material in the subsurface in different locations. Finally, 
we note that the halfspace conductivity (deepest part of the 
model) is constrained by the data obtained at the largest elec-­­
trode spacing, and the impact of high conductivity at depth 
on the raw Schlumberger curves can render the data at these 
large spacings particularly challenging to interpret. 

3.1.2. Terrain conductivity results. In September 1997, EM 
data were collected along east-west transects at the location 
of the VES1 survey (island-estuary interface) and VES3 
surveys (island-ocean interface). In August 2000, we also 
conducted a cross-island terrain conductivity survey extend-­­
ing from the island-estuary interface at Kenan Field to the 
island-ocean interface at Cabretta Island. Local-scale surveys 
at the island margins were acquired only in horizontal dipole 
mode, whereas apparent conductivity data for the regional 
(cross-island) survey were collected in both horizontal and 
vertical dipole modes and at all possible coil separations of 
the EM34 instrumentation (10, 20, and 40 m).

The cross-section in Plate 1a shows an inversion of the 
cross-island EM data with minimally processed 50 MHz 
GPR data superposed. The EM inversion was generated by 
application of a regularized tomographic inversion using 
2D smoothing constraints [Schultz and Ruppel, 2005]. The 
starting model for the inversion was the vertical conductiv-­­
ity structure constrained by the Schlumberger VES results. 
However, we note that DC resistivity and terrain conductiv-­­
ity methods do not necessarily produce entirely comparable 
results. Because DC resistivity relies on galvanic coupling 
and EM methods use inductive coupling, there are subtle 
differences in how the methods detect bulk subsurface con-­­
ductivity structure. During excitation with a quasi-static 
electric field, electromagnetic contrasts sensed by terrain 
conductivity methods are theoretically equivalent to those 
sensed by DC resistivity methods. However, even under the 
quasi-static assumptions, practical conditions during terrain 
conductivity surveying may lead to significant differences 
between terrain conductivity and DC resistivity measure-­­
ments. Electromagnetic coupling is less problematic in DC 
resistivity surveying because stationary currents are inher-­­
ently unable to induce time-varying electromagnetic fields 
[Kuras, 2002]. In areas of high resistivity/low conductivity, 
magnetically inducing sufficient current to generate mag-­­
netic fields that can be detected by the receiver can be chal-­­
lenging, leading to potential complications for EM methods. 
Although contact impedance may also cause complications 
for DC resistivity methods, it is generally easier to inject 

current into resistive ground through galvanic contact rather 
than through inductive coupling. In conductive environ-­­
ments, direct current signals decay rapidly with depth, and 
increasing electrode separation does not necessarily yield 
increased penetration. 

The cross-island inversion reveals significant variability 
in the spatial distribution of apparent conductivity, which 
should correspond primarily to changes in the conductivity 
of pore waters. At the ocean interface, the inversion yields 
conductivities ranging from nearly 1000 mS m‑1 to 100 mS 
m‑1 across the Holocene beach ridge. Lower conductivi-­­
ties (~0.5 to 45 mS m‑1) between 900 and 3000 m from the 
estuary interface (center of the island) are consistent with 
freshwater saturated sediments.

We also inverted the EM data using EMIX34 to create 
stitched 1D inversions that yield a sharp boundary between 
freshwater and saline saturated sediments. The starting 
model for this inversion was a simplified version of the verti-­­
cal conductivity structure obtained from the Schlumberger 
VES surveys, with a single low to intermediate (unsaturated 
and freshwater saturated) layer overlying a saltwater satu-­­
rated halfspace with conductivity greater than 900 mS m‑1. 
The apparent conductivity profile shown in Plate 1b is repre-­­
sentative of the interface separating low conductivity mate-­­
rial in the near-surface from higher conductivities at depth. 
Predicted profiles produced by EMIX34 forward modeling 
agree with the actual conductivity measurements to within 
13% for vertical dipole data and 19% for horizontal dipole 
data. The better match obtained with the vertical dipole data 
probably reflects their lower sensitivity to lateral variations 
in conductivity structure and their greater penetration depth, 
which is conducive to better constraining layered conductiv-­­
ity structures.

3.1.3. Composite aquifer morphology. The EM inver-­­
sions, VES data, and GPR results reveal noticeable thick-­­
ening of the freshwater aquifer beneath the center of the 
island, with the thickest part of the aquifer skewed toward 
the estuary (landward) side of the island. The pseudo-2D 
EM34 inversions (Plate 1a) imply local thinning of the 
aquifer between 1100 and 2000 m along the transect in 
a topographic low occupied by freshwater wetlands. We 
infer this thinning to be only apparent and attribute it to 
the presence of higher conductivity (relative to unsaturated 
sediments) groundwater at the surface in this area, not the 
upconing of salt water. Such groundwater may be associ-­­
ated with freshwater wetlands or the evaporative residue 
from these wetlands, which are common at this position 
on Sapelo Island. In such a pristine environment with such 
relatively homogeneous sediments, there are few other 
plausible explanations for this anomaly. 
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The depths to high conductivity material constrained by EM 
inversions might not necessarily indicate the base of the fresh-­­
water zone and could instead represent a more complicated 
effect that involves the presence of high-salinity pore waters 
and the occurrence of clay over a broad range of depths. A 
prominent GPR reflector inferred from cross-island profiles 
superposed on the EM inversions in Plate 1a is interpreted as 
a semi-permeable clay that may confine the base of the lens 
aquifer to depths shallower than those indicated by EM inver-­­
sions. With additional data (e.g., induced polarization or IP), 
it might be possible to distinguish contrasts associated with 
variations in conductivity from those caused by increased clay 
content; however, based on our other studies in the area (e.g., 
Schultz and Ruppel [2005]), we assume that increased salinity/
conductivity with depth would likely produce a more gradual 
transition than inferred from the relatively distinct reflector 
seen in the GPR data. The gentle eastward dipping slope (0.4º 
to 1.2º) associated with the GPR reflector between 1400 and 
2600 m and at depths of 10 to 17 m is consistent with geologic 
cross-section by Lens [1981] and surface seismic wave stud-­­
ies (G. Hebeler, pers. comm., 2001). Although the GPR and 
seismic data were not topographically corrected, at the scales 
of interest for this interpretation, the binned elevation data 
vary by less than 2.5 m along the entire transect. Shoaling of 
the confining unit is consistent with high GPR attenuation 
beneath the surficial aquifer on the estuary (west) side of the 
island and a co-located, near-surface, high conductivity zone 
in the EM inversion. 

The geophysical data largely confirm the predictions of 
Dupuit-Ghyben-Herzberg (DGH) theory, which describes 
the lenslike morphology of freshwater aquifers beneath bar-­­
rier islands. The thickness of the freshwater lens is a function 
of the density contrast a = ρf / (ρs-­ρf) between fresh (ρf) and 
saline (ρs) water and the elevation of the freshwater head h 
above mean sea level (MSL). For a hydrostatic and homo-­­
geneous lens aquifer system the depth of the freshwater-
saltwater interface below MSL can be estimated from z=αh 
[Herzberg, 1901]. For this study, an important modification 
to DGH theory is that of Urish [1977], who demonstrated 
that differences in the effective MSL between the ocean and 
estuary sides of an island typically produce an asymmetric 
lens skewed toward the landward side of the island, as noted 
in our EM inversions. The depth z to the freshwater-saltwater 
interface can be determined at any point x from the estuary 
side of the island by combining the Dupuit-Ghyben-Herzberg 
principle with the analytical solution for the shape of the 
phreatic surface:

,	 (1)

where ε denotes infiltration rate, and ∆H represents the 
difference in freshwater head across an island of width 
L and hydraulic conductivity K. Equation (1) assumes a 
sharp interface between fresh and saline groundwater and 
does not account for aquifer heterogeneity, anisotropy, or 
the effects of dynamic boundary conditions. In reality, 
the interface is a transition zone influenced by the mor-­­
phologic, hydrogeologic, and hydrodynamic properties of 
the nearshore zone and the aquifer boundary [Urish and 
Ozbilgin, 1989]. An additional factor that has not been 
widely considered in the literature is the degree to which 
variations in the salinity of the adjacent surface water body 
inf luence density-dependent mixing between fresh and 
saline water at coastal zone aquifer boundaries. 

Superposed on the results shown in Plate 1b is the DGH 
lens morphology calculated from (1) assuming an effective 
MSL 0.7 m higher on the ocean side than on the estuary 
side. Oscillations of the surf zone water level can lead to 
such an overheight of the water table at the ocean shore-­­
face [Philip, 1973]. For this calculation, we assume an 
average infiltration rate of 2.7x10‑9 m s‑1 estimated from 
monthly-average precipitation rates between 1996 and 
2000 taken from NOAA regional data and from published 
estimates of vertical hydraulic conductivity (1.5x10‑6 m s‑1) 
[USDA, 1959]. The depth to the freshwater-saltwater inter-­­
face predicted from (1) is consistent with inversions of 
the cross-island EM data from the August 2000 survey, 
but not with inversions of local-scale data obtained at the 
island-estuary interface in September 1997. To fit these 
older, local-scale data, which were acquired prior to a 
severe drought that endured from 1998 to 2000, we had to 
instead assume an infiltration rate that is more than double 
the estimate obtained from analysis of precipitation data. 
We infer that variability in the lens thickness between the 
1997 local surveys and the 2000 regional survey is more 
likely attributable to differences in local conditions at the 
survey locations (edges of island vs. large-scale across 
island aquifer morphology) and not a regional shrinking 
of the lens between the September 1997 and August 2000 
surveys. On the ocean side of the island, the inversions 
imply thinning of the freshwater lens to less than a meter 
beneath the Holocene strip barrier island that is separated 
from Sapelo Island’s core by a complex system of tidal 
creeks, salt marshes, salt ponds, and sloughs. The fresh-­­
water lens in this area may be dissected by the complex 
distribution of saline surface and groundwater, leaving a 
self-contained freshwater lens located beneath the ocean-
facing dune ridge and separated from the lens beneath the 
main part of the island. 

The exact shape of the lens along the cross-island 
transect may also be inf luenced by interaction with the 
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regional confining layer. High-resolution GPR data image 
the known confining layer at depths of 13 to 18 m, but 
cannot directly constrain the contrast in hydraulic con-­­
ductivity between the surficial Pleistocene sediments 
and the underlying Pliocene unit. If the layer provides a 
continuous sharp permeability contrast, the freshwater 
lens will truncate at the layer. Alternatively, if the transi-­­
tion between Pleistocene and Pliocene sediments does not 
represent a significant change in hydraulic properties, the 
lens will simply be deflected as it penetrates the deeper, 
lower permeability unit.

3.2 Local Scale Hydrofacies: Coastal Groundwater 
Boundaries

The regional scale hydrogeophysical results presented 
above imply that the detailed morphology of the freshwater-
saltwater interface is dependent on local conditions. Previous 
observational studies [Ginsberg and Levanon, 1976; Ayers 
and Vacher, 1986; Anthony et al., 1989] have reported vary-­­
ing degrees of subsurface freshwater-saltwater mixing in 
different environments, but have provided little explanation 
of the factors that control the transport of saline groundwater 
into the edges of freshwater aquifers. 

In general, coastal aquifers are subject to tidal boundary 
conditions regardless of the precise nature of the boundary 
(e.g., fully exposed beach face, sheltered estuary, or tidal 
creek-salt marsh complex). Variations in the morphology 
of the boundary, the degree of hydrodynamic connection 
between tidal water bodies and the surficial aquifer across 
the boundary, and the hydrogeologic properties of the near-­­
shore environment can lead to locally different subsurface 
salinity regimes at the coastal groundwater boundary. In 
this section, we integrate the results of geophysical surveys 
with hydrologic data collected in coincident monitoring 
well networks. This permits us to determine the horizontal 
and vertical extent of saline intrusion into the permeable 
uplands and the hydrogeologic conditions that affect flow 
and transport for the different types of shoreline boundaries 
represented by the study sites. 

Local-scale studies were conducted at the site of monitoring 
well networks installed at Old Beach Road (OBR), Kenan Field 
(KF), Moses Hammock (MH), and North Sapelo Island (NS) 
(see Figures 4a–d). OBR represents an island-ocean inter-­­
face, while the other 3 sites represent various types of island-
estuary interfaces common in barrier island settings. At the 
KF site, the permeable upland sediments are in direct contact 
with a tidal creek; at the MH site, a small island is completely 
surrounded by tidal creek and salt marsh complexes and the 
permeable upland under study borders salt marsh and a major 
tidal river; at the NS site, the upland is separated from the tidal 

creek by a long expanse of mature marsh whose hydrologic 
characteristics we surveyed as part of our studies. 

3.2.1. Island-­estuary interface: Upland bordered by tidal 
creek. The Kenan Field site borders Barn Creek, a tidal creek 
that is up to 30 m wide at high tide. This width is small rela-­­
tive to the extent of a monitoring well network (~225 m) that 
stretches inland from the edge of the upland perpendicular 
to the tidal creek bank. The slope of the creek bank is nearly 
vertical, and previous studies [Schultz and Ruppel, 2002] 
suggest that clogging of permeable upland sands by finer 
marsh mud material or iron oxides where the sands border 
the tidal creek impedes groundwater flow and surface water-
groundwater interaction across the tidal creek boundary. 

To extend our interpretation of the local hydrogeology 
at this site, EM data were acquired along the well transect 
perpendicular to Barn Creek in both horizontal and verti-­­
cal dipole modes. High apparent conductivities (>100 mS 
m‑1) near the tidal creek imply saltwater intrusion into the 
creek bank and upland sediments. Because these high con-­­
ductivity data obtained near the creek bank violate the low 
induction number approximation, we applied a nonlinear 
inversion [Schultz and Ruppel, 2005] to infer the pore water 
conductivity structure in the subsurface. The results, shown 
in Plate 2, reveal the expected deepening of high conductiv-­­
ity groundwaters with distance inland from the tidal creek 
beneath the local edge of the freshwater lens aquifer with a 
narrow (< 10 m) transition zone between saline and fresh 
near-surface groundwaters at this site. 

The resistivity inversions shown in Plate 2a are oriented 
perpendicular to the creek and image the localized region 
outlined in the EM cross-section. The conductivity increase 
from ~35 mS m‑1 at 20 m from the creekbank to ~6000 mS 
m‑1 at 5 m from the bank is consistent with the subsurface 
hydrofacies distribution constrained by the EM surveys. Plate 
2a also provides information about the third dimension (par-­­
allel to the upland edge) based on inversions from multinode 
dipole-dipole resistivity surveys. These images confirm lat-­­
eral intrusion of saline water to only a few meters from the 
creekbank.

An important component of our studies is integrating hydro-­­
logic and geophysical data, despite the different spatial scales 
resolved by these approaches. At this site, we sampled the 
conductivity of groundwater in the monitoring well network 
coincident with the geophysical surveys. Groundwater samples 
average over a support volume correlated with the length of 
the screened interval, about 0.7 m in this case. Specific con-­­
ductance decreased from 42.2 mS at the well positioned 3.5 
m inland from the creek bank (MW0101) to 0.183 mS at the 
well located 10.5 m inland (MW0103) and 0.056 mS at the well 
most distal from the creek bank (MW0108, 56 m inland). 

Plate 2Plate 2
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Plate 1. Composite cross-island transects com-­­
piled by integrating geophysical and hydrologic 
data. (a) Two-dimensional model from the inver-­­
sion of EM34 data extending from the estuary 
(west) to the ocean (east) are overlaid on pro-­­
cessed GPR profile. Lower relative conductivi-­­
ties near the center of the island are indicative 
of freshwater saturated sediments (dashed-dot 
curve). A strong coherent reflector in the GPR 
image (dashed curve) marks the top of a poten-­­
tial confining unit that constrains the form of the 
freshwater lens aquifer. (b) Depths to the fresh-­­
water-saltwater interface predicted by the DGH 
model and the inversion of EM (points) and VES 
(columns) data. Inversions of data acquired in 
September 1997 (open triangles) at the margins 
of the island aquifer are used to constrain the 
DGH model that predicts a relatively thick fresh-­­
water zone (dashed curve). The DGH model 
fit (solid black curve) to the inverted interface 
depths (solid circles) using EM data from the 
August 2000 cross-island transect yields a shal-­­
lower zone of freshwater. Parameters used for the 
DGH model calculations are given in the text.

Plate 2. Electrical resistivity data and an inver-­­
sion of EM data along the main well transects at 
the Kenan Field and Moses Hammock island-
estuary sites. (a) Resistivity inversions produced 
by public domain code ProfileR (A. Binley, pers. 
comm., 2003) on data from multinode surveys 
oriented parallel to Barn Creek at Kenan Field. 
Owing to the geometry of the surveys, the results 
in the center of these inverted sections and the 
sections shown in part (c) of this figure should 
be considered more reliable than conductivities 
at the edges of the sections. (b) Inversions of 
EM34 data combined with specific conductivity 
data from groundwater samples reveal a narrow 
zone (<10 m) of high conductivity associated 
with a low degree of saltwater intrusion. (c) 
Same as (a), but for surveys oriented parallel to 
the Duplin River. (d) EM34 inversion model and 
overlaid specific conductivity data corroborate 
the elevated conductivities extending more than 
25 m into the small self-contained freshwater 
lens aquifer at Moses Hammock. 
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3.2.2. Island-­estuary interface: Upland bordered by tidal 
creek-­marsh complex. The Moses Hammock (MH) site is Geor-­­
gia Coastal Ecosystems (GCE) LTER Site 10 and is located in 
the upper reaches of the Duplin River watershed (Figure 4a). 
The hammock is a ~0.1 km2 feature consisting predominantly 
of Pleistocene sand and is completely surrounded by marsh and 
tidal creeks. At high tide, the Duplin River occupies over 220 m 
of the channel on the east side of the hammock, and this width 
exceeds the ~180 m extent of the monitoring well network that 
stretches across the hammock. Using water levels monitored 
over a month-long period, Schultz and Ruppel [2002] showed 
that the relatively gradual slopes of the creek bank and intertidal 
marsh cause the transfer of tidal energy from the creek to the 
surficial aquifer to be highly nonlinear, and the geometrical 
complexity of the upland boundary, the lateral and vertical het-­­
erogeneity in hydraulic parameters, and other factors may also 
play a role in controlling the degree of lateral saline intrusion 
at this site [Schultz, 2002].

The large-scale distribution of saline groundwater at 
the MH site can be inferred from inversion of EM34 data 
[Schultz and Ruppel, 2005] collected across the hammock 
(Plate 2d). The cross-section reveals a small (<100 m wide), 
self-contained freshwater lens confined to distances between 
60 and 140 m from the creek bank and shows the extent of 
saline intrusion at both the Duplin River and marsh boundar-­­
ies. Elevated conductivities (250–2500 mS m‑1) extend ~35 
m inland from the Duplin River high tide mark, and another 
high conductivity zone occupies the 30 m closest to the 
marsh on the east side of the hammock. Toward the center of 
the hammock, the inversion results reveal thickening of low 
conductivity zone (freshwater lens) to ~6–8 m depth.

The inferred large extent of saline water intrusion from 
the Duplin River side of the hammock is confirmed by mul-­­
tinode DC resistivity surveys carried out both perpendicular 
and parallel to the shoreline. The inversions shown in Plate 
2c reveal greater than 20 m of lateral saltwater intrusion in 
the upland, significantly larger than the few meters of lateral 
intrusion at the KF site. 

Analyses of groundwater in monitoring wells coincident 
with the geophysical surveys corroborate inferences about 
saline and freshwater distribution beneath the upland. Cation 
and anion concentrations [Hunter et al., 2000; Snyder, 2002] 
confirm the presence of saline waters in the four monitoring 
wells closest to the Duplin River and in the three monitor-­­
ing wells adjacent to the salt marsh east of the hammock. 
Fresh (<5 mS cm‑1) groundwater samples were obtained only 
from monitoring wells near the center of the hammock (e.g., 
MW0208). Compared to groundwater in MW0101 at KF (3.5 
m from the creek bank), groundwater from well MW0201 
at MH (5 m from the creek bank) has higher conductivity 
(33 mS m‑1).

3.2.3. Island-­estuary interface: Marsh hydrology. To dem-­­
onstrate the capacity of geophysical methods to constrain 
hydrologic processes at nested spatial scales in both the 
vertical and horizontal directions, we present the results of 
intensive studies carried out across an upland-salt marsh-
tidal creek complex at the far northern end of Sapelo Island 
at a location designated GCE3 by the LTER. Since ~2001, 
we have conducted hydrogeophysical surveys and installed 
coincident, specially adapted monitoring well networks in 
clastic salt marshes stretching from the Okatee watershed in 
South Carolina [Sibley, 2004] to the Satilla watershed near 
the Georgia-Florida border. The North Sapelo site (NS) was 
the first to be studied in this way and has yielded important 
insights into salt marsh hydrology. 

The NS site (Figure 4c) is located on the ocean side of 
Sapelo Island, where the Holocene Blackbeard Island, a 
small, subsidiary barrier island located ~2 km away across 
a series of tidal creeks and salt marshes, shelters Sapelo 
Island from the Atlantic Ocean. The site consists of a sand-
dominated upland with a forest of live oak, saw palmetto, 
cypress, and loblolly pine and an adjacent Spartina alter-­
niflora salt marsh with rimming Juncus romerianus along 
the upland edge and Salicornia in low-lying, high salinity 
tidal flats. The marsh is bounded on the east by the tidally-
influenced McCloy Creek. Spartina grass dominates most of 
the marshes in this part of the SAB and tolerates low salin-­­
ity and full ocean salinity, standing water and days without 
tidal inundation, and both heavily and sparsely burrowed 
sediments. Juncus is an indicator of high marsh, relatively 
low salinity, and relatively rare tidal inundation. Salicornia 
occurs only in high salinity zones, primarily in salt flats that 
tend to develop between the Spartina that fills most of the 
marsh between tidal creeks and uplands and the Juncus that 
grows primarily at the edges of uplands. This information is 
presented here because the ecological zonation of study sites 
is often an overlooked factor in understanding near-surface 
hydrologic conditions and salinity gradients, precisely the 
targets of our investigations.

Since 2001, we have repeated multinode dipole-dipole 
and Wenner DC resistivity surveys at the NS site. Plate 3a 
shows the inversion of dipole-dipole data across the upland-
marsh interface along one of the two transects we eventually 
instrumented with monitoring wells. The inversion provides 
provocative evidence for submarsh freshwater flow up to 
~20 m from the upland edge before the tongue of fresher 
water becomes mixed with saline groundwaters. The finding 
of submarsh flow in this area largely confirmed the inde-­­
pendent hypothesis of Schultz and Ruppel [2002] that this 
process, not seepage, was critical for groundwater-surface 
water interaction in this part of the SAB. Thermal infrared 
photographs acquired by the authors in August 2001 also 

Plate 3Plate 3
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Plate 3. Combination of geophysical and hydrologic results constrain multiple scales of interaction between fresh and 
saline groundwater at the North Sapelo site. (a) Inversion of DC resistivity across the marsh-upland boundary reveals 
submarsh freshwater flow from the upland, fingers of saline pore water penetrating downward, and possible evidence 
for free convection of pore waters. (b) Monitoring well data (gray circles) from deeper than 2 m and porewater analyses 
at ~10 cm depth (black circles) confirm the presence of less saline groundwater beneath the marsh than inland. Also 
shown is the water table as measured in the monitoring wells (relative to an arbitrary datum), demonstrating a net 
hydraulic gradient toward the tidal creek.
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revealed no evidence for seepage in the vicinity. Confirming 
the presence of submarsh freshwater are cation analyses and 
borehole conductivity logs in coincident monitoring wells 
that penetrate the marsh to depths of ~4 m. Surprisingly, 
these data reveal that the marsh well located closest to the 
edge of the upland (MW0604) has fresher groundwater than 
that in the upland monitoring well (MW0605). 

This example aptly illustrates the meshing of hydrologic 
and geophysical data at different spatial scales. The geo-­­
physical data cannot resolve subtle conductivity differences 
between the groundwater samples in MW0605 and MW0604. 
Conversely, the wells, already at much closer lateral spacing 
than used in most hydrologic studies, do not closely constrain 
the lateral or vertical extent of the freshwater flow beneath 
the marsh. Lacking geophysical data, we may never have 
inferred the true nature of groundwater interactions beneath 
the marsh from the seemingly anomalous groundwater con-­­
ductivity detected in MW0604. 

The resistivity inversion in Plate 3a also highlights hydro-­­
logic conditions and processes at several other spatial scales. 
First, the data imply an apparent lack of hydraulic connection 
between the high electrical conductivity material in the shal-­­
low marsh and the lower conductivity material universally 
present deeper in the marsh, even beyond the extent of the 
freshwater tongue. During installation of the monitoring 
wells, we obtained continuous core sediment that was ana-­­
lyzed to estimate grain size and hydraulic conductivity using 
standard formulations such as the Hazen and Beyer formulae. 
The results revealed that muds up to 2 m thick near the marsh 
surface had hydraulic conductivity ~2 orders of magnitude 
lower than that of the underlying fine sands penetrated by 
MW0604 and MW0602. In addition, pore water conductivi-­­
ties measured at 10 cm depth in the marsh were higher along 
most of the transect than groundwater conductivity measured 
in wells (Plate 3b), attesting to the separation of the shal-­­
lowmost groundwaters from the deeper groundwaters in 
this marsh. This combination of geophysical data, hydraulic 
parameters, and hydrogeochemistry implies that tidal inun-­­
dation of the marsh delivers high salinity surface waters that 
do not necessarily infiltrate to great depths. 

Second, the DC resistivity data, which were collected with 
redundant, reciprocal pairs of current and potential electrodes 
as a means of quality control, provide provocative indications 
of possible free convection in the marsh [Ruppel and Schultz, 
2003]. The top of the resistivity inversion shows pockets of 
very high conductivity (low resistivity, ~0.1 Ωm) pore waters 
between 2 and 5 m across surrounded by zones of lower con-­­
ductivity (~1 Ωm) pore water. These zones finger downward, 
while inferred high resistivity, fresher pore waters at greater 
depth finger upward. The layering of higher density saline 
pore waters over lower density fresh pore waters has long been 

recognized as a gravitationally unstable configuration, and the 
classic Elder problem in hydrology deals with the development 
of free convection and fingering in such porous systems on 
timescales of years in models with homogeneous permeability. 
Also relevant to the interpretation of the resistivity image are 
laboratory Hele-Shaw observations of fine-scale fingering 
between layered, gravitationally unstable, miscible fluids 
having the same viscosities [Cooper et al., 1997].

The resistivity data were acquired at close enough spacing 
to resolve the fingering features and gross stratification of 
more saline over fresher waters highlighted here. We caution 
that, to the best of our knowledge, this is the first instance 
of geophysical detection of such fingering and convective 
relationships in the study of salt marsh hydrology and that 
significant future work is required to confirm our interpre-­­
tation. More extensive in situ measurement of pore water 
conductivities, mapping of marsh plants to determine if roots 
may provide high permeability conduits that facilitate selec-­­
tive, downward infiltration of high salinity tidal waters, and 
confirmation of the DC resistivity results through repeated 
surveys are necessary to show unequivocally that hydro-­­
geophysical techniques have for the first time imaged such 
important hydrologic processes in a salt marsh. 

3.2.4. Island-­ocean interface. The OBR site is characterized 
by a wide-intertidal beach and ocean-fringing sand dunes on 
the east and a complex of behind-dune salt ponds and tidal creek 
and marsh that make up a slough system (Figure 4d). Such 
slough systems are common physiographic features in this part 
of the SAB and generally separate Holocene beach sediments 
from the Pleistocene core of the main barrier island. 

The local groundwater salinity regime at OBR was con-­­
strained using both hydrogeochemical analyses of surface 
water and groundwater and parallel geophysical surveys con-­­
ducted along a sand footpath running due west from the ocean. 
Figures 8a–c shows a comparison of raw EM31 data collected 
during two 1997 surveys separated by 5 hr, an inversion of 
EM34 data acquired only in horizontal dipole mode, and 
cation analyses conducted by M. Snyder (pers. comm., 2000). 
The repeated EM31 surveys shown in Plate 4a generated 
similar results except in the 50 m nearest the beach and in the 
region between 350 and 420 m inland. The differences in the 
observed apparent conductivity are likely due to the influence 
of tidally induced semi-diurnal fluctuations in both water level 
and salinity. The lowest conductivities recorded in the upper 
beach are likely affected by the nonlinear response of the 
EM31 instrument at high conductivity. The true conductivi-­­
ties, as confirmed by analysis of the EM34 data, are signifi-­­
cantly higher than those reported by the raw EM31 data.

The inversion of EM34 data superposed on the GPR cross-
section image the larger scale conductivity structure from the 

Plate 4Plate 4
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Plate 4. Geophysical survey results and major cation concentrations at the Old Beach Road site at the island-ocean 
margin. The three parts of the figure are oriented correctly relative to each other in terms of distance and plotted on 
the same scale so that corresponding points in each data set lie along a single vertical line on the page. (a) Raw EM31 
terrain conductivity data acquired 5 hr apart along a survey transect extending from the upper beach across the dune 
ridge. Differences in the apparent conductivities between the surveys in the 50 m nearest the beach and at the back-
barrier slough are indicative of varying tidal water levels and salinities. (b) The conductivity distribution constrained 
by inversion of EM data, which were here collected in only one coil orientation, reveals the complexity of subsurface 
salinity gradients at this location. Note the correlation between the inferred base of freshwater beneath the dune ridge 
and the depth to the attenuated GPR signal in the superposed cross-section. (c) Major cation concentrations along the 
OBR profile from M. Snyder (pers. comm., 2000).
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upper beach, across the dune ridge, and into the topographic 
low behind the dunes. Like the EM31 data, the inversion of 
the EM34 data reveals lower conductivity freshwater satu-­­
rated sediments beneath the dunes and back-barrier areas 
with a high conductivity region between 280 and 400 m 
inland. Superposed on the EM inversion are GPR data col-­­
lected with a 100 MHz antenna. The data reveal eastward-
dipping aeolian and marine sedimentary structures and other 
features [Schultz, 2002]. For the purposes of this study, the 
most important aspect of the GPR survey is the depth at 
which the radar waves become attenuated (~7 m), which 
corresponds roughly to the freshwater-saltwater interface 
as inferred from the EM inversion.

Surface water (ocean and slough) samples and ground-­­
water samples collected from monitoring wells installed in 
the swales of dunes have major cation concentrations that 
decrease sharply between 8 and 12 m from the upper beach 
(M. Snyder, pers. comm., 2000). For example, Na concentra-­­
tions remain relatively low (~2.3x10‑2 ppt) across the dune 
ridge to a distance of ~150 m and then increase to 13 ppt near 
the back barrier slough. Elevated anion and cation concentra-­­
tions in groundwater at the western part of the well transect 
confirm lateral intrusion of saline water from the tidal ponds 
and slough that intersect the transect. A synthesis of the results 
of EM inversions, radar attenuation, and ion concentrations 
suggests that freshwater accumulation in the Holocene dune 
sediments gives rise to an isolated local freshwater aquifer 
disconnected from the larger island lens surficial aquifer. 

4. Characterization of Coastal Aquifer 
Dynamics: Temporal Variability

To better understand the dynamic processes controlling flow 
and transport at the coastal groundwater boundary over vari-­­
ous time scales, we conducted repeated geophysical surveys 
coupled with coincident groundwater sampling. Here we present 
two examples of this relatively new application of geophysical 
surveying in the coastal zone. In the first study, EM31 surveys 
are coupled with water levels and precipitation data to constrain 
the variability of saline intrusion in response to seasonal and 
interannual drought conditions. In the second study, we exam-­­
ine the effects of tidal forcing on salt transport over a part of 
a semidiurnal tidal cycle. In both cases our interpretations of 
dynamic changes in the groundwater salinity regime assume 
that the geoelectric response of the system to natural forcings 
can be directly interpreted in terms of hydrogeology.

4.1. Seasonal Cycle

 Seasonal variations in the degree of saline water intrusion 
were constrained from repeated EM31 surveys collected 

along the main well transect at MH between September 1998 
and April 2000. The self-contained nature of the freshwa-­­
ter lens beneath the hammock makes this an ideal site for 
focused studies that constrain the impact of variations in 
the hydrologic cycle on the surficial aquifer. The lens at MH 
reacts much more quickly to natural or anthropogenic forcing 
than does the freshwater lens beneath Sapelo Island proper. 
For scientific studies of only a few years’ duration, such 
smaller lenses serve as convenient, scaled-down microcosm 
for the lenses beneath larger barrier systems. 

Variations in EM31 measurements (Figure 5) constrain 
the response of the surficial aquifer to seasonally elevated 
salinities in the Duplin River and decreased recharge due to 

Fig 5Fig 5

Figure 5. Seasonal variations in terrain conductivity linked to 
long-term precipitation and salinity data at the island-estuary mar-­­
gin (Moses Hammock site). (a) Cumulative monthly precipitation 
data between September 1998 and April 2000 highlight the drought 
that commenced in spring of 1998 following a period of unusually 
heavy precipitation during the 1997–1998 ENSO event. (b) Spe-­­
cific conductivity observations in the Duplin River correlate with 
the precipitation record but are also influenced by the long-term 
variability in salinity of the estuary. (c) EM31 apparent conductiv-­­
ity data acquired at discrete times over the 19-month-long period 
show a strong correlation with both accumulated precipitation 
and specific conductivity in the Duplin River, demonstrating the 
relatively rapid response of this self-contained aquifer to climate 
and oceanographic variability. 
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the drought that commenced in mid-1998 following a period 
of significantly above average rainfall and streamflow in 
Georgia during the 1997–1998 El Nino event. On average, the 
lowest raw apparent conductivity values, consistent with the 
largest freshwater lens and/or the lowest salinity groundwa-­­
ters making up the saline intrusion, occurred in September 
1998, shortly after the start of the drought. The maximum 
terrain conductivities (>300 mS m‑1) occurred in June 1999. 
In light of the small increase in surface water salinities (~10 
mS cm‑1) during the December 1998 to June 1999 period, 
the June 1999 survey almost certainly documents shrinkage 
of the freshwater lens due to lack of precipitative recharge. 
Between June 1999 and April 2000, a continued dry period, 
the EM data reveal little change in the lens at distances 
greater than 25 m from the edge of the upland. Yet the con-­­
ductivity measurements decrease markedly at distances 
less than 25 m, during the same period that the salinity of 
the adjacent tidal creek also drops sharply (by nearly 25 
mS cm‑1). This observation implies that the saline intrusion 
in the 25 m closest to the tidal creek had been replaced by 
lower salinity waters from the adjacent tidal creek during the 
winter months of late 1999 and early 2000.

