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Clifford H. Mortimer (1911–2010), Founding Director of Center for Great Lakes Studies,
Distinguished Professor Emeritus, Biological Sciences, University of Wisconsin–Milwaukee
(photo from http://www.glwi.uwm.edu/profiles/chmortimer/).

Biography of Clifford H. Mortimer and some reminiscences.

Clifford H. Mortimer was born in Bristol, England on 27 February 1911 and died on 11 May
2010. He received his basic education in the UK. He earned a B.S. degree in zoology from
Manchester University in 1932 and a Ph.D. in genetics from the Humboldt University in Berlin
in 1935. He subsequently held a research position at the Fresh Water Biological Association
(FBA) on Lake Windermere in England until 1941. During World War II he was recruited by
the Royal Naval Scientific Service, from 1941–1946, working in the Oceanographic Group
of the Admiralty Research Laboratory, where he studied waves and tides. In 1946, Mortimer
returned to the FBA and remained there until becoming the director of the Scottish Marine
Biological Station in 1956, a position, which he held for 10 years until taking the Distin-
guished Professorship at the University of Wisconsin–Milwaukee (UWM) and directorship
of the Center of Great Lakes Studies (CGLS) (today the Great Lakes WATER (Wisconsin
Aquatic Technology and Environmental Research) Institute and School of Fresh water Sci-
ences) in 1966. He retired from his administrative post in 1978 and his academic role at
UWM in 1981, when he was appointed Distinguished Professor Emeritus.

In 1958 Prof Mortimer was elected a Fellow of the Royal Society, London. He was proud
about this and once emphasized that he received this honour even though he was not, as he
said, a member of the ‘Oxridge community’. In 1981 and 1995, respectively, he was granted
a lifetime membership of the American Society of Limnology and Oceanography (ASLO)
and was honoured with ASLO’s lifetime Achievement Award in recognition of his contri-
butions to lake biology, chemistry and physics and his leadership and general commitment
to excellence. In 1985 and 1987 the UWM and École Polytechnique Féderale de Lausanne
(Switzerland) awarded him each the Dr. honoris causa.

Professor Mortimer’s earliest works were on the genetics of Cladocera and on water chemistry
at the sediment–water interface and its influence on seasonal processes in lakes. However,
he is best known for his research on internal waves. Surprisingly, trained as a zoologist, he
acquired during World War II sufficient knowledge in dynamic oceanography to rise to the
world’s leading position as an interpreter of temperature and velocity data of internal waves
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in lakes. His paper on internal seiches of Lake Windermere (1952) as a 2- (and 3-) layer
baroclinic response and his Kelvin wave analysis of Lake Geneva (1963) are landmarks of
the physical understanding of internal wave dynamics, later perfected by him in many subse-
quent reports and articles and summarized in his culminating book Lake Michigan in Motion:
Responses of an Inland Sea to Weather, Earth-Spin, and Human Activities (2004).

A landmark on wave dynamics is his Lake Hydrodynamics, Limnol Oceanogr 20, 124–197
(1974); his last publication Internal oscillations and related beat pulsations and surges in
Lakes Michigan and Ontario appeared in Limnol Oceanogr 51, 1914–1955 (2006), and he
was still working on a study of the thermal equation of state of water the days before he died.

Professor Mortimer was an expert in collecting lake surface oscillation data and using these
in the best possible way for his interpretation of the physical processes lying behind the data.
He used in 1963 e.g. records of nine limnigraph stations of the Swiss Hydrological Service
positioned in 1950 around Lake Geneva, smoothed these data to filter-out the barotropic signal
and so made the baroclinic oscillations visible to identify the Kelvin-type wave movement.
Moreover, he even incorporated in the figure data from instruments which had failed episod-
ically and thus demonstrated that statistical time series analysis may well ignore important
information of the original data. He maintained this view despite the recognition of the power
of the statistical techniques, which he himself with his collaborators was expertly using.

The content of the present book reflects the strong influence, which Prof. Mortimer exer-
cised in the 1970s and 1980s on the Swiss Water Scientists, and in particular on one of the
authors (KH) of the book ‘Physics of Lakes’. In 1975 the Swiss National Science Foun-
dation (SNF) had initiated a 5-year national program ‘Fundamental Problems of the Water
Cycle in Switzerland’ with several funded proposals, among others those by W. Graf (EPFL),
K. Hutter (VAW), D. Imboden (EAWAG) and F. Zamboni (IFT). Prof. Mortimer was a member
of the funding committee. This SNF-program and Prof. Mortimer’s ensuing support provided
a big incentive to Swiss Physical Limnology. He spent many days and weeks in the groups
of the individual projects, collaborating with us, providing advice and criticism to the extent
of caring about many details when we were launching our field programs and correcting the
structure and English wording of our drafted manuscripts. During such weeks KH and Prof.
Mortimer shared an office with desks opposite to one another. It is in these situations that
I learned how to draft drawings from temperature and velocity data and to combine these
elements to a meaningful picture explaining the underlying physics. No explanations were
needed. One only had to look how he was doing it. If KH became an acceptable physical
oceanographer it is largely through this association.

Even though I had strong intellectual interactions with Professor Mortimer on physical lim-
nology of Lake Zürich, there is no paper in which we both appear as authors. Clifford saw
me as a ‘geometer’, as he said, and put himself aside from it, saying that ‘he is dealing
with God’s models’ (while I was apparently dealing just with equations – human inventions).
Nevertheless, he freely used mathematical results from all of us who were able to produce
them, incidentally with skill to just use what aided him for the purpose at hand.

Prof. Mortimer was also a very hard worker with unusual strength. The following incident
explains this: On a summer Sunday in 1981 or 1982, he, Dave Schwab and I went for a long
walk to and along the crest of Albis Mountain near Zürich and back down again. The walk was
more than 5 h and after returning to Zürich in the evening and saying good-bye to Clifford,
Dave and I finally admitted to one another to be exhausted, needing a long night’s sleep.
On Monday morning around 9 or 10 o’clock Clifford came to the office with a few sheets
which he had generated in the evening, asking me to look at them. He was then more than 70,
between 30 to 40 years older than Dave and I.

This book shows many results of this collaboration and the research which emerged as a
fruitful derivative of it.
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The following fact may also be of interest, even though it probably had merely a tangible
influence on Professor Mortimer; but we spoke on several occasions about it. When Professor
Mortimer was working in the Oceanographic Group of the Admiralty Research Laboratory, he
was also participating in the experimental determination of Fourier transforms of time series
of a given period. To this end a paper stripe of the length of the circumference of a large
wheel was pasted onto the outside periphery of the wheel. On this stripe the fluctuating time
series was drawn, scaled to fit the time period to be analysed. If the wheel is rotated with a
certain period of revolution and a stroboscopic light source illuminates the moving time series
at a point with a period which is the nth fraction of the period of revolution, then the illumi-
nated points select processes which have periods which equal twice the period of the entire
stripe length divided by n. Mortimer tells that this was how the spectra of ocean waves were
determined in the Oceanographic Group of the Admiralty Research Laboratory during World
War II, see N.F. Barber et al. (1946). Professor Mortimer’s knowledge and deep understanding
of statistical time series analysis has been amazing to me and is likely due to this experience.

Professor Mortimer and his wife Inge Closs (1913–2000), of German origin, Stuttgart in
Baden Würtemberg, had two daughters, Christine and Alison, who have two sons and a
daughter and two sons, respectively. They reside in Emden, Friesland, Germany and in
Wisconsin, USA. Professor Mortimer passed away in Milwaukee, Wisconsin on May 11 2010.

K. Hutter (KH)

This text is partly based on http://www4.uwm.edu/freshwater/news/20100604-clifford-h-
mortimer-1911-2010.cfm http://www.limnology.org/news/silnews56.pdf and personal corre-
spondence with Ch. Heimann, V. Klump, A. Brooks, D. Schwab and U. Lemmin.

N.F. Barber, F. Ursell, J. Darbyshire and M.J. Tucke: A frequency analysis used in the study
of ocean waves. Nature, 158, September 7, 329–332 (1946).
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Lawrence Alexander Mysak and front cover of his book ‘Waves in the ocean’ (photo by Alain
Désilets, from http://www.mdeie.gouv.qc.ca/).

Lawrence Alexander Mysak, born 22 January 1940 in Saskatoon, Saskatchewan, Canada,
earned a flute performance diploma (1960) from the University of Alberta, Edmonton, a
BSc degree (1961) in applied mathematics from the University of Alberta, an MSc degree
(1963) in mathematics from the University of Adelaide, South Australia with a thesis in gen-
eral relativity, and a Ph.D. degree (1967) in applied mathematics from Harvard University,
Cambridge, MA, USA, with a dissertation on ‘Continental Shelf Waves’. After a brief post-
doctoral position in Geophysical Fluid Dynamics at Harvard, he commenced a professorial
career at the University of British Columbia, Vancouver, first as Assistant Professor of
Mathematics (1967–1970), then as Associate Professor of Mathematics and Oceanography
(1970–1976), and finally as Professor of Mathematics and Oceanography (1976–1986). In
1986 Professor Mysak moved to Montreal to McGill University, where he was appointed the
Atmospheric Environment Service/NSERC Chair Professor of Climate Research and Direc-
tor of the Climate Research Group within the Department of Meteorology (now Department
of Atmospheric and Oceanic Sciences). In 1990 he became founding Director of the McGill
Centre for Climate and Global Change Research (C2GCR), a position he held until 1996. He
remained at McGill as Canada Steamship Lines Professor of Meteorology (in 1989–2010)
and served on many departmental and university committees until May 31 2010, when he was
appointed Canada Steamship Lines Professor Emeritus of Meteorology.

Professor Mysak was a dedicated and very successful university professor. At UBC and
McGill he taught a wide range of mathematics, oceanography and climate dynamics courses,
and he supervised or co-supervised 45 MSc and Ph.D. theses and 33 postdoctoral fellows and
research assistants. Today, 21 of his former graduate and postdoctoral students are professors
in 11 countries. In appreciation of his outstanding contributions to McGill and beyond, he was
awarded at the Science Convocation in May 2010 an inaugural ‘McGill University Medal for
Exceptional Academic Achievement’.
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Professor Mysak has traveled widely throughout his professional career, has held many visit-
ing academic positions around the world, and has offered hundreds of lectures and seminars
at numerous academic, government and research institutions. He took sabbaticals and short
term visits at Cambridge University (Cambridge, England), NCAR (Boulder, CO, USA), the
Naval Postgraduate School (Monterey, CA, USA) and the Laboratory of Hydraulics, Hydrol-
ogy and Glaciology (VAW) at the Swiss Federal Institute of Technology (ETH), Zürich,
Switzerland. While in Zürich during 1982–1983, he devoted much of his time to joint work
on modeling baroclinic gravity and topographic waves in the Lake of Lugano, which is amply
demonstrated in this volume 2 of Physics of Lakes. His impetus contributed immensely to the
scientific flourishing of the Physical Limnology Group (at VAW) in 1982–1983, then led by
K. Hutter. Further sabbaticals followed in 2000–2001, at the Institute for Atmospheric and
Climate Science at ETH, Zürich and the National Institute of Geophysics and Volcanology,
Bologna, and in 2007–2008 again at ETH, Zürich and the University of Stockholm, Sweden.

Professor Mysak has been (and still is) a prolific scientific author, and he is well known for
the book Waves in the Ocean (co-authored with Paul LeBLOND in 1978). He has authored
or co-authored more than 165 peer reviewed journal articles on a wide range of topics in
oceanography, climatology and paleoclimates. In the first part of his professional career, the
focus of his activities was mostly on applied mathematics and physical oceanography; later
his research work became very broad, encompassing many aspects of climate science, includ-
ing interactions between the atmosphere, the cryosphere, the oceans and the biosphere; his
studies on climate ranged from decadal to million-year time scales. He has held editorial
responsibilities for, among others, the Journal of Physical Oceanography, Geophysical and
Astrophysical Fluid Dynamics, Atmosphere-Ocean, and the book series Coastal and Estu-
arine Studies (Springer, now AGU). He is currently Editor-in-Chief (for oceans) for the
Atmospheric and Oceanographic Sciences Library (Springer). In recognition of his various
achievements Professor Mysak has been honored by many awards and appointments in schol-
arly societies. In 1986 he was elected a Fellow of the Royal Society of Canada (FRSC); from
1993–1996 he was the President of the Academy of Science, one of the three academies that
comprises the RSC. Moreover, in 1996 he was appointed a member of the Order of Canada
for his pioneering research work and his accomplishments as a team builder as Director of the
McGill C2GCR and as President of the Academy of Science. In the year 2000 he was elected
a Foreign Member of the Academia Europaea. He is a Fellow of the American Meteorologi-
cal Society and of the American Geophysical Union, and is also an Honorary Member of the
European Geosciences Union. During 2007–2011 he served as President of the International
Association for the Physical Sciences of the Oceans, which is part of IUGG.

Professor Mysak is married to D. Mary Eeles, and they have two children, Paul Alexander,
born 1975 and Claire Anastasia, born 1978. An accomplished musician, Professor Mysak
plays flute in the I Medici di McGill symphony orchestra.

This text, written by KH, is based on a Curriculum Vitae of LAM and a personal biographical
sketch by LAM.



Preface to the Book Series

An integrated view of Physics of Lakes requires expert knowledge in different spe-
cialities which are hardly found in single scientists. Even in a team the overall
subject must be restricted; this has also been done here, as we only treat in this book
series the geophysical aspects of fluid dynamics. Being applied to very complicated
natural objects and phenomena, this science traditionally uses three main com-
plementary approaches: theoretical description, field observation and (numerical,
laboratory and other kinds of) modelling. The present work extensively uses all
three approaches, this way providing to the reader an opportunity to build a coher-
ent view of the entire subject at once – from the introduction of governing equations
to various field phenomena, observed in real lakes. Several features, we believe,
will make the series of especial interest for a wide range of students and scientists
of geophysical interest as well as specialists in physical limnology. Before plung-
ing into the main focus of lake physics we start with a detailed introduction of the
main mathematical rules and the basic laws of classical physics; this makes fur-
ther work with equations and their solutions much easier for readers without solid
knowledge in the common trade of the background of mathematics and physics of
continuous systems – biologists, chemists, ecologists. These sciences are today the
most active branches in limnology and are utterly needed for the development of
modern society; thus, an easily available physical background for them cannot be
overestimated. A feature of this treatise is a consolidated view expressed in its three
books of a wide panoramic overlook of various lake phenomena, inherent in physical
oceanography and a fairly thorough theoretical treatment of fluid mechanics. This
way, the reader will find here both the mathematical background and general phys-
ical laws and considerations of natural phenomena with their driving mechanisms
(waves, turbulence, wind action, convection, etc.), and also a zoo of field examples
from many lakes on our Globe. Special attention is devoted to the dynamic response
of lakes on their free surface and in their interior, perhaps best coined as the clima-
tology in response to external driving mechanisms – wind action and seasonal input
of solar energy. These subjects reflect the many-years of professional interests of
the authors.

The content of the books and the manner of the presentation are, of course,
significantly influenced by the composition of the authors’ team. Being profession-
als of slightly different branches of the same science (limnology, fluid dynamics

xiii
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and oceanography), we tried to present lake physics in the most coherent way,
extracting important kernels from all the mentioned fields. The differences in opin-
ions, what procedure might be the optimal approach in presenting a certain topic
have occasionally been quite extensive, requiring compromises, but we believe
that the interference, rather than simple sum, of our knowledge contributed to an
enhancement of the present product than would have been reached otherwise. An
additional joy for us is national composition of our international team; translation
of this Preface from the English into our native languages can be directly understood
by more than 70% of the Earth population.

The subjects of this treatise on Physics of Lakes, divided into three volumes,
cover the following topics:

VOLUME 1: Physics of Lakes: Formulation of the Mathematical
and Physical Background

It commences in the introduction with a general, word-only motivation by describ-
ing some striking phenomena, which characterize the motion of lake water on the
surface, in the interior of lakes and then relate these motions to the density distribu-
tion. It lists a large number of lakes on Earth and describes their morphology and
the causes of their response to the driving environment.

Because physics of lakes can not be described without the language used in
mathematics and only limited college knowledge calculus and classical Newtonian
physics is pre-assumed, these subjects are introduced first by using the most simple
approach with utmost care, and continuing with increasing complexity and elegance.
This process leads to the presentation of the fundamental equations of Lake Hydro-
dynamics in the form of ‘primitive equations’, to a detailed treatment of angular
momentum and vorticity. A chapter on linear water waves then opens the forum to
the dynamics in water bodies with free surface. Stratification is the cause of large
internal motions; this is demonstrated in a chapter discussing the role of the distri-
bution of mass in bounded water bodies. Stratification is chiefly governed by the
seasonal variation of the solar irradiation and its transformation by turbulence. The
latter and the circulation dynamics are built on input of wind shear at the surface.
The early theory of circulation dynamics with and without the effect of the rotation
of the Earth rounds-off this first book into the dynamics of lakes. A chapter on turbu-
lence modelling and a further chapter collecting the phenomenological coefficients
of water complete this book on the foundations of the mathematics and physics of
lakes.

VOLUME 2: Physics of Lakes: Lakes as Oscillators

The overwhelming focus in this volume of the treatise is on linear waves in homo-
geneous and stratified lakes on the rotating Earth. It comprises 12 chapters, starting
with rotating linear shallow-water waves and demonstrating their classification into
gravity and Rossby waves for homogeneous and stratified water bodies. This leads
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naturally to the analysis of gravity waves in unbounded, semi-bounded and bounded
domains of constant depth: Kelvin, inertial and Poincaré waves, reflection of such
waves at the end of a gulf and their description in sealed basins as so-called ‘inertial
waves proper’. The particular application to gravity waves in circular and elliptical
basins of constant depth then builds further confidence towards the treatment of
barotropic and baroclinic basin wide wave dynamics affected by the rotation of the
Earth. The classical analytical approach to the baroclinic motion in lakes is done
using the two layer approximation. Recent observations have focused on higher
order baroclinicity, a topic dealt with in two chapters. Whole lake responses are
illustrated in barotropic and baroclinic wave analyses in Lake Onega1 and Lake
Lugano, respectively, with detailed comparisons of field data. The final four chap-
ters are then devoted to a detailed presentation of topographic Rossby waves and the
generalized Chrystal equations and their identification by field observations.

VOLUME 3: Physics of Lakes: Methods of Understanding Lakes
as Components of the Geophysical Environment

Red line of this volume is the presentation of different methods of investigation
of processes taking place in real lakes. Part I is devoted to numerical modeling
approaches and techniques, applied to demonstrate the response of a lake to wind
forcing. Numerical methods for convectively-dominated problems are compared, as
well as different numerical treatments of advection terms and subgrid turbulence
parameterization. Methods and tools of field measurements are laid down in Part II,
including the presentation of principles of operation of commonly used current, tem-
perature, conductivity, pressure and other sensors, along with modern techniques
of measurement in the field. Basic rules of time series analysis are summarized.
Laboratory experimentation, presented in Part III, is introduced by an account of
dimensional analysis. Results of laboratory experiments on large amplitude non-
linear oscillations, wave transformation and meromixis and convective exchange
flows in basins with sloping bottom are presented. Combined presentations of field,
numerical and laboratory approaches build a general view of present-day methods
of physical investigations in limnology.

Lake physics is a boundless subject embracing a great variety of questions. Some
material on the seasonal water cycle, stratification and various mixing and stirring
mechanisms has been collected by us but is still not included in the treatise. It may
hopefully be summarized in a fourth volume.

Zürich, Switzerland Kolumban Hutter
Darmstadt, Germany Yongqi Wang
Kaliningrad, Russia Irina Chubarenko
June 2010

1 In today’s Russian ‘Onega’ and ‘Onego’ are both in use. In this book we use ‘Onega’.
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Vorwort zur Buchreihe

Eine übergeordnete Betrachtungsweise von Physik der Seen verlangt überdurch-
schnittliche Kenntnisse in unterschiedlichsten Spezialgebieten, die man kaum in
einer einzelnen Person vereinigt findet. Selbst innerhalb eines Teams muss das über-
geordnete Thema eingeschränkt werden; das ist auch hier getan worden, da wir
in diesen Bänden der Seenphysik nur geophysikalische Belange der Fluiddynamik
behandeln. Dieses Gebiet der Strömungsmechnik, hier angewendet auf ziemlich
komplizierte natürliche Objekte und Phänomene, verwendet traditionell drei unter-
schiedliche, aber komplementäre Vorgehensweisen: Theoretische Beschreibungen,
Feldbeobachtungen und (numerische, Labor oder anderweitige) Modellierung. Das
vorliegende Werk macht ausgedehnt Gebrauch von all diesen Methoden und gibt
dem Leser so die Gelegenheit, eine kohärente Sichtweise über das gesamte Gebiet
zu erarbeiten von einer Einführung in die Grundgleichungen bis zu den unter-
schiedlichsten Phänomenen, die man in realen Seen beobachten kann. Wir glauben,
dass verschiedene Merkmale dieses Werk von speziellem Interesse macht für eine
breite Leserschaft von Studierenden und Wissenschaftlern mit geophysikalischem
Interesse, wie auch für Spezialisten der physikalischen Limnologie. Bevor wir
jedoch eintauchen in das Zentrum der Seenphysik, starten wir mit einer detail-
lierten Einführung in die mathematischen Voraussetzungen und die grundlegenden
Gesetze der klassischen Physik; dieses Vorgehen macht das Arbeiten mit Gle-
ichungen und ihren Lösungen wesentlich leichter für all jene Leser, welche keine
gründlichen Kenntnisse in der üblichen Anwendung der Mathematik und Physik
von kontinuierlichen Systemen mitbringen, in der Regel angewandte Biologen,
Chemiker und Ökologen. Diese Wissensgebiete gehören heute zu den aktivsten
Gruppen der Limnologie und bilden daher die Spezialwissensgebiete, die für die
Entwicklung der modernen Gesellschaft von großer Bedeutung sind. Eine leicht
zugängliche Darbietung des physikalischen Hintergrundes kann nicht überschätzt
werden. Ein Hauptzug dieses Werkes ist eine über drei Bände verteilte Betrach-
tungsweise, welche eine Übersicht über verschiedene Phänomene in Seen schafft,
welche der physikalischen Ozeanographie zugeordnet sind und auf einer streng the-
oretischen Handhabung der Methoden der Fluidmechanik beruhen. So findet der
Leser hier sowohl den mathematischen Hintergrund, die allgemeinen physikalischen
Gesetze und deren Anwendung auf die natürlichen Phänomene der Seenphysik mit
ihren Anregungsmechanismen (Wellen, Turbulenz, Windantrieb, Konvektion, etc.),

xvii



xviii Vorwort zur Buchreihe

wie auch eine ganze Palette von Feldbeispielen vieler Seen dieser Erde. Spezielle
Beachtung findet die dynamische Reaktion von Seen auf ihrer freien Oberfläche
und in ihrem Innern, das Klima des Sees als Antwort der äusseren Antriebsmecha-
nismen: Wind-Antrieb, jahreszeitlicher Eintrag der Sonnenenergie. Diese Thematik
umfasst die jahrelange Erfahrung der beruflichen Interessen der Autoren.

Der Inhalt der Bücher und die Art und Weise der Darstellung des Stoffes
sind offensichtlich stark von der Zusammensetzung des Autorenteams beeinflußt.
Als Repräsentanten von (leicht) unterschiedlichen Spezialgebieten derselben Wis-
senschaft (Limnologie, Fluiddynamik und Ozeanographie), haben wir uns bemüht,
die Seenphysik in kohärenter Weise darzustellen und wichtige Elemente aller oben
erwähnten Gebiete zu extrahieren. Meinungsunterschiede, wie ein Thema am opti-
malsten darzustellen sei, waren gelegentlich recht heftig und verlangten Kompro-
misse; wir glauben hingegen, dass die Interferenz unseres Wissens im Gegensatz zu
einer einfachen Summe mehr zur Qualität des gegenwärtigen Produktes beigetragen
hat als dies andernfalls der Fall gewesen wäre. Ein zusätzlicher Gewinn für uns ist
die internationale Zusammensetzung des Teams. Die Übersetzung dieses Vorwortes
aus dem Englischen in unsere Muttersprachen kann direkt verstanden werden von
mehr als 70% der professionellen angesprochenen Bevölkerung dieser Erde.

Der Inhalt dieser Abhandlung über Seenphysik, aufgeteilt in drei Bände, umfasst
die folgenden Themen:

BAND 1: Physik der Seen: Formulierung des mathematischen
und physikalischen Hintergrundes

Der Band beginnt in der Einführung mit einer allgemeinen, formelfreien Motivation
durch Beschreibung von gewissen, treffenden Phänomenen, welche die Bewegung
des Seewassers an der Oberfläche und im Seeinnern betreffen, und ordnen let-
ztere der Verteilung der Dichte des Seewassers zu. Es wird zudem eine große
Zahl von Seen auf dieser Erde gelistet und ihre Morphometrie charakterisiert, ein-
schließlich der Beschreibung ihrer Verhaltensweise auf Grund der Reaktion auf die
antreibenden Mechanismen.

Da die Physik von Seen nicht ohne die mathematische Sprache beschrieben
werden kann, und da nur gerade die einfachsten Kenntnisse der Hochschulanalysis
und der klassischen Physik vorausgesetzt werden, erfolgt eine Einführung in diese
Themen anfänglich in der einfachsten möglichen Art und mit gößter Sorgfalt; mit
wachsender Gewöhnung und fortschreitender Komplexität wird dann aber schrit-
tweise auf eine elegantere Schreibweise übergegangen. Dieser Prozess führt so (1)
zur Darstellung der Grundgleichungen der Seen-Hydrodynamik in Form der prim-
itiven Gleichungen, die direkt den physikalischen Bilanzen entsprechen, und (2)
zu einer detaillierten Behandlung des Drehimpulssatzes und der Wirbelbilanzgle-
ichungen. Ein Kapitel über lineare Wasserwellen öffnet danach das Forum für die
Dynamik von wassergefüllten Becken mit freier Oberfläche. Die Dichteschichtung
ist Ursache für große interne Bewegungen, was in einem Kapitel demonstriert wird,
in welchem die Rolle der Verteilung der Masse in endlichen Becken untersucht wird.
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Schichtung wird hauptsächlich durch die jahreszeitliche Variation der Sonnenein-
strahlung und deren Umformung durch Turbulenz gesteuert. Letztere sowie die
Zirkulationsdynamik werden durch den Eintrag von Windschub an der Seeober-
fläche gesteuert. Die frühe Theorie der Zirkulationsdynamik mit dem, bzw. ohne
den, Einfluß der Erdrotation schließen dann den Themenkreis dieses ersten Ban-
des der Seendynamik. Ein Kapitel über turbulente Modellierung und ein weiteres
Kapitel, das die phänomenologischen Koeffizienten von Wasser behandelt, ver-
vollkommnen diesen ersten Band über die Grundlagen der mathematischen und
physikalischen Behandlung der Physik von Seen.

BAND 2: Physik der Seen: Seen als Oszillatoren

Das hauptsächliche Thema in diesem zweiten Band der Monographie Pysik der
Seen betrifft lineare Wellen in homogenen und geschichteten Seen auf der rotieren-
den Erde. Er umfasst zwölf Kapitel und beginnt mit linearen Wasserwellen auf
der rotierenden Erde. Es werden Klassifikationen eingeführt, welche die Schw-
erewellen und Rossby-Wellen im begrenzten homogenen und im Schichtmedium
charakterisieren. Dies führt in natürlicher Weise zur mathematischen Analyse von
Schwerewellen im unbegrenzten und endlichen Medium mit konstanter Tiefe:
Kelvin, Inertial- und Poincaré Wellen, Reflektion solcher Wellen am Ende eines
Golfes und deren Beschreibung in vollkommen geschlossenen Becken als soge-
nannte eigentliche Inertialwellen (inertial waves proper). Die Anwendung von
Gravitationswellen in kreisförmigen und elliptischen Becken konstanter Tiefe führt
in natürlicher Weise zur interpretationsgerechten Behandlung von barotroper und
barokliner beckenweiter Wellendynamik auf der rotierenden Erde. Das klassische
analytische Vorgehen zur Beschreibung der baroklinen Bewegung in Seen wird mit
der Zweischichten-Approximation gemacht. Neuere Beobachtungen an Seen haben
sich jedoch auf das Erfassen der höheren Baroklinizität konzentriert. Diesem Thema
werden zwei Kapitel gewidmet. Beckenweite Dynamik wird anhand von barotropen
und baroklinen Studien des Onega Sees und Luganersees vorgenommen und mit
ausgedehnten in-situ Messungen verglichen. Die letzten vier Kapitel werden der
detaillierten Darstellung topographischer Rossby Wellen und den verallgemein-
erten Chrystal Gleichungen und deren Identifikation anhand von Feldmessungen
gewidmet.

BAND 3: Physik der Seen: Methoden, die Seen als Komponenten
des geophysikalischen Umfeldes verstehen

Der rote Faden in diesem Band ist die Entwicklung unterschiedlicher Metho-
den zur Charakterisierung von physikalischen Prozessen in natürlichen Seen.
Teil I ist numerischen Modellierungsmethoden und -techniken gewidmet, welche
die Reaktion eines Sees auf die äusseren Windkräfte bestimmen. Numerische
Methoden für verschiedene, von Konvektion dominierten Problemen, werden
untereinander verglichen. Desgleichen werden unterschiedliche Schemata für
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die advektiven Terme in den bestimmenden partiellen Differezialgleichungen
und die Subgrid-Parametrisierung der Turbulenz getestet. In Teil II werden
Methoden und Werkzeuge für Feldmessungen erläutert, und es werden die
Arbeitsweisen von üblichen Strömungs-, Temperatur-, Leitfähigkeits-, Druck- und
anderen Messgeräten vorgestellt bis hin zu den modernen Messtechniken, welche
bei Feldmessungen eingesetzt werden. Die Grundregeln der Zeitreihenanalyse
und statistischen Datenauswertung werden ebenfalls zusammengefaßt. Laborex-
perimentiertechniken werden im Teil III dargelegt und auf die Grundlage der
Dimensionsanalyse abgestützt. Es werden Resultate vorgestellt von Laborex-
perimenten betreffend nichtlineare Schwingungen mit großer Amplitude, und
es wird ihre Instabilität und Umwandlung durch Meromixis und konvektiven
Austausch in Becken mit geneigten Topographien entlang ihrer Küstenlinien
behandelt. Kombinierte Darstellung von Feldbeobachtungen, numerischen und
Labormessdaten-Analysen stellen heute ganz allgemein den methodischen Zugang
zur Interpretation von physikalischen Prozessen der Limnophysik her.

Physik der Seen ist ein sehr breites Gebiet, welches ein großes Spektrum von
Fragestellungen umfasst. Gewisse Besonderheiten des jahreszeitlichen Wasserzyk-
lus, Schichtung und unterschiedliche Mischungs- und Vermengungsmechanismen
sind von uns studiert und angegangen worden, aber in diesem Werk noch nicht
enthalten. Es ist zu wünschen, dass wir die Zeit und Energie aufbringen, diese in
einem vierten Band zusammen zu fassen.

Zürich, Switzerland Kolumban Hutter
Darmstadt, Germany Yongqi Wang
Kaliningrad, Russia Irina Chubarenko
June 2010
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Preface to Volume II

This second volume to the treatise Physics of Lakes is dedicated to a single topic,
namely Lakes as Oscillators. There are several reasons why this topic plays such a
prominent role.

First, oscillations in lakes belong to those subjects, which were already studied
by the pioneers in the seventeenth century. As Mortimer writes: “Readily observed,
rhythmic fluctuations in lake level have long exercised a fascination and have stim-
ulated mathematical modeling, but often with a longtime gap between observation
and theoretical resolution [20]. The first detailed set of observations ([9], on Léman,
1730, introducing the local name ‘seiche’) and recognition of their occurrences in
many lakes [26] were, it is interesting to note, preceded by systematic observations
and conjectures by a Jesuit missionary [3] in 1671, describing the large but irregu-
lar ‘tides’ at the head of Green Bay (a gulf which opens onto Lake Michigan) and
attributing to a combination of lunar tidal influence and to the main influence of the
lake. Three centuries elapsed before those conjectures were confirmed by spectral
analysis and numerical modelling [12, 13, 19]”, from [20].

Mortimer continues: “With early observations and conjectures as a prelude, phys-
ical limnology was launched as a distinct branch of geophysical fluid mechanics
(L’ océanographie des lacs) by Forel’s lifetime study of Léman seiches and tem-
perature regime [10]. But again, in one respect priority must go to Lake Michigan,
i.e. to a US Army surveyor’s 1872 interpretation [8] of the conspicuous 2.2 h seiche
at Milwaukee as a standing wave, thereby antedating Forel’s similar interpretation
[11] by 3 years and providing yet another example of an original idea occurring to
two persons at about the same time. Mathematical modelling of this seiche (as the
first transverse mode [23]) confirmed the 1872 interpretation. In fact, hydrodynamic
modelling may be said to have ‘cut its teeth’ on seiches : : :”, from [20].

Second, since the availability of electronic computation and the development
of electronically based measuring techniques, which permitted relatively long term
recording of detailed time series of density (via temperature and electrical conduc-
tivity) and velocity, the internal motion of the water in lakes became ‘observable’
via the construction of isotherm-depth or isopycnal time series at fixed mooring
positions. Fast Fourier and more recently wavelet transforms and cross correlation
analyses of such time series between synoptically recorded quantities became key
working techniques to interpret whole-basin or localized internal processes. These

xxxv
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findings could be compared with predictions of theoretically deduced models. These
measuring techniques did not only disclose the lake interior to our ‘eyes’, they
made the internal whole-basin dynamics interpretable as the baroclinic variants of
the surface or barotropic seiches observed already in the eighteenth and nineteenth
century.

Parallel with the development of the electronic measuring techniques, software
was developed by which such internal motions could be computed with much better
adjustment of the lake geometry than was possible heretofore. This development
took place in the 1970s and 1980s and allowed theoretical numerical interpretation
of field observations; however, storage limitations often prevented optimal coinci-
dence which had to await more sophisticated hardware. In this phase of development
numerical modeling of lake hydrodynamics may reasonably be said to have ‘cut its
teeth’ on internal seiches.

Third, it is a simple fact that, starting in the 1960s and 1970s of the last cen-
tury, the dynamic response of lakes under barotropic and baroclinic conditions
became the principal focus of research activities of a number of lake research
centers all over the world: Among these mention might be made of the Center
of Great Lakes Studies (CGLS), University of Wisconsin-Milwaukee, the NOAA
Great Lakes Environmental Research Laboratory (GLERL), Ann Arbor Michigan,
the Canadian Centre for Inland Waters (CCIW), Burlington, Ontario, the Centre for
Water Research (CWR) at the University of Western Australia, Perth. In 1972 the
International Field Year of the Great Lakes Studies was in operation. In the same
year the Institut für Meereskunde at the University of Kiel conducted with the sup-
port of the Government of Baden-Würtemberg, a synoptic field campaign in Lake
Constance (including Lake Überlingen) and deployed a number of moored ther-
mistor chains and current meters [15, 17]. This was the first serious European lake
campaign of physical limnology, in which experimental techniques known in physi-
cal oceanography were ‘copied’ for research of lake physics. In 1976 in Switzerland,
the 5 year National Programme of the Swiss Science Foundation on Fundamental
Problems of the Water Cycle in Switzerland (Grundlegende Probleme des Schweiz-
erischen Wasserhaushaltes), 1977–81, was created with field studies similar to those
above in Lake Zurich in 1978 [17, 18], Lake of Lugano in 1979 [1, 25] and 1984
[24], with scientists of the Laboratorio di Fisica Terrestre, ICTS, Lugano-Trevano,
in Lake Geneva during the same 1977-81 period by the Laboratoire d’ Hydraulique
(LHYDREP) at Ecole Polytechnique Fédérale, Lausanne [21,22], and again in Lake
Constance in 1993 by the Laboratory of Hydraulics, Hydrology and Glaciology
(VAW) [14] at the Swiss Federal Institute of Technology and the Swiss Federal Insti-
tute for Water Resources and Water Pollution (EAWAG), in part with the support of
the Limnological Institute at the University of Constance, and the Landesamt für
Umweltschutz, Baden-Würtemberg, Germany. Many similar measuring campaigns,
generally somewhat smaller in scope than the large synoptic programmes above, fol-
lowed in the years to come by scientists of these and other institutions. A 1 month
whole-basin synoptic programme in Lake Constance was again conducted in 2001
by the Limnological Institute at the University of Constance and the CWR, at the
University of Western Australia and further support from the Institute of Mechanics
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at Darmstadt University of Technology and the Atlantic Branch of the Shirshov
Institute of Oceanology, Russian Academy of Sciences at Kaliningrad. The mea-
surements, taken with moored and towed instruments recording temperature, current
and atmospheric wind, temperature and humidity are collected in internal reports
[4, 5, 7]. In these field measurements free and whole basin-scale analyses of the
internal wave motion were made using the linear and non-linear surface and inter-
nal waves, and wave induced circulation dynamics were numerically implemented
with software apt to describe these processes in detail.

In this Volume 2 of Physics of Lakes the external and internal dynamics of many
lakes worldwide are studied with the focus on oscillations and comparison of mea-
sured data with the ‘reproduced’ model results. We start with the description of the
theory and its simplifications under various conditions. Attention is devoted to the
role played by the rotation of the Earth as it modifies gravity modes of barotropic
and baroclinic motions and how it contributes to the independent formation of topo-
graphic Rossby waves, a subject which is treated by itself in three chapters. We
study the influence of the density stratification when it is implemented by more than
just a two-layer model. Such higher order baroclinicity was seldom analyzed in the
past but has been the subject of more intense studies in recent years. The theoretical
findings are verified either with results obtained by laboratory experiments or more
frequently by the data collected in field campaigns. We close this book with an anal-
ysis of internal waves in lakes by a systematic derivation of channel models, which
generalize the classical Chrystal model, and remove the somewhat biased approach
in using ‘Kelvin-wave dynamics’ when incorporating the rotation of the Earth.

We assume the reader to be familiar with the subjects of Volume 1. Moreover,
the statistical methods to handle data from time series of synoptically recorded tem-
perature, salinity and velocity time series are equally assumed known, and will be
used and demonstrated, but not separately explained.

Zürich, Switzerland Kolumban Hutter
Darmstadt, Germany Yongqi Wang
Kaliningrad, Russia Irina Chubarenko
December 2010
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Notation

We employ the common mathematical notation used in the Applied Sciences, but do
not systematically use the same notation for analogous operations and/or the same
physical variables throughout the volume. For instance,

� Derivatives of a univariate function f .x/ are denoted as df=dx or f 0.
� Partial derivatives of a function f .xj /; j D 1; 2; : : : ; n with respect to xk are

denoted by
@f

@xk
or f;k or fxk :

We generally prefer @f=@xk over f;k or fxk , but when the formulae are com-
plicated, the graphical display of the short-hand notations often facilitates the
interpretation of the formulae.

� Within chapters, we have consistently used one symbol for a physical variable,
but from chapter to chapter, the symbols may change. In this spirit, we use, e.g.
u and v to designate the three-dimensional fluid velocity field and V , M for the
depth integrated volume transport.

In the list below, only the principal symbols are listed. A scalar is generally written
in italic type, a vector generally in lower case italic bold type, whilst a second rank
tensor is written in upper case italic bold type.

Roman Symbols

A.x; y/ . . . . . . . . . . . . . . . . Amplitude distribution of the free surface or inter-
face displacement function in a rectangular basin of
constant depth on the rotating Earth

A.x; t/ . . . . . . . . . . . . . . . . . Progressing wave function (Chap. 15)
A . . . . . . . . . . . . . . . . . . . . . . 6 � 6-matrix, defining a first-order barotropic linear

motion (Chap. 22)
As . . . . . . . . . . . . . . . . . . . . . Special form of A for a first-order rectangular channel

with straight lake axis (Chap. 22)

lvii
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AR . . . . . . . . . . . . . . . . . . . . Special form of A for a circular channel with constant
cross section

a . . . . . . . . . . . . . . . . . . . . . . Radius of a circular basin, parameter measuring the
eccentricity of an ellipse

a . . . . . . . . . . . . . . . . . . . . . . Major semi-axis of an ellipse
a . . . . . . . . . . . . . . . . . . . . . . General vector
aj . . . . . . . . . . . . . . . . . . . . . Physical components of a vector a

a
.n/
j . . . . . . . . . . . . . . . . . . . . Natural components of a vector a

A;B;C;D;E . . . . . . . . . . . 2N � 2N complex valued matrices of a lin-
ear N th-order seiche model (in Chap. 22, see
(22.178)–(22.180))

B . . . . . . . . . . . . . . . . . . . . . Width or breadth of a channel
B . . . . . . . . . . . . . . . . . . . . . . Boundary operator
B;B1 . . . . . . . . . . . . . . . . . . Breadth of the free surface of a cross section perpen-

dicular to the lake axis (Chap. 22)
B2 . . . . . . . . . . . . . . . . . . . . . Breadth of the thermocline interface of the cross-

section perpendicular to the lake axis
Bc . . . . . . . . . . . . . . . . . . . . . 6 � 6-matrix, describing the no-flux boundary condi-

tion in a first order channel model (Chap. 22)
B� . . . . . . . . . . . . . . . . . . . . 6 � 6-matrix to construct the barotropic seiche

response in a first order theory for a rectangle of
constant depth

b.x; z; t/ . . . . . . . . . . . . . . . Reduced gravity, buoyancy parameter (D g Q�= Q�0)
b . . . . . . . . . . . . . . . . . . . . . . Minor semi-axis of an ellipse
c . . . . . . . . . . . . . . . . . . . . . . Wave speed (general)
cph; cgr . . . . . . . . . . . . . . . . . Phase velocity, group velocity
cext; cint . . . . . . . . . . . . . . . . External (barotropic) wave speed, internal (baro-

clinic) wave speed
c0.D HNp/ . . . . . . . . . . . . Baroclinic wave speed
ce2m; ce2mC1 . . . . . . . . . . Cosine-elliptic Mathieu functions of even an odd

order
Ce2m; Ce2mC1 . . . . . . . . . . . Modified Mathieu functions; hyperbolic elliptic

cosine functions of even and odd order; Cosh-elliptic
Mathieu functions

C.m/; OC.m/;C.m/�j
; OC.m/�j

. . Curvature dependent cross-sectional matrices defined
in Appendix 22.A of Chap. 22

D . . . . . . . . . . . . . . . . . . . . . Constant water depth; discriminant of a bi-quadratic
dispersion relation (22.142)

D1;2 . . . . . . . . . . . . . . . . . . . Epilimnion, hypolimnion reference depths
D . . . . . . . . . . . . . . . . . . . . . Bounded or unbounded region in Rn; n D 2; 3

D . . . . . . . . . . . . . . . . . . . . . Partial differential operator
da; das; dal . . . . . . . . . . . . Areal increments of the mantle surface of a shaft-like

body, Appendix 22.B of Chap. 22
da . . . . . . . . . . . . . . . . . . . . . Modulus of da
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d . . . . . . . . . . . . . . . . . . . . . . Thickness of metalimnion – of diffuse interface
d . . . . . . . . . . . . . . . . . . . . . . Ordinary differential operator
d` . . . . . . . . . . . . . . . . . . . . . Differential vector line element
da=dt . . . . . . . . . . . . . . . . . . Total derivative of a
dA . . . . . . . . . . . . . . . . . . . . Areal increment
dx . . . . . . . . . . . . . . . . . . . . . Vector valued position increment of x
dy . . . . . . . . . . . . . . . . . . . . . Vector valued position increment of y
div . . . . . . . . . . . . . . . . . . . . Divergence operator
divH . . . . . . . . . . . . . . . . . . . Horizontal (2-dimensional) divergence operator
E[� ] . . . . . . . . . . . . . . . . . . Elliptic operator of the topographic wave equation

.D rH � fH�1rH .@�=@t/g/
E . . . . . . . . . . . . . . . . . . . . . Matrix operator for ordinary differential equation of

the first order (Chap. 21)

E .m/;j ; OE.m/; OE ;j . . . . . . . . . Curvature dependent cross-sectional third order ten-
sors defined in Appendix 22.B of Chap. 22

ei ; Oei . . . . . . . . . . . . . . . . . . Basis vectors (i D 1; 2; 3) of length 1 and orthogonal
to one another

F . . . . . . . . . . . . . . . . . . . . . Hypergeometric polynomial, elliptical radial stream
function for the topographic wave equation

F . . . . . . . . . . . . . . . . . . . . . Depth integrated body force beyond the contribution
of the external pressure (Chap. 19), deformation gra-
dient

F.x; t/D0 . . . . . . . . . . . . . Equation defining a surface in R3

F.s; !/ . . . . . . . . . . . . . . . . . 4�4-matrix for the linear channel equation describing
seiche motions (Chap. 22), see (22.191)

f . . . . . . . . . . . . . . . . . . . . . First Coriolis parameter .D 2˝ sin�/
f0 . . . . . . . . . . . . . . . . . . . . . Reference value for first Coriolis parameter for � D

�0Qf . . . . . . . . . . . . . . . . . . . . . Second Coriolis parameter .D 2˝ cos�/
G . . . . . . . . . . . . . . . . . . . . . Symbol for a general function
G.�/ . . . . . . . . . . . . . . . . . . . Elliptical-azimuthal part of the stream function for the

TW-equation
Gn.�; �; x/ . . . . . . . . . . . . . . Jacobi polynomial of order n (Chap. 19)
g;g . . . . . . . . . . . . . . . . . . . Gravity constant, gravity vector
g0 . . . . . . . . . . . . . . . . . . . . . Reduced gravity constant .D g.��=�/ D g.�2 �

�1/=�2/

g.x/ . . . . . . . . . . . . . . . . . . . Metric tensor
grad . . . . . . . . . . . . . . . . . . . Gradient operator in 3 dimensions
gradH . . . . . . . . . . . . . . . . . Horizontal gradient operator in 2 dimensions
H;H0 . . . . . . . . . . . . . . . . . Water depth, reference water depth
H1;H2 . . . . . . . . . . . . . . . . Upper and lower layer water depths (in a 2-layer

model)
HE . . . . . . . . . . . . . . . . . . . . Equivalent depth of the 2-layer model

.D H1H2=.H1 CH2//
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H . . . . . . . . . . . . . . . . . . . . . Isotroph depth
NH . . . . . . . . . . . . . . . . . . . . . Scaled isotroph depth
Heq . . . . . . . . . . . . . . . . . . . . Equivalent depth

H.m/;H.m/s;n . . . . . . . . . . . . . Curvature dependent cross-sectional matrices, defined
in Appendix 22.A of Chap. 22

hbar . . . . . . . . . . . . . . . . . . . . Equivalent depth for barotropic processes
h1; h2; h3 . . . . . . . . . . . . . . Parameters of the 3-layer shallow water model

(Chap. 13)
I` . . . . . . . . . . . . . . . . . . . . . Modified Bessel function of first kind and `-th order
I3; I6 . . . . . . . . . . . . . . . . . Three- and six-dimensional unit matrices
i D p�1 . . . . . . . . . . . . . . . Imaginary unit
i . . . . . . . . . . . . . . . . . . . . . . Counting index
J [a; b] . . . . . . . . . . . . . . . . . Dimensional Jacobi-operator .D @a

@x
@b
@y

� @a
@y
@b
@x
/

J [a; b] . . . . . . . . . . . . . . . . Non-dimensional Jacobi operator
J` . . . . . . . . . . . . . . . . . . . . . Wave solution of the shallow water equations in a

circular basin of constant depth
j . . . . . . . . . . . . . . . . . . . . . . Counting index
K;K�; K . . . . . . . . . . . . . Kinetic energy (general), kinetic energy for velocity

potential, kinetic energy for stream function potential
(Chap. 12)

K` . . . . . . . . . . . . . . . . . . . . Modified Bessel function of second kind and `-th
order

K.s/ . . . . . . . . . . . . . . . . . . . Curvature of the lake axis as a function of arc length
k . . . . . . . . . . . . . . . . . . . . . . Counting index, x-component of the horizontal wave

number
k . . . . . . . . . . . . . . . . . . . . . . Wave number vector, generally in three dimensions
kh . . . . . . . . . . . . . . . . . . . . . Horizontal wave number vector
Ok . . . . . . . . . . . . . . . . . . . . . . Unit vector in the z-direction, against gravity g
L;L0 . . . . . . . . . . . . . . . . . . Typical horizontal dimension of a lake, reference

length of a lake

L D @2

@t2
C f 2 . . . . . . . . . . Dimensional operator expressing the Coriolis cor-

rected time derivative on the rotating Earth

L D @2

@t2
C 1 . . . . . . . . . . . Dimensionless operator expressing the Coriolis cor-

rected time derivative on the rotating Earth
` . . . . . . . . . . . . . . . . . . . . . . Azimuthal mode number
`m . . . . . . . . . . . . . . . . . . . . . Along-channel wave number of orderm
M ;M1;M 2 . . . . . . . . . . . Mass or volume flux of the entire water column, of

the top and bottom layers, and of a 2-layer model,
respectively

M˛ˇ .s/ . . . . . . . . . . . . . . . . Ordinary differential matrix operator used in the
method of weighted residuals for the one-dimensional
solution of the topographic wave equation

M . . . . . . . . . . . . . . . . . . . . . Matrix operator corresponding to M˛ˇ .s/

m . . . . . . . . . . . . . . . . . . . . . Counting index of eigenmodes, mode number
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mcrit . . . . . . . . . . . . . . . . . . . Critical value ofm
N . . . . . . . . . . . . . . . . . . . . . Buoyancy frequency, Brunt–Väisälä frequency�

N D � g
�0.z/

d�0.z/
dz

�

Np . . . . . . . . . . . . . . . . . . . . Maximum value of the buoyancy frequency in the
water column

ON . . . . . . . . . . . . . . . . . . . . . Dimensionless buoyancy frequency
n.D 1; 2; :::;1/. . . . . . . . . . . counting index
n;bs;bb . . . . . . . . . . . . . . . Unit normal vector (general) and on the free and basal

surfaces
n �D . . . . . . . . . . . . . . . . . n-Dimensional
O . . . . . . . . . . . . . . . . . . . . . Order symbol
P; p; p0 . . . . . . . . . . . . . . . . Pressure, reference pressure
p0 . . . . . . . . . . . . . . . . . . . . . Perturbation pressure
pe ; pi . . . . . . . . . . . . . . . . . . External pressure, internal pressure
PE.t/ . . . . . . . . . . . . . . . . . . Potential energy (

R D
0
gz�.z; t/dz)

P˛.s; n/ . . . . . . . . . . . . . . . . Shape functions of stream function of the topographic
wave equation in the method of weighted residuals

P�.m/˛ . . . . . . . . . . . . . . . . . . Macroscopic atmospheric pressure gradient (vector),
defined in Chap. 22

Q . . . . . . . . . . . . . . . . . . . . . Cross-section
@Q . . . . . . . . . . . . . . . . . . . . Boundary of a cross-section
Q˛.s; n/ . . . . . . . . . . . . . . . Shape functions for the method of weighted residuals

for the topographic wave operator
q . . . . . . . . . . . . . . . . . . . . . . Exponent of the radial depth variation of a circular

lake (h D .1 � .r=a/q/)
R;RD . . . . . . . . . . . . . . . . . Rossby radius of deformation .D cph=f /

Rext; Rint . . . . . . . . . . . . . . . External, internal Rossby radius of deformation
R . . . . . . . . . . . . . . . . . . . . . . Friction coefficient
R.m/ . . . . . . . . . . . . . . . . . . . Macroscopic friction coefficient
R˝ D 0;R@˝˛ D 0 . . . . . Field equations in ˝ and @˝˛
R3 . . . . . . . . . . . . . . . . . . . . Three-dimensional matrix characterizing waves in the

full 2-layer model
R6 . . . . . . . . . . . . . . . . . . . . Six-dimensional matrix characterizing waves in the

equivalent depth 2-layer model
Rn . . . . . . . . . . . . . . . . . . . . Real Cartesian space of dimension n
r . . . . . . . . . . . . . . . . . . . . . . Radial distance in polar coordinates

r D H2=H1
.1CH2=H1/ . . . . . . . . . . . For the 2-layer model (Chap. 12)

r D B=A . . . . . . . . . . . . . . . Aspect ratio of an ellipse (Chap. 20)
r0 . . . . . . . . . . . . . . . . . . . . . Outer radius of a circular basin
S . . . . . . . . . . . . . . . . . . . . . . Cross-sectional area perpendicular to the lake axis
S1; S2 . . . . . . . . . . . . . . . . . Cross-sectional area of the epilimnion and

hypolimnion layers, respectively
Sn.DRn=r0/ . . . . . . . . . . . Dimensionless n-th order Rossby radius (Burger

number in a circular basin with radius r0)
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Si D ci
.2L/f

. . . . . . . . . . . . Classical Burger number
T . . . . . . . . . . . . . . . . . . . . . . Period (of a seiche)
T [� ] . . . . . . . . . . . . . . . . . . Topographic wave operator .D EŒ�t �CJ Œ�; fH�1�/
T � D T � .n � Tn/1 . . . . Tangential traction on a surface with unit normal vec-

tor n
t; t0 . . . . . . . . . . . . . . . . . . . . Time, reference time
t; tdyn . . . . . . . . . . . . . . . . . . Cauchy stress tensor, dynamic Cauchy stress tensor
U . . . . . . . . . . . . . . . . . . . . . x-component of the volume flow

V .U D R 0
�H u.x; y; z; t/dz/, characteristic horizon-

tal velocity
U0 . . . . . . . . . . . . . . . . . . . . . Amplitude of U
u . . . . . . . . . . . . . . . . . . . . . . x-component of the velocity field
u . . . . . . . . . . . . . . . . . . . . . . Velocity field vector
V . . . . . . . . . . . . . . . . . . . . . y-component of the volume flow

V .V D R 0
�H v.x; y; z; t/dz/

V0 . . . . . . . . . . . . . . . . . . . . . Amplitude of V
V . . . . . . . . . . . . . . . . . . . . . Volume (mass) transport vector
V 1;V 2 . . . . . . . . . . . . . . . . Volume transport vectors of a 2-layer model
v . . . . . . . . . . . . . . . . . . . . . . Velocity vector
v . . . . . . . . . . . . . . . . . . . . . . y-component of the velocity field
vph . . . . . . . . . . . . . . . . . . . . . Phase velocity
v��.s; n; z/ . . . . . . . . . . . . . Velocity function, describing the initial velocity field
vs ;vn;vz . . . . . . . . . . . . . . . Sets of shape functions for vs ; vn; vz

Wi . . . . . . . . . . . . . . . . . . . . . Orthogonal functions of the Lanczos procedure
(Chap. 17)

w . . . . . . . . . . . . . . . . . . . . . . z-component of the velocity field
wn.x; y; t/ . . . . . . . . . . . . . .x; y; t/-dependent part of w.x; y; z; t/
w�.n/˛ . . . . . . . . . . . . . . . . . . Macroscopic wind load vector, defined in Chap. 22
X . . . . . . . . . . . . . . . . . . . . . Position vector in 2D or 3D space of the reference

configuration
x . . . . . . . . . . . . . . . . . . . . . . Position vector in 2D or 3D space of the present

configuration
x . . . . . . . . . . . . . . . . . . . . . . x-component of the Cartesian coordinatesx OD.x; y; z/
j x j . . . . . . . . . . . . . . . . . . . Euclidean norm of x Wj x jD p

x � x
x . . . . . . . . . . . . . . . . . . . . . . A set of independent variables
Y ;y . . . . . . . . . . . . . . . . . . . Position vector in 2D or 3D space in the reference and

present configuration, respectively
Y` . . . . . . . . . . . . . . . . . . . . . Bessel function of the second kind and `-th order
Oys . . . . . . . . . . . . . . . . . . . . . Lake axis as a function of the arc length along the

channel axis
Zw
n .z/ . . . . . . . . . . . . . . . . . . z-dependent part of the function w.x; y; z; t/ in a sep-

aration of variables expansion

Z.m/; OZ.m/ . . . . . . . . . . . . . . Curvature dependent cross-sectional matrices, defined
in Appendix 22.A of Chap. 22

z . . . . . . . . . . . . . . . . . . . . . . z-component of the Cartesian coordinates .x; y; z/
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Greek Symbols

˛; ˛1 . . . . . . . . . . . . . . . . . . . Coefficients of the non-linear terms of the K-dV equa-
tion

˛gr . . . . . . . . . . . . . . . . . . . . Group velocity correcting factor, Chap. 22
ˇ D df =dy . . . . . . . . . . . . ˇ-plane parameter (y is the direction towards North

on the Earth’s surface)
ˇ . . . . . . . . . . . . . . . . . . . . . . Dispersion coefficient of the K-dV equation
� . . . . . . . . . . . . . . . . . . . . . xy-components of the dynamical Cauchy stress

(Chap. 19)
	 . . . . . . . . . . . . . . . . . . . . . . Parameter arising in the 3-layer shallow water model

(Chap. 13)
� . . . . . . . . . . . . . . . . . . . . . . .13; 23/ D .xz; yz/-components of the dynamic

Cauchy stress (Chap. 19)
	 D f

�
p
gH

. . . . . . . . . . . . . Dimensionless rotation factor

� . . . . . . . . . . . . . . . . . . . . . Laplace operator, symbol for difference
�� . . . . . . . . . . . . . . . . . . . . Density difference
ı . . . . . . . . . . . . . . . . . . . . . . Symbol for a small positive number
ıij ; ı˛ˇ . . . . . . . . . . . . . . . . Kronecker Delta .ıij D 1 if i D j; else ıij D

0I ı˛;ˇ D 1 for ˛ D ˇ; else ı˛ˇ D 0)
ı D �1

�2
or D �1

��

. . . . . . . . . . . Density ratio of the 2- and 3-layer model
ı�˛ . . . . . . . . . . . . . . . . . . . . Weighting function in the method of weighted resid-

uals
ı I; ı I1ı I6 . . . . . . . . . . . . Functionals, defining the weak forms of an initial

value problem (Chap. 22)
ı v1 . . . . . . . . . . . . . . . . . . . . Weighting function for the momentum balance equa-

tion (Chap. 22)
ı v2 . . . . . . . . . . . . . . . . . . . . Weighting function for the stress boundary condition

at the free surface (Chap. 22)
ı v3 . . . . . . . . . . . . . . . . . . . . Weighting function for the basal sliding law (Chap. 22)
ı v1; ı v2; ı v3 . . . . . . . . . . Shape functions for ıv1, ıv2, and ıv3
ıw . . . . . . . . . . . . . . . . . . . . Set of shape functions for the weighting functions ıw
ı 
1 . . . . . . . . . . . . . . . . . . . Weighting function for the mass balance equation

(Chap. 22)
ı 
2 . . . . . . . . . . . . . . . . . . . Weighting function for the kinematic equation of the

free surface (Chap. 22)
ı 
3 . . . . . . . . . . . . . . . . . . . Weighting function for the kinematic boundary con-

dition at the free surface (Chap. 22)
ı
1;2;3 . . . . . . . . . . . . . . . . . Shape functions for ı
1;2;3
ı w˝ . . . . . . . . . . . . . . . . . . . Weighting function for w defined in ˝
ıw@˝˛ . . . . . . . . . . . . . . . . . Weighting function for w defined in @˝˛
" . . . . . . . . . . . . . . . . . . . . . . Symbol for a small positive number, depth along

shore (Chaps. 19–21)
" . . . . . . . . . . . . . . . . . . . . . . Scaled dimensionless density difference in the 2-layer

model (D �2��1
��

or D �2��1
�2

)
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"ij D �j��i
�j

. . . . . . . . . . . . Dimensionless density differences arising in the

n .> 2/ layer model
" D a�=H . . . . . . . . . . . . . . Amplitude–water depth ratio
"ijk . . . . . . . . . . . . . . . . . . . . Levi–Cività tensor, alternating symbol
� . . . . . . . . . . . . . . . . . . . . . . Vertical displacement of an isolated water particle in

a stratified still fluid
� . . . . . . . . . . . . . . . . . . . . . . .z D �.x; y; t//, function defining the free surface of

a lake in R3

� . . . . . . . . . . . . . . . . . . . . . . z-component of the vorticity vector
�1;2 . . . . . . . . . . . . . . . . . . . . .z D �1;2.x; y; t//, function defining the free surface

and the thermocline surface of a 2-layer model
�� . . . . . . . . . . . . . . . . . . . . . Conjugate complex of �
�.s; n; t/ . . . . . . . . . . . . . . . Vertical displacement of the free surface
���.s; n/ . . . . . . . . . . . . . . . Surface displacement, describing the initial elevation

field z D ���.s; n/
�; �1; :::; �n . . . . . . . . . . . . . Vertical displacements of the free surface and the

interfaces in an n-layer model
� . . . . . . . . . . . . . . . . . . . . . . Azimuth angle in cylindrical coordinates
� . . . . . . . . . . . . . . . . . . . . . . Angle between wave vector k and its projection into

the .x; y/-plane (Chap. 11)
�.x; y/ . . . . . . . . . . . . . . . . . Phase angle of a 2D wave of a fluid in a rectangle
 . . . . . . . . . . . . . . . . . . . . . . Modulus of the horizontal wave number
2 . . . . . . . . . . . . . . . . . . . . . D k2 C `2


 D i . . . . . . . . . . . . . . . . . Exponential decay factor (Chap. 22)

˛ . . . . . . . . . . . . . . . . . . . . . Eigenvalues of the velocity potential (Chap. 12,

Sect. 12.9)

n . . . . . . . . . . . . . . . . . . . . . Eigenvalues of the Lanczos procedure (Chap. 17)
� . . . . . . . . . . . . . . . . . . . . . . Dynamic viscosity of water
� D .h=
/2 . . . . . . . . . . . . Squared ratio of the water depth H to the wave

length 

��1 D B=L . . . . . . . . . . . . Aspect ratio of the rectangular channel with breadth

B and length L

�2 D 1
3
a2 D 1

3
B2

4R2m
. . . . . Squared aspect ratio in a circular ring of rectangular

cross-section with width B and mean radius Rm
� D �=� . . . . . . . . . . . . . . . Kinematic viscosity of water
�˛; �ext; �int . . . . . . . . . . . . . ‘Separation parameters’ of the equivalent depth

models
�1; �2 . . . . . . . . . . . . . . . . . . Angular velocities of the slowest longitudinal and

transverse modes of the seiches in a non-rotating rect-
angle

�n.z=H/ . . . . . . . . . . . . . . . Shape functions in the method or weighted residuals
˘bt . . . . . . . . . . . . . . . . . . . . Barotropic potential vorticity
� . . . . . . . . . . . . . . . . . . . . . . D 3:1415926:::
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�1;2 . . . . . . . . . . . . . . . . . . . . Mass density per unit volume in layers 1 and 2
� . . . . . . . . . . . . . . . . . . . . . . (Mostly) dimensionless frequency
� D ����

��

. . . . . . . . . . . . . . Density anomaly
�w;�wind . . . . . . . . . . . . . . . Wind shear stress (traction) on the free surface
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r . . . . . . . . . . . . . . . . . . . . . . Nabla operator, del-operator, generally in three
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rH . . . . . . . . . . . . . . . . . . . . Nabla operator in two dimensions
rf;rHg . . . . . . . . . . . . . . Gradient of f in 3D, gradient of g in 2D
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h�; �i . . . . . . . . . . . . . . . . . . . D R 1
0
f .�/g.�/d�

hh�; �ii . . . . . . . . . . . . . . . . . . D R 0
�H f .z=H/g.z=H/dz

[A] . . . . . . . . . . . . . . . . . . . . Scale (= typical magnitude) of variable A
[[A]] D AC � A� . . . . . . . Jump of A across a singular surface
d.�/
dt D .�/� . . . . . . . . . . . . . . Total or material time derivative, keeping the

Lagrangean position fixed
@.�/
@ t

. . . . . . . . . . . . . . . . . . . . Partial time derivative, or local time derivative, keep-
ing the spatial position fixed

� . . . . . . . . . . . . . . . . . . . . . . Multiplication sign
a � b . . . . . . . . . . . . . . . . . . Vector product of a and b, also called cross product
a˝ b . . . . . . . . . . . . . . . . . . Dyadic (exterior) product between two vectors a and

b ..a˝ b/ij D aibj /

tr.A/ . . . . . . . . . . . . . . . . . . Trace of the tensor A: trA D Ai i .
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Chapter 11
The Role of the Earth’s Rotation:
Fundamentals – Rotation and Stratification
Influenced Dynamics

In Chaps. 7 and 8 of Volume I, an introduction was given to the mathematical treat-
ment of linear waves in general and to water waves in particular. To isolate the
specific properties of water waves with a free surface, the influence of the rotation
of the reference frame was not considered. Here, our aim is to elucidate the role
played by the rotation of the reference frame – the Earth – in the dynamics of large
water masses such as ponds, lakes, and the ocean.

11.1 Estimations by Dimensional Reasoning

The rotation of the Earth manifests itself in almost all flow configurations that occur
in large water bodies, but depending upon the type of process modifications implied
by this rotation the effects are either

� Large – they cause a flow qualitatively completely different from the correspond-
ing flow without rotation – or

� Moderate – they modify quantitatively the flow that would develop without
rotation – or

� Small – they lead to very small alterations that may simply be ignored in
comparison with the flow without rotation.

There are certain thumb rules, which are based on theoretical analyses and have
been corroborated by observations; they tell us, under which physical conditions the
rotation of the Earth is likely to exercise an influence on the physical process under
investigation. The size and bathymetry of a basin primarily dictate whether the rota-
tion of the Earth must be accounted for or can be ignored. Very roughly, three classes
of processes can be characterized to be influenced by the rotation of the Earth, and
they scale according to the sizes of the water body. In general, the smaller a basin,
the less important the role of the rotation of the Earth. However, this rule is not suf-
ficient. The size of a basin above which the rotation may exercise an effect depends
also on the processes under study, and here experience tells us to differentiate as
follows:

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_11, c� Springer-Verlag Berlin Heidelberg 2011
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2 11 The Role of the Earth’s Rotation

11.1.1 Tributary Affected Advection

Because the Coriolis force is perpendicular to the particle velocity, Coriolis effects
divert the path of a moving water mass within a water body to the right (left) on the
Northern (Southern) hemisphere. This can be observed even in reservoirs and ponds
of only 1 km horizontal extent and is measurable in mountainous lakes with large
tributaries (such as, e.g. the river Rhine in Lake Constance). An estimate when this
rotational effect may be significant can easily be given, if a water parcel from the
fluid of a jet-like moving water mass is considered in isolation, see Fig. 11.1, which
shows a top view of such a parcel together with a portion of its curved trajectory,
the local radius of curvature being R. Assume that the motion is purely horizontal.
Then, for an observer moving with the fluid parcel, the forces acting on the fluid
parcel perpendicular to the trajectory are the Coriolis1 force mf v pointing towards
the centre of curvature and the centrifugal force,mv2=R, in which m is the mass of
the parcel. Equating the two forces, mf v D mv2=R, shows that the mass cancels
out and so

R D v

f
: (11.1)

The radius of curvature of the trajectory of a fluid parcel that is unaffected by bound-
aries is of the order of v=f , where v is its velocity and f the Coriolis parameter.
With v ' 10�2 � 100 ms�1 and f � 10�5 s�1, this yields R � 103 � 105 m. So, if
a jet from a tributary moves with a velocity of 1 ms�1 or less and the water body in
which it moves has an extent of one to a few kilometers, it is likely that the motion
of this jet will be affected by the rotation of the Earth: The jet will likely be found

R

mfv v

mv2

R

trajectory

Centre of curvature of trajectory

Fig. 11.1 Fluid parcel within the jet flow from a tributary, top view. The velocity v is tangential
to the trajectory, and the forces perpendicular to it are the Coriolis and the centrifugal forces. The
graph applies to a situation on the Northern hemisphere

1 For a portrait of Coriolis and a short biography, see Volume I, Fig. 4.5, p. 98.
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Fig. 11.2 Example of the jet found along the right shore on the Northern hemisphere. The sedi-
ment plume of the Mississippi River is quite visible in this SeaWiFS image as it empties into the
Gulf of Mexico (from http://visibleearth.nasa.gov)

along the right (left) shore on the Northern (Southern) hemisphere. An example is
given in the photo of Fig. 11.2.

11.1.2 Wind-Induced Circulation

Wind acts as a momentum source; it establishes a shear stress at the free surface
which triggers the horizontal water motion that is carried to depth due to diffu-
sion of momentum. The Coriolis effects cause the horizontal current to rotate with
increasing depth, in the (counter) clockwise direction on the Northern (Southern)
hemisphere. Therefore, two processes are of main importance for the general struc-
ture of the water currents here: the transfer of momentum into deeper layers due
to molecular and turbulent viscosity, and the turning due to the Coriolis force. The
momentum decreases with depth because of the dissipation due to friction; hence,
the velocity decreases with increasing depth but the Coriolis effect is maintained.
Such layers arise near the lake surface and for sufficiently deep lakes also near the
bottom boundary, where the penetration of momentum is coupled with the rotation
of the Earth; in natural reservoirs, they are widely observed and are called Ekman
boundary layers. The corresponding depth, within which the described mechanism
is significant for the current field formation is called the Ekman depth. A detailed
analysis of wind-induced currents, including the Ekman layer and its generalization
has been given in Chap. 9 (Volume I) of this treatise.

Let us estimate the thickness D of the Ekman layer by dimensional reason-
ing. Evidently, the value of D will depend on how effectively the water transmits
the momentum from layer to layer. A measure for this is the kinematic viscos-
ity of the water, � Œm2s�1�. The second mechanism is the rotation of the Earth,
expressed by the Coriolis parameter, f Œs�1�. These two quantities combine to a
lengthD � .�=f /1=2, viz.,

http://visibleearth.nasa.gov
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D D
s
2�

f
�; (11.2)

where the factor
p
2� is inserted for reasons that become apparent in the respective

theory, see Chap. 9 (Volume I).
Of course, values for D depend on the substituted values for �. Flows in natu-

ral basins and reservoirs are turbulent, of which the values for the viscosity depend
on the scale of the flow under consideration. Moreover, measurements of vertical
profiles of the kinematic turbulent viscosities show that they are relatively small in
the epi- and hypoliminion and can be one to two orders larger in the thermocline
region. For the estimates here an average value is sufficient. For turbulent flows in
nature these are � 2 Œ10�2I 10�1�m2 s�1 and f � 10�4 s�1, so D 2 Œ45; 140�m.
For lakes the value at the lower end is more appropriate; D 2 Œ100; 140�m is used
for the open ocean. So, here we see: it is not so much the horizontal extent of a
basin, but its depth which dictates whether the rotation of the Earth affects the cir-
culation dynamics of a water body. Of course, the horizontal extent of a basin must
be sufficiently large that the rotational flow can be formed: 50 m depth and a few
kilometers horizontal extent (or more) suffice to make it important.

11.1.3 Barotropic and Baroclinic Wave Dynamics

Water waves are also influenced by the rotation of the Earth via the Coriolis force. If
we consider the channel solutions of surface gravity waves without rotation as, e.g.
displayed in the graphs of Figs. 6.12–6.14 (Volume I), these waves will be modified
by the Coriolis force, simply because, due to its action, water particles experience
a force to the right (left) on the Northern (Southern) hemisphere. This must modify
the types of waves insofar, as for ‘longitudinal modes’ wave heights can no longer
be constant across the channel width but must vary, with wave height maxima to
the right (left) of the wave propagation direction on the Northern (Southern) hemi-
sphere. Analogously, for ‘transverse modes’ a variation of the wave amplitude in
the long direction must necessarily be established, and in an infinitely long channel
this can only be accomplished, if cell structures develop, for otherwise the wave
amplitude would go to infinity at some place in the channel which would physi-
cally be inadmissible. The free-surface-water-wave equations indeed generate these
bounded solutions, they are the so-called Kelvin and Poincaré waves, respectively,
as we shall soon see.

We can also estimate when the rotation of the Earth will affect the propagation
of waves in a body of water. The argument follows again that of Fig. 11.1 with the
difference that the parcel is now a wave packet and R D v=f is built with the phase
speed of the wave.2 The length

2 At this point of the development it may not become clear to the reader, why the parcel should
be able to be replaced by a wave-packet. However, in a first approach, we may accept this as an
analogy and investigate its consequences. Later formulas will corroborate this.
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RD D vph

f
(11.3)

is called the Rossby radius of deformation or simply the Rossby radius. A typi-
cal numerical value for the phase velocity in the water waves is its value in the
shallow water approximation in which we have seen in Chaps. 4 and 7 (Volume I),
respectively, that

vph D

8
<̂

:̂

p
gH homogeneous barotropic case,s

g
��

�

H1H2

H1 CH2
two-layer baroclinic case,

(11.4)

in which H is the total water depth and H1 and H2 are the thicknesses of the
upper and lower layers, so H D H1 CH2. Moreover,��=� is the relative density
difference of the two layers. A few representative values of the Rossby radius of
deformation, evaluated according to (11.3) and (11.4), have been computed and are
collected in Table 11.1. As can be seen from this table, Rossby radii for barotropic
flows are perhaps between 200 and 500 km. This implies that for barotropic gravity
waves the rotation of the Earth ought to be accounted for whenever the horizontal
extent of a basin is about half the Rossby radius or more, i.e. 100–250 km. This
means that barotropic wave dynamics will be influenced by the rotation of the Earth
in large lakes like the Great Lakes, Lake Ladoga (210/128 km largest length/width),
Lake Onega (240/80 km largest length/width), Lake Victoria and Lake Tanganyika,
the Baltic Sea, the Caspian Sea, but hardly in Lake Constance (60 km long), Lake
Geneva (100 km long) whose widths are both small, just a few km and certainly
not in even smaller lakes. On the other hand, for baroclinic wave processes in a
two-layer approximation the Rossby radius of deformation is just a few kilometers.
Here, the effects of the rotation of the Earth are visible in much smaller basins of the
extent of 10–30 km, say. There are many mountainous lakes, 10–30 km long and a
few kilometers wide. Their gravity wave dynamics is affected by the rotation of the
Earth mostly only marginally, but at weak stratification, the corresponding Rossby
radii of deformation may become so small (e.g. in autumn) that the rotation of the
Earth may be negligible in summer but important in late autumn.

The reader should also be aware of the fact that for the stratified case Table 11.1
contains only results for a two layer model and thus only lists Rossby radii for the
first baroclinic mode of a typical summer stratification. There are higher baroclinic

Table 11.1 Rossby radii of deformation RD in kilometre for a one-layer, barotropic and a two-
layer, baroclinic fluid when vph is given by (11.4) and ��=� D 10�3 , f D 10�4 s�1, g D
10ms�2. H D H1 CH2

Water depth H (m) 50 200 1,000

Barotropic case RD (km) 224 447 1,000
Baroclinic case RD (km) H1 D 10m 2.83 3.08 3.14

H1 D 40m 2.83 5.66 6.20
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modes (e.g. for a three layer model, compare with the results obtained in Chap. 8 in
Volume I of this book series). We explain there that, the higher the baroclinic mode
is, the smaller will be the corresponding phase speed and, consequently, the smaller
the Rossby radius belonging to it. The reader may show by himself/herself that for
a realistic summer stratification this next higher order Rossby radius is of the order
of 1 km.

All these facts will be theoretically substantiated, but it is interesting to real-
ize that relatively simple arguments of dimensional analysis and physical reasoning
have led us to these important inferences regarding the dynamical behaviour of
water bodies. This concerns gravity waves. There is, however, one additional wave
phenomenon which we have not been able to describe so far. These are the so-called
Rossby waves or geostrophic or vorticity waves. In a frame of reference which is
inertial, such waves are not excited. Their existence cannot easily be explained by
arguments of dimensional reasoning. We have to await the presentation of the gov-
erning equations to make this clear. This will be done by using the shallow water
equations and not the finite or infinite depth equations, the reason being that the
essential properties can be extracted with less heavy mathematical formulae.

11.2 Rotation Influenced Shallow Water Waves

We consider small amplitude linear water waves in a layer of variable depth of a
fluid on the rotating Earth. We suppose conditions of an ideal fluid with negligible
viscous or turbulent stresses and vanishingly small heat flux, negligible dissipation
and vanishing radiation. Such assumptions are in oceanography often referred to
as conditions of adiabaticity.3 We further impose the shallow water approximation
which implies that the vertical momentum equation reduces to a balance between
the vertical derivative of the pressure and the gravity forces (known as the hydro-
static pressure assumption). We shall momentarily also restrict considerations to
barotropicity (i.e. the density is constant) and to linearity implying that convective
accelerations are ignored and free surface elevations above the rest positions are
small. Later we will see that restriction to conditions of barotropicity can be lifted
provided the water depth is constant.

All these assumptions are made to arrive at a simple system of equations which
can be handled analytically but still captures the essential physics, and complica-
tions can be added later on. Nevertheless, the simplifications mentioned above can
also be justified, which we shall now do: In doing so, we let ourselves be moti-
vated by the fact that wave motion is in focus. Its existence is based on variations
of the free surface and density (see Chap. 8 in Volume I). Viscous and turbulent

3 The classical definition of adiabaticity is that a body is thermally isolated from its environment.
This means that in this case heat flux and radiation sources are zero. Our weaker interpretation
includes in the definition all those terms which are associated with dissipation, through species,
momentum, and heat diffusion.
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stresses and the presence of heat flow, dissipation and radiation will attenuate the
wave amplitudes as the waves progress. The imposition of the shallow water approx-
imation is tantamount to assuming that wavelengths are much larger than wave
heights and the hydrostatic pressure assumption accounts for the fact that verti-
cal accelerations are small in comparison to the acceleration due to gravity. All
these assumptions can rigorously be made by non-dimensionalizing the governing
equations with a proper scaling of the physical variables.

Balances of mass and momentum imply

@u

@x
C @v

@y
C @w

@z
D 0;

@u

@t
� f v D �1

�

@p

@x
;

@v

@t
C f u D �1

�

@p

@y
;

0 D �@p
@z

� �g;

9
>>>>>>>>>>>=

>>>>>>>>>>>;

z 2 Œ�.x; t/;�H.x/�;
.x; y/ 2 D � R2;

(11.5)

where D is the horizontal domain over which the water is distributed, some-
times identified with R2. These equations must be solved subject to the boundary
conditions

@�

@t
C @�

@x
u C @�

@y
v � w D 0;

p D p0 D const:;

9
>=

>;

z D �.x; y; t/;

.x; y/ 2 D (11.6)

which assumes constant atmospheric pressure and

@H

@x
u C @H

@y
v C w D 0; at z D �H.x; y/; .x; y/ 2 D: (11.7)

In a first step, we integrate the continuity equation from z D �H.x; y/ to z D
�.x; y; t/ as follows:

Z �.x;y;t/

�H.x;y/
@u

@x
dz C

Z �.x;y;t/

�H.x;y/
@v

@y
dz C w.x; y; �; t/ � w.x; y;�H; t/ D 0:

(11.8)
The result (i.e. right-hand side) is still zero since the definite integral of the
zero function yields zero. The next step consists of interchanging the order of
performance of the differentiations and integrations in (11.8) viz.,

Z �.x;y;t/

�H.x;y/
@u

@x
dz D @

@x

Z �.x;y;t/

�H.x;y/
u dz � u.x; y; �; t/

@�

@x
� u.x; y;�H; t/@H

@x

(11.9)
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and a similar formula for v

Z �.x;y;t/

�H.x;y/
@v

@y
dz D @

@y

Z �.x;y;t/

�H.x;y/
v dz � v.x; y; �; t/

@�

@y
� v.x; y;�H; t/@H

@y
:

(11.10)
These formulae reflect the explicit application of the Leibniz rule of differentiation
of an integral whose upper and lower limits are themselves functions of the variable
with respect to which the integral is differentiated. Substituting (11.9), (11.10) into
(11.8) yields

@

@x

Z �.x;y;t/

�H.x;y/
u dz

„ ƒ‚ …
WDU

C @

@y

Z �.x;y;t/

�H.x;y/
v dz

„ ƒ‚ …
WDV

�
�

u
@�

@x
C v

@�

@y
� w

�

zD�„ ƒ‚ …
D�@�=@t; see .11:6/

�
�

u
@H

@x
C v

@H

@y
C w

�

zD�H„ ƒ‚ …
D0; see .11:7/

D 0; (11.11)

which, in view of the identifications expressed below the curly brackets, reduces to

@�

@t
C @U

@x
C @V

@y
D 0: (11.12)

U and V are the volume fluxes in the x- and y-directions, respectively. In the linear
approximation, they are representable as

U Š
Z 0

�H.x;y/
u.x; y; z; t/ dz; V Š

Z 0

�H.x;y/
v.x; y; z; t/ dz: (11.13)

Problem 11.1 By formulating the mass balance for a water column element of cross
section dx dy and height H C �, show that (11.12) is obtained. Convince yourself
that with the exact definitions of the volume fluxes, (11.12) is exact.

Next, we return to (11.5)4 and integrate it subject to the boundary condition
(11.6)2. This yields

p.x; y; z; t/ D �g.�.x; y; t/ � z/C p0; (11.14)

from which, since p0 D constant,4

4 The physical interpretation of p0 is atmospheric pressure at z D � which obviously is a function
of x; y and t W p0 D p0.x; y; t/. However, typical length scales over which atmospheric pressures
vary, are, in general, larger than the horizontal extent of common lakes, implying that p0 may
be assumed to be constant. When atmospheric fronts move across a lake, then p0 should not be
treated as constant. In this more general case atmospheric pressure gradients would enter (11.15)
and (11.17) as driving forces of the motion.
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@p

@x
.x; y; t/ D �g

@�

@x
.x; y; t/;

@p

@y
.x; y; t/ D �g

@�

@y
.x; y; t/ (11.15)

is deduced. The horizontal components of the pressure gradient are, therefore, only
functions of x; y, and t but not z, making the right-hand sides of (11.5)2;3 z-
independent and implying that also the left-hand sides are z-independent. It follows:
In a linearized barotropic fluid model which obeys the hydrostatic pressure and the
adiabaticity assumptions, the horizontal velocity components are independent of
the vertical coordinate. Moreover, the vertical velocity component must be a linear
function of the z-coordinate; it is given by

w.x; y; z; t/ D .z CH/

H

@�.x; y; t/

@t
; (11.16)

which is zero at the bottom and reaches a maximum at the free surface.5 Further-
more, in this linear approximation U D Hu and V D Hv, so that

@u

@t
� f v D �g @�

@x
;

@v

@t
C f u D �g @�

@y
;

@�

@t
C @

@x
.Hu/C @

@y
.Hv/ D 0:

(11.17)

An alternative way of writing these would also be

@U

@t
�f V D �gH @�

@x
;

@V

@t
C f U D �gH @�

@y
;

@�

@t
C @

@x
.U /C @

@y
.V / D 0:

(11.18)

Here, volume fluxes .U; V / have replaced the horizontal velocities .u; v/ as basic
variables. This form of the governing equations is better suited for computation.
Horizontal, depth averaged velocities are then obtained a posteriori from .u; v/ D
1
H
.U; V /.
Equations (11.17) comprise the governing equations for free long waves in a

basin of finite depth H.x; y/. To find out which kind of motions they describe, it
is more convenient to transform them to a single equation in just one variable. We
shall do this here for the surface elevation � as follows (the steps are not entirely
straightforward which is one reason for the demonstration). First, we differentiate

5 Actually, with the linearized boundary condition (11.6), @�=@t D w, at z D 0 and the full
boundary condition (11.7), (11.16) reads

w.x; y; z; t /D .zCH/
H

@�.x; y; t/

@t
C
�
1

H

@H

@x

U

H
C 1

H

@H

@y

U

H

�
z

in which the second bracketed is dropped in the shallow water approximation.
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(11.17)1 with respect to time and substitute (11.17)2. Similarly, we differentiate
(11.17)2 and substitute (11.17)1. These two steps yield

LŒu� D �fg @�
@y

� g
@2�

@t@x
; LŒv� D fg

@�

@x
� g

@2�

@t@y
; (11.19)

where

L D @2

@t2
C f 2: (11.20)

Second, we take the integrated mass balance, (11.17)3, and apply L to it

L
�
@�

@t

�
C @

@x
.L ŒHu�/C @

@y
.L ŒHv�/ D 0: (11.21)

Since H is only a function of x and y, we have LŒHu� D HLŒu� and L ŒHv� D
HLŒv�. Thus, upon substitution of (11.19) into (11.21) and some transformations
the resulting single variable equation for �

rH �
�
HrH @�

@t

�
C J ŒfH; �� � 1

g

�
@2

@t2
C f 2

	
@�

@t
D 0;

J Œa; b� WD @a

@x

@b

@y
� @a

@y

@b

@x

(11.22)

is obtained. This partial differential equation is of third order in time and of second
order in space. rH is the two-dimensional horizontal gradient operator. The oper-
ator J is called the Jacobian operator, and the Coriolis parameter does not need be
constant.

This last remark requires qualification. When a Cartesian coordinate system is
chosen on the Earth, with the x-axis pointing towards East, the y-axis pointing
towards North and the z-axis pointing towards the zenith, then the origin of this coor-
dinate system fixes the geographical latitude and, therefore, the Coriolis parameter
f ; it does not vary. If a basin has a large North–South extent, such that the curvature
of the Earth may be of some significance, then one may no longer be allowed to use
Cartesian coordinates but must use spherical coordinates for which f varies in the
North–South direction. It turns out that the simplest extension of (11.22) is to apply
still (11.22) but now with variable f . In the chosen coordinate system (x; y; z), the
only nontrivial component of .gradf / is the change of f with y, ˇ WDdf=dy.
The use of the letter ˇ is standard in geophysics and the two approximations, (1)
f D constant and (2) f D f0 C ˇy are called the f -plane approximation and the
ˇ-plane approximation, respectively.

Returning to (11.22), we may say that it holds true both for the f -plane and
ˇ-plane approximations. The differential equation (11.22), because it is third order
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in time, possesses in general three different wave solutions;6 however, these belong
only to two classes as we shall now see:

� Waves of the first class. When J ŒfH; �� D 0 then (11.22) reduces to an equation
of the second order in @�=@t . Since these waves obviously depend on gravity (the
constant g arises explicitly in the resulting equation), and because the waves do
also exist when f D 0 (non-rotating frame of reference), they are called surface
gravity waves. It is easy to show that forH D constant the dispersion relation is
given by .!2�f 2/=k2 D gH in this case. In the limit of no rotation, these waves
agree with the long wave-length shallow-water waves. They are non-dispersive.
When the rotation of the Earth is present these surface gravity waves are
modified – perhaps slightly, perhaps substantially – by the presence of the
Coriolis parameter f . They are non-dispersive.

� Waves of the second class, Rossby waves or quasi-geostrophic waves or vortic-
ity waves. These waves are governed by the third solution of the wave equation
(11.22) and only exist when the Jacobian operator does not identically vanish,
and they are approximately obtained from (11.22) by balancing the first two
terms (and ignoring the third, gravity dependent term),

rH �
�
HrH @�

@t

�
C J ŒfH; �� D 0: (11.23)

This is the famous Rossby wave equation. The reader may prove by himself/
herself that it may be obtained from (11.17)1;2;3 by ignoring in (11.17)3 the time
derivative @�=@t , which is tantamount to the rigid lid assumption. This explana-
tion makes equally clear that the rigid lid assumption eliminates surface gravity
waves; indeed in (11.23) the gravity term is missing. Furthermore, Rossby waves
do only exist when @.fH/=@x and @.fH/=@y do not both simultaneously van-
ish. This demonstrates that they only exist in a fluid on a rotating non-inertial
frame of reference; thus, they necessarily possess non-vanishing absolute vortic-
ity for which reason they are sometimes also called vorticity waves. Depending
upon whether ˇ D @f=@y D 0 or ˇ ¤ 0 andH D constant,H ¤ constant there
are several special cases which we shall discuss below.

From a conceptual point of view the fact that a new type of wave was found in a
fluid on a rotating non-inertial frame is significant. In such a fluid system there arise
phenomena that do not exist in a system referred to an inertial frame of reference.
The effect of the rotation of the Earth has here not modified but, rather, created a new
phenomenon, not existing otherwise. It will be interesting to see how these waves
look like and whether they are of importance in physical limnology.

In the above analysis, the surface gravity waves and the Rossby waves were
obtained from (11.22) by balancing the appropriate two of the three terms of

6 This statement assumes that of the three solutions for the wave frequency all are real. Without
explicit analysis this is not guaranteed. We here anticipate this fact.



12 11 The Role of the Earth’s Rotation

the differential equation. These balances can be obtained more formally by non-
dimensionalizing equation (11.22). To this end, let L0 andH0 be typical horizontal
and vertical length scales and let time and Coriolis parameter be scaled by f �10 such
that

H D H0h; x D L0 Nx; t D 1

f0
Nt ; f D f0 Nf :

With these, (11.22) assumes the form

NrH �
(

h NrH @ N�
@Nt

)

C J Œ Nf h; N�� � L20
R2D

�
@2

@Nt2 C Nf 2
	
@ N�
@Nt D 0; (11.24)

in which

RD WD
p
gH0

f0
(11.25)

is the Rossby radius of deformation.7 For f0 D 10�4 s�1;H0 D 5;000m it is of the
order of 2,300 km; when H0 D 100m one obtains RD ' 330 km. Rotational and
gravity effects uncouple when corresponding typical wave lengths are sufficiently
separate. In particular, the effects of the rotation of the Earth upon surface gravity
waves are significant if the horizontal length scale L0 is comparable to the Rossby
radius of deformation. For barotropic waves this is the case for lake and ocean basins
of the magnitude of the Great Lakes, Lake Baikal, the Baltic Sea, but certainly
neither for Lake Constance nor Lake Geneva nor smaller basins.

Equation (11.24) also provides the conditions when second class waves uncouple
from first class waves as stipulated by (11.23). This is so when RD 	 L0, which
is certainly the case in many ocean basins and all lakes under barotropic conditions.
Barotropic Rossby waves can almost always be described by the reduced equation
(11.23).8 Baroclinic Rossby waves may well be influenced by gravity waves unless
L0 
 RD, the internal Rossby radius of deformation.

Equation (11.24) also discloses a scale invariance of the original Rossby wave
equation (11.23). Indeed, when the last term in (11.24) is omitted and when Nf D 1

7 Later, we shall also introduce an internal Rossby radius of deformation. For a two-layer system
(upper layer depth H1, density �1; lower layer depth H2, density �2) it is given by

RD D
p
g0HE

f0
; g0 D g

�2 � �1
�2

; HE D H1H2

H1 CH2

:

This internal Rossby radius is exactly what we have introduced in (11.3), (11.4) in the baroclinic
case with methods of dimensional analysis; it applies for a stratified fluid in two layers and is much
smaller than its external counterpart. So, whereas in certain lake basins the effects of the rotation
of the Earth may be ignored for surface waves this is not so for internal waves. We shall come back
to this property later on.
8 An exception may be the Caspian Sea which has a very deep (>1;000m) Southern part for which
RD ' 1;000 km and L0 ' 250 km and a shallow middle and Northern part, where RD ' 70 km,
and the same L0-value. A thorough analysis of this has, however, not been done.
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(f -plane approximation), then its remainder is independent of any horizontal length
scale. As a consequence, the solutions for the scaled variables of the reduced
equation (11.24) with Nf D 1 will be the same for all geometrically similar basin
bathymetries (irrespective of their size). This is not so when the last term in (11.24)
is kept because it then contains the factor L20=R

2
D which introduces a dependence

on size.

11.3 A Brief Classification of Rossby Waves

Equation (11.23) is written for the free surface elevation �; more convenient and
better suited for applications is an equation for the mass transport stream function.
To introduce it, consider (11.17)3 subject to the rigid lid assumption so that

@

@x
.Hu/C @

@y
.Hv/ D 0: (11.26)

It follows that the volume transportHv is derivable from the relations

Hu D �@�
@y
; Hv D @�

@x
: (11.27)

� is called the mass transport stream function. If (11.27) is substituted into
(11.17)1;2 and the surface elevation � is eliminated from the emerging equations,
what results reads as follows:

rH �
�
1

H
rH @�

@t

�
C J

�
�;
f

H

�
D 0: (11.28)

In form, (11.28) is identical to the Rossby wave equation (11.23).9 Introducing the
(elliptic) operator

EŒ�� D rH �
�
1

H
rH�

�
; (11.29)

we now write (11.28) as

T Œ�� WD @

@t
E Œ��C J

�
�;

f

H

�
D 0: (11.30)

As one might surmise, this is a free wave equation, in which external driving forces
have been omitted. In an ocean or lake domain D, it is generally solved subject
to the boundary condition of vanishing flow through the basin boundary @D. In

9 For a portrait of Karl Gustav Rossby and a biographical sketch, see Fig. 19.1 in Chap. 19.
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other words, the shore line is a mass transport streamline. Now, since mass transport
streamlines are the lines along which � D constant, and absolute values of � are
insignificant, a solution of the Rossby wave equation is determined by solving the
boundary value problem10

T Œ�� D 0; in D; with � D 0; along @D: (11.31)

We close this section with a few remarks and a classification of Rossby waves:

� The Rossby wave equation in the f -plane approximation is scale invariant, as
already mentioned before. This scale invariance is physically valid when there is
a sufficient separation of the length scales of the surface gravity and the Rossby
waves.

� It can be shown that the Rossby wave equation is invariant under conformal
transformations. This property can constructively be used to determine a great
variety of solutions from any other one. However, because the depth distribution
is transformed along with the domain, this invariance property is less useful from
a practical viewpoint than a first sight might surmise.

� If the Jacobian J Œ�; f=H� D 0, then (11.31) reduces to @EŒ��=@t D 0,
which implies after an integration by time, since we are looking for free wave
solutions, that

EŒ�� D 0; in D; with � D 0; on @D: (11.32)

It follows from this, because EŒ�� is an elliptic operator that � must assume its
maximum and its minimum at the boundary where � D 0.11 So, (11.32) pos-
sesses only the zero solution; there are no Rossby waves when J Œ�; f=H�� 0.

Evidently, the condition that J Œ�� ¤ 0 can only be fulfilled for f ¤ 0. Depend-
ing upon the variations of f and/or H the following classification of the (general)
Rossby waves is made:

� If rHH D 0, i.e. if the layer depth is constant, then necessarily ˇ ¤ 0 must
hold in order that (11.30) possesses a non-trivial solution. In a constant depth
atmosphere, ocean or lake, Rossby waves exist in the ˇ-plane, but not in the
f -plane approximation. Such waves can develop provided the NS-extent of a
basin with constant depth is large such that ˇL0 ' O.f / implying L0 � 500–
1,000 km. These waves cover a large portion of the Globe and are thus called
planetary Rossby waves. They are primarily seen in the atmosphere and the deep
ocean.

10 The boundary condition is in general � D C˛ D const along each boundary with vanishing
flow of water through it. Each boundary has a different value of C˛ . If a lake has no island, then
only a single C arises which may be set to zero, because the stream function can accordingly be
normalized.
11 This fact is stated here without proof.
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� In the f -plane approximation (ˇ D 0), at mid to high latitudes (f ' 10�4),
the Jacobian operator differs from zero when rHH ¤ 0. In this case, Rossby
waves can only exist because of the variable topography. These waves are called
topographic (Rossby) waves. Because the variation of the topography is much
richer than that of the Coriolis parameter, topographic waves are more complex
in structure than planetary Rossby waves. Signals are particularly pronounced
where topographic slopes are large, in the atmosphere near mountains, in the
ocean in the vicinity of the shelf- and shore regions and near sea mountains.
When waves travelling along the continental shelves are addressed, then they are
referred to as shelf-waves.

The planetary and the topographic Rossby waves are the two main Rossby wave
types; there are special cases of these which, frequently, bear their own names:

� When topographic waves cover large NS-distances they may be called planetary
topographic waves. Shelf waves travelling through the entire Atlantic or Pacific
Ocean are of this type.

� Close to the Equator (to within ˙5ı latitude) f is so small that it may be ignored
in comparison to ˇL0. The corresponding waves enjoy special features and are
called equatorial planetary (Rossby) waves or equatorial topographic (Rossby)
waves.

A first physical grasp of the Rossby wave equation is gained if time-independent
steady solutions to T Œ�� D 0 are sought. These are given by

J

�
�;
f

H

�
D 0;

which can also be written as

rH � � rH
�
f

H

	
D 0: (11.33)

This equation states that the two vectors, rH� and rH .f=H/ are parallel. Since
rH� is at every point perpendicular to the lines of constant volume transport � ,
(11.33) states that the volume-transport streamlines are parallel to the lines of con-
stant f=H , which are called isotrophs. On the f -plane they are simply the isobaths.
They can immediately be constructed if the bathymetry to a basin is given together
with the location of the basin on the Globe. Equation (11.33) now tells us that
the streamlines of a steady Rossby current must be parallel to the isotrophs: the
isotrophs are necessarily the streamlines of the steady vorticity motions. Alterna-
tively, whenever the streamlines are not parallel to the isotrophs, then a Rossby wave
must develop. In fact, if we envisage the topographic wave equation, T Œ�� D 0, as
a simple oscillator model, then the Jacobian J Œ�; f=H�, whose value is a mea-
sure of the angle between streamlines and isotrophs, acts as a ‘restoring force’ that
drives the system back to this ‘equilibrium flow configuration’. Rossby waves arise
because of the fluid particles tendency to follow the isotrophs as much as possible.
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This fact is indication where in a particular situation one should look for Rossby
wave motion, e.g. if an ocean or lake basin has a strong variation in its bathymetry.
Seamounts and -troughs are particular candidates for this.

The lake with the largest North–South extent on the Globe is the Caspian Sea. It
is nearly 1,200 km long and between 300 and 400 km wide, and its depth spans over
a tremendous range: only 5 m or less in the Northern most third part, about 700 m in
the middle portion and 1,000 m in its Southern third, see Fig. 11.3a, which shows a
depth chart. So, this basin is an ideal test case for ˇ-effects. Let H and H D H=f

be the bathymetric depth and isotroph depth,12 respectively. With

f D 2˝ sin � D f0 Nf D .2˝ sin�0/
sin �

sin�0
;

˝ D 7:272 � 10�5 s�1; �0 D 42ı;
(11.34)

we may then write

H D 1

f0

H

Nf D 1

f0
NH; NH D H

Nf : (11.35)

We shall call NH the scaled isotroph depth. The reference geographical lati-
tude is �0 D 42ı, and the lake stretches from �min D 36ı300 at y D �600 km
to �max D 47ı at y D 600 km. Panel (b) of Fig. 11.3 displays the scaled inverse
isotrophs. The graph shows that in the entire Northern basin of perhaps 6,000 km2

the inverse isotrophs do not reach 5 m, whilst in the Southern basin NH reaches
1,100 m (see the deep red spot in panel (b)) of Fig. 11.3. Comparing the two charts
also indicates that their horizontal distribution is slightly different. Of particular
interest is, therefore, the difference

NH �H D 1 � Nf
Nf H: (11.36)

Its distribution is shown in Fig. 11.3c. It proves that depth differences between the
scaled inverse isotrophs NH and the water depth H are small in the Northern half of
the lake, but as large as 90 m in the Southern part. This makes it likely that ˇ-effects
may be of significance in the basin wide wave response.

Another very informative example is obtained, when we consider planetary
waves in a constant depth ocean or atmosphere; in this case, equation (11.30) takes
the form

r2
H

@�

@t
C ˇ

@�

@x
D 0; (11.37)

(H drops out from the equation). Assuming harmonic wave propagation in the x-
direction � D �0 ei.kx�!t/, yields the dispersion relation

12 The lines of constant f=H are called isotrophs. We choose here to name isolines of H=f
‘isotroph depths’, but mention that this is not an official denotation.



11.3 A Brief Classification of Rossby Waves 17

F
ig

.1
1.

3
(a

)
B

at
hy

m
et

ri
c

co
nt

ou
rs
H

of
th

e
C

as
pi

an
Se

a.
N

ot
e

th
e

st
ro

ng
N

or
th

–S
ou

th
gr

ad
ie

nt
fr

om
a

la
rg

e
N

or
th

er
n

ba
si

n
of

le
ss

th
an

5
m

de
pt

h
to

a
70

0-
m

de
ep

m
id

dl
e

re
gi

on
an

d
a

1,
00

0-
m

de
ep

So
ut

he
rn

pa
rt

.
(b

)
Sc

al
ed

in
ve

rs
e

is
ot

ro
ph

co
nt

ou
rs
N H
D
H
=
N f.

(c
)

D
is

tr
ib

ut
io

n
of

th
e

di
ff

er
en

ce
de

pt
h
N H
�
H
D

.1
�
N f/
H
=
N f,

fo
r

th
e

C
as

pi
an

Se
a

in
di

ca
ti

ng
th

at
ˇ

-e
ff

ec
ts

m
ay

be
im

po
rt

an
t



18 11 The Role of the Earth’s Rotation

! D �ˇ
k
; (11.38)

from which we may deduce

cph D �cgr D � ˇ

k2
: (11.39)

These equations state that the phase necessarily travels from East to West whereas
the group does so from West to East.13 Thus, on the Northern hemisphere the energy
of planetary Rossby waves travels across the mid to northern Atlantic from the
American coast towards Europe with a group speed which equals in magnitude the
phase speed that travels in the opposite direction.

At mid-latitudes typical diameters of a gyre of a storm-low are 105 m (so k �
10�6 m�1 and ˇ ' 10�11 s�1 m�1 implying jcphj D jcgrj ' 10ms�1). Thus, such a
wave propagates approximately 106 md�1. So, it takes such a weather front roughly
four days to cross the Atlantic ocean. This may explain field observations: the so-
called synoptical scale at mid latitudes lasts about 5–7 days. This means that, if the
weather is bad in a given region, it is bad for the duration of a few days; after these
days, the global weather system over this area will be replaced by another one. This
applies as much to the ocean as it does to the atmosphere.

Remark 11.1. Planetary vorticity waves occur in the atmosphere persistently and
exhibit special features, but their existence is not only due to the non-inertial
reference frame but also simply because of the topological peculiarity of the sphere-
like geometry of the Earth. About 97% of the mass of the Earth’s atmosphere is
concentrated within the 30 lowest most kilometers, whilst the Earth’s radius is
approximately 6,400 km. Hence, the Earth’s atmosphere is, naturally, a very thin
layer, and dominant winds are primarily tangential to the Globe. Owing to the irreg-
ularity of the solar heating on land and over the ocean in the Equatorial and Polar
Regions, during summer and winter in the different hemispheres, the atmosphere is
in perpetual motion – wind fields are formed out of necessity!

Consider a global wind field that is everywhere tangential to the Earth’s surface
(which we think to be spherical) and imagine the Earth to be a fur ball with every
hair line representing a director of the wind vector at the given point. How can we
comb the hairs on the ball? All our attempts will show that it is impossible to comb
‘wind hairs’ smoothly (i.e. with continuous tangents); at least two ‘gyres’ have to
be formed, one of clockwise, the other of anti-clockwise rotation. The centre of
each gyre is a singular point insofar, as it is a point from which ‘wind hairs’ of any
direction emerge. Incidentally, if the Earth were of toroidal shape, ‘wind hair’ could
everywhere smoothly be combed, without the formation of such gyres. Points of
the singularity in the orientation of the tangents to the horizontal currents are called
disclinations. They are either sources or sinks of mass, which in the atmosphere or

13 With ei.kx�!t/ a positive ! means propagation into the positive x-direction.
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ocean are maintained by concentrated upward and downward convective flow, much
like the flow in a chimney. These are the regions where mass between different
layers of fluid is exchanged.

The fact that surface parallel flows on the exterior of a spherical like Earth nec-
essarily require the formation of at least one pair of counter rotating gyres is a
topological property of the sphere. It implies that tangential flows on the outside
of sphere-like bodies have always non-vanishing local vorticity (which in an invis-
cid fluid is globally balanced). It is evident that this kind of vorticity wave exists
independently of the classical Rossby wave, which assumes a rotating frame of ref-
erence. Moreover, in an inviscid spherical fluid layer no motion can start from a
state of rest, so single layered atmospheric circulation cannot be formed, in princi-
ple. Cells must be formed, which allow mass and vorticity (and energy) exchanges
between the layers through convection.

Remark 11.2. The rotation of the Earth manifests itself in the atmosphere and the
ocean through several effects.

� Trade winds: Because the Earth rotates towards East, the wind in the equatorial
belt between 30ı North and South of the Equator moves westward, remaining
behind the speed of the solid Earth due to its rotation. These so-called trade winds
are basically steady and powerful with speeds of approximately 16–25 km h�1
and are used for navigation all-the-year-round since ancient times.

� At mid-latitudes (between 30ı and 60ı where the ˇ-effect is appreciable) plan-
etary Rossby waves transport energy to the West (on the Northern hemisphere)
with a group speed given by (11.39).

� All motions are turned to the right (left) on the Northern (Southern) hemisphere.
� A difference in the intensity of cyclonic and anti-cyclonic gyres is observed.

Cyclones, which rotate in both hemispheres in the same direction as the planet
are more powerful than anti-cyclones. When they cross the Equator, they are
rapidly destroyed.

11.4 Plane Linear Waves in a Rotating Stratified Fluid

In the preceding sections, rotationally influenced shallow water waves in a homo-
geneous fluid were briefly analyzed. It was shown that two classes of waves exist,
first class waves, which persist also when the frame of reference is inertial, and
second class waves, which exist exclusively because of the rotation of the frame of
reference. We shall demonstrate in this section that both types of waves also exist
in a stratified fluid. To this end linear waves in an unbounded domain of a general
Boussinesq fluid will be studied. It will be shown that such waves are generally
elliptically polarized, and that they exist only in regions for which

f < ! < N;
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where f is the Coriolis parameter andN the buoyancy frequency, whilst ! is the cir-
cular frequency of the wave. Attention will be focussed on the propagation of free
waves in a shallow layer of a Boussinesq fluid on the f -plane. It will be demon-
strated that such waves are describable as a linear combination of waves having
different speeds and different vertical structures both of which are determined by the
vertical distribution of the Brunt–Väisälä frequency.14 This vertical mode structure
has already been studied in Chap. 8, Sect. 8.5 in Volume I, however, a re-analysis
is worthwhile as it will shed light on a subtle point not touched upon in the earlier
analysis.

11.4.1 Waves in a Linearly Stratified Rotating Unbounded
Boussinesq Fluid

Consider the linearized equations of motion in which the Boussinesq and adiabatic-
ity assumptions are invoked but no shallowness assumption is made. The pertinent
equations are (4.235)–(4.237) in Chap. 4 in Volume I, which are repeated here as

div v D 0; (11.40)

��
�
@v
@t

C 2˝ � v
�

D �gradp0 C �0g; (11.41)

@�0

@t
� ��N

2

g
w D 0; (11.42)

in which v D .u; v;w/,

N 2.z/ D � g

��
d�0.z/

dz
; (11.43)

and N.z/ is the buoyancy or Brunt–Väisälä frequency , see Definition 8.2 in Vol-
ume I. Equations (11.40)–(11.42) are the continuity equation, the three components
of the momentum equation and a combination of energy and tracer-mass conser-
vation under adiabatic conditions. The pressure p0 can be eliminated from (11.41)
by deriving the vorticity transport equation, i.e. taking the curl of (11.41). Taking a
further time derivative of the emerging equation and then eliminating �0 with the aid
of (11.42), yields the pair of equations

div v D 0; (11.44)

curl
@2v
@t2

� 2

�
grad

@v
@t

	
˝ D curl

�
N 2

g
gw

�
: (11.45)

14 For portraits and biographical sketches of Sir David Brunt and Vilho Väisälä see Fig. 8.13 of
Volume I.
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These are a scalar and vector valued equation for the velocity field v as a function
of space and time.

The ensuing analysis will now be restricted to constantN corresponding to linear
stratification. This makes transformations of the right-hand side of (11.45) easier,
but still allows qualitative inferences from deduceable results. Plane wave solutions
of (11.44) and (11.45) are sought in the form

v D V exp .i.k � x � !t// : (11.46)

V OD .U; V;W /, k and ! are the constant amplitude vector, the wavenumber vec-
tor and the circular frequency, and i is the imaginary unit. Physically realizable
solutions are obtained by taking the real or imaginary part of (11.46). Substituting
(11.46) into (11.44) and (11.45) yields

k � V D 0;
(11.47)

!2k � V � i.2˝ � k/!V C N 2W

g
k � g D 0:

This system of equations may be regarded as a homogeneous linear system of equa-
tions for the components of the amplitude vector V , and it thus possesses a solution
only if its determinant vanishes. The derivation of this condition is facilitated, if it
is recognized that k � V D 0 implies that in a Boussinesq (or density preserving)
fluid in an infinite domain all motion is transverse to the direction of wave propa-
gation. There can be no longitudinal plane waves in such a fluid.15 It follows that
V is orthogonal to the vector k, and it possesses only two independent components
perpendicular to k. To account for this fact, let .x; y; z/ be a Cartesian coordinate
system with the z-axis vertical opposite to the direction of gravity, see Fig. 11.4.
The wavenumber vector may have any direction in this space, but g and k together
define a vertical plane. Let fe1; e2; e3g be an orthonormal basis with e3 parallel
to k, e1 perpendicular to k and in the vertical plane formed by g and k, and e2
perpendicular to e1 and e3 such that fe1; e2; e3g form a right handed system. It is
obvious that e2 lies in the xy-plane, and it is equally obvious that

V D U1e1 C U2e2;

W D �U1 sin � 0; (11.48)

g D �g �sin �e3 � sin � 0e1
�
:

Substituting (11.48) into (11.47)2 yields two equations for U1 and U2 which can be
written as (k is equal to jkj)

15 Any model for which the mass balance equation reduces to the continuity equation div v D 0

does not permit acoustic waves, which are longitudinal as we have seen.
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k

Fig. 11.4 The wavenumber vector k and the gravity vector g define together a vertical plane in
a Cartesian coordinate system .x; y; z/. fe1; e2; e3g is an orthonormal basis with e3 parallel to k
and e1; e2 perpendicular to it, e1 being in the vertical plane; so e2 is in the xy-plane. Two angles
� 0 and � in the vertical plane define the orientations of e1 and e3 in the vertical plane relative to
the intersection line between the vertical plane formed by g and k and the xy-plane. Obviously,
�C� 0 D 90ı . The inset shows the orbital plane spanned by fe1; e2gwith a particle and its elliptical
orbit when N ¤ 0 and ˝ ¤ 0

 
2i.˝ � k/! !2k

.!2 �N 2 cos2 �/k �2i.˝ � k/!

! 
U1

U2

!

D 0: (11.49)

This is a homogeneous system for U1 and U2 which has nontrivial solutions
provided that

!2
˚
k2
�
!2 �N 2 cos2 �

� � 4.˝ � k/2
 D 0: (11.50)

This equation establishes a relation between! and k and thus constitutes the disper-
sion relation for plane waves in an unbounded linearly stratified and rotating fluid.
A double solution ! D 0 corresponds to no wave at all. The remaining solutions
take the form

!2 D N 2 cos2 � C 4˝2 cos2 ˛; (11.51)

in which ˛ is the angle between ˝ and k. Evidently, for the squared frequency
the effects of stratification and rotation are additive. Given the wavenumber vector
k and the frequency !, the phase and group velocities follow from (11.51), and
the velocity amplitudes U1, U2 can be computed from (11.49). Qualitatively, the
behaviour is as follows:
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� When there is no rotation,˝ D 0, then ! D N cos � ; this does not mean that the
frequency is independent of k, because cos � D f.k21 C k22/=.k

2
1 C k22 C k23/g

1
2 .

Here, the indices 1; 2; 3 refer to the x-, y- and z-directions, respectively. With
˝ D 0 and (11.51) satisfied, (11.49) can be solved for the velocity amplitudes
with the solution U2 D 0, U1 D arbitrary. The fluid particles move persistently
in the same direction: Internal waves in a stratified fluid on an inertial frame are
linearly polarized.

� In a non-stratified (N D 0) rotating fluid straightforward calculations using
(11.50) show that

! D 2˝ � Ok; cph D 2˝ �
Ok
k
; cgr D 2

k

n
˝ � .˝ � Ok/ Ok

o
; (11.52)

in which Ok is the unit vector in the direction of k ( Ok D e3). This implies that
true rotational waves propagate only when the direction of propagation is not
perpendicular to˝ : If k ? ˝ , then ! D 0 and cph D 0.
Moreover, substituting (11.52)1 into (11.49) (in which N D 0) yields U2 D
�iU1, so that

v D U1.e1 � ie2/exp .i .k � x � !t// : (11.53)

After separating real and imaginary parts this becomes

v D U1 fcos.k � x � !t/e1 C sin.k � x � !t/e2g (real part)
(11.54)

v D U1 fsin.k � x � !t/e1 � cos.k � x � !t/e2g (imaginary part):

Both are acceptable solutions to the wave equation, and it is easy to prove that
for˝ �k > 0, corresponding to ! > 0 the velocity vector at fixed x traces, in the
course of the motion, a circle in the clockwise direction, performing a complete
revolution in the period 2�=!; see Fig. 11.5. The waves are circularly polarized.

� In the general case when the fluid is stratified (N ¤ 0) and the frame of reference
is rotating (˝ ¤ 0), the polarization is a combination of the linear and circular
polarization. The waves are now elliptically polarized and the sense of revolution
is – as above – against that of the circular frequency, see inset in Fig. 11.4.

These properties can be tested with ocean and lake current measurements from
stationary buoys moored on submerged chains. These moorings perform the motion
of the projection into the horizontal plane of the orbital trajectory. Of course, the
real motion is not purely harmonic in these cases and translational motions are, in
general, superimposed on oscillatory ones. Velocity vectors of these wave motions
when viewed from above rotate in the clockwise (anticlockwise) direction on the
Northern (Southern) hemisphere. This is a direct consequence of the properties of
such rotational waves. If stratification is ignored, then gravity plays no role and only
the direction of the triad fe1; e2; e3g relative to that of ˝ is significant. For ! > 0,
k points in the upper halfspace on the Northern hemisphere and the rotation of the



24 11 The Role of the Earth’s Rotation

v

ωt
( u, v )Ui

k · x
u

Real part

v

k · x
k ·x − π

2

ωt u

Ui

(u, v )

Imaginary part

Fig. 11.5 Polar diagrams (hodographs) of the velocity vectors (11.54) representing a harmonic
travelling wave. Left panel for (11.54)1 , right panel for (11.54)2

velocity vector seen from above is clockwise. For ! < 0, k points into the Southern
halfspace and thus seen from below the velocity vector rotates counterclockwise
(corresponding to clockwise rotation seen from above). A similar argument holds
for the Southern hemisphere where the rotation is in the opposite direction. Progres-
sive vector diagrams16 constructed from time series of horizontal velocity vectors
of such current measurements will thus form loops and be traversed in the clock-
wise (anticlockwise on the Southern hemisphere) direction. In small basins, such as
mountainous lakes, the relative narrowness of the shore will inhibit the circular com-
ponent of these ‘garlandes’, and loops may not close and be pointed, see Fig. 11.6
showing examples from various lake and ocean basins. Additional examples of
garlandic trajectories of freely moving buoys are also, e.g. given by Mortimer [15].

A further physically very useful result also emerges from (11.50) if˝ and k are
expressed in their component form of the x; y; z coordinate system of Fig. 11.4. In
this system

˝ OD 1
2
.0; Qf ; f /; f D 2˝ sin �; Qf D 2˝ cos�; (11.55)

16 Progressive vector diagrams are ‘displacement’ plots from current meter measurements at fixed
positions. If �t is the temporal increment at which the velocity vector vi (i Dnumber of the time
increment) is measured, then

sn D
nX

iD0

vi�t; .n D 0; 1; 2; : : :/

determines the trajectory of a ‘virtual particle’ that passed the current meter at n D 0, see Volume
3, Chapter ‘Instruments and sensors’. The particle is not real, because the current meter does not
follow it (Eulerian description). An alternative is to follow a marker (e.g. freely moving drifter
buoy) through time (Lagrangean description).
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where � is the geographical latitude, and

k OD .k1; k2; k3/: (11.56)

With these, and recognizing that k2 cos2 � D k21 C k22 , (11.50) takes the form

.k21 C k22/.!
2 �N 2/C k23.!

2 � f 2/� k22
Qf 2 � 2k2k3 Qf f D 0: (11.57)

In the shallow water approximation, Qf may be ignored (see Definition 4.20 in
Chap. 4 in Volume I and its consequences); then (11.57) reduces to

k21 C k22
k23

D !2 � f 2
N 2 � !2 : (11.58)

This is the dispersion relation in the shallow water approximation for a fluid on the
rotating Earth which is linearly stratified in the z-direction. It discloses significant
physical results: k1 and k2 are the x- and y-components of the wavenumber vector,
and the left-hand side of equation (11.58) is necessarily positive; thus, the right-hand
side must also be positive. Two cases can be distinguished:

� When N 2 > !2, then one must also have !2 > f 2 implying f <j!j < N .
f forms a lower bound for internal waves to exist and N is the correspond-
ing upper bound. For constant f all waves that are not influenced by bottom
topography or boundaries are thus superinertial. Should ! be larger than N or
smaller than f then the right-hand side of (11.58) is negative, and this requires
the wavenumbers to be complex-valued. Their imaginary parts will give rise to
exponential behaviour in the x-direction (attenuation). The existence of an upper
bound N and a lower bound f for ! thus explains why the metalimnion in a
stably stratified lake may serve as a wave guide to internal waves. Figure 8.16 in
Chap. 8 in Volume I shows an N -profile obtained from density measurements in
Lake Zurich. Often,N -distributions are as shown schematically in the inset map.
A more detailed sketch of this is shown in Fig. 11.7. For the selected value of !,
plane unbounded internal waves can only propagate in the indicated band of the
metalimnion.
The transition from the wave guide regime to the regimes outside of it must be
special. It is characterized by j!j � N . It will be shown below that whenever
j!j � N then the conditions of the shallow water approximation are not satisfied.
Hence, (11.58) should be replaced in these instances by (11.57). These transition
regions are known in the literature as critical layers. They are particularly prone
to instabilities and are the locations where localized overturning and circulating
motions may arise, since vertical convective motion may there be comparable to
the horizontal motion, Fig. 11.7b.

� There is another, and less important, frequency range for which (11.58) admits
real solutions for frequency and wavenumbers: N < ! < f . Here, waves must
be subinertial and stratification is extremely weak. This is the reason why such
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wave guide         N
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N
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horizontal
velocity
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density
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buoyancy
frequency
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critical layer
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ω
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Fig. 11.7 (a) Density, horizontal velocity and buoyancy frequency profiles in a lake subject to
summer stratification. For a given frequency ! a wave guide is singled out, in which shallow
water waves can propagate. Above and below this wave guide, wave tails accompany the wave
in the guide, which decay as one moves away from the wave guide boundaries. In the immediate
vicinity of these boundaries, the shallow water assumption does no longer hold. In this thin layer,
convective motions may arise, giving rise to a structure of the local motion as shown in panel (b)

subinertial plane free waves are less frequent. They can equally be ruled out in
the shallow water approximation.

The above analysis may suggest that only waves with superinertial frequencies,
! > f , exist, at least in a linearly stratified fluid and when the shallow water
approximation is involved. This is not so; in fact waves with subinertial frequen-
cies, ! < f , also exist when ˇ-effects or topographic variations are significant, or
when the region in which they propagate is bounded. The former are the Rossby
waves and thus of second class, the latter are the Kelvin waves and are of first class
and may have sub- or superinertial frequencies. Both will be dealt with in greater
detail in subsequent chapters.

Such waves in bounded regions generally do not have constant crests perpendic-
ular to the direction of wave progression, but crests decay or grow exponentially.
These other waves form the largest body of dynamic activity in the atmosphere,
ocean and lakes. Some authors single out plane waves (with constant crests perpen-
dicular to the direction of wave propagation) and reserve a separate name for them:
Sverdrup waves, in honor of the Norwegian geophysicist and oceanographer: Harald
Ulrik Sverdrup (1988–1957) who dealt with them first.
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11.4.2 Waves in a Stably Stratified Shallow Layer
of a Boussinesq Fluid

The preceding discussion pertains to waves with arbitrary wave length, arbitrary
orientation and linear stratification in an unbounded domain. These are all rather
severe restrictions. In particular, whereas the ocean and lakes may for certain pro-
cesses be regarded as infinitely large in the horizontal direction, they are bounded
from above by the free surface and from below by the bathymetry. Thus to address
such more realistic situations, we shall focus attention to a horizontal layer of a sta-
bly stratified Boussinesq17 fluid on the rotating Earth, subject to a constant Coriolis
parameter (f -plane approximation). In principle, our approach is similar to what
has already been analyzed in Sects. 7.2 and 8.5 in Volume I of this book series, but
here the effects of rotation and stratification will be combined and the role of the
shallow water approximation will be somewhat scrutinized.

11.4.2.1 Validity of the Shallow Water Equations18

In this section, we confine our attention to long waves but before concentrating on
those, consider the linearized Boussinesq equations

rH � v C @w

@z
D 0;

��
@v
@t

C f�� Ok � v C rHp0 D 0;

(11.59)

��
�
@w

@t
� Qf u

	
C @p0

@z
C �0g D 0;

@�0

@t
� ��N

2

g
w D 0:

The first is the continuity equation, the second are the horizontal components of the
momentum equation, the third is the vertical component of the momentum balance
in which the underlined terms are absent when the shallow water approximation is
made, and the last equation is the adiabatic form of the energy equation.

These equations have been written in such a way that v OD .u; v/ are the two-
dimensional horizontal velocity components and rH is the two-dimensional hori-
zontal gradient operator. Analogously, (11.59)2 are the two horizontal components
of the momentum balance, whilst (11.59)3 is the vertical counterpart. The under-
lined terms are the time rate of change of the vertical momentum and the vertical
Coriolis acceleration. From a combination of the last two equations (11.59), on

17 For a portrait and biographical sketch of Boussinesq see Fig. 11.8.
18 Consult also Sects. 4.6 and 4.7 of Chap. 4 in Volume I of this book series for a general discussion
of these properties.
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Fig. 11.8 Joseph Valentin Boussinesq (1842–1929), French mathematician and physicist. Photo from
http://en.wikipedia.org/, after Bastiaan Willink, Geschiedenis: De samenwerking tussen Korteweg en de
Vries – Een speurtocht naar persoonlijkheden, pp 179–185 (NAW 6/7 nr. 1 maart 2007). The graph
illustrates the Boussinesq approximation for water waves (Boussinesq, 1872), which is valid for weakly
non-linear and fairly long waves. The linear phase speed squared c2=.gh/ is shown as a function of rela-
tive wave number kh. A and B are Boussinesq’s solutions, while C is the solution of the full linear wave
theory (after http://en.wikipedia.org/).

Joseph Valentin Boussinesq (15 March 1842–19 February 1929) was a self taught French mathematician
and physicist who made significant contributions to the theory of hydrodynamics, vibrations, light and
heat. He started his career as a college teacher and commenced his scientific writings in 1865. From 1872
to 1886 he was appointed professor at the Faculty of Sciences of the University at Lille, where he lec-
tured on differential and integral calculus. From 1886 to his retirement in 1918 (at the age of 76) he was
professor at the Faculty of Sciences at the University of Paris (Sorbonne), holding, until 1896 the chair of
Mechanics and thereafter that of Mathematical Physics.

Boussinesq had an early collaboration (from 1867 to 1886) with Barré de Saint Venant. Out of this activity
sprang his monumental ‘Essai sur la théorie des eaux currantes’ (Essay on the theory of flowing water),
1877, which presents a general theory of steady and unsteady channel flows accounting for non-hydrostatic
pressures. A precursor to this work had already been published by Boussinesq in 1871; it supported John
Scott Russel’s great solitary wave of translation observed in 1834.

In 1897, Boussinesq published his ‘Théorie d’ écoulement tourbillonnant et tumultueux des liquides’, a
work that greatly contributed to the study of turbulence and hydrodynamics.

In fluid dynamics, several approximations or parameters are named after Boussinesq. Among these, the
‘Boussinesq approximation’ characterizes buoyancy driven flows in which density differences are only
accounted for when they occur multiplied with the gravity constant g. So, in a Boussinesq fluid the velocity
field is solenoidal and propagation of sound cannot be captured. Moreover, the Boussinesq approximated
equations look the same under inversion, i.e. a rising oil bubble in water with density only slightly smaller
than that of water looks the same as a falling water drop in a bath of the same oil. This is not so for an air
bubble rising in water and a water drop falling in air (in a rain), since ��=� is of order unity.

The famous ‘eddy viscosity’ to parameterize the turbulent shear stress has been introduced by Boussinesq,
as were the ‘shallow water equations’.

Ref:
Boussinesq, J.V.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire hori-
zontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface
au fond. Journal de Mathématique Pures et Appliquées, Deuxième Série 17, 55–108 (1872).
Boussinesq, J.V.: ‘Essai sur la théorie des eaux currantes’ Mémoires présentées par divers savants á l’
Académie des Scienes, Paris 23, 1–660; 24, 1–60 (1877).

The text is based on: http://en.wikipedia.org/wiki/Joseph-Valentin-Boussinesq and

W.H. Hager: Hydraulicians in Europe 1800–2000, Int. Assoc. Hydr. Engr. Res. (IAHR) Monograph, 2003,
p 774

http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Joseph-Valentin-Boussinesq
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eliminating the perturbation density �0, one may deduce the relation

�
@2

@t2
CN 2

	
w � Qf @u

@t
D � 1

��
@2p0

@t @z
; (11.60)

of which the underlined terms would be missing if the hydrostatic pressure assump-
tion (the full shallow water approximation) had been used. From a harmonic ansatz
p0 D p0exp .i!t/, u D u0exp .i!t/, w D w0exp .i!t/ it then follows that
necessarily

!2 
 N 2 for the hydrostatic limit to be valid.

As is seen from Fig. 11.7 such an assumption is not valid at the upper and lower
edges of the wave guide where these regions are the critical layers mentioned above.
Moreover, omitting the underlined terms in (11.60) implies that in order for the shal-
low water approximation to be valid, the processes must have long periods as well as
large length scales. These conditions are obviously not satisfied in the critical layers.
Furthermore, the vertical acceleration term in (11.60) is O.A2/, whilst the Corio-
lis term is O.A/ (A is the aspect ratio of the vertical to the horizontal scales, see
Sect. 4.7 of Chap. 4 in Volume I). Thus, the long time-scale approximation breaks
down before the large length approximation becomes invalid in the shallow water
approximation. In spite of this, the term Qf u in (11.59)3 is generally dropped whilst
the vertical acceleration may be kept. The reason is that �� Qf u is thought to be
absorbed in the gravity term. We shall subsequently follow this custom and thus
will systematically drop Qf u.

The derivation of this result has been the reason for keeping the vertical acceler-
ation terms in (11.59)3.

11.4.2.2 Free Waves in a Shallow Stratified Boussinesq Fluid
on the f -Plane

It is somewhat cumbersome to work with equations (11.59) that contain the vari-
ables u, v, w, p0 and �0. For this reason one may ask whether a single equation for one
of these unknowns would be advantageous. Furthermore, for a vertically stratified
fluid it would be natural to separate the vertical from the horizontal dependencies
and to write for any of the above variables

 .x; y; z; t/ D �n.z/ n.x; y; t/ (11.61)

and to uncouple the equations for �n.z/ and  n.x; y; t/. Such a decoupling was
already performed in Sect. 8.5 in Volume I in which internal oscillations in a strat-
ified fluid, referred to an inertial frame, were analyzed. On the background of that
knowledge it is anticipated that the variables�n.z/ in (11.61) will follow from a one-
dimensional boundary value problem in the z-direction with boundary conditions
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imposed on the free surface z D 0 and at the bottom z D �H . Obviously, for �n.z/
not to be x; y and t dependent,H must be constant. This already demonstrates that
the decoupling (11.61) with the indicated dependencies is only possible for constant
depth layers. In the light of Sect. 11.3 where second class waves were briefly studied,
this means that in the f -plane approximation the decoupling (11.61) automatically
eliminates topographic Rossby waves.

Note also that a separation of the form (11.61) is only helpful, if it is achieved for
disturbance fields of arbitrary composed frequencies (such waves are called poly-
chromatic). Would the separation only be possible for mono-chromatic waves, then
each frequency would require its own separation equations to be solved; the advan-
tage of the separation (11.61) would in such a case undoubtly be lost. Moreover
in an attempt to reduce (11.59) to a higher order partial differential equation for a
single variable, it may happen that the anticipated separation of the original four-
dimensional problem into separable problems in one, z, and then three, x, y, t ,
dimensions may not be possible. Note that besides the differential equations, also
the boundary conditions must be separable to achieve this goal. For a constant depth
fluid the perturbation pressure p0 or a horizontal velocity component must be taken
to be the governing field variables.19 Combination of the hydrostatic version of
(11.59) permits this elimination of all but one variable. This elimination is rather
cumbersome even though it is straightforward. Here we merely quote the result and
ask the reader to perform the computations himself/herself. For the shallow water
equations in the f -plane the following alternatives are obtained:

r2
H v C L @

@z

�
N�2

@v

@z

	
D 0; .v D a horizontal velocity component/;

r2
Hp
0 C L @

@z

�
N�2

@p0

@z

	
D 0; .p0 D pressure/; (11.62)

N 2r2
Hw C L@

2w

@z2
D 0; .w D vertical velocity component/;

in which

L D @2

@t2
C f 2: (11.63)

Had we kept the underlined term in (11.59)3 (recall, we have dropped Qf u already),
then the equation for the vertical velocity component would be instead

�
N 2 C @2

@t2

	
r2
Hw C Qf @

@t
.r2
Hu/C L@

2w

@z2
D 0: (11.64)

19 This separation also works in the ˇ-plane approximation, if the perturbation pressure or the
y-component of the velocity field are taken as the independent fields, see [8].
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We emphasize once more that the underlined terms are ignored in the shallow
water approximation. These terms destroy two properties that make the separa-
tion of variables technique so convenient in the shallow water approximation. If
the term involving Qf is kept, (11.64) contains two variables, w and u; elimination
of u with the aid of (11.59) and (11.62) is difficult and not worthy to achieve for the
present arguments. If this term is dropped, the first underlined term involving the
second time derivative, explicitly introduces the frequency in a harmonic analysis.
The resulting equation must then be solved for each fixed ! separately. This implies
that the poly-chromatic validity of (11.64) is lost in this case.

Problem 11.2 Equations (11.59) are also valid in the ˇ-plane approximation. One
must only assume that the x; y-axes point towards East and North, respectively and
that ˇ D df=dy ¤ 0. Show that in the shallow water approximation (11.59) can
be transformed into the single differential equation

@

@t
r2
H v C ˇ

@v

@x
C
�
@3

@t3
C f 2

@

@t

	
@

@z

(
1

N 2

 
@v

@z
� N 2

g
v

!)

D 0 (11.65)

for v (the North–South component of the horizontal velocity). Actually, the under-
lined term is only obtained for a non-Boussinesq fluid for which �� is replaced by
�0 in (11.59).

The derivation of the above equation shows that (11.65) is the x-derivative of
the vorticity balance (curl of the momentum balance). It describes how temporal
changes of the relative vorticity may be compensated by latitudinal repositioning
(ˇ@v=@x) and by vertical stretching of interior vortex lines (the last term). Clearly,
the latter two terms are due, respectively, to the variability of f and the presence of
a non-constant mean density field.

When the Boussinesq assumption is made, the last underlined term is ignored.
This is justified provided j@v=@zj 	 N 2v=g, or

g

N 2
	 v

@v=@z
D ŒH� ) 104 � 106 m 	 ŒH�;

where [H] is a typical depth scale, a condition that is always satisfied. Moreover,
(11.65) is a partial differential equation, third order in time, and thus contains grav-
ity and planetary Rossby waves. When the ˇ-term can be ignored, then (11.65)
is becoming second order in time (@=@t is then a common factor of the equa-
tion) and the second class waves reduce to steady currents, whilst gravity waves
are maintained.

In a constant depth basin solutions of (11.62) are sought by separation of
variables in the form

Œu; v;w; p0�.x; y; z; t/ D Z.u;v;w;p
0/

n .z/Œun; vn;wn; p
0
n�.x; y; t/; (11.66)
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in which the subscript n is a counting index whose meaning will become apparent
in a moment.

It is straightforward to show that the vertical and horizontal problems then
become

Vertical problems

d2Z.w/n .z/

dz2
C N 2.z/

ghn
Z.w/n .z/ D 0;

d

dz

 
1

N 2.z/

dZ.u;v;p
0/

n .z/

dz

!

C Z
.u;v;p0/
n .z/

ghn
D 0;

9
>>>>=

>>>>;

�H < z < 0; (11.67)

Horizontal problems

LŒ.u; v;w; p0/.x; y; t/� � ghnr2
H Œ.un; vn;wn; p

0
n/.x; y; t/� D 0;

(11.68)
.x; y; t/ 2 D � Œ0;1/;

in which .ghn/�1 is a separation constant and hn has the dimension of a length,
called the nth equivalent depth. By virtue of the separation of variables, the orig-
inal spatially three-dimensional equations (11.62), which must be solved in a lake
domain, have been split into two separate problems, a spatially one-dimensional
vertical problem and a spatially two-dimensional horizontal problem. It is rather
obvious that solving two lower dimensional problems is economically more effi-
cient than doing this for the original problem, but the simplification has been bought
by limiting the geometry to basins of constant depth. Furthermore, yet unknown
separation constants ghn have been introduced, of which the values are a priori
unknown.

Interesting to observe is also that the vertical problem (11.67) for the vertical
velocity w differs from those for the horizontal velocity components u; v and the
perturbation p0, whilst the differential equations (11.68) for the horizontal parts
are the same for all variables u; v;w; p0. Moreover, since (11.67) only exhibits a
z-dependence and (11.68) only enjoys .x; y; t/-dependences, but no z-dependence
the separation of variables has been achieved as far as the differential equations are
concerned.

The reader may convince himself/herself of all these facts by solving

Problem 11.3 Show that a separation of variable solution can also be constructed
for (11.65). Indeed, substitution of

v.x; y; z; t/ D Z.v/n .z/vn.x; y; t/ (11.69)

into (11.65) leads to the equations
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d

dz

(
1

N 2

 
dZ.v/n .z/

dz
� N 2

g
Z.v/n .z/

!)

C 1

ghn
Z.v/n .z/ D 0;

(11.70)

r2
H

@vn.x; y; t/

@t
C ˇ

@vn.x; y; t/

@x
� 1

ghn
L@vn.x; y; t/

@t
D 0

for the vertical and horizontal problems, respectively.

Remark 11.3. Notice that when ˇ D 0, (11.70)2 is isotropic in the horizontal coor-
dinates, i.e. vn no longer needs to be the North–South component of the velocity
field, but can be any horizontal velocity component one pleases. In other words, the
coordinate system can be arbitrarily rotated about the vertical (to the zenith) without
altering the equation.

If any one of the differential equations (11.67) is complemented by boundary
conditions at z D 0 and z D �H , the emerging two-point-boundary-value prob-
lem will form an eigenvalue problem for the eigenvalue ghn. Of course, depending
upon which of the variables u, v, w, p0 are used, these boundary conditions need
be formulated in terms of the same variable for which the differential equation is
written down. The method of separation of variables is, however, only complete, if
the boundary conditions are equally separable. In physical terms these are

p0.x; y; 0; t/ � �0g�.x; y; t/ D 0; at z D 0;

w.x; y; 0; t/ � @�

@t
.x; y; t/ D 0; at z D 0; (11.71)

w.x; y;�H; t/ D 0; at z D �H;

The first says that the perturbation pressure at z D 0 equals the weight of the water
column above the free surface. The second is the linearized kinematic boundary
condition of the free surface, and the third condition expresses impermeability of the
basal surface. Conditions (11.71) must be reduced to other, alternative, conditions,
expressed in one variable – u, v, w or p – only. The corresponding expressions for
v are awkward but when � is eliminated from (11.71)1;2 and (11.60) is used, the
pressure boundary conditions take the form

�
@2

@t2
CN 2

	
p0 C g

@p0

@z
D 0; at z D 0;

(11.72)
@p0

@z
D 0; at z D �H;

in which we have set �0 ' �� and the underlined term is not present when the
shallow water approximation is invoked.

Problem 11.4 Using (11.60) and Qf D 0, show that the boundary conditions
(11.71), expressed in the vertical velocity are given by
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�
@2

@t2
CN 2

	
w C g

@w

@z
D 0; at z D 0;

(11.73)
w D 0; at z D �H;

where, again, the underlined term is dropped in the shallow water approximation.

Substituting (11.66) into (11.73) and (11.72), respectively, corroborates that the
boundary conditions expressed in terms of the pressure or vertical velocity are only
separable in the shallow water approximation and then read

dZ.w/n .0/

dz
C N 2.0/

g
Z.w/n .0/ D 0; Z.w/n .�H/ D 0;

(11.74)

dZ.p
0/

n .0/

dz
C N 2.0/

g
Z.p

0/
n .0/ D 0;

dZ.p
0/

n

dz
.�H/ D 0;

respectively. We shall not write down the boundary conditions in terms of the
variablesZ.u;v/n .

Equations (11.67)1, (11.74)1, [or (11.67)2, (11.74)2 for the perturbation pressure
p0] define a two-point-boundary-value problem for the function Z.w/n [or Z.p

0/
n ]

and the eigenvalue ghn. Notice that this boundary value problem depends only
on the (equilibrium) stratification defined by �0.z/. Therefore, the same vertical
eigenfunctions and eigenvalues apply for any wave, whatever its temporal and spa-
tially horizontal scales may be. In other words, the same vertical eigenfunctions and
eigenvalues apply for both classes of polychromatic waves. This is so because the
equations are those of the shallow water approximation. Had we not implemented
it, then separation into a vertical and horizontal problem would still be possible, but
only for monochromatic waves. It would imply that for each frequency the vertical
eigenfunctions would be different.

Problem 11.5 If the vertical acceleration terms in the vertical momentum equation
are accounted for, but Qf D 0, then the linear wave problem is defined by (11.64)
and (11.73), or

�
N 2 C @2

@t2

	
r2
Hw C L@

2w

@z2
D 0; .x; t/ 2 R2 � RC;

�
N 2 C @2

@t2

	
w C g

@w

@z
D 0; at z D 0; (11.75)

w D 0; at z D �H:
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Assuming the plane wave

w.x; y; z; t/ D Z.w/n .z/exp Œi.kh � xh � !t/�;

in which kh OD .kx ; ky/ is the horizontal wavenumber vector and xh OD .x; y/, it may

be shown that Z.w/n .z/ is given by the following eigenvalue problem:

d2Z.w/n .z/

dz2
C N 2 � !2

!2 � f 2 k
2
hZ

.w/
n .z/ D 0; �H < z < 0;

.N 2 � !2/Z.w/n .0/C g
dZ.w/n .0/

dz
D 0; z D 0; (11.76)

Z.w/n .�H/ D 0; z D �H:

The eigenvalue problem (11.76) shows that the frequency! arises in the differential
equation and one boundary condition. Thus, (11.76) is not of Sturm–Liouville type.
Moreover, for each frequency the eigenvalue problem possesses its own solution.

The eigenvalue problem (11.76) can be somewhat simplified by making use of
the fact that internal waves give rise to very small surface displacements, but large
interior deformation. This then justifies to request Z.w/n .0/ D 0 as free surface
boundary condition. If this is used instead of (11.76)2, the emerging eigenvalue
problem is again of Sturm–Liouville type, but the barotropic eigenmodes are elim-
inated this way, and only the baroclinic eigenmodes are obtained. Their solutions
are discussed in Sect. 8.5 of Chap. 8 in Volume I. In that section, the properties of
eigenvalue problems of Sturm–Liouville type were listed. It was stated there that
they possess countably infinite eigenvalues which can be ordered by size, so that the
counting index n may be used to enumerate these. The eigenvalue problems emerg-
ing from the incomplete separation of variables procedure (e.g. the boundary value
problem (11.76)) also show countably infinite eigenvalues that can be ordered by
size, in general, but a strict proof that continuous spectral regimes do not exist has
not been given in these cases.

The above separation of variables solutions have been constructed for waves
on the f -plane (f D const). Similar attempts to construct separation of vari-
ables solutions have also been undertaken for waves on the ˇ-plane, i.e. when
df=dy D ˇ ¤ 0. A detailed account on this is given in Chaps. 10–15 of LeBlond
and Mysak’s ‘Waves in the Ocean’ [8]. There, it is proved that the true separation
of the vertical and horizontal poly-chromatic waves on the ˇ-plane is possible, if
(1) the perturbation pressure is the field variable for which the vertical eigenvalue
problem is formulated and (2) provided the shallow water approximation is invoked.
All other cases result in a form of the vertical eigenvalue problem in which either in
the differential equation or the boundary conditions or both the frequency ! arises.
There is even a situation for which a separation of the motion into a vertical and a
horizontal problem does not exist.
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Problem 11.6 Show that (11.59) with Qf ¤ 0 do not allow separation of variables
in the above sense, not even for mono-chromatic waves.

The eigenvalue problem for the vertical distribution of the variables u, v, w or
p0 gives no information on the role of the rotation of the Earth, if the frequency
and/or the wavenumber do not arise in the differential equations and/or boundary
conditions. This information is provided by the dispersion relation20 and can be
obtained via the horizontal problem described by (11.68) for all variables un, vn, wn
and p0n. If the horizontal domain is unbounded, a plane wave ansatz

�n D �.0/n exp Œi.kh � xh � !t/�; �n D fun; vn;wn; p
0
ng (11.77)

is adequate for its solution. kh is the horizontal wavenumber vector with norm
kh and ! the frequency and both are real. Substituting (11.77) into (11.68) shows
(11.77) to be a solution, provided the dispersion relation

!2n D f 2 C ghnk
2
h (11.78)

is satisfied (we have indexed the frequency, because for each eigenvalue of the
vertical problem ghn (11.78) is its own dispersion relation). Waves obeying the dis-
persion relation (11.78) are dispersive, even though they are shallow water waves,
and have phase and group velocities

cph D !n

k2
h

kh; cgr D ghn

!n
kh: (11.79)

They are parallel to each other and obey the chain of inequalities

jcgrj <
p
ghn < jcphj: (11.80)

Waves obeying the dispersion relation (11.78) were first mentioned by Poincaré
[17] in his ‘Méchanique célèste’ and are for this reason today called Poincaré
waves. For real wavenumbers kn and real !n (the only possibilities in infinite
space), they satisfy the obvious inequality j!nj > f . It follows, Poincaré waves
have always superinertial frequencies. Of course, (11.78) allows also solutions with
complex valued frequencies and wavenumbers, but they can, obviously, not exist
in infinite .x; y/-space because they would become unbounded or evanescent as
.x; y/ ! .˙1;˙1/. For such waves to exist, the domains must be bounded. We
shall discuss such solutions of the shallow water equations on the rotating Earth in
Chap. 12.

20 This argument shows that in vertical eigenvalue problems for problems not based on the shallow
water approximation the eigenvalues ghn depend on the rotation of the Earth since the evaluation
of ghn is constrained to the satisfaction of the dispersion relation (11.78).
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We close this subsection with the following remarks: There is no unanimous
nomenclature of rotation affected waves. The plane waves in a horizontally
unbounded region treated above have uniform amplitudes in the direction per-
pendicular to the direction of wave propagation. Following LeBlond and Mysak
[8] or Gill [4] we call them Poincaré waves, whilst, e.g. Mortimer [13, 15] and
Platzman [16] refer to the rotation affected homogeneous plane progressive waves
(with constant crests perpendicular to the wave-number vector) as Sverdrup waves
and reserve the name Poincaré waves to combinations of them, of which particular
forms meet the boundary conditions of rectangular channels and basins with ver-
tical side walls. The unifying property of all these waves is the dispersion relation
(11.78), as we shall see in the next chapter. For further details, see [15].

It is not difficult to see that plane progressive Poincaré waves have in general
non-trivial velocity components in all three space directions. The orbital motion
of the particles, however is plane, as we have seen in Sect. 11.4.1, with the orbital
plane being tilted from the vertical, Fig. 11.9. According to Mortimer [14], as the
wave length increases ‘the orbital plane leans more and more (to the left in the
Northern hemisphere); the celerity rises above cph D p

gh, see (11.80); the group
velocity (at which wave energy is propagated) falls below cph; the orbital plane
increasingly tilts toward the horizontal; and the wave period approaches the inertial
period [as is easily seen from (11.78)]. At the long wave length limit (infinity) the
orbital plane is entirely horizontal, and particle motion is indistinguishable from the
inertial motion in a circle. This is the basis of frequent references to inertial or near-
inertial oscillations, viewed as limiting cases of Poincaré waves, in which energy is
entirely or nearly all kinetic’.

Fig. 11.9 Sketch of a homogeneous sinusoidal Poincaré (Sverdrup) wave in unbounded horizontal
space. The height of the wave does not change along the wave crest, the orbit planes are tilted away
from the vertical (to the left in the Northern hemisphere when looking in the direction of wave
progress). The horizontal projections of those orbits are clockwise traversed ellipses, Mortimer
[12]. c� Center for Great Lakes Studies (now Great Lakes WATER Institute), reproduced with
permission
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11.4.3 The Two-Layer Model

A severe disadvantage of the separation of variables solutions in the last subsection
is the restriction of the basin to constant depth with vertical shores. On the f -plane
it automatically eliminates topographic Rossby waves and will also falsify the wave
structure due to topographic variations. A separation of variables into vertical and
horizontal modes is strictly not possible, but owing to the typical monotonous strat-
ification of lakes during the summer months (see Sect. 8.5 of Chap. 8 in Volume
I) with nearly constant densities in the epi- and hypolimnia and a rapid transition
in the metalimnion, the buoyancy frequency differs appreciably from zero only in
the regions of these rapid density changes. The density may thus be considered to
be constant in each layer. The buoyancy frequency is then zero everywhere except
at the layer interfaces with density jumps, where it forms a Dirac pulse. In the two
layer approximation, the upper layer has constant depthH1 and constant density �1,
and the second layer with �2 > �1, has variable depthH2, see Fig. 11.10. It is phys-
ically obvious, and this was demonstrated in Sect. 8.5.2.3 in Volume I. Example c,
that with a metalimnion of vanishing extent, there can be no oscillatory part of the
solution within the metalimnetic wave band (which has zero thickness anyhow);
in other words, in a two-layer system, there can be only one barotropic and one
baroclinic vertical mode.

The division of the lake domain into several layers (here two) implies for vari-
able bathymetry that each layer fills in the .x; y/-space different regions, so that
the layer equations will hold in different regions. In many mountainous lakes with
steep shores for which the two-layer model will form a valid approximation, the
difference region may be small and then negligible for wave dynamic analyses. The

x , y

z

H1

H2

Boundary  for  2  layer  model

upper  layer   1
,  ,

lower  layer    2
,  ,

Shore  line

z1

z2

Fig. 11.10 Two-layer model with upper layer depth H1 and lower depth H2. The mathematical
models often use a vertical wall as boundary at the depth contour of H1. The shaded portion is
then ignored in the model calculations
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computational domain is then defined by the ‘thermocline shore line’, the inter-
section between the bathymetry and the interface depth of the upper with the lower
layer. In Fig. 11.10, this corresponds to ignoring the triangular torus-type region that
is shaded. We are only aware of a few wave dynamic analyses – and they are numer-
ical – in which layer equations would be solved in different regions. Therefore, we
confine attention in the following to the situation where the computational domain
is restricted to the region where both layers exist.

Let us begin by stating the linearized adiabatic field equations on the f -plane,

rH � v C @w

@z
D 0;

��
�
@v
@t

C f Ok � v
	

D �rHp;

9
>>=

>>;
.x; t/ 2 .D � R2/ � Œ0;1/: (11.81)

These comprise of the continuity and horizontal momentum equations and must be
subject to the conditions

@�1

@t
C .rH �1/ � v1 � w1 D 0;

p D 0;

9
=

;
at z D �1; (11.82)

@�2

@t
C .rH �2/ � v1 � w1 D 0; or

@�2

@t
C .rH �2/ � v2 � w2 D 0;

p1 D p2;

9
>>>>=

>>>>;

at z D �H1 C �2; (11.83)

.rHH2/ � v2 � w2 D 0; at z D �.H1 CH2/ (11.84)

at the free surface, the layer interface and the bottom topography, respectively. These
equations shall now be reduced to a set of two-layer equations. To this end we first
integrate the continuity equation over the upper and lower layers, respectively. In
the upper layer, this yields (we omit writing the dependencies on x, y and t)

Z �1

�H1C�2
.rH � v1/dz C w1.�1/� w1.�H1 C �2/ D 0; (11.85)

where the subscript notation follows from Fig. 11.10. Interchanging in the first
integral the integration and differentiation and using Leibniz’s rule yields

rH �
Z �1

�H1C�2
v1dz � f.rH �1/ � v1 � w1gzD�1

C f.rH �2/ � v1 � w1gzD�H1C�2 D 0: (11.86)
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In view of (11.82)1 and (11.83)1, the last two terms in (11.86) can be replaced by
�@�1=@t and �@�2=@t , respectively. Defining by

M 1 D
Z �1

�H1C�2
v1dz Š H1v1; M 2 D

Z �H1C�2

�.H1CH2/
v2dz Š H2v2; (11.87)

the volume transports in the upper and lower layers, (11.86) reduces to

@.�1 � �2/
@t

C rH �M 1 D 0: (11.88)

Similarly, for the second layer

@�2

@t
C rH �M2 D 0: (11.89)

These equations are exact and express the mass balance in the upper and lower
layers, respectively.

Problem 11.7 Consider a water column through the upper and lower layers of
cross section dxdy. By performing a balance of mass for the column in the upper
and lower layer separately, derive (11.88), (11.89) in an alternative way.

Next, we integrate the hydrostatic pressure equations, @p1;2=@z D ��1;2g, from
the top surface to an arbitrary depth, z. This yields

p1 D ��1g.z � �1/;
(11.90)

p2 D ��2g.z CH1 � �2/C �1g.H1 � �2 C �1/:

Taking the horizontal gradient of each of these and substituting the resulting expres-
sions into (11.81)2 leads to the equations

@v1
@t

C f Ok � v1 D �grH �1;
(11.91)

@v2
@t

C f Ok � v2 D �g0rH .�2 � �1/ � gırH �1;

in the derivation of which we have set �2 D ��. The constants

g0 D g"; " WD �2 � �1
��

; ı D �1

��
Š 1 (11.92)

are called the reduced gravity constant, relative density difference and layer density
ratio, respectively. In common summer stratifications, we have " D 10�3  10�2.
In view of (11.87), (11.91) can also be written in terms of M 1 and M 2. When
complemented by (11.88) and (11.89), the following linear system is obtained:
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@.�1 � �2/
@t

C rH �M1 D 0;

@M 1

@t
C f Ok �M 1 D �gH1rH �1;

@�2

@t
C rH �M 2 D 0;

@M 2

@t
C f Ok �M 2 D �g0H2rH .�2 � �1/� gH2ırH �1

(11.93)

for .xh; t/ 2 �D � R2
� � RC. These equations together comprise the governing

equations for the two-layer variable depth model (TVDM). They lie at the centre of
linear wave analysis in physical limnology as they include barotropic and first mode
baroclinic processes in a stratified water body with a strong thermocline positioned
at the interface between the two layers. The equations include first and second class
wave motions on the f or ˇ-plane, but restricted to the shallow water approxima-
tion. The equations have been solved numerically for a large number of enclosed
basins from the Great Lakes to relatively small mountainous lakes, and the eigen-
vectors and eigenmodes have been tested against field data. Among these are time
series of surface elevations measured at shore positions, temperature and velocity
from thermistor chains and current meters moored at various positions, within the
lake, generally with great success. In subsequent chapters, we will provide detailed
corroboration for these facts.

When the rotation of the Earth is ignored, then f D 0, and (11.93), after
elimination ofM1 andM 2, become

@2.�1 � �2/

@t2
� rH � .gH1rH �1/ D 0;

@2�2

@t2
� rH � ˚g0H2rH .�2 � �1/C gH2rH �1


 D 0

(11.94)

for .xh; t/ 2 �D � R2
� � RC, in which the second term in the first equation could

also be written as gH1r2
H �1, but this will not be done to preserve the structural

symmetry of the equations.
Finally, the one layer, exclusive barotropic model is obtained from (11.93) and

(11.94) by adding the layer equations and setting " D 0. This then yields generally

@�

@t
C rH �M D 0;

(11.95)
@M

@t
C f Ok �M D �gHrH �

with
M D M1 CM2; � D �1
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and

@2�

@t2
� rH � .gHrH �/ D 0; (11.96)

when the rotation of the Earth is ignored.
It is interesting to note that for constant depth of the basin, H1 C H2 D H D

const, (11.93) will now be reduced to two separate one-layer models. The com-
putations will demonstrate that the TVDM contains the barotropic and first mode
baroclinic processes. Beyond this, the analysis will give information as to the
structure and order of magnitude of the barotropic and first baroclinic field vari-
ables. Toward this end, we add �˛ times the lower layer continuity and momentum
equations to the corresponding upper layer equations, define auxiliary variables
according to

M˛ D M1 C �˛M 2; �˛ D �1 C .�˛ � 1/�2 (11.97)

and require that the emerging equations have the same form as the one layer
equations, i.e.

@�˛

@t
C rH �M˛ D 0;

(11.98)
@M˛

@t
C f Ok �M˛ D �gh˛rH �˛

with still unknown �˛ and h˛. Performing the above combination of the layer
momentum equations (11.93)3;4 yields

@M˛

@t
C f Ok �M˛ D �grH fŒH1 C �˛.1 � "/H2� �1 C "�˛H2�2g

ŠD �gh˛rH �˛ .11:97/D �g .h˛rH �1 C h˛.�˛ � 1/rH�2/ :

(It is at this point where H1 and H2 must be assumed to be constant.) Since the
second and the last expressions must be identities in �1 and �2, the following two
equations for �˛ and h˛ emerge:

H1 C �˛.1 � "/H2 D h˛ ; H2"�˛ D h˛.�˛ � 1/: (11.99)

On eliminating h˛ , the following quadratic equation for �˛ is obtained:

�2˛ C H1 �H2

.1 � "/H2
�˛ � 1

1 � "
H1

H2
D 0; (11.100)
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of which the solution is

�˛ D � H1 �H2

2.1� "/H2
˙
�
.H1 �H2/2
4.1 � "/2H 2

2

C H1

.1 � "/H2

�1=2
: (11.101)

When pursuing the computations with this exact formula, little if anything can be
extracted. However, because for common stratifications " D O.10�3/, Taylor series
expansions of (11.101) in terms of " and truncating this expansion at the linear term
suffices. Then with H WD H1 CH2

�˛ D �.H1 �H2/˙ .H1 CH2/

2H2
C �.H 2

1 �H 2
2 /˙ .H 2

1 CH 2
2 /

2H2.H1 CH2/
"C O."2/

D �H1 �H2
2H2

.1C "/˙ H

2H2

�
1C H 2

1 CH 2
2

H 2
"

	
C O."2/: (11.102)

Problem 11.8 Show that with (11.102) formulae (11.97), (11.99) and (11.101) lead
to the following two sets of solutions:

� Barotropic, external mode: �ext WD �˛ (upper signs in (11.101))

�ext D 1C H2

H
"C O."2/;

hext D H � H1H2

H
"C O."2/;

(11.103)
M ext D M1 CM2 C H2

H
M 2"C O."2/;

�ext D �1 C H2

H
�2"C O."2/;

� Baroclinic, internal mode: �int WD �˛ (lower signs in (11.101))

�int D �H1
H2

�
1C H1

H
"

�
C O."2/;

hint D H1H2

H
"C O."2/;

(11.104)

M int D M1 � H1

H2
M 2 � H 2

1

H2H
M 2"C O."2/;

�int D �1 � H

H2
�2 � H 2

1

H2H
�2"C O."2/:

Moreover, from these equations deduce the lowest (zeroth) order inverted relations
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M1 D H1

H

�
M ext C H2

H1
M int

	
C O."/;

M2 D H2

H
.M ext �M int/C O."/;

(11.105)

�1 D
�
1� H 2

2

H 2
"

	
�ext C H 2

2

H 2
"�int C O."2/;

�2 D �H2
H

.�int � �ext/C O."/:

The results of Problem 11.8 allow the following inferences to be drawn: For the
barotropic mode, the equivalent depth, hext, see (11.103)2, very nearly equals the
water depth, whilst for the baroclinic mode, the equivalent depth, hint, see (11.104)2,
is nearly that of the two layer model, (see (8.103) in Chap. 8 in Volume I).

Suppose next thatM int D 0, �int D 0 (no baroclinic motion), then from (11.105)

M 1

H1
D M ext

H
D M2

H2
; �1 D �ext; �2 D H2

H
�ext: (11.106)

These formulae imply that the velocities are the same in the two layers by magnitude
and direction. Moreover, the ratio �2=�1 D H2=H , which means that the interface
displacement is the depth fraction of the surface displacement. For a very thin upper
layer, �1 � �2 but for a very thin lower layer �2 is small. All this is reminiscent of
barotropic behaviour.

Next, if we take M ext D 0 and �ext D 0, then we have

M 1 D H2

H
M int D �M2; �1 D H 2

2

H 2
"�int; �2 D �H2

H
�int: (11.107)

Here the horizontal volume flux in the two layers is the same, but in opposite direc-
tions and the free surface elevation is of the order O."�int/ which is a very small
fraction of the interface displacement. This explains why the rigid lid assumption is
a defendable approximation for analyses of the internal motion.

This one-layer version of the original two layer model is due to Charney [2]; it is
called in the literature the two-layer equivalent depth model (TEDM). As the above
derivation has shown, it is only valid for constant depth. It also eliminates all higher
order baroclinic waves. For many situations this is justified, but occasionally, higher
order baroclinic modes are observed. This is, e.g. the case when the buoyancy profile
has two or more relative maxima. For this reason Longuet–Higgins in Mortimer
[11] and Heaps [7] introduced a three layer model and Lighthill [9] showed, how an
N -layer model can be reduced to equivalent depth form.21

21 Because of the boundedness of lakes, n-layer equivalent depth models for n > 2 are not very
useful, because they require the same domain boundary for each n. This is becoming unrealistic,
when n > 2. For an ocean, where boundaries are far away, such models are better suited.
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Often in ensuing developments we shall discuss barotropic or baroclinic beha-
viours simultaneously. In these instances, we generally think of an equivalent
depth model or a separation of variables procedure and will distinguish between
barotropic and baroclinic processes according to whether h˛ is the water depth or
an equivalent depth belonging to a certain stratification, which was made explicit by
Monismith [10] and applied by Antenucci and Imberger [1].

11.5 Concluding Discussion

The focus in this chapter has been to see how the rotation of the Earth and the strat-
ification of the water exercise an influence on the dynamics of the water motion in
lakes (and the ocean). This was achieved by pointing at observational facts which
illustrate seemingly ‘unusual’ behaviour and by explaining them by simple physics
through dimensional reasoning. In a second approach, these first explanations were
subsequently deepened with the aid of a mathematical analysis of the rotation-
ally influenced linear shallow water equations and the discussion of gravity and
geostrophic Rossby waves. This is done for homogeneous and stably stratified water
bodies, whereby stratification is implemented through continuous vertical density
variations or through horizontal layers of different densities.

A typical manifestation of the rotation of the Earth in lakes is the deviation of the
progression of velocity and displacement disturbances of a wave or current signal
from a more or less straight path. Rivers which enter a large basin approximately
perpendicular to the shore line are diverted to the right (left) on the Northern (South-
ern) hemisphere and follow a right (left) bounded motion in the otherwise still basin.
Wind stress, exerted on the lake surface, gives rise to a near surface current structure,
which rotates (to the right on the Northern hemisphere) around the vertical centre
line with decreasing amplitude, which becomes nearly negligible at the so-called
Ekman-depth (see Sect. 11.1.2). The presence of the Coriolis force implies in this
case, that a boat subject to no other external ‘forces’ than the surface current drifts
in a direction to the right of the wind.

The same Coriolis forces are also responsible for the fact that linear waves are
differently structured with rotation than without rotation of the frame of reference.
Longitudinal plane waves in a channel which have constant amplitude across the
channel when they are referred to an inertial frame, experience transverse expo-
nential decay of the amplitude to the left on the Northern hemisphere (NH) and to
the right on the Southern hemisphere (SH). The e-folding length of this decay is
the Rossby radius of deformation, vph=f in which vph is the phase speed and f the
Coriolis parameter. These waves are shore bound and have large phase speeds for the
barotropic and approximately up to 100 times smaller Rossby radii of deformation
for baroclinic processes (see Table 11.1).

The linear wave equation is third order in time and therefore has also three differ-
ent roots (of which all can be real). Solutions can be split into two classes, the gravity
waves, of which the existence persists when the rotation of the Earth is ignored, and
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the quasi-geostrophic or vorticity or Rossby waves which only exist because of the
rotation of the Earth. The gravity waves are therefore modified by the rotation of
the Earth: It will be shown that those longitudinal waves become Kelvin waves, and
transversal waves turn into Poincaré waves.

The second class waves are obtained as the third solution of the general wave
equation (11.24). For length scales which are large as compared to the Rossby
radius of deformation they are described by a partial differential equation of the first
order (e.g. (11.28)) and have been shown to exist only when J Œ ; f=H� 6D 0 where
J Œa; b� is defined in (11.22). So, necessarily f 6D 0, and for constant water depth f
must have non-vanishing spatial gradient or else, H must vary with position. This
leads to a classification of Rossby waves, of which the topographic Rossby waves
are nearly the only ones which are important for lakes.

We also discuss plane linear waves of a Boussinesq-fluid in infinite three dimen-
sional space and show that they are confined to a wave guide in which

!2 � f 2

N 2 � !2
> 0:

For these waves particle trajectories are ellipses which lie on inclined planes perpen-
dicular to the wave vector (see Fig. 11.4) and thus in vertical planes for horizontal
wave propagation. When rotation is absent, the elliptical trajectory reduces to a dou-
ble line; the waves are then linearly polarized. On the other hand, when N D 0 (no
stratification) waves are inertial (!2 D f 2) and they are circularly polarized with
the velocity vector turning in the clockwise direction when looking from above.
When to this motion a translation is added, orbital trajectories become garlanded,
and are traversed in the clockwise direction, when looked from above. Such motions
are closely mimicked by buoys, whose position is followed in time. (Fig. 11.7).

When the domain is bounded from above by a free surface – this is the situation
in the ocean and in lakes – it turns out that a separation of variables technique can be
used to decouple the vertical from the horizontal motion. This separation is strictly
only possible for constant water depth and must be performed in both the differ-
ential equations and boundary conditions. Such a separation of the horizontal from
the vertical problem is possible, when the shallow water approximation is imposed
and the boundary value problem is formulated for the perturbation pressure. When
other variables (e.g. the vertical velocity component) are used, additional simplify-
ing assumptions (e.g. the rigid lid assumption) may be needed. Else, the separation
is only possible for monochromatic waves. A disadvantage of this method is that
a true separation is not possible for variable depth basins. In this case, the lake is
divided into layers of constant density. This procedure is not tied to the assumption
of constant depth; but now the disadvantage is that for variable depth, the individual
layers encompass different regions in the horizontal plane. This procedure is partic-
ularly popular in physical limnology for lakes which are stably stratified in layers of
constant density.
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Chapter 12
The Role of the Earth’s Rotation:
Oscillations in Semi-bounded and Bounded
Basins of Constant Depth

12.1 Motivation

In Chap. 7 of Volume I, the propagation of surface waves in a layer of a homoge-
neous fluid referred to an inertial frame was studied. It was shown that superposing
the fields of two waves, with the same frequency propagating in opposite direc-
tions with the same amplitude can be combined to a standing wave. These standing
waves appear as localized oscillations between fixed nodal lines of which the dis-
tance defines the semi-wave length with wave humps and wave troughs arising
inbetween. Under frictionless conditions imaginary walls can be placed at any posi-
tion parallel to the wave direction to confine a channel without physically violating
any boundary conditions. Similarly, the locations of the nodal lines across the chan-
nel turned out to be the positions of standing waves where the longitudinal velocity
component vanishes for all time so that vertical walls can equally be inserted at
these positions without disturbing the solution. This then formally yields the sur-
face wave solution for the unidirectional motion in a basin of rectangular form
and constant depth, see Figs. 7.9 and 7.12 in Chap. 7 of Volume I. These standing
wave solutions were subsequently generalized to two-dimensional oscillations in
rectangular cells of constant depth in which non-vanishing horizontal velocity com-
ponents are allowed within the cell that only persistently vanish at the four side
walls, thus forming oscillations of true cellular structure (see Figs. 7.14 and 7.15 in
Chap. 7 in Volume I). How does the structure of these waves change when the fluid is
rotating?

In Chap. 11, a first analysis of the role of the influence of the rotation of the
Earth was provided. It was shown that in constant depth basins the water motion in
a stratified fluid layer can in the shallow water approximation be split into a vertical
problem defining the barotropic and baroclinic components (due to stratification)
and a horizontal problem. It is the latter which chiefly describes the role of the rota-
tion of the Earth via the dispersion relation and the Coriolis-acceleration terms in
the horizontal momentum equations. The stratification enters this dispersion relation
through the eigenvalues of the vertical problem but a feed back of the rotation of the
Earth to the vertical problem does not arise. Therefore, in the shallow water approx-
imation the baroclinic mode structure is not influenced by the rotation of the Earth,

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_12, c� Springer-Verlag Berlin Heidelberg 2011
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whilst the horizontal problem is affected by the former.1 We determined in Chap. 11
also the harmonic wave solution to the horizontal problem by using a plane wave
ansatz for a wave propagating in the infinite horizontal plane. The corresponding
waves have super inertial frequencies, are called Poincaré-(Sverdrup)-waves, and
only have real frequency and real wavenumber in infinite space. Complex valued
wavenumbers and frequencies will yield exponential growth or decay in space and
time and then require bounded domains.

In this chapter, we focus attention on the role played by the rotation of the Earth
in the horizontal problem. In other words, we address the question how the rotation
of the Earth alters the solutions as constructed in Chap. 7 in Volume I and Chap. 11.

Whereas the theory has been developed by prominent mathematicians, of the
19th century and the first half of the 20th century (Kelvin, Poincaré, Sverdrup,
Taylor, Helmholtz, Goldstein, Rossby: : :) the graphical interpretation of the results
has chiefly been done by Mortimer [24–27].

12.2 Kelvin Waves

Consider a water layer of constant depth bounded at y D 0 by a vertical wall.
We shall see later on that, alternatively, we may equivalently consider an infinitely
long canal with vertical side walls parallel to the x-axis positioned at y D 0 and
y D B . In the shallow water approximation, the governing equations of the free
water motion are given by the layer averaged mass and momentum balances,

@�

@t
C @U

@x
C @V

@y
D 0;

@U

@t
� f V D �ghbar

@�

@x
;

@V

@t
C f U D �ghbar

@�

@y
;

9
>>>>>>=

>>>>>>;

.x; y; t/ 2 .�1;1/[ Œ0;1/[ RC; (12.1)

in whichM OD.U; V /, � is the displacement of the free surface from the un-deformed
surface at rest, and hbar D H is the constant water depth.

We have seen in Chap. 7 in Volume I that plane waves in a non-rotating infinitely
long channel propagate parallel to the side walls and have vanishing transverse
velocity (V � 0) throughout the channel. It is, therefore, tempting to assume that
also (12.1) possess such a solution. Therefore, we let

� D �0˚.y/exp Œi.kx � !t/�;

U D u0hbar˚.y/exp Œi.kx � !t/�
V � 0;

9
>=

>;
.x; y; t/ 2 .�1;1/[ Œ0;1/[ RC;

(12.2)

1 Recall that in formulations which are not based on the shallow water approximation the coupling
can be shown to be two-sided.
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in which k is the wavenumber and ! the circular frequency. In (12.2), we assumed
that � and U propagate harmonically into the positive x-direction with phase speed
cph D !=k. Both, � and U have the same transverse behaviour ˚.y/; this is a
direct consequence of (12.1); �0 and U0 are constant amplitudes. Since V vanishes
throughout, the side boundary conditions are automatically satisfied. Substituting
(12.2) into (12.1) yields

cph D !

k
D ˙pghbar;

�0 D
s
hbar

g
u0;

d˚

dy
C f

cph
˚ D 0 ) ˚ D exp .�fy=cph/:

9
>>>>>>>=

>>>>>>>;

(12.3)

The first is the shallow water dispersion relation whose frequencies may be sub-
or super-inertial, the second relates the amplitude of the free surface displacement
with that of the x-velocity component, and the third yields the transverse variation
of � and U . It follows that the amplitudes of � and U decay exponentially as one
moves away from the side boundary. The decay rate is given by the Rossby radius
of deformation or in brief the Rossby radius

R D cph

f
D
p
ghbar

f
D

p
ghbar

2˝ sin �
: (12.4)

Its value depends on the Coriolis parameter and the size of the phase speed cph,
which in turn itself depends on hbar D H (for barotropic waves). Typical values are
given in Table 12.1. R grows according to a square root law with the water depth,
and it decays with sin�1 �, where � is the geographical latitude. These waves are
called Kelvin waves in honor of Lord Kelvin,2 who in 1879 [12] in a paper entitled

Table 12.1 Typical values of the Rossby radius of deformation (in km) for barotropic motions
depending on water depth and geographical latitude to the North or South, values in (km)

˚(ı) H (m) 20 50 100 200 500 1,000 2,000

10 553 874 1,236 1,749 2,765 3,910 5,530
20 280 444 627 888 1,404 1,985 2,808
30 192 303 429 607 960 1,358 1,920
40 149 236 334 472 747 1,056 1,494
50 125 198 280 396 626 886 1,253
60 110 175 247 350 554 784 1,109
70 102 161 228 323 511 722 1,022
80 97 154 218 308 487 689 975

2 For a biographical sketch see Fig. 12.1.
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‘On gravitational oscillations of rotating water’ provided the basis for all rotation
affected waves on the f -plane.

We have mentioned above that the regions of applicability of the above solution
can also be channels with constant water depth and constant width B . This is now
clear from the solution (12.2), (12.3), since V � 0 identically vanishes. At any
position y D B a vertical wall may be inserted that is parallel to the x-axis without
violating the solution. The exponential decay of � and U in the transverse direction
with an e-folding width of the size of the Rossby radius of deformation thus requires
a channel to have a width of the size of this Rossby radius of deformation or larger in
order that such a decay may become observable by measurement. The Great Lakes
in US/Canada, the Caspian Sea and the Baltic Sea are of this size but Lake Ladoga
and Lake Onega – the two largest lakes in Europe – are perhaps a bit too small.

Figure 12.2 depicts the behaviour of the solution (12.2) and (12.3). These waves
are non-dispersive and propagate with the same phase speed as do shallow water
waves without rotation. They are coastal trapped and have boundary layer structure
if the basin width is sufficiently large relative to the Rossby radius of deforma-
tion. At small channel widths relative to the Rossby radius of deformation we
have ˚.y/ � 1, and the Kelvin wave becomes an ordinary long gravity wave.
Furthermore, since there are only x- and z-components of the velocity vector, the
fluid particle trajectories traverse elliptical orbits in vertical planes. Finally, if the
wave propagates in the negative x-direction (! < 0), then the phase speed is
cph D �pghbar, and so, the attenuation is in the negative y-direction. Both situ-
ations can be described as follows: The Kelvin wave amplitudes of � and U are
transversely attenuated to the right (left) on the Northern (Southern) hemisphere
when looking into the direction of propagation of the wave.

Problem 12.1 Consider (12.1) with V � 0. From (12.1)1;2, which we write now as

@�

@t
C @U

@x
D 0;

@U

@t
D �ghbar

@�

@x
(12.5)

the zeroth order approximation �0; U0

U0 D A0exp Œi.kx � !t/�;
(12.6)

�0 D B0exp Œi.kx � !t/�

in which

B0 D k

!
A0;

!2

k2
D c2ph D ghbar (12.7)

can be derived. Here, A0 and B0 do not show any y-dependence. Equation (12.1)3
allows to use the above solution for U0 to derive the equation

@�1

@y
D � f

ghbar
U0 (12.8)
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Fig. 12.1 William Thomson, first Baron Kelvin (1824–1907). A Kelvin–Helmholtz instabil-
ity rendered visible by clouds over Mount Duval in Australia. Photos from http://en.wikipedia.
org/.

William Thomson, first Baron Kelvin or Lord Kelvin, or Kelvin of Largs (26 June 1824, Belfast, Northern Ireland,

17 December 1907, Netherhall at Largs) was a mathematical physicist and engineer. He was professor of Natural

Philosophy at Glasgow University for more than 50 years and did important work in the mathematical analysis of

electricity and the formulation of the first and second law of thermodynamics. He also had a successful career as

an electrical telegraph engineer which propelled him into the public eye and ensured his wealth, fame and honour.

Largely for this work he was knighted by Queen Victoria (1866), becoming Sir Willliam. Moreover, for his scien-

tific key role in developing the basis of the absolute temperature and the Kelvin temperature scale, and because of

his opposition to the Irish Home Rule, he received ennoblement as Baron Kelvin of Largs or Lord Kelvin (1892).

As a child William Thomson lost his mother at the age of 6 years (1830). The four boys and two girls who sur-

vived infancy were educated by their father who was a mathematics and engineering teacher at the Royal Belfast

Academic Institution. In 1834, the father became professor at Glasgow University. So, son William started his

university education in Glasgow at the age of 10. In the academic year 1839–1840, he won the class prize in

Astronomy for his essay on the figure of the Earth, which showed an early talent for mathematical analysis and

creativity. When coming across Fourier’s Théorie analytique de la chaleur he committed himself to study conti-

nental mathematics. Between 1841 and 1842 he wrote under the pseudonym P.Q.R. three papers on the theory of

heat and its connection with electricity. He left Glasgow University in 1841 without a degree and went with his

father’s strong support to Cambridge, where he graduated in 1845 in second place and also won the Smith’s Prize.

In the same year, he also became a fellow of Peterhouse but left Cambridge in 1846, when, at the age of 22, he

was appointed to the chair of Natural Philosophy in the University of Glasgow, a position he kept until 1899.

William Thomson’s important work on the first and second law of thermodynamics was done in the years from

1847 onwards during about 10 years. Besides his fundamental work on absolute zero, he and James Prescott Joule

collaborated, one result being the Joule–Thomson effect. He also phrased the second law in the form: It is impos-

sible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it

below the temperature of the coldest of the surrounding objects.

Thomson did also major work on electricity and developed his Thomson bridge, Kelvin generator, mirror gal-

vanometer and many more. He was deeply involved in the proper build-up of the telegraph cable across the

Atlantic, involving serious professional disputes with Wildman Whitehouse, the electrician of the Atlantic Tele-

graph Company and his eventual triumph and Whitehouse’s disaster and dismissal. Thomson was also an

enthusiastic yachtsman and contributed to the perfection to many marine instruments. His interest in tides led

to the description of Kelvin waves and the Thomson tide predicting machine.

Thomson published more than 600 scientific papers and filed 70 patents. His book ‘Treatise on Natural Philoso-

phy’ (1867) with Peter Guthrie Tait did much in unifying the modern physics of that time.

The text is based on:

http://de.wikipedia.org/wiki/Lord_Kelvin

http://en.wikipedia.org/wiki/Lord_Kelvin.

http://en.wikipedia.org/
http://en.wikipedia.org/
http://de.wikipedia.org/wiki/Lord_Kelvin
http://en.wikipedia.org/wiki/Lord_Kelvin
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Fig. 12.2 Long Kelvin wave in a semi-infinite half space x; y, propagating in the positive
x-direction in an uniform depth model. The vertical plane AB defines the shore of a layer of
infinite width. The vertical plane CD parallel to AB may also form a shore line adapted from [27],
with changes. c� Center for Great Lake Studies (now Great Lakes WATER Institute), reproduced
with permission

from which

�1 D � f

ghbar
U0y (12.9)

is obtained. This demonstrates that for longitudinal motions the free surface must
be transversely inclined in order that the transverse pressure gradient can balance
the Coriolis force. Show that by continuing this iteration procedure, the following
expressions are obtained:

U D A0

�
1 �

� y
R

�
C 1

2Š

� y
R

�2 � 1

3Š

� y
R

�3 ˙ � � �
�

exp Œi.kx � !t/�

D A0exp
�
� y
R

�
exp Œi.kx � !t/�;

�0 D B0

�
1 �

� y
R

�
C 1

2Š

� y
R

�2 � 1

3Š

� y
R

�3 ˙ � � �
�

exp Œi.kx � !t/�

D B0exp
�
� y
R

�
exp Œi.kx � !t/�;

(12.10)

which is the same as (12.2) and (12.3). Here R D cph=f .
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This iterative construction has been pursued in practice only to first order in y. It
is called Kelvin wave dynamics, has been introduced by Defant [9] and applied by
him in the seiche analysis of Lake Michigan and later by Platzman and Rao [28] in
an analysis of surface seiches of Lake Erie.

The method of Kelvin wave dynamics has found its ultimate application in the
construction of extended channel models of Raggio and Hutter [35–37], and Hutter
and Raggio [38], a kind of Chrystal-equations for elongated lakes on the rotating
Earth. In these models the governing equations (12.1) are written in curvilinear
coordinates, in which one axis follows the long direction of the lake (approximately
the thalweg), whilst the other axis is perpendicular and transverse to this long axis.
Raggio and Hutter perfected this method by a formal procedure using the method
of weighted residuals, which allows determination of as many transverse elements
of the analogue representations to (12.10) as desired. A full account on this class of
channel modes is given in Chap. 22.

12.2.1 Pseudo-Standing Kelvin Waves

In a non-rotating fluid layer of constant depth, standing waves do exist. In fact such
standing waves were constructed in Sects. 7.2 and 7.3, see Figs. 7.9, 7.12 of Vol-
ume I. Their distinctive feature is that spatially fixed nodal lines x=const. do exist,
across which no water will move at any one time. In an infinite channel of constant
width, exact standing Kelvin waves (in a rotating channel) do not exist. What exists
is something ‘close to standing waves’: they will subsequently be called pseudo-
standing Kelvin waves.3 To construct their solution, consider a forward propagating
Kelvin wave with large amplitudes at y D 0 and decaying as y grows, and a back-
ward moving Kelvin wave with large amplitudes at y D B and decaying as .B �y/
decreases. These waves are given by

.�; u/forward D
�
cph

g
u0; u0

	
exp

�
�fy
cph

	
exp Œi.kx � !t/�;

.�; u/backward D
�
cph

g
u0;�u0

	
exp

�
�f .B � y/

cph

	
exp Œi.kx C !t/�:

(12.11)

Adding the two waves and taking real parts yields

3 In the literature such pseudo-standing waves are for brevity often simply called standing waves;
we believe this convention is more confusing than convenient.
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� D <ef�forward C �backwardg

D 2cph

g
u0exp

�
� fB

2cph

	�
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�
f

cph

�
B

2
� y

	�
coskx cos!t

C sinh

�
f

cph

�
B

2
� y

	�
sin kx sin!t

�
;

u D <efuforward C ubackwardg

D 2u0exp

�
� fB

2cph

	�
sinh

�
f
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�
B

2
� y

	�
cos kx cos!t

C cosh

�
f

cph

�
B

2
� y

	�
sin kx sin!t

�
:

(12.12)

The solution (12.12) enjoys the following properties (compare Figs. 12.3 and 12.4).

� For y D B=2 and x D .2nC 1/�=.2k/, � D 0 for all time. Any of these points,
called amphidromic points or amphidromes, is characterized by the fact that the
surface never experiences any elevation from its equilibrium level.

� For y D B=2 and x D n�=k (these are the points on the centre line between
two amphidromic points) the velocity vanishes at all times.

� At times t D n�=! the surface elevation � (velocity u) is symmetrically (anti-
symmetrically) distributed across the channel width with maximum velocities
arising at the shore lines at positions x midway between the amphidromic points.
Similarly, for t D ..2nC 1/�=.2!//, � is anti-symmetrically distributed, whilst
u is symmetrically distributed across the channel.

� Lines of constant elevation amplitudes – the so-called co-range lines – are
given by

cosh2
�
f

c

�
B

2
� y

	�
cos2.kx/C sinh2

�
f

c

�
B

2
� y

	�
sin2.kx/ D const:

(12.13)
These lines are dashed in Fig. 12.4. In the vicinity of the amphidrome they
encircle the amphidromic point, farther away they are oscillatory.

� Lines of constant phase – the so-called co-tidal lines – are described instead by

tan� D tan.kx/ tanh

�
f

c

�
B

2
� y

	�
D const: (12.14)

It is easily seen that these are lines through the amphidromic points. Co-tidal lines
which differ in phase from one another by the angle � are centro- symmetrically
arranged with respect to the amphidromic point.

All these properties can with little effort be deduced from the respective
formulae, and they are easily corroborated in Figs. 12.3 and 12.4. The former
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Fig. 12.3 Successive phases (1/8 cycle) of a long, standing, amphidromic wave in a straight rotat-
ing channel of rectangular cross section. Horizontal components of the wave current are projected
on the plane below the channel. The amphidromic point P of zero elevation change, around which
the wave rotates counter-clockwise, is in the centre (redrawn from Mortimer, 1974 [24]. c� Int.
Ver. Theor. Angew. Limnol., http://www.schweizerbart.de)

of these displays the distribution of the surface elevation and longitudinal veloc-
ity in successive phases of (1/8)-cycle of such an amphidromic wave. The figure
illustrates the cyclonic (anticlockwise on the Northern Hemisphere) propagation of
the wave: In one period of its motion, the wave crest moves around the amphidromic
point and the velocity moves forth and back along the channel. The velocities are
weakest along lines transverse to the channel and midway between the amphidromic
points; however there is no line across the channel at which the longitudinal velocity
would vanish for all time. It follows that gravity waves in a gulf or a closed basin
cannot simply be obtained by superimposing Kelvin waves. We shall soon return to
this point.

http://www.schweizerbart.de
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Fig. 12.4 Amphidromic
system in an infinitely long
canal, resulting from
superposition of two Kelvin
waves of 12-h period,
traveling in opposite
directions. Full lines: co-tidal
lines in hours: broken lines:
co-range lines
(Z0D0:5; k D 1; f=c D 0:7,
corresponding to a canal
width of 400 km, H = 40 m).
c� Courtesy W. Krauss

(1966) [14],
http://www.schweizerbart.de

12.2.2 Baroclinic Kelvin Waves

So far in this chapter only barotropic Kelvin waves were studied. In Chap. 11 it was,
however, shown that in a strictly vertically stratified fluid layer of constant depth
in the shallow water approximation the horizontal and the vertical problem can be
separated such that the vertical eigenvalue problem, formulated, say, for the vertical
velocity component, determines the equivalent depths hn, where n is a counting
index which identifies the baroclinic mode number. This equivalent depth then
enters the horizontal problem which determines the propagation properties in the
horizontal direction.

For instance, in the two layer variable depth model, the baroclinic analogue of
the linearized governing equations are given by (11.98). The equations are exactly
the same equations as (12.1) with ghbar replaced by ghint, where

h˛ D

8
<̂

:̂

hext D H; barotropic case;

hint D "
H1H2

H1 CH2
; 2-layer, baroclinic case

(12.15)
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Table 12.2 Equivalent depth factors r and
p
r for the first baroclinic mode for a selected number

of ratios H2=H1

H2=H1 r
p
r H2=H1 r

p
r

0.1 0.0909 0.3015 5.0 0.8333 0.9129
0.5 0.3333 0.5774 10.0 0.9091 0.9535
1.0 0.5000 0.7071 100.0 0.9901 0.9950

1 1.000 1.000

is the equivalent depth of the two layer model in the barotropic and baroclinic
modes, respectively and " D ��=�. So, the Kelvin wave solutions are equally
analogous and given by

�˛ D
s
h˛

g
u0exp

 

� f
p
gh˛

y

!

exp Œi.kx � !t/�;

U˛ D u0h˛exp

 

� f
p
gh˛

y

!

exp Œi.kx � !t/�
(12.16)

with the corresponding Rossby radius of deformation

Req D
8
<

:

Rext D p
gH=f; barotropic case;

Rint D p
ghint=f; baroclinic case:

(12.17)

Writing

hint D 1

1CH1=H2
H1" D rH1"; r D H2=H1

H2=H1 C 1
; " D �2 � �1

��
; (12.18)

the equivalent depth, hint is written as a quantity proportional to H1". Table 12.2
lists a few values of r and r1=2; H1" is the equivalent depth, hint in the limit as
H2=H1 ! 1.

So, for rough estimates we may set

hint D rH1";

cint
ph D p

rgH1" D p
r
p
gH1" D p

r.cint
ph /max;

Rint D
p
rgH1"

f
D p

r

p
gH1"

f
D p

rRmax
int ;

(12.19)

in whichRmax
int is the internal Rossby radius of deformation. Values of .cint

ph /max lie in
the interval between approximately 10�2 ms�1 and 10ms�1. Figure 12.5 displays
Rmax

int as a function of the maximum phase speed .cint
ph /max D p

gH1" for various
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Fig. 12.5 Maximum internal
Rossby radius of deformation
as a function of the maximum
internal phase speed

p
gH1"

for various latitude angles

values of the geographical latitude. For a specific two-layer stratification with depth
ratio H2=H1, the adequate phase speeds and Rossby radii of deformation are then
obtained by multiplication with

p
r .

12.3 Inertial Waves

Kelvin waves are long shallow water waves on the rotating Earth whose horizontal
projection of the particle motion is purely longitudinal. Because of the Coriolis
forces such an unidirectional motion can only be maintained when the surface
elevation experiences an inclination in the direction perpendicular to the wave
propagation. This transverse variation of the surface elevation, due to geostrophic
adjustment, is exponentially evanescent as one moves away from the boundary. In
an infinite basin, there are no boundaries that can sustain a deviation of � from
its position at rest. Plane waves in infinite three-dimensional space (with constant
wave amplitude perpendicular to the direction of wave propagation) were treated
in Chap. 11, Sect. 11.4. A special case of these waves are the inertial waves. Their
properties can be deduced from (12.1) by imposing the condition that their surface
elevation vanishes, � � 0; so, all motion is purely horizontal. With � D 0, (12.1)
take the forms
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@U

@x
C @V

@y
D 0;

@U

@t
� f V D 0;

@V

@t
C f U D 0;

9
>>>>>>=

>>>>>>;

.x; y; t/ 2 R2 [ RC: (12.20)

With the harmonic representation

.U; V / D .U0; V0/exp Œi.k � x � !t/� (12.21)

it is then readily shown that

kx C ly D 0; where k D .k; l/;

�i!U0 � f V0 D 0; �i!V0 C f U0 D 0;
(12.22)

from which one concludes that ! D f , (independent of k); hence, the wavenumber
is arbitrary (k is perpendicular to the horizontal position vector .x; y/). This also
implies that the phase speed c D !=jkj is arbitrary. Moreover,

U D <efU0exp Œi.k � x � !t/�g;
V D <ef�iU0exp Œi.k � x � !t/�g;

or
U D =mfU0exp Œi.k � x � !t/�g;
V D =mf�iU0exp Œi.k � x � !t/�g:

(12.23)

This shows that particle motions are horizontal and circular with clockwise prop-
agation in the Northern hemisphere, and the trajectory radius is R D c=f . These
results may be summarized as follows:

Properties of Inertial Waves

� The angular frequency equals the inertial frequency: ! D f . This fact explains
why these waves are called inertial waves.

� The wave speed is not restricted, i.e. these waves may have arbitrary
wavenumber.

� Particle trajectories are horizontal circles with diameter R D cph=f where cph

is the phase speed; this radius is akin to the Rossby radius of deformation, its
difference to the latter being that here cph is not explicitly specified, but may have
any value.
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12.4 Poincaré Waves

Kelvin waves have the property that water particle displacements are strictly longi-
tudinal, whilst inertial waves are circular. There are many other solutions of (12.1)
which, when conveniently combined, fit particular boundary conditions [27, 29].
These solutions are described by the harmonic representation

.�; U; V / D .�0; U0; V0/exp Œi.k � x � !t/� (12.24)

with the horizontal wavenumber vector k OD.k; l/. Substituting (12.24) into (12.1)
leads to a homogeneous linear system of equations for .�0; U0; V0/ which possesses
the solution

U0 D � ghn

!2 � f 2
.�k! C if l/�0;

V0 D � ghn

!2 � f 2 .�ikf � l!/�0;

(12.25)

for arbitrary �0, provided its determinant vanishes, which is the case, if

!2 D f 2 C ghn.k
2 C l2/: (12.26)

‘The general solution (12.25) and (12.26) is formally valid when k and l are com-
plex valued; k and l can be real or imaginary, subject to the condition for pure
harmonic waves that ! and .k2 C l2/ must be real. If, for a wave travelling in the
x-direction k is real and positive and l is purely imaginary [to make this explicit,
we may replace l by i l 0] a special class of progressive wave solutions appears [: : : ],
characterized by a sinusoidal variation of the wave amplitude in the x-direction and
an exponential variation in the y-direction. But, if both k and l are real, and for
convenience the direction of propagation is made to coincide with the x-axis, so
that k D kh and l D 0 in a plane wave) the Sverdrup wave emerges with sinusoidal
amplitude variation along x and no amplitude variation along y .l D 0/’, after
Mortimer [27]. All these solutions are summarized in Fig. 12.6 and the following
problem.

Problem 12.2 Show that the dispersion relation (12.26) can, alternatively, be writ-
ten as

y D .x2 C 1 � a2/1=2; (12.27)

y WD
ˇ̌
ˇ
ˇ
!

f

ˇ̌
ˇ
ˇ; x WD

p
ghnk

f
; a2 WD ghnl

02

f 2
: (12.28)

Show, moreover, that for different values of the transverse wavenumber parameter
a2, the graphs of (12.27) are as shown in Fig. 12.6.
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Fig. 12.6 Frequency,
y Dj !=f j vs.
wavenumber,
x Dpghnk=f , diagram.
Regions (1)+(2) are the
regime of transversely
exponentially growing or
evanescing waves, regime (3)
is the regime of oscillatory
waves, see also main text

� Regime (1), 1 < a2: Graphs of (12.27) are branches of hyperbolas with vertices
on the x-axis and asymptote y D x (white triangle bounded by y D 0 and y D x

in Fig. 12.6.
� Regime (2), 0 < a2 < 1: Graphs of (12.27) are branches by hyperbolas with ver-

tices on the y-axis and asymptote y D x (dark-shaded region bounded by y D x

and the hyperbola for a2 D 0. Note that in regimes (1) and (2) the transverse
wavenumbers l 0 are real and corresponding waves transversely exponentially
growing or evanescing.

� Regime (3), a2 < 0: Graphs of (12.27) are branches of hyperbolas as shown
in the light gray region of Fig. 12.6. In this region, wave crests are transversely
harmonically varying .a2 < 0/, but constant for a2 D 0.

Platzman [29] and Mortimer [27] call waves in regime (3) Sverdrup waves; they
have l 02 < 0 (or l2 > 0) and are, therefore, transversely oscillatory. It is obvious that
by rotation of the coordinate system from .x; y/ to . Nx; Ny/ the direction of increasing
Nx can be made to agree with the direction of wave progress, in which case Nk > 0

and Nl D 0. The corresponding solution for the surface elevation � and horizontal
transportsU; V can be obtained from (12.24) to (12.26). (We use overbars to indicate
that the rotated coordinates . Nx; Ny/ are used, for which Nl D 0). Results are collected
in Problem 12.3.

Problem 12.3 Write (12.24)–(12.26) in a Cartesian coordinate system . Nx; Ny/ for
which wave progression is in the Nx-direction ( Nl D 0), and prove that

. N�; NU ; NV / D . N�0; NU0; NV0/exp Œi.kx � !t/�;

NU0 D !

k
N�0; V0 D �i f

k
N�0;

!2 D f 2 C ghnk
2:

(12.29)
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Taking real or imaginary values, (12.29) take the forms

N� D N�0Œcos.kx � !t/; sin.kx � !t/�;
NU D !

k
N�0Œcos.kx � !t/; sin.kx � !t/�;

NV D f

k
N�0Œsin.kx � !t/; � cos.kx � !t/�;

(12.30)

where the brackets Œ˛ ; ˇ� are obtained from the real and imaginary parts, respec-
tively. Using NU D H Nu, NV D H Nv, where H is the water depth, and the continuity
equation

@ NU
@x

C @

@z
.H Nw/ D 0 (12.31)

show, moreover, that for n D 1

Nw D � !

H
.z CH/ N�0Œsin.kx � !t/; � cos.kx � !t/�; (12.32)

satisfying the boundary conditions Nw.z D �H/ D 0 and Nw.z D 0/ D @�=@ t . The
linear variation of Nw with z over the depth is a consequence of the shallow water
approximation.

Beyond this problem solution it can also be shown that particle trajectories are as
shown for the more general stratified case in Fig. 11.9. Here, we mention once more
that the Sverdrup wave, comprising regime (3) of Fig. 12.6 is a member of a more
general class, treated by Poincaré [31],4 and has been referred to as a Poincaré wave,
e.g. by LeBlond and Mysak [18] as are all super-inertial waves covered in Fig. 12.6.
Mortimer [27] writes ‘However, others [22, 23, 29] find it convenient to confine the
designation ‘Poincaré’ to waves which satisfy the boundary conditions at a straight
vertical wall or walls in rotating uniform-depth models’, and he demonstrates in a
careful analysis that Poincaré waves so defined can be constructed as combinations
of Sverdrup waves.

This is exactly, what we are now going to do. More specifically, we construct
wave solutions of (12.1) which satisfy the boundary conditions V D 0 at the channel
walls, but may have non-trivial transverse velocity component inside the channel.
To this end, we eliminate U and � from (12.1) and seek plane wave solutions for

V D V0.y/exp Œi.kx � !t/�: (12.33)

The reader may verify that elimination of U and � from (12.1) yields

�
@V

@x2
C @2V

@y2

	
� 1

ghn

�
@2

@t2
C f 2

	
V D 0 (12.34)

4 For a biographical sketch see Fig. 12.7.
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Fig. 12.7 Jules Henri Poincaré (1854–1912), photographic portrait by Henri Manuel (from
http://en.wikipedia.org/), and the front page of his ‘Lectures on Celestial Mechanics’ (image
from Cornell University Library http://dlxs2.library.cornell.edu/).

Jules Henri Poincaré (29 April 1854, Meurthe-et-Moselle, near Nancy; 17 July 1912, Paris) was a French
mathematician, theoretical physicist, mining engineer and philosopher of Science. During his childhood,
he was seriously ill for a time with diphtheria. He received his first education from his mother. From
1862 to 1873 he attended the Lycée in Nancy, where his outstanding talents in all fields except music
and physical education were noted, in particular the superiority in mathematics. Henri Poincaré spent the
Franco-Prussian war of 1870 with his father in the Ambulance Corps. In 1873, he entered École Poly-
technique, where he became a student of Charles Hermite. He graduated in 1875 (or 1876), but went
on to study at the École des Mines, continuing with his mathematical studies in addition to the mining
engineering syllabus, receiving the engineering degree in 1879. At the same time Poincaré was preparing
for his doctorate in mathematics under Hermite. His thesis is in the field of differential equations, and the
University of Paris (Sorbonne) granted him the Ph.D. in 1879. In 1881, he married Miss Poulain d’Andecy,
and they had four children.

Poincaré started his professional career as a mathematics lecturer at Caen University, while simultaneously
also working at the Ministry of Public Service from 1881 to 1885. He climbed up the latter as a mining
engineer to chief engineer in 1893 and inspector general in 1910. Beginning in 1881 and for the remainder
of his career he taught at the Sorbonne, where he eventually held the chairs of Physical and Experimental
Mechanics, Mathematical Physics, Theory of Probability and Celestial Mechanics and Astronomy.

In 1887, Poincaré was elected to the French Academy of Sciences. He became its president in 1906, and
was elected to the Académie Française. In 1887, he also won Oscar II, King of Sweden’s mathematical
competition for a resolution of the three-body problem concerning the free motion of multiple orbiting
bodies, and in 1893 he joined the French Bureau des Longitudes, which engaged him in the synchroniza-
tion of the time around the world. On 17 July 1912, Poincaré died of an embolism after prostate surgery.

Henri Poincaré is considered ‘The Last Universalist’, since he excelled in all fields of the discipline as
it existed in his time. He worked not only on many subjects of pure mathematics but also other subjects
of mathematical physics. He was the first to present the Lorentz transformation of the theory of special
relativity (1896). A nice detailed reference to his work is given in the URL address below. The fluid waves
named after him are briefly mentioned in a footnote of his book ‘Celestial Mechanics’; they form now an
important class of waves in meteorology, oceanography and limnology.

The text is based on: http://en.wikipedia.org/wiki/Jules_Henri_Poincare

http://en.wikipedia.org/
http://dlxs2.library.cornell.edu/
http://en.wikipedia.org/wiki/Jules_Henri_Poincare
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and substitution of (12.33) in (12.34) leads to the eigenvalue problem

V 000 C
�
!2 � f 2

ghn
� k2

	
V0 D 0; 0 6 y < B;

V0 D 0; at y D 0 and y D B:

(12.35)

for the distribution of V across the channel. In the above, the prime denotes dif-
ferentiation with respect to y, and B is the channel width. Depending on the value
of hn (DH for the barotropic mode, Dhn for the baroclinic mode) (12.33), (12.35)
describe the barotropic and baroclinic progressing Poincaré waves. The solution of
(12.35) is

V0 D NV sin
�m�y
B

�
; .m D 1; 2; 3; : : : / (12.36)

with the dispersion relation

k2 D !2 � f 2

ghn
� m2�2

B2
; .m D 1; 2; 3; : : : /; .n D 0; 1; 2; : : : /; (12.37)

or, alternatively,

!2 D f 2 C ghn

�
k2 C m2�2

B2

	
> f 2 C ghn

m2�2

B2
DW !2c : (12.38)

This shows that, even though! may continuously vary, there are quantized branches
of k depending upon the horizontal (m) and vertical (n) mode structure. Obviously,
for real m the elevation and the velocities across the channel are oscillatory, but
depending on the value ofm, the squared longitudinal wavenumber k2 may be pos-
itive or negative, and solutions in the x-direction be oscillatory or exponential; in
fact, with

m2crit WD B2

�2
!2 � f 2

ghn
; (12.39)

one has for m < mcrit oscillatory progressive waves and for m > mcrit exponential
variation of the fields in the x-direction.

Problem 12.4 Using (12.1) and the solution for V , given by (12.33) and (12.34) to
(12.35), show that � and U are given by

� D
n
˛m sin

�m�y
B

�
� ˇm cos

�m�y
B

�o
ei.kx�!tC�=2/;

˛m D �mn
k

f
NV ; ˇm D �mn

m�

Bf

!

f
NV ;

(12.40)
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U D
n

N̨m sin
�m�y
B

�
� Ň

m cos
�m�y
B

�o
ei.kx�!tC�=2/;

N̨m D �mn
!

f
NV ; Ň

m D gh

f
�mn

m�

Bf

k

f
NV ;

(12.41)

with

�mn D f 2

!2 � ghnk2
D f 2

f 2 C m2�2

B2
ghn

: (12.42)

Hint: Assume (12.40)1 and (12.41)1 to be correct and verify the coefficients.

The results of Problem 12.4, expressed by the formulae (12.40) and (12.41) are
needed to deduce the following inferences:

� For given frequency the squared wavenumber, k2, is only positive, provided the
transverse modenumber,m is sufficiently small. Thus, for

m < mcrit WD B

�

s
!2 � f 2
ghn

! k2 > 0;

the Poincaré waves are oscillatory in the x-direction. On the other hand, modes
with mode number

m > mcrit ! k2 < 0;

are exponentially evanescent as x ! 1 or x ! �1 . Such waves can only
exist in a semi-infinite channel or a channel of finite length. These are important
in the solution of the reflection problem. This point will be taken up later again.

� Poincaré waves are necessarily super-inertial, i.e. their frequency! is larger than
the inertial frequency f . A fortiori, in an infinite channel (for which k2 > 0) !
must be larger than the cut-off frequency, !c, whose square is the sum of f 2 and
the square of the frequency of the transverse oscillation, !2c , in a non-rotating
channel.

� In the direction of wave progression the variable V lags behind � and U by �=2;
so, the motion is purely transverse where U and � vanish and purely longitudinal
where � experiences the largest transverse variations. This can also be inferred
from Fig. 12.8a.

� The progressive Poincaré wave is asymmetric across the channel width. It pos-
sesses nodal lines of � where

tan
�m�y
B

�
D m�

B

!

k
: (12.43)

This equation is easily seen to have no solution for y D B=2. A fortiori, for
the uninodal case (Fig. 12.8a, m D 1) the nodal line must lie in the interval
0 � y � B=2. The asymmetry increases with decreasing ! andm and increasing
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wavenumber k. In Fig. 12.8a the symmetry line is denoted by CCL and the nodal
line by NL.5

� If the U and V components are combined to form vectors, then their vector dia-
gram is as shown in the lower panel of Fig. 12.8a. This graph also shows an
asymmetry in the velocity profile with the maximum velocities arising at the
position indicated by MCL. For a stationary observer, as the wave is passing his
position in the direction of wave progression, the velocity vector rotates in the
clockwise direction in the Northern hemisphere, performing a full revolution as
one wavelength passes the observer.

These properties, as well as snapshots of the elevation and velocity distributions
of an uninodal (m D 1) and trinodal (m D 3) Poincaré wave are shown in
Fig. 12.8, panels (a) and (b), respectively. These graphs are copied from Mortimer
[27]; they are direct consequences of the formulae (12.33), (12.36)–(12.38), (12.40)
and (12.41). The reader is encouraged to verify with these formulae the graphs, the
figure caption and the properties spelled out in the above epitomized statements.

The structure of these solutions indicates that progressive Poincaré waves, if they
exist at all in lakes (we shall provide evidence in later chapters), that they may
be best measured when current meters are moored at off-shore positions. At such
positions one may likely catch a strong current signal. Its clockwise rotation (on
the Northern hemisphere) is then a first indication for Poincaré wave behaviour, the
super-inertial frequency, ! > f , being a second one.

A pseudo-standing wave pattern can also be produced along the channel, if two
identical, but oppositely-propagating, Poincaré waves are combined:

V D V0.y/
n
ei.kx�!t/ C e�i.kx�!t/

o
D 2V0.y/ cos.kx/e�i!t ; (12.44)

with V0.y/ given by (12.36) and corresponding formulae for � and U that can eas-
ily be deduced from (12.40)–(12.42). We discuss the qualitative behaviour with
the aid of Figs. 12.9 and 12.10.6 Taking the cross-channel uninodal example from
Fig. 12.8a, half-wavelength portions of two such oppositely-propagating Poincaré
waves are shown in Fig. 12.9a. Eight phases in one oscillation cycle of the combined
wave which they produce are numbered in sequence in Fig. 12.9b. Several features
are evident: The cross channel standing wave structure is maintained, but the asym-
metry, described earlier for the progressive Poincaré wave (i.e. the displacement of
NL and MCL from CCL), is cancelled out: an along channel ‘quasi-standing’ pat-
tern emerges, dividing the wave structure into cells; clockwise rotation of the current
vectors is maintained with highest speeds at the centre of the cell; the solid bound-
ary conditions are met at the channel sides (this is simply so by construction) but

5 This follows from the simple fact that the equation tan x D c .Dconstant/ has a solution xs in the
interval [0; �=2]. For growing c it is obvious (make a graph!) that xs decreases; this is equivalent
to increasing asymmetry.
6 These beautiful figures are again redrawn from Mortimer. The discussion also parallels that of
Mortimer, but is not an exact quotation.
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Fig. 12.8 (a) Progressing Poincaré wave with a uninodal (m D 1) cross channel distribution of
the elevation �. Shown is a semi-period (length 
=2) with the velocity distribution in the lower
rectangle. The dotted line (CCL) indicates the middle line of the channel, NL indicates the along
channel nodal line shifted towards the wall to the right of the wave progression (on the Northern
hemisphere); MCL marks the maximum current line. The currents along shore are sinusoidally
distributed (with asymmetry) where the surface elevation shows the strongest transverse variations;
it is transverse where � D 0 across the entire channel. (b) Same for a trinodal progressive Poincaré
wave. The nodal line of the elevation is shifted �� to the right of the channel line, while MCL
is shifted ıv to the left of the nodal line (N) (adapted from Mortimes (1977) [27]). c� Center for
Great Lakes Studies (now Great Lakes WATER Institute), reproduced with permission
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not at the cell ends (therefore, this is not a true standing wave, such as would be pro-
duced by a pair of oppositely-propagating plane waves in the absence of rotation);
the current component in the along-shore direction at the cell end walls is small
(increasingly smaller as the channel width increases) but does not fall to zero except
at the centre point; the wave elevation pattern progresses clockwise around the cell-
centre point (the amphidromic point P). An amphidromic point is also located at
each cell corner.

Figure 12.10 illustrates four phases in one oscillation cycle of the third cross
channel mode (m D 3) of such a pseudo-standing wave. As before, the motion has
cell structure. For t D 0, each cell with horizontal wave lengths 
x and 
y is sub-
divided into four sub-cells in which the elevation has a high and a low, respectively,
and velocities are longitudinal ‘to-and-fro’ as shown in the figure. A quarter period
later, t D T=4, locations of elevation highs and lows are shifted as shown, and the
current is transverse and again ‘to-and-fro’. At time t D T=2, the elevation and
velocity distributions are again as shown for t D 0 but with highs and lows inter-
changed and velocity directions reversed; a similar behaviour is seen at t D 3T=4

when compared with the graph for t D T=4. As time progresses the current vectors
rotate in the clockwise direction (on the Northern hemisphere) and particle paths for
a harmonic oscillation are elliptical and are traced once within a period. Finally, as
before, the side boundary conditions are met, but there is no line across the chan-
nel at which the longitudinal velocity would vanish at all points for all time. Such
pseudo-standing Poincaré wave solutions can therefore not hold for a closed basin.

12.5 Reflection from the End of a Channel Wall

Neither the quasi-standing Kelvin waves, see Figs. 12.3 and 12.4, nor the quasi-
standing Poincaré waves, see Figs. 12.9 and 12.10, have cross channel positions at
which the longitudinal velocity components would vanish at all time. So, a Kelvin
wave entering a semi-infinite channel cannot be reflected at the channel end by
an oppositely-propagating Kelvin wave of the same frequency. A similar state-
ment also holds for Poincaré waves. However, it was discovered by Taylor [45]
that a quasi-standing Kelvin-wave solution plus an countably infinite spectrum of
reflected (backward) moving Poincaré waves allows the no-through flux condition
at a transverse wall to be met.

The reflection of a Kelvin wave incident onto the end of a gulf is solved by adding
to this wave a backward moving Kelvin wave of the same frequency and same
wavenumber and an infinite number of backward moving, i.e. reflected Poincaré
waves of the same frequency:

Utot.x; y; !/ D
"
�
U in

Kelvin.x; y; !/ C U out
Kelvin.x; y; !/

�

C
1X

mD1
am
�
U reflected

Poincaré

�
m
.x; y; !/

#

:

(12.45)
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Fig. 12.9 Two oppositely-propagating but otherwise identical progressive Poincaré waves, from
Fig. 12.8a and shown here in (a), combine to produce the amphidromic ‘standing’ Poincaré wave.
Half-wavelength cells of the combined pseudo-standing wave are illustrated at 1/8-cycle intervals
in (b). The combined wave, with amphidromic point P at the cell-centre, is truly standing (with
one node in this case) across, but quasi-standing along the channel, as explained in the text. Wave
topography can be viewed either as that of a water surface or as that of a ‘thermocline’ interface in
a two-layered model, in which case the horizontal current vectors (illustrated beneath each cell) are
those in the lower layer (adapted from Mortimer (1977) [26]). c� Center for Great Lakes Studies
(now Great Lakes WATER Institute), reproduced with permission
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Fig. 12.10 A ‘standing’ Poincaré wave of cross-channel nodality 3, i.e. a trinodal equivalent of
Fig. 12.9b, but with only 4 phases of the oscillation cycle shown. The same legend as for Fig. 12.9
applies; and the progressive Poincaré wave component, contributing to this combination, is illus-
trated in Fig. 12.9 (lower part) (adapted from Mortimer (1980) [27]). c� Center for Great Lakes
Studies (now Great Lakes WATER Institute), reproduced with permission

The free amplitudes, am, of these Poincaré waves are determined by the condition
that there is no-flux through the channel wall:

Utot.xwall; y; !/ D 0; y 2 Œ0; B�: (12.46)

in which the amplitude of U in
Kelvin is explicitly known. Before this equation can

be exploited, the functions U in
Kelvin.xwall; y; !/ and U out

Kelvin.xwall; y; !/, which
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are exponentials, must be expanded in Fourier-sine series with the elements
sin.m�y=B/, which describe the transverse variability of the functions .U reflected

Poincaré /m,
m D 1; : : : ;1. This then makes the right-hand side of (12.45) an infinite linear
combination of sin.m�y=B/, m D 1; : : : ;1, that must be zero. This yields an
infinite number of equations for the coefficients am. By truncating the number of
quasi-standing Poincaré modes to m D 1; 2; : : : ;M < 1, the problem of the
reflection of a Kelvin wave at the end of a gulf can explicitly be solved. This has
been done by Taylor in 1920 [45], see Fig. 12.11.

If the incoming Kelvin wave has a frequency below the cut-off frequency, !c,
of Poincaré waves, then the Poincaré modes are all evanescent as one moves away
from the end wall. Although they are important for the satisfaction of the boundary
condition, their presence is felt only near the end wall. For this reason, this type of
reflection is called complete reflection. Figure 12.12 shows the amphidromic system
and the current ellipses in a rectangular basin closed at one end as determined by
Taylor.7 The influence of the Poincaré waves is only seen near the channel end.
When the frequency of the incoming wave is above the cut-off frequency, then this
incoming Kelvin wave is reflected by a backward moving Kelvin wave and a finite
number of reflected Poincaré waves, of which the presence is recognized in the
entire basin, plus an infinite number of Poincaré waves, which are exponentially
evanescent. Reflections are then called incomplete.

An example of the amphidrome modification near the closed end is shown for this
case in Fig. 12.13 for higher frequencies, the amplitude pattern diverges from that
due to a pair of Kelvin waves, acquiring more and more lateral structure as more and
more Poincaré modes are reflected from the closed end of the channel. Figure 12.13,
taken from [2] shows the distortion of the amphidromes with increasing frequencies.

12.6 Shallow Water Waves in a Rectangle of Constant Depth

The above description also makes clear, in principle, how quasi-standing shallow
water waves can be treated in a (alongated) rectangular basin of constant depth. The
longitudinal velocity U could be composed of a pair of a forward and backward
moving Kelvin waves plus two infinite sums of Poincaré waves, of which one set
is reflected at the front wall, x D xfront, the other at the back wall, x D xback .
Consequently,

Utot.x; y; !/ D U forward
Kelvin .x; y; !/C U backward

Kelvin .x; y; !/

C
1X

mD1
am
�
U reflected

Poincaré

�front

m
C
1X

mD1
bm
�
U reflected

Poincaré

�back

m

(12.47)

7 For a biographical sketch see Fig. 12.11.
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Fig. 12.11 Geoffrey Ingram Taylor (1886–1975) (portrait from http://en.wikipedia.org/) and
wavy Taylor vortices in the gap between concentrical cylinders, reproduced in laboratory
(photo: K.G. Roesner, http://www.kgroesner.de/).

Geoffrey Ingram Taylor (7 March 1886, St. John’s Wood, London; 27 June 1975, Cambridge,
England) was an applied mathematician and physicist specialized in fluid dynamics and wave
theory. His father was an artist, and his mother, Margaret Boole, came from a family of mathe-
maticians. Taylor followed her footsteps studying mathematics at Trinity College, Cambridge
University. With work on shock waves, 1909, he won the Smith’s Prize and was elected a
fellow at Trinity College in 1910 and a Reader in Dynamical Meteorology in the following
year. His publication ‘Turbulent motion in fluids’ won him the Adams Prize in 1915.

During World War II Taylor was sent to the Royal Aircraft Factory in Farnborough to apply
his knowledge in aerodynamics and meteorology to aircraft design; there he worked on stress
in propeller shafts, learned to fly airplanes and made parachute jumps. After World War I, he
returned to Cambridge, where he worked on rotating fluids. It is at this time when his paper on
the reflection of a Kelvin wave at the end of a gulf with rectangular cross-section was written,
which required a combination of the incoming Kelvin wave with an outgoing Kelvin wave and
an infinite number of Poincaré waves. In 1915, Taylor was appointed a Royal Society research
professorship. This freed him from teaching and led to a period of very active research on both
fluid and solid mechanics (also of crystalline materials), including statistical approaches to
turbulence. In 1934, Taylor realized – almost simultaneously with Polanyi and Orovan – that
the plastic deformation of ductile material could be explained with the theory of dislocations.

During World War II Taylor worked on applications of his expertise to military problems,
among others the propagation of blast waves in air and water. His prediction of the strength of
the atomic explosion performed as part of the Manhattan Project in the desert of New Mexico
is well known. In 1944, he was also knighted.

Taylor continued his research after the war, working on the development of supersonic aircraft.
He officially retired in 1952 from active duty; he continued to work for twenty more years.
He wrote his final paper on electrical activity in thunderstorms in 1969, when he was 83. He
suffered a stroke in 1972 and died on 27 June 1975.

The text is based on: http://en.wikipedia.org/wiki/Geoffrey-Ingram_Taylor

Further references:

B. Pippard: Sir Geoffrey Taylor, Physics Today, Sept 1975, p 67
G. Batchelor. The life and legacy of G.I. Taylor. Cambridge University Press, 1994.
ISBN 0-521-46121-9.

http://en.wikipedia.org/
http://www.kgroesner.de/
http://en.wikipedia.org/wiki/Geoffrey-Ingram_Taylor
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Fig. 12.12 Amphidromic system in a rectangular basin closed at one end. (a) co-tidal and co-
range lines; (b) current ellipses, illustrating pure reflection. The arrow at the bottom indicates the
rotation of the Earth, after G.I. Taylor [45] (1920). c� London Mathematical Society, reproduced
with permission

must hold, subject to the reflection conditions

Utot.xfront; y; !/ D 0; Utot.xback; y; !/ D 0: (12.48)

In addition, the periodicity condition

jxback � xfrontj D p� .p D 1; 2; : : : /

must hold. This defines the dispersion relation and hence the frequencies which are
now quantized and isolated.

Upon Fourier expansion of U forward
Kelvin .x; y; !/ and U backward

Kelvin .x; y; !/ in y at x D
xfront and x D xback, equations (12.48) form a linear homogeneous set of 2M
(M ! 1) equations for the amplitude coefficients am and bm (m D 1; : : : ;M ).
Setting the determinant of this system of equations equal to zero guarantees non-
trivial solutions and determines the eigenfrequencies!mp, which are now quantized
and isolated (m gives the mode number in the y-direction, p that in the x-direction).
The eigenfrequencies carry three integer indices !nmp , n D 0; 1; 2; : : : to identify
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Fig. 12.13 Influence of the frequency on the amphidromic pattern for Kelvin waves reflected from
the closed end of a channel. The closed end of the channel is at the bottom of the panels, and lines
of constant phase and amplitude are labeled as thin and heavy solid lines. The width of the channel
is B D 500 km, the latitude 54.46ıN and the cut-off period is Tc D 2�=!c is equal to 8.46 h for
m D 1. The Kelvin wave period decreases from panels (a)–(h) as follows: (a): 12.0 h; (b): 10.0 h;
(c): 9.0 h; (d): 8.6 h; (e): 8.1 h; (f): 8.0 h; (g): 7.0 h; (h): 6.0 h. In panels (a)–(d), all Poincaré waves
are evanescent, and at sufficiently large distance from the reflecting end the interference pattern
becomes that of a pair of Kelvin waves travelling in opposite directions. In the last four panels
(e)–(h), the m D 1 Poincaré mode propagates and the field far from the reflecting end consists of
two Kelvin waves and a Poincaré wave. The asymmetry introduced by the reflected Poincaré wave
is evident in the four panels (adapted from Brown (1973) [2]). c� J. Marine Research, reproduced
with permission
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the barotropic vertical mode, and an infinity of baroclinic vertical modes, m D
1; 2; 3; : : : to identify the transverse andp D 1; 2; 3; : : : the longitudinal basin-scale
modes.

Of course, such a solution technique is complicated for practical applications.
But it is at least helpful to physically interpret free wave dynamics in oblong basins,
strictly only for a homogeneous fluid in a rectangular basin. If this rectangle is long,
then the eigenfrequency is below the cut-off frequency, at least for some of the
lowest order modes. The quasi-standing Kelvin waves at these frequencies are com-
plemented by Poincaré waves that are reflected at the two end cross sections and
are evanescent as one moves away from these cross sections into the interior of
the basin. These waves can be termed Kelvin-like, because ‘Poincaré-type perturba-
tions’ are only appreciably excited at the long ends. Any eigenfrequency above the
cut-off frequency !mp > !c will generate Poincaré solutions which are oscillatory
throughout the basin. Current measurements at off-shore moorings will most likely
have the potential to record these Poincaré-type solutions. For more compact rectan-
gles, say squares, the mode structure generally fills the entire rectangle and Kelvin-
and Poincaré-type wave forms are intermixed.

12.6.1 Frequency Relation

The mathematical construction of eigensolutions for homogeneous water in rotat-
ing rectangles of constant depth has a relatively long history beginning with Lord
Rayleigh [41, 42] and culminating with the doctoral dissertation by Rao [39] and
its condensed version ‘Free gravity oscillations in rotating rectangular basins’, pub-
lished in the Journal of Fluid Mechanics [40]. Rao writes: “Rayleigh’s treatment
was restricted to the case where the rotation speed8 ˝ was small compared with
the speed ! of the oscillation and was later corrected by Proudman [34]. Taylor
[45] gave the first complete solution (valid for any ˝) for the free oscillations in
a rectangular basin. Some of his conclusions were criticized by Jeffreys [11], who
pointed out that there was a double infinity of modes in the rotating case and that
there might be modes travelling in both directions of the basin (with and against the
rotation [˝]). Defant [8] subsequently gave an approximate method of simplifying
Taylor’s analysis.

Lamb [16] gave an approximation to the slowest speed by a different method.
His result is

.!2 � �21/.!
2 � �22/ D

�
4

�

	4
˝2!2; (12.49)

where �1 and �2 are the speeds of the slowest longitudinal and slowest transverse
modes in the zero-rotation case (see, Chap. 7, Sect. 7.3 in Volume I).9 In the special

8 Rao calls ‘angular velocity’ ‘rotation speed’ or simply ‘speed’.
9 The frequency �j in the zero-rotation limit,˝ D 0, is
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case of a square, �1 D �2, and (12.49) reduces to

! � �1 D ˙ 8

�2
˝: (12.50)

This agrees with the result of Rayleigh [41] as corrected by Proudman [34].10 Lamb
also showed that there are wave systems travelling in both directions around the
basin. Goldsbrough [10] solved the problem formally for any ˝ , but approximated
results to small ˝ . He confirmed Lamb’s results.

Corkan and Doodson [7] treated the case of a square sea by direct numerical
integration of the dynamic equations and obtained frequency values at a few rota-
tion speeds for the slowest positively (in the same direction as the rotation) and
negatively (opposite the direction of rotation) propagating anti-symmetric modes.
[: : : ]. They found that negative waves are ‘unstable’ in the sense that these waves
are transformed into positive waves at high rotations.

[: : : ] Van Danzig and Lauwerier [46] [: : : ] obtained a solution valid for any ˝
but approximated the results to small values of ˝ . The explicit results obtained by
them are

!

�1
D 1˙

�
4

�2

	
2˝

�1
C 0:138

�
2˝

�1

	2
C � � � (12.53)

for a square. The minus sign refers to the slowest positive anti-symmetric mode
and the plus sign to the negative mode. This extends the approximation (12.50) of
Lamb and Rayleigh by one more order in ˝ . For a (2 � 1)-rectangle Van Danzig
and Lauwerier give an explicit result only for the lowest order in ˝ for the slowest
positive anti-symmetric mode

�kl D �
nh
.k=a/

2 C .l=b/2
i
ghn

o1=2
; �1 WD min

.k;l/
�kl ;

where a and b are the side lengths of the rectangle. For a > b, �1 is obtained for .k; l/ D .1; 0/; g
is the acceleration due to gravity and hn the equivalent depth for barotropic (hn D H ) or baroclinc
modes.
10 Rao is not very precise here. The result (12.50) is an approximation to (12.49) if �1 D �2. Indeed,
for �1 D �2, (12.49) becomes

.!2 � �21 / D˙. 4� /2˝!; (12.51)

which, for ˝ ! 0 allows construction of the iterative solution

!n D �1

r
1˙ . 4

�
/2 ˝!n�1

�21

with the first two iterates

!0 D �1; !1 D �1

q
1˙ . 4

�
/2 ˝
�1
� �1 ˙ 8

�2
˝: (12.52)

Lamb [17] (1932, p. 313, (22)) writes that (12.52) is approximate for ˝ ! 0.
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Fig. 12.14 Dimensionless frequency of oscillation (!=�1) in square and rectangular basins of
uniform depth, as a function of the dimensionless rotation speed .2˝=�1/. The solid curves are
the results of Rao [40]: curves 1 and 2 correspond to the slowest positive and negative modes in
a square and curve 3 to the slowest positive mode in a .2 � 1/-rectangle. Also shown are Corkan
and Doodson’s [7] results for the square (�) and Taylor’s [45] results for a .2� 1/-rectangle (@A� ).
Curves 4 and 5 show the results of Van Danzig and Lauwerier’s [46] perturbation analysis for the
slowest positive and negative modes in a square, valid to second order terms in (2˝=�1). Full
circles are obtained from laboratory experiments. The figure is a combination of two figures by
Rao [40]. c� J. Fluid Mech. Cambridge University Press, reproduced with permission

!

�1
D 1 � 0:302

�
2˝

�1

	2
; (12.54)

which agrees with the result of Rayleigh [42] as corrected by Proudman [34], when
specialized to the case of a (2 � 1)-rectangle”, [40].

This is Rao’s summary of the history of the problem prior to his work. He [40]
determined the eigenfrequencies of the gravitational oscillations of a homogeneous
fluid in a rectangle for any value of the rotation frequency. He conducted computa-
tions for the frequencies and modal structures of several of the lowest symmetric
and anti-symmetric modes in a square and a (2 � 1)-rectangle. Figure 12.14 is
a combined reproduction of two of his figures showing the frequency results for
the slowest positive and negative modes in a square and the slowest positive anti-
symmetric mode in a (2 � 1)-rectangle. In this diagram, the frequencies ! and ˝
are non-dimensionalized by �1, the slowest zero-rotation frequency. For detailed
explanations we refer to the figure caption.

Rao also determined the modal frequencies for other modes higher than those
shown in Fig. 12.14. A number of these are shown in Fig. 12.15 for squares on the
left and .2� 1/-rectangles on the right. ‘This diagram exhibits the effect of rotation
on all modes of the zero-rotation spectrum with frequencies in the range !=�1 < 4
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Fig. 12.15 Frequency .!=�1/ vs. rotation speed .f=�1/ .f D 2˝ sin �/ for various modes
in a square (left) and .2 � 1/-rectangular (right) basin. Solid (dashed) lines correspond to
anti-symmetric (symmetric) modes. Modes are identified by .k; l/. For squares, in the non-
rotation limit, some are doubly valued. The dashed-dotted lines separate the regimes of sub- and
super-inertial frequencies (redrawn from [40]). c� J. Fluid Mech. Cambridge University Press,
reproduced with permission

for the square and !=�1 < 5 for the rectangle. The solid lines correspond to anti-
symmetric modes and the dashed lines to symmetric modes. The slowest mode of
all is the anti-symmetric mode .1; 0/ which consists of one wave travelling in the
positive direction of the basin; that is, in the same direction as that of rotation’ [40].
The figure shows the Œ.1; 0/; .0; 1/�; Œ.1; 2/; .2; 1/�; Œ.3; 0/; .0; 3/�modes in a square;
these are examples of doublets in the zero-rotation frequency spectrum for anti-
symmetric modes. Similarly, the Œ.2; 0/; .0; 2/�; Œ.1; 3/; .3; 1/�modes in a square are
such doublets for anti-symmetric modes. These multiplets in the zero-rotation spec-
trum are split into distinct frequencies on the introduction of rotation. For the modes
of the .2 � 1/-rectangle the zero-rotation limits of the frequencies are, however, all
singlets. Moreover, note that square and .2�1/-rectangle have certain modes whose
eigenfrequencies are sub-inertial (! < f ) if the rotation speed ˝ is sufficiently
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large. Most frequencies are, however, super-inertial. Rao also demonstrates that with
increasing aspect ratio of the rectangle

� The effect of the rotation on the frequencies of the few lowest longitudinal oscil-
lations becomes less important and in the limit as a=b ! 1, these oscillations
are transformed into Kelvin waves,

� Purely transverse modes assume the form of waves with horizontal crests
and, thus, approach in the limit as a=b ! 1 Sverdrup waves, for which
!2 D �2 C f 2.

12.6.2 Modal Structure

The elevation field of the free surface (or the displacement in an equivalent depth
model) � may be written as

�.x; y; t/ D A.x; y/ cosŒ!t � �.x; y/�: (12.55)

Here, A.x; y/ is the amplitude and �.x; y/ is the phase of high water at a point
.x; y/. Graphical representations of the modal structure are usually given in terms of
co-amplitude lines (contours ofA) and co-tidal lines (contours of �) with a particular
normalization of the amplitude function. Rao put the average value of A2 over the
basin equal to 100 in all cases. (It is generally more customary in practice to set
the maximum value of A equal to 100.) In Figs. 12.16–12.19, the co-tidal lines are
drawn at one-twelfth period, i.e. in �-increments of 30ı through the range 0 � � �
360ı. In what follows, we take ˝ > 0, that is the rotation of the basin is positive
(on the Northern hemisphere, counterclockwise) and each figure shows results for a
square and for a .2 � 1/-rectangle.

“The slowest positively propagating mode .1; 0/ is presented in Fig. 12.16, for
rotation speed f=�1 D 2. This mode, in both basins, consists of one wave travelling
in the positive (counter-clockwise) direction about an amphidromic point at the cen-
tre of the basin. The amplitude of oscillation is zero at the amphidromic point and
increases outward; it reaches a maximum value at the corners. This structure of the
mode remains essentially unchanged with increasing rotation. In the sequel we refer
to an amphidromic point as positive or negative according as the associated wave
system rotates in the positive (counter-clockwise) or negative (clockwise sense).
Open circles represent positive amphidromes, full circles will identify negative
amphidromes.

Figure 12.17a–c represent the slowest negative mode at different values of f=�1
(note they are not the same for squares and .2� 1/-rectangles). Taking first the case
of a square, we see that for low rotation this mode consists of one wave travelling
in the clockwise direction about an amphidromic point at the centre of the basin, as
shown in Fig. 12.17a. As the rotation increases, the structure of the mode changes,
in marked contrast to the slowest positive mode. In particular, for a certain value
of f=�1, (not precisely determined [: : : ] but in the range 1:0 < f=�1 < 1:1) a
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Fig. 12.16 Structure of the slowest positive amphidromic mode in a .2 � 1/-rectangle and in a
square. In this and the following diagrams, open circles represent a positive amphidromic point,
whilst full circles represent a negative amphidromic system (redrawn from [40]). c� J. Fluid Mech.
Cambridge University Press, reproduced with permission

system of four amphidromic points enters the basin from the boundaries as shown
in Fig. 12.17b. As the rotation increases, these points move towards the centre of
the basin, and the positive wave systems associated with them eventually dominate
over the central negative wave. Even though there are five amphidromic points, the
arrangement is such that the central negative-wave region is surrounded by a sys-
tem of three waves which travel around the boundaries in a positive direction, as
can be seen by careful examination of the co-tidal lines of Fig. 12.17b. As the rota-
tion increases, the inner negative wave region contracts and the amplitude of this
wave decreases. At f=�1 D 1:5 (Fig. 12.17c) the amplitude of the negative wave is
practically zero [: : : ].

The upper parts of Fig. 12.17a–c show the slowest amphidromic mode in a
.2 � 1/-rectangle. In this case, even at the low rotation f=�1 D 0:1, there is one
negative wave system (Fig. 12.17a) at the centre of the basin and two positive
wave systems with amphidromic points located one on either side of the centre
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Fig. 12.18 The slowest positive symmetric mode for a square and a .2 � 1/ – real angle and
f=�1 D 1:0 (redrawn from [40]). c� J. Fluid Mech. Cambridge University Press, reproduced with
permission

of the longitudinal axis. As the rotation is increased (Fig. 12.17b), two more pos-
itive amphidromic systems enter the basin, one on either side of the centre on the
transversal axis, for a value of f=�1 in the range 1:4 < f=�1 < 1:5. Finally, by
f=�1 D 1:75 (Fig. 12.17c) the central negative amphidromic system disappears and
one has three positive waves in the basin with amphidromic points located on the
longitudinal axis” [40].

Next, consider the symmetric modes. In Fig. 12.18, we have displayed the slow-
est positive modes belonging to this family in a square and a .2 � 1/-rectangle for
f=�1 D 1:0. “The system consists of two waves travelling in the positive direction
and the structure remains unchanged with increasing rotation. In the square, both
waves travel around an amphidromic point at the centre of the basin, whereas in the
.2 � 1/-rectangle, each wave has a separate amphidromic point located symmetri-
cally with respect to the centre on the longitudinal axis. At f=�1 D 1:0, Fig. 12.19a
shows that the corresponding negatively propagating modes also consist of two
waves. Just as [for] the first negative anti-symmetric mode, these modes undergo a
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Fig. 12.19 The slowest negative symmetric mode at the rotation speeds f=�1 D 1:0 (a) and
f=�1 D 2:0 (b) (redrawn from [40]). c� J. Fluid Mech. Cambridge University Press, reproduced
with permission

change in structure with increase in rotation: positive amphidromic points external
to the basin gradually move across the boundary into the basin. The situation when
f=�1 D 2:0 is shown in Fig. 12.19b” [40].

The higher modes become very complicated in their structure, so we refrain from
presenting them in any detail here, except to mention that negative amphidromic
systems always appear to be ‘unstable’, that is, to give way to positive amphidromic
systems.

12.6.3 Additional Results

Rao [40] also demonstrated that in long rectangles the determination of the (1, 0)-
amphidromic system by ‘Kelvin-wave dynamics’ is a good approximation to the
exact solution, see Problem 12.1. The surface displacement can be written as shown
in (12.55) with

A.x; y/ �
"

cos2
��x
a

�
C f 2

ghn

�
y � b

2

	2
sin2

��x
a

�#1=2
;

�.x; y/ � arctan

�
f

ghn

�
y � b

2

	
tan
��x
a

��
:

(12.56)
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Fig. 12.20 Amplitude (a) and phase of high water (b) for the slowest longitudinal oscillation
on the boundaries of a .6 � 1/-rectangular basin with rotation speed f=�1 D 1. The solid line
is the exact calculation, the dots are the results of applying the Kelvin-wave hypothesis and the
dashed line is the situation with zero rotation (redrawn from two figures of [40]). c� J. Fluid
Mech. Cambridge University Press, reproduced with permission

Rao [40] plotted the amplitudes and phases of high water along the North and South
boundaries (parallel to the x-axis) of the basin obtained from the exact analysis of
the problem and from the above Kelvin-wave approximation for a .6� 1/-rectangle
with a rotation speed f=�1 D 1:0, see Fig. 12.20. The figure also shows the situation
in the non-rotating case. It provides ample demonstration of the accuracy of the
approximate solution obtained by Kelvin-wave dynamics.

Rao also presented an analysis of the energy partition. In the zero-rotation case,
the total energy is partitioned equally between potential and kinetic energy (i.e. the
integrals of these energy densities over the rectangle and over a time period are
the same. The motion is in this case irrotational. In the rotating case, the kinetic
energy of the motion is resolved into two additive contributions due to irrotational
and rotational motion, and the equipartition property is lost.

Rao also performed laboratory experiments with a rotating square tank of dimen-
sions a D b D 48:69 cm and a water depth H D 0:125 a. Distilled water was
used with an organic tracer of 10�3 concentration added to reduce surface tension.
Rao measured upper and lower bounds for the frequency .!=�/ at rotation speeds
of the tank ˝ D 0; 0:5; 1:0; : : : ; 4:0 rad s�1. The full circles in Fig. 12.20 are the
results for the slowest negative anti-symmetric mode .1; 0/, the slowest positive anti-
symmetric mode .0; 1/ and the slowest positive symmetric mode .1; 1/. Agreement
between the experimental and the theoretical frequency is very good; ‘the maximum
error obtained is 6% for the .1; 0/ mode at ˝ D 4 rad s�1. However, at this speed
of rotation the free surface assumes a very pronounced parabolic shape, and it is not
surprising that results of the planar theory (which ignores the free surface curvature)
do not (in this case) agree well with experimental results’.
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It may, further, be mentioned that the solutions for the gravitational oscil-
lations of a homogeneous fluid in a rectangular basin of constant depth have
been numerically determined by Rao [39] by a method, originally designed by
Proudman [33]. The method is to additively decompose the horizontal transport
vector V into two contributions, V D V � C V  , such that V � D �r� is irro-
tational and V  D h�1k � r , is solenoidal. (Here, k is a unit normal vector
pointing into the z-direction and h D H= NH is the non-dimensional ratio of the
actual depth H and the basin mean depth). Two selfadjoint boundary value prob-
lems for the potential � and the stream function  then define function sets f�˛g
and f ˛g (˛ D 1; 2; : : : ;1) which satisfy the no-flux condition through the bound-
ary, are complete in the set of square integrable functions and can be used to define
expansions for V � , V  and �. The governing equations (12.1) are, finally, used
to derive an infinite system of ordinary differential equations for the three-times-
infinite expansion coefficients, which are only functions of the time. This elegant
integration procedure is in principle applicable to any closed geometry and was
applied by Rao to computationally determine the solutions for rectangular basins of
constant depth. For details see [33, 39, 40] and the Appendix to this chapter.

12.7 A ‘Second-Class’ of Inertial Waves:
‘Inertial Waves Proper’

In the preceding analysis, gravity waves on the rotating Earth were studied as plane
waves in an infinite medium, as bounded waves in a semi-infinite space, in channels
and enclosed basins. The construction of solutions to these waves was attributed to
Sverdrup, Kelvin, Taylor, and Poincaré. Gravity was important in their description.
It entered the equations for a homogeneous fluid via the deformation of the free sur-
face, as the associated water column establishes via gravity the necessary pressure
gradient that drives the oscillations. When applying the rigid lid assumption, this
gravity-induced pressure is absent and these barotropic waves cannot exist.

The loss of existence of these waves when the fluid is confined to a rigid con-
tainer is due to the assumption that the pressure is decomposed into the gravity
dependent quasistatic external contribution plus a dynamic contribution induced
by the internal motion, which is ignored. Another class of long Sverdrup, Kelvin
and Poincaré waves should, therefore, also exist when the rigid lid assumption is
imposed (the container is rigid and completely filled by the fluid of uniform den-
sity), but these internal dynamic pressure gradients are not ignored in the momentum
equations. These waves are also long, but they are considerably shorter than the
gravity waves, with wave lengths of the container dimensions (the depth) or shorter.
In a homogeneous fluid in a basin of constant depth, these waves and oscillations
have been thoroughly studied by Maas [21]. His work also gives an extensive lit-
erature review. These waves are also called ‘inertial waves’, because they are only
driven by the rotation of the container, which, in the application here is vertical
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to the confining container bottom and lid.11 They have a frequency which may be
different from the rotation frequency f . (Note that in Sect. 12.6.3 oscillations were
called inertial when the circular frequency agreed with the inertial frequency.) This
is the reason, why we use the attribute ‘second class’. Maas occasionally uses the
term ‘inertial waves proper’, which is probably more appropriate, since the attribute
‘second class’ is commonly an identifier for Rossby-type vorticity waves. He also
states: ‘Inertial waves proper are often neglected in thin-fluid systems as ocean and
atmosphere because they have small wave lengths, and because of the stratification
of these media. The scale length of inertial waves is the depth-scale of the verti-
cal mode considered, which is therefore small, making the wave more susceptible
to viscous degradation. Relative to this length scale, long waves thus appear only
when their frequencies approach the inertial frequency f . However, for ‘fat bodies’
[20], like the Earth’s core [and] stellar interiors [: : : ] it is natural to consider these
waves over a broader subinertial frequency range’. Suggestions on the oceanic rele-
vance appeared in the literature, so that their occurrence in spectra of current meters
and thermistor registrations for lake measurements is worth being scrutinized. Most
probable is their observation in large and deep ice covered lakes such as Lake Vostok
or Lake Baikal in winter.

Very briefly, solutions for the axial cylinder were found by Kelvin [13]. Bryan [3]
gave the analysis of exact solutions in an axial spheroid to which Rieutord et al. [43]
constructed the toroidal modes, lacking radial displacements. Maas analyzed infinite
and semi-infinite channels of constant width and depth and rectangular boxes, all
with the angular velocity parallel to the edges, see Fig. 12.21.

Fig. 12.21 Geometries for which ‘inertial waves proper’ have been constructed (a) axial cylindri-
cal can or annulus, (b) axial spheroid, (c) infinite layer compressed between two parallel planes,
(d) infinite channel, (e) semi-infinite duct, and (f) rectangular box. In all these cases, the rotation
axis is a geometric symmetry axis. From [21]). c� Fluid Dynamics Research, reproduced with
permission

11 For the geophysical application here the second Coriolis parameter Qf is still ignored. So these
inertial waves are long.
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12.7.1 Governing Equations

Small amplitude waves in a homogeneous fluid that is rotating with angular fre-
quency N̋ about a vertical axis aligned in the Nz-direction (overbars denote dimen-
sional quantities) are governed by the linearized, inviscid equations of motion on an
Nf -plane (where Nf D 2 N̋ )

@Nu
@Nt � Nf Nv D �1N�

@ Np
@ Nx ;

@Nv
@Nt C Nf Nu D �1N�

@ Np
@ Ny ;

@ Nw
@Nt D �1N�

@ Np
@Nt ;

@Nu
@Nt C @Nv

@ Ny C @ Nw
@Nt D 0;

(12.57)

in which the usual notation has been used and N� D const. (Note that in (12.57)3
the hydrostatic assumption cannot be made since no gravity term is present.) In an
infinite medium, the variables .Nu; Nv; Nw/ and Np can be written as mono-chromatic
waves, viz.,

.Nu; Nv; Nw; Np/ D .NNu; NNv; NNw; NNp/exp .�i N! Nt/; (12.58)

leading to equations equivalent to (12.57) with @.�/=@Nt replaced by .�i N!/. If in

these equations all velocity variables are eliminated, the so-called Poincaré equation
[30, 31]

@2 NNp
@ Nx2 C @2 NNp

@ Ny2 �
 Nf 2

N!2 � 1
!
@2 NNp
@Nz2 D 0 (12.59)

for the pressure is obtained. For N!2 < Nf 2 this is a (hyperbolic) wave equation; for
N!2 > Nf 2 it is elliptic instead. Plane waves are of the form

NNp. Nx; Ny; Nz/ D Lp exp .i Nk � Nx/; (12.60)

where the wavenumber vector is Nk OD. Nk; Ǹ; Nn/. With (12.60), (12.59) implies the
dispersion relation

N!
Nf D ˙ Nn

. Nk2 C Nl2 C Nn2/1=2 D ˙ sin �; (12.61)

where � is the angle between Nk and the plane perpendicular to the rotation axis.
For N!2 < Nf 2, these waves are truly plane, not boundary trapped, with particle
displacements which are largest in the interior of the fluid domain, resulting in a
cellular wave pattern [1]. In the terminology of Platzman [29] and Mortimer [26],
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they would be called Sverdrup-waves; however, they were already constructed by
Poincaré [30] and are, therefore, called Poincaré waves by Maas [21].

For a layer with rigid bottom at Nz D � NH and rigid lid at Nz D 0, it is readily
seen that equations (12.57) enforce standing waves in the vertical with Nw D 0 at
Nz D .0;� NH/. Thus, we make the dynamically consistent ansatz

Nw D
1X

nD1

@ N�n
@Nt sin

�
n� Nz

NH
	
;

.Nu; Nv; Np/ D
1X

nD1
.Nun; Nvn; Npn/ cos

�
n� Nz

NH
	
:

(12.62)

Here, the subscript n refers to the nth vertical mode. When substituting (12.62)
into (12.57), it is straightforward to show that the amplitude functions satisfy the
equations

@Nun
@Nt � Nf Nvn D � NHn @

3 N�n
@ Nx@Nt2 ;

@Nvn
@Nt C Nf Nun D � NHn @

3 N�n
@ Ny@Nt2 ;

@ N�n
@Nt C NHn

�
@Nun
@ Nx C @Nvn

@ Ny
	

D 0;

(12.63)

where

NHn WD
NH
n�
; Npn WD N� NHn @

2 N�n
@Nt2 : (12.64)

Formally, these equations agree with (12.1) except that the wave acceleration
NHn@2.�n/=@Nt2 replaces the acceleration Ng.

We now scale (12.63) and (12.64) by introducing the following dimensionless
variables:

.x; y/ D 1

NHn
. Nx; Ny/; .u; v; �/ D 1

NHn
.Nun; Nvn; N�n/; .t; !�1/ D Nf .Nt ; N!�1/:

(12.65)
With these relations (12.63) take the forms

@u

@t
� v C @3�

@t2@x
D 0;

@v

@t
C u C @�

@t2@y
D 0;

@�

@t
C @u

@x
C @v

@y
D 0:

(12.66)
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Differentiation of (12.66)1;2 with respect to t and elimination of u and v, respec-
tively, yields the polarization equations, relating the velocity and elevation fields
via

Lu D @2

@t2

�
@2�

@t@x
C @�

@y

	
;

Lv D @2

@t2

�
@2�

@t@y
� @�

@x

	
;

(12.67)

where

L WD �
�
@2

@t2
C 1

	
: (12.68)

These equations, when combined with (12.66)3, imply the single differential equa-
tion �

1C �
1 � r2

H

� @2

@t2

�
@�

@t
D 0 (12.69)

for the vertical displacement field, where r2
H is the horizontal Laplace operator.

With
.u; v; �/ D .Lu; Lv; L�/exp .�i!t/; (12.70)

Equation (12.69) implies that L� satisfies the Helmholtz equation

.r2
H C 2/ L� D 0; 2 WD 1 � !2

!2
; (12.71)

where !h1 for 2i0. Moreover, with (12.66) and representations (12.70) the spatial
part of the horizontal velocities is given by

Lu D 1

2

 

�i!
@ L�
@x

C @ L�
@y

!

; Lv D 1

2

 

�i!
@ L�
@y

� @ L�
@x

!

: (12.72)

It is noteworthy that these waves exist as plane waves in R2, when they have sub-
inertial frequencies !2 < 1 . N!2 < Nf 2/. For !2 > 1, they are exponentially amp-
lified or evanescent and thus can only exist in bounded regions. We shall now briefly
discuss the various cases.

12.7.2 Plane Inertial Sverdrup (Poincaré) Waves

A vertically standing mode of the form (12.62) may propagate horizontally as a
plane wave of the form

.u; v; �/ D .Ou; Ov; O�/exp Œi.kx C `y � !t/� (12.73)
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with
.Lu; Lv; L�/ D .Ou; Ov; O�/exp Œi.kx C `y/�: (12.74)

Owing to (12.71)2 these waves satisfy the dispersion relation

2 D 1 � !2

!2
D k2 C l2 ! ! D 1p

1C k2 C `2
D 1p

1C 2
: (12.75)

This leads to the following expressions for the phase and group speeds, cph and cgr,
respectively:

cph D !


D 1


p
1C 2

; cgr D d!

d
D � 

.1C 2/3=2
; (12.76)

which shows that phase and group move in opposite directions parallel and anti-
parallel to the wave vector k OD .k; `/. Figure 12.22 displays graphs of the dispersion
relation and the two speeds.

12.7.3 Inertial Kelvin Waves

By definition, Kelvin waves are rotation influenced motions for which the velocity
component in one horizontal spatial direction vanishes. To see whether (12.66) per-
mits such solutions, we assume v.x; y; t/ � 0 but u.x; y; t/ ¤ 0. Then, (12.66)
takes the forms

@u

@t
C @3�

@t2@x
D 0; u C @3�

@t2@y
D 0;

@�

@t
C @u

@x
D 0: (12.77)

From (12.77)1;3 there follows

@

@t
.u � uxx/ D 0: (12.78)

This shows that along-wall velocities u either grow or decay as exp .˙x/ with along
wall distance. The general solution of (12.77) with v � 0 is seen to be

.u; v; �/ D .Lu; 0; L�/exp Œ�x C i.ky � !t/� (12.79)

with
L� D i

!
Lu; (12.80)

the dispersion relation

! D � 1
k

(12.81)
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Fig. 12.22 (a) Dispersion relation for inertial Sverdrup (Poincaré) (solid) and inertial Kelvin
(dashed) waves giving frequency ! vs. wavenumber amplitude . (b) Corresponding phase veloc-
ity .cph/ and group velocity .cgr/ as functions of . For inertial Kelvin waves cph D �cgr (adapted
from [21]). c� Fluid Dynamics Research, reproduced with permission

and the phase, cph, and group, cgr, velocities given by cph D �1=k2 and cgr D
1=k2, respectively, see Fig. 12.22. Hence, energy propagates in a direction opposite
to the phase. Inertial Kelvin waves thus decay in the direction of increasing x, while
propagating their phase in the direction of decreasing y (more generally: the phase
propagates to the right of decreasing wave amplitude (on the Northern hemisphere)).
With reference to Fig. 12.23 this wave is trapped to the boundary at x D 0, and
its energy propagates in the positive y-direction. However, since there are no lines
parallel to the x-axis at which the u-velocity component would vanish, these Kelvin
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Fig. 12.23 In an inertial Kelvin wave with horizontal velocities in the x-direction, this velocity
and the vertical displacements decay in the positive x-direction, whilst the phase propagates in the
negative and the energy in the positive y-direction. The variables u and � are out of phase by �=2

waves do not exist in infinite space per se. They play, however, an essential role
when Poincaré waves are reflected at a channel end.

12.7.4 Inertial Poincaré Waves in a Channel

If we assume the existence of a wall at x D 0 with no through-flux, then u D 0 at
x D 0, implying from (12.67)1

@2�

@t@x
C @�

@y
D 0 at x D 0: (12.82)

A pair of incoming and reflected waves with identical frequency ! and along-wall
wavenumber ` is given by

� D Ziexp Œi.�kx C `y � !t C �/�CZrexp Œi.kx C `y � !t � �/� (12.83)

and needs to satisfy (12.82)1 or

� ! @�
@x

C `� D 0 at x D 0; (12.84)
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implying, in view of (12.83),

Zi .ik! C `/exp .i�/CZr .�ik! C `/exp .�i�/ D 0:

This can also be written as

Zi

Zr
D .k! C i`/

.k! � i`/

exp .�i�/

exp .i�/
: (12.85)

In this expression, the denominator is the complex conjugate of the numerator, say,
r exp .i�/= r exp .�i�/ D exp .2i�/ for some amplitude r and angle � . This also
shows that the reflected wave has the same amplitude as the incoming wave, so
we may set Zi D Zr D Z=2. The two waves only suffer a phase shift. With
Zi=Zr D 1, (12.85) implies

exp .�2i�/ D k! � i`

k! C i`
) tan � D `

k!
: (12.86)

Moreover, perpendicular to the wall the resulting wave is standing; we may thus
rewrite (12.83) as

� D Z cos.kx � �/exp Œi.`y � !t/�

D Zfcos.kx/ cos� C sin.kx/ sin �gexp Œi.`y � !t/�

D Z cos�
„ ƒ‚ …

Z

fcos.kx/C `

k!
sin kxgexp Œi.`y � !t/� (12.87)

with the newly defined amplitude Z D Z cos�. With the form (12.87) of the ver-
tical displacement function, (12.72)1 can be used to compute the cross-wall and
along-channel velocity components. This straightforward computation yields for the
cross-wall velocity component

u D ikZ !3

1 � !2

 

1C
�
`

!k

	2!

sin kx exp Œi.`y � !t/� (12.88)

and for the along-channel velocity component

v D Z
�

�`! coskx C 1

k
sin kx

	
exp Œi.`y � !t/�: (12.89)

It is evident from (12.88) that the cross-wall wavenumber k can be quantized when
a second wall is erected at x D L. Then

k 2
n
km D m�

L
; m D 1; 2; 3; : : :

o
: (12.90)
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Fig. 12.24 Top view of one wave length segment of a channel which is infinitely long in the y-
direction and of dimensionless width L D 4 in x-direction. It shows phase (solid) and amplitude
(dashed) lines of the vertical displacement field of a pair of equal amplitude, mode-1, up and
down channel propagating Poincaré modes of frequency ! D 0:7. Amplitudes are maximal at the
saddle nodes of phase lines, located on the channel axis, at 1=4 and 3=4 wave length. The rotation
axis, designated ˝, points out of the paper (redrawn from [21]). c� Fluid Dynamics Research,
reproduced with permission

So, inertial Poincaré waves exist in infinitely long channels as isolated countable
infinite modes.

The up- and down-channel solutions (12.87)–(12.90) of inertial Poincaré
waves develop amphidromic structures similar to gravity driven Poincaré waves.
Figure 12.24 shows this amphidromic system for such a mode-1 quasi-standing
wave as constructed by Maas [21]. The mode structure is characterized by phase
lines circling anti-cyclonically (i.e. clockwise) around nodal points where vertical
elevation vanishes. According to Maas ‘such phase pattern was first suggested long
ago by Whewell [47] to comprehensively describe observed tidal elevation patterns,
see [4]’.

12.7.5 Inertial Poincaré Channel Waves Reflecting
from a Vertical Wall

Recall that classical gravity (externally) driven Kelvin waves can be combined by
equal-amplitude forward and backward moving propagating Kelvin waves with the
same frequency to form quasi-standing Kelvin waves in an infinite channel. Per se,
these could not form a solution in a channel bounded from one side, because the
no-flux condition through such an (imaginary) wall could not be satisfied. To achieve
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such a no-flux condition through the end-wall, an infinite number of backward
moving (reflected) Poincaré waves with the same frequency had to be added and
adequately combined. This was Taylor’s solution [45].

Such a solution cannot be found with inertial Kelvin waves. However, an inertial
Poincaré wave entering a channel can be combined with a trapped inertial Kelvin
wave and an infinite number of backward moving inertial Poincaré channel waves.
Let us assume that the wave propagates in the y-direction and the across-channel
wavenumber is km D m�=L. Then, the along-channel wavenumber `m can be
deduced from (12.71)2 to yield

`m D ˙
�
1

!2
� .1C k2m/

	1=2
D ˙

�
1

!2
� 1

!2m

	1=2
; (12.91)

where
!m WD .1C k2m/

�1=2 < 1 (12.92)

is the cut-off frequency. For j ! j<j !m j, `m is real and inertial Poincaré waves
exist as propagating waves; for j ! j>j !m j, they are exponentially evanescent or
growing.

Consider a reflection at y D 0 for a mode-1 (m D 1) Poincaré wave approaching
the wall at y D 0 from positions with y > 0. The total along channel velocity is
thus composed of an incoming Poincaré wave (of given amplitude, here chosen to
be unity, (12.89), Z D 1) and having along channel wavenumber C`1,

vin
Poincaré.x; y; t/ D f�`1! cosk1x C 1

k1
sin k1xg � exp .i`1y/; (12.93)

plus a trapped inertial Kelvin wave ((12.79), but in the y-direction)

vtrapped
Kelvin .x; y; t/ D v0exp

�
�y C i

!
x

	
; (12.94)

plus an infinite sum of reflected inertial Poincaré waves, again of the form (12.89),
but with a negative sign of the along-channel wavenumber

vout
Poincaré.x; y; t/ D

1X

mD1
vmf`m! cos kmxC 1

km
sin kmxg�exp .�i`my/: (12.95)

In (12.93)–(12.95), a common exponential factor exp .�i! t/ has been dropped.
The unknown complex valued amplitudes v0; v1; v2; : : : follow from the no-flux
condition at y D 0

vin
Poincaré.x; 0/C vtrapped

Kelvin .x; 0/C vout
Poincaré.x; 0/

D
��

�`1! cosk1x C 1

k1
sin k1x

	
exp .i`1y/C v0exp

�
�y C ix

!
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C
1X

mD1
vm

�
`m! cos kmx C 1

km
sin kmx

�
exp .�i`my/

�

yD0

D �`1! cosk1x C 1

k1
sin k1x C v0exp

�
ix

!

	

C
1X

mD1
vm

�
`m! cos kmx C 1

km
sin kmx

�
D 0: (12.96)

Note that the inertial Poincaré waves with mode numbers m > 1 are all trapped
(exponentially evanescent for y > 0). So, we define

`m D �i

�
1

!2m
� 1

!2

	1=2
D �ism .sm > 1/: (12.97)

Equation (12.96) has been solved by Maas [21] using the collocation method. In
this method, the infinite sum is truncated at M � 1. Writing (12.96) then for M
different values of x 2 Œ0; L� yields a linear system of equations for the ampli-
tudes v0; v1; v2; : : : ; v.M�1/. Figure 12.25 is based on a solution constructed with
M D 21. It shows in panel (a) the amplitude (dashed) and phase (solid) of the ver-
tical displacement field �. The phase propagates in the clockwise direction, whilst
the energy does so in the anti-clockwise direction. Panel (b) in Fig. 12.25 shows
corresponding horizontal velocity ellipses at a number of positions. These are tra-
versed in the clockwise direction, and are very thin and along the channel sides at the
boundaries, so that the velocity component perpendicular to the boundary vanishes.

12.7.6 Inertial Waves in Rectangular Basin of Constant Depth

Inertial waves also exist in fully enclosed basins as has been demonstrated by Maas
[21] for rectangles by using the spectral method of Proudman [33] and Rao [40] (see
Appendix to this chapter). This solution method uses a Helmholtz decomposition of
the velocity field v D v� C v with v� D �r �, v D Ok � r  , where Ok is a unit
vector aligned with the rotation axis. The no-flux condition at the boundary with
unit normal vector n is then transformed to the statements

.grad�/ � n D 0;  D 0 along @D: (12.98)

The velocity potential �, the stream function  and the elevation field � are then
represented as

.�;  ; �/ D
X

˛

.p˛�˛; q˛ ˛ ; r˛�˛/ (12.99)

in terms of complete function sets f�˛g, f ˛g (with �˛ / �˛), where ˛ is a
binary index (˛ D .k; `/ for the .k; `/-mode). These functions follow from suitably
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Fig. 12.25 Top view of (a) phase (solid) and amplitude (dashed) of the vertical displacement field
of a mode-1, down-channel propagating inertial Poincaré mode of frequency ! D 0:7 in a channel
of dimensionless width L D 4, reflecting from a vertical wall at y D 0. During reflection inertial
Kelvin and inertial Poincaré waves are excited, that are trapped in the y-direction. Phase lines are
given every 30ı which rotate anti-cyclonically around the amphidromes at the central axis (the
rotation axis, ˝, is out of the paper; (b) horizontal current ellipses once traversed clockwise for
! > 0 during one period (redrawn from [21]). c� Fluid Dynamics Research, reproduced with
permission

chosen selfadjoint elliptic eigenvalue problems, adjusted to the geometry of the fluid
domain but not related to the dynamical equations except the flux condition through
the boundary. The coefficients p˛; q˛; r˛ are functions of time only. By substitut-
ing the representations (12.99) into the dynamical equations (here (12.106) and
(12.107) in the Appendix) then yields a system of ordinary differential equations
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for them. Some details of this method are presented in the Appendix to this chapter.
This method of integration seems to be economical only for simple geometries.
Proudman [33] suggested it and used it for the axial cylinder of uniform and
parabolic depth shape, Rao [40] used the method to retrieve and extend Taylor’s
[45] results for rotational gravity waves in rectangles, and Maas [21] applied it to
oscillations of ‘inertial waves proper’ in the rectangle. For the difficult particulars
of the application of the method to rectangles we refer to Rao [40] and Maas [21].

In what follows, we shall only present the elevation and velocity fields of the
first three modes in a rectangle of dimensionless size 2� � � . Maas needed 91
Fourier modes (˛ D 1; 2; 3; : : : ; 91) to obtain five digits accuracy in the elevation
and velocity fields. He writes [21]:

“When a vertical mode is picked, say n D 1, and the basin is scaled with the
corresponding vertical scale, the eigenfrequencies are determined, and the corre-
sponding elevation amplitude and velocity fields can be plotted. (Note that the actual
vertical elevation is depth dependent, due to the vertical mode dependence, as in
(12.62)1.) Counting from the top-down, the first three modes are shown in Fig. 12.26
in a rectangular horizontal cross-section of the 2 � � � rectangular parallelepiped.
Modes 1 and 3 have antisymmetric elevation (left) and symmetric velocity fields
(right), and vice versa for mode 2. The pictures present the following information.
In the elevation field � (at the left), colouring and dashed lines represent eleva-
tion amplitudes. Deep blue corresponds with zero elevation, red with maximum
amplitudes. Phase lines (every 30ı) are solid. They end in nodal (zero elevation)
points and show that phase is circling around the amphidromes in either clockwise
or anti-clockwise direction. All amphidromes on the middle axis .y D �=2/ are
traversed in a clockwise sense, all others (close to y D 0 and �) in anti-clockwise
sense. Orthogonal crossings of phase lines (as, e.g. in the centre of the rectangle
for mode 2) imply equal phases on all four branches, implying that the whole real
central region of mode 2 rises and sinks in unison. Anti-symmetry of the elevation
field of, e.g. mode-1 is evident from a 180ı phase change between mirror images
about the centre point.

The velocity field .u; v/ (at the right side of Fig. 12.26) contains, in principle,
four independent parameters. Each component has an amplitude and a phase. At
each individual location these can be represented in terms of a velocity ellipse, as
e.g. in [45], expressed in terms of four other parameters: maximum amplitude, umax,
ellipticity umin=umax, orientation of the main axis, � and phase (with respect to this
local orientation˚) [32]. The ellipticity varies between �1 (circular clockwise, deep
blue) and C1 (circular anti-clockwise, red), whilst it represents rectilinear motion
when it is zero (green). The green colour at the boundary tells that the velocity is
rectilinear there. Separate consideration of the inclination shows the velocity vector
to be everywhere parallel to the sides. Maximum velocity umax is represented by
dashed lines”.

Further discussions, including results concerning the frequency properties and
the first four modes of a .� � �/-square are given by Maas [21].
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(n/v)ζ

Fig. 12.26 Top view of elevation (left) and horizontal velocity (right) fields of a 2� �� rectangle
for mode 1, ! 	 0:657 (top); mode 2, ! 	 0:564 (middle); and mode 3, ! 	 0:477 (bottom). The
rotation vector points out of the paper towards the reader; the tank thus moves anti-clockwise. For
further explanation, see main text. Redrawn from [21]. c� Fluid Dynamics Research, reproduced
with permission

12.7.7 Discussion

In this section, inertial waves – better called ‘inertial waves proper’ or ‘second class
inertial waves’ – were discussed, which are not supported by gravity but, apart from
Coriolis effects, by dynamical pressure. Equations which are rather similar to the
long wave equations, are obtained for each of the vertical modes that exist in a fluid
layer having top and bottom perpendicular to the rotation axis. Acceleration due
to gravity is replaced here by vertical acceleration in the wave field. The resulting
horizontal problem was solved in the unbounded domain, in the infinite and semi-
infinite channel and in rectangular basins.

Waves in the infinite plane are sub-inertial and known as inertial Sverdrup (or,
according to a different nomenclature, Poincaré) waves. With one vertical bound-
ary, along a straight line in the .x; y/-plane two plane waves can be combined into
an inertial Poincaré wave whose velocity component normal to this wall vanishes.
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This velocity component then vanishes also at an infinite number of other positions
parallel to this wall, so that an additional wall can be placed at such a position, thus
forming a channel. Inertial Kelvin waves have also been found as solutions having
vanishing velocity component in one spatial direction. These waves then propagate
the phase (energy) in a direction which is 90ı to the right (to the left on the South-
ern hemisphere) of the direction of non-zero horizontal velocity (see Fig. 12.23),
and this velocity as well as the corresponding particle motion decay exponentially
with the velocity, making it incompatible with the existence of a solid boundary. So,
free inertial Kelvin-waves proper do not exist.

The reflection of a channel inertial Poincaré wave from the end wall requires
mathematically the addition of a trapped inertial Kelvin wave proper and an infi-
nite number of reflected inertial Poincaré waves proper to achieve zero flux of fluid
through the end wall. This implies that the inertial wave system in an enclosed
rectangle consists of an additive combination of an infinite set of channel inertial
Poincaré waves proper together with two inertial Kelvin waves proper, but we have
expressed it as a combination of two intertwined infinite sets of spatial Fourier
modes.

Maas [21], in his closing statements, mentions that ‘the existence of (linear) wave
solutions does not guarantee their stability’. He quotes for the axial can a proof of
instability of inertial waves to short wavelength perturbations of oblique orientation
[19] and muses that such instability results may extend also to rectangles.

The presentation of these waves in this book has been given, because under
unusual circumstances it may not be unlikely that inertial waves proper may be
observable in the field. This is likely the case in fully ice covered lakes under homo-
geneous conditions, when gravity driven motions in the water beneath the ice are
considerably damped out, or non-existent at all. In those circumstances, also turbu-
lent pulsations are effectively damped out. So, if inertial waves proper are excited,
then they should be best observable in ice covered lakes. Of course, with wind
forces being essentially absent, earthquakes then are the only remaining substantial
triggering mechanisms of these waves. These give rise to a temporal Dirac-type dis-
placement field of the solid boundary, which dies quickly out to zero. The induced
motion in the aftermath of the earthquake within the lake region may then establish
a resonant response of basin scale inertial waves proper.

Moreover, according to Maas [21], ‘there seems to be no intrinsic reason to
neglect these waves completely, despite their small-scale (order of the water depth)
and to enforce solutions by the hydrostatic approximation. Krauss [15] observes
that the hydrostatic approximation has been made ever since Laplace, but that a real
motivation (except for the tautological statement that it applies to waves that are
long compared with the water depth) is absent. Indeed, for this reason the approxi-
mation has been criticized by Solberg [44] when looking into these inertial ‘cellular’
waves, [: : : ]. The failure of Laplace’s Tidal Equations to even adequately model
long surface waves in the presence of topographic variations was addressed by
Chapman [5] and Chapman and Hendershott [6]’.
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12.8 Concluding Discussion

In this chapter, the analysis of linear waves in a Boussinesq fluid on a perma-
nently rotating frame was continued by studying such waves in semi-bounded and
bounded basins of constant depth. By excluding depth variations, Rossby waves
on the f -plane are automatically excluded. The goal of the chapter was twofold:
(1) to construct gravity wave solutions of the linearized shallow water equations
when the rotation of the Earth is included and (2) to present solutions for ‘inertial
waves proper’ for barotropic fluids in domains with rigid boundaries. Concerning
(1), this led to propagating and quasi-standing Kelvin and Poincaré waves in chan-
nels of constant width and constant depth. The impossibility of the existence of pure
Kelvin and Poincaré waves in a semi-infinite gulf of a long rectangular basin led to
Taylor’s reflection problem, which showed that a pair of quasi-standing Kelvin
waves had to be complemented by an infinite number of Poincaré waves with the
same frequency and wavelengths of an integer fraction of the channel width in order
to match the zero velocity condition across the channel width. If all the amplitudes
of these infinite Poincaré waves are exponentially evanescent in the distance variable
along the channel axis, then far from the gulf wall only the standing Kelvin wave
survives and the reflection is called complete. Else, the quasi-standing Kelvin wave
at large distances from the gulf wall is hidden in the ‘noise’ of the non-evanescent
Poincaré waves; in this case, the reflection is called incomplete. Figure 12.13 shows
in its eight panels a transition from complete to noisy incomplete reflection.

A quasi-standing oscillation of gravity waves in a rectangular basin of constant
depth can be constructed by a superposition of a pair of standing Kelvin waves
with two infinite numbers of propagating Poincaré waves with the same frequency,
which move away from the respective walls. Identifying complete and incomplete
reflection is only possible in oblong rectangles, because close to the bounding walls
of the rectangle Kelvin and Poincaré activities are comparable.

It has, therefore, been desirable to employ a different solution technique for the
seiche motion in (compact) rectangular basins of constant depth. This problem has
a long history, starting with Lord Rayleigh at the beginning of the twentieth century
and culminating with Rao’s Ph.D dissertation in 1965. A historical account based
on his work has been given in Sect. 12.6.1. The crucial idea, which allowed evalua-
tion of the frequency relation with the least approximations (among the many) was
the solution procedure proposed by Proudman in 1916, which is illustrated in the
Appendix to this chapter. In essence, by using Helmholtz’s theorem of additively
decomposing a vector function into an irrotational and a solenoidal part, selfad-
joint eigenvalue problems could be formulated, which Rao solved numerically by
electronic computation. He also compared his frequency relation for a .1 � 1/ and
a .1 � 2/ rectangle with experiments and demonstrated excellent agreement with
the corresponding results obtained with a .1 � 1/ and a .1 � 2/ rectangle filled
with a homogeneous fluid placed on a rotating table. His figures on the structure
of amphidromies for various modes at varied rotation speeds demonstrate the com-
plexities which seiches in a simple rectangle can take, certainly hardly predictable
without a computational analysis.
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The above analysis was conducted for linear gravity waves, i.e. waves which only
exist when gravity is operating. In the mathematical approximation dealt with in this
case, the pressure is purely hydrostatic. This means, in a homogeneous water mass,
in which none of the surfaces bounding the water mass move (rigid lid), and no
wind shear applies, the hydrostatic pressure drops out of the governing equations;
the emerging gravity-free shallow water equations have only the zero solution. This
is too restrictive; indeed, non-vanishing solutions of the shallow water equations
can be reconstructed by adding the dynamical pressure gradients, see (12.57). Wave
solutions of these equations are of another class and have been coined ‘inertial waves
proper’. They may be excited, e.g. in ice covered large lakes. Such waves have so far
only been analyzed for simple geometries (see Fig. 12.21). Our presentation follows
Maas [21], who constructed solutions for infinite channels and a homogeneous fluid
in a rectangular box.

Plane inertial Sverdrup, inertial Kelvin and Poincaré waves do exist but exhibit
physical behaviour which differs considerably from that of the corresponding grav-
ity waves. Phase and group speeds of inertial Sverdrup and Kelvin waves propa-
gate in different directions, see Fig. 12.23. Inertial quasi-standing Poincaré waves
develop amphidromic systems similar to those of the classical standing Poincaré.
Reflection of an inertial Kelvin wave at the end wall of a semi-infinite gulf does not
exist; however, an incoming inertial Poincaré wave can be combined with a trapped
Kelvin wave and an infinite number of outgoing Poincaré waves. So, inertial waves
in rectangular basins of constant depth must also exist, and have indeed been con-
structed by Maas [21] using the Proudman–Rao decomposition technique explained
in the Appendix to this chapter.

These wave types have not been applied to real ice covered lakes yet but indicate
some promising potential of identification, say in Lake Baikal and Lake Vostok, etc.

12.9 Appendix: Solution Scheme of Proudman–Rao
to Solve (12.1)

Proudman [33] suggested an elegant method to solve the equations describing the
free linear oscillations of homogeneous water in an enclosed basin with variable
depth and no inflow or outflow along the shore. It is assumed that the tidal motion
takes place in a basin D completely enclosed by a rigid boundary, @D, at which the
no-through flow condition applies. The boundary value problem is given by (12.1) or

@�

@t
C r � v D 0;

@v
@t

C f Ok � v D �gr�;
.x; y/ 2 D (12.100)

subject to the boundary conditions

Hv � N D 0: .x; y/ 2 @D: (12.101)
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Here, all variables have their physical dimensions; furthermore, v; � are functions
of x; y; t ; Ok is a unit vector pointing in the Cz-direction, g is the gravity constant,
H.x; y/ the depth function and N is a unit vector in the .x; y/-plane perpendicular
to the boundary @D. It is further assumed that the region D is simply connected.

According to Helmholtz’s theorem, the vector field v can be additively decom-
posed into two contributions, v D v� C v , such that

1. The kinetic energy is partitioned according to K D K˚ CK ,

1

2
�

Z

D

v � vHdA

„ ƒ‚ …
K

D 1

2
�

Z

D

v� � v�HdA

„ ƒ‚ …
K�

C 1

2
�

Z

D

v � v HdA

„ ƒ‚ …
K 

; (12.102)

where dA is the increment of the surface area and �; have the meaning of a
velocity potential and a stream function, respectively.

2. v� and v are given by the relations

v� D �r�; v D h�1 Ok � r ; (12.103)

where h D H= NH is the non-dimensional ratio of the actual depth H.x; y/ and
the basin mean depth NH D 1

A

R

D
H.x; y/dA.

3. At the boundary, the no-flux conditions imply the following Neumann and
Dirichlet conditions

h
@�

@N
D hr� � N D 0;  D 0 .x; y/ 2 @D; (12.104)

where @.�/=@N is the derivative normal to the boundary.
4. v� and v are determined as functions of v by constructing from (12.103) the

following inhomogeneous elliptic equations:

r � .hr�/ D �r � .hv�/
ŠD �r � .hv/;

r � .h�1r / D �r � . Ok � v /
ŠD �r � . Ok � v/:

(12.105)

(The expressions on the far right hold, since (12.103) implies r � .hv / � 0 and
r � . Ok � v�/ � 0, as can easily be proved).

5. Since v is unknown, the inhomogeneous equations (12.105) are not very helpful
in that form. However, since v must satisfy (12.100) and (12.101), the procedure
is to convert (12.105) into dynamical equations on � and  , and, having deter-
mined � and  in this way, to reconstruct v by means of (12.103). To this end,
we represent � and  in terms of the spectral functions of the following elliptic
boundary value problems:
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�r � .hr�˛/ D 
˛�˛; .x; y/ 2 D;

h
@�˛

@N
D 0; .x; y/ 2 @D;

9
>=

>;
(12.106)

�r � .h�1r ˛/ D �˛ ˛; .x; y/ 2 D;
h�1 ˛ D 0; .x; y/ 2 @D

)

(12.107)

Here, ˛ is a counting index, ˛ D 1; 2; : : : ;1, and 
˛; �˛ are eigenvalues of
the Neumann problem (12.106) and the Dirichlet problem (12.107) respectively.
Note that the eigenvalue problems (12.106) and (12.107) do not involve the time
and are defined once the basin geometry is prescribed.

6. Along with the functions �˛ and  ˛ we may also define the functions

v�˛ WD �r�˛ ; v ˛ WD h�1 Ok � r ˛ ; (12.108)

provided the functions �˛ and ˛ are uniquely defined by (12.106) and (12.107).

It is not difficult to show that the problems (12.106) and (12.107) are selfadjoint.
Therefore, the eigenvalues are real, the spectra are discrete and the eigenfunctions
internally12 orthogonal and can be normalized; moreover, �˛ and  ˛ are square
integrable. To prove orthogonality, we multiply (12.106)1 with �ˇ and integrate
over D. This yields

�
Z

D

Œr � .hr�˛/��ˇdA

D �
Z

D

r � .hr�˛�ˇ /dAC
Z

D

hr�˛ � r�ˇdA

D �
Z

@D

�ˇ hr�˛ �N
„ ƒ‚ …
D0

d.A/C
Z

D

hr�˛ � r�ˇdA

D 
˛

Z

D
�˛�ˇdA:

(12.109)

Here, the divergence theorem has been applied. Hence,Z

D

hr�˛ � r�ˇdA D 
˛

Z

D

�˛�ˇdA (12.110)

and by interchanging the roles of ˛ and ˇ

Z

D

hr�ˇ � r�˛dA D 
ˇ

Z

D

�ˇ�˛dA (12.111)

12 This means that any two functions �˛; �ˇ or  ˛;  ˇ are orthogonal but not �˛ with  ˇ .
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Subtracting (12.111) from (12.110) yields

0 D .
˛ � 
ˇ /

Z

D

�˛�ˇdA 8 ˛; ˇ: (12.112)

For different eigenvalues, 
˛ ¤ 
ˇ , if ˛ ¤ ˇ, this implies
R
D �˛�ˇdA D 0 proving

orthogonality of the function set f�˛g. An analogous proof can also be established
for the functions f ˛g. The analogous relation to (12.110) is

Z

D

h�1r ˛ � r ˇdA D
Z

D

h�1. Ok � r ˛/ � . Ok � r ˇ /dA

D �˛

Z

D

 ˛ ˇdA:
(12.113)

Writing this for ˛ and ˇ interchanged, we conclude as above, if �˛ ¤ �ˇ , ˛ ¤ ˇ,
that

R
D
 ˛ ˇdA D 0, proving orthogonality of the function set f ˛g. Alternatively,

relations (12.111) and (12.113), combined with (12.108), yield

Z

D
hv�˛ � v�

ˇ
dA D 
˛

Z

D
�˛�ˇdA D c2Aı˛ˇ ;

Z

D

hv ˛ � v 
ˇ
dA D �˛

Z

D

 ˛ ˇdA D c2Aı˛ˇ ;
(12.114)

in which c2 D g NH , A is the area of D and ı˛ˇ D 1, if ˛ D ˇ and ı˛ˇ D 0, if
˛ ¤ ˇ. The expressions on the far right of (12.114) are the normalization conditions
for the functions �˛,  ˛ or v�˛ , v ˛ , ˛ D 1; 2; : : : ;1. Note that the construc-
tion of the function sets f�˛g, f ˛g or fv�˛g, fv ˛ g is all based on the solution of
the time-independent self-adjoint boundary value problems (12.106) and (12.107);
thus, these functions can be determined prior to the solution of the dynamical prob-
lem (12.100) and (12.101). In a first step towards that purpose, we now proceed to
express v� , v in terms of fv�˛g, fv ˛ g. Using the ansatz

.v� ; v / D
1X

˛D1
.p˛v�˛ ; q˛v ˛ / (12.115)

it is easily shown with the aid of (12.114) that

p˛ D 1

c2A

Z

D

hv�˛ � v�dA
ŠD 1

c2A

Z

D

hv�˛ � vdA;

q˛ D 1

c2A

Z

D

hv ˛ � v dA
ŠD 1

c2A
D
Z

D

hv ˛ � vdA:
(12.116)
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We remark that p˛ and q˛ are time dependent, since v� and v are time dependent.
Having obtained orthogonal bases for v� and v , we must now establish a basis

for the height field �. It follows from the mass balance equation (12.100)1 that �
can be expressed in terms of f�˛g alone, since the functions v ˛ are solenoidal.
Therefore, we write

�˛ D 	˛�˛ (12.117)

and determine the normalization by the condition that

Z

D

�˛�ˇdA

„ ƒ‚ …
NH2Aı˛ˇ

D 	˛	ˇ

Z

D

�˛�ˇdA
.12:114/1D 	˛	ˇc

2A
�1˛ ı˛ˇ ; (12.118)

where the choice NH 2Aı˛ˇ for the integration of the left-hand side is based only on
reasons of dimensionality. This implies

	˛ D NH
p

˛c
�1; �˛ D NH

p

˛c
�1�˛ ; (12.119)

Z

D

�˛�ˇdA D NH 2Aı˛ˇ : (12.120)

With this normalization the expansion

� D
1X

˛D1
r˛�˛ (12.121)

and relation (12.120) imply

r˛ � 1

NH 2A

Z

D

�˛�dA; (12.122)

which is dimensionless.
Associated with the expansions (12.115) and (12.120) are the so-called Parceval

relations
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� NH

Z

D
hv� � v�dA

D 1

2
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D 1

2
� NH

X

˛;ˇ

p˛pˇ

Z

D

hv�˛ � v�
ˇ
dA

„ ƒ‚ …
c2Aı˛ˇ .12:114/1

D 1

2

�
� NHA�
„ ƒ‚ …
M

c2
X

˛

p2˛ D 1

2
Mc2

X
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p2˛; (12.123)
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c2

X

˛

r2˛ D 1

2
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X

˛

r2˛ : (12.125)

Here, K� and K are the kinetic energies of the irrotational and solenoidal motion
fields and P is the (gravitational) potential energy. Evidently,

K� CK C P D 1

2
Mc2

X

˛

�
p2˛ C q2˛ C r2˛

�
(12.126)

is the total energy.
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Having established spectral representations of v and � in terms of p˛, q˛ , and
r˛ (˛ D 1; 2; : : : ;1), we must now explore (12.100) to find a system of ordinary
differential equations for these coefficients. First, we differentiate p˛; q˛ as given
in (12.116) and r˛ in (12.122) with respect to time. Since the limits of integrations
(the basin boundaries) are assumed independent of time, and since the characteristic
functions v�˛ , v ˛ , �˛ are also time independent, the result of this differentiation is
merely to introduce @v=@t in place of v in (12.116) and @�=@t in place of � in
(12.122):

dp˛
dt

D 1

c2A

Z

D

hv�˛ � @v
@t

dA;

dq˛
dt

D 1

c2A

Z

D

hv ˛ � @v
@t

dA; (12.127)

dr˛
d

D 1

NH 2A

Z

D
�˛
@�

@t
dA:

In these relations, @v=@ t , @�=@t are next eliminated with the aid of (12.100). In
doing this and making use of (12.106)–(12.108), (12.115), (12.116), and (12.119)2,
the resulting equations can be put into the form

dp˛
dt

D �˛
d 2r˛

dt
C f

X

ˇ

�
a˛ˇpˇ C b˛ˇqˇ

�
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dq˛
dt
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X

ˇ

0
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0

qˇ

1

C
A;

dr˛
dt

D ��˛p˛;

9
>>>>>>>>>=

>>>>>>>>>;

(12.128)

in which the constant coefficients �˛; a˛ˇ ; : : : ; d˛ˇ are defined as

�˛ WD
p
c2
˛;

a˛ˇ WD hv�˛ ;�Ok � v�
ˇ

i; b˛ˇ WD hv�˛ ;�Ok � v 
ˇ

i;
c˛ˇ WD hv ˛ ;�Ok � v�

ˇ
i; d˛ˇ WD hv ˛ ;�Ok � v 

ˇ
i;

9
>>>=

>>>;

(12.129)

where the inner product hf; gi is defined as

hf; gi WD 1

c2A

Z

D

hf � gdA: (12.130)
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Note that the coupling coefficients depend only on the basin geometry and the
functions �˛ ;  ˛ which are also known, if the geometry is prescribed. Moreover,
it follows from the definitions (12.129), (12.130) that

a˛ˇ D �aˇ˛ ; b˛ˇ D �cˇ˛ ; d˛ˇ D 0: (12.131)

It is apparent from (12.128) that �˛ is the frequency of the normal modes in the zero-
rotation case .f D 0/. Rotation introduces a coupling between the p˛’s and q˛’s so
that, when f ¤ 0, the normal modes can only be built through linear combinations
of p˛; q˛ ; r˛. This spectral-type solution method is due to Proudman [33].

The ordinary differential equations (12.128) are homogeneous and linear with
constant coefficients. They can, in principle, be solved by assuming solutions of the
form

.p˛; q˛; r˛/ D . Lp˛; Lq˛; Lr˛/exp .�i!t/ (12.132)

and truncating the number of characteristic functions at ˛ D Mp C Mq C M� .
Substituting (12.132) into (12.128) yields a matrix equation of the form

M˛ˇ .!/xˇ D 0 ˛; ˇ D 1; 2;Mp CMq CM� ; (12.133)

with a frequency dependent square matrix M of dimension .Mp C Mq C M� / �
.Mp CMq CM� / and vector x, collecting all amplitudes . Lp˛; Lq˛ ; Lr˛/. Admissible
values of ! then follow from the solvability condition

det M.!/ D 0: (12.134)

This is essentially the procedure that was taken by Proudman [33] to determine the
eigenfrequencies of the gravity induced rotational modes in a cylindrical basin with
constant and parabolic bottom. Rao [40] employed it to find the oscillations of the
fluid in a rotating rectangle of constant depth and free surface, whilst Maas [21] did
the same for the inertial waves proper. The corresponding computations are not easy
and still rather involved. The reader is asked to consult the literature.

The method is ideally suited to lake geometries and bathymetries of regular
shape. In principle, however, it is applicable to any given basic geometry. Each lake
then will give rise to its own function sets f�˛g and f ˛g. These can be determined
once and for all. When this is done, the solution procedure is to solve a system of
ordinary differential equations in time. To our knowledge this has so far not been
tried with real lakes.
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Chapter 13
Basin-Scale Gravity Waves in Circular
and Elliptical Containers on the Rotating Earth

13.1 Motivation

We have learned so far that the oscillations in an incompressible fluid with free
surface in a rotating container can arise as vorticity waves and as gravity waves.
The former exist only because of the rotation of the container, the latter are ‘mod-
ulated’ by the rotation. On the f -plane, vorticity waves require depth variations to
exist, whilst gravity dominated waves are driven by the deformation of the domain
boundary, i.e. the deformation of the free surface and the pressure variations induced
thereby as well as by the density variations throughout the fluid. Using the linearized
equations of motion in the adiabatic and hydrostatic approximations for a Boussi-
nesq fluid, it was shown in Chap. 11 that boundary affected gravity waves existed in
straight channels with vertical side walls and constant depth as so-called Kelvin and
Poincaré waves.