Throughout these surveys, we noted that the point at 
which the EM measurements returned to background values 
remained consistent at ~50 m from the tidal creek, regardless 
of the terrain conductivity changes recorded closer to the 
creek at this site. Snyder et al. [2004] describe redox and 
other hydrogeochemical data collected in the MH monitoring 
well and multilevel sampler network and also document no 
appreciable or systematic change in the hydrogeochemistry 
at the MH site over the course of 11 months. This observation 
is consistent with an approximate steady-state for the balance 
of fresh and saline groundwater. Such hydrogeochemical 
data provide more detailed information than geophysical 
measurements, both in terms of the vertical spatial scale 
over which groundwater samples average and the capacity 
of the laboratory analyses to yield high resolution estimates 
of chemical species concentration. On the other hand, the 
resolution of the geochemical data along the well network is 
only as fine as the spacing of the wells, meaning that geo-­­
physical data are better able to constrain the lateral extent 
of saltwater intrusion. 

4.2. Semi-­Diurnal Tidal Cycle 

To constrain the dynamics of saline water intrusion at the 
edge of the upland aquifer over a semi-diurnal tidal cycle, we 
conducted horizontal dipole EM31 surveys at 1 m spacing 
along a 50 m transect perpendicular to Barn Creek and coin-­­
cident with the main well network at the KF site every hour 
from just before high tide to just after low tide in December 

1998. The evolution of terrain conductivity along the transect 
and changes at a given point during the tidal cycle are shown 
in Figure 6a. To remove the impact of instrument drift and 
other systematic changes, each survey was adjusted so that 
the measurements at the 3 points most distal from the creek 
along the survey line did not change over the course of a 
tidal cycle. The data highlight significant changes in terrain 
conductivity over the course of the tidal cycle, changes that 
are a function of both water level variations, which can be 
up to several centimeters, and pore water salinity.

Direct measurements of water levels in the monitoring 
wells coincident with the EM surveys allowed us to remove 
the impact of tidally-induced water table fluctuations from 
the terrain conductivity measurements. We first calculated 
the terrain conductivity variation that could be attributed to 
changes in the thicknesses of the unsaturated and freshwa-­­
ter-saturated sediments at each well location during differ-­­
ent parts of the tidal cycle. We then interpolated this signal 
between wells and subtracted this effect from the EM data 
we measured along the well transect at different times during 
the tidal cycle. The resulting value represents the residual 
EM signal attributable to changes in conductivity due to 
variations in pore water salinity alone. This residual EM 
signal was then normalized by the maximum conductivity 
value measured in the entire data set, yielding the results 
shown in Figure 6b. 

The results reveal the largest residual conductivity values 
at high tide, intermediate values between the tidal extremes, 
and the lowest values during an intertidal period that fol-­­
lowed low tide. To first order, these results are consistent 
with the most significant intrusion of saline creek water 
into the edge of the permeable upland aquifer at high tide 
and probably some outflow of saline groundwater from the 
creekbank mixing zone at low tide. 

The residual conductivity salt signals were groundtruthed 
by simultaneous conductivity measurements in monitoring 
wells MW0101–MW0104. Although the porewater conduc-­­
tivity data imply a slightly shorter intrusion distance (~6 
m) than the residual terrain conductivity data (~8 m), they 
follow the same general pattern. The disparity between the 
independent geophysical and hydrologic measurements is 
not surprising, given that groundwater analyses average con-­­
ductivity over the length of the vertical well screen (0.75–1.5 
m) while the residual terrain conductivity values represent 
the integrated conductivity over nominal depths of ~6 m. 
Furthermore, the lateral spacing of the monitoring wells in 
which the porewater conductance data were acquired is much 
greater than the spacing of the EM measurements. 

The residual conductivity results also provide insight about 
the nature of surface water-groundwater exchange at the 
aquifer boundary. As in the MH dataset, we note the pres-­­

Fig 6Fig 6
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ence of a so-called static point in this system, here located 
at ~8 m from the tidal creek. The morphology of the con-­­
ductivity data curves shown in Figure 6b is consistent with 
diffusion-dominated transport at the boundary, and we used 
an analytical solution to the transient diffusive transport 
equation for constant boundary concentration C0 of salt 
to fit the observations and extract an estimated diffusion-
dispersion coefficient D: 

	 ,	 (2)

where x and t denote distance and time, respectively. This 
analysis assumes that pore water conductivity changes are 
simply related to the concentration of a species such as chlo-­­
ride. 

Setting the concentration C0 at the boundary (located at 
MW0101) to the residual conductivity at low, intermediate, 
and high tides normalized by the high tide value (119 mS 
m‑1), we vary D seeking the best-fit to the residual con-­­

ductivity structure. Best-fit models shown in Figure 6b are 
obtained with D of 1.0x10‑8 m2 s‑1 and characteristic time 
t=1 year. We underscore that these results do not indicate 
the absence of advective processes at the tidal creek bound-­­
ary, only that, on the time scale and at the resolution of our 
observations, the system is approximately diffusive. Snyder 
[2002] postulates that the apparently diffusive nature of salt 
transport at the edge of the MH aquifer, where he completed 
exhaustive groundwater geochemical studies, may represent 
the relatively steady-state balance between advective flux 
of freshwater toward the tidal creek and the net diffusion of 
chloride into the upland aquifer. 

5. DISCUSSION

Spatial heterogeneities appear to exist as a hierarchical 
system (e.g., Wheatcraft and Tyler, 1988; van de Graaff 
and Ealey, 1989; McLaughlin and Ruan, 2001). Schultz 
[2002] discuss this point with respect to extensive GPR data 
collected at various locations on Sapelo Island. The North 
Sapelo (GCE3) study is an example that demonstrates some 
of these hierarchies of spatial scales within a single site. At 
the megascale (up to ~500 m), the results reveal submarsh 
flow as a possible mechanism for groundwater discharge 
into the marsh and ultimately the tidal creek and coastal 
zone. At the macroscale (~5 to 25 m), we infer the impact 
of lithologic layering on controlling vertical infiltration of 
tidal waters into the marsh and the interaction of shallow and 
deeper groundwaters. Mesoscale features (0.1 m to greater 
than 2 m) include the fine, vertical fingering features that 
may indicate convection in the marsh and variations in plant 
heights and distributions that might in part reflect shallow 
physical or chemical hydrologic conditions. 

For temporal data, this study, like those of Slater and 
Sandberg [2000] and Sandberg and Slater [2001], demon-­­
strates that even groundwater processes operating under 
natural, not forced, gradients at time scales as short as a few 
hours can sometimes be detected by geophysical monitoring. 
Overall, we found that changes in the distribution of fresh 
and saline groundwater at the margins of the lens aquifer 
were most affected by long-term variability such as seasonal 
changes in tidal creek salinity and recharge. We found that 
the lens system was generally in equilibrium with condi-­­
tions in the adjacent tidal river and monthly average rainfall 
records. Therefore, we inferred that the redistribution of 
fresh and saline groundwater associated with elevated salini-­­
ties in the tidal watershed and reduced hydraulic gradients 
in the aquifer during drought periods occurred relatively 
rapidly and that the saltwater interface is in a dynamic equi-­­
librium with oceanographic and atmospheric forcing. The 
response of the aquifer to semi-diurnal tidal forcing and 

Figure 6. (a) Raw EM31 terrain conductivity measured at high tide 
(black), intertide (dark gray), and low tide (light gray) as a func-­­
tion of distance along the well network at the KF site. The inset 
shows EM31 measurements at the edge of the upland (black) and 
the positions of MW0101 (3.5 m inland; dark gray) and MW0103 
(8 m inland; light gray) as a function of time within the tidal cycle. 
(b) Integrated analysis of terrain conductivity data and water levels 
measured in coincident monitoring wells over a semi-diurnal tide 
cycle yield the normalized surface conductivity signal attributed 
to changes in pore water salinity. The residual conductivity data, 
groundtruthed by downhole specific conductivity measurements 
(triangles), reveal a relatively static freshwater-saltwater interface 
(>8 m). The overall salt signal is adequately modeled by diffusive-
dispersive transport (D=1x10-8 m2 s-1; solid and dashed curves) 
absent of advective transport.
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associated transport were constrained by repeated surveys 
at the KF site. 

An important implication of our geophysical results is that 
the maximum inland extent of the intrusive saline wedge is 
relatively constant over periods ranging from a tidal cycle 
(KF) to several weeks or longer (MH). Lens aquifer mor-­­
phology represents the interplay of many conditions, but 
particularly local hydraulic parameters and the amount of 
recharge. The recognition of static points for lateral saline 
intrusion may point to the dominance of static local hydrau-­­
lic parameters, such as hydraulic conductivity and time-
averaged head differences between the surficial aquifer and 
adjacent, tidally-influenced creeks, over the more volatile 
parameter of recharge as the key factor affecting lateral 
saline intrusion. 

The largely static nature of the landward extent of the 
saline groundwater wedge and the agreement of groundwater 
cation concentrations and geophysical data with a diffusive 
model imply that advective exchange is probably not the key 
mechanism for mixing across the island-estuary interface at 
our sites. During tidal inundation, the hydraulic head gradi-­­
ent between saline surface water and the water table favors 
saline water intrusion into the creekbank or beach sediments. 
Thus a cyclical tidal flushing pattern could theoretically be 
established, with groundwater discharging during ebb tide 
and saltwater infiltrating during flood tide [Hemond et al., 
1984]. However, it is important to distinguish between local-­­
ized tidal flushing in the vicinity of the creek bank, beach 
face, or marsh surface and larger scale diffusive processes 
that define the extent of saline intrusion on a larger scale. 
Because seepage velocities are generally less than 1 m d‑1, 
the zone of advective saltwater flushing in nearshore aquifers 
forced by semi-diurnal tides is less than 0.5 m [Harvey and 
Nuttle, 1995].

Not surprisingly, sustained forcing over periods of months 
or years has a much greater influence on flow and transport 
conditions in the surficial aquifer system than semidiurnal 
tidal forcing from adjacent saline water bodies. The longest 
time scale resolved in this study was ~18 months, but events 
at time scales longer (e.g., decadal-scale sea level rise) and 
shorter (e.g., storm surges) can effect dramatic geologic and 
hydrologic change in the aquifer system. 

6. CONCLUSIONS

Our case studies highlight the potential of combining 
hydrologic and geophysical data to better understand shallow 
aquifer processes. Although the integration of these methods 
has gained wider use throughout the hydrogeophysics com-­­
munity for structural hydrogeologic properties characteriza-­­
tion (e.g., Rubin and Hubbard, 2005), few process-oriented 

studies have adopted hydrogeophysical methods from the 
outset. A major challenge in integration of disparate hydro-­­
logic and hydrogeophysical data is transforming geophysical 
results into meaningful constraints on hydraulic parameters. 
The development of better joint inversion algorithms should 
make it possible to refine models using combinations of 
disparate geophysical and hydrologic data. 

Practical considerations for coastal aquifer character-­­
ization include the resolution and efficiency of downhole 
and surface geophysical instrumentation. On one hand, 
among natural environments coastal aquifers are perhaps 
uniquely suited to the application of particularly electrical 
and inductive EM techniques owing to the strong contrast 
in near-surface conductivity properties and the disparate 
time scales over which dynamic processes can be detected. 
On the other hand, these same conditions, coupled with the 
juxtaposition of high and low saturation conditions (e.g., arid 
uplands and flooded salt marshes) and high and low gradient 
processes (e.g., turbulent tidal flow and laminar groundwater 
flow), can pose difficulties for the use of standard hydrogeo-­­
physical techniques and approaches. Geophysical techniques 
have often evolved independently in terrestrial and marine 
settings, but coastal zone studies could benefit from the 
adaptation and application of both classes of methods. At the 
same time, technical advances in high resolution geophysical 
methods (e.g., shear wave or radar wave velocity studies) 
could enhance the detectability of saturation variations, the 
delineation of subtle changes in lithologic structure, or the 
impact of transient processes on coastal aquifers. 

Although electrical and electromagnetic methods are par-­­
ticularly useful in the coastal zone because contrasts in 
electrical properties serve as a proxy for changes in salinity, 
such approaches have a serious limitation in understanding 
short-term flow patterns. For this application, time-domain 
methods such as induced polarization (IP) might be more 
widely applied to constrain the direction of ion mobility in 
the presence of hydraulic and electrical gradients.

Geophysical data have traditionally been obtained by pro-­­
filing or sounding techniques, which to first order separate 
lateral changes from vertical changes in physical properties. 
However, 3D characterization of heterogeneities is needed 
to identify the key controls on groundwater flow and trans-­­
port. Geophysical instruments that automatically acquire 
data in three orientations (e.g., triaxial EM instrument or 
3D multiplexed resistivity arrays, with one set of electrodes 
in a borehole) could enhance constraints on 3D subsurface 
heterogeneities. Moreover, just as four-dimensional sur-­­
veys (including time as a dimension) have revolutionized 
oil exploration, the addition of a fourth dimension to 3D 
geophysical surveying, perhaps through the establishment 
of automated geophysical monitoring networks, could sig-­­
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nificantly advance the understanding of both the static and 
dynamic state of shallow aquifers.

The research presented here is relatively unique in provid-­­
ing a time series of particular geophysical data to constrain 
changes in a coastal aquifer. However, the duration of the 
study and the nature of the measurements mean that we can-­­
not yet fully constrain aquifer response to climatic, oceano-­­
graphic, ecological, and anthropogenic processes occurring 
over time scales of seasons to decades. Ongoing efforts such 
as those championed by the LTER program, the Consortium 
of Universities for the Advancement of Hydrologic Science 
(CUAHSI), and international organizations such as the 
Global Change Research Program should contribute to the 
establishment of longer baseline time series. We underscore 
the importance of long-term and sometimes high-resolution 
monitoring and analysis, particularly to constrain changes in 
response to catastrophic events (e.g., storm surges or hurri-­­
canes), short-term climate trends (e.g., drought), and decadal 
events (e.g., sea level rise and urbanization). 
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Methods Including the Scaled-­Windowed Fourier Transform
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Important characteristics of watershed processes can be extracted from hydrologic 
data using spectral methods. We extract quantitative information from precipitation, 
stream discharge, and groundwater head data from watersheds in northern-­lower 
Michigan using Fourier Transform (FT) methods. By comparing the spectra of these 
data using similar units, we graphically illustrate the hydrologic processes that link 
precipitation to stream discharge and groundwater levels including evapotranspiration. 
We also demonstrate how unit hydrographs can be efficiently and non-­parametrically 
derived using the FT in a manner that allows for a quantitative seasonal comparison 
of precipitation and the resulting stream discharge response. This analysis clearly 
illustrates the reduction in summer discharge levels due to canopy interception and 
evapotranspiration. We also develop a systematic application of the FT we call the 
Scaled-­Windowed Fourier Transform (SWFT), which extracts time-­varying spectral 
content using a similar approach to the wavelet transform. While computationally 
less efficient than the wavelet transform, the SWFT allows for embedded detrending 
and tapering. Application of this method clearly illustrates the non-­stationarities of 
spectral content within the three chosen data types, leading to a greater understand-­
ing of discharge-generating processes. 

Introduction

Spectral analysis (SA) provides a powerful means of 
extracting information from hydrologic data. This type of 
analysis can reveal processes that may be obscured in direct 
time-series analysis by providing data not just on temporal 
fluctuations, but also on the spectrum of frequencies within 
those fluctuations. Furthermore, integrating multiple data 
types in a quantitative and meaningful way is relatively 
simple using spectral analysis. Here we apply both existing 
and novel SA techniques to hydrologic data from two water-­
sheds in northern lower-­Michigan. We use these methods 
to illuminate the processes that link precipitation to stream 
discharge and groundwater levels. 

Spectral analysis has been applied within the hydrologic 
sciences for decades [e.g., Bras and Rodriguez-­Iturbe, 1985; 
Hameed, 1984], most commonly as a means of estimating 
coefficients for linear autoregressive or stochastic mod-­
els [e.g., Naff and Gutjahr, 1983; Jukic and Denic-­Jukic, 
2004; Zhang and Schilling, 2004]. During the last decade, 
SA has been applied to examine fractal and multi-­fractal 
behavior of systems [e.g., Tessier et al., 1996; Pelletier 
and Turcotte, 1997; Kirchner et al., 2000], and to examine 
linkages between hydrologic and climatic processes [e.g., 
Tessier et al., 1996; Pelletier and Turcotte, 1997; Coulibaly 
and Burn, 2004]. 

Here we apply SA techniques to explore linkages between 
hydrologic processes and to provide a deeper understanding 
of those processes. Previous SA process comparison studies 
have generally not assured the similarity of measurement 
units, nor have they (with the exception of more recent wave-­
let studies including Gaucherel [2002] and Coulibaly and 
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Burn [2004]) considered the time-­variant nature of process 
spectra. We demonstrate the quantitative utility of compar-­
ing data and spectra with similar physical units for inference 
of process relationships. Also, using an application of the 
common Fourier Transform we call the Scaled-­Windowed 
Fourier Transform (SWFT), we illustrate the non-­stationary 
behavior of precipitation, stream discharge, and groundwa-­
ter head spectra. Comparing Fourier spectra to the SWFT 
output, we illustrate how ignoring such non-­stationarity can 
result in misinterpretations of spectra and thus of inferred 
process details. Finally, using a spectral derivation of sea-­
sonal unit hydrographs, we demonstrate how simple stream 
discharge models can be improved by considering the sea-­
sonality of watershed processes.

Recognizing that spectral analysis is not a standard tool 
in the hydrologic science toolbox, Fleming et al. [2002] 
published a practical introduction to SA that focused on 
applications of the Fourier Transform (FT) including direct 
frequency domain investigation, spectral filtering, and spec-­
tral simulation model validation. Here we apply SA in a 
similar manner, explaining our assumptions and the common 
complications, and demonstrating how these methods can 
be used across the hydrological sciences. Additionally, parts 
of the methods section are intended to contribute to a set of 
“best practices” of SA in the hydrologic sciences.

Datasets and Study Area

Six data types from two northern lower-­Michigan water-­
sheds were used in this study: daily temperature, precipi-­
tation, and snowfall, both 15-­minute and hourly stream 
discharge, and bi-­hourly groundwater heads. Figure 1 shows 
the locations of both Michigan watersheds, as well as the 
locations of our groundwater transducers. The 3711 km2 
Evart sub-­basin of the Muskegon River Watershed (MRW) 
was selected for this study because there are no actively 
controlled f low structures on the Muskegon River or its 
tributaries upstream of this station. 

Because the Evart sub-­basin lacks a network of moni-­
tored groundwater wells, we used water level data from our 
pressure transducers in the nearly adjacent Grand Traverse 
Bay Watershed (GTBW), which has a similar hydrogeo-­
logical setting. Unconsolidated sediments within the Evart 
sub-­basin and the GTBW were deposited by the same set of 
glacial episodes. These sediments are characterized primar-­
ily by coarse to fine sands and gravels with a small percent-­
age of fine-­grained material [Farrand and Bell, 1982]. The 
similarity in depositional history and topographic variation 
between these two basins suggests that GTBW groundwater 
head f luctuations can be used as a proxy for the nearby 
upper MRW. 

Preliminary 15-­ and 60-­minute discharge data from the 
United States Geological Survey (USGS) stream gauge on 
the Muskegon River at Evart (Station ID: 4121500) were 
used in this study [USGS, 2005]. Hourly data for this gauge 
were used from October 1989 until 15-­minute discharge data 
became available in 1997. Combining the hourly data with 
resampled 15-­minute data, the total data record extends from 
10/1/1989 through 9/30/2004.

Daily temperature, precipitation, and snowfall records 
from a US Cooperative Observing Network station in Big 
Rapids, MI just downstream of Evart on the Muskegon River 
were available from 1896 to 2001 [Karl et al., 1990]. These 
data are distributed by the National Climatic Data Center 
(NCDC) as part of the US Historical Climatology Network 
dataset [NCDC, 2001]. 

For finer temporal-­scale resolution, we processed hourly 
4‑km NEXRAD data [Andresen, 2004] for 2004 and 
extracted the mean rainfall over the Evart sub-­basin at each 

Fig 1Fig 1

Figure 1. Map of the Muskegon River and Grand Traverse Bay 
watersheds, with an inset map of Michigan showing their locations. 
Groundwater wells with transducers are marked with triangles, and 
the Evart gauge sub-­basin is shaded in grey.
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hourly interval. NEXRAD data show a high degree of cor-­
relation to the corresponding gauge values in this region 
[Jayawickreme and Hyndman, 2007]. These radar-­based pre-­
cipitation data are only available for approximately 9 months 
out of the year in this region (from 4/1/2004 to 11/30/2004) 
due to errors in snowfall estimates, so they are only suitable 
for evaluating shorter-­period system behavior.

We installed a network of 17 pressure transducers in USGS 
groundwater wells across the GTBW. Water table elevations 
were recorded every two hours beginning either in June 2003 
(9 transducers) or June 2004 (8 transducers). Data through 
7/1/2005 were used in this analysis. 

Methods

Fourier Transform

Fourier’s Theorem states that any complex periodic func-­
tion can be decomposed into a set of periodic basis functions 
of varying amplitude, period, and phase shift. The most com-­
mon such decomposition technique is the Fourier Transform 
(FT), which uses sinusoidal basis functions. Fleming et al. 
[2002] present the basic theory, and a full mathematical 
treatment of this technique can be found in textbooks [e.g., 
Bras and Rodriguez-­Iturbe, 1985; Percival and Walden, 
1993]. A common implementation of the discrete FT is 
the discrete Fast Fourier Transform (FFT) popularized by 
Cooley and Tukey [1965]. In this study, we use the FFTW 
libraries that are integrated into the MATLAB computing 
environment [Frigo and Johnson, 1998]. This particular set 
of general-­radix algorithms does not constrain the user to the 
requirement in Cooley and Tukey [1965] that the number of 
samples (N) be a power of 2. 

The output of the FFT algorithm is a complex array rep-­
resenting the magnitude and phase shifts of the Fourier 
coefficients. For instance, the FFT of a sinusoid of unit 
period and amplitude is an array with a single non-­zero value 
corresponding to a period of 1. The FFT of summation of 
sinusoids would produce non-­zero peaks in the spectrum. If 
instead the time-­series input to the FFT were a broad, single-
peaked curve such as a gaussian, exponential, or gamma 
function, spectral amplitudes would be non-­zero across a 
broad range of periods. 

Fourier spectra are generally plotted as power vs. fre-­
quency, however we find that plots of amplitude vs. period 
provide a more natural basis for viewing spectra of inter-­
related physical phenomena. The spectral amplitude, the 
square-­root of spectral power, of a time-­domain input corre-­
sponds directly to hydrologic flux quantities such as precipi-­
tation and stream discharge. Note that the log-­log slope of the 
amplitude spectrum is ½ β, where β is the slope of spectral 

power in log-­log coordinates. A system is typically consid-­
ered fractal (or multi-­fractal) if its power spectrum roughly 
follows 1/fβ behavior [Avnir et al., 1998]. This behavior is 
typical of a wide variety of geophysical systems, and can pro-­
vide insight into the processes that govern those systems. 

If one assures the similarity of the units of each time-­series 
dataset, the amplitudes of multiple spectra can be compared 
in a physically meaningful manner. To accomplish this, a 
suitable unit for comparison must first be chosen. For this 
study, we chose length/time (L/T) units because precipita-­
tion is the most common hydrologic forcing mechanism. 
In order to change the volumetric discharge units (L3/T) of 
stream discharge to L/T units, the discharge was divided by 
the drainage area of the watershed upstream of the gauge. 
Groundwater head data, measured in L units can be differ-­
entiated to yield L/T units. Using the differentiated data, an 
approximation of the rate of head relaxation at the well loca-­
tion can be obtained by selecting only the negative values. 
Note, this technique assumes constant lateral inflow. This 
was then multiplied by an estimate of drainable porosity for 
the sediments (0.2), to correct for water level differences in 
porous media vs. open water.

Assuring Periodicity

The FFT algorithm assumes that the data are periodic, 
namely the starting and ending points of the dataset are 
identical. Violating this condition results in spurious features 
in the output spectrum [Bach and Meigen, 1999]. However, 
time-­series data from environmental systems rarely satisfy 
this criterion. There are four primary means of assuring 
periodicity: taper function multiplication (tapering); trend 
subtraction; data subset selection (discussed in “Reducing 
Aliasing and Leakage” below); and filtering which is not 
considered here, but the interested reader is referred to 
Fleming et al. [2002] for a discussion. 

Tapering can be a valid means of forcing periodicity if 
one considers how it affects the resultant spectra. Tapering 
refers to the multiplication of a mean-­removed signal by a 
“tapering function” (sometimes referred to as a windowing 
function) that smoothly tapers from a peak of 1 at its center 
to 0 at the edges. There are a variety of pre-­defined taper-­
ing functions [Blackman and Tukey, 1958; Harris, 1978], 
and each affects the spectra differently. Tapering has the 
side effect of reducing the amount of information in the 
signal, thus limiting its applicability for short data records 
[Fleming et al., 2002]. The shape of the tapering function, 
and how gradually it tapers near the edges, controls how 
much information is lost in the process. There is a trad-­
eoff since the tapering functions that reduce information 
loss have more severe spectral “side lobes”, which distort 
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the transformed spectra by shifting power from primary 
frequencies to harmonics (integer multiples or factors) of 
those frequencies. To recover the amplitude of an isolated 
peak within a spectrum (but not the entire spectrum itself), 
spectra from each tapering function can be corrected to 
account for the effect of side lobes. The multiplicative cor-­
rection factor for each tapering function is given by the 
ratio of unaltered-­ to tapered-­amplitude [Harris, 1978]. In 
this study, tapering is primarily applied within the SWFT 
method where distortion is minimal since only a single 
amplitude is selected from each FT.

Trend removal is often necessary for environmental data 
series to assure periodicity while minimizing loss or side-
lobe distortion from tapering. The simplest method is to lin-­
early remove the trend from the data, which can be effective 
if the non-­periodicity of the data is associated with a nearly 
linear trend. If there is some roughly sinusoidal long period 
fluctuation, a more valid means of trend removal may be 
to subtract a half-­period sinusoid from the signal. In this 
case, the peak and trough of the subtracted function occur 
at each end of the original signal. A variety of additional 
trend-­removal techniques have also been developed [Mann, 
2004]. We used the sinusoidal trend removal method in this 
study due to its simplicity and physical basis.

Reducing Aliasing and Leakage

If the FT is blindly applied to data without thought to domi-­
nant system processes, sampling rates, or sampling interval, 
aliasing and leakage may occur. Both aliasing and leakage act 
to shift spectral power (or amplitude) from “true” frequencies 
to harmonics of those frequencies, although each acts differ-­
ently. Aliasing results from under sampling high-­frequency 
fluctuations [Bras and Rodriguez-­Iturbe, 1985], while leakage 
or overspill is caused by both the non-­periodicity of the system 
as well as non-­periodicity of the processes within that system 
[Bach and Meigen, 1999]. It is important to note that leakage 
will occur if the endpoints do not match, but the inverse is not 
always true. Even if the time-­series endpoints match, leakage 
may occur due to variability of the processes that contribute 
to the sampled time-­series.

In theory, aliasing can be avoided by merely increasing 
the sampling rate until the time series is fully resolved. 
Specifically, one cannot resolve spectral peaks with fre-­
quencies greater than half the sampling rate (the Nyquist 
frequency) [Bras and Rodriguez-­Iturbe, 1985]. If a time-
series has significant power in frequencies above half the 
sampling rate, aliased power will be present in the empiri-­
cal spectrum. In the case of many environmental datasets, 
aliased peaks may not be significant because, as is shown 
below, these datasets are typically strongly damped at high 

frequencies. Our analysis indicates that some data do require 
sampling frequencies on the order of once per hour, but most 
of those discussed here are sufficiently sampled with daily 
sampling rates. 

Spectral leakage can be more persistent and troubling 
than aliasing because periodic processes within a system are 
rarely sampled over an integer number of cycles. Leakage is 
commonly reduced by applying a tapering function to the 
time-­series, detrending the time-­series, or both [Fleming 
et al., 2002]. However, when the entire FT spectrum is of 
interest rather than specific spectral peaks, a more effective 
means of decreasing leakage in environmental datasets may 
be to carefully select subsets of the data that correspond to 
natural breaks in processes, thus assuring near-­integer sam-­
pling without distortion. 

Data subset selection is also important because most envi-­
ronmental processes are non-­stationary, thus each occur-­
rence of a process may vary in both period and amplitude. If 
one includes multiple cycles of a periodic process in the FT, 
the true peak location, shape, and amplitude can be obscured 
by differences in system states across cycles. Additionally, 
selecting a subset of data in which some system processes 
are inactive can also greatly simplify spectral analyses and 
reveal the spectra of weaker processes in portions of data-­
sets that would otherwise be obscured by dominant, but 
intermittent, processes. For example, the diurnal fluctuation 
of stream discharge is often clearly visible during baseflow 
conditions but can be obscured by runoff and near-­stream 
groundwater discharge during late spring and early sum-­
mer. Alternately, if one were only interested in the spectral 
behavior of runoff, for instance, then selecting data sur-­
rounding an isolated moderate-­precipitation event during a 
dry season yields a stream discharge response primarily to 
direct precipitation and runoff.

Unit Response Functions

While there are various techniques to derive unit hydro-­
graphs from discharge and precipitation data, most are either 
ill-­posed or require assumptions about system behavior [Yang 
and Han, 2006]. But direct FT deconvolution can produce 
unit hydrographs quickly and deterministically. The total 
time-­series response of a linear system to a forcing input can 
derived by the convolution of the system unit response and 
the input time-­series as follows [Smith, 1997]:

	 	 (1)

where q is total time-­series response (i.e. stream discharge), 
h is the unit response (for the case of stream discharge, this 
unit response has the special name of “unit hydrograph”), 
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and p is the input precipitation time series. According to the 
convolution theorem,

	 Q(k) = H(k)P(k)	 (2)

where Q(k), H(k), and P(k) are the FTs of q(t), h(t), and 
p(t), respectively, where k is the spectral frequency. The unit 
hydrograph time-­series is then

	 	 (3)

where F‑1[..](t) denotes the inverse Fourier Transform. Thus 
the unit-­response hydrograph is given by the inverse FT of 
the ratio of the discharge and precipitation spectra.

Though not strictly necessary, the analysis is simplified 
if the sampling frequency and units of the precipitation and 
discharge time-­series are identical. The data should be resa-­
mpled so that the number of samples, n, and the sampling 
frequency, f, are equivalent. The unit-­response function, h(t), 
has length n, however, in this case the unit response function 
is only valid up to the point where it becomes negative, since 
precipitation can not directly produce a decrease in stream 
discharge [Yang and Han, 2006]. The negative response is 
therefore the signature of some other watershed process. 
If baseflow separation is used, this issue can be avoided, 
though some small uncertainties will remain due to the 
data themselves, and may result in negative calculated unit 
responses. Here we chose to not use baseflow separation, 
because this technique produces a synthetic dataset that is 
not directly tied to watershed processes and may introduce 
artifacts of the separation technique that could mask the 
watershed processes under investigation.

The resultant unit-­response hydrograph is not an invariant 
property of the watershed, as it is sensitive to variations in 
runoff-­generating processes. These processes can be studied 
by directly comparing different unit-­response hydrographs. 
Differences in response curve timing, peak, and shape can 
all be used to infer the activity and relative influence of vari-­

ous watershed processes. Applying data subset selection with 
these process differences in mind can allow for a quantitative 
sensitivity analysis of system sub-­processes. 

In this study, we compare seasonally derived unit-­response 
hydrographs for the Evart sub-­basin averaged over 10 con-­
secutive years. The derived unit hydrograph will be incorrect 
if stream discharge is still responding to precipitation inputs 
that occurred prior to the start of the data period [Smith, 
1997]. However, applied over entire seasons this error, as well 
as any error resulting from noisy data, is greatly reduced. 
Nevertheless, the derived unit-­response function remains 
highly sensitive to edge conditions of the time-­series inputs, 
thus the nominal time period (given by Table 1) of each sea-­
son was adjusted to remove precipitation events or sudden 
increases in discharge near the edges of the time-­series. The 
nominal time period for each season does not correspond to 
starting and ending dates of each season because they were 
chosen to assure similarity of hydrologic response within a 
season based on assumptions of process activity, also listed 
in Table 1. Also note that the fall and winter seasons overlap 
because the minimum length of the time-­series subset must 
be longer than the watershed response time, which in this 
case was on the order of 60 days. 

To assure periodicity for the FT of each season’s data, a 
Tukey tapering function [Blackman and Tukey, 1958] was 
applied with relatively steep taper (coefficient of 0.1). Tapering 
was chosen over trend-­removal because the magnitude of the 
discharge response to precipitation was of primary impor-­
tance. After making these adjustments, some seasons contin-­
ued to produce non-­physical results (characterized primarily 
by sinusoidal unit-­response behavior) and were thus omitted. 
These omissions are justified on the grounds that the non-
physical results reveal only the sensitivities and limitations of 
the method, and nothing about watershed process. 

Scaled-­Windowed Fourier Transform

A key difficulty in applying the FT to environmental 
datasets is that non-­stationarities in the data introduce arti-­
facts in the Fourier spectrum. Here there are two types of 

Table 1Table 1

Table 1. List of the nominal time periods used in each seasonal analysis, and of the years omitted from the average unit responses. 
Data were from 1990–2001.