Kelvin waves have an unidirectional horizontal velocity field parallel to the
straight side walls with maximum amplitudes at the side walls which are expo-
nentially decaying away from them perpendicular and to the left of the propagating
direction in the Northern hemisphere (N.H.). Combined as forward and backward
moving monochromatic waves they form quasi-standing Kelvin waves whose sur-
face or pycnocline elevations rotate counter-clockwise (on the N.H.) around the
amphidromic point – the point with zero pycnocline displacement amplitude for
all time. However, a combination of monochromatic Kelvin waves with fixed nodal
lines of vanishing longitudinal velocity for all time does not exist.

For Poincaré waves the horizontal velocity field is bi-directional i.e. with com-
ponents parallel and perpendicular to the channel axis and vanishing transverse
velocity component at the side walls. Inside the channel, the horizontal velocity
vector rotates at any fixed point with elliptical trajectory that is traversed in the
clockwise direction on the N.H. Two monochromatic Poincaré waves, propagat-
ing forward and backward in the channel, combine to a quasi-standing Poincaré
wave. Similar to Kelvin waves, such quasi-standing Poincaré waves possess no
transverse nodal lines where longitudinal velocities would vanish for all time. They,
therefore, only exist in infinitely long channels, as do quasi-standing Kelvin waves;

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_13, c� Springer-Verlag Berlin Heidelberg 2011
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however, unlike Kelvin waves, the wave activity of Poincaré waves is generally in
the off-shore regions of the channel.

We have seen also that a boundary affected wave in a rectangular basin of con-
stant depth is always a combination of a Kelvin wave plus a countable infinite
number of Poincaré waves with the same frequency. If the frequency is sufficiently
small (i.e. sub-inertial), then the Poincaré waves are of appreciable influence only
close to the long ends of the rectangle, but become exponentially small as one moves
inside the basin. In this case, one speaks of complete reflection. The appearance
of the mode structure is Kelvin-like with progression of interfaces (free surface,
pycnoclines) counter-clockwise (on the N.H.). If the frequency is larger (e.g. super-
inertial), then the reflection is incomplete: a finite number of Poincaré waves is fully
developed throughout the basin, whilst the others are exponentially decaying as one
moves away from shore. Since the Kelvin wave is always exponentially evanescent
far from shore, the appearance of the wave mode is Poincaré-like, and the rotation
of the displacement surfaces and velocities is clockwise around the amphidromic
points.

This interplay between Kelvin and Poincaré waves in rectangles of constant depth
is generally assumed also to operate in enclosed basins of arbitrary geometry and
bathymetry, and experience with realistic basins proves this interpretation to be
basically correct. Indeed, basin-scale modes of gravity seiches have either primar-
ily shore-bound activity with phase propagation counter-clockwise (on the N.H.)
around the basin or the amphidromic point, if the eigenfrequency is small, or they
have dominant off-shore activity with clockwise rotation around the amphidromic
point (on the N.H.) and clockwise rotation of the horizontal velocity vector. In the
former case, limnologists call the behaviour Kelvin-like or Kelvin-type; in the lat-
ter, they refer to it as Poincaré-like or Poincaré-type.1 With this denotation we
wish to express that Kelvin-type behaviour signifies primarily shore-bound activ-
ity with counter-clockwise phase propagation (on the N.H.) and that Poincaré-type
behaviour means primarily off-shore activity with clockwise phase propagation (on
the N.H.)

The above understanding is usually tacitly transferred to the dynamics of basin-
scale gravity motions in lakes of arbitrary shape. We shall see when reporting results
obtained for gravity waves in cylindrical containers of circular and elliptical shapes
that this understanding requires modification.

In what follows, we shall discuss basin-scale modes of gravity seiches for circular
and elliptical basins of constant depth which are sufficiently large that the rotation
of the Earth exercises a sizeable influence on the mode structure. For barotropic
processes, this requires horizontal basin dimensions of several 100 km extent – the
external Rossby radius is of the order of 300–600 km, depending on water depth –
for baroclinic modes i.e. lakes whose water is stratified by temperature and/or
salt, the horizontal basin sizes can be as small as a few kilometres, depending on

1 Most authors of scientific papers call the above behaviour simply Kelvin behaviour or Poincaré
behaviour, which is overemphasizing these authors contribution, because neither Kelvin nor
Poincaré have conducted work on gravity seiches in arbitrary basins.
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horizontal and vertical mode structure.2 A rough estimate for a two-layer system is
obtained as follows:

Rint D 1

f

s
��

�
g
H1H2

H1 CH2
Š 1

f

s
��

�
gH1; for H1 
 H2; (13.1)

where �� is the density difference between the upper and lower layer, H1 and H2
are the upper and lower layer thicknesses. With ��=� D 10�2, H1=H D 10�1 this
gives Rint D 10�2 � Rext, 3–6 km.

13.2 Conceptual Prerequisites

In constant depth containers, linear gravity waves can be decomposed by the separa-
tion of variable technique into vertical and horizontal wave structures. For instance,
if any field variable f .x; y; z; t/ is written as

f .x; y; z; t/ D Fn.z/fn.x; y; t/;

then fDp is the perturbation pressure, and Pn satisfies the vertical eigenvalue
problem

d

dz
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dPn.z/

dz

	
C 1
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Pn D 0;

dPn
dz

D 0; at z D �H;
dPn
dz

C N 2.z/

g
Pn D 0; at z D 0;

9
>>>>>>>=

>>>>>>>;

(13.2)

in which N.z/ D �gŒd�=dz�=�� is the buoyancy frequency and hn the separation
constant, the eigenvalue of (13.2), called the equivalent depth. Moreover, n is the
counting index of the eigenmodes. In an approximate solution of (13.2), the second
term in (13.2)3 may be dropped. This then corresponds to the imposition of the rigid
lid assumption.

Alternatively, the equation for the horizontal variation of the pressure, f D pn
.x; y; t/ is given by the differential equation

Lpn � ghn�2Hpn D 0; L WD
�
@2

@t2
C f 2

	
; f D 2˝ sin �; (13.3)

2 Internal Rossby radii for a two-layer system are about a factor 20–40 times smaller than external
Rossby radii.
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in which ˝ is the angular velocity of the Earth, � is the geographical latitude and
which must be solved subject to the boundary condition of no flux through the
vertical shore boundary.3

The temporal evolution of the horizontal velocities of the nth vertical mode is
described by the linearized horizontal momentum equation in the adiabatic and
hydrostatic approximations,

@vn
@t

C f k � vn D �ghngradH p; (13.4)

where k D .0; 0; 1/T, and must be solved subject to the boundary condition

@vn
@n

D 0 along the container wall; (13.5)

in which n is the unit vector perpendicular to the container wall.
Strictly, such normal mode solutions are not applicable to realistic basins for

lakes, because they require constant depth and vertical bounding walls. However,
when applied to circular or elliptical containers, they allow us to see how the terms
‘Kelvin-type’ and ‘Poincaré-type’ can be understood.

The answer to this was given by Antenucci et al. [3] and Antenucci and
Imberger [4] by solving (13.3)–(13.5) for circular and elliptical containers with
constant depth and restricting the stratification to three layers with constant density.
In doing so, they could rely on solutions of the analogous problems for homo-
geneous fluids in circular and elliptical cylindrical containers by Thomson (Lord
Kelvin) [19], Jeffreys [8] and Goldstein [7] and complementary work by Lamb [9].4

13.3 Circular Cylindrical Geometry

In polar coordinates .r; �/, for a cylindrical basin (13.3)–(13.5) take the forms

Lpn � ghn
�
@2pn
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C 1
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C 1

r2
@2pn

@�2

�
D 0;

@un
@t

� f vn D �ghn @pn
@r
;

@vn
@t

C f un D �ghn @pn
@�

;

un D 0; at r D r0;

9
>>>>>>>>>=

>>>>>>>>>;

(13.6)

3 Equations (13.2)1 and (13.3) have been derived in Chap. 11 and are listed as (11.67)2 and (11.68).
Moreover, the boundary conditions are stated in (11.74)3;4 .
4 For a biographical sketch see Fig. 13.1.
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Fig. 13.1 Horace Lamb (1849–1934), a British applied mathematician and author of several influen-
tial texts on classical physics (http://en.wikipedia.org/) and the front page of his first book ‘A treatise
on the mathematical theory of the motion of fluids’ which he wrote at the age before 30 (http://www.
amazon.de/).

Horace Lamb (27 November 1849 at Stockport, England; 4 December 1934, Cambridge, England), the
son of John Lamb, a foreman of a cotton mill, and his wife Elisabeth, née Rangley. After the early death
of his father and the re-marriage of his mother, he was raised by his mother’s sister Mrs. Holland. He
studied at Stockport German School, Owens College, Manchester, and Trinity College, Cambridge, where
he was second wrangler (meaning that he was second in the ranked list of mathematics students awarded a
first class degree). In Cambridge, Lamb was student of George Gabriel Stokes and James Clerk Maxwell,
received the Smith’s Prize 1872 and was elected a Fellow of Trinity College in the same year. In 1875,
he was appointed to the chair of mathematics at the Adelaide University, Australia where he lectures
for 10 years. In 1885, he returned back to England as mathematics professor of the Victoria Univer-
sity (now University of Manchester), where he stayed until 1920 when he retired. Thereafter, he went to
Cambridge, England where the honorary Rayleigh lectureship was created for him. He continued to work
on his research.

Lamb worked primarily on hydrodynamics; however, he was extremely broad with contributions in elas-
ticity, electrodynamics, dynamics and waves in plates. He was particularly esteemed as author of books
(see below) and as a dedicated teacher. In the context of this book he contributed to the theory of tides.
In 1884, Lamb was elected a Fellow of the Royal Society, London, which honored him in 1902 with the
Royal Medal and in 1923 with the Copley medal. He was twice president of the Royal Society and from
1902–1904 president of the London Mathematical Society of which he received the De Morgan Medal
in 1911. He earned seven honorary doctorates and became a member of the Academia Lincei in 1931.
Horace Lamb was married with Elisabeth Foot and they had seven children.

Books:
A treatise on the mathematical theory of the motion of fluids. 1879, Kessinger Legacy Reprints 2010;
Hydrodynamics. Cambridge University Press 1895, 6th edn. 1933, reprinted by Dover;
An elementary course of infinitesimal calculus. Cambridge 1997, 3rd edn. 1919, reissued by Cambridge
2009;
Propagation of tremors over the surface of an elastic solid. Cambridge 1904;
The dynamical theory of sound. Cambridge 1910, 2nd edn. 1925, Dover 2004;
Higher mechanics. Cambridge 1920, 2nd edn. 1929;
Statics: Including hydrostatics and the elements of the theory of elasticity. Cambridge 1928, reissued
Cambridge 2009;
Dynamics. Cambridge 1914, 2nd edn. 1923–1961.

The text is based on: http://de.wikipedia.org/wiki/Horace_Lamb, but see also http://www-history.msc.
st-andrews.ac.uk/Biographies/Lamb.html.

http://en.wikipedia.org/
http://www.amazon.de/
http://www.amazon.de/
http://de.wikipedia.org/wiki/Horace_Lamb
http://www-history.msc.st-andrews.ac.uk/Biographies/Lamb.html
http://www-history.msc.st-andrews.ac.uk/Biographies/Lamb.html


120 13 Basin-Scale Gravity Waves in Circular and Elliptical Containers

in which un; vn are now the radial and azimuthal components of vn, and r0 is the
radius of the cylindrical wall. Solutions of (13.6), representing propagating waves
around the basin must have the forms5

pn.r; �; t/ D p�
`n
.r/ cos.`� C !`nt/;

un.r; �; t/ D u�
`n
.r/ sin.`� C !`nt/;

vn.r; �; t/ D v�
`n
.r/ cos.`� C !`nt/:

9
>>>=

>>>;

(13.7)

If this is substituted into (13.6), it is easily seen that p�
`n

must satisfy the equation

p?00`n C 1

r
p?0`n

 
!2
`n

� f 2

ghn
� `2

r2

!

p?`n D 0; (13.8)

whilst

u?
`n
.r/ D � ghn

!2
`n

� f 2

�
!`np

?0
`n.r/C f `

r
p?`n.r/

�
;

v?
`n
.r/ D � ghn

!2
`n

� f 2
�
fp?0`n.r/C `!`n

r
p?`n.r/

�
:

(13.9)

Here, primes denote differentiation with respect to r . The boundary condition
(13.6)4 implies

!`np
?0
`n.r0/C f `

r0
p?`n.r0/ D 0: (13.10)

In these equations, ` is the azimuthal mode number. The solution is obtained by
solving the eigenvalue problem (13.8) and (13.10) first and then using the result-
ing expression for p`n in the right-hand side of (13.9). This then yields the radial
dependence of the velocity components u�

`n
.r/ and v�

`n
.r/.

Equation (13.8) is Bessel’s differential equation; by the transformation

� D j
jr; 
2 D ˙!2
`n

� f 2
ghn

;
if !2

`n
> f 2;

if !2
`n
< f 2;

(13.11)

it can be put into the standard form

d2p?
`n
.�/

d�2
C 1

�

dp?
`n
.�/

d�
C
�

˙1 � `2

�2

	
p?`n.�/ D 0; !2`n ? f 2: (13.12)

5 Antenucci and Imberger [4] write instead pn D p�

n .r/ cos.`�/ cos.!`nt/ which is a rather
annoying misprint if one attempts to verify the formulae, which we did.
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For superinertial frequencies (!2
`n
>f 2) its solutions are the Bessel functions J`.�/

and Y`.�/ of order `; for subinertial frequencies (!2
`n
< f 2) its solutions are the

modified Bessel functions I`.�/ and K`.�/ of order `. The functions J`.�/ and
I`.�/ are bounded and regular at � D 0, but Y`.�/ and K`.�/ are singular there,
Abramowitz and Stegun [1]. In a basin for which the centre r D 0 belongs to the
basin domain, Y`.�/ and K`.�/ can, therefore, not occur in the expression of the
solution for reasons of regularity. Solutions are thus of the form

p?`n.r/ D
8
<

:
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0

@

s
j!2
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� f 2j
ghn
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1

A ; I`

0

@

s
j!2
`n

� f 2j
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r

1

A

9
=

;
(13.13)

for super- and sub-inertial frequencies, respectively. In what follows, we shall use
the common symbol J` if either J` or I` are meant. Next, noting that (Abramowitz
and Stegun [1])

dJ`.�/
d�

D J`�1.�/� `

�
J`.�/; (13.14)

one may easily deduce that
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Using this formula in (13.10) yields the dispersion relation in the following dimen-
sionless form

˙`nJ`�1.˙`n/C `

�
1

�`n
� 1

	
J`.˙`n/ D 0;

˙`n WD
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j�2
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� 1j
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f
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p
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r0f
;

(13.16)

where

J` WD
8
<

:

J`; if �`n > 1;

I`; if �`n < 1:
(13.17)
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In the limnological context, this equation, for superinertial waves, is due to
Csanady [5]. Solutions of (13.16) can be found for any values of f; r0; ghn and
`, if j�`nj > jf j; however, for subinertial waves, solutions are only real for a lim-
ited subset of `, because of the exponential structure of I`.�/. Lamb [9] (paragraph
210) showed that for a subinertial wave solution of azimuthal mode ` to exist, the
condition

Sn < .`.`C 1//�1=2 (13.18)

must hold. Solutions have been constructed by Antenucci et al. [3] and Antenucci
and Imberger [4].

The transcendental equation (13.16) possesses, in general, a countable infinite
number of real solutions �`mn .m D 1; 2; 3; : : :/, which are positive or negative and
correspond to waves which rotate clockwise and counter-clockwise, respectively,
around the basin. The equation holds for all possible modes in the horizontal and
vertical directions, which shall be characterized by the acronym H`mVn. H`m
typifies the horizontal azimuthal (`) and radial (m) modes, whilst n denotes the
vertical modes. Apart from the quantized frequencies �`mn, the modal pressures
p�
`mn

and velocities v�
`mn

are of particular interest; they are now all identified by a
ternary index .�/`mn. Specifically, the eigenvalue problem is solved as follows:

1. For given vertical density distribution, the buoyancy frequency N.z/ is deter-
mined, and then the vertical eigenvalue problem (13.2) is solved. This yields a
sequence of wave speeds c2n D ghn and Burger numbers Sn; .n D 0; 1; 2; : : :/.

2. The roots of (13.16) are determined in conformity with the condition (13.18) and
the selection (13.17) of the Bessel functions I` and J`.

3. This then fixes the radial distribution, of the pressure p�
`mn

.r/ according to
(13.13) and radial derivative dp�

`mn
.r/=dr according to (13.15).

4. The pressure functions obtained in item (3) are then used in the right-hand side of
(13.9); they determine the radial distribution of the velocity components u�

`mn
.r/

and v�
`mn

.r/.
5. These results are then used in (13.7) to obtain the complete spatial and temporal

distributions

u`mn.r; �; t/ D u?
`mn

.r/ sin.`� C !`mnt/;

v`mn.r; �; t/ D v?
`mn

.r/ cos.`� C !`mnt/;

p`mn.r; �; t/ D p?
`mn

.r/ cos.`� C !`mnt/;

(13.19)

which can be computed for any particular time slice.

The above analysis is based on work by Thomson (Lord Kelvin) [19] and Lamb [9]
on gravity seiches in a homogeneous fluid in a circular basin of constant depth6;
its two-layer version of the equations was first given by Csanady [6] and the modal

6 For portraits and biographical sketches of Lord Kelvin and H.Lamb, see Figs. 12.1 and 13.1.
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analysis for the three-layer fluid by Monismith [11]. The application of this circular
wave problem to a real lake – Lake Kinneret (Israel) – was presented by Antenucci
et al. [3]. In the ensuing description, we follow, with modifications, their approach.

13.4 Three-Layer Stratification – Lake Kinneret Treated
as a Circular Cylinder of Constant Depth

The radius r0 of the circular cylinder modeling Lake Kinneret was taken to be r0 D
6 km and the three-homogeneous layer approximation to the stratification of the field
campaigns performed in 1997/1998 (for details see Antenucci et al. [3]) is found to
be as stated in Table 13.1.The authors also chose the vertical V1- and V2-phase
speeds corresponding to the stratification of Table 13.1 and obtained the speeds of
Table 13.2. Their results are explicitly presented for the first analysis period with
c1 D 0:33ms�1.

Two classes of solutions are possible: In the subsequent analysis, we will show
that for superinertial frequencies the solutions are reminiscent of Poincaré waves
and will for this reason call them Poincaré-type. Correspondingly, for subinertial
frequencies, the solutions are similar to Kelvin waves and will for this reason be
called Kelvin-type.7

Poincaré-type waves exist for all f , r0, cn and horizontal mode number (recall,
`mn is a counting index for the azimuthal (`), radial (m), and vertical (n) modes),
but Kelvin-type waves only exist, if (13.18) is satisfied.

In circular basins, the distinction between mode types is better made on the
basis of the magnitude of the horizontal velocity vector. The criterion is (13.18).
If `.`C1/ < S�2n , then Kelvin-type behaviour means that the horizontal velocities
are large close to the shore and smaller in the centre, perhaps very small if the radius
of the cylinder is very large as compared to the internal Rossby radius of deforma-
tion. Alternatively, if `.`C 1/ > S�2n , then velocities tend to be larger in the centre
than close to the shore. Complete reflection for the rectangular basin corresponds
here to the solutions expressed in terms of modified Bessel functions, and incom-
plete is the analogue to the solutions expressed here in terms of (ordinary) Bessel
functions.

For ` D 1 and c D c1 D 0:33ms�1 (analysis period I), inequality (13.18) is
satisfied for the model Lake Kinneret; therefore, there are solutions of the disper-
sion relation (13.16) for I1 and J1. The smallest values of the frequency � for these

7 We, here, do not follow the habit of Antenucci et al. [3] to call the two waves simply Kelvin
and Poincaré waves, because these waves are denoted thus for straight infinite channels. More-
over, Taylor [18] showed that the seiches in a rectangular basin are composed of a pair of Kelvin
and an infinite number of Poincaré waves of the same frequency, of which all are either expo-
nentially evanescent as one moves away from the long end boundaries or some are oscillatory.
If only evanescent Poincaré modes are present, then the behaviour is Kelvin-type and the reflec-
tion is called complete, else, mixed behaviour is present throughout the rectangular basin and the
reflection is called incomplete.
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Table 13.1 Three-homogeneous layer approximation to the stratified Lake Kinneret for three
measuring periods in 1998, after Antenucci et al. [3]

Period H1 [m] H2 [m] H3 [m] T1 [ıC] T2 [ıC] T3 [ıC]

(I) 98179–192 12.5 8.0 6.0 27.0 21.1 16.6
(II) 98205–218 12.5 10.0 5.5 28.8 22.4 16.6
(III) 98262–275 14.5 8.5 5.5 28.3 21.3 16.7

Table 13.2 Vertical mode V1- and V2-phase speeds cn D pghn; n D 1; 2 for the three analysis
periods of Table 13.1

Period c1 [ms�1] c2 [ms�1]

(I) 98179–192 0.33 0.16
(II) 98205–218 0.36 0.19
(III) 98262–275 0.37 0.16

Table 13.3 Mode numbers and wave types for the three-layer approximation (for measuring
period I, see Tables 13.1 and 13.2) and corresponding seiche periods according to (13.16). Note
that the radial mode numbermK; mP is differentiated according to mode type (results by Antenucci
et al. [3])

` mK mP n Period (h) Mode-type

1 1 – 1 22.5 Kelvin
1 – 1 1 12.5 Poincaré
1 – 1 2 17.5 Poincaré

yield a Kelvin-type and a Poincaré-type seiche as listed in Table 13.3. Alternatively,
for c D c2 D 0:16ms�1, there exist only Poincaré-type seiches with J1-solutions
of (13.16) with period also listed in Table 13.3. With these, the modal velocities
(13.19) can be calculated and from these the layer velocities computed as in [6].
The results are summarized in Fig. 13.2. This figure shows in column (i) the ver-
tical displacements of the two internal interfaces of the three-layer fluid along the
WE section; panels in columns (ii), (iii) show the upper, (lower) internal interface,
with warm colours representing depression and cold colours representing elevations;
panels (iv), (v) and (vi) represent the horizontal velocities in the upper, (middle) and
(bottom) layer, respectively. The velocity vectors are normalized by the maximum
velocity for each wave and represent the relative contribution to the velocity field in
each layer by each wave.

Kelvin-type behaviour [(`;mK;n/ D .1; 1; 1)] is demonstrated in rows (a) and
(b) of Fig. 13.2. Row (a) shows the seiche mode at t D 0, row (b) a quarter period
later, t D T=4. From panels [(ii)(iii)(a)(b)] we deduce a counter-clockwise rotation
of both interior interfaces. Moreover, the layer-velocity plots in panels [(iv)(a)(b)],
[(v)(a)(b)], and [(vi)(a)(b)] indicate large near shore velocities and smaller velocities
towards the centre, but the decay is not substantial as is often the case, certainly
because the internal Rossby radius of deformation is approximately equal to the
basin radius. This behaviour is reminiscent of Kelvin-type wave behaviour.

Furthermore, because of the moderate decay of the amplitudes of the velocity (in
this case) as one moves from shore towards the centre, one sees that the horizon-
tal velocity also rotates anti-clockwise, a full revolution during the seiche period.
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Fig. 13.2 Baroclinic wave characteristics for the three-layer fluid in a uniform-depth circular
basin of 6 km radius situated at 32.5ıN as listed in Tables 13.1–13.3 for period I. Rows [(a),
(b)] show Kelvin-type V1-behaviour .`; mK; n/D .1; 1K ; 1/, rows [(c), (d)] display Poincaré-type
V1 behaviour .`; mP; n/D .1; 1P; 1/ and [(e), (f)] show Poincaré-type V2 behaviour .`; mP; n/D
.1; 1P; 2/. The velocity vectors are normalized by the maximum velocity for each wave and rep-
resent the relative contribution to the velocity field in each layer by each wave (redrawn from
Antenucci et al. [3], with changes). Copyright 2000 by the American Society of Limnology and
Oceanography, Inc, reproduced with permission

This is different from what is usually associated with Kelvin behaviour. Associated
particle trajectories are small circles in the centre, become ellipses with major axes
parallel to concentric circles, growing in size and eccentricity as one moves radi-
ally towards the shore circle, where the ellipses have collapsed to double lines (not
shown). In current meter experiments, this should in principle be observable. The
reason for this anti-clockwise current rotation is certainly the compactness of the
basin geometry.8

8 Recall that horizontal velocity vectors also rotate in the counter-clockwise direction (on the N.H.).
So, when basin geometries are compact and horizontal extents are comparable to the internal
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V1- and V2-mode Poincaré solutions – .`mPn/ D .111/ and .`mPn/ D .112/ –
are displayed in rows [(c), (d)] and [(e), (f)] of Fig. 13.2, in which again the panels
in rows [(c), (d)] and [(e), (f)] are time slices which are a quarter period apart. It is
evident for both cases that displacement and layer velocities rotate clockwise. Inter-
face displacement maxima are at the shore, whilst velocity maxima are in the centre.
Horizontal velocities at the boundary are tangential to the shore, but close to the cen-
tre they are essentially parallel to the interface level lines. The velocity amplitudes
of the (11P1) Poincaré mode are greatest in the top and bottom layers, whilst those
of the (11P2)-Poincaré mode are largest in the middle and bottom layers. It is also
seen for this V2-mode that the middle layer thickens parallel to the steepest gradient
of the interfaces. The velocity vectors are normalized by the maximum velocity for
each wave and represent the relative contribution to the velocity field in each layer
by each wave.

Antenucci et al. [3] also raise the question of whether there is a critical condition
at the inertial frequency for basin-scale Kelvin-type waves. They mention that, as
Sn increases, because the heating increases the phase speed, see (13.16), one would
conceivably have a case in which the Kelvin-type wave is no longer supported (i.e.
Sn > .`.`C1/ > �1=2/). This critical condition is simply a function of the circular
basin solution and will become clear, when we look at solutions of an elliptical
basin.

Antenucci et al. [3] present a detailed analysis of data of their 1997/1998 field
campaigns, conducted in Lake Kinneret. Figure 13.3 shows the lake bathymetry with
isobaths at 5-m intervals and indicated sampling stations T1–T10 in June 1997 (open
circles) and June to October 1998 (full circles), acoustic doppler current profiler
(ADCPs) were deployed at T3, T8, and T10, and thermistor chains were deployed
at all stations except T8 and T10. Power spectra of the integrated potential energy9

for all three analysis periods I, II, III during 1998 showed significant peaks in the
energy spectra at 24, 12, and 6 h. The authors conclude, because the energy peak
at 6 h was not detected at all stations (not at T4 or T7b), it was not a coherent
basin-scale signal. The V1-Kelvin-type wave at 24 h has been previously identified
already by Ou and [12]. This period is a combination of a Kelvin-type free response
amplified and slightly altered in structure by the strong daily WE-sea breeze. The
V1 Poincaré seiche with a 12 h period has been isolated from isotherm depth time
series deduced from the thermistor chain temperature data of the 1998 campaign,
but has also been identified from earlier measurements conducted by Serruya [16].

Rossby radius of that wave mode, counter-clockwise rotation of the centre velocity may signify
Kelvin-type wave behaviour.
9 The integrated potential energy at a given position is defined by Antenucci et al. [3] as

PE.t/D g

Z H

z0

z Œ�.z; t /� dz ;

where integration is from the still water surface to the depth H . The formula computes the gravity
potential for the instantaneous density distribution.
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Fig. 13.3 Lake Kinneret
bathymetry with isobaths at
5-m intervals and relevant
sampling stations in
1997/1998. The ellipse fitted
to the topography has an
aspect ratio of b=a D 2=3.
For details see main text.
Redrawn from Antenucci
et al. [3]. Copyright 2000 by
the American Society of
Limnology and
Oceanography, Inc,
reproduced with permission
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The thermistor chains in the field campaigns were not ideally deployed to be able to
identify a complete cycle of the 24-h Kelvin-type and 12-h Poincaré-type waves.

However, the isotherm–depth–time series from the thermistor chains at T2 and
T9 both positioned along the 25-m isobath, see Fig. 13.3, give strong hints for the
interpretation of anti-clockwise progression of the 24-h Kelvin-type wave and clock-
wise progression of the 12-h Poincaré-type wave. Figure 13.4 shows four days data
from the 1997 campaign at stations T2 (top panel) and T9 (bottom panel). During
this time, the crests of the 24-h Kelvin-type wave and the 12-h wave were in phase,
so the second crest of the 12-h signal occurred during the trough of the 24-h signal.
The figure shows that the clockwise phase progression of the 12-h wave from T9 to
T2 occurred during 2–3 h, when the wind was not acting. The upward facing arrows
indicate the clockwise phase progression of the 24-h Kelvin-type wave. True, these
data are no more than a strong indication for the claimed behaviour, because no com-
plete cycle is covered by the data, but Antenucci et al. [3] provide also other support
for this interpretation. One of these is the evaluation of rotary power spectra of
isopycnal vertical speeds, which they decompose into clockwise and anti-clockwise
rotating components.

Poincaré-type V2 and V3 modes can hardly be determined from temperature
measurements alone. Antenucci et al. [3], therefore, used velocity signals from
ADCP measurements at T3 during the 1998 campaign. These are better interpreted
with a more realistic model in which geometry and stratification is better adjusted
to the real situation.
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Fig. 13.4 Isotherm–depth–time series from T2 (a) and T9 (b) from the 1997 campaign in Lake
Kinneret. Crests of the 24-h V1 Kelvin-type wave are indicated with solid vertical lines. Crests
of the 12-h V1 Poincaré-type wave are indicated by both dashed and solid lines. Crest locations
are chosen by visual inspection of the isotherm record. Upward-facing arrows show clockwise
phase progression of the 12-h Poincaré-type wave, whilst downward-facing arrows show the anti-
clockwise phase progression of the 24-h Kelvin-type wave (redrawn from Antenucci et al. [3],
with changes). Copyright 2000 by the American Society of Limnology and Oceanography, Inc,
reproduced with permission

Table 13.4 Lake Kinneret baroclinic wave summary

Period ` mK mP n Wave type
Field Three-layer model

24 22.5 1 1 – 1 Kelvin
12 12.2 1 – 1 1 Poincaré
20˙ 2 17.5 1 – 1 2 Poincaré
20˙ 2 – 1 – 1 3 Poincaré

In summary, Antenucci et al. [3] conclude that the data of the horizontal velocity
components suggest the simultaneous presence of V2 and V3 modes as collected in
Table 13.4.

There is nearly perfect agreement between the periods of the (1,1K,1) Kelvin
and (1,1P,1) Poincaré-type modes as obtained by the circular cylinder model and
the thermistor chain data. However, this coincidence for the (1,1P,1)-mode is less
convincing. The field data suggest that the activated .20 ˙ 2/ h modes are com-
bined V2 plus V3 modes, but the V2 mode does not satisfactorily agree with the
predicted 17.5 h period. A theoretical prediction of the V3 mode would need a four-
layer model to make a prediction possible. However, it is likely that the value of
this period would deviate from the observed .20 ˙ 2/ h even more than for the V2
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mode. Improvements can be achieved by better adjustment of the geometry as well
as increased number of layers with correspondingly adjusted densities. In the sub-
sequent sections Lake Kinneret will be modeled by an elliptical basin of constant
depth. Apart from some practical applicability the elliptical basin will also yield
a deeper understanding of Kelvin-type and Poincaré-type behaviour of waves in
elongated basins.

13.5 Elliptical Cylindrical Container10

Equations (13.3)–(13.5) have also been solved for elliptical containers with vertical
walls. Solutions for the homogeneous fluid layer were constructed by Jeffreys [8]
and Goldstein [7] with additions by Lamb [9], and the application to the modal
formulation (13.3)–(13.5) was presented by Antenucci and Imberger [4].

Let (x; y; z) be Cartesian and (�; �; �) elliptical cylindrical coordinates. They are
related to one another by

8
ˆ̂
<̂

ˆ̂
:̂

x D � cosh � cos�;

y D � sinh � sin �;

z D z;

9
>>>=

>>>;

; (13.20)

where � D p
a2 � b2 > 0 is a constant, and a > b may be interpreted as major and

minor semi-axes of an ellipse. Lines of constant � are ellipses and lines of constant
� hyperbolas, which are perpendicular to the ellipses, see Fig. 13.5. Let (un; vn) be
the physical components of the modal velocity vector tangential to the hyperbolas
and ellipses, respectively. Then, it can be shown that11

10 In this section, we drop the index n characterizing the vertical mode. We shall also use counting
indices m and n, which are used only here but have no relation to those indices used later in the
text when solving the seiche eigenvalue problem.
11 The literature on mathematical equations in elliptical coordinates seems to be fraught with
errors (typos). The standard reference which one tends to trust unquestioned is Abramowitz and
Stegun [1]. On p. 722 the Laplace operator in elliptical coordinates was found to be incorrectly
printed, and the formulae, corresponding to (13.23) in Antenucci and Imberger [4] are also wrong.
Pao and Mow [13] state on their p. 436
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2
.cosh 2� � cos 2�/

9
>=

>;
(13.22)

for the gradient and the Laplacean of a scalar f . These formulae were counterchecked against
general formulae of differential operators in lecture notes on ‘Theoretical Aerodynamics’ by
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Fig. 13.5 Elliptic coordinate
system. A family of confocal
ellipses with focal length �.
Intersecting the ellipses is a
family of confocal
hyperbolas. Note, � 2 Œ0;1/
and � 2 Œ0; 2��. The length of
the semi-major axis is
� cosh �, whilst that of the
semi-minor axis is � sinh �.
Note also that across the line
connecting the two focal
points, the variable �
experiences a jump ŒŒ���
between 0 and �
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gradH pn D
p
2

�
p

cosh 2� � cos 2�

�
@pn

@�
;
@pn

@�

	
;

divHgradH pn D 2

�2.cosh 2� � cos 2�/

�
@2pn

@�2
C @2pn

@�2

�
:

(13.23)

Substituting these expressions into (13.3)–(13.5) yields

Lpn � 2ghn

�2.cosh 2� � cos 2�/

�
@2pn

@�2
C @2pn

@�2

	
D 0;

@un
@t

� f vn D �
p
2ghn

�
p

cosh 2� � cos 2�

@pn

@�
;

@vn
@t

C f un D �
p
2ghn

�
p

cosh 2� � cos 2�

@pn

@�
;

un D 0; at � D �0

9
>>>>>>>>>>=

>>>>>>>>>>;

(13.24)

for the nth modal pressure pn.�; �; t/ and the velocity components un.�; �; t/ and
vn.�; �; t/, respectively. Equation (13.24) correspond to (13.6) in polar coordinates.

It is straightforward to see that (13.24) has solutions of the form

pn.�; �; t/ D p�n.�; �/exp .i!nt/; (13.25)

Sears [15]. Formulae for differential operators are derived there for general orthogonal coordi-
nates and revealed (13.22) as well. Antenucci and Imberger’s [4] Laplace operator agrees with
(13.22), but not their use of gradH f with (13.21).
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where p�n satisfies, the equation

.!2n � f 2/p�n C 2ghn

�2.cosh 2� � cos 2�/

�
@2p�n
@�2

C @2p�n
@�2

	
D 0; (13.26)

or after non-dimensionalization

@2p�n
@�2

C @2p�n
@�2

C 2qn.cosh 2� � cos 2�/p�n D 0; (13.27)

in which

qn D 1 � b2=a2

4

�2n � 1

S2n
; �n D !n

f
; S2n D ghn

f a
;

�2 D a2 � b2; a > b:
(13.28)

Equations (13.27) and (13.28) agree with corresponding equations of Antenucci and
Imberger [4]. By separation of variables

p�n.�; �/ D �n.�/Hn.�/ (13.29)

one finds that �n.�/ and Hn.�/ satisfy the equations

� 00n .�/ � .b � 2qn cosh.�//�n.�/ D 0;

H 00n .�/C .b � 2qn cos.�//Hn.�/ D 0;
(13.30)

where b is the separation constant and the prime denotes univariate differentiation
with respect to � and �, respectively. The second of (13.30) is the canonical form of
the Mathieu equation, the first is known as modified Mathieu equation and can be
reduced to the Mathieu equation by setting � D ˙i�. In what follows, we drop the
indices .�/n in the functions �n; �n and parameter qn until further noticed. Let us
discuss (13.30)2 first.

13.6 Mathieu Functions

In this section, we drop the index n characterizing the vertical mode. We shall also
use counting indices m and n, but they have nothing in common with such indices
used later in the context when solving the seiche eigenvalue problem.

Depending upon the values of b and q > 0 in (13.30)2, solutions for H.�/, may
be bounded or unbounded as � increases, or they may be periodic with periods �
or 2� . Because we look at fluid flow in the interior of the ellipse, in order to have



132 13 Basin-Scale Gravity Waves in Circular and Elliptical Containers

a unique single valued solution, H.�/ must return to the same value as � increases
by 2� .

If the periodicity is � , then12

H.�/ D
1X

rD0
.A2r cos.2r�/C B2r sin.2r�// : (13.31)

Substituting this series into (13.30)2 and collecting the coefficients of the cosine and
sine functions, one obtains two infinite sets of homogeneous equations as follows:

� Coefficients of cos.2r�/:

bA0 � qA2 D 0;

.b � 4/A2 � q.A4 C 2A0/ D 0;

.b � 4r2/A2r � q.A2rC2 C A2r�2/ D 0; r > 2;

..
.

9
>>>>>>>=

>>>>>>>;

(13.32)

� Coefficients of sin.2r�/:

B0 D 0;

.b � 4/B2 � qB4 D 0;

.b � 4r2/B2r � q.B2rC2 C B2r�2/ D 0; r > 2;

..
.

9
>>>>>>>=

>>>>>>>;

(13.33)

These (twice) infinite equations possess countable nontrivial solutions for their
unknowns A0; A2; : : : ; B2; B4; : : : only, provided the determinants of the corre-
sponding matrices vanish. These determinants are functions of b and q, and their
roots may be written as

b D a2m.q/; m D 0; 1; 2; 3; : : : ;

b D b2m.q/; m D 1; 2; 3; 4; : : : ;
(13.34)

The subscript integer m is a counting index for the respective roots. If these val-
ues for b are back substituted in (13.32) and (13.33), then A.2m/0 ; A

.2m/
2 ; A

.2m/
4 ; : : :

and B.2m/2 ; B
.2m/
4 ; : : : can be evaluated except for a scaling factor, which is deter-

12 We are following in this section Pao and Mow [13].
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mined by an adequate normalization. The coefficients a2m and b2m are known as
the characteristic numbers of the Mathieu equations. They are tabulated in [2] and
by Stratton et al. [17], see also Abramowitz and Stegun [1] or Pao and Mow [13] for
graphs of the characteristic numbers as functions of q.

Solutions with the period 2� are also expressible in series

H.�/ D
1X

rD0
.A2rC1 cos..2r C 1/�/C B2rC1 sin..2r C 1/�// : (13.35)

Again, there exists a set of characteristic numbers a2mC1.q/, .m D 1; 2; 3; : : :/, and
for each characteristic number the coefficients A.2mC1/

.2rC1/ .q/; : : : ; B
.2mC1/
.2rC1/ .q/ can be

calculated.
The periodic solutions of the Mathieu equation, when b is given by the charac-

teristic numbers am or bm are called Mathieu functions, which are designated as
cem.�; q/ and sem.�; q/, they are also called sine-elliptic and cosine-elliptic Math-
ieu functions with counting index m D 0; 1; 2; : : :. This yields the following four
types of Mathieu functions

ce2m.�; q/ D
1X

rD0
A
.2m/
2r .q/ cos 2r�; when b D a2m;

se2mC2.�; q/ D
1X

rD0
B
.2mC2/
2r .q/ sin 2r�; b D b2mC2;

ce2mC1.�; q/ D
1X

rD0
A
.2mC1/
2rC1 .q/ cos..2r C 1/�/; b D a2mC1;

se2mC1.�; q/ D
1X

rD0
B
.2mC1/
2rC1 .q/ sin..2r C 1/�/; b D b2mC1:

(13.36)

From these, we deduce for � D .0; �=2/

cem.0; q/ D
1X

rD0
A.m/r ¤ 0; sem.0; q/ D 0;

ce2m.�=2; q/ D
1X

rD0
.�1/rA.2m/2r ¤ 0;

ce2mC1.�=2; q/ D 0; se2m.�=2; q/ D 0;

se2mC1.�=2; q/ D
1X

rD0
.�1/rB.2mC1/2rC1 ¤ 0:

(13.37)

Values for the coefficients A.m/r ; B
.m/
r for a few small values of m are tabulated e.g.

in [2] and by Stratton et al. [17].
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The even and odd order Mathieu functions satisfy the orthogonality conditions
(n and m are positive integers)

2�Z

0

cem.�; q/cen.�; q/d� D 0; n ¤ m;

2�Z

0

sem.�; q/sen.�; q/d� D 0; n ¤ m;

2�Z

0

cem.�; q/sen.�; q/d� D 0; n ¤ m:

(13.38)

Form D n, the first two integrals have non-zero values, whilst the last vanishes also
for m D n, because cem is even, and sem is odd in �. A popular normalization is

2�Z

0

ce2m.�; q/d� D
2�Z

0

se2m.�; q/d� D �: (13.39)

These relations imply the following scaling conditions for the coefficients

2
h
A
.2m/
0

i2 C
1X

rD1

h
A
.2m/
2r

i2 D
1X

rD0

h
A
.2mC1/
2rC1

i2

D
1X

rD0

h
B
.2mC1/
2rC1

i2 D
1X

rD0

h
B
.2mC2/
2rC2

i2 D 1:

(13.40)

Generally today, even and odd periodic Mathieu functions are based on this scaling.
For ordersm D 0 and m D 1 they are displayed in Fig. 13.6.

Next, consider the modified Mathieu equation (13.30)1 of which so far a solu-
tion has not been determined. Since, however, (13.30)1 transforms into (13.30)2,
if � D ˙i� is substituted, the modified Mathieu functions can simply be written as
the Mathieu functions of imaginary arguments. The solutions are now expressible in
series of hyperbolic elliptic cosine and hyperbolic elliptic sine functions rather than
circular elliptic cosine and sine functions. Denoting the modified Mathieu functions
by Cem.�; q/ and Sem.�; q/, we have, when b D am and b D bm, respectively

Cem.�; q/ D ce.i�; q/ D
1X

rD0
A.m/r cosh r�; .b D am/;

Sem.�; q/ D .�i/se.i�; q/ D
1X

rD1
B.m/r sinh r�; .b D bm/:

(13.41)
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Fig. 13.6 Even and odd periodic Mathieu functions of order zero and one. (a) even, order zero;
(b) even, order one; (c) odd, order zero; (d) odd, order one (from Pao and Mow [13], reproduced
with permission)

These functions are no longer periodic and are sometimes also referred to as cosh-
elliptic and sinh-elliptic functions.

13.7 Elliptical Basin: Normal Mode Analysis13

We now return to the earlier notation and revert to qn instead of q. The intention is
still the solution of (13.27), in which qn is given by (13.28). Solutions of (13.30)1
are the modified Mathieu functions Ce.�/ and Se.�/; Ce.�/ is an even function in
�, whilst Se.�/ is odd. Similarly, solutions of (13.30)2 are the (ordinary) Mathieu
functions ce.�/, and se.�/, where ce.�/ is even in �, whilst se.�/ is odd. The general
solution of (13.27) has the form �.�/ �H.�/, so that p� is composed as follows

13 In this section, we follow Goldstein [7].



136 13 Basin-Scale Gravity Waves in Circular and Elliptical Containers

p� D ˛Ce.�/ce.�/C ˇSe.�/ce.�/

C 	Ce.�/se.�/C ıSe.�/se.�/
(13.42)

for some ˛; ˇ; 	 and ı.
The transformation (13.20) implies

dx D � sinh � cos� d� � � cosh � sin � d�;

dy D � cosh � sin � d� C � sinh � cos� d�:
(13.43)

from which in the limits � ! 0 and y ! 0 one may deduce

@

@x
D � 1

� sin �

@

@�
;

@

@y
D 1

� sin �

@

@�
: (13.44)

The parameters ˛; : : : ; ı in (13.42) must be selected according to the satisfaction
of regularity requirements and boundary conditions. For the confocal ellipses and
hyperbolas of Fig. 13.5 the pressure p� and the velocity components u�; v� must
be continuous and differentiable as one moves across the line connecting the two
foci of the ellipses with focal distance 2�. When this line segment is crossed, �
will change to 2� � �. So, e.g. sin.�/ changes to sin.2� � �/ D � sin.�/, but
cos.�/ D cos.2� � �/ keeps its value. Now, for reasons of physics, u�; v� and
p�; @p�=@x; @p�=@y must not change when the line segment between the foci is
crossed, unless they vanish. It then follows from (13.42) and (13.44) and the fact
that sin � and @.�/=@� change sign, when � ! .2� � �/, that

@p�

@�

ˇ
ˇ
ˇ
ˇ
�!2���

must change sign;

@p�

@�

ˇ
ˇ̌
ˇ
�!2���

must change sign:
(13.45)

Now,

@p�

@�
D ˛Ce0.�/ce.�/C ˇSe0.�/ce.�/

C	Ce0.�/se.�/C ıSe0.�/se.�/; (13.46)

@p�

@�
D ˛Ce.�/ce0.�/C ˇSe.�/ce0.�/

C	Ce.�/se0.�/C ıSe.�/se0.�/;

where .�/0 denotes univariate differentiation. In the limit as � ! 0, we have
Ce0.�/ D 0 since Ce.�/ is even in �; furthermore, Se.0/ D 0. Moreover, when
the segment connecting the foci is crossed, the second term in (13.47)1 does not
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change the sign, in conflict with (13.45)1, so we necessarily have ˇ D 0. Sim-
ilarly, at � D 0 only the third term in (13.47)2 survives, since Se.0/ D 0, and
ce0.�/ D �ce0.2� � �/ because ce.�/ D ce.2� � �/, implying ce0.�/ D 0 at
� D 0. Thus, one also must have 	 D 0. These results show that

p� D ˛Ce.�/ce.�/C ıSe.�/se.�/: (13.47)

Therefore, any solution of (13.27) must be either even in both � and � or odd in both
� and �.14

The condition at the outer boundary is that the normal velocity is zero. If the
exponential ansatz

un.�; �; t/ D u�n.�; �/exp .i!nt/;

vn.�; �; t/ D v�n.�; �/exp .i!nt/
(13.48)

is used along with (13.25) for the pressure, then (13.24)2;3 imply

u�n.�; �/ D u�Refn

�
i!n

@p�n
@�

C f
@p�n
@�

	
;

v�n.�; �/ D u�Refn

�
�f @p

�
n

@�
C i!n

@p�n
@�

	
;

(13.49)

where

u�Refn WD
p
2ghn

.!2n � f 2/�
p

cosh 2� � cos 2�
: (13.50)

The no-flux condition through the boundary ellipse � D �0, (13.24)4, thus leads to
the requirement

i!n
@p�n
@�

C f
@p�n
@�

D 0; at � D �0 (13.51)

for all modes n. If f D 0 (no rotation of the Earth), then this implies

@p�n
@�

D 0; at � D �0: (13.52)

The above analysis has made only the vertical mode (index n) visible, but by analogy
with the circular cylindrical case, all equations derived so far in this subsection
exhibit hidden azimuthal (variable �, mode number `) and radial (variable �, mode

14 This result was already obtained by Jeffreys [8].
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number m) mode behaviour. If in (13.47) the azimuthal mode number ` is made
explicit,

p�
`n

D ˛`nCe`n.�; q`n/ce`.�; q`n/

C ı`nSe`n.�; q`n/se`n.�; q`n/;
(13.53)

and then summed over `, we have

p�n D
1X

`D0
˛`nCe`n.�; q`n/ce`n.�; q`n/

C
1X

`D1
ı`nSe`n.�; q`n/se`n.�; q`n/:

(13.54)

If this is substituted into (13.51), it is recognized, owing to symmetry, that it is
necessary to consider merely solutions, in which ` assumes odd values only or in
which ` assumes even values only. The slowest mode belongs to those, in which `
is odd, so we take

p�n D
1X

`D1;odd

f˛`nCe`n.�; q`n/ce`n.�; q`n/

C ı`nSe`n.�; q`n/se`n.�; q`n/g :
(13.55)

(The analysis for ` even is similar.) Substitution of (13.55) in (13.51) gives

i�
1X

`;odd

˚
˛`Ce

0
`.�0; q/ce`.�; q/C ı`Se

0
`.�0; q/se`.�; q/




C
1X

`;odd

˚
˛`Ce`.�0; q/ce

0
`.�; q/C ı`Se

0
`.�0; q/se`.�; q/


 D 0;

(13.56)

in which the prime denotes univariate differentiation, and � D !=f . (A remark
may be in order regarding � arising outside the first summation in (13.56). We have
not written �`, the reason being that the sum in (13.55) defines the pressure for any
value of � .) Equation (13.56) is the dispersion relation, which determines quantized
values for � . Expressing ce`.�; q`/ and se`.�; q`/ in the Fourier series

ce.�; q`/ D
1X

`;odd

Ar;` cos.r�/; se.�; q`/ D
1X

`;odd

Br;` sin.r�/; (13.57)

wherein Ar;` and Br;` are functions of q`, splits (13.56) into the equations (the
coefficients of the sine and cosine functions are set separately to zero)
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1X

`;odd

fi�˛`Ar;`Ce
0.�0; q`/C rı`Br;`Se.�0; q`/g D 0;

1X

`;odd

fi�ı`Br;`Se
0.�0; q`/� r˛`Ar;`Ce.�0; q`/g D 0:

9
>>>>=

>>>>;

(13.58)

In this (and earlier equations) the indicesm and n have been omitted. (Recall, ` is the
azimuthal,m the radial and n the vertical mode number.) For n fixed, (13.58) solves
for the frequencies (and thus gives the mode numbers m). (13.58) is a different
form of the dispersion relation (13.56). Equations (13.58) hold for odd values of r
and constitute two infinite homogeneous linear equations for the coefficients ˛`; ı`.
Nontrivial solutions exist, provided the infinite determinant of the linear system
(13.58) vanishes. With the notation

ˇ D S�2n D f 2a2

ghn
; .ka/2 D �2 � 1

S2n
(13.59)

(a is the major semi-axis, Sn the Burger number) this determinant is given by















i�A1;1Ce01; B1;1Se1; i�A1;3Ce03; B1;3Se3; : : :

A1;1Ce1; i�B1;1Se01; A1;3Ce3; i�B1;3Se03; : : :

i�A3;1Ce01; 3B3;1Se1; i�A3;3Ce03; 3B3;3Se3; : : :

3A3;1Ce1; i�B3;1Se01; 3A3;3Ce3; i�B3;3Se03; : : :

..
.

..
.

..
.

..
.

..
.















D 0; (13.60)

where the indices m; n have been omitted as before. This is yet a third form of
the dispersion relation from which the frequency is computed. This is Goldstein’s
[7] method to compute the eigenfrequencies of the gravitational seiche in an ellip-
tical container of constant depth. The method is directly applicable to the modal
equations of the stratified fluid, if the subscript n is recovered in the notation.

Goldstein15 describes briefly the way, how approximations to the solutions of
(13.60) are obtained. The computations – all done by hand and without tables of the
Mathieu functions being available – must have been enormous, and the author and
his wife, who participated, deserve our greatest admiration for the results achieved.
If �m is the determinant formed from the first 2m rows and columns of (13.60),
successive approximations for a are obtained by putting �1 D 0;�2 D 0; : : : .
Values for ˇ D S�2n and b=a, the ratio of the major to the minor semi-axis, were
chosen. (Note, with b=a D tanh �0 also �0 is fixed and with it " D sech �0 and

15 For a biographical sketch see Fig. 13.7.
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Fig. 13.7 Sydney Goldstein (1903–1989) (photo from http://www.annualreviews.org/). Left:
The Taylor-Goldstein equation describes the dynamics of internal waves in the presence of a
(continuous) density stratification and shear flow. A schematic diagram shows the base flow
which is parallel to x axis, subject to a small perturbation away from this state which has com-
ponents in both x and z directions (http://en.wikipedia.org/).

Sydney Goldstein (3 December 1903, Kingston-upon-Hull; 22 January 1989, Cambridge,
USA) took his basic education at Bede School in Sunderland. He started his higher educa-
tion at the University of Leeds in 1921, where he studied mathematics, but moved to St. John’s
College, Cambridge, graduating from the mathematical Tripos 1925 and gaining the Smith’s
Prize in 1927. He was awarded an Isaac Newton Studentship to continue research in applied
mathematics and completed his Ph.D under Harold Jeffreys with a thesis entitled ‘The theory
and application of Mathieu functions’ in 1928. With a Rockefeller Research Fellowship he
then spent a year at the University of Göttingen with Ludwig , where he performed laboratory
experiments of a fluid in a rotating elliptical container described in this book.

In 1929, Goldstein returned to Cambridge, but accepted in the same year a lectureship in
mathematics at the University of Manchester. Manchester had a profound influence on Gold-
stein through the heritage of Osborne Reynolds and Horace Lamb. He moved to Cambridge
again in 1931 and took over, on Lamb’s death, the edition of ‘Modern Developments in Fluid
Dynamics’ which appeared in 1938. He was elected Fellow of the Royal Society in London in
1937. During World War II, Goldstein worked at the National Physical Laboratory where he
worked on boundary layer theory. In 1945, Goldstein moved again to the University of Manch-
ester, where he assumed the chair of Applied Mathematics.

In 1950, Goldstein, who was of strong Jewish belief, accepted the chairmanship of the math-
ematics department of the Technion at Haifa, but resigned 1955, owing to the administrative
overload, and took the chair of Applied Mathematics at Harvard University, Cambridge, USA.

Goldstein was a very influential fluid dynamicist and best known for his work on steady flow
laminar boundary layers and turbulent resistance to rotation of a disk in a fluid. His work in
aerodynamics and its influence led Sir James Lighthill to say that he was one of those who
most influenced progress in fluid dynamics during the twentieth century’.

The text is based on:

http://en.wikipedia.org/wiki/Sydney_Goldstein and

J. Lighthill: Sydney Goldstein, Biographical Memoirs of Fellows of the Royal Society of
London, 36, 175–197 (1990).

http://www.annualreviews.org/
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Sydney_Goldstein
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Table 13.5 Eigenvalues  obtained by putting�2 D 0 for the indicated values of ˇ and b=a (from
Goldstein [7])
ˇ

ˇ ˇ ˇ b=a 1 2
3

1
3

0

a 1.59 1.75 1.81 1.83

0.225
!

f
3.50 3.82 3.94 3.98

!ap
ghn

1.66 1.81 1.87 1.89

a 0 0.925 1.20 1.25

2.0
!

f
1.0 1.19 1.31 1.33

!ap
ghn

1.41 1.69 1.86 1.89

a 0

2.728
!

f
1.00

!ap
ghn

1.65

a 0

3.356
!

f
1.00

!ap
ghn

1.89

a 0

3.556
!

f
1.00

!ap
ghn

1.89

a 2.10i 1.90i 1.70i 1.56i

6
!

f
0.51 0.63 0.72 0.77

!ap
ghn

1.26 1.55 1.76 1.89

therefore q D 2a2"2=32.) A selection of solutions, obtained by evaluating�2 D 0,
is collected in Table 13.5.

For ˇ D 2 and b=a D 2=3, the solution of �2 D 0 gave a D 0:9252; � D
!=f D 1:19 and !a=

p
ghn D 1:69. This also led to a" D 0:69, and then

a" � cosh � varies from 0.69 to 0.925 in the basin. The pressure p� which, for
the homogeneous fluid, is proportional to the surface displacement can then be
calculated (modulo an arbitrary factor).

Having determined the eigenfrequencies, (13.58) can be used to determine for
each �` the coefficients ˛` and ı` (up to a scaling factor), and once these are known,
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the pressure p�
`

can be computed. For the homogeneous fluid this pressure equals
the surface displacement (modulo a scaling factor). This function was plotted by
Goldstein for a� cosh � D 0:7; 0:8; 0:9; 0:925 and � D 0; 15; 30; : : : ; 90ı. If p is
written as

p D � � exp .�i�/; (13.61)

then �` cos.!`t � �/ is the surface elevation (modulo a scale factor). ‘The corange
lines16 are �` D const: and the cotidal lines are the lines � D const: The corange
and cotidal lines were plotted by Goldstein for the above values of � and �. They
are shown in Fig. 13.8, in panel (a) for the first positive wave and in panel (b) for
the first negative wave. For a circular basin they are circles and straight lines. For
vanishingly small breadth the range is zero on the minor axis, the co-range lines are
hyperbolas across the canal, and each half of the canal is cotidal (i.e. the two sides
of the minor axis are in counter phase).

Panel (b) of Fig. 13.8 shows the corange and cotidal lines for the first negative
mode (i.e. a mode propagating clockwise around the amphidromic point in the cen-
tre of the ellipse). (This mode has a D 2:8180, !=f D 2:23, !a=.ghn/1=2 D
3:15, a" cosh � 2 .2:1036; 2:8180/). For this mode the tendency, with decreasing
breadth, is for the amplitude at the end of the major axis to vanish, for the co-range
lines to stretch along the basin, and for the co-tidal lines to crowd towards the major
axis. The amplitude at the end of the minor axis is already more than three times as
big as that at the end of the major axis’.

With the pressure p�
`

determined by (13.53), the velocity components (parallel
to the coordinate hyperbolas and ellipses) can be obtained with the aid of (13.49)
and (13.50). This process then yields

u�
`n
.�; �/ D .u�Ref/n

˚
i!
�
˛`nCe

0
`n
.�; q`n/ce`n.�; q`n/

C ı`nSe
0
`
.�; q`n/se`n.�; q`n/

�C f
�
˛`nCe`n.�; q`n/ce

0
`n
.�; q`n/

C ı`nSe.�; q`n/se
0.�; q`n/

�

;

v�
`n
.�; �/ D .u�Ref/n

˚�f �˛`nCe0`n.�; q`n/ce`n.�; q`n/
C ı`nSe

0
`n
.�; q`n/se`n.�; q`n/

�C i!
�
˛`nCe`n.�; q`n/ce

0
`n
.�; q`n/

C ı`nSe.�; q`n/se
0.�; q`n/

�

;

(13.62)

where

.u�Ref/n D
p
2ghn

.!2 � 1/�
p

cosh 2� � cos 2�
: (13.63)

The transformation of these modal variables (subscript n) to the layer variables (sub-
script j ) is given by Lighthill [10] for a n-layer model and for n D 3 by Antenucci

16 This text follows Goldstein [7], but not in all details word by word.
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Fig. 13.8 Elliptical container of constant depth. (a) Corange and cotidal lines for the first positive
wave. The full lines give the cotidal lines � D const: and the dashed lines the corange lines
� D const:, where � cos.!t � �/ is the tide height. The cotidal lines are drawn at intervals of 15ı,
as shown. Figures near the corange lines give the relative amplitude. The arrow shows the direction
of the rotation of the basin. The figure is drawn for b=a D 2=3, where a is the major semi-axis, b is
the minor semi-axis, ˇ D S2n D .f a/2=.ghn/, f is the Coriolis parameter, g the acceleration due
to gravity, and hn the equivalent depth (D H for a homogeneous fluid). (b) Corange and cotidal
lines for the first negative wave. As in (a), the full lines give the cotidal lines and the dashed lines
the corange lines as before (redrawn from Goldstein [7]). c� Royal Astronom. Soc., reproduced
with permission
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and Imberger [4], following earlier work by Csanady [6] and Monismith [11]

Lu�j D
3X

nD1

Anj

det.anj /
u�n;

Lv�j D
3X

nD1

Anj

det.anj /
v�n;

��j D
3X

nD1

Bnj

det.bnj /
p�n ;

(13.64)

of the velocity vector in layer j , and �j , which is the upper interface displace-
ment of layer j . Furthermore, .anj / and .bnj / are square matrices (as given below)
and Anj ; Bnj are the cofactors of .anj / and .bnj /. The index i D 1 refers to the
barotropic solution and �1 is the surface displacement; i D 2; 3 refer to the first and
second vertical baroclinic modes. For the three-layer model, the matrices .anj / and
.bnj / are given by

.a/ D

2

66
6
6
6
6
4

�H2 �H3 C "23
H2H3

h1
C h1 H2 � "23H2H3

h1
H3

�H2 �H3 C "23
H2H3

h2
C h2 H2 � "23H2H3

h2
H3

�H2 �H3 C "23
H2H3

h3
C h3 H2 � "23H2H3

h3
H3

3

77
7
7
7
7
5

(13.65)

.b/ D

2

66
6
6
6
4

a11

H1

a12

H2
� a11

H1

a13

H3
� a12

H2
a21

H1

a22

H2
� a21

H1

a23

H3
� a22

H2
a31

H1

a32

H2
� a31

H1

a33

H3
� a32

H2

3

77
7
7
7
5
; (13.66)

where

"ij D 1 � �i

�j
; .i; j;D 1; 2; 3; i 6D j / (13.67)

and

h1 D H;h2 D H

2
Œ	 C .	2 � 4ı/1=2�;

h3 D H

2
Œ	 � .	2 � 4ı/1=2�;
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	 D 1

H 2
."12H1H2 C "23H2H3 C "13H1H3/:

ı D 1

H 3
"12"23.H1H2H3/: (13.68)

H is the total depth,Hj , .j D 1; 2; 3/, are the layer depths and hn are the equivalent
model depths.

For a two-layer model

.a/ D

2

6
6
4

H1 � "12H1H2
h1

H2

H1 � "12H1H2
h2

H2

3

7
7
5;

.b/ D

2

6
4

a11

H1

a12

H2
� a11

H1
a21

H1

a22

H2
� a21

H1

3

7
5;

(13.69)

h1 D H D H1 CH2; h2 D "12
H1H2

H1 CH2
: (13.70)

Antenucci and Imberger [4] determined explicitly two layer solutions for an ellipti-
cal container, which approximates the geometry and stratification of Lake Kinneret.
The ellipse best matching the lake bathymetry has a D 7:5 km, b D 5:0 km, as
shown in Fig. 13.3; it has its central point at (35.51ıN, 32.70ıE), for which f D
7:81 � 10�5 rads�1. Antenucci and Imberger [4] also list the layer depths and tem-
peratures inferred from the measuring periods I–III in 1998, and the phase speeds
c1 and c2 of the V1 Kelvin-type and V1 Poincaré-type seiches, see Tables 13.1 and
13.2. Figure 13.9 displays the isopycnal displacements and velocity distributions
for these two seiche modes. Rows [(a), (b)] and [(c), (d)] in column (i) show the
interface displacements at an (initial) time and a quarter period later, the intensity
of the shading indicating the magnitude of the displacement on a scale as indicated
on the scale bar. In columns (ii) and (iii), the corresponding velocities in the top
and bottom layers are displayed, in the rows [(a), (b)] and [(c), (d)] a quarter period
apart from one another. In the panels of the top two rows, the largest velocities
are near the boundaries and essentially parallel to these, and the motion is cyclonic
(counter-clockwise on the N.H.) both for the interface and the off-shore velocities.
This cyclonic rotation is easily seen in the interface displacements; in the veloc-
ity snapshots it is conspicuously seen close to the minor axis but not at the long
ends of the ellipses. Here, at the long ends, the velocity snapshots suggest closed
elliptical particle orbits. When comparing this with the Taylor solution [18] in long
rectangles a close analogy to Kelvin-type behaviour away from the long ends and
Poincaré-type behaviour close to the long ends seems to prevail.

In rows [(c), (d)] of Fig. 13.9, the analogous results are shown for the vertical
mode one, azimuthal and radial mode one Poincaré seiche. Column (i) again dis-
plays the interface displacement (scaled to sizes from �1.5 to C1.5) one quarter



146 13 Basin-Scale Gravity Waves in Circular and Elliptical Containers

Fig. 13.9 Interface displacements (column (i)) and velocity distributions in the top layer (column
(ii)) and the bottom layer (column (iii)) of a two-layer fluid in an elliptical container with constant
depth. Rows [(a), (b)] show the vertical mode one, and azimuthal and radial mode one .`; mK; n/D
.1; 1K; 1/ interface and velocity distributions at an initial time and a quarter period T=4 later,
reminiscent of Kelvin-type behaviour. Rows [(c), (d)] show the same for the vertical mode one,
azimuthal and radial mode one .`; mP; n/D .1; 1P; 1/ lowest order Poincaré-type seiche (redrawn
from Antenucci and Imberger [4]). Copyright 2000 by the American Society of Limnology and
Oceanography, Inc, reproduced with permission
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period apart from one another. These now indicate anticyclonic (clockwise) rota-
tion. The corresponding velocity distributions, displayed in columns (ii) and (iii),
have the largest magnitude in the middle of the basin and equally show an anti-
cyclonic rotation and counter-phase behaviour in the top and bottom layers. The
velocities at the boundaries are small and parallel to the shore. This behaviour is
reminiscent of Poincaré behaviour and is therefore justly called Poincaré-type.

13.8 Experimental Verification

Matching the periods and phase speeds of the .`;m; n/ D Œ.1; 1K; 1/; .1; 1P; 1/�

modes for Lake Kinneret has been done by Antenucci and Imberger [4] for both the
circular and elliptical containers. This was shown already in Sect. 13.4 by compar-
ing observations of isotherm–depth–time series with corresponding results from the
circular basin adjusted to Lake Kinneret. Comparing this with results obtained with
the elliptical model of Lake Kinneret corroborated qualitatively the same behaviour,
but did not indicate any substantial improvement. In a way, this is no great sur-
prise, since the simple circular and elliptical containers were both designed to best
reproduce the measurements with computed information, postulated to correspond
to some measured information collected at isolated points. Given this experimental
evidence, which is still limited when measured on the complexity of the phenom-
ena, marginal improvement with the only slightly more complex geometry is to
be expected. To obtain a quantitatively better coincidence, a better adjustment to
the geometry of the lake, and probably also better resolution of the stratification as
well as denser deployment of instrumentation is necessary. The latter may often be
economically impossible, the former requires computational expertise.

An independent experiment for a homogeneous fluid in an elliptical container
with vertical side walls was conducted by Goldstein himself and is reported in 1929
[7]. In the following, his text is reproduced below, since it is so unusual for the time
more than 80 years ago and reports verification of the model by a simple labora-
tory experiment. Goldstein, after describing the mathematical solution of the gravity
seiche problem with the help of Mathieu functions essentially in the above form –
continues and states:

‘The calculations above were completed while I was at the Kaiser Wilhelm Institut für Strö-
mungsforschung in Göttingen, and an experimental test of the results for free oscillations
was possible by making observations in the rotating chamber there.17

A wooden bath of elliptical shape with vertical walls was used. The length was 91.1 cm and
the breadth 60.5 cm, so that the ratio of the axes was nearly 2:3. The bath, which stood on
three legs, was placed with its centre on the axis of revolution of the chamber. (All apparatus
must, of course, be screwed down fast.) It was filled with water to the required depth, the
chamber was set in rotation, and when the water was at relative rest the oscillation to be

17 The rotating chamber has been described by Prandtl in Die Naturwissenschaften [14]. It gives
me much pleasure to record here my thanks to Professor Prandtl for permission to use this chamber.
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studied was produced by gentle up-and-down motion (by hand) of a bottle with a flat bottom
of diameter of 15 cm. With a little practice it became easy to bring the motion of the bottle
into resonance with the oscillation to be studied, and waves of quite large amplitude could
be obtained by a very gentle motion. (The method was suggested by Professor Prandtl.) In
this way the first positive and the first negative wave could be produced.

Observations were taken with two different depths and, in addition to those made with the
chamber at rest, at five different speeds of rotation (roughly 5, 10, 15, 20 and 25 revolutions
a minute), the period of the positive wave only being observed at the highest speed. The
periods of the positive and negative waves were measured, and also, by means of scales
fastened vertically to the walls at the ends of the axes, the ratio of the amplitude at the end
of the major axis to that at the end of the minor axis.

The bath had not been specially prepared for the experiment and its shape was not exactly
elliptical. The main influence of the slight departure from the elliptical shape is on the ratio
of the amplitude at the ends of the axes, the observation of which was in any case rough,
and not on the period. On the other hand the depth was not constant (to have constant depth
a special bottom, following the curvature of the free surface, would be necessary for each
speed of revolution), and this may have an appreciable effect on the period. Actually, the
depth was not constant even when the chamber did not rotate, but varied by as much as 1 cm.
The dynamically equivalent constant depth is not necessarily the same as the mean depth
over the whole area. The procedure adopted was to choose that value of the depth which
makes the observed period (after reduction to allow for finite depth, as below) agree with the
theoretically calculated period for the slowest of all the normal oscillations when the cham-
ber was at rest; and then to calculate with this depth throughout. The depths as calculated
in this way were 10.5 cm and 7.2 cm for the two series of observations, respectively.

The period of rotation of the chamber could be obtained as accurately as desired by means
of a stop-watch and a bell striking once in every revolution. The periods of the oscillations
were found by timing 30 oscillations on the stop-watch, and not less than three sets of
observations were taken. The difference between two observations did not exceed 0.5%. for
no rotation, and 2%. at the higher speeds. The values of ˇ were calculated from the observed
periods of rotation of the chamber, and the values of �a=.gD/1=2 from the observed periods
of oscillation.

The values calculated from tidal theory hold on the assumption that .D=a/2 can be
neglected, and some correction is necessary for finite depth. For no rotation, this is a simple
matter. If, according to tidal theory, �=.gD/1=2 is k, then for finite depth

�2 D gk tanh.kD/; (1)

where k has the same value as before.18 Hence, approximately,

�2=.gD/ D k2.1� 1
3
k2D2/; (2)

and
�=.gD/1=2 D k.1� 1

6
k2D2/: (3)

Hence, if f denote the value of �a=.gD/1=2 as found from observation for finite depth, the
value, ka, of �a=.gD/1=2 according to tidal theory will be approximately19

18 Lamb [9]: Hydrodynamics, chap IX, p 440, 6th edition (1932).
19 The above text is reproduced as exactly as possible from Goldstein. In the terminology of this
book ‘tidal theory’ can be identified with the ‘shallow water theory’, and Goldstein’s .ˇ; �;D/ are
our ..f a/2=.ghn/; !; hn/. Furthermore, his ! is our f=2 and his wavenumber k is our . To avoid
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kaD f .1C 1
6
f 2D2=a2/: (4)

When the free surface is curved, the matter is not so simple even when the bottom follows
the curvature of the free surface. If

p0 D p � f
2

8
.x2 C y2/C g�z; (5)

where p is the pressure, then u and v are given by

�
p

cosh 2� � cos 2�p
2gD

u D 1

�2 � f 2

�
i�
@p0

@�
C f @p

0

@�

	
;

�
p

cosh 2� � cos 2�p
2gD

v D 1

�2 � f 2

�
�f @p

0

@�
C i�

@p0

@�

	
;

[in which p0 replaces the surface displacement �] and p0 satisfies the equation

@2p0

@x2
C @2p0

@y2
C !2 � f 2

!2
@2p

@z2
D 0: (6)

The boundary conditions are

@p0

@z
D 0; at z D �D C f 2

8g
.x2 C y2/; (7)

and

�2p0 D g
@p0

@z
; at z D f 2

8g
.x2 C y2/; (8)

together with the vanishing of the normal velocity at the bounding walls. If we neglect the
curvature of the surface, then we may take p0 proportional to cosh.k.zCD//, and p0 sat-
isfies the same equation and boundary condition as � in tidal theory, with k D �=.gD/1=2.
Also, (8) then leads to the same (1) as for no rotation, and we have the same correction
formula as before.

confusion we shall write Goldstein’s formulae with ! replaced by f=2. His formulae (2) and (3)
are obtained from two-term Taylor series expansions of tanh.kD/ in (1), which is the dispersion
relation of a plane wave in a finite depth fluid on an inertial frame. Moreover, solving (3) for ka
yields

kaD �ap
gD

1

.1� 1
6
k2D2/

Š �ap
gD

�
1C 1

6
k2a2

D2

a2

	
:

One solution to this quadratic equation can be obtained by the recurrence relation

.ka/nC1 D f

�
1C 1

6
.ka/2n

D2

a2

	
; .ka/0 D f

.ka/1 then corresponds to formula (4).
To understand formula (5), it must be recognized that a steady free surface in the rotating

chamber possesses the form of an axisymmetric paraboloid. The free surface is therefore positioned
at z D .2f=g/.x2 C y2/, and the overburden pressure is given by �gz� 2.f=g/.x2 C y2/. (z is
measured upward from the position of the free surface at the rotation axis.) Thus, the dynamical
pressure is as given in (5).
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Fig. 13.10 Speeds of the first positive (Kelvin-type) wave. ˇ, calculated values: �, observed
values (corrected for the effect of finite depth) for D D 10:5 cm.; ˝ observed values (corrected
for the effect of finite depth) for D D 7:8 cm. The ordinates are �a=.gD/1=2, the abscissas are ˇ.
D is the depth, supposed constant, which makes the calculated and observed periods of the slowest
wave agree when there is no rotation (redrawn from Goldstein [7]). c� Royal Astronom. Soc.,
reproduced with permission

The formula (4) was then used in all cases to correct for the influence of finite depth.
The results are shown in Figs. 13.10–13.12. For the positive wave the agreement between
the observed and calculated values is quite as good as could be expected. Comparison of the
single calculated value for the negative wave with the experimental values suggests that the
method of calculating the depth leads to an error of about 3–5%. Apart from this the results
give satisfactory support to the theory.

Another supposition of tidal theory is that the amplitude is small compared with the depth.
Observations of the period with different amplitudes showed no systematic change.

For the first positive wave the ratios of amplitudes at the ends of the axes are shown in
Fig. 13.11. The observations are in any case difficult, and are made more difficult by the feel-
ing of dizziness consequent upon moving the head in the rotating chamber. Two observers
were necessary, so that the amplitudes at the end of the axes could be observed simultane-
ously. The possible experimental error is about 6%. The agreement between the observed
and calculated results is certainly as good as could be expected.

Small pieces of paper at the bottom of the bath near the centre could be observed to describe
elliptic orbits in the same direction as the wave, and the orbits gradually opened out as the
rotation was increased, but no measurements were attempted’.

This is Goldstein’s description of his laboratory experiments on lowest mode
gravity seiches in an elliptical container of constant depth. Apart from the consci-
entious determination of the frequencies of the slowest positive (Kelvin-type) and
negative (Poincaré-type) frequencies and amplitude ratios of the surface elevations
at the boundaries of the major and minor axes, he states one additional significant
observation in the very last paragraph above: To repeat, particle orbits close to the
bottom in the centre are elliptical, and they are traversed in the direction of the
wave, i.e. cyclonically for the one-mode Kelvin-type waves and anti-cyclonically
for the mode-one Poincaré-type waves. This parallels the similar behaviour already
mentioned for Kelvin-type and Poincaré-type waves when treating such waves in the
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Fig. 13.11 Ratio of amplitudes at ends of major and minor axes in first positive wave. ˇ, cal-
culated values; �, observed values (redrawn from Goldstein [7]). c� Royal Astronom. Soc.,
reproduced with permission

Fig. 13.12 Speeds for first
negative Poincaré-type wave.
The meaning of the symbols
and signs for observed and
calculated points are the same
as in Fig. 13.10 (redrawn
from Goldstein [7]).
c� Royal Astronom. Soc.,

reproduced with permission
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circular cylindrical basin. Particle motions for Kelvin-type waves are only to-and-fro
in a basin whose aspect ratio fulfils the limit b=a ! 0.

13.9 Discussion

Gravity driven oscillations in rotating circular and elliptical basins of uniform depth
were studied on the basis of the shallow water theory. One of the aims was to
see whether wave structures similar to Kelvin and Poincaré waves in constant
depth channels were also exhibited by the governing shallow water equations in
closed basins of cylindrical and elliptical shape. A second goal was to verify the
corresponding mathematical solutions by some laboratory and field experiments.
Considerations were limited to constant depth basins (and vorticity waves were
thereby excluded), since the vertical and horizontal motions could be separated this
way by solving the eigenvalue problem for the vertical motion first (and so charac-
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terizing the barotropic and baroclinic dynamics due to the stratification), followed
in a second step by the horizontal wave problem leading to a second eigenvalue
problem for the horizontal modal structure. This separation of variables procedure
is best formulated in terms of the perturbation pressure as independent variable.

Starting with the circular cylindrical geometry, the horizontal eigenvalue problem
could be expressed in terms of ordinary and modified Bessel functions. Ordinary
Bessel functions apply if the eigenfrequencies are super-inertial, !2 > f 2, whilst
modified Bessel functions are solutions for sub-inertial frequencies,!2 < f 2. How-
ever, Lamb has shown that sub-inertial wave solutions only exist if the azimuthal
mode number ` satisfies the inequality

r20 f
2

g hn
> `.`C 1/: (13.71)

This is tantamount to exponentially decaying behaviour of the radial structure as
one moves away from the container wall towards the cylinder centre. When (13.71)
is not valid, solutions are expressed in terms of ordinary Bessel functions which
are oscillatory in the radial direction. This property is reminiscent of complete and
incomplete reflection in Taylor’s patching of gravity wave solutions in oblong rect-
angles. Kelvin-type and Poincaré-type behaviour is indeed also borne out by the
velocity distribution in the two cases and the parity of the rotation of the gyring
flow: if (13.71) is satisfied, the largest azimuthal velocities arise close to the cylinder
wall with cyclonic (counter-clockwise in the N.H.) rotation of the surface (interface)
elevation and the central velocity vectors. On the other hand, if (13.71) is violated,
the largest velocities arise in the central region and the surface (interface) eleva-
tion and central velocity vectors rotate anti-cyclonically (clockwise on the N.H.),
see Fig. 13.2. However, when tracing fluid particle trajectories, these trajectories are
compact closed curves, circular in the centre and elliptical with decreasing semi-
minor axis as one move from the centre of the container towards the outer wall. This
is unlike Kelvin behaviour in straight channels. Analogously, similar closed trajec-
tories are exhibited by super-inertial modes, but the particles now traverse them in
the clockwise direction. It is certainly the compactness of the container geometry
that is responsible for this behaviour.

This Kelvin-type and Poincaré-type behaviour can also be observed in gravity
modes in elliptical containers with constant depth. The horizontal eigenvalue prob-
lem can now be formulated in terms of Mathieu functions and the eigenvalue
problem is expressed in terms of a structurally complex characteristic equation (a
determinant of an infinite square matrix must be set to zero). For a homogeneous
fluid in an elliptical container of aspect ratio b=a D 2=3 (b semi-minor axis, a semi-
major axis), the first positive and first negative amphidromes are plotted in Fig. 13.8
as computed by Goldstein [7]. Antenucci and Imberger [4] determined the inter-
face elevation and layer velocity distributions in a two layer fluid for the baroclinic
first positive and first negative mode solutions. Figure 13.9 corroborates the same
qualitative results as obtained for the corresponding solutions in the circular basin.
The Kelvin-type mode exhibits high amplitudes and large velocities close to the
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container wall, and both rotate cyclonically (counter clockwise on the N.H.). Alter-
natively, the Poincaré-type mode has large velocities close to the container centre,
smaller velocities near the outer boundaries and anti-cyclonic rotation (clockwise
on the N.H.) of velocity and interface elevation. Furthermore, particle trajectories
are now elliptical with eccentricity influenced by the aspect ratio of the container
geometry, relatively fat in the centre and reduced to a double line at the boundary.
This behaviour has not been characteristic for Kelvin waves in straight channels.
The denotations Kelvin-type and Poincaré-type account for exactly this difference.

The application of this elliptical mode analysis to Lake Kinneret is not an attempt
of corroboration of the correctness of the model; this is assumed, and use of the
elliptical seiche model for this lake is an attempt of perhaps reasonable fitting.
A proof of its adequacy must be performed with an elliptical container of con-
stant depth on a rotating table. This corroboration has been nearly (the container
was only nearly elliptical and the water depth was only nearly constant) provided
by Goldstein [7] by laboratory experiments in the rotating chamber of the Kaiser
Wilhelm Institut in Göttingen. Goldstein used a container with a 2=3 aspect ratio
and measured for a homogeneous fluid the period of the first positive Kelvin-type
and first negative Poincaré-type modes and the surface elevation amplitudes for dif-
ferent rotation speeds and compared these with his theoretical results. These are
given in Figs. 13.10–13.12 and are convincing.
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Chapter 14
Barotropic and Baroclinic Basin-Scale Wave
Dynamics Affected by the Rotation of the Earth

14.1 Introduction

We have already given a detailed description of rotation affected external and
internal waves in idealized containers of constant depth: straight channels, gulfs,
rectangles and circular and elliptical cylinders. Pure Kelvin and Poincaré waves
were shown to describe the oscillating motion in straight channels and their com-
bination yielded the solution of the reflection of the rotation affected waves at
the end wall of a rectangular gulf. The typical characterizations of Kelvin and
Poincaré waves were seen to prevail (with some modification) in the fluid motion
of rotating circular and elliptical cylinders with constant depth. The behaviour
was termed Kelvin-type if for basin-scale dynamics the amplitudes of the surface
and isopycnal displacements and velocities are shore-bound (i.e. large close to the
boundaries and smaller in the interior of the basin), the motion cyclonic (that is
counter-clockwise on the N.H.) and frequencies sub- or (less often) superinertial.
Alternatively, for Poincaré-type behaviour, the surface and isopycnal displace-
ments and velocities have large amplitudes in off-shore regions, their motion is
anti-cyclonic and frequencies are strictly superinertial.

In this chapter, we will demonstrate that such behaviour can be seen in all lakes
which are sufficiently large, that the rotation of the Earth can exercise a modulating
effect on the oscillating gravity affected motion. We will treat both surface seiches in
homogeneous lakes and internal basin-scale oscillations of stratified lakes and con-
centrate on field data which demonstrate convincingly the role played by the rotation
of the Earth. Along with this, results obtained from models are presented and com-
pared with the data; these then provide validation of the model in use, generally not
completely because either the model is over-simplifying the physical situation or
the data are insufficient to verify with certainty a certain claim of behaviour. In gen-
eral, inferences derived from such comparisons of models and observations provide
probabilities for certain interpretations, not exact facts.

On the observational side, one almost always has insufficient information, be this
lack of instrumentation, insufficient planning of field campaigns, or lack of avail-
ability of obvious data, e.g. incomplete knowledge of the bathymetry, wind field
which is insufficiently resolved in space and time, failures in correctly deploying

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_14, c� Springer-Verlag Berlin Heidelberg 2011

155



156 14 Barotropic and Baroclinic Basin-Scale Wave Dynamics

instruments or failures in recording data, let alone unexpected general weather
conditions that may turn out not to be ideal for the intended measurements, etc.
These conditions are the usual constraints with which field limnologists must cope.
Failures in this regard cannot be avoided; they must be minimized by adequate
planning. Very often, data at different positions are taken episodically and not syn-
optically, which makes correlation of measured quantities in form of time series
difficult or doubtful. Synoptic measurements which cover entire lake basins with
sufficiently dense deployment of instruments are expensive and therefore rare. A
few synoptic field campaigns have been performed in the last 40 years or so, but
often, one is forced to work with data which only provide partial information for the
corroboration of a certain conjectured behaviour.

On the modeling side the simplifying assumptions affect and, perhaps, falsify the
interpretation of, and comparison with, the data. External and internal oscillations
in lakes are mostly modeled with field equations in the adiabatic and Boussinesq
assumptions; they then ignore dissipation and cannot provide information about
decay rates of, e.g. pycnocline-displacement-time series. Moreover, the parameteri-
zation of the ground stratification is generally fraught with rather drastic simplifying
assumptions. The continuous vertical density variation is nearly always replaced by
dividing the lake into horizontal layers, each having its own constant density, some-
times paired with the assumption of a constant total depth. In a two-layer model,
only the barotropic and the fundamental baroclinic wave modes can be reproduced;
in an n-layer model only .n � 1/ baroclinic wave modes can be determined. The
decision for the choice of n (usually n D 2, seldom n D 3 or even more) and
whether the variable depth bathymetry is approximated by a mean constant depth
are a priori estimates, which can be, and for n D 2, have occasionally been, shown
to oversimplify the situation. A similar simplification is often introduced in n-layer
models when the lake region with fewer than n layers is ignored, and the lake bound-
ary is identified with the intersection of the upper surface of the deepest layer with
the bottom surface.1 It seems to be clear that for these a priori estimates, because
they are subjective, no rational measures for error estimates can be defined.

On the numerical side, further errors are introduced simply by the selection of the
numerical scheme (FD, FV, FE, spectral) and the choice of the approximation (grid
size, order of approximation). The accuracy of these is generally well defined by the
functional setting of the numerical model in relation to the initial boundary-value
problem that is approximated. In concrete cases of failure of an adequate matching

1 These various approximations are sometimes denoted by acronyms: Two-layer variable depth
model (TVDM); two-layer equivalent depth model (TEDM), when both layers have constant depth
and the computation domain is bounded by the (vertical) thermocline shore, which is the intersec-
tion of the interface between the epilimnion and hypolimnion layers (with constant densities) and
the bathymetric surface. In this case, the barotropic and baroclinic responses follow from single
layer models with equivalent depth. If this equivalent depth description is not introduced, and the
primitive equations of the two-layer constant depth model are solved, then the TCDM is used. If
the regions of the two-layer model with only one layer are included in the model, then the model
is called TVDMC, in which the ‘C’ stands for ‘complete’. Similarly, for three-layer models the
acronyms THVDM, THEDM, THCDM and THVDMC are used.
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of theory, numerics and observation, scrutiny of the cause(s) is vital. It may be any
of the three above named classes, perhaps several of them.

The literature on gravitational surface seiches is abundant and proper reference
can hardly be made. Most lakes are, however, not sufficiently large that the rota-
tion of the Earth would in any even marginal form, play a role in the oscillation
characteristics of homogeneous lakes.2

The Great Lakes, the Baltic Sea, the (semi)-bounded ocean basins (say, Adriatic
Sea in the Mediterranean Sea, Black Sea, Lake Baikal, the Caspian Sea) are safe
candidates where the rotation of the Earth plays a significant role. References on
these are by Mortimer [35, 37, 38], in particular with emphasis on Lakes Michigan
and Superior by Mortimer and Fee [42] and Mortimer [41], on Lake Erie by Platz-
man [44] and Platzman and Rao [50], on Lakes Ontario and Superior by Rao and
Schwab [52] and on Lake Huron by Schwab and Rao [57]. Platzman [48] reports
on a barotropic seiche analysis of the Atlantic and Indian Oceans and [49] and on
gravitational seiches of the entire World Ocean.

14.2 Barotropic Basin-Wide Oscillations
of Lake Michigan

The likely most thorough analysis of free surface motions of a lake is Mortimer
and Fee’s 1976 [42] analysis of the ‘Free surface oscillations and tides of Lakes
Michigan and Superior’. The strengths of this paper are the most carefully con-
ducted spectral analyses ‘from records of water levels at nineteen shoreline stations
on Lakes Michigan, Huron and Superior. Power spectra from 95 station data sets and
128 spectra of interstation coherence and phase difference were prepared. These
spectra have been used to (1) identify the first five free gravitational, barotropic
modes (surface seiches) of the three basins; (2) estimate the corresponding seiche
frequencies for the three lakes; (3) determine for some modes, the phase progres-
sion around the basin imposed by the Earth’s rotation; and (4) speculate on the
structure of other oscillations, including diurnal and semi-diurnal tides’, Mortimer
and Fee [35]. This work, complemented by theoretical-computational analyses of
the barotropic seiches on the rotating Earth was later summarized in the book ‘Lake
Michigan in Motion’ by Mortimer [41], in which many of the above mentioned
papers are referenced.

The computational possibilities in the 1950–1970s of the twentieth century, the
times when this kind of research was primarily conducted, were in their beginnings.

2 The pioneering work on seiches in which the rotation of the Earth does or does not play a role is
that of Forel [16] on Lac Léman (Lake Geneva); it stimulated the work of Chrystal [10,11]. A very
detailed early bibliography is given by Tison and Tison [64] with over 200 references. More recent
surface seiche papers, in which the rotation of the Earth does not play a role, are by Bäuerle et al.
[5] Hamblin and Hollan [19], Hollan [21, 22], Hutter et al. [27, 28] and Hutter [25, 26]. For further
information, consult Chaps. 15–18. Surveys are given by Mortimer [40] and Platzman [46, 47].
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Computation of the eigenvalue problems for the barotropic seiches on the rotating
Earth for natural basins was virtually impossible in the 1950s – Defant’s Kelvin
wave dynamic solutions were the only approach to construct the amphidromies in
(only elongated) basins, see Defant’s, [14], construction of the amphidromies of the
lowest two barotropic modes for Lake Michigan, Fig. 14.1 – and difficult and likely
inaccurate in the seventies, because of the rather coarse resolution of the numerical
grid.

Figure 14.1 illustrates Defant’s [14] construction of the first two modes of Lake
Michigan’s surface seiches with periods of 9.05 and 4.88 h, respectively. These
modes possess one and two positive amphidromes, and the rotation of the Earth pro-
duces a cross basin oscillation that processes together with the longitudinal motion
but lags behind the latter by a quarter period, together forming a counter-clockwise

a b

Fig. 14.1 Lake Michigan surface seiches. Amphidromic systems of the fundamental, L1, and
second, L2, longitudinal modes, illustrated by Defant’s model [14] with model predicted periods
9.05 and 4.88 h. Dashed co-range lines display surface elevation ranges relative to 100 at MC. Solid
co-phase lines, radiating from the amphidromic points (black spots) of zero elevation change show
the counter-clockwise progression of high water at 30ı intervals relative to 0ı at MC. Note, the
Lake bathymetry here ignores the basin appended Green Bay. Corresponding progression in hours,
for the 9-h L1 seiche mode, is shown within round parentheses. The square bracketed angles,
relative to 0ı at MC and placed against certain level recorder locations, represent observed phase
progressions, derived from cross spectral analysis, Mortimer and Fee [42], of pairs of records. From
Mortimer (2004) [41]. c� University of Wisconsin Press, Milwaukee, reproduced with permission



14.2 Barotropic Basin-Wide Oscillations of Lake Michigan 159

rotation (on the N.H.) of the high water around the amphidromic points. Co-range
lines (dashed in the figure) display the surface elevation amplitudes in percentages
of the maximum at MC and co-phase (co-tidal) lines (solid) radiating from the black
dots (the amphidromic centres) illustrate the counter-clockwise phase propagation
of high water at (1/12) cycle (30ı) intervals relative to 0ı at MC.

‘In Fig. 14.1a the progression in hours from MC is shown in parentheses around
the lake shore. The square-bracketed angles, relative to 0ı at MC and representative
for water level stations at positions, indicated by arrows, represent observed phase
progression, derived from cross-spectral analysis by Mortimer and Fee [42] of pairs
of records’.

The above follows Mortimer [41], who continues by stating ‘that Defant assumed
that the seiche currents, predicted by his father’s model, Defant [13], were modified
by the Earth’s rotation and were in geostrophic equilibrium. The resulting patterns
(displayed in Fig. 14.1) exhibit similarities with the double (quasi-standing) Kelvin
wave in the rotating channel model (see Fig. 12.4 in Chap. 12)...’.

‘The periods of the two surface seiche modes, modeled in Fig. 14.1, differed little
from those calculated (but without rotation) by Rockwell [54]. Surprisingly, how-
ever, Defant did not look at the recorded lake levels to test his model. [...], that test
came in 1965 with my (Mortimer’s) spectral analysis of long series of water level
records [36]. These came from several stations around the Lake and were kindly
provided by the US Lake Survey, Army Corps of Engineers ...’.

The level records from six stations around Lake Michigan – one on Lake Huron,
and one (Mackinaw City, MC) common to both basins – were either continuous
charts, from which I (Mortimer) derived 15 min averages, or levels read hourly and
tabulated by the US Lake Survey. The charts trace the motions of a float in a still-
ing well connected to the Lake by a narrow pipe. [...] each recorder, [...], displays
its characteristic signature which depends on the design of the stilling well and
on exposure to local [...] oscillations. Inspite of those differences, lower frequency
oscillations can sometimes be picked out by eye beneath the irregular fluctuations.
[...] For most times, however, oscillatory signals remain hidden, obscured by noise
and one must call in the help of spectral analysis to reveal them. However, that
powerful tool has its limitations, of which one must be aware to properly interpret
spectra of Lake level fluctuations’, Mortimer [41].

This cautious spectral analysis was performed by Mortimer and Fee [42] in
a most impressive memoir, and a highlighting summary of it is presented by
Mortimer [41]. Cross spectral analyses of station pairs surface-elevation-time series
allow identification of peaks in the periodograms of the surface-elevation energies,
phase shifts and coherences of such cross spectra. The authors paid special atten-
tion to the presence of spurious peaks, masquerading as aliases. The periods of the
mode 1 and mode 2 seiches in Fig. 14.1 were determined this way, as are the phase
angles in square braces identifying the phase propagation.

The two lowest longitudinal seiche modes of Lake Michigan using Defant’s
[14] method of Kelvin wave dynamics for the determination of the seiche peri-
ods and the mode structures as determined by Mortimer [36] and Rockwell [54]
were again determined a decade later in a paper by Rao, Mortimer and Schwab
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[53] . In this paper Lake Michigan, now including Green Bay, was discretized by
a 14:4 � 14:4 km2 grid with WE-SN orientation, and taking a bathymetry in which
to each grid mid point a mean depth was assigned. The mean depth for the whole
grid array was 84.2 m, 1.3% lower than that derived from chart contours; this makes
basin-wide mode periods somewhat larger than had been determined earlier.

The lowest three longitudinal modes are displayed in Fig. 14.2. Signatures for
the co-range and co-phase lines are the same as in Fig. 14.1, see also figure cap-
tion. In Fig. 14.2 ‘angles quoted in square brackets placed near some recorder
locations are the ‘observed’ phase angles (relative to 0ı at MC) for that mode
and recorder, derived from inter-station phase and coherence information yielded
by co-spectral analysis, according to Mortimer and Fee [42]. Asterisk codes indi-
cate, for each mode and recorder, whether the corresponding spectral peaks are:
��� very large, �� large, �� present, � present but small, �ı not visible. Locations
of water-level recorders are coded as MC, LU, HO, CC, CW, WA, MI, GB, ST’
(after Mortimer [41]).

The first longitudinal seiche mode (L1, computed period 9.27 h) has two
amphidromic points. The principal amphidrome occupies the whole of the main
basin; the second is at the mouth of Green Bay. This is evidence of the forcing of
the Bay oscillation by the main Lake seiche L1 [...].

Mode L2 (computed period 5.25 h) displays four positive amphidromes, two
within the main basin, one at the mouth of Green Bay, and one in the inner Bay. [....]
ModeL3 (computed period 3.81 h) exhibits three positive amphidromes in the main
basin and three in Green Bay [...]’ [41]. Positive (negative) amphidromes exhibit
counter-clockwise (clockwise) progression of the co-phase lines for the Northern
(Southern) Hemisphere and are reminiscent of Kelvin-type behaviour.

‘As described above, the modeled phase structure of each mode is displayed
by co-phase lines drawn at 30ı intervals, relative to 0ı at the Northern end of the
basin, MC. The phase relationships, ‘observed’ at water-level recorder locations by
co-spectral analysis [...] are entered (as is also the observed frequency) as square-
bracketed phase angles at those locations, all relative to 0ı at MC. The agreement
between calculated and observed phase angles is satisfactory for L1 and L2. For
higher modes there is less agreement. ForL2, the amplitude at Milwaukee (MI) was
too small to measure phase angles between those station pairs which include MI.

It is of interest at this point to compare the L1 and L2 structures in Fig. 14.2 with
those predicted by Defant’s [14] one dimensional model. Both models (in which
the latter does not include Green Bay) place the amphidromic point and amplitude
distributions in similar positions. The main differences are in the rates of phase pro-
gression around those points. They are more abrupt (i.e. the effect of the Earth’s
rotation is less conspicuous) in Fig. 14.2 than in the Fig. 14.1-model. Neverthe-
less, the similarities are remarkable and justify the use of Defant’s [13] method3

to account for the rotation of the Earth’ [41].

3 This statement may have to be revised now (2011) as computations can now be economi-
cally performed in a much more refined way. Moreover, a full two-dimensional computation
and the inclusion of island do no longer present an obstacle for more accurate computations.
The differences in the co-phase lines of the panels in Figs. 14.1 and 14.2 in fact call for a
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Fig. 14.2 Lake Michigan surface seiches. Calculated frequency/period and structures of the first
three longitudinal amphidromic seiche modes L1 , L2, L3 of the main Lake Michigan basin as
computed by Rao et al. [53]. Phase progression is shown (by solid lines) relative to 0ı at MC.
Elevation of the water surface is shown by dashed co-range lines, scaled in percent of the maximum
of 100 in each mode. The bracketed ‘observed’ frequency in the top left of each panel is that of
the corresponding peak, attributed to the mode, in spectra of observed water level fluctuations not
shown here – see in Mortimer (2004) [41], Chap. 7. From Mortimer (2004) [41]. c� University of
Wisconsin Press, Milwaukee, reproduced with permission

We have seen already that positive amphidromes are reminiscent of Kelvin-type
behaviour, whilst negative amphidromes exhibit Poincaré-type behaviour, which is
often also referred to as transverse mode behaviour. Such seiche behaviour has also
been observed in Lake Michigan at a high frequency (period �2.28 h) by Com-
stock [9]; it is readily excited in the Southern end of the main basin with largest
amplitudes at WA, see Fig. 14.3a. This mode, called T1 by Mortimer [41], has
been also computed by Rao et al. [53] and was revealed as an extensive nega-
tive amphidrome with clockwise phase progression, which occupies most of the
Southern basin as a predominant cross-basin oscillation. This is characteristic of
Poincaré-type behaviour. The Northern part of the main basin has four positive
amphidromes, but amplitudes are only large at the very Northern end and not

refined computation simply in order to see how the amphidromic structure is influenced by mesh
refinement.
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a b c

Fig. 14.3 Lake Michigan surface seiches. Calculated frequency/period and structures of the first
transverse mode, T1, panel (a), of the Southern basin and the first two longitudinal or resonance
modes, B1 and B2, panels (b) and (c), of Green Bay. Phase progression is shown (by solid lines)
relative to 0ı at MC. Elevation of the water surface is shown by dashed co-range lines, scaled
in percent of the maximum of 100 in each mode. The bracketed ‘observed’ frequency in the top
left of each panel is that of the corresponding peak, attributed to the mode, in spectra of observed
water level fluctuations not shown here – see [41], Chap. 7. Computations are by Rao et al. [53].
Angles quoted in square brackets placed near some recorder locations are the observed phase
angles (relative to 0ı at MC) for that mode and recorder, derived from interstation phase and
coherence information yielded by co-spectral analysis. Asterisk code is the same as in Fig. 14.2 as
are the recorder codes for the stations. From Mortimer (2004) [41]. c� University of Wisconsin
Press, Milwaukee, reproduced with permission

elsewhere. Thus, it is unlikely that this mode could be identified in surface-elevation
recorders positioned in Green Bay or anywhere in the main basin, except, perhaps,
at the Northern tip.

Bay resonances or bay modes are whole lake modes which possess appreciable
amplitudes only within the bay, but generate motions of the free surface elevation
within the main basin, which are very small (to the extent not to be measurable). The
Green Bay modes B1 and B2 have periods of 10.35 and 4.84 h, respectively. B1 is
confined almost entirely to within the Bay, with maximum amplitude at the head of
Green Bay (Fig. 14.3b). Mode B2 (Fig. 14.3c) exhibits three positive amphidromes –
one at the Northern mouth, one within the Bay, and one (with near zero amplitude)
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Table 14.1 Lake Michigan: Frequencies and periods of the first five longitudinal seiche modes
with positive amphidromies and counter-clockwise phase progression (Kelvin-type behaviour) and
the first ‘transverse’ mode, T1, with one negative amphidrome, exhibiting clockwise phase pro-
gression which is reminiscent of Poincaré-type behaviour, identified from inter-station coherences
and compared with computed estimates. For details see main text, from [42], with simplifying
modifications and additions
Mode Observed Computed (h)
no.

Frequency Period Mortimer [36] Rockwell [54] Rao et al. [53]
[c/d] [h] (a) (b) (c) (d)

1 2.69 8.92 9.2 9.1 9.09 8.83 9.27
2 4.76 5.04 5.5 4.9 4.92 4.87 5.25
3 6.60 3.64 4.1 3.6 3.58 3.54 3.81
4 7.68 3.12 3.2 2.9 2.91 2.86
5 9.68 2.48 2.5 2.4 2.42 2.39
T1 10.96 2.19 2.28

in the Southern part of the main Lake. These modes have also been measured and
are described in detail by Mortimer. These results indicate that the Green Bay modes
B1 and B2 could also approximately be determined by restricting computations to a
region, slightly larger than Green Bay with the mouth sealed for through flow.

Table 14.1 collects the frequencies and periods of the first five longitudinal and
the first ‘transverse’ seiche modes and compares them with computed estimates.
The five longitudinal modes have all positive amphidromes with counter-clockwise
phase progression of the surface elevation, typical of Kelvin-type behaviour. The
periods were computed by Mortimer [36] with Defant’s [13], method, using 23 sec-
tions (column (a) in Table 14.1) and 56 sections (column (b) in Table 14.1) along the
main lake axis, respectively. Rockwell [54], on the other hand, used Platzman and
Rao’s [50] method, excluding the rotation of the Earth with 85 sections, assuming
that the straits of Mackinaw (between Lake Michigan and Lake Huron) are closed
(c) and open (d), respectively. Rao et al. [53] discretized the linearized seiche equa-
tions on the finite difference grid of 14:4 � 14:4 km2 mesh size. Only this more
sophisticated integration procedure allowed identification of negative amphidromes.
The mode T1 is the longest mode with clockwise phase progression (on the Northern
hemisphere), and with an extent covering about half of the Southern main basin of
Lake Michigan, see Fig. 14.3a. This amphidrome exhibits Poincaré-type structure.

The above description comprises only a partial and incomplete report of what
is known about the response of the homogeneous Great Lakes free oscillations.
To our knowledge, the scientific memoirs, written by Mortimer and associates,
in particular Mortimer and Fee [42], Rao et al. [53], Rao and Schwab [52] and
Schwab [57], offer the most detailed comparison of the whole-basin seiche modes
inferred from surface-elevation-time series at recorder stations with computational
results. Such comparisons have also been made elsewhere, for instance for the
internal wave dynamics in Lake Geneva, but generally in these situations the avail-
able whole-basin synoptic surface elevation recordings are known in much lesser
detail. Generally, the periods of the few lowest seiche modes can relatively easily



164 14 Barotropic and Baroclinic Basin-Scale Wave Dynamics

be computed and the computed results compared with periods from spectra of (even
isolated) surface-elevation-time series. Synoptic measurements are, however, gen-
erally not made at a sufficiently large number of recorder stations that cross-spectral
analysis would allow reliable identification of mode phase progression. This is the
distinctive feature of the Great Lakes data.

14.3 Internal Seiche Dynamics in Lake Geneva

14.3.1 Introduction

The study of basin wide oscillations in lakes originates from the Lake Geneva
region, and the term ‘seiche’ has been introduced into the natural sciences by Forel
[16] in his three volumes treating Limnology of Lac Léman.4 In fact the term
‘seiche’ exists since the eighteenth century and has first appeared in a paper by
Fatio-de-Duillier in 1730 [12]. Forel was studying the seiches of Lac Léman as a
phenomenon of surface oscillations along the lake shore, not particularly paying
attention to the effects played by the rotation of the Earth. The possibility of the
manifestation of rotation-affected internal oscillations was brought by the Swiss Ser-
vice Féderale des Eaux (SFE, 1954 [59]) when in 1950 12 high precision water level
recorders were spaced around the lake to measure time series of the free surface, see
Fig. 14.4. It should be noted that internal oscillations – manifest as pycnocline dis-
placements – are accompanied by oscillations at the lake surface level, which are
in counter-phase to one another and typically about 100 to 1000 times smaller in
amplitude than the oscillations at the thermocline level. If these time series of sur-
face displacements are filtered such that the barotropic modes are eliminated, it is
possible to follow the progress of the internal baroclinic motions (Caloi et al. (1961)
[8], Sinkes (1987) [62]). This method was used by Mortimer [35], see Fig. 1.2 in
Chap. 1 in Volume I; he plotted the SFE-surface-level-time series in cyclonic order
around the basin for eight stations and set in evidence the nearly constant counter-
clockwise progression of two cycles of an 80 h wave with a speed of progress close
to ci D 0:45ms�1.

Later measurements of the stratified Lake Geneva by thermistor chains and
current meters were episodic and covered the years 1976–1979 and 1982–1983.
These measurements are reported in Graf et al. [17] and Mortimer [39] in a con-
ference book edited by Graf and Mortimer [18], in which Bohle-Carbonell [6] and
Bohle-Carbonell and van Senden [7] have contributions on the dynamics of Lake
Geneva.

4 Lac Léman is the French counterpart of Lake Geneva. We use them as synonymous.
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Fig. 14.4 Sketch of Lake Geneva and its surrounding topography and positions of the 12 SFE
water level recording stations. Indicated are also the positions of mooring stations A1, A3, G, and
P within the lake. Elevations of the surrounding land and lake depths are given in metres, with
respect to the water surface of the lake. From Lemmin et al. (2005) [32], with changes. Copyright
2000 by the American Society of Limnology and Oceanography, Inc, reproduced with permission

Table 14.2 Lake Geneva
hydrographic data

Grand lac Petit lac

Maximum depth (m) 310 70
Mean depth (m) 157 –
Maximum width (km) 13.8 5
Mean width (km) 10 4

14.3.2 Lake Morphology and Data Handling

Lake Geneva is composed of two basins, a deep central basin, sometimes called
Grand Lac, covering more than two-thirds of its total area, and a narrow section
in the West, called Petit Lac, see Table 14.2. Under typical summer stratification
the internal Rossby radius is about 5.5 km, less than half the maximum width of
the central basin. Given the Alpine surrounding landforms, with high mountains in
the South and hills in the North, the wind field is largely affected by the topogra-
phy: the Eastern part of the lake is sheltered from most strong winds. The central
and Western parts of the lake are primarily subject to winds from Northeast and
Southwest of duration from several hours to several days. Winds from Northeast are
prone to generate large thermocline depressions of more than 20 m (Lemmin and
D’Adamo, 1996 [33]).
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Using the water-level data (4 June–30 November 1950), 6 h mean levels were
tabulated by the SFE at 3 h intervals. For their analysis, Lemmin et al. [32] inter-
polated occasionally missing points over 5–6 neighboring points. Moreover, for the
analysis the SFE data set was divided into a summer period (4 June–24 August)
and an autumn period (28 August–30 November 1950). Changes in mean lake-
water levels were eliminated by subtracting the corresponding mean value from each
observation, but wind effects were not eliminated. For spectral analysis of records,
a standard Fast Fourier Transform (FFT) with segment overlap was used. The anal-
ysis for all stations was carried out separately for the summer and autumn periods.
Cross spectral analysis, applied to station pairs, was used to determine inter-station
coherence and phase. These were compared with the spatial structures of seiche
modes, simulated with the two-layer constant depth model (TCDM). Alternative
computations were also conducted with the TEDM.

14.3.3 Model Equations

It is assumed that basin-scale internal wave dynamics in Lake Geneva is describable
with sufficient accuracy by using a linear TCDM of the adiabatic Boussinesq-
approximated dynamical equations. They are given

� For the upper layer (H1 D const.) by

@M 1

@t
C f k �M 1 D �gH1gradH �1 C �W

�1
;

(14.1)
divHM 1 C @�1

@t
� @�2

@t
D 0;

� For the lower layer (H2 D H2.x; y/) by

@M 2

@t
C f k �M2 D �gıH2gradH �1 � g"H2gradH �2 � �B

�2
;

(14.2)
divHM 2 C @�2

@t
D 0:

Here, �1 and �2 are the free surface and thermocline displacements,M 1,M 2 are the
depth integrated layer fluxesM i D Hivi , i D 1; 2, and �1 < �2 are the densities of
the top and bottom layers, respectively. �W and �B are the wind stress and bottom
friction stress fields and

ı D �1=�
�; " D .�2 � �1/=��: (14.3)

Moreover, the thermocline interface z D �2.x; y; t/ is assumed to be material (no
layer mixing). Equations (14.1)–(14.3) agree with (11.92) and (11.93).
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Ignoring bottom friction (�B D 0) and restricting considerations to free waves
(�W D 0), solutions of (14.1), (14.2) are sought in the harmonic form

.M i ; �i / D .Qi ; Zi / � exp .i!t/ (14.4)

so that the complex-valued vector-matrix differential eigenvalue equation

.i!M6 C R6/a D 0; in D;
a �N D 0; along @D

)

(14.5)

must be solved, where5

a D .U1; V1; Z1; U2; V2; Z2/
T; N D .n1; n2; 0; n1; n2; 0/

T

M6 D

0

BB
B
B
B
B
BB
B
B
@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 �1
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

CC
C
C
C
C
CC
C
C
A

; (14.6)
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:

This system suffers from the fact that the mass matrix M6 is not diagonal. Such
a diagonalization can be achieved by introducing the new variable z D Z1 � Z2
and eliminating Z1. The system of differential equations which then emerges is
given by

5 It appears that the corresponding equation in Lemmin et al. [32] suffers from misprints.
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.i!I6 C R�6/a� D 0; in D;
a� �N D 0; along @D;

)

(14.7)

in which I6 is the 6-dimensional unit matrix and
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in which the definitions (14.3) have been used.6

When the TEDM is used, the equations corresponding to (14.5) and (14.6) are

.i!I3 C R3/b D 0; in D;
b �N D 0; along @D;

)

(14.9)

b D .U; V;Z/T; N D .nx ; ny ; 0/
T;

R3 D

0
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B
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0 �f ghE
@

@x
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@

@y
@

@x

@

@y
0

1

CC
C
C
C
A
;

9
>>>>>>>>>=

>>>>>>>>>;

(14.10)

and hE is the constant equivalent depth hE D H1H2=.H1 CH2/.
For the numerical finite difference scheme an Arakawa-C grid (see Volume 3)

was employed, using a rectangular grid with a mesh size of 500�500m2. The com-
putational domain is defined as the region closest to the interior of the thermocline
shore at the 15-m depth and is shown in Fig. 14.5.

6 It is likely that Lemmin et al. [32] wished to use this latter description.
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Fig. 14.5 Discretization of the Lake Geneva with a 500 � 500m2 grid approximation. D is
the region with depth larger than 15 m. The solid line outlines the 22 m depth and the step-like
closed curve is the numerical boundary. From Bäuerle [3]. c� Springer, Berlin, reproduced with
permission

Table 14.3 Calculated frequencies and periods of 12 internal oscillations of a TEDM for
Lake Geneva using an equivalent depth of 13.53 m yielding a phase speed of 43.3 ms�1 and a
discretization as shown in Fig. 14.5 (from Bäuerle [3])

Mode Frequency !=f Period Number of amphidromic systems
number [s�1] [h] Positive Negative

1 2:239 � 10�5 0:2083 77.95 1 –
2 3.672 0:3416 47.53 2 –
3 5.481 0:5099 31.84 3 –
4 7.614 0:7083 22.92 4 –
5 9.241 0:8596 18.89 5 –

10.750 1:000 16.24 Inertial frequency
6 10.765 1:001 16.21 6 –
7 12.352 1:1490 14.13 7 –
8 13.922 1:2951 12.54 8 –
9 15.182 1:4123 11.50 9 –
10 16.694 1:5529 10.45 10 2
11 16.823 1:5649 10.37 8 2
12 17.243 1:6040 10.12 9 2a

aBäuerle [3] writes that mode 12 has only one negative amphidromy; however, this is in conflict
with Figs. 14.11 and 14.12 which clearly show 2.

14.3.4 Modal Analysis for the TEDM

Computed frequencies !m of the first 12 modes of the discretized model of Lake
Geneva with equivalent depth were first given by Bäuerle [3] and are listed in
Table 14.3. This table is based on a mean depth of H1 C H2 D 152:7m, " D
1:41 � 10�3, and H1 D 15m, corresponding to hE D 13:53m and ci D p

ghE D
43:3ms�1.
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The structure of the fundamental horizontal mode, H1, with period, T D 77:95 h,
is laid out in Fig. 14.6, in panel (a) showing the amphidromic point and the co-
range lines (dashed), scaled to a maximum of value 100, and co-phase (co-tidal)
lines (solid) in 30ı intervals. Panels (b–e) display the amplitudes of the interface
deflection

�.x; y; t/ D A.x; y/ cos.!t � ˚/ (14.11)
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Fig. 14.6 H1-mode of an internal Kelvin-type wave in Lake Geneva computed with the TED-
Model. (a) Amphidromic system showing co-range lines (dashed), scaled to a maximum of value
100 in 20% steps, and co-phase (co-tidal) lines (solid), showing zero vertical displacement lines
in (1/8)-cycle time intervals. (b)–(e): Interface displacements drawn in 10% steps of the maxi-
mum amplitude plotted for the phase angles ˚ D 0ı, 45ı, 90ı, and 135ı . The zero amplitude
line is drawn heavily; solid and dashed lines are in counter-phase (solid for positive displace-
ments; dashed for negative displacements). From Bäuerle [3]. c� Springer, Berlin, reproduced
with permission
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Fig. 14.7 Lake Geneva amplitude and phase distributions for modes 2–5. Co-range lines (dashed)
are plotted in 20% steps of the maximum value 100, and co-phase lines (solid) showing the zero
vertical displacement lines in 1/8 cycles of the full periods. (a) mode 2 (47.5 h); (b) mode 3 (31.8 h);
(c) mode 4 (22.9 h); (d) mode 5 (18.9 h). From Bäuerle [3]. c� Springer, Berlin, reproduced with
permission

in steps of 30ı, starting arbitrarily with the distribution at˚ D 0, shown in panel (b).
The rotation is counter-clockwise (cyclonic), the mode is therefore Kelvin-type. The
next four internal modes predicted by the model and presented in Fig. 14.7 have
from two to five amphidromic systems, all of which have cyclonic rotation (i.e.
counter-clockwise in the N.H.). According to Table 14.3, all these modes have sub-
inertial frequencies (!i < f ) and are therefore of Kelvin-type.

The next four modes (6–9) all have also a growing number (6–9) of positive
amphidromic systems (see Table 14.3) and are therefore of Kelvin-type. This is so,
even though their eigenfrequencies are superinertial (! > f ). However, modes
10 and 11 are mixed-type, i.e. they have positive (anti-clockwise rotating in the
N.H.) and negative (clockwise rotating in the N.H.) amphidromic systems (indicated
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PERIOD  10.45 h

PERIOD  10.37 h

a

b

Mode  11

Mode 10

Fig. 14.8 Amphidromic systems for the 10th and 11th internal seiche modes for Lake Geneva
showing positive (negative) amphidromic points as full (open) circles. Co-range lines are only
shown where they are 20% or more of the maximum amplitude in the entire lake. Co-phase lines are
plotted as zero displacement lines in (1/8)th of the full period. (a) mode 10 with period 10.45 h, (b)
mode 11 with period 10.37 h. From Bäuerle [3]. c� Springer, Berlin, reproduced with permission

by full and open circles for the amphidromic point, respectively). If the counting
is in the direction of decreasing frequency in Table 14.3, the 10th mode has 12
amphidromic systems, ten positive and two negative ones, suggesting ten modes
with Kelvin-type and two with Poincaré-type behaviour, respectively. The 11th
mode has eight positive and two negative amphidromic systems but with smaller
period than mode 10, see Fig. 14.8. These findings show that for mixed behaviour a
particular mode can be detailed as (1) Kelvin-type where the velocity vectors rotate
in the counter-clockwise direction and (2) Poincaré-type when this rotation is clock-
wise, and transverse velocities take appreciable values (often simply identified with
transverse oscillations).

14.3.5 Modal Analysis for the TCDM

Lemmin et al. [32] determined the eigenfrequencies and eigenmodes of the systems
(14.5) and (14.6) for the summer and autumn episodes in 1950, as defined earlier.
These modes are characterized by the layer parameters listed in Table 14.3. In direct
numerical simulations for conditions of the summer episode and a wind pulse of
18 h duration and 5 ms�1 strength from the Northeast and tapering off from the
centre of the lake toward the Eastern end, the computations show that only modes
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Table 14.4 Model parameters for the TCDM for the thermal stratification during the two measur-
ing periods of the SFE in 1950 and the inferred modal periods for the modes H1, H3, and H12 for
Lake Geneva

Summer episode Autumn episode
(4 June–24 August) (28 August–30 November)

Epilimnion depth H1 (m) 15 25
Hypolimnion mean depth H2 (m) 175 165
Epilimnion temperature (ıC) 19 8
Hypolimnion temperature (ıC) 5.5 5.5
Mode H1 period (h) 81.5 130
Mode H3 period (h) 33.3 �50
Mode H12 period (h) 10.7 13.5

H1, H3 and H12 have amplitudes that reach over 60% of the initial thermocline
excursion in significant parts of the near shore area. This is why only these modes
are subsequently discussed (see Table 14.4).

14.3.6 Internal Wave Dynamics Revealed by Surface Level Data

Lemmin et al. [32], investigated the wave-like response by plotting the pattern of the
SFE-surface excursions around the basin during a typical forcing event. Figure 14.9
is a copy from their paper, and Fig. 14.10 displays the spectra of the SFE water
fluctuations at stations (2) and (7) during the summer interval, from 4 June to 24
August 1950. It shows in the lower right corner of Fig. 14.9 a 5-day wind episode
from Southwest growing during the first 2 days in a roughly linear fashion and then
abruptly falling to negligible strength (note the logarithmic scale of the ordinate)
in slightly more than half a day. When looking at the corresponding episodes of
the filtered time series of the surface elevations at the limnigraph stations (1)–(11)
around the lake, it is seen that, as soon as the strong wind from the Southwest sets in,
the whole lake responds by a depression at the West end (stations 1, 11, and 2) and a
rise at the East end (stations 4–6). The response to the rapid secession of the wind is
considerably slower in the surface-elevation-time series; it takes place during 1.5–2
days, as is clearly seen in the elevation plots of the limnigraphs 4–7, say. The peak
at 5 and the subsequent fall to nearly zero occurs at the beginning of day 3 and
lasts beyond mid-day of the fourth day. This peak arises at stations 6 through 11
and consecutively continues to stations 1 and 2, marking a typical cyclonic motion
around the basin, which is reminiscent of Kelvin-type behaviour. The amplitudes of
the peaks decay consistently, but the widths of the shoulders of the peaks remain
approximately the same.

Lemmin et al. further writes: ‘Spectral analysis revealed that independent of sea-
son and station location only certain modes were excited. The most prominent is
the first, H1-mode, Fig. 14.11a. Its period is near 81.5 h in summer, increasing to
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above 130 h in fall, as the density structure of the water column changes and ci
decreases. Spectra from the narrow Western end of the lake always showed the H1
mode response most clearly. A weak second mode (H2) signal could be detected in
the spectra of some stations in the central part of the lake (stations 3 and 8), but not
at other stations. The H3 mode, with periods of 33.3 h and near 50 h during summer
and fall, respectively, was found at all stations around the lake, Fig. 14.11. A weak
mode H4 seiche was found in some summer spectra but not those for the fall. Modes
H5–H9 were not observed in any spectra. Mode H10 is interpreted as the first cross
or transverse mode with summer and fall periods of 10.7 and 13.5 h, respectively.
Modes H11 and H12, which are also transverse mode waves, are very close to the
H10 period and cannot be distinguished in the spectra. [...] it is [also] found that
the H1-mode occurs the most often [...]. Modes higher than H12 cannot be detected
with certainty because of the cut-off imposed by the SFE filter’.

Cross spectral analysis of the free surface time series at stations 2 and 7 was
performed, and energy, coherence and phase angle spectra are shown in Fig. 14.10.
For mode H1 the amplitude is more than 20% larger near station 2 than near station
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Fig. 14.10 Top: Lake Geneva spectra of SFE water-level fluctuations at stations 2 and 7 during
the summer interval 4 June–24August 1950. Bottom: coherence and phase angle between stations
2 and 7. From Lemmin et al. [32]. Copyright 2000 by the American Society of Limnology and
Oceanography, Inc, reproduced with permission

7, which is also visible in the energy spectral peaks in the top panels of the figure.
Cross spectral analyses were also performed for all station pairs, and coherence was
in most cases found to be well above the 95% confidence limit. The top panel in
Fig. 14.11 displays for the indicated stations the coherences and phase angles as
inferred from these cross spectral analyses relative to station 2 as a basis. ‘Coher-
ence is high for most station pairs, decreasing from West to East along the Southern
shore. For the stations along the Northern shore coherence increased again from
East to West and became high for the stations in the narrow West basin. The phase
angles calculated from the data can be compared with those predicted by the numer-
ical model, as indicated by the co-range lines. Along the South shore, satisfactory
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Limnology and Oceanography, Inc, reproduced with permission

agreement in phase angle is found. Agreement is less satisfactory on the Northern
shore, in particular, at the entrance to the West basin at stations 10 and 11, even
though coherence is high. At the West end of the lake, agreement improved again.
The cyclonic progression of this seiche is clearly established’ [32].

Lemmin et al. [32] provide also other evidence supporting the Kelvin-type
behaviour of the H1-mode. These involve temperature measurements from
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Fig. 14.12 Current pattern (particle trajectories) for the H12 seiche mode for lake Geneva, cal-
culated with the numerical model for the bottom layer. The orientation of the particle rotations
in the different regions of the lake is indicated. From Lemmin et al. [32]. Copyright 2000 by the
American Society of Limnology and Oceanography, Inc, reproduced with permission

December 1982 to January 1983 campaign with thermistor chains moored at
A1, A3 and G (Fig. 14.4). In view of the weak stratification, these measurements
allow disclosure of a relatively long period of 136 h of the fundamental H1-mode.
Moreover, the authors also provide hints that the Petit Lac is not participating in the
H1-motion, so that this Kelvin-type seiche is confined to the Grand Lac, only.

For the H12 mode, sufficiently large coherences are only found in time series of
station pairs that are part of the same amphidromic cell. The current pattern for this
mode, integrated over one wave cycle, is presented in Fig. 14.12. It shows the closed
trajectories of particles at grid positions which are traversed cyclonically (counter-
clockwise on the N.H.) and anti-cyclonically (clockwise on the N.H.), as indicated
in the figure. The current ellipses are ‘fat’ in the interior of the central basin and
become increasingly elongated towards the shores and to the far West and East ends
of the lake.

The two regions with clockwise rotating particles in the central part of the lake
are reminiscent of Poincaré-type behaviour. This interpretation is supported by cur-
rent records taken during summer 2001 at station P (Fig. 14.4) at 304 m depth,
5 m above the lake bottom, using an Aanderaa RCM9 current meter. The station
is located in the centre of the central clockwise rotating cell (Fig. 14.4). Spectra
of the North and East current components show at the H12-frequency a relatively
sharp peak with the energy of the two components being nearly equal, at very high
coherence and 45ı phase difference. Moreover, progressive vector diagrams derived
from the data also show the clockwise looping pattern characteristic for Poincaré
waves (not shown here) and results from numerical simulations using the same wind
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Fig. 14.13 Time series of thermocline excursions resulting from a numerical simulation for lake
Geneva as detailed in the main text, (a) for the stations 1 and 6 and (b) for the stations 3 and
8. Period fitting by eye yields 82 and 10.8 h, for the H1 and H12 modes, respectively. From
Lemmin et al. [32], with changes. Copyright 2000 by the American Society of Limnology and
Oceanography, Inc, reproduced with permission

field which produced clear H1-signals at stations 1 and 6 generate a combination
of H1 and H12 signals at stations 3 and 8, Fig. 14.13. All these facts make the
interpretation as a Poincaré-type mode for H12 very likely.

Lemmin et al. [32] also give evidence of the H3-mode behaviour by performing
a cross spectral analysis for the SFE surface elevations of the station pairs 6/5 and
6/7. In the Eastern part of the basin, these stations fall into the same amphidromic
cell of the H3-mode (Fig. 14.11). The cyclonic progression is revealed by the phase
angles of stations 5 and 7 with respect to the central station 6. The phase angle
spectra (not shown here) indicate a cyclonic phase propagation and thus support the
interpretation of the H3-mode as a Kelvin-type wave mode.
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14.4 Transverse Internal Wave Motion
in Lake Überlingen

14.4.1 Statement of the Problem

In the following we report on Poincaré-type basin-wide transverse baroclinic oscil-
lations in a small lake of only a few kilometers width, analyzed by Bäuerle [4] from
data taken in 1972 by Hollan [20] in a synoptic field campaign of Lake Constance.
The paper is interesting, because it is didactically well posed and demonstrates that
effects of the rotation of the Earth are of physical relevance even in basins of fairly
small size.

Lake Überlingen is the Western most arm of the Upper Lake Constance,
Fig. 14.14; it is approximately 17 km long and 2.5 km wide and, because of the
hilly surroundings on either side of its long shore line, it is a deep channel-like
basin, open at its East end to the proper Upper Lake Constance, with a maximum
depth of 147 m at position S1 in Fig. 14.14 and a mean depth of 80 m. Close to
the Eastern end, but still to the West of the Island Mainau, because of the subsur-
face sill there, it is hydrodynamically partly separated from the remaining Upper
Lake Constance. The common summer stratification consists of a light and warm
epilimnion and a heavy cold hypolimnion with a relatively thin metalimnion. It can
be approximated by a two layered structure with a sharp interface at the thermocline
as shown in Fig. 14.15 for the episode from 1 to 7 October 1972.

Since the intensive measuring campaign in 1972, Lake Constance has been the
subject of extensive studies of physical limnology.7 Here, we report on relatively
high-frequency transverse baroclinic oscillations of Lake Überlingen. In particular,
it will be shown that the lowest transverse (uni-nodal) baroclinic mode response at a
mid-basin position exhibits Poincaré-type structure and can be properly reproduced
by a two-layered linear model.

14.4.2 Observations During the Bodensee-Experiment 19728

Internal waves in Lake Überlingen occur relatively frequently, are generated also by
moderate winds, which prevail from Northwest, and persist (with decaying ampli-
tudes) for several days beyond the onsetting wind event. An example of transverse

7 Hollan and Simons (1978) [23], Hamblin and Hollan (1978) [19], Hollan, Rao and Bäuerle (1980)
[24], Bäuerle (1981), [2], Serruya, Hollan and Bitsch (1984), [58], Stewart and Hollan (1984) [63],
Appt, Imberger and Kobus (2004) [1].
8 ‘Bodensee’ is the German denotation of ‘Lake Constance’, see Fig. 14.14. It is divided into the
‘obere Bodensee’, the ‘Upper Lake Constance’, which constitutes the lake basin cutting off the
‘Lower Lake Constance’ basin at the town Constance where the River Rhine leaves the Upper
Lake. The Upper Lake Constance is additionally divided into the true ‘Upper Lake Constance’ and
‘Lake Überlingen’.
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Fig. 14.14 (a) Bathymetry and topographic map of Lake Constance indicating the mooring sites
S0 through S8 at which current meters and thermistor chains were installed from 22 September to
27 October 1972, see [20]. (b) Bathymetric chart of lake Überlingen, showing 50 m contour lines
and stations S0 � S4, where current meters and thermistor chains were moored. Shown is also the
.x; y/ coordinate system, defining the along-channel and the transverse directions of the basin and
the positive directions of the u- and v-velocity components of the horizontal velocity at S0. From
Bäuerle [4]. c� Aquatic Sciences, reproduced with permission

oscillations is shown in Fig. 14.16, where the across-basin components of the hor-
izontal velocity vector at station S0 in 6-m depth (panel (a)) and at station S1 in
5.5-m depth (panel (b)) are shown for a 7-day episode in early October 1972. Little
imagination is needed to see that in the S0 time series a 4-h period can be identified,
whilst this is not possible in the S1 time series. These, and subsequent data are taken
from the data band of the Bodensee-Experiment 1972, [20]; it follows from scrutiny
of these data that the time series of Fig. 14.16 reflect a composition of direct wind
forcing, free transverse oscillations and other, less significant, processes. To isolate
the free oscillations, the time-series were low-pass filtered. Figure 14.17 shows such
filtered time-series of the u- (dashed) and v- (solid) components of the horizontal
velocity vector at 6 m depth in S0; the 4 h period is evident, as is the highly rotary
behaviour of the current vector, since the transverse and longitudinal components
are of similar scale, and have a persistent phase shift of approximately a quarter
period: Maxima and minima of the longitudinal components arrive approximately
a quarter period earlier than those of the transverse component, which is indicative
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Fig. 14.17 Low-passed filtered longitudinal (dashed) and transverse (solid) components of the
current in lake Überlingen at S0 in 6 m depth in cm s�1, plotted against time (in h) for an event
starting on 4 October 00:00 h MET. (From Hollan [20])

of a clockwise rotation of the horizontal velocity vector. This is very convincingly
shown in Fig. 14.18.

14.4.3 Numerical Solution for the TVD Model with Realistic
Bottom Topography

The two-layer equations which must be solved for the two-layer variable depth
model are stated as (14.1)–(14.6), and they are applied here for

f D 1:07 � 10�4.s�1/; H1 D 30 .m/; " D 5 � 10�4;
�1 D 0:999608 .g cm�3/; �2 D 1:000138 .g cm�3/:

For the numerical solution the correct approach would be to solve the eigenvalue
problem (14.5) for the entire Upper Lake Constances; however, because a fine grid
resolution of 50 � 50m2 is needed in Lake Überlingen, this would for the Upper
Lake Constance lead to a very large matrix eigenvalue problem, too large to solve
it adequately with common PCs. Variable mesh size with small meshes in Lake
Überlingen and large meshes in the large basin of Upper Lake Constance would be
ideal, but the corresponding software was not available. The alternative, employed
by Bäuerle, was to assume that there is likely no or at most a small mass exchange
between Lake Überlingen and the large basin of Upper Lake Constance. This con-
jecture is likely close to reality, because the relatively high frequency response of
Lake Überlingen is hardly influenced by the motion of the water masses in the
proper Upper Lake Constance. This conjecture is further supported by the very
topography of Lake Überlingen. The sill West of the Island Mainau and the island
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Fig. 14.18 Hodograph of the horizontal current shown in Fig. 14.17. The horizontal velocity is
plotted during three periods. Symbols mark the velocity at about 5-min intervals. Symbols �, �,
ı mark the first, second, and third period in succession. The arrow indicates progression in time.
From Bäuerle [4]. c� Aquatic Sciences, reproduced with permission

itself form a natural barrier to the water masses entering the lake from the East.
Bäuerle also hastens to note ‘that this argument does not apply, if we were to study
the longitudinal oscillations of the lake’.

A critical point of this procedure is the choice of the location of the boundary
section at the entrance to Lake Überlingen at its Eastern end. Two artificial bound-
aries were introduced (see Fig. 14.19, cross sections marked A and B) at which
the no-through-flow condition was applied. To the West of these transects the lake
geometry was discretized by the 50�50m2 grid shown in Fig. 14.19a, and the com-
putational domain was bounded by the thermocline depth of 30 m. It is obvious that
this domain is somewhat smaller than the lake domain, a fact which will make the
periods somewhat smaller than in reality. The application of the no-flow-through
condition at the cross sections A or B will influence the solution in the interior
of Lake Überlingen, however, it will be seen that the wave pattern in the vicinity
of station S0 is stable (or robust) against the two versions of the no-flow-through
boundaries. This is indication, if not corroboration, that the restriction of the numer-
ical solution of the transverse eigenmode to the region of Lake Überlingen yields
robust results.
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Fig. 14.19 (a) Bathymetry of Lake Überlingen overlain by a 50 m square grid as a basis of the
two-layer model. The grid is so selected that each grid midpoint has a depth greater than 30 m.
Cross sections A and B mark two possible entrance transects at which the no-flow-through bound-
ary condition applies. (b) Selected staggered grid for the finite difference approximation of (14.5).
Symbols indicate where respective variables are computed. Along the boundaries the normal trans-
port is set to zero. Coriolis terms are incorporated into the scheme without averaging. From Bäuerle
[4]. c� Aquatic Sciences, reproduced with permission

Bäuerle confined attention to the mode with a period closest to 4 h. For the
regions with no-flow-through boundary condition at transects A and B , the periods
are T D 3:931 h and T D 3:952 h, respectively. For transects A and B , Fig. 14.20
shows the vertical interface displacements for the two selected boundaries. Panel
(b) displays the interface displacement distributions at three different times through
half the period T (t D 0; t D T=4; t D T=2). ‘Elevation highs are shown as solid
lines and instantaneous nodal lines are shown dashed-dotted. Horizontal velocities
are directed along the orthogonal trajectories of these lines and point in the lower
layer from highs to lows. As can be clearly seen from Fig. 14.20a, b the different
discretizations with a mass transport cut-off at A and B , respectively, affect the true
mode structure at the Eastern end of the lake, but hardly in its Western half, where
the interface displacements are very similar. At position S0 it is also clearly seen
that the horizontal velocity vector does indeed rotate in the clockwise direction, a
feature that is reminiscent of typical Poincaré-type behaviour.

An alternative way to demonstrate this behaviour is shown in Fig. 14.21 which
displays the particle trajectories through one revolution. These trajectories are elon-
gated ellipses. The longer and thinner the ellipses are, the more linearly polarized
are the corresponding harmonic waves and the less significant is the effect of the
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Fig. 14.20 Vertical interface displacement of the first internal transverse mode in Lake
Überlingen, plotted in (a) for a basin, sealed at transect B , for the moment of maximum amplitude
and in (b) at transect A for one half period in quarter period steps. Dashed lines indicate down-
welling, solid lines up-welling. Dashed-dotted lines show zero-displacement curves. The periods
are as shown in the insets. From Bäuerle [4]. c� Aquatic Sciences, reproduced with permission

rotation of the Earth. In Fig. 14.21, ‘these elliptical trajectories [...] show that in this
mode at S0 rotational effects are clearly present and not negligible. This was already
seen in Fig. 14.18 and inferred there from observations. Comparison of Figs. 14.20
and 14.21 also makes clear that the 4 h signal of first transverse baroclinic oscilla-
tion could only have been observed at station S0, but not Œ: : :� at the other stations
S1 to S4. The Poincaré character of the mode response is an indication that in more
detailed studies of the baroclinic processes in Lake Überlingen, the effects of the
rotation of the Earth should not be ignored’, from Bäuerle (1994) [4].



186 14 Barotropic and Baroclinic Basin-Scale Wave Dynamics

Fig. 14.21 Calculated elliptical fluid particle trajectories for the first internal transverse mode
(T D 3:95 h) in the western part of Lake Überlingen. The current vectors in the region close to
station S0 are rotating in the clockwise direction, see also Fig. 14.18, from Bäuerle [4]. c� Aquatic
Sciences, reproduced with permission

14.5 Lake Biwa

Lake Biwa is the largest lake in Japan and is located on the main island of Honshu
immediately adjacent to the city of Kyoto. It consists of two basins, the North Basin
is approximately 55 km long, 17 km wide and more than 90 m deep, see Fig. 14.22.
This basin is connected to the much smaller South Basin, which can be regarded
as being dynamically essentially disconnected from the North Basin. Here, we shall
only be concerned with the North Basin. Shimizu et al. [60] studied the horizontal
structure and excitation of primary motions in the strongly stratified North Basin of
this lake. They used field data collected in 1993 and 1994 for wind speed and direc-
tion, temperature profile and velocity structure in the summer water of this basin.
The description of the data, which were collected, is given by Saggio and Imberger
[55]. For the purposes of this section the temperature profiles measured by a thermis-
tor chain at BN 50 during BYTEX93 and as part of biweekly routine measurements
at Sta. 17B in 1994 are important. The thermistor chains had 20 thermistors spaced
every 1 m in the metalimnion, extending up to 5 m apart near the surface and the
bottom (see [55] for details). Vertical profiles of water velocity were measured by
a shipboard acoustic Doppler current profiler (ADCP) on a monthly basis in 1994
along 11 transects in a W–E direction covering the whole North Basin (see [31]).

Shimizu et al. [60, 61] employed a modal analysis, which is based on the lin-
earized shallow water equations for a layer-stratified system using the Boussinesq
and hydrostatic approximations as is presented in Sect. 14.3.3 and is based on the
previous analyses of e.g. Monismith [34] and Lemmin et al. [32]. The authors write
the equations in complex notation such that the stiffness matrix of the forced linear
equation is Hermitean9 and thus, allow a modal decomposition of the inhomoge-
neous wind driven motion. We shall, here, primarily present results of the eigenvalue

9 In this method they are following the procedure already employed earlier by Proudman [51] and
Platzman [45].
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Fig. 14.22 (a) Lake Biwa (35ıN, 136ıE) bathymetry with 10 m isobaths and locations of rele-
vant measurement stations. Thermistor chains were deployed near station BN50 during 1992. (b)
Temperature profiles used for the modal analysis. The profiles in 1993 and 1994 were measured
at BN50 and Station 17B. For the modal analysis with two-layer stratification, the depth of the
interface was set at 18 m; figures composed from figures in Saggio and Imberger [55] and Shimizu
et al. [60], with changes. c� 2000 by the American Society of Limnology and Oceanography, Inc,
reproduced with permission

problem as proposed by Shimizu et al., which is not solved as described by Bäuerle
in Sect. 14.3.3, but by a slightly different procedure which is equivalent to it.

Its numerical solution for the irregularly shaped Lake Biwa was constructed
using the finite difference method. A rectangular grid with horizontal spacing
of approximately 460 m � 570 m was used, in which surface and interface dis-
placements are defined in the middle of each grid, and velocity components are
defined on each face in the direction of the velocity, known as Arakawa C-grid, see
Volume 3. The Coriolis force term was discretized with the method as suggested by
Platzman [45] to keep the discretized stiffness operator Hermitean; this is impor-
tant in order to retain the orthogonality and completeness of the modes in the
discrete space. The thermocline depth of the two-layer model was set to 18 m and
�2 � �1 D 2:27 kg m�3. This is suggested by the measurements, see Fig. 14.22b.
The phase of all waves was arbitrarily set to zero when the total volume transport
of water in the upper layer was from North to South. In the numerical solution pro-
cedure, the shallow regions of the two-layer model with only one layer are included
in the discretized model with application of the adequate flux condition along the
‘thermocline shore’ as previously suggested and applied by Salvadè et al. [56] (com-
pare also Chap. 5, Sect. 5.6). Thus, this numerical model corresponds to the class
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Fig. 14.23 Internal waves in Lake Biwa. (a) V1H1, (b) V1H2 (c) V1H4, (d) V1H6. The middle
graphs in each panel correspond to the phase when the rates of energy input from spatially uniform
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et al. [60], with changes. c� 2000 by the American Society of Limnology and Oceanography, Inc,
reproduced with permission
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TVDMC, the ‘Two-layer Variable Depth Models – Complete’ in the terminology of
Mortimer (see footnote 1 to this chapter).

The ensuing discussion follows Shimizu et al. [60]. As elsewhere in this book,
modes are characterized by the acronym VmHn, where Vm identifies the vertical
mode with mode number m, whilst Hn identifies the horizontal mode with number n.
Here, since only a two-layer model was employed, comparison with observed modes
can only be made for V1Hm. Moreover, a wave mode or amphidrome will be
called Kelvin-type, if the phase of the interface displacement rotates cyclonically
(counter clockwise on the N.H.). On the other hand, if the rotation of the interface
displacement is clockwise, the corresponding mode will be called Poincaré-type.

Figures 14.23a–d collect excerpts of results obtained from the numerical solu-
tion of the eigenvalue problem. Each panel consists of three graphs: the small ones
show the co-range contours in grey shading with light grey showing small inter-
face displacement amplitudes and co-phase lines as dark solid lines in 45ı intervals.
The white triangular arrow at one of these co-phase lines indicates the direction of
rotation around the amphidromic point. The middle graphs correspond to the phase
when the rates of wind energy input from spatially uniform wind are the largest,
whilst the right panels correspond to a quarter period after the left. Grey shadings
in these larger graphs mimic snapshots of the interface displacements, and arrows
show corresponding snapshots of the average epilimnion currents.

Shimizu et al. [60] write: ‘The vertical mode 1, horizontal mode 1 (hereafter
V1H1) internal wave was a Kelvin[-type] wave that rotated cyclonically around the
basin, the largest interface displacement occurred at the Northern and Southern ends,
and the water velocity was nearly parallel to the thalweg (Fig. 14.23a). The V1H2
and V1H4 internal waves, respectively, had two and three cells where the crests and
troughs of the interface rotated cyclonically. The particle orbits were nearly parallel
to the thalweg except [in] the middle of the basin in V1H4, where the velocity vec-
tors appeared to rotate anti-cyclonically (Fig. 14.23b,c); note the velocity vectors
of a cyclonic wave of higher horizontal mode direction [...]. In V1H2, [the] reso-
nance in Shiozu Bay made the interface displacement in the bay larger than in the
main part of the lake. V1H3 had a similar structure to V1H2, except that the phase
was opposite in [the] Shiozu bay (not shown). V1H6 was the lowest mode with
an anti-cyclonic cell located in the middle of the North Basin (Fig. 14.23d). Field
data have shown an anti-cyclonic rotation of the current vectors in the middle of the
North Basin with period of 11 h in summer [15], confirming existence of this mode.
Overall, the frequencies and horizontal structure of these modes matched well with
previous studies (see Table 14.5)’.

14.6 Concluding Discussion

In this chapter, the focus has been to collect some convincing evidence that wind
generated, but otherwise free gravity oscillations in lakes may be affected by the
rotation of the Earth.
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Table 14.5 Some characteristics of the internal [IW] and surface [SW] waves in lake Biwa. These
waves are numbered in decreasing order of their natural periods. Abbreviations: Hm, horizon-
tal mode; CC , cyclonic cell; AC , anti-cyclonic cell; NL, nodal line; NB, north basin; N, north;
S, south; M, middle. (Excerpt of Table 1 from Shimizu et al. [60])

Class Hm Perioda Perioda Horizontal structureb

(Shimizu et al. [60]) (other study)

IW 1 42.1 h 45 hc, 46 hd Kelvin-typea;e

2 23.9 h 23 hd 2 CC se, resonance
in Shiozu Bayf

3 18.6 h – 2 CCs, resonance
in Shiozu Bayf

4 15.3 h 16 hd 3 CC se

5 11.9 h 12 hd 4 CC s
6 10.5 h 11 hg 1 AC in N of NB and 3 CC s
7 9.6 h – 1 AC in N of NB and 5 CC s
8 8.7 h – 2 AC s in N of M and

2 CC s in S of NB
SW 1 220 min 270 mine 1 NL in S and of NBe

2 62.1 min 78 mine 2 NLs in M of NB and SBe

aInertial period is 20.7 h.
bReferences in the last column indicate report of similar structure.
cKanari [30].
dSaggio and Imberger [55].
eKanari [29].
fOkamoto and Endoh [43].
gEndoh et al. [15].

Homogeneous water bodies give rise to barotropic wave motions, in which the
water in the entire water column moves unison, whilst in stratified waters baro-
clinic motions are manifested by a layering, in which the motion of the water in
neighboring layers is essentially to-and-fro with largest amplitude signals at depths
where the vertical density gradients are appreciable. In barotropic processes the
most conspicuous signals of the water motion generally occur at the free surface
as vertical surface elevation variations that can be measured by near-shore limni-
graphs, arranged around the lake. From synoptically recorded elevation time series
the progression of wave crests (or troughs) can be determined by the linearized,
depth integrated, Boussinesq approximated shallow water equations, which, apart
from the mode periods, also define for each mode the amphidromic systems cov-
ering the lake. These have been shown here for Lake Michigan and display the
distribution of the oscillation amplitude in terms of level lines with its maximum
representing the (normed) value 100, and the zero value identifying the centre of
the amphidrome. These co-range lines are complemented by the co-phase lines,
which radiate from the amphidromic point like spikes and describe the phase pro-
gression, essentially how an elevation high (or low) moves around the amphidromic
point. If such rotations are counter-clockwise (on the N.H.), then the corresponding
amphidromic system exhibits so-called Kelvin-type structure with relatively large
horizontal velocities close to shore and smaller ones in the interior; the horizontal
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velocity is essentially parallel to the border. If the rotations are clockwise (on the
N.H.), then the behaviour is Poincaré-like, with relatively large horizontal velocities
in both directions, but with a quarter period phase shift between the two, such that
a clockwise rotation of the horizontal velocity vector emerges. The ‘particles’ move
in elliptical orbits with ‘fat’ ellipses in the interior and ‘thin’ ones close to shore
and major semi-axes parallel to the shore. The results obtained by Mortimer and
associates and described in Sect. 14.2 show the computed first few seiche modes fit
the inferences from measurements reasonably well; at higher order modes eigenfre-
quencies or eigenperiods can still be rather well predicted, but corroboration of the
computed mode structure via identifications of elevation amplitudes and phase dif-
ferences of cross spectra of station-pair elevation time series is less accurate because
data may be too scarce or the linearized equations too much simplified.

When the lake water is stratified, the dominant dynamics takes place in the
interior of the lake. To identify the baroclinic basin-wide wave structure, several
methods have been used. One model is to use time series of free surface eleva-
tions from limnigraphs placed at isolated points around the lake shore and to filter
these time series such that rapid barotropic signals are eliminated and to subject
the filtered time series to spectral analysis as done for the unfiltered time series
for identification of the barotropic oscillations. Such synoptic information could be
obtained for Lake Geneva from 12 limnigraph recorders placed around the Lake by
the Swiss Service Féderale des Eaux in 1949/1950 and disclosed the basin-scale
internal seiche structure, verifying the lowest few modes in stratified Lake Geneva
by using two-layer depth models (TCDM; TVDM) by Lemmin et al. [32].

More effective than measuring surface elevations are synoptic deployments of
judiciously distributed thermistor chains with (generally equally) spaced thermis-
tors, which record at fixed positions the fluctuating temperature. These data can
(and have been) transformed to variables which are reminiscent of time series of
vertical displacements of the water masses, e.g. the variation of the pycnocline ele-
vation. Temperature measurements are more popular and, indeed, they have been
more often used to record baroclinic oscillations in lakes than any other method. It
should, however, also be emphasized that velocity measurements from instruments,
moored at fixed stations both near-shore and off-shore are and have been helpful in
the identification of Kelvin- and Poincaré-type behaviour. Rotary spectra or progres-
sive (velocity) vector diagrams may support a suspected Kelvin- or Poincaré-type
mode behaviour on the basis of phase progression from mass spectra of station-pair
elevation time series.
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Chapter 15
Higher-Order Baroclinicity (I): Two Fluid
Layers with Diffuse Interface – Three Fluid
Layers with Sharp Interfaces1

15.1 Motivation and Review

Internal oscillations in the atmosphere, the ocean and lakes are due to density varia-
tions that may exist due to the (basically vertical) temperature and, in the ocean,
salinity distributions. A frequently encountered stratification occurs in summer
when the lake water is warm in the uppermost layer (epilimnion) and cold at depth
(hypolimnion) with a more or less continuous transition layer (metalimnion) with
often fairly abrupt temperature changes. Baroclinic, i.e. internal waves are manifest,
in particular, in the metalimnion with largest amplitudes at the location of the largest
(mean) vertical temperature gradient (thermocline).

A common approximation to this continuously stratified fluid system is a two-
layer configuration with a constant-depth upper layer (epilimnion) of a light fluid
with constant density overlaying a variable depth constant density heavy fluid
(hypolimnion) with a density-jump interface at the location of the thermocline. The
wave motion of the interface then mimics the baroclinic wave in the metalimnion.
As we know, this two-layer approximation yields only one baroclinic mode and
eliminates all others.

This two layer model has been successful in modeling dominant oscillating
process in real mountainous lakes at mid latitudes. It allows identification of the
barotropic and first baroclinic mode structure; these have been verified with data
from many lakes.2 Higher order baroclinic waves, i.e. waves whose mode structure
is due to a continuous variation in the density with depth, are also observed, but
much less frequently; the reason is likely that they carry less energy and are often
hidden behind wind induced smaller scale water motions. However, their existence
is often due to the deviation of the diffuse metalimnion from a sharp interface. In

1 This chapter and the next chapter belong intellectually together; they are separated for reasons of
length.
2 Schwab [49], Mortimer [39, 40], Mortimer and Horn [41], Hutter et al. [28], Bäuerle [4], Horn
et al. [23], Stocker et al. [54], Hutter [27], Stevens and Lawrence [53], Saggio and Imberger
[46], Antenucci and Imberger [1, 2], Boegman et al. [8], Gòmes-Giraldo et al. [16], Shimizu and
Imberger [50–52].

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_15, c� Springer-Verlag Berlin Heidelberg 2011
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the past, we believe, the lack of the observation of higher-order baroclinic waves
in lakes and the ocean is not so much due to the fact that they are not excited, but
rather (1) because measuring techniques may have been insufficiently detailed to
capture them and (2) that the two-layer approximation prevents theory to identify
them computationally. Mortimer [38] has given observational evidence of a higher
baroclinic wave response in Windermere, and Salvadè et al. [47] have approximated
the density profile measured on March 18 1987 at a mooring in the northern basin
of Lake of Lugano and identified peaks in the velocity spectra with eigenperiods of
a three-layer model, whilst our own laboratory experiments [24, 25, 57] identified
first and second baroclinic modes. The experimental set-up was such that a single
internal soliton, riding on the interface and approaching a topographic obstruction
is split into two pairs of reflected and transmitted internal solitary waves that can
be identified with the first and second order baroclinic modes belonging to the
sharp interface configuration and its diffuse regularization, respectively. In more
recent years, higher-order baroclinic mode structures have been more systemati-
cally analyzed in stratified mountainous lakes by a number of researchers, see e.g.
[3, 7, 8, 15, 42, 45] and others.

In this chapter, we shall first present measurements of higher order solitary inter-
nal waves, performed in the laboratory and compare the data with results from
theoretical modeling. The focus will be the interaction of the solitary wave with
a sill and the demonstration how the second-mode solitary signals are generated
during the interactions. It will be demonstrated that a diffusive interface is essen-
tial in order that transmission and reflection processes of an approaching first-order
baroclinic soliton is accompanied by a fissure of the transmitted and reflected wave
signals from first to higher-order baroclinic modes. Second, first and second-order
baroclinic waves will then be studied in the Northern basin of Lake of Lugano on
the basis of a three-layer approximation of the summer vertical density profile with
two idealized interfaces, a thermocline at 10 m depth and a chemocline at 100 m
depth, which marks the different mineralizations of the waters at intermediate and
great depths. Third, results will be reported on field measurements – mostly from
thermistor chains – of internal oscillations in various lakes which can clearly be
identified as higher-order baroclinic mode behaviour. In all these instances, the
effects of the rotation of the Earth will be ignored even though internal Rossby
radii of the second-baroclinic mode are not in all cases sufficiently large to justify
this simplification.

Finally, it should be mentioned that a great number of non-linear internal wave
studies have been conducted and were also applied to the ocean and to lakes.
However, we are not aware that they are looked at in the spirit addressed in this
chapter.

In what follows, this chapter will be divided into two parts: Part A will be dealing
with a two-layer fluid system with diffusive interface, Part B will analyse a three-
layer model of the North basin of Lake of Lugano.
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A. Laboratory Experiments on Baroclinic Solitary Waves
in a Two-Layer Fluid System with Diffusive Interface

The experiments were conducted in the Laboratory of the (former) Department of
Mechanics of the Darmstadt University of Technology in a number of M.Sc. and
Ph.D. dissertations and post doctoral work, see [10, 11, 24, 34, 35, 48, 59, 60]. Here
we follow Hüttemann and Hutter [25] and Vlasenko and Hutter [57].

15.2 Experimental Set-Up and Wave Generation

15.2.1 The Wave Channel

The wave channel consists of four Plexiglas modules, 2.5 m in length; its cross-
section is 33 cm wide and 35 cm high (Fig. 15.1). The channel is filled with de-
aerated fresh water of density 103 kg m�3 which is underlain by de-aerated saltwater
of density 1;025 kg m�3. The filling is done cautiously through 24 diffusers at the
bottom plate to minimize mixing of the two fluids during the filling process. The
result is a two-layered configuration with an abrupt but continuous density transition
through a diffusive interface (Fig. 15.2). The propagation of the wave and its trans-
formation by a built-in sill is recorded by six electrical resistivity gauges P1–P6,
positioned along the channel. A seventh gauge is installed to measure the vertical
displacement of the free surface and to ensure that no significant surface motion is
established by the generated baroclinic wave.

The details of the filling operations of the fresh and salty water that make the
diffusive boundary layer (Fig. 15.2) as thin as possible, is described in Schuster
[48]. Here, it may suffice to mention that by each passage of an internal solitary
wave through the flume the interface layer became thicker, barely measurable from
one experiment to the next, but with visible accumulation after 7–10 repetitions.
Furthermore, on time scales of an hour and more, molecular diffusion of salt from
the lower to the upper layer widened the diffusive interface (by app. 4 mm per hour),
an extent that affected the internal dynamics. So, repetitions of identical experiments
yielded reproducible interface deflections provided they were done within less than
an hour.

15.2.2 Solitary Wave Generation and Measuring Technique

Given the two-layer analysis of wave propagation in Chap. 11 the generation of a
soliton-like displacement curve of the interface with negligible barotropicity can be
achieved by moving the two pistons of the wave generator in opposite directions
such that the displaced volumes in the two layers are the same: u1h1 D �u2h2.
It was found by trial and error that the piston had to follow a ramp function in time to
control the piston movement (Fig. 15.3a) and to generate a nearly soliton-like wave
hump (see [11, 48, 59, 60] for further details). In the region of the wave generator,
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Fig. 15.1 (a) Sketch of the experimental arrangement (frontal view). On the left there are two
pistons, separated by a thin plate at the interface level, which simultaneously move in opposite
directions and displace the same volume of water. Six electrical resistivity gauges, P1–P6, record
the interface elevation. A seventh gauge P7 records the free surface motion. (b) Wave channel
with wave generator at the left end. (c) sketch of the wave generator. Composed from figures of B.
Schuster (1991) [48]

the two pistons are separated by a thin Plexiglas plate to avoid mixing of water from
the two layers, and to reduce the vortices that always form in the wake of the strong
shearing at the interface surface because of the viscous behaviour of the fluid (for-
mation of a vortex sheet!). The electrical resistivity gauges consist of two parallel
wires subjected to an alternating voltage (Fig. 15.3b). The 5-kHz alternating current
that is established avoids formation of electrolysis at the wires. The signal is ampli-
fied and digitized for computational analysis. Temporal resolution of 10 samples per
second is sufficient to detect all effects related to the propagation of internal waves.
Vertical adjustment of the gauge position is possible with an accuracy of 0.1 mm.
This measuring arrangement suffers from an almost linear temporal drift because of
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Fig. 15.3 Sketches of piston movement and gauge: (a) time-displacement curve of the piston
of the wave generator; (b) conductivity gauge, consisting of two parallel wires subjected to an
alternating current and connectable to an A/D convertor, from [48]

a galvanic coupling of the amplifiers and the water. This drift is manually corrected
by subtracting an appropriate base value from the recorded time series, see Fig. 15.4.
Moreover, because the reproduction accuracy of acceptable repeated experiments is
sufficiently high, the spatial distance between the gauges can be made arbitrarily
small by repeating experiments with the same system parameters after relocating
the gauge along the channel.
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Fig. 15.4 Drift correction and reproduction accuracy. Reproduction accuracy of repeated experi-
ments showing time series of elevation of the interface at one gauge: (a) before and (b) after drift
correction. The inset in (a) shows a typical calibration curve of the gauges (after Hüttemann and
Hutter (2001) [25]). c� Springer, Berlin, reproduced with permission

15.2.3 Error Estimation

The major sources of errors in the measurements are those of calibration (approx.
˙0:1mm), drift correction (approx. ˙0:2mm) and noise in the electrical circuits
(10 A/D converter units, which is about approx. ˙0:1mm). The temporal error in
the sampling rate of the A/D converter is said to be negligible. Thus, the overall error
is smaller than approx. ˙0:5mm. Because for most investigations in this section
only the phase speed is of interest, one needs only relative changes in the signal and
can ignore the absolute errors in the calibration and drift correction. This provides
the possibility of evaluating even very small interface elevations.

15.3 The Experiments

The purpose of the experiments was to investigate the interaction of solitary waves
with (1) the end walls to guarantee that the reflected waves would also exhibit
solitary character and (2) sills, built-in at the floor of the channel. When partially
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Fig. 15.5 Set-up of the sill and definition of the degree of blocking B WD Hr=H2

blocking the lower layer, a sill may split an incoming solitary wave into a reflected
and a transmitted part. Depending on the degree of blocking B D Hr=H2, see
Fig. 15.5, the fissured forward and backward moving waves either keep the soli-
tary character or are changed to oscillatory wave trains, see [11, 35, 48]. In ideal
situations, we observed the excitation of a second transmitted solitary wave follow-
ing the first at lower speed; more common was the formation of a transmitted wave
train. Similar second reflected waves were also found in some experiments, but these
had generally very small amplitudes and could often not be reliably reproduced.

There are two main parameters which characterize the system: the soliton ampli-
tude and the degree of blocking. The amplitude is described by the Froude number
Fr D umax=clin, which is the maximum piston velocity of the wave generator nor-
malized by the linear phase speed clin. In the range Fr 2 Œ0:1; 0:8� the best results
for soliton excitation were found with Fr D 0:2. This value generated an elevation
amplitude of approximately 5 mm. Larger Froude numbers produce more oscillat-
ing wave trains in the back of the solitary wave, especially when interacting with
the sill. The degree of blocking B was varied from 0.5 to 1.0. Smaller values of B
do not have an observable effect on the transmitted wave, while higher values will
break down the transmitted soliton to a simple oscillating wave train. Best results in
the sense that the incoming soliton was split in two parts while keeping the solitary
character, were achieved with B 2 Œ0; 7; 0:9�. Two other parameters, the sill length
and the steepness of the ramps of the sill are equally of significance for the reflec-
tion characteristics and the transmission of waves across the sill, but these are not
in focus here, where attention is restricted to one and only one sill geometry with
negligibly small Lr , for further scrutiny, see [35, 48].

15.3.1 Typical Experimental Data

Figures 15.6 and 15.7 show typical data sheets obtained from the experiments
[48]. The layer depths are of the ratio 2 (top) : 1 (bottom) and 1 (top) : 2 (bot-
tom) and the piston movement was such that almost perfect solitons were generated.
The individual panels are plotted at equal distances, corresponding to a gauge
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Fig. 15.6 Typical experimental data. Time series of the interface deflection at the six gauge posi-
tions, P1–P6, for a layer-thickness ratioH1=H2 D 2 W 1. On the left of the figure, the wave channel
is shown with the locations of the gauges P1–P6. The time axis of the individual gauges is at the
position of the respective gauges in the channel on the left of the figure. Dotted lines with arrows
mark the propagation of the (fundamental) baroclinic mode of the two-layered system. Amplitudes
are scaled with the equivalent water depthH D H1H2=.H1CH2/ and time is made dimensionless
with T D t=

p
g=H . The Froude number is Fr D 0:88 (From Schuster [48], with changes)
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Fig. 15.7 Same as Fig. 15.6, but for a layer-thickness ratio H1=H2 D 1 W 2 (From [48], with
changes).
Note: The small trailing oscillations behind the large solitary signal also seen in Figs. 15.6 and 15.8
could not be avoided in the experiments, but have been minimized by trial and error by moving the
piston accordingly
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distance of 1.45 m and the amplitudes are scaled with the equivalent water depth
H D H1H2=.H1CH2/. In the early experiments, no sill was installed in the chan-
nel as only the reflection mechanism was tested at the end wall and at the generator
wall that was erected after the passage of the generated wave. The initial wave sig-
nal, even though optically close to a perfect soliton signal, carried with it a very
small trailing oscillating chain that was attenuated as the wave moved along the
channel. Evidently, the main wave hump (Fig. 15.6) and trough (Fig. 15.7), respec-
tively, are also considerably attenuated along the channel but the reflection at the
end and generator walls preserves the soliton character of the wave signal well. The
stability of the solitary wave hump and wave trough in Figs. 15.6 and 15.7, respec-
tively, is in line with theoretical claims. Figure 15.8 shows the first peak signals,

Measurement
K-dV-Theory

1.0

0.5

0.0

a/a(max)

0 10 20 30

a/a(max)

1.0

0.5

0.0

0 10 20 30

Measurement
K-dV-Theory

1.0

0.5

0.0

a/a(max)

t [sec]
0 10 20 30

a/a(max)

1.0

0.5

0.0

0 10 20 30
t [sec]

Measurement
K-dV-Theory

a b

c d

Measurement
K-dV-Theory

Fig. 15.8 Comparison of measured and theoretical soliton forms for layer thickness ratios
H1=H2 D 2 W 1 (panels (a), (b)) and H1=H2 D 3 W 1 (panels (c), (d)) after the first (panels
(a), (c)) and the second return passage (panels (b), (d)) of the gauge P1 for travel distances 2.45
and 16.45 m, respectively (composed from figures in [48])
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(From [25]). c� Springer, Berlin, reproduced with permission

measured at P1 after its first forward and second return passage and compares these
with the sech2-profile of the Korteweg-de-Vries (K-dV) equation for the 2:1 and 3:1
layering. Apart from the differences at the tail, the agreement is very good.

Figure 15.9 shows a typical data sheet with a built-in triangular sill between
P3 and P4 and closer to P4. Interface elevations are now given in millimetre and
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for each curve the same elevation scale, indicated in the upper right corner, is used,
while the vertical position of the curve corresponds to the gauge position. The initial
peak was approximately 5 mm high, decaying to about 1 mm while propagating
all the way down to the end of the channel. The sketch on the left of the picture
explains the position of the sill and the gauges along the channel length. The dotted
lines and arrows mark the path of the fundamental-mode soliton; the gradient of the
line gives the velocity of approximately 70mm s�1. One easily sees the split at
the sill in the middle of the channel and several reflections at both channel ends.
The solid lines and arrows show the propagation of the suspected second higher-
order baroclinic mode, generated by the sill. Here, the speed is only 20mm s�1,
even though the amplitude is almost equal to the transmitted fundamental-mode
peak. We also indicate in Fig. 15.9 a reflected higher-mode wave, but owing to the
smallness of the signal, we can presently only muse about its existence.

The propagation of the fundamental baroclinic mode solitary wave is already
well known; so, this section will concentrate on the higher-mode peak. This higher
mode signal has also solitary wave character, so, its wave form only follows from a
weakly nonlinear theory, whilst its speed can be computed from a linear eigenvalue
problem.

15.3.2 Results

This section presents some analysis of the experimental data with first interpreta-
tions.

15.3.2.1 Wave Signal

The shape of a typical K-dV soliton is given by the sech2-profile. As we have seen
in Fig. 15.8, the sech2-profile is very well reproduced. Figure 15.10 compares the
theoretical profiles with the measured data points in greater detail. Fundamental
(Fig. 15.10a) and first higher mode (Fig. 15.10b) curves match the theoretical profile
well except in the tails, where small deviations occur, that could, experimentally,
never be avoided. Agreement between the sech2-profile and the experimental data
is well known [20,44]. The point here is, however, to demonstrate that the interaction
of a fundamental mode solitary wave with the sill generates for these experimental
conditions in addition higher order modes of the reflected signal (here only mode-2
is detectable), which is equally solitary and not simply an oscillating wave train.
Evidently, the data in panel (a) are more accurate with less scatter than the data in
panel (b).

15.3.2.2 Wave Speed

The most significant difference between the two observed wave modes is their
travelling speed. Theoretically, the wave speed of the first higher mode c1 can be
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Fig. 15.10 Solitary wave signals. Comparison between the theoretical (solid lines and exper-
imental soliton-type interface displacements; (a) for the fundamental baroclinic mode and (b)
for the first higher order baroclinic mode (From Hüttemann (1977) [24]. Hüttemann and Hutter
(2001) [25])

estimated to be about a third of the ground-mode solitary-wave speed c0. Table 15.1
compares the calculated and measured wave speeds of a sample experiment. The
blank spaces in the columns ‘Experiments’ occur, because no further higher mode
was observable, whilst blanks in the two-layered solitary theory column are obvi-
ous because no higher modes exist in the two-layer theories. Agreement of the
experimental with the theoretical results is remarkably good.

15.3.2.3 Influence of the Height of the Transition Layer

The longer a particular set-up is used for measurement, the thicker the transition area
will become and the slower the fundamental mode wave will travel. Theoretically,
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Table 15.1 Measured and computed wave speeds (n D 0; 1; 2 denote the fundamental and first
and second higher baroclinic modes)

n Experiments Linear theory
cn cn=c0 cn cn=c0 Two-layer

Œcm s�1� Œcm s�1� cn Œcm s�1�

0 7.0 1 7.3 1 7.9
1 2.0 0.29 2.2 0.30
2 1.3 0.18

n Solitary theory

Piecewise linear �0 Sigmoidal �0
cn Œcm s�1� cn=c0 cn Œcm s�1� cn=c0

0 7.2 1 7.1 1
1 2.1 0.29 2.1 0.30
2 1.4 0.19 1.3 0.18

the wave speed is given as a function of the thickness of the transition layer d ,
whilst in the experiments we could only observe changes in the wave speed depend-
ing on the time passed since the wave channel was filled with the two fluids. The
channel set-up does not allow measurement of the density gradient while perform-
ing measurements of the transition surface elevation. To allow comparison of theory
and experiments, the dependence of the thickness of the transition region d on the
set-up lifetime T is assumed to be of the linear form

d.T / D ıT C d0; (15.1)

where ı is a linear mixing constant, which is empirically determined and d0 is
the mixing offset caused by the filling process. ı was found to be approximately
4mm h�1, and the values obtained for d0 range from 13 to 17 mm. This seems to
be reasonable in view of the sensitive filling operation. Using the values for ı and
d0, one can plot the wave speeds against the interface thickness d and compare the
experimental data with the computational results. Lines A and B in Fig. 15.11 are
plotted using the theory with a piecewise linear temperature profile, whilst C and D
represent experimental data for the incoming solitary wave before reaching the sill,
and the transmitted fundamental-mode solitary wave (D), respectively. The speeds
of the line D in the graph of Fig. 15.11 are smaller than those of line C, because
of the smaller amplitude of the transmitted wave. The points on line E show the
measured wave speed of the transmitted first higher-mode soliton.

For inviscid systems, one would expect the measured speeds to be larger than
the theoretical ones because the nonlinear amplitude correction is not incorpo-
rated in the theory. In spite of this, all experimental wave speeds are smaller
than the corresponding theoretical values. We suppose that the neglect of viscos-
ity and interactions with the flume boundaries cause the deviations. They obvi-
ously disappear when the ratio c1=c0 is considered, rather than the absolute wave
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Fig. 15.12 Ratio c1=c0 plotted against d . The solid line gives the theoretical result for the piece-
wise linear temperature profile. Equation (15.1) was used to fit the experimental data given by the
symbols (From [24, 25]). c� Springer, Berlin, reproduced with permission

speeds. Figure 15.12 shows the near-perfect agreement of the ratio c1=c0 from the
experiments and the theoretical values for the piecewise linear temperature profile
(solid line). Equation (15.1) was used to fit the experimental data. The symbols
(squares, triangles, circles) belong each to the same set of experiments using the
same parameter values for ı and d0.
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15.4 Analytical Models for the Evolution of Baroclinic Waves

15.4.1 Equations

Consider a quiescent stratified fluid layer resting on a horizontal plane bottom and
having a flat free surface. Let Oxz be a Cartesian coordinate system fixed with the
fluid at rest. Its origin O and the x and y-axes pointing along and across the chan-
nel, are chosen to lie on the free surface, whilst the z-axis is pointing upward against
the direction of gravity. Initially, the analysis will be confined to three dimensions:
along and across the channel and vertically to it. The governing equations will be
written relative to a rotating system of coordinates, but later the rotation of the Earth
will be ignored and the across channel variations will be dropped, because in the
small scale laboratory experiments the direction across the channel gives no contri-
butions to the mode structure and is omitted. Let .u; v;w/ be the Cartesian velocity
components in the .x; y; z/-directions, respectively. They are in general functions
of the position and time: u D u.x; y; z; t/, v D v.x; y; z; t/, w D w.x; y; z; t/. The
total water depth is H and, for variable topography, the total water depth H is a
function of x; y: H D H.x; y/. Assume, moreover, that the density of the undis-
turbed system varies with depth only, �0 D �.z/. This function is assumed to model
a light upper layer (epilimnion) of constant density that is continuously connected
with a lower, heavier, layer (hypolimnion), also of constant density. The transition
thickness d is assumed to be small in comparison to the total depth H . There are
several possibilities to parameterize this smooth transition from the epilimnion to the
hypolimnion density, and here, we shall treat essentially two: (1) a piecewise linear
transition (Fig. 15.13a) and (2) a so-called sigmoidal fit (Fig. 15.13b). A sharp inter-
face can be obtained mathematically in the limit d ! 0, but in reality the interface
will always be diffuse. With d D 0, only one baroclinic wave mode exists, whilst
for d > 0, there is a countable infinite set of baroclinic modes, the first two of which
have been identified in the experiments.

Different weakly nonlinear theories of internal waves in a continuously stratified
fluid are based on the balance laws of mass, momentum and energy of an ideal
fluid under adiabatic conditions and the assumption of a solenoidal (divergence free)
velocity field,

div v D 0;

@v
@t

C .grad v/v C 2˝ � v D �1
�

gradp � g; (15.2)

@�

@t
C grad� � v D 0;

where v OD .u; v;w/,˝ OD˝.0; cos�; sin �/, g is the acceleration vector due to grav-
ity and � D �0.z/ C Q�. If the rotation of the Earth is accounted for, then the
second Coriolis parameter is generally ignored (see, however, [11]). In Cartesian
co-ordinates and in the convective approximation, (15.2) takes the forms
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@u

@x
C @v

@y
C @w

@z
D 0;

@u

@t
C @u

@x
u C @u

@y
v C @u

@z
w � f v D � 1

�0

@p

@x
;

@v

@t
C @v

@x
u C @v

@y
v C @v

@z
w C f u D � 1

�0

@p

@y
; (15.3)

@w

@t
C @w

@x
u C @w

@y
v C @w

@z
w D � 1

�0

@p

@z
C g Q�
�0
;

@ Q�
@t

C @ Q�
@x

u C @ Q�
@y

v C @ Q�
@z

w C d�0
dz

w D 0:

One of the more difficult problems in solving these equations is the prescription
of the boundary conditions for the pressure. We, therefore, eliminate the pressure
from (15.3) by taking the curl of the momentum equations. If attention is restricted
to the situation when @.�/=@y D 0, and when the stream function  is introduced
according to

u D @ 

@z
; w D �@ 

@x
; (15.4)

then, the continuity equation is satisfied identically and equations (15.3)2;4 combine
to the vorticity equation, whilst (15.3)3;5 are simplified, but remain unchanged. The
equations read in the Boussinesq approximation3 ( N�0 D �0 D const)

@!

@t
C J Œ!; � � f

@v

@z
D @b

@x
;

@v

@t
C J Œv;  �C f

@ 

@z
D 0;

(15.5)
@b

@t
C J Œb;  �CN 2.z/

@ 

@x
D 0;

! WD @2 

@x2
C @2 

@z2
;

in which ! is the z-component of the vorticity vector curl v and

J Œa; c� WD @a

@x

@c

@z
� @a

@z

@c

@x
;

b WD g

N�0 Q�; (15.6)

N 2.z/ WD g

�0

�
�d�0

dz

	
(15.7)

3 We follow Vlasenko et al. (2005) [58], Chap. 5, p. 182.
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are the Jacobian operator, the buoyancy force and squared buoyancy frequency.
Next, we non-dimensionalize (15.5) by introducing the scales

.x; z; t/ D �

x�;H z�; .
=c0/t�

�
;

(15.8)
. ; b; v/ D �

.�a�c0/ �; .a�c20=H/b�; .a�c0=H/v�
�
:

Here, H and 
 are length scales in the vertical and horizontal directions, c0 WD
HNp is the scale for the baroclinic wave speed, with Np the maximum value of
the buoyancy frequency: Np D maxz2.0;H/N.z/. Moreover, a� is a typical wave
amplitude. The dimensionless variants of (15.5) then take the forms

 zzt C � xxt C "J. zz;  /C "�J. xx ;  / � .
f=c0/vz D bx;

vt C "J.v;  /C .
f=c0/ z D 0; (15.9)

bt C "J.b;  /C NN 2.z/ x D 0;

in which asterisks as identifiers of the dimensionless variables have been dropped.
Two parameters

" WD a�

H
and � WD

�
H




	2
(15.10)

represent a measure for the ratio of the wave amplitude to the total depth and a
squared aspect ratio of the depth scale to the wave length scale, which constitutes
a measure of dispersion. The remaining parameter 
f=c0 is the ratio of the wave
length to the Rossby radius of deformation, which defines the effects of rotational
dispersion.

On the assumption that

" 
 1; � 
 1 (15.11)

are small, an asymptotic two-parameter expansion can be performed with (15.9),
which then reduces to the Korteweg-de Vries (K-dV) equation. This expansion, pur-
sued to first order is due to Benney (1966) [5] and to second order due to Lee and
Beardsley (1974) [33]. For the non-rotational case (f D 0) the asymptotic solution
can be shown to be expressible as

 .x; z; t/ D A.x; t/˚.z/C "A2.x; t/˚ .1;0/.z/C �Axx.x; t/˚
.0;1/.z/

"�
h�
A.x; t/Axx.x; t/ � 1

2
A2x.x; t/

�
˚ .1;1/a .z/C 1

2
A2x.x; t/˚

.1;1/

b
.z/
i

C "2A3.x; t/˚ .2;0/.z/C �2Axxxx.x; t/˚
.0;2/.z/C � � � ; (15.12)
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b.x; z; t/ D A.x; t/
N 2.z/

c
˚.z/C "A2.x; t/B.1;0/.z/C �Axx.x; t/B

.0;1/.z/

"�
h�
A.x; t/Axx.x; t/ � 1

2
A2x.x; t/

�
B.1;1/a .z/C 1

2
A2x.x; t/B

.1;1/

b
.z/
i

C "2A3.x; t/B.2;0/.z/C �2Axxxx.x; t/B
.0;2/.z/C � � � ; (15.13)

in which A.x; t/ describes the progressing wave and ˚ the vertical profile. The
superscript .m; n/ identifies the ."m; �n/-order of the term ˚ .m;n/ in the expan-
sion. To second order, the terms related to O."; �/ consist of two parts, denoted by
subscripts a and b. The linear eigenvalue problem for ˚.z/

˚zz C N 2.z/

c2
˚ D 0; (15.14)

˚.�H/ D ˚.0/ D 0 (15.15)

defines a set of solutions .˚.z/j ; cj /, where j is the number of the baroclinic mode.
If only the first order terms in the expansions (15.12), (15.13) are retained, then

for f D 0; v D 0, and with an accuracy of O."; �/, the K-dV-equation

At C cAx C ˛1AAx C ˇAxxx D 0 (15.16)

can be derived from (15.9), which describes all possible unidirectional waves. The
parameters ˛1; ˇ and c are coefficients of nonlinearity, dispersion, and linear phase
speed of long internal waves, respectively. In the Boussinesq approximation, ˛1 and
ˇ are determined as

˛1 D 3

2
c

Z 0

�H
.d˚=dz/3dz

Z 0

�H
.d˚=dz/2dz

; ˇ D c

2

Z 0

�H
˚2dz

Z 0

�H
.d˚=dz/2dz

: (15.17)

In the more common case, when the amplitudes of the internal waves are rel-
atively large, the second order terms in the expansions (15.12) and (15.13) can
introduce essential corrections to the first order solution. For instance in a two-
layer model of fluid stratification the coefficient of quadratic non-linearity in the
K-dV equation, ˛1 is positive when H1 < H2, but negative whenH1 > H2. In this
case, the next cubic non-linearity becomes the major source of non-linearity. In the
second order shallow water theories4 the K-dV equation for A is replaced by the
extended Korteweg-de Vries (eK-dV) equation, in which the coefficient of the cubic
non-linearity can be explicitly computed, if ˚.z/ is known, see [58].

4 For the two-layer stratified case see Djordjevic and Redercopp [12], Gear and Grimshaw [14],
Miles [36], Choi and Camassa [9], Ostrovsky and Grue [44], and for the continuous stratification
Grimshaw [17], Grimshaw et al. [18], Grimshaw [19], Ivanov et al. [29], Lamb and Yan [32].
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15.4.2 Baroclinic Modes for a Two-Layer System
with Diffuse Interface

According to the theory outlined in the last section, the analysis of weakly non-linear
baroclinic waves consists of two steps, (1) the determination of the z-profiles of the
various modes for ˚ by solution of the eigenvalue problem (15.14) and (15.15) and
(2) the solution of the K-dV equation for the signal propagation. Here, we shall be
concerned with the determination of the baroclinic modes for the critical velocity
(which is proportional to ˚).

Step 1 is the parameterization of the measured density profile by a functional rela-
tion. The following profiles allow satisfactory reproduction of the measured density
distribution.

15.4.2.1 Piecewise Linear Density Profile

This can parametrically be given as (Fig. 15.13a)

�0.z/ D

8
ˆ̂
<̂

ˆ̂
:̂

�1; for � hC < z < 0;

�1 � ��

d

�
hC C z

�
; for � h� < z < �hC;

�2; for �H < z < �h�;
(15.18)

and yields

N 2.z/ D

8
ˆ̂
<̂

ˆ̂
:̂

0; for � hC < z < 0;

�g��
�0d

' �g��
d�2

; for � h� < z < �hC;
0; for �H < z < �h�:

(15.19)

This choice of the density profile allows exact solution of the eigenvalue problem
(15.14) and(15.15), see [24]. The eigenvalue problem (15.14) and (15.15) can, how-
ever, equally be solved numerically. Figure 15.13c displays the vertical distribution
of the vertical fluid velocity for modes n D 0; 1; 2 for conditions as stated in the
figure caption, and wave speeds are listed in Table 15.1.

15.4.2.2 Sigmoidal Density Profile

A better approximation of the transition of the density profile from the upper to the
lower layer is the sigmoidal density function [30] (Fig. 15.13b,d)

�0.z/ D N�0exp

�
��

2 N�0 tanh

�
� 2
d
.z C h1/

	�
; (15.20)



15.4 Analytical Models for the Evolution of Baroclinic Waves 217

ρ

ρ0
ρ2ρ1

d -h1

-H

0

z

ρ

d

ρ
ρ0

0

z

-h1

-h-

0

n = 1

n = 2

n = 0

0.05

0.10.15 -0.05

-0.14

-0.12

-0.10

-0.08

-0.00

-0.04

-0.02

0.1 0.05 -0.05 -0.1

-0.14

-0.12

-0.1

n = 0

n = 2
n = 1

-0.08

-0.06

-0.04

-0.02

0z [m]
z [m]

-

0 0

a b

c d

-h+

Fig. 15.13 Piecewise linear (a) and sigmoidal (b) density profiles in a two-layer fluid system with
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thick two-fluid system with H1 D 3:8 cm, H2 D 11:2 cm and d D 2:65 cm for piecewise linear
(c) and sigmoidal (d) density structure (Composed from figures in [24, 25]). c� Springer, Berlin,
reproduced with permission

which is sketched in Fig. 15.13b and of which a fit to the measured data is given in
Fig. 15.2. The eigenvalue problem (15.14) and (15.15) for ˚ reads in this case

d2˚

dz2
C g

c2
��

d N�0 sech2
�

� 2
d
.z C h1/

	
˚ D 0;

(15.21)
˚.0/ D ˚.�H/ D 0;
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with exact solutions in terms of hypergeometric functions [24] which, however, pos-
sess poor numerical convergence properties. It is easier to solve (15.21) numerically
with a commercial software. The corresponding mode structure and the computed
phase speeds are given in panel (d) of Fig. 15.13, and Table 15.1, respectively, again
for the layer particulars as listed in the figure caption.

The fundamental baroclinic speed has also been computed for the two-layer
model with abrupt density change across the interface (d D 0). Its phase speed
is also listed in Table 15.1.

Remarks:

� Starting from the linearized adiabatic equations in two dimensions, (15.3) with
v D 0; @.�/=@y D 0 and f D 0, Hüttemann (1997) [24] also determined the
following equation for the vertical velocity component

@4w

@z2@t2
C @4w

@x2@t2
C 1

�o

d�0
dz

@3w

@z@t2
� g

�0

d�0
dz

@2w

@x2
D 0 (15.22)

subject to the rigid lid boundary conditions w.0/ D w.�H/ D 0. He assumed
travelling waves of the form

w D A.x � ct/˚.z/: (15.23)

The functionA.x�ct/ describes the horizontal form of the vertical velocity with
time, whilst ˚.z/ gives the vertical structure. With the substitution y D x � ct ,
(15.22) and (15.23) imply

�
d4˚

dy4

d2A

dy2

D
d2˚

d z2
C 1

�0

d�0
dz

d˚

dz
� g

c2
1

�0

d�0
dz

˚
D k2 (15.24)

with separation parameter k. This yields the differential equation

d4A

dy4
C k2

d2A

dy2
D 0 (15.25)

and the eigenvalue problem for ˚.z/

d2˚

dz2
C 1

�0

d�0
dz

d˚

dz
�
�
g

c2
1

�0

d�0
dz

C k2
	
˚ D 0;

(15.26)
˚.0/ D ˚.�H/ D 0:

Using the sigmoidal density profile (15.19) and ignoring the second term on
the left-hand side of (15.26), Hüttemann then solved the eigenvalue problem
(15.26) approximately. For the same experimental conditions as those used in
Fig. 15.13, he obtained the phase speeds listed in Table 15.1 under the heading
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‘linear theory’: the ˚.z/-profiles (not shown here) deviate sharply from those of
Fig. 15.13.

� There are other parameterizations of the buoyancy frequency, which approximate
sigmoidal density profiles. For instance, Vlasenko [55] and Vlasenko et al. [56,
58] suggest to use

N.z/ D Np

1C
�
2.z CHp/

�Hp

	2 ; (15.27)

in which Hp is the depth at which N possesses its maximum value Np and
�Hp is the width of theN.z/-profile at the mean value 0:5Np. Figure 5.1 in [58]
demonstrates that the parameterization (15.27) allows representation of a great
variety of density profiles arising in lakes and the ocean.

15.4.3 Results of the Numerical Modeling

In the previous section, the baroclinic linear eigenvalue problem (15.14) and (15.15)
was solved for the piecewise linear and sigmoidal density profiles (15.18) and
(15.20), respectively. It yielded the vertical distributions of the vertical velocity com-
ponent of the three basic baroclinic modes .n D 0; 1; 2/ and the corresponding wave
speeds, see Fig. 15.13 and Table 15.1, and corroborated the high probability of the
interpretation of the measured peaks of the interface displacements as the trace of
the lowest three baroclinic solitons. Such solitons are idealized interpretations of the
waves that are generated by the interaction of the approaching solitary wave with the
sill, and theoretically only emerge asymptotically for large distances after reflection
and transmission. Numerical solution of the governing primitive equations (15.5)
subject to the appropriate initial conditions provides better insight into this prob-
lem. This was done by Vlasenko and Hutter [57], see also Vlasenko et al. [58], of
which we here report some excerpts.

To reproduce the laboratory experiment, the amplitude of the incident wave was
taken to be 5 mm, corresponding to a laboratory Froude number Fr D u=c.0/p D
0:13, where u is the horizontal orbital velocity of the incident wave and c.0/p the
linear wave speed. The height of the sill was Hr D 3:2 cm, corresponding to a
degree of blocking B D 0:92 (H2 D 3:5 cm) and the sill length was 60 cm as in
the laboratory experiment. For a description of the numerical scheme to integrate
(15.5), we refer the reader to Chap. 4, Sect. 2 of [58].

Figure 15.14 shows the interaction of a solitary wave with the triangular sill.
The individual panels show how the wave interaction proceeds for an incident
wave from the right to the left. The snapshots are for the times T0 � .5; 6; 9; 17/,
where T0 D 
.0/=c.0/ D 4:2 s is the ratio of the incident soliton wave length 
0
to the fundamental linear phase velocity c0. The panels from top to bottom show
the time slices when the incident wave hits the sill (t D 5T0), has just passed
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Fig. 15.14 Evolution of the density field (density anomaly (�.z/ � �.0)) relative to the density
at the free surface in kg m�3) during the interaction of a fundamental mode solitary wave with
the sill. The figure shows the development of the fundamental and first higher order modes of the
transmitted and reflected signals in panel (d) (Courtesy Vlasenko et al. (2005) [58]). c� Cambridge
University Press, reproduced with permission
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Fig. 15.15 Density anomaly
field (�.z/ � �.0/, kg m�3) of
the fundamental transmitted
wave (a) and vertical profiles
of the vertical, w (b), and
horizontal, u (c), velocity,
computed for the sigmoidal
density profile and shown as
dashed lines. For comparison,
the vertical profiles of the
K-dV soliton of the same
amplitude are shown by solid
lines, for t D 35T0
(Composed from figures of
[58]). c� Cambridge
University Press, reproduced
with permission -0.4 0 0.4 0.8 1.2
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the sill (t D 6T0), when a transmitted fundamental soliton seems to have formed
and higher order modes(s) are forming (t D 9T0), and when clearly identified sig-
nals of the fundamental and first higher baroclinic transmitted and reflected waves
(t D 17T0) have formed. The direction of propagation of the waves is indicated by
the arrows in panel (d). Computations have been performed for much larger times
and the following discussion and Figs. 15.15–15.18 are based on the results at the
time slice t D 35T0.

The fundamental transmitted (Fig. 15.15) and reflected (Fig. 15.16) waves at
t D 35T0 look qualitatively just like the fundamental soliton with isopycnal dis-
placements all pointing upward throughout the entire depth from the surface to the
bottom, the amplitudes of the isopycnals of the transmitted signals being larger than
those of the reflected signals (see panels (b) and (c) in Figs. 15.15 and 15.16). Panels
(b) and (c) in the figures show the depth profiles of the vertical, w, and horizontal,
u, velocity components (dashed). For comparison, the vertical profiles of the K-dV
soliton with the same amplitude are also shown by the solid lines. The difference
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Fig. 15.16 The fundamental
reflected baroclinic wave.
Notations are the same as in
Fig. 15.15, for t D 35T0
(Composed from figures of
[58]). c� Cambridge
University Press, reproduced
with permission
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between the dashed and solid profiles is a measure of deviation from the asymptotic
soliton. Figure 15.17 shows the isopycnal displacements and the w- and u-velocities
for the transmitted first higher order wave also for t D 35T0. Here, the vertical
isopycnal displacements in the upper and lower parts of the fluid are in opposite
directions, forming humps in the upper layer and troughs in the lower layer with
nearly zero amplitude in the diffusive interface. Correspondingly, the vertical veloc-
ity w is up- and downward in the upper and lower parts (panel (b)) with a sign
change at the interface. Along with this, the horizontal velocity, u, is directed in
a to–fro–to manner (panel (c)) from top to bottom with zero values where w is
going through a maximum, and a relative maximum where w is zero. The differ-
ence between the numerical profiles (dashed) and the profiles of the steady solitons
(solid) is still small, so that identification of the transmitted wave signal is indeed
essentially the first higher mode baroclinic wave. This is different for the reflected
higher mode signal displayed in Fig. 15.18. Panel (a) in this figure indicates with
the counter-phase isopycnal displacements that first higher mode behaviour must be
dominant, but the oscillating portions of the wave signal point also at the presence of
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Fig. 15.17 The first
transmitted baroclinic wave.
Notations are the same as in
Fig. 15.15, for t D 35T0
(Composed from figures of
[58]). c� Cambridge
University Press, reproduced
with permission
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second, third and higher mode behaviour. This interpretation is supported by the w-
and u-profiles shown in panels (b) and (c) in Fig. 15.18 when the numerical profiles
(dashed) deviate substantially from the analytical K-dV solitons (solid).

The experiments and numerical computations reported above show that a nearly
perfect K-dV soliton that is approaching a sill in an otherwise constant depth
channel may at the sill be broken up into transmitted and reflected wave signals
which constitute a combination of fundamental and higher order baroclinic waves.
The experiments were performed such that the lowest two baroclinic modes were
the dominant contributors to these signals, but for the reflected wave even higher
order modes could not be ignored in the interpretation of the signal even though
this was not done explicitly. Of course, the outcome of this fission to higher order
baroclinicity by the sill depends on the height of the sill relative to the thickness
of the lower layer of the fluid system. Vlasenko and Hutter [57], Vlasenko et al.
[58] also study the dependence of this interaction process on the degree of blocking
and on the Froude number of the generated incident wave. What can be learnt here
is that topographic features, if sufficiently strong may be cause for the transfer of
baroclinic energy from lower mode to higher mode behaviour.
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Fig. 15.18 The first reflected
baroclinic wave. Notations
are the same as in Fig. 15.15,
for t D 35T0 (Composed
from figures of [58]).
c� Cambridge University

Press, reproduced with
permission
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B. Three-Layer Model of the North Basin
of Lake of Lugano

Even though higher order baroclinicity in most lakes is likely due to the diffu-
sive interface between the epilimnion and the hypolimnion through a metalimnion
of finite thickness, there are occasionally depth variations of the mineralization of
the water, especially in very deep eutrophic lakes with meromixis. In such circum-
stances, oxygen depletion and a relative surplus of, e.g. sulphate may occur at depth
to the extent that the chemical concentration and therefore electrical conductiv-
ity increase abruptly as one moves down through this chemocline. This situation
exists in the North basin of Lake of Lugano and contributes, together with a density
jump due to the (diffusive) thermocline interface, to an additional higher order baro-
clincity. In this case, it is, however, not clear, which of the two interface motions,
that of the thermocline or that of the chemocline, generate the fundamental mode
behaviour of a basin wide oscillation. We shall see in this case that the largest
phase speed, and therefore shortest internal seiche period is due to the motion of
the chemocline, and the next to the largest phase speed and therefore the next to the
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shortest seiche period is due to the thermocline motion. This assumes that the two
interfaces are sharp, and so, we ignore their diffusive thicknesses which are always
present.

In the ensuing study, we report on an analysis that was conducted by Salvadè
et al. [47] who used data, recorded by the Laboratorio di Studi Ambientali, Lugano,
Switzerland in 1987 and physical experiments of a summer campaign of 1979
(unpublished),5 performed jointly by the Laboratory of Hydraulics, Hydrology and
Glaciology at ETH, Zürich and the Laboratorio di Fisica Terrestre, Lugano.

15.5 The Thermo-Chemical Density Structure
of the North Basin of Lake of Lugano

Lake of Lugano consists of three basins; the North basin (Fig. 15.19) is an L-shaped
channel of about 17 km length with a mean width of 1,500 m and mean and maxi-
mum depths of 170 and 288 m, respectively. The South basin and the pond at Ponte
Tresa are not the subject here; see, however, Chap. 18 for a detailed study of the

Capolago
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Agno
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Morcote

Porto
Ceresio

1
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4

N

0 1 2 3 4 5 km

5

Fig. 15.19 Map of the Lake of Lugano. The North basin extends from Porlezza to Melide Bissone.
Positions 1–5 indicate measuring stations of the field campaign on December 1984. The South
basin is roughly S-shaped and extends from Capolago to Agno, but without the Pond at Ponte
Tresa which is separated from it by the channel at Lavena (From Salvadè et al. [47]). c� European
Geosciences Union, reproduced with permission

5 All these measurements are listed in the annual reports of the International Commission for the
protection of the Italo-Swiss waters (Laboratorio Studi Ambientali 1980–1986) [31].
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Fig. 15.20 Vertical profiles of temperature, conductivity, dissolved oxygen and pH-value, mea-
sured near Gandria at the end of the winter water circulation on March 18, 1987 (From [47]).
c� European Geosciences Union, reproduced with permission

baroclinic dynamics in the South basin of Lake of Lugano. The water transport is
from the North basin to the South basin through the channel of Melide and from the
South basin to the pond of Ponte Tresa through the channel of Lavena. The entire
outflow is all from the pond at Ponte Tresa into the Tresa river to the Lago Maggiore.

Since 1980, regular field programs were carried out by the Laboratorio di Studi
Ambietali at Lugano, measuring vertical profiles of temperature, electrical con-
ductivity, dissolved oxygen and pH value by means of multi-parameter probes.
Figure 15.20 shows profiles of the temperature (T ) electrical conductivity (�),
dissolved oxygen (O2) and pH-value, recorded on March 18 1987 near Gandria
(Fig. 15.19). For all measured parameters a strong gradient is visible at a depth
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between 80 and 100 m. This figure represents the species profiles at the end of the
winter circulation, which is also typical for profiles observed in former years. It is
evident that the circulation does not penetrate below the 100 m depth, corroborating
the meromixis for this lake with a chemocline at 100 m depth.

Salvadè et al. [47] note: ‘From December 3–7 1984 the Laboratorio di Studi
Ambientali carried out a measurement campaign, using a multi-parameter probe
MSE: Temperature and conductivity profiles were measured twice a day, in five
different positions along the thalweg of the North basin as indicated in Fig. 15.19.
From all the conductivity measurements a mean profile was calculated and the part
between 80 and 150 m was approximated by a third order polynomial with a corre-
lation coefficient of 0.999. The vertical Nz-shifting of the mean profile N� necessary to
fit each measured profile was then calculated. In essence the equation

NX

iD1
Œ�.zi /� N�.zi � Nz/�2 D Min (15.28)

was solved for Nz. Here, zi is the i th depth where resistivity measurements were made
and N is the number of measurements performed at a given position’.

Figure 15.21a shows the Nz-values during the measuring campaign at stations 1
and 5, situated at the two ends of the lake. One can note vertical variations of the
profiles over more than 10 m. The two time series appear to be in counter phase,
and this suggests the development of internal waves related to the density change at
100 m. Figure 15.21b shows the vertical shift Nz as a function of the station position at
two instances approximately 20 h apart, suggesting that even horizontally the basin
is not uniform.

No continuous measurements over longer periods are available during the winter
time, but we do have some recorded time series during a summer measuring cam-
paign; and Salvadè et al. have attempted to verify the possibility of internal wave
formation at 100 m depth by developing a three-layer model that also simulates the
summer stratification.

Figure 15.22 shows the vertical profile of conductivity at 20ıC, measured at
Gandria on 20 August 1987; the three suggested layers and the mean values of
the conductivity for each layer are indicated. Heaps [21, 22] already developed a
three-layer model with constant or linear variable density; the layers represent the
epilimnion, the thermocline zone and the hypolimnion. He used a spectral method
to solve the equations in a rectangular basin with constant depth. Mortimer [38] ana-
lyzed the internal water movements of Windermere by means of a three-layer model
of a rectangular basin worked out by Longuet–Higgins and inferred that some fea-
tures of the movement in the lake could not be explained on the basis of a simple
two-layer theory.

The aim here is to verify the occurrence of oscillations in the deep layer of the
hypolimnion. Therefore, the basin is subdivided into three layers which correspond
to the epilimnion, the upper part of the hypolimnion down to 100 m depth and its
lower part.



228 15 Higher-Order Baroclinicity

Station1
Station 5

0 20 40 60 80 100 120
-10

time (hours)

z 
(m

)
_

10

0

~40h

a

1 2
3

4
5

10

5

0

-5

-10

03.12.84. 1500
04.12.84  1030

10
position (km)

z 
(m

)
_

200

b

Fig. 15.21 (a) Time series of the mean vertical displacement of �, relative to the stations at the two
ends of the North basin of Lake of Lugano. Time is measured from 0 h of December 1984 onwards.
Stipulated periods of approximately 40 h are also indicated; (b) Mean vertical displacement of �
along the thalweg of the North basin of Lake of Lugano, measured in the afternoon of 3 December
1984 and the following day. The two curves are snapshots which are 20.5 h apart, suggesting a
period of 41 h (Courtesy [47]). c� European Geosciences Union, reproduced with permission
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15.6 Linear Wave Dynamics of the Three-Layer Model

The three-layer model used here is depicted in Fig. 15.23. It constitutes two layers in
the upper parts of the basin of constant depth and constant densities of different val-
ues �1 < �2. The interface between the upper most and middle layer is interpreted
as the thermocline positioned at 10 m depth. The interface between the middle layer
and the bottom layer defines the chemocline at 100 m depth. Moreover, the density
�3 differs from �2, and for stable stratification we have �3 > �2. The interfaces are
treated as impermeable, and their intersections with the basal topography define, in
the vertical projection, annuli-type regions, in which only two, respectively, only
one layer exist, see Fig. 15.23b.

We call H1 and H2 the constant thicknesses of the upper and middle layers and
H3.x; y/ the variable thickness of the third layer. Similarly, �1, �2, and �3 denote
the vertical displacements of the free surface and the interfaces, respectively; they
are considered small in comparison to the layer thicknesses, so that in a linear
treatment, the differences of the intersections of the functions �i .x; y; t/ and the
intersections at rest �i D 0 (i D 1; 2; 3) with the bathymetry are negligible. This
implies that H1, H2, andH3 are all time independent.
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Fig. 15.23 (a) Vertical configuration of the three-layer model. (b) Intersections of the free surface
with the ground (shoreline), of the mean thermocline with the bottom profile (thermocline shore)
and of the mean chemocline (chemocline shore) with the ground
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The linearized governing equations in the adiabatic and hydrostatic approxima-
tion are in each layer given by the continuity equation, the horizontal momentum
equation and the hydrostatic pressure equation, viz.,

divH vi C @w

@z
D 0;

@vi
@t

C 1

� i
gradHpi D 0;

@pi

@z
D ��ig:

9
>>>>>>=

>>>>>>;

i D 1; 2; 3: (15.29)

Here, divH and gradH are horizontal operators and vi is the horizontal velocity
vector, pi the pressure, �i the density in the i th layer, and g the gravity con-
stant. Boundary and transition conditions at the interfaces require the pressure to
be continuous; so,

p D

8
ˆ̂
<

ˆ̂
:

0; at z D �1.x; y; t/;

�1g.H1 C �1 � �2/; at z D �H1 C �2.x; y; t/;

�1g.H1 C �1 � �2/

C �2g.H2 C �2 � �3/; at z D �.H1 CH2/C �3.x; y; t/:

(15.30)

These are simply the weights of the water columns above the respective interfaces.
Integrating the layer pressure equations (15.29)3 subject to the boundary conditions
(15.30) and eliminating the pressure from the emerging relations and (15.29)2 yields
the horizontal momentum equations in the three layers in the form

@vi
@t

C

8
ˆ̂
<

ˆ̂
:

ggradH�1D0; iD1;
gfgradH�1C"21gradH .�2 � �1/gD0; iD2;
gfgradH�1C"31gradH .�2 � �1/C "32gradH .�3 � �2/gD0; iD3;

(15.31)

where

"ij D �i � �j

�j
; i; j D 1; 2; 3; j < i: (15.32)

Because none of the variables �i in (15.31) depends on z, the velocities in each layer
are independent of z.

Next, we wish to integrate the continuity equation (15.29)1 in each layer over
the layer depth. To this end, the kinematic boundary conditions are needed at each
interface. The resulting kinematic conditions are then used in the horizontal depth-
integrated momentum equations. The derivation of the emerging depth-integrated
equations is given as (15.34) below and left to the reader to verify in the following
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Problem 15.1 With reference to Fig. 15.23, show that the kinematic equations at
the free surface and the layer interfaces take the forms,

� At the free surface
@�1

@t
C .gradH�1/ � v1 � w1D0; (15.33a)

� At the thermocline
@�2

@t
C .gradH�2/ �

�
v1
v2

�
�
�

w1
w2

�
D0; (15.33b)

� And at the chemocline
@�3

@t
C .gradH�3/ �

�
v2
v3

�
�
�

w2
w3

�
D0: (15.33c)

Use these relations in the depth-integrated continuity equations to derive the fol-
lowing integrated balance of mass equations

@.�1 � �2/

@t
C divH fv1.�1 � �2 CH1/g D 0;

@.�2 � �3/

@t
C divH fv2.�2 � �3 CH3/g D 0; (15.34)

@�3

@t
C divH fv3.�3 CH3/g D 0:

Verify these equations also by formulating mass balances for infinitesimal layer
columns by assuming density preserving conditions.

Equations (15.31) and (15.34) form together 6C 3 D 9 partial differential equa-
tions for the unknowns vi (6) and �i (3). They hold for a three-layer fluid system
with free surface when effects of the rotation of the Earth are ignored and, there-
fore, can only hold for small lakes. They hold in the interior regions of a small lake
when the water depth exceeds H1 CH2. In Fig. 15.23b, this is the un-shaded inte-
rior region. In the outer annulus-type regions, the two-layer and one-layer analogues
must hold. Furthermore, the various regions with one, two and three layers must be
connected by transition conditions. The formulation of these additional equations
will be postponed. Here, we only add the remark that the usual procedure is to
restrict computations to the region with the largest number of layers and to define
the computational shore line as the intersection of the deepest layer surface with the
bathymetric profile. However, this eliminates in the multi-layer case a large part of
the near shore water mass and falsifies the results unduly.

Assuming harmonic oscillations

.�i ; vi / D . N�i ; Nvi /exp .i!t/; .i D 1; 2; 3/; (15.35)

Equation (15.31) can be solved for vi and then the resulting relations substituted
into (15.34).
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Problem 15.2 Show that this substitution leads to equations which, after dropping
non-linear terms, take the forms

divH
˚
H1gradH

�
�C �0 C �3

�
 D �!
2

g
�;

divH
˚
H2gradH

�
ı1�C �0 C �3

�
 D �!
2

g
�0; (15.36)

divH
˚
H3gradH

�
ı2�C ı3�

0 C �3
�
 D �!

2

g
�3;

where overhead bars have been dropped and

� WD �1 � �2; �0 WD �2 � �3;
(15.37)

ı1 WD 1 � "21; ı2 WD 1 � "31; ı3 WD 1 � "32:

These equations slightly generalize Longuet–Higgins’ equations to variable depth
and general geometry, see his equations in [38].

We now demonstrate how the annuli regions are handeled. To this end, (15.36)
must be complemented by adding equations for the zones which have only one or
two layers. These equations are easily derived by imposing adequate restrictions to
(15.36).

� In the two-layer zone, we drop (15.36)3, set �3 D 0 and � D �2 and replace the
constantH2 by the functionH2.x; y/. This leads to

divH fH1gradH .�C �2/g D �!
2

g
�;

(15.38)

divH
˚
H 02gradH .ı1�C �2/


 D �!
2

g
�2:

� In the one-layer zone we drop (15.36)2;3, set �3 D �2 D 0 and H1 D H1.x; y/

and then obtain from (15.36)1

divH
˚
H 01gradH�1


 D �!
2

g
�1: (15.39)

The complete system of partial differential equations to be solved, are now
(15.36), (15.38), and (15.39). They must be complemented by adequate boundary
conditions. These conditions will be chosen first as the no-flux condition of water
through the lake bottom at the location of the free surface and interface intersec-
tions with the bathymetry. Second, in layers 1 and 2 the fluxes of water from the
interior of the chemocline boundary to its exterior must be continuous. Similarly, in
layer 1, continuity of the fluxes must also be observed in the upper-layer transition
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through the thermocline boundary. These conditions are usually implemented by
requesting that

@�1

@n
D 0; along the outer shore;

@�2

@n
D @�

@n
D 0; along the intersection

of the chemocline with the ground; (15.40)
@�3

@n
D @�

@n
D @�0

@n
D 0; along the intersection;

of the chemocline with the ground,

in which @.�/@n denotes the derivative of .�/ normal to the respective boundary line.
This formulation is due to Salvadè et al. [47]. They call it the THree-layer Variable
Depth Complete model (THVDC).

15.7 Computational Results and Their Comparison
with Field Data

Salvadè et al. [47] are not very explicit, how the eigenvalue problem (15.36),
(15.38)–(15.40) was solved. They state: ‘The THVDC-model-equation system has
been discretized using the finite difference method ...’. The eigenvalues and eigen-
vectors of the final matrix have been calculated according to the method of Martin,
Parlett, Peters, Reinsch Wilkinson, see [13], introducing some modifications to
reduce the computer memory occupation. For the North basin of the Lake of Lugano
the bathymetric grid already used by Hutter et al. [28] was utilized. It is a rectangu-
lar grid with 23 � 66 squared cells having 250 m side-length. The depths �1, �2, �3
and � are defined in the centre of each square cell, whereas the velocity v .u; v/ is
defined in the middle of the cell sides. This corresponds to an Aracawa C-grid.

AssumingH1 D 10m andH2 D 100m, there are 309 three-layer cells, 145 two-
layer cells and only 2 one-layer cells, since the basin has very steep shores. The
resulting eigenvalue system has therefore 1,219 unknowns. It is interesting to note
that, if the choice of the two-layer model described by Hutter [26] would have been
followed, i.e. if the zones with less than three layers would have been neglected,
then 13% of the total basin volume would have been neglected.

Table 15.2 collects the parameter values used in the model. The thermocline is
assumed to be at 10 m and the chemocline at 100 m depth; the other parameters cor-
respond to the average values measured in August 1985. The mineralization has
been obtained from conductivity measurements through a calibration plot deter-
mined by the Laboratorio di Studi Ambientali and the density has been calculated
according to the Wilson–Bradley formula, see Chap. 10 in Volume I. Table 15.3
lists the values of the periods calculated by the THVDC model and, as a compari-
son, those obtained by Hutter et al. [28] using the two-layer model (10 m thick first
layer with a mean temperature of 21ıC, "12 D 0:194 � 10�2).
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Table 15.2 Parameters used in the model for the three layers, where � is the density and "ij are
defined in (15.32) for the North basin of Lake of Lugano

Layer 1 2 3

Depth (m) 0–10 10–100 Variable
Conductivity

at 20ıC [�s cm�1] 157 216 232
Salinity [mg l�1] 140 201 217
Temperature [ıC] 21.0 8.1 5.4
� Œkg m�3�� 1;000 �1:8210 8:2890 � 10�2 2:1610 � 10�1

"ij D .�i � �j /=�j "21 D 0:1904 � 10�2 "31 D 0:2037 � 10�2 "32 D 0:1331 � 10�3

Table 15.3 Periods of the
first ten modes of oscillation
for the North basin of Lake of
Lugano predicted by the
THVDC model, compared
with the values obtained by
the two-layer TVD model
stated in Hutter et al. [28]

Mode Period (h) Period (h)
THVDC TVD

1 35.1
2 25.1 26
3 16.7
4 11.4 11.6
5 11.0
6 9.5
7 8.1 8.4
8 7.6
9 6.5 6.7
10 6.2

15.7.1 Mode 16

Figure 15.24 displays free surface and interface elevations of the first mode of oscil-
lation with a period of 35 h. The amplitudes are normalized to a 1 m maximum of the
thermocline. The solid lines represent points which oscillate with the same ampli-
tude (isolines); the dashed lines oscillate with a phase opposite to the solid lines.
Therefore, the chemocline and the thermocline oscillate with opposite phases. The
oscillation amplitude of the chemocline is about 10 times greater than that of the
thermocline. Mode 1 is, therefore, the resonant oscillation mode of the chemocline.
Large water oscillations at depths much deeper than the thermocline have already
been observed by Mortimer [37] and calculated by Heaps [21]. They can explain the
eddy diffusion of heat and salt content in deep waters during the summer thermal
stratification.

If we consider the basin as a rectangular channel with constant depth and apply
the relations of Longuet–Higgins in [38] with the parameters of Table 15.2, we

6 The ensuing text follows very closely that of Salvadè et al. [47].
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Fig. 15.24 Isolines of elevation amplitude predicted for mode 1 of the three-layered North basin
of lake of Lugano. Solid lines and dotted lines indicate elevations which are in counter phase
relative to each other. The amplitude value between two successive isolines is given in parentheses.
Note also the areal reduction of the third layer (Courtesy [47]). c� European Geosciences Union,
reproduced with permission

obtain a period of about 39 h and a ratio between the oscillation amplitudes of the
chemocline and the thermocline of about �20 (the negative sign indicates the phase
opposition). These values are of the correct order of magnitude but not in very close
proximity to those of the present model: The higher value of the period obtained
this way (39 h vs. 35.1 h in Table 15.3) is obtained because we assumed as channel
length that at the surface, rather than that at the depth of the chemocline, which is
shorter. The mean depth of the third layer is, however, not well defined: estimation
of a proper length for the analytical model is thus difficult. To treat the basin as if it
were a rectangular channel is therefore a rough approximation. Notice also that first
and second-order vertical baroclinic modes have Rossby radii of 4.1 and 2.5 km;
therefore, having neglected the rotation of the Earth at the depth of the chemocline
(mean width ca. 1 km) can somewhat modify the values of the period.

In 1979, a field campaign was carried out in the North basin of the Lake of
Lugano. Figure 15.25 shows the positions of the measuring stations and the layout
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Fig. 15.25 Example of a measuring station moored in the field campaign of the North basin
of Lake of Lugano in 1979. The instrument depths are indicated and the map shows the station
positions (Courtesy [47]). c� European Geosciences Union, reproduced with permission

of station No. 7907. The measurements were discussed by Hutter et al. [28] and by
Mysak et al. [43]. Figure 15.26 shows some spectra of the temperature measured at
different depths at station 7902 moored near the south end and station 7907 toward
the middle of the basin.7

7 For the spectral analysis the method suggested by Bloomfield [6] was followed: from the time
series the best linear trend was subtracted, to avoid leakage, its extremes were rounded by a cosine
bell window which covers 10% of the time series at each side; after applying the Fourier transform,
the periodogram calculation was carried out through a Daniell spectral window developed over 13
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Fig. 15.26 (a) Spectral plots of temperature time series measured in the North basin of Lake of
Lugano at different depths, recorded at station 7902 from 4 July to 22 August 1979. Vertical lines
indicate the periods predicted by the model. (b) Same as panel (a), but for station 7907 from 6 July
to 22 August. The time series at depth indicate the occurrence of an oscillation with a period of
35 h (Courtesy [47]). c� European Geosciences Union, reproduced with permission

Beside the 24 h main peak, interpreted by Hutter et al. [28] as the period of the
fundamental mode of thermocline oscillation, one can well see a peak at roughly
35 h which corresponds to the first mode of oscillation of the THVDC model. The
peak width could be due to a variation of density and stratification with consequent
period variation. In the spectral analysis reported by Hutter et al. [28], this peak is
not present as the time series were filtered to remove the oscillations which had a
period greater than 30 h. On the other hand, Mysak et al. [43] considered oscillations
with greater periods (D 75 h).

The spectral analysis of temperatures measured at station No. 7907, (Fig. 15.26b)
moored near the nodal line, shows that the 35 h peak becomes greater with increas-
ing depth, as predicted by the model. Unfortunately, these are the deepest measure-
ments carried out in 1979: they reach only a depth of 58 m, which corresponds to

terms. The 95% limits of the confidence interval turn out to be those corresponding to 15 degrees
of freedom of the �2-distribution. Moreover, one must consider in the spectral analysis that the
temperature sensors were at their sensitivity limit for detecting small variations, especially for the
time series at depth.
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about half of the assumed middle layer. Figure 15.27 shows the coherence and the
phase difference between the temperatures measured at the deepest point of the ther-
mistor chain (58 m) and that at different depths. The phase difference tends to 180ı
as predicted by the model. One should note, however, that the coherence gives low
values and therefore this value of the phase difference is not reliable with a high
degree of statistical confidence. To obtain more reliable conclusions we should not
only analyze temperature measurements, but also conductivity measurements over
the whole depth. This would enable us to build and to analyze time series of constant
density surfaces, which better represent the internal wave oscillations.

The free surface displacement, which is in counter phase with respect to the
thermocline displacement is of the order of 1 mm (in agreement with the model
of Longuet–Higgins which gives (�1=�2 D �0:0006) and therefore analysis of pos-
sible limnigraph recordings to detect this oscillation mode is practically impossible
with presently available instruments. Figure 15.28 displays the velocity distribution
for mode 1 over the three layers. It shows the instant of maximum displacement.
Plots of Figs. 15.28 and 15.24 correspond therefore to times which are a quarter
period apart. The maximum velocity arises close to the displacements nodal line.
The middle layer is in counter phase relative to the other two layers.

The only reliable velocity measurements recorded in the 1979 campaign were
those of the current meters of station No. 7908 (Fig. 15.25) which was moored near
the nodal line of mode 1. The upper most current meter of this station was at a depth
of 15 m, i.e. in the lower metalimnion zone (unfortunately the depth values are not
reliable; they could have an error of as much as 5 m). We assume that it shows the
current of the upper layer. The second current meter was placed at a depth of 39 m
which corresponds to the middle zone of the second layer. The third current meter
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Fig. 15.28 Calculated mean velocity distributions in the three layers of the North basin of Lake
of Lugano for mode 1. Top and bottom velocities are opposite to the current in the middle layer,
but velocity amplitudes are comparable in magnitude (Courtesy [47]). c� European Geosciences
Union, reproduced with permission

was placed at 146 m and the fourth at 267 m. As the instruments are sensitive only
to a velocity greater than 2 cm s�1, we obtained continuous measurements for the
first current meter, but only intermitted ones for the second and sporadic recordings
for the other two. Unfortunately, due to a mechanical failure we were able to obtain
only 21 days of measurements.

Figure 15.29 shows the velocity vectors measured on July 23 1979 (u is directed
along the thalweg). As predicted by the model, the current in the middle layer is
in counter phase with respect to the other two layers. The deepest current meter
(267 m) did not record a current on that day, as its value was probably below its
sensitivity limit. However, there must have been a small current, as the direction
detected by the instrument vane was not constant. The arrow in Fig. 15.29 at 267 m
depth indicates the current direction at 12 h. Within certain limits the current value
at this depth is in phase with respect to that detected by the instrument placed at
146 m and therefore the whole lower layer moves in the same direction, as the model
predicts. It must, however, be noted that the direction shown by the current meter
placed at 267 m also has the same value after 18 h. This does not agree with the
prediction of the model, but it could also be due to the small current value which did
not succeed in rotating the vane. Figure 15.30a shows the spectral analysis of the



240 15 Higher-Order Baroclinicity

0 6 12 18 24

267 m

23 July 1979

146 m

39 m

15 m

U

MOORING 8 23 July 1979 2 cm/s
0 6 12 18 24

Fig. 15.29 Stick plot diagrams of the velocities measured at mooring 7908 in the North basin of
Lake of Lugano at Gandria on 23 July 1979. The arrow at 267 m indicates the current direction
at 12 h; the current speed there was below the instrument threshold. The three-layer structure is
evident (Courtesy [47]). c� European Geosciences Union, reproduced with permission

u velocity component, at the depths of 15 and 39 m. The confidence interval limits
of 95% are clearly very large due to the short lengths of the time series. In spite
of this, the 35 h peak is still clearly visible. As shown in Fig. 15.30b, the coherence
value between the time series relative to the 35 h period is above the 95% limit of
the confidence interval. Even the phase difference is in agreement with the model
prediction.

15.7.2 Mode 2

Figure 15.31 shows the lines of equal amplitude for mode 2 with a 25-h period. The
oscillation amplitude of the chemocline is only twice that of the thermocline. This
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Fig. 15.30 (a) Spectral plot of the velocity components along the thalweg of the North basin of
Lake of Lugano, measured at two different depths at mooring 7908 at Gandria, from 7 July to 28
July 1979. The confidence limit is broader than in Fig. 15.26 because the time series is shorter. The
model predicts correctly the 35-h peak at 39-m depth. (b) Coherence and phase difference between
the two velocity components analyzed in panel (a) (Courtesy [47]). c� European Geosciences
Union, reproduced with permission

mode can be considered as the resonant oscillation mode of the thermocline, as it
has a single nodal line. Thermocline and chemocline oscillate with the same phase
but are in counter phase with the free surface. The temperature oscillation measured
by the deepest thermistor (58 m) of Station 7907 and the temperature measured at
different depths (not illustrated here), relative to the same period, demonstrate in-
phase relations, in agreement with the model predictions. This oscillation mode is
described in detail by Hutter et al. [28]. The period value calculated by THVDC is
smaller than that calculated for the two-layer model and therefore nearer to the value
obtained by the spectral analysis of temperatures near the thermocline. Figure 15.26
shows a dominant peak at the 24-h period, which is slightly smaller than the value
predicted by the models. In all probability, this is forced oscillation due to the rel-
atively strong daily wind cycle setting-in in the mid afternoons, to which the lake
responds with large amplitude oscillations as its period is near resonance (see [26]).

As already mentioned when discussing mode 1, by applying the rectangular
channel model of Longuet–Higgins in [38], we obtain a value of 22 h for the period,
with an oscillation of the thermocline in phase with that of the chemocline and
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Fig. 15.31 Calculated isolines of elevation amplitude for mode 2 in the North basin of stratified
Lake of Lugano at the free surface, the thermocline and the chemocline. The lake responds with
large amplitude oscillations as its period is near resonance (see [26]) of a periodic 24-h wind signal
(Courtesy [47]). c� European Geosciences Union, reproduced with permission

with a ratio �2=�3 ' 1 (according to the THVDC model the ratio is about 0.5).
Figure 15.32 shows the velocity distribution for this mode. The middle layer veloc-
ities in the central part of the lake are in phase with those of the epilimnion, but
they contrast with those of Fig. 15.30b. Moreover, the model predicts very small
velocities in this layer, about 30 times smaller than the epilimnion velocities, and
this is in contrast with the spectral analysis shown in Fig. 15.30a. It is likely that the
model could correctly predict velocities pointing in the opposite direction in the sec-
ond layer, if consistent density values and thicknesses of the layers were adopted.
(Recall that because of lack of data a complete set of data was composed from
observations at different times, even different years).

15.7.3 Mode 3

The isolines of elevation amplitudes for the free surface and the thermo- and chemo-
clines as predicted by the model have two nodal lines for each oscillating surface,
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Fig. 15.32 Calculated mean velocity distributions in the three layers for mode 2 in the North
basin of stratified Lake of Lugano. Top and middle layer velocities are opposite to the current in
the bottom layer, but the velocities in the top layer are 16–20 times larger than in the lower layers
(Courtesy [47]). c� European Geosciences Union, reproduced with permission

and it is interesting to note that they are not exactly at the same position (Fig. 15.33).
This relative shift of the nodal lines is likely due to the fact that the three layers have
different boundaries defined by the shore, the thermocline shore and the chemocline
shore, respectively, see Fig. 15.23. Chemocline and thermocline, and thermocline
and free surface, oscillate in counter phase. As the oscillation amplitude of the
chemocline is more than 10 times larger than that of the thermocline and the free
surface amplitude is even a factor of 1,000 smaller, this oscillation mode can be
considered as the second resonant mode of the chemocline. It is, therefore, an oscil-
lation which increases its amplitude with increasing depth; the observations seem
to confirm this, as shown in Fig. 15.26b, but not in Fig. 15.26a (the spectral analysis
of the temperature at 58 m of station 7907 shows a relative maximum which corre-
sponds to that of mode 3). Figure 15.34 shows the calculated velocity distribution.
Station 7908 was placed in the nodal zone for the velocities of this mode, and this
may explain the absence of the corresponding peak in the observations, as shown in
Fig. 15.30a.
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Fig. 15.33 Calculated isolines of elevation amplitude for mode 3 in the North basin of stratified
Lake of Lugano at the free surface, the thermocline and the chemocline. Note, the number of
nodal lines in the three layers is the same, but their positions vary (Courtesy [47]). c� European
Geosciences Union, reproduced with permission

15.7.4 Modes 4 and 5

In mode 4, the free surface and the thermocline have two nodal lines, but the chemo-
cline oscillates with three nodal lines. In mode 5, also the thermocline shows three
nodal lines (these modes are not illustrated). The positions of the nodal lines of the
three surfaces are no longer the same. This should be due to the different extensions
of the three interfaces: in a test of the model performed on a basin having three lay-
ers over the whole computation zone (same extension of the three interfaces), the
locations of the nodal lines are the same.

According to the model, the two oscillation modes have very similar periods.
Mode 4 should, however, correspond to the second resonant mode of the thermo-
cline, and it is nearly coincident with the value calculated by Hutter [27] and Hutter
et al. [28]; mode 5 should correspond to the third resonant mode of the chemocline.
In mode 4, the model predicts a period value of about 11.4 h. The spectral analy-
sis of the observations shows a distinct 12-h peak which could be the first higher
harmonic response of the 24-h resonance: because of its large amplitude, this wave
should be non-linear (see [23]). The high 12-h peak may also hide the 11.4 h peak.
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Fig. 15.34 Calculated mean velocity distributions in the three layers of the North basin of strat-
ified Lake of Lugano for mode 3. Top and bottom velocities are opposite to the current in the
middle layer, but their magnitude in all three layers is approximately the same (Courtesy [47]). c�
European Geosciences Union, reproduced with permission

Another source of the disagreement between the model predictions and the observa-
tions could also be the choice of the parameters, the relatively coarse discretization
process and the neglect of the effects of the rotation of the Earth. Figure 15.30b
shows a well pronounced peak at about 12 h of the velocity measured at 39 m, which
has no correspondence in the measurements of the current meter at 15 m but which
seems to be in agreement with the velocity distribution of mode 4 (not illustrated).

15.8 Model Sensitivity

The results reported in the last section are based on a specific selection of system
parameters. Whilst these are generally chosen according to judicious evaluation, it
became apparent that often different choices may be similarly justified. It is, there-
fore, recommended that parameters are slightly varied about their most probable
values to see, how the system reacts to such variations. This will be done now. The
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Table 15.4 Calculated seiche periods of the three-layer North basin of the Lake of Lugano for var-
ious different parameter selections. The parameter selection of the basic run is given in Table 15.2.
The ten largest computed periods (in hours) are listed when the parameters in row 2 deviate from
the conditions of Tables 15.2 and 15.3. Column 2 lists the periods of the basic run (see Table 15.3).

Model Calculated periods [h]

Parameters H1 D 12 H1 D 10 T1 D 22 T1 D 8:5 S3 D 230

Table 15.3 H2 D 88 H2 D 100

[m] [m] [ıC] [ıC] [mg l�1]

1 35:1 35:2 34:0 34:9 33:0 34:1

2 25:1 23:1 25:1 23:9 24:8 24:9

3 16:7 16:7 16:2 16:6 15:6 16:1

4 11:4 11:1 11:4 11:1 11:3 11:3

5 11:0 10:4 10:7 10:7 10:4 10:7

6 9:5 9:5 9:2 9:4 8:9 9:2

7 8:1 7:6 8:1 7:7 8:0 8:0

8 7:6 7:5 7:4 7:5 7:1 7:3

9 6:5 6:2 6:5 6:2 6:5 6:5

10 6:2 6:0 6:0 6:1 5:8 6:0

periods that are predicted by the model when modifying the parameter values are
listed in Table 15.4. In column 2, the values calculated when using the parame-
ters of Table 15.2 are listed for reference. On the top of each column the value of
the modified parameters are indicated. Note that the parameter modifications are
not always consistent because, for example, a change of the upper layer thickness
would involve also a change of mean temperature, of salinity and therefore also of
the density value. This was not done, since our aim was to test the model sensitivity
to the change of single parameters. One can see, for example, that if one increases
the epilimnion thickness or its temperature, the periods of modes 2 and 4 decrease,
as they are typical oscillation modes of the thermocline. On the other hand, if one
increases the thickness of the middle layer, the periods of modes l and 3 decrease
as they correspond to the oscillation modes related to the chemocline. The period of
mode 2 (fundamental mode of the thermocline) is almost independent of the param-
eter modifications which concern the lower zones of the hypolimnion; as asserted
by Mortimer [38] the measurement of this period cannot give any information about
what happens at greater depth.

15.9 Inferences

Knowledge of the behaviour of the chemical stratification, assumed to change the
density at about 100-m depth in the North basin of the Lake of Lugano, is funda-
mental for the restoration projects of the eutrophic state of the lake. The vertical
oscillations may infer inaccurate values of the mean salt contents of the basin, when
calculated from single measured profiles. The model predicts oscillation amplitudes
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of the chemical stratification of more than 10 m, if they are normalized to 1 m ampli-
tude of the thermocline oscillations. However, the measurements of the 1979 field
campaign show thermocline oscillations larger than 5 m. It is, therefore, easy to infer
that deep oscillations should reach very large amplitudes, which the model cannot
describe, as it makes use of linearized equations. These deep oscillations could influ-
ence the eddy diffusion of heat and substances, which makes it difficult to determine
the value of the vertical eddy diffusion coefficient necessary for restoration models.
The chemical stratification indicates that the winter water circulation of the North
basin is limited to the upper 100 m. It is not clear what might be the effects on the
lake of a deeper mixing and under what meteorological conditions they might occur.

As described above, some experimental data can be well interpreted by a three-
layer model. Other data, however, indicate a behaviour which does not seem to
be correlated with the chemical stratification. Moreover, it is not clear how the
meteorological conditions influence the chemocline.

More detailed knowledge of the chemical stratification of the basin should
involve the simultaneous measurements of the temperature and conductivity pro-
files, recorded at several places and over long periods of time.

15.10 Summary

In this chapter, conditions of the generation and persistence of higher order baro-
clinic dynamics in lake systems were in focus. The influence of the rotation of the
Earth was ignored as the vertical mode structure due to vertical density stratification
was primarily studied. Two qualitatively distinct stratifications were looked at:

� A two-layer fluid system, in which the density jump between two homogeneous
fluid layers with different densities was smoothed by a continuous, but rela-
tively abrupt density change from the lighter, upper fluid layer to the heavier,
lower layer. Laboratory experiments were conducted in which vertical interface–
displacement–time series were measured. An initially solitary wave signal was
impinging a triangular obstruction, which was fissured into a reflected and a
transmitted signal and both signals were recorded in the respective regions. These
signals were compared with computational results obtained from a weakly non-
linear wave theory. Both theory and experiments showed that a pure soliton of
the fundamental vertical mode – the only existing baroclinic mode in a two-layer
system with sharp interface – could be split into several vertical modes; in the
experiment, the fundamental and first higher order baroclinic modes were clearly
identified. This implies that a continuous transition of the density through the
metalimnion from a lighter epilimnion to a heavier hypolimnion in a lake gives
rise to a distribution of the fundamental baroclinic motion among several, also
higher order modes. Two layers are too coarse to capture these.

� A lake may be stratified approximately in three layers, not simply because of a
better resolution of the density variation through the metalimnion, but because
of a distinct mineralization of the water in different layers. This happens in Lake
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of Lugano, which is ‘dead’ below 50 m and exhibits a small but abrupt den-
sity change at the 100-m depth. Here, a theoretical model on the basis of a
three layer model with sharp thermo- and chemoclines gives rise to two baro-
clinic vertical modes. Special in this situation is that the three different layers
extend in the projection into the horizontal plane over distinct regions, which
implies that the distributions of the interface displacement eigenfunctions of the
chemocline and thermocline are rather distinct from one another. Verification
of the computational results by field experiment is not easy because of likely
incomplete deployment of instruments, but in the Lake of Lugano case sufficient
coincidences were found that the computed model response was convincingly
substantiated.

As mentioned above, the influence of the rotation of the Earth was ignored and did
not play a role in the examples considered. In the next chapter, we shall show exam-
ples where higher order baroclinicity and rotation dependent horizontal dynamics
interplay with one another.
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Chapter 16
Higher-Order Baroclinicity (II)
Interpretation of Lake Data with Rotating
and Non-rotating Models

In parts A and B of the last chapter, two sources of higher order baroclinicity were
looked at (1) a two-layer fluid system with a diffusive interface and (2) a three-layer
configuration with two sharp interfaces due to the presence of a thermocline and
a chemocline. In this chapter we give further field evidences of higher order baro-
clinicity. Both cases are to a certain extent idealized; in a realistic situation, density
changes are generally less abrupt and should be represented by using a thermal
equation of state � D �.T; s/ from measured temperature and electrical conductiv-
ity profiles. If this argument is consistently adopted, this would, strictly, mean that
a numerical model for a stratified lake should be based on a multi-layer model, e.g.
with linear density variation across each layer. For reasons of accurate determina-
tion of the phase speeds of the higher baroclinic seiche, this should be done so, even
if only fundamental (V1) and first higher order (V2) modes1 are of interest.

In the majority of cases of baroclinic seiche analyses in enclosed basins, the two-
layer approximation is employed (Hutter et al. [26], Horn et al. [24], Bäuerle [8],
Stocker et al. [49], Lemmin et al. [34], Shimizu et al. [50, 52] and many others)
and with them, most phenomena of internal wave dynamics can be explained. The
continuous transition of the density profile from the epilimnion to the hypolimnion
gives way for the existence of all higher order baroclinic wave modes, and these are
often measurable if external forcing excites them with sufficient energy.

According to Münnich et al. [41], higher vertical modes are rarely reported.
These authors quote LaZerta [30] and Wiegand and Chamberlain [54] who study
V2-mode behaviour, and the authors themselves provide observational evidence
for the excitation of the V2-mode in Lake Alpnach, a basin of the Lake of the
four Cantons in Switzerland. This quotation overlooks the very early recognition
of higher order baroclinic wave signals by Mortimer [36] in Windermere and his
and Heaps’ [17–19] attempts to characterize V2-signals by the three-layer model.
The likely most detailed study of higher order baroclinic water dynamics is the
experimental and theoretical study of Lake Banyoles in Catalonia (Spain) by Roget

1 V1 and V2, etc., stand for vertical mode 1, mode 2, etc.; similarly, H1, H2, etc., stand for
horizontal mode 1, mode 2, etc.

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_16, c� Springer-Verlag Berlin Heidelberg 2011
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et al. [45]. Nowadays, physical limnologists are better aware of these wave sig-
nals; higher order baroclinicity is touched upon, among others, by Appt et al. [4],
Boegman et al. [11] and Shimizu et al. [50, 52].

16.1 V2-Vertical Mode of the Internal Seiche
in Lake Alpnach (Switzerland)

Figure 16.1 gives sketches of V1 and V2 behaviour. For the fundamental V1-mode
of a solitary wave, all pycnoclines are bent in the same direction, which means that
vertical components of particle displacements or velocities have the same sign over
the entire depth, through the epi-, meta- and hypolimnion. Alternatively, for the first
higher order baroclinic mode V2 of the solitary wave, pycnoclines are bent upward
in the upper layer and downward in the lower layer, resulting in a thickening of
the metalimnion during the passage of the wave. For linear seiche analysis, this has
been qualitatively interpreted by Münnich et al. [41] by the sketches of Fig. 16.1.
Panels (a) and (b) show V1 and panels (c) and (d) V2-modes. Alternatively, panels
(a) and (c) show first horizontal, H1, modes and panels (b) and (d) second horizontal,
H2, modes. Of course, such an interpretation is no more than a stipulation with high
likelihood of correctness. Without synoptic observations of temperature and velocity
at different stations and depths, its corroboration is not possible with certainty.

epilimnion

hypolimnion

metalimnionH1

a c

db

H2

V1 V2

Mode H1V1: 1st horizontal

1st  vertical  seiche

Mode  H1V2:  1st  horizontal
2nd  vertical  seiche

Mode  H2V1:  2nd horizontal

1st  vertical  seiche

Mode  H2V2:  2nd  horizontal

2nd  vertical  seiche

Fig. 16.1 Schematic illustration of various internal seiche modes in an enclosed basin with three
homogeneous layers of different densities. The notation used to characterize the mode is of the
form HmVn, characterizing themth horizontal and nth vertical mode. The shaded regions illustrate
snapshots of typical vertical displacements of the middle layer for the respective modes (after
Münnich et al. [41], with changes and extensions)
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16.1.1 Observations

Lake Alpnach is a small Alpine lake in Central Switzerland with hydrographical
data as shown in the inset of Fig. 16.2. Two measuring campaigns were conducted
in 1989 and 1992, respectively. In the 1989 campaign, time series of temperature
at the positions M, N, P were recorded at 10 min intervals, and from time series
of these, isotherm–depth–time series were interpolated. Selected isotherm–depth–
time series, at M for (17ıC, 9ıC), at N and P for (17ıC, 11ıC) disclose dominant
periodicities at 24 and 7.5 h, which are at times fairly isolated, at other instances
intermixed. The 24-h period can also be seen in the wind measurements, but the
7.5-h periodicity is not so clearly seen in the wind data. Energy spectra of the wind
and the mentioned selected isotherm–depth–time series disclose identifiable peaks
at 24, 12 and 7.5 h with the 24-h signal being unanimously the strongest, followed
by the 7.5-h and only afterwards the 12-h signal, see Fig. 16.3. Coherence and phase
spectra have also been calculated; for the 24-h period, coherence is always high for
the wind–isotherm pair, for pairs of isotherms at the same location as well as for
isotherms at different moorings. Phase angle spectra for time-series pairs have also
been done. With somewhat generous tolerance, these spectra indicate relations as
summarized in the following tables:

M N P

M – – –
N – C
P –

24 h

M N P

M C – –
N C C
P C

7.5 h

M N P

M ? ? –
N ? –
P –

12 h

Here, a minus sign indicates that the two signals are in counter-phase, whilst a plus
sign shows an in-phase relation. A question mark (?) means that phase informa-
tion is not certain. For the 24-h period, isotherm–depth–time series of the selected
isotherms at M (17ıC, 9ıC), N (17ıC, 11ıC) and P (17ıC, 11ıC) are in counter-
phase as indicated by the negative sign in the diagonal. The vertical epilimnion
and hypolimnion displacements are in opposite directions, characteristic for V2-
behaviour. On the other hand, the isotherm–depth pairs (N17ıC, M17ıC), (P17ıC,
M17ıC) show counter-phase relation, whilst (N17ıC, P17ıC) suggests in-phase
behaviour. Because of the positions of M, N, P, this suggests H1-mode behaviour.
Thus, the signal at the 24-h period is likely an H1V2 seiche.

The in-phase and counter-phase relations of the 7.5-h period are listed in the
middle matrix of the above table, but the indicated claims are less convincing
than for the 24-h period. They suggest in this case excitation of the H1V1 seiche,
since phase angles between isotherm–depth pairs at the same position but different
depths (MM, NN, PP) are all approximately zero, but positive, (C), suggesting V1-
behaviour, and the pairs (MN, MP) are approximately ˙180ı, which is indicative
of H1 behaviour, see Fig. 16.1.
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Fig. 16.2 Map of Lake Alpnach, a side basin of lake of the four cantons (Lake Lucerne). The
insets show the hydrographical data (upper left) and the angular distribution of the squared wind
speed recorded at mooring M. The map shows depth contours and the heights of the nearby moun-
tains (peaks identified by asterisks). Two field campaigns were conducted: (1) in the summer 1989
(20 June–30 July) thermistor chains were moored at N, P and M with additional wind speed mea-
surements at M. (2) In May 1992, a thermistor chain was moored at A and Anderaa current meters
were installed close to the bottom at B and C from 8 to 22 May 1992. Adapted from [16, 41], with
changes and extensions

The behaviour at the 12-h period is yet less clearly understood. The mea-
surements reported by Münnich et al. [41] allow only inferences as given in the
third matrix of the above table; the question marks show either no or weak and
inconclusive information. Nevertheless, the authors claim H1V2 behaviour.

16.1.2 Seiche Analysis

The above description of the dynamical response of Lake Alpnach to wind forces
and its interpretation as H1V1 and H1V2 behaviour is not very convincing, given
the limited temperature data. A further scrutiny on the basis of model calculations is
necessary. Münnich et al. [41] chose to do2 this by approximating the lake geometry
by a rectangular basin of constant depth and stratified in n.D3/ layers of con-
stant depth. In this case, under the assumptions that the rotation of the Earth can
be ignored and the motion is uni-directional in the long direction of the basin, the

2 The authors present the analysis, which was already given by Longuet–Higgins in Mortimer [36]
and by Heaps [17].



16.1 V2-Vertical Mode of the Internal Seiche in Lake Alpnach 255

Fig. 16.3 Energy (power)
spectra of the wind stress at
mooring M and at the depths
of the indicated isotherms at
the moorings M, N, P. of
Lake Alpnach. Adapted from
[41], with changes
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phase speeds and the periods of the HmVn-seiche are given by

cn D p
g
n; Tm;n D 2L

m
p
g
n

; (16.1)

in which L is the length of the rectangle and 
n are the eigenvalues of the nth

baroclinic mode. In the .n D 3/-case they show that


1;2 D 1

2H

n
	 ˙ �

	2 � 4˛H
�1=2oCO."2/; (16.2)

where

	 D "12H1H2 C "13H1H3 C "23H2H3;

˛ D "12"23H1H2H3; (16.3)

"ij D �j � �i
�j

; " WD maxi;j ."ij /:

Epi-, meta- and hypolimnion depths are given by H1, H2, H3, respectively, and
H D Pn

iD1Hi . Münnich et al. chose for their corroboration of the (H1V1,
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Table 16.1 Periods of the H1V1 and H1V2 seiche modes calculated with the three-layer rectan-
gular basin model using different approximations for the stratification. H denotes the thickness of
the respective layer. The length was 3,500 m (From [41])

Epilimnion Metalimnion Hypolimnion Period [h]
Temperature H Temperature H Temperature H H1V1 H1V2
[ıC] [m] [ıC] [m] [ıC] [m]

20 3 16 7 8 15 8.0 16.4
20 4 16 5 8 16 7.8 16.8
19.5 5 16 3 8.5 17 7.7 20.8
19.5 5.5 16 2.2 8.5 17.5 7.8 23.6

H1V2)-behaviour LD 3;500m (the lake has a very shallow Southern end not con-
sisting of two layers), H D 25m, and varied the selection of Hi (i D 1; 2; 3/,
constrained to

P3
iD1Hi D H , and found for a set of reasonable choices the values

of the periods as listed in Table 16.1. It is evident that by varying the mean depth
and thickness of the metalimnion, the period of the H1V1-mode depends chiefly
on the mean depth, whilst that of the H1V2-mode reacts primarily to variations of
the metalimnion thickness, but only unreasonably thin metalimnia bring the H1V2
periods close to the 24 h, suggested by the measurements.

To improve the model, i.e. to bring the theoretical (H1V1, H1V2) periods closer
to the measured ones, two paths of improvement are possible. (1) Replacing the
three-layer stratification with constant density in each layer by continuous stratifi-
cation that is based on a mean density profile from thermistor records. This density
profile is given in Fig. 16.4a with buoyancy frequency in Fig. 16.4b.3 (2) Replacing
the rectangular basin with constant depth also by a basin with realistic bathymetry.

Münnich’s et al. [41] analysis is based on the adiabatic, Boussinesq approxi-
mated, linear wave equation in a steady (non-rotating) frame. In a constant depth
basin, the boundary value problem for the vertical velocity component takes the
form

@2

@t2
r2w CN 2r2

Hw D 0;
(16.4)

w.0/ D w.�H/ D 0;

and reduces in two dimensions with

w.x; z; t/ D W.z/exp Œi.kx � !t/� (16.5)

to the eigenvalue problem

3 The authors do not specify in their paper how these profiles were determined from the mea-
sured temperature time series of the thermistors in the thermistor chains during the June/July 1992
summer campaign.
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Fig. 16.4 Vertical profiles of density anomaly (a) and buoyancy frequency (b) as measured in
Lake Alpnach with which the baroclinic vertical modes are computed using (16.6), showing the
profiles for the vertical displacements (c) and horizontal velocities (d). Composed from graphs in
Münnich et al. [41]. Copyright 2000 by the American Society of Limnology and Oceanography,
Inc., reproduced with permission

d2W

dz2
C
�
N 2.z/

!2
� 1

	
k2W D 0;

(16.6)
W.0/ D W.�H/ D 0:

N.z/ is the buoyancy frequency for the measurements shown in Fig. 16.4b. For cho-
sen k, nontrivial solutions of (16.6) exist only for particular values of !.k/, and
associated eigenfunctions are then given byWn.z/. We look only for quantized solu-
tions for which 2�=k must be an integer part of twice the length of the lake, 2L. So,
the horizontal mode is selected according to

km D m � .�=L/; m D 1; 2; 3; : : : (16.7)
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It follows, the HmVn-solution is given by !mn, from which Tm;n D 2�=!mn and
Wm;n.z/ can be determined. Münnich et al. [41] chose, as before, H D 25m, L D
3;500 and then found4

for the H1V1-mode, T1;1 D 8:2 h,
for the H1V2-mode, T1;2 D 23:3 h.

The corresponding vertical profiles of the vertical displacement and horizontal
velocities are displayed as panels (c) and (d) in Fig. 16.4, and the profiles are scaled
to have maximum values of 1 and 2 m, respectively.

It is interesting that no interpretation of the 12-h measured signal is given. We
shall remark on this below. Here, it may be mentioned that the numerical values
chosen forL andH are somewhat subjective and can be used to tune the results with
measurements. The period Tm;n scales linearly with L, and no rational procedure
is available that would justify the selection L D 3;500m for a lake of which the
length is 5,500 m. This fact, of course, alters the purpose of the whole exercise,
which looses a substantial part of its validation role. A more realistic procedure
would in this case certainly require the solution of a multi-layer representation of
the lake, in which the regions with fewer than the maximum number of layers would
also be accounted for, as it was done for the three-layer model of the Lake of Lugano
(see part B of the last chapter). Unfortunately, this was not done.

A careful analysis, either by improved calculations or by more detailed experi-
ments was not performed. In the second field campaign, see [16], a thermistor chain
was moored at position A (see Fig. 16.2) and current meters were deployed in the
bentic boundary layer at B and C . Conspicuous measured periods in the isotherm
depths and velocity time series disclose periods of 24 and 12 h, and are interpreted
as V1 and V2 responses, respectively. No further scrutiny of the validity of this
interpretation is provided. It is, therefore, concluded that a reliable interpretation of
the internal wave signals of the thermistor chain and velocity data in Lake Alpnach
is still lacking.

16.2 Internal Seiche Climate in Lake Banyoles,
Catalonia (Spain)

Higher order baroclinic seiches are sometimes also excited together with higher
order horizontal modes; if a lake consists of two (or more) nearly separated basins,
then the interpretation of the periodic features in measured time series of typical
parameters may be complicated by the fact that the conspicuous periodicities may
be referred to individual basin characteristics or the characteristics of the entire lake.
In what follows, we report on work performed by Roget et al. [45] that is based in
parts on Roget’s Ph.D. dissertation [44].

4 By varying the profiles slightly, they found T1;1 2 .7:7–8:8/ h and T1;2 2 .22:2–25:7/ h and
conclude that their results corroborate their physical interpretation.
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16.2.1 Description of the Site

Lake Banyoles’ morphometry is shown in Fig. 16.5; it consists of a small compact
North and a bit larger oblong South basin. The South basin has a maximum depth of
approximately 45 m; the North basin is less than 25 m deep, and the sub-basins are
connected by a narrow throat which constrains the dynamical interaction. The evo-
lution of the vertical temperature is that of a holomictic lake in temperate climates.
More precisely, mixing starts in September and a month later the lake is unstratified
and remains so until spring. In April, a gentle stratification develops, builds-up and
is maintained for approximately half of the year. During summer, the temperature
difference between the epilimnion and the hypolimnion is approximately 5ıC, and
the metalimnion occupies 5 m with the thermocline at approximately 7 m. From mid
spring to early autumn, the thickness of the metalimnion represents about a third of
the mean depth of the whole lake, which is equivalent to a fourth of the mean depth
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Fig. 16.5 Bathymetric map of Lake Banyoles, Catalonia, Spain, with measuring stations A, D,
T2, E, T where data were recorded. The insets show also rosettes for the prevailing winds from
SE during the summer time, here in June, August and October, 1990. Composed from figures
of Roget et al. [45], with changes. Copyright 2000 by the American Society of Limnology and
Oceanography, Inc., reproduced with permission
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of the Southern lobe. The prevailing winds during the summer months (from April
to October) blow from the SE directions and have speeds from 0.6 to 1.6 m s-1 (see
insets in Fig. 16.5, which show wind rosettes for June, August and October 1990).
This prevailing wind direction is approximately 45ı off the NS main orientation of
the lake and likely responsible for the excitation of both longitudinal and transverse
oscillating baroclinic motions.

Aanderaa thermistor chains with a 1 m distance of the thermistors were deployed
at the stations A, D, T2, E and T of Fig. 16.5. From the temperature–time series
new time series of isotherm depths were constructed by linear interpolation where
possible. A meteorological station on land, to the west of the lake, measured wind
data 12 m above ground.

16.2.2 Methods of Computation and Data Analysis

Dismissing the Defant-type models [33, 38], who formulate the balances of mass
and linear momentum in a two-layer cross-sectionally averaged version, Roget et al.
[45] employed two models: (1) the TVDC (two-layered variable depth complete, see
Chap. 11) and (2) the THVDC (three-layered variable depth complete, see part B
in Chap. 15). The layers in these models are immiscible, each with constant den-
sity, and their interfaces are sharp material surfaces. The letter C in the acronyms
TVDC and THVDC stands for ‘complete’ and indicates that in the numerical finite
difference (FD) implementation the models resolve also those regimes of the lake
where fewer than the maximum number of layers exist (i.e. one layer for TVDC
and one or two layers for THVDC, see Fig. 15.23). The governing equations and the
implementation of the transition conditions at the positions (from three to two layers
or from two to one layer) as well as the treatment of boundary conditions along
the lake shore are described in Part B of Chap. 15. The linear eigenvalue problem
that emerges for the free oscillations appears in the FD approximation as a matrix
eigenvalue problem for the eigenfrequencies (eigenperiods) and the corresponding
eigenvectors, from which the seiche periods and the displacements of the free sur-
face and the interface can be obtained. For a grid size of 40 � 40m2 the TVDC
model with sharp thermocline at 8 m depth led to 687 cells and 1,157 unknowns,
whence a 1;157 � 1;157 matrix.

The time series were operated on by using algorithms for the least square lin-
ear prediction and maximum entropy spectral analysis (MESA) by Barrondale and
Erickson [5]. Frequency analysis was also done with fast Fourier transforms (FFT)
and revealed the same reported results. The normalized cross-correlation function
was used to compare data that were simultaneously recorded at different locations.
Furthermore, low-pass and high-pass Chebychev filters were applied to some data
to isolate the frequency band of interest. To this end the method of Trampe [53] was
employed.
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16.2.3 Results

It turned out that, owing to the narrow and shallow neck by which the two sub-
basins are connected, the two lobes can dynamically be treated as independent for
the FD implementation of both the TVDC and THVDC models. Data have also
indicated that the internal dynamics of the South basin are more intense than those
in the North basin; so, data of the South basin are better to analyze than those of
the North basin. Moreover, when referring to the HmVn-seiche, then always the
response of the South basin is meant. When discussing the modes of the whole lake,
the acronym (HmVn)wl will be used. The seiches of the North basin will not be
separately analyzed.

16.2.3.1 Second Vertical Modes Combined with First and Second
Horizontal Modes (H1V2, H2V2) of the Southern Lobe

Because of the relatively small mean depth of the South basin and the relatively thick
metalimnion, the THVDC model is likely the simplest model that accounts for the
V1 and V2 modes of the stratification. Thus, baroclinic seiches can be identified at
the two interfaces between the middle-top and middle-bottom layers. If time series
of the vertical displacements of these interfaces are in-phase (in counter-phase) then
such behaviour is indicative of V1 (V2) response. Within the middle layer, there is
a position where the vertical displacement of the V2 mode goes through zero. Here,
the period of the V2 mode should not (or poorly) be visible.

In Fig. 16.6, the filtered vertical displacements of the 19.7, 18.2 and 17:6ıC
isotherms at station E (all three located at the upper edge, in the middle and at
the lower edge of the metalimnion) are shown from 6 to 10 September 1991. The
filters were low-pass for the 19.7 and the 17:6ıC isotherms, and high pass for the
18:2ıC isotherm-depth-time series, all with a cut-off frequency of 0:25 h�1. The fig-
ure shows that the 19.7 and 17:6ıC isotherms disclose both an oscillation with 7 h
period, and the oscillations for these time series are in counter-phase. On the other
hand, the 18:2ıC isotherm–depth–time series in the middle of the metalimnion
shows a dominant oscillation with a period of approximately 4 h. A more refined
identification by eye is not possible.

These periods can also be identified in Fig. 16.7, where MESA spectral analy-
sis of the data from Fig. 16.6 is presented. A dominant peak of energy at about a
frequency of 0.14 h�1 (period 7.4 h) is clearly seen in the spectra of the 19.7 and
17:6ıC isotherms, but not of the intermediate 18:2ıC isotherm. This is reminiscent
of V2 behaviour. There is also an additional peak at 0.26 h�1 (period 3.8 h). This
mode can also be shown to be in counter-phase with any of the isotherm-depth-time
series between 7 and 9 m which also suggests the supposition of V2 mode behaviour.
There are also other responses seen in the spectra of all three isotherm–depth–time
series, e.g. the peak at �1.05 h, but these are not of concern here.

The two main modes shown in Figs. 16.6 and 16.7 can be reproduced by the
THVDC model when considering the mean thermal structure of the lake during the
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Fig. 16.6 Time series of filtered vertical displacements of the 19.7, 18.2 and 17:6ıC isotherms
at station E in Lake Banyoles, approximately at 8, 9 and 10 m below the surface. Periods of �7
and�4 h can be identified (From [45], with changes). Copyright 2000 by the American Society of
Limnology and Oceanography, Inc., reproduced with permission

time at which the data were recorded. With the data given between 6 and 10 Septem-
ber 1991, the stratification of the THVDC model is as given in Table 16.2. For this,
the H1V2 and H2V2 (corresponding to the (H1V2)wl and (H5V2)wl modes), pre-
dicted by the model have periods of 7.44 and 3.89 h, both of them longitudinal and
very close to the peak periodicities in Figs. 16.6 and 16.7. The mode structure can
be inferred from Fig. 16.8, where isolines of the elevation amplitudes at the upper
and lower interfaces of the metalimnion are drawn; solid and dotted lines indicate
counter phase behaviour.

Roget et al. [45] report also on V2 mode behaviour in Lake Banyoles when dif-
ferent stratification occurs through the summer. The authors say that the occurrence
of V2 modes is a common situation, and report that in May 1990, at the beginning
of the stratification period, waves of the 6 and 9 m isotherm depth with periods �22
and �11 h oscillated with counter-phase in the Southern lobe, and that these modes
could also be reproduced by the THVDC model and represented H1V2 and H2V2
behaviour. In fact, depending on stratification, they verified that H1V2 and H2V2
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Fig. 16.7 MESA energy
spectra of the time series of
the depths of the isotherms
19.7, 18.2 and 27.6ıC for
6–10 September 1991 from
Fig. 16.6 (From [45]).
Copyright 2000 by the
American Society of
Limnology and
Oceanography, Inc.,
reproduced with permission
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Table 16.2 Thicknesses and
temperatures of the layers in
the THVDC model

Depth [m] Temperature [ıC]

Epilimnion 0–7 25.3
Metalimnion 7–12 19.0
Hypolimnion 12–25 17.9

behaviours have periods T1;2 2 .7; 22/h and T2;2 2 .11; 3:5/h that were observed
between May and September, and a coupling with the wind was absent.

16.2.3.2 Transversal First Vertical Mode (H3V1) of the Southern Lobe

First and second vertical modes (V1, V2) were also simultaneously excited in Lake
Banyoles. Here, however, emphasis is put on the fact that often the excited V1 mode
is horizontally transverse. This was so on 25–26 October 1991, as can be deduced
from Fig. 16.9, where the correlation function between the depth location of the 17.6
and the 20:5ıC isotherm–depth–time series (at mean depths of 14.2 and 11.0 m,
respectively) at station E (Fig. 16.5) is presented. This correlation function presents
two different periods, one of �8 h and the other slightly larger than �1 h (this latter
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Fig. 16.8 Horizontal structure of the upper and lower interfaces of the metalimnion for the
(H2V2)wl (H1V2) of the Southern lobe and (H5V2)wl (H3V2) of the Southern lobe modes in Lake
Banyoles, predicted by the THVDC model. Station E where data were collected is also shown
(From [45]). Copyright 2000 by the American Society of Limnology and Oceanography, Inc.,
reproduced with permission

period is also very clearly seen in the MESA energy spectra of Fig. 16.7. When the
behaviour of the correlation function of this figure is considered only with respect
to the period of �8 h (i.e. not considering the �1 h period), then, when there is
no time shift, the correlation between the two considered isotherms is minimal;
this is indication that the two time series are in counter phase at the 8 h period.
Correspondingly, the THVDC model predicts for the stratification of the lake in this
case a H1V2 response of the Southern lobe with a period of 8.28 h.
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Fig. 16.9 Correlation
function between the 17.6 and
20:5ıC isotherms on 25–26
October 1991, showing
periodicities of�7–8 h and
�1 h in Lake Banyoles (From
[45], with additions).
Copyright 2000 by the
American Society of
Limnology and
Oceanography, Inc.,
reproduced with permission
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Considering the much shorter period of �1 h of the correlation function, a
relative maximum is reached at zero shift, which corresponds to the maximum cor-
relation of the oscillation of �1 h period. Therefore, the 17.6 and 20:5ıC isotherms
are oscillating in phase at this period. Moreover, Roget et al. [45] report, that this
mode oscillates in phase at all depths where it was recorded, which is strongly remi-
niscent of V1 behaviour. For some unidentified cause, it is claimed that the THVDC
model cannot reproduce this mode, but with the TVDC model a period of 1.14 h
was obtained for the H3V1 mode of the Southern lobe.

The structure of the H3V1 mode of the Southern lobe corresponds to the
(H7V1)wl mode of the whole lake, which is represented in Fig. 16.10. The ampli-
tude values between two consecutive isolines of the vertical displacements of either
the surface layer of the lake or the thermocline are indicated in brackets next
to the respective referenced surface displacement and thermocline displacement.
In Fig. 16.10, the velocity field for the (H7V1)wl mode is also shown when the
amplitude of the seiche is assumed to be 1 m.

Roget [44] and Roget et al. [45] also looked at the whole lake seiche response
when only the lowest baroclinic mode V1 was excited. These modes are not of
higher order baroclinicity for which reason the reader is directed to the literature.

Complementary to the above analysis, it should also be emphasized that the com-
putations were all performed with the effect of the rotation of the Earth ignored,
f D 0. This may be questionable, in particular for the high mode H7V1wl, for which
Poincaré-type behaviour is to be expected. Unfortunately, this more appropriate
approach was not pursued by Roget et al. [45].

16.2.3.3 Further Evidence of Higher Order Baroclinic Waves in Lakes

The preceding examples of higher order baroclinic waves were limited to small
scale basins in which the effects of the rotation of the Earth could be, or was,
ignored. If this rotation must be accounted for, then basin scale wave motions arise
as Vn (n D 1; 2; : : : ) baroclinic modes of (horizontal) Kelvin-type or Poincaré-type
waves. Works focusing on these have also been published about Lake Biwa (Japan),
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Fig. 16.10 Mode (H7V1)wl behaviour of the whole Lake Banyoles with period of 1.14 h. (a)
surface displacement, (b) thermocline displacement, (c) upper layer velocities, (d) lower layer
velocities (From [45]). Copyright 2000 by the American Society of Limnology and Oceanography,
Inc., reproduced with permission

Kinneret (Israel) and Constance (Germany, Switzerland, Austria), see Imberger and
associates.5 These lakes have all sizes that the rotation of the Earth cannot be ignored
for the internal wave dynamics, because the internal Rossby radii of deformation
are smaller than typical horizontal lengths (generally expressed as the mean width
of the basin). In what follows, we shall briefly report on evidence of higher order
baroclinic responses and how these are identified in some of these works.

5 Saggio and Imberger [46], Antenucci et al. [3], Antenucci and Imberger [1, 2], Boegman et al.
[11, 12], Appt et al. [4], Shimizu et al. [50], Shimizu and Imberger [51, 52].
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16.3 Internal Wave Weather in Stratified Lake Biwa

This title was essentially chosen by Saggio and Imberger [46], to characterize the
internal dynamics which they observed in stratified Lake Biwa, Japan, during two
field campaigns, called Lake Biwa Transport Experiment (BITEX) in 1992 when
no typhoon occurred and in 1993 when three typhoons crossed the Island Honshu.
Thermistor chains, deployed close to the Southern end of the North basin of the
lake disclose Kelvin-type and Poincaré-type oscillations of several horizontal and
vertical orders. The waves are characterized as (1) basin scale waves, i.e. seiches,
(2) free gravity waves, not fully constrained by the lake boundaries and (3) small
scale weakly non-linear internal waves.

16.3.1 Methodology and Overview of Field Results

16.3.1.1 Experiments

Figure 16.11 displays the lake bathymetry with the experiment station BN50. Five,
fast-response, high resolution thermistor chains were deployed in 1992 and arranged
as a cross with 20 m distance (see Fig. 16.11), and in 1993 along two straight lines
before and after the typhoon on 4 September 1993 (some chains were destroyed
during the typhoon). The thermistors of all chains were 1 m apart in the metal-
imnion and 5 m apart below it; they have an accuracy of 0:01ıC with a resolution of
0:001ıC. Isotherm–depth–time series were constructed from the temperature–time
series by linear interpolation. Unfortunately, the close proximity of the five thermis-
tor chains did not allow disclosure of the spatial structure of the measurements; thus,
the following results are from time series averaged over all five chains only.

16.3.1.2 Model

The linear wave responses as seiches and free waves at small frequencies were mod-
eled with simulations of the evolution of the wave dynamics by direct wind input
using a three-dimensional model known as TRIM-3D, Casulli & Cheng (1992) [14].
This software is based on the Navier–Stokes equations in the Boussinesq and hydro-
static pressure assumptions, appropriate for the shallow water approximation. A
semi-implicit finite difference scheme is used for the numerical solution; the gra-
dient of the surface elevation in the momentum equation and the velocity in the free
surface equation are treated implicitly, whilst the advective, Coriolis and viscous
terms are treated explicitly; the convective and viscous terms are discretized in an
Euler–Lagrange approach (ELA) to increase stability (see [13, 14] and volume 3 of
this book series).
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Fig. 16.11 (a) Lake Biwa bathymetry with location of sampling stations. The thermistor chains
were deployed near station BN50 in a star shaped array in 1992 (b) and aligned in 1993 (c). During
the experiment in 1993 the stations were relocated as indicated in (c). Redrawn from Saggio and
Iurberger [46]. Copyright 2000 by the American Society of Limnology and Oceanography, Inc.,
reproduced with permission

The model is applied to a rectangular box with constant depth.6 So, Kelvin-type
and Poincaré-type waves can be modeled, but not topographic (shelf) waves. The
dimension of the box is 38 km � 12 km � 50m, matches the North basin geometry,
and the FD model is discretized horizontally by 500m � 500m cells and vertically
by layers having 0.25 m thickness in the metalimnion and 4 m otherwise. A typi-
cal stratification (for 30 August 1993) was used as initial condition, and the model
was started from rest. The uniform wind was applied with a quarter period sinu-

6 The model was also used with the actual bathymetry of Lake Biwa and the measured winds
during the experiment in 1993. The corresponding analysis is not reported by Saggio and Imberger
[46] but was presented in a Ph.D. dissertation by Ogihara [42]. It is claimed also elsewhere in the
manuscript that inferences from these results are less convincing. We have not had access to this
work.
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soidal increase in time, starting at zero velocity and culminating at 5m s-1, 48 h
after wind set-up with abrupt secession afterwards. Computations were followed
during 23 days, sufficiently long that the waves could adjust to the natural periods
of the lake.

The computed surface elevations, temperature and horizontal and vertical veloc-
ities were stored at 1-h intervals for each grid, and spectra of isotherm depths
and velocities were deduced at each grid point and then bandpass filtered around
identified frequencies. This allowed identification of the associated isotherm–depth
spectra and their modal shapes and evolutions.

16.3.1.3 Field Results

In what follows, we focus attention on basin scale response. The behaviour of the
isotherms at BN50 is shown in Fig. 16.12, in panel (a) for 10–19 September 1992,
in panel (b) from 24 August to 13 September 1993. The isotherm depth pattern was
marked by a number of well defined features which we list here in abbreviated form
(for details see [46]):

� A regular heaving of the whole metalimnion with a period of �2 days and �10 m
amplitude is clearly visible.

� Superimposed on this is a surmised V2-mode response with a period of �6 days
that modulated the buoyancy frequency in the metalimnion between 0.008 and
0.016 Hz.

� The sampling periods of isotherm depth spectra for the 1992 and 1993 campaigns
(Fig. 16.13) show a discrete set of sampling periods of small frequency waves
ranging from 2 � 10�6 to 4 � 10�5 Hz (6 d to 6 h).

� The first peak in the power spectra occurred in the hypolimnion at a fre-
quency between 2 � 10�6 and 3 � 10�3 Hz. This smallest observed frequency
is conjectured to coincide with the V2-mode response modulating the buoyancy
frequency.

� The second peak is at the frequency 6 � 10�2 Hz and is the most energetic one
in 1992/1993. This high amplitude 2-day oscillation is present in all isotherms
over the entire depth with no sign change of the displacements of the different
isotherm-time series. It is, therefore, reminiscent of V1 behaviour.

� There are further peaks at .1:2; 1:7; 2:3/ � 10�5 Hz.

Following this regime, the spectra extend to 10�3 Hz with an energy fall-off
at a rate of !�2. These correspond to the free wave response (see [46]). How
do the numerical computations assist the above surmised inferences? Saggio and
Imberger [46] write: ‘In order to identify the type of wave present, the tempera-
ture and velocity fields generated by the model were band pass filtered at the main
peaks of the spectra [...], see Fig. 16.14.7 The most energetic wave (6� 10�6 Hz)

7 Figure 16.14 shows the spectra for the 13 and 19ıC isotherm depths at BN50 obtained with
the model, and representative for the centre of the metalimnion and the hypolimnion, respec-
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1993. Redrawn from [46] with loss of accuracy especially in the upper metalimnion. Copyright
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was identified as a Kelvin-type wave with vertical mode one. This wave has forward
velocities (same direction as the phase speed) under the wave crest, an exponential

tively. Peaks (i) and (ii) are reminiscent of V2 and V1 Kelvin-type behaviour, whilst (iii)–(v) are
likely HmV1 (m D 2; 3; 4) responses. These interpretations are likely, because at peak (i) vertical
velocities (displacements) in the centre of the metalimnion are small, but large at peak (ii).
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decay from the boundaries, and a sinusoidal oscillation along the boundaries [...].
Kanari [29] has previously identified such a first-mode Kelvin wave8 in Lake
Biwa. The next three main peaks in the spectra were identified as Poincaré waves
with a vertical mode-one and horizontal modes two (! D 1:2 � 10�5 Hz), three
(! D 1:7 � 10�5 Hz) and four (! D 2:3 � 10�5 Hz). Distinct from the Kelvin
waves, Poincaré waves exhibit sinusoidal oscillations in both directions, normal and
tangential to the boundaries. Higher order vertical modes were also observed in the
model results, but their isolation was limited by the small amplitude of their ver-
tical displacement. These consisted of a Kelvin wave with vertical mode-two and
Poincaré waves. The spectra of different isotherms in the water column showed that

8 Saggio and Imberger call Kelvin and Poincaré behaviour what we call Kelvin-type and Poincaré-
type behaviour.
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Fig. 16.14 Comparison of the spectra of the 13ıC (thin solid line) and the 19ıC (heavy solid line)
isotherm–depth–time series generated by the numerical model. The identifiers (i) and (ii) corre-
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see also Table 16.3. Extracted from [46]. Copyright 2000 by the American Society of Limnology
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the Kelvin wave at frequency 3 � 10�6 Hz has high energy in the hypolimnion and
no energy in the centre of the thermocline, suggesting a mode two vertical structure
[...]. This wave probably corresponds to the long mode-two wave observed in Lake
Biwa [...] but showing higher frequency in the model due to the simplified nature of
the model bathymetry [42])’.

Saggio and Imberger [46] continue: ‘[...] The frequency of the long waves
observed in the field data and numerical simulations were also estimated with the
modal decomposition of the waves [...]. By considering only the mean stratification
and dimension of Lake Biwa, the vertical modes [which] were calculated and the fre-
quencies estimated by such a normal decomposition showed good agreement with
our (the authors) observations (Table 16.3). Deviations of the frequencies obtained
from the normal modal decomposition from the observed frequencies of a system
under rotation only start to be significant for waves faster than the inertial frequency
and waves with more horizontal mode structure, [32]’.
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Table 16.3 Long waves in Lake Biwa (Inertial frequency 1:3� 10�5 Hz, Rossby radius: 5.4 km).
From Saggio and Imberger (1998) [46]

Frequency (10�5 Hz) Mode
Measured Model Modal decomp. Vertical Horizontal Type

i 0.2 0.3 0.2 2 1 Kelvin
ii 0.6 0.7 0.7 1 1 Kelvin
iii 1.2 1.3 1.3 1 (2, 1) Poincaré/wind
iv 1.7 1.9 2.0 1 (3, 1) Poincaré
v 2.3 2.5 2.7 1 (4, 1) Poincaré/wind

As described above, the long waves present in the isotherm displacement spec-
trum in Lake Biwa can be identified as a combination of several modes of Kelvin-
and Poincaré-type waves, as summarized in Table 16.3.

To summarize: Saggio and Imberger [46] conclude: The band pass filtered time
series at the main peaks of the spectra, obtained from the computed isotherm–depth–
time series disclose the following results:

� The 6 � 10�6 Hz wave (the strongest!) can be interpreted as a V1 Kelvin-type
wave,

� The next main peaks correspond to V1-modes:

– Waves at 1:2 � 10�5 Hz are H2-Poincaré-type waves
– Waves at 1:7 � 10�5 Hz are H3-Poincaré-type waves
– Waves at 2:3 � 10�5 Hz are H4-Poincaré-type waves,

� Kelvin-type waves with V1 and V2 structure are also observed, but their ampli-
tudes were relatively small. ‘The spectra of different isotherms in the water
column showed that the Kelvin wave at a frequency of 3 � 10�6 Hz has high
energy in the hypolimnion and no (or, small) energy at the location of the
thermocline, suggesting a V2-structure, [46].

These results have essentially been corroborated by refined analyses. First, a
more detailed approach considering the bathymetry of the lake, the real wind data,
and the inclusion of a parametric model for the free internal wave propagation was
presented by Ogihara [42]. Second, a modal analysis has also been performed with
correct V1 and V2 velocity distributions from which new energy peaks for the
various horizontal modes were computed. All results are summarized in Table 16.3.

It is unfortunate that in the above interpretation of the BITEX campaigns of
1992/1993, a number of claims about the basin-scale mode behaviour are stated,
but not explicitly demonstrated: they must be taken for granted. This holds, in
particular, for the inferences drawn from the computations, claiming Kelvin and
Poincaré-type behaviour, which, on the basis of the published document can not be
corroborated. The amphidromic systems for these modes and the clockwise rota-
tion (on the Northern hemisphere) of the horizontal projection of the velocity vector
for Poincaré mode structures are elements that support Kelvin and Poincaré-type
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behaviour. Similarly, the periodic contraction and expansion of the metalimnion are
strong signs for a V2-mode behaviour, but not a full proof for it. When design-
ing a field campaign, aiming at corroboration of higher order baroclinicity, much
denser deployment of thermistor chains and current meters is necessary for the
identification and isolation of Vn (n > 2) response.

16.4 Basin-Scale Wave Motion in Lake Constance

16.4.1 Morphology and Methodology

Lake Constance (Fig. 16.15), the second largest Alpine lake in Europe, consists of
three basins, the main basin of Upper Lake Constance and Lake Überlingen, which
together form the Upper Lake Constance (Obersee) and the Lower Lake Constance
[4, 55]; the latter is dynamically decoupled from the others by the 5 km long River
Rhine. Basic properties of the Upper Lake are listed in Table 16.4. The two basins
‘Upper Lake’ and ‘Lake Überlingen’ are connected at the sill of Mainau, where the
depth of the thalweg reduces to 100 m. The seasonal stratification is primarily due
to temperature, with mineralization having an effect only when temperatures are
near 4ıC [43]. The prevailing synoptic winds are from SW-W and NE. The former
winds prevail during strong wind events that occur for 2–9 days per month and
have a duration between 1 and 7 days, see [25]. A mountain ridge South of Lake
Überlingen leads to less intense winds over Lake Überlingen when they blow from
SW-W, see [56]. Periodically, föhn flows down from South along the Alpine Rhine
valley and affects the dynamics of the Eastern basin [40].

S2 Überlingen
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S10
S9

S3

S7
200m

50m

Romanshorn

Lower Lake Constance
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Konstanz
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Bregenz
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Fig. 16.15 Upper Lake Constance (47ı390N, 9ı180E) with locations of the lake diagnos-
tic systems (LDSs) sampling stations of the 2001 field program (denoted by Sj , j D 1; 2;
3; 5; 6; 7; 9; 10) (From Appt et al. (2004) [4], with additions). Copyright 2000 by the American
Society of Limnology and Oceanography, Inc., reproduced with permission
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Table 16.4 Morphological properties of the upper Lake Constance

.

Upper lake (large basin) Überlingen

Total length 63 km

Maximum width 14 km Maximum width 4 km
Mean width 9.3 km Mean width 2.3 km
Maximum depth 252 m Maximum depth 184 m
Mean depth 101 m Mean depth 84 m

Basin-scale internal waves in Upper Lake Constance are affected by the rotation
of the Earth. The dimensionless number measuring this is the so-called Burger num-
ber Si , which is the ratio of the (dominant) internal Rossby radius of deformation,
RR D ci=f to the horizontal length scale 2L,

Si D ci

.2L/f
; (16.8)

where ci is the phase speed of the particular wave, f is the Coriolis parameter and
L is a typical horizontal length of the basin under consideration [1]. For a two-layer
system (i D 1),

c1 D
s
�2 � �1
�2

g
H1H2

H1 CH2
; (16.9)

for upper (lower) layer densities �1 (�2) and layer depths H1 (H2), implying c1 '
0:3m s-1 or smaller, and R.1/R � 3;000m; furthermore, with L being the width of
the basin as given in Table 16.4, one obtains

S1 ' 0:6 (Upper Lake), S1 ' 2:4 (Lake Überlingen).

It is also clear from the above formulae that the phase speed and, consequently,
the Rossby radii and Burger numbers decrease with decreasing density difference
�� D �2 � �1 between the two layers. The H1V1-mode Kelvin-type basin-scale
seiche has periods in the range between 90 and 120 h with typical isotherm–depth–
displacement amplitudes of 5–10 m at the Western end of Lake Überlingen and less
in the Eastern end of the main basin; it can adequately be modeled by the linear
two-layer model [7, 10, 47, 55, 57]. The rotation of the pycnocline displacements
counter-clockwise around the basin (on the Northern hemisphere) was documented
by Hutter et al. [27], see Fig. 16.16.

Poincaré waves have periods less than the local inertial period of 16.3 h and the
associated horizontal velocity fields propagate clockwise (on the Northern hemi-
sphere), Mortimer [37, 39]. Appt et al. [4] also state that Poincaré-like V1-waves in
the Upper Lake Constance have a more local character [55], with periods in autumn
typically around 12 h in the central main basin [20, 23, 55], 9 h at the Western end
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Fig. 16.17 Lake Constance: Vertical temperature profiles of daily averaged field data at station S7.
The time when each profile was taken is written on the top of that profile. Note the considerable
cooling in the top layer as a consequence of the storm on day 310. Dots on the left show the depths
of the thermistors in the thermistor chain (From Appt et al. (2004) [4]). Copyright 2000 by the
American Society of Limnology and Oceanography, Inc., reproduced with permission

of the main basin [20,55], and 4 h in Lake Überlingen [9,23,55]. Little seems to be
known about basin-scale internal waves of higher vertical modes.

In the field experiment lasting from day 288 to 321, 15 October–17 November
2001, eight LDSs were deployed at the locations shown in Fig. 16.15. Each station
was equipped with a 100 m thermistor chain and wind anemometers 2.4 m above
the lake surface with 0:01ıC absolute accuracy and 0:001ıC resolution; thermistors
were 0.75 m apart in the upper 30 m and at increasing intervals below. No current
meters were deployed; so, rotational motions of the current under Poincaré or topo-
graphic waves can not be identified from measured data. The measuring period is
divided into two sub-periods, the first lasting from 15 October until 10 November
2001, characterized by small winds and free surface temperature above 12ıC (see
Fig. 16.17), the second (from 11 to 17 November 2001), initiated by a strong WS-W
wind event and accompanied by a dramatic drop of the air temperature to 4ıC and
a subsequent cooled and homogenized epilimnion layer with a temperature below
10ıC (see Fig. 16.17).

Numerical simulations were performed with the Estuary and Lake Computer
Model (ELCOM, code 1.5) of the Centre of Water Research, University of Western
Australia, which has previously been shown to model successfully the baroclinic
dynamics of stratified lakes, [22,31]. The code solves the three-dimensional Navier–
Stokes and scalar transport equations in the hydrostatic and Boussinesq approxi-
mations, [21]. The model was applied to the Upper Lake Constance with a finite
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difference grid of mesh size 400m � 400m and coordinate axes parallel and trans-
verse to the lake axis. Vertical grid sizes varied from 2.5 m in the surface layer
to 34 m in the deepest part of the hypolimnion. At fixed boundaries free slip was
imposed and the free surface was subject to wind shear and vanishing heat flow.
As initial conditions, a horizontally uniform temperature profile, a horizontal free
surface and zero velocity in the whole lake were imposed. Measured wind speeds
were interpolated over the surface and transferred to velocities 10 m above the lake
surface (Uw10 D 1:14Uw2:4) with a quadratic drag law. The computed time series
of density and velocities at each grid point were stored and later subjected to power
spectral analysis as needed.

16.4.2 Interpretation of the Observations

In period I (15 October–10 November 2001), there were energy peaks

� At 90 h (3:066 � 10�6 Hz) in all stations, said to correspond to a H1V1 Kelvin-
type seiche,

� At 12 h (2:3 � 10�5 Hz), particularly at stations S7, S9 and S10, claimed to
correspond to a V1-Poincaré-type mode,

� At 8 h (3:5 � 10�5 Hz), also reminiscent to a V1-Poincaré seiche.

Frequency spectra of the computed temperature-time series were constructed
from the time series of the integrated potential energy PE.t/, per unit area,
defined by

PE.t/ D
Z D

0

gz�.z; t/dz; (16.10)

where integration is over the upper most D D 100m below the water surface. (At
depths below 100 m the contribution to (16.10) is nearly a constant that does not
affect the temporal variation of (16.10). Figure 16.18a shows PE-energy spectra
from period I as explained in the figure legend at all stations with peaks at 90, 12
and 8 h, as solid lines, obtained from the observed data, and as dotted lines, com-
puted with ELCOM for conditions as previously described. For small frequencies
the basin-mode spectra coincide well with one another. Figure 16.18b shows the
analogous results for period II after the storm on day 310 (10 November 2001).

Appt et al. [4] justify the above mentioned mode interpretation as follows: ‘As
for the Kelvin-type mode, the counter clockwise travel along the shore line is evi-
dent from the excursion of the metalimnion that is represented by the 9ıC isotherm
(Fig. 16.19a). The travel history is more clearly seen from band-passed PE varia-
tions shown in Fig. 16.19b, with the internal crest labeled 1–6 and internal troughs
labeled a–e. The phase speed around the main basin, from station S6 to station S5, is
almost constant [...]. Observed periods vary between 72 and 105 h with an average
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(b) same as in panel (a) for period days 310.0–320.0 at all stations. Confidence at the 95% level
is shown by the dashed lines. Coordinates are staggered between adjacent stations (From Appt
et al. (2004) [4]). Copyright 2000 by the American Society of Limnology and Oceanography, Inc.,
reproduced with permission

of 90 h. The crests steepen when they pass station S5 and enter Lake Überlingen
through the contraction and over the sill of Mainau [...]’.

‘The simulated Kelvin-type wave signal plotted in Fig. 16.19b (dashed lines)
shows a delay of some hours. The wave attenuation during the calm period (crest
4 and troughs c and d) is stronger in the simulated than in the measured data (pos-
sibly due to the stepwise approximation of the real topography) and the period of
108 h, obtained with the ELCOM simulation, exceeds somewhat the 90 h period,
most likely because of the effect of direct wind forcing [4]’.
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Fig. 16.19 Lake Constance: (a) Measured 9ıC isotherms staggered at 15-m intervals. 10-min
averaged field data (solid lines) and 4-min ELCOM model results (dashed lines). (b) Filtered time
series of PE. The time series of PE are staggered with dots denoting the wave crests 1–6 and C
denoting the wave troughs a–e (From Appt et al. (2004) [4]). Copyright 2000 by the American
Society of Limnology and Oceanography, Inc., reproduced with permission

The identification of the second mode behaviour in the data and simulated time
series looks as if Appt et al. [4] did find a needle in the haystack. The key to it must
be the evolutions of rotary spectra of simulated isopycnal velocities in the range of
periods below the inertial period of 16.3 h. Rotary spectra allow identification of
Poincaré-type behaviour through the clockwise rotation of the horizontal velocity
vector. Indeed, a rotary spectral analysis of computed vertical velocities at S7 for the
9ıC isotherm-depth-time series allowed separation of the 14 and 12 h response, see
Fig. 16.20. The 14 h signal is claimed to be a V2 mode, whilst the 12 and 8 h signals
are V1 modes. In the measured temperature records, the 14 h peak is, however, not
clearly seen.
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Fig. 16.20 Lake Constance:
Rotary power spectra of
isopycnal velocity,
decomposed into clockwise
and anti-clockwise rotating
components of 9:0ıC
isopycnal velocity at S7.
Model data of the velocity
field between day 293.0 and
day 310.0. Line markers show
Fourier frequency
discretization with spectra
smoothed in the frequency
domain. Adapted from Appt
et al. (2004) [4]. Copyright
2000 by the American
Society of Limnology and
Oceanography, Inc.,
reproduced with permission
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Appt et al. [4] present data of the simulated velocity field at S10 (Fig. 16.21a) to
disclose the vertical structure of the internal dynamics. ‘The figure shows time series
in three depths, in the epilimnion (10 m), metalimnion (30 m) and hypolimnion
(60 m), respectively. Band-passed filtering of the simulated velocity field around
the 12-h period (Fig. 16.21b) suggests a vertical mode-one structure of the oscilla-
tion, in a similar way, the 8-h oscillation in the western main basin, particularly at
S5 and S6, was identified as an oscillation of vertical mode-one Poincaré-type (not
shown [here]). The 14-h oscillation is dominant in the simulated velocity field of
the main basin but not in the temperature signal [...]. Filtering the velocity around
the 14-h period (Fig. 16.21c) suggests a vertical mode-2 structure at S10. At other
stations in the main basin, the vertical mode-two structure is not as clear, possibly
indicating the involvement of even higher order modes’.

16.5 Closing Remarks

Internal waves of higher baroclinic order in basins on the rotating Earth have also
been identified in other works dealing with stratified lakes. Antenucci et al. [3] report
on the seasonal evolution of the basin-scale internal wave field in Lake Kinneret
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Fig. 16.21 Lake Constance: Simulated velocity field at S10. Time series of horizontal velocity
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(Israel) and identify V1 and V2 modes (as well as V3 modes, but less convinc-
ingly), as do MacIntyre et al. [35] about Lake Mono (USA). Furthermore, in a
more principal study of internal waves in enclosed basins of compact convex shape
Antenucci and Imberger [1] present a theoretical analysis of the distributions of the
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potential and kinetic energies in circular and elliptical basins of constant depths.
They formulate the linear inviscid normal mode equations in plane polar and ellip-
tical coordinate systems for an arbitrary stratification and specialize it for a two
and three layer system. Their guidelines are the single layer analogues, treated by
Jeffreys [28] and Goldstein [15]. For convex-shaped basins, which somehow match
the geometry of realistic basins, the solutions can be used to qualitatively estimate
the mode behaviour. Antenucci and Imberger [1] do this by fitting an elliptical basin
to Lake Kinneret (Israel) and other lakes, after their earlier analysis had used a cir-
cular basin geometry, [3]. In Chap. 13 internal waves in circular and elliptical basins
with constant depths were studied in detail to which the reader is referred.

Free internal waves of very short wave lengths were also looked at by Antenucci
and Imberger [1] and Boegman et al. [11, 12] for Lakes Kinneret (Israel) and Biwa
(Japan). It is claimed that, among many traces of vertical mode-one, also mode-two
waves were found. These appear to have been identified as byproducts of general
studies of basin-scale modes; certainly, if systematically searched for in focused
field campaigns, more detailed inferences, also identifying Vn-modes, n > 2, could
be drawn.

In closing this chapter on higher order baroclinicity, we summarize by saying
that in all cases, (A) the solitary internal waves travelling in a two-layer rectangular
channel with diffusive interface in the laboratory, (B) the internal wave response of
the Northern basin of Lake of Lugano, stratified by a thermocline at 10 m depth and
a chemocline at 100 m depth, (C) the internal wave response of Lake Alpnach and
Lake Banyoles, stratified by a metalimnion of finite thickness led to higher order
wave response because of special conditions which triggered the generation of the
higher order modes. Finally, (D) lakes with horizontal length scales of two or more
internal Rossby radii of deformation develop basin scale seiching in which higher
order baroclinicity is coupled with Kelvin and Poincaré-type horizontal behaviour.
Lake Biwa in Japan and Lake Constance, bordering Southern Germany, Switzerland
and Austria were used as illustrations demonstrating the complexities in this case.