Season Nominal Time Periods Time Period Justification Years Omitted

Winter 12/1–3/15 Mainly frozen precipitation 1991, 1992

Spring 3/15–5/15 Little evapotranspiration 1990, 1993–991

Summer 6/15–10/1 Maximum evapotranspiration 1990–91, 1993, 1995–96

Fall 10/15–12/25 Mostly liquid precipitation 1991, 1994–95
1 Only four years were included in the spring average discharge response, 1991, 1992, 2000, 2001.
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non-­stationarity to consider. The first is non-­stationarity of 
process period, where subsequent cycles of a process within 
the system have slightly different spectra due to changes in 
system properties. The second is best described as intermit-­
tency, where a process may be active during only a portion 
of the sampled data. The first results in spreading of spectral 
power about a central period (if the process is sinusoidal), 
while the second results in spurious spectral power at har-­
monics of the primary period.

To avoid these effects and more clearly illuminate impor-­
tant changes in the spectra, we developed a method that we 
call the Scaled-­Windowed Fourier Transform (SWFT). The 
SWFT is very similar to a sinusoidal wavelet transform 
(WT), but it differs in a number of respects. The math-­
ematical development of the SWFT presented here is fun-­
damentally different from that commonly presented for the 
WT, in a way that may increase the utility of this method 
for hydrologic scientists. In particular we feel that there is 
great value in demonstrating that the SWFT produces time-­ 
and frequency-­localized Fourier coefficients, as opposed 
to the similarly localized WT coefficients that are wavelet-
dependent. Additionally, the SWFT is capable of embedded 
detrending rather than relying on tapering alone to reduce 
leakage, potentially producing better spectral estimates. 
Finally as developed, the periods and times queried by the 
SWFT are more flexible than typical WT schemes, with the 
tradeoff of decreased computational efficiency.

The SWFT also differs from the traditional windowed 
FT that only transforms data within a specific subset of the 
overall time series called a data window (here the window 
is different from a tapering function). This data window is 
then slid along the time series to produce a map of spectral 
power varying in both period and time. Unfortunately, the 
windowed FT forces a choice between severe aliasing of 
low-­frequency components of the signal or poor resolution 
of high-­frequency non-­stationary processes [Torrence and 
Compo, 1997].

By contrast to the windowed FT, the SWFT method scales 
the width of the window over successive passes along the 
time-­series. At each window position, the data are detrended, 
multiplied by a tapering function, and Fourier transformed. 
A single amplitude corresponding to the Fourier coefficient 
of a single frequency is selected from the complete FT at 
each window position. The window is then slid along the 
data, producing a time-­varying series of amplitudes for that 
frequency. When the end of the dataset is reached the win-­
dow width is rescaled and the process is repeated for the next 
frequency. Note, hereafter we use the word “period” solely 
to indicate the spectral period, or the inverse of frequency. 
We feel that the period of spectral content is generally more 
applicable to the hydrologic sciences than the frequency. 

The SWFT produces the same type of scalogram as would 
be generated with the WT. These scalograms are well defined 
mathematically and physically (if proper units are used), and 
can be examined using standard statistical techniques. Aside 
from simple examination of the scalogram, comparisons 
of related scalograms such as the cross-­scalogram and the 
coherence phase map (see Torrence and Compo [1997]) can 
be calculated as well.

Conceptually, the SWFT scalogram is produced via the 
following:

	 	 (4)

where p and q are indices defined mathematically below, 
which correspond to the periods and times at which the 
SWFT is applied; F(…)k indicates a single value from the 
discrete Fourier Transform spectrum; x is the time-­series 
dataset; jstart and jend are the beginning and ending indices of 
the current data window; T is a tapering function (optional); 
D is a detrending function (optional), each defined over the 
current data window; and C is a multiplicative correction 
factor unique to each type of tapering function that is com-­
puted as , where 
k is the index that corresponds to the period 2π. Note that 
a reasonable approximation of C can be obtained using just 
three or four cycles of the sine function. If a tapering func-­
tion is not used, C=T=1. For our analysis, we chose a Tukey 
window with a gradual taper (Tukey window coefficient of 
0.5) as a tradeoff between frequency resolution and side lobe 
distortion, resulting in C ≈ 1.33. Tukey coefficients closer to 
1 produce greater side-­lobe distortion, while those nearer to 
0 reduce side-­lobe distortion but increase leakage.

The complex definition of the discrete Fourier Transform 
(DFT) modified from Press et al. [1992] is

	 	 (5)

where x is the time-­series dataset, and k and j are indices run-­
ning from k=[1,…,n] and j=[1,…,n] and n is the total number 
of data points to be transformed. The DFT spectrum F has n 
points of which the first is the “gain” term, and the next n/2 
points correspond to the periods n/f · [1,1/2,1/3,…,2/n]. 

To compute the SWFT, we would like to extract a single 
Fourier coefficient corresponding to a certain period, Pp, from 
the entire DFT spectrum. Also, we need the coefficient not for 
the entire dataset x, but for a windowed subset xj with indices 
j=[nstart,..,nend] (which relate to times t = j/f , where f is the 
sampling frequency of the dataset) where the total number of 
points in the window is Np. To minimize leakage, the window 
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width Np should be chosen such that an integer number of 
sinusoidal cycles fit within it, which can expressed as 

	 NP = PP · f ·w.	 (6) 

Here w is an integer multiple with possible values [1,2,…, 
floor(n/ PP · f)] where “floor” is a function that rounds the 
argument toward zero. In general, higher values of w increase 
the frequency resolution of the SWFT while decreasing the 
time resolution. Note that the entire dataset x is used, and 
the standard DFT Fourier coefficient is produced when w is 
set equal to n/ PP · f. 

When Equation 5 is applied to the data window Np, we 
note that the indices k in the DFT output then correspond to 
periods NP/f · [1,1/2,1/3,…,2/ NP], and the first point in the 
DFT output is the DC gain term. The SWFT requires only 
the value Fk corresponding to Pp. So Pp = NP/f · 1/w, and 
therefore (replacing k with p) we get

	 Fk = Fp =Fw+1.	 (7)

Substituting Equations 6 and 7 into 5, and recalling the 
definition of Np, we get:

	 .	 (8)

The window of width Np is slid along the dataset producing 
an array Fpq where q corresponds to the center-­window time 
tpq with indices p and q=[1,2,…, q(max)p ], where q(max)p 
is the maximum index of q, defined later in equation 14. The 
maximum resolution of P is such that the product Pmax · f 
= [2,3,…,n], since the shortest period allowed is given by 
the Nyquist critical frequency(2/f )‑1). However, for com-­
putational efficiency when Pmax spans several orders of 
magnitude, the user can specify any subset P of Pmax. For 
instance, one could choose P · f = [2,5,12,14,…,n] , or any 
other arbitrary subset of Pmax. The index p=[1,…,length(P)] 
then refers to the periods at which the SWFT will be calcu-­
lated, where “length” is a function that calculates the size of 
the 1st dimension of the array P. 

Substituting Equation 8 into Equation 4 yields the com-­
plete definition of the SWFT: 

	 	 (9)

where m is an index [1,2,…,Pp · fs · w], or m=( j+1)‑nstart . nstart 
and nend are both functions of p and q: 

	 , and	 (10) 

	 . 	 (11)

Because the Fourier coefficients can only be time-­localized 
to a window of width Np, we include the capability for each data 
window to overlap the previous one in order to increase the 
temporal resolution of the transform. As an example, if Np=10 
and no overlap is allowed, the minimum temporal resolution at 
this value of Pp would be 10. Instead overlap is allowed such that 
the minimum resolution can be as low as 1. This could either 
be done with a fixed overlap (i.e., each window overlaps half of 
the other across all periods), or the overlap can be scaled in any 
other fashion, such as linearly with P. For this study, we define 
the overlap value, op to be given by a simple linear scaling as

	 	 (12)

where omax and omin are specified by the user, and max(P) is 
the maximum value within the array P. The minimum value 
of omin = 1, and the maximum value of omax = Np. With this 
modification, Equation 10 becomes

 	 	 (13)

and q(max)p is given by

	 .	 (14)

The amplitude or power spectra can be extracted from 
the full SWFT spectrum in the same way it would be for 
the standard FT. Here we use the amplitude spectrum that is 
calculated via

	 	 (15)

where the vertical bars indicate the magnitude of the complex 
value Fpq and the factor of 2 arises because the DFT spectrum 
is symmetric about the vertical axis and thus distributes half 
of the spectral power at a period to the each of the positive and 
negative instances of that period. The center-­window times t 
associated with the arrays F and A are given by

	 .	(16)
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Note that F, A, and t  are, in general non-­rectangular arrays 
(the exception is when w=Np). MATLAB’s cell array capa-­
bility was used to store these values. For convenience of both 
visualization and further processing, such as contouring or 
computing cross-­scalograms and phase-­coherence maps, 
these arrays can be interpolated to rectangular grids.

The SWFT array F can either be computed directly via 
equation 9, or it can be computed via equation 4 using the 
values of jstart and jend from equations 13 and 11. In either 
case, the tapering and detrending functions T and D are 
calculated using the data x( jstart : jend). 

The SWFT was developed primarily for flexibly visual-­
izing the non-­stationary spectral content of a time-­domain 
signal. Including the ability for op to scale with period greatly 
reduces the computational demand by calculating Fpq less 
frequently for longer periods. Allowing w to vary enables 
flexibility between time-­ and frequency-­localization, as the 
needs of the user demand. Though not used here, w could 
also be a function of p allowing the frequency resolution to 
also scale with the period. Including explicit tapering and 
detrending further improves the ability of the SWFT to 
represent dynamic spectral content when P spans several 
orders of magnitude.

In order to illustrate the interpretation of the SWFT scalo-­
gram, we examine a simple test case using a summation of 
three separate sinusoids given by: f (x) = f1(x) + f2(x) + f3(x), 
where f1(x) =sin(4x) over 0 ≤ x ≤ π, and f2(x) =sin(10x) over 
0 ≤ x ≤ π, and

	 .	  

Figure 2a illustrates the successive superposition of the three 
sinusoids, the darkest curve plots f3(x), the mid-­tone curve 
plots f3(x) + f2(x), and the lightest curve plots f (x).

The SWFT scalogram (Figure 2b) of the function f (x) 
reveals the periods, amplitudes, and ranges of activity of 
each of the simple sinusoids. The method extracts the peri-­
ods of the three sinusoids and reconstructs the amplitudes 
accurately, except for the f3(x). This is simply because only 
two cycles of the sinusoid were used in f3(x), and the window 
width was chosen as twice the period, thus only the very 
center point should reach an amplitude of 1. The shorter-
period sinusoids both have peak amplitudes very near 1, 
although the middle has amplitudes >1 in some locations 
because of the interaction between the two longer-­period 
sinusoids. Importantly the longest period sinusoid, which is 
defined only for 4π < x < 8π, only has large amplitudes in 
this range, thus revealing the time-­varying spectral behavior 
of the input signal.

In cases where the input is something other than a sum-­
mation of sinusoids, the scalogram output will exhibit large 

amplitudes across a range of periods, as expected from 
Fourier theory. If the broad-­spectrum behavior of the input 
data is relatively time-­localized, such as the runoff response 
to a brief storm event, the scalogram will exhibit lineations 
corresponding to that event. Thus, temporally continuous but 
spectrally limited high amplitude regions indicate periodic 
processes within the input data while temporally limited 
but spectrally broad lineations indicate broad-­spectrum 
processes.

Scalogram Averaging

Averaging the scalogram amplitudes across periods or 
time gives the period-­averaged or time-­averaged amplitude 
spectra, respectively, of the SWFT scalogram [Torrence and 
Campo, 1998]. All of these three averages are computed 
using a rectangularly interpolated grid, Asr, at user-­selected 
periods s and times r, from Apq. Since the period spacing in 
the SWFT scalogram is not necessarily uniform, we use the 
period-­weighted mean amplitude Ap, calculated using

	 ,	 (17)

Fig 2Fig 2

Figure 2. SWFT results for a test function, f(x). a) Curves repre-­
senting the successive superposition of the three sinusoids with dif-­
ferent frequencies; b) the SWFT scalogram. The shaded contours 
represent amplitudes between 0.5 and 1.0 as shown in the colorbar. 
The dashed line represents the boundary beyond which the SWFT 
scalogram is undefined (where half the window width is greater 
than the available number of points within the dataset).
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where L is the dimension of the rectangular grid in the period 
direction. This provides aggregate information on the tem-­
poral variation of spectral amplitude.

The time-­averaged amplitude At, given by

	 	 (18)

where M is the dimension of A in the time direction, displays 
average amplitudes across time at a single period. Referred to 
as the global SWFT spectrum, this time-­averaged spectrum 
is qualitatively similar to the FT spectrum, but differs in 
physical meaning.

Bulk changes in the relative influence of short-­ vs. long-
period fluctuations across time can be visualized using the 
amplitude-­weighted average period Pt, 

	 	 (19)

All three of these scalogram averages are demonstrated 
below.

Watershed Available Precipitation: 
Snowmelt Modeling

Although this study focuses on revealing and exploring 
watershed process using a purely data-­driven SA, one model 
is required for the analyses. Because precipitation falls as 
snow during most of the winter months in northern lower-
Michigan, a snow storage-­and-­release model is needed. The 
data required for a full energy/water balance model were 
either unavailable or incomplete, thus we implemented a 
simple heuristic snowmelt model. Because data are avail-­
able for both fresh snow totals and observed snow depth, 
the model must simply identify when a decrease in snow 
pack thickness corresponds to a melt event or densification 
of the snow pack. This heuristic model tracks snow water 
equivalent and releases snowmelt based on a three-­part 
rule structure: 
1) 	�The density of newly-­fallen snow is calculated from 

daily precipitation and snow fall totals. Since pre-­
cipitation can be mixed frozen and liquid, a maximum 
new-­snow density cutoff, newmax, was determined from 
the data. Any precipitation in excess of this cutoff 
is considered equivalent to rainfall and immediately 
released. 

2) 	�The total snowpack density is updated based on the new 
snow depth and the accumulated water content of the 
pack.

3) 	�If the average snowpack density exceeds the maximum 
pack density, packmax, it is assumed that some of the snow 
has melted. Melt is then generated equivalent to the depth 
of the pack multiplied by the difference between the cal-­
culated pack density and the maximum density.

There are three important assumptions in this model. 
First, we assume that drifting does not affect the observed 
snow depths at the measurement location (typical of snow 
models). Second, we assume that the snow pack properties 
are uniform throughout, which is realistic in the MRW region 
as total pack thicknesses are typically less than a third of a 
meter. Finally, this model assumes that the density at which 
the snow pack releases water remains the same throughout 
the season.

The maximum densities of the new snowfall and the snow-­
pack are physical quantities that are generally not equal. 
Maximum snowpack density, packmax, is determined by 
both its composition and water holding capacity, which are 
functions of the thermal history of the pack and new snowfall 
conditions. Direct comparison of snow depth and stream 
discharge in our study area suggests that water is released 
from the snowpack when the combined snow/water density 
reaches approximately 0.35 g/cm3, according to this model, 
thus this value was chosen for packmax. The maximum new 
snowfall, newmax density of 0.23 g/cm3 (determined as the 
ratio of new snow water content to new snow depth) was 
extracted from the data, as this was the relatively abrupt 
limit above which higher-­density new snowfall events were 
obvious outliers.

To assure that the heuristic model performs acceptably, it 
was compared to the UEB snow model [Tarboton and Luce, 
1996] for the winter of 1999/2000. The solid line in Figure 
3a is the heuristic snowmelt model, and the dashed line is 
the output from the UEB snow model. Both models output 
the combined snowmelt and liquid precipitation, referred to 
hereafter as watershed-­available precipitation. Watershed-
available precipitation is that which can be acted upon by 
physical or biological processes. Note that the models pro-­
vide very similar results, with the UEB model predicting 
slightly more melt early in the season and the heuristic model 
predicting more melt late in the season. The heuristic model 
predicts approximately 1.5 cm more snowmelt during the 
season than the UEB model. However, the heuristic model 
does not allow for sublimation, which entirely accounts for 
the ~1.5 cm difference at the end of the modeled period. The 
heuristic model was chosen for our analysis since it performs 
acceptably, despite minimal data requirements and a simple 
structure. 

Fig 3Fig 3
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Results and Discussion

Examining Watershed Process: Spectral Comparison

The spectra of stream discharge, watershed-­available pre-­
cipitation, and relaxation of the water table elevation in well 
B13 (Figure 1) can be directly compared to infer interaction 
timescales between the data types and to examine details of 
processes within each type. Well B13 (data not plotted) was 
chosen because the water table is deep enough (>30 meters) 
to preclude direct evapotranspiration effects. Four key fea-­
tures of the spectra will be compared to integrate the hydro-­
logic datasets and reveal process details: 1) spectral peaks, 
2) log-­log linear slopes (i.e., fractal scaling), 3) locations 
of slope-­breaks, and 4) relative spectral amplitudes. Since 
watershed-­available precipitation is the primary forcing 
function for natural watershed processes in our study region, 
the spectra of well-­head relaxation and stream discharge can 
be viewed as modifications, or fractal filters [Kirchner et al., 
2000], of the watershed-­available precipitation spectrum. 
The same is true to some degree for the well-­head relax-­
ation and stream discharge spectra, as groundwater inputs 
to the Muskegon River account for a majority of its annual 
discharge [Jayawickreme and Hyndman, 2007].

The spectra of these three data types are plotted in Figure 
4 along with log-­log linear fits and 95% confidence intervals. 

Also plotted is the fixed period-­width binned spectrum to aid 
visualization. Slopes for selected linear portions of the spec-­
tra were calculated using least-­squares regression between 
user selected bounds. These bounds were chosen to match 
portions of the spectrum that exhibited a linear slope. The 
slope breakpoints are then calculated at the intercepts of the 
separate linear fits. 

The 95% confidence interval (dotted line) is determined 
by multiplying the χ-­square value for a system with 1 degree 
of freedom by the average amplitude given by a noise (or 
scaling) model [Torrence and Compo, 1997]. In this case, 
the noise model was assumed to be given by the linear fits. 
This enables the flexibility of applying statistical confidence 
intervals to datasets without assuming a priori a particular 
type of noise. This is useful when working with spectra that 
exhibit multi-­scaling behavior [Tessier et al., 1996; Dahlstedt 
and Jensen, 2004], where a single-­scaling noise model, and 
therefore confidence test, would be inadequate.

All three process spectra have annual-­cycle peaks at or 
near 365 days, although the peak in the head relaxation data 
is significantly below the 95% CI boundary. This is probably 
due to the relatively short data record available for the head 
relaxation. The discharge spectrum has a series of peaks at 
the harmonics of the 1 day peak that are artifacts, as later 
discussion will demonstrate. The head relaxation spectrum 
also has a peak near 117 days, along with weaker peaks near 
70 and 50 days (Figure 4d). These are near the integer factors 
3, 5, and 7 of the 365 day peak, again suggesting a spectral 
artifact rather than processes acting at these periods. The 
watershed-­available precipitation spectrum has two addi-­
tional peaks at ~174 days, and another at ~65 days. These 
may not indicate sinusoidal processes active at those periods, 
but may instead be the spectral signature of a non-­sinusoidal 
process characterized primarily by a longer-­period oscilla-­
tion. In particular these two peaks are near the integer factors 
2 and 6 of the primary 365 day peak. 

The slopes of the spectra and slope breaks (Table 2) 
provide provocative evidence of linkages between water-­
shed processes. If a quantity, such as stream discharge, is 
being forced directly by another, such as precipitation, then 
fractal scaling active in the forcing input should exhibit 
itself directly in the response variable [Tessier et al., 1996]. 
However, a non-­linear system response behaves like a frac-­
tal filter, modifying the input scaling behavior [Kirchner et 
al., 2000]. There are two examples of this in Figure 4 and 
Table 2. The first is the segment of the discharge spectrum 
between one and three hours with a β of 1.5. This is roughly 
similar to the slope of the NEXRAD hourly precipitation 
spectrum. The β=0.9 slope in the NEXRAD spectrum is 
an underestimate of the true spectral slope, given that the 
hourly NEXRAD spectrum represents just a single year of 

Fig 4Fig 4

Table 2Table 2

Figure 3. a) Comparison of the watershed available (WA) pre-­
cipitation simulated by the heuristic snowmelt model and the 
UEB model; b) the difference between the two (heuristic model 
(HM)—the UEB energy balance model (EBM)) and the cumula-­
tive difference. 
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data that undersamples precipitation, and thus suffers from 
high-­frequency aliasing and slope-­flattening as described in 
Kirchner [2005]. If, as indicated in these empirical spectra, 
the “true” spectral slopes of streamflow and precipitation 
match in this range, we interpret the similarities of slope up 
to a period of three hours to indicate that direct precipita-­
tion is the dominant flow-­generation process. Beyond three 
hours, processes with a different scaling relationship domi-­
nate flow. 

Process linkages are also apparent between long-­period 
stream discharge and head relaxation spectra. Both spectra 
have a slope break at approximately 16 days and follow a 
β=1.1–1.2 scaling relationship to longer periods. This sug-­
gests that variations in groundwater discharge control stream 
discharge variability at periods longer than approximately 
16 days. The exact value of this slope break is approximate 
because of the gradual transition between linear segments 
in the discharge spectrum between approximately 10 and 
30 days. Zhang and Schilling [2004] observed slope breaks 
in Iowa streams at approximately 30 days. The similarity 
in slopes between head-­relaxation and discharge in Figure 
4 suggests that groundwater inputs dominate streamflow 

in these Midwestern streams for periods longer than 10–30 
days while in-­stream and near-­surface watershed processes 
appear to dominate at shorter periods. 

The spectral slope values also provide useful informa-­
tion. Particularly interesting is the β=2.9 slope seen at 
periods between about 3 hours and 16 days in the dis-­
charge spectrum. The uniformity of scaling in this por-­
tion of the spectrum means that any watershed processes 
active in this period range also exhibits similar scal-­
ing. Fundamentally, this is because linear processes that 
are additive in the time-­domain also add in the spectral 
domain [Smith, 1997]. If the scaling of any hydrologically 
significant watershed process differed from the others, it 
would preclude the observed uniform scaling. This uni-­
formity is interesting considering the variety of watershed 
processes active in this period range, including bank 
storage and release, precipitation runoff, near-­surface 
“interflow”, near-­stream saturated groundwater response, 
and evapotranspiration. Further investigation of this uni-­
formity could be undertaken with a more concentrated 
set of data designed to explore these processes, or using a 
detailed process-­based hydrological model.

Figure 4. Composite plot of stream discharge, well-­head relaxation, and precipitation spectra. Grey lines plot the raw 
FT spectra, solid lines are the binned-­mean amplitudes, and dashed lines give the upper 95% confidence intervals. a) An 
overlay of the spectra in parts c–e and their linear fits; b) NEXRAD precipitation spectrum for 4/1/2004–11/30/2004, 
not plotted on part a; c) stream discharge spectra for 10/1/1997–9/30/2004; d) well-­head relaxation for well B13 from 
7/1/2003–7/1/2005; and e) watershed-­available precipitation from 1/1/1990–1/1/2001. Note that, in part c the limited 
resolution makes it appear as if much of the stream discharge spectrum is above the confidence limit, however fewer 
than 5% of points exceed the limit in a spectrum with over 130,000 points.
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Analysis of the relative amplitudes of the three spectra in 
Figure 4a provides a hydrologic response time to precipita-­
tion. The amplitudes of watershed-­available precipitation 
and discharge converge at a period of approximately 2.5 
years. Thus any long-­period fluctuation in precipitation will 
be followed by an equal magnitude fluctuation in stream 
discharge. Therefore this watershed and its unsaturated and 
saturated groundwater processes do not appear to control 
hydrologic fluxes with periodicities greater than 2.5 years. 
This observation could be used in autoregressive models 
of basins with short discharge records but more extensive 
precipitation data. Another interpretation of the similar-­
ity in magnitude between the precipitation and discharge 
spectra is that the combined response time of both surface 
and groundwater systems is approximately 2.5 years under 
current conditions, although extended drought periods could 
certainly affect this value. Therefore, in order to assure 
insensitivity to initial conditions, a model of this watershed 
must be “spun up” with realistic meteorological inputs for 
at least 2.5 years.

Beyond 10–30 days, the well-­head relaxation amplitudes 
are approximately 2–3 times greater than those of stream 
discharge. This disparity is likely a combination of both 
physical processes as well as our assumptions. First, the well-
head relaxation amplitudes would exceed those of stream 
discharge because of evapotranspirative losses. Also, the 
head in an individual well may f luctuate more than the 
average of all wells in the watershed, particularly if the 
water table at that well is deep. Thus a more representative 
comparison would be between stream discharge and the 
average of spectra from wells distributed across the water-­
shed. However, in this case many of our wells showed signs 
of periodic anthropogenic disturbance that violate assump-­
tions of our simple differencing technique. Other factors 
that contribute to the disparity between head relaxation and 
stream discharge amplitudes may include overestimation of 
porosity or average recharge rate because of the short data 
record in the well, as well as differences in annual recharge 
between the Evart watershed and the location of the well in 
the Grand Traverse Bay region.

The head relaxation results presented in Table 2 are taken 
from the spectrum of smoothed-­differentiated head fluctua-­
tions shown in Figure 4d while the head fluctuation data in 
Table 2 were taken from the spectrum of actual head fluctua-­
tions (not plotted). Unlike head fluctuations, head relaxation 
(and therefore a decrease in storage) is directly related to 
groundwater discharge, allowing direct comparison of their 
spectra. Other studies have reported head fluctuation spectra 
[Zhang and Schilling, 2004; Lee and Lee, 2000; Naff and 
Gutjahr, 1983], but because the basic units of head fluc-­
tuation and stream discharge differed in these studies, their 
reported groundwater head and baseflow scaling laws can 
not directly be related. 

Examining Intra-­Annual Spectral 
Variability Using the SWFT

Physical interpretations of Fourier Transform spectra 
assume that system processes are both non-­intermittent 
and stationary. However, many watershed processes are 
either inactive for parts of the year (intermittent) or pos-­
sess different spectral characteristics over successive cycles 
(non-­stationary). Thus, interpreting spectra from many 
occurrences of a given process is problematic. To over-­
come this, we use the Scaled-­Windowed Fourier Transform 
(SWFT), which does not require either stationarity or 
non-­intermittency. As Figures 5–10 demonstrate, all three 
watershed processes examined in this study exhibit both 
non-­stationary and intermit processes.

The SWFT spectrum of stream discharge (Figure 5) dis-­
plays its time-­varying Fourier spectral content, revealing 
details about how discharge responds to hydrologic inputs 
and watershed processes. As described previously, the 
vertical lineations in the SWFT scalogram are caused by 
the broad spectrum of time-­series stream discharge peaks 
with each such lineation corresponding to a pulse increase 
in stream discharge. Clearly separated lineations, which 
primarily occur during the summer months, extend from 
very short periods and tend to reach maximum amplitudes 
at periods between 20–40 days. This range of periods cor-­

Fig 5Fig 5

Table 2. Slope break locations and β values for Figure 4. 

Discharge Watershed-available Precip Head Relaxation Head Fluctuation

Break β Break1 β 1 Break β Break2 β 2
0.3

1.0 hour
1.5 0.90 0.03

3.0 hours 18.2 hours 14 hours
2.9 0.30 -0.08 1.9

15.4 days 9.6 days 16.5 days 19.3 days
1.1 0.01 1.2 4.4

1 �These bold italicized entries correspond to results from the NEXRAD dataset, normal entries refer to the watershed-­available precipita-­
tion from gage data.

2 �These italicized entries correspond to slopes from Well B13, whose binned-­mean spectrum is not plotted.
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responds to the width of the time-­series discharge peak, 
and thus to the time-­scale of surface and near-­surface 
watershed response to precipitation inputs. As will be 
shown in the next section, this 20–40 day time scale 
of surface and near-­surface hydrologic response is also 
similar to the width of the unit hydrographs developed 
for this watershed.

Spring months typically exhibit increased Fourier ampli-­
tudes relative to other seasons across all periods shorter 
than several hundred days. The spring of 1998 has a very 
different spectrum than that of 1996 or 1997. Those years 
had several spring discharge peaks followed by relatively 
high summer baseflow levels, whereas the single discharge 
peak of 1998 is followed by low baseflow and weakening 
of the 365 day amplitude. This summer baseflow portion 
of the time-­series discharge is accompanied by decreased 
amplitudes across nearly all periods, except near 365 days. 
Thus, stream discharge during this portion of the year is 
dominated by long-­period f luctuation, most likely from 

groundwater inputs, as indicated by the amplitude-­weighted 
mean period curve (Pt). 

Seasonal differences in spectral character between the 
summer and spring/fall are not evident in the watershed-
available precipitation SWFT scalogram (Figure 6c), but 
show up very prominently in discharge (Figure 5c). This 
suggests that although there is spectral power in that period 
range in watershed-­available precipitation, summer evapo-­
transpiration and canopy interception decrease the magnitude 
of discharge response and thus the spectral amplitudes. 

Another important difference between Figures 5c and 6c 
is that the dominant power in the precipitation spectrum 
occurs at shorter periods while the reverse is true for stream 
discharge. This corresponds to the behavior seen in Figure 
4c, however the time-­averaged amplitude (At) spectrum of 
watershed-­available precipitation differs from the Fourier 
spectrum in Figure 4e. Such differences are artifacts pro-­
duced by the violations of the assumptions of stationarity 
and non-­intermittency inherent in the standard FT.

Fig 6Fig 6

Figure 5. SWFT of stream discharge at the USGS gage in Evart, MI. a) Stream discharge time-­series divided by the 
area of the watershed above this gage; b) Scale-­averaged amplitudes, Ap; c) Filled contour scalogram of the amplitude 
(A) vs. both period (P) and time (t), along with the location of the amplitude-­weighted mean period, Pt (white line); 
d) Time-­averaged amplitude spectrum, At.
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The SWFT discharge scalogram for the water years 
10/1/1991–9/30/2004 (Figure 7) displays the spectral con-­
tent of stream discharge at the Evart gage over periods of 
0.3–1000 days. Although the longer-­period spectrum is 
not plotted, 2–3 year and 6–8 year cycles are evident in 
periods between 100–400 days, perhaps related to climate 
cycles as seen in Coulibaly and Burn [2004]. For 1991–93, 
long-­period f luctuations are most active near a period of 
180 days, which then cease during 1994–95 before resum-­
ing from 1996–98 at 365 days. Again, this long-­period 
activity switches off for two years and then resumes cen-­
tered about 180 days. Another interesting set of features in 
this scalogram are the summer-­fall periods of 1998, 2000, 
and 2002 in which amplitudes are drastically reduced up 
to periods on the order of 100–200 days. 

These observations from Figure 7 enable a deeper 
understanding of time-­averaged spectra such as the FT 
spectrum or the SWFT time-­averaged amplitude (At). 
The FT spectrum of discharge (Figure 4c) contains a 
weak spectral peak at 180 days along with a peak at 365 
days. Prior to examining the spectrum as a scalogram, 

we were unable to distinguish between dominant spectral 
peak harmonics and peaks from independent processes 
at those periods. The scalogram shows that there are 
processes generating true peaks at both the 365-­day and 
180-­day periods.

Additionally, we can use the information from the sca-­
logram to indicate when processes that generate particular 
spectral peaks are most active. A prominent example of 
this is the 1 day peak in the FT spectrum of discharge. 
Plausible interpretations of this 1 day peak include diur-­
nal f luctuation in evapotranspiration or streambed con-­
ductance during the summer months. However, Figure 7 
shows that the dominant 1 day amplitudes occur in the 
winter and early spring months. A close examination of 
the time-­series reveals two important details: 1) the diur-­
nal f luctuation is strongest during periods where daily 
maximum temperatures are subfreezing, and 2) discharge 
peaks during the coldest mid-­morning hours of each day. 
These observations suggest that the diurnal signal may be 
related to icing effects at the instrument. The 1-­day peak 
seen in Figure 4 is a “true” spectral peak, but it does not 

Fig 7Fig 7

Figure 6. SWFT of watershed-­available precipitation at Big Rapids, MI. a) watershed-­available precipitation time-­series; 
b) Scale-­averaged amplitudes, Ap; c) Filled contour scalogram of the amplitudes (A) vs. both period (P) and time (t), 
along with the location of the amplitude-­weighted mean period, Pt (white line), (note, white areas have amplitudes 
< log(amplitude)=-­3.5); d) Time-­averaged amplitude spectrum, At.
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indicate cyclic system processes so much as inaccuracies 
in measurements. Also, there are no significant amplitude 
peaks at the 0.5-­day period, thus confirming that the 
corresponding peak in Figure 4c was indeed a harmonic. 
This information could then be used to filter the discharge 
time-­series and remove this apparently erroneous periodic 
discharge behavior.

The SWFT of head f luctuations from Well B10 (Figure 
8) provides another example of the importance of viewing 
spectra as a function of both period and time. Well B10 
was chosen because it exhibited the greatest amplitude 
of f luctuation in the period 1–30 days of the 17 wells in 
our study. Figure 8 displays both the head f luctuation 
data (mean removed) as well as the SWFT scalogram for 
periods between 0.3 and 100 days. The largest time-­series 
amplitude head f luctuations occur from late October to 
early April. The scalogram reveals that most of the time 
series f luctuation is caused by larger Fourier amplitudes 
of the 1–30 day periods, which are greatest during the 
winter. Note that the dominant period in this range is not 
constant throughout the year. During the summer, early 
fall, and spring, the dominant period is near the 7–10 
day range, that then shifts to the shorter 2–7 day range 
in mid-­November. The SWFT scalogram clearly reveals 
this information that would be difficult to directly extract 
from the time-­series data. 

Spectrally Derived Watershed “Unit 
Hydrograph” Response Functions

The watershed annual unit response functions for the por-­
tion of the Muskegon River Watershed above Evart gauge 
were calculated using discharge and Big Rapids precipitation 
data between 9/1/1999 and 8/31/2000 (chosen arbitrarily). 
Two different unit response functions are shown in Figure 
9a, that of the discharge response to watershed-­available pre-­
cipitation as well as to raw precipitation. Including the snow 
storage-­and-­release model creates higher peak discharge 
responses with a more physically realistic long tail due to 
groundwater discharge. The higher peak is expected because 
without a snow model this method treats the precipitation the 
same in January as it would in July, even though the January 
precipitation fell as snow and was stored until later, resulting 
in no significant short-­term discharge response. 