In the channel experiments, the interaction of a V1 solution with an obstruction
built into the lower layer led to the fission of this wave into reflected and transmitted
waves, which turned out to be a combination of V1 and V2 (and possibly V3, V4)
responses. Accurate reproduction of the sigmoidal density profile was important in
the identification of these modes and the correct determination of the phase speeds.

In the seiche analysis of the Northern basin of Lake of Lugano, the modeling
of the density profile by a three layer theoretical model was sufficiently accurate,
given the observations from an earlier field campaign. Other, higher order baroclinic
oscillations were not recognized or discovered.

In the first part of this chapter, Lake Alpnach and Lake Banyoles were scruti-
nized for higher order baroclinic response. Time-series of thermistors from chains
deployed at various stations within the lakes and encompassing the epilimnion, met-
alimnion and hypolimnion were scrutinized, and measured periods were identified
with computed eigenperiods from three-layer models. It was seen that the three
layer approximation was not sufficiently accurate for adequate prediction of the V1
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and V2 periods in Lake Alpnach, but for Lake Banyoles the THVDC model was
sufficient to reproduce the surmised HmVn (m � 2, n D 1; 2) periods by the model.

In internal wave dynamics of lakes whose horizontal length scale extends over
two or more internal Rossby radii, the vertical mode behaviour is coupled with the
rotational effects exhibited by Kelvin and Poincaré-type horizontal seiche modes.
Here, it became apparent that field campaigns ought to be conducted not only with
synoptic temperature measurements, but also with current meter recordings of hor-
izontal (and vertical) velocity components in the epi-, meta- and hypolimnion and
moored close to shore (for capturing Kelvin-type behaviour) as well as off-shore
(for capturing Poincaré-type behaviour). Moreover, accurate identification of seiche
periods of higher vertical order often requires application of a theoretical model
which resolves the vertical stratification better than simply with a two or three-layer
model. Apart from a more accurate modeling of the phase speeds of the V1 and V2
modes, this also opens room for higher order baroclinicity with Vn, n > 2.

Interestingly, (1) the analysis transpired the suggestion to apply a multi-layer
model (n > 2) when higher order baroclinic periods must be accurately determined,
(2), the account of the regions with fewer layers than in the maximum layer regime
is important, in particular, when shore areas are not steep, and (3), no HmVn (n > 2)
modes were identified in any of the temperature time series of Lakes Alpnach, Bany-
oles, Biwa and Constance. No convincing examples are known to us where this
would be the case.9 It is, however, clear that an energy cascade to smaller wave
lengths is necessary, if the transition to turbulence is occurring. This transfer takes
place more likely via internal wave instabilities and wave overturning than by higher
mode baroclinic wave fission.
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Chapter 17
Barotropic Oscillations in Lake Onega: A Lake
of Complex Geometry1

17.1 Lake Morphology and First Interpretations
of Water Level Measurements

The most simple model of a lake is a quadrilateral basin, i.e. a rectangular basin
with constant depth and vertical walls along its four sides. Analysis of the barotropic
or baroclinic linear shallow water equations without rotation revealed that the free
oscillations occur in ordered modes. This will mean that the eigenperiods of these
modes can be sequentially numbered according to their size and the corresponding
eigenfunctions equally grow in complexity with the mode number, i.e. the func-
tion for the free surface elevation exhibits one, two, three, etc. modal lines. Such
an ‘orderly’ response in the mode geometry is typical only for simple, equally
orderly basin geometries. If the basin geometry is complex by its shoreline and/or
bathymetry the eigenperiods are still countably infinite and orderable according to
their size but the mode structures belonging to a certain eigenperiod can, in general,
not be guessed. In particular, it is in such cases hardly possible to plan optimal sites
for instrumentation without conducting computations ahead of time. The barotropic
response of Lake Onega is such a case. Surface oscillation measurements were
made since the 1960s of the last century with limnigraphs at various stations along
the shores, and early interpretations were provided. However, only a whole-lake
analysis yielded the necessary detailed information to interpret the measured data
adequately.

We describe and interpret some features of the barotropic motion recorded by
limnigraphs and current meters moored or fixed at various positions and depths in
Lake Onega. The measurements were done by Russian limnologists in the mid to
late 1960s and early 1970s and are reported by Malinina and Solntseva [6]. Spec-
tral analyses of time series of water level and velocity records disclose conspicuous
signals at periods of 13 h and smaller. These periods can be interpreted in terms of
the eigenperiods of the barotropic, linearized shallow-water equations, applied to the

1 This chapter is reproduced (with some changes) from Rudnev et al., Annales Geophysicae, 13,
893–906 (1995) [10]. c� European Geosciences Union, reproduced with permission.

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_17, c� Springer-Verlag Berlin Heidelberg 2011
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complex basin system of Lake Onega. However, this interpretation is not so straight-
forward, first because the relatively complex geometry of the lake requires use of a
finite difference representation of the shallow-water equations with high resolution.
This implies that a very large matrix-eigenvalue problem must be solved, which,
on standard PCs or workstations, is only possible with a sophisticated reduction of
the matrix-eigenvalue problem to a form that allows accurate identification of but
the few lowest order eigenfrequencies and corresponding modes. In the present sit-
uation, the ten lowest eigenfrequencies are reliably computed. A second reason for
the difficulty in interpreting the observations is that the complex lake geometry gives
rise to correspondingly complex mode structures of the pertinent seiches. They need
to be rather well known in order for the recorded data to be adequately interpreted.
As a consequence, thumb rules such as Merian’s formula will not lead very far in
this interpretation.

After Lake Ladoga, Lake Onega is the second largest European lake, situated
in Karelia, in the north-west of Russia. Owing to its complicated geomorphometry
and a fringed northern shoreline the lake differs from the other great lakes of the
world [7]. There are five finger-like main bays extending north-westwards from the
central part of the lake, and each possesses a number of small connected bays (see
Fig. 17.1). The lake length, together with the length of the individual bays varies
from 130 to 250 km. The average depth is 30 m, the maximum depth is 120 m, the
surface area 9692.6 km2 and the volume 291.2 km3 [3]. After Stabrowskiy [19],
who performed the first limnological study, the latest and most detailed investigation
on surface seiches of Lake Onega was carried out and described by Malinina and
Solntseva [6]. Figure 17.1 displays the lake shoreline together with the 20, 40 and
60 m isobaths. The various numbers and letters in the figure indicate shore positions
and offshore locations where instruments were deployed. Some of these positions
carry local names which are also indicated in the figure. We will use the names and
symbol identifications interchangingly.

A summary of results from the observations reported by Malinina and Solntseva
[6], are shown in Table 17.1. Conspicuous oscillation periods of the water-level-
time series recorded at the different gauges are listed in columns 3–11 and labelled
‘mode 1’–‘mode 9’, since Malinina and Solntseva surmised these periods to be the
nine lowest modes of the lake’s surface seiches. We emphasize that they are not: we
will see that ‘mode 1’ is indeed the fundamental mode of the entire lake; however,
‘mode 2’, with period of 4 h 20 min is actually the third overtone, i.e. the fourth
mode of the basin, and what is called ‘mode 3’ in Table 17.1 is probably mode 9 or
mode 10 of the full barotropic lake response. All shorter periods in Table 17.1 proba-
bly belong to even higher order barotropic modes and have not become interpretable
by our analysis. It is evident that an interpretation of the periods of Table 17.1 in
terms of eigen oscillations of the lake must be taken with care.

That the complex lake form offers difficulties in the interpretation of the periods,
can already be seen when it is attempted to attribute the 13-h period to the fundamen-
tal mode of the whole lake. Water-level fluctuations with this period were observed –
i.e. discernible from water-level-time series – only in a single bay, the Povenetskiy
bay, at the water-level stations 10, 12, 13 and nowhere else. The confusion about this
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skiy Bay, N: Small Onega Bay (From Rudnev et al. [10]). c� Annales Geophysicae, European
Geosciences Union, reproduced with permission
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Table 17.1 Surface seiche periods observed at different positions of lake Onega (see Fig. 17.1) by
level gauge recordings (Malinina and Solntseva [6]). The periods are given in hours and minutes
and are identified as 1–9. These numbers identify table columns and do not indicate modes of the
barotropic seiches

Point of observation ‘Mode’ Periods (in h and min)

Position 1 2 3 4 5 6 7 8 9
Medvezhjegorsk 12 13:20 2:16 1:02
Pindushi 13 13:20 2:16 0:60
Sal 10 13:20 2:20 0:58
Svyatuha 11 0:44
Pegrema 8 2:12
Lizhma 7 4:20 2:15 1:20 0:44 0:14
Gorka 6 4:15 3:10 0:18
Condopoga 5 4:20 2:15 1:06 0:26
Suisari 4 1:05 0:26
Yalguba 3 1:22 0:20
Petrozavodsk 1 1:30 0:22
Pyalma 14 4:30 0:58 0:26 0:15
Ivanovskie Island 2 4:18 2:15 0:18 0:10
B.Klimenets 9 4:25 0:22 0:08
Shala 15 2:15 0:59 0:12
Andoma 16 4:20 2:30 1:12 0:16
Voznesenje 17 4:20 2:30 1:22 0:60

period emerged from a rough analysis with the Merian formula, T D 2L=
p
gH ,

where T is the period, L the length of the (rectangular) basin and H its constant
water depth, which gave a ‘theoretical’ first-mode period of 8 h which, however, was
not recorded (see Table 17.1). In this evaluation, L D 250 km was taken to be the
length of the entire lake from the northern most point (position 12 in Fig. 17.1) to its
southern end (about at position 17) and a mean depth of approximately 30 m is used.
The interpretation of the entire lake basin as a rectangle being rather problematic,
Malinina and Solntseva nevertheless ‘stuck out their heads’ and chose L to be twice
the length of the right most arm (D 122 km) with the mean depth equal to 13.9 m,
and obtained a period of 11.6 h. This choice positioned the nodal line by construc-
tion at the entrance of the right arm of the lake (Zaonezhskiy and Povenetskiy bays,
which together form this arm). The southern, large basin then plays the role of the
second half of the Merian-rectangle. However, since this basin is much larger, its
water-level displacements in such a hypothetical fundamental mode are expected to
be much smaller than those at the northern most tip of the Povenetskiy bay; this may
serve as a possible explanation that the 13-h period could not be identified by eye
from time series of water-level fluctuations taken at stations that were situated in the
southern main basin, see [11–14].

There were also other attempts in identifying observed periods in Lake Onega
by Merian’s formula and its modification [5,9,11–14]. For instance, considering the
Zaonezhskiy and Povenetskiy bays as a lake in isolation, and selectingL D 122 km,
h D 13:9m, the Merian formula yields 11.6 h for the fundamental period, which is,
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perhaps, close to the observed 13 h. However, all these analyses are at best educated
guesses. They may give a halfway satisfactory explanation of the fundamental mode,
but certainly cannot explain any other observed period. A detailed analysis to that
end appears to be mandatory and is attempted in the ensuing analysis.

17.2 Measured Water-Level Fluctuations and Water Currents
at Isolated Points

The data that are closely analyzed here, are the level gauge records taken from
the Malinina archives, collected in 1965. Figure 17.2 shows excerpts from these.
Panel (a) shows a 720 h excerpt of the water-level fluctuations from 25 August to
23 September 1965 at positions 12 and 17, i.e. at the northern most point in the
Povenetskiy bay and in the south-west corner of the large southern basin. By sim-
ply counting the maxima of the water-level-time series at position 12 between 100
and 300 h we find a period of approximately 11.8 h. A similar result is obtained by
the corresponding minima for the water-level-time series at station 17, and the min-
ima occur simultaneously with the maxima of the water fluctuations at station 12.
In other words, the two time series at these periods exhibit a counter-phase rela-
tionship. Figure 17.2a also allows identification of periods of about 25 and 50 h,
and certainly the water-level-time series at positions 12 and 17 also contain shorter
period processes, but this analysis is best deferred until Fourier spectral plots are
presented.

Water-level-elevation-time series at other locations were taken by Rudnev in the
late 1980s and early 1990s. Figure 17.2b shows an 80-h episode from September
1990 of the water-level displacement at position 1 (see Fig. 17.1, at the northwest
shore of the main basin), from which an 11.8-h period can be identified even more
easily; shorter periods are discernible from a spectral analysis.

We also show two episodes from current measurements recorded at position
F and J in the main basin taken in February 1987 and July 1989, respectively
(for positions F and J , see Fig. 17.1). Graphs of the time series are displayed in
Fig. 17.3a,b. They show the modulus of the velocity at F and J , plotted against
time. The two episodes disclose physically two different processes. The time series
at position 1 discloses a dominant process with a period of approximately 12 h com-
plemented by less energetic motions at smaller periods. For the time series taken
at position F, the dominant process has about a period of 4.2 h, and processes with
larger and smaller periods are superposed on it with less energy.

The spectral analysis subtracts the best linear trend from the time series. To
reduce leakage the resulting time series was processed with a spectral window and
filters having lengths between 10 and 30%. Standard MESA technique of spectral
analysis as described in Barrondale and Erickson [1] were used; technical details
will therefore not be shown. We move directly to the discussion of the spectral plots
shown in Figs. 17.4 and 17.5.
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Fig. 17.2 Excerpts of time series for water elevation: (a) 720-h episode recorded at Medvezhje-
gorsk (position 12) and at Voznesenje (position 17) measured by Malinina, from 25 August 1965
(00 h 00 min) to 23 September 1965 (23 h 00 min). We have indicated eye-fitted oscillations of
approximately a 12-h period; note the signals at the two stations are out of phase at this period.
(b) Data recorded in Petrozavodsk Bay at position 1 from 11 September 1990 (7 h 30 min) to
14 September 1990 (19 h 00 min), recorded by a WLR-5 instrument. An 11.8-h periodic signal is
indicated again (From Rudnev et al. [10]). c�Annales Geophysicae, European Geosciences Union,
reproduced with permission

Figure 17.4 shows the energy densities against period (frequency) for four water-
level-time series at positions 2, 12, 17 and 1 (Fig. 17.4a–d) the positions being
identifiable from Fig. 17.1. The graphs are given in double logarithmic represen-
tation (to be energy conserving) and a high frequency cut-off at 5 cycles h�1
(corresponding to a period of 2 h) was employed (see the vertical dashed lines).
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Fig. 17.3 Excerpts of time series of the current speed: (a) 120-h episode of a current–time series
recorded by an ATSIT instrument at position J , at 10 m depth, from 11 July 1989 (22 h 30 min)
to 16 July 1989 (21 h 30 min) with a period of 12 h. (b) 144-h episode of a current-time series
recorded by the RCM-4 instrument in Solomenskiy Strait (position F ) in Winter, from 9 Febru-
ary 1987 (13 h 00 min) to 15 February 1987 (12 h 00 min) with a period of app. 4.2 h. (We have
no information about direction) (From Rudnev et al. [10]). c� Annales Geophysicae, European
Geosciences Union, reproduced with permission

Indicated is also the 95% confidence interval and the period of measurement for
which the spectral analysis was performed (lower left corners of the graphs). Lastly,
the small vertical strokes, numbered from 1 to 5 show the values of computed eigen-
periods of the five lowest order barotropic modes for the whole Lake Onega to be
described below. Figure 17.4b–d, show the spectra of the water-level-time series at
positions 12, 17 and 1, also shown directly in Fig. 17.2. Similarly, Fig. 17.5 displays
the energy spectra of the current-time series from episodes taken at positions K,
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F, J and I; the graphical display is the same as for Fig. 17.4, and Fig. 17.5b, c are
the spectra of the time series from Fig. 17.3. We will return to these observational
evidences when an attempt of interpretation of these observations is made.

17.3 The Barotropic Eigenvalue Problem

We use the homogeneous linearized shallow-water equations referred to a Carte-
sian coordinate system and ignore the rotation of the Earth and frictional effects
(Hutter [2] or see Chap. 11, (11.17), in which f D 0 andH replaced by h). Thus

@u
@t

C grH � D 0; (17.1)

@�

@t
C rH � .uh/ D 0; (17.2)

in which u is the 2-vector consisting of the Cartesian components u and v and � is
the surface displacement; moreover rH is the two-dimensional gradient operator, g
the gravity constant and h the water depth. Equation (17.1) is the horizontal momen-
tum equation, balancing the acceleration term with the horizontal pressure gradient;
Coriolis effects are ignored. Alternatively, (17.2) is the vertically integrated mass
balance. Equations (17.1) and (17.2) must be solved in the lake domain D subject
to the boundary conditions of no water flow through the shore line,

u � n D 0; along @D; (17.3)

where n is the unit normal 2-vector along the shoreline.
When a harmonic time dependence is extracted, i.e. if .u; �/ = . Nu; N�/ exp .i� t/,

then (17.1) and (17.2) may be used to deduce the following eigenvalue problem
for N�:

rH � .hrH N�/C �2

g
N� D 0; .x; y/ 2 D;

rH N� � n D 0; .x; y/ 2 @D;

9
=

;
; (17.4)

in which � is the frequency to be determined as the eigenvalue of problem (17.4).
To each �n belongs a corresponding eigenfunction N�n, here often simply referred to
as the mode. Once N�n is evaluated the velocity field is determined by

Nu D i
g

�
rH N�; (17.5)

i.e. the velocity field leads the free surface elevations by �=2.
Let ˝ D 0:73 � 10�4 s�1 be the angular velocity of the Earth and � D 62ı

the mean latitude of the lake area; then f D 2˝ sin � D 1:28 � 10�4 s�1 and the
external Rossby radius of deformation becomes
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R D
p
gH=f 2 Š 135 km (17.6)

for H D 10m. With a maximum width of approximately 80 km the effects of the
rotation of the Earth are likely to be moderately small and will subsequently there-
fore be neglected. In any case, effects of the rotation of the Earth, if significant, will
only be recognizable in the southern large basin.

Because of the complex geometry of the lake a finite difference net with constant
mesh size requires fine resolution. Square elements were chosen with 1 km side
length within a coordinate system of which the axes were oriented 30ı counterclock-
wise from the WE and SN directions. Using a centred second order finite-difference
representation this resulted in a rectangular net of 107 � 231 cells, of which 9,344
were activated with non-empty entries representing surface elevations. The matrix
that emerges has the dimension 9,344 � 9,344. It implies that the corresponding
matrix eigenvalue problem that follows from (17.4) is extremely large. Limitation in
storage of the available computer prevented direct solution of the matrix eigenvalue
problem. An approximate determination of the few lowest eigenmodes is warranted.
The Lanczos [4], approximate method, explained in Paige [8] and Schwab [17] was
used.

We shall outline the Lanczos procedure in detail in Appendix A, comprising
Sect. 17.6 of this chapter. Here, it may suffice to explain its effects and workability.
The procedure is to expand N�n as

N�n D
NFX

iD1
C ni Wi ; NF ! 1; (17.7)

where Wi are orthonormal functions, defined over the domain D that satisfy the
boundary conditions (17.4)2, i.e.

R

D
WiWj dA D ıij and @Wi=@n D 0 along @D.

Substituting (17.7) into the eigenvalue equation (17.4)1 yields the standard
matrix-eigenvalue equation

NFX

iD1
Aj iC

n
i D 
nC

n
j ; 
n D ��

2
n

g
; (17.8)

where

Aij D
Z

D

.WjrH � hrWi /dA:

The advantage of the matrix-eigenvalue equation (17.8) as opposed to the cor-
responding eigenvalue problem that obtains from a direct discretization of problem
(17.4) is that, by adequately choosing Wi ; i D 1; 2; : : : ; NF in the Lanczos proce-
dure, the matrix A is symmetric and tridiagonal, in which case special eigenvalue
solvers can be used. Solving (17.8) for the eigenvalues 
n and the eigenvectors
C nj determines, via (17.8)2 the eigenfrequency �n of the original problem and
via (17.7) the corresponding eigenfuction. The functions are constructed as shown
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in Appendix A. This guarantees that A D AT and that the functions Wi ; i D
1; 2; : : : ;NF are orthonormal in the sense that

Z

D
WiWj dA D ıij : (17.9)

17.4 Numerical Results and Their Comparison
with Observations

In what follows, we shall discuss the individual modes of the free barotropic oscil-
lations of the basin and compare the results with those deduced from observations
and described in Sect. 17.2.

A somewhat critical parameter is the truncation number NF of functionsWi . The
few largest eigenfrequencies �2n can well be determined even with a relatively small
number of Wi -functions. To guarantee a sufficiently accurate representation of the
modal structure, NF must, however, be large. On the other hand, all Wi -functions
must be stored on external devices to free the computer from unnecessarily occupied
storage places. For NF D 3;000, the storage area occupied by the Wi -functions in
double precision (8 Bytes real) is about 225 MB.

Analytically, all Wi -functions are orthogonal. However, due to the numerical
determination of Wi truncation errors set in after a number of evaluations of Wi
(e.g. i D 50) and W50Cj is not exactly orthogonal to W1;W2; : : :. Schwab [17]
proposed to test the structure of the free mode as constructed by (17.7) with the
parameter

" D
Z

D

.rH � hrH N�n � 
n N�n/2dA

�Z

D

�2ndA: (17.10)

Analytically, " is zero, but when the discretized version is calculated numerically, "
is a small number and tends to be large for spurious eigenvalues.

Table 17.2 collects the values of the periods of the first ten modes for three
different values of the truncation number NF (equal to 1,000, 3,000 and 6,000,
respectively). For NF D 3;000 the very small values of " are also listed; the spuri-
ous periods with larger "-values being ignored. It is seen that NF D 1;000 was too
small, because with NF D 3;000 new eigenperiods emerged with small "-values.
NF D 6;000 did, however, not generate additional relevant periods in the period
interval 12.14–2.22h that were not obtained with NF D 3000. It was thus concluded
that NF D 3;000 was also sufficient for the computation of the surface structure of
the ten lowest order modes.

A somewhat critical point is the question of how much the eigenperiods change
if the mean depth of the lake is varied. For NF D 3;000, results are shown in
Table 17.3 when h D 31:3˙ 0:5m. One can see that the eigenperiods do change by
1.5–3.3%. We shall encounter differences of this order when comparing computed
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Table 17.2 Periods of surface oscillations in Lake Onega as predicted by the model. Indicated
are the mode numbers 1–10, the number NF of basis functions used in the Lanczos procedure
(NFD 1;000; 3;000 and 6,000) and the value " (for NFD 3;000) defined in (17.10) which gives
an indication of how reliably the eigenperiods have been computed

Mode T .h/ T Œh� " T Œh�
NF D 1;000 NF D 3;000 NF D 3;000 NF D 6;000

1 12.09 12:14 5.6e–29 12.14
2 6.62 6:74 9.2e–30 6.75
3 4.75 4:89 2.9e–34 4.90
4 4.18 4:19 3.0e–34 4.19
5 3:56 1.1e–30 3.56
6 2.88 2:92 1.1e–33 2.92
7 2:64 2.7e–33 2.65
8 2:50 3.7e–31 2.50
9 2.35 2:35 2.2e–33 2.35
10 2:22 1.6e–29 2.24

Table 17.3 Periods of surface oscillations in Lake Onega calculated for different mean depths of
the lake for NF D 3;000

Mode Calculated periods (h) NF D 3;000

H D 30:8m H D 31:3m H D 31:8m

1 12.34 12.14 11.93
2 6.89 6.74 6.62
3 4.98 4.89 4.81
4 4.23 4.19 4.15
5 3.70 3.56 3.44
6 2.97 2.92 2.87
7 2.74 2.64 2.56
8 2.60 2.50 2.36
9 2.40 2.35 2.30

10 2.28 2.22 2.21

periods with measured ones. Not knowing the accuracy of the bathymetric charts,
interpretation of the observations requires a certain flexibility in this regard.

Table 17.4 collects the periods, obtained from the solution of the eigenvalue prob-
lem (17.8), together with the observational periods as inferred from the spectra of the
water-level and water-current-time series. The periods of the latter are taken from
the spectral analysis and agree with the identifiable relative maxima in the spec-
tra whose peaks are isolated and large enough to guarantee statistical confidence
(see 95% confidence intervals in Figs. 17.4 and 17.5). Table 17.4 shows shaded
and unshaded rows and thus anticipates a certain interpretation of the results. The
rows corresponding to the computed barotropic free modes are all shaded and thus
believed to find an interpretation, the unshaded rows show periods that need another
interpretation for which we can presently only offer educated guesses.
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Mode 1. Figure 17.6 shows the structure of the fundamental mode. In Fig. 17.6a
the level lines of the surface-elevation-amplitude distribution are shown; they are
scaled to a maximum value 1.0; solid lines indicate elevation maxima, and dashed
lines correspond to elevation minima. Thus, two water-level-time series from a point
on one side and another on the other side of the (zero amplitude) nodal line are out
of phase by 180ı. This feature is perhaps better illustrated in the axonometric view
of Fig. 17.6b which displays the surface elevation at the moment of its maximum.
According to the model calculations the fundamental surface seiche has a period of
12.1 h with its maximum amplitude in the Povenetskiy Bay. The nodal line is located
at the entrance of the Zaonezhskiy Bay, i.e. the entrance of the large north-eastern
most channel; amplitudes grow as one moves northwards and reach their maximum
at the northern end of the lake arm. In the central main basin, amplitudes of the
water-surface elevations are small everywhere, so that one should not be surprised
that early measurements from gauges at shore positions of the large basin hardly

-0.1
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0.2
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0.9

nodal line
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MODE   : 1
PERIOD : 12.1 h

a b

Fig. 17.6 Lake Onega: (a) Isolines of surface-elevation amplitudes for the fundamental mode with
a period of 12.1 h. Solid lines and dashed lines indicate surface elevations which are in counter-
phase relative to each other. The maximum is scaled to have the value 1 m; (b) Axonometric
representation of the surface displacement distribution at the moment of extreme amplitudes for
the same mode. The two representations are equivalent (From Rudnev et al. [10]). c� Annales
Geophysicae, European Geosciences Union, reproduced with permission
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disclose the 12 h period. According to Malinina and Solntseva [6], oscillations with a
13 h period were only observed at stations 10, 12 and 13 in Povenetskiy Bay with
amplitudes between 15 and 18 cm. Our results would imply that amplitudes with
this period in the main basin would have been at most 2 cm. It is uncertain whether
these were recordable by the water-level gauges used by Malinina and Solntseva.

Interpretation of the data in the vicinity of the fundamental mode period is ham-
pered by the fact that the inertial period is 13.6 h. We emphasize, however, that
ideally, the inertial motion does not generate surface displacements and thus only
shows up in the velocity records; at a fixed position velocity vectors would rotate in
the clockwise direction. Thus we interpret water-level oscillations at the 12-h period
as true fundamental-mode response to the barotropic gravitational seiche.

The spectra for the water-level-time series at gauges 12 and 17 show peaks at
13.3 and 12.9 h (Table 17.4) with energies that are larger for the time series at
gauge 12 than at gauge 17, in conformity with an interpretation as a fundamen-
tal mode signal (Fig. 17.4b,c). The two other spectra of surface elevation at gauges
1 and 2, both positions in the large basin, indicate energy maxima at 11.8 and
12.8 h with energy levels comparable to those at gauge 17 (compare Fig. 17.4a,c
and d), again qualitatively corroborating first-mode response. The relatively small
period of 11.8 h at gauge 1 could be explained with slow mean water-level fluctu-
ations of approximately 1 m (see Table 17.3), but unfortunately, this is uncertain,
as no records about mean water-level variations are available. Rudnev [11] and
Rudnev and Petrov [13] attribute this discrepancy to many other effects such as
inertial motion, set-up phenomena and coupling with internal waves [18], but do
not justify these suspicions.

Interpretation of the current-meter data is more difficult because the observations
of processes with a 12–13-h period are likely to be a mix of fundamental-mode
response and inertial waves. The fundamental mode response can best be observed
by current-meter data from instruments that are located close to the nodal line. How-
ever, current-meters were only moored at the locations indicated by the triangles in
Fig. 17.1, and those closest to the nodal line are positions I and J. The spectra of
these data are shown in Fig. 17.5c,d. At J the energetically significant period is at
13.8 h, and the peak is strong and narrow, suggesting that this signal corresponds
primarily to inertial waves. A definite answer would require knowledge about the
rotational properties of the velocity, information which we do not have. The spectral
peak of the current meter at Station I is at 12.1 h and less strong and broader than
at J. This allows the supposition, that this record is a mix between inertial wave and
first-mode-barotropic-seiche response.

Current data recorded in the Solomenskiy Straight at position F (Fig. 17.1) close
to the shore are significant because they were obtained in winter, when the lake was
covered by ice and the wind action on the water masses absent. This also guaran-
teed absence of a possible barotropic baroclinic coupling of the recorded signals.
Moreover, at a shore position inertial waves are unlikely to be active. The peak in
the spectrum at the position is at 12.0 h (Fig. 17.5b) and relatively sharp and may
thus be attributed to first-mode barotropic seiche behaviour.
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Current time series were also recorded at positions G, K and H; spectral analyses
of episodes showed maxima of the energy spectra at 12.5, 11.8 and 14.8 h. Since we
have no information about the mean water-level, we can only muse about reasons of
the differences, but will abstain from doing it.

Mode 2. Figure 17.7a, b displays the second mode of the lake. It possesses two
nodal lines, the first approximately connecting the shore points 2 and 9 in Fig. 17.1,
the other at the entrance of the Povenetskiy Bay. Water-level displacements are
very small everywhere except in Big Onega Bay (in Fig. 17.1 the narrow and long
northward-oriented channel at which station 8 is located). This behaviour in very
well identifiable in the axonometric view of Fig. 17.7b. This oscillation has a period
of 6.7 h and, surprisingly, has been recorded in the water-level gauges 12 and 17,
but equally also in the velocity time series at F, I and H, although not in G, K and J.
This period, however, was not recorded by the limnigraphs at 1 or 2 which lie close
to the nodal line. This mode is obviously not detectable with a simple model except
perhaps by assuming that Big Onega Bay forms an open half-channel for which the
Merian period is T D 4L=

p
gH . With L D 50 km and H D 7m this yields 6.6 h,

very close to the 6.7 h.
Interesting as this result is, it has been obtained as an a posteriori fact, and we

do not think that it is apparent at all. On the other hand, it now becomes understand-
able why this period is not listed in Table 17.1 and escaped early observations by
Malinina and Solntseva [6]. With the less reliable measurements at that time we
could at most only have hoped to see the 6.7-h period at gauge 8, but apparently it
has not been seen in those records.

Mode 3. Figure 17.7c, d displays the structure of mode 3 with a computed period
of 4.9 h. It also possesses two nodal lines (as mode 2 does), one at the entry of the
right most large finger-like Zaonezhskiy bay, the second about half way within it
and being responsible for the second resonance of the Povenetskiy Bay. Water-level
amplitudes are large in this entire bay and reach a maximum in the Velikaya Bay (C
in Fig. 17.1). Whereas the surface elevation amplitudes are large in this bay, they are
only moderate in the main basin reaching their maximum here close to station 17.

Observations from limnigraphs corroborating this mode are the water-level-
spectral peaks of the surface elevation records at positions 2, 12, 17 and 1 with
periods 4.5, 5.2, 4.5 and 4.5 h and the velocity-spectral peak at position G with a
4.6 h period. These have an arithmetic mean of 4.7 h. To draw more conclusive infer-
ences, cross-statistical analyses of simultaneous time series from different stations
would be needed, but these have not been done.

Mode 4. The fourth mode with a computed period of 4.2 h is the main oscillation
of the whole lake. Its structure is shown in Fig. 17.8; it possesses three nodal lines,
one crossing the main basin from east to west, the second spanning the entrance of
the channel north of the Big Klimenets Island and the third crossing the entrance
of the Povenetskiy Bay in the eastern most arm. The second nodal line is continued
in the narrow eastern most arm of Big Onega Bay. The axonometric representation
of the surface elevation in Fig. 17.8b shows that the water levels of the southern
most parts of the large basin are in-phase with those of the Zaonezhskiy Bay and
the channel at Pegrema (location 8 in Fig. 17.1). On the other hand, they are in
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Fig. 17.7 Lake Onega: (a), (b). Same as Fig. 17.6 but for mode 2 with a period of 6.7 h and (c), (d)
for mode 3 with a period of 4.9 h (From Rudnev et al. [10]). c� Annales Geophysicae, European
Geosciences Union, reproduced with permission
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Fig. 17.8 Lake Onega: (a), (b). Same as Fig. 17.6 but for mode 4 with a period of 4.2 h (From
Rudnev et al. [10]). c� Annales Geophysicae, European Geosciences Union, reproduced with
permission

counter-phase with the free surface elevations in the northern part of the main basin
(Big Onega Basin) and those of Povenetskiy Bay. This mode is being confirmed by
the early water-level measurements at many stations indicated in Fig. 17.1 as can
be seen from Table 17.1. However, it is also confirmed by the surface and current
measurements of Figs. 17.4 and 17.5, and it has also been identified in temperature
measurements [12, 13].

Given the mode structure of Fig. 17.8 with its locations of the nodal lines, one
should not be surprised that the 4.2-h period was not recorded at position 15 of
Fig. 17.1, which is situated practically on the nodal line. Analogously, at the north
tip of Big Klimenets Island the 4.2-h period should not be observed; to no surprise it
was only seldom observed at its southern shore with an amplitude of less than 3 cm.
The maximum amplitude is to be expected to occur at Voznesenje (position 17 in
Fig. 17.1) with an amplitude about 4–5 times larger according to the distribution
of the surface-level lines of Fig. 17.8a. Summer to autumn values are about 15 cm
which fits these estimates well. Winter values are at 3–4 cm. Similarly, at position 7,
in the north of Big Lizhma Bay, water-level amplitudes are 4.7 cm during summer
(data from 1966 to 1968) and 8–42 cm in autumn.

Table 17.1, which summarizes data from Malinina and Solntseva [6] shows that
this whole-lake mode is discernable at many locations around the lake. Positions
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10, 11, 12, 13, but also 15 and 8, however, have apparently no discernable signal at
this period. This is good news because all these positions are located where the
surface-displacements lines of Fig. 17.8a indicate small to zero amplitudes. The
spectral analysis of the level-gauge data (Fig. 17.4) show that oscillations with a
4.2-h period form the dominant signal at positions 2 and 17, while they are hardly
detectable at 12, which is now understandable. The spectral analyses of the current
data (Fig. 17.5): show large peaks at positions I and J (which are close to a nodal
line!) but a small one at position K. At position F, in the Solomenskiy Straight, which
connects the main basin of the lake with Lake Logmozero (not shown in Fig. 17.1),
is the energetically strongest signal (see Fig. 17.5b). This is no surprise, as Salvadè
and Zamboni [15] have shown for Lake of Lugano that, if a channel connects one
lake basin with another basin, then the surface seiches lead to strong current oscil-
lations in the channel whenever one of the adjoining basins is excited. All this is in
full agreement with the model predictions.

Mode 5. This mode (see Fig. 17.9a) is essentially a bay resonance of the bay
Velikaya Guba (C in Fig. 17.1) immediately to the north of Big Klimenets Island (9,
in Fig. 17.1) with very small responses in the northern parts of the lake and nothing
in the southern part of the main basin. The computed period is 3.6 h, but it does not
seem to have been recorded in the early data collected by Malinina and Solntseva
[6]. Our water level and current spectra show weak peaks with periods between
3.3 and 3.8 h (see Table 17.4 and Fig. 17.5). Unfortunately, neither water level nor
current-meters were moored where the action is in this mode.

Mode 6. It appears to be the second whole-lake mode (see Fig. 17.9b), pos-
sesses five nodal lines and has a numerical period of 2.9 h. The early observations
(Table 17.1) do not disclose this mode, the spectra of Figs. 17.4 and 17.5 show
it clearly at position 1 (Fig. 17.4d) and, in the currents, at positions K, F, I and J
(Fig. 17.5). The periods lie between 2.9 and 3.2 h with a mean of 3.0 h.

We have also found a coincidence between the computed periods attributed to
modes 7–10 and periods in spectral peaks in Figs. 17.4 and 17.5. They cluster around
2.8 and 2.2 h.

Mode 7 and 8. These are essentially bay resonances (see Fig. 17.9c,d), so that it
is no surprise that they are excited at positions 1, 2, 12 and 17 with low energies.

Modes 9 and 10. These are again whole lake responses (see Fig. 17.9e,f) which
explains why their periods are better identifiable in the spectra than modes 7 and
8, see also Table 17.4. Obviously, mode identification is very difficult and the coor-
dinations made in Table 17.4 are no more than suggestions. The signal at 2.2 h is
particularly frequent (Table 17.4, mode 10) and, interestingly, a period of approxi-
mately 2.2 h has also been identified by Malinina and Solntseva [6], see Table 17.1
where it is attributed to ‘mode 3’.

The spectra displayed in Fig. 17.9 provide also clear indication why exact iden-
tification of higher order modes must be very difficult. The five modes 6–10 have
eigenperiods between 2.9 and 2.2 h. They lie very close to one another and must, in
measured time series, be very difficult to separate, unless data are collected simul-
taneously, have very high resolution and time series are relatively long. In a lake as
large as Lake Onega this is hardly possible.
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Fig. 17.9 Lake Onega: (a)–(f). Same as Fig. 17.6b, but (a) for mode 5 with a period of 3.6 h, (b)
mode 6 with a period of 2.9 h, (c) mode 7 with a period of 2.6 h, (d) mode 8 with a period of 2.5 h,
(e) mode 9 with a period of 2.4 h, (f) mode 10 with a period of 2.2 h (From Rudnev et al. [10]).
c� Annales Geophysicae, European Geosciences Union, reproduced with permission
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The spectra of the current-time series (Fig. 17.5 and Table 17.4) also show oscil-
lations with a period of approximately 9 h. These signals are particularly strong at
positions G and H. However, our free oscillation model does not explain this period.
We can presently only guess what it might be: a topographic wave, an internal wave
response or direct wind forcing.

Table 17.4 also lists periods of observed signals from the spectral analysis of
the water level and current-time series that are longer than the barotropic response.
These may also be interpreted as the 9-h signal. Finally, Table 17.1 lists a great
number of very short periodic events with apparent periods of less and also larger
than 1 h. These are likely higher order barotropic responses, perhaps local bay
modes or transverse seiches. A careful study would be needed both observationally
and computationally to identify them. Computations with the Lanczos procedure
would require the choice of NF ' 6,000 which is computationally not economical.

17.5 Concluding Remarks

An attempt has been made to interpret water-level fluctuations and current-time
series from gauges positioned around and within Lake Onega in terms of the
barotropic free seiches of the entire lake basin. The results demonstrate that this
modelling attempt for studying the surface seiches of the lake has been successful.
They allow interpretation of certain dominant oscillatory processes to be identified
as eigenmodes of the lake but also give indications as to where, in later observational
studies, limnigraphs should be positioned if certain modes want to be detected.

The analysis indicated very clearly that a naive interpretation using simple thumb
rules (like, e.g. the Merian formula) is very dangerous. Most modes are being missed
or misinterpreted, and those which could be explained, are a posteriori constructions
(at least by us). Lake Onega is a perfect example of where only a full-scale analysis
could explain the few observations that are available.

Naturally, the analysis is imperfect at several places (some of which we explicitly
indicated). Better data should be available if certain inferences are to be founded
on a better physical ground. A proper identification of modes of the external
gravitational seiches would also require determination of phase differences of the
oscillations from time series of station pairs. This requires simultaneous measure-
ments at several gauges, which was not done. Furthermore, in the current-meter
data, information was only available about the absolute value of the speed. A proper
analysis would also require measurement of the direction. With such information,
one could see how the water current at a certain location would rotate, and could
therefore identify e.g. inertial modes and find out how significant the effects of the
rotation of the Earth would indeed be in the external wave dynamics. Therefore,
even though the analysis revealed many answers it also raises questions for further
possible studies.



17.6 Appendix: The Lanczos’ Procedure in Solving Symmetric Eigenvalue Problems 309

17.6 Appendix: The Lanczos’ Procedure in Solving
Symmetric Eigenvalue Problems

Consider the eigenvalue problem2

r � .hr�n/ D 
n�n .x; y/ 2 D;
r�n � n D 0; .x; y/ 2 @D; (17.11)

where h is a positive function, D � R2 and n is the unit normal vector exterior to
@D; n D 1; 2; 3; : : : is a counting index. This corresponds to (17.4) in the main text
with


n D ��
2
n

g
: (17.12)

To show that 
n is real and negative, and therefore that �n is real, multiply (17.11)1,
by ��n , the conjugate complex of �n and integrate the resulting identity over D. This
process yields Z

D
��nr � .hr�n/da D 
n

Z

D
��n�nda

„ ƒ‚ …
>0

: (17.13)

The left-hand side can be rewritten as
Z

D
r � f��nhr�ngda �

Z

D
h.r��n � r�n/da:

With the use of the divergence theorem and the boundary condition (17.11)2 the first
integral vanishes, so that (17.13) becomes


n D �

Z

D
h.r��n � r�n/da
Z

D
��n�nda

: (17.14)

On the right-hand side, the numerator and denominator are both positive proving
that 
n < 0.

The eigenfunctions to two different counting indices are orthogonal and can be
normalized such that Z

D
�i�j da D ıij (17.15)

To show this, we write (17.11), as

2 We follow Schwab [16]. In this appendix r must be interpreted as the two-dimensional Nabla
operator r WD rH .
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r � .hr�i / D 
i�i ;

r � .hr�j / D 
j �j ;

multiply the first by �j , the second by �i , integrate the resulting identities over the
domain D and subtract. This yields

Z

D
f.r � .hr�i //�j � .r � .hr�j //�igda D .
i � 
j /

Z

D
�i�j da: (17.16)

The integral on the left-hand side vanishes; to show this, we write

Z

D
.r � .hr�i //�j da D

Z

D
r � .�jhr�i /da �

Z

D
hr�i � r�j da

D
Z

@D
�jhr�i � n

„ƒ‚…
0

ds �
Z

D
hr�i � r�j da D �

Z

D
hr�i � r�j da;

and an analogous expression holds for the second member on the left-hand side of
(17.16). Therefore,

.
i � 
j /
Z

D
�i�j da D 0: (17.17)

This is automatically satisfied for i D j , but for 
i ¤ 
j it implies the vanishing of
the integral. Because the eigenfunctions �i are determined up to a constant factor,
they may be normalized such that

R
D �

2
i da D 1. This proves (17.15).

The Lanczos procedure consists in transforming the eigenvalue problem (17.11)
into a different eigenvalue problem by expanding �n into a series of different
functions that are suitably selected,

�n D
1X

iD1
C ni Wi : (17.18)

For all i the functionsWi are selected such that

.1/
@Wi

@n
D 0; for .x; y/ 2 @D .2/

Z

D
WiWj da D ıij : (17.19)

Requirement .1/ guarantees that the boundary conditions on �n are automatically
satisfied and .2/ establishes the orthonormality of the Wi ’s. When applied to the
discretized version of (17.11)1, the Lanczos procedure results in a tridiagonal
symmetric matrix with the same eigenvalues as the general matrix of (17.11)1.

With (17.18), (17.11) becomes

r �
(

hr
 1X

iD1
C ni Wi

!)

D 
n

1X

iD1
C ni Wi : (17.20)
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Multiplying both sides of this equation by Wj and integrating the resulting identity
over D yields

1X

iD1
C ni

Z

D
Wjr � .hrWi /da

„ ƒ‚ …
DAij

D 
n

1X

iD1
C ni

Z

D
WiWj da

„ ƒ‚ …
ıij

or 1X

iD1
C ni Aij D 
nC

n
j : (17.21)

This is an infinite set of homogeneous equations for the eigenvalues 
n and the
eigenvectors C nj . In practical applications one must truncate the summation and
then obtains the matrix eigenvalue problem

NFX

iD1
C ni Aij D 
nC

n
j : (17.22)

Once 
n and C ni .i D 1; 2; : : : ;NF/ are known, �n follows from (17.12) and �n
from (17.18).

The matrix Aij is symmetric. This can be shown as follows:

Aij D
Z

D
Wjr � .hrWi /da D

Z

D
r � .WjhrWi /da

„ ƒ‚ …
D 0 by divergence

theorem and (17.19)1

�
Z

D
hrWj � rWida

D �
Z

D
hrWj � rWida D Aj i :

There remains to construct the functionsWi such thatAij is a tridiagonal matrix.
This is done by the following recurrence relation:

� Initialization:

W0 D 0; W1; such that @W1=@n D 0:

� Recurrence procedure

˛i WD
Z

D
Wir � .hrWi /da; .no sum over i/;

OWiC1 WD .r � hr � ˛i /Wi � ˇiWi�1;

ˇiC1 WD
�Z

D
OWiC1 OWiC1da

	1=2
;

WiC1 WD 1

ˇiC1
OWiC1:

(17.23)
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If W1 and W0 D 0 are given, relations (17.23) define a recurrence relation to com-
puteWi , ˛i and ˇi . ˛i are the diagonal elements of Aij and ˇi the first off-diagonal
elements. To this end, a useful way of writing (17.23)2 is

ˇiC1WiC1 D .r � hr � ˛i /Wi � ˇiWi�1;
or

r � hrWi D ˛i �Wi C ˇiC1WiC1 C ˇiWi�1;
(17.24)

in which (17.23)4 was used. If we multiply (17.24)2 by Wj and integrate the
emerging equation over D, we generate the identity

Z

D
Wjr � .hrWi /da

D ˛i

Z

D
WjWidaC ˇiC1

Z

D
WjWiC1daC ˇi

Z

D
WjWi�1da:

(17.25)

Letting j D i in (17.25), we obtain

Ai i D
Z

D
Wir � .hrWi /da D ˛i ; (17.26)

sinceWiWj are orthonormal. The first off-diagonal elements are obtained by letting
j D i � 1 in (17.25),

A.i�1/i D
Z

D
Wi�1r � .hrWi /da D ˇi D Ai.i�1/: (17.27)

Finally, by choosing j D i�k, k D 2; 3; : : : , the orthonormality of theWi ’s implies
that A.i�k/i D 0. Thus, Aij is indeed symmetric tridiagonal.

In summary, the Lanczos procedure for the solution to (17.11) consists of the
following steps:

1. Selection of starting functions W0 D 0 and W1 such that @W1=@n D 0 at the
boundary,

2. Application of the recurrence procedure (17.23) for the evaluation of ˛i ; ˇi
andWi ,

3. Solution of the linear homogeneous equations (17.22) for the eigenvalues 
n and
the eigenvectors C ni , and

4. Evaluation of the eigenvalues �n according to (17.12) and the eigenfunctions �n
according to (17.18).

In this solution procedure, the functionsWi are not needed for the solution of the
eigenvalue problem (17.21) or (17.22) and can be externally stored once and for all.
Furthermore, in the numerical implementation the recurrence procedure (17.23) is
usually applied with centred difference formulas for the gradient operator and sim-
ple summation for the integrations. Analytically, all Wi are orthogonal according to
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(17.19)2. In practice, however, since all Wi are determined numerically, truncation
errors set in and cause Wk , k large, not to be orthogonal to W1. This implies that
a large number of Wi -functions is required to resolve the modal structures, but the
lowest eigenfrequencies are determined quite well at low truncation. Furthermore,
at higher truncation the loss of orthogonality tends to cause spurious values of 
i to
appear. Schwab [17], proposed to test the structure of the free mode as constructed
by (17.18) with the parameter

" D

Z

D
.r � .hr�n/� 
n�n/

2da
Z

D
�2nda

: (17.28)

Analytically, " is zero, but when the discretized version of (17.28) is calculated
numerically, " is some small number and tends to be larger for spurious eigenvalues.
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Chapter 18
Observation and Analysis of Internal Seiches
in the Southern Basin of Lake of Lugano1

18.1 Introductory Remarks, Lake Morphology

As mentioned already earlier in Chap. 15, Lake of Lugano is a lake system con-
sisting of two large basins and a pond of much smaller size, all connected to one
another. In fact, the discharge of the water masses is from the 15 km long Northern
basin through the channel of Melide into the roughly S-shaped 17-km long Southern
basin and from there through the 500-m long channel of Lavena into the small pond
at Ponte Tresa, see Fig. 18.1. The barotropic response of the two large basins has
been separately studied as has this response of the lake system as a whole. In the
Southern basin, three limnigraphs, positioned at Riva San Vitale, Morcote and Agno,
recorded in February 1982 water elevation oscillations with periods of 28 min and
less, that could be identified with the eigenperiods of the surface seiches with ampli-
tudes of less than 5 cm. In a further campaign in 1984, current meters were installed
in the Channels of Melide and Lavena and it was found that two further longer peri-
odic eigenoscillations were excited which were not discernible in the limnigraph
records and could be interpreted as the eigenvalues of the barotropic oscillations
of the lake system acting as a coupled (Helmholtz-type) resonator. The structure
of the eigenmodes, i.e. the distribution of the surface elevation was relatively sim-
ple. As the eigenfrequencies (periods) increased (decreased) the eigenmodes went
from simple to complex with the number of nodal lines increasing by one with each
higher order mode. Qualitatively this behaviour is akin to that of a rectangular basin
with constant depth, so that interpretation of the data by means of theoretical mod-
elling is easy. Deviations of the eigenperiods and structures of the eigenfunctions
from those of the rectangle are due to the bathymetry and nothing else.

This is not so for the dynamic response, where besides the geometry of the
basin also the density structure affects the response of the lake to oscillations. If the
stratification is only vertical, then the periods of the internal seiche oscillations are
determined by both the bathymetry and the stratification, whilst the corresponding

1 This chapter closely follows the article Stocker et al. [33]. When this paper was written Prof.
C.H. Mortimer read its first version and, apart from correcting our English wording, gave advise
for improvement.

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_18, c� Springer-Verlag Berlin Heidelberg 2011
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Fig. 18.1 Bathymetric chart of the Lake of Lugano contoured in metre and showing the entire
Southern Basin, part of the Northern Basin, the lagoon at Ponte Tresa, and the connecting channels
at Melide and Lavena. Symbols mark the positions of the following instruments: filled circles:
moorings with a current meter in the epilimnion, and one in the hypolimnion, and a thermistor
chain encompassing the thermocline; diamonds: meteorological buoys; triangles: positions with
current meters, thermistor chains, and meteorological instruments (from Stocker et al. [33]), c�
European Geosciences Union, reproduced with permission)

mode structure is given by the lake geometry alone. In this chapter, this will be
demonstrated particularly convincingly, since the vertical temperature or density
profile changed during the measuring period by strong wind events. We report and
interpret measurements taken in a field campaign in summer 1984 in the Southern
basin of Lake of Lugano to study its internal wave dynamics. Thermistor chains
were moored at seven different positions at depth encompassing the metalimnion
with, generally, current meters above and below the thermocline and meteorologi-
cal buoys at the three positions 2, 6 and 10 (Fig. 18.1). Over stretches of several days
the wind was relatively mild so that isotherm depth time series exhibit amplitudes
of 1–2 m and can be considered small, justifying application of the linear shallow
water equations. However, strong wind events of 1–2 days duration also occurred;
they changed the stratification by turbulent mixing and therefore also altered the
internal dynamics after the storm relative to that prior to the storm.
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The basin size of Lake of Lugano is such that the effects of the rotation of the
Earth can safely be ignored for barotropic wave processes. For baroclinic oscillation
this neglection is less convincing, especially if higher baroclinic modes2 are excited.
The observations, however, show that the higher baroclinic response is so small that
it could not be discerned and, if present, was hidden in the ‘noise’ of the response
to unstructured smaller scale phenomena.3

Displacements of isothermal surfaces from their equilibrium positions during and
after wind stress were observed and have been documented for many lakes. We
mention only a few: Lake Zurich [10, 18, 35–37]; Lake of Lugano, North Basin
[12]; Lake Geneva [4, 14–17]; Lake Ontario [29]; Lake Constance [3, 9].4 These
lakes are rather simply structured; they are generally long and have fairly straight
thalwegs. Wind stress in the long direction is likely to excite internal gravity waves
of several mode orders and interpretation of these eigenoscillations in terms of a
linear baroclinic two-layer model has been rather successful.

As Fig. 18.1 shows, the South basin is a long and narrow S-shaped basin of 19 km
thalweg length, 1 km mean width and 60 m mean depth. Its maximum depth at posi-
tion 2 is 90 m and its surface area is 20.3 km2. In plan view it is divided into three
legs. The first, from Agno to Porto Ceresio is directed towards South, the second,
from Porto Ceresio to Melide points towards North-East and the third, from Melide
to Riva San Vitale points towards South-East. The bathymetry, however, suggests
a different subdivision. There are two sills, one North-West of Porto Ceresio, the
other between Lavena and Agno, so that the bay at Agno, the stretch between the
two sills and the nook between Porto Ceresio and Riva San Vitale, may in first order
be regarded as separate units.

2 What is meant here is the baroclinic response beyond the two-layer response. At mid summer
stratification the epilimnion depth is 12 m. With a mean depth of 70 m and a relative density dif-
ference ��=� D 2:5 � 10�3 and f D 1:55 � 10�5 (s�1) for � D 42ı, the two-layer internal,
Rossby radius of deformation is

R
.2/
int D

s

gheq
��

�

�
f D 3;559m; heq D h1h2

h1 C h2 :

This is larger than the lake width almost everywhere. An analogous estimate for a three-layer model
shows that

R
.3/
int ' 1;000m;

which is slightly less than typical half-widths of the lake. So, the rotation of the Earth can be
ignored.
3 This statement is correct if the higher baroclinic modes due to the diffusive thermocline are meant
and separate density interfaces due to chemically induced layering are not present. In Chap. 15
(Higher order baroclinicity (I)), it was shown that for the Northern basin of the Lake of Lugano
large chemocline elevations occurred with only small amplitudes of the thermocline displacements.
In the Southern basin of Lake of Lugano no separate chemocline was recorded.
4 Similar measurements were also performed in lakes with more compact shapes, e.g. Lake
Banyoles [26, 27]; Lake Biwa [20, 28]; Lake Kinneret [1, 2] and others.
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In spite of this seemingly complex topography of the basin and surrounding
alpine landforms, the first four modes of the basin response were found to be excited.
Indeed, during storms, hypolimnetic water was sometimes forced into the North
Basin against the mean flow through the Melide Channel. We describe and inter-
pret some features of the internal motion recorded by instruments moored at various
positions and depths in the Southern Basin of the Lake of Lugano. Measurements
lasted from mid August to mid October 1984. Descriptions of the instruments, the
mooring arrangements, data processing and first detailed interpretations were given
in a report by Stocker and Salvadè [31]. At seven positions (1–7 in Fig. 18.1) in the
South Basin and one position in the North Basin (9 in Fig. 18.1) current meters and
thermistor chains were moored, generally with a current meter in the epilimnion, a
second one in the hypolimnion and the 15 or 20 m long thermistor chain with 11
equidistant sensors in the thermocline. Additional current meters were also moored
for 2 weeks in the channels at Melide (connecting the North- and South Basins,
positions 8c) and Lavena (connecting the South Basin and the pond at Ponte Tresa,
position L) and at Maroggia (South Basin, position N).

Meteorological data (wind, air temperature, solar irradiation) were recorded on
buoys at positions 2, 6 (South Basin) and 10 (North Basin) with anemometers
and temperature sensors at 2.6 and 5.4 m above the water level. Further wind data
are available from the automatic meteorological station at Lugano of the Swiss
Meteorological Service. The current- and anemometers recorded speed and direc-
tion every 10, 20 or 30 min and the thermistor chains recorded temperature every
20 or 30 min, respectively (see Table 18.1). Furthermore, in an attempt, to study the
water exchange processes through the channel between the North- and South Basin
in greater detail, current meters and thermistors were also moored in, and close to,
the Channel of Melide (positions 8a and 8b) from February 1984 until May 1985.

18.2 State of Stratification and Wind Forces: 15 August–15
October 1984

The measuring interval is characterized by three episodes of relatively calm weather
separated by two strong storms on 5–6 September and 1–2 October, respectively
which led to thermocline erosion and descent.

Table 18.1 Mean thermocline depth and temperatures and mean epilimnion and hypolimnion
temperatures of a two layer model during the indicated periods in 1984 as constructed from all
temperature recordings

Period Thermocline Mean temperature
Depth Temperature Epilimnion Hypolimnion
[m] [ıC] [ıC] [ıC]

14 August–5 September 8.6 15.9 20.6 6.6
7 September–30 September 12.2 12.3 16.4 6.2
3 October–16 October 14.5 10.5 13.9 6.0
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Fig. 18.2 Vertical profiles of
temperature, ıC, representing
three 48 h intervals with
differing stratification
structure. The profiles 1, 2
and 3, respectively centred on
00.00 h MEZ on 30 August,
13 September and 9 October,
are envelopes of the 48 h
averaged profiles at all
positions 1–7 (position 1 near
the upper edge, 5 and 6 near
the bottom, 2, 3, 4, and 7 in
the middle). The dashed line
indicates how the thermocline
erodes during the measuring
period (from [33]),
c� European Geosciences

Union, reproduced with
permission)
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Temperature–time series, recorded at each mooring position at 11–13 different
depths, therefore, yield different vertical temperature profiles for the three periods.
Figure 18.2 shows the ranges of the temperature–depth relation during the three
episodes into which the recorded temperatures fall at positions 1–7 when averages
over 48 h are taken.

Table 18.1 lists the parameters of a two-layer approximation over all temperature
measurements during the indicated periods. These were computed from the temper-
ature profiles which lie in the middle of the dashed areas of Fig. 18.2 with smooth
extrapolations to the surface. The temperature profile at position 1 is always at the
upper edge of the shaded areas in Fig. 18.2, those of positions 5 and 6 at the lower
edge, whilst those of positions 2, 3, 4 and 7 lie nearer to the middle. A possible
reason for this could be differential deepening of the thermocline due to different
wind exposure [13]. We believe that, at position 1, the colder river water entering at
Agno dives down and thus pushes the thermocline upwards in that vicinity. At posi-
tions 5 and 6 the predominance of warm epilimnion waters flowing from the North-
to the South Basin presses the thermocline downwards in its neighbourhood. The
spread in the temperature profile is about 2 m or less, definitely less significant than
the changes associated with the thermocline erosion produced by the storms and, in
the last interval, surface cooling. The three subintervals require separate treatment,
which will complicate the spectral analysis.
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Wind, responsible for excitation of the internal seiche modes was applied,
not only occasionally during storms, but also more regularly in diurnal wind
impulses exhibiting a dominant NS component. On most days the anemometer at
Lugano recorded wind from South in the early afternoon, which reversed at 20.00–
21.00 MEZ (D UTCC1) and remained northerly for the entire night. Wind-rosettes
for all meteorological stations (Fig. 18.3) also show this NS channelling for strong
winds with speeds jvj < 3ms�1 except at position 2 where the preferred orientation
is NW-SE. Weaker winds with jvj < 3ms�1 have, however, in general much less
directional preference. Position 6 is somewhat special as it is very close to the shore
and thus shielded by the nearby mountains. This may explain why the expected SE
component along the basin between Melide and Riva San Vitale is virtually absent.
At any rate, the prevailing NS-wind is likely to excite one of the higher order internal
gravity modes.

The direct response of the lake to the 5/6 September storm is illustrated in
Figs. 18.4 and 18.5. With vectors of wind speed squared (proportional to wind
stress), the stick diagram (Fig. 18.4a) displays the time variation of stress magnitude
and direction at positions 6, 2, 10 and Lugano SMA. Figure 18.4b is a corresponding
diagram for epilimnetic currents at positions 1, 2, 4–7.

Evidently the general wind at the SMA station was toward N from approximately
06.00 to 18.00 MEZ on 5 September and then turned towards S and stayed there
until the storm ended in late afternoon, 6 September. Wind at positions 10 and 6
followed the same pattern. However, at station 2 the wind during the early part of
the storm was towards SW; only in the second half did all stations indicate a wind
stress generally directed southward. The response of the epilimnetic current to this
event (Fig. 18.4b) was, however, complicated and confusing. At position 2, where
epilimnion current and wind stress are expected to be uni-directional, they at first
differed (compare time series on 5 September between 06.00 and 18.00 MEZ for
wind and current). They later agree (in the second half of the storm, 5 September,
18.00 to 6 September, 12.00 MEZ) but deviated again afterwards. The current meter
at position 2 seems to have been the only one that indicated an onset of a conspicu-
ous oscillatory motion induced by the storm. Current records at the other moorings
show slight direct responses to the storm between Agno and Porto Ceresio (posi-
tions 1, 2, 4); but directionally rather incoherent water currents are seen between
Melide and Riva San Vitale (positions 5, 6, 7). This suggests that small gyres might
have migrated past those instruments.

Easier to interpret is the Fig. 18.5 sequence of isotherm depth distributions, inter-
polated between positions 1, 4, 6, 7, which displays the internal motion along the
thalweg. In the first part of the storm, when the wind was blowing towards N,
isotherms at positions 1, 2 and 6 were lowered, while those at positions 3, 4 and
7 rose (Fig. 18.5a, b). Therefore, epilimnetic water must have been pushed from
Porto Ceresio towards Agno and from Riva San Vitale towards Melide. This is cor-
roborated in Fig. 18.4 at positions 1, 2 and 4 at 09:30 MEZ on 5 September, but not
conclusively at position 7. Accompanying this setup was upwelling in the Melide
and Porto Ceresio regions, clearly shown in panel (b). The compensating process
was a downstroke of the hypolimnion isotherms at the lake ends (c and d at position
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Fig. 18.3 Wind rosettes of the wind speed jvj < 3ms�1 and jvj > 3ms�1 at positions 2,
6, Lugano (SMA) and 10 (directions indicate where the wind is blowing from). Note that the
scale of the frequency of occurrence differs for different positions and ranges of wind speed (from
[33], c� European Geosciences Union, reproduced with permission)

7 and less convincing at position 1, but strong in panels (c), (d) at 3). The accompa-
nying drift of hypolimnetic water towards the Melide area enhanced the upwelling
there (d, position 6). By this time the wind forcing had turned. Wind blew now for
more than a full day from N. The onsetting internal motion was reorganized by the
strong wind shear; and epilimnetic water was then consistently pushed along the
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Fig. 18.4 Stick diagrams of: (a) wind speed squared .u2 C v2/1=2u, .u2 C v2/1=2v at positions 2,
6, 10 and Lugano (SMA) from 4 to 8 September; and (b) half hour means of epilimnetic current
at positions 1, 2, 4–7 during the same period. The sticks point towards the direction into which
the wind blows or the water flows. Locations of the positions can be inferred from the inset. Filled
triangles indicate the timing of the panels in Fig. 18.5 (from [33], c� European Geosciences Union,
reproduced with permission)

‘channel’ axis from Agno to Riva San Vitale. Correspondingly, the isotherm depth
tilt, not yet evidenced in graph e, increased with time (f, g, h). The stick plots of
epilimnetic current in Fig. 18.4b are consistent with this interpretation. The currents
at positions 1 and 2 were towards S.
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Fig. 18.5 Eight spatially interpolated ‘distribution snapshots’ of whole-degree isotherms (7ı and
above) along the unrolled thalweg at 4 h intervals from 5 September 06.00 h to 6 September 10.00 h,
i.e. covering the storm illustrated in Fig. 18.4. The approximate positions of villages along the basin
are indicated in (a) (see also Fig. 18.1) (from [33], c� European Geosciences Union, reproduced
with permission)



324 18 Observation and Analysis of Internal Seiches of Lake of Lugano

The current at position 4 was towards NE and towards S at position 7. At 12.00
MEZ on 6 September there was a current reversal at positions 1 and 2, even though
the wind was still blowing, though less strongly, towards S. This backward swing is
indicative of the ongoing internal oscillation, discussed in detail in the next section.

18.3 Internal Seiche Response: Variation in Isotherm
Depth and Wind Stress

The data set from the 1984 field program contains temperature–time series from
all 11 equidistant thermistors on chains at the seven moorings of the South Basin
and from thermistors built into the current meters. Each series is used to construct
interpolated isotherm–depth–time plots. Isotherm depths, indicative of vertical dis-
placement of water particles within the metalimnion, are better suited for spectral
analysis than are temperature–time series.

This procedure is standard ever since Phillips’ [21] paper on spectra in a stratified
undulating medium. In the following graphs, we plot hourly depth averages of the
12 or 8ıC isotherms together with corresponding stick diagrams of hourly-averaged
vectors of wind energy 2.6 m above the water surface. The 12 and 8ıC isotherms
correspond roughly to the thermocline depth and to a depth at the lower edge of the
metalimnion, respectively. Episodes before, between, and after the two storms are
selected for a separate study.

18.3.1 Internal Oscillations 25 August–5 September

(Figure 18.6, before the 5/6 September storm). The main features are:

1. The wind stresses at moorings 2 and 10 showed strong wind from N and S
on 25 and 26 August due to adverse weather. Thereafter, a daily cycle per-
sisted until 5 September when a strong storm commenced. The strong afternoon
pulses, towards N at position 10 and NW at position 2, and the corresponding
weak reverse wind at night are typical for lake-land wind behaviour. (The dif-
ferent directions (NW and SE) at 2 reflect a local response attributable to the
channelling of the Magliasina Valley just NW of position 2.)

2. Isotherm–depth plots, which during the first two days are influenced by the
adverse weather, show oscillations with approximate periods of 10, 12, 16 and
24 h. The latter period is probably a direct response to the daily wind pulse.

3. The 10-h oscillation before 29 August (indicated by narrow open arrows) is con-
spicuous in all isotherm depth records except at position 4. Scrutiny of phase
relations between time series pairs, i.e. identification of simultaneous maxima
and minima, leads us to infer the presence of nodal lines5 (lines of zero amplitude

5 This discussion is based on the assumption that effects of the rotation of the Earth can be ignored.
In this case, static nodal lines replace the amphidromes.
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between positions 1 and 2, 6 and 7 (or 5 and 7) and 3 and 6, and possibly at posi-
tion 4. In Fig. 18.6, simultaneous pairs of maxima-minima are seen to arise in
the combinations .1; 2/, .1; 3/, .2; 6/, .3; 5/, .3; 6/, .5; 7/, .6; 7/ which suggests
the mentioned locations of the nodal lines. To better identify the structure of this
oscillation, the mean amplitude and variance at each position are computed and
plotted in Fig. 18.7b along an unrolled thalweg, accounting thereby also of the
counter-phase relations suggested by the positions of the nodal lines suggested
above. Variances are indicated by (error) bars. Amplitudes were read from plots
similar to Fig. 18.6, and the means and standard deviations were then computed.
This is a rough but useful procedure. Position 4, where no oscillation with a 10-h
period could be discerned, is marked by an open circle suggesting zero ampli-
tude. The interpolated smooth curve describes an isotherm depth distribution of
a third order longitudinal internal seiche mode.

4. The 16-h oscillation is only clearly discernable by eye in the isotherm–depth
plot of position 4, and less convincingly at position 3. In both cases, the maxima
and minima occur in phase. If it is further assumed that zero amplitudes for this
oscillation are found in the vicinity of moorings 2, 5 and 6, it may be identified
as the second internal seiche response. Fig. 18.7a supports such an identification.

5. The 12-h oscillation is only seen with a 180ı-phase shift in the leg between
Melide and Riva San Vitale (Fig. 18.7); but it persists at both stations for only
3 days. Otherwise, the 24-h signal persists for an entire week with considerable
amplitude (Fig. 18.7d). Since the amplitude distribution in this case gives rise to
two or three nodal lines, this motion cannot be interpreted as a free oscillation. It
must be attributed to direct wind forcing.

In summary, the 16- and 10-h signals appear to be free internal oscillations of
order 2 and 3. The fundamental mode (with one nodal line) is apparently absent;
and the 12-h signal is inconclusive.

18.3.2 Internal Oscillations 7–30 September

(Post-storm behaviour, Fig. 18.8). As noted above, the 5–7 September storm led
to partial thermocline erosion (Fig. 18.2), causing a descent to 12.2 m at a mean
temperature of 12.3ıC. The 12ıC-isotherm now represents thermocline motion; and
the 8ıC-isotherm corresponds to the upper edge of the hypolimnion. A detailed data
analysis of post-storm motions was carried out by Stocker and Salvadè [31]. Here
we restrict ourselves to a summary of the main features. Figures 18.8 and 18.9 yield
the following inferences:

1. The most conspicuous event in Fig. 18.8 is the storm on 5–6 September, which
was followed by a long interval of fairly calm weather. At positions 2 and 6 no
daily wind cycle can be recognized; only occasionally moderate winds are seen,
from NW and N, respectively. Consequently, no diurnal periodicity in isotherm
depth is seen at positions, 1–4, 6 and 7. The storm, however, did induce an
extremely strong thermocline excursion of more than 10 m. That energy impulse
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Graph Period Œh� Episode Interpretation

a 16 26–30 August Mode 2
b 10 26–28 August Mode 3
c 12 29–31 August Local motion
d 24 29 August–3 September Forced motion

did not, however, lead to a non-linear large-amplitude surge travelling along the
lake. Rather, upon the cessation of the storm, the lake reverted to small-scale
oscillations with amplitudes of metalimnion–isotherm–depths of 1–2 m and pre-
dominant period of 38 h. Phase relations and amplitude estimates (Fig. 18.11a)
suggest that this motion is the fundamental longitudinal internal seiche.

2. The 38-h oscillation could only be detected by eye in isotherm depth fluctuations
in the hypolimnion. It was never clearly seen in plots of the 12ıC- isotherm.



328 18 Observation and Analysis of Internal Seiches of Lake of Lugano

4 6 8 10 12 14 16 18 20 22

POS.

DEPTH
[m]

2

6

6

8

10

12

14

16

18

20
12

14

16

18

20

22

14

16

18

20

22

24

DEPTH
[m]

6

8

10

12

14

16

18

20
12

14

16

18

20

22

14

16

18

20

22

24

4 6 8 10 12 14 16 16 20 22
SEPTEMBER

22.SEPT.24°°h

1

7

2

5

3

6

38h

38h

3km
LUGANO

1

2 9
5

10

6

4

3

7

W

N

S

O 10 m2

s2

Fig. 18.8 Wind speed squared (.u2 C v2/1=2.u; v/ in m2 s�2 as vector stick plots at positions 2, 6)
and fluctuations in depth of the 8ıC-isotherm at six positions (see insert) in the Southern Basin,
4–22 September, 1984. Wind vectors and isotherm depths are hourly averaged; and the latter are
plotted for the position pairs (1,7), (2,5) and (3,6). Note the dramatic storm of 5/6 September
which generated very large thermocline excursions, that did, however, not generate a non-linear
surge. Oscillations with a period of 38 h are marked by full triangles (from [33]). c� European
Geosciences Union, reproduced with permission



18.3 Internal Seiche Response: Variation in Isotherm Depth and Wind Stress 329

3. Expansion of the time axis permits conspicuous signals to be detected with
periods of 16, 12 and 10 h and, less convincingly, 24h. From 10 to 20 Septem-
ber, for example, the oscillations with a 16-h period (Fig. 18.9) was dominantly
excited for 5 consecutive days. It was interrupted at 15 September but con-
tinued thereafter. Moreover, at positions 2 and 5, brief episodes can be seen
with 10- and 24-h periods. Alternatively, from 21 September until 1 October
(Fig. 18.10), oscillations with a 12-h period prevailed; and an episode with a
10-h period on 25/26 September was relatively short. Further scrutiny between
17 and 24 September (not shown here) discloses a predominance of the 10-h
oscillation. Estimates of mean amplitudes and their variances are summarized in
Fig. 18.11b–d. Evidently, from (b), with two nodal lines near positions 2, 5 and
6, a second mode structure can be inferred. For the two episodes of 12-h oscil-
lation in (c), third mode behaviour is suggested. There are three nodal lines;
but the inferred position of the middle node is different in the two episodes.
The amplitude distribution, constructed for the 10-h oscillation, again differs for
the two events in (d). There, an internal seiche of order four is the most likely
interpretation.

4. The 10-h oscillations illustrated in Figs. 18.7 and 18.11 also appear to differ in
showing mode-3 behaviour in Fig. 18.7, but mode-4 behaviour in Fig. 18.11. This
interpretation can be tested by computation. It is plausible, because the mean
stratification is different for the two episodes (Fig. 18.2).

In summary, the storm 5/6 September was able to excite the fundamental seiche
mode and the three higher modes. Traces of the former are seen in time series of the
isotherm depths below the thermocline, while the higher modes are more readily
seen in depth fluctuations of the thermocline isotherms.

18.3.3 Internal Seiche After 3 October

After the storm on 1 and 2 October a thermocline of mean temperature 10.5ıC lies
at 14.5 m (Fig. 18.2, Table 18.2). After the storm, calm conditions prevailed until the
end of the field program in mid-October. The 12ıC-isotherm–depth plot discloses a
dominant 12-h oscillation; and the amplitude distribution (Fig. 18.11e) corresponds
to a fourth mode structure in contrast to that in Fig. 18.11d). The difference must
again be attributed to the change in stratification (compare Fig. 18.2 and Table 18.2).

18.3.4 Harmonic Analysis

Based on inspection alone the foregoing analysis is approximate; but energy spectra
demonstrate that the deductions were correct.

In the left- and right-hand portions of Fig. 18.12 we, respectively, present the
energy spectra for the 11ıC- and the 8ıC- isotherm–depth fluctuations during the
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Table 18.2 Periods where spectral peaks of the isotherm depth energy density spectra arise, their
accuracy, and associated mode numbers. The question marks indicate that the mode numbers are
uncertain

Mode Period Accuracy
number (h) (h)

1 37.2 ˙ 1.3
2 17.4 ˙ 0.7
3 12.1 ˙ 0.2
4 10.2 ˙ 0.2
5 6.6 ˙ 0.3
? 4.5 ˙ 0.2
? 3.9 ˙ 0.2
? 3.1 ˙ 0.2

middle interval 7 September to 2 October. The main features of the applied spectral
analysis are elimination of a linear trend, tapering with a ‘split cosine bell window’
(10% on each side) and smoothening of the periodogram with a modified Daniell
procedure [5]. With the thermocline at a mean depth of 12 m, the selected isotherms
lie, respectively, about 1 and 4 m below it. In Fig. 18.12, log energy density (m2/cph)
is plotted against log frequency (cph) or period (h). Vertical lines, centred on peaks
rising above background ‘noise’, are assigned periods and mode numbers as listed in
Table 18.2. Mode number identification, from the model analysis described below,
was also confirmed by cross-spectral analysis, but only up to the fifth mode. At
higher mode orders the interseries coherence was too low. Furthermore, records
from 7 moorings permit at most 6 nodes to be identified.

Figure 18.13 shows the phase structure of the 11 and 8ıC-time series at the five
longest periods and plotted for each position along the unrolled thalweg. The phases
of the 11 and 8ıC-isotherms are indicated by open circles and crosses, respectively.
Absence of a spectral peak is shown by an open square and nodal lines, correspond-
ing to a phase change of 180ı are marked by open triangles. Circles and crosses
have only been indicated when at that period the cross spectral analysis yielded a
coherence above the 95% confidence limit. The results are strongly reminiscent of
the indicated mode response (see right column in Fig. 18.13).

18.4 Model Predictions: The Two-Layered
Variable-Depth Model

In order to model the internal free oscillations in the South Basin mathematically,
the stratification is approximated by two immiscible layers of fluid with densi-
ties �1 (upper layer) and �2 (lower layer), �1 < �2. The model assumes that the
lake domain is bordered by vertical walls such that the entire domain, where the
two-layer model applies, consists of both, an epilimnion layer and a hypolimnion
layer. The boundary of this domain is the intersection of the topography and the
thermocline (the depth of discontinuity of the two layers) and will be referred to
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Fig. 18.12 Energy spectra of fluctuations of 11 and 8ıC isotherm depths at positions 1–7 for the
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against log frequency (cph) or period (h). Vertical lines identify the periods of significant peaks.
Confidence intervals are displayed at the upper right of the panels (from [33]). c� European
Geosciences Union, reproduced with permission
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as ‘thermocline shore’. Introduction of this ‘virtual’ vertical wall ascertains that
everywhere inside this shoreline two layers do exist. Clearly, the domain of the
two-layered variable depth model (TVD) is smaller than the actual lake domain.
This will make the periods of the internal gravity seiches somewhat smaller than if
the full lake domain could be used, but for deep intermontane lakes the effects are
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generally small and likely negligible. The TVD-model equations are6

@M 1=@t � f Ok �M 1 D �gh1r.�C �2/; @�=@t C r �M 1 D 0;

@M 2=@t � f Ok �M 2 D �gh2r.ı�C �2/; @�2=@t C r �M 2 D 0;
(18.1)

in which

M1 D h1u1 Vertically integrated transport in upper layer;
M2 D h2u2 Vertically integrated transport in lower layer;
� D �1 � �2
�1 Free surface displacement;
�2 Interface displacement;
f ' 10�1 Coriolis parameter;
ı D �1=�2 Density ratio;
" D 1 � ı D .�2 � �1/=�2;
Ok Vertical unit vector;
g Gravity acceleration:

Vectorial quantities have only two non-vanishing components and r is the hori-
zontal gradient operator. Equations (18.1) are to be solved over a common domain,
defined by the intersection of the interface surface with the bottom topography. Via
the Coriolis parameter these equations account for the effects of the rotation of the
Earth. The condition of no mass flow through this ‘thermocline shore’ is

M i � n D 0 .i D 1; 2/; (18.2)

where n is the two-dimensional, horizontal unit normal vector along the thermocline
shore.

Equations (18.1) and (18.2) define an eigenvalue problem in a domain Dts
bounded by the ‘thermocline shore’ @Dts which is smaller than the lake domain
bounded by the true shore line @Ds . The simplified approach is, of course, only
applicable if the area and the volume of the water contained between the two bound-
aries are sufficiently small. For mountain lakes this requirement is generally tacitly
assumed to be justified, but an analysis of the validity of the assumption has not
been performed.

In this spirit the equations were used by Wang [39] to investigate the cou-
plings of stratification and topography on the characteristics of coastal trapped
waves on a rotating continental shelf of variable depth. He found that the low
frequency response was characterized by topographic Rossby waves and internal
Kelvin waves. Rao [25], used the equations for flat-bottomed rectangles, Schwab

6 A TVDC-model, in which the epilimnion and hypolimnion layers are bounded by their own shore
lines would improve on this, but this was not pursued here.
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[29] and Bäuerle [4] applied them to uniform depth models of Lake Ontario and
Lake Geneva and Bäuerle [3]7 employed them for variable depth models of rect-
angles and of Lake Constance. Hutter et al. [12] and Horn et al. [10] ignore the
rotational effects in studies of the internal seiches of Lakes Lugano (North Basin)
and Zurich. We will also set the Coriolis terms equal to zero here and thus ignore
rotational effects.

In the Southern Lake of Lugano, the internal Rossby radius is somewhat larger
than the width of the lake (see footnote on p. 317) so that the approximation f D 0

is reasonably justified. A direct coupling of rotational topographic Rossby waves
with internal gravity waves is, however, unlikely since the periods of the former
are 50 h and more (see [32] and Chaps. 19–21), while those of the gravity seiches
are 38 h and less. This does not exclude per se the existence of topographic waves
which were observed in the North Basin [19,38] but permits uncoupled treatment of
rotational and gravitational effects. On the other hand, the main effects of rotation
on the gravity modes is to cause a transverse slope of the interface which generates
a pressure gradient in geostrophic balance with the longitudinal current. The effect
on the frequency is small; that on the mode structure (Kelvin waves) cannot be
corroborated with moorings positioned only along the thalweg as done in the 1984
field campaign.

When the rotation of the Earth is ignored, (18.1) can be combined to give the
simpler system

@2�=@t2 D r � Œgh1r.�C �2/�;

@2�2=@t
2 D r � Œgh2r.ı�C �2/�

9
=

;
.x; y/ 2 Dts; (18.3)

subject to the boundary conditions

r� � n D r�2 � n D 0; .x; y/ 2 @Dts : (18.4)

Assuming time harmonic solutions

� D N�.x; y/ exp .i� t/; �2 D N�2.x; y/ exp .i� t/;

in which � is the frequency, the equations reduce to the eigenvalue problem

��2 N� D r � Œgh1r. N�C N�2/�;
��2 N�2 D r � Œgh2r.ı N�C N�2/�;

)

.x; y/ 2 Dts;

r N� � n D r N�2 � n D 0; .x; y/ 2 @Dts:
(18.5)

Equations (18.5) are discretized on a rectangular grid of 250 � 250m2 squares,
replacing the spatial derivatives with centred finite differences. Areas of the lake

7 For these and further applications, see Chap. 14.
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shallower than the thermocline depth have been eliminated from the grid. The
resulting 328 cells led to a standard matrix eigenvalue problem of size 656 � 656
which was solved by routines described in Smith et al. [30] yielding eigenvalues
� .˛/ .˛ D 1; 2; 3 : : : / and eigenvectors representing the grid point values of �.˛/

and �.˛/2 . Once these are determined the velocities in the two layers follow from

i�u1 D �gr.�C �2/; i�u2 D �gr.ı�C �2/: (18.6)

Interpretation. The stratification of the lake in the TVD-model is described by the
thermocline depth and the relative density difference " D .�2 � �1/=�2. From the
temperature and resistivity measurements of 13 positions within the lake, taken on
24 September and thus representative of the period from 7 to 30 September the rel-
ative density difference was determined once via mean two-layer temperatures and
once via mean two-layer densities (Fig. 18.14). Bührer and Ambühl’s [6] equation
of state8 was used. The two values for " are

"I D 1:0184� 10�3; "II D 1:168 � 10�3;

with a relative difference of 13%, and the interface of the two layers is at 12 m for
both cases. Table 18.3 assembles the computed periods of the ten lowest modes
.˛ D 1; 2; : : : ; 10/ and compares these with the earlier estimates from inspection
of the isotherm depth plots. The computed and observed periods show satisfac-
tory agreement (maximum deviations of 15%, mode 2, " D "I ). Interestingly, the
computation tends to overestimate the periods when " D "I , but does not con-
sistently underestimate them when " D "II > "I . Estimates of the periods T ,
which the model would predict at different stratifications, is given by the following
approximate formula (see [10])

T 2I "Ih
�
I D T 2II "IIh

�
II ; (18.7)

in which h�I and h�II are the equivalent depths in the two different stratifications i.e.

h�I D fh1h2=.h1 C h2/g1=2I :

The reader can easily check that the computed periods in Table 18.3 satisfy relation

(18.7).
Computations were also performed for the other two episodes with different

mean stratification as indicated in Table 18.1. In Table 18.4, computed and observed
periods are compared. The latter are estimated by inspection of isotherm–depth

8 See Volume I, Chap. 10.
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Fig. 18.14 (a) Temperature profile of 24 September 1984, determined as the mean of profiles taken
at 13 different positions in the South Basin, and the two-layer approximation derived from it. (b)
Mean density profile of 21 September 1984, determined from temperature and salinity profiles, and
two-layer approximation derived from it (from [33]). c� European Geosciences Union, reproduced
with permission

Table 18.3 Computed and measured periods of the internal seiches in stratified Southern Lake of
Lugano (7–30 September 1984)

Mode Computed TVD-model Observed from isotherm depth time series

"I D 1:018 � 10�3 "II D 1:168 � 10�3 Eye-fitted Spectral analysis
T [h] T [h] 12ı; 8ıa 11ı; 8ıa

T [h] T [h]

1 37.3 34.8 38 37.2 (˙1.3)
2 19.2 18.0 16 17.4 (˙0.7)
3 12.8 11.9 12 12.1 (˙0.2)
4 11.5 10.8 10 10.2 (˙0.2)
5 7.2 6.7 6.6 (˙0.3)
6 6.3 5.9
7 5.2 4.9
8 5.0 4.7 4.5b (˙0.2)
9 4.4 4.1 3.9b (˙0.2)
10 4.2 4.0 3.1b (˙0.2)
aIndicates chosen isotherm for the isotherm–depth–time series.
bNot classified.

plots. Spectra were not computed because time series are too short to guarantee
statistical confidence for any period except those indicated in Table 18.4. Most sig-
nificant in the above tables is the shift in the period of modes 3 and 4 when the
stratification changes. The predictions of the periods from the observations are
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Table 18.4 Computed and observed periods of the internal seiche modes of the stratified Southern
Lake of Lugano for the indicated time. h1 denotes the epilimnion depth

Time 14 August–5 September 1984 2 October–16 October 1984
Mode TVD-model Observed TVD-model Observed

"D 1:842 � 10�3 " D 0:720 � 10�3

h1 D 8:6m h1 D 14:5m
T [h] T [h] T [h] T [h]

1 32.2 41.5
2 16.4 16 21.4
3 10.9 10 14.2
4 9.9 12.8 12
5 6.2 8.0
6 5.4 7.1
7 4.5 5.9

14 August– 7 September– 3 October–
5 September 30 September 16 October

Mode
3 10 h 12 h –
4 – 10 h 12 h

and these agree satisfactorily with the computations. The TVD model also permits
distribution of interface displacements and near epi- and hypolimnetic veloci-
ties to be displayed for each mode. Displacement amplitudes for the first four
modes, scaled in percent of the maximum amplitude in each case, are presented
in Fig. 18.15, in which the transitions between positive (solid) and negative (dotted)
contours correspond to nodes (heavy lines). ‘Observed’ nodal lines, inferred from
the above-described analysis of isotherm–depth-fluctuations, are shown as heavy
dashed lines. Given the uncertainty of the locations of the latter, we must regard the
agreement as satisfactory. The figure further discloses that the maximum deflections
occur at Agno (modes 1 and 2) and at Riva San Vitale (modes 3 and 4), but it can
also be shown that, for mode 5, the maximum arises at a mid-lake position near
Brusimpiano (Fig. 18.1). Along the shore in Fig. 18.15 we also show in pairs the
phases of the 11 and 8ıC-isotherm–depth–time series at the respective mode period,
except at those positions where amplitudes were too small to identify a phase. The
expected jump of 180ı when nodal lines are crossed is reasonably well achieved
in all modes up to order 5. Figures 18.16 and 18.17 illustrate, for the first four
modes, the distribution of the current fields in the upper and lower layers. Gener-
ally, the highest velocities are found in nodal regions and the lower currents are less
and always opposed in direction to those in the upper layer. Exceptions occur. For
instance mode 1, velocities are highest where the basin has its smallest width. Com-
parison with Fig. 18.15 shows that velocity maxima always coincide with locations
where lines of constant amplitude of interface displacements are closest to each
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Fig. 18.15 Distributions, predicted by the TVD model described in the text, of interface elevations
corresponding to the first four internal modes, relative to a maximum elevation of 100 in each case
and with the upper and lower layer temperatures taken from Fig. 18.14a. Elevation contours (thin
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from analysis of 8 and 12ıC-isotherm–depth fluctuations) relative to 0ı at position 1 (modes 1–3)
and position 7 (mode 4) (from [33]). c� European Geosciences Union, reproduced with permission
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other. Figures 18.16 and 18.17 also help to identify the moorings at which certain
modes can best be inferred from velocity measurements.

18.5 Current Structure of the Internal Seiches

Isotherm motions are coupled with the current field in the entire basin. Therefore,
inferences based on analysis of isotherm depths should also be deducible from cur-
rent meter records. Such deductions are, however, more difficult and could often
only be made with knowledge of isotherm behaviour. One difficulty arises because
the speed threshold of the Aanderaa current meters is about 2.5 cm s�1, while current
directions are reliably recorded at lower speeds. Therefore, while complete records
of direction were obtained from all moorings (except No.3 which failed) and in
both layers, speed was rarely recorded in the hypolimnion; and there were episodes,
sometimes lasting several hours, when speed was neither recorded in the epilimnion.
This ruled out spectral or other statistical analysis of the whole current time series.

Figures 18.18a, b show the distributions of the water current directions in the
epilimnion and hypolimnion, respectively. Evidently, the current in the epilimnion
is dominantly oriented along the thalweg; such a preference is not seen in the
hypolimnion, except at position 5 (Melide) where the epilimnetic current is towards
W, while the hypolimnion current is towards E. The reason for this behaviour is not
clear, but it may be due to the increased thickness of the epilimnion close to the chan-
nel, inducing a horizontal pressure gradient, which drives the epi- and hypolimnetic
currents in opposite directions.

Whereas the TVD model predicts currents for the first four modes, which are
predominantly longitudinally directed and always opposed in the two layers, the
observed current directions show greater variability, particularly in the hypolimnion
(Fig. 18.18b). To render visible any periodic behaviour which may be present in the
current records, we have plotted (in Fig. 18.19) hourly averages of the longitudinal
component at positions 1, 2, 4, 6 and 7 for the interval 26 August–5 September,
i.e. that covered by the isotherm–depth plots in Fig. 18.6, p. 325. To assist compar-
ison of the two figures we have repeated (in Fig. 18.19) the symbols which marked
the presence of 24, 16, 12 and 10 h oscillations in Fig. 18.6. Whereas, in Fig. 18.6,
those symbols generally coincided with elevation maxima or minima, in Fig. 18.19
they more often than not coincide with vanishing current. Such behaviour is to be
expected from the model-predicted phase lag of one quarter cycle between maxi-
mum elevation and maximum current and is further confirmed by the along-thalweg
amplitudes of isotherm displacement (dashed lines) and epilimnetic current (solid
lines) in Fig. 18.20 for the interval 25 August–5 September. Excitation of the third
mode is evident.

Similar analyses were also carried out on several episodes from the interval 7–30
September. These are summarized in Fig. 18.21. Evidently, there are episodes which
permit identification of the internal seiche modes of order 2–4 from time series
of the epilimnion current, and the mode identification agrees with that deduced from
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b

Hypolimnion

Fig. 18.18 (a) Water current rosettes illustrating the relative frequency of occurrence of the direc-
tion of the current in the epilimnion; (b) Same as Fig. 18.18a for the hypolimnion (from [33]). c�
European Geosciences Union, reproduced with permission

the isotherm–depth–time series. We have, however, not been able to detect by eye
the fundamental internal seiche mode in those current records. This accords with the
earlier finding that mode 1 was only revealed by the 8ıC-isotherm, which is below
the thermocline where currents are weak.
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Fig. 18.19 Along thalweg components of the epilimnetic current in positions 1, 2, 4, 6 and 7. Pos-
itive direction is toward Agno. Symbols mark times when the 12ıC-isotherms were near minima in
Fig. 18.6. In Fig. 18.19, those symbols generally coincide with velocity zeros (see the 24 h episodes
of positions 2 and 4 (4 24 h, � 16 h, N 12 h, O 10 h)) (from [33]). c� European Geosciences Union,
reproduced with permission
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Fig. 18.20 Amplitude distribution, along the thalweg (kilometre from Agno) of the thalweg-
component of the epilimnetic current during episodes of differing periodicity, as tabulated below.
Amplitude means are plotted and standard deviations at the positions indicated, interpolated by
solid lines which bring the velocity to zero at the basin ends. Plotted as dashed lines are the ampli-
tude distributions of isotherm–depth oscillations illustrated in Fig. 18.7. Modes, their periods and
the episodes from which the graphs have been constructed are:

Graph Period (h) Episode Interpretation

a 16 26–30 August Mode 2
b 10 26–29 August Mode 3
c 12 29 August–3 September Local motion
d 24 20 August–3 September Forced motion

From [33]. c� European Geosciences Union, reproduced with permission.
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From [33]. c� European Geosciences Union, reproduced with permission.

18.6 Closing Remarks

18.6.1 Observed Features Not Reproduced by the TVD-Model

Flow features which are not reproduced in the TVD model are particularly visible
at the basin ends (positions 1 and 7) and during episodes of 24 h forced oscillation
(position 2). Typical for such episodes are currents which rotate so that existence of
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large eddies must be assumed. For instance, the currents in the epi- and hypolimnion
at positions 1 and 7 are often rotated relative to each other by a finite (but not
constant) angle. Observations are insufficient to determine the cause.

Similarly, because the internal Rossby radius is of the order of the mean width
of the basin, an effect of the rotation of the Earth on the gravity seiches should be
noticeable in the form of Kelvin-wave behaviour. The main effect is to bring about a
transverse slope of the interface which generates a pressure gradient in geostrophic
balance with the longitudinal current. To be observable, this effect also requires
records from at least two moorings across the channel.

The thermocline erosion that occurred during the two storms made the records
unsuitable for statistical analysis of the whole measuring interval. It is of interest
to note that, even though the storms generated extremely large amplitudes (up to
10 m change in isotherm depth), an internal surge was not generated. Soon after the
initial set-up, the isotherm motion returned back to ‘normal’, i.e. to approximately
1 m amplitude. Parenthetically, we might mention that Mortimer and Horn [18] and
Horn et al. [10] conclude that only a larger downstroke of the thermocline interacting
with the bottom, can generate a surge. Perhaps greater depths near the ends of the
North Basin, and the fact that the thermocline (although substantially deflected)
does not approach the bottom closely enough (see Fig. 18.5h). This explains why no
obvious surge is generated.

During the storm, when the wind direction was fairly constant, epilimnetic cur-
rent directions were correlated with the wind at positions 1, 2 and 4, but not at
positions 5–7. An analysis of forced, wind-induced currents is needed to shed light
on the phenomenon.

It has already been noted that, in isotherm–depth records and their spectra, the
fundamental (mode 1) internal seiche response is generally weaker than those of
higher modes. This is due to external forcing. That mode 1 behaviour could be
detected from 8ıC, but not 12ıC isotherm depth (the thermocline location), how-
ever, is not easily explicable. One likely reason may be a distortion of gravity waves
by nonlinearity. Vertical displacement of water particles at the 8ıC isotherm depth
may be larger than that at the 12ıC isotherm depth, as suggested by Thorpe’s [34]
analyses.

18.6.2 A Remark on the Generation of Topographic Waves

It is remarkable that no clear signal of long periodic processes (>50 h) was detected
in the data, in contrast to an earlier study in the North Basin, where these processes
were interpreted as topographic Rossby waves, see Chaps. 19–21 or Trösch et al.
[38], Mysak et al. [19], Stocker and Hutter [32]. It is believed that their absence is
due to (1) the varied topography and (2) the shallowness of the South Basin. Both
facts work towards enhancing frictional effects. Long periodic processes, if excited,
may be damped out before having lived a few cycles. It may indeed be the great
depth and the uniform bathymetry which make such processes survive in the North
Basin.
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Fig. 18.22 Energy spectrum of the time series (from 13 September to 16 October 1984) of a
current meter moored within the channel at Melide connecting the North- and South Basins of Lake
of Lugano. The energy peaks identify the modes of the barotropic seiches in the two individual
basins and the fundamental mode of the coupled system (from Trösch et al. [38]). c� Schweiz. Z.
Hydrologie, reproduced with permission

18.6.3 Barotropic–Baroclinic Coupling of the North-
and South Basin

The North and South Basins of the Lake of Lugano are connected by the channel
at Melide. All mean flow is from the North to the South Basin. During summer
stratification, because the thermocline depth is below the channel bottom, the water
exchange is dominated by epilimnion water. Detailed measurements of the current
within the channel and in its immediate vicinity have shown that there are strong
barotropic oscillations that force the water from the North- to the South Basin and
vice versa. It is evident that the return current into the North Basin cannot be ignored
[38]. Figure 18.22 shows an energy spectrum of current meter measurements con-
ducted within the channel at Melide at 3 m depth, taken between 13 September and
16 October 1984 with a VAW Savonius rotor current meter9 set at a 2 min measuring
interval. Energy peaks can be identified as particular barotropic modes of the two
basins, see Table 18.5. The high energy peak at 110 min can be interpreted as the
fundamental mode of the co-oscillation of the two coupled basins. It is obvious that
these significant oscillations forth and back between the two basins will influence
the circulation dynamics of the stratified lake system. Because in a rigid lid model

9 This is an instrument constructed by the workshop of the Versuchsanstalt für Wasserbau,
Hydrologie and Glaziologie at ETH Zürich (VAW).
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none of these signals would be reproduced, such models are likely inappropriate in
the prediction of short term water motions.

Scrutiny of vertical velocity and temperature profiles also indicate that, under
conditions of relatively strong winds from North, hypolimnetic water sloshes over
from the South to the North Basin. This can be inferred from current profiles within
the 5-m deep channel. These show unusually large shear with NS-flow at the top,
but reversed at the bottom. Moreover, temperature profiles close to the channel in
the North basin exhibit inversion brought about by the near-bottom return current.
More detailed analysis of large-amplitude internal wave dynamics of the channel
region is evidently necessary to account for the substantial depth variation of the
basin profile and for the strong shear within the channel. It appears, therefore, likely
that a fuller computational study of the wind induced circulation of the stratified
Lake of Lugano will also require coupling of the two basins.
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Chapter 19
Topographic Waves in Enclosed Basins:
Fundamentals and Observations

19.1 Review of Early Work

In Sect. 11.2, the notions of first and second class waves were introduced. The for-
mer were said to be due to the action of the gravity force. These waves are therefore
also called gravity waves. The latter are due to the rotation of the Earth and cease
to exist when the frame of reference is inertial. These waves are alternatively also
termed Rossby-, vortex-, geostrophic or gyration-waves, see Fig. 19.1. In a homoge-
neous fluid, subject to the rigid lid assumption and in the limit of the shallow water
approximation the second class linearized waves are described by the differential
equation
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� is the volume transport stream function, H the water depth and f the Corio-
lis parameter.1 When the frame of reference is inertial (f D 0), then T Œ�� D 0

reduces to @EŒ��=@t D 0. This implies that EŒ�� does not depend on time which

1 For the derivation of (19.1), see Sect. 11.3 and for a first attempt of interpretation Sect. 9.2
of Chap. 9 in Volume I. An elegant derivation follows from the conservation law of barotropic
potential vorticity, which requires (see (5.74)–(5.79) in Chap. 5 in Volume I of this book series)
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K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_19, c� Springer-Verlag Berlin Heidelberg 2011
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shows that second class waves cannot propagate in this case. Therefore,H D const.
and f .x; y/ ¤ const. defines the planetary Rossby2 waves, whilst f D const. and
H.x; y/ ¤ const. defines the topographic Rossby waves, also simply called topo-
graphic waves (TWs). On the f -plane these only exist when the basin has variable
bathymetry. We shall confine attention to this case.

The interest in topographic waves in the ocean arose from the conspicuous
long periodic wave signals that were observed along the continental shelves of
our oceans. In lakes, a considerable number of temperature and current observa-
tions in various lakes also disclosed pronounced oscillations with a characteristic
period of a few days that could not be explained by (external or) internal gravity
waves. Poincaré (1910) [34] was the first to point out the existence of such long
periodic oscillations in a rotating circular basin with parabolic depth profile, and
Lamb (1932) [26] gives the first analytic solution of these topographic waves. Much
later, Birchfield and Hickie (1977) [5] considered the transient wind generation of
the Lamb modes and demonstrated, how the gravity oscillations and the TWs mod-
ulate the seiche response by a slow rotation in the cyclonic sense of the pattern of
coastal jets and return flow across the lake centre. Free circular basin solutions for
second class waves have been found by Saylor et al. [35] and Saylor and Miller
[36] and Wenzel [49]. An analytical method for determining second class modes
in an elliptical paraboloid was prescribed by Ball [2] and Mysak [30], and Johnson
[20] constructed solutions of TWs in an elliptical basin whose shoreline and depth
contours form a family of confocal ellipses. Using a semi-analytic semi-numerical
approach Stocker and Hutter [41–43] found solutions to the TW-equation in a rect-
angular basin with symmetric bathymetric chart and could identify three typical
wave modes of the TW-equation: (1) basin wide modes with large wavelengths, (2)
basin wide modes with shorter wavelengths and (3) bay modes, in which the major
part of the energy is concentrated in a localized (bay) region. From this study sprang
a series of localized TWs by Stocker and Johnson [45, 46].3

Most work on gyration waves is on barotropic TWs. However, these waves also
exhibit a baroclinic coupling when they propagate in a stratified fluid. Mysak et al.
[33] have shown that, in a two-layer basin of the size and depth scale of many inter-
montane lakes, barotropic TWs are only slightly affected by the interfacial motion.
However, the interfacial oscillations are driven by the TWs. Thus, one can find the
baroclinic TW-mode from the solution of the barotropic TW-equation subject to the

1
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which, after linearization, is equivalent to (19.1).
2 For a biographical sketch see Fig. 19.1.
3 There is a vast literature on TWs. A reference text may be LeBlond and Mysak [27] who treat
primarily waves in the open ocean. A review, perhaps more adequate to the present topic is by
Stocker and Hutter [42] and contains a large number of references pertaining to the propagation of
TWs in closed or semi-closed basins. Relevant works are also by Stocker and Hutter [40, 43, 44]
and Johnson [20–22], Willmott and Johnson [50], Johnson and Kaoullas [23] and others.
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Fig. 19.1 Carl-Gustav Rossby (1898–1957), a Swedish-US meteorologist (portrait from
http://www.villasmunta.it/Storia_della_meteorologia/) and in the left picture clouds along a
jet stream over Canada (http://en.wikipedia.org/).

Carl-Gustav Rossby (28 December 1898, Stockholm; 19 August 1957, Stockholm) was a
Swedish-US meteorologist who first explained the large-scale fluid motion in the atmosphere,
(ocean and lakes) due to the rotation of the Earth. He was studying meteorology and
oceanography from 1919 under Vilhelm Bjerknes in Bergen (Norway), in Leipzig and the
Lindenberg Observatory in Brandenburg. In 1921, he returned to Stockholm to join the
Swedish Meteorological–Hydrological Service where he participated in a number of oceano-
graphic expeditions at Stockholm University. While ashore, between expeditions, he studied
mathematical physics at Stockholm University. In 1925, Rossby moved to the United States
and joined the US Weather Bureau in Washington, DC, where he worked on atmospheric tur-
bulence. In 1928, he became Associate Professor at the Aeronautics Department (renamed
soon later Meteorology Department) of the Massachusetts Institute of Technology, Boston,
and additionally joined the Woods Hole Oceanographic Institution as a Research Asso-
ciate. His major interests at this time included thermodynamics, mixing, turbulence and
atmosphere–ocean interactions.

Rossby, after having assumed US citizenship in 1938, was appointed in 1940 the chairmanship
of the Department of Meteorology of the University of Chicago. It is here, where he turned
his attention to large-scale atmospheric motions, in particular the jet stream and large-scale
planetary waves. During World War II he trained military meteorologists. In 1947, he returned
to Sweden to become the founding director of the Institute of Meteorology in Stockholm, but
he kept part-time his positions at Chicago and Woods Hole. From Stockholm, he renewed by
visits his friendship with Prof. Hans Ertel in Berlin. Their cooperation led to the mathematical
formulation of the so-called Rossby waves. In his later years, between 1954 and his death in
1958 Rossby championed the field of atmospheric chemistry.

Originally, only large-scale planetary waves on the ˇ-plane in a constant thickness atmosphere
were called Rossby waves. Today, any gyroscopic wave on a rotating frame tends to be named
after Rossby as topographic Rossby waves, equatorial Rossby waves, planetary Rossby waves,
etc.

The text is based on:

http://en.wikipedia.org.wiki/Carl-Gustav_Rossby.
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mass flux condition through the lake shores yet is able to observe the wave from
temperature measurements in the thermocline.

Identification of TW-signals in spectra of temperature and isotherm–depth–time
series is difficult because their mode frequencies for enclosed basins are often clus-
tered together with subinertial modal frequencies of gravity waves. This makes a
clear separation of second class modes from their first class counterparts a challeng-
ing exercise not only of time-series analysis, but also of numerical identification of
their eigenfrequencies and mode structures.

19.2 Some Observations and Proposed Interpretations

ln this section we describe a series of long periodic oscillations of temperature or
current data indicating that the phenomenon which underlies these observations can
probably be interpreted in terms of topographic waves. We heavily draw from two
monographs by Stocker and Hutter [42] and Hutter [18]; both are out of print for
more than a decade. Our approach is to present facts, including interpretations and
to postpone detailed explanations in terms of models to later sections.

19.2.1 Lake Michigan

The analysis outlined here and the figures are due to Saylor et al. [35] and Huang
and Saylor [13]. During spring, summer and fall 1976 current meters were deployed
in Southern Lake Michigan as indicated in Fig. 19.2. Most of these current meters
were positioned along the Eastern shore between Benton Harbor and Muskegon,
but ten current meters were also deployed along a straight line connecting opposite
points along the shores between Racine and Holland.

The bathymetry of the Southern Lake Michigan is simple and concise. An
approximation of the topography by a circular basin with radial profile dependence,
see Fig. 19.3, may not be an oversimplification of the situation at hand.

Figure 19.4 collects kinetic energy spectra of the Eastward (Fig. 19.4a) and
Northward (Fig. 19.4b) velocity components (generally at the 25-m level) at the
six stations indicated in Fig. 19.4. Vertical lines are drawn to accentuate the two
conspicuous energy peaks at near inertial (�17 h) and near 4-day periods. Thus,
the lake responds distinctly at these periods. This is further substantiated by the
graphs presented in Fig. 19.5. They show a progressive vector diagram of the hourly
averaged low-pass filtered current velocities from the 32-m depth current meter at
station 11 (Fig. 19.5a) and coherence and phase difference between the East and
North velocities from the same current meter (Fig. 19.5b).

The hodograph clearly reveals the oscillatory wave motion with a period of about
4 days, the rotation of the current vector being in a cyclonic (counterclockwise)
direction for this station, which is in the centre of the lake basin. Coherence and
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Table 19.1 Eigenfrequencies (-periods) of the first three TW-modes computed according to (19.4)
using f D 2�=16:9 h

Profile q m D 1 m D 2 m D 3

f=! T [h] f=! T [h] f=! T [h]

1 5 84.5 4 67.6 3 50.7
2 7 118 5 84.5 4 67.6
3 9 152 6 101 5 84.5
1 0 1 0 1 0 1

phase plots in Fig. 19.5b for the East (u)- and North (v)-components for one current
meter at position 11 accentuate this, as they show two highly correlated signals
centred at the two indicated frequencies. At the 4-day period, the u-component leads
the v-component by a phase angle of 90ı which corresponds to a cyclonic rotation;
at the near-inertial period the phase angle of the u-component lags that of the v-
component by approximately 90ı, indicating an anti-cyclonic oscillation.

Further scrutiny of the data shows that (1) the 4-day period motions are clockwise
rotations at all stations except 10 and 11 in the centre of the lake, where they are
counterclockwise and (2) currents at on-shore positions are primarily along-shore
while those at off-shore stations may have appreciable amplitudes for both, the East-
and North-components.

These observations can be interpreted in terms of free TWs in a circular basin
with nearly conical profiles. For a depth profile of the form

H D H0

�
1 �

� r
a

�q�
; q > 0; (19.3)

(H0 is the maximum depth at the centre, a the radius of the circular basin and q a
parameter characterizing the profile), Saylor et al. [35] deduce the frequency relation

f

!
D 3mC 2q

m
: (19.4)

Here, ! is the frequency, f the Coriolis parameter and m D 1; 2; 3; : : : the radial
mode number. Values for the frequencies or periods are summarized in Table 19.1
and the streamline pattern of the vertically integrated transport for the lowest two
modes is sketched in Fig. 19.6. The fundamental mode (m D 1) enjoys all properties
of the observations mentioned above. In particular for the conical profile, its period
is close to the observed 90 h period. Table 19.1 and (19.4), however, also show that
for each mode the periods depend strongly on the topography, but not on the size
of the basin (H0 and a do not enter into the frequency relation). Moreover, the
same period arises for different modes and different bathymetries, indicating that
the mode structure is very important in interpreting observations.

In summary, the data analysis of the current meters and the interpretation of
the observed periods and velocity rotations in terms of free topographic waves in
a circular basin seem to be in harmony in the sense that no discrepancies were
discovered.
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m = 1

m = 2

T = 0 T = T/8 T = T/4

Fig. 19.6 Schematic sketch of the mass transport stream line patterns of the fundamental and first
‘higher’ mode plotted for three instances during a quarter period. During one cycle, the system
of gyres rotates counterclockwise (on the northern hemisphere) around the basin (From [42]).
c� Springer, Berlin, reprinted with permission

19.2.2 Lake of Lugano (North Basin)

Southern Lake Michigan is a large and relatively shallow lake with a width of
approximately 100 km, whereas Lake of Lugano is small (17 km long, approxi-
mately 2 km wide and 300 m deep).

In summer 1979, thermistor chains and current meters were positioned at various
locations in the stratified Northern basin of Lake of Lugano. Only temperature-time
series could be analyzed (for a detailed description see [19, 32, 33]). They disclose
a moderate long-periodic signal with a period of app. 74 h.

Figure 19.7 shows the map of Lake of Lugano (North basin) with indicated
stations where the wind and temperature (generally at the lower portion of the met-
alimnion) were measured in July/August 1979. Figure 19.8 summarizes wind data at
stations 4 and 7 (top) and isotherm–depth–time series at the stations 1 and 8, 6 and 4
(lower part). These time series ‘demonstrate a strong component of the motion with
a period of perhaps 74 h (marked by circles ). To emphasize this wave the troughs
of the isotherm depths have been brought into prominence by thick solid and dotted
lines. The front arises first at station 4, propagates Southwards, reaches station 1
approximately 7 h later (indicated by the solid line connecting the troughs at Cas-
sarate and Melide) and is ‘reflected’ at the Southern end of the lake. The ‘reflected’
wave passes through station 4 again (though split up into two smaller minima with
an intermediate maximum, indicated by an arrow marked with an encircled 1), and
after 37 h, can be recognized at station 8 with a conspicuous minimum (heavy dot-
ted lines). It appears later at Cassarate, Melide and as a reflected wave at Cassarate
(arrow marked by an encircled 2), Porlezza, etc.’ [19]. The corresponding wave
speed of approximately 12 cm s�1 is substantially lower than the wave speed of the
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Fig. 19.7 Northern Lake of Lugano with indicated positions of moorings (1–8) equipped with
anemometers, thermistor chains and current meters in the field campaign July–August 1979 (From
[42]). c� Springer, Berlin, reprinted with permission

internal gravity wave of the two-layer model; neither can it be explained as a higher
order baroclinic Kelvin wave of, say, a three-layer model. Furthermore, direct wind
forcing can be excluded as a likely cause of excitation [33]).

A statistical cross-correlation analysis of the temperature time series indicated
for all station-pair-time series – except stations 3/8 – high coherence and strongly
suggested a counter clockwise rotation of the wave signal around the basin.

Mysak et al. [33] have explained the 74-h oscillation and the anticlockwise prop-
agation of the phase as the baroclinic trace of a barotropically driven TW. They
explain all their observations (except the ‘discrepancy’ in the phase of the pair 3/8
of the mean temperature displacement function, which interrupts the anticlockwise
increase of the phase difference) in terms of the fundamental mode of TW in an
elliptical two-layer basin. The streamlines as constructed by [20] are sketched in
Fig. 19.9.4

To round out this picture it must be mentioned that the TW-equation has been
approximately and numerically solved by the finite element technique [47] with
results which do not at all support the interpretation using elliptical TW. Trösch
finds that solutions in the 65–95-h-period range are generally localized to the two
narrow ends and the bay of Lugano. Figure 19.10 shows the streamline pattern of
three such modes, having periods of 68.5, 80.5 and 91 h, respectively.

This was the state of conflicting interpretation of the same observations in the
mid-1980s of the last century. It led Stocker and Hutter to a research activity of
about 5 years duration and culminated in the finding that eigenmodes of the TW-
equation in a closed basin with periods close to one another can be basin filling with
small or large scale structures or they can be localized in relatively small bays.

4 Mysak et al. [33, p. 52] list six arguments in support of the TW-model and only the above
mentioned discrepancy in the phase relation against it.
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Fig. 19.9 Contours of the mass transport stream function of the fundamental mode for
elliptical topographic waves (From Johnson (1987) [20]). c� Taylor & Francis, http://www.
informaworld.com, reprinted with permission

Fig. 19.10 Three modes of
long periodic waves in Lake
of Lugano obtained by the
finite element technique.
T1 D 68:5 h
T2 D 80:5 h
T3 D 91 h

9
=

;
for t D 0

(above) and t D T=4 (below).
From Trösch (1986) [47],
with alterations. c� National
Cheng Kung University
Press, Tainan, Taiwan,
reproduced with permission
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19.2.3 Other Lakes and Ocean Basins

Stocker and Hutter [42] present 10ıC-isotherm–depth data at ten different moorings
distributed in Lake Zurich and give evidence that the consistently observed high
amplitudes in the period range 100–110 h give rise to the suspicion of a counter-
clockwise propagation of an oscillating signal. Furthermore, rotary spectra of the
water current at the positions and at depth show that near the 100 h period (1) the
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rotation of the current vector at the mid-lake position is predominantly counter-
clockwise, but (2) it is predominantly clockwise at some near-shore positions. This
gives support for the suspicion that the 100 h signal could be a TW.

Csanady’s [7] coastal strip model that is applied to Lake Ontario is based on
Gill and Schumann’s [9] shelf wave analysis, but describes a local near shore wave,
which, in the 25 day period range in later work by Marmorino [28], is interpreted
as a free TW. These waves are no basin wide response and therefore do not fall into
the category dealt with in this chapter.

There is ample further evidence of vorticity generated flow features reminis-
cent of TW-behaviour. Saylor and Miller [36] also analyze time series of water
currents from instruments moored in Lakes Erie and Huron at several offshore posi-
tions. They find for these lakes that in the period band of 85–125 h kinetic energy
associated with anticlockwise (clockwise) rotation of the current vector is accu-
mulated for ‘mid-lake’ (near-shore) mooring stations, suggesting a fundamental
TW-mode.

Numerical studies of the wind-induced circulation in the Baltic Sea [25, 37, 39]
and interpretation of infrared satellite imagery [24], indicate local current patterns
with cyclonically rotating gyres that are reminiscent of TWs induced by winds.
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Fig. 19.11 Observed (dark arrows) and computed (light arrows) vertically integrated transports
in the South–West Baltic Sea after a strong wind from the Northeast, i.e. from the upper right-hand
corner (From Simons [37], with additions; see also [38]). c� Wiley Blackwell, reproduced with
permission
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Figure 19.11 shows the observed and computed vertically integrated transport in the
Bornholm basin located in the South-West Baltic Sea after a strong wind from the
Northwest. This current pattern was established from a configuration of completely
reversed flow before the onset of the wind, thus confirming the basic concept of
large-scale vorticity generation by the interaction of wind stress and bottom slope.
The figure also shows the topography and its approximation by a circular basin.
Adopting this circular basin, Wenzel [49] demonstrates that there are good reasons
to assume that the system of gyres is an excited higher mode of TWs with a period
of approximately 5 days. Kielmann [24] reaches similar conclusions.

Similar vortex systems for the vertically integrated transport of the Gulf of Both-
nia are also attributed to wind generated topographic response [25]. Bäuerle [3]
models this gulf as a channel having a trench profile; he constructs numerical TW
solutions having periods of 70–75 h, but abstains from a comparison of his results
with observations.

We may conclude this brief overview with the following slightly simplified
statements:

1. There exists a large amount of episodic and isolated observational evidence
which suggests that long periodic oscillating responses in lakes and local areas
of such basins may be explained in terms of TW-models.

2. Coherent temperature and current data covering an entire basin for a period of
longer duration do not seem to be available in order to clearly identify the pri-
mary cause of the motion and to interpret the observations uniquely in terms of
a model.

3. It appears that long periodic circulation features which are the immediate result
of strong winds, can be explained by simple idealized or more realistic and com-
plicated models and both yield very similar if not identical results. Long periodic
features which are the direct result of a strong wind gust permit interpretation in
terms of TWs.

4. On the other hand, inferences from simple (analytically accessible) models and
more realistic (only numerically exploitable) models which attempt to explain
basin-wide TW-behaviour are conflicting. Hence, interpretation of basin-wide
long periodic oscillations remains an open problem, at least as long as one
cannot assume with certainty that the numerically discretized models gener-
ate flows which are the approximation (in a well defined sense) of the original
nondiscretized TW-equation to the real topography.

The above statements, which were made more than 20 years ago by Stocker and
Hutter [42] are still correct today but verification by measurements is difficult. The
reason is that basin- and bay-filling TWs often have eigenfrequencies which are very
close to each other, whereas their eigen-functions are far apart. This fact suggests
observationally that it is very difficult to separate the different modes from synop-
tically taken data, whilst numerically high accuracy is needed to capture modes
which are close to each other. This is what we attempt to elucidate in this and the
two following chapters.
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Fig. 19.12 Side view of a cross section of the two-layer lake in its natural coordinate system
.x; y; z/. Upper and lower layer variables are denoted by an index 1 or 2, respectively. The lake
is within a rotating system of spatially constant angular velocity .1=2/f (From [40]). c� Ver-
suchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, reproduced with
permission

19.3 Baroclinic Coupling: The Two-Layer Model

Having discussed the purely barotropic topographic Rossby waves already, we pro-
ceed directly to their description in a stratified fluid and commence with a two-layer
configuration.

Motions occur in both layers and are subject to a coupling by the thermocline. As
we shall show later on, this coupling mechanism is weak in the sense that it is mainly
one-way, i.e. the motion of the thermocline is driven by the barotropic transport. If
the velocity fields in the two layers are unidirectional the motion is barotropic, if
they are in opposite directions it is baroclinic.

The configuration of the lake and the notation is summarized in Fig. 19.12.
Important in the depicted geometry are the vertical side walls that extend beyond
the thermocline well into the hypolimnion. Application must, therefore, be limited
to lakes with steep shores.

Lake topography varies in space only in the lower layer, i.e. the upper layer is
confined by two vertical side walls, which must exceed the depth of the thermocline,
so H.x/ > D1 for all x. We accept the varying thickness of the side walls with x
because of analytical simplicity.

19.3.1 Two-Layer-Equations

Basic idea in obtaining a description of the physical behaviour of our system is to
formulate equations which describe conservation of mass, momentum and energy
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for the individual layers. Thermodynamic effects will be neglected in this study.
The evolving nonlinear system is linearized by the assumption of small Rossby
numbers. Furthermore, surface elevations � are thought to be small in comparison to
the depth of the upper layer. Turbulence will be ignored but wind stress, distributed
over the thin upper layer, and acting as a driving force will be considered. Under
these approximations, the equations of motion in components of a Cartesian system
take the forms (Mysak [31], p 87, Mysak et al. [33])

u1t � f v1 D �g�1x C �x=.�1D1/;

v1t C fu1 D �g�1y C �y=.�1D1/; (19.5)

D1.u1x C v1y/ D �2t � �1t ;

u2t � f v2 D �g�1x � g0.�2x � �1x/;

v2t C fu2 D �g�1y � g0.�2y � �1y/; (19.6)

.H2u2/x C .H2v2/y D ��2t ;

where g0 is the reduced gravity g0 D g.�2 � �1/=�2. Subscripts denote differenti-
ation with respect to the subscript-variable. Everything that follows can be directly
derived from (19.5)–(19.6).

19.3.2 Approximations

We will now transform the above equations and introduce further approximations
which will make it apparent why the conservation law of potential vorticity is still a
reasonable approximation for vorticity waves when barotropic–baroclinic coupling
is present.

19.3.2.1 Rigid-Lid Approximation

It is known that to every wave type of the above system there exists an internal and
an external variant. The periods of the latter are generally much smaller than those
of the former and, by applying the rigid lid approximation, the external modes are
impeded. This means, that compared to the interface elevation any surface elevation
can be neglected, i.e. the underlined terms in (19.5) and (19.6) are ignored. With this,
it follows from the mass conservations (19.5)3 and (19.6)3 that the quasi-solenoidal
velocity field can be replaced by the stream function through which the components
of the integrated transport are given by

�  y D D1u1 CH2u2;  x D D1v1 CH2v2: (19.7)
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 is called the barotropic or mass transport stream function. Equations (19.5) and
(19.6) can be transformed into a compact system in the variables  and �2 � �.
Assuming a constant Coriolis parameter f the result reads

r � .H�1r t /C f .r � rH�1/ � Ok
D �g0D1.r� � rH�1/ � OkC 1

�1
Œr � .�H�1/C H

D1
� � rH�1� � Ok; (19.8)

Hr2�t � H 2

g0D1H2
L�t C D1

H2
r�t � rH � fD1

H2
.r� � rH/ � Ok

D 1

g0H2
Œr.L / � rH� � Ok � H

�1g0D1
f .r � L�/ � Ok; (19.9)

where Ok is a unit vector in the positive z-direction and the operator L D @tt C f 2

has been introduced.

Problem 19.1 Derive (19.8) and (19.9) from (19.5) and (19.6) and show in the
process of derivation that the formulae (19.10) below for the horizontal velocities
can be derived.

Mysak et al. [33] give a detailed discussion of the physics of (19.8) and (19.9),
which is now briefly summarized. In the absence of stratification (g0 D 0) and wind
forcing (� D 0), (19.8) reduces to the conservation law of potential vorticity. Wind
is the external force; the second term on the right-hand side of (19.8) may therefore
be interpreted as the supply of potential vorticity due to wind action. Stratification
(g0 ¤ 0) in a basin with variable topography (rH ¤ 0) couples the barotropic part
of (19.8), namely its left-hand side, with the baroclinic processes. The first term on
the right-hand side of (19.8) is, therefore, the production of potential vorticity due
to baroclinicity; it represents the influence of the baroclinic effects on the barotropic
motion.

By the same argument, (19.9) describes the influence of the barotropic processes
(terms involving  ) and the wind (terms involving �) on the baroclinic motion.
Ignoring these barotropic terms results in an equation describing internal waves with
a phase speed

c2int D g0D1H2=H:

When rH D 0 the third and fourth term on the left-hand side vanish, and the
equation describes classical internal Kelvin and Poincaré waves. Thus, (19.8) and
(19.9) exhibit in general a two-way coupling, a baroclinic–barotropic coupling and a
barotropic–baroclinic coupling the strengths of which must be estimated by a scale-
analysis.

When deriving (19.8) and (19.9) from (19.5) and (19.6) the layer velocities can
be expressed in terms of  and �. The expressions are
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Lu1 D 1

H

�
Ok � r.L /CH2g

0.r�t � f Ok � r�/C H2

�1D1
.�t � f Ok � �/

�
;

(19.10)
Lu2 D 1

H

�
Ok � r.L / �D1g

0.r�t � f Ok � r�/� 1

�1
.�t � f Ok � �/

�
;

(see Problem 19.1) which are additively composed of three parts, i.e. a barotropic, a
baroclinic and a wind force component. The first are the same (and unidirectional)
in both layers, and the second are in opposite directions and add up to vanishing
total transport, reminiscent of barotropic and baroclinic behaviour, respectively.

19.3.2.2 Low-Frequency Approximation

In (19.9), � appears with a third order time derivative. This means that (19.9) can
contain three types of waves. In fact, a more precise analysis shows that there are
two (internal) gravity waves and one topographic wave of which the latter has the
longest period. Because we want to study here topographic waves, we will search for
solutions of (19.8) and (19.9) with low frequency !. For ! 
 f we may therefore
neglect ! in comparison to f . Thus, L reduces to L � f 2. Such an approximation,
however, requires that periods are substantially greater than about 17 h (the inertial
period corresponding to f at 45ı latitude).

Parenthetically, we might also mention that this approximation holds only for
lakes in which the internal seiche period (of a gravity or Kelvin wave) is consid-
erably smaller than the period of topographic waves. Since the former increases
with the lake dimension and the latter is size-invariant, the frequencies of gravity
waves in larger lakes become of comparable order to those of topographic waves.
For Lakes Zurich and Lugano the approximation is appropriate, for Lake Geneva or
larger lakes it may be dubious, see Table 19.2.

The situation is nevertheless not as limiting as this statement might let us surmise,
because we shall prove below that for many situations the baroclinic–barotropic
coupling term on the right-hand side of (19.8) may safely be ignored. In this case,
the TW-equation (19.8) uncouples from (19.9). Since also boundary conditions
will be shown to be free of this baroclinic–barotropic coupling, solutions to the

Table 19.2 The gap between the eigenperiods of internal gravity and topographic waves depends
on the lake dimension

Lake Surface Period of internal Period of
length gravity waves topographic waves
[km] [h] [h]

Lugano 17:2a 
28a 74b

Zurich 28a 
45a 100b

Geneva 72c 
78d 72–96b

aHutter, 1983 [15] bMysak, 1985 [31] cGraf, 1983 [10]
dBäuerle, 1985 [4]
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TW-problem can be obtained without solving the inertial gravity wave problem.
The assumption j ! j
 f need not necessarily be invoked.

19.3.3 Scale Analysis

Information about the orders of magnitude of the various coupling terms in (19.8)
and (19.9) is obtained by constructing dimensionless counterparts of these equations
via the introduction of scales.

19.3.3.1 Wind Forcing

The external forcing mechanism in (19.8) and (19.9) is the wind. To estimate its
relative importance, consider the identity

r � .�H�1/C H

D1
� � rH�1 � H�1.r � �/C.rH�1/ � � C H

D1
� � rH�1:

(19.11)

The first term on the right can be neglected in comparison to the others, because
the atmospheric length scale is in general much larger than the lake dimensions.
Such a statement is tantamount to ignoring spatial variations of wind stress over the
domain of the lake. Further, comparing the last two terms it is seen that they differ
by an orderD1=H which, in view of our basic assumption, is small (cf. Table 19.3).
Consequently, only the last term of (19.11) survives. In a way, this is a strange
result: As far as the barotropic contribution of the motion is concerned, only a lake
with variable topography can be affected by the wind. This leads to the conclusion
that the assumption on atmospheric length scales may be doubtful. Indeed, varying
topography in the vicinity of a lake may play a significant role as it can modify
regional winds with atmospheric length scales to local winds with smaller length
scales. An example is the topography around Lake of Lugano; but experimental
evidence for the wind stress curl to be significant is so far lacking.

19.3.3.2 Gratton’s Scaling

Gratton [11] and Gratton and LeBlond [12] consider lake stratifications withD1 

D2, i.e. a thin upper layer lies on top of a deep hypolimnion. For this case they
found that the baroclinic effect on the barotropic motion is of orderD1=D2 smaller
than the barotropic effect on the baroclinic motion. So, to orderD1=D2 the coupling
only arises as a forcing of the baroclinic motion by the barotropic mass transport.

Before we demonstrate this result let us point out its significance. The one-way
coupling means that traces of the topographically induced motion can be observed
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by measuring baroclinic quantities such as temperature-time series of thermistor
chains, moored within the metalimnion. The description of the observations in Lakes
of Lugano in Sect. 19.1 are based on such temperature-time series.

We now introduce the following set of nondimensional variables:

 WD  0 
0; � WD �0�

0; � WD �0�
0;

.x; y/ WD L.x0; y0/; t WD f �1t 0; (19.12)

H WD Dh0 D .D1 CD2/h
0; H2 WD D2h2;

where the primed variables are non-dimensional; L is a typical length scale of
the considered waves (e.g. half the lake length). Higher wave modes, where cross
variations are important, may require a .x; y/-scaling which is different for each
spatial direction, but this will not be considered. With (19.12) we obtain the scaled
equations as

r � �h�1r t
�C �r � rh�1� � Ok

D �C1
�r� � rh�1� � OkC

�
LD�0

f�1D1 0

	
�
h� � rh�1� � Ok; (19.13)

1

h

�
r2�t � L2h

R2inth2
L�t

	
� D1

D2h2
r�t � rh�1 C D1

D2h2

�r� � rh�1� � Ok

D �C2h�12
�r � rh�1� � Ok � �0L

�1g0D1�0
1

h
.r � L�/ � Ok; (19.14)

where now L D @tt C 1 and the coupling coefficients are given by

C1 D g0D1�0
f  0

; C2 D f  0

g0D2�0
D D1

D2
� 1
C1
; (19.15)

and Rint D g0D1D2=.Df 2/1=2 is the internal Rossby radius. Note that in (19.13)
and (19.14) we have dropped the primes on the scaled (nondimensional) variables.

Let us now suppose that (19.13) and (19.14) are strongly coupled, i.e. that C1
and C2 are both O.1/. Then (19.15) implies that

�0 D O

�
f  0

g0D1

	
and �0 D O

�
f  0

g0D2

	
; (19.16)

and we observe that independent of the  0-scale, (19.16)1;2 are consistent only if
D1=D2 D O.1/ . Since we are concerned with the case D1 
 D2, it follows
that C1 and C2 cannot both be of order unity, i.e. that (19.13) and (19.14) are only
weakly coupled. Suppose we assume that (19.16)1 applies and thus choose

�0

 0
D f

g0D1
(19.17)
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as the scaling for the ratio �0= 0. Then C1 D 1 and C2 D D1=D2 
 1. Therefore,
to O.D1=D2/, (19.14) reduces to

 

r2 �
�
L

Rint

	2
L
!

�t D � �0L

�1g0D1�0
.r � L�/ � Ok; (19.18)

where we have used h=h2 D 1CO.D1=D2/. Equation (19.18) is a wave equation
forced by the wind stress curl, but the scale choice (19.17) leads to an unrealistically
large value for the �0 scale (about �0 � 50 m, which is several times the upper layer
depth for most lakes5).

Hence, we are compelled to choose the scaling (19.16)2 (Gratton’s choice, which
was based on data from the Strait of Georgia, British Columbia). Putting

�0

 0
D f

g0D2
; (19.19)

we find C2 D 1 and C1 D D1=D2 
 1, We choose the �0 scale by setting the
coefficient of the wind stress term in (19.13) equal to unity, which gives

 0 D LD�0

f�1D1
: (19.20)

Substituting (19.20) into (19.19) gives the scale �0 in terms of the wind stress
scale �0:

�0 D LD�0

�1g0D1D2
D  0f

g0D2
; (19.21)

which yields a realistic order of magnitude.6 Using (19.20) and (19.21) in (19.13)
and (19.14), we obtain, correct to O.D1=D2/

r � .h�1r t /C .r � rh�1/ � Ok D .h� � rh�1/ � Ok; (19.22)

.r2 � S�1L/�t D �.r � rh�1/ � Ok � .r � L�/ � Ok; (19.23)

5 With f D 10�4 s�1; g0 D 0:02ms�2; D1 D 10m; D2 D 270m and 0 D U �L�.D1CD2/ D
0:03 � 104 � 270m3 s�1 , where U is a velocity scale (approximately 3 cm s�1 for Lake of Lugano)
and L D 104 m, one obtains �0 D 40m.
6 With fD10�4 s�1; g0 D 0:02ms�2;  0 D 7 � 104 m3 s�1 and D2 D 270m, (19.21) yields
�0 D 1m. Alternatively, using �0 D �aircdU

2
w with �air D 1:29 kg m�3; cd D 1:85 � 10�3

(an average value for lakes during summer, see Simons [39], p. 92), and Uw D 4ms�1, we find
�0 D 0:038Nm�2 and hence according to (19.21), �0 D 1:5m and according to (19.20), U D �0=

.�1fD1/ D 3:8 cm s�1. Both values are typical observations in Lake Zurich and Lake of Lugano,
see Table 19.3.
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as the appropriate non-dimensional equations for  and �. In (19.23), note that we
have introduced the stratification parameter S (Burger number), defined as

S D .Rint=L/
2: (19.24)

For the derivation of (19.23) it is important that h2 ¤ 0 (as illustrated in Fig. 19.12).
If h2 D 0, the third and fourth terms on the left side of (19.14) are not uniformly
O.D1=D2/ and hence could not be neglected. If an elliptic paraboloid contained a
two-layer fluid, then clearly h2 D 0, where the interface touches the basin wall and
(19.23) would not be valid. Thus, Ball’s [2] solution7 for second-class waves in an
elliptic paraboloid could not be easily extended to the stratified case by our analysis.

The derivation of (19.22) and (19.23) follows Mysak et al. [33] but is more
general in that the low frequency assumption has not been invoked and the wind
stress curl has not been ignored. With these two additional assumptions L would be
replaced by L D 1 and the last term in (19.23) would be missing. As stated above
these assumptions are not needed to achieve the decoupling of the barotropic motion
from the baroclinic influence.

Substituting (19.12) and the scaling (19.16)2 into (19.10) and using the scale
 0 D ULD, as before, we obtain the following formulae for the velocities:

Lu1 D 1

h

�
Ok � rL C h2

�
.r�t � Ok � r�/C D2

D
.�t � Ok � �/

	�
; (19.25)

Lu2 D 1

h

�
Ok � rL � D1

D2

�
.r�t � Ok � r�/C D2

D
.�t � Ok � �/

	�
: (19.26)

To O.D1=D2/ these can be approximated by

Lu1 D 1

h

h Ok � rL C h.r�t � Ok � r� C �t � Ok � �/
i
; (19.27)

Lu2 D 1

h
Ok � r : (19.28)

Thus, for deep lakes, the lower layer current associated with topographic waves is
essentially barotropic, whereas the upper layer current consists of a barotropic part,
a baroclinic part and a contribution directly forced by the wind. Hence, we conclude
that the current motions are generally surface intensified.

In Table 19.3, we collect some data pertinent to the above estimates. Values are
given for the layer thickness and density difference of the summer stratification
for three Swiss lakes from which Rossby radii, stratification parameters and typi-
cal values of the thermocline elevation can be computed. Accordingly, neglecting
O.D1=D2/-terms is certainly justified for Lake of Lugano and still reasonable for

7 This solution in an elliptic basin with parabolic bottom is constructed in Chap. 20, Sect. 20.3.3.
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Table 19.3 Properties of some Swiss lakes

Lake D1 Dmean
2 Dmax

2
D1
Dmean
2

�2��1
�2

Ri Half length S�1 �0
[m] [m] [m] [km] [km] [m]

Lugano 10a 183a 278b 0.055 1:91 � 10�3a 4.05 8.6 4.5 1:8e

Zurich 12a 52a 124b 0.231 1:75 � 10�3a 4.13 14 11.5 2:9e

Geneva 15d 153d 310c 0.098 1:41 � 10�3d 4.24 36 72.1 6:9e

a Hutter, 1984b [17], p. 78
b Hutter, 1983 [15], p. 1088
c Graf, 1983 [10], p. 64
d Bäuerle, 1984 [3]
e Computed using (19.21)

the other lakes. Moreover, the thermocline-elevation amplitude �0 is smaller than
D1 in all three cases, a fact which gives some confidence in the scaling procedure.

19.3.4 Boundary Conditions

To solve (19.22) and (19.23) in some domain D for a given �, we have to prescribe
initial values for  and � and the boundary conditions on @D. The first boundary
condition which we impose is that the total mass flux normal to @D must vanish:
in non-dimensional variables this can be written as On � .D1u1 CD2h2u2/D�1 D 0

on @D, where On is a unit vector perpendicular to @D. On substituting for u1 and u2
from (19.25) and (19.26), this reduces to8

On � . Ok � r / D 0; on @D: (19.29)

Since On � . Ok� r / D . On� Ok/ � r D Os � r , where Os is a unit vector tangential to
@D, (19.29) implies @ =@s D 0 on @D and hence  D constant on @D. Thus, in a
simply connected domain, without loss of generality, we take

 D 0; on @D: (19.30)

Next we require On � ui D 0 on @D for each layer i . Upon again using (19.25) and
(19.26), together with (19.29), we find

@

@n

@�

@t
� @�

@s
D �D2

D
. On � �t � Os � �/ D �On � �t C Os � �; on @D; (19.31)

to O.D1=D2/.

8 These equations actually imply a statement regarding L0.D1u1 C D2h2u2/ � On rather than the
mass transport itself. However, if Lg D 0 along @D for all time, then necessarily g D 0 as well.
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The boundary condition (19.29) applies, whether the simplifying assumptions
D1 
 D2 and !2 
 f 2 are imposed or not. Because (19.22) supposes D1 to
be small in comparison to D2 we conclude that the barotropic part of the motion
can be determined without simultaneously also determining the baroclinic response.
However, if the corresponding barotropically driven baroclinic currents or thermo-
cline elevations are to be determined, then (19.23) subject to the boundary condition
(19.31) must also be solved. Since (19.23) is a forced wave equation, this by itself is
a formidable problem. For weak stratification (S small) simplifications are possible.
This is the case for most Swiss lakes (compare Table 19.3).

To introduce this additional simplification we note that our scales have been cho-
sen such that dimensionless gradients are order unity. Hence, we expect r2 to be
O.1/ whereas S�1 is large. On the left-hand side of (19.23) we may thus ignore r2

in comparison to S�1L, implying

�t D SfL�1. Ok � r / � rh�1 C .r � �/ � Okg; (19.32)

where L�1 is the inverse operator of L. Equation (19.32) can be described as the
geometric optics approximation for �. Along the shore @D we may assume a con-
stant depth; then rh�1 is parallel to On, the unit normal vector along @D, and the first
term in the curly bracket vanishes.9 With nonvanishing wind stress the emerging
equation is not consistent with (19.31). For the unforced problem, however, (19.32)
implies

�.x; t/ D 0; along @D;
which is consistent with (19.31) provided that the term @2�=@n@t is ignored. This
omission is justified in the low-frequency approximation.

We conclude: the geometric optics approximation is only consistent in the low-
frequency limit. In all other cases, the baroclinic coupling should be computed with
the full equations (19.22), (19.23) and (19.31).

19.4 Continuous Stratification

19.4.1 Modal Equations

The two-layer model can only nearly approximate the internal dynamics of a
lake that permits a clear distinction of an epi- and a hypolimnion. It is impor-
tant to investigate to which extent inferences from the pure barotropic or two-layer
model of Sect. 19.3 can be carried over to a lake with continuous stratification. The
oceanographic literature is rich in studies of low-frequency processes in a stratified
medium. A general result, common to all studies, is that increasing the stratifica-

9 Recall that . Ok � r / � rh�1 D 0 for all times implies that L�1f. Ok � r / � rh�1g D 0:
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tion increases the frequencies of the considered long-period motion. This has been
shown by Wang and Mooers [48], Clarke [6] and Huthnance [14]. A review can be
found in Mysak [29].

Here, in this section, our aim is to analyze, how and how strongly the individual
baroclinic modes are coupled among each other and how the baroclinic part of the
motion couples with the barotropic processes.

These equations are given below as (19.43) and (19.44). To derive them, we start
from the continuity equation

r � v D rH � vH C @w

@ z
D 0 (19.33)

and integrate it over depth to obtain

0 D
Z �

�H

�
rH � vH C @w

@z

	
dz

LeibnizD rH �
Z �

�H
vHdz

„ ƒ‚ …
WDV

� ŒvH � r� � w�zD�„ ƒ‚ …
D�@�=@t

� ŒvH � rHH C w�zD�H„ ƒ‚ …
D0

D @�

@t
C rH � V D 0;

which agrees with (19.43)1 below. In the above, the bracketed terms are so identified
because of the kinematic boundary conditions at the free and the basal surfaces. In a
similar fashion, the horizontal components of the momentum equations are treated.
To this end, we write the stress tensor as

t D �p.z/I C tdyn; (19.34)

in which p.z/ is the hydrostatic pressure, given by

p.z/ D patm C ��g.� � z/
„ ƒ‚ …

pe

C ��g
Z �

z
�.z0/ dz0

„ ƒ‚ …
pi

(19.35)

and pe and pi are the external and internal pressures, respectively. tdyn is the
dynamic stress contribution, mostly due to turbulence; it will be decomposed as

tdyn D
 ���� ����
t13 t23 t33

!

; � D
 
�11 �12

�21 �22

!

; � D
�
	31
	32

	
: (19.36)

With (19.35) and (19.36), the horizontal momentum equation takes the form
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dvH
dt

C f Ok � vH C 1

��
rH .pe C pi /C rH � � C @�

@z
D 0; (19.37)

in which

dvH
dt

D @vH
@t

C .rH vH / vH C @vH
@z

w C
�

vHrH � vH C vH
@w

@z

	

„ ƒ‚ …
D0

D @vH
@t

C rH � .vH ˝ vH /C @

@z
.vHw/ : (19.38)

Substituting (19.38) in (19.37), rearranging the emerging equation and integrating
this equation from z D �H to z D � yields

0 D
Z �

�H

�
@vH
@t

C f Ok � vH C 1

��
rH .pe C pi /

C rH � .vH ˝ vH C � /C @

@z
.vHw C �/

�
dz

D @V

@t
C f Ok � V C � CH

��
rHpe C 1

��

Z �

�H
rpi dz

C rH �
Z �

�H
.vH ˝ vH C � / dz C Œ� � � r��zD� � Œ� C � rH�zD�H

� vH .�/
�
@�

@t
C vH � r� � w

�

zD�„ ƒ‚ …
D0

� vH .�H/ ŒvH � rH C w�zD�H„ ƒ‚ …
D0

: (19.39)

Here, the step from the first line to the remaining lines involved application of
Leibniz’ rule when interchanging the order of differentiation and integration. More-
over, the bracketed terms in the last line vanish in view of the kinematic boundary
conditions on the free surface and the base. On the other hand, with

n D .�r�; 1/
p
1C jjr�jj2 ; tdynn D

 ���� ����
t13 t23 t33

!