A convolution of the solid-­line unit response function in 9a 
with watershed-­available precipitation according to Equation 1, 
produces the dashed modeled discharge and residual curves in 
Figures 10a and 10b. Because the unit-­response was truncated as 
described in the methods section, the convolution is not a perfect 
reconstruction. The resultant discharge is an overestimate in the 
summer and fall months, but an underestimate during the spring. 
This is to be expected as the annually calculated response curve 
effectively averages the system behavior throughout the year.

Fig 8Fig 8Fig 9Fig 9

Figure 7. SWFT of stream discharge at Evart from 9/1/1991 to 8/31/2004. a) Stream discharge time-­series; b) Filled 
contour scalogram of the amplitude (A) vs. both period (P) and time (t). The year labels are centered at January 1. Here 
the curved white boundaries at longer periods indicate times where the SWFT at those periods is undefined.
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If the unit response is calculated seasonally rather than 
annually, the resultant set of unit response curves reveals 
the seasonal differences among runoff responses in this 
watershed (Figure 9b). Discharge response during the spring 
is much higher than either the annual curve or those of the 
other three seasons, perhaps due to a combination of frozen 
soils and higher average soil saturation prior to watershed-
available precipitation events (which can be either rainfall 
or snowmelt). Summer discharge response, on the other 
hand, is highly damped due to canopy interception, lower 
average soil moisture, and evapotranspiration. The fall and 
winter responses appear to be very similar, suggesting that 
there are not large differences in discharge response between 
these two seasons. This result was somewhat unexpected 
since frozen soils are generally expected during the winter 
months due to long periods of sub-­freezing temperatures. 
Significant areas of frozen soils would tend to increase dis-­
charge response, as infiltration capacity is greatly reduced. 
The lack of a response difference suggests that the soils are 
not homogeneously frozen throughout the winter season, or 
that this freezing is not important for runoff generation in 
this watershed during this time period. 

The response curves in Figure 9b all converge to near 0 
beyond approximately 20 days. Analysis of data from the 
wells in the GTBW indicates that the delays between peak 
spring recharge and peak saturated water table response 

scales approximately as 2–4 days/meter of unsaturated zone 
depth. Thus, for depths on the order of 30 meters, the delay 
between full groundwater response to a precipitation (or 
snowmelt) event can be as much as 120 days. As the data 
lengths included in the seasonal response calculations are 
only on the order of 60–90 days the seasonal unit response 
curves can not properly represent the groundwater response. 
The tail in the annually calculated unit response curve of 
Figure 9a is likely a more reasonable representation of the 
average groundwater response.

In addition to providing more insight into watershed pro-­
cesses than the annually-­derived unit response curve, the 
seasonally-­derived curves produce a much more accurate 
estimate of stream discharge when convolved with water-­
shed-­available precipitation (Figure 10a). The residuals 
between the two convolutions and stream discharge (Figure 
10b) quantitatively demonstrate the improvement in dis-­
charge estimation gained by seasonal convolution and con-­
sideration of non-­stationary system behaviors. Figure 10a 
illustrates the utility of the seasonally-­derived watershed 
unit response curves for providing a very simple means 
of forecasting discharge response to precipitation events. 
Because the seasonal curves average watershed responses 
across significant variability in watershed state properties 
(such as soil moisture), the seasonally-­derived convolution 
underestimates the largest peaks in the discharge data by up 
to 50%, while predicting measured flows to an accuracy of 
+/-­ 25% in most other cases. Much of the remaining residual 
is because the 50-­day unit response curves fail to capture 

Fig 10Fig 10

Figure 8. SWFT of groundwater-­head fluctuations in Well B10 
in the Grand Traverse Bay Watershed. a) Well-­head fluctuation 
time-­series; b) Filled contour scalogram of the amplitudes (A) vs. 
both period (P) and time (t). Here the curved white boundaries at 
longer periods indicate times where the SWFT at those periods is 
undefined.

Figure 9. Stream unit response hydrographs. a) Unit response 
functions obtained using data from 9/1/1999 to 8/31/2000; and 
b) Seasonal unit response functions using selected years (see Table 
1) from 1990–1999.
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much of the groundwater response to spring and fall precipi-­
tation. An analysis that accounts for the different seasonal 
responses between wet and dry years, and explicitly incorpo-­
rates the full groundwater response, might further improve 
the accuracy of forecasting with this technique.

Conclusions

We present the application of three spectral analysis tech-­
niques, direct spectral comparison, the Scaled Windowed 
Fourier Transform (SWFT), and the derivation of the unit 
hydrograph via FT deconvolution. We have discussed and 
demonstrated how each technique requires consideration of 
limitations and possible pitfalls in order to be applied suc-­
cessfully, and we elucidated a set of best practices in their 
application. Most importantly, we have demonstrated that 
these spectral analysis methods can be used to integrate 
hydrologic data in order to evaluate watershed processes. 

The spectra of related data types were directly compared 
to infer process linkages between hydrologic inputs, water-­
shed processes, and stream discharge. Similarities in ampli-­
tude peaks, log-­log linear fractal scaling behaviors, and 
breaks in scaling slopes among datasets indicate the nature 
of linkages. For example, fractal scaling in precipitation 
may be matched in the stream spectrum at periods shorter 
than approximately 3 hours for the Evart, MI sub-­basin of 
the Muskegon River Watershed. From periods of 3 hours to 
approximately 10-­30 days, stream scaling follows a β=2.9 

slope. This single scaling relationship is notable considering 
the variety of processes active in this period range, sug-­
gesting mathematical similarities among these processes. 
Beyond 30 days, the scaling apparent in the stream spectrum 
appears to be controlled by groundwater inputs. But, past a 
period of approximately 2.5 years, fluctuations in the pre-­
cipitation spectrum control the stream discharge spectrum. 
This overall watershed response time should be considered 
when developing transient predictive simulations of water-­
shed behavior.

We introduced the Scaled Windowed Fourier Transform 
(SWFT) technique to examine the time-­varying content 
of fundamentally non-­stationary hydrologic datasets. The 
SWFT scalograms revealed both the non-­stationarity and 
intermittency of stream discharge, precipitation, and ground-­
water head fluctuation spectra. The effect of evapotranspi-­
ration and canopy interception is evident in a comparison 
of the SWFT scalogram of summer precipitation events to 
the highly damped discharge scalogram for those seasons. 
Also, the 1-­day peak evident in the FT spectrum of stream 
discharge was shown to be due largely to measurement error 
rather than diurnal hydrologic processes. Importantly, these 
are a subset of many possible observations from the rich set 
of information contained within the SWFT scalogram.

Using direct FT deconvolution, spectral analysis can be 
also be used to estimate stream unit hydrographs. Because 
of the simplicity of this method, temporally-­ and season-­
ally-­varying hydrographs can be quickly derived to better 
understand non-­stationary watershed processes. For the 
Muskegon River above Evart, MI, the groundwater domi-­
nance of the stream discharge spectrum beyond approxi-­
mately 15–20 days is confirmed by visual inspection of the 
main unit response peaks. These peaks show a 15–20 day 
primary stream response period followed by a long-­tailed 
groundwater response that continues out to at least 50 days. 
Also, the seasonally-­derived unit hydrographs quantitatively 
reveal decreased discharge responses due to evapotranspira-­
tion during the summer months and augmented responses 
during spring snowmelt.
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Figure 10. a) Plots of convolved stream discharge from 09/01/1999 
to 8/31/2000 using the annually-­ and seasonally-­derived unit hydro-­
graphs (initial modeled discharged matched to stream discharge) 
on top of the measured stream discharge ; b) plot of the percentage 
difference between each model and the measured discharge (mod-­
eled-­measured)/(measured)*100.
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Integrated Multi-Scale Characterization of Ground-Water 
Flow and Chemical Transport in Fractured Crystalline 

Rock at the Mirror Lake Site, New Hampshire

Allen M. Shapiro1, Paul A. Hsieh2, William C. Burton1, and Gregory J. Walsh3

Estimates of hydraulic conductivity and the effective diffusion coefficient were 
made in fractured crystalline rock in central New Hampshire over increasingly 
larger physical dimensions. The hydraulic conductivity of individual fractures 
ranged over more than six orders of magnitude. Over dimensions of approximately 
100 meters, the bulk hydraulic conductivity is controlled by less transmissive frac-
tures; the less transmissive fractures act as “bottlenecks” that impede ground-water 
flow. Over dimensions of several kilometers, the bulk hydraulic conductivity of the 
rock was again the same as the network of less transmissive fractures, indicating 
that there is no interconnected “backbone” of highly transmissive features over 
kilometers that increases the hydraulic conductivity over larger volumes of rock. 
In contrast, estimates of chemical diffusion from tracer experiments conducted in 
rock cores, in situ tests over tens of meters, and the interpretation of environmental 
tracers over kilometers increase as a function of the dimension of the experiment. 
Estimates of diffusion coefficients from cores were consistent with theoretical 
interpretations and were less than free-water diffusion coefficients. The wide range 
of fluid velocities in fractures, however, gives rise to elongated tails in the break-
through curves of tracer tests conducted over tens of meters. Slow advection from 
the least transmissive fractures gives the appearance of a diffusive phenomenon. 
The effective diffusion coefficients resulting from slow advection were greater than 
free-water diffusion coefficients. The increase in the magnitude of the effective 
diffusion coefficient with the physical dimension is attributed to the increasing 
variability in the fluid velocity over larger physical dimensions. 

1. Introduction

Characterizing ground-water flow and chemical transport 
in fractured rock is regarded as a challenging undertaking. 
Fractures are not uniformly distributed in formations, and 

with the wide range of hydraulic properties and the complex 
connectivity of fractures, convoluted flow paths can exist in 
fractured rock aquifers from meters to kilometers. 

Many issues of societal importance rely on the hydrogeo-
logic characterization of fractured rock aquifers. In issues 
of water availability, there is intense interest in identifying 
permeable fractures and other geologic structures that can 
supply water to individual wells, requiring the character-
ization of small volumes of rock. At these same sites, how-
ever, it is also necessary to understand the regional-scale 
hydraulic properties of the formation to identify the effect 
of individual ground-water abstractions on other users and 
ground-water discharges to surface water drainages. 

Subsurface Hydrology: Data Integration for Properties and Processes
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Issues that require the understanding of chemical migra-
tion in fractured rock also require characterization over 
increasingly larger physical dimensions. For example, at a 
site of ground-water contamination, there may be interest 
in identifying the most permeable fractures and their con-
nectivity in order to design methods of retarding the move-
ment of contaminants downgradient from point sources of 
contamination. At many industrial sites, contamination in 
the ground water may have existed for tens of years. Under 
these circumstances, it is also necessary to assess whether 
processes and parameters that are appropriate in character-
izing chemical migration in fractured rock over dimensions 
of meters are applicable in the characterization of chemical 
transport over tens of meters, and even kilometers. 

There have been numerous discussions regarding the 
magnitude of formation properties in heterogeneous 
subsurface environments as a function of the physical 
dimension, or scale, over which formation properties are 
estimated [Clauser, 1992; Gelhar et al., 1992; Neuman, 
1994; Sánchez-Vila et al., 1996; Neuman and Di Federico, 
2003]. Many of these investigations have relied on data 
accumulated from multiple sites. The multi-scale measure-
ments that are used in developing hypotheses, however, are 
rarely drawn from a single site. In addition, sites that have 
data on hydraulic properties over different physical dimen-
sions do not necessarily have data on chemical transport 
over increasingly larger dimensions. The general discus-
sions of the relation between the scale of measurements and 
the associated hydraulic or chemical transport properties 
that rely on data accumulated from multiple sites rarely 
points to underlying geologic structures that give rise to 
the scale dependence of hydraulic and chemical transport 
properties. For such discussions, data on hydraulic and 
chemical transport properties estimated over increasingly 
larger physical dimensions is needed from a single field 
site, where there is accompanying detailed geologic infor-
mation.

In this article, the results of multi-scale investigations of 
chemical transport and hydraulic properties in a fractured 
crystalline rock site are presented. The investigations were 
conducted in and around the Mirror Lake watershed in 
central New Hampshire (Figure 1), which has been a site 
of detailed multidisciplinary investigations by the U.S. 
Geological Survey (USGS) in the development of field and 
interpretive methods of characterizing ground-water flow 
and chemical transport in fractured rock over dimensions 
of meters to kilometers [Hsieh et al., 1993; Shapiro et al., 
1995; Shapiro and Hsieh, 1996a]. This article focuses on 
the results of hydraulic testing and chemical migration 
over increasingly larger physical dimensions. The design 
and interpretation of the hydraulic and chemical migra-

tion experiments presented in this article, however, are 
predicated on the results of geologic and fracture mapping, 
surface and borehole geophysical logging, and geochemical 
and isotopic analyses [Shapiro et al., 1999]. The investiga-
tions associated with these hydrogeologic disciplines at the 
Mirror Lake site are not explained in detail in this article; 
however, the conclusions from these investigations are 
used extensively in describing the multi-scale results for 
chemical transport and hydraulic properties. Additional 
information about the scope of the multi-disciplinary inves-
tigations conducted at the Mirror Lake site is given in Hsieh 
et al. [1993], Shapiro and Hsieh [1996a], and Shapiro et al. 
[1999], and compilations of articles in Mallard and Aronson 
[1991], Morganwalp and Aronson [1996], and Morganwalp 
and Buxton [1999]. 

2. Mirror Lake Site

The investigations of the chemical transport and hydraulic 
properties of fractured crystalline rock discussed in this arti-
cle were conducted in and around the Mirror Lake watershed 
in Grafton County, New Hampshire (Figure 1). The Mirror 
Lake watershed is located at the lower end of the Hubbard 
Brook Valley in the southern part of the White Mountains. 
The Mirror Lake watershed lies partly in the Hubbard Brook 
Experimental Forest, which is an ecosystem research facil-
ity operated by the U.S. Forest Service [Likens, 1985]. The 
USGS has used the Mirror Lake watershed as a long-term 
observatory of ground-water flow and the interaction with 
surface water [Winter, 1984]. Multidisciplinary investiga-
tions of the crystalline rock underlying the Mirror Lake 
watershed commenced in 1990 [Shapiro and Hsieh, 1991, 
1996a; Shapiro et al., 1995, 1999]. 

In the Mirror Lake area, bedrock is overlain by glacial 
deposits (drift) that range in thickness from 0 to 50 meters 
(m). The glacial deposits are mostly till with localized depos-
its of sand and gravel [Harte and Winter, 1996]. The bedrock 
consists primarily of a coarse-grained, well foliated, ductily 
deformed, pelitic schist that has been locally intruded by 
dikes, and pods of granite [Hsieh et al., 1993; Barton, 1996; 
Burton et al., 2000]. Lesser amounts of pegmatite and lam-
prophyre have also intruded the schist and granite as dikes. 
Mapping the distribution of rock types at road cuts east of 
Mirror Lake, and outcrops throughout the Mirror Lake area, 
indicates that granite and schist have complex, irregular dis-
tribution patterns over dimensions of tens of meters [Hsieh et 
al., 1993; Barton, 1996, 1997; Burton et al., 2000]. 

In the study area, precipitation is the only source of 
ground-water recharge, and ground water discharges to 
streams, Mirror Lake, and the Pemigewasset River (Figure 
1). The low hydraulic conductivity of both the glacial till 

Fig. 1Fig. 1
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and the bedrock results in the water table being close to land 
surface, even at higher elevations in the Mirror Lake area 
[Tiedeman et al., 1997, 1998]. 

Bedrock boreholes, and piezometers and water table wells 
in the glacial drift were drilled in the Mirror Lake area to 

investigate ground-water flow and chemical transport over 
the dimensions of kilometers (Figure 1). Bedrock wells and 
drift piezometers were also installed in clusters, denoted as 
the FSE and CO well fields (Figure 1) to investigate ground-
water flow and chemical migration over dimensions up to 

Figure 1. Map of the Mirror Lake area and the location of bedrock boreholes.
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approximately 100 m. The depth of bedrock boreholes ranges 
from 60 to 300 m, with most wells in the FSE and CO well 
fields extending approximately 100 m below land surface. 
After the completion of drilling a bedrock borehole, borehole 
geophysical logging was conducted to identify the distribu-
tion of rock types, the location and orientation of fractures 
intersecting the borehole, water producing fractures, and 
other properties of the rock [Paillet, 1996; Johnson and 
Dunstan, 1998]. This was followed by the collection of water 
samples from discrete intervals of the boreholes for chemi-
cal and isotopic analyses, and the installation of inflatable 
packers to isolate the most permeable fractures for long-term 
monitoring of the hydraulic head [Hsieh et al., 1996]. 

3. Fractures and Geologic Mapping

Fractures are the primary features through which ground 
water flows in the Mirror Lake area. Quantifying the fre-
quency, orientation, areal extent, and other physical attri-
butes of fractures is important in understanding the chemical 
transport and hydraulic properties associated with individual 
fractures and larger volumes of rock containing multiple 
fractures. Fractures were mapped on road cuts, outcrops, 
and in bedrock boreholes throughout the Mirror Lake water-
shed, the Hubbard Brook Valley, and most of the Woodstock 
7.5-minute quadrangle [Barton, 1996, 1997; Johnson and 
Dunstan, 1998; Burton et al., 2000]. 

Mapping of fractures and the distribution of rock types 
was conducted on the north-south trending road cuts of 
Interstate Highway 93 (I-93) east of Mirror Lake using 4 ver-
tical faces and one subhorizontal natural exposure [Barton, 
1996, 1997]. Fractures on road cuts having a trace length 
greater than 1 m were recorded along with their trace length, 
orientation, aperture, roughness, degree of mineralization, 
and degree of connectivity with adjacent fractures [Barton, 
1996, 1997]. On natural exposures and outcrops, joints and 
joint sets with trace lengths greater than 2 m were recorded 
in the course of geologic mapping of the Hubbard Brook 
watershed and the Woodstock quadrangle [Burton et al., 
2000]. In bedrock boreholes, fractures were mapped using 
an acoustic televiewer tool that imaged the borehole wall 
[Johnson and Dunstan, 1998]. A borehole video camera and 
a high-resolution digital camera were also used to identify 
fractures and the distribution of rock types over the length 
of boreholes [Johnson and Dunstan, 1998]. 

Outcrop exposures of the fractured rock in the Mirror Lake 
area constitute, at most, 3 percent (%) of the land surface 
[Burton et al., 2000]. The exposures are not uniformly dis-
tributed and their size varies from a few square meters to 
10’s of square meters (m2), which can result in a bias in data 
compiled on the distribution of rock types and fractures. 

Nevertheless, the mapping of fractures from outcrops over an 
area encompassing 10’s of square kilometers (km2) provides 
data on regional fracture orientations [Burton et al., 2000]. 
Comparing these results with more localized fracture mapping 
conducted on road cuts and in the boreholes of the FSE and 
CO well fields provides insight into the spatial persistence of 
fracture properties and evidence to support the extrapolation 
of detailed, local-scale fracture mapping to regional scales and 
larger volumes of rock in the Mirror Lake area. 

Mapping fractures in the boreholes of the FSE and CO well 
fields and the I-93 road cuts revealed two dominant fracture 
trends. These are subhorizontal fractures and steeply north-
west- or southeast-dipping fractures with northeast strikes. 
The steeply dipping fractures in the boreholes of the CO 
well field show a predominant northeast orientation of 44 
degrees (o) (Figure 2). In comparison, the steeply dipping 
fractures mapped at the road cut, which is approximately 200 
m east of the CO well field, show a predominant orientation 
of 39o, whereas the fractures mapped in the FSE well field 
(approximately 1 kilometer to the west) show a peak trend of 
57o (Figure 2). The data sets from the road cuts and the CO 
and FSE well fields also display significant differences. For 
example, the presence of moderately southeast-dipping frac-
tures in the road cuts are nearly absent in the CO wells, but 
present in the FSE wells. In addition, a significant percentage 
of fractures in the boreholes of the FSE well field have orien-
tations of 75o and 96o that are reduced or absent in the data 
sets from the boreholes of the CO well field and the I-93 road 
cuts, even though the north-south-trending road cuts are at a 
favorable orientation to intercept such fractures. Subhorizontal 
fractures are prominent in all three data sets, but comprise a 
dominant percentage of the fractures in only the boreholes of 
the FSE well field. The absence of subvertical fractures in the 
boreholes of the CO and FSE well fields is likely due to the 
sampling bias associated with vertical boreholes. 

The subhorizontal fractures mapped in boreholes and the 
road cuts are widespread in New England as sheeting joints, 
and likely represent the unloading from erosion of overly-
ing rocks and, more recently, stress relief from melting of 
glacial ice [Jahns, 1943]. The density of the subhorizontal 
fractures mapped in the boreholes of the FSE and CO well 
fields generally decreases with depth [Johnson and Dunstan, 
1998]. When considering all mapped fractures in boreholes, 
there is approximately one fracture every 2 m along bore-
holes in the Mirror Lake area [Johnson and Dunstan, 1998]; 
however, fracturing is not uniform, and the degree of fractur-
ing depends on the rock type. Almost three-quarters of the 
mapped fractures occur in granite [Johnson and Dunstan, 
1998]; however, the granite comprises only a small percent-
age of the total rock volume in the Mirror Lake area [Burton 
et al., 2000]. Because granitic intrusions are not necessarily 

Fig. 2Fig. 2
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continuous in the subsurface, the high degree of fracturing 
in the granite does not necessarily translate to preferential 
ground-water flow. In general, there is little difference in the 
range of the transmissivity of fractures in the granite and 
schist [Johnson, 1998]. In addition, lithologic contacts exert 
little or no control on fracture development or orientation 
[Johnson and Dunstan, 1998; Burton et al., 2000], suggest-
ing a weak link between the bedrock geologic framework, 
fracture distribution, and hydraulic properties of volumes of 
the rock containing multiple fractures. 

Mapping of fractures on the I-93 road cuts showed trace 
lengths of fractures that rarely exceed 10 m [Barton, 1996]. 
This condition also seems to be maintained in the boreholes of 
the FSE and CO well fields, as fractures intersecting one bore-
hole cannot be correlated with fractures intersecting adjacent 
boreholes. In addition, the fractures mapped on the I-93 road 
cuts show a relatively low degree of interconnectivity in com-
parison to the mapping of fractures in other geologic settings 
[Barton, 1996]. A majority of the mapped fractures on the road 
cuts end without crossing or abutting other fractures. 

Figure 2. Stereonets and rose diagrams of fractures mapped in boreholes of the FSE and CO well fields, the I-93 road 
cuts east of Mirror Lake, and outcrops within radii of 1 and 5 kilometers of the FSE and CO well fields. 
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An analysis of fractures on outcrops over radii of 1 and 
5 kilometers (km), respectively, from the FSE and CO well 
fields shows two dominant fracture sets: subhorizontal sheet-
ing fractures, and subvertical fractures at an orientation of 
approximately 40o (Figure 2). The similarity of orientations 
and dip angles of fractures mapped in the boreholes of the 
FSE and CO well fields, the I-93 road cuts, and outcrops over 
radii of 1 and 5 km from the FSE and CO well fields suggests 
a similarity between regional fracture properties and the 
detailed properties mapped over smaller dimensions. 

Only two faults were observed in the Mirror Lake area. 
One fault was observed at the road cuts east of Mirror Lake 
and showed significant clay content. A second fault was 
inferred from geologic mapping and surface geophysical sur-
veys conducted along Hubbard Brook, approximately 1 km 
west of Mirror Lake [Powers et al., 1999]. In addition, from 
geologic mapping within the Hubbard Brook watershed, 16 
brittle faults, most of which show normal displacements, and 
27 Cretaceous-Jurassic mafic dikes were identified [Burton 
et al., 2000]. The dikes and faults have preferred northeast 
orientations, similar to the fractures, and Burton et al. [2000] 
suggested that the extensional stress field that controlled 
dike orientation and faulting also produced the dominant 
brittle fabrics found regionally. The hydraulic significance 
of the faults is unclear from their mapped features. Ground-
water flow modeling over the dimensions of the Mirror Lake 
watershed, which is discussed later in this article, was used 
to infer the hydraulic significance and connectivity of large-
scale geologic features in the Mirror Lake area. 

4. Hydraulic Properties of Fractured Rock 
From Meters to Kilometers

Hydraulic properties of a volume of aquifer material can 
be estimated by performing a controlled hydraulic experi-
ment, where a hydraulic perturbation is introduced by 
injecting or withdrawing a known volumetric rate of water 
(the ground-water flux), while simultaneously measuring 
the associated driving force (the hydraulic gradient). The 
coefficient of proportionality between the ground-water 
flux and the driving force is defined as the hydraulic con-
ductivity or transmissivity, depending on the conceptual-
ization of ground-water flow [Bear, 1979]. Other formation 
properties (for example, the specific storage and storativity) 
can also be estimated from hydraulic experiments [Bear, 
1979]. In this article, however, only the transmissivity of 
fractures and the hydraulic conductivity of volumes of 
rock over increasingly larger physical dimensions will be 
examined from the interpretation of field experiments and 
ground-water modeling studies conducted at the Mirror 
Lake site. Estimates of the specific storage of the bedrock 

at the Mirror Lake site are discussed in Hsieh and Shapiro 
[1996] and Hsieh et al. [1999].

Estimating hydraulic properties from measurements of the 
ground-water flux and hydraulic gradient can be conducted 
over increasingly larger physical dimensions. Estimates of 
hydraulic properties of individual fractures over dimensions 
of meters can be made by isolating individual fractures in a 
borehole and inducing a hydraulic perturbation while measur-
ing the associated fluid pressure response. Volumes of rock 
that include multiple fractures over 10’s of meters can also be 
interrogated by inducing a hydraulic perturbation that influ-
ences a much larger volume of the formation. Aquifer tests 
designed for large volumes of rock, however, need to account 
for the complex spatially heterogeneous hydraulic properties 
of fractures and their complex connectivity. Over dimensions 
of 100’s of meters to kilometers, inducing controlled hydraulic 
perturbations is not feasible, and instead, ambient hydraulic 
conditions are used to estimate the bulk hydraulic proper-
ties of the formation. Over dimensions of 100’s of meters to 
kilometers, the measured hydraulic head and the associated 
hydraulic gradients are used along with measured or estimated 
ground water fluxes, such as ground-water discharges into 
surface-water drainages and ground-water recharge. These 
approaches to estimating hydraulic properties over increas-
ingly larger dimensions were applied at the Mirror Lake site 
to investigate the effect of the scale of measurement on the 
magnitude of hydraulic properties of the rock. 

4.1 Single-Hole Tests of Individual Fractures and Closely 
Spaced Fractures

The transmissivity of an individual fracture or several 
closely spaced fractures in a borehole was estimated by 
conducting a single-hole test that hydraulically isolated a 
discrete interval of a borehole and then either injecting or 
withdrawing water, while simultaneously measuring the vol-
umetric flow rate and the fluid pressure response in the test 
interval. The apparatus used to conduct the tests is described 
in Shapiro and Hsieh [1998] and Shapiro [2004]. The appa-
ratus consisted of two inflatable packers separated by lengths 
that ranged from 3 to 5 m. The distance between packers 
was a function of the fracture locations along the borehole 
wall. The flexible bladder of each packer is approximately 
1-m long, and the position of the packers in the borehole was 
chosen to coincide with smooth sections of the borehole wall 
so as to avoid having the packer bladders overlay fractures. 
Borehole geophysical logging tools that provided information 
on the location of fractures over the length of the borehole 
and the ruggedness of the borehole wall were instrumental in 
identifying locations where hydraulic tests were conducted 
[Paillet, 1996]. 
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The single-hole tests in hydraulically isolated intervals 
of boreholes were conducted over a short duration (10’s 
of minutes) and are assumed to be representative of the 
fracture’s properties over a physical dimension equivalent 
to meters in the vicinity of the borehole. Over such dimen-
sions, the hydraulic properties of the fracture are assumed 
to be homogeneous and interpretations of the hydraulic 
responses based on assumptions of homogeneity and radi-
ally converging or diverging flow were used to estimate 
the transmissivity of the fractures between the packers in 
the test interval. Additional information on the methods of 
conducting the single-hole tests and the assumptions implicit 
in the interpretations of such tests are given in Shapiro and 
Hsieh [1998].

All bedrock boreholes at the Mirror Lake site were tested 
by conducting single-hole hydraulic tests where discrete 
intervals of the boreholes were isolated. The variation of the 
transmissivity with depth in one borehole from the Mirror 
Lake area is shown in Figure 3 along with the interpretation 

of the acoustic televiewer log showing fractures on an opened 
and oriented view of the borehole wall. Fractures over the 
length of the borehole are not spatially uniform, and multiple 
sections of the borehole have closely spaced fractures. The 
intensely fractured sections of the borehole, however, are not 
necessarily associated with high transmissivity. There are 
two intensely fractured sections of the borehole shown in 
Figure 3, at elevations of approximately 150 and 175 m above 
mean sea level (msl). The transmissivity of the section of 
the borehole at 150 m above msl is orders of magnitude less 
than the transmissivity at 175 m above msl. In addition, the 
transmissivity does not smoothly vary as a function of depth 
in the borehole; test intervals adjacent to each other can have 
transmissivities that differ by several orders of magnitude. 
Similar conditions to those shown in Figure 3 are observed 
in most of the boreholes in the Mirror Lake area.

A frequency histogram of the transmissivities estimated 
from the single-hole tests conducted in boreholes in the 
Mirror Lake area is shown in Figure 4. The transmissivity 
of the test intervals containing individual fractures or closely 
spaced fractures ranged from 10-10 to 10-4 square meters per 
second (m2/s). The lower limit of this range is associated 
with the detection limit of the in situ equipment used to con-
duct these tests. Approximately one-third of the single-hole 
tests were below the detection limit of the in situ equipment. 
The intervals with transmissivity below the detection limit 
contained fractures, and thus, the range of the transmissivity 
of fractures at the Mirror Lake site exceeds the six orders of 
magnitude shown in frequency histogram of Figure 4. 

Selected sections of boreholes that contained no fractures 
were also tested with the in situ equipment. The measured 
flow rate in these tests was below the detection limit of the 
apparatus, implying that the transmissivity of the intact rock 
is also less than 10-10 m2/s. Core samples of unfractured sec-
tions of granite and schist in the Mirror Lake area were not 
tested under laboratory conditions to estimate their transmis-
sivity; however, the permeability of intact crystalline rocks 

Fig. 3Fig. 3

Fig. 4Fig. 4

Figure 3. Fractures as interpreted from an acoustic televiewer log 
and transmissivity as a function of depth in borehole H1 of the 
Mirror Lake watershed.

Figure 4. Frequency histogram of transmissivity from discrete-
interval tests conducted in bedrock boreholes in the Mirror Lake 
area. 
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from other investigations indicates that the transmissivity 
of 5-m intervals of unfractured bedrock boreholes could 
range from 10-17 to 10-13 m2/s, depending on the in situ stress 
[Trimmer et al., 1980; Skoczylas and Henry, 1995; Selvadurai 
et al., 2005]. The hydraulic properties of the intact rock 
would represent the lower limit of the hydraulic properties 
of the rock. 

In this discussion, the transmissivity estimated from sin-
gle-hole tests is used rather than the hydraulic conductivity. 
The transmissivity is representative of a two-dimensional 
flow regime, and represents the ease of fluid movement in 
the rock over the thickness of the test interval, which includes 
one or more discrete fractures [Shapiro and Hsieh, 1998]. 
Transmissivity can be converted to hydraulic conductivity 
by dividing by the thickness of the test interval [Bear, 1979]; 
however, the resulting hydraulic conductivity could be misin-
terpreted, because the transmissive fractures in the test inter-
val are not uniformly distributed. Increasing or decreasing 
the length of the test interval without including or excluding 
transmissive fractures would yield the same transmissivity; 
however, the hydraulic conductivity would vary as a function 
of the length of the test interval. In subsequent discussions, 
the transmissivity of discrete test intervals from single-hole 
tests is converted to hydraulic conductivity for purposes of 
comparison with values of hydraulic conductivity estimated 
from ground-water modeling investigations over larger vol-
umes of rock. In ground-water modeling investigations, 
hydraulic properties of the rock can vary spatially, but are 
assumed to be uniform over discrete volume elements of 
the rock. In this comparison of hydraulic properties over 
increasingly larger volumes of rock, only order-of-magnitude 
estimates of the hydraulic conductivity are considered, and 
thus, variations in the length of the test intervals (between 3 
and 5 m) for the single-hole tests do not have an impact on 
the magnitude of the hydraulic conductivity. 

4.2 Cross-Borehole Tests Interrogating 10’s of Meters of 
Rock

Controlled hydraulic tests that are designed to estimate 
the hydraulic properties of large volumes of rock are usually 
conducted by withdrawing water from a single borehole over 
an extended period of time while monitoring the fluid pres-
sure responses in adjacent boreholes. Because fractures are 
the primary conduits of fluid movement, the design of these 
cross-borehole tests must account for the fact that fractures 
of different transmissivity intersect boreholes at different 
elevations. Boreholes that intersect multiple fractures can 
act as connections of high hydraulic conductivity between 
those fractures. To identify the hydraulic properties of the 
fractured rock in its ambient state over dimensions of 10’s 

of meters, packers are needed to isolate discrete intervals in 
boreholes in the vicinity where the hydraulic perturbation 
is introduced. 

Cross-borehole hydraulic tests in the FSE well field were 
conducted by installing packers in boreholes to isolate the 
most transmissive fractures as identified from the single-
hole tests. Figure 5 shows a schematic perspective view of 
the boreholes in the FSE well field and the location of the 
highest transmissivity intervals in each borehole as deter-
mined from the single-hole tests. The intervals shown in 
Figure 5 had transmissivity that was greater than 10-5 m2/s. 
In general, there are usually up to three high transmissivity 
intervals that intersect each borehole. The connectivity, or 
lack of connectivity, of the most transmissive fractures will 
be significant in identifying the hydraulic properties of the 
rock over 10’s of meters.

Figure 6 shows a cross-section through the FSE well field 
with the location of the packers in the boreholes used in cross-
borehole tests; packers were also placed in other boreholes 
in the FSE well field to isolate high transmissivity intervals. 
In the test described here, a submersible pump was placed 
between two packers in the FSE6 borehole and pumped 
at approximately 10 liters per minute (L/min). Hydraulic 
responses were monitored in the isolated intervals in each 
borehole in the FSE well field. The name of each interval is 
shown in Figure 6 along with the drawdown records for the 
intervals as a result of withdrawing water from FSE6B. 

The drawdown is the time-varying change in the hydrau-
lic head from the ambient hydraulic head at the start of the 
hydraulic test. The largest drawdown is measured in the 
pumped interval (FSE6B). Other intervals show less draw-
down than the pumped interval, but the spatial distribution of 
drawdown is not consistent with a homogeneous aquifer. In 

Fig. 5Fig. 5
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Figure 5. Schematic perspective view of boreholes in the FSE well 
field and the intervals of highest transmissivity in each borehole as 
determined from discrete-interval hydraulic tests. 



shapiro et al.    209

a homogeneous aquifer, the drawdown should diminish with 
distance from the pumped interval. The results in Figure 6 
show that several intervals have the same drawdown regard-
less of their distance to the pumped interval. 

It is hypothesized that the drawdown responses shown 
in Figure 6 are dictated by the spatial connectivity of the 
high transmissivity fractures that intersect each borehole 
[Hsieh and Shapiro, 1996; Hsieh et al., 1999]. For example, 
it is hypothesized that the high transmissivity fractures inter-
secting the borehole interval FSE6B also intersects interval 
FSE9A (Figure 6), resulting in the similarity in the drawdown 
responses in these two intervals. Furthermore, the borehole 
interval FSE6C is hypothesized as being hydraulically con-
nected to FSE9B (Figure 6). The drawdown in these intervals 
is nearly identical because the fluid pressure response migrates 
rapidly through highly transmissive fractures that are inter-
connected. Borehole intervals FSE5, FSE4B and FSE1B all 
have the same measured drawdown, as do borehole intervals 
FSE4A and FSE1A, respectively (Figure 6). 

From the drawdown records shown in Figure 6, a series 
of highly transmissive, subhorizontal zones in the rock are 
hypothesized (Figure 7). The orientation of the fractures 
intersecting the boreholes in the FSE well field, as determined 
from borehole geophysical logging, indicates that fractures 
intersecting one borehole do not extend to adjacent boreholes. 
In addition, there are few fractures measured on road cuts 
and outcrops in the Mirror Lake area that have trace lengths 
greater than 10 m [Barton, 1996]. Thus, the highly transmis-
sive zones are hypothesized as being composed of multiple 
intersecting fractures, which may include both the subhori-

zontal and moderate-to-steeply dipping fractures mapped in 
the boreholes (Figure 2). Furthermore, the highly transmissive 
zones that are schematically shown on Figure 7 are assumed to 
be connected only through a network of fractures in the rock 
that are less transmissive than the highest transmissivity frac-
tures. The less transmissive fractures impede ground-water 
flow, which yields the different drawdowns measured in each 
of the highly transmissive intervals (Figure 6). 

Hsieh and Shapiro [1996] and Hsieh et al. [1999] per-
formed numerical simulations of ground-water flow in the 
FSE well field associated with the hydraulic test described 
above. From those simulations, the hydraulic conductivity of 
the highly transmissive intervals of the rock was estimated 
to be 2 x 10-4 meters per second (m/s) and the hydraulic con-
ductivity of the less transmissive fractures was estimated to 
be 4 x 10-7 m/s. These simulations assumed a deterministic 
shape of the highly transmissive zones in the rock. Day-
Lewis et al. [2000] considered the same hydraulic test data in 
an interpretation that used simulated annealing in generating 
realizations of the hydraulic conductivity that reproduced the 
measured hydraulic connections. In addition, Tiedeman and 
Hsieh [2001] conducted a hydraulic test in the FSE well field 
without packers in the boreholes as a means of comparing 
the results of hydraulic tests conducted in fractured rock 
aquifers with and without boreholes that connect highly 
transmissive fractures. 

From the conceptual model of the fractured rock that 
is shown in Figure 7, a bulk hydraulic conductivity of a 
volume of the rock that encompasses both highly transmis-
sive fracture intervals and the network of less transmissive 

Fig. 7Fig. 7

Figure 6. (A) Plan view of FSE well field, (B) a schematic cross-section through the FSE well field showing the loca-
tion of packers that hydraulically isolated discrete intervals of bedrock boreholes during a cross-borehole hydraulic 
test, and (C) measured drawdown in hydraulically isolated intervals of bedrock boreholes as a function of time due to 
pumping in interval 6B.
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fractures is estimated to be 4 x 10-7 m/s. The bulk hydraulic 
conductivity is the coefficient of proportionality between 
the hydraulic gradient and the volumetric flow rate through 
a volume of the rock. The bulk hydraulic conductivity of vol-
umes of the rock over dimensions of approximately 100 m is 
controlled by the less transmissive fractures, because highly 
transmissive intervals are not interconnected. The lack of 
connectivity of these zones of high transmissivity is likely a 
manifestation of the poor connectivity of fractures that was 
noted in mapping fractures on the I-93 road cuts. 

4.3 Ambient Ground-Water Flow Over 100’s of Meters to 
Kilometers

Over dimensions of 100’s of meters to kilometers, hydrau-
lic tests conducted by imposing a hydraulic perturbation 
cannot be conducted at the Mirror Lake site. Instead, esti-
mates of hydraulic properties of the fractured rock over these 
distances must be determined from ambient hydraulic condi-
tions. A three-dimensional numerical simulation of ground-
water flow was conducted over an area that extended beyond 
the surface-water drainage associated with the Mirror Lake 
watershed [Tiedeman et al., 1997, 1998]. The numerical 
simulation used the hydraulic head measured at different 
depths in bedrock wells and the measured ground-water 
discharges to streams as a means of estimating the bulk 
hydraulic conductivity of the bedrock, the ground-water 
recharge from precipitation, and other hydraulic properties 
of the ground-water flow system. 

The three-dimensional numerical model considered 
ground-water f low through both the unconsolidated gla-
cial deposits and the fractured bedrock. Over an area of 
approximately 16 km2 and 200 m deep in the rock, individual 
fractures or highly transmissive intervals of interconnected 
fractures were not specified. Over these dimensions it is 
hypothesized that the presence or absence of a single fracture 
or a highly transmissive zone of limited areal extent will not 

affect the distribution of the hydraulic head in the bedrock 
or the ground-water discharges to the streams.

Tiedeman et al. [1997] considered different conceptual 
models of the distribution of hydraulic conductivity in the 
glacial deposits and bedrock to ascertain which model best 
reproduced the measured data. The conceptual model that 
best reproduced the data considered a single bulk hydrau-
lic conductivity of the bedrock. The ground-water f low 
model reproduced the hydraulic head and stream f low 
measurements with relatively narrow confidence limits 
and with unbiased errors. The bulk hydraulic conductivity 
of the bedrock was estimated to be 3 x 10-7 m/s, which is 
similar in magnitude to the network of less transmissive 
fractures that connected the highly transmissive, subho-
rizontal intervals that were identified from cross-borehole 
testing in the FSE well field. This implies that there are 
no large-scale, highly transmissive geologic features that 
need to be considered in estimating the bulk hydraulic 
properties of the formation over dimensions of 100’s of 
meters to kilometers. 

4.4 Hydraulic Properties of Fractured Rock From Meters 
to Kilometers

The sections above described the methods of estimating 
the hydraulic conductivity over increasingly larger volumes 
of fractured rock at the Mirror Lake site. For the purpose of 
comparison the transmissivity estimated from the single-hole 
hydraulic tests were converted to hydraulic conductivity by 
dividing by the length of the test interval, which ranged from 
3 to 5 m. A comparison of the estimates of hydraulic con-
ductivity from the single-hole tests, the controlled hydraulic 
tests conducted in the FSE well field, and the calibration of a 
ground-water flow over the Mirror Lake watershed is shown 
in Figure 8 [Hsieh, 1998]. In this figure, the logarithm of 
the estimated hydraulic conductivity is shown for tests con-
ducted over increasingly larger physical dimensions. 

Fig. 8Fig. 8

Figure 7. Hypothesized distribution of fractures having high transmissivity (depicted by zones of gray) in the rock 
underlying the FSE well field; the intervals of high-transmissivity fractures are connected only by less transmissive 
fractures (modified from Hsieh and Shapiro, 1996) 
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The single-hole tests comprise the largest data set of 
hydraulic conductivity measurements, as over 200 single-
hole tests were conducted in boreholes at the Mirror Lake 
site. This information is presented by points representing 
individual tests in Figure 8. The physical dimension associ-
ated with the single-hole tests is assumed to be between 1 and 
5 m, and there is no significance to the separation of points 
over these dimensions. The points are intended to show the 
range of hydraulic conductivity of individual fractures or 
closely spaced fractures in boreholes, from 10-10 to 10-4 m/s. 
The lower limit of this range is associated with the detection 
limit of the in situ testing equipment. The testing indicates 
that there are fractures in the rock with hydraulic conductiv-
ity below the detection limit. The hydraulic conductivity of 
the intact (unfractured) rock is likely to be several orders of 
magnitude below the detection limit [Trimmer et al., 1980].

The estimates of the hydraulic conductivity from con-
trolled cross-borehole hydraulic tests conducted in the FSE 
well field are shown in Figure 8 for physical dimensions 
that range from 20 to 100 m. There are two estimates of 
the hydraulic conductivity associated with a dimension of 
approximately 20 m. These are the two distinct features of 
the fractured rock that were identified in the cross-borehole 
hydraulic tests, that is, the highly transmissive, subhorizontal 
intervals of fractures, and the background network of less 
transmissive fractures. The magnitude of the hydraulic con-
ductivity of the highly transmissive intervals coincides with 
the highest hydraulic conductivity estimated from the single-
hole tests. The hydraulic conductivity of the background 
network of less transmissive fractures is approximately 
equal to the geometric mean of the estimates of the hydraulic 
conductivity from the single-hole tests. 

Over a volume of the rock that encompasses both highly 
transmissive intervals of fractures and the less conduc-
tive background network of fractures (over dimensions of 
approximately 100 m), the bulk hydraulic conductivity of the 
fractured rock is equivalent to the hydraulic conductivity of 
the background network of fractures. The highly transmis-
sive intervals of fractures do not appear to be connected over 
distances greater than approximately 20 m in the rock. 

The hydraulic conductivity of the fractured rock from a 
calibrated ground-water flow model over the dimensions of the 
Mirror Lake watershed is of the same order of magnitude as the 
background network of less transmissive fractures identified 
from the hydraulic testing in the FSE well field over 10’s of 
meters (Figure 8). This implies that over physical dimensions 
of 100’s of meters to kilometers a network of interconnected 
highly transmissive fractures that controls ground-water flow 
is not present. The model results indicate that ground-water 
flow over 100’s of meters to kilometers is again controlled by a 
background network of less transmissive fractures. 

Figure 8 indicates that there is no increase in the hydrau-
lic conductivity over larger volumes of rock at the Mirror 
Lake site. Other authors have speculated that the hydraulic 
conductivity of heterogeneous aquifers over increasingly 
larger volumes of the subsurface material may increase as the 
physical dimensions of the measurement increase [Clauser, 
1992]. Over increasingly larger volumes of aquifer mate-
rial it is speculated that large scale heterogeneities will be 
included in the estimation of aquifer properties. This argu-
ment implicitly assumes that the hydraulic properties of the 
large scale features have not been interrogated over smaller 
test dimensions, and implies that insufficient sampling at 
small dimensions is responsible for the failure to detect large 
scale features, such as major faults or fracture zones, that 
could control the magnitude of the hydraulic conductivity 
over regional dimensions. 

At the Mirror Lake site, a large number of hydraulic con-
ductivity measurements have been made at small test dimen-
sions (meters), and the results from these tests have likely 
shown the full range of the hydraulic conductivity of the 
fractures in the rock. The estimates of the bulk hydraulic 
conductivity of the fractured rock at the Mirror Lake site 
over increasingly larger dimensions indicates that the con-
nectivity of the fractures is important in characterizing the 
bulk hydraulic properties of the rock. If the highest con-
ductivity fractures are not connected over any significant 
distance, then the hydraulic conductivity of the fractures 
that connect the more transmissive fractures are the ones 
that will control the bulk hydraulic properties of the rock at 

Figure 8. Hydraulic conductivity in the fractured bedrock of the 
Mirror Lake watershed and its vicinity as estimated over increas-
ingly larger physical dimensions from (A) discrete-interval, single-
hole hydraulic tests, (B) cross-hole hydraulic tests, and (C) regional 
ground-water flow modeling (modified from Hsieh, 1998). 
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large dimensions. At other fractured rock sites with different 
geologic controls on fracture properties, the connectivity 
of fractures may yield different trends in the estimates of 
the hydraulic connectivity over increasingly larger physical 
dimensions [Hsieh, 1998]. 

5. Chemical Migration in Fractured Rock

Because fractures are the features that control the majority 
of fluid movement in the fractured rock aquifers, such as those 
at the Mirror Lake site, fractures will also be responsible for 
the majority of the chemical migration in the subsurface. The 
complex connectivity of fractures coupled with the large range 
in the hydraulic properties of fractures can give rise to highly 
convoluted flow paths, which in turn, will yield complex spa-
tial distributions of chemical constituents in the rock. 

Other complexities associated with chemical transport 
in fractured rock arise because of the complex topology of 
individual fractures. The asperities on fracture surfaces and 
points of contact between fracture surfaces can give rise to a 
complex flow regime within an individual fracture. Regions 
of an individual fracture could be subject to relatively rapid 
fluid movement, whereas other areas of the same fracture 
surface could be subject to relatively slow advection, or stag-
nant water. Neretnieks et al. [1982] referred to this phenom-
enon as “channeling” within a fracture surface. Chemical 
constituents will move preferentially through portions of 
the fracture with the highest volumetric flux; however, dif-
fusion will also occur due to chemical gradients. Chemical 
constituents could then have long residence times in regions 
of a fracture subject to slow advection or stagnant water. 

There are very few physical examples illustrating the com-
plexities of chemical migration in fractured rock, because at 
most sites where there are chemical plumes, there are only 
a sparse number of boreholes at which to conduct chemical 
sampling. Plate 1 shows a natural analog that illustrates the 
complexity of chemical transport in fractured rock. Plate 1 
shows a photograph of one of the faces of the I-93 road cut 
east of Mirror Lake, where the distribution of rock types and 
fractures were mapped [Barton, 1996]. In addition, the pres-
ence or absence of iron-hydroxide staining on the rock adja-
cent to fracture surfaces was also noted. The iron-hydroxide 
staining is hypothesized to be an artifact of the migration of 
oxygenated water, presumably infiltrating from the surface. 
As oxygenated water moves through fractures, oxygen dif-
fuses into the primary porosity of the rock, also referred to 
as the rock matrix. The rock types in the vicinity of Mirror 
Lake are rich in iron bearing minerals, and thus, it is antici-
pated that iron will be in solution in the primary porosity of 
the rock. The interaction between iron and oxygen results 
in an iron-hydroxide precipitate [Wood et al., 1996]. Not all 

the fractures on the road cut have an iron-hydroxide staining 
(Plate 1). At some locations, only a portion of a fracture has 
the iron-hydroxide staining, indicating that oxygenated water 
did not migrate over the entire fracture surface. Plate 1 shows 
that even in areas of interconnected fractures there will not 
be uniform migration of chemical constituents. 

5.1 Diffusion in Fractured Rock

The primary (or matrix) porosity of the rock also plays a 
role in the migration of chemical constituents in fractured 
rock aquifers. As a chemical constituent migrates through 
fractures, a chemical gradient will exist between the fluid in 
the fractures and the fluid in the rock matrix in contact with 
the fracture. In rock types such as those at the Mirror Lake 
site, the matrix porosity can range from less than 1 to more 
than 3% [Wood et al., 1996]. Ohlsson and Neretnieks [1995] 
noted a similar range for the matrix porosity of igneous rocks 
from other field sites. 

A matrix porosity of 3% may not seem like a huge volume 
of fluid; however, the void volume associated with fractures 
in crystalline rock sites is also on the order of 1 to 3%. These 
estimates of fracture porosity are made from mechanical 
considerations, where apertures of fractures are assigned and 
the volume associated with all fractures is summed. A void 
volume of the matrix porosity of 3% represents an extensive 
fluid reservoir into which chemicals can diffuse. Because 
chemical migration into and out of the matrix porosity is 
controlled by diffusion and the surface area of fractures, 
chemical constituents that diffuse into the matrix poros-
ity are likely to have extremely long residence times in the 
formation.

The diffusion coefficient for a nonsorbing constituent in 
the matrix porosity is described by the equation,

	 	 (1)

where D is the coefficient of diffusion associated with the 
matrix porosity of the rock, nm is the matrix porosity of the 
rock, γ is the formation factor that is inversely related to the 
turtuosity of the matrix porosity, Dw is the free-water dif-
fusion coefficient for the constituent under consideration, 
and Dm is the effective diffusion coefficient in the matrix 
porosity for the constituent under consideration. In general, 
Dm will be less than Dw because the tortuosity of the matrix 
porosity reduces the capacity for diffusion (γ < 1). The dif-
fusion coefficient, D, can be evaluated from laboratory 
experiments conducted on cores [van der Kamp et al., 1996; 
Novakowski and van der Kamp, 1996].

Figure 9 shows the hypothetical results for the case of one-
dimensional chemical transport in a fracture by advection 

Plate 1Plate 1

Fig. 9Fig. 9
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Plate 1. (A) Photograph (courtesy of Christopher C. Barton) of a face of the road cut adjacent to I-93 east of Mirror Lake, 
(B) a photograph (courtesy of Warren W. Wood) of iron-hydroxide staining in the rock adjacent to a fracture, and (C) the 
mapping of fractures with iron-hydroxide staining on a apportion of the I-93 road cut (modified from Barton, 1996). 
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and dispersion with diffusion into the adjacent rock matrix. 
The time-varying concentration of the tracer at a location 50 
m downgradient from the point of a pulse injection is shown 
in Figure 9, where the logarithm of the concentration is plot-
ted as a function of the logarithm of the elapsed time from 
the start of the tracer injection. Also shown in Figure 9 is the 
breakthrough curve 50 m downgradient from the injection 
point for the case where matrix diffusion is absent, that is, 
only advection and dispersion are controlling the chemical 
migration in the fracture. 

For log-log plots of concentration versus time, the break-
through curve for advection and dispersion shows a parabolic 
shape. When diffusion into the primary porosity is consid-
ered, the peak concentration of the breakthrough curve is 
reduced because of the loss of mass into the matrix poros-
ity. After the peak of the tracer concentration has migrated 
downgradient in the fracture, concentration gradients are 
conducive for the tracer to migrate out of the rock matrix 
and into the fracture, and then be advected and dispersed as 
it migrates downgradient in the fracture. This phenomena 
yields elongated tails on breakthrough curves (Figure 9). 
For larger values of the free-water diffusion coefficient, 
more mass is diffused into the primary porosity, resulting 
in a lower peak concentration and an extended breakthrough 
curve. For diffusion from planar fractures into a porous 
matrix, the declining limb of the breakthrough curve on log-
log plots of concentration versus time is a straight line with 
a slope of -1.5, regardless of the magnitude of the free-water 
diffusion coefficient. 

The magnitude of chemical diffusion in fractured rock is 
important in the design of geologic settings for waste isola-
tion, the remediation of contaminated ground water, and the 
interpretation of the chemical evolution and isotopic signa-
tures of ground water in fractured rock aquifers [Birgersson 

and Neretnieks, 1990; Maloszewski and Zuber, 1991; Parker 
et al., 1994; Shapiro, 2001]. A question that naturally arises 
is whether the results from experiments conducted on cores 
can be applied in physical settings over larger dimensions. 
Over dimensions of meters, 10’s of meters, and kilome-
ters, diffusion into or out of the matrix porosity is undoubt-
edly ongoing, but the estimates of the diffusion coefficient 
obtained from laboratory experiments may not account for 
all diffusive-type processes that manifest themselves in 
complex networks of fractures in communication with the 
rock matrix. 

Garnier et al. [1985] conducted controlled tracer experi-
ments in a fracture in a chalk aquifer using wells separated 
by approximately 10 m. The experiment consisted of using 
a suite of tracers with different free-water diffusion coeffi-
cients. The tracer with the largest free-water diffusion coef-
ficient showed the most pronounced effect of diffusion into 
the matrix porosity of the chalk (Figure 10). The results of 
tests conducted by Garnier et al. [1985] are plotted as the 
logarithm of the tracer concentration versus the logarithm 
of the elapsed time of the test. Moench [1995] showed that 
the magnitude of the free-water diffusion coefficients for 
the tracers can describe the separation of the breakthrough 
curves from the tests conducted by Garnier et al. [1985], 
similar to the hypothetical breakthrough curves shown 
in Figure 9. In addition, the declining limbs of the break-
through curves on log-log plots of concentration versus 
time were approximately straight lines with slopes of -1.5 
(Figure 10). 

The tests conducted by Garnier et al. [1985] indicate that 
laboratory estimates of the matrix diffusion can be applied 
under field conditions. Liu et al. [2004] compiled the results 

Fig. 10Fig. 10

Figure 9. Hypothetical breakthrough curves at 50 m downgradient 
from a point of a pulse injection into a formation with fractures and 
rock matrix, where the average fluid velocity is 1 meter per day. 

Figure 10. Breakthrough curves from the controlled tracer tests 
conducted by Garnier et al. [1985] (modified from Moench, 1995); 
the free-water diffusion coefficients for uranine, iodide, and deu-
terium are 1.4 x 10-2, 5.0 x 10-2, and 7.2 x 10-2 m2/yr, respectively. 
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of tracer experiments conducted at different field sites over 
increasingly larger physical dimensions and showed a gen-
eral increase in the effective diffusion coefficient with the 
physical scale of the experiment. In the following sections, 
the results from laboratory and field-scale tracer experi-
ments at the Mirror Lake site are interpreted to estimate the 
effective diffusion coefficient, Dm, over increasingly larger 
physical dimensions.

5.2 Diffusion Experiments in Rock Cores

Wood et al. [1996] conducted diffusion experiments in 
samples of granite and schist collected from the Mirror 
Lake site. Cesium-137 (137Cs) was used as the tracer in 
these experiments. 137Cs is highly retarded by sorbing onto 
grain boundaries in the primary porosity of the rock. After 
accounting for the retardation of 137Cs, the effective diffusion 
coefficient, Dm, was similar in magnitude to results of labo-
ratory tracer experiments in similar types of rock reported in 
Ohlsson and Neretnieks [1995]. In general, Dm varies from 
approximately 10-4 to 10-3 square meters per year (m2/yr).

5.3 In Situ Tracer Tests Over 10’s of Meters

In situ tracer experiments were conducted in the frac-
tured rock at the Mirror Lake site between boreholes in 
the FSE well field (Figure 1). In this section, the results of 
a series of tracer tests conducted between boreholes FSE9 
and FSE6 are described. The tracer tests were conducted in 
one of the highly transmissive fracture intervals that inter-
sect both boreholes, which are separated by approximately 
35 m (Figure 7). The tests consisted of a converging tracer 

experiment conducted by pumping continuously from a sub-
mersible pump placed between packers in FSE6 [Becker and 
Shapiro, 2000]. The tracer solutions were injected between 
packers in a hydraulically isolated interval in FSE9. The 
apparatus used to perform the injection of the tracer solution 
was designed to conduct a pulse injection of the tracer solu-
tion that strictly controlled the duration of the injection and 
the volume of the tracer solution injected into the fractures 
[Shapiro and Hsieh, 1996b]. Water samples were collected 
from the pumped water at FSE6 and analyzed for the con-
centration of the tracers. Pressure transducers were used to 
monitor the hydraulic responses in the wells of the FSE well 
field during the tracer test and the pumping rate in FSE6 was 
monitored using a flow meter. 

Similar to the tests conducted by Garnier et al. [1985], 
the injection solution for the tests conducted in the FSE well 
field at the Mirror Lake site consisted of a suite of dissolved 
constituents with different free-water diffusion coefficients 
[Becker and Shapiro, 2000]. The results of one of the tracer 
experiments is shown in Figure 11, where the concentration 
of the tracers per mass of the tracer injected is plotted as a 
function of the pumped volume from FSE6. The pumped 
volume is a surrogate for time; dividing the pumped volume 
by the pumping rate is equivalent to time. 

Unlike the experiments conducted by Garnier et al. 
[1985], the different tracers did not show a separation dur-
ing the declining limb of their breakthrough curves. The 
three tracers had overlapping breakthrough curves when the 
concentration of each tracer was normalized with the mass 
of the tracer injected (Figure 11). In addition, the declining 
limbs of the breakthrough curves exhibited a straight-line 
behavior on log-log plots of concentration versus the pumped 
volume (Figure 11). The straight line on the declining limb 
of a breakthrough curve is usually indicative of chemical 
diffusion; however, the slope of the declining limb of the 
breakthrough curve on the log-log plot was –2, rather than 
the theoretical result of –1.5, as in the results of Garnier et 
al. [1985].

Additional tracer tests were also conducted between the 
same pair of wells in the FSE well field using a similar 
configuration to that used in the tracer test discussed above. 
These tracer tests were conducted using different pumping 
rates to alter the residence time of the tracer in the fractured 
rock [Becker and Shapiro, 2000]. If chemical diffusion into 
the primary porosity is responsible for the declining limbs 
of the breakthrough curves shown in Figure 11, then a longer 
residence time in the formation will result in an enhanced 
degree of diffusion. Figure 12 shows the results of 5 tracer 
tests conducted using bromide as the tracer. In this figure 
the concentration of bromide per mass of bromide injected is 
plotted as function of the pumped volume from FSE6; plot-

Fig. 11Fig. 11

Fig. 12Fig. 12

Figure 11. Breakthrough curves for multiple tracers at a pumped 
well (FSE6) from a pulse injection into FSE9 (modified from 
Becker and Shapiro, 2000); the free-water diffusion coefficients 
for pentafluorobenzoic acid (PFBA), bromide, and deuterium are 
2.1 x 10-2, 6.3 x 10-2, and 7.2 x 10-2 m2/yr, respectively.
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ting the breakthrough curves as a function of the pumped 
volume allows all of the tests to be superimposed. The pump-
ing rates for these tests ranged from 2.9 to 9.8 L/min, which 
resulted in tests that lasted between 5 and 40 days for the 
tracer recovery.

The declining limb of the breakthrough curves from all 
of the tests shown in Figure 12 superimpose on one another, 
which indicates that diffusion into the rock matrix is not 
responsible for the character of the declining limbs of the 
breakthrough curves. In addition, the declining limbs of 
the breakthrough curves from these tests are again straight 
lines with a slope of –2, which is similar to the results shown 
in Figure 11 for the tracer test conducted with different 
tracers having different free-water diffusion coefficients. 
Furthermore, if the coefficients of advection, dispersion, 
and the effective matrix diffusion, Dm, are estimated from 
the breakthrough curves shown in Figures 11 and 12, the 
magnitude of Dm must be at least equal to or greater than 
the free-water diffusion coefficients associated with tracers 
used [Becker and Shapiro, 2000]. An effective diffusion 
coefficient that is equal to or greater than the free-water dif-
fusion coefficient implies that processes other than chemical 
diffusion into the rock matrix must be responsible for the 
characteristics of the declining limbs of the breakthrough 
curves in these in situ tracer tests.

Becker and Shapiro [2000, 2003] and Shapiro [2001] 
hypothesized that diffusion into the rock matrix is ongoing 
in these tests; however, it is being dwarfed by the magnitude 
of a process that manifests itself similarly to diffusion over 
the dimensions of these tests. It is hypothesized that the 
declining limb of the breakthrough curves from these tests 
is an artifact of fluid advection ranging over several orders of 
magnitude. Usually, variability in the fluid velocity is attrib-
uted to mechanical dispersion; however, in fractured rock the 
hydraulic properties of fractures can vary over many orders 
of magnitude. The results from the single-hole hydraulic 

tests conducted on individual fractures show transmissivity 
to range over six orders of magnitude above the detection 
limit of the in situ testing equipment. With such a large range 
in the transmissivity of fractures, there is the potential for 
slow advection in the least transmissive fractures, resulting 
in the elongated tails of the breakthrough curves, rather than 
the symmetric breakthrough curve that would be associated 
with advection by a mean velocity and a Fickian model of 
mechanical dispersion. 

Becker and Shapiro [2000, 2003] and Shapiro [2001] 
hypothesized that the tracer migrates rapidly through the 
most transmissive fractures and migrates much more slowly 
through the less transmissive fractures. For the tracer migra-
tion in the less transmissive fractures, eventually the tracer 
may enter a highly transmissive fracture and then be trans-
ported to the pumped well. While in the less transmissive 
fracture, the tracer has migrated only a short distance over 
an extended period of time before entering a more trans-
missive fracture. This phenomenon of migrating into a low 
permeability section of the formation and then back into a 
more transmissive section of the formation is analogous to 
the mass exchange between mobile and immobile f luids 
proposed by Coats and Smith [1964]. The result of this phe-
nomenon is an apparent diffusion resulting in the elongated 
tails of breakthrough curves. The elongated tail is an artifact 
of the extreme variability in the fluid velocity. The extreme 
variability in the fluid velocity, however, cannot be incorpo-
rated into a Fickian interpretation of dispersion. 

To further test the hypothesis that slow advection causes 
the elongated tails of the breakthrough curves exhibited in 
the tracers tests conducted in the FSE well field, Becker and 
Shapiro [2003] considered a simplified model of a fracture 
network shown in Figure 13. The model considered non-
interconnecting channels of fluid migration, where within 
each channel a constituent migrates only as a result of advec-
tion and dispersion. The channels with the highest velocity 
will yield the most rapid breakthrough and the channels 
with the lowest velocity will yield a much more delayed 
breakthrough. The breakthrough curve associated with each 
channel is assumed to be governed by a transfer function, 
with the velocity in each channel being proportional to the 
square of the channel aperture [Becker and Shapiro, 2003]. 
The breakthrough curve associated with each channel yields 
a parabolic shape when plotted as the logarithm of concen-
tration versus the logarithm of time. It is assumed that the 
tracer mass injected into each channel is proportional to 
the fluid flux through the channel, and the flux-averaged 
cumulative breakthrough curve at the mutual ending point of 
all channels is the superposition of the breakthrough curves 
from the individual channels. The results shown in Figure 
13 were generated using a uniform distribution of channel 

Fig. 13Fig. 13

Figure 12. Breakthrough curves for bromide at a pumped well 
(FSE6) from the pulse injection into FSE9 conducted under differ-
ent pumping rates (modified from Becker and Shapiro, 2000).
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apertures that yielded velocities ranging over 3 orders of 
magnitude. The superposition of the breakthrough curves 
results in a cumulative breakthrough curve with a declining 
limb having a slope equal to –2 on a log-log plot of concen-
tration versus time [Becker and Shapiro, 2003]. The slope 
of the declining limb of the hypothetical breakthrough curve 
in Figure 13 is similar to the slopes of the declining limbs 
of the breakthrough curves from the tracer tests shown in 
Figures 11 and 12. 

The tracer tests performed in the FSE well field were 
conducted within one of the highly transmissive fracture 
intervals that were identified from cross-borehole hydraulic 
tests conducted in the FSE well field. This interval is com-
posed of multiple interconnected fractures, which most likely 
includes both steeply dipping and subhorizontal fractures. It 
is conceivable that the tracers introduced into the formation 
traversed fractures having a wide range of transmissivities. 
It is also possible that transport within individual fractures 
resulted in multiple flow paths (or channels) with a wide 
range of fluid velocities, which in combination with trans-
port through multiple fractures resulted in the phenomenon 
of slow advection that gave rise to the elongated tails of the 
breakthrough curves. 

The results of the in situ tracer tests conducted in the FSE 
well field are not necessarily contradictory to the results 
given by Garnier et al. [1985]. The results of Garnier et 
al. [1985] were conducted in a single, highly transmissive, 
subhorizontal fracture zone in a chalk aquifer. It is plausible 
that there was rather limited variability in the fluid velocity 

associated with this feature between the injection and recov-
ery boreholes. In addition, the matrix porosity of chalk was 
estimated to be 0.36 [Moench, 1995], which is more than an 
order of magnitude greater than the matrix porosity of the 
granite and schist at the Mirror Lake site. The combination 
of a large matrix porosity and a fluid velocity that does not 
have significant variability gives rise to the dominance of 
the chemical diffusion, as opposed to the apparent diffusion 
that is an artifact of slow advection. In the interpretation 
of chemical migration and tracer tests conducted in frac-
tured rock aquifers, we should not necessarily anticipate the 
results of Garnier et al. [1985], nor should we anticipate the 
results of the tracer tests conducted in the FSE well field. It 
is conceivable that there could be a continuum of responses, 
where the results of Garnier et al. [1985] represent one end 
member, where chemical diffusion dominates, and the results 
of the tests conducted in the FSE well field represent another 
extreme, where the elongated tails of breakthrough curves 
are an artifact of a wide range in the fluid advection.

5.4 Transport of Environmental Tracers over 100’s of 
Meters

Over distances of 100’s of meters to kilometers, controlled 
tracer tests cannot be conducted in fractured rock formations 
such as that at the Mirror Lake site. Over these distances in 
a complexly fractured formation, the ultimate location of a 
tracer that is introduced into the formation cannot necessarily 
be identified. In addition, with a sparse number of bedrock 

Figure 13. (A) Hypothetical model of unconnected, parallel channels, and (B) the breakthrough curves from each chan-
nel and the cumulative breakthrough curve from all channels (modified from Becker and Shapiro, 2003).
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boreholes from which to sample, a quantitative interpretation 
of the tracer migration is unlikely to be successful because 
the majority of the tracer mass will not be recovered. 