;

 
�.r�/T
1

!

we may write at z D �.x; y; t/

1

��
�
tdynn

�
H

D � r� � �
p
1C jjr�jj2 D 1

��
.tatmn/H D 1

��
�windp

1C jjr�jj2

or
1

��
�wind D � r� � � : (19.40)
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Analogously for the stress boundary condition at the basal surface,

� 1

��
�bottom D � rH C �: (19.41)

If we now substitute (19.40) and (19.41) into (19.39), the bracketed terms in the
second last line of (19.39) can be replaced by

1

�� .�bottom � �wind/ : (19.42)

In summary, we therefore obtain from (19.34) and (19.39)–(19.41):

@�

@t
C r � V D 0;

@V

@t
C f Ok � V D �H C �

�� rpe C F ; (19.43)

in which � is the surface elevation, V the transport, Ok a unit vector pointing upwards,
�� a constant reference density and

pe D patm C ��g.� � z/;

F D � 1

��

Z �

�H
rpi dz � r �

Z �

�H
.v ˝ v C � / dz C �wind � �bottom

��
; (19.44)

pi D ��g
Z �

z
�.z0/dz0 C p0; � � �0 � ��

��
:

This derivation follows Hutter [16], p. 18–21. Here, pe is the external and pi the
internal pressure. The latter consists of the dynamic baroclinic pressure p0 and the
quasistatic baroclinic pressure due to the density anomaly �.z/, which is referred to
a reference profile of density �0.z/ of a stably stratified state at rest. The hydrostatic
pressure assumption has not been made in (19.44); this is important. The force F
consists of a contribution of the baroclinic pressure pi , a term involving advection
(v ˝ v) and turbulent diffusion (� ), the wind stress and the bottom shear stress.
In ensuing developments we ignore turbulent diffusion (� ' 0) and advection
(v ˝ v ' 0), omit bottom shear (�bottom ' 0) and spatial variations of the atmo-
spheric pressure (rpatm ' 0) and neglect non-linear terms such as �r�. If we also
invoke the rigid-lid assumption and thus eliminate surface gravity waves, (19.43)
and (19.44) reduce to

r � .H Nv/ D 0;
(19.45)

@Nv
@t

C f Ok � Nv D �gr� � 1

� �H
Z 0

�H
rp0 dz C �

��H
;

where H Nv D V has been introduced and where � D �wind. In the next step we
introduce the mass transport stream function  by setting
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H Nu D � y ; H Nv D  x (19.46)

and eliminate r� from (19.45)2 by taking the curl of this equation. This transforms
(19.45) to the single equation

r �
�
1

H
r t

	
C J

�
 ;
f

H

	

D � @

@x

�
1

��H

Z 0

�H
@p0

@y
dz

�
C @

@y

�
1

��H

Z 0

�H
@p0

@x
dz

�
C r �

�
�

��H

	
:

(19.47)

This equation is analogous to (19.8). Notice that it involves no term due to the strat-
ification of the state defined by �0.z/. Baroclinic effects are all contained in the
dynamic pressure p0, but the terms involving p0 may also describe deviations from
the hydrostatic pressure distribution. We shall interpret p0 as being due to baroclinic
effects. Thus, in the absence of stratification and without wind forcing, (19.47)
reduces to the conservation law of potential vorticity. Stratification and external
winds (the terms of the right-hand side of (19.47)) act as supplies of potential vortic-
ity. Thus, the first term on the right-hand side couples the barotropic part of (19.47)
to the baroclinic processes. Our experience with the two-layer model suggests that
this baroclinic coupling is small and can be ignored to lowest order. If this is cor-
rect, the barotropic motion can be fully determined from equations (19.45)–(19.47)
by simply omitting the p0-dependent terms.

To complete the formulation we still need a system of equations that describes
the baroclinic processes and is coupled to the barotropic motion. To deduce it let
us consider the Boussinesq approximated adiabatic equations of motion (see e.g.
Chap. 4, (4.235)–(4.237) in Volume I)

ut � fv D � 1

��
p0x;

�0t C d�0
dz

w D 0;

vt C fu D � 1

��
p0y ;

wt C g

��
�0 C 1

��
p0z D 0;

ux C vy C wz D 0;

(19.48)

in which subscripts denote differentiation with respect to the subscripted variable.
The first two of these are the horizontal momentum equations, the third expresses
continuity, the fourth derives from the adiabatic heat equation, dT .�/=dt D 0.
Finally, the last equation is the vertical momentum equation; if wt were ignored,
the hydrostatic pressure assumption would result from it.

The two equation sets, (19.47), describing the transport, and (19.48), representing
the vertical details, suggest to split the velocity field into two parts,

.u; v/ D .Nu; Nv/C .Qu; Qv/; (19.49)
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such that the total transport of .u; v/ is incorporated in the barotropic field and hence

Z 0

�H
Qu dz D

Z 0

�H
Qv dz D 0: (19.50)

Substitution of (19.49) in (19.48) and use of (19.45) yields the new set of equations

Qut � f Qv C 1

��
p0x � 1

��H

Z 0

�H
p0x dz D g�x � �1

��H
;

Qvt C f Qu C 1

��
p0y � 1

��H

Z 0

�H
p0y dz D g�y � �2

��H
;

Qux C Qvy C wz D Hx

H
Nu C Hy

H
Nv; (19.51)

�0t C d�0
dz

w D 0;

wt C �0

��
g C 1

��
p0z D 0;

in which �1 and �2 are the x- and y-components of the wind stress. These have
been written, so that the external wind forcing and the barotropic contributions of
the motion appear on the right hand sides of the equations.

19.4.2 Spectral Decomposition of the Baroclinic Fields

We shall now demonstrate how (19.51) can be reduced to a set of spatially two-
dimensional equations by using a vertical shape function expansion of the veloc-
ity, pressure and density fields. To this end, let us now introduce the following
expansions of the baroclinic fields:

Qu.x; y; z; t/ D
NX

nD1
Un.x; y; t/�n

� z

H

�
;

Qv.x; y; z; t/ D
NX

nD1
Vn.x; y; t/�n

� z

H

�
;

w.x; y; z; t/ D
NX

nD1
Wn.x; y; t/�n

� z

H

�
; (19.52)

p0.x; y; z; t/ D
NX

nD1
Pn.x; y; t/ n

� z

H

�
;

�0.x; y; z; t/ D
NX

nD1
Rn.x; y; t/�n

� z

H

�
:
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Here, f�n; �n;  n; �ng; n D 1; 2; 3; : : : ; N are treated as known and their deter-
mination will be explained below. To find the evolution equations forUn; Vn;Wn; Pn
and Rn the Principle of Weighted Residuals is used.10 It essentially amounts to
evaluating the integrals

Z 0

�H
ı�Mm .19:51/1;2dz;

Z
ı�Cm .19:51/3dz;

Z
ı�Vm.19:51/4;5dz;

for arbitrary weighting functions ı�Lm .L D M;C; V /. Inserting (19.52) into these
expressions, (19.51) can be reduced to the following spatially two-dimensional sys-
tem of differential equations for the coefficient functions Un; Vn;Wn; Pn and Rn
(for details of the derivation see the Appendix at the end of this chapter).

AMmn

�
@Un

@t
� f Vn

	
� 1

��
@H=@x

H
BmnPn C Cmn

��
@Pn

@x
D
�
g
@�

@x
� �1

��H

	
DM
m ;

AMmn

�
@Vn

@t
C f Un

	
� 1

��
@H=@y

H
BmnPn C Cmn

��
@Pn

@y
D
�
g
@�

@y
� �2

��H

	
DM
m ;

ACmn

�
@Un

@x
C @Vn

@y

	
�Kmn

�
@H=@x

H
Un C @H=@y

H
Vn

	
� Lmn

Wn

H

D
�

Nu@H=@x
H

C Nv@H=@y
H

	
.DC

m � ı�Cm .� D 0//;

Emn
@Rn

@t
� ��N 2

max

g
FmnWn D 0;

Gmn
@Wn

@t
C g

��
EmnRn C 1

��H
HmnPn D 0;

Summation over n, .m; n D 1; 2; 3; : : : ; N /:

(19.55)

The last two of these equations can also be replaced by the second order (in time)
equation

10 We assume the reader to be familiar with the method of the Principle of Weighted Residuals,
see e.g. Finlayson [8]. The principle or method of weighted residuals (MWR) is based on the
following mathematical equivalence: Let f .x/ be a function or functional whose value vanishes
for all x 2 D � RN :

f .x/ D 0 for all x 2 D � RN : (19.53)

Let, moreover, ı�˛.x/ be an arbitrary bounded function from a set fı�˛; ˛ D 1; 2; : : :g.
Obviously, (19.53) implies

Z

D
ı�˛.x/f .x/dx D 0 .˛ D 1; 2; : : :/: (19.54)

If (19.54) holds for any complete set of ı�˛ , then (19.54) also implies (19.53). This equivalence
statement lies at the heart of the MWR.
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Gmn
@2Wn

@t2
CN 2

maxFmnWn C Hmn

��H
@Pn

@t
D 0; (19.56)

Summation over n, .m; n D 1; 2; 3; : : : ; N /:

The various coefficient matrices are collected in Table 19.4. For (19.56) to hold true,
Emn must be invertible, which according to Table 19.4 is the case. The matricesAMmn,
etc., are all expressible in terms of the inner product

hf .�/; g.�/i D
Z 1

0

f .�/g.�/d�:

Furthermore, ON 2 in Table 19.4 is the normalized Brunt–Väisälä frequency

ON 2 D N 2.�IH/
N 2

max
D �d�0=dz.�;H/

j d�0=dz jmax
; � D z

H
C 1:

Table 19.4 Matrix elements for the expansion of the field variables in terms of the flat-bottom
buoyancy modes or Jacobi polynomials. ha; bi is the inner product

R 1
0 abd�, 
n is the eigenvalue

defined in (19.58)
Elmt Definition Buoyancy mode set Jacobi polynomial set

ALmn hı�Lm; �ni; L 2 fM;C g 
nımn ımn

Bmn hı�Mm ; .� � 1/ d˚n
d� i� h d�m

d� ; .� � 1/ d2�m
d�2 i 0 .n 
 m/; bn�1;m .n > m/

h1; .� � 1/ d n
d� ih1; ı�Mm i

Cmn hı�Mm ;  ni � h1;  nih1; ı�Mm i 
nımn ım;n�1

DL
m h1; ı�Lmi 0 0

Emn hı�Vm ; �ni ımn ımn

Fmn hı�Vm; ON2�ni ımn hGm�1; ON2Gn�1i
.D ON2

0 ımn,cont. strat.)

Gmn hı�Vm ;�ni h�m;�ni ımn

Hmn hı�Vm ; d n
d� i 
nımn 0 .n 
 m/; hn�2;m�1 .n > m/

Kmn h.� � 1/ d�n
d� ; ı�

C
m i Bmn � d�m

d�
d�n
d�

ˇ̌
0

0 .n < m/; bmn.n � m/g�
�ı�Cm.0/�n.0/ .�1/nCm � p.2nC 1/.2mC 1/

Lmn h dı�Cm
d� ; �ni 
nımn hm�1;n�1 .n 
 m/; 0 .n > m/

Mm h1;  mi 0 ı1m

Nm h1;  mi �  m.0/ � d�m
d�

ˇ̌
�D0

ı1m C .�1/m
p
2m� 1
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The first two of (19.55) derive from the horizontal momentum equations (19.51)1;2,
the third corresponds to the continuity equation (19.51)3 and the fourth and fifth
are obtained from the adiabaticity statement (19.51)4 and the vertical momentum
balance (19.51)5. It is also evident that (19.55) constitute 5N equations for the
5N unknowns fUn; Vn;Wn; Pn; Rng, provided the barotropic quantities �; Nu; Nv are
known. If they are not, (19.55) must be complemented by (19.45) which, with the
use of (19.52), take on the form

@.H Nu/
@x

C @.H Nv/
@y

D 0;

@Nu
@t

� f Nv C g
@�

@x
D � 1

��

�
Mm

@Pm

@x
CNm

@H=@x

H
Pm C �1

H

	
; (19.57)

@Nv
@t

C f Nu C g
@�

@y
D � 1

��

�
Mm

@Pm

@y
CNm

@H=@y

H
Pm C �2

H

	
:

The vectorsMm; Nm.m D 1; 2; 3; : : : ; N / are also defined in Table 19.4.
It is our contention that, by accordingly selecting the shape functions, the

barotropic modes and the baroclinic modes can almost completely be separated.
This orthogonalization is exactly possible in stratified basins with constant depth;
selecting the shape functions from this set will nearly achieve the uncoupling in the
case of a variable bottom. Towards a motivation, consider (19.48) and ignore the
vertical acceleration terms, i.e. restrict considerations to quasi-static pressure condi-
tions. For this case (19.48) may be reduced to the single partial differential equation
for w

N 2r2w C
�
@2

@t2
C f 2

	
@2w

@z2
D 0:

Subject to the boundary conditions

w D 0; at z D 0;�H;

we know that this equation permits separation of variable solutions w.x; y; z; t/ D
Wn.x; y; t/Zn.z/, where Zn.z/ satisfies the eigenvalue problem

Z00n.z/C N 2.z/

gHn
Zn.z/ D 0; �H < z < 0;

Zn D 0; z D �H; 0;

with the eigenvalue gHn. Introducing the transformation z D H.��1/ this becomes

d2Zn.z/

d�2
C 
n ON 2.�IH/Zn.�/ D 0; 0 < � < 1;

Zn.�/ D 0; � D 0; 1; (19.58)


n D N 2
maxH

2

gHn
;
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where 
n is the eigenvalue. This is the classical eigenvalue problem of internal
waves in a basin of constant depth. It is selfadjoint, and so 
n is real and posi-
tive for all n D 1; 2; : : :; furthermore, the eigenfunctions form a complete set and
can be normalized to satisfy the orthogonality relations

h ON 2.�IH/Zm.�/; Zn.�/i D ımn: (19.59)

We conjecture that by selecting shape functions and weighting functions from this
set or from derivatives of them we will achieve a weak coupling of the essentially
barotropic-TW motion with the internal wave motion. The arguments are:

1. If we choose �m D Zm the vertical velocity profiles are those of the internal
wave motion of a fluid with constant depth (Fig. 19.13). Actual boundary con-
ditions at the bottom are not satisfied by these functions. This will result in a
coupling of the different internal modes.

2. If we further select �m D d�m=d� we will exactly match the vertical distribution
of the horizontal velocity profiles for internal waves in a basin with constant
depth. To be consistent with (19.50) the function set f�mg must be orthogonal to
the constant function. One can easily verify that

h1; �mi D h1; d�m
d�

i D
Z 1

0

dZm
d�

d� D Zm.1/�Zm.0/ D 0;

by virtue of the boundary condition in (19.58)2.

N < ω

N < ω

ω

1. baroclinic
mode 2. 3. 4.

E
pi -   M

eta -      H
ypo - lim

nion
D

ep
th

 N(Z)

Z1

Z2 Z3 Z4

Fig. 19.13 Typical vertical distribution of the Brunt–Väisälä frequency N (left) and the four lowest
baroclinic modes (qualitative). Solid curves show the distribution of the vertical velocity compo-
nent, dashed curves indicate the distribution of the longitudinal velocity component (when f D 0),
Most energy is usually concentrated in the first baroclinic mode, the exact distribution must,
however, be determined by continuous profiles of horizontal velocities (from [16]). c� Springer,
Vienna, reproduced with permission
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3. The momentum equations (19.48)1;2;5, the continuity equation (19.48)3 and the
adiabaticity equation (19.48)4 now suggest that we should choose

f mg D f�mg D fd�m=d�g and f�mg D f ON 2�mg:

4. We weigh the horizontal momentum equations with the same weighting function
as the shape functions of the horizontal velocity. Similarly, the shape functions
and the weighting functions in the continuity equation should be chosen from the
same function set. This yields

fı�Mm g D fı�Cmg D fd�m
d�

g:

Finally, the adiabatic equation and the vertical momentum equation then suggest
that

fı�Vmg D f�mg
With these choices the matrix elements can readily be calculated; they are listed in
column 3 of Table 19.4. This table also gives the elements for an alternative selec-
tion of basis functions. Leading idea in postulating (19.59) was to incorporate into
the function set as much as possible of the particular physics under consideration.
Consequently, the complete function set was that of the eigenfunctions for buoy-
ancy waves in a stratified basin of constant depth. From a computational point of
view this approach implies that the eigenvalue problem (19.58) must be solved in
advance in order to obtain the required basis functions �n. Alternatively, we could
expand the functions Qu; Qv;w; p and � in terms of special orthogonal polynomials.
Indeed, the scalar product h�;  i D R 1

0
� d� suggests the use of Jacobi polynomi-

als Gn.1; 1; �/ (see [1]), which are orthonormal in the interval [0, 1] with respect to
the weighting function 1 in the scalar product. They are defined by

Gn.1; 1; �/ D
p
2nC 1

nŠ

nX

kD0
.�1/n�k

�
n

k

	
.nC k/Š

kŠ
�k ;

G0 D 1;

G1 D p
12

�
� � 1

2

	
;

G2 D p
180

�
�2 � � C 1

6

	
; : : :

and satisfy the orthogonality relations

Z 1

0

GnGmd� D hGn; Gmi D ımn:
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Note that the constant function G0 is the first basis function and all Gn for n > 0

are orthogonal to it, i.e. they span a vanishing vertical area. This is well in accord
with condition (19.50). The derivative of GnC1 is a polynomial of degree n and can
be expressed as a linear combination ofGk; k D 1; 2; : : : ; n. For later use we define

.� � 1/
dGn
d�

�
nX

kD0
bnkGk ;

dGnC1
d�

�
nX

kD0
hnkGk:

The advantage of this polynomial set is its easy accessibility that frees us from
solving a problem oriented eigenvalue problem. Its likely disadvantage is a slower
convergence in comparison to the ‘physical set’ of internal eigenfunctions

We now select

f�mg D fGmg;
f�mg D f mg D f�mg D fGm�1g;

�
m D 1; : : : ; N

and the weighting functions

fı�Mm g D fı�Cmg D fGmg;
fı�Vmg D fGm�1g;

�
m D 1; : : : ; N:

The corresponding matrix elements are listed in column 4 of Table 19.4. We now
see the distinct properties of the two alternative approaches: When non-hydrostatic
terms are ignored an expansion in terms of buoyancy modes uncouples the individ-
ual baroclinic modes in (19.56). The barotropic–baroclinic coupling arises in the
horizontal momentum equation (19.55)1;2;3 and (19.57)2;3 only in conjunction with
topographic gradients. For a flat bottom all barotropic and baroclinic modes are
uncoupled. On the other hand, the Jacobi set, even though it is more easily accessi-
ble, does not follow the physics so closely. Notice also that the buoyancy equations
(involvingEmn and Fmn) are strongly coupled in this case whereas the coupling due
to topography gradients in the horizontal momentum equations (involving Bmn) is
weaker.

Summarizing the governing equations, we obtain for an expansion in buoyancy
modes

@.H Nu/
@x

C @.H Nv/
@y

D 0;

@Nu
@t

� f Nv C g
@�

@x
D � 1

��
d�

d�
.0/
@H=@x

H
Pm C �1

��H
;
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@Nv
@t

C f Nu C g
@�

@y
D � 1

��
d�

d�
.0/
@H=@y

H
Pm C �2

��H
;

@Um

@t
� f Vm C 1

��
@Pm

@x
� 1

��

�1m Bml

@H=@x

H
Pl D 0;

@Vm

@t
C f Um C 1

��
@Pm

@y
� 1

��

�1m Bml

@H=@y

H
Pl D 0; (19.60)

@Um

@x
C @Vm

@y
� Wm

H
� 
�1m Kml

�
@H=@x

H
Ul C @H=@y

H
Vl

�

D �
�1m
d�m
d�

.0/

�
@H=@x

H
Nu C @H=@y

H
Nv
�
;

Gmn
@2Wn

@t2
CN 2

maxWm C 1

� �H 
m
@Pm

@t
D 0;

.m; n; l D 1; 2; 3; : : : ; N /:

Boundary conditions which must be satisfied are

Nu � n D 0;

Um � n D 0; m D 1; 2; : : : N;

�
along the shore, (19.61)

where n is the unit normal vector and it is assumed that the depthH does not vanish
along the shore. The underlined terms in (19.60) describe the barotropic–baroclinic
coupling. All these terms involve the gradient of H .

19.4.3 Scale Analysis

To estimate the significance of the barotropic–baroclinic coupling, let us non-
dimensionalize equations (19.60). To this end we introduce the following scales
and dimensionless variables:

.x; y;H/ D .ŒL�x�; ŒL�y�; ŒH �H�/;
� D Œ����; t D Œf �1�t�;
.Nu; Nv; Um; Vm/ D ŒU �.Nu�; Nv�; U �m; V �m/;
Wm D ŒW �W �m ;
Pm D ŒP �P �m;
�wind D Œ�wind��

�:

(19.62)

Bracketed quantities are orders of magnitude of the variables in question and vari-
ables having an asterisk are dimensionless. With (19.62), (19.60) becomes (asterisks
are consistently omitted):
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@

@x
.H Nu/C @

@y
.H Nv/ D 0;

@Nu
@t

� Nv C A
@�

@x
D �B

d�m.0/

d�

@H=@x

H
Pm C C

�1

H
;

@Nv
@t

C Nu C A
@�

@y
D �B

d�m.0/

d�

@H=@y

H
Pm C C

�2

H
;

@Um

@t
� Vm C B

@Pm

@x
� B
�1m Bml

@H=@x

H
Pl D 0;

@Vm

@t
C Um C B

@Pm

@y
� B
�1m Bml

@H=@y

H
Pl D 0;

@Um

@x
C @Vm

@y
� D

Wm

H
� 
�1m Kml

�
@H=@x

H
Ul C @H=@y

H
Vl

�

D �
�1m
d�m.0/

d�

�
@H=@x

H
Nu C @H=@y

H
Nv
�
;

EGmn
@2Wn

@t2
CWm C F
m

1

H

@Pm

@t
D 0;

(19.63)

where

A D gŒ��

f ŒL�ŒU �
; C D Œ� �

��f ŒH�ŒU �
; E D f 2

N 2
max
;

B D ŒP �

��f ŒL�ŒU �
; D D ŒL�ŒW �

ŒH�ŒU �
; F D f ŒP �

��ŒH �ŒW �N 2
max

:

(19.64)

Choosing the scales according to11

ŒL� D 104 m; ŒH � D 102 m; Œ�� D 10�1 m;
[f �1� D 104 s; ŒU � D 1ms�1; ŒW � D 10�2 ms�1;
[P=��� D 10�1 m2 s�2; Œ�=��� D 10�2 m2 s�2; N 2

max D 10�3 s�2;

the orders of magnitude of (19.64) are

A D O.1/; C D O.1/; E D O.10�5/;
B D O.10�1/; D D O.1/; F D O.1/:

11 An estimate for [P=��] is obtained as follows: Under hydrostatic conditions the last of (19.51)
suggests that ŒP=��� � .��=�/gŒD�, where ��=� is the density anomaly and [D] a typical met-
alimnion thickness: Thus, with��=� � 10�3 and ŒD� 
 10m this yields ŒP=��� 
 10�1m2 s�2,
implying B 
 10�1 .
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Important in the following argument are only the values for A, B and C. Thus
the barotropic–baroclinic coupling terms (underlined) in the momentum equations
of the barotropic motion are small in comparison to the remaining terms of this
equation, but this cannot be said about the baroclinic–barotropic coupling term
(underlined) in the baroclinic continuity equation, because these terms do not con-
tain a factor B while at least some of the remaining terms in the equation are order
unity.12 This argument demonstrates that the barotropic–baroclinic coupling is weak
in the sense that to lowest order the barotropic motion is unaffected by the baroclinic
processes. On the other hand, a baroclinic trace of the barotropic motion can be dis-
cerned, because to the same order of accuracy the barotropic flow serves as an input
to the baroclinic response.

This is then the approximate solution procedure: We solve in a first step the
TW-equation

r �
�r t
H

	
C J

�
 ;
f

H

	
D 0; in D;

 D 0; on @D;

evaluate Nu and Nv according to (19.46) and substitute them into (19.63)6.
The internal wave problem ((19.63)4;5;6;7) is then solved in a second step.

Structurally, this is analogous to the two-layer case studied before.
The above calculations have not been used in a concrete computation for the

evaluation of the effects of the barotropic motion in the baroclinic motion due to
TWs. However, the computations have nevertheless been useful from a viewpoint
of measurements. The scale analysis has shown for an arbitrary stratification that
the barotropic–baroclinic coupling is weak in the sense that it is one-sided from the
barotropic processes to the baroclinic processes, but not vice versa. This implies
that traces of TWs can be observed in isotherm–depth–time series and compared
with solutions of the barotropic TW-equation. The solutions of the baroclinic part
of the equations do not have to be determined to perform a comparison between
theory and measured quantities.

19.5 Discussion

In this chapter, an introduction was given to topographic Rossby waves. The starting
point was the linearized wave equation for barotropic oscillations in a rotating con-
tainer of which the vertical motion of the free surface was suppressed by the rigid
lid assumption. The emerging equation subject to the no flux boundary condition at
the circular container wall was solved for a power law radial bathymetry profile. It
led to the following qualitative results of the associated eigensolutions:

12 This argument can even be made more forceful by recognizing that according to (19.58)3 an
estimate for H1 is 10 m .n D 1/ so that 
1 D 10�3 � 104=102 D 10�1. Consequently,
one baroclinic–barotropic coupling term is about a factor of 100 larger than the corresponding
barotropic–baroclinic term.
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� Countable subinertial eigenfrequencies, whose values depend significantly upon
the bathymetric variation. With the variable depth profile tending to constant
depth the eigenfrequency (-period) approaches zero (infinity).

� The eigenmodes, expressed as graphs of streamlines, consist of systems of gyres
which rotate counter clockwise (on the N. H.) and may for elongated basins also
structurally change within a period.

� The fundamental mode consists of a pair of gyres; its scrutiny showed that the
horizontal velocity vector close to the container centre rotates counter clockwise
(on the N. H.), whilst the horizontal velocity vector at points close to the shore
rotates in the opposite direction.

These results are in conformity with observations of velocity measurements in
Southern Lake Michigan.

A similar analysis for the Northern basin of Lake of Lugano indicated that
whole basin eigenmodes may not be the sole qualitative structure of TW-modes
in elongated basins. As shown by Trösch, whose finite element bay mode solutions
contrasted with Mysak et al.’s elliptical whole-basin solutions, TW eigensolutions
could also arise as bay resonances. It could not be decided, which of the two mode
types were suggested by the Lake of Lugano data.

Analysis of the two-layer equations for a small depth epilimnion and a deep
hypolimnion (Gratton scaling) showed that the barotropic–baroclinic scaling is one-
sided in this case to the extent that the barotropic TW drives the baroclinic response
and not vice versa. This implies that TW signals may be extracted from thermistor
chain data. That this qualitative behaviour prevails for a general vertical density
profile was corroborated by employing a spectral analysis based on the application
of the principle of weighted residuals.

Appendix

In this Appendix, we demonstrate how (19.51) can be reduced to a set of spa-
tially two-dimensional equations by using a vertical shape function expansion of
the velocity, pressure and density fields as given in the formulae (19.52), in which
f�n; �n;  n; �ng; n D 1; 2;N are a set of known functions of the independent vari-
able z=H ; through H D H.x; y/ they depend implicitly on x and y. It will be
explained in the main text, from which function set they will be chosen. The coef-
ficient functions Un; Vn;Wn; Pn; Rn depend on the spatial horizontal coordinates
only and on the time. It is our goal to use the Principle of weighted residuals to
deduce field equations for these quantities.

Let hhfm; gnii and hfm; gni be the following inner products:

hhfm; gnii D
0Z

�H
fm

� z

H

�
gn

� z

H

�
dz;

(19.65)

hfm; gni D
1Z

0

fm.�/gn.�/d�:
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They can be connected by the transformation

z D H.� � 1/; dz D Hd�: (19.66)

We mention that it would be more adequate to define hh; ii as the integral from
z D �H to z D � and dropping terms involving � afterwards. This definition will
be used in the transformation of (19.75) below.

With the aid of (19.65) and (19.66) the reader may easily deduce the following
properties:

hhfm; gnii D H hfm; gni;
��

dfm
dz

; gn

��
D
�

dfm
d�

; gn

�
;

(19.67)��
@fm

@x
; gn

��
D �@H

@x

�
dfm
d�

.� � 1/; gn

�
;

��
@fm

@y
; gn

��
D �@H

@y

�
dfm
d�

.� � 1/; gn

�
:

Consider now the momentum equations (19.51)1;2 first. Substitute the expansions
(19.52) for Qu; Qv and p0 and form the following inner products: hh 19.511;2; ı�Mm ii;
this yields

AMmn

�
@Un

@t
� f Vn

�
� 1

�?

@H=@x

H
BmnPn C Cmn

�?

@Pn

@x

D
�
g
@�

@x
� �1

�?H

	
DM
m ;

(19.68)
AMmn

�
@Vn

@t
C f Un

�
� 1

�?

@H=@y

H
BmnPn C Cmn

�?

@Pn

@y

D
�
g
@�

@y
� �2

�?H

	
DM
m ; .m D 1; 2; 3; : : : ; N /;

where

AMmn D hı�Mm ; �ni;
Bmn D

�
ı�Mm ; .� � 1/

d 

d�

�
�
�
1; .� � 1/d n

d�

�
h1; ı�Mm i;

(19.69)
Cmn D hı�Mm ;  ni � h1;  nih1; ı�Mm i;
DM
m D h1; ı�Mm i:

Here and henceforth, functions carrying a prefix ı are weighting functions in the
expansions (19.52). Moreover, in (19.68) summation over repeated indices n is
understood. In an analogous manner, (19.51)4;5 can be treated: the inner products
hh (19.51)4; ı�Vmii and hh (19.51)5; ı�Vmii are formed and yield the equations
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Emn
@Rn

@t
� �?N

2
max

g
FmnWn D 0;

(19.70)
Gmn

@Wn

@t
C g

�?
EmnRn C 1

�?H
HmnPn D 0;

.m D 1; 2; 3; : : : ; N /;

in which

Emn D hı�Vm ; �ni; Gmn D hı�Vm ; �ni;
Fmn D hı�Vm ; ON 2�ni; Hmn D hı�Vm ; d n

d� i;
(19.71)

and where

ON 2 D ON 2.�/ D N 2.�/

N 2
max

D �
d�0
dzˇ

ˇ
ˇ̌d�0

dz

ˇ
ˇ
ˇ̌
max

: (19.72)

Clearly, in order that these relations are meaningful, the boundary conditionsp0.� D
1/ D 0 must be satisfied. Hence we must request

 n.� D 1/ D 0: (19.73)

With our choice of  n this condition will be nearly satisfied. Equations (19.70) can
be combined to yield the single equation

Gmn
@2Wn

@t2
CN 2

maxFmnWn C Hmn

�?H

@Pn

@t
D 0;

.m D 1; 2; 3; : : : ; N /:

(19.74)

Equations (19.68) and (19.74) are 3N equations for the unknowns Un, Vn, Pn, Wn.
The remaining N equations follow from the continuity equation (19.51)3. Because
kinematic boundary conditions at the upper and lower surfaces must be incorporated
when employing the Principle of weighted residuals, we shall go into greater details.
Forming hh (19.51)3; ı�Cm ii, it follows that

hhQux; ı�Cm ii C hhQvy; ı�Cm ii C hhwz; ı�
C
m ii

D
�
Hx

H
Nu C Hy

H
Nv
	

hh1; ı�Cmii:
(19.75)
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Using the definition of the inner product hh; ii, we may easily prove that.13

hhQux; ı�Cm ii D @

@x
hhQu; ı�Cm ii �

**

Qu; @ı�
C
m

@x

++

� Quı�Cm
ˇ̌
ˇ
zD�

@�

@x
�Quı�Cm

ˇ̌
ˇ
zD�H

@H

@x
;

hhQvx; ı�Cm ii D @

@y
hhQv; ı�Cm ii �

**

Qv; @ı�
C
m

@y

++

(19.76)

� Qvı�Cm
ˇ
ˇ
ˇ
zD�

@�

@y
�Qvı�Cm

ˇ
ˇ
ˇ
zD�H

@H

@y
;

hh Qwz; ı�
C
m ii D � hhw; ı�Cmz

ii C wı�Cm

ˇ
ˇ
ˇ
zD� � wı�Cm

ˇ
ˇ
ˇ
zD�H :

With these expressions the weighted continuity statement (19.74) takes the form

@

@x
hhQu; ı�Cm ii C @

@y
hhQv; ı�Cm ii

�
**

Qu; @ı�
C
m

@x

++

�
**

Qv; @ı�
C
m

@y

++

�
**

w; ı�Cmz

++

� ı�Cm .�/
��

u�x C v�y � w
�

zD� � Nu�x � Nv�y
�

� ı�Cm .�H/
��

uHx C vHy � w
�

zD�H � NuHx � NvHy
�

D
�
Hx

H
Nu C Hy

H
Nv
	

hh1; ı�Cmii: (19.77)

This equation is written down in full in order to demonstrate incorporation of the
boundary conditions. The term in brackets in the third line equals �@�=@t and that
in the fourth line vanishes. After this substitution we may ignore the two terms
involving @�=@t because the rigid-lid assumption is made. Finally, the non-linear
term Nu�x; Nv�y may be omitted because the non-linearities have consistently been
dropped in earlier equations. Thus, (19.77) reduces to

@

@x
hhQu; ı�Cm ii C @

@y
hhQv; ı�Cm ii �

��
Qu; @ı�

C
m

@x

��

�
��

Qv; @ı�
C
m

@y

��
� hhw; ı�Cmz

ii

D �NuHx C NvHy
� � 1
H

hh1; ı�Cmii � ı�Cm .�H/
�
: (19.78)

13 Here, we use the definition hhf; gii D R �
�H fgdz.
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Substituting the expansion (19.52) and making use of the formulae (19.67) at
appropriate places yields the equation

ACmn

�
@Un

@x
C @Vn

@y

�
�Kmn

�
Hx

H
Un C Hy

H
Vm

�
�Lmn

Wn

H

D
�

NuHx
H

C NvHy
H

	h
DC
m � ı�Cm .� D 0/

i
; .m D 1; 2; 3; : : : ; N /; (19.79)

in which

ACmn D hı�Cm ; �ni;
DC
m D hı�Cm ; 1i; (19.80)

Kmn D
�
.� � 1/

d�n
d�

; ı�Cm

�
� ı�Cm .0/ı�

C
n .0/;

Lmn D
�
�;

dı�Cm
d�

�
:

This completes the derivation of the baroclinic equations. They are: (19.68), (19.74)
and (19.79) and form 4N partial differential equations for the baroclinic variables
Un; Vn;Wn; Pn; needless to say that the barotropic quantities Nu; Nv; � are regarded as
being prescribed or governed by (19.45) or (19.57) in the main text.
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Chapter 20
Topographic Rossby Waves in Basins
of Simple Geometry

20.1 Motivation

In the last chapter, topographic Rossby-waves on the f -plane were studied with
emphasis of their mathematical description as extracted from the governing equa-
tions of fluid mechanics. Their possible observation by synoptic measurements was
also discussed: they pertain to horizontal velocity and temperature-time series from
moored thermistor chains and current recorders. It was shown by appropriately scal-
ing the adiabatic Boussinesq approximated equations that in lakes with shallow
epilimnion and deep hypolimnion – more specifically lakes which satisfy the so-
called Gratton-scaling – the barotropic-baroclinic coupling is one-sided from the
barotropic to the baroclinic TWs but not vice versa. In other words, if a topographic
wave or a free or wind-induced oscillation in a lake, whose spectral component can
be associated with a barotropic topographic wave mode, is acting in a lake, then this
spectral component exerts a sizeable effect on the vertical baroclinic water move-
ment which is (in principle) measurable in isotherm–depth–time series. Conversely,
a baroclinic wave signal has a negligible influence on the barotropic TW response.
This implies that for all those lakes whose geometry and stratification falls into the
range of Gratton’s scaling – most Alpine lakes satisfy this scaling – the spectral
structure can be found from the spectral analysis of the TW-operator, yet observa-
tional inferences can be drawn not only from cross-correlation analyses of moored
current meters but equally also from such analyses involving isotherm–depth or
temperature–time series.

This fact, which was proved in the last chapter, is the reason why the study
of solutions of the linear barotropic TW-equation is important, because it reveals
insight into the physics of these processes. This is what shall be done in this chapter:
Solutions to the barotropic TW-equation will be discussed for basins with various
different geometries. By presenting an almanac of such solutions for circular and
elliptic basins, for channels and shelf bathymetries, a first qualitative understanding
of TW-modes is established. However, a deeper understanding can only be gained
when rectangular basins with various bathymetries will have been studied in detail.

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_20, c� Springer-Verlag Berlin Heidelberg 2011
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20.2 Topographic Wave Equation in Curvilinear
Orthogonal Coordinate Systems

Because in subsequent sections the TW-equation will be used when being referred
to various coordinate systems, we shall first present it in an arbitrary orthogonal
coordinate system.

20.2.1 Preparation

We restrict our considerations to orthogonal coordinate systems x D .x1; x2; x3/

which have the property that their metric tensor g has diagonal form, e.g. in R3

g D
2

4
J1 0 0

0 J2 0

0 0 J3

3

5 : (20.1)

The arc element dl can be expressed using

dl D gdx; (20.2)

where dx D .dx1; dx2; dx3/ is the increment vector and insertion of (20.1) into
(20.2) yields

dl D .J1dx1; J2dx2; J3dx3/: (20.3)

Table 20.1 collects the components of the metric tensor for frequently used orthog-
onal coordinate systems.

We recall the TW-equation and the barotropic velocity field in the coordinate-
invariant formulation

@

@t

�
r �

�r 
H

		
C Ok �

�
r � r

�
f

H

		
D 0; u D 1

H
. Ok � r /; (20.4)

Table 20.1 Coordinate systems often used in lake hydrodynamics

Coordinates .x1; x2; x3/ J1 J2 J3

Cartesian .x; y; z/ 1 1 1
Cylindric .r; �; z/ 1 r 1
Elliptic .�; �; z/ J J 1 where J D a.sinh2 � C sin2 �/1=2

Naturala .s; n; z/ J 1 1 where J D 1�K.s/ � n
aK.s/ is the curvature as a function of arc length s.
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where Ok is a unit vector acting in the direction against gravity. (For the derivation,
see Sect. 11.3.) Defining the two operators

EŒ � WD r �
�r�
H

	
;

(20.5)

J
�
 ;
f

H

�
WD Ok �

�
r � r

�
f

H

		
D @ 

@x

@

@y

�
f

H

	
� @ 

@y

@

@x

�
f

H

	
;

Equation (20.4) may also be written as

T Œ � WD @

@t
EŒ �C J

�
 ;
f

H

�
: (20.6)

In (20.5)2, x and y are Cartesian coordinates, whilst the representation involving Ok
is coordinate invariant.

To obtain these equations in the different coordinate systems the vector dif-
ferential operators need be written in curvilinear coordinates. In the orthogonal
coordinate system whose arc element has the form (20.3), the gradient-, divergence-
and curl-operators are given by

grad u D
�
1

J1

@u

@x1
I 1
J2

@u

@x2
I 1
J3

@u

@x3

	
;

div v D 1

J1J2J3

�
@

@x1
.J2J3v1/C @

@x2
.J1J3v2/C @

@x3
.J1J2v3/

	
;

curl v D 1

J1J2J3

�
J1

@

@x2
.J3v3/� J1

@

@x3
.J2v2/I (20.7)

J2
@

@x3
.J1v1/ � J2 @

@x1
.J3v3/I J3 @

@x1
.J2v2/ � J3 @

@x2
.J1v1/

�
;

where u D u.x/ is a scalar and v D v.x/ is a vector in R3. A derivation can e.g. be
found in Pearson [30].

Problem 20.1 Using the above representations of the operators E and J , and the
grad and div operators in (20.7) show that in the orthogonal curvilinear coordinates
x1, x2 one has

EŒ � D 1

J1J2

�
@

@x1

�
J2

J1

1

H
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@x1

	
C @

@x2

�
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J2

1

H
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@x2

	�
;

(20.8)
J
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f
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D 1

J1J2

�
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@x2

�
f

H

	
� @ 

@x2

@

@x1

�
f

H

	�
:

Thus, T Œ � D 0, expressed in any orthogonal curvilinear coordinate system, is
given by
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D 0; (20.9)

provided the curvilinear coordinates x1, x2 are not time dependent.

The TW-equation satisfies the following properties:

� WheneverJ D 0, no waves can propagate. Any non-steady solution is due to the
presence of the rotation of the Earth and the variation of the bathymetric profile.

� The boundary value problem

T Œ � D 0 in D;
 D 0 at @D (20.10)

is scale invariant, i.e. changing x; y by the scale ŒL� and the depth by the scale
ŒH � leaves the equations (20.10) unchanged. This property is due to the rigid lid
assumption; it holds as long as ŒL� is small in comparison to the external Rossby
radiusR D p

gŒH�=f � 500 km.
� The TW-equation is invariant under conformal mappings. Indeed, if z D x C iy

and w D uC iv are complex valued and z D z.w/ is a holomorphic function, then

jdzj2 D .dx/2 C .dy/2 D
ˇ̌
ˇ
ˇ

dz

dw

ˇ̌
ˇ
ˇ

2

..du/2 C .dv/2/;

implying J1 D J2 in (20.9). This means that the TW-equation (20.9) is inde-
pendent of the scale factors. This property was pointed out and used by Johnson
[14, 15].

This invariance property of the TW-operator under conformal mappings is a use-
ful property, as a large number of solutions to special geometries can be generated
from known solutions. This will be pointed out below in a number of occa-
sions. In this way, exact solutions of the TW-equation in complex geometries
can be constructed which may be used to test numerical software for the TW-
operator. From a physical viewpoint this invariance property is, however, not as
useful as one might surmise, because the bathymetry is equally transformed with
the conformal mapping procedure. Moreover, the conformal mapping technique
does not generate characteristically new solutions. For instance, a TW-mode with
basin wide structure in one domain will be stretched and bent in the transformed
domain, but it will still be basin-wide.
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20.2.2 Cylindrical Coordinates

These coordinates are often used in problems which exhibit some rotational sym-
metry. The coordinates are .r; �; z/ which are related to the Cartesian system by the
formulae

x D r cos�;

y D r sin �; r � 0I 0 � � � 2�

z D z:

The arc element is given by

dl D .dr; rd�; dz/;

as anticipated in Table 20.1. Applying (20.7) to (20.4) yields

� r
H
 t r

�

r
C
�
1

rH
 t�

	

�

C  r

�
f

H

	

�

�  �
�
f

H

	

r

D 0 (20.11)

as the TW-equation in cylindrical coordinates. Then

u D
�

� 1

Hr
 � ;

1

H
 r

	
:

20.2.3 Elliptical Coordinates

The coordinates of the elliptic cylinder system are .�; �; z/, and for fixed z the lines
� D const are confocal ellipses whereas the lines � D const: are hyperbolas,
see Fig. 20.1. The parameter a denotes the position of the foci, and the Cartesian
coordinates are calculated from .�; �; z/ by

x D a cosh � cos �;

y D a sinh � sin �; � � 0; 0 � � � 2� (20.12)

z D z:

The shore line of the elliptic basin is given by

x2

.a cosh �S /2
C y2

.a sinh �S /2
D 1;

which is an ellipse with the semi-axesA and B and an aspect ratio (width to length)
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Fig. 20.1 Elliptic cylinder coordinates .�; �/. The quantities O� and O� are unit vectors in the direc-
tions of increasing � and �. We refer to � and � as radial and angular coordinates, respectively
(from [27]). c� Taylor & Francis, http://www.informaworld.com, reproduced with permission

r D B

A
D a sinh �S
a cosh �S

D tanh �S : (20.13)

The first two diagonal elements of the metric tensor are equal and read

J � J1 D J2 D a.sinh2 � C sin2 �/1=2;

whilst

J3 D 1:

Thus the TW-equation in elliptic coordinates takes the form
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 t�
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H
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f
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�  �
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f
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�

D 0: (20.14)
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Due to the equality J � J1 D J2 the equation for the stream function is indepen-
dent of J so that, formally, the same equation as in a Cartesian system is obtained.
However, the metric factor enters the formula for the velocity field

u D
�

� 1

JH
 � ;

1

JH
 �

	
: (20.15)

20.2.4 Natural Coordinates

For the developments in subsequent sections we need the TW-equation also referred
to a natural coordinate system. With this, it is particularly convenient to describe
elongated and curved lake basins. We choose an orthogonal network which spans
the elongated domain. The basis for it is an axis, which follows more or less the
thalweg1 of the lake. The arc length s along this axis forms the first coordinate of
the system.

In view of the restriction to elongated narrow lakes it is possible to choose a
straight n-axis; so, the system is curved only in the s-direction, see Fig. 20.2a. In
order to define the lake domain uniquely in terms of these coordinates, the radius
of curvatureR.s/ must exceed half the width of the lake B.s/, R.s/ > B.s/=2. Let

n

z

s

y

z
x

a

gz

gn

P ( x , y )

( x ( s ) , y ( s ) )
∼∼

gs

s

α
α

b

Fig. 20.2 (a) Natural coordinate system .s; n; z/ in the lake basin with unit vectors Os, On and Ok. On
points to the positive centre of the curvature along s; (b) Basis vectors in the natural coordinate
system (from Stocker and Hutter (1985) [37]). c� Versuchsanstalt für Wasserbau, Hydrologie und
Glaziologie an der ETH Zürich, reproduced with permission

1 The thalweg of an elongated lake is the line which follows the deepest points of the basin cross
sections. For simple shapes and simple bathymetries (ellipses with parabolic bottom surface, rect-
angles, etc.) the thalweg can readily be defined. For arbitrary basins the thalweg cannot be defined
this way. In those cases, the lake axis is a line roughly defining the middle between opposite shores.
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the lake axis be given by a parameter representation ( Qx.s/; Qy.s/) within a Cartesian
system as shown in Fig. 20.2b. The coordinates of an arbitrary point P are then
given by

x D Qx.s/� n sin ˛.s/; y D Qy.s/C n cos˛.s/;

provided the n-axis is chosen to be straight. The set of basis vectors gs, gn and gz

at point P can be expressed in the form

gs D
�

dx

ds
;

dy

ds
; 0

	
; gn D

�
dx

dn
;

dy

dn
; 0

	
; gz D .0; 0; 1/;

which is easily simplified to the form

gs D . Qx0 � nK cos˛; Qy0 � nK sin ˛; 0/;
gn D . � sin ˛; cos˛; 0/;

gz D . 0; 0; 1/;

using as definition for the curvatureK D d˛=ds. With the aid of Fig. 20.3 it follows
that the arc element dl takes the form

dl D .J ds; dn; dz/; J D 1 �Kn:

We finally obtain the TW-equation and the velocity field in natural coordinates as

�
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JH
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(20.16)

subject to the boundary condition  D 0 along the lake shore.

Fig. 20.3 Arc element in a
natural coordinate system
(from [37]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission

s

s + ds

ds

s

n

dn

n + dn

dR (s)



20.3 An Almanac of Analytical Solutions 407

20.2.5 Cartesian-Coordinate Correspondence Principle

It was mentioned that the TW-equation in elliptical coordinates is formally the same
as that in Cartesian coordinates. Because also the boundary conditions of no flux
are the same a correspondence principle can be applied to construct solutions in
elliptical coordinates from those that are already known in Cartesian coordinates,
of course, for the correspondence principle to apply the bathymetric functions in
the two systems must also correspond. For instance, TW-solutions in hyperbolic
channels can easily be deduced from corresponding solutions in straight channels
and TWs in basins which are bounded by confocal ellipses and hyperbolas can be
deduced from corresponding TW-solutions in rectangles.

Obviously, this correspondence principle follows from the invariance of the TW-
operator under conformal mapping transformation. Indeed, the Cartesian-elliptic
coordinate transformation is a conformal mapping.

20.3 An Almanac of Analytical Solutions

Having presented the TW-equation in the last section referred to several orthogonal
coordinate systems, we proceed now to construct and physically interpret explicit
solutions. The intention is to extract through this analysis the physical properties of
TWs and to see in what respect the interpretations anticipated in the last chapter can
be substantiated.

We shall discuss (1) circular basins with a topography being a function of the
radial distance only (parabola, power-law), (2) elliptic basins with a parabolic bot-
tom and an exponential shelf profile, (3) infinite channels and shelves and (4) TWs
around an elliptical island. All these domains are characterized by the fact that the
isobaths follow one coordinate line of the coordinate system, so that ordinary dif-
ferential equations emerge. As a result the mathematical tool is solving two-point
boundary-value problems.

20.3.1 Circular Basin with Parabolic Bottom

Following Lamb ([17] Sect. 212) we start our analysis of TWs in circular basins
with the dimensionless equation (see also (11.24))

rH � .hr�t /C J .h; �/ �
�
L

R

	2
L�t D 0: (20.17)

Because of the last term on the left-hand side, (20.17) describes TWs and gravity
waves; the equation is scale dependent through this last term and allows in principle
to estimate, how much barotropic gravity waves affect TWs. Here all quantities are
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dimensionless exceptL and R, a typical length and the Rossby radius, respectively.
In polar coordinates, (20.17) may be written as

.h�rt /r C 1

r

�
h

r
�	 t

	

	

C h

r
�rt C hr

r
�	 � h	

r
�r �

�
L

R

	2
L�t D 0; (20.18)

0 < r < 1:

The boundary conditions (no mass flux at the outer boundary, finiteness of � at the
origin) are

� D finite, at r D 0I �r D 0; at r D 1: (20.19)

Consider a radial topography,

h D h.r/ (20.20)

and assume an azimuthal wave solution of the form

� D Z.r/exp Œi.m� � �t/�; (20.21)

travelling counterclockwise around the basin; � D !=f is the dimensionless fre-
quency and m the azimuthal wavenumber. With (20.20) and (20.21), the boundary
value problem (20.18) and (20.19) assumes the form

.hZ0/0 C h

r
Z0 �

�
m2

r2
hC m

�

h0

r
C 1 � �2

.R=L/2

�
Z D 0; 0 < r < 1;

Z D finite; r D 0I Z0 D 0; r D 1:

(20.22)

Primes denote differentiations with respect to r . From this equation the solutions
presented by Lamb [17], Wenzel [42] and Saylor, Huang and Reid [34] can be
obtained as special cases.

For the parabolic bottom profile,

h D 1 � r2;

Z.r/ can be expressed in terms of a hypergeometric polynomial F ([17, Sect. 212],
[1, 22])

Z.r/ D Amj r
mF.mC j I 1 � j I mC 1I r2/; (20.23)

m D 0; 1; 2; : : : ; j D 1; 2; 3; : : : ;

in which Amj is a free amplitude and � satisfies the frequency relation
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�2 � 1
.R=L/2

C 2m

�
D 2Œ2j.mC j � 1/�m�; (20.24)

m D 0; 1; 2; : : : ; j D 1; 2; 3; : : : :

The frequency occurs in third order which corresponds to three wave types, two first
class and one second class wave. Here, we concentrate on second class waves and
will therefore exclude the case m D 0. Equation (20.24) is then equivalent to

1

�
D
�
2j.mC j � 1/

m
� 1

�
� �2 � 1
2m.R=L/2

:

The last term on the right-hand side represents the influence of the size effect via
the external Rossby radius R and a length scale L. An order of magnitude for R is
500 km and an upper bound for Lmay be 200 km (Great Lakes), so 2.R=L/2 � 12.
The minimum value of the term in curly brackets is l, which suggests that the two
first class modes entering via the size dependent term may be suppressed. Approxi-
mately, we may write, after neglection of the inertial motion (� D 1 for j D 1) and
transformation n D j � 2, n D 0; 1; : : :

1

�
D 2.nC 2/.mC nC 1/

m
� 1; (20.25)

m D 0; 1; 2; : : : ; n D 0; 1; 2; 3; : : : ;

We thus obtain the approximate frequencies and periods of Table 20.2. The real
parts of the surface elevation � and the mass transport stream function  for the
mode .m; n/ D .1; 0/ are given by

�.r; t/ D Ar
�
1� 3

2
r2
�

cos.� � �t/;
(20.26)

 .r; t/ D Ar
�
1 � r2

� �
1 � � � 3

2
.1 � 3�/r2� cos.� � �t/:

The streamlines of this solution and those of the (1,1)- and (2,0)- modes are
sketched in Fig. 20.4. Mode structures are shown at t D 0; T=8; T=4 (from top to
bottom), where T is the period. The simplest fundamental mode has a period of
118 h and consists of two basin-wide gyres, a cyclonic and an anti-cyclonic vor-
tex. The entire system of gyres rotates counterclockwise (on the N.H.) around the

Table 20.2 Frequencies and periods of TWs in a circular basin with parabolic bottom profile
ignoring the size dependent term in (20.24) and computed with f D 2�=16:9 h

m n D 0 n D 1 n D 2

� T [h] � T [h] � T [h]

1 0.143 118 0:0588 287 0:323 524
2 0.200 84.5 0:0909 186 0:0526 321
4 0.250 67.6 0:125 135 0:0769 220
1 0.333 50.7 0:200 84.5 0:143 118
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t = T/4

t = T/8

t = 0

m = 1, n = 0
T = 118h

m = 1 , n = 1
T = 287h

m = 2 , n = 0
T = 84,5h

Fig. 20.4 Contour lines of the mass transport stream function of the three modes with the simplest
wave structure. The gyres rotate anticlockwise (on the Northern hemisphere) around the basin
(from [39]). c� Springer, Berlin, reproduced with permission

basin. If we imagine a current meter positioned at the centre position, then it is seen
from the streamlines in the three panels on the left that the current vector rotates in
the anticlockwise direction in this motion. On the other hand, for a current meter,
moored close to the shore line, one may infer from the same three panels that near
shore currents rotate in the clockwise direction. This behaviour can also be corrob-
orated by constructing the horizontal current tracks by progressive vector diagrams.
This is exactly the current pattern described by Saylor et al. [34] in Southern Lake
Michigan, but the period of 118 h is too large to fit the 100 h, inferred from the
measurements. An improved fit to the observations can be obtained by adjusting the
topography accordingly. This will be shown below.

The next mode (right column in Fig. 20.4) has a period of T D 84:5 h and four
basin filling gyres which are separated by a pair of perpendicular straight lines which
rotate cyclonically around the basin. It follows easily by inspection of Fig. 20.4 that
the horizontal current in the centre of the basin must vanish. However, apart from
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this ‘stagnation point’, the current rotates counterclockwise in the lake interior, but
clockwise close to the shore circle. The four gyres have alternating orientation
of rotation. From the complexity of the motion of this still rather simply struc-
tured current pattern it easily follows that identification of this mode from moored
instruments must be difficult.

Complexity further increases for mode (1,1) in the middle column of Fig. 20.4.
Now, T D 287 h, and besides one radial separation line, there exists also a sep-
arating circle. A double pair of counter rotating gyres circles cyclonically around
the basin, performing a complete revolution in 287 h. At the lake centre the current
rotates counterclockwise, whilst close to the outer shoreline this rotation is clock-
wise. Here, it must become very difficult to identify this current structure by field
measurements.

In Lake Michigan, the mode structure that was observed is the (1, 0)-mode
(Fig. 20.4, left column). It will now be shown that the period of this mode can be
varied by accordingly changing the radial profile of the bathymetry.

20.3.2 Circular Basin with a Power-Law Bottom Profile

The following analysis is due to Saylor et al. [34] who investigated the influence
of topography gradients on the periods of topographic wave motion. They used the
profile

h.r/ D .1 � rq/; 0 � r � 1; q > 0: (20.27)

Varying the exponent q yields an entire sequence of profile geometries with strong
and weak topography gradients. For q D 1 the radial depth profile is conical, for q D
2 it is parabolic, for q > 2 it becomes blunt and for q ! 1 it approaches constant
depth. On the other hand, for 0<q� 1 the profile has a vertex at the centre and
(except for q D 1) a convex curvature similar to the exponential profile often used
in shelf wave analysis. With  D  .r/exp .i.m� ��t//, use of the TW-equation in
cylindrical coordinates, (20.11), and a trial solution

 .r/ D Armh2.r/; (20.28)

(which satisfies the boundary conditions) the depth profile must fulfil the differential
equation

h00 C 3mC 2 � m



2r
h0 D 0: (20.29)

Equation (20.27) is compatible with this provided that

� D m

3mC 2q
; (20.30)
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Table 20.3 Topography effect on the dimensionless eigenfrequency of the three first modes in the
model of Saylor et al. [34], according to (20.30) using f D 2�=16:9 h

Profile q m D 1 m D 2 m D 3

f=! T [h] f=! T [h] f=! T [h]

0.5 4 67.6 3.5 59.2 3.333 56.3

1.0 5 84.5 4 67.6 3 50.7

2.0 7 118.3 5 84.5 4 67.6

3.0 9 152.1 6 101.4 5 84.5

1 0 1 0 1 0 1

which is the frequency–wavenumber relation for the prescribed topographic profile.
Table 20.3 lists the frequencies for a sequence of topography parameters q and the
wavenumbers m D 1; 2; 3. The table indicates that the topography has a dominant
effect on the periods. The solutions

 .r/ D Arm.1 � rq/; � D m

3mC 2q

embrace all those motions whose stream function  has no radial nodal circle.
Hence, they contain in particular the solutions for the parabolic depth profile as
shown in the left and right columns of Fig. 20.4.

The above solutions have been used to explain the observations in Southern
Lake Michigan. Figure 19.3 in the last chapter displays the bathymetric profile
for Southern Lake Michigan and power law profiles with q D 1 and q D 2 fit
the mean bathymetry pretty well. According to Table 20.3, these two profiles yield
mode periods of 84.5 and 118.3 h. A somewhat better fit is obtained with a profile
q D 1C "; " D 0:35 and yields f=! D 5:7 and T D 96:3 h.

Wenzel [42] made an attempt to interpret the wind-driven currents in the Born-
holm basin of the Baltic Sea as obtained as a free TW (see Fig. 19.11 in the previous
chapter). He inferred from Fig. 19.11 and his own computations that the free TW
within the Bornholm basin must be between 11 and 14 days. Preliminary calcula-
tions indicated that the .n;m/ D .2; 2/mode will generate a period between 11 and
14 days. Wenzel approximated the mean bathymetry of the Bornholm basin with
a radial depth profile parameterized as a tenth degree polynomial and computed
the period for this (2, 2)-mode to be 12.6 days. The radial distribution of the free
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r

ζ [cm]
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0

-0.05

0.5 1

Fig. 20.5 Radial cross-section of the surface elevation of the (2,2)-mode in a circular basin with a
depth profile represented by a polynomial of degree 10 (from [42])

surface elevation corresponding to Wenzel’s polynomial of tenth degree is shown in
Fig. 20.5.

20.3.3 Elliptic Basin with Parabolic Bottom

Most lakes are long in one direction and not well approximated by circles. It is
interesting, therefore, to see how the periods and mode structures of TWs depend
on the aspect ratio (i.e. the width to length ratio) of the basins.

We consider the TW-equation in dimensionless form and in Cartesian coordinates

.h�1�xt /x C .h�1�yt /y � h�1x �y C h�1y �x D 0; inD;
� D 0; on @D; (20.31)

and choose a parabolic depth profile

h D 1
2
..1 � a/x2 C .1C a/y2/� 1; (20.32)

where A.h/ D p
2.hC 1/=.1� a/ and B.h/ D p

2.hC 1/=.1C a/ are the semi-
axes of the elliptic depth-contours. These have all identical aspect ratios

r D B.h/

A.h/
D
r
1 � a

1C a
; a WD 1 � r2

1C r2
; (20.33)

and the profile has a maximum depth j h jmaxD 1. The basin is bounded by the zero
depth contour line, an ellipse with A.0/ and B.0/ as semi-axes.

The following analysis is due to Ball [3] . With (20.32) and the transformation

 D h�2�
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it is straightforward to show that (20.31) takes the form

4 t C 3
�
.1 � a/x xt C .1C a/y yt

�C h. xxt C  yyt /

C .1 � a/x y � .1C a/y x D 0; for h < 0;

 D finite; for h D 0:

(20.34)

Note that the boundary condition � D 0 along @D necessarily requires that  is
bounded on @D. The velocities are given by

u D �h�1.h2 /y D �2hy � h y ;
v D h�1.h2 /x D 2hx � h x :

The advantage of the introduction of the stream function is that (20.31) transforms
into a differential equation with the following special property. Suppose,  is an
even (odd) polynomial of degreeN , then the differential equation (20.34) generates
again an even (odd) polynomial of the same degree.

Taking advantage of this fact, we consider first a polynomial with degreeN D 0,
i.e. a constant  00 which obviously satisfies (20.34). This is a simple steady gyre
with the velocity field

.u; v/ D 2 00.�.1C a/y; .1 � a/x/;

representing an elliptical rotation with constant vorticity 4 00. Maximum speeds
are experienced along the shore-line.

More insight provides the choice of a homogeneous odd polynomial of degree
N D 1, the linear Ball-mode:

 1 D  10.t/x C  01.t/y: (20.35)

Substitution into (20.34) yields the coupled system

.7 � 3a/ P 10 C .1 � a/ 01 D 0;

.7C 3a/ P 01 � .1C a/ 10 D 0;
(20.36)

with . /� � d=dt . Assuming a harmonic time evolution e�i
t for both coefficient
functions, (20.36) allows nontrivial  10 and  01 if and only if2

�2 D 1 � a2
49 � 9a2 : (20.37)

2 With  ij D  
.0/
ij e�i�t (i; j D 0; 1), (20.36) can be transformed to a homogeneous linear system

for  .0/
ij which possesses a solution provided that its determinant vanishes. Equation (20.37) makes

this determinant to vanish.
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Table 20.4 Frequencies and periods of the linear and quadratic Ball-modes for various aspect
ratios r . The periods are calculated with f D 2�=16:9 h

r a Linear Quadratic
� T [h] � T [h]

1.0 0 0.143 118 0.200 84.5
0.67 0.385 0.134 126 0.190 88.8
0.50 0.600 0.118 143 0.173 97.7
0.33 0.800 0.091 185 0.139 121
0.1 0.980 0.031 542 0.051 335
0 1 0 1 0 1

This relation describes the dependence of the frequency on the aspect ratio param-
eter r (via a, see (20.33)). Table 20.4 lists the periods obtained with (20.37).
Obviously, a D 0 recovers the solution for the circle with parabolic bottom pro-
file. Smaller a results in smaller � ; consequently, the more elongated the ellipses
become the larger will be the periods. In view of observational results for Lake of
Lugano reported in Chap. 19, this is unfortunate as these lakes are long and narrow,
and measurements point at oscillations with periods of 3–4 days. This is smaller
than the 118 h obtained as a lower bound for the fundamental linear Ball mode.

The linearity of (20.35) implies that the line  1 D 0 which separates vortices
of different signs is a straight line which, owing to (20.36), rotates anticlockwise
around the basin. Figure 20.6a shows the time evolution of this mode. The structure
of the wave pattern i.e. the number of gyres is conserved in the course of a wave
cycle. This is in accord with the wave patterns found in the circular basin.

To obtain the next higher mode, we select an even polynomial of degreeN D 2.

 2 D  00 C  20x
2 C  11xy C  02y

2; (20.38)

with the time dependent coefficient functions  mn.t/. Equation (20.38) character-
izes the quadratic Ball-mode. Substitution into (20.34) and equating equal powers
of x and y, respectively, yields the system

.11� 7a/ P 20 C .1 � a/ P 02 C 2.1� a/ 11 D 0;

10 P 11 C .1 � a/ 02 � .1C a/ 20 D 0;

.11C 7a/ P 02 � .1C a/ P 20 � 2.1C a/ 11 D 0;

2 P 00 C P 20 � P 02 D 0;

(20.39)

which allows periodic solutions proportional to e�i
t provided that

�
�
5�2

�
5 � 2a2

� � �
1 � a2�� D 0:

Again, there is a steady solution � D 0 and an oscillating solution with
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T = 143h T = 97,7h

t = 0

ba

t = T/ 8

t = T/4

Fig. 20.6 Mass transport streamline patterns for the ‘linear’ (a) and ‘quadratic’ (b) mode of
the TW-equation in an elliptic basin with parabolic bottom profile (from Ball (1965) [3]).
c� Cambridge University Press, reproduced with permission

�2 D 1 � a2
5.5 � 2a2/ : (20.40)

Table 20.4 collects frequencies and periods for several aspect ratios r . For a
fixed aspect ratio the periods of the quadratic mode are smaller than those of the
fundamental linear mode.

As (20.39) indicates, a steady solution must have

 st11 D 0 and  st02 D 1C a

1 � a  
st
20;

and hence
 st2 D  00 C A..1 � a/x2 C .1C a/y2/;

where  00 and A are constants.  00 ¤ 0; A D 0 recovers the simple steady gyre
whereas  00 D 0; A ¤ 0 yields the steady second order solution

� st2 D h2 st2 D 2Ah2.hC 1/: (20.41)

This stream function vanishes along the boundary (h D 0) and at the centre
.x; y/ D .0; 0/ and is positive otherwise; furthermore, its value is constant along
similar ellipses and assumes a maximum value along the ellipse with h D �2=3
between the centre and the shore line, Fig. 20.7a. The steady flow corresponding to
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A - A

B - B
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b

Fig. 20.7 (a) Distribution of the mass transport stream function and (b) of the associated velocity
field of the ‘quadratic’ steady solution (20.41) (from [39]). c� Springer, Berlin, reproduced with
permission

the solution (20.41) is qualitatively indicated in Fig. 20.7b. An anticyclonic elliptical
gyre in the centre is surrounded by an elliptical ring of cyclonically rotating fluid.

Oscillating solutions are obtained by constructing the eigenvector of (20.39) cor-
responding to the frequency given by (20.40). We quote Ball’s result (real. part)

�2 D h2 2 D Ah2
�
..1C a/.3 � 2a/y2 � .1 � a/.3C 2a/x2 C a/ sin �t

C .6.1 � a2/=5�/xy cos �t
�
:

(20.42)

For t D 0 the nodal lines  2 D 0 are the lines x D 0 and y D 0, whereas for t > 0
they are rotating hyperbolas (note that 0<a<1). As illustrated in Fig. 20.6b the
wave pattern starts with four gyres of which the two positive vortices merge together
building three gyres in the basin for most part within a period. The structure of this
mode is therefore not conserved during the cycle. This is a new phenomenon due to
the influence of the aspect ratio parameter a, from [39].

20.3.4 Elliptic Basin with Exponential Bottom

20.3.4.1 Basin with Central Island

In the previous sections, TWs in circular and specific elliptical domains were discus-
sed. Whereas the model of Saylor et al. [34] uncovered a conspicuous dependence
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of the frequencies on the topography, Ball’s model enabled investigation of the
effect of the aspect ratio. In this section, we present models which account for both
bathymetric parameters and therefore permit a more realistic modelling of the lake
basin.

To introduce a topography parameter in an elliptical basin, Mysak [27] set out to
study the TW-equation in elliptical coordinates .�; �/. Basically, this was a gener-
alization of Saylor’s choice who studied a circular domain in polar coordinates and
thus lost the possibility of incorporating into the analysis an aspect ratio parameter.

The derivation of the TW-equation in the elliptic coordinate system has already
been given in (20.14); the result was

.h�1 �t /� C .h�1 �t /� C  �.h
�1/� �  �.h�1/� D 0;

0 < � < �S ; 0 � � � 2�;

 D 0; � D �S ; 0 � � � 2�;

(20.43)

where � and � are the radial and azimuthal coordinates, �S is the elliptic shore-line.
Note that the water depth H D H0h has been scaled here with any convenientH0,
since the TW-equation is scale invariant. Note, moreover, that we have scaled time
with f which is constant on the f -plane. Furthermore, �S is related to the aspect
ratio parameter r through

r D B

A
D a sinh �S
a cosh �S

D tanh �S : (20.44)

The velocity field can easily be computed from the stream function  by means of
the formulae

u� D �.hJ /�1 �; u� D .hJ /�1 � ; (20.45)

and the definitions of a and the Jacobian J are listed in Table 20.1.
Consider now a topography with constant depth along lines of constant � (confo-

cal ellipses), and hence has h� D 0. For this case (20.43) is a differential equation
with constant coefficients provided

h�=h D const :

Therefore, we select an exponential depth-profile (shelf) of the form h.�/ D
exp .�b�/, b > 0. Introducing the separation of variables solution

 .�; �/ D F.�/ei.m��
t/; (20.46)

with integer m > 0, (2�-periodicity in �), and dimensionless frequency � D !=f ,
(20.43) becomes
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F 00 C bF 0 C
�
mb

�
�m2

	
F D 0; . /0 D d

d�
: (20.47)

This second order ordinary differential equation requires two boundary conditions.
No mass transport through the basin boundary �S leads to

F.�S / D 0: (20.48)

To obtain the second boundary condition we consider an elliptic basin with a central
island in the domain 0 � � � �I . Hence, an additional no-flux condition must hold
at �I ,

F.�I / D 0: (20.49)

Mysak’s choice was the limit of a barrier-like island �I D 0; here �I is retained as a
further bathymetric variable. Equation (20.47) has the general solution

F.�/ D e�b�=2.A sin
� C B cos
�/; (20.50)

with 
2 D mb=��m2�b2=4, and the trigonometric functions imply the frequency
of the mth azimuthal mode to be bounded by

0 < �m <
mb

m2 C b2

4

: (20.51)

The lower bound can be obtained by multiplying (20.47) with F and integrating the
resulting equation from � D �I to � D �S . This yields the Rayleigh quotient

mb

�
D
R �S
�I
.�F 00F Cm2F 2/d� � b

2

Z �S

�I

d

d�
.F 2/d�

R �S
�I
F 2d�

D
R �S
�I
.F 02 Cm2F 2/d�
R �S
�I
F 2d�

> 0 :

The boundary conditions (20.48) and (20.49) quantize the radial wavenumber 

such that3


 D n�

�S � �I
; n D 1; 2; : : : :

With this and the definition of 
 we obtain the eigenfrequency as a function of the
three bathymetric parameters �S ; �I ; b

3 Equation (20.48) implies that B D �A tan.
�S /, and then (20.49) yields .tan.
�I / �
tan.
�S // D 0, or tan.
�S / D tan.
�I / so, 
�S D .
�I C n�/; n D 1; 2; : : :.
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� D mb

m2 C b2

4
C
�

n�

�S � �I

	2 : (20.52)

Selecting the aspect ratio r determines �S via (20.44). For the evaluation of the
eigenfrequency (20.52) one then also needs �I=�S ; .m; n/ and b. Table 20.5 lists the
eigenfrequencies for particular selections of values for these parameters, whilst the
finite shoreline depth, h.�S / D 0:1, and the depth at the island, h.�I / D 1 are kept
constant. �I =�S D 0 recovers the case studied by Mysak et al. [28]. It is seen in
Table 20.5 that the influence of the aspect ratio on � and T is very strong; frequen-
cies decrease and periods increase with decreasing aspect ratio; moreover, for fixed
aspect ratio but varied �I the barrier island (�I D 0, zero width but finite length)
eigenperiods reach an upper bound for the latter case. Figure 20.8 displays contour
lines for the stream functions  11 and  12 for the case of an elliptic basin with a
barrier island. It is interesting to compare this figure with Fig. 20.6, which shows the
corresponding Ball modes. For the (1, 1)-mode, the two oppositely rotating gyres
move (on the N.H.) cyclonically around the basin (left column in Fig. 20.8), but the
barrier island constrains their geometry considerably, particularly when the gyres
move around the long ends of the basin. Close to the two focal points of the ellipse
the streamlines are clustered together, which indicates large velocities. For the
(2, 1)-mode, two counter rotating pairs of gyres rotate again cyclonically around
the basin; None of these gyres merge together during a mode cycle, quite contrary

Table 20.5 Influence of the aspect ratio and relative island width on the eigenfrequencies and
mode periods according to (20.52). The periods are calculated with f D 2�=.16:2 h/

r �S �I =�S b .m; n/D .1; 1/ .m; n/D .2; 1/ .m; n/D .2; 2/

� T Œh� � T Œh� � T Œh�

1/2 1:74 0.235 68:9 0.335 48:4 0.127 127:6

0.99 2.65 1/3 1:31 0.284 57:0 0.344 47:1 0.153 105:9

0 0:87 0.335 48:4 0.311 52:1 0.177 91:5

1/2 5:72 0.082 197:6 0.156 103:8 0.045 360:0

0.67 0.81 1/3 4:29 0.108 150:0 0.200 81:0 0.059 274:6

0 2:86 0.156 103:8 0.269 60:2 0.085 190:6

1/2 8:38 0.056 289:3 0.110 147:3 0.031 522:6

0.5 0.55 1/3 6:29 0.074 218:9 0.144 112:5 0.041 395:1

0 4:19 0.110 147:3 0.204 79:4 0.060 270:0

1/2 13:3 0.036 450:0 0.071 228:2 0.019 852:6

0.33 0.35 1/3 9:97 0.047 344:7 0.093 174:2 0.026 623:1

0 6:64 0.071 228:2 0.137 118:2 0.039 415:4

1/2 45:9 0.010 1620:0 0.021 771:4 0.006 2700:0

0.1 0.10 1/3 34:4 0.014 1157:1 0.027 600:0 0.008 2025:0

0 22:9 0.021 771:4 0.041 395:1 0.011 1472:7
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t = 0

t = T/8

t = T/4

ψ21,          T = 62,8hψ11,          T = 108h

Fig. 20.8 Contours of the stream functions  11 and  21 for an elliptic basin with a barrier.
The parameters are �S D 0:805; �I D 0; b D 2:86 (from [27]). c� Taylor & Francis,
http://www.informaworld.com, reproduced with permission

to the analogous case in the (2, 1)-mode of the Ball solution without an island, but
an accumulation of contour lines of  also occurs here in the vicinity of the focal
points. Hence, these points will be critical with respect to the velocity field.

Inserting the real part of (20.46) into (20.45) yields

u� D 1

J
meb�=2 sin .
.� � �I // sin.m�� �t/;

u� D � 1

J
eb�=2Œ
 cos .
.� � �I //� b

2
sin .
.� � �I //� cos.m�� �t/;

with J D a
p

sinh2 � C sin2 � and 
 D n�=.�S � �I /. Indeed, for u� , u� the limits
.�I ; �/ ! .�I ; �/ or .�I ; 0/ do not exist for �I ! 0.
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20.3.4.2 Basin Without Island

The analysis which is outlined here extends the theory of the above Sect. 20.3.4.1
and is due to Mysak et al. [28] with corrections by Johnson [14].

It is characteristic of the elliptical coordinate system that the formulation of the
boundary condition at the centre � D 0 is subtle. It is necessary to have both  
and r continuous ‘across’ � D 0,4 in order that the velocity field takes physically
meaningful values. Therefore, ansatz (20.46) is too restrictive to fulfil the extended
boundary condition at the centre. The trial solution (20.46) is complemented by the
contribution with negative integersm < 0. Thus following Johnson [14], we write

 .�; �/ D F1.�/ei.m��
t/ C F2.�/ei.�m��
t/; m D 1; 2; : : : : (20.53)

Again using the shelf profile h.�/ D exp .�b�/, h� D 0, (20.43) is equivalent to the
system

F 001 C bF 01 C
�
mb

�
�m2

	
F1 D 0;

F 002 C bF 02 C
�

�mb
�

�m2
	
F2 D 0;

(20.54)

with . /0 D d=d� and the four boundary conditions

F1.�S / D 0; F2.�S / D 0;

F1.0/� F2.0/ D 0; (20.55)

F 01.0/C F 02.0/ D 0:

Equation (20.55)2;3 express that  and  � are continuous across the line � D 0.
System (20.54) together with (20.55)1;2 constitutes a well-posed boundary value
problem of second order in the interval Œ0; �S �, which can be solved in terms of
exponential functions. Condition (20.55)3 will select the eigenfrequencies.

Because of the form of (20.54) and (20.55) the radial functions can be taken as
purely real, and it can be verified that the real solutions

F1.�/ D e�
b
2 � sin.
1.�S � �//; F2.�/ D e�

b
2 � sinh.
2.�S � �//;


21 D bm

�
�m2 � 1

4
b2; 
22 D bm

�
Cm2 C 1

4
b2;

(20.56)

fulfil (20.54) and (20.55)1;2. Equation (20.55)3 eventually requires


1 cot
1�S C 
2 coth
2�S C b D 0; (20.57)

4 Clearly, in elliptical coordinates � � 0. Continuity of a quantity �.�; �/ ‘across’ � D 0 means
lim
�#0

�.�; 2� � �/ D lim
�#0

�.�; �/; 0 < � < 2� .
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Table 20.6 Eigenfrequencies and periods of the first four TW-modes in an elliptical basin
with exponential bottom profile. The parameters are �S D 0:805 and bD 2:86. The periods are
calculated with f D 2�=.16:2 h/

m n D 1 n D 2 n D 3 n D 4

� T [h] � T [h] � T [h] � T [h]

1 0.201 80.6 0.0541 299.4 0.0235 689.4 0.0130 1246.1
2 0.327 49.5 0.102 158.8 0.0458 353.7 0.0257 630.4
3 0.376 43.1 0.139 116.5 0.0659 245.8 0.0375 432.0
4 0.379 42.7 0.165 98.2 0.0830 195.2 0.0483 335.4

from which the eigenfrequencies can be calculated. Note that for sufficiently large
m and � , 
21 in (20.56) becomes negative and F1 takes the same form as F2. The
cotangent in (20.57) equally transforms into a coth, and then real eigenfrequencies
are no longer allowed; � is thus bounded according to (20.51). Equation (20.57)
yields a countable set of eigenfrequencies for given topography parameter b and
azimuthal wavenumberm and for each � the inequalities

.n � 1
2
/� < 
1.�/�S < n�; n D 1; 2; 3; : : :

must hold. The upper and lower bounds in these inequalities exclude cot.
1�S /
and coth.
1�S / from approaching infinity. Table 20.6 gives eigenfrequencies and
eigenperiods calculated by Johnson [14] for �S D 0:805 (ellipse with aspect ratio
r D 2=3) and b D 2:86 (shore line depth h.�S / D 0:1). It is seen that the periods
decrease with increasing m and increase with increasing n. Figure 20.9 displays
the streamline contours of the modes with .m; n/ D .1; 1/; .2; 1/ and .1; 2/. The
patterns resemble those of Ball’s model or Mysak’s island model and modifications
here are due to the different choice of the topography (with respect to Ball [3])
and of the central boundary condition (with respect to Mysak [28]). Note also that
the different boundary conditions at the line connecting the foci compared to the
corresponding Mysak-solution are responsible for the variable numbers of gyres in
the (2, 1)-mode (displayed in the middle column of Fig. 20.9).

The influence on the fundamental mode of the variation of both bathymetric
parameters �S (via aspect ratio) and b (via shore line depth) is shown in Table 20.7.
The influence due to topography is dominant.

Table 20.8 compares the eigenfrequencies and eigenperiods obtained with
(20.52) for an elliptical basin with a barrier (�S D 0 Mysak’s solution [27] and
without a barrier [14] and for different aspect ratios and shoreline depths. It is seen
that the estimate is better for large aspect ratio and small shoreline depth. This latter
behaviour was also observed with the circular basin with power law bathymetry,
see Table 20.3. Indeed, for the elliptical basin with h.�S / D 1, the basal topography
would be flat and the period would be infinitely large.

In exactly this spirit, Johnson extended his elliptic model by choosing the profile

h.�/ D
(

e�b.���B /; �B � � � �S ;

1; 0 � � � �B ;
(20.58)
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Fig. 20.9 Stream line contours of the three lowest modes in an elliptical lake with exponential
bottom. The periods are calculated with f D 2�=.16:9 h/ (from [14]). c� Taylor & Francis,
http://www.informaworld.com, reproduced with permission

Table 20.7 Bathymetry and aspect ratio effects on the frequency and period of the (1,1)-mode of
the TW. The periods are calculated with f D 2�=.16:2 h/

r h.�S / D 0:1 0.2 0.5 0.8
� T Œh� � T Œh� � T Œh� � T Œh�

0.99 0:380 42:6 0:281 57:7 0:128 126:6 0:0422 383:9

0.67 0:201 80:6 0:158 102:5 0:0738 219:5 0:0270 600:0

0.50 0:143 113:3 0:113 143:4 0:0569 284:7 0:0197 822:3

0.33 0:0921 175:9 0:0732 221:3 0:0371 436:7 0:0129 1255:8

0.1 0:0270 600:0 0:0216 750:0 0:0110 1472:7 0:00384 4218:8

Table 20.8 Comparison of the eigenfrequencies and periods of the first TW-mode in an elliptical
basin with a barrier and a basin without island. The periods are calculated with f D 2�=.16:2 h/

r h.�S / D 0:1 � T Œh� h.�S /D 0:5 � T Œh�
�barrier Tbarrier [h] �barrier Tbarrier [h]

0.99 0.335 48.2 0.380 42:6 0.108 150.0 0.128 126:6

0.67 0.156 103.8 0.201 80:6 0.052 311.5 0.078 207:7

0.50 0.110 147.3 0.143 113:3 0.037 437.8 0.057 284:2

0.33 0.071 228.2 0.092 176:1 0.024 675.0 0.037 437:8

0.1 0.021 771.4 0.027 600:0 0.007 2314.3 0.011 1472:7
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which has a flat bottom in its centre. He shows that by increasing the central flat
area but holding shoreline depth and aspect ratio of the basin fixed, the eigenperiod
is increased. Given the past experience, this behaviour was to be expected.

We close this section by reporting an attempt of interpretation of basin wide wave
signals in the 100–110-h period range for Lake Zurich as measured in a field cam-
paign in August–September 1978 for a description of the low-frequency response,
see [37]. Mysak et al. [28] made an attempt to interpret this signal by adjusting the
thalweg of Lake Zurich to the elliptical basin with exponential depth profile. To cut
a long story short, it was not possible to approximately match a period in the 100–
110-h regime with the patched-up thalweg profile and (1, 1)-mode behaviour and
simultaneously arrive with an aspect ratio for the ellipse that would nearly repro-
duce the slenderness of Lake Zurich; the ellipses always turned out to be too ‘fat’.
Thus, the long period oscillatory response of Lake Zurich remains an enigma.

20.3.5 Topographic Vorticity Waves in Infinite Domains

Second class vorticity waves were primarily studied to understand long period ocean
waves. For many applications the ocean can be treated as an unbounded domain, as
an infinite or half-infinite domain, a channel or gulf, the unbounded exterior of an
island with various parameterizations of the bathymetry.5 We present here a selec-
tion of solutions to illustrate the qualitative behaviour of the dispersion relation.
From this study a great deal can be learned for the construction of solutions to the
topographic wave equation in enclosed basins, e.g. rectangles or basins which are
composed of several units, but essentially closed.

20.3.5.1 Straight Channel

Consider a straight, infinite channel with the Cartesian coordinate system as indi-
cated in Fig. 20.10. With a depth profile h.y/ which is constant along the channel
axis and a carrier-wave ansatz of the form

 D  .y/ei.kx�
t/; � D !=f

the TW-equation reduces to

.h�1 0/0 �
�
k

�
.h�1/0 C k2h�1

�
 D 0; (20.59)

in which ./0 D d=dy.

5 A source where second class waves in the ocean are studied is LeBlond and Mysak [19]. Addi-
tional works are e.g. by Allen [2], Brink [5, 6], Djurfeldt [9], Gratton [10], Gratton and LeBlond
[11], Huthnance [13], Koutitonsky [16], Lie [20], Lie and El-Sabh [21], Mysak [25, 26], Ou [29],
Takeda [40] and others.
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Fig. 20.10 Infinite channel
with one-sided shelf. At the
boundary points, 0, s, r the
functions h and h0 may not be
continuous (from [39]).
c� Springer, Berlin,

reproduced with permission
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Equation (20.59) is subject to the familiar no-flux conditions

 .0/ D  .r/ D 0: (20.60)

Furthermore, at interior points we request that6

ŒŒ �� D 0;

ŒŒ. 0 � .k=�/ /=h�� D 0;
at y D s: (20.61)

Equation (20.61)1 means that the transport is continuous whereas (20.61)2 follows
by integrating (20.59) across the discontinuity:

lim
�#0

Z sC�

s��

�
.h�1 0/0 � k

�
.h�1/0 � k2h�1 /

�
dy D 0;

lim
�#0

( �
h�1 0 � k

�
h�1 

�sC�

s��
C
Z sC�

s��

�
k

�
h�1 0 � k2h�1 

�
dy

)

D 0:

Because h,  and  0 are all bounded and continuous at y D s and h is nonzero at
y D s the last integral vanishes in the limit as � # 0.

6 ŒŒ�.y/�� at y D s denotes the jump of the quantity � defined by

ŒŒ�.s/�� D lim
�#0
.�.sC �/� �.s � �//:
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20.3.5.2 Channel with One-Sided Topography

Consider the piecewise exponential depth profile (see Fig. 20.10)

h.y/ D
(
�eby ; 0 � y � s;

1; s � y � r;

b D 1

s
ln
1

�
:

(20.62)

It renders (20.59) an ordinary differential equation with constant coefficient with
the solution

 .y/ D
(

eby=2 sin
y; 0 � y � s;

A sinh.k.y � r//; s � y � r:
(20.63)

Problem 20.2 Show that the trial solution (20.63) satisfies the boundary conditions
(20.60) and prove by substituting (20.63) into the differential equation that 
; k; �
and b must fulfill (20.64)2. Prove, moreover, that the jump conditions then require
(20.64)1 to be satisfied. Thus, the dispersion relation is given by the following
implicit form

1



tan s
 D �1

k coth k.r � s/C b
2

;

(20.64)


2 D k

�
b � k2 � b2

4
:

This is the dispersion relation of TWs in an infinite channel with one-sided topog-
raphy. Figure 20.11 displays the left-hand side and right-hand side of (20.64)1 as
functions of 
r . The left-hand side is independent of � whereas the right-hand side
is a double-valued relation of 
 due to (20.64)2. For frequencies lower than a criti-
cal value there exists a finite number of intersections .�; 
/ or .�; k/. This number
increases stepwise with decreasing � due to the periodicity of the tangent function.
Note that 
2 is only positive provided the signs of k and � are the same. The dashed
curve in Fig. 20.11 shows the left-hand side for 
2 < 0, i.e. ‘tan’ is replaced by
‘tanh’. For this case there are no intersections and hence no real pairs .�; k/ satis-
fying (20.64). This implies that phase propagation is into the positive x-direction
for this configuration, which amounts to the well-known property of shelf waves
on the Northern hemisphere (f > 0): the phase propagation is right-bounded.7 Two
limiting cases of this dispersion relation are of interest. These will be discussed now.

7 Right-bounded means that the shallower region is to the right when looking into the direction of
phase propagation.
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Fig. 20.11 Plot of the left-hand side and right-hand side of the implicit dispersion relation �.
/
or �.k/ given in (20.64) for s=r D 1=3, rb D 6. The points .�; 
/ are indicated with �, 4, ı
(from [38]). c� Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich,
reproduced with permission

20.3.5.3 Shelf

A shelf is generally defined as a region which extends to infinity, r ! 1. In
this case (20.62) models the well known exponential shelf. Correspondingly, the
dispersion relation reads

1



tan s
 D � 1

k C b=2
; (20.65)

and the result of Buchwald and Adams [7] is recovered. Figure 20.12 displays this
dispersion relation for the first five modes. The shapes of these curves exhibit fea-
tures which are typical of topographically trapped second-class waves: Firstly, long
shelf waves are non-dispersive, i.e. as k ! 0 cgr D @�=@k ! c D �=k > 0.
Phase and group velocity are the same. Secondly, when h0=h8 is bounded, for
y 2 Œ0;1/ then cgr < 0 for some range of k > 0. In other words, the disper-
sion relation �.k/ possesses a maximum at k D k0. For k < k0, c and cgr are both
positive, and phase and energy propagate in the same direction; for k > k0, c is still
positive but cgr is negative. Furthermore, �.k/ ! 0 as k ! 1. These properties

8 Because of its significance h0=h is often referred to as slope parameter S  h0=h.
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Fig. 20.12 Dispersion
relation �.k/ (20.65) for the
first five modes on a shelf
with b D 5:4 (from [7]).
c� Royal Soc. London,

reproduced with permission
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which hold in an infinite domain were proven by Huthnance [13] in a more general
context.

The stream function in the shelf-wave limit takes the form

 .y/ D
(

eby=2 sin
y; 0 � y � s;

ebs=2 sin
s � e�k.y�s/; s < y:

It decays exponentially for y > s and is essentially sinusoidal in the shelf domain.

20.3.5.4 Trench

A second simple case is obtained when s ! r . The dispersion relation (20.64) is
then reduced to

tan r
 D 0;

whence

� D kb

k2 C
�
b2

4
C
�n�
r

�2� ; n D 1; 2; : : : ;

where the integer n denotes the mode of the wave. The stream function of the nth
mode has n � 1 nodes across the channel. Long waves in this channel are non-
dispersive with phase and group velocity
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c D cgr D b

b2

4
C
�n�
r

�2 ; as k ! 0:

For very short waves the frequency is inversely proportional to the wavenumber,
� D b=k, and phase and group velocity have opposite signs. The critical point
.k0; �0/, where the group velocity vanishes is given by

.k0; �0/ D

2

6
6
4

r
b2

4
C
�n�
r

�2
;

b

2

r
b2

4
C
�n�
r

�2

3

7
7
5 :

The critical frequency,�0, strongly depends on the topography parameter b D h0=h.
The qualitative behaviour of the dispersion relation shown in Fig. 20.12 is typical
and will again be encountered when we look for TW-solutions in rectangular basins.

20.3.5.5 Single-Step Shelf

We now demonstrate that boundedness of h0=h is important for the second of
Huthnance0s properties, namely existence of vanishing group velocity for finite
k0 < 1. To this end consider the profile

h.y/ D
(
d < 1; 0 < y < s;

1; s < y < r:
(20.66)

This profile was used by Sezawa and Kanai [35], Snodgrass et al. [36] and Larsen
[18] to explain edge waves and trapped long waves. Clearly, since h0D.1�d/ı.y�s/
vanishes everywhere in y 2 .0; r/ except at y D s, where h0 is infinite, TWs only
exist because of this singularity.

Problem 20.3 Show that with (20.66) the differential equation (20.59) for TWs
possesses the solution

 .y/ D
(

sinh ky; 0 � y � s;

A sinh k.y � r/; s � y � r:

Show, moreover, that (20.61) imply the dispersion relation

� D .1 � d/
tanh ks tanh k.r � s/

d tanh ks C tanh k.r � s/
; (20.67)

which is strictly convex.
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Fig. 20.13 Graph of the dispersion relation (20.67) for s=r D 0:3 and three values of d . Note
�.rk/ is monotone (from [39]). c� Springer, Berlin, reproduced with permission

Figure 20.13 displays �.k/ for different values of d , and we notice that these are
monotonically growing functions of k. Indeed,

� ! 1 � d

1C d
; as k ! 1;

� prop k; as k ! 0;

and no critical wavenumber k0 exists. Furthermore, there is only one single funda-
mental TW mode.

Shelf waves have also been analyzed for different topographies with r ! 1.
Reid [31] and Mysak [24] have investigated the finite width sloping shelf profile
of Fig. 20.14a. The mass transport stream function can in this case be expressed
in terms of Laguerre polynomials and dispersion curves are qualitatively as those
shown in Fig. 20.13. However, there are now a countably infinite set of shelf modes
because of the sloping portion of the shelf. Ball [4] on the other hand studied the
exponential depth profile of Fig. 20.14b and finds dispersion curves for shelf waves
which are qualitatively as those of Fig. 20.13, as would be expected since h0=h!1
at y D 0. A similar study for escarpment-, trench-, shelf- and wedge waves was
given by Djurfeldt [9].

In reality, channels have bathymetric gradients on both sides. From the results
obtained so far, it can be concluded that in such a channel (e.g. with a parabolic
depth profile) there will be TWs travelling along either sides of the channel each in
a right-bounded way. The dispersion relation then consists of two branches (assume
� > 0), one for k > 0 representing those waves trapped to y D 0 and k < 0 for
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Fig. 20.14 (a) Finite width sloping shelf profile. (b) Exponential profile

those trapped to y D r . This, and the propagation of TWs in curved channels will
be discussed in Chap. 21.

20.3.6 Elliptic Island in Infinite Space

Island-trapped shelf waves were studied by Mysak [23], Rhines [32], Saint-Guily
[33], Buchwald and Melville [8] and Hogg [12]. All these authors solved the
TW-equation in cylindrical coordinates, but used different representations of the
topographic profile. Mysak used the finite width sloping profile of Fig. 20.14a (in
which y is now the radial distance), Saint-Guily applied the parabolic depth pro-
file, while Rhines [32], Buchwald and Melville [8] and Hogg [12] employed the
power law

h.y/ D
(

dy˛; a < y < aC r;

1; y > aC r;

with ˛ > 0; a is the radius of the island. Solutions of the TW-equation in the exterior
of an elliptical island were constructed by Stocker and Hutter [39].

The derivation of the relevant equations in elliptical coordinates �; � is given in
Sect. 20.3.4. We assume the isobaths to follow confocal ellipses, so that h D h.�/.
The shore of the island will be given by � D �I , the contour line of the outer edge
of the shelf by � D �E . The TW-equation is given by (20.43)1. With the separation
of variables solution

 .�; �/ D F.�/ei.m�C
t/; m D 1; 2; 3; : : :

(the C sign of � is used because a right-bounded phase propagation is clockwise
around the island) the boundary value problem becomes
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.h�1F 0/0 C .m


.h�1/0 �m2h�1/F D 0; � > �I ;

F D 0; at � D �I ;1;

ŒŒF �� D ŒŒF 0�� D 0; at � D �E > �I :
(20.68)

With the exponential shelf profile

h.�/ D
(

eb.���E/; �I � � � �E ;

1; �E � �;

the solution of (20.68) satisfying the boundary conditions reads

F.�/ D
(

eb.���E/=2 sin.
.� � �I //; �I � � � �E ;

Ae�m� ; �E � �;

with


2 D mb

�
�m2 � b2

4
:

The matching conditions at � D �E determine the constant A and yield the
eigenvalue equation

1



tan.
.�E � �I // D � 1

mC b
2

; m D 1; 2; 3; : : : : (20.69)

This is exactly analogous to the dispersion relation (20.65) for TWs of a straight
shelf, except that the ‘wavenumber’ m is quantized here due to the 2�-periodicity
in �. Equation (20.69) is an example of an infinite domain with a discrete spectrum.
Table 20.9 lists a selection of eigenfrequencies for various values ofm, �I , �E and b.

Table 20.9 Eigenfrequencies of the (m D 1, n D 1), (2,1), (3,1), (1,2) modes of TWs around an
elliptic island according to (20.69). r is the aspect ratio (width to length) of the island, AE and AI
are the semi-axes of the elliptic shelf boundary, AE D cosh �E , and of the island AI D cosh �I ,
and b is a topography parameter such that h.�I / D 0:1

r �I AE=AI b Mode .m; n/
(1,1) (2,1) (3,1) (1,2)

2 3.30 0.232 0.358 0.405 0.006
0.99 2.65 3 2.09 0.317 0.408 0.399 0.088

5 1.43 0.379 0.401 0.347 0.120

2 2.48 0.285 0.396 0.410 0.076
0.5 0.549 3 1.69 0.354 0.410 0.374 0.105

5 1.22 0.397 0.385 0.318 0.135

2 1.88 0.336 0.411 0.388 0.096
0.1 0.100 3 1.38 0.384 0.398 0.341 0.123

5 1.05 0.408 0.363 0.289 0.149
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20.4 Application of Transformation Principles

Two principles or property theorems of the TW-operator were presented in this
chapter, (1) the Cartesian-coordinate correspondence principle, see Sect. 20.2.5 and
(2) the invariance of the TW-operator under conformal mappings. These proper-
ties can be used to construct solutions of the TW-equation in various different
domains, provided of course, that the isobaths in one domain transform to the
isobaths in the transformed domain. Such solutions, when being constructed analyt-
ically, can serve a good purpose when numerical software is tested for its accuracy
in special problems. We shall illustrate the applicability of this method of solution
below.

20.4.1 Hyperbolically Curved Channels

It was shown in Sect. 20.2.3 that the TW-operator, referred to elliptic coordinates of
confocal ellipses and hyperbolas has the same form as the same operator referred to
Cartesian coordinates.9 The reason for this invariance is the fact that the mapping
from Cartesian to confocal elliptic coordinates is conformal. Indeed, with z D xCiy
and � D � C i�, where i is the imaginary unit, (20.12)1;2 can be written as

z D a cosh �: (20.70)

The Cartesian-correspondence principle can be used for constructing channel solu-
tions if the channel shores follow confocal hyperbolas. Three such configurations,
where topographically trapped waves may exist, are illustrated in Fig. 20.15. Panel
(a) is a sketch of such a wave along a curved boundary; panel (b) shows a situation
for a model in which a TW approaches an isthmus or an isolated basin and panel (c)
illustrates a model for a curved channel. Provided the isobaths are confocal hyper-
bolas, the solutions for straight channels can directly be used to find the dispersion
relation and mode structures for the TWs in these curved domains.

Consider the configuration of Fig. 20.16 in elliptical coordinates .�; �/ and
assume that in these coordinates h D h.�/. In this case, the TW-equation is given
by (20.43). With the trial solution

 .�; �/ D
8
<

:

F.�/ei.k�C
t/; 0 � �L < � < �R � �;

G.�/ei.�k�C
t/; � � N�R < � < N�L � 2�;
(20.71)

9 See the transformation formulae (20.12) and Fig. 20.1 and compare the TW-equation in Cartesian,
(20.5) and (20.6), and in elliptical (20.12) coordinates.
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Fig. 20.15 Sketch of the propagation of trapped waves along a hyperbolically curved shelf (a) or
channel (b, c) (from [39]). c� Springer, Berlin, reproduced with permission
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Fig. 20.16 Hyperbolically curved channel embedded in an elliptic coordinate system with shore
lines following confocal hyperbolas (from [39]). c� Springer, Berlin, reproduced with permission

the following boundary value problems for F and G emerge

F 00 � h0

h
F 0 �

�
k2 C h0

h

k

�

	
F D 0; �L < � < �R;

F D 0; � D �L; �R

G00 � h0

h
G0 �

�
k2 � h0

h

k

�

	
G D 0; 2� � �R < � < 2� � �L;

G D 0; � D 2� � �R; 2� � �L:

(20.72)

Here, primes mean differentiations with respect to �, and �L and �R denote the val-
ues of � of the hyperbolas along the boundary shore lines; they may have values
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Table 20.10 Coordinate domains and transformations for the two systems

Cartesian Scaled Elliptic

0 
 x 
 L ������! 0 
 � 
 1  ������������0 
 � 
 �E
� D x=L � D �=�E

� 1
2
B 
 y 
 � 1

2
B ���! � 1

2

 � 
 1

2
 �������������L 
 � 
 �R

�D y=B � D �

�R��L
� �RC�L

2.�R��L/

from 0 � �L; �R � � . Equation (20.71)1 represents a wave traveling in the hyper-
bolic channel approaching the narrowest cross section from above and leaving it in
the lower half plane. Alternatively, (20.71)2 represents such a wave approaching the
narrowest cross section from below and leaving it in the upper half plane. The two
waves match smoothly at � D 0 provided that

 .0; �/ D  .0; 2� � �/;

@ 

@�
.0; �/ D �@ 

@�
.0; 2� � �/:

0 � � � �: (20.73)

These conditions are fulfilled if

G.�/ D F.2� � �/: (20.74)

This is consistent with (20.72)2;4. We now demonstrate that (20.72) is formally anal-
ogous to the two-point-boundary-value-problem in a straight channel. In order to
fully apply the correspondence we transform the independent coordinates such that
in the transformed coordinate the domain is the same as that for which the straight
channel solution has been determined. Table 20.10 demonstrates the different coor-
dinate domains and the transformations. The two-point-boundary-value-problems
for the scaled Cartesian and the scaled elliptical system read10

F 00s �
�
h0

h

	
F 0s �

�
B2

L2
k2s C B

L

�
h0

h

	
ks

�

�
Fs D 0;

(20.75)

F 00c �
�
h0

h

	
F 0c �

�
.�R � �L/

2

�2E
k2c C �R � �L

�E

�
h0

h

	
kc

�

�
Fc D 0;

10 An identical equation as that for F can also be obtained for G if

�D � 1

�R � �L ��
�R C �L
2.�R � �L/ C

2�

�R � �L
is chosen.
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in which primes denote differentiations with respect to �, and the subscripts s and
c stand for ‘straight’ (Cartesian) and ‘curved’ (elliptic). These two problems are
formulated in the same domain Œ0 � � � 1;�1

2
� � � 1

2
� and are identical if

ks D .�R � �L/=�E

B=L
kc : (20.76)

The effect of curvature is, therefore, measured by the two aspect ratios, .�R��L/=�E
and B=L in the two coordinate systems. In order to determine �.kc/ it thus suffices
to stretch the k-axis of the straight channel dispersion relation according to (20.76):
Likewise, the eigenfunctions are obtained from the straight channel solutions by a
stretching transformation. Notice that this approach incorporates an entire family
of curved channel solutions. For instance �R D � � �L, 0 < � < �=2 may be
appropriate to model TWs close to the mouth of a fjord, while �=2 < �R < �L < 0
is appropriate to model curvature effects in channels. Along the thalweg hyperbola

� � �T D �R C �L

2

this curvature is given by

K.�/ D � cos�T sin �T
a.cos2 �T sinh2 � C sin2 �T cosh2 �/3=2

and its maximum is obtained for � D 0

K.0/ D � cos �T
a sin2 �T

:

The behaviour of TWs in hyperbolic channels, however, depends on two parameters,
the curvatureK and a width parameter �R � �L.

20.4.2 Semi-Infinite Gulf and Patched-Up Elongated Basins

Let us recall the TW-mode analysis for an elliptical basin with exponential depth
profile, see Sect. 20.3.4b. It was shown there, how the solutions of the two lowest
modes for the elliptic basin were constructed. The formulae are given as (20.53)–
(20.57) and the streamline contours are plotted for these modes in Fig. 20.9. The
elliptical coordinates were denoted as � (‘radial’) and � (‘azimuthal’). Johnson [15]
constructed a conformal transformation which maps the interior of an ellipse into
a semi-infinite strip in the .x; y/-domain. This mapping from .x; y/ onto .�; �/ is
given by
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Fig. 20.17 Coordinate lines
of the .�; �/ system in the
semi-infinite channel
j y j
 �=2; x � 0 (from
Johnson (1987) [15]).
c� Cambridge University

Press, reproduced with
permission

ξ = 1
η =

η =

η =

η = 0

η =

π

ξ = -1

ξ = 0

_
2

_
4
π

_
2
π

_
4
π

� C i� D cosh�1
�

sinh.x C iy/

sinh a

�
: (20.77)

It maps the semi-infinite channel j y j< �=2, x � 0 with a branch cut on y D 0,
x � a to the strip 0 � � � �=2, �1 < � < 1, as shown in Fig. 20.17. For
large j � j the coordinate system .�; �/ becomes Cartesian. With a depth profile h.�/
varying only with �, the channel has a constant depth along the thalweg � D 0. The
boundary can be chosen at � D �S .0 < �S � �=2/; this curve and all isobaths are
smooth. Because (20.77) is conformal and h� � 0, the TW-equation takes the form
(compare e.g. (20.43))

.h�1 t�/� C .h�1 t�/� C  �.h
�1f /� D 0 (20.78)

and  vanishes on �S and is smooth across the branch cut � D 0. We assume two
oppositely traveling waves, viz.,

 D F1.�/ cos.k� � !t/C F2.�/ cos.k� C !t/: (20.79)

With this and the assumption that the depth depends only on �, one obtains from
(20.78)11 the ordinary differential equation

F 00 �
�
h0

h

	
F 0 �

�
˙k

�

�
h0

h

	
C k2

�
F D 0; (20.80)

with � � !=f for F1 and F2, respectively. Across the channel boundary � D �S
the no-flux condition,

F1.�S / D F2.�S / D 0 (20.81)

11 The text below follows Stocker [38] with some minor changes.
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is requested. Moreover, the stream function must be smooth across the cut � D 0,
implying

F1.0/� F2.0/ D 0;

F 01.0/C F 02.0/ D 0:
(20.82)

The exponential depth profile (with flat interior)

h.�/ D
(

e�b.���B/; �B � � � �S ;

1; 0 � � � �B
(20.83)

renders (20.80)–(20.83) a well-posed linear eigenvalue problem with constant coef-
ficients. Equations (20.80)–(20.82) agree with (20.54) and (20.55), however, with
the roles of the coordinates interchanged. The solutions, citing Johnson [15], read

F1 D
h
cosh k�B C ˛1

k
sinh k�B

i�1

�

8
<̂

:̂

exp
��1

2
b.�� �B /

�
sin .
1.�S � �//

sin .
1.�S � �//
; .�B � � � �S /

cosh .k.� � �B//� ˛1
k

sinh .k.� � �B// ; .0 � � � �B /

F2 D
h
cosh k�B C ˛2

k
sinh k�B

i�1
(20.84)

�

8
<̂

:̂

exp
��1

2
b.�� �B /

�
sinh .
2.�S � �//

sinh .
2.�S � �B//
; .�B � � � �S /

cosh .k.� � �B//� ˛2
k

sinh .k.� � �B// ; .0 � � � �B /

with


21 D kb

�
� k2 � b2

4
; 
22 D kb

�
C k2 C b2

4
;

(20.85)
˛1 D 
1 cot
1.�S � �B/C b=2; ˛2 D 
2 cot
2.�S � �B /C b=2:

The dispersion relation follows from (20.82)2 and takes the form

0 D .˛1 � ˛2/
�
1C tanh2.k�B/

�C 2
k C ˛1

˛2
k tanh.k�B /: (20.86)

Note that a channel with no flat central zone, i.e. �B D 0, has the simpler dispersion
relation

˛1 � ˛2 D 0;
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a

b

Fig. 20.18 Contours of the stream function of TWs in an semi-infinite channel. The parameters
are �S D 1:5, �B D 0:5, b D 1 and (a) a D �=4, k D 4 and (b) a D �=2, k D 1 (from Johnson
(1987) [15]). c�Cambridge University Press, reproduced with permission

its qualitative shape is given in Fig. 20.12. Due to the invariance principle under
conformal mapping it is the same dispersion relation as in a straight infinite channel.
More specifically, each frequency � allows a short and a long topographic wave
with their phases travelling from � D 1 to � D �1. The energy of the long wave
propagates into the same direction as the phase whereas it travels into the opposite
direction for short waves.

Figure 20.18 displays contours of  in two semi-infinite channels. A right
bounded wave propagating from infinity towards � D 0 follows the lines of constant
f=h. This amounts to a complete reflection of wave energy as the reflected wave
travelling towards � ! �1 has the same wavelength and amplitude. Hence, the
energy of an incident wave is not distributed among other possible wave types but is
transferred without loss to an outgoing wave with the same wavenumber. We shall
encounter configurations with a different reflection behaviour in the next chapter.

The results for the semi-infinite channel can be applied to construct approxi-
mate solutions in elongated basins as proposed by Johnson [15]. As mentioned, the
.�; �/-coordinate system approaches the Cartesian system for growing j�j and x,
respectively. A basin of length 2L can then be constructed by patching two semi-
infinite channels at �L D L� ln sinh a together. The coordinate lines coincide there
with an error of order .exp .�2L/ cosh2 a/ as can be seen from an expansion of
(20.77) for x	 1. The stream function (20.79) must be continuous at � D �L imply-
ing that the periodicity condition k D m�=.2�L/, m D 1; 2; 3; holds. This selects
the eigenfrequencies from the dispersion relation. Figure 20.19 shows plots of the
.m; n/ D .1; 1/, .1; 2/ and .2; 1/ modes in the elongated basin of aspect ratio 1 W 6.

The solutions qualitatively agree with those in the elliptical basins, see Figs. 20.6
and 20.9. A particular eigensolution is characterized by two mode numbersm and n.



20.4 Application of Transformation Principles 441

a

b

c

Fig. 20.19 Modes .1; 1/, .2; 1/ and .1; 2/ in a basin with aspect ratio 1 W 6 and �S D 1:5, �B D
0:5, b D 1 and a D �=2. The frequencies are (a) � D 0:0511 .T D 331 h/, (b) � D 0:0966

.T D 175 h), (c) � D 0:0258 .T D 655 h/ (from Johnson (1987) [15]). c� Cambridge University
Press, reproduced with permission
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The ‘radial’ mode number n governs the structure of the solution in the transverse �-
direction and is incorporated in the dispersion relation (20.86). Modes with the same
radial mode number lie on the same branch of the dispersion relation. Figure 20.12
gives a schematic impression of these branches and demonstrates that each radial
mode number has its individual cut-off frequency above which only modes with
smaller radial mode number can exist. The ‘azimuthal’ mode numberm, defined by
the periodicity condition, gives the structure in the �-direction and is related to the
number of nodes along the long axis of the basin. We conclude, that the spectrum is
ordered with respect to both mode numbers individually. The largest eigenfrequen-
cies are expected from modes with n D 1 and m D m0, where m0 is an integer
closest to the critical wave number k0. Moreover, this critical mode number m0
separates solutions with different properties. Modes with 0 < m < m0 have wave
numbers 0 < k < k0, and, from the dispersion relation, @�=@k > 0, see Fig. 20.12.
Eigenmodes with increasing frequencies have increasing mode numbers and hence
exhibit vortices with smaller spatial scale. The opposite is true whenm > m0. Since
these two azimuthal mode types belong to the respective domains of the dispersion
relation, they enjoy different physical properties. In the next chapter, these two and
an additional modal type will further be discussed. There, the dispersion relation of
freely propagating TWs again proves to be the key in understanding the structure of
the spectrum of the TW-operator in enclosed domains.

The method of Johnson works with five bathymetric parameters to model the
aspect ratio of a lake and, independently, the form of the lake ends satisfactorily. It
is, therefore, a more general approach than the elliptic basin treated earlier though
closely related to it as the latter is obtained by a conformal mapping, as well.

To use the above analysis in lake data interpretations, recall the discussion in the
introductory section of Chap. 19, where controversial opinions about the interpreta-
tion of a 74 h signal in Lake of Lugano were reported. Mysak et al. [28] said that
it was the response of the fundamental TW-mode, whilst Trösch [41] said, it was
more likely a localized bay resonance. Johnson, on the other hand, demonstrates
that a realistic choice of the bathymetric parameters, particularly that of the aspect
ratio leads to periods of about T D 300 h and longer. He conjectures that a possible
TW with a period of the order of 70 h must have a wave number of the order of the
inverse aspect ratio of the basin. For a basin with the parameters of Fig. 20.19, e.g.
the (20,1)-mode has T D 87:2 h. Modes with such large azimuthal mode numbers
exhibit very small scale structure over the entire elongated basin, and it is question-
able whether such a mode can persist in nature to produce a pronounced signal as in
Lakes of Lugano and Zurich. The Lake of Lugano results by Trösch point at modes
with a completely different modal structure which lack the property that they have
a coherent wave motion in the entire domain (after Stocker [38]).

It will be shown in the next chapter that such localized modes indeed may
exist.
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20.5 Discussion

This chapter was devoted to the construction of analytical solutions of topographic
waves in basins with simple variable bathymetry, the intention being to acquire
knowledge of the structure of the wave modes in such basins. After presenting
the TW-equation in arbitrary orthogonal coordinate systems (and their specializa-
tion in polar and elliptical coordinates) TW-solutions were constructed for circular
and elliptical basins of which the topography varied only in the radial direction.
Streamlines for the horizontal transport current showed gyres which, as a whole,
rotate counterclockwise around the basin and eigenperiods depended heavily on
the strength of the [-shape of the radial profile. For the circular basin, Fig. 20.4,
and elliptic basin with an interior island, Fig. 20.8, the number of gyres would not
change during a mode period but for elongated elliptical basins without island the
number of gyres could change in the course of a period-time. Furthermore, the mode
periods depended, apart from the bathymetry parameter, also upon the aspect ratio.
The above modes are basin-filling and have large characteristic lengths of the order
of, but less than a typical horizontal basin width.

These solutions contrast with TW-solutions in infinite domains, such as straight
canals. For bathymetries, which vary only in the transverse direction and are con-
tinuous, the dispersion relation consists for each mode of a hump, see Fig. 20.12.
For � � �0 the phase and group velocities are both of the same sign, whilst for
� � �0 they have different signs, so that the energy and phase propagate into oppo-
site directions, whilst for d �=d kjk0 D 0, i.e. at � D �0, energy does not propagate
at all. Existence of this energy characteristics with the largest real � D �0 < 1
is tied to the bathymetry being continuous. Also, for � < �0 corresponding wave
numbers are large, since j � j is small, whilst for � > �0 the wave numbers are large
and typical wavelengths small. Moreover, in the growing branch of the dissipation
curve, j k j< k0, frequencies grow with decreasing typical gyre diameter, whilst
for j k j> k0 frequencies decrease with decreasing gyre size. All this follows easily
from the dispersion curves of Fig. 20.12.

Since the TW-operator is invariant under conformal mapping, TW-solutions
obtained for one domain can easily be constructed also for any other domain which
is the conformally mapped domain of any other domain for which a solution is
already known. This transformation principle is applied to TW-solutions in hyper-
bolic channels, TWs around an elliptical island in an otherwise infinite channel and
long rounded rectangles. Useful this method may be, it is limited by the fact that the
topography must also be transformed; the transformed basins may then not represent
realistic bathymetries. Even more distressing is the fact that with this method only
solutions are found with the same characteristics as the solutions in the pre-image
domain.

In the next chapter, characteristically new solutions will be sought and found!
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Chapter 21
Topographic Waves in Basins with Complex
Shapes and Complex Bathymetries

21.1 Conceptual Review

In the last two chapters, construction of analytical solutions to the topographic
wave (TW)-equation in enclosed basins subject to the no-flux boundary condi-
tion was possible only for basins of simple geometries and simple bathymetries.
The situations were generally such that the linear boundary value problems could
be constructed and solved by the method of separation of variables leading to
two-point-eigenvalue problems of ordinary differential equations with homoge-
neous boundary conditions, which could be expressed in terms of simple functions.
However, unless the bathymetry was approximately expressible by very simple
exponential or power law functions, the differential equations soon took forms,
which were no longer expressible by common functions of mathematical physics,
or the mathematical expressions for the solution would be so tedious to handle,
that they are very likely better solved numerically. As an example, we presented the
solutions of the few lowest order TW-modes in a circular basin with parabolic radial
profile in terms of hypergeometric polynomials (see Chap. 20, formulae (20.23)). It
is also known that the interior of a circle can be transformed by a conformal map-
ping onto the interior of a rectangle. This transformation involves, among others,
elliptic integrals of the first kind. So, the solution in the rectangle will be a com-
position of hypergeometric polynomials and elliptic integrals of the first kind. Such
solution techniques served their purposes in times prior to electronic computation.
Today, more flexibility is demanded, such that mathematical expressions can be
optimally matched to the realistic bathymetries. Indeed, we have so far not been
able to describe qualitatively how TW-modes look like for a rectangular long basin
even when its bathymetry is very simple. In fact it is claimed that an elongated basin
of more general than rectangular or elliptical shape possesses also TW-modes which
are characteristically different from those hitherto constructed. The identification of
these other solutions is physically important; and it will solve the Lake of Lugano
controversy explained in Chap. 19.

A hint that an elongated basin must at a certain frequency possess another basin-
filling solution beyond the long wavelength solutions, e.g. expressed by the ‘Ball’

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_21, c� Springer-Verlag Berlin Heidelberg 2011
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solutions, see Fig. 20.6, follows for a straight channel solution with exponential
profile from Buchwald and Adams’ [4] channel solution. For five transverse modes,
its dispersion relation is displayed in Fig. 20.12. In these dispersion curves, to each
value of � , there exist two positive wavenumbers k; for the first in the regime of
positive d�=dk > 0, a typical wavelength of the TW-mode is large, whereas in the
regime of negative d�=dk < 0, the corresponding wavelength of the TW-mode is
small. Whilst the number of gyres in a long enclosed basin is small in the former
case, this number tends to be large in the latter case. This behaviour is to be expected
also for enclosed basins.

There is even a third type of TW-modes in an enclosed basin, but it can with
the present knowledge not easily be explained. Consider the analogue to the Taylor
reflection problem in a semi-infinite gulf. In that problem, the reflection of a Kelvin
wave at the end of a semi-infinite gulf can only be achieved by the addition of
Poincaré waves with complex wave numbers and the same frequency such that the
reflection condition is fulfilled and these Poincaré waves are exponentially evanes-
cent (or oscillatory) as they move back to the gulf entrance. An analogous behaviour
also exists for the TW-operator. The dispersion relation of TWs above the critical
point � of no energy propagation, d�=dk D 0, allows complex valued wavenumbers
for given real � . These additional solutions, when adequately combined, can also
form solutions which will be called bay-modes or trapped modes with large activity
at the gulf end but exponentially negligible excitement far from it. From this we con-
clude that the TW-operator will allow long and short-length basin-filling modes plus
bay modes whose excitation is restricted to boundary regions. The demonstration of
this behaviour will be the major topic of this chapter.

The numerical method best suited to discover the above described behaviour is
the method of weighted residuals (MWR) with an expansion of the transport stream
function into a complete set of functions across the width of elongated basins mul-
tiplied with functions in the long direction of the basin. The presentation of this
method and its use are the goals of this chapter.

21.2 The Method of Weighted Residuals

21.2.1 The Method of Weighted Residuals Applied
to Topographic Waves

The MWR consists of a reduction of the dimension of the mathematical problem
by a basis (shape) function expansion and is a variant of the projection method, the
spectral or modal method and may also be considered a generalized separation of
variables procedure. Its advantage is that despite of its numerical intent, the method
permits analytical techniques to be pursued farther than with classical numerical
approaches, such as finite difference or finite element methods.
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There are several techniques by which the reduction of the dimensionality of a
boundary value problem can be achieved and then approximately solved. One is to
derive the governing equations from a Variational Principle. For the TW-equation
this involves construction of a functional (Lagrangian) in terms of the mass trans-
port stream function; the TW-equation is obtained as the Euler–Lagrange equation
of this functional and the boundary condition would result from the natural boundary
condition of the variation of the functional. Ripa [20] and Mysak [17] proceed this
way. We use here (as we have done in Chap. 19 for the derivation of the governing
equations of a continuously stratified lake) the MWR. Both methods, in their essen-
tials, are described in Finlayson [7]. The MWR has already been applied to gravity
waves by Raggio and Hutter [19], see Chap. 22, to topographic waves by Stocker
and Hutter [23–25] and to two-phase turbidity currents by Scheiwiller et al. [22].

The MWR and the variational principle in the function expansion approach are
related to the Method of Finite Elements (FE). One fundamental difference, how-
ever, consists in the fact that the domain of integration is not partitioned into a
number of elements in which linear or higher order interpolation is performed.
Rather than assuming the local functional dependence within an individual ele-
ment and then minimizing some global measure, our model approach prescribes
the global functional dependence along one dimension and maps the problem into
the orthogonal subspace. This is achieved by a weighted integration of the equations
along this dimension.

We consider the eigenvalue problem (20.16) formulated in the natural coordinate
system shown in Fig. 21.1,

n

z

s = 0

s

s = L

B–
n B+

z

s
h (s,n)

B +(s)

B –(s)

Fig. 21.1 Elongated lake and transverse section in a natural .s; n; z/-coordinate system. The
thalweg axis .n D 0/ may be a centre of symmetry and have curvature K.s/ (from Stocker
(1987) [26]). c� Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich,
reproduced with permission
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D D 0; in D;
(21.1)

B D 0; in @D

with the definition of the (dimensionless) differential and boundary operators D and
B, respectively

D � 1

J

�
�i�

�
@

@s

�
h�1

J

@

@s

	
C @

@n

�
h�1J

@

@n

	�
C @h�1

@n

@

@s
� @h�1

@s

@

@n

�
;

(21.2)

B � 1:

� � !=f is the non-dimensional frequency and J D 1 � Kn, where K is the
curvature of the thalweg.

Let fP˛.s; n/g be a complete set of basis functions indexed by ˛, in terms of
which the mass transport stream function  .s; n/ is expanded,

 .s; n/ D
NX

˛D1
P˛.s; n/  ˛.s/ � P˛ ˛ : (21.3)

Each basis function is weighted by a residue function  ˛.s/ which is assumed
not to depend on the transverse coordinate n. All functional dependence on n is
now incorporated in the preselected basis functions, a general form of separation.
Expansion (21.3) represents the exact solution for a separable problem provided the
basis functions are appropriately selected. For non-separable systems as (21.2) gen-
erally is, and for an arbitrary set fP˛g with N < 1, the expansion is merely an
approximation. Clearly, fast convergence is anticipated so that truncation of (21.3)
for very small N may furnish a sufficiently accurate solution. The integration of
(21.1) with an arbitrary bounded weighting function ı�.s; n/ over the lake domain
and along the shoreline, respectively, leads to the integral formulations

Z

D

.D / ı� da D 0;

(21.4)I

@D

.B / ı� dl D 0:

If (21.4) holds for any weighting function, this is equivalent to (21.1) owing to the
fundamental lemma of the Calculus of Variation [5]. Expanding also the weighting
function in terms of the complete set fQˇ g, viz.

ı�.s; n/ D
NX

ˇD1
Qˇ .s; n/ ı�ˇ .s/ � Qˇ ı�ˇ ;
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and inserting (21.3) and this expansion into (21.4) yields

Z

D

.DP˛ ˛/Qˇ ı�ˇ da D 0;

(21.5)I

@D

.BP˛ ˛/Qˇ ı�ˇ dl D 0:

Summation over doubly repeated Greek indices is understood. The integration over
the lake domain D can be split up into two integrations over either coordinates using
da D J dnds for the area element in the natural coordinate frame. Further, the trivial
form of the boundary operator B � 1 suggests the special choices

P˛
�
s; B˙

� D 0; Qˇ

�
s; B˙

� D 0; for all ˛; ˇ (21.6)

such that the only contribution to (21.5)2 arises from the ends of the lake. Since the
weighting functions are arbitrary, (21.5) can be replaced by

Z nDBC

nDB�

.DP˛ ˛/ J Qˇ dn D 0

 ˛.s/ jsD0;LD 0

9
>>=

>>;
˛; ˇ D 1; : : : ; N: (21.7)

The residue functions  ˛ depend only on s and are therefore extracted from the
integration by carefully accounting for the effect of the differential operator D on
 ˛.s/. On substituting (21.2) into (21.7), we obtain

0 D
BCZ

B�

2

6
6
6
4

�i�

8
ˆ̂̂
<

ˆ̂
:̂

@

@s

�
h�1

J

@

@s
.P˛ ˛/

�

„ ƒ‚ …
.1/

C @

@n

�
h�1J

@

@n
.P˛ ˛/

�

„ ƒ‚ …
.2/

9
>>>=

>>>;

C @h�1

@n

@

@s
.P˛ ˛/

„ ƒ‚ …
.3/

� @h�1

@s

@

@n
.P˛ ˛/

„ ƒ‚ …
.4/

3

77
5Qˇ dn; (21.8)

where summation over the repeated index ˛ is understood. Using judiciously
integration by parts in the individual terms, (21.8) can be written in the form

Mˇ˛ ˛ D 0

 ˛ D 0

�
˛; ˇ D 1; : : : ; N

�
0 < s < L;

s D 0;L;
(21.9)
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in which Mˇ˛ is the following ordinary matrix differential operator

Mˇ˛ D � i�

"

M 00
ˇ˛

d2

ds2
C
 

dM 00
ˇ˛

ds
CM 10

ˇ˛ �M 01
ˇ˛

!
d

ds

C
 

dM 10
ˇ˛

ds
�M 11

ˇ˛ �M 22
ˇ˛

!#

�
�
M 20
ˇ˛ CM 02

ˇ˛

� d

ds

�
 

dM 20
ˇ˛

ds
CM 12

ˇ˛ �M 21
ˇ˛

!

.˛; ˇ D 1; : : : ; N /: (21.10)

The matrix elementsM ij

ˇ˛
represent quadrature formulae in the transverse direction,

explicitly:

M 00
ˇ˛ D

Z
h�1J�1P˛Qˇdn;

M 10
ˇ˛ D

Z
h�1J�1

@P˛

@s
Qˇdn; M 01

ˇ˛ D
Z
h�1J�1P˛

@Qˇ

@s
dn;

M 20
ˇ˛ D

Z
h�1

@P˛

@n
Qˇdn; M 02

ˇ˛ D
Z
h�1P˛

@Qˇ

@n
dn;

M 11
ˇ˛ D

Z
h�1J�1

@P˛

@s

@Qˇ

@s
dn; M 22

ˇ˛ D
Z
h�1J�1

@P˛

@n

@Qˇ

@n
dn;

M 12
ˇ˛ D

Z
h�1

@P˛

@s

@Qˇ

@n
dn; M 21

ˇ˛ D
Z
h�1

@P˛

@n

@Qˇ

@s
dn:

(21.11)

For the derivation of (21.9)–(21.11) from (21.8), see the Appendix to this chapter.
The individual componentsM ij

ˇ˛
in (21.11) are known functions of s and depend

on the topography of the lake, h, on the metric of the natural coordinate system,
J.s; n/, on the shape of the lake shore, B˙.s/, and on the sets of basis functions
fP˛.s; n/g and fQˇ .s; n/g.

Notice that (21.9) is only meaningful as long as all entries of the matrices
(21.11) are bounded. Since J and J�1 are both regular, this means that the basis
functions P˛ and Qˇ must be chosen such that the combinations h�1 P˛Qˇ ,
h�1 .@P˛=@s/Qˇ , etc. arising in (21.11) are integrable. For h> 0 no difficulties
arise, however, when h D 0 along the shore the functions P˛, Qˇ must be taken
from a set of which the nearshore behaviour is dictated by that of h. This is a
drawback of this method and restricts it essentially to profiles with finite shore depth.

Equation (21.9) form a system of coupled one-dimensional differential equations
that replace the single two-dimensional boundary-value problem (21.1). These two
formulations are presumed to be equivalent provided (1) the sets of basis functions
are complete in ŒB�; BC� and (2) N D 1. The selected order N of the system
sets a natural bound to the variability of the approximate solution as well as to
its quality. At a first glance the MWR seems to leave us with a more complicated
task. Finite-difference calculations, however, have indicated numerical difficulties
such as slow convergence, particularly for complicated topographies and for large
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wavenumbers [2]. Moreover, this version of the MWR is very well suited to the
identification of long and short wavelength basin-filling modes as well as bay modes
in enclosed elongated basins and therefore draws a parallel to the corresponding
behaviour of gravity modes in rotating enclosed basins.

21.2.2 Symmetrisation

It is now assumed that the physical configurations exhibit symmetry with respect to
the axis n D 0. This symmetrisation is also suggested by the fact that TW-solutions
for the stream function in circular and elliptical basins change repeatedly their sym-
metry with respect to the lake axis.1 This suggests to build the solution by pairs of
symmetric and skew-symmetric functions. Therefore, the functions P˛ ;Q˛; J and
J�1 are symmetrised by introducing the decompositions

f .s; n/ D f C.s; n/C f �.s; n/;
f C.s; n/ D f C.s;�n/; (21.12)

f �.s; n/ D �f �.s;�n/;

in which

f C.s; n/ D 1

2
.f .s; n/C f .s;�n//;

(21.13)
f �.s; n/ D 1

2
.f .s; n/ � f .s;�n//:

This decomposition is applied to the matrix elementsM ij

ˇ˛
in (21.11); the important

result here is

M 00
ˇ˛ D M 00CC

ˇ˛
CM 00��

ˇ˛ CM 00�C
ˇ˛

CM 00C�
ˇ˛

.˛; ˇ D 1; : : : ; N /

D
Z
h�1.J�1/C P C̨QC

ˇ
dnC

Z
h�1 .J�1/C P �̨Q�ˇ dn

C
Z
h�1 .J�1/� P �̨QC

ˇ
dnC

Z
h�1.J�1/� P C̨Q�ˇ dn; (21.14)

M 20
ˇ˛ D M 20�C

ˇ˛
CM 20C�

ˇ˛

D
Z
h�1

@P �̨

@n
QC
ˇ

dnC
Z
h�1

@P C̨

@n
Q�ˇ dn

1 If in Fig. 20.6 the long axis is identified with the s axis, it is seen that for t D 0 the mass transport
stream function  is skew-symmetric and for t D T=4 it is symmetric.
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with analogous expressions for M 22
ˇ˛

and M 02
ˇ˛

, respectively. It has been assumed
above that h� D 0 (symmetric depth profile), and the integration is from B� D
�1
2
B.s/ to BC D 1

2
B.s/. Because the basis functions P˛ and Qˇ are decomposed

according to (21.12) and (21.13), the expansion (21.3) of the solution  .s; n/ must
be replaced by

 .s; n/ D P C̨.s; n/  C̨.s/C P �̨.s; n/  �̨.s/; (21.15)

where the ˙ superscripts on  ˛ indicate merely affiliation to the individual P ˙̨. In
vector notation, the stream function reads

 D . C1 ; : : : ;  
C
N I  �1 ; : : : ;  �N / D . CI �/; (21.16)

and the matrices (21.14) take the forms

M00 D
�
M00CC M 00�C
M00C� M 00��

�
; M 20 D

�
0 M 20�C
M 20C� 0

�
; etc.

With this notation the differential equations (21.9) read

�
�i�

�
MCC M�C
MC� M��

�
C
�
0 N�C
NC� 0

�	�
 C
 �

	
D 0; (21.17)

with the matrix operators M and N of which the particular form is unimportant in
the ensuing arguments.

The coupling of the solution vectors  C and  � is induced by the off-diagonal
operators M�C, MC� and N�C, NC�, respectively. The former are due to cur-
vature and vanish when K D 0.2 The latter originate from the vector product
Ok � r � r .f=H/ and express the effect of the Coriolis force. The restriction
to only symmetric basis functions reduces (21.17) to two decoupled equations. This
obviously corresponds to the claim that both terms of the sum of the TW-equation
be individually zero. On imposing the boundary condition this implies  � 0, a
result claimed already in Chap. 19. It suggests that the approximate system requires
a set of basis functions containing both symmetric and antisymmetric functions if
qualitatively correct results are to emerge.

21.3 Topographic Waves in Infinite Channels

TWs in infinite channels have been studied previously, and their treatments have
been presented in Chaps. 19 and 20 on the basis of analytical solutions. Numeri-
cal solutions for two sided topographies and the application of the finite difference

2 This is so, since J D 1 � Kn, JC D 1, J� D �Kn and evaluation of M�C and MC�

according to (21.11) makes only those contributions survive which involve J�.
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Fig. 21.2 Cross-sectional depth profiles of a symmetric channel

method were presented by Gratton [9], Gratton and LeBlond [10] and Bäuerle
[2]. We reproduce here the solution procedure by Stocker and Hutter [23–25, 27],
because this solution method has turned out to be particularly apt in elucidating the
physics and, in particular, because of the parallels to the mode behaviour of gravity
waves in rotating enclosed basins.

21.3.1 Basic Concept

The suitability of the approximate model equations (21.9) deduced with the MWR
is now tested using a straight, infinite and symmetric channel with a topography of
the form3

h.s; n/ D h0.s/

�
1C � �

ˇ
ˇ
ˇ
ˇ
2n

B.s/

ˇ
ˇ
ˇ
ˇ

q	
; (21.18)

where � is a sidewall and q a topography parameter, see Fig. 21.2, which provides
the possibility of modelling both concave .q > 1/ and convex .q < 1/ transverse
depth profiles. The sidewall parameter � has been introduced in order that all matrix
elements (21.11) take finite values. The complete sets of basis functions fP˛g and

3 This profile is the same as that used by Saylor et al. [21] for the circular basin, simulating the
dynamics of Southern Lake Michigan, see Chaps. 19 and 20.
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Fig. 21.3 Symmetric and skew-symmetric basis functions

fQˇ g will be chosen to be identical (Galerkin procedure) with the symmetric and
skew-symmetric parts given by, see Fig. 21.3;

P C̨.s; n/ D cos

�
�

�
˛ � 1

2

	
2n

B.s/

	
;

P �̨.s; n/ D sin

�
�˛

2n

B.s/

	
;

.˛ D 1; : : : ; N /: (21.19)

Here, P C̨ and P �̨ arise in pairs; N , thus, characterizes a model consisting of 2N
basis functions. These satisfy the boundary conditions (21.6) along the shoreline
n D ˙1

2
B.s/. Substituting (21.18) and (21.19) into (21.11) and assuming B.s/ to

be constant4 it is seen that

M 00
ˇ˛ D Bh�10 Kˇ˛; M

22
ˇ˛ D B�1h�10 K22

ˇ˛;

M 20
ˇ˛ D h�10 K20

ˇ˛; M 02
ˇ˛ D h�10 K02

ˇ˛ ;

(21.20)

while the elements with the superscripts 10, 01, 11, 12 and 21 all vanish.
The dimensionless matrix elements K ij

˛ˇ
depend on � and q and straightforward

calculation leads to the expressions for these:

4 This assumption is not necessary and the operator M for @B=@s 6D 0 is given in [23].
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Z
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2

	
y
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�
�

�
ˇ � 1

2

	
y

	
dy;

K00��
ˇ˛ D

Z
h�1? sin.�˛y/ sin.�ˇy/dy;

K22CC
ˇ˛

D 4�2
�
˛ � 1

2

	�
ˇ � 1

2

	Z
h�1? sin

�
˛

�
˛ � 1

2

	
y

	

� sin

�
�

�
ˇ � 1

2

	
y

	
dy;

K22��
ˇ˛ D 4�2˛ˇ

Z
h�1? cos .�˛y/ cos .�ˇy/ dy; (21.21)

K20C�
ˇ˛

D �2�
�
˛ � 1

2

	Z
h�1? sin

�
�

�
˛ � 1

2

	
y

	
sin .�ˇy/ dy;

K20�C
ˇ˛

D 2�˛

Z
h�1? cos .�˛y/ cos

�
�

�
ˇ � 1

2

	
y

	
dy;

K02C�
ˇ˛

D 2�˛

Z
h�1? cos

�
�

�
˛ � 1

2

	
y

	
cos .�ˇy/ dy;

K02�C
ˇ˛

D �2�
�
ˇ � 1

2

	Z
h�1? sin .�˛y/ sin

�
�

�
ˇ � 1

2

	
y

	
dy

with h? D 1 C � � yq; the integration is meant to be from y D 0 to y D 1.
Numerical evaluation of these integrals for selected values of q D .0:5; 2:5/ and
" D .0:05; 01/ can easily be performed with any commercial software. Results are
listed for the more general case thatB.s/ 6D constant in tables by Stocker and Hutter
[23]. With (21.21), (21.10) takes the form

K � Bh0M D �i�
�
B2K00 d2

ds2
� B2

�
h�10

dh0
ds

	
K 00 d

ds
�K22

�

�B �K 20 CK02
� d

ds
C B

�
h�10

dh0
ds

	
K20:

(21.22)

This operator has constant coefficients whenever the depth-profile is constant or
exponential with respect to the basin axis. For an infinite channel, however, we
prefer h0 D constant. Let us take a solution of the form

 D . CI �/ D eiks=L.c1; : : : ; cN I cNC1; : : : ; c2N / D eiks=Lc (21.23)

with a dimensionless complex-valued wavenumber k; Im.k/ 6D 0 is meaningful in
semi-infinite and finite channels, and a length L is then appropriate. With (21.22),
(21.23) and h0 D const: the symmetrized form of (21.9) reduces to a system of
algebraic equations

Cc D 0;

C D
�
�
�
.rk/2K00CC CK 22CC� �.rk/ �K20�C CK02�C�

�.rk/ �K20C� CK02C�� �
�
.rk/2K 00�� CK22���

�
;

9
>=

>;
(21.24)
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in which the aspect ratio parameter r D B=L has been introduced. Notice that r
and k enter only through the product rk, suggesting that solutions for r D 1 only
need to be constructed.C is a .2N �2N/-matrix and depends on � and k. Equation
(21.24)1 admits a non-trivial solution vector c if

detC .�; k/ D 0; (21.25)

forming the dispersion relation �.k/ for topographic Rossby waves in a straight
infinite channel. It is a polynomial equation of order 2N in .rk/2 with real coeffi-
cients. For each frequency a N th order model, therefore, yields 4N wavenumbers
counting complex conjugates and pairs having opposite signs.

Let k� .	 D 1; : : : ; 4N / be a root of (21.25) corresponding to a frequency �
and c� ; .c˛� / the associated eigenvector (component) of (21.24). A general channel
solution  .s; n; t/ can then be written as

 .s; n; t/ D e�i
f t
4NX

�D1
eik� s=Ld�

"
NX

˛D1
P C̨.s; n/c˛� C

2NX

˛DNC1
P �̨�N .s; n/c˛�

#

;

(21.26)
in which solutions belonging to individual k’s occur in a linear combination by an
arbitrary complex vector d ; .d� /. The MWR offers sufficient freedom in modelling
the channel topography, because improved accuracy can be obtained by higher-order
models, and convergence is expected.

21.3.2 Dispersion Relation

Solutions of (21.25) may be plotted schematically for a first-order model, N D 1,
in a .Re.k/; Im.k/; �/-coordinate system, see Fig. 21.4. This is a model which uses
one symmetric and one skew-symmetric basis function of the form (21.19) and is of
lowest possible order. Its graph is symmetric with respect to both axes Re.k/ D 0

and Im.k/ D 0. Three regimes 1, 2, 3 can be distinguished where the wavenumbers
k take real, complex and purely imaginary values, respectively. Table 21.1 gives
the periods at which the individual regimes join for different topography and side-
wall parameters. In regime 1 all wavenumbers k are real and, therefore, represent
physically possible channel solutions. Evidently in regime 1, there exists for each
frequency a long and a short wave. This is typical of Rossby waves and has also
been observed for shelf waves in Chap. 20, provided the slope parameter S D h0=h
was bounded in the domain. This is so also for channels: in other words it can be
proven that existence of a wavenumber jkj D jk0j < 1 such that cg D d�=dk D 0

is guaranteed only if h0=h is bounded everywhere across the channel width.5 At this

5 A proof for this is given by Stocker and Hutter [27] in their Appendix C; it involves WKB
perturbation procedures, see e.g. [3]. An example with infinite h0=h is given in Chap. 20. In the
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Fig. 21.4 Schematic plot of
the complex dispersion
relation for an infinite channel
with " D 0:05 and q D 0:5

and in a first-order model. In
regime 1, k is real; in regime
2, it is complex with constant
modulus; and in regime 3, k
is purely imaginary, taking
asymptotic values k1 and k2
and for large � (from [26]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission

k1 2

1

3

k2

k

σ2

σ

Imk
σ1

Rek

Table 21.1 Periods and corresponding wavenumbers in a first-order model, which separate the
regimes, depending on topography and sidewall parameters q and ", respectively. The period
T is calculated using T D 16:9 h/� corresponding to 45ı latitude. At T1 no wave energy is
transported; T2 separates requires 2 and 3

q T1 [h] T2 [h] jkj
" D 0:05 " D 0:10 "D 0:05 "D 0:10 "D 0:05 "D 0:10

0.5 52.8 58.3 10.5 11.8 6.6 5.9
1.0 60.5 64.3 13.2 14.4 6.9 6.2
2.0 83.0 88.2 22.0 22.6 6.8 6.3
5.0 174.0 199.0 58.2 61.8 6.1 5.8

critical wavenumber no energy is transported along the channel. This corresponds
roughly to wavelengths of about one channel width or less, and the periods are
listed in Table 21.1. It is also worth noting that Re.k/ can have both signs. This is
in contrast to planetary Rossby waves which are due to the ˇ-effect [11] or Rossby
waves on the continental shelf [14], the reason being that here h0=h changes sign in
the channel. So, such configurations enable topographic Rossby waves to propagate
in both directions. In either case, as an effect of the Coriolis force, the structure of
the wave on the Northern hemisphere is right-bounded with respect to the direction
of phase propagation. The dispersion relation (21.25) contains only even powers of

single-step shelf, there is no maximum of � for finite k: d�=dk D 0 is only reached for k !1.
An analogous case occurs when the bathymetry is of multi-step shape.
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� such that (21.25) is independent of the sign of � . It is convention that the sign of
f (positive on the Northern hemisphere) determines the sign of the nondimensional
frequency � .

The structure of the stream function depends upon the frequency range. Small
frequencies (regime 1) favour periodic patterns along the channel. Waves with
intermediate frequencies of order 1 (regime 2) have a mixed periodic-exponential
structure and do not represent possible solutions in an infinite channel. At frequen-
cies � > 1 (regime 3) the solutions grow or decay exponentially. For later use, the
union of the three regimes of the dispersion relation in Fig. 21.4 will be called a
mode unit.