Over 100’s of meters to kilometers, environmental trac-
ers have been used to infer processes controlling chemical 
migration in many different geologic settings [Busenberg and 
Plummer, 1992; Cook and Herczeg, 2000]. Environmental 
tracers are either chemical species or dissolved gases in pre-
cipitation, which eventually recharge the ground water. With 
knowledge of the time-varying atmospheric concentrations, 
samples of the environmental tracers collected from wells 
can be interpreted to infer ground-water residence times. 
In relatively homogeneous porous media, fluid advection is 
assumed to control the spatial distribution of environmental 
tracers; the concentration of these tracers can then be directly 
translated to a ground-water age based on the assumed tem-
poral variation of the tracer concentration in ground-water 
recharge. In fractured rock aquifers, however, diffusion into 
low-permeability environments, such as the matrix poros-
ity, and dispersion, arising from the extreme variability in 
the fluid velocity, are likely to alter the concentration of 
the tracers as they migrate through the formation. Under 
such conditions, it is necessary to mathematically model 
the physical processes affecting chemical migration and not 
merely translate a tracer concentration into a ground-water 
age [Shapiro, 2002]

Shapiro [2001] used concentrations of dichlorodifluo-
romethane (CFC-12) and tritium (3H) collected from dis-
crete intervals of bedrock boreholes and piezometers in the 
unconsolidated glacial drift to infer the processes controlling 
chemical migration over the dimensions of the Mirror Lake 
watershed. The model of ground-water flow developed by 
Tiedeman et al. [1997] for the Mirror Lake watershed could 
not be used in the interpretation of CFC-12 and 3H data. The 
bulk hydraulic properties of the fractured rock used in the 
ground-water flow model are sufficient in defining a water 
balance over the physical dimensions of the Mirror Lake 
watershed, but they are not capable of defining the intricacies 
of the flow regime that will affect the complex three-dimen-
sional spatial distribution of CFC-12 and 3H. 

To interpret the CFC-12 and 3H data from ground-water 
samples collected in the Mirror Lake watershed, Shapiro 
[2001] adopted a simplified interpretation of the flow regime 
and chemical transport. Ground-water f low lines were 
assumed to originate at the water table in the glacial drift and 
extend into the bedrock. Flow lines were assumed to move 
through a similar distance in the glacial deposits regardless 
of their starting location. In the bedrock, flow lines encoun-
ter fractures over a range of transmissivities, similar to the 
conceptual model of the rock underlying the FSE well field 
(Figure 7). Thus, over distances of more than 100 m in the 

bedrock, processes affecting chemical migration along one 
flow line were assumed to be similar to other flow lines. 
Therefore, sampling in the bedrock and glacial drift was 
regarded as sampling at locations along an ensemble of simi-
lar flow lines, which in turn, was equivalent to sampling one 
representative flow line at various distances from its origin 
[Shapiro, 2001]. The distance from the recharge location to 
the sampling point along the flow line, however, is unknown, 
and the relative distance between sampling locations also 
is unknown. 

Because distance along a flow line to a sampling location 
is not known, the spatial distribution of CFC-12 and 3H was 
removed from the procedure to estimate the parameters that 
control the chemical migration, in particular, the advection, 
dispersion, and matrix diffusion. The spatial distribution 
of the tracers is removed from the estimation procedure by 
taking advantage of multiple tracers moving simultaneously 
in the formation [Shapiro, 2001, 2002]. Concentrations from 
simulations of 3H and CFC-12 transport along flow lines are 
plotted against each other, and model parameters are varied 
to reproduce the measured relation between 3H and CFC-12 
measured in drift piezometers and bedrock wells (Fig. 14). 

Of interest in this investigation of chemical migration over 
dimensions of the Mirror Lake watershed was the magnitude 
of the effective diffusion coefficient, Dm, for comparison 
with the estimates of Dm from testing conducted over smaller 
volumes of rock. Other formation properties that control 
the chemical migration over dimensions of kilometers in 
the Mirror Lake watershed were also estimated from the 3H 
and CFC-12 data. Details of the chemical-transport model-
ing, and the estimation of formation properties is given in 
Shapiro [2001]. 

Figure 14 shows the best fit curves for the transport mod-
eling used to estimate the effective diffusion coefficient, 
Dm, from the concentrations of the environmental tracers 
measured at the Mirror Lake site. The value of Dm that best 
reproduces the measured relation between 3H and CFC-12 is 
1 m2/yr; however, because of the variability in the data, val-
ues of Dm between 0.1 and 10 m2/yr also qualitatively repro-
duce the data. The magnitude of these estimates exceeds 
the free-water diffusion coefficients for the environmental 
tracers by several orders of magnitude [Shapiro, 2001]. 

5.5 Diffusion in Fractured Rock From Cores to Kilometers

Figure 15 shows the effective diffusion coefficient, Dm, 
estimated over physical dimensions from cores to kilometers. 
The core experiments yield the theoretically expected result 
that Dm is less than the free-water diffusion coefficient, 
because of the tortuosity associated with the matrix porosity. 
From the interpretation of concentrations of tracers from in 

Fig. 14Fig. 14

Fig. 15Fig. 15
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situ tests conducted over 10’s of meters to kilometers, Dm 
increases with the physical dimension over which the data 
was interpreted. 

Controlled tracer tests conducted over 10’s of meters in the 
rock yield estimates of Dm that were greater than the free-
water diffusion coefficient. From the interpretation of the 
environmental tracers over the dimensions of 100’s of meters 
to kilometers, estimates of Dm were several orders of magni-
tude greater than the free-water diffusion coefficient.

Over dimensions of 10’s of meters to kilometers, chemical 
diffusion into the rock matrix is ongoing. Laboratory experi-
ments conducted by Wood et al. [1996] illustrated that 137Cs 
diffused several millimeters into rock samples collected 
at the Mirror Lake site over a period of approximately 100 
days. The magnitude of the chemical diffusion into the rock 
matrix, however, is being dwarfed over dimensions of 10’s 
of meters to kilometers by a process that manifests itself 
similarly to diffusion. 

The controlled tracer tests conducted over 10’s of meters 
in the FSE well field showed the elongated declining limb of 
the breakthrough curves as a straight line when plotted on a 
log-log plot of concentration versus time. A straight line on 
a log-log plot of the declining limb of a breakthrough curve 
from a pulse injection of a tracer is usually attributed to dif-
fusion. The slope of the log-log plot of the declining limb of 
the experimental breakthrough curves was -2, whereas, the 
theoretical result for diffusion from fractures to a porous 
matrix is -1.5.

It is hypothesized that the tracers introduced into rock 
migrate through fractures having a wide range in the fluid 
velocities, which results in the elongated tails observed in 
various tracer tests conducted in the FSE well field. The most 
transmissive fractures are responsible for the first arrival and 
peak concentration associated with the breakthrough curves. 

The least transmissive fractures are responsible for the tail 
of the breakthrough curve. If the least transmissive fractures 
connect with highly transmissive fractures before the tracer 
is recovered in the pumped well, then the least transmissive 
fractures cause the tracer to migrate a short distance in an 
extended period of time. This phenomenon is analogous to 
chemical mass diffusing into and out of a porous matrix. 
For diffusion into and out of a porous matrix, there is no 
travel distance associated with the time that the tracer is 
resident in the immobile fluid of the porous matrix before 
remerging into the mobile fluid of the fracture. Thus, there 
are differences between chemical diffusion and the slow 
advection arising from the tracer migration through the least 
transmissive fractures.

From the interpretation of the environmental tracers over 
dimensions of 100’s of meters to kilometers in the Mirror 
Lake area, the effective diffusion coefficient, Dm, was sev-
eral orders of magnitude greater than the free-water diffu-
sion coefficient. Again this is attributed to the phenomenon 
of slow advection arising from the tracers migrating through 
fractures having a wide range of velocities. It is hypoth-
esized that the magnitude of Dm from the interpretation 
of the environmental tracers is greater than the estimates 
of Dm from the tracer tests in the FSE well field, because 
the environmental tracers experience a greater range of the 
fluid velocities than in situ tracer tests conducted over 10’s 
of meters. The tracer tests conducted in the FSE well field 
were conducted in one of the highly transmissive, subho-
rizontal fracture intervals identified from cross-borehole 
hydraulic testing. The highly transmissive intervals are likely 
composed of multiple interconnected fractures, and thus, 

Figure 14. Measured concentrations of tritium and dichlorodi-
fluoromethane (CFC-12) from piezometers in the glacial drift and 
isolated intervals from bedrock wells in the Mirror Lake watershed 
and its vicinity, along with best fit estimates for the effective dif-
fusion coefficient, Dm (modified from Shapiro, 2001). 

Figure 15. The effective diffusion coefficient, Dm, estimated 
over increasingly larger physical dimensions at the Mirror Lake 
site from (A) laboratory core experiments, (B) in situ tracer tests 
conducted over 10’s of meters, and (C) the interpretation of the 
concentrations of environmental tracers over dimensions of 100’s 
of meters to kilometers; Dw denotes the approximate magnitude of 
the free-water diffusion coefficient for most tracers.
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the tracer most likely interrogated a number of fractures of 
different hydraulic properties, but not to the extent that the 
environmental tracers experienced in migrating through 
100’s of meters of rock. 

From the estimates of Dm presented on Figure 15, one 
cannot tell whether the effective diffusion coefficient has 
achieved an asymptotic limit at the dimensions associated 
with the interpretation of the environmental tracers. If the 
environmental tracers encounter greater variability in the 
fluid velocity over dimensions larger than that considered 
in the interpretations presented by Shapiro [2001], then it 
is likely that estimates of the effective diffusion coefficient 
would increase further. If, however, the environmental trac-
ers experienced the full range of the fluid velocity over the 
dimensions of the interpretation, then the results shown 
for interpretation of the environmental tracers in Figure 15 
would be regarded as an asymptotic limit. 

It is hypothesized that slow advection gives rise to the 
elongated tails of the tracer tests and the appearance of a 
chemical flux that resembles diffusion, even though it is an 
artifact of fluid advection. In fractured rock aquifers, slow 
advection should be anticipated when the fractures that are 
responsible for chemical migration have a wide range in 
their hydraulic conductivity. The hydraulic conductivity of 
fractures at the Mirror Lake site varies over six orders of 
magnitude. The hydraulic conductivity of the fracture data 
was censored by the detection limits of the in situ testing 
equipment. Therefore, it is likely that the hydraulic conduc-
tivity varied over a much greater range than that associated 
with the hydraulic conductivity measurements. In aquifers 
where fractures do not exhibit a wide range in fluid veloci-
ties, chemical diffusion is likely to dominate the declining 
limbs of breakthrough curves, and laboratory estimates of 
diffusion are likely to be sufficient in the characterization of 
field-scale chemical transport investigations. 

6. Fracture Controls on Ground-Water 
Flow and Chemical Transport at the 

Mirror Lake Site

The hydraulic conductivity and the effective diffusion 
coefficient show different trends over increasingly larger 
physical dimensions [Shapiro, 2003]. With increasingly 
larger physical dimensions (up to kilometers), the hydrau-
lic conductivity is bounded by the hydraulic conductivity 
associated with a background network of less transmissive 
fractures. The hydraulic conductivity associated with this 
background network of fractures at the Mirror Lake site 
is on the order of 10-7 m/s. Hydraulic tests conducted on 
individual fractures or closely spaced fractures, however, 
exhibits a range from 10-10 to 10-4 m/s, with the lower limit 

being associated with the detection limit of the in situ testing 
equipment. In contrast, the effective diffusion coefficient 
increases when interpreting chemical transport experiments 
from centimeters to kilometers. At the centimeter-scale of 
measurement, the effective diffusion coefficient is less than 
the free-water diffusion coefficient associated with the trac-
ers used in the experiments. Over 10’s of meters, the range 
of the effective diffusion coefficient is greater than the free-
water diffusion coefficient, and over kilometers, the effec-
tive diffusion coefficient exceeds the free-water diffusion 
coefficient by several orders of magnitude. 

The measurement and detailed mapping of fracture attri-
butes on outcrops and road cuts, and in boreholes is integral 
in understanding the different trends that are observed in 
estimating the chemical transport and hydraulic properties 
over increasingly larger physical dimensions in the rock. 
Plots of fracture trends show a wide range of orientations 
from subhorizontal to moderate and steeply dipping (Figure 
2). Fractures mapped on road cuts show poor connectivity 
with trace lengths that rarely exceed 10 m [Barton, 1996], 
which results in poor connectivity of the highly transmissive 
fractures. Results from cross-borehole hydraulic tests show 
that highly transmissive fractures are interconnected over 
lateral distances of approximately 20 m in the rock. The 
highly transmissive fractures are part of highly transmissive, 
subhorizontal zones composed of both moderate to steeply 
dipping fractures and subhorizontal sheeting fractures. 

The poor connectivity of fractures results in the less trans-
missive fractures serving to connect the highly transmissive 
intervals of interconnected fractures. Consequently, the less 
transmissive fractures act as the “bottlenecks” that impede 
ground-water flow, and control the bulk hydraulic proper-
ties of the rock. The poor connectivity of the fractures is 
maintained over dimensions of several kilometers, as the 
bulk hydraulic conductivity of the rock as determined from 
ground-water flow modeling is again controlled by a back-
ground network of less transmissive fractures that impedes 
ground-water flow over these dimensions. 

From investigations conducted in boreholes, road cuts, and 
outcrops, few faults were observed in the Mirror Lake area. 
The results from the ground-water flow modeling over the 
area of the Mirror Lake watershed implies that if other unde-
tected faults are within the rock, they do not serve as highly 
transmissive features that affect the measured distribution of 
the hydraulic head or the ground-water discharge to streams. 
The results of the ground-water modeling conducted over 
dimensions of kilometers also implies that there is no intercon-
nected “backbone” of highly transmissive features that results 
in an increase in the hydraulic conductivity with the scale of 
measurement. This is supported by the lack of a single domi-
nant fracture trend in the orientation plots of Figure 2. 
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The poor connectivity of fractures had the opposite effect 
on the effective diffusion coefficient that was estimated over 
increasingly larger dimensions. The bulk hydraulic conduc-
tivity is controlled by the “bottlenecks” in the rock, and the 
effective diffusion coefficient is controlled by the range in 
the fluid velocity over dimensions from meters to kilometers. 
The poor connectivity and short areal extent of fractures give 
rise to a highly variable fluid velocity field. Consequently, 
as chemical constituents migrate in the subsurface they are 
forced to move into different fractures with a wide range of 
hydraulic properties. 

Laboratory tracer tests conducted in cores are not affected 
by the fluid velocity in fractures. These tests yield estimates 
of the effective diffusion coefficient that are less than free-
water diffusion coefficient associated with the tracers that 
were used. Over 10’s of meters, in situ tracer tests in the FSE 
well field were conducted in one of the highly transmis-
sive fracture intervals that was intersected in two adjacent 
boreholes. This highly transmissive interval is composed of 
multiple intersecting fractures. The range of the hydraulic 
conductivity from tests conducted in individual fractures 
varies over at least six orders of magnitude. Therefore, it 
is likely that the tracer interrogated multiple fractures with 
a wide range of hydraulic conductivities. The range in the 
hydraulic conductivity gives rise to the phenomena of “slow 
advection,” which is attributed to the elongated tails in the 
breakthrough curves and the effective diffusion coefficient 
that is greater than the free-water diffusion coefficient asso-
ciated with the tracers that were used in the in situ testing. 

Over dimensions of kilometers, the interpretation of the 
environmental tracers yielded estimates of the effective dif-
fusion coefficient that was orders of magnitude greater than 
the free-water diffusion coefficients. Over dimensions of 
kilometers, the tracers interrogated both highly transmissive 
fractures and the less transmissive background network of 
fractures. The range of the velocities encountered within the 
fractures over 100’s of meters to kilometers was most likely 
greater than that encountered over 10’s of meters between 
adjacent boreholes in the rock of the FSE well field. 

7. Summary

The characterization of fractured rock aquifers for issues 
of societal importance often requires the interpretation of 
formation properties that control ground-water f low and 
chemical migration over increasingly larger physical dimen-
sions in these formations. Compilations of investigations 
from multiple field sites are often used to provide guidance 
on the effect that measurement scale has on the magnitude 
of chemical transport and hydraulic properties. While this 
information is informative about the general trends that 

could be anticipated in fractured rock aquifers, it may not 
be applicable to all fractured rock sites, because geologic 
conditions and fracture attributes that control ground-water 
flow and chemical migration vary from site to site. 

A detailed investigation was undertaken to identify the 
effect of increasing physical dimensions on estimates of 
hydraulic conductivity and chemical diffusion in the gran-
ite and schist underlying the Mirror Lake watershed in 
central New Hampshire. Extensive geologic and fracture 
mapping was conducted over large rock exposures on road 
cuts, in boreholes, and at outcrops in the Mirror Lake area. 
The data on fracture orientations from road cuts, boreholes, 
and outcrops all showed moderate to steeply dipping and 
subhorizontal fractures. The similarity in fracture orien-
tations between the detailed fracture mapping conducted 
on road cuts and boreholes and the fracture orientations 
observed from outcrops scattered over a 5 km radius in the 
Mirror Lake area suggests that fracture attributes identi-
fied from the detailed mapping over limited volumes of 
rock are maintained throughout the study area that covers 
more than 10 km2. 

The detailed fracture mapping on road cuts and in bore-
holes of the FSE and CO well fields illustrate that fractures 
in the Mirror Lake area are poorly connected, and the trace 
lengths of fractures rarely exceed 10 m. In general, the 
granitic intrusive rocks tend to be more fractured than the 
schist; however, the granite constitutes a smaller percentage 
of the rock volume than the schist and tends to be discon-
tinuous. Therefore, the degree of fracturing in the granite 
does not translate into preferential flow in the formation. 

From investigations conducted in boreholes, road cuts, 
and outcrops, only two fault features were observed over the 
Mirror Lake area. One fault was observed on the road cuts 
east of Mirror Lake and showed significant clay content. 
The hydraulic significance of the faults is unclear from its 
mapped features. The calibration of a ground-water model 
over dimensions of the Mirror Lake area was used to infer 
the hydraulic significance of large scale geologic features. 

The hydraulic conductivity of the rock underlying 
the Mirror Lake watershed was estimated over physical 
dimensions ranging from meters to kilometers. In bore-
holes drilled into the bedrock, single-hole hydraulic tests 
were used to isolate individual fractures or closely space 
fractures. Each single-hole test was conducted over 10’s of 
minutes and was assumed to interrogate fractures within a 
few meters of the borehole. Over 200 single-hole hydraulic 
tests were conducted, which showed a range of hydraulic 
conductivity over approximately 6 orders of magnitude 
(10‑10 to 10‑4 m/s). The lower limit of that range was asso-
ciated with the detection limit of the in situ testing equip-
ment. Within individual boreholes, changes in the hydraulic 
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conductivity of fractures (over several orders of magnitude) 
occurred over short distances, and the density of fractur-
ing did not correlate with the magnitude of the hydraulic 
conductivity. 

Cross-borehole hydraulic tests were conducted in clusters 
of wells with separation distances ranging from 10 to 100 
m. These tests interrogated volumes of rock containing 
multiple fractures. The tests were designed to investigate 
the ambient conditions in the rock, which required packers 
to isolate various intervals in the bedrock boreholes. The 
results of these hydraulic tests showed the presence of highly 
transmissive subhorizontal fracture intervals of limited areal 
extent, with a hydraulic conductivity of approximately 10-4 
m/s. The highly transmissive intervals were composed of 
multiple interconnected fractures, which was mostly likely 
a combination of both the steeply dipping and subhorizontal 
fractures that were mapped. 

The results of the cross-borehole tests also showed that the 
highly transmissive intervals were connected only through a 
network of less transmissive fractures. These less transmis-
sive fractures acted as “bottlenecks” that impeded ground-
water flow. Consequently, over dimensions of 100 meters 
the bulk hydraulic conductivity of the fractured rock was 
controlled by the less conductive fractures, with a hydraulic 
conductivity of approximately 10-7 m/s.

Over dimensions of kilometers, ground-water flow model-
ing was used to estimate the bulk hydraulic conductivity of 
the rock. The measured hydraulic head and ground-water 
discharges to streams were used in the estimation proce-
dure. Over dimensions of kilometers, the bulk hydraulic 
conductivity of the rock remained unchanged from the bulk 
hydraulic conductivity inferred from the cross-borehole 
hydraulic tests. The background network of less transmissive 
fractures appears to control the bulk hydraulic conductivity 
of the rock over an area greater than 10 km2. Consequently, 
there is no interconnected “backbone” of highly transmis-
sive features that would result in an increase in the hydraulic 
conductivity with increasingly larger physical dimensions. 
The poor connectivity of the rock and lengths of fractures 
that rarely exceed 10 m are the underlying cause for the poor 
connectivity of highly transmissive fractures and the stabil-
ity in the hydraulic conductivity estimated over dimensions 
from 100 m to kilometers.

Estimates of chemical diffusion were made from the inter-
pretation of tracer experiments conducted over increasingly 
larger physical dimensions. Estimates of diffusion coefficients 
in cores followed theoretical interpretations and were less 
than the free-water diffusion coefficient for the constituents 
under consideration. Controlled in situ tracer tests conducted 
over 10’s of meters between boreholes in the rock yielded 
estimates of the diffusion coefficient that were greater than 

the free-water diffusion coefficient. The in situ tracer tests 
were conducted between boreholes that intersected one of 
the highly transmissive fracture intervals identified from the 
cross-borehole hydraulic tests. It is hypothesized that the tracer 
migrated through an interconnected network of fractures hav-
ing a wide range of fluid velocities, which is attributed to the 
wide range in the hydraulic conductivities of fractures that 
were measured from single-hole hydraulic tests. The wide 
range in fluid velocities gives rise to elongated tails in the 
breakthrough curves of the tracer tests. The slow advection 
from the least transmissive fractures gives the appearance of a 
diffusive phenomenon over 10’s of meters in the fractured rock 
that overwhelms the magnitude of the chemical diffusion that 
is ongoing between fractures and the rock matrix.

Over dimensions of kilometers, an interpretation of the 
concentrations of environmental tracers was used to estimate 
the magnitude of the effective diffusion coefficient in the 
fractured rock of the Mirror Lake site. The results over this 
scale showed an even larger estimate of the diffusion coef-
ficient than that obtained from controlled in situ tracer tests 
conducted over 10’s of meters. At the kilometer-scale, the large 
diffusion coefficient was again attributed to the wide range 
of fluid velocities and the slow advection, which manifests 
itself similarly to a diffusive phenomenon. The increase in the 
apparent diffusion coefficient with the physical dimension of 
the investigation is attributed to a larger variability in the fluid 
velocity encountered over larger dimensions, whereas tests 
conducted over 10’s of meters did not encounter the full range 
in the fluid velocity encountered over kilometers. 

The results of the effect of measurement scale on the mag-
nitude of the chemical transport and hydraulic properties 
from the Mirror Lake site are not necessarily transferable 
to other geologic settings. The results of the investigations 
presented here point to the need to understand the underlying 
geologic structure and connectivity of fractures in formulat-
ing hypotheses regarding the magnitude of formation prop-
erties as a function of the measurement scale. For example, 
in bedded sedimentary sequences with highly transmissive, 
areally extensive, bedding plane partings, the bulk hydraulic 
conductivity over large volumes of rock may be controlled by 
the highly transmissive features, rather than a background 
network of less transmissive fractures. 

Integral to the interpretations of chemical transport and 
hydraulic properties of the fractured rock over increasingly 
large physical dimensions at the Mirror Lake site was the 
integration of information from the geologic and fracture 
mapping. Attributes of fractures obtained from detailed 
mapping in boreholes and exposures of rocks on road cuts 
and outcrops provided a conceptual framework from which 
hypotheses were developed regarding the geologic controls 
on ground-water f low and chemical migration. Borehole 
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geophysical logging tools that provided accurate imaging of 
fractures intersecting boreholes were important in verifying 
the similarity between fracture properties on surface expo-
sures and at depth in the subsurface. 
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Geophysical measurements increasingly are being used in hydrologic field stud-­­
ies because of their ability to provide high-resolution images of the subsurface. In 
particular, tomographic imaging methods can produce maps of physical property 
distributions that have significant potential to improve subsurface characteriza-­­
tion and enhance monitoring of hydrologic processes. In the tomographic imag-­­
ing approach, geophysical images of the subsurface are converted to hydrologic 
property maps using petrophysical relations. In field studies, this transformation 
is complicated because measurement sensitivity and averaging during data inver-­­
sion result in tomographic images that have spatially variable resolution (i.e., the 
estimated property values in the geophysical image represent averages of the true 
subsurface properties). Standard approaches to petrophysics do not account for vari-­­
able geophysical resolution, and thus it is difficult to obtain quantitative estimates 
of hydrologic properties. We compare two new approaches that account for variable 
geophysical resolution: a Random Field Averaging (RFA) method and Full Inverse 
Statistical Calibration (FISt). The RFA approach uses a semi-analytical method 
whereas FISt calibration is based on a numerical solution to the problem.

1. INTRODUCTION 

Data limitations represent the principal impediment to char-­­
acterize and monitor subsurface hydrologic properties and pro-­­
cesses at the field scale. Conventional hydrologic measurements 
(e.g., aquifer tests or fluid samples) commonly depend on direct 
access to the subsurface, making them expensive and sparse. 

Moreover, such measurements either sample conditions local 
to boreholes or integrate over large volumes of the subsurface. 
As a result, these measurements carry limited information 
about aquifer conditions between sampling locations or provide 
complex averages of properties, making it difficult to assess 
the distribution of heterogeneity throughout an aquifer. With 
recent advances in geophysical instrumentation and imaging 
algorithms, hydrologists increasingly are looking to geophysi-­­
cal imaging methods to help understand aquifer heterogeneity 
and monitor such processes as contaminant transport and 
seasonal dynamics in water content. 

Subsurface Hydrology: Data Integration for Properties and Processes
Geophysical Monograph Series 171
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In recent years, the term “hydrogeophysics” has come to 
describe these kinds of interdisciplinary research efforts 
that bridge hydrology and geophysics. This new field is 
burgeoning, as evidenced by rapid growth of hydrogeophys-­­
ics papers in the literature, as well as publication of recent 
texts on the subject [Rubin and Hubbard, 2005; Vereecken 
et al., 2006]. In numerous studies, geophysical imaging has 
provided valuable data at spatial and temporal scales rarely 
attainable with standard hydrologic measurements. A conclu-­­
sion common to much of this work is that the quantitative 
integration of geophysical and hydrologic data—through 
either coupled inversion or geostatistical techniques—results 
in characterization of the subsurface with higher resolution 
and greater reliability than is possible using conventional 
hydrologic measurements alone. Despite growing acceptance 
and clear evidence for the synergies that result from hydro-­­
geophysical data integration, important research challenges 
remain. One of the foremost problems is determining how 
geophysical properties determined by a field survey (e.g., 
electrical conductivity, dielectric permittivity, or seismic 
velocity) are related to the properties that hydrologists are 
interested in, such as hydraulic conductivity, contaminant 
concentration, or water quantity. Petrophysical formulas 
that describe the relations between these properties are com-­­
monly used, and can be calibrated as site-specific conver-­­
sions [e.g., Alumbaugh et al., 2002] or based on theoretical 
or general empirical grounds [e.g., Slater et al., 2002; Singha 
and Gorelick, 2005]. Petrophysical relations have been 
used extensively to convert geophysical images into two-
dimensional (2D) maps or three-dimensional (3D) volumes 
of quantities such as saturation, concentration, porosity, or 
permeability [e.g., Hubbard et al., 2001; Slater et al., 2002; 
Berthold and Masaki, 2004]. 

One difficulty with using standard petrophysical rela-­­
tions to convert geophysical to hydrologic property values 
in tomographic studies is that the data or theory used to 
generate the relations may not fully capture conditions at 
the field scale. For example, a petrophysical relation may 
be based on data from a set of wells or cores. Because of 
subsurface heterogeneity, these data may be representa-­­
tive of only a small area near where they were collected; 
consequently, the calibrated petrophysical relation is most 
certain near the location where the data were collected, and 
reflects the particular support volume of the measurements 
at this location. Away from the sampling location, both the 
resolution of the geophysical survey and the type of material 
may change, causing the calibrated petrophysical relation 
to no longer apply. Additionally, the sensitivity of the geo-­­
physical methods and the effects of image reconstruction 
can contribute to the field-scale estimate of a geophysical 
property, thereby creating spatial dependence in the pet-­­

rophysical relation. Consequently, relations between, for 
example, seismic velocity and hydraulic conductivity found 
at the laboratory scale may not be appropriate in the field. 
Direct estimation of hydrologic properties from geophysi-­­
cal tomograms at the field scale has been only moderately 
successful because 1) reconstructed tomograms are often 
highly uncertain and subject to inversion artifacts; 2) the 
range of subsurface conditions represented in calibration 
data sets is incomplete due to heterogeneity and the paucity 
of collocated well or core data; and 3) geophysical methods 
exhibit spatially variable sensitivity. 

The uncertainty and non-uniqueness of petrophysical rela-­­
tions have led some to consider stochastic methods, such as 
co-simulation and co-kriging frameworks [e.g., McKenna 
and Poeter, 1995; Cassiani et al., 1998; Yeh et al., 2002; 
Ramirez et al., 2005] or other geostatistical approaches for 
incorporating geophysical property estimates into hydrogeo-­­
logic studies, such as the 1) correlation of site-specific soft 
geophysical data with collocated hard point data [Doyen, 
1988; McKenna and Poeter, 1995; Dietrich et al., 1998], 
2) estimation of hydrologic properties from geophysical data 
based on probabilities of occurrence as mapped by geologists 
[Carle and Ramirez, 1999], and 3) estimation using geophys-­­
ical methods for lithologic zonation [Hyndman et al., 1994; 
Hyndman and Gorelick, 1996]. Some approaches to data 
integration include coupled inversion methods that consider 
hydrologic processes directly. For example, Vanderborght 
et al. [2005] used equivalent advection-dispersion equations 
and streamtube models to quantify breakthrough curves from 
synthetic 2D electrical resistivity tomography (ERT) inver-­­
sions for estimating hydraulic conductivity and local-scale 
dispersivity values. Kowalsky et al. [2005] demonstrated 
coupled inversion of ground-penetrating radar (GPR) tomo-­­
graphic data and neutron probe data to monitor infiltration 
processes. Coupled inversion approaches may, in some cases, 
address the resolution issues related to geophysical imaging 
by directly integrating geophysical data in the hydrologic 
estimation problem to identify properties governing flow 
and transport. While the inherent limitations of geophysical 
method resolution cannot be fully circumvented, abandon-­­
ing the idea of producing first a geophysical image may help 
in that the additional assumptions needed for this purpose 
(e.g., smoothness) are not necessary, and therefore do not 
“contaminate” the data inversion. 

In this chapter, we work with inverted geophysical images, 
and highlight previous work regarding the estimation of pet-­­
rophysical relations and the impacts of tomographic resolution 
for quantitatively integrating geophysical data into hydrogeo-­­
logic estimation problems. By comparing emerging petro-­­
physical methods that directly address geophysical resolution, 
we will offer suggestions for how to address these problems.
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2. BACKGROUND 

2.1. Traditional Petrophysical Approaches

Theoretical or empirical results are commonly used to 
develop petrophysical relations. For example, in theoretical 
studies, effective medium theory is typically used to predict 
the effective properties of a heterogeneous medium from 
the properties of its components. A well-known example of 
this approach to petrophysics was developed by Hashin and 
Shtrikman [1962; 1963] who estimated bounds on the effec-­­
tive magnetic and elastic properties of a composite medium 
based on the properties of the individual components. Other 
methods, such as differential effective medium approaches, 
have been developed when inclusions are sparse and do not 
form a connected network [e.g., Berge et al., 1993]. 

At the field scale, interpretation of geophysical data in 
terms of hydrogeologic properties is often based on the lin-­­
ear regression of field data [e.g., Kelly, 1977; Klimentos and 
McCann, 1990; Purvance and Andricevic, 2000], or on theo-­­
retical relations [e.g., Urish, 1981; Jorgensen, 1988; Blair and 
Berryman, 1992; Rubin et al., 1992; Hubbard et al., 1997; 
Gal et al., 1998; Chan and Knight, 1999; Dunn et al., 1999; 
Wang and Horne, 2000]. Petrophysical relations can also be 
determined empirically at the laboratory scale. Two empiri-­­
cal petrophysical relations common in hydrogeophysics are 
1) the Topp equation [Topp et al., 1980], where laboratory 
measurements made on soils were used to fit a polynomial 
relation between the dielectric constant and water content 
of a soil, and 2) Archie’s law [Archie, 1942], where well-
log data were used to determine a relation between bulk 
electrical conductivity and porosity. Research has gone into 
applying theory to validate these relations, as can be seen 
in the work of Hunt [2004]. Knight and Endres [2005] give 
a comprehensive introduction to traditional petrophysical 
approaches relevant to hydrogeophysical studies. 

Recent work has indicated that laboratory-scale petrophysi-­­
cal relations may not hold at the field scale. Moysey and Knight 
[2004] investigated the relation between dielectric constant 
and water content assuming that these properties could be 
represented by spatially correlated random fields. They found 
that when an electromagnetic wave produced by GPR averages 
over small-scale heterogeneities, the petrophysical relation at 
the measurement scale will be different from that defined at 
the scale of the property variations. Thus, they suggest that 
a petrophysical relation will be independent of measurement 
scale only when a medium is self-similar, given the same 
boundary conditions between the laboratory and field. Studies 
of this nature demonstrate that understanding how the subsur-­­
face is sampled is a critical aspect of developing appropriate 
petrophysical relations for field-scale problems.

2.2. Inversion and the “Geophysical Filter”

Each geophysical property value estimated in a field 
survey, such as a tomographic imaging experiment, repre-­­
sents an average of the true properties of the subsurface. 
Limitations in geophysical resolution mean that this aver-­­
age is rarely representative of only the region of the sub-­­
surface contained within the volume defined by a single 
voxel in the inverted model, leading to the smearing effect 
that is characteristic of geophysical images. Attempts at 
quantifying the resolution of the geophysical estimates date 
to Backus and Gilbert [1968], who consider each estimated 
parameter (or voxel) to depend upon some surrounding 
model space. Since this seminal work, quantifying tomo-­­
graphic resolution and geophysical measurement support 
has become an active area of geophysical research [e.g., 
Menke, 1984; Ramirez et al., 1993; Rector and Washbourne, 
1994; Schuster, 1996; Oldenburg and Li, 1999; Alumbaugh 
and Newman, 2000; Friedel, 2003; Sheng and Schuster, 
2003; Dahlen, 2004]. Resolution has been found to be 
dependent on the measurement physics; survey design; 
measurement error; regularization criteria and inversion 
approach. In other words, the resolution of a target in the 
subsurface depends not only on the data collection, but on 
how the data are modeled and inverted. We conceptually 
refer to the cumulative effect of the factors that cause a loss 
in resolution between the true distribution of properties in 
the earth and that estimated by a geophysical survey as the 
geophysical filter.

We use an Occam’s inversion, which is closely related to 
the Gauss-Newton approach (varying only in the explicit 
way in the which alpha is determined), for geophysical data 
inversion. We seek to identify the vector of model parameters 
that minimize an objective function, F, which consists of: 
1) the least-squares, weighted misfit between observed and 
predicted measurements in the first term, and 2) a measure 
of solution complexity in the second term:

	 (1)

where
d	 is the vector of measurements;

	 is the forward model;
	� is the vector of parameter estimates, i.e., the calculated 

data;
	 is the model prior;
	 is the covariance matrix of measurement errors;

	� is a weight that determines the tradeoff between data 
misfit and regularization; and

D	� is the model-weighting regularization matrix (e.g., a 
discretized second-derivative filter).
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The model parameters are updated in an iterative fashion 
by repeated solution of a linear system of equations for , 
the model update, at successive iterations such that

	 	 (2)

	  =  + 	 (3)

where
J 	 is the Jacobian matrix, with elements ; 

	 is the calculated value of measurement i; 
	� is the vector of parameter estimates after updating in 

iteration k; and
	 is the vector of parameter updates for iteration k.

At each iteration of the inversion, a new Jacobian is cal-­­
culated. A line search is performed to identify the α value 
such that the new model estimate from solution of equation 
(2) results in the expected root-mean squared (RMS) predic-­­
tion error given the model of measurement errors. If such a 
value cannot be found, then the α that gives the lowest RMS 
error is taken, and the algorithm proceeds to the next itera-­­
tion. The inversion continues until 1) the RMS error reaches 
the target RMS error, 2) the reduction in RMS error between 
successive iterations or the size of the objective function is 
less than a specified tolerance, or 3) a maximum number of 
iterations is reached. This approach is commonly referred to 
as an Occam inversion.

The model resolution matrix, which describes the degree 
to which model parameters can be determined indepen-­­
dently from each other, can be calculated using the Jacobian 
matrix. The rows of the resolution matrix should sum to 
1, and describe the smearing of the true model parameter; 
conceptually, the model resolution matrix is the lens or filter 
through which the inversion sees the study region: 

	 , 	 (4)

where the model resolution matrix, R, is defined as 

	 .	 (5)

Therefore,

	 	 (6a)

where I is the identity matrix. Commonly, the prior model is spa-­­
tially uniform. Under these conditions, equation 6a becomes

	 .	 (6b) 

For linear problems, where the elements of J are indepen-­­
dent of the values of mtrue, R can be calculated prior to data 
collection. For non-linear problems, R can be calculated 
using the J and α from the last iteration of the inversion, 
and equation (6b) becomes approximate [e.g., Alumbaugh 
and Newman, 2000]. Since the model resolution matrix 
describes the loss of resolution incurred during a geophysical 
survey, it is a quantitative representation of the geophysical 
filter. According to equation (6), tomographic estimates 
can be interpreted as weighted averages of the true values 
of the imaged property, where the weights are described by 
the rows of R:

	 .	 (7)

In general, tomograms exhibit smaller variance and greater 
correlation lengths than the underlying property, and this dis-­­
tortion tends to be anisotropic and non-stationary (Plate 1). 
Because the correlation between point-scale measurements 
of hydrologic and geophysical properties is degraded by the 
inversion process (which may be quantifiable through R in 
certain circumstances), the use of standard petrophysical 
relations with field-scale tomograms may not be appropri-­­
ate. Cassiani et al. [1998] noted correlation loss between 
tomographic estimates of seismic velocity and hydraulic 
conductivity in poorly resolved regions of tomograms. In 
an ERT study to monitor a fluid tracer in the unsaturated 
zone, Binley et al. [2002] applied locally derived petrophysi-­­
cal relations to convert resistivity tomograms to changes in 
moisture content; their analysis revealed a 50% mass bal-­­
ance error that was attributed to the poor sensitivity in the 
center of the image volume where the tracer was applied. In 
an effort to monitor tracer experiments with ERT, Singha 
and Gorelick [2005] noted the impact of regularization and 
inversion artifacts on the estimated tracer mass and spatial 
variance, and demonstrated that Archie’s law failed to accu-­­
rately reproduce solute concentrations without consideration 
of resolution. 

2.3. New Approaches to Field-­Scale Petrophysics 

Because of issues associated with poor geophysical reso-­­
lution and limited collocated data, numerous scientists have 
attempted to develop a correction that could be applied to 
their geophysical data. McKenna and Poeter [1995] noted 
weak correlation between tomographic estimates of seismic 
velocity and collocated measurements of hydraulic conduc-­­
tivity compared to the correlation seen for higher resolution 
sonic logs; they derived a correction based on regression 

Plate 1Plate 1
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Plate 1. Radar travel time tomography for a field where a linear correlation with permeability is assumed. Cross sec-­­
tions of (a) true permeability; (b) true slowness; (c) inverted tomogram of slowness; (d) diagonal of the model resolution 
matrix; (e) the predicted correlation coefficient between true and estimated slowness; and (f) the predicted variance 
of the inverted tomogram normalized by the variance of the true slowness. Three pixels in the correlation coefficient 
matrix are highlighted [(1), (2), and (3)], showing that the estimated relation between permeability and slowness is 
spatially dependent.
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and applied the correction uniformly over the tomogram to 
correct for the correlation loss between velocity and hydrau-­­
lic conductivity. Hyndman et al. [2000] used an approach 
that combined geostatistical simulation, flow and transport 
simulation, and regression methods to calibrate a linear, 
field-scale relation between estimated seismic slowness 
and the logarithm of hydraulic conductivity. Mukerji et al. 
[2001] provided a framework for “statistical” petrophys-­­
ics to account for conditions not explicitly represented in 
a data set with limited collocated measurements. In their 
approach, fluid saturations that were not directly observed 
at a well location but were likely to occur in the subsurface 
were included in the calibration data set. They did this by 
using Gassmann’s relation [1951] to predict the change in 
seismic velocity for a given change in saturation. An assump-­­
tion in these approaches is that the resulting petrophysical 
relations are not dependent on spatial location within the 
subsurface; recent theoretical work by Day-­Lewis and Lane 
[2004], however, indicates that this assumption is often not 
appropriate.

2.3.1 Random field averaging approach. Day-­Lewis and 
Lane [2004] developed an analytical method to determine 
the correlation loss between hydrological and geophysical 
measurements as a function of measurement physics, survey 
geometry, measurement error, spatial correlation structure of 
the subsurface, and regularization. This was accomplished 
by combining random field averaging (RFA) [VanMarcke, 
1983], which allows calculation of the statistical properties 
of weighted averages of random functions, and the definition 
of the model resolution matrix (equation 6b). 

As shown previously, tomographic estimates can be 
interpreted as weighted averages of point-scale properties. 
Estimating pixel values as a weighted average using equation 
(7), applying the random field average of VanMarcke [1983], 
making a Markov-type approximation [Journel, 1999], and 
calculating the cross-covariance between the geophysical 
parameter, m, and the hydrologic parameter of interest, p, 
we find:

	 	 (8)

	 	 (9)

	 .	(10)

where 	 σx,y is the covariance between variables x and y 
where x or y may be m and  or p;

σ2
x is the variance of variable x; and

rx,y �is the correlation coefficient between collocated values 
of x and y at the point scale. 

These equations allow us to predict the variance reduction 
of the pixel-scale tomographic estimate ( ) compared to the 
point-scale property (mi) (equation 8), the spatial covari-­­
ance of the tomogram (equation 9), and the correlation loss 
between the tomographic estimate ( ) and collocated hydro-­­
logic property pi (equation 10). Figure 1 shows a flowchart 
of this approach, which involves seven steps:
1.	� Construction of “small-­scale” hydrogeologic property 

realizations: A realization of the geophysical parameter 
is generated, assuming a known covariance structure and 
second-order stationarity.

2.	� Application of petrophysical relation: Site-specific labo-­­
ratory measurements and/or petrophysical theories are 
used to generate a field of the hydrologic property of 
interest, from the realization of the geophysical param-­­
eter.

3.	� Geophysical forward modeling: Synthetic geophysical 
data are calculated using an analytical or numerical model 
for the measurement physics and survey geometry. Given 
a model of expected measurement errors, random errors 
may be added to the data.

4.	� Geophysical inverse modeling: The synthetic mea-­­
surements obtained via forward modeling in step 3 are 
inverted. 

5.	� Random Field Averaging (RFA): The RFA equations 
(Equations 8–10) are applied to predict the parameters 
describing the pixel-specific statistical distributions of 
the estimated geophysical parameter.

6.	� Construct Bivariate Probability Distribution Functions 
(PDFs) between True and Estimated Geophysical 
Parameters: Assuming Gaussian distributions, we con-­­
struct bivariate probability distribution functions between 
the true and estimated geophysical parameters.

7.	� Application of petrophysical relation: Using the petro-­­
physical relation from step 2, we convert the PDF from 
step 6 to a bivariate PDF between the estimated geophysi-­­
cal parameter and true hydrologic parameter.

For the simplified case of linear, straight-ray radar tomog-­­
raphy and linear correlation between radar slowness (1/veloc-­­
ity) and the natural logarithm of permeability, Day-­Lewis 
and Lane [2004] derived formulas to predict 1) how the 
inversion process degrades the correlation between imaged 
slowness and permeability, compared to point measurements; 
2) how the variance of the estimated slowness compares to 
the variance of the true slowness; and 3) how the inversion 
alters the spatial covariance of the estimated slowness. This 
work was expanded in Day-­Lewis et al. [2005] to consider 
non-linear tomographic inversion and non-linear petrophysi-­­

Fig 1Fig 1
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cal relations. In this later work, patterns of correlation loss 
and variance reduction for both ERT and fresnel-volume, or 
“fat ray”, radar-traveltime tomography were investigated. In 
this case, because the petrophysical relations are non-linear, 
a more flexible approach was used, which considers the rela-­­
tion between the true and estimated geophysical parameter; 
the petrophysics was applied afterward to estimate hydro-­­
logic properties. The authors found that while ERT generally 
performs better near boreholes, where the electrodes were 
located, and radar-traveltime tomography performs better in 
the interwell region, the degradation in the relation between 
the geophysical and hydrologic property is a function of 
multiple factors: subsurface heterogeneity, the regularization 
used in the inverse problem, and the number and geometry of 
data collected. Consequently, imaging targets in the field is 
dependent on the distance of the targets from the electrodes, 
the number of data and the geometry with which they are col-­­

lected, and the type of smoothing used to obtain convergence 
in the geophysical inverse problem.

The principal benefits of the RFA approach are that 1) it 
is semi-analytical and therefore provides clear insights into 
how choices of survey geometry, inversion parameters, or 
regularization criteria impact the use of tomograms for 
hydrologic estimation; and 2) it is no more CPU-intensive 
than the resolution modeling performed as part of a rigorous 
analysis of tomographic data.

Several key issues limit the applicability of the RFA 
approach. Whereas the RFA equations provide a semi-
analytical way to estimate the degradation in the rela-­­
tion between hydrologic and geophysical parameters, the 
approach is based on a number of assumptions that may limit 
its utility to field applications, including: 1) the geophysical 
parameter is normally distributed, 2) both the geophysical 
and hydrologic properties share the same covariance struc-­­

Figure 1. Flowchart for Random Field Averaging Analysis. Starting from an assumed covariance describing the spatial 
structure of the geophysical parameter, a realization is generated and converted using the petrophysical model to the 
hydrologic property of interest. Synthetic geophysical data are calculated in the next step. Then the data are inverted 
and the model resolution matrix calculated. Random field averaging is used to upscale the spatial covariance based 
on the model resolution matrix and to calculate (1) the ensemble variance of the estimated geophysical parameter and 
(2) the correlation coefficient between the estimated and true geophysical parameters. Based on these results, bivariate 
probability distribution functions between the true and estimated geophysical parameter are calculated. In the final step, 
the bivariate distributions are transformed using the petrophysical model to yield pixel-specific petrophysical relations. 
Adapted from Day-­Lewis et al. [2005].
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ture, and 3) both properties are second-order stationary, i.e., 
the mean and variance are spatially uniform and the covari-­­
ance between two points depends only on the separation 
between them. 

2.3.2 Full inverse statistical calibration. An alternative 
approach to accounting for geophysical resolution in pet-­­
rophysical relations is to generate a large number of sub-­­
surface property realizations, forward model and invert the 
tomographic experiment for each realization, and finally 
compare the resulting tomograms with the original realiza-­­
tions to assess the impact of the geophysical filter. Moysey 
et al. [2005] and Singha and Moysey [2006] give examples 
where this type of a numerical simulation approach is used 
to capture the spatial variability in resolution of geophysical 
surveys. The method is referred to as Full Inverse Statisti-­­
cal (FISt) calibration because a full forward and inverse 
simulation must be performed for each realization used in 
the calibration (or statistical inference) of the field-scale 
petrophysical relation. The approach used by these authors 
follows a six-step process, and is outlined schematically in 
a flowchart in Figure 2:
1.	� Construction of “small-­scale” hydrogeologic property 

realizations: A set of realizations of the hydrogeologic 
property of interest is created using a technique that 
honors both the available data and conceptual model 
for the field site, e.g., geostatistical simulation or flow 
and transport modeling. These realizations should be 
simulated at an appropriate scale such that small-scale 
heterogeneities, should they be known, can be captured 
by effective parameters, but larger-scale heterogeneities 
affecting hydrologic (or geophysical) behavior are explic-­­
itly represented.

2.	� Application of a traditional petrophysical relation: Site-
specific laboratory measurements and/or petrophysi-­­
cal theories are used to determine relations between the 
hydrogeologic and geophysical properties under inves-­­
tigation. Geophysical property realizations can then be 
obtained from the hydrogeologic property realizations 
generated in step 1 using this relation.

3.	� Geophysical forward modeling: A numerical analog to 
the experiment executed in the field is performed on 
each geophysical property realization from step 2. The 
numerical experiment should parallel as closely as pos-­­
sible the real field experiment in both experimental design 
(e.g., survey geometry, data acquisition parameters) and 
representation of the relevant physical processes.

4.	� Geophysical inverse modeling: The synthetic measure-­­
ments obtained via forward modeling in step 3 are then 
inverted for each realization. The forward and inverse 
geophysical model need not use the same grid; in fact, 

doing so assumes that there are no subgrid-scale het-­­
erogeneities impacting the data. The inversion of the 
measurements into tomograms mimics the inversion of 
the field data, including the parameterization (i.e., model 
grid) and selection of regularization criteria. The goal is 
to reproduce the processing and inversion steps that have 
been applied to the field measurements. 

5.	� Generation of field-­scale hydrogeologic property realiza-­
tions: Each hydrogeologic property realization is upscaled 
to the model grid selected in step 4 using an appropriate 
spatial weighting function. For example, if hydrogeologic 
properties of interest are volumetric properties, e.g., water 
content, this step can be carried out using volumetric 
averaging.

6.	� Development of “apparent” or field-­scale petrophysical 
relations: The sets of field-scale hydrogeologic analogs 
from step 5 and geophysical analogs from step 4 are used 
to calculate the apparent petrophysical relation at every 
location in space (as defined by a pixel or voxel). The 
petrophysical relations should also be updated for each 
observation time during a monitoring experiment. The 
resulting relations can then be used to post-process the 
real-world geophysical properties to obtain an estimate 
of the hydrogeologic properties for the actual field site. 

One final practical consideration in implementing FISt 
calibration is the decision of how to find the best-fit line 
between the geophysical and hydrologic property for each 
pixel. There are many different means of obtaining a best-fit 
line. The most obvious choice, least-squares regression, pro-­­
duces a result that depends on which variable is considered 
independent—the best-fit linear relation of permeability 
versus velocity may be quite different from that of velocity 
vs. permeability. Ideally with FISt, we want to find the rela-­­
tion that allows the estimated and “true” property, perme-­­
ability in this case, to fall on a 1:1 line. One way to do this 
is to regress both the x and y axes and minimize the sum of 
squares of the perpendicular distances from the line, i.e., 
major-axis regression. Another possibility is to consider a 
distribution transformation:

	 	 (11)

In theory, the field-scale petrophysical relation determined at 
each spatial location could be a non-parametric estimate of 
the joint probability density function (PDF) between the geo-­­
physical and hydrologic parameters of interest. In practice, 
such inference would require a large number of simulations 
to be performed. When the full joint PDF is not needed, e.g., 
if a multi-modal PDF is not of concern, it is more practical 
to fit a simple model (e.g., linear relation) at each spatial 
location using a limited number of realizations. 

Fig 2Fig 2
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In 2D synthetic examples, Moysey et al. [2005] and Singha 
and Moysey [2006] used FISt calibration to improve esti-­­
mates of water content and solute concentration for radar 
traveltime and ERT experiments, respectively. Extending 
this work to a 3D transient system in the field, Singha and 
Gorelick [2006] applied a similar approach to ERT monitor-­­
ing of a tracer test performed at the Massachusetts Military 
Reservation, Cape Cod, Massachusetts. The tracer con-­­
centrations and total solute mass estimated from the ERT 

survey were in better agreement with multi-level sampler 
results when the authors used field-scale petrophysical rela-­­
tions rather than Archie’s law to convert resistivity to con-­­
centration. Singha and Gorelick [2006] also demonstrated 
that rather than develop “apparent” petrophysical relations 
between a hydrologic and geophysical property, FISt can 
also be used to “correct” tomograms by building relations 
between the true and estimated geophysical property. The 
benefit of comparing the true and estimated geophysical 

Figure 2. Flowchart for FISt calibration. Realizations of hydrologic properties can be generated by geostatistical cali-­­
bration, flow and transport models, or from conceptual understanding of field sites. These realizations are converted to 
geophysical properties through a petrophysical relation. Following this step, forward and inverse geophysical simulations 
are conducted. By considering multiple realizations, relations are then built between the inverted geophysical parameter 
and the hydrologic parameter at every pixel to account for spatially variable resolution. These relations are applied to an 
inversion of field geophysical data for a better estimation of hydrologic properties than otherwise attainable. Adapted 
from Moysey et al. [2005] and Singha and Gorelick [2006].
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parameter, rather than converting to a hydrologic param-­­
eter, is that the relation between them is likely to be well-
described by a bivariate normal distribution that can be 
captured in a linear relation.

One benefit of FISt calibration is that it is conceptually 
straightforward to implement. Another strength of this 
method is that it is easy to account for different kinds of 
uncertainty within the Monte Carlo-type framework of the 
method. For example, if the hydrologic conceptual model at 
a site is considered uncertain, it is straightforward to imple-­­
ment FISt calibration using realizations based on different 
conceptual models or generated using different simulation 
techniques. This degree of f lexibility makes the method 
potentially quite powerful. A third advantage of the FISt 
approach is the capability to condition to secondary informa-­­
tion, e.g., direct point measurements of the geophysical or 
hydrologic properties under investigation. 

There are at least three key issues that should be consid-­­
ered when using FISt calibration: 1) a meaningful relation 
between the geophysical and hydrologic parameters, 2) the 
appropriateness of the realizations used in the simulations 
with respect to the field-site hydrogeology, and 3) the abil-­­
ity of the numerical models used in the forward simulations 
to adequately capture ‘real-world’ processes. The lack of 
geophysical data sensitivity to the hydrologic properties of 
interest, i.e., non-informative data, is a general problem that 
will defeat any approach to data integration. The second 
and third issues, however, are important considerations 
that can potentially lead to biased estimates of the resulting 
field-scale petrophysical relation, and therefore, inaccurate 
estimates of hydrologic properties. An additional consider-­­
ation in using FISt calibration is that it is computationally 
expensive, especially for 3D transient problems.

Both FISt calibration and the RFA-based approach are 
similar to traditional petrophysics in that they use a math-­­
ematical (or numerical) model to describe how geophysical 
measurements sample the subsurface. In contrast to tradi-­­
tional approaches, however, these methods also account for 
the impacts of inversion on geophysical resolution rather 
than focusing on how a single measurement averages the 
subsurface. Both the RFA method and FISt calibration can 
determine the petrophysical relation between a geophysical 
and hydrologic variable as a statistical association, captured 
by a PDF that is explicitly dependent on spatial location, 
therefore inherently accounting for the spatially varying 
resolution of geophysical surveys. The overall conceptual 
similarity between the two approaches is made apparent 
by comparing the flowcharts in Figures 1 and 2. The main 
difference between the two approaches is that RFA is a 
semi-analytical approach that relies on an assumption of 
second-order stationary distributions, whereas FISt calibra-­­

tion is a non-parametric, numerical approach that allows 
for any model of spatial variability. In summary, the RFA 
method will typically be more computationally efficient, but 
the flexibility of FISt calibration makes it more generally 
applicable.

3. EXAMPLE 

We demonstrate the utility of FISt and RFA for a synthetic 
example where radar slowness is considered to be linearly 
related to permeability. Although FISt has been used in the 
past to convert tomograms to hydrologic estimates, RFA has 
not; RFA has been used only to predict the loss of informa-­­
tion arising from limited survey geometry, regularization 
criteria, measurement errors, and other factors that affect 
tomographic resolution. Here, we demonstrate how the field-
scale petrophysical relations generated with RFA can be 
used to produce more reliable hydrologic estimates from 
tomograms. 

 Our example assumes a linear relation with a correlation 
coefficient of -0.9 between radar slowness and permeabil-­­
ity. There have been examples where similar relations were 
assumed to be valid [e.g., Hubbard et al., 1997; Linde et al., 
2006]; we note, however, that such a linear model may only 
be hypothetical, with limited realism in many or most field 
scenarios, and should be applied in the field only with great 
care. Correlated permeability and slowness fields (Figure 
3a, b, respectively) are generated using sequential Gaussian 
simulation with an exponential covariance model, assuming 
an isotropic correlation length of 2.5 m, mean lnk [darcies] 
of 4.35, variance of lnk of 0.25, mean radar slowness of 15.12 
ns/m, and variance of radar slowness of 0.0973 ns2/m2. Radar 
traveltimes are calculated assuming straight raypaths, for 
1600 measurements with antenna spacings of 0.25 m along 
each 10-m deep borehole. The grids for forward simulation 
and tomographic inversion are identical, with a discretization 
of 0.25-m square pixels. For simplicity, we assume straight 
rays for forward modeling traveltimes. More sophisticated 
eikonal-solver forward models have been considered in other 
applications [Day-­Lewis et al., 2005; Moysey et al., 2005]; 
however, for our present purpose of comparing FISt and 
RFA for linear problems, straight rays are appropriate and 
sufficient. The measurement errors are assumed to be nor-­­
mally distributed with zero mean and standard deviation of 
2.0 ns (1.5%); this standard error is large relative to common 
sampling periods, but is intended to represent the combined 
effects of errors in traveltime picking, inaccurate borehole 
deviation and antenna positions, and modeling errors arising 
from the straight-ray approximation. It should be noted that 
errors are considered independent in this synthetic example, 
but are likely correlated in real field data. The inverse model 

Fig 3Fig 3
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is linear and amounts to a single iteration of equations (2–3), 
with Jij equal to the length of raypath i in pixel j. 

Compared to the true slowness field (Figure 3b), the tomo-­­
gram (Figure 3d) is smoother and shows less variation in 
slowness. The tomography resolves only large-scale struc-­­
tures and even these are smeared or blunted. The differences 
between true and estimated slowness arise because of mea-­­
surement errors, the limited data collection geometry, and 
regularization; therefore, after tomographic reconstruction, 
the relation between true permeability and estimated slow-­­
ness varies within the tomogram as a function of the spatial 
variability in resolution. Consequently, any estimation of 

permeability from radar data is biased, even in this simple 
synthetic example where a strong correlation between per-­­
meability and slowness exists. To demonstrate the degree of 
bias, we use the linear relation between true slowness and 
permeability to convert the tomogram to a cross-section of 
permeability estimates (Figure 3c), and plot the permeability 
estimates against true, synthetic permeability (Figure 4a).
High values of permeability are underestimated and low 
values are overestimated; the loss of extreme values is clearly 
evident in quantile-quantile comparison between estimated 
and true permeability (Figure 4d).  

Correction of the tomogram with FISt and RFA shows that 
accounting for spatial variability can improve the estima-­­
tion of permeability values without greatly impacting the 
fit to the data (Figure 3e, f; Table 1). To create the slope and 
intercept maps for both FISt and RFA, we transformed the 
distribution of slowness to the natural logarithm of perme-­­
ability assuming both to be normal—while this assumption 
may not always be appropriate in the field, it is applicable 
for this example. The updated cross sections of permeabil-­­
ity show increased variance; areas of high and low slow-­­
ness (and permeability) are better captured in the RFA and 
FISt estimates (Figure 3e, f) than in the original tomogram. 
The RMS error and overall correlation between true and 
estimated slowness are slightly poorer than in the original 

Fig 4Fig 4
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Figure 3. Application of FISt and RFA to a synthetic example of 
estimating permeability from crosswell radar data, where (a) is 
the true permeability and (b) is the true slowness. Shown are the 
(c) estimated permeability and (d) slowness distributions obtained 
using inversion and the application of our assumed relation; (e) the 
estimation of permeability using RFA; and (f) the estimation of 
permeability using FISt. 

Figure 4. Plots of true versus estimated permeability illustrate the 
accuracy of the estimates obtained using: (a) tomographic inversion 
and application of “true” relation, (b) RFA, and (c) FISt; accurate 
estimates fall along the 1:1 line. The (d) Q-Q plot, which compares 
the quantiles of the distributions of the true versus estimated per-­­
meabilities, shows that the estimate from tomographic inversion 
significantly underestimates the range of true permeability. Both 
RFA and FISt match the permeabilities in the central quartiles, but 
still underestimate the extremes.
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tomogram; however, these metrics may be less important to 
a hydrogeologist than capturing the tails of the permeability 
distribution. While the correlation between the true and 
estimated permeability does not markedly increase (Figure 
4b, c), the scatter better fits the 1:1 line than the original 
tomogram, and the variance in the permeability is greatly 
improved, as illustrated in quantile-quantile plots (Figure 
4d). Improved mapping of the high and low permeabilities 
in the field, should a relation between permeability and 
slowness exist, would be critical to understanding flow and 
transport processes in a given setting.

4. DISCUSSION 

FISt calibration and RFA provide improved methods for 
estimating hydrologic properties (in this case, permeabil-­­
ity) from geophysical data, should the relation between the 
geophysics and hydrogeology exist. Both perform equally 
well for the example presented; however, both have impor-­­
tant limitations when being applied to field data. First and 
foremost, both require that a relation between the geophysi-­­
cal and hydrologic property exists. While this relation is 
relatively clear in some circumstances (changes in water 
content or total dissolved solids and electrical resistivity, for 
instance), estimation of static properties such as permeability 
or the concentration of a dissolved non-aqueous phase liquid 
at some time may be impossible for geophysical methods to 
image directly. An assumption of correlation between hydro-­­
logic and geophysical parameters that does not exist may 
lead one to believe that geophysical methods can be used to 
estimate hydrologic processes when the geophysical data are 
actually uninformative. Another major issue is the sensitivity 
of the tomogram appearance to the final RMS error. Both 
methods may overpredict the hydrologic property if the data 
are overfitted, which could happen with the translation of 
geophysical tomograms to hydrologic data given standard 
petrophysical relations. It is similarly important that all the 
inversions for the numerical analogs used in FISt and the 
field data converge to similar error levels. If the data are 
over- or underfitted, the final tomograms exhibit different 
degrees of spatial variation; consequently the apparent pet-­­
rophysical relations may not be meaningful.

The RFA approach depends only on the resolution 
matrix and covariance models to estimate correlation loss. 
Numerous studies, however, have indicated that two-­point 
statistics, or covariance models, are inappropriate for gen-­
erating realistic connectivity in highly heterogeneous media 
[e.g., Western et al., 1998; Caers et al., 2003; Zinn and 
Harvey, 2003; Knudby and Carrera, 2005]. While RFA is 
more mathematically rigorous than FISt, it is unlikely to 
be used to correct tomograms in the field, as the assump-­­
tion of second-order stationarity is unlikely to be valid. 
FISt therefore has a wider applicability in real-world sce-­­
narios, where objects such as plumes, which are not easily 
described by two-point statistics, may be the target of inter-­­
est. Additionally, RFA may prove to be limited in cases of 
highly nonlinear physics. The calculation of R in nonlinear 
methods is local to the final solution; for mild non-linearity, 
the resolution will be relatively stable, but this may not be 
the case in the presence of high velocity contrasts. This 
limitation has the potential to impact the applicability of 
RFA to some scenarios. 

While FISt has the advantage of not being limited by a 
covariance model, the method is computationally expensive, 
and like other Monte Carlo methods may require many hun-­­
dreds or thousands of inversions to obtain good results [Peck 
et al., 1988]. FISt is also model-dependent, and requires an 
estimate of the subsurface properties to build the calibration 
relations. While we often have more data about our field 
sites than are used in inversion (a geologist’s rendition of the 
field area, for instance), we must attempt to minimize the 
introduction of features that are unlikely to exist—a poor 
choice for the underlying hydrogeology in construction of the 
realizations can cause spurious results [Singha and Gorelick, 
2006]. Another issue with FISt is that the pixels or voxels 
are also assumed to be independent, which is not true; they 
are dependent upon the resolution of the inverse procedure. 
Each estimated parameter is dependent upon the surrounding 
model space as dictated by the Backus and Gilbert averag-­­
ing kernel [Backus and Gilbert, 1968]. This is not a con-­­
cern for RFA, which uses the entire resolution matrix when 
calculating relations. A strength of FISt, however, is that it 
remains applicable with nonlinear inversion [e.g., Singha and 
Gorelick, 2006; Singha and Moysey, 2006]. 

Table 1. Estimates of correlation between true and estimated permeability over the entire tomogram, the RMS 
error associated with the slowness tomograms versus the original field, the forward-modeled data misfit associated 
with the slowness tomogram, and the fraction of the variance in the slowness tomogram compared to the original 
slowness field.

k-­  Correlation RMS Error Data Misfit Fraction of True Variance
Original Tomogram 0.577 0.408 0.996 0.299
FISt-­corrected 0.562 0.460 1.03 0.94
RFA-­corrected 0.560 0.476 1.05 1.07
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While these methods can be used in the “design” phase of 
a survey to assess a priori the nature of the resulting, space-
dependent, constitutive models, they can also be used to 
estimate hydrologic properties a posteriori from field data by 
developing petrophysical models specific to given acquisi-­­
tion geometries and local geology. Despite the complications 
above, both of these methods provide improved estimates 
of hydrologic properties and processes when applied with 
care, and also allow for quantification of the correlation loss 
between geophysical properties measured in the field, and 
hydrologic properties of interest, either before entering the 
field, or once data have been collected.

5. CONCLUSIONS

Geophysical tomograms are plagued by spatially variable 
resolution, making the estimation of hydrologic properties 
from them a difficult task. We have presented two methods 
currently available for mitigating these problems: FISt and 
RFA. Both have distinct advantages and disadvantages. While 
RFA provides a semi-analytical way to quantify spatially 
variable correlation loss, it is limited by the requirement of a 
known covariance model. FISt, on the other hand, is applicable 
in situations where two-point statistics may not be valid (the 
movement of contaminant plumes or infiltration), but is com-­­
putationally expensive because of the number of realizations 
that must be considered; FISt (as described here) assumes a 
linear model between parameters and pixel independence. 
Nevertheless, both of these methods provide a manner for 
estimating spatially variable petrophysical relations applicable 
in field settings, to improve quantification of hydrologic prop-­­
erties and processes from geophysical data.
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A Probabilistic Perspective on Nonlinear Model Inversion 
and Data Assimilation 

Dennis McLaughlin
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Environmental data assimilation and related applications of inverse theory 
seek to characterize uncertain variables by combining measurements and model 
predictions. The need for efficient and reliable environmental characterization 
methods is increasing as the quantity of in situ and remotely sensed measurements 
increases and as numerical models become more complex. Bayesian probability 
theory provides a convenient framework for analyzing the properties of available 
alternatives. In practical applications this theory typically focuses on the estima-­
tion of particular properties (e.g. the mean, mode, covariance, etc.) of the condi-­
tional distributions of uncertain model input and output variables, given available 
measurements. Difficult-­to-­justify assumptions about normality and linearity are 
needed to derive the most popular environmental estimation methods (3DVAR and 
4DVAR variational algorithms and ensemble Kalman estimators) from Bayesian 
theory. When the required assumptions do not hold, the point estimates provided 
by these methods are not necessarily equal, or even close, to any of the true con-­
ditional distributional properties of interest in Bayesian theory. This result raises 
questions about the probabilistic significance of estimates produced by commonly-
used nonlinear estimation methods. It also suggests that the emphasis in large 
nonlinear environmental estimation problems should be on achieving robust rather 
than optimal solutions. 