The second-order model furnishes 8 wavenumbers to each frequency and its dis-
persion relation consists of two interlocking mode units, see Fig. 21.5. Thus, there
are now two branches with real, complex and imaginary k, respectively. The relative
size of the mode units and their spatial positions within the .k; �/-coordinate sys-
tem depend crucially upon the topography. The cylindrical surface of the first-order
model degenerates to the smaller bell-shaped surface, i.e. its radius now depends
on the frequency. The second mode unit forms an outer shell, which here has the
form of a cone. Physically possible solutions for the infinite channel exist in regime
1 for both mode units and in regime 2 only for the first mode unit. The qualita-
tive shape of the dispersion relation for an N th-order model can be guessed from

Fig. 21.5 Schematic plot of
the complex dispersion
relation �.k/ for an infinite
channel with " D 0:05 and
q D 0:5 in a second-order
model. Five regimes with
respect to � can be
differentiated (from [26]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission
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Fig. 21.6 Modulus k of the third-order-dispersion relation for an infinite channel, q D 0:5; " D
0:05 (from [26]). c� Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH
Zürich, reproduced with permission

Figs. 21.4 and 21.5. The modulus jkj is plotted for a third-order model in Fig. 21.6,
demonstrating clearly the addition of the next mode unit.

Summarizing and extrapolating, we state:

� The dispersion relation of an N th order model consists of N mode units each of
which has 3 regimes, in which wavenumbers are real, complex or imaginary.

� Solutions for infinite channels, which are physically meaningful, can only be
constructed for wavenumbersk which are real. Therefore, when h0=h is bounded,
there exist maximum frequencies, for which channel solutions may occur (see
Table 21.1). At these maxima energy cannot propagate; for smaller k’s group
and phase velocities are unidirectional, for larger k’s they are antidirectional.

� In domains, which are of finite extent also in the s-direction (lakes), solutions can
be constructed with real, complex or imaginary wavenumbers k. Their spatial
dependence is either periodic, periodic exponential or exponential.

� From this point of view, lake solutions occur for all � 2 .0;1/. However recall,
that the low-frequency approximation, !2 
 f 2, was made, for the barotropic
TW-equation to be valid. Therefore, physical applications of results j� j > 1 may
be dubious.

These properties are tied to the existence of a finite k D k0, where the purely
real dispersion relation branches off to become complex.

The performance of the MWR approximation is best tested when results obtained
with increasing mode-units are compared against an exact solution. Figure 21.7 dis-
plays such a comparison, the exact solution being constructed for a channel with
constant h0 D 1, exponential shores and a region with constant depth (see insets in
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Fig. 21.7 Comparison of the dispersion relation �.k/ of the exact solutions in a piecewise expo-
nential channel (see inset) with the MWR solutions for N D 1–3 and the two first modes (from
[27]). c� Springer, Berlin, reproduced with permission

both panels for the bathymetric profiles).6 The exact dispersion curves are shown for
the first and second mode (solid lines), and approximate MWR-dispersion curves are
shown for N D 1; 2; 3 mode units (dashed lines). The convergence of the approx-
imate dispersion curves for N D 1; 2; 3 to the exact solutions is clearly seen; this
convergence is faster for shallow slopes than for steep slopes, and obviously higher
order models are required for modesN � 3.

6 In the three regimes the differential equation for the transverse variation of the stream function
has constant coefficients and the solutions in the three regimes are patched together by requesting
continuity of  and @ =@n, see the straight channel solution in Chap. 20.
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Fig. 21.8 Convergence of the different modes, increasing the order of the model from N = 1–3 for
convex (q D 0:5) and concave (q D 2:0) topography and two side-wall parameters, " D 0:05 and
" D 0:10 (from [27]). c� Springer, Berlin, reproduced with permission

Figures 21.8 show MWR-solutions for the first and second mode forN = 1–3 and
different values of q and ". Comparison of panels (a) and (b) shows that convergence
with growing N is faster for q D 0:5 than q D 2:0. This is unfortunate, because
the larger q-values correspond to more realistic bathymetries. On the other hand,
comparison of panels (b) and (c) suggests that variations of " are of lesser influence
on the dispersion curves. This same qualitative behaviour is also seen in panels (b)
and (c), where dispersion curves are shown for a second order model for q D 2

and " D 0:05; " D 0:1. Evidently, the dispersion relation reacts more sensitively to
changes in q than changes in ".

In summary, the above results suggest that the order of approximation of the
MWR-method must at least be one to two mode units larger than the number of
modes which one wishes to consider in a computation of ‘quasi-standing’ channel
solutions of the TW-equation.
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ubt

k

Fig. 21.9 Explaining the anticyclonic barotropic velocity field on a convex stream function surface
(from [26]). c� Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich,
reproduced with permission

21.3.3 Channel Solutions

Equation (21.26) represents a general solution in a straight, infinite channel with
arbitrary cross-section.  is a complex-valued function and so, both real and imag-
inary parts are physically reasonable solutions. However, as can be easily shown,
they differ only by a spatial or temporal phase shift. We recall the identities

Im.z/ � Re.�iz/; z 2 C; �i � e�i ��=2; (21.27)

and obtain from (21.26)

Im . .s; n; t// D Re
�

e�i��=2 .s; n; t/
�

D Re . .s; n; t C T=4// :

Therefore, the complete information about the solution  is already obtained when
considering Re. / alone.

Before discussing the solutions in detail, however, a qualitative argument is
shown by which the stream function is related to the barotropic velocity field
according to (see (20.4))

ubt D 1

h

� Ok � r 
�
: (21.28)

It follows from this, that the deeper the channels are, the weaker the velocities
will be. Further, convex stream function surfaces are connected with anti-cyclonic
velocity cells (Fig. 21.9), and the steeper the  -surfaces are the stronger will be the
velocities in these cells.

Rather than considering general solutions such as (21.26) we investigate solu-
tions to particular wavenumbers.

Figures 21.10–21.127 display perspective views and contour lines of Re. / in a
straight infinite channel for a third order model. The n-axis has been stretched by a

7 Only snapshots of the first quarter period are shown. The panels can easily be extended by
recognizing that cells with the same parity at t D 0 and viewed as a ‘dumbbell’ rotate cyclonically.
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Fig. 21.10 (a) Time sequence of the stream function surface in steps of 1=16 T in a channel
�1=2B 
 n 
 1=2B; 0 
 s 
 6Lr and aspect ratio r D 1. Note that the phase motion
in the domains n > 0 and n < 0 is right bounded. (b) Time sequence of lines of constant  
relative to 90% of the maximum value at each time step. The cellular structure of cyclonic (C)
and anticyclonic (�) vortices is clearly visible. Composed from figures in Stocker and Hutter [23].
c� Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, reproduced

with permission

factor of 1.5 to make the transverse structure more visible. The lines of constant  
are chosen such that all inner most lines correspond to 90% of the maximum value
in each time step. Thus, the lines of different time steps cannot be used for amplitude
comparison. The pattern consists of two right-bounded topographic waves evolving
from the superposition of the solutions  .�; k/ and  .�;�k/. Each mode shows
its own characteristic cross-channel behaviour. The cells rotate anticlockwise; with
proceeding time they split and merge again together, which reflects the varying bal-
ance between the symmetric and skew-symmetric aspects of the motion. As would
be expected, the complexity of the system of gyres increases with the mode number.
Whereas these properties are shown above for a third order model, they have been
computed also for a first and second order model by Stocker and Hutter [23]. This
is a rewarding result as it demonstrates that the MWR-approximation has led to the
qualitatively correct results already at its lowest order.

Stocker and Hutter [27] have studied the properties of the wave solution both
for the transport stream function  and the velocity and have found the following
results:
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Fig. 21.11 (a) Time sequence of the stream function surface in steps of 1=16 T in a channel
�1=2B 
 n 
 1=2B; 0 
 s 
 6Lr and aspect ratio r D 1. Note that the phase motion
in the domains n > 0 and n < 0 is right bounded. (b) Time sequence of lines of constant  
relative to 90% of the maximum value at each time step. The cellular structure of cyclonic .C/ and
anticyclonic .�/ vortices is clearly visible. Composed from figures in [23]. c� Versuchsanstalt für
Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, reproduced with permission

� With increasing number of the functions used in the MWR-approximation the
wave activity is becoming more and more shore bound.

� The wave activity is also closer to shore when the wave number is increased.
� The same is observed when the bathymetric profile changes from convex

(q D 0:5/ to concave (q D 2).
� These behaviours also apply for the transport stream function and the velocity.
� The parameter " has a rather small effect on the distribution of the velocities and

stream function.

These results suggest, first, that the choice of the trigonometric basis functions
may not be the optimal selection of orthogonal functions for the use of the MWR.
Another set, which weighs boundary regions higher than interior regions, may be
better. Second, the results can help in selecting mooring sites in channels or in elon-
gated lakes when basin-filling topographic waves are to be detected by velocity
recordings. When these positions are close to shore (say 0:1B offshore, B D basin
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Fig. 21.12 (a) Time sequence of the stream function surface in steps of 1=16 T in a channel
�1=2B 
 n 
 1=2B; 0 
 s 
 6Lr and aspect ratio r D 1. Note that the phase motion
in the domains n > 0 and n < 0 is right bounded. (b) Time sequence of lines of constant  
relative to 90% of the maximum value at each time step. The cellular structure of cyclonic (C) and
anticyclonic (–) vortices is clearly visible. Composed from figures in [23]. c� Versuchsanstalt für
Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, reproduced with permission

width) then the clockwise rotating velocities can be recorded and may be attributed
to mode-1 TW-motion.

We close this section on TWs in infinite channels by a few remarks on TW-
propagation in straight channels by others. Instead of applying the MWR to the
TW-equation, one can start with the trial solution for propagating (and not quasi-
standing) waves, given by

 .x; y/ D F.y/exp .i.kx � !t//

and then obtains the two-point-boundary-value problem for the cross channel
variation

d2F

dy2
� dh=dy

h

dF

dy
�
�
k2 � dh=dy

h

k

�

	
F D 0 � y1 < y < y2;

(21.29)

F D 0 y D y1; y2:
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GRATTON  (1983)

THIS  STUDY

Fig. 21.13 Topographic waves propagating in an infinite channel with cross-topography, by
Gratton [9] and Stocker and Hutter (this study). Both exhibit right-bounded waves. Gratton has
separate solutions, but here they area a combination of the two (from [23]). c� Versuchsanstalt für
Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, reproduced with permission

Gratton [9], Gratton and LeBlond [10] and Bäuerle [2] proceed this way and solve
(21.29) for different channel topographies, whilst Lie [15] and Djurfeldt [6] and
Takeda [33] perform shelf wave analyses (y2 ! 1). Gratton [9] and Gratton and
LeBlond [10] investigate channels with linear asymmetric or symmetric parabolic
depth profile .y1 D �y2/ and find solutions of two forms: Exact solutions are
expressible in hypergeometric (so-called) Kummer functions and approximate
‘small-slope’ solutions, for which h is treated as constant except when being dif-
ferentiated. These solutions have a hump close to the right shore (on the Northern
Hemisphere) when looking into the direction of propagation and decay exponen-
tially to zero when the other (left) shore is approached. This formulation yields
right bounded waves, propagating in both directions along the channel axis, see
Fig. 21.13. A linear superposition of two waves propagating in the Cs and �s
directions yields a quasi-standing wave as constructed here with the MWR-method,
which is more flexible than Gratton and LeBlond’s method.

Bäuerle [2] solves the two-point-boundary-value problem (21.29) by using stan-
dard Finite Difference (FD) methods and repeats results obtained by the MWR
and then compares his results with those obtained by using the FD-method. We
show here only one result, quoting from Bäuerle [2] and Stocker and Hutter [27].
Figure 21.14 compares the dispersion relations for " D 0:05 and q D 0:5; 1; 2; 5 as
determined with the FD technique using 401 mesh points across the channel and the
MWR using a third order model. According to this figure, the N D 3 MWR-results
only differ appreciably from the FD-results for q D 5 and k > 10. For large k and
large q, it was already mentioned before, that a higher than n D 3 MWR-model is
required to achieve accurate results.

In conclusion: No advantage of the FD-method over the MWR-method seems to
emerge from this analysis, since extremely small mesh size is required to reproduce
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Fig. 21.14 Comparison of
the dispersion curves
calculated by the finite
difference (solid) and
MWR-technique (dashed)
(from [2]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission

q = 0.5

q = 1.0

q = 2.0

q = 5.0

finite  difference  NN = 401
MWR, N = 3

20151050
0

0.1

0.2

0.3

0.4

σ

ε = 0.05

k

the same accuracy as achieved by the MWR-method with only three mode units. An
analogous critique also holds for Gratton and LeBlond’s analytical solution, [27].

21.4 Topographic Waves in Rectangular Basins

In the preceding TW-analyses, solutions to the TW-equation were found, which
describe basin-filling wave motions e.g. in circular and elliptical basins with sym-
metric bathymetries. Solutions, which were constructed for channels with bathy-
metric profiles varying only across the channel width, were also obtained, but none
of these solutions provided any hints as to the interpretation of the long periodic
(60–100 h) signals in Lake of Lugano as basin-filling and localized dynamical fea-
tures, respectively. In fact, up to now, no localized TW-mode was discovered in the
solutions presented so far. In this section, we shall make a significant step towards
an affirmative answer of this still unsolved problem.

21.4.1 Crude Lake Models

A lake model is called crude, if in the natural coordinates .s; n/ its topography varies
only in the transverse direction n. For such a model, it is straightforward to extend
the results obtained for infinite channels. As there exist 4N independent solutions
in a channel for anN th order model, they may be superposed such that the resulting
solution also fulfills the boundary conditions on the s-axis, i.e. s D 0 and s D L.
These must be satisfied for all ˙̨ in order that the combination .s; n; t/ in (21.26)
obeys the requirement

 .s; n; t/ D 0 s D 0;L (21.30)



470 21 Topographic Waves in Basins with Complex Shapes and Bathymetries

for all times. If all frequencies are below the critical frequency, see Figs. 21.4–21.6,
(21.30) together with (21.26) implies

 ˛CjsD0 D 0 !
4NX

�D1
c˛�d� D 0; ˛ D 1; : : : ; N;

 ˛�N� jsD0 D 0 !
4NX

�D1
c˛�d� D 0; ˛ D nC 1; : : : ; 2N;

 ˛CjsDL D 0 !
4NX

�D1
eik� c˛�d� D 0; ˛ D 1; : : : ; N;

 ˛�N� jsD0 D 0 !
4NX

�D1
eik� c˛�d� D 0; ˛ D nC 1; : : : ; 2N:

(21.31)

Recall that the coefficients c˛� are functions of the frequency� . By defining a .4N�
4N/-matrixD˛� .�/, such that

D˛� D c˛� ; ˛ D 1; : : : ; 2N;

D˛� D eik� c˛�2N;� ; ˛ D 2N C 1; : : : ; 4N;
	 D 1; : : : ; 4N; (21.32)

the boundary conditions (21.31) assume the compact form

D˛�d� D 0; ˛; 	 D 1; : : : ; 4N: (21.33)

Non-trivial lake solutions require that8

detD.�/ D 0; (21.34)

which is the equation determining the eigenfrequency in the lake. Having found an
eigenfrequency � with (21.34), the lake solution can readily be calculated by deter-
mining the eigenvector d� from (21.33) and evaluating  from (21.26). Both, real
and imaginary parts of are solutions; however, for simplicity only one of them will
be considered. Calculations showed that the eigenfrequency � could be evaluated
from (21.34) with appreciable accuracy. Calculating, in a second step, the eigenvec-
tor d� by a Gauss algorithm (backward substitution from a left-right decomposition
of D caused serious difficulties insofar as some of the thus constructed eigenfunc-
tions showed dissatisfaction of the boundary conditions. This is characteristic of
numerically stiff systems and occurs particularly in cases, when zeros have to be
evaluated which are connected with large derivatives. In these cases the calcula-
tion of the zero of a nonlinear function exhibits good and fast convergence although

8 It turns out that all solutions of (21.34) satisfy � < �0, where �0 is the critical frequency. This is
a posteriori proof that (21.31) is justified.
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the function value at the root may be far from zero. Special integrators of ordinary
differential equations must be used.

Computations show that frequencies (periods) decrease (increase) apprecia-
bly, when the topography parameter q increases. This effect is demonstrated in
Tables 21.2–21.4. The first compares the lowest eigenfrequencies for models of
order N D 1–3. There is always a pair of eigenfrequencies differing from each
other by less than 1% (but only one of the pairs is shown in Table 21.2). The
second Table 21.3 shows the first eigenfrequencies computed by a second order
model for various aspect ratios r D B=L (width/length) and results indicate that
eigenfrequencies are robust (stiff) against changes in r , but change considerably
with variations of q. Table 21.4 shows the eigenperiods (in hours) of a second order
model with " D 0:05 and proves that pairwise appearing periods are very close to
one another, so close to each other that their separation by measurement is certainly
out of reach.

The form of the dispersion relation �.k/ also implies that modes with higher
periods have higher modal structure in the s-direction, because to a given period
the two wave numbers are far apart; so, in a particular solution it is not possible
to arrange the eigenfrequencies in a strict order which would be connectable with
the modal structure. This seems to be intrinsic of second class wave motion, since
already Ball [1] has not found such a connection even in an exact analytical solution,
see Fig. 20.9.

Table 21.2 First eigenfrequencies � for r D 0:5 and � D 0:05 in a crude lake model. There is
always a pair of eigenfrequencies differing from each other by less than 1% and the table shows
only one of them. N D 1; 2; 3 indicates the order of the model, from [27]

2 : 1 basin N D 1 N D 2 N D 3

q D 0:5 0.314 0.335 0.337
0.292 0.316 0.317
0.264 0.293 0.295

q D 2:0 0.198 0.260 0.274
0.186 0.254 0.271
0.169 0.246 0.267

q D 5:0 0.087 0.167 0.208
0.081 0.163 0.206
0.073 0.158 0.202

Table 21.3 The first eigenfrequencies in a second-order model for various aspect ratios r
and topography parameters q; �D 0:05. Question marks indicate computational difficulties,
from [27]

q r D 0:5 r D 0:4 r D 0:3 r D 0:2

0.5 0.335 0.337 0.339 0.341
1.0 0.303 0.304 0.304 0.305?
2.0 0.260 0.260 0.261 0.261
5.0 0.167 0.167 0.167 0.168?
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Table 21.4 Six lowest eigenperiods (in hours) of a second order model (45ı latitude) with " D
0:05 for four different values of the bathymetry parameter q and three values of the aspect ratio r .
The vertical dashed lines separate pairs of periods which lie close together, from [23]

q r Periods [h]
0.5 50.0 50.5 53.5 53.6 62.5 62.7

0.5 1.0 53.7 53.8 62.9 63.3 74.1 74.7
2.0 63.8 64.6 87.6 88.4 106 108

0.5 59.8 59.9 63.1 63.2 71.7 71.8
1.0 1.0 57.6 57.6 63.5 63.7 72.2 72.5

2.0 64.5 64.7 84.1 84.4 108 109

0.5 68.7 68.7 89.7 89.7 122 122
2.0 1.0 66.5 66.5 71.9 72.0 80.2 80.3

2.0 72.4 72.5 91.6 91.7 116 117

0.5 107 107 156 157 422 423
5.0 1.0 111 112 124 124 139 140

2.0 112 112 140 140 176 178

21.4.2 The Role of the Aspect Ratio

A rectangular basin of aspect ratio r ¤ 1 gives rise to differentiate between crude
lake models with inverse aspect ratios r < 1 and r > 1, as shown in Fig. 21.15.
In panel (a) of this figure the orthogonal function expansion is in the transverse
direction and ODE-integration in the long direction; in panel (b), the two roles are
interchanged. It is expected that with the MWR, two different eigenmodes at the
same frequency will be selected. To verify this, note that the dispersion relation
depends on the product rk implying � D �.rk/. Thus, when plotted as a function
of k only, dispersion relations �.k/ with different aspect ratios emerge from each
other by a stretching transformation along the k-axis. Figure 21.16 illustrates this
effect qualitatively. Increasing r means that, for fixed � , the waves have smaller
wave numbers and, therefore, exhibit within a given distance along the s-direction
fewer troughs and fewer crests. This property provides a hint towards an answer of
the following questions:

� What is the domain of the aspect ratio r < 1 or r > 1, for which reasonable
approximate topographic wave solutions are obtained which allow comparison
with earlier studies, such as Ball [1] or Mysak [16]?

� Under which situations must the cases r < 1 and r > 1 be applied? Can one
decide by any means whether a lake favours one over the other?

The answer to the first question has already been sketched above. It follows from
the aspect ratio dependence of the dispersion relation that the lower the aspect ratio
is, the higher will be the modal structure in the s-direction. This feature can be
seen in Fig. 21.17 for the lowest eigenperiods in the first order model. On the left,
r < 1, the two wave numbers which correspond to a given � lie far apart; the
stream function is composed of a long wave and a short wave component. The
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Fig. 21.15 Lake geometry for (a) r < 1 and (b) r > 1. For r < 1 the lake has a cross topography
with a constant thalweg-depth, whereas for r > 1 there is no cross topography but a variable
thalweg depth (from [23]). c� Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der
ETH Zürich, reproduced with permission

Fig. 21.16 Dispersion
relation �.k/ for different
aspect ratios r , retaining the
value of the other parameters
N; "; q (from [23]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission
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structure of the closed basin mode is therefore rich. This fact prevents the occur-
rence of ground modes9 of TWs. On the right r > 1, the two wave numbers are
much smaller such that the stream function is composed only of ‘long’ wave com-
ponents; the modal structure of the basin solution is simple or fundamental. This
type of solution, obtained in a first order model, resembles globally the structure of
exact, fundamental close basin solutions such as those of Ball [1] or Mysak [16].

Stocker and Hutter [23] and Stocker [26] have shown results for crude lake mod-
els of order 1 and 2 and found the distressing results that basin-filling solutions in
the rectangle did qualitatively not look like the exact solution, e.g. in long ellipses.

9 Ground, gravest or fundamental mode: Mode, whose stream function has the least possible
structure over the lake domain.
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Fig. 21.17 Comparison of the modal structure for an aspect ratio r < 1 and r > 1, respectively.
The parameters are selected as N D 1; q D 0:5, time t D 0 (from [23]). c� Versuchsanstalt für
Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, reproduced with permission

Very simple mode structures with global phase propagation were not found. This
is no surprise, however. The rectangular basin with vertical end walls has isotrophs
(lines of constant f=H ) which are not continuous at the end boundaries s D 0 and
s D L. So, TWs which oscillate along isotrophs cannot follow such lines to the
other lake side at the long ends of the rectangle. Moreover, when raising the order
of approximation fromN D 1 toN D 2 the ‘improved’ flow pattern seems to move
further away from the structure which one saw for N D 1 and found promising.

The obvious idea to amend this situation is likely the introduction of a smooth
bathymetry at the two lake ends. Stocker and Hutter [27] introduced a variable
thalweg depth h0.s/ such that h00.s/=h0 D constant (this requires exponential
depth profiles h0.s/ at the two long ends) with a possible constant depth h0 for
s1 < s < ` � s2. However, it is as easy to design bathymetries which are smooth
and vary with s and n.

21.4.3 Lake Model with Non-constant Depth Along Its Thalweg

21.4.3.1 Numerical Method

Consider a rectangle of width B and length L which has the depth profile

h.s; n/ D h0.s/

�
1C � �

ˇ
ˇ
ˇ̌2n
B

ˇ
ˇ
ˇ̌
q	
; 0 � s � L; �1

2
B � n � 1

2
B; (21.35)

with constant � and 0<q <1. This bathymetry possesses a finite shore depth
�h0.s/, which is necessary to have .@h=@n/=h bounded everywhere. It was
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demonstrated in Sect. 21.2 how the boundary value problem (21.1)-(21.2) was
transformed to a new one-dimensional problem for the coefficient functions ˙̨.s/.
The result was

K .s/ D 0; 0 < s < L;

(21.36)
 .s/ D 0; s D 0;L;

in which

 D . C1 ; : : : ;  
C
N I �1 ; : : : ;  �N / D . CI �/;

K D �i�
�
B2K 02 d2

ds2
� B2

�
h�1

dh

ds

	
K00 d

ds
�K22

�
(21.37)

�B.K 20 CK 02/
d

ds
C B

�
h�1

dh

ds

	
K 20

with the K -matrices defined in (21.21). Here and henceforth h D h0, and it has
been assumed that the operator K has coefficients which depend on the variable
s through an arbitrary thalweg depth h.s/. Furthermore, the symmetrized form of
K is obtained by using (21.21) to express the K ’s in symmetrized form. For the
numerical solution we transform (21.36) to a real, first-order system. Introducing

� �
�

Re C;Re �;Re P C;Re P �; Im C; Im �; Im P C; Im P �
�
; (21.38)

with ./� � d=ds and substituting s0 � s=L, d=ds0 D Ld=ds we obtain after
dropping primes

d

ds
� D A.s/� ; 0 < s < 1;

B� D 0; s D 0; 1:

(21.39)

This system has dimension 8N ; B is a constant diagonal matrix with Bi i D 1 for
i D 1; : : : ; 2N and i D 4N C 1; : : : ; 6N and else Bi i D 0. The matrix A can be
split into a part which is independent of s and another part proportional to the slope
parameter S

S.s/ � h�10
dh0
ds
; (21.40)

explicitly

A.s/ D C C S.s/D:

The matrices C and D take the forms (the subscripts R and I stand for real and
imaginary parts)
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Fig. 21.18 Thalweg profiles
(21.43) for different values of
the exponent p. For p > 1
slopes at the lake ends are
zero, (a), when p < 1 they
are infinite, (b) (from [26]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission
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with the (4N � 4N )-submatrices10

C R D
2

4
0 1

1

r2
.K 00/�1K 22 0

3

5 ; C I D 1

�

2

4
0 0

0
1

r
.K00/�1.K20 CK02/

3

5 ;

DR D
�
0 0

0 1

�
; D I D 1

�

2

4
0 0

�1
r
.K 00/�1K 20 0

3

5 ;

(21.42)
and the aspect ratio r D B=L. The matrices (21.42) are independent of s and need
be calculated only once during the integration for s 2 Œ0; 1�.

Solutions of the two-point-boundary value problem (TPBVP) (21.39) were con-
structed numerically for the profile (Fig. 21.18)

h0.s/ D �C sinp.�s/; (21.43)

here with p D 2. � and p are parameters; � > 0 guarantees that the depth is never
zero and the exponent p could be varied such that the longitudinal variation of the
depth is more or less concentrated at the long ends of the lake. The slope parameter
S.s/ is easily calculated from (21.43); one obtains

S.s/ D p� sinp�1.�s/ cos.�s/

�C sinp.�s/
: (21.44)

10 The entries 0 and 1 in these matrices are to be interpreted as 2N � 2N matrices.
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For p > 1 and � > 0, S.s/ vanishes at the lake ends, which is a numerical advan-
tage. When 0 < p < 1 the slope parameter is not finite at s D 0 and s D 1. In order
to keep S.s/ finite everywhere, (21.43) could be replaced by

h0.s/ D
8
<

:

�C bs; 0 � s � Os;
sinp.�s/; Os � s � 1 � Os;
�C b.1 � s/; 1 � Os � s � 1;

(21.45)

in which, for a given shore-slope b, � and Os can be calculated such that h and h0 are
continuous at s D Os. With this choice S.s/ is finite everywhere and for all p > 0.
The lake model now consists of two sidewall parameters � and � (or alternatively
� and the shore-slope b) and a longitudinal and transverse topography parameter p
and q, respectively. It is easy to see that with the choices (21.35) and (21.45) the
isotrophs f=H are now smooth throughout the entire rectangular basin.

Equation (21.39)1 allows the formal integration

� .s/ D exp

0

@
sZ

0

A.Os/dOs
1

A� .0/ � E.s/� .0/: (21.46)

Equation (21.39)2 implies

� .0/ D .0; P R.0/I 0; P I.0//;

(21.47)

� .1/ D .1; P R.1/I 1; P I.1//;

in which P R, P I are the real and imaginary parts of P� , respectively, and the sym-
metrization has been dropped for convenience of ensuing arguments. Formally,
E.s/ in (21.46) is a matrix valued function. At the basin end, it can be written as

E.1/jsD1 D

2

6
4

E11 � � � E14
:::

:::

E41 � � � E44

3

7
5 : (21.48)

Note thatE.1/ is a function of the frequency � via (21.46) and (21.42) and the E ij
are .2N � 2N/-matrices. For each initial vector of the form

� j .0/ D .0; 0; : : : ; 0„ ƒ‚ …
.j�1/

; 1; 0; 0; : : : ; 0„ ƒ‚ …
.8N�j /

/;
2N C 1 � j � 4N;

6N C 1 � j � 8N;
(21.49)

the corresponding vector � j .1/ is computed using a discretized form of (21.39),
see below. From (21.46) and (21.47) it then easily follows that the solution � j .1/
corresponding to the j th initial vector � j .0/ is the j th column of the matrixE .1/.
Equation (21.47)2 eventually requires
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�
E12 E14

E32 E34

� � P� R.0/
P� I.0/

�
D 0; (21.50)

which allows derivation of the equation which determines the eigenfrequency in this
lake basin. It takes the form

det

�
E12 E14

E32 E34

�
D 0: (21.51)

It remains to select the integration routine for the 4N initial-value problems (21.39)1
with initial data as shown in (21.49). This choice depends on how the matrix is
available. Here A can be computed for all s 2 Œ0; 1�; the fourth order Runge–Kutta
scheme (or higher order multi-step forward integration technique can be used.11

We discretize the integration interval Œ0; 1� into M equidistant increments of length
d D 1=M . The � iC1 at the position siC1 within the interval is then given by

� iC1 D � i C d O� ;
O� D 1

6
.K 1 C 2K2 C 2K3 CK4/;

K 1 D A.si /� i ;

K 2 D A

�
si C d

2

	�
� i CK1

d

2

	
;

K 3 D A

�
si C d

2

	�
� i CK2

d

2

	
;

K 4 D A.si C d/.� i CK3d/:

With this scheme the local error is of order d 5. When A.s/ is only defined at dis-
crete points the method of Adams or other multistep methods may be preferable,
see [32] or any other book on ODE integration.

The actual computation uses shooting, the shooting parameter being the fre-
quency � and the penalty function being the determinant (21.51).

21.4.3.2 New Types of Topographic Waves

The first step in finding the TW-modes in a rectangle is the determination of the
eigenfrequencies � from (21.51), which are real and can be ordered according
to their sizes. Back-substitution into (21.50) then yields the associated initial val-

ues for . P R.0/; P I.0//
T

and, in turn via (21.47), � .s/ in (21.46),  in (21.47)1,
(21.47)2 and, eventually, the stream function  .s; nI �/ in (21.26) associated with

11 The fundamental single-step forward integrator is the Euler-Cauchy scheme. It reads  iC1 D
 i C dA.si / i and the local error is order d2; therefore the method is only slowly converging.
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this frequency. Arranging the frequencies according to their sizes does not, as
already mentioned before, order the modes according to their structure. Moreover,
by increasing the order of accuracy (by increasing the number N of mode units)
additional ‘eigenfrequencies’ are obtained; those obtained for smaller N are not
simply slightly shifted. This is understandable, since the larger transverse variabil-
ity makes the system more flexible and opens room for additional eigenfrequencies
and associated modes. However, this also raises the question how physically real-
istic the determined eigenfrequencies and associated modes are. This fact calls at
least for very accurate numerical methods.

We investigate the spectrum of TWs in a second and third order model. The basin
is rectangular with an aspect ratio r D 0:5, a parabolic cross section (q D 2:0)
and a thalweg varying as a .sin/2 according to (21.43). Figures 21.19 and 21.20
display a selection of modes from the spectrum of a second and third order model,
respectively. It is apparent that in the period interval from 35–140 h (corresponding
to 45ı latitude) a large variety of qualitatively different eigenmodes can be detected.
According to the complexity of their modal structure we distinguish three types of
eigenmodes.

Type 1 is the well known modal pattern described by all exact models of topo-
graphic waves in enclosed basins. It is akin to Ball’s solutions [1] and therefore
called Ball-type. Both, the linear (� D 0:155) and the quadratic (� D 0:213) Ball-
modes (Fig. 21.20) occur in the spectrum and additional eigenmodes are identified
as type 1. All exact models for which solutions have been constructed so far, have
shown qualitatively similar solutions. Generally, type 1 modes consist of a few large-
scale vortices moving counterclockwise around the basin, and the water in the whole
basin underlies this wave motion. The rectangular basin, however, appears to sustain
also two new types, which so far were unnoticed in other models.

Type 2, with only a few candidates in this frequency interval, can be called bay-
type. Wave motion is mostly trapped to the long ends of the lake; very weak activity
is experienced in the lake centre and along its long sides. The pattern shows one
or a few mid-scale gyres which do not propagate along the entire isobaths (lines
of constant f=H ) but are rather trapped in the bays. This type arises above the
cut-off frequency �0 of any mode unit, see Fig. 21.21; and thus embraces contribu-
tions with complex wavenumbers. The amplitudes of these modes are exponentially
evanescent in space which makes it understood why bay-type solutions do exist for
enclosed basins. The fact that there are eigenmodes with frequencies � > �0 is a
new result. These modes were neither detected by the analytic models nor by the
crude lake model presented in the previous section.12

Type 3, eventually, appears most frequently in the spectrum. In contrast to type 2,
all wave activity is now trapped along the long boundaries of the basin and consists
of a large number of small-scale vortices. The pattern is very similar to that found
in straight infinite channels; type 3 is thus named channel-type. Along the long

12 Their determination is very difficult even with high-accuracy integrators. In order to obtain pat-
terns with j .s; n/j D j .1 � s; n/j the eigenfrequency need be known up to a relative error of
10�7.
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Fig. 21.19 Selection through the spectrum containing eigenmodes of a second order model. The
contour lines of  are plotted for times t D 0 (left) and t D 1=4T (right). Three types of solutions
can be distinguished and cuts of the vertical lines indicate further modes not shown here. The
parameters are : N D 2; r D 0:5; q D 2:0; " D 0:05; � D 0:01 (from [26, 28]). c� American
Meteorological Society, reproduced with permission
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Fig. 21.20 Same as Fig. 21.19 for a third order model N D 3 (from [26, 28]). c� American
Meteorological Society, reproduced with permission

sides two seemingly non-interacting beat-patterns are observed. They originate from
reflection of wave energy in the bays and a corresponding wavenumber shift.

The modal structure of the different types can be explained with the help of the
Rossby dispersion relation in Fig. 21.21. Type 1 enjoys the property that increas-
ing � brings about more complex structure since it consists primarily of modes
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Fig. 21.21 Schematic plot
of one mode unit of the
dispersion relation of
topographic waves in a
channel with parabolic
transverse depth profile. A
N th order model consists of
N mode units (from [26]).
c� Versuchsanstalt für

Wasserbau, Hydrologie und
Glaziologie an der ETH
Zürich, reproduced with
permission
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with wavenumbers k <k0. For k <k0 @�=@k >0 and so the wavelengths of the
contributing modes decrease with growing � . Type 3, the channel-type, on the other
hand, reveals the opposite property: the scale of the wave pattern gradually decreases
with decreasing frequency. Type 3 solutions are mostly made up of modes with
k > k0. In this range, @�=@k < 0 and consequently the wavelengths decrease with
decreasing � , c.f. Figs. 21.19 and 21.20.

The fact that topographic waves in a rectangular basin occur as bay-trapped
modes casts light on the results of Trösch [35]. These seemed to entirely contradict
the applicability of analytic models to real basins as anticipated in Sec. 19.2.3 and
Fig. 19.10. Each mode is trapped to one of the bays and does not seem to influence
the rest of the basin. The few trapped vortices exhibit roughly the scale of the bay.
The rectangular basin, a much simpler configuration than Lake of Lugano, reveals
equally bay-type modes together with the known Ball-type solutions; in the inter-
ested period range the latter were not found by Trösch [35]. This model, therefore,
links these two different approaches and demonstrates that the propagation of topo-
graphic waves in enclosed basins cannot merely be described by those analytically
determined modes of exact models that were so far constructed. It is in principle pos-
sible and remains to be proved or disproved that type-2 modes also exist in ellipses
with parabolic or exponential bottom profiles and that these modes have a period
of the same order of magnitude as those above. It is seen that many further ques-
tions still need to be answered to fully understand the behaviour of TWs in enclosed
basins. Two facts have, however, transpired: Firstly, the smoothness of the isobaths
is essential in enabling global TW-features and, secondly, careful numerical solution
procedures are needed to find bay-type modes.

21.4.3.3 Convergence and Parameter Dependence

The quality of approximation strongly depends on the type of wave considered.
Ball-type modes have large-scale vortices, and a good representation of these modes
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with comparatvely few basis functions is expected. High orders of expansions are
therefore not needed and fast convergence is observed. By contrast channel-type
solutions consist of small-scale modes with large wavenumbers. Convergence is
slow for large wavenumbers and this must equally be expected for type 3 modes.

Table 21.5 collects results of a convergence test for the same configuration as
in Figs. 21.19 and 21.20. Type 1 shows convergence for both, eigenfrequency and
stream function; similar but considerably slower convergence is found for types 2
and 3. For type 2 it is particularly difficult to determine the correct distribution of the
stream function along the axis, as small changes in the eigenvalue result in relatively
large changes of the eigenfunction. Thus, high resolution and small step sizes in the
numerical integration procedure are needed. Since for ODE’s high accuracy inte-
grators exist, the channel method allows for some compromise; this at least explains
the superiority of the MWR in comparison to some other numerical procedures.

Table 21.6 collects the dependence of � on the aspect ratio and transverse topog-
raphy for the solutions that correspond to Ball’s quadratic mode. As expected from
the behaviour of the dispersion relation in a straight infinite channel, the slope of the
transverse topography has a dominant influence on the values of the eigenfrequency.
Steeper profiles (q D 5:0) lower the eigenfrequencies. An equal but weaker effect
on Ball-type modes is experienced when the aspect ratio is decreasing. Table 21.6
demonstrates that these modes are much more governed by the transverse depth pro-
file than by the aspect ratio. All this is in line with results obtained from the crude
lake model.

Tables 21.7 and 21.8 investigate the influence of the two bathymetric parameters
q and r on the three types of basin solutions. Again the topography effect is seen

Table 21.5 Convergence properties of the eigenfrequencies in a 2:1 basin with q D 2:0, � D 0:05,
� D 0:01. Stars indicate plotted modes in Figs. 21.19 and 21.20

Type N D 1 N D 2 N D 3

1, Ball-type 0.143 0.153? 0.155?
0.181 0.211? 0.213?
0.195 0.255? 0.260?

2, bay-type – 0.297? 0.314
– 0.263? 0.284?
– 0.115? 0.240?

3, channel-type 0.151 0.254? 0.273?
0.142 0.248? 0.268?
0.11 0.215? 0.253?

Table 21.6 Topography q and aspect ratio r influencing the eigenfrequency of the quadratic Ball-
mode. The parameters are N D 2; � D 0:05; � D 0:01. The question mark indicates uncertain
numerical output

Ball quadratic r D 0:5 r D 0:4 r D 0:3

q D 1:0 0.267 0.250 0.219
q D 2:0 0.211 0.195 0.170
q D 5:0 0.140 0.123 ?
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Table 21.7 Topography effect on the frequency of the three wave types. The parameters are as in
Table 21.6

r D 0:5 Ball-type Bay-type Channel-type

q D 1:0 0.200 0.299 0.250
q D 2:0 0.153 0.263 0.232
q D 5:0 0.097 0.175 0.153

Table 21.8 Aspect ratio effect on the frequency of the three wave types. The parameters are as in
Table 21.6.

q D 2:0 Ball-type Bay-type Channel-type

r D 0:5 0.153 0.263 0.232
r D 0:4 0.139 0.267 0.251
r D 0:3 0.118 0.269 0.258

to be more influential. By going from a triangular depth profile (q D 1:0) to a very
steep U-shaped profile (q D 5:0) the eigenfrequencies diminish by up to a factor
of 2. As far as the topography effect is concerned, the three types react the same
way, yet Ball-type modes are more sensitive to an increase of q.

Table 21.8 demonstrates that basins with a smaller aspect ratio sustain Ball-type
waves with decreased eigenfrequencies. This decrease is over-proportional as it is
enhanced for smaller aspect ratios. By contrast, bay- and channel-type solutions
show an opposite behaviour. Decreasing the aspect ratio increases the eigenfre-
quency; this time the response is under proportional and for bay-type solutions the
dependence of � or r is very small.

21.4.3.4 Bay-Type Modes

The occurrence of bay-trapped modes in enclosed basins raises further questions
concerning the properties of solutions of the eigenvalue problem (20.4).

When the aspect ratio of the basin is decreased the bay vortices of these models
lie farther and farther apart and we wonder whether these isolated gyres become
uncoupled. Two points seem to be remarkable in this context. First, basins with no
symmetry seem to sustain decoupled bay modes as in Fig. 21.15b. Second, with
our procedure it is very difficult to determine the parity13 of these solutions with
respect to the long axis of the basin. In this regard, very fine resolution is needed
to obtain reliable solutions. The basic problem is to bring numerical information
through the ‘dead’ zone in the centre of the domain. This suggests to consider again
semi-infinite channels and to ask the question of a possible existence of bay-trapped
modes. A partial answer is given in the following section.

13  .s; n/ has positive or negative parity with respect to s when .s; n/D  .1�s; n/ or .s; n/ D
� .1� s; n/, respectively.
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21.4.4 Current Patterns

In the preceding sections, the flow patterns of TW-modes in enclosed basins were
graphically displayed by plotting values of the transport stream function and trans-
port stream lines for consecutive time slices. Complementary information can be
obtained by drawing particle trajectories which show the excursion of material par-
ticles in their motion. Once the stream function for TWs is determined, the vector
Ok � 5 determines the vertically integrated velocity and Ok � 5 =h the velocity
field, constant with depth. If we trace the motion of a fluid particle whose position
at an initial time t D 0 is at x.0/, then its trajectory is given by x.t/, where

dx.t/

dt
D u.x.t/; t/ u.x.t/; t/ D 1

h
Ok � 5 .x.t/; t/: (21.52)

In the present study, all fields have harmonic time dependence and, hence, the tip of
a field vector describes an ellipse.14 This ellipse will be called transport ellipse (for
the transport vector Ok� 5 ) or current ellipse (for the velocity vector Ok� 5 =h).
In harmonic oscillations, these ellipses can be nearly identified with the fluid particle
motion and therefore provide a realistic picture of the motion.

The trajectory follows from (21.52) by integration, viz.,

x.t/ D x.0/C
Z t

0

u.x.t 0/; t 0/dt 0; (21.53)

which is an integral equation for x.t/, since x.t/ arises explicitly as well as
implicitly in the integrand function. Equations (21.52) and (21.53) are equations
written in the Eulerian description. It is advantageous to write them in the so-called
Lagrangean description. Let uL.x.0/; t/ be the Lagrangean velocity field, i. e., the
velocity at time t of the particle, which was at x.0/ at time t D 0,

uL.x.0/; t/ D u.x.t/; t/: (21.54)

Then, (21.53) takes the form

uL.x.0/; t/ D u
�Z t

0

uL.x.0/; t 0/dt 0 C x.0/; t

	
: (21.55)

For short times, one may expect that

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

Z t

0

uL.x.0/; t 0/dt 0
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ 
 jjx.0/jj ; (21.56)

14 This concerns the linear theory but not the real trajectory of a fluid particle in a periodic
oscillation because such a particle is always exposed to nonlinear advection (Stokes drift).
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so that a Taylor series expansion of the right-hand side of (21.55) yields

uL.x.0/; t/ D u.x.0/; t/C us.x.0/; t/C : : : ; (21.57)

in which us.x.0/; t/ is the so-called Stokes drift velocity given by

us.x.0/; t/ D .grad .u.x.0/; t/// �
Z t

0

uL.x.0/; t 0/dt 0

' .grad .u.x.0/; t/// �
Z t

0

u.x.0/; t 0/dt 0; (21.58)

where in the second line the approximation uL.x.0/; t/ D u.x.t/; t/ ' u.x.0/; t/
has been made. With (21.54) and (21.57) the trajectory (21.53) may be written as

x.t/ D x.0/C
Z t

0

u.x.0/; t 0/dt 0 C
Z t

0

us.x.0/; t 0/dt 0 (21.59)

with an error of O.u2/. With the periodic velocity field of the form

u.x; t/ D ReŒ.exp .i!t/U.x/� D .ReU / cos.!t/ � .ImU / sin.!t/ (21.60)

the net displacement after one period, T , can be written as

x � x.0/ D ReU
Z T

0

cos.!t/dt C ImU
Z T

0

sin.!t/dt

C
Z T

0

Œ.grad ReU / cos.!t/C .grad ImU / sin.!t/�

�
�

ReU

!
sin.!t/ � ImU

!
cos.!t/C 1

!
ImU

�
dt

D �

!2
Œgrad .ImU /ReU � grad .ReU /ImU � ; (21.61)

in which T D 2�=! was used. In the integrations of (21.61) only the terms with
sin2.!t/ and cos2.!t/ survive; these terms define the Stokes drift.

If we restrict considerations to purely linear terms, then us , defined in (21.58)
may be ignored, so that (21.59) reduces to

x.t/ D x.0/C
Z t

0

u.x.0/; t 0/dt 0/;
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which, in view of (21.60), takes the form

x.t/ D x.0/C 1

!
u
�
x.0/; t � 1

4
T

	
C 1

!
ImU: (21.62)

The trajectory is, therefore, basically the scaled trace of the Eulerian velocity vector.
Stocker [26] plotted the transport ellipses and depth integrated Stokes drifts for

the three types of modes: Ball-modes, bay-modes and channel-modes. The transport
fields only being determined to within a constant factor (the TW-equation is linear
and homogeneous), the current ellipses and integrated Stokes drift in Figs. 21.22 and
21.23 are accordingly scaled to show the flow pattern optimally.

The ‘fundamental’ Ball-mode in Fig. 21.22a is characterized by a central area of
counterclockwise rotation with non-vanishing velocity at the centre. This centre is
surrounded by a region of clockwise rotating thinner ellipses. This behaviour essen-
tially also prevails for the other Ball-modes (not shown here) and no ‘radial nodal
line’: counter clockwise rotating current vectors in the central area and clockwise
rotating currents near the long shores and practically vanishing currents close to the
long ends. Panel (b) of Fig. 21.22 shows the transport ellipses for a bay mode. Here,
TW-activity is concentrated at the long ends of the rectangular basin, and the region
in the middle is characterized by weak activity. The transport ellipses are traversed
clockwise close to shore and anticlockwise about a distanceB=2 from the long ends,
where B is the breadth of the rectangle. The polarization of the current varies con-
siderably with position, can be nearly circular and almost linear at positions which
are not too far apart from one another. This behaviour is also seen in bay modes not
shown here. The stream function and transport ellipses of a typical channel mode
are plotted in panel (c) of Fig. 21.22. The displayed pattern is typical for all channel
modes; there are bands of active dynamics along the long sides of the basin and very
weak activity, if any, in the vicinity of the lake axis. The currents rotate clockwise
near shore and anticlockwise further away from the long shores, but only about half
towards the middle line of the basin.

The closed ellipses in Fig. 21.22 mimic the fluid particle trajectories if their
motion were governed by a strictly linear theory. These ellipses, however, are not
stationary; their midpoints also experience a drift, which is due to the nonlinear
advective terms in the momentum equation and is approximately described by
the Stokes drift. Figure 21.23 shows the depth integrated Stokes drift, and panels
(a)–(c) correspond with the analogous panels in Fig. 21.22. It is the property of the
Ball-mode in panel (a) of Fig. 21.23, that the counterclockwise propagating gyres
produce a net drift in the clockwise direction. This rotation is strong in the middle
of the basin and weak nearer to the shores, but (not shown here) moves closer to
the boundaries and may even be complemented by a weak counterclockwise gyre
in the centre for higher order bay modes. For bay-modes (panel (b)) the Stokes-drift
is strong along the shores of the bays with activity, and, as a whole, mimic a left-
bounded motion against the propagation of the phase. For the channel modes, the
Stokes-drift is typically as shown in panel (c) of Fig. 21.23. The drift is strong only
very close to the long boundaries of the rectangle and left-bounded, i.e. against the
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a

b

c

Fig. 21.22 Stream function and transport ellipses for the fundamental Ball-mode, (a), a typical
bay-mode, (b), and a typical channel-mode (c). The small frames on the left show contours of the
stream functions for t D 0 (bottom), t D T=8 (middle) and t D T=4 (top). Transport ellipses are
dashed (solid) for (counter) clockwise rotating transport vectors. The parameters are N D 2; r D
0:5; " D 0:05. Composed from [26, 29]. c� CRC-Press, reproduced with permission
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σ = 0.297

σ = 0.153

σ = 0.248

a

b

c

Fig. 21.23 Depth-integrated Stokes drift during one period for the Ball-, bay- and channel modes
shown in Fig. 21.22. The parameters are the same as those used for Fig. 21.22. Composed from
[26, 29]. c� CRC-Press, reproduced with permission
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propagation of the phase. Everywhere else the drift is small and essentially negligi-
ble in the lake middle. The Stokes-drift in all three mode types exhibits a motion,
which is essentially clockwise around the basin (on the N. H.). However, it differs
for different mode-types. Ball-type modes are strong in a nearly circular vortex in
the centre of the basin. Bay- and channel-type modes show a straight drift current
along the short and long sides of the basin, respectively. In interpretations of velocity
data, this may help in the identification of the mode selection.

21.5 Curved Channels

21.5.1 The Method of Weighted Residuals for Lakes
with Curved Thalwegs

Many intermontane lakes, such as, e.g. Lake of Lugano possess curved lake axes
with curvature so large that its neglection in the governing equations is not automat-
ically justified. For these situations the MWR must be applied in its full generality.
The corresponding equations in the natural coordinates following the thalweg15 have
been derived in Sect. 21.2 of this chapter and in the Appendix. The curvature is
incorporated in the Jacobian J

J.s; n/ D 1 �K.s/n; (21.63)

where s is the arc length measured along the thalweg, n is the length coordinate
measured across the basin and K.s/ is the thalweg curvature, which, in general, is
a function of s. In the ensuing analysis, it will be assumed that symmetrization is
possible. The formulae in Sect. 21.2 require expressions for J.s/ and J�1.s/; so, in
view of the symmetry of the chosen bathymetry (21.18), one easily may deduce the
symmetric and skew-symmetric parts of J and .J /�1 as follows

JC D 1; .J /� D �Kn;
(21.64)

.J�1/C D 1

1 �K2n2
; .J�1/� D Kn

1 �K2n2
:

15 A definition of the thalweg is not unique for a real lake and its choice in reality must be deter-
mined with care. Without imposing symmetry requirements, we may simply choose an arbitrary
line following more or less the approximate middle line in the long direction of the lake. Such a
choice then determines the direction across the lake, n, for every s and BC.s/ and B�.s/. When
a symmterization in the sense that BC.s/ D B.s/=2 and B�.s/ D B.s/=2 is attempted, then the
selection of the s-axis can only be determined by trial and error. In both cases, islands and complex
shorelines with small bays may disrupt the construction, and in extreme cases may make the use
of the MWR impossible.
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These expressions enter the matrix elements (21.11) and (21.14). As can be seen
from these formulae, the matrices .M ij

ˇ˛
/CC, .M ij

ˇ˛
/C�, etc., are functions of s

through the integrand functions (21.64) and the width functionB.s/, but they can in
a numerical solution attempt of TWs for a lake be stored as preliminary information
prior to any explicit computation.

In the ensuing analysis, we consider lake domains of which the thalweg is com-
posed of disjoint segments with constant curvature and also constant width B . The
matrix elements .K ij

ˇ˛
/CC; .K ij

ˇ˛
/C�, etc., evaluated for the bathymetry

h.s; n/ D h0.s/

�
1C " �

ˇ̌
ˇ
ˇ
2n

B.s/

ˇ̌
ˇ
ˇ

q	
; (21.65)

defined in (21.19)1 and (21.21) must newly be computed for non-zero, but con-
stant curvature. Recalculating the matrix elements .K ij

ˇ˛
/CC, .K ij

ˇ˛
/C�, etc., by

introducing the variable y D .2�=B/n and the dimensionless curvature

 D 1
2
KB (21.66)

yields

K00
ˇ˛ D K00CC

ˇ˛
CK00��

ˇ˛ CK00�C
ˇ˛

CK00C�
ˇ˛

D
Z
h�1

�
1

1 � 2y2
	

cos

�
�

�
˛ � 1

2

	
y

	
cos

�
�

�
ˇ � 1

2

	
y

	
dy

C
Z
h�1

�
1

1 � 2y2

	
sin .�˛y/ sin .�ˇy/ dy

C
Z
h�1

�
y

1 � 2y2

	
sin .�˛y/ cos

�
�

�
ˇ � 1

2

	
y

	
dy

C
Z
h�1

�
y

1 � 2y2

	
cos

�
�

�
˛ � 1

2

	
y

	
sin .�ˇy/ dy;

(21.67)

K22
ˇ˛ D K22CC

ˇ˛
CK22��

ˇ˛ CK22�C
ˇ˛

CK22C�
ˇ˛

D 4�2
�
˛ � 1

2

	�
ˇ � 1

2

	Z
h�1 sin

�
�

�
˛ � 1

2

	
y

	
sin

�
�

�
ˇ � 1

2

	
y

	
dy

C 4�2˛ˇ

Z
h�1 cos .�˛y/ cos .�ˇy/ dy

C 4�2˛

�
ˇ � 1

2

	Z
h�1.y/ cos .�˛y/ sin

�
�

�
ˇ � 1

2

	
y

	
dy

C 4�2
�
˛ � 1

2

	
ˇ

Z
h�1.y/ sin

�
�

�
˛ � 1

2

	
y

	
cos .�ˇy/ dy;
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Fig. 21.24 Closed basin
formed as a wedge with
opening angle ˛ of an
annulus. The thalweg is given
as the circle with radius
1=K D const:, and the
boundaries are formed by the
circles with radii
1=K ˙ B=2, respectively,
and the radial cross sections
at the azimuth o and ˛

K

K
K

-1

2
1 B---2

1 B-- +

α
B

with h D 1 C " � yq , and the integration is from y D 0 to y D 1. The matrices
K20
ˇ˛
; K02

ˇ˛
remain unchanged when compared with (21.21).

Because the natural coordinate system can only be defined, if the radius of cur-
vature exceeds half the local width, we have  < 1, implying that all integrals in
(21.67) are well defined.

Let us now construct solutions of the free TWs in a wedge of an annulus having
mean constant radius 1=K . Then the radii of the inner and outer circle of the annulus
are given by 1=K ˙ B=2, respectively, see Fig. 21.24. The crude-lake assumption
will also be made so that h0.s/ D const: D 1. In the following, the ‘continuous’ dis-
persion relation will be discussed; only quantized points of it will be actual solutions
of the TW-mode with azimuthal wave length corresponding to ˛=m;m D 1; 2; : : :,
where ˛ is the wedge angle. This continuous dispersion relation is not realistic either
for the full annulus because its periodicity is ˛ D 2� .

We now assume a carrier-wave ansatz of the form

 D . CI �/ D eiks=L.c1; : : : ; cN I cNC1; : : : ; c2N / D eiks=Lc: (21.68)

The operator equation K WD Bh0M D 0 may, thus, be written as

C D .C 1 CC 2/ D 0; (21.69)

in which

C 1 D
�
�
�
.rk/2K00CC CK 22CC� �.rk/ �K 20�C CK 02�C�

�.rk/ �K 20C� CK02C�� �
�
.rk/2K00�� CK22CC�

�
;

(21.70)

C 2 D
�

0 �
�
.rk/2K00�C CK22�C�

�
�
.rk/2K00C� CK22C�� 0

�
:

Obviously, C depends on the frequency and on .rk/, where r D 1 may be chosen
as long as the continuous dispersion relation is looked at. The dispersion relation
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follows from (21.70) as the requirement

detC .�; k/ D 0: (21.71)

Inspection of (21.67) shows that C 2 D 0 when K D 0. In that case, (21.71) is a
polynomial equation of order 2N in .rk/2, already studied for straight channels.
For non-vanishing K (21.71) is a polynomial equation of order 4N in .rk/, and
Crk and �rk are no longer simultaneous solutions. The dispersion relation does
no longer exhibit the mirror symmetry with respect to the k-axis. As a result of
the non-vanishing curvature, we can now differentiate between the inner and outer
streamlines. Likewise, the critical points .k0; �0/ at which @�=@n D 0 will be dif-
ferent for k < 0 and k > 0. Furthermore, it is straightforward to see from (21.67)
and (21.70) that

�.; k/ D �.�;�k/; (21.72)

which includes the special case  D 0. Moreover, we have now replaced K by 
according to (21.66).

21.5.2 Dispersion Relation

Stocker [26] calculated the continuous dispersion relation. He writes: ‘Figure 21.25
shows the dispersion relation (21.71) of a third order model for the first two mode
units. For  D 0 the symmetry with respect to the vertical is visible whereas for
 > 0 it is broken. For a given frequency all wave numbers are shifted to the right
which implies that curvature shortens waves for  > 0 whereas they become longer
for  < 0. Recalling that the solution  is proportional to exp .i.kx � !t/ and  is
right bounded, it follows that the waves travelling along the inner (outer) shore line
are longer (shorter) than for  D 0.16

Furthermore, the critical point .kC0 ; �
C
0 / in the domain  > 0 is translated to

lower frequencies and larger wavenumbers, and the opposite is true for .k�0 ; ��0 / in
the domain k < 0. Consequently, there exists a frequency range �C0 < � < ��0 ,
where only waves with k < 0 can propagate. These are trapped along the inner
shore line. If there existed eigenfrequencies in this range for a closed basin, their
modal structure would exhibit a particular pattern with wave motion primarily at the
inner shore line [: : :]. Table 21.9 lists the boundaries of these frequency ranges. For
increasing curvature the values of ��0 and �C0 lie farther and farther apart; this effect
is weak for steep topographies.

Note, that from an observational point of view the difference is very small, e.g.
T �0 D 57 h and T C0 D 63 h for q D 2 and  D 0:2, a difference that is unlikely to
be detectable by field observations.

16 The same is true when  < 0 or the coordinate system is chosen such that s points into the
opposite direction. It is a consequence of the general property (21.72).
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Fig. 21.25 Dispersion relation of a third order model for various values of curvature. The param-
eters are N D 3; qD 0:5; " D 0:05 (from [29]). c� CRC-Press, reproduced with permission

Table 21.9 Frequencies �˙

0 for k >
<
0 where @�=@k D 0 for different values of the curvature 

and topography q. The parameters are N D 3, "D 0:05, first mode unit, from [26]

q  D 0  D 0:2  D 0:5

��

0 0.2745 0.2799 0.2947
2.0 �

C

0 0.2745 0.2708 0.2669
�� 0 0.0091 0.0278

��

0 0.2081 0.2111 0.2188
5.0 �

C

0 0.2081 0.2059 0.2033
�� 0 0.0052 0.0155

Table 21.10 Wavenumbers k˙

0 corresponding to Table 21.9, from [26]

q  D 0  D 0:2  D 0:5

k�

0 �14:9 �12:1 �7:83
2.0 k

C

0 14:9 17:8 21:9

k
C

0 � jk�

0 j 0 5:7 14:1

k�

0 �17:7 �14:6 �9:83
5.0 k

C

0 17:7 20:7 25:1

k
C

0 � jk�

0 j 0 6:1 15:3

On the other hand, for increasing  and q the difference of the wavenumbers
increases. These properties are also displayed in Fig. 21.26. Two mode units of the
dispersion relation are given for different values of topography and curvature param-
eters. The results support the findings listed in Tables 21.9 and 21.10. In Fig. 21.27,
the frequency �.
/ is plotted as a function of the wavelength 
 D 2�=k. As sur-
mised above, short wavelengths are hardly influenced by , whereas long waves
experience strong curvature effects.
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Fig. 21.26 Curvature and topography effect on the dispersion relation (from [29]). c� CRC-Press,
reproduced with permission
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Fig. 21.27 Dispersion relation as a function of the wavelength 
 D 2�=k. Short waves are
not influenced by the curvature (from [26]). c� Versuchsanstalt für Wasserbau, Hydrologie und
Glaziologie an der ETH Zürich, reproduced with permission

21.5.3 TW-Wave Modes in Wedges of Annuli with Smooth
Bathymetry

In this section, results will be presented on TW-modes, which are the analogues to
the TW-modes in rectangles having smooth isotrophs as treated in Sect. 21.4.3. We
follow closely Stocker [26] and Stocker and Hutter [29]. TW-modes in such basins
also exhibit Ball-, bay- and channel-type modes, however, these are on occasion
considerably modified. Moreover, additional modes may exist which were not found
for rectangles; their frequencies lie in the interval � 2 Œ�C0 ; ��0 � of Fig. 21.25.
The bathymetry will be chosen as in (21.65), where the dimensionless arc length
is given by
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Fig. 21.28 Comparison of eigenmodes in straight and curved basins, their lines of constant
depth are shown in the top row. The modes are ordered for decreasing frequency and the
continuation is given in Fig. 21.29. The cut-off frequency �0 splits in the case of curvature, build-
ing an interval Œ�C

0 ; �
�

0 � in which the modes show uncommon patterns. The parameters are
N D 2; rD 0:5; qD 2; "D 0:05; �D 0:01;M D 100 (from [26, 29]). c� CRC-Press, reproduced
with permission

s D 1


�; � 2 Œ0; 1�;  D KB

2

with jj 2 Œ0; 1/ and h0.s/ as selected in (21.43). The integration procedure is
the same as that for rectangular basins in Sect. 21.4.3, the only difference being
that the matrices K ij

˛ˇ
must now be computed according to the formulae (21.67).

For the integration along the channel axis from s D 0 to s D 1 the fourth order
Runge–Kutta method was used with a discretisation of the interval s 2 Œ0; 1� in M
equidistant elements of length d D 1=M . Satisfying the boundary conditions at
s D 0 and s D 1 yields an eigenvalue equation analogous to (21.51).
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Fig. 21.29 Same as Fig. 21.28 for different frequencies (from [26,29]). c�CRC-Press, reproduced
with permission

The inferences drawn from the continuous dispersion relation showed that the
symmetry �.Ck/ D �.�k/ is broken and replaced by (21.72); for  > 0 all
wavenumbers belonging to a given frequency are shifted to more positive values.
As a consequence, TWs propagating along the inner (outer) shore line are longer
(shorter) than for straight channels. Moreover, there exists a frequency interval
Œ�C0 ; ��0 � such that free TWs are restricted to the inner shore line. These symmetry
breakings manifest themselves in the streamline and current patterns of the TWs.
Stocker [26] writes: ‘Figures 21.28 and 21.29 show corresponding eigenmodes for
different values of the curvature, ordered according to frequency. Generally, curva-
ture does not alter the eigenfrequency very much. Deviations of the eigenfrequencies
for a strongly curved basin ( D 0:5) from the values in the straight lake are through-
out less than 5%. Eigenfrequencies decrease with increasing curvature. There is little
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hope to detect experimentally any effect of curvature on the eigenfrequency. The
stream function pattern, on the other hand, shows more pronounced modification.

The Ball-modes clearly demonstrate (increased gyre scales close to the inner
shore). Although the total number of vortices remains constant when increasing 
from  D 0, the number of gyres along the inner shore decreases in favor of that
along the outer (shore). Along with this, the inner (gyres) become larger.

As could be expected in advance, the stream function of the bay-modes (� D
0:395 and � D 0:115)17 is hardly altered in the curved basin. Mainly modes, which
consist of wave motion over the whole curved domain, will be influenced by this
change of geometry.

The channel-modes demonstrate remarkable changes. By increasing the curva-
ture, the wave motion is significantly attenuated in the region towards the centre of
the curvature. For  D 0:5 (an extreme case), the eigenmode only consists of a trail
of waves trapped along the outer shore line.

In the critical interval I D Œ�C0 ; ��0 �, there are indeed eigenfrequencies which
exhibit the conjectured structure. Few large scale vortices are trapped at the inner
boundary of the basin. In Fig. 21.19, one finds a bay mode with an eigenfrequency
very close to but above �0. This mode is not shown in Fig. 21.28 for  D 0 because,
strictly, the modes for  D 0:2 and  D 0:5 with � 2 I have no limit for  # 0, and
it is not clear whether and how a possible eigenmode could be constructed right at
� D �0. Thus, solutions for  > 0 with � 2 I are structurally new. In the course of
one cycle, the vortices do not propagate around the basin but rather remain trapped
in the domain n > 0.

21.6 Reflection of Topographic Waves

In the preceding section, it was shown, on the basis of phenomenology, i.e. appro-
priate selection of the bathymetry, that three types of TW-modes exist in rectangular
basins: Long periodic large wavelength basin-filling (Ball)-modes, long-periodic
short wavelength basin-filling channel-modes and bay-modes which are localized at
the long ends of the rectangle. All three were heuristically explained with the aid of
the dispersion relation, see Figs. 21.4 and 21.4. Ball- and channel-type modes must
have frequencies in the domain of purely real wave numbers; for the channel-modes
the phase and group velocities are in the same direction, cph "" cgr whilst they are in
opposite directions, cph #" cgr, for the Ball-modes. For bay-modes, the frequency
must be complex-valued and lie above the critical cut-off frequency �0 for which
@�=@kj
0 D 0. Moreover, it was shown that for ‘crude lake models’, i.e. lakes with
vertical walls at their long ends, bay-modes could not be shown to exist. This lack of
a surmised TW-mode was suspected to be due to the discontinuity of the isotrophs

17 The modes � > ��

0 for  D 0:2 and  D 0:5 are obtained by shooting from both ends, s D 0

and s D L.
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at the vertical walls of the end cross sections; indeed, once a lake topography with a
smooth connection of the level lines on the long sides of the rectangle was selected,
bay modes of TWs were found. It was further suspected that bay modes would
also exist in a semi-infinite channel. Such a suspicion was based on the fact that
the dispersion relation has a complex valued regime, which assigns to a frequency
above �0, complex valued wave numbers, leading to stream function selections,
which are exponentially evanescent as one moves away from the bay region. This
behaviour is reminiscent of Taylor’s reflection problem of a Kelvin wave at the end
of a semi-infinite gulf ([34], see Chap. 12.)

In this section, the above suspected behaviours will all essentially be substan-
tiated. In doing so, we shall follow the works of Stocker which is contained in
[26, 27, 29–31].

21.6.1 Reflection at a Vertical Wall

Consider a semi-infinite channel with s � 0 and its end wall at s D 0. A wave
entering this channel from s D 1 is moving in the negative s-direction and, there-
fore, has exp .i.� t C ks// as its harmonic representation with real � < �0 and real
wavenumber k. For the energy moving into the channel, the possible wave numbers
of an incident mode to a given � < �0 are shown in Fig. 21.30 for a third order
model. If k is negative, k < 0, then cph "" cgr, and typical scales of the incident
wave are large; if k is positive, k > 0, then cph "# cgr, and typical scales of the
incident wave are small. A reflection of an incident wave can in our MWR only be
achieved when it is superposed with several or all waves having the same frequency
(but different wavenumbers). The incident wave and at least one reflected wave have
real k and the remaining modes must have

Im.k/ � 0 (21.73)

σ0

-k k

σ

Fig. 21.30 Dispersion relation �.jkj/ of a third order model in an infinite channel. Possible inci-
dent modes with group velocity into the negative s-direction are indicated by filled square for
cph "" cgr and by filled diamond for cph #" cgr. Above the cut-off frequency �0 all wavenumbers
are complex (from [26, 27]). c� Springer, Berlin, reproduced with permission
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Fig. 21.31 Selection of possible incident (�) and reflected (ı) modes in a semi-infinite channel
(from [27]). c� Springer, Berlin, reproduced with permission

to be exponentially evanescent as s ! 1. With this, the superposition and determi-
nation of the compound solution is unique and consists of one incident mode and 2N
reflected modes. This argument relies on the fact that the real branch of the disper-
sion relation has domains of k > 0 where @�=@k < 0 and @�=@k > 0. It also makes
use of the existence of a complex branch of the mode units. Examples of this selec-
tion are shown in Fig. 21.31. Full squares mark the k-values for the incident wave,
whilst open circles give the corresponding k-values for the reflected waves; in the
real branches, they all have outgoing group velocities and of the four possibilities
in the complex branches only those with Im.k/ � 0 evanesce exponentially for
s ! 1.

Recall that a general wave in a straight infinite channel has the form (21.26). If we
renounce from explicitly distinguishing between P C̨ and P �̨ with ˛ D 1; : : : ; N

and use for simplicity only P˛ with ˛ D 1; : : : ; 2N , then the general solution reads

 D
2NX

�D1

 

d�exp .ik	s/
2NX

˛D1
c˛�P˛

!

; (21.74)

in which the harmonic time dependence of (21.26) has been dropped and the sum-
mation over 	 is from 	 D 1 to 	 D 2N (and not 	 D 4N because of the constraint
(21.73)). A solution representing wave reflection is then given by

 D  in C  out D
2NX

˛D1
 ˛ D exp .ikis/

2NX

˛D1
c˛iP˛

C
2NX

�D1

 

d�exp .ik�s/
2NX

˛D1
c˛�P˛

!

; (21.75)
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n

s

a

b

Fig. 21.32  -contour lines of a reflection of TWs at a vertical wall. The insets explain the com-
position of the reflection pattern with incident wave (�) and reflected wave (ı). The selected
parameters are N D 3; " D 0:05, for (a) q D 1:0; � D 0:305 and (b) q D 0:5; � D 0:202

(from [27]). c� Springer, Berlin, reproduced with permission

with the unknown vector d� . The coefficients c˛i are known if the frequency �
and corresponding wavenumber ki of the incident wave are prescribed. They are
computed with the methods of Sect. 21.5. Analogously, to each of the wavenum-
bers k� .�/ of the reflected waves the corresponding c˛� can be computed.18 Hence,
ki ; k� ; c˛i .˛; 	 D 1; : : : ; 2N / are known. Imposing the no-flux condition  ˛ D 0

at s D 0 yields the linear system

2NX

�D1
c˛�d� D �c˛i ; ˛ D 1; : : : ; 2N; (21.76)

in which d� and c˛i are vectors of length 2N and c˛� is a (2N �2N )-matrix. Due to
the orthogonality of the set P˛ and the modes belonging to different wavenumbers
k� the matrix c˛� is regular and (21.76) can be inverted.

Figure 21.32a displays the reflection pattern for a wave belonging to the first
mode unit with both phase and group velocities directed towards the wall. Alterna-
tively, incident phase and group velocities may have different directions as in the
second-mode response of Fig. 21.32b. It was found that the largest portion of the
reflected energy lies in the mode with the corresponding wavenumber belonging
to the same branch of the dispersion relation (indicated by arrows in the insets of
Fig. 21.32). Consequently, wave activity remains primarily at the side of the inci-

18 The computation proceeds as follows: For given � < �0 one solves the determinant equation
(21.25) for all k and eliminates from this set those with Im.k/ < 0. One of the real k’s is kin, all
others define the real kout. For each of the admissible k’s (all real kout and of the complex valued
ones those with Im.k/ > 0), we solve (21.24) for c˛	 .
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dent wave. The result is a beat pattern with its first ‘calm’ area at approximately
2�B=jkin �koutj away from the wall. If kin and kout differ markedly from each other,
rather local and small-scale patterns emerge. Channel-type solutions for rectangles
as e.g. displayed in Fig. 21.32 can be interpreted in this spirit as a superposition of
two nearly independent reflection patterns, which are induced by the two vertical
walls. Since the discontinuous depth lines prevent wave energy from changing the
side in the channel, there are no simple reflection patterns to be expected that occupy
the whole channel.

21.6.2 Reflection at a Gulf End with Continuous Depth Lines
But Discontinuous Slope Parameter

To substantiate these statements, Stocker [26] looked at a semi-infinite channel with
exponential shore at its end. He employed the bathymetry according to (21.35) with

h0.s/ D
8
<

:
"

�
1C 1

"

	s=s0
; 0 < s < s0

.1C "/; s > s0;

(21.77)

so that h00.s/=h0 D lnŒ.1 C 1="/1=s0� is constant. The isobaths at the gulf end are
now �-shaped. Dropping a time dependent factor, exp .�i�t/, the solution then
takes the form19

 D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂:

 0 D
4NX

D1
d eik� s

2NX

˛D1
cex
˛ P˛ ; 0 < s < s0;

 1 D eiki s
2NX

˛D1
c˛iP˛ C

2NX

�D1
d�eik� s

2NX

˛D1
c˛�P˛ ; s0 < s;

(21.78)

where ki is the incident wavenumber, fk g4N1 is the whole set of wavenumbers and
fk�g2N1 is the restricted set with Im.k/ � 0 and the group velocity directed away
from the end wall, all corresponding to � . Superscripts 0 and 1 denote the domains
0 < s < s0 and s0 < s, respectively. cex

˛ is the (2N � 2N )-matrix coresponding
to (21.26) but for the case h0=h D s0 D const: 6D 0. The stream function  must

19 In this representation, � < �0 is prescribed as the frequency of the incoming wave. To this
frequency belong real and complex valued wavenumbers of the N mode units. For s < s0 these
wavenumbers k� .� D 1; : : : ; 4N / and the matrix cex

˛� are determined from equations analogous
to (21.25) and (21.24) with the matrices .Kij

ˇ˛/
˙ evaluated for h0

0=h0 D lnŒ.1C 1="/1=s0 �. Analo-
gously, for s > s0, k	 and c˛	 are similarly obtained from (21.25) and (21.24), where h0

0=h0 now
vanishes.
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be continuous and differentiable at s D s0 and vanish at s D 0. Thus, for ˛ D
1; : : : ; 2N 20

 0
˛

ˇ
ˇ
sD0

D 0 W cex
˛� d� D 0;

 0
˛

ˇ̌
sDs0

D  1

˛ jsDs0
W eik� s0 cex

˛� d� D c˛	eik	 s0d	 C c˛ie
iki s0 ;

@

@s
 0
˛

ˇ̌
sDs0

D @

@s
 ˛1jsDs0

W ik� eik� s0 cex
˛� d� D ik	eik	 s0c˛	d	 C iki c˛ieiki s0 ;

(21.79)
with the 6N unknowns and must be satisfied. This can be written as

2

6
4

cex
˛ 0

cex
˛ eik� s0 �c˛�eik� s0

ik cex
˛ eik� s0 �ik c˛�eik� s0

3

7
5
�
d
d�

�
D

2

6
4

0

c˛ie
iki s0

ikic˛ieiki s0

3

7
5 ; (21.80)

and the vectors d and d� are determined by inverting (21.80).

Figure 21.33 shows solutions  for a composed channel; two significant differ-
ences to Fig. 21.32 are observed. Now, there is wave activity also in the oposite
half of the channel corresponding to the negative of the incident wavenumber. This
amounts to a weak leakage of wave energy by reflection into the other channel
domain (Fig. 21.33a). However, probably owing to the non-smoothness of the iso-
baths at s0 it is comparatively weak and most of the reflected wave activity remains
on the incident side.

Figure 21.33b shows a reflection pattern of lower frequency, kin and kout lie far-
ther apart and, therefore, more local and complicated structures result. Moreover,
at the beginning of the reflecting shelf (s � s0) wave intensification is observed.
These specific results demonstrate that the global wave pattern is very sensitive to
the basin shape and the depth profile at the channel end.

However, these results still do not explain the distinction of TWs into three
different basin types as suggested in Sect. 21.4.3. We would like to have these
explained e.g. as special cases of three different reflection patterns.

21.6.3 Reflection at a Channel End with Continuous Depth
Lines and Continuous Slope Parameter

This section closely follows the analysis outlined in Sect. 21.4.3 and is due to
Stocker [26]. The procedure is, however, more complicated than there, since the
solution must be constructed in an open domain.

20 We now omit the summation signs over � D 1; 2; : : : ; 4N and 	 D 1; 2; : : : ; 2N .
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s
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a

b

s0

s0

Fig. 21.33 Reflection pattern in a composed channel. For 0 < s0 the depth varies exponentially
along the axis whereas it is constant for s > s0. This connects the isobaths of both channel domains
n > 0 and n < 0 and enables wave energy to leak into the opposite domain in the course of
reflection. The selected parameters are � D 0:05, for (a) N D 2; q D 2:0; � D 0:260; s0 D 2:0

and (b) N D 3; q D 0:5; � D 0:200; s0 D 1:0 (from [27]). c� Springer, Berlin, reproduced with
permission

21.6.3.1 Numerical Method

We now replace h0 in (21.77) by

h0.s/ D
8
<

:
�C sin2

�
�s

2s0

	
; 0 < s < s0;

1C �; s0 < s:

(21.81)

This profile is smooth at s0 and the slope parameter S.s/ � h�1dh=ds takes the
form

S.s/ D
8
<

:

� sin.�s=s0/ cos.�s=s0/

s0.�C sin2.�s=2s0//;
0 < s < s0;

0; s0 < s;

(21.82)

The solution � in the two domains is given by

� D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

� 0 D exp

0

@
sZ

0

A.Os/dOs
1

A� 0.0/ D E.s/� 0.0/; 0 < s < s0;

�1 D �1i C
2NX

�D1
�1� D� ; s0 < s;

(21.83)
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where (21.38) and (21.46) have been used.�1i is the incident mode with wavenum-
ber ki and, in real notation, has the form

�1i D .Re i ;Re P i ; Im i ; Im P� i /; (21.84)

which is a vector with 8N components; one such component, e.g. .Re� i /˛ is given
by Re exp .ikis/c˛iP˛ (no sum over ˛). If D� and �1� are also separated into real
and imaginary parts, they have the form21

�1� D

2

66
4

Re � Im �
Re P � Im P �
Im � Re �
Im P � Re P �

3

77
5 ; D� D

�
DR�

DI�

�
: (21.85)

As was the case for the incident wave,  � consists of 2N components, each of
which has the form

�
 �
�
˛

� eik� sc˛�P˛ ;
� P �

�
˛

� ik�eik� sc˛�P˛

(no sum over ˛), ˛ D 1; 2; : : : ; 2N , and wavenumbers are restricted such that
Imk� � 0.

Representation (21.83) has 8N real unknowns, � 0.0/ D .0; P 0R.0/I 0; P 0I .0//
and D� . These are determined with the help of the matching condition at
s D s0, viz.

� 0
ˇ
ˇ
sDs0 D �1jsDs0 W E .s0/� 0.0/ D �1i C

X

�

�1� D� ;

or more precisely,

2

6
4

E12 E14

:::
::: ��1�

E42 E44

3

7
5

2

6
4

� P 0R.0/
� P 0I .0/
D�

3

7
5 D

2

4��1i

3

5 ; (21.86)

and the calculation of theE ij ’s is described in the text below (21.49). The computa-
tional scheme therefore requires first, numerical integration by e.g. a Runge–Kutta
method to obtain theE ij ’s and second, an algebraic procedure to calculate both�1�
and, for a preselected incident wavenumber ki , the corresponding�1i .

21 The extended formulations (21.85) do not contain more information than the form (21.38) and
only account for the characteristics of the complex multiplication. Capital subscripts R and I denote
real and imaginary parts, respectively.
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21.6.3.2 Reflection Patterns

We learn from (21.83) that 2N C 1 modes are superposed which make up the solu-
tion �1 far away from the reflecting zone. It is of particular interest to determine
the reflection coefficientsR� corresponding to the individual modes with wavenum-
ber k� . Usually, these are calculated with the help of an energy argument: R� then
is proportional to the averaged total energy contained in mode k� . However, any
attempt to draw inferences concerning the energy content of the TW-motion is
ambiguous when considerations are restricted to a barotropic formulation. This is
so, because the averaged velocity field does not account for the energy content due
to vertical velocity variations and therefore is always a lower bound. Hence, we
propose another procedure. The measure of ‘strength’ of the contributing modes is
selected by scaling the maximum value of the modulus of the stream function  �
with the maximum value of that of the incident mode  i . More precisely, we define
R� as

R� �
maxn2ŒBC;B��

ˇ
ˇ
ˇ.DR� C iDI� /

P2N
˛D1 c˛�P˛.n/

ˇ
ˇ
ˇ

maxn2ŒBC;B��

ˇ̌
ˇ
P2N
˛D1 c˛iP˛.n/

ˇ̌
ˇ

: (21.87)

We have calculated the reflection coefficients R� for a second and a third order
model. The former has already revealed remarkable results which are demonstrated
in Fig. 21.34. It shows R� of the two possible22 reflected modes as functions of
the frequency. The reflected modes are induced by the incident mode which has
cgr "" cph towards s D 0.

When solving (21.86) two cases have to be considered. If � > �0 there exist no
modes which are periodic in space, i.e. Imk 6D 0 for all k. Consequently we cannot
define an incident mode as in (21.83). Setting �1i D 0, (21.86) allows a non-trivial
solution if

det
h
E.s0/;��1� T

i
D 0: (21.88)

On the other hand, when � < �0;�
1
i 6D 0 and (21.86) is invertible provided the

determinant does not vanish.
Calculations have shown that there are indeed real frequencies � > �0 satisfying

(21.88). Consequently, there exists a discrete spectrum for � > �0 and a contin-
uous spectrum for � < �0. The contour lines of the stream function (21.83) for
different frequencies are also plotted in Fig. 21.34. We call the waves which belong
to the discrete spectrum bound states of TWs in the semi-infinite channel whereas
waves for � < �0 are free states of the system. This terminology is very appealing
and obviously applies here well as inspection of the stream functions in Fig. 21.34
reveals.

22 A possible reflected mode has cgr D @�=@k directed away from s D 0, i.e. towards s D C1
and Im k D 0.
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Fig. 21.34 Reflection coefficients and stream function patterns in subdomains of the frequency
interval Œ�1; �0� of the two reflected modes � and ı, respectively. The coefficients of the incident
mode � is scaled to 1 and both cgr and cph are directed towards the reflecting wall. N indicate
lake solutions for � > 0:11 corresponding to Fig. 21.19. The inset explains the position of the
modes within the dispersion relation and the parameters are N D 2, r D 1, q D 2, � D 0:05 ,
� D 0:01, s0 D 1 (dashed line), M D 50 for � > 0:2 and M D 200 for � 
 0:2 (from [26, 27]).
c� Springer, Berlin, reproduced with permission
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The bound states must be identified with the type 2 waves (bay-modes) found in
the improved lake model in Sect. 21.4.3. Indeed, the frequencies � D 0:395 are the
same and when ignoring in the rectangle the stream function at the far end s D 1 the
mode structures are alike, see Fig. 21.19. We, therefore, conclude that the occurrence
of the bay-mode in the rectangular basins for � > �0 is due to two trapped bound
states of TWs in either lake bay at s D 0 and s D 1. The stream function of
this mode consists of 2N modes k� with Im k� > 0 for s > s0 and is spatially
evanescent. The longer a lake basin is, the weaker will be the coupling of the bound
modes in the respective bays. The two additional bay-modes shown in Fig. 21.19 at
� D 0:297 and � D 0:263 are also originating from bay-trapped topographic waves
not shown in Fig. 21.34.

The fact that the TW-equation (20.4) has a discrete spectrum above � > �0 con-
sisting of bound states resolves the seeming controversy formulated in Sect. 21.4.1.
In particular, in elongated lakes with very steep transverse topography (q � 10 for
Northern Lake of Lugano as determined by Bäuerle [2]) this new result is of impor-
tance. Let us estimate the frequency of the quadratic Ball-mode of the elongated
Northern Lake of Lugano. The basin is 17km long and has an approximate width
of 1:5 km. This gives an aspect ratio of r D 1:5=17 � 0:088. Using (20.33) and
(20.40) yields the estimate

� � 0:049; T � 350 h: (21.89)

Recall that the topography of the lake has a markedly steeper profile than the
parabolic profile used in the Ball-model. Due to the conspicuous topography effect,
(21.89) is certainly an overestimate for � . Periods would therefore have to be
expected to be even longer. Measurements, however, indicate a distinct signal at
around 74 h, clearly far above the cut-off frequency for this basin. The following
interpretation is thus put forward, and it seems reasonable that the 74 h-signal could
be the trace of a bay-trapped topographic wave of one of the bays at Melide, Lugano
or Porlezza, see Fig. 19.10. A further argument supporting this interpretation is the
fact that spectral peaks of temperature time series of moorings at the Melide end
(see Fig. 19.7) have this maximum at periods which are generally slightly larger than
74 h; alternatively, the corresponding peak for the Porlezza mooring is at a slightly
smaller period (compare Figs. 19.7–19.10). The difference could be interpreted as
being due to independent bound modes that are generated by the different topogra-
phies at the two lake ends. The FE-results of Trösch [35] support this interpretation,
see Fig. 19.10. Mysak et al. [17], however, also list limited facts which conflict with
this view. Giving a final answer would require data which would uncover the spatial
structure much more clearly.

Starting from �0 and decreasing � we observe that the wave pattern undergoes
considerable alterations which corresponds to changes in the relative strength of the
two reflected modes. More precisely, asRı decreasesR� increases. For � < 0:25 Rı
oscillates weakly whilst gradually decreasing and R� � 0:98. This can be verified
by considering the associated stream functions. For 0:254 � � < �0, the reflected
wave mainly consists of the ı-mode. What evolves is a beat pattern at the same



21.6 Reflection of Topographic Waves 509

channel-side where the incident mode is located. The increase ofR� manifests itself
as a growing leakage of wave activity into the opposite channel side, because the
�-mode has k D �ki . For 0:120 � � � 0:254 R� is dominant, and this is clearly
visible in the wave patterns. The dispersion relation has @�=@k > 0 for this reflected
mode and consequently, increasing wavelengths accompany decreasing frequencies.
At � D 0:115 a remarkable resonance is discovered: Two coinciding peaks give
rise to a local minimum and maximum for R� and Rı, respectively. Looking at the
wave pattern suggests that this again is a bay-trapped mode. Contrary to the trapped
modes with � > �0 which are true bound states, this mode has also a non-vanishing
periodic contribution in s > s0. The pattern is, however, a bay-mode or type-2 wave
because the characteristic structure is due to the modes with ImK� > 0 belonging
to the second mode unit which still has a complex branch for �1 < � < �0 (see
inset).

The resonance � D 0:115 coincides with an eigenfrequency in the closed basin
as indicated with filled triangles. The structure agrees well with that shown in
Fig. 21.19. Below the resonance the componentR� dominates again and large-scale
TWs are observed. There is a further resonance at � D 0:088. It also resembles sec-
ond mode structure, and it also has a non-vanishing periodic contribution in s > s0,
as does the bay mode with � D 0:115. This is due to the activation of the real
wavenumber in the interval �1 < � < �0. Contrary to the bound mode at � D 0:395,
those modes at � D 0:115 and � D 0:088 are triggered by a true reflection mecha-
nism of an incoming wave that is reflected. So physically these are true resonances
at bays which only exist because they are energetically fed from the incoming wave.

For � < �1 all modes have ImK� D 0 in this second order model and no fur-
ther bay-modes can be expected. Instead of this, contributions of the real branch
belonging to the second mode unit are possible. Figure 21.35 displays the reflection
coefficients for the frequency interval Œ0:052; �1�. All reflection coefficients change
smoothly and, as expected, no resonances occur. For 0:063 < � < �1 Rr belonging
to the second mode unit is dominant (see inset for an explanation of the symbolic
subscripts). For lower frequencies the influence of the second mode unit is compar-
atively weak. Comparison of Figs. 21.34 and 21.35 reveals, that close to the critical
frequencies �0 and �1 energy is distributed among several modes, whereas for other
frequencies most of the reflected energy is contained in the �-mode. This is the mode
with the negative of the incident wavenumber.

So far, we have studied the reflections of TWs, when the incident wavemode
belongs to the first mode unit and has cph "" cgr towards the reflecting zone. We
also investigated the situation for an incident mode with cph #" cgr . For this case,
the graph of Fig. 21.34, qualitatively looks the same except that the curves Rı and
R� are interchanged. The position of the two conspicuous resonances is unchanged.

Figure 21.36 collects the results of importance. The incident mode with cph #"
cgr has its wave crests at the opposite side of the channel. Energy is propagating
towards s0 whereas the phase propagates away from it. These two cases distinguish
two different types of reflection patterns, type 1 and type 3. Type 1 has a large
scale structure with increasing wavelengths for decreasing � . Conversely, type 3
exhibits a small-scale pattern which is intensified for decreasing frequencies. The
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Fig. 21.35 Reflection coefficients and stream function patterns for 0:052 
 � < �1 for the four
reflected modes. The coefficient R of the incident mode is scaled to 1. The parameters are as
in Fig. 21.34 and the inset explains the modes (from [26]). c� Versuchsanstalt für Wasserbau,
Hydrologie und Glaziologie an der ETH Zürich, reproduced with permission

distinction of these types and their individual properties agree with the classification
suggested in Sect. 21.4.3. There, we only were able to make the distinction plausible
by phenomenological arguments. We now have discovered a physical explanation
for the occurrence of bay-modes, Ball-modes and channel modes in enclosed basins.
Comparing Figs. 21.36 with 21.19 makes it clear:
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Fig. 21.36 Reflection patterns indicated by an inicident wave with cph "" cgr (type 1) and cph #"
cgr (type 3), respectively. The mode at the resonance � D 0:115 constitutes type 2. The parameters
are as in Fig. 21.34 (from [26]). c� Springer, Berlin, reproduced with permission

1. The type 1-modes or Ball-modes originate form a sequence of reflections at the
lake ends which are induced by an incident wave with cph "" cgr. For an appro-
priately selected frequency, i.e. eigenfrequency, the pattern is not evanescent in
time and a Ball-mode survives.

2. The basin solutions classified as type 2 or bay-modes are due to the conspicuous
resonances observed in Fig. 21.34. As Fig. 21.36 demonstrates the structure in
the bay is only weakly influenced by the incident mode.

3. Finally, the channel-modes or type 3-waves of Fig. 21.36 can be explained as the
result of a sequence of reflections at the lake ends which are induced by a mode
with cph #" cgr. Contrary to the Ball-modes, the spatial scale decreases with
decreasing frequency.

These results justify and strengthen the statements which were made in
Sect. 21.4.3. They provide a more precise and broader understanding of TWs in
channels and lakes. It is now clear that the models to which (some) exact solu-
tions were presented in Sect. 20.3 do not exhibit the complete variability of TWs in
basins but provide us only with Ball-mode solutions. These often do not suffice for a
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reliable interpretation of field measurements. As the model of Mysak et al. [31] has
shown, the ellipse which could model the 74 h-signal had a far too large aspect ratio.
This discrepancy seems to be removed if the signal is interpreted as a bay-trapped
mode with a frequency that exceeds the cut-off frequency for the particular basin.
On the other hand, what has been conjectured at the end of Sect. 21.4 is now made
clear in a quantitative manner. The existence of three distinctly different wave types
is a natural consequence of the typical dispersion relation of topographic Rossby
waves. The conspicuous eigenmodes in the rectangular basin can be understood in
terms of reflections of TWs at either shore-zone. Depending on the structure of the
incident wave the corresponding type is established. All parameter dependencies
are explicable with the help of this correspondence.

In elongated lakes, the quantities determining the TW-features may, perhaps be
listed as follows:

First, the transverse depth-profile fixes the frequency range, in which solutions
can be expected. We draw this inference from the conspicuous topography depen-
dence of the frequency illustrated in, e.g. Fig. 21.14 and Tables 19.1, 20.3, 20.5,
20.7, 21.1–21.3, 21.6, 21.7. The larger topography gradients for a fixed maximum
depth are, the lower will be the frequencies. Therefore, � is strongly influenced by
h�1jrhj. Second, the form of the lake ends is of particular importance as far as
the structure of the solution is concerned. This determines whether a Ball-, bay-
or channel-type wave will occur. Third, it should not be forgotten that TWs are
wind-generated. Depending on the scale of the exciting force the lake basin will
respond differently. Small-scale driving forces will preferably excite bay-modes or
channel-modes whereas large-scale wind forces may produce Ball-modes.

21.7 Bay Modes and Resonances

The computations performed in the previous section suggested for the chosen
bathymetries that normal modes of the TW-operator can be divided into two types:
basin wide modes, for which the wave activity is spread through the entire gulf
region and bay modes, for which the motion is highly localized. In this section our
intention is to corroborate these findings and to deepen their understanding. In fact,
we wish to show that for a shelf zone at the end of a semi-infinite flat gulf, topo-
graphic waves are trapped. More specifically, a countable infinite set of bay modes
exists in this case, of which the energy does not radiate away from the bay. The
motion away from the bay is exponentially evanescent as one moves farther away
from the shelf.

If the bathymetry in the semi-infinite channel is generalized to consist of a one-
sided shelf and a bay with oblique bottom contours, the modal response of the
TW-operator is more complex. ‘Whereas the spectrum of the flat channel is purely
discrete, channels with transverse topography exhibit compound spectra consisting
of a continuous and a possibly empty, discrete part. The former contains an infinite
set of resonances, each of which can be attributed to a point in the discrete spectrum
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of the flat channel. Resonances can thus be considered as leaky bay modes’ [30].
They have a strong wave activity in the bay region and non-negligible, moderate,
oscillating activity in the channel. Some of these leaky wave modes may be expo-
nentially evanescent; a single oscillating one suffices to characterize the bay mode
as leaking. The analogy may be overstretched, but it is tempting to recall here the
Taylor reflection analysis (Chap. 12, Sect. 12.5) of a Kelvin wave at the end of a
semi-infinite gulf, where the reflection properties were characterized as being com-
plete or incomplete, respectively, depending upon whether the reflected modes were
all exponentially evanescent or at least one was oscillating.

We demonstrate these properties with chosen bathymetric profiles, which allow
the construction of exact solutions.

21.7.1 The Boundary Value Problem for TWs in a Semi-Infinite
Gulf with Exponential Bathymetry

Consider Cartesian coordinates, x; y, and a semi-infinite gulf, .x; y/ 2 Œ0;1/ [
Œ0; 1�, of which the dimensionless scaled water depth is defined by

h.x; y/ D
�

exp .2b.x � `//exp .2c.y � 1//; 0 � x � `;

exp .2c.y � 1//; x > `;
(21.90)

in which b; c and ` are constants. Figure 21.37 displays the isobaths for this
topography.

We wish to solve the boundary value problem (21.2) which, in Cartesian coordi-
nates, takes the form

r � .h�1r �t /C Ok � .r� � r h�1/ D 0; in D;
(21.91)

� D 0; on @D;

where � is the volume (mass) transport stream function, h is the scaled water depth,
r is the horizontal gradient operator, .�/t denotes differentiation of .�/ with respect
to time and Ok is a unit vector, pointing vertically upwards. It is assumed that D is
simply connected, so that � D 0 along @D expresses tangency of the velocity field
along the domain boundary. We wish to solve (21.91) when the bathymetric profile
is given by (21.90).

Problem 21.1 Let � be complex valued (the real and imaginary parts are then
physically acceptable solutions) and choose
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Fig. 21.37 Views of the bathymetry (21.90) for the cases (a) b > 0; c D 0; (b) b > 0; c > 0 and
(c) b D 0; c > 0

� D exp .�i�t/ ;

�
� D !

f

	
: (21.92)

By substituting (21.92) into (21.91) and choosing h according to (21.90), show that
the eigenvalue problem (21.91) takes the form

 xx C  yy � 2ˇ x � 2	 y D 0;

ˇ D

8
<̂

:̂

b C ic

�
ic

�

9
>=

>;
; 	 D

8
<

:
c � ib

�
c

9
=

;
;
0 � x � `

` < x

9
>>>>=

>>>>;

.x; y/ 2 Œ0;1/ [ Œ0; 1�;

(21.93)

 D 0; fy D .0; 1/; x > 0gI fy 2 Œ0; 1�; x D 0g:

By selecting

 D exp .ˇx C 	y/�.x; y/; (21.94)
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show, moreover, that �.x; y/ satisfies the boundary value problem

�xx C �yy C 2� D 0;

2 D

8
ˆ̂<

ˆ̂
:

.b2 C c2/

�
1

�2
� 1

	
; 0 � x � `;

c2
�
1

�2
� 1

	
; x > `;

9
>>>>=

>>>>;

.x; y/ 2 Œ0;1/[ Œ0; 1�;

(21.95)

� D 0; fy D .0; 1/; x > 0gI fy 2 Œ0; 1�; x D 0g

This formulation is incomplete, because the far field condition for x ! 1 is not
yet imposed. We shall request that the kinetic energy remains bounded as x ! 1.
It can be shown that this requires

r� � r�� < 1 as x ! 1; (21.96)

where �� is the conjugate complex of �. Furthermore, it is to be expected that the
solutions in the bay region .0 � x � `/ and in the far region .x > `/ are separate
and must be patched together by requesting continuity of � and �x . Figure 21.38
gives a sketch of the formulation of the problem.

21.7.1.1 Solutions in x 2 Œ0; `	

We call this the bay area and seek a separation of variables solution of the form

�n D A.x/ sin.n�y/; .n D 1; 2; : : :/: (21.97)

It satisfies the boundary conditions at y D .0; 1/. Substituting (21.97) into the
differential equation (21.95)1 yields the ordinary differential equation

d2A

dx2
C .2 � .n�/2/A D 0; (21.98)

in which the coefficient of A is either positive or negative, depending on n. If it is
negative, then

φ = 0
1

φ = 0

y

[[ψ]] = 0

φxx + φyy + k2φ = 0

[[ψ]] = 0

∇φ · ∇φ∗ < ∞

0 = 0 ∞

Fig. 21.38 Sketch of the boundary value problem for � to be solved, when h is given by (21.90).
ŒŒf �� D f .x � `C "/� f .x � `� "/, 0 < " << 1
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A D an sinh.˛nx/ and A D bn cosh.˛nx/

are fundamental solutions, provided that23

˛2n D .n�/2 � .b2 C c2/

�
1

�2
� 1

	
: (21.99)

However, we must have bn � 0 to satisfy the boundary condition at x D 0. It
follows that

�bn D an sinh.˛nx/ sin.n�y/; .n D 1; 2; 3; : : :/ (21.100)

are ‘bay’ solutions, of which n is the transverse mode number; the ˛n’s are either
real or purely imaginary; in the latter case the functions sinh.˛nx/ are replaced by
sin. Ǫnx/; Ǫ2n D �˛2n.

21.7.1.2 Solution in x 2 Œ0;1/

We call this the channel area and seek again separation of variables solutions of
the form

�cn D Dcn.x/ sin.n�y/; .n D 1; 2; 3; : : :/; (21.101)

which satisfies the side boundary conditions �cn D 0 at y D .0; 1/. Substituting
(21.101) into (21.95) yields

d2Dc
dx2

�
�
.n�/2 � c2

�
1

�2
� 1

	�

„ ƒ‚ …
��2

Dc D 0: (21.102)

With the trial solution Dc D exp .
x/ this equation implies


˙ D ˙i

�
c2
�
1

�2
� 1

	
� .n�/2

�1=2

D �i
c

�
C i

(
c

�
˙
�
c2
�
1

�2
� 1

	
� .n�/2

�1=2)

:

Defining the longitudinal wave number as

kn D
(
c

�
˙
�
c2
�
1

�2
� 1

	
� .n�/2

�1=2)

(21.103)

23 Note that b and bn are distinct quantities.
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we may now write

�cn D dnexp
�
�i
c

�
x C iknx

�
sin.n�y/: (21.104)

The dispersion relation (21.103) can, alternatively, also be written as

� D 2ck

k2 C c2 C .n�/2
: (21.105)

With these definitions, k is the wavenumber in the x direction of the stream
function  .

Propagating modes with transverse mode number n are possible provided that

2, defined in (21.102) is positive, i.e. if

0 < � < �n WD c

Œc2 C .n�/2�1=2
: (21.106)

�n is the cut-off frequency of the nth transverse mode. If � > �n, then the modes
decay exponentially with x.

21.7.2 The Flat Channel

The above solutions in the bay and channel regions are exact and only need to
be patched together at x D ` by requesting that the stream function  and the
velocity are continuous across the line x D `. We shall demonstrate this first for
a semi-infinite domain with a flat channel section, i.e. c D 0. Clearly, there are no
propagating waves in the channel section, because, according to (21.106) �n D 0,
and in view of (21.103), kn D �in� for an exponentially evanescent solution as
x ! 1,

�cn D dnexp .�n�x/ sin.n�y/: (21.107)

In the bay region the solution is given by (21.100) with

˛2n D .n�/2 � b2
�
1

�2
� 1

	
: (21.108)

The solution for  , (21.94), can be written as

 D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

1X

nD1
an 

b
n D exp

�
bx � i

b

�
y

	

�
1X

nD1
an sinh.˛nx/ sin.n�y/; 0 � x � `;

1X

nD1
dn 

c
n D

1X

nD1
dnexp .�n�x/ sin.n�y/; x > `;

(21.109)
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with ˛n as given in (21.108). (21.109) is an exact solution of the TW-equation
(21.91) in the semi-infinite channel, if the stream function and the velocity are con-
tinuous across the line x D `. This continuity requirement determines the constants
an and dn via the equations

exp

�
b` � i

b

�
y

	 1X

nD1
an sinh.˛n`/ sin.n�y/ D

1X

nD1
dnexp .�n�x/ sin.n�y/;

exp

�
b` � i

b

�
y

	 1X

nD1
an
�
b sinh.˛n`/C ˛n cosh.˛n`/

�
sin.n�y/ (21.110)

D
1X

nD1
dn.�n�/exp .�n�`/ sin.n�y/:

Multiplying equations (21.107) each with

Z 1

0

dy exp

�
i
b

�
y

	
sin.m�y/ (21.111)

and using the orthogonality of the trigonometric functions

Z 1

0

sin.m�y/ sin.n�y/dy D 1

2
ımn; (21.112)

gives the system

1

2
exp .b`/am sinh.˛m`/ D Jmndnexp .�n�`/;

(21.113)
1

2
exp .b`/am .b sinh.˛m`/C ˛m cosh.˛m`// D Jmndn.�n�/exp .�n�`/;

in which

Jmn WD
Z 1

0

exp

�
i
b

�
y

	
sin.m�y/ sin.n�y/dy

D 2

�
�.�1/mCn mn

Œ.mC n/2 � �2�Œ�2 � .m � n/2�
� ˚sin.��/C i

�
cos.��/ � .�1/mCn�
 ; � WD b

��
; (21.114)

(see Gradshteyn and Ryzhik [8]). Combining (21.113) leads to the following count-
able infinite matrix vector equation

Dmnexp .�n�`/dn D 0;

Dmn WD .b C ˛m coth.˛m`/C n�/Jmn;
(21.115)
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which has a non-trivial solution if

det.D/ D 0: (21.116)

To solve (21.115), (21.116) numerically, the summation over n must be restricted
to n D 1; 2; : : : ; N . Because of the completeness of the trigonometric functions,
increasing N guarantees convergence of the solution. Once a frequency is deter-
mined from (21.116), (21.115) allow determination of the constants dn .n D
1; 2; : : : ; N / (modulo a multiplicative constant) and then in a further step, using
(21.113)1, evaluation of am .m D 1; 2; : : : ; N /, again modulo a multiplicative
constant).

Stocker and Johnson [30] state that the eigenvalues of the exact problem (21.91)
are real, and experience has shown that this seems also to be true for the approximate
problem with finite N . They show that N D 4 is generally sufficient to have 4–5
significant figures of the eigenfrequencies of the .n;m/ D .1; 1/; .1; 2/; .2; 1/; .2; 2/

modes securely determined; whilstN D 7 seems to suffice to obtain the coefficients
aj .j D 1; 2; 3; 4/ accurately determined.

Figure 21.39 displays the stream functions for the first four eigenmodes at t D 0

and t D T=4, where T is the period. Substantial wave activity is restricted to the
bay region; outside the bay, the stream function is exponentially small.

t = 0

t = 0

t = T/ 4

t = T/4

σ11 σ12

σ21 σ22

Fig. 21.39 Stream function  of the first four eigenfrequencies in a flat semi-infinite channel with
a shelf bay zone. The solutions are bay modes with all wave activity trapped in the bay zone and
� is exponentially evanescent for x > `. Here, b D ` D 1 and N D 6 (after [30]). c� Cambridge
University Press, reproduced with permission



520 21 Topographic Waves in Basins with Complex Shapes and Bathymetries

21.7.3 Channel with Shelf Topography

We now consider a semi-infinite gulf with bathymetry (21.90) and c ¤ 0. It follows,
according to (21.106) that the cut-off frequencies �n are non-zero and so for � < �1
topographic waves carry energy both towards and away from the bay. For � > �1,
however, bay modes are possible. The spectrum is discrete (or empty) above �1 and
continuous below it.

Let NR be an integer > 1 characterizing the cut-off frequency �NR according to
(21.106). In view of (21.103), there are thus 2NR propagating modes in the channel;
NR modes have group speed which carry energy away from the bay. The remaining
ones carry energy towards the bay; and anyone of these can be selected as an incident
wave. With these preliminary remarks we are now able to construct the general
solutions begun in Sect. 21.7.1 and the application of the continuity requirements
for  at x D `. This is summarized in Problem 21.2.

Problem 21.2

1. Show that in view of (21.94) and (21.100) the general solution for  in the bay
region x 2 Œ0; `� is given by

 D
1X

jD1
aj 

b
j

D exp .ˇx C 	y/

1X

jD1
aj sinh.˛j x/ sin.j�y/; 0 � x � `: (21.117)

2. Let  ci be the incident wave in the channel portion of the gulf. For definiteness,
restrict attention to an incident wave of transverse order 1. (Similar results are
obtained for other incident modes.) Show that the general solution for  in x 2
Œ`;1/ is given by

 D  ci C
1X

D1
dj 

c
j D exp .cy/exp .ikix/ sin.�y/

(incident wave)

C exp .cy/
NRX

jD1
rj exp .ikj x/ sin.j�y/

(reflected oscillating modes)

C exp .cy/
1X

jDNRC1
dj exp .ikjx/ sin.j�y/

(reflected exp. evanescing modes); (21.118)
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in which

ki D c

�
C
�
c2
�
1

�2
� 1

	
� �2

�1=2
;

(21.119)

kj D

8
ˆ̂
<

ˆ̂:

c

�
�
�
c2
�
1

�2
� 1

	
� .j�/2

�1=2
; j � NR;

c

�
C i

�
.j�/2 � c2

�
1

�2
� 1

	�1=2
; j > NR;

where rj and dj are arbitrary coefficients characterizing the amplitude of the
j th mode. The last two terms on the right-hand side of (21.118) can also be
combined together as

exp .cy/
1X

jD1
dj exp .ikj x/ sin.j�y/ (21.120)

with rj � dj for j � NR if (21.119) is observed.

The compound solution (21.117)–(21.120) for the transport stream function in
the rectangular semi-infinite gulf does not satisfy yet the continuity requirements
ŒŒ ��D0, ŒŒ x �� D 0 at x D `. These conditions yield

exp .ˇ`C 	y/

1X

jD1
aj sinh.˛`/ sin.j�y/

D exp .cy/exp .iki`/ sin.�y/C exp .cy/
1X

jD1
dj

1X

jD1
exp .ikj `/ sin.j�y/;

(21.121)

exp .ˇ`C 	y/

1X

jD1
aj
�
ˇ sinh.˛j `/C ˛j cosh.˛j `/

�
sin.j�y/

D exp .cy/ikiexp .iki`/ sin.�y/C exp .cy/
1X

jD1
dj ikj exp .ikj `/ sin.j�y/;

in which notation (21.118) has been replaced by (21.120). Multiplying both (21.121)
with exp .�	y/ sin.m�y/ and integrating the emerging equations from y D 0 to
y D 1 and then applying the orthogonality condition of the trigonometric functions
results in the equation pair
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1
2

exp .ˇ`/am sinh.˛m`/ D exp .iki`/Jm1 C Jmj exp .ikj `/dj ;
1
2

exp .ˇ`/am .ˇ sinh.˛m`/C ˛m cosh.˛m`// (21.122)

D ikiexp .iki`/Jm1 C Jmj ikj exp .ikj `/dj :

Here, summation over j from j D 1 to j D 1 is understood and Jmj is given
in (21.114). Eliminating am from (21.122) by substituting the first into the second
equation yields the following infinitely large inhomogeneous system of equations
for ˛m:

fexp .iki`/Œˇ C ˛m coth.˛m`/ � ikj �Jmj gdj
D exp .ikj `/Œikj � ˇ � ˛m coth.˛m`/�Jm1; (21.123)

which is truncated to order j D N , when a numerical solution is sought. Because
of the inhomogeneous structure of (21.123) a solution is constructed by selecting
a value for � of the incident wave, evaluating the wave numbers (21.119) of the
channel solutions, determining Jmj for m � N; j � N , and then solving (21.123)
for dj , j D 1; 2; : : : ; N ; this will also fix am, m D 1; 2; : : : ; N . These solutions
define the continuous spectrum and describe the reflection of incoming waves of
prescribed frequency at the gulf end. There are also bound solutions of (21.122) or
(21.123) with vanishing incident wave and thus dj D 0 for all j 2 Œ0;1/. In this
case the linear system (21.123) becomes homogeneous, and the eigenfrequencies
emerge from the condition

detfexp .ikj `/Œikj � ˇ � ˛m coth.˛m`/�Jm1g D 0: (21.124)

Together with the associated am’s these define the true bay solutions (21.117).

21.7.3.1 Bay Modes

Recall from (21.106) that for the transverse mode-1 behaviour here, all modes will
be exponentially evanescent in the channel and trapped to the bay, provided that

� > �1 D c

.c2 C �2/1=2
:

Of interest is, how many modes exist, if the transverse order is n. Stocker and
Johnson [30] show, on the basis of work by Johnson [12], and for the selected
bathymetry (21.90), how this number can be estimated. If NB.n/ is the number of
bay modes of transverse order n, these authors show that
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int

(

`

�
b2

c2
C 1 � n2

	1=2)

� NB.n/ � int

(
1

2
C `

�
b2

c2
C 1 � n2

	1=2)

;

(21.125)

where ‘int’ denotes the integer part of the number in braces. When the bounds coin-
cide, (21.125) determines NB.n/ exactly, else it gives upper and lower estimates
differing by unity. The total number of bay modes is obviously

NB D
1X

nD1
NB.n/: (21.126)

If the channel is flat (c D 0), then �n D 0 for all n, and all bay modes are trapped,
and their number is infinite, corresponding to a doubly infinite set of bay modes.
For c > 0, the number is finite and may even be zero, if c is so large that the upper
bound of (21.125) is zero.

Stocker and Johnson show transport streamlines for modes .1; 1/, .1; 2/, and
.2; 1/ for c D 0:3 and c D 1, see Fig. 21.40. For c D 0:3, formula (21.125) yields
6 � NB � 8, of which three are shown. For c D 1;NB D 1 and b D ` D 1, only the
fundamental bay mode is present. For c � 1:55, no bay modes occur. The transport
streamlines have the tendency to follow the isobaths (which on the f plane agree
with the isotrophs).

c = 0.3 c = 1

σ11

σ12

σ21

Fig. 21.40 Stream line contours of the first three bay modes (c D 0:3) and the single bay mode
(c D 1). Computations were performed for b D ` D 1 and N D 6, according to Stocker and
Johnson [30]. c� Cambridge University Press, reproduced with permission



524 21 Topographic Waves in Basins with Complex Shapes and Bathymetries

21.7.3.2 Reflections

Existence of traveling (incoming and reflected) waves requires the frequency of the
incoming wave  ci to be below the cut-off frequency of the transverse mode-1:
0 < � < �1. These modes are obtained by constructing solutions to the inhomo-
geneous system (21.123). For �jC1 < � < �j , the reflected transverse energy
is distributed onto j different transverse modes. The relative importance to these
modes can be determined by calculating the fluxes of kinetic energy associated with
each of them. Stocker and Johnson [30] compute for the present gulf bathymetry the
positive reflection coefficients Rj per incident energy flux and find

Rj D c � �kj
�ki � c jdj j; j � NR; (21.127)

satisfying (21.119) and subjected to the constraints

NRX

jD1
Rj D 1: (21.128)

Figure 21.41 displays Rj against the frequency for b D ` D c D 1 and N D 6. For
these, the cut-off frequencies are

�1 D 0:3033; �2 D 0:1572; �3 D 0:1055:

The figure shows that for �2 < � < �1, only mode-1 reflected waves exist (R2 D
R3 D 0), whilst for �3 < � < �2 both mode-1 and mode-2 reflected waves are
excited. For � < �3 very small excitement of reflected mode-3 waves also exist.
In the interval 0:10 < � < 0:16, mode-1 and mode-2 reflections co-exist with
varied intensity. Figure 21.42 shows streamline plots for the indicated dimensionless
frequencies. For � D 0:300, the bay zone is negligibly excited (on the streamline
plot no bay-trapped streamline is shown for the chosen -values), whilst the channel
section exhibits quasi-steady mode-1 response. ‘For �2 < � < �1 a beat pattern
prevails in the channel part arising from a superposition of the incident wave with
wave number ki and the only reflected mode-1, both of identical transverse order
Œ: : :�. As the wave length of the incident wave becomes shorter (for decreasing �)
wave activity in the bay is enhanced. For � < �2, wave motion in the channel
consists of several transverse modes. (Obviously), the reflection behaviour of the
semi-infinite channel strongly depends on the frequency of the incident wave. This
mode has the characteristic lenth scale 2�=ki , which interacts with the ‘resonator’
(the bay) of length scale b`=c’ [30].
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permission
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21.7.3.3 Leaky Bay Modes

Resonances in the continuous spectrum were reported in the last Sect. 21.6.3, see
e.g. Fig. 21.34, and were called there leaky bay modes. They can physically be iden-
tified here as modes with large kinetic energy of the incoming and reflected waves.
Stocker and Johnson [30] computed the depth integrated energy density over one
period and over the bay zone and plotted the logarithm of this energy as a function of
the incident frequency in the interval 0:095 < � < 0:24, see Fig. 21.43a. Peaks in
this figure are identified with frequencies of the modes .m; n/ D .1; 2/; : : : ; .4; 2/.
The six panels in Fig. 21.43b show the stream line patterns for the six modes .2; 1/,
.2; 2/, .3; 1/, .3; 2/, .3; 3/ and .4; 2/. Evidently, the bay energy exhibits a conspic-
uous resonance at � D 0:203, but this resonance is not exhibited in the reflection
coefficient (not shown here). At � D 0:222, a further weak resonance is visible. The
other panels of Fig. 21.43b also demonstrate higher wave activity in the bay than in
the channel, but at varied relative strengths. Moreover, the graphs indicate that each
resonance can be associated with a pair of mode numbers according to the structure
of the wave motion in the bay zone.

‘It has, (thus), been demonstrated above that the spectrum of the topographic
wave equation in the semi-infinite channel can consist of a discrete and a contin-
uous spectrum. Solutions associated with the discrete spectrum are trapped in the
bay zone – they are true bay modes whereas solutions of the continuous part are
free states: incoming wave energy is reflected. Increasing the cut-off frequency of
the channel region, i.e. increasing c, causes a decrease in the number of true bay
modes. This is nicely illustrated in Fig. 21.44, in which the bay mode frequencies
are displayed as functions of the topography parameter c. The dashed dotted lines
indicate the cut-off frequencies of the individual transverse modes. For � > �1 true
bay modes evolve. It is evident that, owing to the different functional dependen-
cies of �n and �mn with respect to c, the lines of �mn cross the lines of the cut-off
frequencies �n for increasing c. Once �1 is crossed a true bay mode becomes a
resonance in the continuous spectrum. Moreover, once �mn crosses �n, the reso-
nance may become weak, because the mode with the same transverse mode number
n is now propagating in the channel. This is indicated by the dashed lines in the
figure. Therefore, each resonance in the continuous spectrum can be associated to a
true bay mode, i.e. a solution of the discrete spectrum of the simple bay mode with
c D 0. Hence, with increasing c (or decreasing b`) true bay modes do not vanish
but rather emerge as resonant states in the continuous spectrum [and then form leaky
bay modes]’, after [30].

One disadvantage, perhaps, of the computations performed by Stocker and
Johnson [30] is the rather artificial bathymetry (21.90), which is geometrically far
from realistic basin profiles. Johnson and Kaoullas [13] presented computations for
a more realistic, however, still ‘academic’ bathymetry. Their isobaths (at 0:1 inter-
vals) for the lake-end model are as shown in Fig. 21.45a. The profile across the
breadth of the channel is for very large x > 0 as shown in Fig. 21.45b and the pro-
file has zero derivatives of all orders with respect to x at x D 0C. So. A shallow shelf
of constant depth H0 can extend the bay zone for �d < x < 0�. As already men-
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Fig. 21.43 (a) Energy in the bay plotted against the dimensionless frequency in the interval
0:095 < � < 0:24. (b) Streamlines at resonances corresponding to panel (a). Parameters are
b D ` D c D 1; N D 6 (from [30]). c� Cambridge University Press, reproduced with permission

tioned, the TW-equation does not support trapped bay modes when d D 0, because
its solution is constructed by conformal mapping from solutions of the TW-equation
in an infinite channel with rectilinear topography. However, Johnson and Kaoullas
[13] show that with non-vanishing d a discrete spectrum of modes emerges, which
can be interpreted as true bay modes, but further interpretation of resonances and
leaky bay modes is not provided.
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Table 21.11 Characterization of the spectrum of TW in infinite channel. After [30]

Structure of domain Discrete spectrum Continuous spectrum

1. Lake basin, domain closed Countable infinite Empty
2. Bay zone connected with Countable infinite Empty

flat open domain
3. Open domain: bay and Finite for � > �1 0 < � < �1, infinite

adjacent channel or number of resonances
shelf with cutoff �1

4. As 3 with �1 large Empty 0 < � < �1, infinite
number of resonances

5. No bay zone or bay Empty 0 < � < �1
conformally equivalent no resonances
to channel

21.7.3.4 Summary

In this section, TWs were studied in a semi-infinite gulf with a bay zone and a
channel region with a bathymetric profile (21.90), which either had an exponentially
varying topography of the bay and a flat channel bed or vice versa or a combination
of the two. Analytical solutions of the TW-equation to the combined case were
constructed and specialized for the different cases.

For an exponential shelf at the gulf end, but otherwise a flat (c D 0) channel,
TWs cannot radiate away from the bay nor propagate into the channel: waves are
trapped. The given exponential bathymetry sustains a countable infinite set of bay
modes, which have exponentially evanescent ‘tails’ as one move away from the
bay. The spectrum of the eigenfrequencies is discrete. These solutions corroborate
findings obtained in earlier sections of this chapter.

When c 6D 0, i.e. when besides the bay shelf also the channel possesses a shelf at
one (or both of its) sides, the number of bay modes is finite and of the order b`=c,
thus reflecting an interplay of the bathymetry .b; c/ with the geometry (`) of the
domain. Channels with such transverse bathymetry give rise to a compound spec-
trum, consisting of a continuous and a discrete, possibly empty, part. The former
contains an infinite set of resonances, each of which can be attributed to a corre-
sponding point in the discrete spectrum of the flat channel, so that resonances can
be interpreted as leaky bay modes. Table 21.11 summarizes these findings.

Stocker and Johnson have also studied the trapping and scattering of topographic
waves at estuaries and headlands [31].

21.8 Concluding Discussion

In this chapter the question, how the controversial interpretations of long period
wave signals observed in Lake of Lugano should or could be interpreted, found
an answer based on the physics of TW-reflection. This explanation was given
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by constructing TW-modes in rectangular basins with an approximate numerical
technique that is based on the MWR and employs an expansion of the mass transport
stream function in terms of sets of shape functions which are symmetric and skew-
symmetric with respect to the long basin axis. The constructed solutions are not
exact but approximate, and convergence of the numerical solutions to the unknown
exact solution was surmised and observed, but not mathematically proved. This is a
disadvantage and may be taken up by mathematicians as a challenge.

The solution process, however, demonstrated properties of the TW-equation,
which are physically convincing. TW-modes were found as follows:

� In rectangular lakes basin-filling eigenstates were found with gyres having char-
acteristic diameters, which are comparable in size to the basin dimension or
somewhat smaller. These are the so-called Ball-modes.

� Basin-filling modes also exist with gyres of small characteristic diameters,
smaller than the rectangle’s semi-breadth and rather regularly arranged along the
long sides of the basin. These are the so-called channel-modes.

� Provided the bathymetry exhibits smooth variation – i.e. there are no vertical end
walls – bay-modes do also exist; these are solutions which show appreciable wave
activity close to the long ends of the rectangle, and the wave signals evanesce as
one moves away from the lake end towards the opposite long end.

It was suspected that the bay modes would be the manifestation of bound states in
a semi-infinite gulf and that the bay mode in a rectangle would simply not ‘see’ the
other far end of the long rectangular lake. This was corroborated by the construction
of such bay modes in a semi-infinite gulf. These solutions needed to be composed of
waves, reflected at the gulf end, which all are exponentially evanescent as one moves
infinitely far away from the gulf end. Solutions with this property were constructed
in the sense that they are eigenstates of the formulated eigenvalue problem using the
MWR technique.

A crucial element in the physical understanding of the above classification of
the different modes of TWs is the form of the dispersion relation, which became
physically transparent, because of the application of the MWR. The mode units
in Figs. 21.4 and 21.5 show two versions of the dispersion relation of the MWR-
approximated first and second order model, not the exact dispersion relation of
the TW-equation. These approximate dispersion relations with their increasing
complexities with growing order of approximation are the ultimate cause for the
existence of the Ball-, channel- and bay-modes as well as the bound states in a
semi-infinite gulf.

� The double valuedness of the real branch of the dispersion relation in form of
Fig. 20.12 led to an interpretation of Ball- and channel-modes. Ball-modes have
phase and energy propagating into the same direction, whilst channel-modes have
phase and energy move in opposite directions. This immediately follows from the
real branch of the first order dispersion graph Fig. 21.4.

� The complex domain of the dispersion relation generates wave modes which are
exponential, either growing or evanescing in the space coordinate. Solutions in
domains where for fixed (real) � some wave numbers are real and others are
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complex, their superposition can explain how wave activity may be restricted to
certain preferred regions, either primarily on one side of the rectangle and less on
the other, or with comparable energy on either side of the rectangle, depending
on bathymetry. Or their combination is such that bay modes are formed.

The construction of such solutions closely resembles the superposition of Kelvin
and Poincaré waves in gravity wave modes in rectangles or a semi-infinite gulf as
described by Taylor in his seminal paper of 1920 [34]. The exact bathymetry is
very crucial for the generation of the mode types, which may exist in a lake. It was
proved that h�1jgradhj, where h is the water depth, needs to remain bounded in
order that a double-valued real branch of the �.k/-relation emerges. Thus, TWs
in artificial reservoirs with vertical steps in the bathymetry are not fully covered
by this theory. The assumption, however, that h�1jgradhj remains bounded, is an
acceptable assumption for natural basins.

The MWR-based approximate solution technique, based on orthogonal curvi-
linear coordinates has also explained how the three different solution types in
rectangular basins change if these rectangles are ‘bent’ into wedges of annuli. The
graphs of dispersion curves are now dependent on the curvature of the lake axis.
Waves traveling clockwise or counter clockwise around the inner or outer shore fol-
low dispersion curves, which are now different from one another, see Fig. 21.25.
Quantitatively, the three mode types are preserved, but curved basins can exhibit
solutions which do not exist in straight rectangular basins. The very narrow fre-
quency band where these solutions exist, however, makes it not likely that they can
be observed.

The above summary pertains to TWs in their formulation as linear waves emerg-
ing from the shallow water equations. The analysis suggests that when h�1jrhj or
the wavenumber k is large or when the mode number is high, the stream function is
either shore trapped or may oscillate rather violently in space: In other words, typical
wavelengths are rather small, while associated periods remain large. These are cir-
cumstances at which nonlinear terms become significant. The nonlinear barotropic
TW-equation can in this case be derived from the conservation law of potential
vorticity and its analysis would be interesting.

The above study has essentially ignored discussion of all difficulties that were
encountered when determining TW-modes. The corresponding eigenvalue problem
often has eigenfrequencies, which are clustered close to one another so that their
separation requires very accurate root finders, since otherwise some solutions may
be lost. Moreover, when h�1jrhj takes locally large values, the ordinary differential
equation becomes stiff which also requires accurate ordinary differential integrators.
This eigenvalue clustering is even more critical when the full linearized equation is
studied, including gravity and topographic mode-frequencies. In such situations, the
corresponding stream functions can hardly be separated.

Other imperfections of the MWR solution approach are as follows:

� The expansion into pairs of symmetric and skew-symmetric functions has only
been pursued to N D 3 pairs and has not been further explored to search for
convergence properties of the numerical method. This should be done before
examples are computed for more complex lake geometries and lake bathymetries.
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� Only then the MWR should be applied to real lakes e.g. Lake of Lugano or Lake
Zürich or other lakes for which data are available.

� In the three chapters dealing with TWs, no study was conducted in which the role
played by the wind on the generation of TWs was looked at. Measured typical
wind events show periods in Lakes Zürich and Lugano of approximately 24 and
80–110 h. It is still unknown how much these signals are transferred to the water
motion as direct wind forcing and as whole basin topographic wave response.
Such an analysis, e.g. would shed light on the three bay modes seen in Lake
Lugano, which in the computations by Trösch [35] were attributed to three dif-
ferent modes and in the interpretation of Mysak et al. [18] as one single whole
basin mode.

� To answer such questions requires field campaigns with much higher resolution
of data, i.e. many more deployed thermistor chains and current meters than are
generally affordable in field campaigns.

21.9 Appendix

Consider the integral expression (21.8)
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In the evaluation of the individual terms in this expression the Leibniz’ rule of
integration will be used at appropriate places:
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where F and G are arbitrary, differentiable functions of s and n.
With these preliminaries the terms (1)–(4) can be evaluated. The rule of transfor-

mation is to remove differentiations of the topography h as far as possible, which
can be achieved by integration by parts:
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We may remark that the process of this evaluation is more complex when the basis
functions are not restricted by the condition that they vanish along the shore, because
further integration by parts is necessary in that case. Equation (21.7) thus takes the
form
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and the integrals are understood as
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in which the matrix elements are given as stated in (21.11).
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Chapter 22
A Class of Chrystal-Type Equations

22.1 Motivation

This chapter is concerned with the derivation of an approximate system of equations
for slender fluid bodies using free-surface hydrodynamics on the rotating Earth.
Early methods of computing free oscillations or wind-forced responses of oblong
lakes or ocean basins assume exclusively uniaxial motion of the water in the long
direction of the lake. Consistent derivation of the governing equations from the bal-
ances of mass and momentum requires that the rotation of the Earth is ignored.
These traditional methods of calculating free oscillations are the channel approxi-
mations, of which the classical example is the set of Chrystal equations [4, 5] for
barotropic motions. In the linear approximation the corresponding two-layer chan-
nel equations can also be derived. They yield the V1Hm modes1 of a 2-layered fluid
with free surface, subject to the neglect of the effects of the rotation of the Earth.

In situations when the rotation of the Earth cannot be ignored, we have seen in
Chap. 14,2 that imposition of Kelvin wave dynamics on the channel solution may be
employed to approximately construct the positively (counterclockwise on the N.H.)
rotating modes appearing in such basins (see [8]). However, the solution depends
on the chosen location of the lake axis, which a priori is not unique. One may be
tempted to select this axis as the projection into the horizontal plane of the thal-
weg, but this selection is based on geometric reasoning, whereas Kelvin waves are
governed by rotational dynamics. Therefore, the corrections of the channel solutions
depend on an a posteriori patching of the lake axis, such that the amphidromic struc-
ture fits elevation data of the free surface at the shore stations best. This is obviously
unsatisfactory. Moreover, Rao and Schwab [30] note: ‘Even though the imposition
of Kelvin wave dynamics on the channel solution gives very satisfactory results for
the lowest mode, its validity for the higher modes breaks down both qualitatively

1 By ‘V1Hm’ a baroclinic seiche mode is characterized which is of vertical mode 1 and horizontal
mode m. For elongated basins Hm is sometimes replaced by Lm.
2 Compare Figs. 14.1 and 14.2, panels (a), (b) and the different distributions of the co-tidal lines
around the amphidromic points in the L1 and L2 modes, in Fig. 14.1 constructed by Kelvin wave
dynamics, in Fig. 14.2 by the two-dimensional finite difference method of the tidal equations.

K. Hutter et al., Physics of Lakes, Volume 2: Lakes as Oscillators, Advances in
Geophysical and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-19112-1_22, c� Springer-Verlag Berlin Heidelberg 2011
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and quantitatively. The Kelvin-wave hypothesis leads to amphidromic systems all of
which rotate in the counterclockwise direction on the Northern Hemisphere’ [30].
Yet, there is ample demonstration in Lake Michigan and Lake Superior, reported by
Mortimer and Fee [20] and for internal waves in Lake Überlingen by Bäuerle (see
[1] or Chap. 14 Sect. 14.4), in Lake Biwa by Shimizu et al. [32] and others that in
these basins both positively and negatively propagating amphidromic systems are
possible.

‘It is clear then that a satisfactory treatment of seiches [and other dynamical
processes] in an arbitrary basin requires an attack on the two-dimensional (and
when including viscosity effects, three-dimensional) problem. Such models [. . . ] are
based on particular forms of the tidal operator; the discretization makes explicit use
of the two dimensionality of the region of solution for which the classical channel
equations break down, because the basins are not elongated’ [26], or the channels
may be strongly curved that the assumption of a straight channel axis may break
down and the Chrystal equations themselves may have to be replaced by an equation
set that is based on curvilinear coordinates.

‘We develop an extended channel model for curved, elongated rotating basins,
which not only accounts for the curvature of the axis, but also simulates the char-
acteristic behaviour of waves in rotating basins without excessive computational
efforts. The aim is thereby twofold. Firstly, a systematic, rational procedure is
sought, by which a series of channel models is obtained. For free oscillations the
emerging channel theory should improve on the classical Chrystal equation, allow-
ing for positive and negative amphidromic systems. Secondly, the extended models
are regarded as approximations, by which the spatially two- or three-dimensional
equations of fluid motion are replaced by a one-dimensional set of equations to
predict the fluid motion with reasonable accuracy. Here, the minimum effort is
sought that suffices to predict the motion of the original problem with reasonable
accuracy’ [26].

In what follows, we shall present in a first part the approach by which the
extended class of Chrystal models is derived from the general three-dimensional for-
mulation of hydrodynamics. These equations are formulated relative to a curvilinear
coordinate system, which has as principal coordinate an axis of the channel-like
lake, which allows development of such a channel model but reduces the ‘element
of subjectivity’ in prescribing the channel axis. This major axis is complemented by
two axes forming an orthogonal system. The channel model will be derived by the
method of weighted residuals (MWR) in a similar way as this was done for topo-
graphic Rossby waves in Chaps. 19–21. Accordingly, each field variable (velocities,
surface elevation and interface elevation for the 2-layer equations) will be expanded
in a set of functions of the cross-sectional coordinates and unknown fields, which
will only depend on time and the longitudinal spatial coordinate along the lake axis.
By truncating this sum of products at a certain number of terms, a hierarchy of
models is established; it is assumed and must be corroborated that increasing the
number of terms will also increase the accuracy of the solution generated by the
hierarchy of the models. We shall demonstrate the construction of these models for
the linear baroclinic field equations. The simplest solutions for a lake with a straight
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major axis will generate the classical Chrystal equations, but already spatially one-
dimensional equations for curved basins need correction as do effects of the rotation
of the Earth.

In a second part of this chapter, ‘a first-order channel model for fluid motion
in long homogeneous lakes, as derived in detail in the first part will be presented.
This model describes the motion with the aid of spatially one-dimensional bound-
ary value problems and is deduced by truncating the hierarchy of equations to
the lowest and first-order terms only. Various wave solutions of the governing
equations applied to rectangular basins are presented. It is shown that for moder-
ate rotation speeds of the Earth and for elongated basins of a homogeneous fluid
the main features of gravitational oscillations are predicted by the model. Kelvin-
and Poicaré-type waves are shown to exist. Moreover, conditions of complete and
incomplete reflections of Kelvin waves and free oscillations are discussed. The
results corroborate the suitability of the model as far as wave motion in rectan-
gular basins is concerned, but equally elucidate the physics behind them, which is
less transparent when attacked with the full theory’ [27].

In the last part of this chapter, we shall illustrate the computational procedure by
applying it to a real lake with an arbitrary number of shape functions.

22.2 Traditional Chrystal-Type Equations

22.2.1 Homogeneous Lakes

Consider a long lake for which a straight lake axis can reasonably be defined. Sup-
pose homogeneous, i.e. barotropic conditions and assume small displacements of
the free surface and small velocities, so that non-linear terms can be ignored.

Let S.x/ and B.x/ be the cross section and the width of the lake at the free
surface, measured perpendicular to the lake axis; x is the coordinate measured along
the lake axis which is not curved. Let, moreover, u.x; t/ be the ‘barotropic’ velocity
in the x-direction and uniform over the cross section. Let �.x; t/ be the free surface
displacement, equally independent of the transverse coordinate across the lake.

If two parallel cross sections are a distance dx apart, then the volume flow of
water through the two cross sections and into the small volume between the two
cross sections at time t is given by

.Su/.x; t/ � .Su/.x C dx; t/: (22.1)

If the water is density preserving (which we assume), expression (22.1) must
balance the increase of volume between the two cross-sections,

B.x/
@�

@t
dx: (22.2)
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Equating the above two relations, using Taylor series expansion in the second term
of (22.1) and taking the limit of the resulting equation as dx ! 0, then yields

B.x/
@�.x; t/

@t
C @

@x
..Su/.x; t// D 0; (22.3)

which (modulo a factor �) is the mass balance equation.
The balance equation of linear momentum can be treated in an analogous fash-

ion. The momentum in the x-direction between the two cross sections is given by
�Sudx. So,

@.Su/

@t
dx (22.4)

is the increase of momentum per unit time and unit mass within the volume bound
by the two cross-sections. The fluxes of momentum through the cross sections at x
and x C dx are given by

.�Su2/.x; t/; .�Su2/.x C dx; t/:

These advective terms will be ignored here, because they are quadratic in u, but
could be accounted for if so desired. So, the time rate of change of momentum per
unit mass is approximately given by (22.4). According to Newton’s Second Law it
must be balanced by the forces acting on the cross-sectional increment. If friction
is ignored, the contributions to the horizontal forces are the hydrostatic pressures
exerted on the cross-sectional areas and the mantle surface formed by the topogra-
phy, see Fig. 22.1a, which shows a lake element between x and xCdx. The pressure
is zero at the free surface and grows linearly with depth. On the cross-section at x
the cross-sectional contribution of the pressure force acts in the positive x-direction;
on the cross-section at x C dx it acts in the negative x-direction; on the mantle
surface, it is perpendicular to this surface, but its components in the x-direction

S(x)

S(x+dx)

dMx

x y
y

z z

ba
(x+dx,t)

(x,t)

Fig. 22.1 Explaining the derivation of (22.5). (a) Lake increment cut at x with cross section
S.x; t/, free surface elevation �.x; t/ and at x C dx with cross-section S.x C dx; t/ and free sur-
face elevation �.xCdx; t/ and mantle surface increment dM.xCdx; t/. (b) S.x; t/; S.xCdx; t/
and projection dMx of mantle surface dM onto the .y; z/-plane at x C dx
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are in each point reduced by the projection of the mantle-surface increment onto
the cross-sectional area at x C dx, perpendicular to x. The combined effect in the
x-direction of the pressures on the cross-section at x and the mantle surface between
x and x C dx is as if the cross section at x were the projected area onto the cross-
section at x C dx of S.x; t/ plus that of the mantle surface dMx (the projection
of dM ), see Fig. 22.1. Subtracting this contribution from the total pressure force at
xC dx and employing Taylor series expansion yields the resultant pressure force in
the x-direction

� gS.x/@�.x; t/
@x

dx; (22.5)

where g is the gravity constant and a constant factor � has been dropped as in (22.3)
already. The minus sign expresses the fact that the resulting pressure points for
positive @�=@x into the negative x-direction.

Equating (22.4) and (22.5) and dropping in the emerging relation the common
factor S.x/ yields

@u

@t
C g

@�

@x
D 0: (22.6)

Equations (22.3) and (22.6) together form the so-called Chrystal equations for a
homogeneous elongated straight lake. The unknowns are the vertical surface dis-
placement �.x; t/ and the cross-sectional averaged longitudinal barotropic velocity
u.x; t/. Boundary conditions for which (22.3) and (22.6) must be solved, require the
longitudinal velocity to vanish at the long ends of the lake, so that

u.0; t/ D 0 and u.L; t/ D 0; (22.7)

where the two lake ends are at x D 0 and x D L. Equations (22.3), (22.6) and
(22.7) form the free eigenvalue problem for u and �.

For later use, let us write (22.3) and (22.6) also as the following alternative
system:

B.x/
@�

@t
C @

@x
.Su/ D 0;

(22.8)
@

@t
.Su/ D �gS @�

@x
D 0;

in which Su D M is the total momentum over the cross-section.
It is often regarded as advantageous to eliminate � between (22.3) and (22.6).

This process leads to the single second order differential equation

@2u

@t2
D g

@

@x

�
1

B

@

@x
.Su/

�
: (22.9)

This is the famous Chrystal equation, dating back to 1904–1905 [4,5]. The equation
can be put into standard form by the transformations
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Qu D Su; Qx D
Z x

0

B.�/d� (22.10)

to yield
@2 Qu
@t2

D g�
@2 Qu
@ Qx2 ; �.x/ D B.x/S.x/; (22.11)

subject to the boundary conditions

Qu.0; t/ D Qu. QL; t/ D 0; QL D
Z L

0

B.�/d�: (22.12)

Equations (22.11) and (22.12) form the standard eigenvalue problem for a standing
wave in a long non-rotating lake with straight lake axis. Tacitly, it is also assumed
that the transverse variations of � and u can be ignored.

This simple channel model has been prepared for computations by hand by
Defant as early as 1918 [7], see also [9]. The calculation of periods and struc-
tures of surface seiches in basins of irregular shapes has produced results (e.g.
see Marcelli [19], Caloi [3], Servais [31] and others), which agree with observa-
tions surprisingly well in view of its relative simplicity. For barotropic processes the
rotation-free Chrystal equations are certainly an acceptable approximation in small
elongated lakes, but for medium size to large lakes (Great Lakes, ocean basins and
large fjords) the account of the rotation of the Earth should not be ignored. As exten-
sion of the works of Defant [8] and Rao and Schwab [30] an improved procedure
beyond Kelvin wave dynamics is warrantable.

22.2.2 Two-Layer Channel Model

Let us again consider a long lake for which a straight lake axis can be defined, and
assume two-layered conditions with an epilimnion of constant density �1 and con-
stant thickness H1 and a hypolimnion with constant density �2 > �1 and variable
thickness H2.x; y/. Their interface between the two layers is identified with the
thermocline. The width of the still free surface will be denoted byB1.x/, and that at
the still thermocline, B2.x/, is generally different from B1.x/. The cross-sectional
area of the epilimnion at rest is bounded by the free surface, the still thermocline
and the segments of the (straight) lines at the lake boundary connecting the two;
it will be denoted by S1.x/. Similarly, the cross-sectional area of the hypolimnion
is bounded by the still thermocline separating the epi- and hypolimnion and the
bottom surface and will be denoted by S2.x/. Other cross-sectional quantities of
the geometry can also be defined and will be introduced at need. They are known
functions of the coordinate x. When the lake is in motion, e.g. in a seiche, the free
surface and the thermocline will move and the actual values for the widths and the
cross-sectional areas will, consequently, also alter but the changes in B1, B2 and S1,
S2 due to this motion will be ignored.
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Consider next two parallel cross sections which are a distance dx apart from one
another. Assume that the longitudinal velocities within the epi- and hypolimnion are
only functions of the longitudinal coordinate, u1;2 D u1;2.x/. Similarly, the verti-
cal displacements of the free surface, �1, and the thermocline, �2 are equally only
assumed to be functions of x and time t , �1;2 D �1;2.x; t/; they are small in com-
parison to the equilibrium thickness, k�1k 
 H1, k�2k 
 H1. It is obvious, the
latter assumption is somewhat critical and likely not satisfied during and immedi-
ately after storms. The assumption is, however, needed if linear equations are to be
derived.