1. INTRODUCTION 

The closely-­related related fields of nonlinear inverse 
theory and environmental data assimilation seem at first 
glance to have generated a diverse collection of methods, 
assumptions, and numerical algorithms that have little 
common rationale or justification (see Banks and Kunisch 
[1989], Daley [1991], Bennett [1992], Sun [1995], Wunsch 
[1996], Kalnay [2002], and Tarantola [2005]). The excep-­
tion is the very well-­developed theory for linear systems. 
Unfortunately, many important physical phenomena 

observed in the earth sciences are direct manifestations of 
nonlinearity and cannot be reproduced, at least over exten-­
sive time periods and spatial regions, with linear models. We 
cannot generally assume that linear estimation methods will 
perform well for nonlinear problems, even though they may 
be successful in certain situations. 

Considering the importance of nonlinearity and the possi-­
ble limitations of a linear approach to environmental estima-­
tion it is useful to examine the assumptions and capabilities 
of the most popular approaches to inverse estimation and 
data assimilation. In order to provide a common framework, 
we adopt a Bayesian probabilistic perspective, which con-­
cedes that models, measurements, and related estimates of 
environmental variables are fundamentally imperfect and 
uncertain. This perspective can be used to consider the prop-­
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erties of a variety of different estimation methods, including 
ordinary nonlinear least-­squares, regularized least-­squares, 
variational data assimilation, and ensemble estimation. For 
context, we begin with a deterministic formulation of the 
inverse problem and indicate why a probabilistic reformula-­
tion is useful. We then present the basic concepts of Bayesian 
estimation theory. This leads us to consider the assumptions 
required to derive the most popular nonlinear data assimila-­
tion methods from a general Bayesian solution. We conclude 
by examining the implications of our brief survey of envi-­
ronmental estimation. 

2. DETERMINISTIC INVERSION 

Environmental model inversion and data assimilation prob-­
lems can be formulated at various levels of generality. The 
essential elements are: 1) a set of measurements taken at vari-­
ous times and locations and characterized by different scales, 
errors, and coverage; 2) a model that describes the physical 
system of interest; and 3) another model that describes the 
measurement process. The objective is to characterize uncer-­
tain system variables by combining measurements and model 
predictions. Depending on one’s perspective, this process can 
be viewed as using measurements to constrain the models or 
as using the models to interpret and enhance observations. 
In either case the hope is that measurements and models will 
together provide better descriptions of environmental condi-­
tions than either taken alone. 

In environmental applications the system model is often 
most naturally expressed in terms of a set of coupled partial 
differential equations, or state equations. We suppose that 
these equations have been discretized in space and time in 
order to obtain an approximate numerical solution for a vec-­
tor y of output variables defined at all discretized times and 
locations, given a vector u of discretized input variables. The 
numerical solution for y is then written as: 

	 	 (1) 

Known inputs are not explicitly included as arguments. 
The output variables (y) of interest in environmental appli-­

cations typically include system states (the dependent vari-­
ables in the differential equations) as well as other variables 
derived from the states. In subsurface hydrology, a classic 
nonlinear example is unsaturated f low. Here the system 
state, which is included in y, is the pressure of the system, 
expressed through Richard’s equation as a function of time 
and location. Other outputs of interest (such as saturation, 
infiltration, or runoff) can be derived from the pressure 
through constitutive and mass balance relationships and also 
included in y. The inputs (u) in this example include bound-­

ary and initial values for the states (or their gradients) and 
various coefficients that describe the dependence of satura-­
tion and hydraulic conductivity on pressure. In this case, 
the discretized solutions to the system equations (Richards 
equation and the associated constitutive and mass balance 
relationships) implicitly define the function f in the input-
output relationship y = f(u). 

It is easiest to appreciate the issues involved in nonlinear 
estimation problems if we adopt a batch approach and assemble 
all measurements used for estimation in a single large vector z. 
These measurements may only provide indirect information 
about the system variables. In the unsaturated flow example 
relevant measurements include remotely sensed passive micro-­
wave brightness temperature, in situ measurements of soil 
saturation, and remote or in situ precipitation measurements. 
All of these can be incorporated into the measurement vector 
z. Postulated relationships between such measurements and the 
system inputs and outputs constitute a measurement model, 
which can be written compactly as: 

	 	 (2) 

The relationship z = h(u) defined in (2) is frequently called a 
“forward model.” In our unsaturated flow example, the func-­
tion g might be expressed as a product g (y, u) = g (y) = G y 
of the output vector y and a selection matrix G that identifies 
which outputs are measured (e.g. a subset of the discretized 
soil saturation values). In this special case the forward model 
would be z = h(u) = Gf(u). Note that the forward model 
depends on both the system and measurement models. 

The batch description provided above is convenient for our 
present purposes but does not exploit the temporal structure 
found in most dynamic problems. It is frequently helpful 
in applications to distinguish two types of time-­dependent 
estimation: 1) smoothing problems, which seek estimates of 
output variables throughout a specified measurement time 
interval, and 2) filtering problems, which seek estimates of 
these variables only at the end of the measurement interval 
[Gelb, 1974]. Smoothing is typically used for retrospective 
analysis of historical data while filtering is used in real-­time 
control and to initialize forecasts. Both types of problems 
are frequently solved recursively, with new measurements 
processed as they become available. Recursive algorithms are 
usually more computationally efficient than batch estimation 
algorithms. But a batch problem formulation provides the most 
general way to compare different estimation approaches. 

Inverse methods derive estimates of the uncertain input u 
from (2), with z given. Formally, this can be viewed as an 
inversion of the forward model z = h(u). Once an estimate of 
u is obtained it is typically substituted into (1) to give a cor-­
responding estimate for y. Direct algebraic inversion of (2) is 
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usually possible only in special situations. If there are more 
inputs than measurements the problem is under determined 
and will generally not have a unique solution. In this case it 
may be possible to reproduce observations exactly with an 
unrealistic model that has no predictive value. If there are 
more measurements than inputs the problem is over deter-­
mined and direct inversion of (2) is feasible only if the model 
and measurements are perfect. In practice, it is necessary to 
generalize the concept of inversion to deal with data limita-­
tions, imperfect models, and measurement errors. The most 
common generalization is the least-­squares approach. 

2.1. Classical Least-­Squares 

Measurement and model errors can be accounted for in 
an aggregate way by modifying (2) to include a vector v of 
unknown measurement-­model deviations: 

	 	 (3) 

In this case we seek the value of u that yields a “best fit” 
rather than a “perfect fit” to the measurements. We can 
measure goodness-­of-­fit in terms of the mean-­squared error 
between z and h(u): 

	 	 (4) 

where Wv is a positive definite matrix that can be used to 
give different weights to different measurement–model 
deviations. Note that this need not be an inverse covariance 
matrix (although that is a possibility discussed below). In 
a deterministic context the weighting matrix is chosen for 
convenience. The resulting “best fit” input uls is the solution 
to the following minimization problem: 

	 	 (5) 

There can be a unique solution only if the problem is not 
underdetermined (i.e. the number of distinct measurements 
nz must be at least as large as the number nu of unknown 
inputs). When h(u) is linear in u this is equivalent to requir-­
ing that the rank of the constant matrix ∂h/∂u is at least nu. 

There is a rich and extensive literature on the analysis 
of least-­squares estimates derived from (5) [Bard, 1974]. 
In order to provide an assessment of estimation accuracy 
least-­squares theory treats the actual measurement z and the 
measurement-­model deviation v as samples of random vari-­

ables which are, with some abuse of notation, also written as 
z and v. The true input u is assumed to be unknown but not 
random. The probability density pv(v) of the error v is usually 
assumed to be normal, perhaps with a mean and covariance 
that are inferred from the actual observations. Given the 
additive form of (3) it follows that the measurement density 
pz(z) is also normal. Most classical least-­squares analyses of 
model significance, parameter confidence intervals, and esti-­
mation accuracy are based on these normality assumptions 
and the additional assumption that h(u) is linear. Analyses 
of nonlinear non-­normal problems generally rely on Monte 
Carlo simulations [Tarantola, 2005]. 

Least-­squares analysis raises some important conceptual 
issues. One is the ambiguity associated with the definition of the 
random measurement-­model deviation v, which accounts for the 
aggregate effects of both model and measurement error. Since 
these two sources of error have different origins and enter the 
model and measurement equations in different ways it is dif-­
ficult to objectively specify a pv(v) that properly describes their 
aggregate effect. In practice, this probability density is typically 
assumed to be normal with a mean and covariance that do not 
depend on the model state. In many applications, such as situa-­
tions where the output variables are confined to limited ranges 
or measurement errors depend on the magnitude of the signal, 
this assumption is difficult to justify. 

Another issue that arises, particularly in nonlinear least-
squares, is the difficulty of finding a unique set of least-
squares estimates. Even when the problem is not under 
determined many combinations of different parameters 
may give nearly the same mean-­squared error. Unfortunately, 
these more or less indistinguishable inverse solutions may 
yield very different predictions for times/locations that 
extend beyond the observation period/region. 

The limitations of the classical least-­squares approach have 
prompted the development of modified versions that distin-­
guish model and measurement errors and constrain the set of 
permissible solutions to deal with non-­uniqueness. 

2.2. Regularization and Prior Information 

The least-­squares approach can be extended if the objec-­
tive function in (4) is augmented with terms that bias the 
solution towards input values with certain desirable proper-­
ties [Tikhonov and Arsenin, 1977; Banks and Kunisch, 1989]. 
One common option is to add a “regularization term” that 
penalizes deviations from a specified “first guess” or “prior” 
value uf, as follows 

	 	 (6) 
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The first term in this regularized objective can be viewed as 
a penalty on measurement error (weighted by Wv) while the 
second can be viewed as a penalty on input error (weighted by 
Wu). When measurements are more uncertain Wv is reduced 
and larger measurement deviations are tolerated. Similarly, 
when the first guess input is more uncertain Wu is reduced 
and larger input deviations are tolerated (if Wu is zero the 
classical least-­squares objective is recovered). This tradeoff 
between measurement and model error is fundamental in 
data assimilation theory. 

Regularization can give more physically plausible esti-­
mates by effectively constraining the set of possible solu-­
tions and forcing underdetermined problems to have unique 
solutions [Tikhonov and Arsenin, 1977]. However, regular-­
ization raises its own conceptual issues. First, it sacrifices 
the objective concept of “best fit” for a more subjective 
interpretation of plausibility. The final input estimates will 
not generally give as good a fit to the data as a classical least-
squares procedure. Second, regularization theory does not 
provide, in itself, any objective way to select the weights and 
first guess values that control the final solution. Nearly any 
desired solution can be obtained by sufficient manipulation 
of the regularization term. These difficulties have prompted 
efforts to give regularized least-­squares, particularly the 
regularizing weights and first guess values, a more funda-­
mental foundation. For the most part, these efforts draw on 
Bayesian estimation theory. Further details are discussed in 
the following section. 

3. BAYESIAN ESTIMATION 

Bayesian estimation treats unknown input and output 
variables and measurements as random variables [Jazwinski, 
1970; Miller et al., 1999]. Most Bayesian theory assumes 
that the structure of the function f(.) defined in (1) is known 
perfectly so that all system model uncertainties enter through 
the random inputs assembled in the vector u, which has 
a specified prior probability density pu(u). In addition, it 
is common to assume that (3) describes the relationship 
between the measurements and system variables, that the 
function g(.) is known perfectly, and that v is an additive 
random variable independent of u with a specified prob-­
ability density pv(v). 

If f and pu(u) are known the prior (or unconditional) output 
density py(y) can be derived from (1). For general nonlin-­
ear problems this derivation must usually be carried out 
numerically, with a Monte Carlo simulation. Measurement 
information is incorporated through the conditional densi-­
ties pu|z(u | z) and py|z (y | z), which may be derived from the 
unconditional densities and the measurement model [Miller 
et al., 1999]. These conditional probability densities convey 

everything we know about the uncertain inputs and outputs, 
given a particular set of measurements. In environmental 
applications the densities of interest are usually too large to 
be derived or visualized directly, except for certain special 
cases (e.g. when all the relevant variables are jointly nor-­
mal). Consequently, practical Bayesian estimation methods 
typically focus on particular properties of pu|z (u | z) and py|z 
(y | z), such as their means, modes, covariances, quantiles, 
and univariate marginal densities (e.g. the density of a par-­
ticular scalar component of y). 

It is useful to distinguish two approaches for deriving the 
statistical properties of the conditional probability densities 
of u and y. These can be broadly identified as parameter and 
state estimation and are illustrated in Figure 1. Parameter 
estimation derives pu|z (u | z) from the following version of 
Bayes theorem: 

	 	 (7) 

where pz|u (z | u) is the input likelihood function (treated 
as a function of the variable u for a given z) and c is a nor-­
malization constant. Subscripts are added to the probability 
densities to clarify the difference between the random vari-­
able described by the density (in the subscript) and the argu-­
ment of the density function (in parentheses). The second 
equality in (7) follows because the additive measurement 
error assumption of (3) allows the likelihood to be derived 
directly from pv, which is specified a priori. The conditional 
output density py|z (y | z) or its properties can, in principle, 
be obtained from pu|z (u | z) using derived distribution tech-­

Fig 1Fig 1

Figure 1. Comparison of Bayesian parameter and state estimation 
approaches to data assimilation problems.
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niques (e.g. Monte Carlo simulation) but this is rarely practi-­
cal for large nonlinear problems. 

The alternative state estimation approach focuses directly 
on py|z (y | z), which can be obtained from the following ver-­
sion of Bayes theorem: 

	 	 (8) 

where p z|y (z | y) is the output likelihood function (treated as 
a function of the variable y, for a given z). Derivation of this 
likelihood is simplified if the measurement function g(y, u) = 
g(y) depends only on output variables. This requirement can 
be met if the output vector is redefined to include all mea-­
sured inputs, generally at the cost of introducing additional 
sources of nonlinearity. The result is: 

	 	 (9) 

Note that the state estimation approach does not provide 
information about pu|z(u|z). The parameter and state estima-­
tion versions of Bayes theorem ultimately yield the same 
py|z(y|z) when their assumptions are compatible but they 
require different information and may have different com-­
putational requirements. 

In order to apply Bayesian estimation we must specify 
the appropriate prior density pv(v) as well as either pu(u) or 
py(y). For parameter estimation the most common approach 
is to assume that u and v have normal prior densities. Then 
the natural log of the conditional density for u may be writ-­
ten as: 

	 	 (10) 

where Cv and Cu are the covariances of v and u,  is the mean 
of u, and v is assumed, without loss of generality, to have a 
zero mean. Note that pu|z(u|z) is generally not normal if h(u) 
is nonlinear, even if the u and v priors are normal. In this 
case the mean, covariance, and most other statistics of pu|z 
(u | z) are generally difficult to derive. However, the mode 
can be found by minimizing – ln pu|z(u|z) -­2ln c , which can 
be written as a least-­squares objective function: 

	 	 (11) 

This mode is equal to ureg, the regularized estimate that 
minimizes (6), if the least-­squares first guess is taken to be 

 and the weighting matrices Wv and Wu are taken to 
be the corresponding inverse covariances. In this respect, 
Bayesian estimation theory appears to provide the desired 
fundamental justification for regularization. The regularized 
estimate now represents a balance between best fit and first 
guess that is based on our relative confidence in measured 
data and prior information. 

If we focus on minimization of (11) and only find the 
mode of p u|z (u | z) it is not generally possible to derive any 
of the conditional statistics of y, since we do not know how 
u is distributed around the mode. Although it is possible to 
evaluate the point estimate y = f(umode) this estimate is not 
generally equal to the mode or any other common statistical 
property of p y|z (y | z) in the nonlinear case (see the example 
presented below). 

As an alternative, we can pursue the state estimation 
approach and assume that y and v (rather than u and v) are 
normal. In this case, the natural log of the conditional density 
for y can be written: 

	 	 (12) 

where Cy is the covariance of y, and  is the mean of y. Note 
that p y|z (y | z) is generally not normal if g(u) is nonlinear, 
even if the y and v priors are normal. Also, the assumption 
that u is normal (used in (11)) and the assumption that y is 
normal (used in (12)) are generally not compatible if f(u) is 
nonlinear. So the normal (quadratic) versions of the param-­
eter and state estimation approaches actually solve different 
problems and will generally give different results in nonlin-­
ear applications. 

By analogy with the parameter estimation formulation 
the mode of py| z(y| z) can be found by minimizing -­ln py| z(y| 
z) -­2ln c, which can be written as a least-­squares objective 
function that depends on y rather than u: 

	 	 (13) 

Although the state estimation objective of (13) looks similar 
to the parameter estimation objective of (11) the normality 
assumptions required are different. 
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The Bayesian estimation concepts outlined are illustrated 
in Figure 2 for a simple nonlinear estimation example. In this 
case, the state y is derived from a lognormally distributed 
input η as follows: 

	 	 (14) 

This is a saturation function similar to those frequently used 
to describe sorption and other limiting processes. Figure 2a 
shows the saturation function for a = 2.0, together with the 
lognormal density for η, which is generated from a normal 
random variable u = ln(η) with mean -­1.0 and standard devia-­
tion 2.0. For these parameters the most probable values of η 
and y = f (η) are near zero. In order to maintain consistency 
with the normality assumptions of (11) it is convenient to 
formulate the estimation problem in terms of the normally 
distributed input u rather than η. Figure 2b shows the uncon-­
ditional probability distributions of u and y., derived from a 
Monte Carlo simulation with 106 replicates. The p(y) plot 
confirms that small values of y are most probable. 

Now suppose that we have a measurement z = y + v, where 
v is normally distributed with mean 0.0 and standard devia-­
tion 0.1. We seek the conditional probability densities p(u|z) 
and p(y|z), conditioned on z. This estimation problem may be 
solved by using (7) to obtain p(u|z) and (9) to obtain p(y|z). 
The conditional densities for this example with z = 0.7 are 
shown in Figure 2c. These were derived with by using the 
closed form normal likelihood function obtained from p(v) 
to weight the Monte Carlo replicates for p(y), as specified in 
(9). The unconditional mean and mode of y and the condi-­
tional means and modes of u and y are noted on the plots. 

 The conditional mode of u, mode[u|z] = 0.93 is the point 
estimate of u that is obtained by minimizing (11). The point 
estimate f[exp(mode(u| z))] = 0.62 obtained when the con-­
ditional mode of u is substituted into the saturation function 
is much larger than the actual conditional mode, which is 
mode(y| z) = 0.01. Both f[exp(mode(u| z))] and the actual con-­
ditional expectation E[y| z] are in the midst of an extended 
region of relatively low probability corresponding to the 
transition portion of the saturation function. Conditioning 
on the noisy measurement z = 0.7 somewhat increases the 
probability of values in this region but the actual mode of 
the y conditional density remains near zero. 

The results shown in this particular example are dramatic 
but illustrative of what may happen when relatively simple 
nonlinearities are combined with non-­Gaussian densities. 
It should be noted that the values of f[exp(mode(u| z))] and 
E[y|z] gradually move toward the actual conditional mode as 
the measurement value in this example moves toward zero. 
Also, as the measurement error standard deviation decreases 

the actual conditional mode moves closer to f[exp(mode(u| 
z))] and E[y|z], which become clustered near the measured 
value. In both cases, the point estimate that minimizes (11) 
gives a better estimate of the mode of y when substituted into 
the saturation function. On the other hand, it is not difficult 
to construct other examples that give an even larger spread 
between point estimates and actual values of the mean and 
mode. The differences can be especially large if the func-­
tion f (η) is non-­monotonic. The real lesson to take from this 
example is that conventional point estimates can be relatively 
uninformative in nonlinear problems since the most likely val-­
ues of uncertain variables may differ significantly from these 
estimates. We return to this topic at the end of the paper. 

4. VARIATIONAL METHODS 

Bayesian estimation techniques are widely used in fields 
as diverse as hydrology, economics, petroleum engineering, 
and meteorology. In meteorology and oceanography it has 
become common to call these methods variational algo-­
rithms, in recognition of the fact that the solutions are often 
derived from variational calculus (see Daley [1991], Bennett 
[1992], Wunsch [1996], and Kalnay [2002]). Meteorologists 
typically distinguish three-­dimensional variational (3DVAR) 
and four-­dimensional variational (4DVAR) algorithms, 
depending on how time is handled [Courtier, 1997]. In most 
cases variational algorithms are based on (11) and (13) and 
rely on the normality assumptions that are implicit in these 
equations if a probabilistic perspective is adopted. 

 Using the terminology introduced above, 3DVAR is a 
static state estimation procedure. Suppose that a state esti-­
mate yt at time t is to be derived solely from the current 
measurement zt, a corresponding measurement error density 
p(vt), and a specified prior state probability density p(yt). 
3DVAR methods nearly always adopt normality assumptions 
and use the mode of p(yt | zt) as a point estimate of yt. This 
mode minimizes an instantaneous version of (13): 

	 	 (15) 

The necessary condition for a local minimum is that the 
gradient  of this objective must equal zero. 
When gt(yt) is linear this condition yields a convenient closed 
form solution that is also the global minimum (since Jse,t 
(yt) is then convex). When gt(yt) is not linear it is generally 
necessary to solve the minimization problem with a gradient-
based numerical search algorithm [Tarantola, 2005]. 

Fig 2Fig 2
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Figure 2. Specified and derived probability densities for the example: a) Forward model f(η) and unconditional p(η), 
b) unconditional p(u) and p(y), c) conditional p(u |z) and p(y |z). Measurement value z = 0.7.
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In practice, 3DVAR typically updates state estimates 
recursively, using new prior statistics and measurements at 
each update time. The updated state estimate is often used 
to initialize a real-­time forecast derived from the system 
model. In our unsaturated flow example a 3DVAR approach 
could be used at a single time t to estimate pressures (yt) 
throughout the soil column from radiobrightness measure-­
ments (zt). The resulting estimates could then serve as initial 
conditions for a Richards equation solution that predicts the 
state at times greater than t. 

The 4DVAR approach is an extension of 3DVAR that 
is, from a Bayesian perspective, fundamentally a param-­
eter estimation technique. In a 4DVAR algorithm measure-­
ments span an extended time period and inputs and states are 
typically estimated throughout this period. In meteorology 
the uncertain input of most interest is often the state at the 
beginning of the measurement period, which serves as an 
initial condition for the model solution over this period. In 
hydrogeology and petroleum engineering the most impor-­
tant uncertain input is often permeability. 4DVAR methods 
nearly always adopt normality assumptions and use the mode 
of p(u | z) as a point estimate of u. This mode is obtained 
by minimizing (11). As in 3DVAR, gradient-­based search 
algorithms are typically used to find the minimum. Adjoint 
methods for computing the objective function gradient often 
provide a significant computational advantage over finite 
difference methods and are generally used in operational 
4DVAR applications [Courtier et al., 1993]. 

Most 4DVAR algorithms derive a point estimate  of the 
system state by substituting mode(u) directly into (1) to 
obtain  fmode(u). In any applications the state estimate 
at the end of the measurement period is used to initialize 
a forecast, as in 3DVAR. As mentioned earlier, the state 
estimate fmode(u) has no particular probabilistic signifi-­
cance for nonlinear problems. However, it satisfies the 
model equations for a set of inputs which are deemed the 
most probable, subject to all the assumptions made in the 
analysis. The fact that 4DVAR state estimates always sat-­
isfy the model equations has been one of the attractions of 
the approach. “Weak constraint” variational formulations 
challenge this viewpoint by including a random additive 
model error term in (1) [Zupanski, 1997]. In this case, the 
system model equations do not need to be satisfied exactly 
since they are no longer believed to be perfect. From a 
mathematical viewpoint the weak constraint variational 
formulation is equivalent to extending the uncertain input 
vector to include error variables that are not part of the 
original system model. When this is done the problem can 
be written in the form given in (11). 

In order for the variational approach to properly balance 
measurement and prior information the prior means and 

covariances must be physically reasonable. This is particularly 
important in 3DVAR, where the prior mean and background 
covariance are the only sources of information about the evo-­
lution of the state from the previous update time. Both of these 
statistics should be dynamically consistent (i.e. they should be 
consistent with conservation laws that relate the various state 
variables). This requirement is sometimes difficult to enforce 
in complex problems. In 4DVAR the input covariance should 
properly describe spatial and temporal relationships among 
the uncertain inputs. For example, in groundwater hydrology 
or reservoir engineering this covariance should reflect the 
effects of anisotropy and connectedness in the permeability 
field. The assumption that the prior input density is normal 
limits the flexibility available for such descriptions since 
variability must be characterized entirely by the first two 
moments of u. 

The variational approach to model inversion and data 
assimilation is currently the method of choice for large 
operational applications. This is ref lected, for example, 
in the activities of the major weather forecasting centers, 
which use variational algorithms to issue routine opera-­
tional products. The greatest conceptual limitations of the 
variational approach are 1) its dependence on normality 
assumptions and covariance-­based descriptions of vari-­
ability, 2) its reliance on point state estimates that generally 
do not have any particular statistical significance, and 3) its 
inability to provide distributional information about uncer-­
tain variables. These limitations have prompted interest in 
ensemble methods that are more flexible and are may be 
able to provide more complete statistical information about 
the system states. 

5. ENSEMBLE STATE ESTIMATION 

Ensemble state estimation methods seek approximate 
solutions for the conditional state density py|z(y|z) or its 
statistical properties [Arulampalam, 2002; Evensen, 2003, 
2004]. From a probabilistic perspective these methods are 
ultimately based on (9), although they are often derived 
without specific reference to their Bayesian origins. In order 
to understand the approximations typically used in large 
problems it is helpful to consider the widely-­studied special 
case of normally distributed y, v and z and linear g(y) = Gy. 
In this case, py|z(y|z) is multivariate normal and completely 
determined by the conditional mean and covariance, which 
may be written in closed form as [Tarantola, 2005]: 

	 	 (16) 

	 	 (17) 
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where the cross-­covariance Cyz = CyyG
T and the measurement 

covariance Czz = GCyyG
T + Cvv. Note that the conditional 

mean is a linear function of the measurements. Also, the con-­
ditional covariance depends on G, and the prior covariances 
of y and v but not on the measurements themselves. When 
u is also normal and f(u) = Fu is linear Cyy = FCuuFT and 
the Bayesian state and parameter estimation problems are 
equivalent. These batch estimation equations have the same 
form as a cokriging algorithm with a known mean [Marsily, 
1986]. Recursive versions of (16) and (17) yield the Kalman 
smoother or, when estimates are desired only at the end of 
the measurement interval, the Kalman filter [Gelb, 1974]. 
Also, the conditional mean estimate of (16) is the same as 
the conditional mode estimate obtained from 3DVAR for the 
linear normal case. The linear normal problem has such a 
straightforward solution because it is able to use covariances 
to describe physical relationships between inputs, states and 
measurements. 

The convenient closed form expressions for py|z(y|z) 
and its moments obtained in the linear normal case do not 
apply when y is non-­normal and/or g(y) is nonlinear. Large 
non-­normal nonlinear problems must generally be solved 
numerically with a Monte Carlo procedure. In this case the 
desired probability densities are approximated with ensem-­
bles of randomly generated replicates [Arulampalam, 2002; 
Evensen, 2003, 2004]. Each replicate is assigned a value and 
a discrete probability. The prior input replicates ui (i = 1, …, 
N) are obtained by selecting N equally likely samples from 
the specified prior input density. These may be substituted 
into (1) and (2) to give a corresponding set of equally likely 
prior state replicates yi and measurement prediction repli-­
cates zi = g(yi). The conditional state density is approximated 
by updated replicates yi|z derived from the prior replicates 
and the measurements. There are a number of different state 
updating approaches characterized by different assumptions 
and computational requirements. 

Particle-­based updating methods generally adjust only 
replicate probabilities and leave replicate values unchanged. 
The simplest of these uses (9) to derive the updated discrete 
probability for replicate i [Arulampalam, 2002]: 

	 	 (18)

The complete ensemble of state replicates and their updated 
probabilities may be used to estimate distributional proper-­
ties such as the conditional mean, mode, covariance, etc. The 
particle approach has the virtue of providing a truly proba-­

bilistic description of the state without making restrictive 
assumptions about the forms of the prior densities of u and 
v. Its primary disadvantage is computational. As the number 
of measurements and unknown inputs increases the number 
of replicates required to prevent the collapse of the ensemble 
to a single replicate (degeneracy) grows rapidly, making the 
approach infeasible for large problems [Arumpalam, 2002]. 

A practical alternative is to focus on updates of the repli-­
cate values rather than their probabilities. This is the approach 
taken in ensemble methods that rely on linear normal theory. 
An example is the ensemble Kalman smoother and its filter 
counterpart, the ensemble Kalman filter [Evensen, 2003, 
2004]. The ensemble Kalman smoother assumes that the 
conditional density p(y| z) has the same mean and variance as 
the classical linear normal Kalman smoother. Consequently, 
the updated replicates yi|z are selected so that their sample 
mean E[y| z] and covariance Cov [y| z] correspond to (16) 
and (17), with the prior covariances Cyy, Cyz, and Czz replaced 
by sample estimates computed from the yi and zi replicates. 
There are many ways to generate updated replicates that 
converge to the desired E[y| z] and Cov [y| z]. These alterna-­
tives all lead to somewhat different versions of the ensemble 
Kalman smoother. In the version proposed by Evensen [2004] 
the mean-­removed updated replicates are linear combina-­
tions of the mean-­removed prior replicates, with weights that 
depend on the sample estimates of Cyy, Cyz, and Czz. 

The updated ensemble produced by the ensemble Kalman 
smoother can be proven to converge to the exact conditional 
density p(y| z) as the ensemble grows, provided that the linear 
normal assumptions are valid. It is reasonable to ask why one 
might want to use an ensemble Kalman updating procedure 
in the more general case when linear normal assumptions 
do not hold. The honest answer is that the Kalman update is 
a very convenient approximation that has been observed to 
work well, even in situations where the prior and conditional 
densities of interest are highly non-­normal (e.g. skewed or 
multi-­modal) [Zhou et al., 2006]. Despite this, there is no 
reason to expect that the distributional properties of the 
ensemble obtained from a Kalman update will be correct in 
any given nonlinear problem. In the example presented in 
Figure 2 the Kalman conditional mean estimate is reasonably 
close to the true conditional mean, primarily because the 
measured value is also reasonably close. This may not always 
be the case. Care should be used in applying the Kalman 
update in nonlinear problems since it is possible that the 
updated ensemble values can actually move away from the 
true value, especially if the measurement error is large. 

Ensemble estimation is becoming popular in a variety of 
data assimilation applications, largely because it is so easy 
to use. It has the advantage of providing information about 
the distribution of likely states, rather than just a single 
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point estimate. Like the variational approach, ensemble 
estimation is general in concept but limited in practice. At 
present, the computational demands of particle methods 
have prevented their application to large environmental 
data assimilation problems. Ensemble Kalman filtering and 
smoothing are more efficient but rely on normality assump-­
tions that are even stronger than those required in variational 
methods. That is, the ensemble filter tries to duplicate (17) 
and (18), which assumes that all conditional and uncondi-­
tional densities are normal, while the variational approach 
only assumes that the unconditional densities p(v) and either 
p(y) or p(u) are normal. The implicit normality assumptions 
of the ensemble Kalman filter may be acceptable in some 
situations but can be problematic in others where variables 
are highly skewed or even multi-­modal. 

Even when the linear normal assumptions are satisfactory 
ensemble methods may be compromised by sampling error 
issues. This is especially true when the number of replicates 
is small compared to the number of estimated unknowns 
(as is usually the case in real-­world applications). Sample 
covariances derived from a small ensemble can lead to non-
physical artifacts that can be difficult to detect and remove 
without creating other problems. Many of these difficulties 
may be resolved in the future, as better techniques are devel-­
oped for generating and updating replicates. 

6. CONCLUSIONS 

A probabilistic perspective on nonlinear model inversion 
and data assimilation problems prompts us to rethink exist-­
ing approaches. It is striking that the most popular state-­of-
the-­art data assimilation methods cannot be proven to yield 
accurate estimates of any of the distributional properties 
of interest in Bayesian estimation theory. In particular, we 
have no reason to believe that either variational methods or 
ensemble Kalman estimators will give reliable estimates 
of the conditional mean, mode, covariance, or quantiles of 
the system state, except in the special linear normal case 
discussed above. 

Perhaps the point state estimates produced by varia-­
tional methods and the sample statistics produced by an 
ensemble Kalman estimator are useful approximations of 
reality in certain practical nonlinear applications. But it is 
difficult to assign any probabilistic significance to these 
state estimates and statistics or to compute credible non-
probabilistic indicators of the “usefulness” or “accuracy” 
of these approximations. Similarly, it is difficult to compare 
estimation alternatives without an objective performance 
measure. Post-­hoc or off-­line performance measures, such 
as the “forecast skill” used to assess the match between 
meteorological forecasts and observations, can be argued 

to be useful alternatives to more classical distributional 
measures. But there is no reason to believe that a variational 
method designed to minimize (11) or (13) or an ensemble 
Kalman estimator designed to estimate conditional moments 
subject to normality assumptions will necessarily maximize 
forecast skill. There is also no reason to believe that a skill-
maximizing estimator would be better in other respects than 
existing alternatives. 

Although variational and ensemble methods will 
undoubtedly both improve over time it seems appropriate 
to ask at this point whether the classical preoccupation with 
“optimal” point estimates has any place in nonlinear data 
assimilation. What we really seek in most practical appli-­
cations is a robust estimation strategy that nearly always 
improves on our prior knowledge, even when our assump-­
tions and inputs are imperfect. It would be helpful to have 
a theory of robust estimation that properly acknowledges 
the possible deficiencies of the models and measurement 
sources used in nonlinear data assimilation problems. In 
this respect it is worth noting that operational data assimila-­
tion in meteorology and oceanography is largely concerned 
with creating robust estimators, using information gained 
when so-called optimal estimators fail. In operational appli-­
cations the biases, artifacts, and various other errors fre-­
quently observed in practice provide valuable clues about 
possible deficiencies in current estimation methods. These 
clues may point the way to new developments in robust 
environmental estimation theory. 

 It is likely that the need to describe and monitor environ-­
mental change will become more pressing, that new instru-­
ments and data sources will continue to become available, 
and that the capabilities and resolution of numerical earth 
system models will improve. All of these developments 
point to the need for a realistic theory of environmental data 
assimilation that can adequately deal with more complex 
problems. This theory needs to take nonlinear behavior as a 
given and to focus more on robustness than optimality. 
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