If changes of cross-sectional areas due to �1;2 are ignored, then the volume bal-
ance (mass balance divided by a constant density) for the volume in the epilimnion
between the neighbouring cross-sections is given by

ŒS1.x/u1.x; t/ � S1.x C dx; t/u1.x C dx; t/� D B1.x/
@�1

@t
dx � B2.x/@�2

@t
dx:

(22.13)
Using Taylor series expansion in the second term on the left-hand side of (22.13)
and thereby dropping higher order terms of dx transforms the above equation in the
limit as dx ! 0 into

B1.x/
@�1

@t
� B2.x/

@�2

@t
C @

@x
.S1.x/u1/ D 0: (22.14)

This is the mass balance equation for the epilimnion layer. An analogous computa-
tion for the bottom layer gives

B2.x/
@�2

@t
C @

@x
.S2.x/u2/ D 0: (22.15)

To derive the x-component of the momentum balance, note that the time rates of
change and the flux contribution of the x-momentum in a slice of the lake between
x and x C dx are given by

�
@

@t
..�1S1u1/ .x; t//C @

@x

��
�1S1u21

�
.x; t/

��
dx; in the epilimnion;

(22.16)�
@

@t
..�2S2u2/ .x; t//C @

@x

��
�2S1u22

�
.x; t/

��
dx; in the hypolimnion:

Henceforth, the non-linear convective terms will be ignored. When also neglect-
ing the forces due to viscous effects, the only force contributions are due to the
hydrostatic pressure

p.z/ D
(
�1g.z C �1/; ��1 � z � H1 � �2;
�1g.H1 C �1 � �2/C �2g.Nz C �2/; ��2 � Oz � H2.x; y/:

(22.17)
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Following the arguments offered for the barotropic case (see Fig. 22.1) and the
derivation of (22.5) for the pressure force on an epilimnion lake slice of length dx,
the x-component of the pressure force is obtained as

�
�
�1gS1.x/

@�.x; t/

@x

�
dx: (22.18)

Similarly, for the pressure force on a lake element of the hypolimnion, one gets

�
�
�1gS2.x/

@�1.x; t/

@x
C .�2 � �1/gS2.x/@�2.x; t/

@x

�
dx: (22.19)

Therefore, the linearized x-momentum equations read:

� In the epilimnion,

@

@t
..S1u1/ .x; t// D �gS1.x/ @

@x
.�1.x; t// ; (22.20)

� In the hypolimnion,

@

@t
..S2u2/ .x; t// D �

�
�1

�2
gS2.x/

@

@x
.�1.x; t//

C �2 � �1
�2/

gS2.x/
@

@x
.�2.x; t//

�
: (22.21)

Equations (22.14), (22.15), (22.20) and (22.21) together form a two-layered channel
model for elongated basins stratified in two layers. They can also be written as

B1.x/
@�1

@t
� B2.x/@�2

@t
C @M1

@x
D 0;

B2.x/
@�2

@t
C @M2

@x
D 0;

(22.22)
@M1

@t
D �gS1.x/@�1

@x
;

@M2

@t
D �.1 � "/gS2.x/@�1

@x
C g"S2.x/

@�2

@x
;

with
M1 WD S1u1; M2 WD S2u2; " WD �2 � �1

�2
: (22.23)

Recall that Charney [2] constructed a formal one-layer analogue to the two-
dimensional tidal equations representing pure barotropic and pure baroclinic
responses of the two-layer system with constant depth, see Chap. 11 , Sect. 11.4.
The analogous one-layer model is (22.8) or
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B˛
@�˛

@t
C @M˛

@x
D 0;

(22.24)
@M˛

@t
D �gS˛ @�˛

@x
;

with
M˛ D M1 C �˛M2; B˛�˛ D B1�1 C B2.�˛ � 1/�2: (22.25)

and yet unknownB˛ and S˛. Using (22.25) in (22.24) yields the following chain of
identities:

@M˛

@t
D �g

�
S1
@�1

@x
C .1 � "/�˛S2 @�1

@x
� "�˛S2

@�2

@x

�

D �g
�
.S1 C .1 � "/�˛S2/

@�1

@x
� "�˛S2 @�2

@x

�

�D �g @
@x

f.S1 C .1 � "/�˛S2/ �1 � �˛"S2�2g
ŠD �gS˛ @�˛

@x

D �g
�
S˛

B˛
B1
@�1

@x
C B2

S˛

B˛
.�˛ � 1/@�2

@x

�
: (22.26)

It is at the step
�D where the cross-sectional areas must be constant. Moreover, at

ŠD
a formal one-layer model is requested. Comparing the expressions in lines 3 and 5
of (22.26) yields

S1 C .1 � "/�˛S2 D S˛

B˛
B1;

(22.27)
��˛"S2 D B2

S˛

B˛
.�˛ � 1/;

in which S˛=B˛ and �˛ are still unknown. Eliminating S˛=B˛ between (22.27)1
and (22.27)2 leads to the following quadratic equation:

�2˛ C S1 � .1 � "/S2 C "S2.B1=B2/

.1 � "/S2
�˛ � S1

S2

1

1 � "
D 0: (22.28)

Since 0 < " 
 1 is small of O.10�3/ we solve it for " ! 0 and then obtain

�2˛ C
�
S1

S2
� 1

	
�˛ � S1

S2
D 0: (22.29)

It has the solutions

�ext
.o/ D 1; � int

.o/ D �S1
S2
; (22.30)
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where the index .�/.o/ indicates the zeroth order approximation. With this approxi-
mation the modes take the following forms:

� Barotropic mode

�ext D 1;

Mext D M1 CM2 D S1u1 C S2u2;

Bext�ext D B1�1 ! Bext D B1 H) �ext D �1; (22.31)

�2 is not determined, see, however (22.34) below;

Sext D S1 C S2 DW S;

all with O."/-errors.
� Baroclinic mode

�int D �S1
S2
;

Mint D M1 � S1

S2
M2 D S1u1 � S1u2 D S1.u1 � u2/;

Bint�int D B1�1 � B2
S1 C S2

S2
�2; (22.32)

! Bint
ŠD B1 H) �int D �1 � S1 C S2

S2

B2

B1
�2;

Sint D B2

B1

S1S2

S1 C S2
"
�
D S int

equiv

�
;

again all with O."/-errors.

These relations are all analogous to corresponding relations for the equivalent
depth models in the tidal theory (see Chap. 11, (11.95)–(11.104)). The analogy with
these is, however, only complete in the sense that S1;2 here correspond to H1;2
there, if B1 D B2. If B1 ¤ B2, then, apart from S1=S2 also B1=B2 will influ-
ence the results. This is generally the restriction that is tacitly assumed in realistic
calculations.

Inverting (22.31) and (22.32) yields

M1 D S1

S1 C S2

�
Mext C S2

S1
Mint

	
C O."/;

M2 D S2

S1 C S2
.Mext �Mint/C O."/;

(22.33)
�1 D �ext C O."/;
�2 D �B1

B2

S2

S1 C S2
.�int � �ext/C O."/:
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Suppose now that Mint D 0, �int D 0 (no baroclinic motion). Then (22.33) implies

M1

S1
D u1 D Mext

S1 C S2
D M2

S2
D u2;

(22.34)
�1 D �ext; �2 D B1

B2

S2

S1 C S2
�ext:

These formulae imply that the velocities are the same, u1 D u2; moreover,

�2

�1
D B1

B2

S2

S1 C S2
; (22.35)

which means that the interface displacement is smaller than the free surface dis-
placement by the factor (22.35). All this is analogous to the results also obtained in
Chap. 11.

If we take instead Mext D 0; �ext D 0 (no barotropic motion) then (22.32)
together with (22.25) and (22.27) implies

M1 D S2

S1 C S2
Mint D �M2;

(22.36)
�1 D ŒO."�int/�; �2 D �B1

B2

S2

S1 C S2
�int:

Here, the longitudinal momentum fluxes in the two layers are equally large but are
in opposite directions, and the free surface displacement is O."�int/, which is a very
small fraction of the interface displacement.

Equation (22.22) describe the dynamics of the full two-dimensional channel
model and correspond to the Chrystal equations treated earlier in this chapter.
Effects of the rotation of the Earth are ignored; the equations can, therefore, only
represent a physically adequate model for narrow elongated lakes of which the width
is generally smaller than the internal Rossby radius of deformation. We are not
aware that this model has been applied by limnologists in practice. However, the
equivalent-depth variant, characterized by (22.32), has been applied by Lemmin and
Mortimer [17] in a simplified form in whichB1 D B2 D B and S1;2 are replaced by
suitably chosen depths H1;2 essentially corresponding to S1;2=B DW H LM

1;2 , where
LM stands for Lemmin-Mortimer. With this choice

S1

S2
D H1

H2
and

S1;2

S1 C S2
D H LM

1;2

H LM
1 CH LM

2

:

Lemmin and Mortimer essentially solve (22.24) for the internal waves

B1
@�int

@t
C @Mint

@x
D 0;

(22.37)
@Mint

@t
D �g

�
S

equiv
int

� �int

@x
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for harmonic excitations

Mint D M
.o/
int exp .i! t/ �int D �

.o/
int exp .i! t/

and subject to the no-flux conditions at x D 0 and x D L. This transforms (22.37)
to the following eigenvalue problem

d2M .o/
int

dx2
C
 
B1!

2

S
equiv
int

!

M
.o/
int D 0; 0 � x � L

(22.38)
M
.o/
int D 0; at x D 0; x D L:

22.2.2.1 Application

The likely earliest applications of interval oscillations in lakes are Wedderburn’s
studies of temperature to Loch Earn and Loch Ness [36–38]. The two layer equiv-
alent depth model for elongated lakes in the channel approximation and when the
effects of the rotation of the Earth can be ignored were applied to eight different
basins by Lemmin and Mortimer [17]: Lake Geneva, Loch Ness, Lake Zurich, Lake
of Lugano, Lake Zug, Windermere (north and south basins) and Lake Baldegg. Lem-
min and Mortimer [17] used Defant’s [7,9] one-dimensional procedure designed for
computations by hand of barotropic seiches by replacing the water depth by the
equivalent depth

Heq D �2 � �1

�2

H1H2

H1 CH2
:

It is well known and has first been demonstrated by Charney [2] that equivalent
depth models are strictly only correct for basins of constant depth.3 Moreover,
Lemmin and Mortimer defined their lake axis as the thalweg of the lake bathymetry,
which are generally curved, but used equations which Defant4 derived for straight
lake axes; however, the authors state that comparisons between channel solutions
using the straight axis-approximation and solutions of the two-dimensional shallow
water equations suggest that the errors in applying the ‘two-layer Defant procedure’
(TDP) to real channels and basins of variable cross section are not large’.

In all their eight examples Lemmin and Mortimer base their computations on the
replacement of the realistic measured stratification (obtained from the temperature
profiles) by judiciously selecting two layers with constant densities. The interface
is selected by them at the depth of maximum density gradient. This determines
H1 and the length L of the interfacial thalweg at rest. At the ends of the thalweg,
impermeable barriers are erected, ignoring the dynamics of the water masses beyond

3 See Sect. 11.4.3. In the above computation the analogous result was demonstrated, requiring here
constant cross-sections.
4 For a biographical sketch see Fig. 22.2.
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these end cross sections. The choice of H1 influences the possible choices of H2
(and the layer temperatures �1 and �2). Lemmin and Mortimer state that the best of
their choices was to choose as H2 the mean depth of the sub-basin bounded by the
interface and the bottom.

Only for Lake Zurich detailed results of mode periods and isotherm-depth-time
series at several stations, distributed over the entire lake were available in 1985,
which allowed a detailed comparison of the computational results with measured
data. We, therefore, restrict the presentation of this comparison to Lake Zurich
and refer the reader for all other examples to [17]. Observations of isotherm dis-
placements and currents (and corresponding spectra) were made during an intensive
measuring campaign in August–September 1978 with 31 instruments moored at var-
ious stations and depths [10,13]. ‘Also available for comparison are the results from
a more elaborate two-layered model [11] based on a two-dimensional grid fitted to
the basin topography’ [11], using a TVD model. The two-layered Defant procedure
(TDP) was applied based on H1 D 12m and �1 D 18ıC and �2 D 6ıC, and the
26 stations of Fig. 22.3 have been constructed in conformity with the bathymetry
parameterization used in [11].

The structures predicted by the two methods are compared, for the first three
modes in Fig. 22.4 and the observed and predicted periods are as shown in
Table 22.1.

‘The TDP periods are about 10% less than the Schwab model periods which are
in good agreement with those observed [. . . ]. The first three modes (44, 25, and
17 h) could be clearly identified, with the first dominant. Signals from higher modes
did not clearly emerge. However, the two-layer parameters in the above comparison
were fitted to the mean temperature profile for the whole of August and September
[13]. At the time when internal seiching was most evident (during September), a
more realistic two-layer fit corresponds to the �1; �2 values 16ıC, 6ıC, and H1 D
15m. With those values, TDP yielded somewhat longer periods [. . . ] which come
closer to the observed periods [. . . ].

For the Lake Zurich first and second mode structures (Fig. 22.4), the two mod-
els predict (TDP, dots; Schwab, lines) very similar interface elevation distributions
and nodal positions; agreement is less close for the third mode. The TDP-predicted
maximum current speeds (dots in Fig. 22.4b) for the first and second modes are
distinctly less than those predicted by Schwab’s model: The TDP estimates are aver-
ages for each cross-section, while the Schwab model’s values are calculated for grid
points near the thalweg where speeds are above the section average. The apparent
closer agreement between dots and lines for the third mode is spurious because, as
Fig. 22.4 shows, the Defant procedure over-predicts interface displacement in that
case. It will also be noted that, whereas the TDP estimates of current speed fall to
zero at the two designated end sections, 2 and 26, the Schwab-predicted values do
not. This is because the Schwab model does not truncate the basin at those two end
sections.

The vertical lines surmounted by circles in Fig. 22.4 are relative, approximate
estimates of the ‘observed’ along-thalweg interface elevations and relative current
speeds at the moorings indicated by numbers. Those estimates were derived from
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Fig. 22.2 Albert Joseph Maria Defant (1884–1974), an Austrian meteorologist and oceanographer (photo from

Koertge, ed). New Dictionary of Scientific Biography. c� 2008 Gale, a part of Cengage Learning, Inc. Reproduced with

permission) and front cover of his book ‘Physical Oceanography’ (1961).

Born in Trento on 12 July 1884, Albert Joseph Maria Defant was educated in Innsbruck, Austria where he studied math-

ematics, physics, meteorology and geophysics and received from its university the Ph. Degree with distinction with a

dissertation on the ‘Distribution of the droplet size in rain’. His first regular job early 1907 was Assistant at the ‘Direc-

torate for Meteorology and Geodynamics’ in Vienna, of which he took on the head position in 1909. In the same year he

had also passed his Habilitation degree. His collaboration with Prof. J. Hahn brought him also the co-editorship of the

‘Meteorologische Zeitschrift’ at this young age of 25 years.

Defant’s rich research activities centred both around observation and theory in many fields such as solar radiation, dynamic

meteorology, physics of the atmosphere and air-electricity. His fundamental contributions on atmospheric circulation and

exchange processes of heat and his practical experience with synoptic weather observations led to several books and expos-

itory articles on weather and weather forecast, 1918, revised 1926, ‘Atmosphärenkunde’, 1923, and ‘Statik und Dynamik

der Atmosphäre’, 1928, in the Encyclopedia of Earth Science and the Handbook of Experimental Physics, respectively.

Between 1919 and 1926 Defant was Professor of Cosmic Physics at the University of Innsbruck. In his courses on

all aspects of geophysics he also lectured on oceanography. Already earlier, he had been concerned with lake surface

oscillations and ocean tides. This work, for that time rather mathematical, brought him an invitation of participation in

oceanographic expeditions in the North Sea and Germany’s Atlantic Expedition with the research vessel ‘Meteor’, 1925–

1927, whose leadership he took over in fall 1925 after the sudden death of Professor A. Merz. He also led the whole

exploitation of the data material of that expedition. 1927 Defant accepted an invitation as Professor of Oceanography at

the University Berlin and Director of the Museum of Marine Sciences in Berlin. He was holding these positions also during

World War II.

Defant’s numerous articles on theoretical oceanography are very broad in scope and perspectives and cover the thermo-

haline structure of the ocean and its variation, ocean circulation and turbulence and meromixis. In 1929 the ‘Dynamische

Ozeanographie’ appeared and in 1931 ‘Die Physik des Meeres’ was published in the ‘Handbuch der Experimentalphysik’.

From this the 2-volume treatise ’Physical Oceanography’ sprang, which he largely wrote from his lectures in 1943 to

meteorologists of the German Army. In November 1945, Defant returned as Professor of Meteorology and Geophysics to

Innsbruck, where he formally retired in 1955. He held visiting positions at the Scripps Institution of Oceanography in La

Jolla, USA, 1949–1950, and was Visiting Professor at the University of Hamburg 1951/1952 and 1955/1956 each during

the winter months.

Albert Defant was Dr. honoris causa of the Free University Berlin and member of Academies of Sciences of Vienna,

Berlin, Halle, Göttingen, Helsinki and Oslo and honorary member of several international scientific societies. He has been

a leading meteorologist and can well be regarded as one of the founders of physical oceanography. He died on 24 Decem-

ber 1974.

Text based on: F. Steinhauser: Zum Gedenken an Albert Defant Arch Met Geophys Biokl Ser A 24, 385–388 (1975).
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Fig. 22.3 Bathymetric chart of Lake Zurich with depth contours in meters and the interface thal-
weg line of length 27.2 km shown dotted. Indicated are also cross-sections 2–26 for which the epi-
and hypolimnion areas were determined on the basis of the lake’s bathymetry for the TDP. The
temperature profiles mark the envelope of average profiles at 11 moorings in August–September
1978, from [17]. c� Am. Soc. Limnol. and Oceanogr., reproduced with permission

spectral analyses (reported in [11]), in which the square roots of spectral peak
heights (proportional to amplitude estimated for the first two modes only) were
normalized relative to 100 cm s�1 at mooring 5 (for currents) and were entered, with
attention to sign, in Fig. 22.4. The agreement between those approximate estimates
and the model results for first mode elevation is good, perhaps surprisingly so, when
one recalls that temperature fluctuations at each mooring (the basis for the spectra)
are proportional to isotherm depth fluctuations only if the vertical temperature gra-
dient is the same at each sensor. The agreement for second mode elevation and first
mode current is not close’ [17].

Lemmin and Mortimer [17] did apply Kelvin wave dynamics in the Lake Geneva
internal mode analysis. This lake is the broadest of their eight examples for which
the influence of the Earth’s rotation is considerable. Following Defant [8] they cal-
culate the resulting transverse tilt in each cross-section on the basis that it is linear
and proportional and changing with the difference in section averaged current speed
in the upper and lower layer. They find in this case that the interface-elevation max-
imum for the first mode progresses counterclockwise around the basin once in the
corresponding seiche period. They also concede that this linear slope of the thermo-
cline is ‘hardly acceptable’. Below it will be shown that the selection of the thalweg
as a reference is more critical in a model which does not allow various transverse
modalities to be incorporated.
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Fig. 22.4 Lake Zurich. Prediction by the TDP (dots) compared with those (lines) by Schwab’s two
dimensional model (in [11]). (a) Along thalweg interface elevations �i for modes 1–3, normalized
in each case to 100-cm maximum. (b) Horizontal displacements � and maximum current speeds
u for modes 1–3 in the upper and lower layers, U and L. The current speed maxima occur 1

4

cycle after the maximum elevations shown in panel (a). Periods are given in Table 22.1. Vertical
double lines in panel (a) are approximate estimates of relative ‘observed’ interface elevation at four
moorings spaced along the thalweg (modes 1 and 2, normalized to 100 cm at mooring 4) derived
from spectra of temperature fluctuations at thermocline depth (as described by Horn et al. [11]).
Corresponding estimates in panel (b) (first mode only, normalized to 2:5 cm s�1 at mooring 5, are
for current speed derived from current spectra, from [17]. c� Am. Soc. Limnol. and Oceanogr.,
reproduced with permission

Table 22.1 Periods of stratified Lake Zurich for the baroclinic modes of two layer models using
the Defant integration procedure (TDP) of the two-layer equivalent depth (TED)-channel model
and the two-dimensional two-layer variable depth (TVD) model and as measured in the August–
September 1978 field campaign with sources stated in the last column

Periods [h]
Mode Mode 2 Mode 3 Source

TDP 40.3 21.3 15.2 [17]
TED 44.8 23.8 17.1 [13]
Measured 44.0 25.0 17.0 [11, 13, 21]
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Fig. 22.5 Definition of the .s; n; z/ coordinate system

22.3 Extended Channel Models: Governing Equations

In the remainder of this chapter, we shall restrict considerations to homogeneous
elongated lakes. In particular, we shall be concerned with the dynamics of an incom-
pressible fluid with free surface in a steady rotating basin. More general situations
can also be handled, but are not dealt with here for reasons of avoiding arithmetic
complexities. We follow closely Raggio and Hutter [26–28]. In addition, we shall
restrict the analysis to linear processes in which displacements and velocities are
small.

Let ˝ denote the domain of the lake and @˝ its boundary consisting of the free
surface @˝
 and the bottom boundary @˝n. A first step in deducing a hierarchy of
equations for barotropic motions is the presentation of the dynamical equations of
balances of mass and linear momentum in a curvilinear coordinate system. Thus, we
select within the undisturbed lake surface a curved lake axis and complement this
axis by two other axes, one horizontal and one vertical, see Fig. 22.5. There is some
element of subjectivity in the selection of the long axis; it may follow the projection
of the thalweg of the lake into the horizontal plane, or may (roughly) equally divide
the lake width, measured perpendicular to the axis. Beyond this choice, however,
there will be no other subjective steps in the derivation of the model equations. The
curve parameter on the axis is denoted by s, the coordinate, measured horizontally
by n and that on the vertical axis by z, which is positive upwards (counter gravity).

Let x be a point in R3; referred to a Cartesian basis fi ; j ;kg it possesses the
components .x; y; z/. Let, moreover, x D Qx.s/ describe the lake axis. A point x,
which is sufficiently close to the lake axis (it will soon become clear how close this
must be) can then uniquely be defined as (see Fig. 22.5)

x D Qx.s/ � n sin.˛/; y D Qy.s/C n cos.˛/; z D z; (22.39)
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where

tan.˛/ D d Qy=ds

d Qx=ds
(22.40)

and ˛ is the ‘slope angle’ of the lake axis relative to the i -direction. The expression

K.s/ D d˛

ds
D Qy00 Qx0 � Qx00 Qy0 (22.41)

is the local curvature and

g1 D gs D
�

d Qx
d s

�Kn cos.˛/;
d Qy
d s

�Kn sin.˛/; 0

	
;

g2 D gn D .� sin.˛/; cos.˛/; 0/;

g3 D gz D .0; 0; 1/

(22.42)

are the natural base vectors from which via

gij D gi � gj D
0

@
.1 �Kn/2 0 0

0 1 0

0 0 1

1

A (22.43)

the metric tensor ensues. Its Jacobian J is given by

J 2 WD g WD det.gij / D .1 �K.s/n/2: (22.44)

Thus, the curvilinear coordinates can describe a point in space uniquely, as long
as J does not change sign. This restricts points to regions where n � 1=K.s/ and
constrains lake regions to points for which jnj < 1=K.s/ for all s 2 Œs0; s1�, where
s0 and s1 identify the two long lake ends. This condition also defines the slenderness
for which the above curvilinear coordinate setting is meaningful.

It is customary in applications to problems of physics not to express vectors and
tensors in terms of the natural basis vectors fgi ; i D 1; 2; 3g, but in terms of the
orthonormal basis

ei WD gi

jjgi jj
; (no summation over i ) jjei jj D 1: (22.45)

So, if a is a vector, then one has the two representations

a D a
.n/
j gj D aj ej ; (22.46)

where summation is understood over doubly repeated indices; a.n/j .j D 1; 2; 3/ are
called the natural components, whereas aj .j D 1; 2; 3/ are the physical compo-
nents of the vector a referred to the curvilinear orthonormal basis fe1; e2; e3g.
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In the ensuing analysis the balance laws of mass and linear momentum are the
necessary basic laws of concern. They will be written below in their point (=local)
forms for a density preserving (incompressible) fluid in the curvilinear coordinates
introduced above. They can be shown to take the forms:

� Balance of mass
1

J

@vs
@s

C @vs
@n

C @vs
@z

� K

J
vn D 0; (22.47)

� Balances of linear momentum

�

�
@vs
@t

C vs
J

@vs
@s

C vn
@vs
@n

C vz
@vs
@z

� K

J
vsvn

�
C 1

J

@p

@s
� � f vn

�
 
1

J

@T Ess
@s

C @T Esn
@n

C @T Esz

@z

!

C K

J

�
K 0n2

J
T Ess C 2TEsn

	
D 0;

�

�
@vn
@t

C vs
J

@vn
@s

C vn
@vn
@n

C vz
@vn
@z

C K

J
v2s

�
C @p

@n
C �f vs

�
 
1

J

@T Esn
@s

C @T Enn
@n

C @T Enz

@z

!

C K

J

�
J 2T Ess � T Enn

�
D 0; (22.48)
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J

@vz

@s
C vn

@vz

@n
C vz

@vz

@z

�
C @p

@z
C �g

�
 
1

J

@T Esz

@s
C @T Enz

@n
C @T Ezz

@z

!

C K

J
T Enz D 0:

Equation (22.47) is a statement for a scalar quantity, and (22.48) represents the three
physical components of Newton’s law in the s-, n- and z-directions, respectively.
Notation is rather self-evident: �; v; p;T E and g are the density, velocity, pressure,
Cauchy stress deviator (the extra stress tensor) and the gravity constant; K is the
curvature, K 0 WD dK=ds its derivative with respect to s and f the (first) Coriolis
parameter. We do not present a detailed derivation of (22.47) and (22.48), since this
is standard; the interested reader may consult Raggio [24].

Equations (22.47) and (22.48), must be complemented by phenomenological
statements for the extra stress T E , which enters the equations, if viscous or tur-
bulent effects are significant. In the general theory, we shall leave T E unspecified
and choose T E D 0 when an ideal fluid is in focus.

To solve the field equations, boundary and initial conditions must be prescribed.
As for boundary conditions, kinematic and dynamic conditions apply. Let

F WD
( O�.s; n; t/ � z D 0; on @˝
 ;

H.s; n/ � z D 0; on @˝n
(22.49)

describe the free and basal surfaces, respectively; we have chosen the hat to identify
functions only defined on the free surface. With the wind traction components in
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the s- and n-directions, t�s , t�n , and the atmospheric pressure patm the kinematic and
dynamic boundary conditions on @˝
 read

@ O�
@t

C 1

J

@ O�
@s

vs C @ O�
@n

vn � vr D 0; (22.50)

1

J
.�p C T Ess /

@ O�
@s

C T Esn
@ O�
@n

� T Esz D �t�s l� ;

1

J
T Esn

@ O�
@s

C .�p C T Enn/
@ O�
@n

� T Enz D �t�n l� ; (22.51)

1

J
T Esz

@ O�
@s

C T Ezn
@ O�
@n

� .�p C T Ezz / D Cp�atml� ;

at z D O�.s; n; t/ with

l� �
2

41C 1

J 2

 
@ O�
@s

!2
C
 
@ O�
@n

!23

5

1=2

D 1C O. O�2/: (22.52)

Equation (22.50) expresses the fact that @˝
 is material, and (22.52) are the three
components expressing continuity of the surface traction.

At the bottom boundary, the kinematic condition (22.49)2 and a viscous sliding
law imply the relations

0 D 1

J

@H

@s
vs C @H

@n
vn � vz; (22.53)

vs D � R
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1

J
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@s
C T �sn
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� T �sz
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@n
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; (22.54)

vz D � R

lH

�
1

J
T �sz

@H

@s
C T �zn

@H

@n
� T �zz

�
;

at z D H.s; n/, in which

T � D T E � .n � T En/I; lH D
"

1C 1

J 2

�
@H

@s

	2
C
�
@H

@n

	2#1=2
: (22.55)

Here, n is the unit normal vector pointing into the exterior of the lake region and R
is a friction coefficient, which may depend on bed roughness, tangential and normal
tractions, etc. The boundary condition includes with R D 0 the no-slip condition
and automatically satisfies the kinematic condition v � n D 0. R ! 1 necessarily
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requires TE D 0; so, a viscous sliding law at the bottom can, strictly, only be
introduced if the extra stress tensor does not identically vanish. A similar remark
also holds for wind stress, as can be seen from (22.52). Finally, (22.50)–(22.55)
have been written down in the curvilinear coordinates, details of which are given in
[24].

A complete formulation also requires initial conditions for the fields v and �.
These are stated as

v D v��.s; n; z/; � D ���.s; n/: (22.56)

The functions v��.s; n; z/ and ���.s; n/ are not arbitrary as they should conform
with the balance laws and boundary conditions. As the equations are written for
a density preserving material, the initial velocity field must also be solenoidal,
div.v��/ D 0. The trivial fields v�� � 0, ��� � 0 satisfy all these requirements
automatically.

22.4 Method of Weighted Residuals

The purpose of a one-dimensional model, which replaces the three-dimensional
model, is to obtain a computationally more easily accessible description of the
processes in a physical system than the full two-dimensional or three-dimensional
original problem. Scientists, however, take different attitudes to view such lower
dimensional problems. On the one hand, one regards the lower dimensional equa-
tions as a physical model, which explicitly takes into account the slenderness of the
bodies. The dimensionally reduced set of evolution equations are then manifesta-
tions of a structurally more complex material system at the lower spatial dimension
than the original problem. On the other hand, one regards the lower dimensional
formulation as a numerical approximation technique, in which the eliminated space
variables are accounted for by function expansions. Both approaches are embedded
in the more general Principle or MWR.

Technically, the MWR is based on a complex version of the following simple

Fundamental Theorem of Weighted Residuals: Let f .x/ be a function or a func-
tional and assume that

f .x/ D 0; 8x 2 I D Œa; b�: (22.57)

So, f .x/ is simply the zero function in I. Given any non-vanishing function g.x/, it
is a trivial fact that (22.57) also implies

Z b

a

f .x/g.x/dx D 0; 8x 2 I: (22.58)
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Conversely, assume now that (22.58) holds for all g.x/ defined in I. Then (22.58)
implies (22.57).

Proof. The step H) is trivial, nothing must be proved. The step (H is more diffi-
cult, but since (22.58) holds for all g, we choose g.x/ D ı.x � y/, where ı is the
Dirac-delta function. With this choice we obtain

Z b

a

f .x/ı.x � y/dx D f .y/; 8.x; y/ 2 I: (22.59)

�

The only, perhaps difficult point in this proof is the claim (22.59). It is proved in any
elementary book on generalized functions; see also the following footnote.5

The MWR can be applied to almost any initial boundary value problems. The
essential idea is as follows: Let R˝ D 0 be the set of field equations defined over
˝ and let R@˝˛ D 0 .˛ D 1; 2; : : : ; �/ be the associated boundary conditions,
of which each holds at the part @˝˛ of the total boundary. In the present context
R˝ D 0 stands for (22.47) and (22.48), written here in vector form; moreover, with
� D 2, @˝1 D @˝
 , @˝2 D @˝n, the statement R@˝˛ D 0 represents (22.50)–
(22.55). Note also that the number of components inR˝ andR@˝˛ need not be the
same, and the domains of their definition are different, which explains the use of the
subscripts). R˝ and R@˝ both are now elements of functions which play the role
of f .x/ in the simple example in (22.57) of the fundamental theorem.

Next, corresponding functions g must be selected. It is customary to use a prefix
ı as identifier for weighting functions and to call these functions ıw˝ and ıw@˝˛ ,
respectively. We form the scalar products,

R˝ � ıw˝ and R@˝˛ � ıw@˝˛ ; (22.60)

and then integrate these over the domains of their definition and add all these
integrals. Upon this addition one obtains

ıI D
Z

˝

R˝ � ıw˝d˝ C
X

˛

Z

@˝˛

R@˝˛ � ıw@˝˛d.@˝˛/: (22.61)

5 A plausible choice for g would be

g D
(

0; jx � yj > "=2;
1="; jx � yj < "=2:

With this choice we obtain
Z yC"=2

y�"=2

f .x/
1

"
dx D f .y/CO."2/ �!„ƒ‚…

"!0

f .y/:

.
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The MWR now requests that

ıI D 0; 8fıw˝ ; ıw@˝˛g: (22.62)

Mathematicians call this the weak form of the original boundary value problem. In
the above, the ı-symbol was used as a reminder that the weighting functions are
arbitrary; however, the quantity I by itself is not defined in general. Furthermore,
the two dots ‘�’ in the integrals (22.61) represent inner products, but over different
function spaces.

Problem 22.1 By making the selections

(a) ıw˝ 6D 0; ıw@˝˛ D 0;

(b) ıw˝ D 0; ıw@˝˛ 6D 0;

the reader may show that using the fundamental theorem, (22.62) implies

(a) R˝ D 0; (b) R@˝˛ D 0; 8˛:

From now on, we are primarily involved with judicious manipulations of (22.62).
This equation will now be the basis for the approximation to deduce the spatially
one-dimensional model.

The field equationsR˝ D 0 and boundary conditionsR@˝˛ D 0 contain a set of
independent variables (e.g. velocities). Let us collectively denote these variables by
x. These variables and the weighting functions ıw˝ ; ıw@˝˛ , henceforth collectively
denoted by ıw, are functions of the spatial coordinates and of time, in this case
s; n; z; t . In an attempt to deduce a spatially one-dimensional set of equations these
functions are now product decomposed as

x D
NX

iD1
�ixi D 
 � x; ıw D

NX

iD1
 iıwi D  � ıw;

x.s; n; z; t/ D 
.n; z/ � x.s; t/; ıw.s; n; z; t/ D  .n; z/ � ıw.s; t/;
(22.63)

where �i and  i generate sets of linearly independent known functions, called
shape, basis or trial functions, and the xi and ıwi constitute sets of unknown (xi )
and arbitrary (ıwi) functions. The shape functions, 
 and  , are chosen to depend
on those spatial variables – here n; z – which one wishes to eliminate in the process
of construction of the lower-dimensional model equations. The sets 
 and may be
constructed from products of polynomials, trigonometric functions or other appro-
priate functions of a complete function set; in principle they could also vary with
s without violation of the general developments, but here this will not be pursued.
Furthermore, one may choose 
 D  , which corresponds to a Galerkin procedure.

If the representations (22.63) are substituted into (22.61) and (22.62), then
integrations over ˝ and @˝˛ can be split into cross-sectional integrals over the
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coordinates n; z, followed by an integration along the axis. Because 
 and  are
known, integrations over n and z can be performed explicitly. Structurally, (22.62)
then takes the form

ıI D
Z s2

s1

hA.x/; ıwids D 0; (22.64)

in which h ; i is a bilinear form, and integration is along the lake axis from s D s1 to
s D s2. Since ıw is arbitrary, (22.64) implies, in view of the fundamental theorem
of the MWR,

A.x.s; t// D 0; (22.65)

which is the approximate set of spatially one-dimensional equations. In view of the
truncationN of the product decomposition of (22.63) equation A.s; t/ D 0 forms N
evolution equations (partial differential equations in s and t). Different values of N
define different orders of approximations of the model. Technically, in the process
of construction of (22.64) certain volume integrals may be transformed to surface
integrals using Green’s theorem, but physical arguments must suggest which of the
global representations should be regarded as the appropriate ones. This difficulty
will further be explained below.

Specifically, application of the above MWR-procedure to the initial value prob-
lem in Sect. 22.2, the field equations (22.47) and (22.48) and boundary equations
(22.50)–(22.55) are scalarly multiplied with weighting functions, which we select
as follows:

ı
1 for mass balance equation,
ıv1 for momentum balance equation,

in ˝

ı
2 for kinematic boundary condition at the free surface,
ıv2 for the stress boundary condition at the free surface,

on @˝


ı
3 for the kinematic boundary condition at the basal surface,
ıv3 for the basal sliding law,

on @˝n:

In symbolic notation we thus have

6X

˛D1
ıI˛ D 0; (22.66)

with

ıI1 D
Z t2

t1

dt
ZZZ

˝

divvı
1dV;

.22:67/1

ıI2 D
Z t2

t1

dt
ZZZ

˝

�
�

dv

dt
C gradp � divT E � �f

�
� ıv1dV;
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ıI3 D
Z t2

t1

dt
ZZ

@˝�

�
@F�

@t
C gradF� � v

�
ı
2da;

ıI4 D
Z t2

t1

dt
ZZ

@˝�

f.�p1C T E /n � t�g � ıv2da; .22:67/2

ıI5 D
Z t2

t1

dt
ZZ

@˝n

gradFH
jjgradFH jj � vı
3da;

ıI6 D
Z t2

t1

dt
ZZ

@˝n

�
T �nC 1

R
v
�

� ıv3da;

where dV is a volume element in the domain˝ , and da a surface element on the sur-
face˝ . Integrations over time from t1 � t � t2 arise because our physical problem is
an initial boundary value problem. Conceptually, these time integrations are impor-
tant. In actual calculations they do not play a role, however, and will henceforth be
omitted.

22.5 Derivation of a Hierarchy of Channel Equations
for Barotropic Motions in Lakes

To derive the spatially one-dimensional model for water motion in rotating basins
a shape function expansion, is selected, in which the dimensions of 
 and  are
chosen to coincide (same values of N !); this is necessary to yield a determinate
system. With the same shape function for each variable and each weighting function,
we thus may write

.vs ; vn; vz/ D 
 � .vs ;vn;vz/;

O� D O
 � �;
(22.68)

.ıvs ; ıvn; ıvz; ı
1/ D  � .ıvs ; ıvn; ıvz; ı�1/

.ı
2; ı
3/ D O � .ı�2; ı�3/

with 
 D 
.n; z/,  D  .n; z/, O
 D O
.n/ and O D O .n/.6

6 We use in (22.68) the dot to denote the scalar (inner) product between two vectors in RN . An
alternative ‘matrix-vector notation’ is 
Tvs ; : : :, where 
T is the transpose of 
. We shall not use
this second variant.



562 22 A Class of Chrystal-Type Equations

22.5.1 Mass Balance

By way of illustration, let us begin by transforming ıI1 into a form suitable for
a one-dimensional description of the water motion. The steps of computations are
shown in the following chain of identities:

ıI1 D
Z t2

t1

dt
ZZZ

˝

divvı
1dV D
Z t2

t1

dt
Z s1

s0

ds
ZZ

Q

div vı
1J dndz

D
Z t2

t1

dt
Z s1

s0

ds
ZZ

Q

ı�1 � 
�
1

J

@vs
@s

C @vn
@n

C @vz

@z
� K

J
vn

�
J dndz

D
Z t2

t1

dt
Z s1

s0

dsı�1 �
�ZZ

Q

 ˝ 
 dndz
@vs
@s

C
�ZZ

Q

 ˝ 
;nJ dndz �K

ZZ

Q

 ˝ 
 dndz

�
vn

C
ZZ

Q

 ˝ 
;zJ dndz vz

�
D 0: (22.69)

Here, ˝ is the exterior product: . ˝ 
/ij D  i�j for all i; j D 1; 2; : : : ; N and

;n D @
=@n, and 
;z D @
=@z. In the first line of (22.69), the volume integral
is split into integrations over the cross-section Q and along the lake axis. This is
achieved by writing dV D J dsdndz. In the second line the divergence operator,
expressed in the curvilinear coordinates of Sect. 22.3 is substituted and the weight-
ing function ı
1 D ı�1 �  is expressed in terms of a truncated shape function
expansion. An analogous expansion is subsequently used for vs ; vn; vz by writing
vs D 
 � vs; etc. Observe that the cross-sectional integrals are all done over inte-
grand functions which are known functions. It is therefore easy to see that (22.69)
can be written as

ıI1 D
Z t2

t1

dt
Z s1

s0

dsı�1 �
�

C.0/
@vs
@s

C .C.1/�n �KC.0/vn � C.1/�z
vz

�
; (22.70)

where the easily identifiable coefficient matrices are collectively given in Appendix
22.A. If we were to require that ıI1 D 0, which is mathematically a possible
choice (prove this!) one could conclude, by employing the principal theorem of
the MWR that the expression in braces should vanish. However, even though such
an assignment is mathematically correct, it does not yield the global physical mass
balance.

Remedy can be found by recalling that, when integrating the continuity equa-
tion for a density preserving fluid over depth, boundary terms enter through the
application of Leibniz’ rule in interchanging differentiations and integrations; these
boundary terms can be simplified with the aid of the kinematic boundary conditions,
see e.g. the derivation of (11.12) in Chap. 11.
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Inspection of (22.66) and (22.67) shows that ıI1; ıI3 and ıI5 represent the bal-
ance law of mass in ˝ and the kinematic boundary conditions on @˝
 and @˝n,
respectively. It is, therefore, tempting to try the combination ı.I1 C I3 C I5/ and
to set

ıI1 C ıI3 C ıI5 D 0: (22.71)

It is a straightforward exercise to demonstrate that admissible weighting functions
do indeed exist, which reduce (22.66) to (22.71). Evaluation of (22.71) follows com-
putations analogous to those performed in (22.70); they are, however, more difficult.
In order not to distract the reader from the main ideas, this calculation is relegated
to Appendix 22.B. Here, we state the result which follows from (22.71):

OZ.1/ @�
@t

C @

@s

�
C.0/vs

�
� C.1/ nvn � C.1/ z

vz D 0; (22.72)

where the coefficient matrices are defined in Appendix 22.A. This equation, indeed,
resembles the structure of a kinematic equation, but it is a statement concerning
vectors of the shape function expansion of the velocity field; and it also involves the
vertical velocity component through vz. This entails the derivation of a set of equa-
tions for vz in terms of vs and vn. In the classical linear formulations the vertical
velocity does not arise.7

The missing equation is obtained from the requirement ıI5 D 0 in (22.65). A
selection of weighting functions for

P6
˛D1 ıI˛ D 0 in (22.67) which yields ıI5 D 0

is permissible and implies the statement

Z

@˝n

gradFH
jjgradFH jj � v ı
3da

D
Z

@˝n

�
1

J

@H

@s
vs C @H

@n
vn � vz

	
ı
3

da

lH

D
Z s1

s0

ds

( Z BC

B�

@H

@s
vsdnC

Z BC

B�
J
@H

@n
vndn �

Z BC

B�

J vzdn

)

zDH
ı
3

D
Z s1

s0

dsı�3 �
(Z BC

B�

@H

@s
 ˝ 
 dnvs C

Z BC

B�

J
@H

@n
 ˝ 
 dnvn

�
Z BC

B�

J ˝ 
 dnvz

)

zDH
D 0; (22.73)

or in view of the definitions in Appendix 22.A

H.0/s vs C H.1/n vn � H.1/vz D 0: (22.74)

7 We will see below that also the momentum equations in the s- and n-directions contain vz.
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The basal surface equation FH D H.s; n/ � z D 0 leads to

gradFH D
�
1

J

@H

@s
;
@H

@n
;�1

	

(22.75)

jjgradFH jj D lH WD
(
1

J 2

�
@H

@s

	2
C
�
@H

@n

	2
C 1

) 1=2

and explains the expression in the first line of (22.73). The formula for the basal
surface increment

da D J lH dnds (22.76)

then explains the second line of (22.73). This, via shape-function expansions of v
and ı
3, then leads to the remainder of (22.73). The various steps have transformed
an integration over the basal surface into a succession of integrals over the width of
the cross-section from n D B� to n D BC and over the channel axis. The result,
(22.74), is an algebraic equation relating the velocity components.

22.5.2 Momentum Balance

The experience gained with the derivation of the global balance of mass, (22.71)
makes one to suppose that global momentum balance cannot follow from a state-
ment ıI2 D 0: Such a requirement will not incorporate the stress boundary condition
at the free surface and the sliding condition at the base. It turns out that the
combination

ıI2 C ıI4 C ıI6 D 0: (22.77)

will generate the global form of the momentum balance. Computations analogous
to those presented above will then generate the spatially one-dimensional equations
representing balance of momentum. The detailed calculations are very lengthy and
tedious and therefore will not be presented. The result of (22.77) is

�.0/

n
C.1/

@vs
@t

C E.0/
�
@vs
@s

˝ vs �Kvs ˝ vn

	

C E .1/n vs ˝ vn C E .1/z vn ˝ vz � f C.1/vn
o

C �.0/g OC.0/ @�
@s

C p�.0/s � w�.1/s � R.1/vs C Js D 0; (22.78)

�.0/

n
C.1/

@vn
@t

C E.0/
�
@vn
@s

˝ vs CKvs ˝ vs

	

C E .1/n vn ˝ vn C E.1/z vn ˝ vz C f C.1/vs
o

C �.0/g OC.1/�n � C p�.1/n � w�.1/n C R.1/vn C Jn D 0: (22.79)
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‘In these expressions, quantities written as bold script capital letters are third-order
tensors in N dimensions; hence,

.Ea ˝ b/i D Eijkaj bk;

with i; j; k D 1; 2; : : : ; N . Equation (22.78) corresponds to the momentum bal-
ance in the s-direction, and (22.79) is that in the n-direction. An equation for
the third component is incorporated in (22.78) and (22.79) as the hydrostatic pres-
sure assumption p D � g. O�.s; n; t/� z/ has been used. The unknown field variables
are vs;vn;vz and �. The various indexed coefficients C, R and E are known
when the bathymetry is prescribed and when the shape functions are selected, all
of which are defined in Appendix 22.A. The quantities carrying asterisks are the
driving forces due to the wind and the atmospheric pressure gradient. These terms
are also expressible as cross-sectional integrals, and are known when wind stress
and atmospheric pressure gradients are prescribed. The terms in curly brackets
are the accelerations in the longitudinal and transverse directions, those involving
the E’s are nonlinear and represent advection, and terms involving f account for
the Coriolis effects. The first two terms in the second lines comprise all external
forces, namely the pressure gradient due to surface elevation, atmospheric pressure
and wind; together they constitute the geostrophic balance. The term involving the
matrix R.1/ accounts for bottom friction. It can consistently only be accounted for
in a fluid that permits non-trivial viscous or turbulent stresses, of which the effect is
collectively represented by Js and Jn. For completeness these quantities are defined
in Appendix 22.A. For a particular closure model they must be given in terms of the
independent field variables [26].

22.5.3 Summary

The above partial differential equations (22.72), (22.74), (22.78) and (22.79) com-
prise a system of four vector equations for the fourN -vectors vs, vn, vz, �. They are
analogous to the basic equations (22.47), (22.48), (22.50)–(22.55), but unlike these,
they represent the global behaviour of the motion as a consequence of the smoothing
or averaging process over the cross-sections of the lake achieved by expanding the
variables in the weighted residual expressions. ‘Equation (22.72) is the analogue
of the continuity equation in which the kinematic boundary conditions at the free
and bottom surfaces are built in. Equation (22.74) is the global form of the bot-
tom boundary condition, expressing the tangency of the flow at the bottom. The
remaining two equations (22.78) and (22.79) represent the two horizontal compo-
nents of the momentum equations in which external driving forces are incorporated.
It should, finally, also be mentioned that with the definitions listed in Appendix
22.A the validity of the equations is restricted to small elevations of the free surface.
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Fig. 22.6 Cross-section, idealized to illustrate the neglecting of AE and CD, from [26].
c� Cambridge University Press, reproduced with permission

In fact, it is assumed that shorelines do not change under motion. This amounts in
Fig. 22.6 to the identification of the points A with E and C with D.

The spatially one-dimensional differential equations for the field variables vs ,
vn, vz and � must be complemented by closure conditions relating the macroscopic
stress components with the variables vs, vn, vz and by boundary conditions. These
are partly interrelated, because the closure condition determines the order of the dif-
ferential equation. For an inviscid fluid model with vanishing viscous stress (22.72),
(22.74), (22.78) and (22.79) are of first order in vs , vn and vz; the latter can be
regarded as being eliminated from (22.79). Hence, using N shape functions for the
variables, 3N boundary conditions must be prescribed. From (22.79) it is seen that
the term involving @vn=@s only arises in a formulation accounting for convective
acceleration terms. Hence the number of boundary conditions depends on whether
the term E.0/@vn=@s ˝ vs is kept or not. If it is not, then 2N boundary conditions
suffice; one may then require no flow through the end cross-sections. Hence the s-
component of the physical velocity must vanish, which implies vs D 0 at s D s1
and s D s2, where s1 and s2 are the values of the arc length at the beginning and the
end of the channel axis. When all convective terms are kept, N further conditions
must be added.

Finally, to complete the initial-value problem, initial conditions for vs , vn, vz

and � must be prescribed’ [26].
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22.6 Low-Order Channel Models for Curved Rotating
Elongated Lakes

In this section, we present preliminary calculations regarding gravity waves in rotat-
ing basins of inviscid fluids. The intention is to test the usefulness of the general
model derived in the last section. In particular, we would like to see whether such
simplified models would in any way reasonably describe the water motion in elon-
gated narrow basins. It is hoped that with increased refinement, the approximate
model will equally more and more closely approximate reality. It will, among other
things, be shown that free oscillations in a zeroth-order model reduce to the Chrys-
tal equations. This will elucidate the assumptions behind the limitations of these
equations and identify the necessary alterations for their improvement. A first-order
model, in which the field variables are expanded in terms of two shape functions, is
already sufficiently general to correctly predict waves in rotating basins, indeed we
shall show later on that Kelvin, inertial and Poincaré waves are correctly predicted
as are the reflection conditions in semi-infinite gulfs or in rectangles. The first-
order model equally allows correct prediction of propagating and standing waves
in ring-shaped annuli.

For the simplest model zeroth-order model for arbitrarily curved, narrow basins
the expansions (22.63) are restricted to one single term, � D  D 1, representing
a mean value of the variable over the cross-section or over the basin width. Of the
governing equations (22.72), (22.74), (22.78), (22.79), the transverse momentum
equation (22.79), however, is not needed when longitudinal motions are considered,
and the bottom boundary condition (22.74) is merely a prediction equation for the
vertical velocity component, which can be determined a posteriori if so desired.
Hence, only (22.72), (22.78) are relevant. Under these restrictions they take the
forms8

� Continuity equation:

Z.1/
@�

@t
C @

@s

�
C.0/vs

�
D 0: (22.80)

� Longitudinal momentum equation:

�0

�
C.1/

@vs
@t

C E.0/
�
@vs
@s

vs �Kvsvn

	
� f C.1/vs

�

C �0g OC.0/ @�
@s

C p.0/�s � w.1/s C R.1/vn D 0: (22.81)

8 In (22.80)–(22.82), the variables vs , vn, w.1/s , w.1/n and p.0/s , p.1/n should be written in sanserif type
to conform with the MWR notation. However, they correspond to the variables in the Chrystal
equations for which sanserif type was not introduced.
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� Transverse momentum equation:

�0

�
C.1/

@vn
@t

C E.0/
�
@vn
@s

vs CKvsvn

	
C f C.1/vs

�

�p.1/�n � w.1/n C R.1/vn D 0: (22.82)

It further follows under these limiting conditions that E.0/D C.0/ and OC.0/ D C.0/.
Therefore, only two cross-sectional coefficients, C.0/ and C.1/ occur; these and
Z.1/ D B enter (22.80)–(22.82), where B is the channel width at the lake surface.
These equations contain the channel curvature explicitly in the non-linear convec-
tive terms. Curvature is, however, not neglected when nonlinear advective terms are
omitted.

22.6.1 Non-rotating Basins

When rotation is neglected the transverse momentum equation separates from the
longitudinal momentum equation and the continuity equation. If one introduces the
mean atmospheric pressure across the channel width according to

p�atm D �0g�
�.s; t/ (22.83)

so that

p�.0/s D
ZZ

Q

@p�atm

@s
dndz D �0gC.0/

@��

@s
; (22.84)

the linearized equations (22.80) and (22.81) take the forms

C.1/
@vs
@t

C C.0/g
@�

@s
C R.1/

�0
vs D w.1/s

�
� gC.0/

@��

@s
;

(22.85)
Z.1/

@�

@t
C @

@s

�
C.0/vs

�
D 0;

from which on eliminating �, one may deduce

@2vs
@t2

C R.1/

�0C.1/
@vs
@t

� gC.0/

C.1/
@

@s

�
1

Z.1/
@

@s

�
C.0/vs

��

D 1

�0C.1/
@w.1/s
@t

� gC.0/

C.1/
@2��

@s@t
: (22.86)

For a canal with constant cross-section this equation has the form

@2vs
@t2

C 2b
@vs
@t

� c2
@2vs
@s2

D P.s; t/; (22.87)
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where

2b WD R.1/

�0
C.1/; c2 WD g.C.0//2

C.1/Z.1/
;

(22.88)

P WD 1

�0C.1/
@w.1/s
@t

� g
C.0/

C.1/
@2��

@s@t
:

In the above so-called telegraph equation (22.87), c is the phase velocity of the shal-
low water wave and b the damping coefficient, while P is the atmospheric driving
term. It is the wave equation of a damped oscillator with forcing term P .

For free oscillations (P D 0) solutions of (22.87) are of the form

vs D V0 sin
�n�s
L

�
exp

(

�bt ˙ i

r
n2�2

L2
� b2 t

)

: (22.89)

For rectangular cross-sections of width B and depth H and a straight channel the
definitions of C.i/.i D 0; 1/ and Z.1/ imply

c2 D g
.BH/2

B.BH/
D gH; b D 1

2

.B C 2H/

�0BH
R (22.90)

and, therefore,

! D
(
n2�2

L2
gH �

�
1

2

.B C 2H/R

�0BH

	2)1=2
: (22.91)

The frequency of free oscillations is thus reduced by wall friction.
For the frictionless case .b D 0/ and with

P D uF 00.s � ut/; (22.92)

where u is the wave speed and F 00 the second derivative of F with respect to its
argument, (22.87) implies the solution

vs D u

u2 � c2
F.s � ut/: (22.93)

Resonance occurs when

u D c D
 
g.C.0//2

Z.1/C.1/

!1=2
.D p

gH; for a rectangular cross-section/: (22.94)
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The above equations (22.85) also reproduce the Chrystal equations. Indeed, ignoring
basal friction .R.1/ D 0/ and the driving terms (the right hand side in (22.85)1),
yields

@2vs
@t2

D g
C.0/

C.1/
@

@s

�
1

Z.1/
@

@s

�
C.0/vs

��
: (22.95)

For a straight lake axis we have C.1/ D C.0/ and Z.1/ D B , where B D BC CB�,
and (22.95) is identical to (22.9). Therefore, the zeroth-order model without fric-
tion and straight lake axis reproduces exactly the Chrystal equation [4,5]. However,
when the lake axis is curved, (22.95) does not exactly reproduce the Chrystal
equations, because C.1/ and Z.1/ are curvature dependent. In this case, (22.95)
is formally of Chrystal-type, which means that equation (22.95) is of the same
structure as (22.9). Motivated by the transformation (22.10), we now introduce the
transformation

Qu D C.0/vs; Qs D
Z s

0

Z.1/.�/d�: (22.96)

It brings (22.95) to the form

@2 Qu
@t2

D g�
@2 Qu
@Qs2 ; � WD .C.0//2Z.1/

C.1/
; (22.97)

in which, now, � is curvature dependent. Equation (22.97) is formally equal
to (22.11), the classical Chrystal equation.9 The advantage of (22.97) is that
the element of subjectivity in selecting the channel axis is eliminated, for the
value of the coefficient � is accordingly adjusted by the Jacobian. The analysis
also clearly demonstrates the conditions for which an equation with the same
structure as the Chrystal equation is obtained: the rotation of the Earth around
its axis is ignored and shape functions are independent of the cross-sectional
coordinates.

22.6.2 A First-Order Model Accounting for the Rotation
of the Earth

It is not difficult to show that a zeroth-order model does not lead to a physically
meaningful description if the effects of the rotation of the Earth are incorporated
in the model [24]. To account for this rotation it is vital that variations of the field
variables transverse to the lake axis are accounted for. On the other hand, variations
of the field variables in the z-direction are absent in a frictionless model. If as shape
function expansions so-called Cauchy series

9 In the works of Raggio [24] and Raggio and Hutter [26] the coefficient � is incorrectly stated.
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x D
NX

kD0

MX

`D0
nkz`

�
x.k;`.s; n/

� D �k;`xk`;

(22.98)

ıw D
NX

kD0

MX

`D0
nkz`

�fıw.k;`.s; n/
� D �k;`ıwk`

with �k` D  k` (Galerkin) are used, then the lowest order model accounting for
transverse variability is given by M D 0 and N D 1. The general equations
which emerge in this case for arbitrary values ofM andN are given by Raggio and
Hutter [24, 26]. Moreover, the model in which M D N D 1 is referred to as being
first-order in all variables. These variables are �.0/, v.0;0/s , v.0;0/n , �.1/, v.1;0/s and
v.1;0/n , and six equations can be deduced from (22.72), (22.78), (22.79), but (22.74)
is superfluous, because it is merely a prediction equation for vz. Omitting the second
index in v.0;0/s etc., as simply being mute, and introducing the vector

y D
�
�.0/; v.0/s ; v.0/n ; �.1/; v.1/s ; v.1/n

�T
(22.99)

the equation describing the free motion can be written as

Ay D 0; (22.100)

where
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; (22.101)

the coefficients being defined as

Cmj .s/ D
Z BC

B�

H.n; s/.1 �Kn/mnj dn;
(22.102)

Zmj .s/ D
Z BC

B�
.1 �Kn/mnj dn;
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valid for an arbitrary channel with bathymetry z D �H.s; n/ [14, 26, 28]. The
first and fourth row in (22.101) are continuity statements, the second and fifth row
describe momentum balance in the longitudinal direction and the third and sixth
row express momentum balance in the transverse direction. ‘The orders of the rows
and columns of the operator A have been selected such that, as one deletes rows and
columns from the lower right of the operator A, other channel models which are
zeroth-order in some and first-order in other variables, are obtained. Thus, a hierar-
chy of models with decreasing complexity may be deduced. For instance, the upper
left 2� 2 matrix corresponds to the zeroth-order model discussed above (equivalent
to the extended Chrystal equation); the next extension to the 3 � 3-matrix would
be a full zeroth-order model, but it is meaningless because there is no transverse
pressure gradient produced by transverse variation of surface elevation, which does
not occur (such a variation is necessary to obtain geostrophic balance). The model
corresponding to the upper left 4�4matrix is first-order in the surface elevation but
zeroth-order in the velocities. This model would be the simplest version for which
the effect of the rotating basin is reasonably accounted for. The remaining 5� 5 and
6 � 6 models also include transverse variations in the velocity field. Clearly, in a
model involving first-order terms the unidirectional zeroth-order motion is coupled
with the remaining equations describing transverse variation of the field variables.
A decoupling can only be achieved if all entries to the right of column 2 in rows 1
and 2 are zero. Non-dimensionalizing (22.100) with (22.101) by introducing appro-
priate scales shows that coupling results from, in general, three separate causes. One
is due to the Coriolis parameter, the second is due to curvature along the channel axis
and a third can be traced to ‘asymmetry’ of the cross-sections’, from [27].

Boundary conditions to which (22.100) are subjected may be zero mass flux
through the channel ends, implying vs D 0 at s D s0 and s D s1, corresponding to

Bcy D 0; at s D .s0; s1/; Bc D
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: (22.103)

Two important special cases of the operator A emerge for straight channels .K.s/ D
0/ with constant cross-section of uniform depth (rectangles) and for ring shaped
basins .K.s/ � const:/ with constant depth. For straight rectangles with width B
and depthH cross-sectional coefficients are found from (22.102) as

Cm0 D BH; Cm1 D 0 Cm2 D BH 3

12
; .m D 0; 1/;

(22.104)

Z10 D B; Z11 D 0; Z12 D B3

12
;
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and the operator A becomes As (s for straight), where

�.0/ v.0/s v.0/n �.1/ v.1/s v.1/n
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: (22.105)

For a ring with outer and inner radii ra and ri , we may define with Rm D 1
2
.ra C

ri /; B D .ra � ri / the mean radius .K/ D R�1m and the channel width, respectively.
With these and the abbreviations

d WD 1

Rm

B2

12
D 1

Rm
e; e WD B2

12
(22.106)

the operator A becomes AR (R for ring) and has the form

�.0/ v.0/s v.0/n �.1/ v.1/s v.1/n
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The above special forms, (22.105) and (22.107) are particularly apparent because
they make the couplings of the motion evident. The dashed lines in the operators
As and AR facilitate the physical interpretations. For As the zeroth-order equations
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decouple from the first-order equations if the rotation of the Earth is ignored
(f D 0). In this case longitudinal and transverse motions are independent of each
other. For AR, however, zeroth- and first-order equations are coupled owing to both
the rotation of the Earth and centripetal accelerations. Setting f D 0 isolates the
effects of the latter from the former. The structure of (22.107) shows that a true
zeroth-order model as exemplified in the last subsection for non-rotating basins is
likely inappropriate because transverse variations of � and v are only consistently
accounted for at the first (and higher) order levels.

22.7 Gravity Waves in Channels and Lakes of Rectangular
Cross Section on the Rotating Earth

A significant result of the first-order model is the demonstration that all essential
features of gravitational oscillations – Kelvin-, Poincaré-, inertial waves and their
reflection properties – are approximately reproduced. This will in this section be
demonstrated. We shall restrict attention to straight canals, gulfs and rectangles
for which the geometric curvature of the channel axis vanishes. The governing
differential equation in this case is

Asy D 0 (22.108)

with As given in (22.105). This system is particularly transparent because it makes
the couplings of the zeroth- and first-order terms evident. The rotation of the frame
of reference genuinely couples the zeroth-order model (described by the upper left
.2 � 2/-matrix in (22.105) with the higher-order terms of the full system). The
subsequent analysis is based on a detailed exploitation of system (22.105) and
follows [27].

22.7.1 Free Oscillations in a Non-rotating Rectangle

When f D 0, the full first-order system Asy D 0 falls into three independent
subsystems, which are described by

� The upper left .2 � 2/-matrix for the variables �.0/, v.0/s , the classical Chrystal
equations,

� The middle .3 � 3/-matrix for the variables v.0/n , �.1/, v.1/s , and
� The single lower-right element for the variable v.1/n .

Problem 22.2 Show that standing-wave solutions of these three systems with veloc-
ity components vs , which vanish at s D 0 and s D L have the forms
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�.0/ D A1 cos

�
k1�
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cos.!1t/; �.1/ D A4 cos
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L
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cos.!2t/;
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L
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sin.!1t/; v.1/s D A5 sin
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k2�

L
s

	
sin.!2t/; (22.109)

v.0/n D A3 cos

�
k2�

L
s

	
sin.!2t/; v.1/n D A6 cos

�
k3�

L
s

	
sin.!3t/;

in which k1; k2; k3 possess integer values, and A1; : : : ; A6 are amplitudes and
!1; !2; !3 are frequencies. Prove, moreover, that substitution of (22.109) into the
three systems leads to three linear homogeneous systems of equations. They lead to
the dispersion relations

!1 D p
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�k1

L
D !1Chrystal; !3 D 0;
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(22.111)
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The combined solution, therefore, takes the form
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vs D v.0/s C nv.1/s D A2 sin
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sin.!2t/;

vn D v.0/n C nv.1/n D � L

� k2
A5 cos

�
k2�

L
s

	
sin.!2t/:

Note that two of the six amplitudes, here A2 and A5, are free; and owing to !3 D 0

the corresponding amplitude A6 of vn vanishes. Because of the linear dependence
of � and vs on n the model gives rise to the possibility of anti-symmetric surface
elevation. It must be, and indeed is, accompanied with transverse mass flux as seen
from (22.112)3. Boundary conditions at the canal shore are not matched; however,
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this is no surprise for the unbiased shape functions which were selected do not
automatically satisfy the boundary conditions.

The understanding of the above solution profits from its comparison with the
solution of the two-dimensional field equations as constructed in Volume I, Chap. 7,
Sect. 3 for f D 0. This comparison has led to the following inferences:

� Whereas the exact solution consists of terms in which any order of sinusoidal
variation of the fields in the transverse direction may occur, (22.110) and (22.112)
only allow the lowest order transverse mode to be taken into account. When
restricting the two-dimensional solution to this mode, it reveals the longitudinal
frequency !1 exactly (!). However, the transverse frequency !2 differs in the
second term of the bracket under the square root sign in (22.110). In the exact
two-dimensional shallow-water-standing-wave solution the transverse frequency
is given by

!cl
2 D p

gH
k2�
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"

1C
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k2B

	2#1=2
;

so that (22.113)
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�2

9
>=

>;

1=2

:

� As for velocities and surface elevation, comparison of the two-dimensional solu-
tions and (22.112) reveals that the latter are derivable from the former by a Taylor
series expansion of all functions of the transverse coordinate n, restricting the
expanded representations to zeroth- and first-order terms.

� Higher-order models using Cauchy series with more terms will improve on this
Taylor series expansion, but still violate shore boundary conditions. Shape func-
tions which satisfy the shore boundary conditions, will make the convergence in
the transverse direction more uniform, perhaps generate even exact solutions for
the two-dimensional equations. Indeed, by selecting the shape functions
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for .�; vs; vn/ .k D 2; 4; 6; : : :/;

the exact two-dimensional solutions for the rectangular basin with flat bottom are
obtained for the kth mode of transversely symmetric and skew-symmetric surface
elevation, respectively, and a model with an infinite number of trigonometric
terms will provide the exact two-dimensional solution for all modes.

� It is somewhat surprising that the selection of one single shape function per
variable was sufficient to model a particular mode. This is no longer so when
f 6D 0 the reason being that in rotating basins neighbouring points move in a
‘counter-phase fashion’, requiring at least a ‘two-degrees-of-freedom’ descrip-
tion for at least one variable.
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22.7.2 Kelvin-Type Waves in an Infinitely Long Rectangular
Straight Canal

The classical tidal equations permit wave solutions for which vn D 0 and vs and �
are exponentially evanescent in the direction perpendicular and to the left (on the
northern hemisphere) of the direction of wave propagation. The operator equation
(22.108) with As given by (22.105) does not permit a solution with v.0/n D v.1/n D
0. Hence, exact reproduction of Kelvin waves is not possible with the full first-
order equations. However, a subsystem, in which the last row and column of As are
dropped (this corresponds to ignoring v.1/n ) possesses solutions of the form

.�.0/; v.0/s ; v.0/n ; �.1/; v.1/s / D .Z0; U0; V0; Z1; U1/ F. s � ! t/; (22.115)

where F is any smooth function, Z0; U0; V0; Z1; V1 are amplitudes,  is the
wavenumber and ! is the frequency.

Problem 22.3 By substituting (22.115) into the (5�5)-reduction of (22.105), prove
that
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(22.116)
vs D v.0/s C nv.1/s D ˙

�
1� n

f

c

	
U0F. s � ! t/;

vn D 0;

in which upper (lower) signs correspond to waves travelling in the positive (nega-
tive) direction of s.

Comparing (22.116) with the classical Kelvin wave solution, we note that

� Equation (22.116) reproduces the phase speed of the classical Kelvin wave
exactly (!);

� Longitudinal velocity vs and surface elevation � decay linearly with distance
perpendicular to and to the left of the propagation direction;

� This decay rate nf=c is the linear approximation of the exponential decay rate,
exp .˙nf=c/, of the classical Kelvin wave;

� The solution (22.116) corresponds exactly to the solution constructed by the so-
called Kelvin-wave-dynamics approach, in which the transverse variations of
vs and � are constructed with a geostrophic balance (see e.g. Defant’s 1953-
construction of the surface seiches of Lake Michigan, see also Mortimer’s
discussion in Chap. 14, Sect. 14.4). As explained there, a patching of the co-tidal
lines with measured phases leaves some flexibility in the determination of the
‘best solution’, but requires observations for the prediction. This flexibility here
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does not exist and the patching of co-tidal lines is unnecessary. Improvement of
a solution can be obtained by increasing the order of the model.

Quasi-standing Kelvin-like wave solutions are constructed by adding a forward
(upper sign) and a backward (lower sign) solution (22.116) and assuming that
F.�/ D cos.�/,

� D
s
H

g
U0

�
cos. s/ cos.! t/ � n

f

c
sin. s/ sin.! t/

�
;

(22.117)
vs D U0

�
sin. s/ sin.! t/ � nf

c
cos. s/ cos.! t/

�
:

Notice that there is no position s D s1 for which vs would vanish for all n and
all time t . Qualitatively, this is exactly the situation encountered by Taylor [34]
when trying to solve the reflection of a Kelvin wave at the closed end of a half-open
gulf. The solution (22.117) enjoys the following properties (compare also Chap. 12.
Sect. 12.2 and formula (12.12)):

� For n D 0 and s D .2j C 1/�=.2/; j D 1; 2; : : : ; � vanishes for all time. These
are the amphidromes at which the surface experiences no elevation for all time.

� For n D 0 and s D j�=, j D 1; 2; : : :, (these are the points on the centre line
between two amphidromic points), the velocity vs vanishes at all time.

� At times t D j�=!; j D 1; 2; : : :, the surface elevation � (velocity vs) is sym-
metrically (anti-symmetrically) distributed across the channel width with max-
imum velocities arising at the shore lines at positions midway between the
amphidromic points. Similarly, for t D ..2j C 1/�=.2!//; j D 1; 2; : : : ; � is
anti-symmetrically, while vs is symmetrically distributed across the channel.

� Lines of constant elevation amplitudes – the so-called co-range lines – are
given by

cos2. s/C
�
n
f

c

	2
sin2. s/ D const:; (22.118)

which agrees with the corresponding equation of the exact theory [see (12.13)]
if in the latter a one-term Taylor series expansion is performed in the transverse
direction.

� Lines of constant phase – the so-called co-tidal lines are described instead by

tan� D �cotan. s/
.�

n
f

c

	
D const.; (22.119)

which are easily seen to radiate out from the amphidromic points.

These properties are all qualitatively as the corresponding properties of the standing
Kelvin waves of the full two-dimensional tidal operator. They differ quantita-
tively from those because of the restriction to the linear terms in the transverse
coordinate n.
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22.7.3 Wave Solutions of the Full First-Order System:
Poincaré-Like Waves

We now return to the full system Asy D 0 with As given by (22.105) and seek
travelling solutions of the form

.�.0/; v.0/s ; �.1; v.1/s / D .Z0; U0; Z1; U1/ cos.! t ˙  s/;
(22.120)

.v.0/n ; v.1/n D .V0; V1/ sin.! t ˙  s/:

Problem 22.4 By substituting (22.120) into (22.108) with As given by (22.105),
show that a linear system Bz D 0 emerges with

z D .Z0; U0; Z1; U1; V0; V1/
T; (22.121)
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This system possesses non-trivial solutions if det B D 0. Show that this equation is
given by

F WD �6�Œ N�2C2.	2C1/��4CŒ N�2.	2C1/C.	2C1/2��2� N�2	2 D 0; (22.123)
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‘In the above, ��1 is the aspect ratio and �; N� and 	 are, respectively, dimension-
less frequency, transverse wavenumber and rotational speed, all normalized with
the longitudinal wavenumber . Two parameters thus govern the dispersion rela-
tion. The aspect ratio describes the ratio of transverse to longitudinal wavelengths.
For � D 1 both are the same, and the motion has no prevailing direction. For � > 1
the elongated nature of the motion must evolve and become more and more pro-
nounced as � is increased. This suggests that if the channel model is meaningful,
real behaviour should be better and better approximated with increasing �. The
second parameter in the dispersion relation, 	; is a dimensionless measure of the
rotation speed. According to its definition it grows with increasing f and L and
with decreasingH . For homogeneous water bodies and realistic values of f; 	 < 1;
for reasons explained later we shall, however, also consider values of 	 between
1 and 20. Once the frequency relation (22.123) is exploited, the free amplitudes
Z0; U0; V0; Z1; U1; V1 can be determined; when this is done the combined solution
has the form

vs D v.0/s C nv.1/s

D �V0
!2 � gH2

�
f! ˙ �2 gH

1

1 � Œ.f =!/2�� n
�

cos.! t ˙  s/;

vn D v.0/n C nv.1/n (22.125)
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2n

���
sin.! t ˙  s/;

� D �.0/ C n�.1/ D �V0H
!2 � gH2

��f � �2!n� cos.! t ˙  s/;

where for reasons of further comparison the abbreviation

�2 D !2 � f 2 � gH2
gH

(22.126)

has been used. This solution may be contrasted with the Poincaré [23] solutions of
the tidal operator. There are two classes of such solutions. In the limit as f ! 0

one class has transversely anti-symmetric, and the other symmetric, surface eleva-
tion. When expanding these solutions into Taylor series of n and truncating at the
lowest-order terms, the ‘anti-symmetric’ solution reveals (22.125) except for the
terms indicated by Œ: : :��. But these turn out to be small when exploiting the fre-
quency relation for practical values of the rotation speed, and hence can be ignored.
The ‘symmetric’ solution is not approximated by (22.125), but this is no surprise,
for in the limit f ! 0; � in (22.125) is odd in the transverse coordinate’, after [27].

It still must be demonstrated that the approximate dispersion relation (22.123),
which has three double roots (for forward and backward motion), gives accurate
values for the frequency–wavenumber relation for all waves characterizing rotat-
ing systems. Moreover, since energy propagates with the group velocity, sufficient
agreement of the latter in the two formulations should also be obtained.
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To derive an explicit formula for the group velocity, note that the dispersion
relation (22.123) can, in dimensional form, be written as F.!; / D 0. It then
follows that

@F
@!

d! C @F
@

d D 0 H) cgr D d!

d
D � @F=@

@F=@! : (22.127)

When writing the dispersion relation in this form and then performing the indicated
differentiations and non-dimensionalizing the result, it can be shown that

cgrp
gH

D 1

�
˛gr;

(22.128)

˛gr D �2Œ2�2 � . N�2 C 2.1C 	2//�C N�2	2
�2Œ3�2 � 2. N�2 C 2.1C 	2//�C N�2.1C 	2/C 1

:

This equation should approximately describe the group velocity for all channel
waves with phase speeds satisfying (22.123).

The above approximate group velocity (22.128) must be compared with the
group velocity of the classical two-dimensional theory.

� For classical Kelvin waves (see Sect. 12.2 in Chap. 12) the computations proceed
as follows:

F � !2 � gH2 H) �2cl � 1 D 0;

@F
@

D �2gH; @F
@!

D 2! H) ccl
gr D gH



!
D p

gH; (22.129)

ccl
grp
gH

D 1

�
.D 1; since �cl D 1/:

� For classical Poincaré waves (see Sect. 12.4 in Chap. 12) we obtain

F � !2 � f 2 � gH.
2 C 2/ D 0; H) �2cl � �2 � 	2 � 1 D 0; .�/
@F
@

D �2gH; @F
@!

D 2! H) ccl
gr D p

gH; (22.130)

ccl
grp
gH

D 1

�cl
.where �cl is a solution of (*)):

Here, 
 is the transverse wavenumber such that �2 WD .
=/2 D .L=B/2 with
longitudinal .L/ and transverse .B/ wave lengths.

� Classical Sverdrup waves are special Poincaré waves with constant crests in one
spatial direction. If this is the longitudinal direction (22.130) yields

�2cl � �2 � 	2 D 0; .C/
(22.131)

cgrp
gH

D 1

�cl
.where �cl is a solution of.C//:
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Table 22.2 Dispersion relation and group velocity for the classical tidal equations

Wave type Dispersion relation Group velocity

Kelvin �2cl � 1 D 0
1

�cl

Poincaré �2cl � �2 � 	2 � 1 D 0
1

�cl

Sverdrup �2cl � �2 � 	2 D 0
1

�cl

Inertial �2cl � 	2 D 0 0

� For inertial waves (see Sect. 12.3 in Chap. 12)

F � !2 � f 2 D 0 H) �2 � 	2 D 0;
(22.132)

@F
@

D 0;
@F
@!

D 2! H) ccl
gr D 0:

These results are summarized in Table 22.2.
The dispersion relation (22.123) and the group velocity formula (22.128) have

been analyzed numerically. In view of the above results the dimensionless frequency
� and the correction factor for the group velocity, ˛gr, should be plotted as functions
of the aspect ratio � D L=B when 	 is held fixed and when 	 is varied but � is
held fixed. Results are displayed in Figs. 22.5 and 22.6 for Kelvin-, Poincaré- and
inertial-type waves. Solid lines show the results for the first-order approximate chan-
nel model, dashed lines display the results for the classical two-dimensional tidal
theory. The three different solutions can be interpreted, respectively, as a Poincaré-
type, Kelvin-type and inertial-type wave. To identify these interpretations, note that
(Fig. 22.7a)

� ! � for Poincaré-type waves;
� ! 1 for Kelvin-type waves;
� ! 	 for inertial-type waves:

9
=

;
as � ! 1:

Similarly, (Fig. 22.7b)

˛gr ! 1 for Poincaré-type waves;
˛gr ! 1 for Kelvin-type waves;
˛gr ! 	 for inertial-type waves:

9
=

;
as � ! 1:

By inspection we also see from (22.125) that for Kelvin-type waves vn=vs � !2 �
gH2, which must be a very small number, implying that vn is small in comparison
to vs . (A more detailed study shows in addition that the terms in (22.125) carrying
an asterisk are negligible.)
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Fig. 22.7 (a) Dimensionless frequency � in a straight rectangular channel as obtained from
(22.123), plotted against � D L=B , for 	 D f=.

p
gH/ D 0:5. Dashed lines are for the disper-

sion relation of the exact two-dimensional tidal operator. (b) Dimensionless correction factor ˛gr

in a straight rectangular channel plotted against � for 	 D 0:5. Dashed lines correspond to exact
results, from [27]. c� J. Fluid Mech., Cambridge University Press, reproduced with permission

Figure 22.8 displays � and ˛gr as functions of the dimensionless rotation
speed for 	 2 Œ0:1; 3� and for � D 0:4. Again, Poincaré-type, Kelvin-type and
inertial-type wave solutions can be differentiated. According to Raggio and Hutter
[27] ‘Fig. 22.8 indicates further that, qualitatively, exact and approximate frequency
curves are close (to one another. . . ). The structure of the frequency curves for
Kelvin- and inertial-type waves near 	 D 1 is of some interest. As 	 increases, a
Kelvin-type wave at small values of 	 becomes inertial-type at large values of 	 ,
and vice versa. The frequency curves of the approximate dispersion relation do not
cross, but only nearly touch each other. This will be called a ‘kissing mode’. This
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Fig. 22.8 (a) Dimensionless frequency � in a straight rectangular channel as obtained from
(22.123) plotted against 	 D f=.

p
gH/ for � D 4. Solid lines are those of the channel model,

dashed lines correspond to the exact tidal operator. (b) Dimensionless correcting factor ˛gr for
the group velocity in a straight rectangular channel plotted against 	 D f=.

p
gH/ for � D 4.

The dashed lines at ˛gr D 1; 0 correspond to the respective values of the two-dimensional tidal
operator, from [27]. c� J. Fluid Mech., Cambridge University Press, reproduced with permission
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was found to be the location where the corresponding group velocities are poorly
predicted (Fig. 22.8b). Further reasons for the existence of this transition zone can
be found (below).

In Fig. 22.8b, the group-velocity correcting factor ˛gr is plotted for the same three
waves; dashed lines indicate the values of the corresponding values for the exact the-
ory. Group velocities for Poincaré waves are only predicted accurately for rotation
speeds 	 < 1, approximately, and those for Kelvin-type and inertial-type waves are
poor when 	 ' 1. This is exactly the region of the ‘kissing mode’ in Fig. 22.8a.
The results of Fig. 22.8a indicate that for the given value of � and the range of
values for 	 Poincaré-type waves appear to be reasonably well predicted. This is
borne out very clearly in Fig. 22.9a, b, which shows plots of the dimensionless
Poincaré frequency as a function of 	 and �, respectively. Calculations were per-
formed for

0 < 	 < 20; 1 < � < 20:

	 D 0means no rotation or an infinitely deep basin, 	 D 20 is an upper bound when
a two-layer model (e.g. the two-layer equivalent depth model of Csanady [6]) is
considered, in which a reduced gravity constant and a reduced depth are introduced
to calculate the thermocline displacements. For homogeneous lakes 	 is certainly
less than 1.

The discrepancies between exact and approximate frequencies grow with
increasing 	 , yet relative errors j.� � �cl/j stay below 10�1 and are extremely
small when 	 < 1. Frequencies and therefore speeds for Poincaré waves being well
predicted does not imply that group velocities for these waves are also obtained
accurately. Exact and approximate dimensionless group velocities are given by
(22.128) and Table 22.2, respectively, in which � must obey the dispersion relations
listed in Table 22.2 and (22.123), respectively. Results are displayed in Fig. 22.10a,
where solid lines correspond to the dimensionless group velocity of the approximate
model and symbols stand for that of the exact theory. For 	 � 1 agreement is fair
unless � is about unity and slightly larger, and relative errors jc.cl/

gr � cgrj=jc.cl/
gr j

are small (Fig. 22.10b). On the other hand, for 	 D 10 the approximate group
velocity has a pole, approximately at � D 8. The location of this pole is obtained
from (22.128) by setting ˛gr D 1. In the classical (exact) formulation it does
not arise, implying that large relative errors must evolve from the application of
the channel model in the neighbourhood of these points. This is corroborated in
Fig. 22.10b.

The above considerations, together with further scrutiny of the dispersion relation
of the full first-order model operating in rectangular basins [. . . ] indicates that the
extended channel theory for the tidal operator based on a two-term Cauchy-series
expansion predicts frequency–wavenumber relations accurately enough, provided
that (1) the longitudinal wavelength is about twice as large (or lager) than the width
of the channel, (2) rotational speeds 	 (defined in (22.124)) stay below unity. This
indicates that the model should not be used for a two-layer model with reduced
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Fig. 22.9 (a) Dimensionless Poincaré-type frequency plotted against 	 D f=.
p
gH/ for various

values of � D L=B . Solid lines correspond to the channel model, dashed lines are for the two-
dimensional tidal operator. (b) Dimensionless frequency � of the Poincaré-type waves plotted
against � for various values of 	 . Solid lines are for the channel model, dashed lines for the two
dimensional tidal operator, from [27]. c� J. Fluid Mech., Cambridge University Press, reproduced
with permission

height and density as proposed in the equivalent depth models. In such a mode
rotational speeds are larger than unity, and group velocities and hence energy-
propagation speeds are incorrectly predicted, as we have just seen above. On the
other hand, calculations with higher-order models indicate that these poles might be
removed to locations outside the practical range of the parameters’ from [27].
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Fig. 22.10 (a)
Dimensionless group velocity
of Poincaré-type waves for
the two-dimensional theory
and the channel model,
plotted against � for
	 D .0:1; 1; 10/. Solid lines
correspond to results of the
channel model; Symbols
indicate group velocities of
the two-dimensional tidal
operator. (b) Relative error of
the group velocity of
Poincaré-type waves when
calculated according to the
classical and approximate
models, respectively, from
[26]. c� Cambridge
University Press, reproduced
with permission
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22.7.4 Reflection of Kelvin-Type Waves at a Barrier
of a Half-Open Rectangular Canal and Free
Oscillations in Rectangles

Reflections of Kelvin waves at a barrier and tidal oscillations in long rectangles of
the two-dimensional tidal equations were treated in Chap. 12, Sects. 12.5 and 12.6.
It was demonstrated there that for quasi-standing Kelvin waves no position along
the channel axis does exist of which the axis-parallel velocity component would
vanish for all positions across the channel at all time. To obtain a reflection with
vanishing longitudinal velocity at a certain cross-section the forward and backward
progressing waves had to be combined with an infinite number of Poincaré waves
of the same frequency. In a particular solution these Poincaré waves are exponential
or oscillatory in the direction of the channel axis. The reflection at a wall is called
complete if all involved Poincaré waves are exponentially evanescent away from the
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wall and then the solution has boundary layer character; the reflection is incomplete
if some of them are oscillatory. The solution of this problem for the two-dimensional
tidal operator is due to Taylor [34].

To allow for exponential decay of the involved fields, as one moves away from
the barrier for the first-order model, it will now be assumed that

.�.0/; v.0/n ; v.1/s / D .Z0; C1; B1/exp .�
 s/ cos.! t/;
(22.133)

.v.0/s ; �.1/; v.1/n / D .A1; Z1;D1/exp .�
 s/ sin.! t/;

in which 
 may be complex valued. Depending on the sign of the real part of 
,
these fields decay exponentially as one moves into the ˙ s-direction. Substituting
(22.133) into (22.108) with As given by (22.105) yields a homogeneous linear sys-
tem of equations for �.0/; : : : ; v.1/n of which the characteristic equation agrees with
(22.123) if the substitution 
 D i is made. For values of 
 satisfying this equation,
the combined solution (22.133) has the form

vs D A1exp .�
 s/
�

sin.! t/C n
!

2gH C !2 � f 2
f .f 2 � !2/ cos.! t/

�
;

vn D A1exp .�
 s/
�

2gH C !2

gf
cos.! t/ � n



2gH C !2 � f 2
f 2 � !2 sin.! t/

�
;

� D A1exp .�
 s/
�

�
H
!

cos.! t/C n

2gH C !2 � f 2

gf
sin.! t/

�
; (22.134)

in which A1 is a constant amplitude.

22.7.4.1 Reflection at a Barrier

We have already seen when constructing quasi-steady Kelvin-type waves of the
.5 � 5/-system in (22.117) that there is no position s D s1 with no motion vs for
all n and t . The same inferences can also be drawn for the .6 � 6/-system with the
solutions (22.125). However, on adding (22.117) (or (22.125)) to (22.134), positions
of vanishing vs-velocities can be found. This will be shown here for the simpler sys-
tem (22.117). Considering a semi-infinite gulf, conditions of reflection at a barrier
s D s1 are

vKelvin
s .s1/C vexp

s .s1/ D 0; (22.135)

where vKelvin
s is given by (22.117) and vexp

s by (22.134). Equation (22.135) is an iden-
tity involving sin.!t/ and cos.!t/ in a linear combination of which the coefficients
must separately vanish; this yields

A1 D �U0exp .
 s1/ sin. s1/;
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(22.136)

tan. s1/ D � exp .�
 s1/
p
gH
!


2gH C !2 � f 2
f 2.f 2 � !2/

:

The first relates the amplitudes of vKelvin
s and vexp

s (once s1 is known), the second
affords for given ! and  at a barrier located at s D s1 evaluation of 
 and s1 from
(22.123) (in which  is replaced by �i
). The compound wave is obtained when
(22.117) and (22.134) are added together. With c2 D gH , it reads10

vs D U0

�
Œsin. s/ � exp .�
.s � s1// sin. s1/� sin.! t/

�n
�
f

c
cos. s/C exp .�
.s � s1// sin. s/!


2c2 C !2 � f 2

f .f 2 � !2/

�
cos.! t/

�
;

vn D U0exp .�
.s � s1// sin. s1/

�

2c2 C !2

gf
cos.! t/

�n


2c2 C !2 � f 2
f 2 � !2 sin.! t/

�
; (22.137)

� D U0

s
H

g

� �
cos. s/ � exp .�
.s � s1//


 c

!
sin. s1/

�
cos.! t/

�n
�
f

c
sin. s/C exp .�
.s � s1//


2c2 C !2 � f 2
fc

sin. s1/

�
sin.! t/

�
:

‘As is evident, a Kelvin wave propagating along one side of a half-open rectangular
basin cannot always be regularly reflected as a proper Kelvin wave (propagating
along the other side and in the opposite direction), because far distant from the bar-
rier as s ! ˙1 the exponential solution has true exponential behaviour only when
the real part of 
 differs from zero, for which this contribution is asymptotically
small. This corresponds to Taylor’s problem, but our approximate analysis is very
much simpler than was his. Frequency ranges for which the exponential decay in
(22.137) occurs lead to solutions with boundary-layer structure and the reflection is
complete. If 
 is imaginary, there is no exponential decay, and a forward-moving
Kelvin wave cannot be reflected as a backward-moving Kelvin wave, an incomplete
reflection.

To determine the frequency ranges where solutions with boundary-layer charac-
ter may exist, we renormalize the quantities (22.124) with N�, and introduce

10 In the original paper [27], the third formula is in error.
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N� D �

N� D !Bp
12gH

;

N2 D 1

N�2 D 1

12
�2
�
b

L

	2
D 2

.12=B/2
D � 
2

.12=B/2
; (22.138)

N	 D 	

N� D fB
p
.12gH/

:

The dimensionless frequency N� is a parameter which involves the essential quan-
tities characterizing the reflection, namely the width B (instead of the longitudinal
wavelength L, which has less physical relevance since the channel is semi-infinite),
the depth H of the channel, and the frequency of the wave’ [27]. N	 is a differently
scaled rotation speed and N is scaled as in (22.124).

Problem 22.5 Rewrite the dispersion relation (22.123) in terms of the new scales
(22.138) and show that, viewed as an equation for N, it can be written as

A N4 C E N2 C C D 0; (22.139)

A D N�2; E D .2 N�2 � 1/. N	2 � N�2/;
C D N�2 � N�2. N�2 � 1 � 2 N	2/C N	2.1C N	2/� : (22.140)

So, for given frequency N� and given rotation speed N	; N can be determined from
(22.139), which, alternatively, gives 
; boundary layer solutions emerge when N
has a non-vanishing imaginary part. To see when this happens, note that solutions
of (22.139) for N are given by

N2 D �E ˙ p
E2 C 4AC

2A
D �E ˙ p

D

2A
; (22.141)

where the discriminant

D D �
4 N	2 C 1

� N�4 � 2 N	2 �2 N	2 C 1
� N�2 C N	2 (22.142)

can be regarded as a bi-quadratic equation for N� . Verify (22.142) and show that its
positive roots, D D 0, are given by

N�1 D N	
4 N	2 C 1

; N�2 D N	: (22.143)

(Negative roots need not be evaluated; they correspond to the same oscillation.)
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Fig. 22.11 Wavenumber N in the frequency range for the first-order channel model, from [27].
c� Cambridge University Press, reproduced with permission

So, for positive N�

D

8
<̂

:̂

> 0 . N� < N�1; N� > N�2/;
D 0 . N� D N�1; N� D N�2/;
< 0 . N�1 < N� < O�2/:

(22.144)

For N�1 < N� < N�2, the characteristic equation (22.139) possesses four complex roots
1;2;3;4; therefore, the solution (22.134), viewed as functions of s have oscillatory
exponential character as one moves away from the barrier. Figure 22.11 illustrates
this in the second left sketch. This situation corresponds to complete reflection.

Consider next the two isolated points on the frequency axis where the discrimi-
nant vanishes. For N� D N�2 D N	 , D D E D 0 and consequently 1;2;3;4 D 0; no
wave propagates along the s-axis. Scrutiny of (22.125) shows that � is very small
in this case while vs is not. The corresponding wave is therefore of inertial type.
For N� D N�1; E > 0, and therefore 2 > 0 so that s is real; waves are purely
oscillatory.

Raggio and Hutter continue: ‘The above relates to the interval N�1 � N� � N�2 as
shown in Fig. 22.11. Three different wave types have already been encountered. For
N� D N�1, incomplete reflection arises; when N�1 < N� < N�2, complete reflection is
possible and when N� D N�2 D N	 no wave propagates. It is advantageous to inter-
rupt the discussion here and to complement Fig. 22.11 with Fig. 22.12. It shows for
given frequency N� in the range 0 < N� < 2 and for given rotation speed N	 D 0:5

real and imaginary parts of N as obtained by exploiting both frequency relations,
(22.139) of the channel approximation and the corresponding exact frequency rela-
tions of Table 22.2 (written in terms of the overbarred quantities). Because we are
only interested in the reflection properties of (22.137), and since N and 
 are related



592 22 A Class of Chrystal-Type Equations

σ

γ
σ =

σ =21 (γ2 + μ2)
1
2
__ _ _

___

_
γ =0.5

0 0.5 1.0 1.5 2.0

3

2

1

0

1

Kelvin

Poincaré
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Fig. 22.12 Wavenumber N in the frequency range N� 2 Œ0; 2:0�. Either two real (of a total of four)
roots or a positive real and a negative imaginary part of the four complex roots are plotted. Thick
lines correspond to the channel approximation, thin lines to the two-dimensional tidal operator.
Inertial and Sverdrup wave motions are well predicted by the model, as is the superinertial branch
N� > N	 , from [27]. c� Cambridge University Press, reproduced with permission

by (22.138)2 it suffices to plot either two real parts of N (of all four real roots) or
else when Ns is complex one positive real part and one negative imaginary part.
This is done in Fig. 22.12. A real N (imaginary 
) will correspond to a purely oscil-
lating solution, and a conjugate complex N will give rise to exponentially decaying
(positive imaginary part) oscillatory behaviour. The classical Kelvin- and Poincaré-
type waves, obtained from Table 22.2 and (22.138)2, are plotted as thin lines and
inertial-and Sverdrup-type waves are marked as the points for which N D 0; N� D N	
and N� D . N�2C N	2/1=2. Thick solid lines correspond to the channel solution using the
two-term Cauchy-series expansion. It is seen that in the subinertial range N� � N� < N	
the exact theory and the channel model lie far apart. This is a first indication that dif-
ficulties might arise with the channel approximation for wave motions at subinertial
frequencies.

It still remains to discuss the case for whichD > 0 in (22.142). According to the
lemma of Vieta applied to the parabola (22.139) one has

N21 C N22 D .2 N�2 � 1/. N�2 � N	2/
N�2 ; (22.145)

N21 N22 D N�2. N�2 � 1 � 2 N	2/C N	2.1C N	2/; (22.146)
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where N21 and N22 are the two roots of (22.139). Some cases have to be distinguished.
For N� < N�1 the right-hand sides of (22.145) and (22.146) are positive,11 so all Ns
assume real values and all waves with frequencies N�2 � N	2=.4 N	2 C 1/ D N�21 are
purely oscillatory. Two of these waves can be interpreted to have Kelvin character;
the other two are due to the mathematical approximation of the channel model and
have no physical interpretation. This follows from Fig. 22.12, which shows that two
wavenumbers are close to those of the classical Kelvin waves, but it can also be
inferred from a careful analysis of the velocities and surface elevations (22.134)3
that correspond to these solutions.

The superinertial domain N� > N�2 D N	 separates into two subdomains as follows.
For N�2 D N�2C N	2; N21 C N22 > 0, N21 N22 D 0. Thus, there are two solutions where the
Ns are positive, representing two oscillatory solutions and two solutions where no
wave propagates in the direction of the channel axis, since the Ns vanish. The first
is of Kelvin-type, the latter represents Sverdrup waves. For N�2 > N�2C N	2 the right-
hand sides of (22.145) and (22.146) are positive, and the emerging waves are thus
oscillatory. These waves are Poincaré- and Kelvin-type and have no boundary-layer
structure (see Fig. 22.11). As is evident from Fig. 22.12, the classical solutions and
the approximations are close.

Finally, for N�22 < N�2< N�2 C N	2, since N21 N22 < 0, but N21 C N22 > 0, the two
N’s are real and two are imaginary, giving rise to exponential and/or purely oscil-
latory solutions with Kelvin behaviour (Figs. 22.9 and 22.10). The latter figure
clearly shows where Kelvin- and Poincaré-type waves are reasonably predicted
by the channel model. The shift between the exact Poincaré solution and that of
the channel model is due to the use of Cauchy expansions. Also, the superiner-
tial . N� < N	/ Kelvin branch deviates more and more from the exact Kelvin wave
as N� decreases, approaching N	 , where the inertial motion obtains. As N� is further
decreased there appears in the model a domain of exponential-type behaviour which
is not exhibited by the two-dimensional equations; this points at a limitation of
the channel model. For even smaller frequencies Kelvin-type behaviour is recov-
ered, but a second oscillatory solution branch appears with no physical significance.
Figure 22.12 also brings out very clearly the reflection properties of Kelvin waves.
For N�2 > . N�2 C N	2/ a reflected Kelvin wave will be essentially of Poincaré-type,
since it will have a Poincaré component. For frequencies below the Sverdrup fre-
quency, a Kelvin wave will, however, be essentially reflected as a Kelvin wave,
since the reflected wave is either Kelvin-type or exponential-type.

A modification of Fig. 22.11, more appealing and better suited for a comparison
with results from numerical solutions of the tidal equations, and valid for � D 5, is
given in Fig. 22.13. The solid lines correspond to �2 D Œ	2 N�2=.4	2C N�2/; 	2; 	2C
N�2� and separate the four different domains introduced above. As far as reflection of
a progressing wave is concerned, only two physically significant domains need be
distinguished, the Poincaré and Kelvin modes, as indicated. The domain ‘Poincaré

11 The analytical proof of this has not been successful; however, numerical evaluation of the right-
hand sides of (22.145) and (22.146) for realistic values of N	2 and N� D .N�1 � "/ yields the stated
result.
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Fig. 22.13 Zones for
characteristic eigenmode
types. In the hatched area,
modes have Poincaré
character, in the unhatched
area they are of Kelvin-type.
The dashed line represents
the first Kelvin mode in an
enclosed rectangle. It has one
amphidromic point and is the
lowest transversely
antisymmetric mode; it is
thus denoted by (1, 0). The
dot-dashed line (9, 0)
represents the first Poincaré
mode arising in enclosed
rectangular basins, from [27].
c� Cambridge University

Press, reproduced with
permission

Poincaré modes

modes’ is so indicated despite the possibility of Kelvin solutions (see Fig. 22.11)
because incoming Kelvin-type waves are reflected by Poincaré-type waves so that
the total wave exhibits Poincaré structure. Similarly, for frequencies smaller than
the Sverdrup frequency of the channel model, Kelvin waves are reflected by Kelvin
waves or exponential type solutions, resulting in Kelvin-like behaviour. Figure 22.13
may be used to estimate whether certain oscillations arising in a basin are of Kelvin-
or Poincaré-type. Depending on the value of 	 an oscillation of given prescribed
frequency may be Poicaré-type in a short and deep channel-like basin but become
Kelvin-type as the channel becomes longer and more shallow as 	 increases. Such
estimates may be helpful in a priori estimates to decide whether a certain eigen-
mode of a basin gives rise to both cyclonic and anti-cyclonic amphidromic systems’
after [27].

22.7.4.2 Rectangular Basins

Eigenfrequencies of barotropic seiches in rectangular basins of constant depth
can, in principle, be determined by superposition of quasi-standing Kelvin and/or
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Poincaré waves with semi-wave lengths of an integer fraction of L and exponen-
tial solutions comprising reflections at two barriers. This implies that vs , vn and �
will involve exp .�
 s/ and exp .C
 s/ to match the no-flow condition through the
two lake ends. Since the exponential function will appear with positive and neg-
ative arguments, it is advantageous to use the hyperbolic functions cosh.
 s/ and
sinh.
 s/ instead and to place the origin of the coordinate system in the middle of
the rectangle with length L and width B . A trial solution for (22.108) that replaces
the boundary layer solution then takes the form

�.0/ D Z0 cosh.
 s/ cos.! t/; �.1/ D Z1 sinh.
 s/ sin.! t/;

v.0/s D U0 sinh.
 s/ sin.! t/; v.1/s D U1 cosh.
 s/ cos.! t/; (22.147)

v.0/n D V0 sinh.
 s/ cos.! t/; v.1/n D V1 cosh.
 s/ sin.! t/:

The trigonometric functions are chosen here such that (22.108) with As given
in (22.105) can identically be satisfied. Similarly, the selection of the hyperbolic
functions has been chosen to yield an anti-symmetric elevation profile.

Substitution of (22.147) into (22.105) and (22.108) yields

B�y� D 0 (22.148)

with
y� D .Z0; U0; V0; Z1; U1; V1/

T

B� D

2

6
6
6
66
6
6
6
6
66
6
6
4

� !

H

 0 0 0 0


 g ! �f 0 0 0

0 f �! g 0 0

0 0 � 12

B2
� !

H

 0

0 0 0 
 g �! �f
0 0 0 0 f !

3

7
7
7
77
7
7
7
7
77
7
7
5

: (22.149)

Note the similarity of B� with B given in (22.122). The homogeneous linear system
(22.148), (22.149) possesses non-trivial solutions for Z0; : : : ; V1 if det B� D 0, i.e.

�6�Œ N�2C2.	2� N
2/��4CŒ N�2.	2� N
2/C.	2� N
2/2��2C N�2 N
2	2 D 0; (22.150)

where

� WD !L

�
p
gH

; N�2 WD 12

�2

�
L

B

	2
;

	 WD fL

�
p
gH

; N
 WD 
L

�
:

(22.151)



596 22 A Class of Chrystal-Type Equations

Problem 22.6 For frequencies satisfying the dispersion relation (22.150) determine
Z0; : : : ; V1 from (22.148) and (22.149) and with these the functions (22.147). Show
that the first-order solution for vs ; vn; � then becomes

vs D A1

�
sinh.
 s/ sin.! t/C n


!

f


2gH C !2 � f 2

!2 � f 2
cosh.
 s/ cos.! t/

�
;

vn D A1

�

2gH C !2

!f
sinh.
 s/ cos.! t/

�n
 

2gH C !2 � f 2

!2 � f 2 cosh.
 s/ sin.! t/

�
; (22.152)

� D A1

�

H

!
cosh.
 s/ cos.! t/C n


2gH C !2 � f 2

gf
sinh.
 s/ sin.! t/

�
;

where A1 is a free amplitude. The above expressions (22.152) represent indeed
standing waves, but they cannot satisfy the boundary conditions

vs D 0; at s D ˙L
2
; (22.153)

since no location s can be found for which vs would vanish for all n and all t .
A further, non-exponential solution must be found such that (22.152) plus this fur-
ther solution allow satisfaction of (22.153). Such solutions have been constructed in
(22.112) for Kelvin-type waves of the .5�5/-system and in (22.125) for Kelvin- and
Poincaré-type waves of the .6�6/-system. We shall here present the solution for the
simpler system (22.112). Using the superscript .�/Kelvin for (22.112) and .�/hyp: for
(22.152), the boundary condition (22.153) takes the form

vKelvin
s .˙L

2
; n; t/C vhyp:

s .˙L
2
; n; t/ D 0: (22.154)

If one substitutes vs from (22.152)1 and (22.112)2 into (22.154), an equation of the
form

.�/ sin.! t/C Œ�� cos.! t/ D 0 8t
emerges, which must hold for all time, implying .�/ D 0; Œ�� D 0. This yields

A1 D �U0
sin
�
1
2
L
�

sinh
�
1
2

L
� ;

(22.155)
	2.�2 � 	2/ tanh.1

2
� N
/C � N
. N
2 C �2 � 	2/ tan.1

2
��/ D 0;

where U0 is the free amplitude of the Kelvin solution (22.112). With (22.155)1 the
compound solution of the first-order problem can be expressed as
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vs D U0

� "

sin . s/ � sin
�
1
2
L
�

sinh
�
1
2

L

� sinh.
 s/

#

sin.! t/

�n
"
f

c
cos. s/C 


!

f

sin
�
1
2
L
�

sinh
�
1
2

L
�

2c2 C !2 � f 2

!2 � f 2
cosh.
 s/

#

cos.! t/

�
;

vn D �U0 sin
�
1
2
 L

�

sinh
�
1
2

L

�
�

2c2 C !2

!f
sinh.
 s/ cos.! t/

�n
 

2c2 C !2 � f 2

!2 � f 2 cosh.
 s/ sin.! t/

�
; (22.156)

� D U0
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H
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!

sin
�
1
2
 L

�

sinh
�
1
2

L

� cos.
 s/
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cos.! t/
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"
f

c
sin. s/ � 
c2 C !2 � f 2
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sin
�
1
2
 l
�

sinh
�
1
2

L

� sinh.
 s/

#

sin.! t/

�
;

in which c2 D gH . In this solution, the dispersion relation (22.150) and (22.155)2
together determine the eigenfrequency � and the decay parameter N
.

Numerical solutions of (22.150) and (22.155)2 have been calculated, and a selec-
tion of results is given in Fig. 22.14. This figure displays the first eigenfrequency
� as a function of the rotational speed 	 for a square and for rectangles of length
4, 5 and 16 times their width. The curve for � D 5 corresponds to the dashed line
in Fig. 22.13. This mode has one amphidromic point and is the lowest-order trans-
versely anti-symmetric solution, and is thus denoted by the symbol (1, 0). Results
have also been obtained for higher-order modes; for mode (9, 0) these are shown in
Fig. 22.13. It may also be recognized that for elongated rectangular basins the (1, 0)
eigenfrequency is fairly insensitive to the rotational speed. The inertial mode is also
shown for completeness, for it is also an eigenfrequency of the system. It is also
noteworthy in this connection to recognize that the co-phase lines of a Poincaré-
type mode may rotate in the clockwise direction which is typical for Poincaré
behaviour. (Recall that Kelvin wave dynamics needed to assume that the co-phase
lines are all moving in the counterclockwise direction.) Therefore, the first-order
theory reproduces all essential features of the two-dimensional tidal theory qualita-
tively correctly. We shall see that higher-order models also improve the accuracy of
the prediction.

It is not the intention here to explore the channel approximation fully for rect-
angular cross sections. One could, for instance complement Fig. 22.14 with similar
plots for higher frequencies and could further treat the reflection problem using
(22.125) rather than (22.112). This would lead to results which would demonstrate
better agreement with the exact results and would simply provide an alternative
to the work of Rao [29], compare also Chap. 12, Sect. 12.6. Rather, the intention
was to search for the conditions of validity of the channel model for its use in
real natural elongated basins. As far as rectangles are concerned, limitations of
applicability have been found, indicating that the channel model is likely to be
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Fig. 22.14 First eigenfrequency � for a square and rectangles of length 4, 5 and 16 times their
width, plotted against the rotation speed 	 , from [27]. c� Cambridge University Press, reproduced
with permission

a valid approximation for superinertial frequencies, but may be problematic for
motions at frequencies below the inertial frequency. Since superinertial frequen-
cies are the domain of gravitational motions, and rotational modes are subinertial,
it is concluded that the channel approximation will predict gravitational modes
reasonably well.

22.8 Ring-Shaped Basins with Constant Depth

22.8.1 Solutions of the Two-Dimensional Tidal Equation

Solutions to the frictionless tidal equations in polar coordinates have been con-
structed by Lord Kelvin [16]. For circular basins they are discussed by Lamb [18]
and Howard [12]. Also other interesting situations can be found in Pnuelli and
Pekeris [22].

If .r; �/ are polar coordinates and .vr , v	 ) the radial and azimuthal physical
velocity components, the boundary value problem for free barotropic oscillations
for a ring-shaped basin takes the form

@vr
@t

C f v	 C g
@�

@r
D 0;

@v	
@t

� f vr C g
1

r

@�

@�
D 0;

@�

@t
C 1

r

�
@

@r
.rvrH/C @

@�
.v	H/

�
D 0;

9
>>>>>=

>>>>>;

r 2 .ri ; ra/;
� 2 .�1; �2/; (22.157)
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vr D 0; at r D ra; r D ri ; � 2 Œ�1; �2�;
v	 D 0; at � D �1; � D �2; r 2 Œri ; ra�:

(22.158)

Here, ri and ra denote the inner and outer radii of the ring and .�1; �2/ bound the
sector of the ring. If vr ; v	 ; � are proportional to exp .i! t/, the amplitude functions
(carrying a tilde) must satisfy the equations

r2 Q� C !2 � f 2

gH
Q� D @2 Q�

@r2
C 1

r

@ Q�
@r

C 1

r2
@2 Q�
@�2

C !2 � f 2
gH

Q� D 0;

Qvr D g

!2 � f 2

�
i!
@

@r
� f 1

r

@

@�

	
Q�; (22.159)

Qv	 D g

!2 � f 2
�
f
@

@r
C i!

1

r

@

@�

	
Q�;

with the no-flux boundary conditions

f
@ Q�
@r

C i!

r

@ Q�
@�

D 0; at � D �1; �2;

(22.160)

i!
@ Q�
@r

� f

r

@ Q�
@�

D 0; at r D ra; ri :

In the above,H is the water depth and r2 the two-dimensional Laplace operator.
‘Solutions12 of (22.159)3, (22.160) with period 2� for � have separation form

Q� D Z.r/exp .i�/;  D 0;˙1;˙2; : : : ,where  is positive (negative) for a wave
progressing in the negative (positive) direction of � ; they are given by

Z.r/ D

8
ˆ̂
<̂

ˆ̂
:̂

Ň
1J�.kr/� Ǒ

1Y�.kr/; k
2 D !2 � f 2

gH
> 0;

ˇ2I�.kr/ � Ǒ
2K�.kr/; k

2 D !2 � f 2

gH
< 0;

(22.161)

in which J� ; Y� ; .I� ; K�/ are the (modified) Bessel functions of the first and sec-
ond kind. The ˇ-coefficients are determined by satisfying the boundary conditions
(22.160) at r D ri , ra. This yields the dispersion relation

N̨1 Ǒ
1 � Ǫ1 Ň

1 D 0: (22.162)

12 This text is taken from Raggio and Hutter [14, 24].
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in which

N̨1 D ! k riJ
0
�.k ri / � f  J�.k ri /;

Ǫ1 D ! k riY
0
�.k ra/� f  Y�.k ri /;

Ň
1 D A1.! k raJ

0
�.k ra/� f  J�.k ra//;

Ǒ
1 D A1.! k raY

0
�.k ra/� f  Y�.k ra//:

9
>>>>=

>>>>;

k2 > 0 (22.163)

Primes indicate differentiation with respect to the argument. When k2 < 0; J� and
Y� in (22.163) must be replaced by I� and K� and the argument by

pjk2jra andpjk2jri:.
The ensuing comparison with the channel model is simplified when the abbrevi-

ations

a D B

2Rm
< 1; Rm D 1

2
.ra C ri /; B D .ra � ri /;

m D 

�
1C f

!

	
D 

�
1C Rmf=

p
gH

Rm!=
p
gH

	
D 

�
1C 	

�

�
; (22.164)

q D k Rm D �2 � 	2

are introduced; a is an aspect ratio, a measure for the curvature and the narrowness
of the ring. For a D 0 the straight channel is obtained and a D 1 corresponds to the
full circle (excluding the origin). With (22.164) the dispersion relation becomes

q.1C a/J��1.q.1C a//�mJ�.q.1C a//

q.1C a/Y��1.q.1C a//�mY�.q.1C a//

D q.1 � a/J��1.q.1 � a//�mJ�.q.1 � a//
q.1 � a/Y��1.q.1 � a//�mY�.q.1 � a//

; k2 > 0: (22.165)

For non-rotating basins and small a, using Taylor series expansions, this equation
was explored by Johns and Hamzah [15]. Notice that the dispersion relation is not
invariant under the transformation  ! �, implying that frequencies correspond-
ing to wave trains progressing in the positive and negative direction of � are different
from each other, if the wavenumber jj is the same in the two situations. On the other
hand, two waves travelling in opposite directions at the same frequency possess
different wavenumbers.

In circular basins, Poincaré-, Kelvin- and inertial-type waves in an annular basin
possess a radial component, since (22.159) and (22.160) do not allow solutions
for which the radial velocity component would vanish for all r 2 Œri ; ra]. They
can be distinguished from Poincaré-type waves because their amplitude falls off
rapidly away from the boundary and they move in the direction of rotation. The
exploitation of (22.165) will be discussed together with the corresponding equation
of the channel model.
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22.8.2 First-Order Channel Model

Consider

ARy D 0 with y D .�.0/; v.0/
	
; v.0/s ; �.1/; v.1/

	
; v.1s /; (22.166)

where AR is given in (22.107). Two separate solutions will be presented of which
the first allows approximate construction of Kelvin-type waves and the second gives
the full treatment including Poincaré- and inertial-type waves.

22.8.2.1 Kelvin-Type Waves

Even though Kelvin-type waves in curved channels cannot be characterized by van-
ishing transverse velocity, these velocity components cannot become large in narrow
channels, since they must vanish at the side boundaries. By way of approximating
the true solution we may nevertheless set v.0/n D v.1/n D 0 and then find an approxi-
mate solution from the appropriate combination of the six equations (22.166). Thus,
assuming solutions of the form

y D .Z0; U0; 0; Z1; U1; 0/F.s ˙ ct/; (22.167)

where c is a phase speed, six equations for four unknowns are obtained. Setting
v.0/n D v.1/n D 0 corresponds effectively to ignoring transverse momentum balance;
the dispersion relation is obtained by considering only those four equations which
correspond to zeroth and first order mass and longitudinal momentum balances.
When the determinant of the corresponding system of equations is set to zero, the
following expression for the frequency or phase speed is obtained:

�2 D c2

gH
D !2=2

gH
D 1
�
1˙ ap

3

�2 : (22.168)

There are two values of c (or �) depending on whether the wave is progressing
in the clockwise (positive sign) or anticlockwise (negative sign) direction. The
two frequencies lie above and below the Kelvin frequency of a straight channel
and approach the latter as a ! 0. Whereas the frequency relation was derived
using balance relations of mass and longitudinal momentum, but ignoring transverse
momentum balance, the amplitudes in (22.167) can only be found by combining the
two mass balance equations with the two zeroth-order momentum equations. Here,
lowest order transverse momentum balance is accounted for. This allows to assign
the necessary weight to the quasi-geostrophic balance. ‘Solving’ the equations in
this way gives for the longitudinal velocity and the surface elevation
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;
F.s � ct/:

Besides the aspect ratio a second parameter, df=c, has entered whose order of mag-
nitude is 10�5 or smaller, justifying (22.169) in the limit df=c ! 0. This property
indicates how the approximate and rather ad-hoc procedure of obtaining (22.168),
(22.169) can be made more rigorous, if desired, by an asymptotic analysis in which
y D .Z0; U0; 0; Z1; 0/F.s ˙ ct/ is assumed, first-order transverse momentum is
neglected and solutions of the emerging homogeneous system of equations is sought
in the limit df=c ! 0. The resulting approximate solution is (22.168) and (22.169).

Notice, finally, that by combining a clockwise and anticlockwise moving wave
(22.169) with F replaced by cos.�/ or sin.�/, a Kelvin amphidromy can be deduced,

vs D U0

2

˚
cos. s/

�
.AC CA�/ cos.! t/ cos.�! t/

C .AC �A�/ sin.! t/ sin.�! t/
�

� sin. s/
�
.AC C A�/ cos.! t/ sin.�! t/

C .AC �A�/ sin.! t/ cos.�! t/
� 

; (22.170)

in which
! D 1

2
.!C C !�/ and �! D 1

2
.!C � !�/: (22.171)

A˙.n/ denotes the bracketed term in (22.169)1, when the upper and lower signs
apply. In the limit as Rm ! 1 (a ! 0), �! ! 0, ! ! p

gH and (22.170)
agrees with (22.117), identical with the straight channel Kelvin amphidromy. There
is no position s D s1 for which vs would vanish for all n and t . Qualitatively this
corresponds to the situation encountered by Taylor [34] when trying to solve the
reflection problem of a Kelvin wave in a half open gulf. Solving the reflection prob-
lem would correspond to constructing boundary layer solutions of ARy D 0, but
(22.170) is nonetheless physically meaningful in a closed ring (lake with an island),
if the periodicity condition  Rm D l; l D 1; 2; 3; : : :, is applied. From (22.167) this
yields corresponding eigenfrequencies
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!˙l D
p
GH l

Rm

1

1˙ ap
3

: (22.172)

22.8.2.2 Wave Solution of the Full First-Order System

For the full .6 � 6/-system of equations solutions of the form

y D y0exp .i. s C ! t// (22.173)

yield again a homogeneous system of equations for the amplitude y0 with ! as
eigenvalue for given . The evaluation of the characteristic equation and the deter-
mination of eigensolutions is very elaborate, but routine and little can be learned
from the presentation of the analysis. We confine attention here to a comparison of
the dispersion relation of the exact theory, (22.165) and that resulting from (22.166).
Substituting (22.173) into (22.166) and setting the determinant of the emerging
system of equations equal to zero yields

f.1 � �2/3 C 2�2g �6 �
�
2	2f.1 � �2/3 C �2g � 2�4 C .1 � �2/2

�2

�
�4

C f2	f.1 � �2/2 C �2gg �3 C
�
	4.1 � �2/3 C 	2

.1 � �2/2
�2

� �4 � �2 � 2C 1

�2

�
�2

C f	3.�2 � 1 � 2�4/C 2	.1 � �2/g � � 	2 .1 � �2/2

�2
D 0: (22.174)

in which

�2 D 1

3
a2; � D !


p
gH

; 	 D f 
p
gH: (22.175)

The dispersion relation thus has the form f .�; 	; a/ D 0. It was solved numerically,
and results were compared with those obtained from the exact relations (22.165).
In a first set of calculations the aspect ratio was given the fixed value a D 0:5 and
	 was varied between 0 and 3. For a homogeneous water body we certainly have
	 < 1, but 	 > 1 includes the case of the baroclinic mode of a two layer system with
reduced height and density (this is the TED-model). Figure 22.15 shows the results
for 0 < 	 < 0:55. The solid lines represent the real solutions to the channel model
dispersion relation, representing Poincaré-, Kelvin- and inertial-type wave motions.
The inertial type motion is also a solution. Each of the clockwise and anti-clockwise
motions leads to pairs of frequencies. Figure 22.15 contains also results for the
approximate solution of a straight channel (shown as dashed lines). These were
obtained from the dispersion relation of straight channels but can also be deduced
by exploring (22.174) in the limit a ! 0 (� ! 0). Except for the Poincaré-type
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Fig. 22.15 Dimensionless free wave frequency � in a ring shaped channel, plotted against the
rotation speed 	 D f=.

p
gH/ between 0 and 0:55 for the aspect ratio a D B=.2R/ D 0:5. Solid

lines represent the approximate solutions. Dashed lines show the approximate solutions ignoring
the curvature. The solutions of the two-dimensional tidal operator are indicated by the letters RC

and R�, the former for the counterclockwise travelling wave, the latter for a clockwise motion (R
if the difference of the two is not visible on the graph), from [14]. c� Springer, reproduced with
permission

wave these approximate solutions lie between the two ring solutions. Figure 22.15
also contains the results of the two-dimensional theory (22.165). These solutions
are indicated by the letters RC; R andR�, the former for counterclockwise rotating
waves, the latter for a clockwise motion, and R if the difference of the two is not
visible on the graph.

For Kelvin-type waves the approximate and exact solutions agree reasonably
well; for Poincaré-type waves differences are larger, but relative errors stay below
12%. Because the straight channel solution also has a relative error of comparable
magnitude compared with the corresponding two-dimensional solution, we should
not conclude that the straight channel solution is superior for the description of
curved channels. The results, however, clearly indicate that, as far as frequencies
are concerned, the straight channel equations appear to be sufficiently accurate. But
when curvature is included, the channel model shares with the two-dimensional the-
ory the property of giving frequency pairs of each type of wave. Similar results are
also shown in Fig. 22.16, but now for 0 < 	 < 3. For values of 	 larger than 3 no
special behaviour occurs. In the transition zone near 	 D 1, two frequency solutions
cannot be real for a given wave number . This is no surprise since in this region
there can be purely oscillating solutions in the straight channel, which was already
observed for rectangles. Figure 22.17 displays the same results for a fixed rotational
speed 	 D 0:5 and values of the aspect ratio between 0 and 1. Approximate fre-
quencies are insufficiently accurate for basins approaching the full circle, a D 1.
Further calculations indicate that the smaller 	 the better the approximation.

Summarizing these findings, we conclude that the channel approximation in ring
shaped basins is reasonable as long as the aspect ratio a and the rotation speed 	
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Fig. 22.16 Dimensionless free wave frequency � in a ring shaped canal, plotted against the rota-
tion speed 	 2 Œ0; 3� for the aspect ratio a D 0:5, from [14]. c� Springer, reproduced with
permission

Fig. 22.17 Dimensionless
free wave frequency � in a
ring shaped canal, plotted
against the aspect ratio
a 2 Œ0; 1�, for the rotation
speed 	 D 0:5. For further
explanation see also
Fig. 22.15, from [14].
c� Springer, reproduced with

permission
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are both smaller than 0:5. Under these restrictions the influence of the curvature of
the channel is negligible, however. To the oceanographers or limnologists this may
serve as an a posteriori proof for their common procedure when blindly applying
the Chrystal equation (valid in Cartesian coordinates) to a curvilinear system of
coordinates.
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22.9 Higher Order Chrystal-Type Models Applied to Free
Oscillations in Natural Basins

In the previous two sections our attention was focused on the performance of a first-
order model to tidal oscillations. It was shown that the essential features exhibited by
the two-dimensional tidal theory were reproduced by the first-order channel model:
Kelvin-, Poincaré- and inertial-type waves; reflection of such waves at a barrier of
a canal and characteristic solutions in elongated closed rectangles and rings of con-
stant depth. Here we wish to complement this analysis by presenting results of a
numerical study of gravitational oscillations in natural elongated basins. Our view
is to treat the channel model of order N as a hierarchic system of approximations
of which the increasing degree of order will provide better and better approxima-
tions of the characteristic motion of the two-dimensional field equations. The basic
references are [24, 25, 28].

22.9.1 The Nth Order Two-Point Boundary-Value Problem
for Barotropic Forced or Free Oscillations

The governing equations of the N th order channel model have been presented in
(22.72), (22.78) and (22.79). They hold in that form for ‘arbitrary’ shape func-
tion expansions of the unknown fields. When the non-linear convective terms and
the non-linear terms due to the curvilinear coordinate system are ignored, these
equations take the forms

�0

�
C.1/

@vs
@t

� f C.1/vn C g OC .0/ @�
@s

�
C R.1/vs C p�.0/s � w�.1/s D 0;

�0

�
C.1/

@vn
@t

C f C.1/vs C g OC.1/�n �
�

C R.1/vn C p�.1/n � w�.1/n D 0;
(22.176)

OZ.1/ @�
@t

C @

@s

�
C.0/vs

�
� C.1/�n vn � C.1/�z

vz D 0;

H.0/s vs C H.1/n vn � H.1/vz D 0:

Here, vs, vn, vz are unknown vector quantities in RN , representative of the velocity
components in the longitudinal, transverse and vertical directions of the curvilinear
coordinate system .s; n; z/, and � characterizes the surface elevation. The coefficient
matrices are known functions of position s and are defined in Appendix 22.A, and
vector quantities carrying an asterisk are those due to atmospheric pressure and wind
forces, also defined in Appendix 22.A. The physical fields vs, vn, vz; � are related to
vs , vn, vz and � by the shape function expansions

vs D 
 � vs; : : : � D 
 � � (22.177)

and the dimension of vs; : : : or 
 defines the order of the model.
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Equations (22.176)1;2 represent the longitudinal and transverse momentum equa-
tions, (22.176)3 derives from the mass balance equation (see Sect. 22.5.1) and
(22.176)4 stems from the kinematic surface condition at the bottom surface. For
an N th order model (22.176) is a system of 3N partial differential equations and N
algebraic equations for vs ;vn;vz and �. The remaining variables carrying an aster-
isk are prescribed external forces. For largeN computational efforts are likely large,
but this disadvantage of the channel model is partly compensated as a steady pro-
cess and a periodic process (based on a Fourier transformation) will alter the partial
differential equations in the variables s and t into ordinary differential equations and
the boundary value problem into a two-point boundary-value problem for a set of
ordinary differential equations for which secure integrators exist. Thus, by writing
for each function in (22.176) f D f0exp .i! t/ with complex valued amplitude vec-
tor f0, the following complex-valued set of equations emerges (the subscript .�/0 is
now dropped)

D
dy
d s

C By C C x D l�s ;

E y C A x D l�n; (22.178)
x D .vn;vz/

T; y D .vs ; �/T;

l�s D 1

�
.w�.1/s � p�.0/s ;0/T; l�n D 1

�
.w�.1/n � p�.1/n ;0/T;

where x; y; l�s;n are complex valued vectors in RN and

D D
 

0 g OC.0/
C.0/ 0

!

;

B D
 

R.1/ C i!C.1/ 0
@C.0/

@s
i!Z.1/

!

; (22.179)

C D
 
f C.1/ 0
C.1/ n C.1/ z

!

D
 

C1 0
C.1/ n C.1/ z

!

;

A D
 

R.1/ C i!C.1/ 0
H.1/n �H.1/

!

D
�

A1 0
H.1/n �H.1/

	
;

(22.180)

E D
 
f C.1/ g OC.1/�n
H.0/s 0

!

are complex valued matrices.
Equations (22.178)1;2 consist of two subsystems, a first-order ordinary differen-

tial equation for the vector quantity y D .vs ; �/T and an algebraic system relating
y with x D .vn;vz/

T. The matrices A;B;C;D;E are expressible in terms of the
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coefficient matrices of the original system (22.176) and the vectors l�s and l�n are
known for prescribed harmonically exciting external forces. For anN th order model
the vectors x and y have 2N complex-valued components and so, A, B, C, D, E have
dimension .2N � 2N/.

The physically relevant boundary condition is no-flux through the channel ends,
vs D 0, which implies via the shape function expansion vs D 
 � vs D 0, 8 n 2
ŒB�; 0� [ Œ0; BC� and at s D 0 and s D L that vs D 0. In terms of the variable y
this is expressible as

ŒI; 0�y D H y D 0 at s D 0 and s D L; (22.181)

where I and 0 are .N � N/ unit and zero matrices, respectively. The two-point
boundary-value problem is now given by (22.178) and (22.181).

‘The above formulation is general for no assumptions regarding the number of
terms occurring in the expansion of the variables have thus far been invoked. Explicit
calculations are, however, restricted to the same number of shape functions for all
variables and to shape functions which only vary in the transverse direction. These
restrictions may be justified by the fact that, firstly, all seiche models based on the
linear tidal equations operate on this level [. . . ], secondly, for storm surges one is
mainly interested in surface elevations rather than the vertical velocity distribution
and, thirdly, such a procedure can be generalized to a multi-layer system’ [24]. With
this choice
 D 
.n/ and C.1/ z

D C.1/�z
D 0 in (22.179) and (22.180). The kinematic

boundary condition (22.176)4 is then separated from the remaining equations and
transforms into a prediction equation for the vertical velocity component, once the
horizontal velocity components are known. This means that the coupling between
the differential equations (22.178)2 is only by the transverse velocities vn. This is
seen explicitly, if the first N equations of the 2N equations (22.178)2 are written
down, viz.,

Œf C.1/ gC.1/�n �y C ŒA1�vn D 1

�0

�
w�.1/n � p�.1/n

�
; (22.182)

which does not involve vz. Notice that in the frictionless case as here, the matrix
A D i!C.1/, where in a Galerkin procedure C.1/ D RR

Q
HJ
 ˝ 
 dn, which is a

positive definite matrix. Therefore, A�1 exists and (22.182) implies

vn„ƒ‚…
N

D � A�11„ƒ‚…
N�N

Œf C.1/ gC.1/�n �„ ƒ‚ …
N�2N

y
„ƒ‚…
2N

„ ƒ‚ …
N

D A�11„ƒ‚…
N�N

1

�0

�
w�.1/n � p�.1/n

�

„ ƒ‚ …
N„ ƒ‚ …

N

; (22.183)

where the dimensions of the individual terms are indicated beneath the braces. Now,
since D is also non-singular for non-vanishing cross-sections, (22.178)1 can be
written as
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d y
d s

C D�1B y C D�1
�

C1vn
.C1 nvn

	
D D�1 l�s : (22.184)

This equation is uncoupled from vz only because the matrices are independent of z.13

It is now clear that substitution of (22.183) into (22.184) transforms the boundary
value problem (22.178), (22.181) into the following so-called standard form

y0.s/ D F.s; !/y.s/C g�.s; !/;
(22.185)H y.0/ D 0;

H y.L/ D 0;

�
with H D .I 0/;

where

F.s; !/ D �D�1.s/
(

B �
"

C1A�11 ŒC
.1/

gC.1/�n �
C.1/�nA�11 ŒC

.1/ gC.1/�n �

#)

(22.186)

g�.s; !/ D D�1
(
�
l�s
�
2N

�
"

C1A�11
�
l�n
�
N

C.1/�nA�11
�
l�n
�
N

#)

or, as can be shown,

F.s; !/ D �D�1.s/
�
B.s; !/ � C1.s/A�11 .s; !/E.s/

�
;

(22.187)
g�.s; !/ D D�1.s/

�
l�s � C.s/A�11 .s; !/l

�
n

�
:

In the above, .l�s;n/2N is the 2N -vector .l�s;n/2N D ..l�s;n/2N 0/T with N zeros in
the last N components. Moreover, since (22.185) is complex valued, and because
the matrices A, B, C, D, E have only a limited number of elements with real and
imaginary parts, it is computationally advantageous not to work with (22.185), but
with its associated system in which real and imaginary parts are separated. It should
also be noticed that (22.185) is written as an inhomogeneous problem. For the homo-
geneous case, g� D 0; the problem then consists of solving for the eigenvalues and
associated eigenfunctions. From a practical point of view, only the lowest eigen-
values and eigenfunctions are of interest, since they are the most likely ones to be
exited; we shall focus attention on these below.

To see how the complex-valued two-point boundary-value problem is trans-
formed into a real valued formulation, let us separate in (22.185) the real and
imaginary parts, denoted by fR and fI, as follows:

y0R C iy0I D .FR C iFI/.yR C iyI/C g�R C ig�I
D .FRyR � FIyI/C g�R C i.FIyR C FRyI/C g�I ; (22.188)

13 In particular, C.1/
 z
D 0 reduces C to the .N � 2N /-form .C 0/ with N zero column vectors of

length 2N , so that vz drops out from the third term on the left-hand side of (22.184).
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or in matrix-like notation

�
y0R
y0I

	
D
�

FR �FI

FI FR

	�
yR

yI

	
C
�

g�R
g�I

	
: (22.189)

Boundary conditions must now also fall on real and imaginary parts of vs and
obviously take the forms

�
H 0
0 H

	�
yR

yI

	
D
�

0
0

	
; for s D 0; s D L; (22.190)

where H D .I 0/. Relations (22.189) and (22.190) are of the same form as (22.185)
and (22.181); the only difference is that they consist of 4N real valued equations
instead of 2N equations. Indeed, with the notation

F D
�

FR �FI

FI FR

	
; H D

�
H 0
0 H

	
;

(22.191)

y D
�

yR

yI

	
; g� D

�
g�R
g�I

	
; y D

�
yR

yI

	

relations (22.189) and (22.190) take the forms

y0.s/ D F.s; !/y.s/C g�.s; !/; 0 < s < L;

H y D 0 s D 0 and s D L;
(22.192)

which is formally the same as (22.185).

22.9.2 Integration Procedure

The shooting method may be applied to the above linear boundary value problem
(22.192) by superposition of the independent solutions, which satisfy the boundary
conditions (22.192)2 at s D 0. The solution may be expressed as

y.s/ D
2NX

iD1
ui .s/ ci C w�.s/; (22.193)

where the vectors ui .s/ of dimension 2N are linearly independent solutions of the
homogeneous system

u0i D F.s; !/ui .s/: (22.194)

The solutions are constructed by integrating (22.192)1 with g� D 0 as an initial
value problem subject to the homogeneous initial conditions (22.192)2 at s D 0.



22.9 Higher Order Chrystal-Type Models Applied to Free Oscillations in Natural Basins 611

These independent solutions are for instance obtained by selecting for the compo-
nents of �R and �I the values 0 except at the i th position where e.g. the value ‘1’ is
selected. This yields 2N independent functions ui .s/. The vector w� D .w�R;w�I /T
is a particular solution of the inhomogeneous differential equations (22.192), also
subject to the boundary conditions at s D 0. The ci are constants of superposition,
and may be determined from the second boundary condition

H y.L/ D H.U.L/c C w�.L// D HU.L/c C H w�.L/ D 0; (22.195)

where U is the .4N � 2N/-matrix14 with column vectors ui , and c is the vector of
the free constants ci . If the matrix H U.L/ is non-singular, the unknown vector c
may be determined from (22.195) and the solution may be computed from (22.193).

Formally, for the case of free oscillations the inhomogeneous solution is w� D
0; consequently, (22.195) has only non-trivial solutions provided the .2N � 2N/-
matrix H U is singular. The criterion for this is det.H U/ D 0 and will, for a lake
of length L yield a discrete frequency spectrum and associated eigenfunctions. The
latter are obtained by calculating c (modulo a free amplitude (say for �.0//) and
re-substituting the result in (22.193).

‘The above procedure to determine the complementary functions ui .i D
1; : : : ; N / and to evaluate the eigenfrequency from a singularity condition of
the system H U.L; !/c D 0 would work perfectly, were it not for the numerical
properties of the matrix F in (22.191). Numerical calculations for realistic values of
! show that the spectral width of the matrix F is generally large, and furthermore,
increases with increasing number of shape functions. As a result, complementary
functions lie far apart; although they are theoretically linearly independent, they
are numerically (nearly) dependent, making the system (22.195) computationally
ill-conditioned.

The situation is, however, well known to numerical analysts. A way of overcom-
ing the difficulties is to divide the interval Œ0; L� into subintervals that are sufficiently
small so that the complementary solutions within each subinterval cannot lie too far
apart at the end of the subinterval; at the end of each subinterval the complemen-
tary vector c is transformed by a Gram-Schmidt orthogonalization procedure, and
integration is continued with this new orthogonalized initial vector. This process is
continued until the other end s D L is reached, where the second boundary condi-
tion is satisfied’,[28]. This integration procedure is known in numerical analysis as
the initial-value approach coupled with orthonormalization and excellent software
packages exist with the aid of which the integration can be implemented. In our
analysis the SUPPORT package [33] was used.

14 It is a property of the complex differential equations (22.185) and their real valued counterpart
(22.192) that only N solutions ui .s/ of the homogeneous system (22.194)1 must be determined.
Watts et al. [35] prove that it is necessary to integrate only half of the equations to obtain the
necessary set of base functions for the problem. The reason for this is that the first N columns of
base solutions have the form .UR;UI/ and the last N columns of the set have the form .UI;UR/,
which is not a linear combination of the first N columns.
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Fig. 22.18 Top (a) and
perspective (b) view of the
northern basin of Lake of
Lugano with selected cross
sections and thalweg for the
computations of the
barotropic seiches with the
N th-order channel model.
The lake is 17 km long, has
mean width of 1.5 km,
minimum and maximum
widths of 1 and 3 km,
respectively, and mean and
maximum depths of 175 and
287 m, respectively, from
[28]. c� Cambridge
University Press, reproduced
with permission
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22.9.3 Barotropic Seiches of the Northern Basin
of Lake of Lugano

Let us apply the above channel model to the barotropic free seiche oscillations of the
northern basin of Lake of Lugano. Figure 22.18 displays in panel (a) the top view
and in panel (b) an axonometric representation, both with chosen cross sections
indicated; the figure caption lists the typical morphological parameters.

Numerical results should depend on the choice of the shape functions; the fol-
lowing results are based on a four term Cauchy-series expansion
 D f1; n; n2; n3g.
Remarks on the significance of different shape-function choices will be made below.
They will be presented for the first four modes, and these will be compared with
those obtained from a finite-element representation of the two-dimensional tidal
equations. The computations were performed by Raggio [24] for the finite-element
computations with a code due to Hamblin (personal communication).

A partial verification of the computed four modes H1; : : : ;H4 of the surface
seiches was possible on the basis of limnigraphs of the Swiss Hydrological Ser-
vice, which were erected at shore positions Campione, Lugano and Porlezza (see
Fig. 22.18) in August 1979. Time series from the registered surface elevations for
late afternoon of 9 August to after midnight of 10 August 1979 (see Fig. 22.19)
were subjected to spectral analysis and revealed the three spectra of Fig. 22.20. The
eigenfrequencies of the four lowest-order computed and four lowest-order measured
gravitational modes are shown in Table 22.3. The two computational models yield
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Fig. 22.19 Surface elevation time series at the stations of Campione, Lugano and Porlezza for the
strongly wind forced episode from 9 August 19.55 h to 10 August 03.33 h 1979, from Raggio [24],
reproduced with permission

Table 22.3 Eigenfrequencies of the four lowest gravitational surface seiches for the northern basin
of Lake of Lugano as obtained with the finite element model, the channel model with 4 Cauchy-
terms as shape functions and as inferred from the frequency spectra of the surface elevation time
series of the limnigraphs installed in Campione, Lugano and Porlezza

Mode Finite element model Channel model Spectral analysisa

Frequency Period Frequency Period Frequency Period
(�10�1) [min] (�10�1) (min) (�10�1) [min]

1 0.0755 13.9 0.0765 13.7 0.074 14.0
2 0.158 6.6 0.161 6.5 0.165 6.3
3 0.206 5.1 0.210 5.0 0.210 5.0
4 0.287 3.8 0.280 3.7 – –
aInferred from Fig. 22.20

practically the same eigenfrequencies! (or periods D 2�=!), and for the three low-
est modes they agree reasonably well with the corresponding frequencies (periods)
inferred from the locations of the spectral peaks in Fig. 22.20. Even though this com-
parison does not provide evidence that the structures of the computed eigenfunctions
could also closely agree with those of the real lake, it is commonly claimed that the
measured frequencies correspond to computed seiche modes.

‘Figure 22.21a–d displays for the channel model the co-range and co-tidal lines
of the four lowest eigenmodes of the basin. When � D �0exp .i.! t�ˇ// the former
are the lines of constant real �0 and the latter those of constant ˇ. The normalization
of both is arbitrary; � is normalized so as to give the maximum amplitude the value
100 units. The equidistance of the co-range lines is equal to 10 units, and the co-
tidal lines are represented for the values ˇ D 0; 0:1; 179:9; 180; 180:1 and 359:9ı
[. . . ]. Inspection of the co-tidal lines indicates that all amphidromes rotate in the
counterclockwise direction. The motion in the lake is consequently of Kelvin-type.

The lowest mode has a single amphidromic point roughly at the middle of
the lake. Co-tidal lines are strongly bundled in the cross-channel direction.
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Fig. 22.20 Power spectra of
the surface elevation
oscillations for the
limnigraph stations Campione
(a), Lugano (b) and Porlezza
(c). Energy density
D 0:36� 10ordinate in m2 s�1.
The arrows marked by 1, 2, 3
indicate the first three
eigenfrequencies of the lake
as in column 6 of Table 22.3,
from [28]. c� Cambridge
University Press, reproduced
with permission

10–4 10–3 10–2 10–1
10–1

1

1 10

102101

103

102

95%

(a)

(b)

(c)

(a)

(b)

(c)

Frequency  (Hz)

10
102

1

2

3

E
ne

rg
y 

 d
en

si
ty

E
ne

rg
y 

 d
en

si
ty

E
ne

rg
y 

 d
en

si
ty

The longitudinal structure of the oscillation is manifested by this bundling, and
because co-range lines all join points of opposite shores. This behaviour persists
even in the vicinity of the bay of Lugano (the shallow wide portion of the lake
close to Lugano). The preference for longitudinal behaviour persists for the second
mode, even though an amphidromic point is situated near the Bay of Lugano. The
third and fourth mode exhibit still mainly longitudinal behaviour, but in the Bay
of Lugano surface elevations now show a strong gradient transverse to the main
channel direction, as there are now co-range lines connecting points on the same
shoreline’ [28].

‘A more challenging test of the suitability of the channel model than a frequency
comparison is obtained by comparing the eigenmode structures with those based
on the finite element model. Figure 22.22 shows the corresponding amphidromic
systems for mode 1 and mode 4, based on the finite element representation using
triangular elements with quadratic shape functions. Bearing in mind that contour
plots for the channel model were produced with a contour-plot program while those
for the finite-element calculations were drawn by hand, agreement must be regarded
as excellent. It should further be noticed that the finite-element grid used was too
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Fig. 22.21 Amphidromic systems for the first H1 (a), second H2 (b), third H3 (c) and fourth
H4 (d) gravitational modes for the northern basin of Lake of Lugano, computed with the fourth-
order channel model, using Cauchy series for the shape functions, redrawn from figures of [28].
c� Cambridge University Press, reproduced with permission
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Fig. 22.22 Amphidromic systems for the first H1 (a) and fourth H4 (b) gravitational mode as
computed with the finite element presentation of the tidal equations, redrawn from figures of [28].
c� Cambridge University Press, reproduced with permission

coarse for the spatial resolution of the fifth and higher modes; in contrast, the fifth
mode was reproduced without any difficulty with the channel model’ [28].

Further tests regarding the accuracy of the model were undertaken when varying
the number of terms considered in the Cauchy-series expansion. ‘Calculations show
broadly that, for each mode, increasing the number of shape functions incorporated
in the model will decrease the difference in subsequent eigenfrequencies, presum-
ably to an asymptotic value. The eigenfrequencies obtained with one to four shape
functions, the difference between them, and extrapolated values for each mode are
listed in Table 22.4. It is evident that the one-term model allows determination of
the eigenfrequencies with sufficient accuracy for surface seiches. Structurally, the
one-term model, corresponding to the Chrystal model, shows purely longitudinal
standing waves with four nodal lines. The two-term model exhibits the onset of
transverse oscillation in the vicinity and within the Bay of Lugano. This behaviour
becomes more pronounced with increasing number of shape functions. Nonetheless,
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Table 22.4 Eigenfrequencies for the northern basin of Lake of Lugano for the first and fourth
gravitational modes using one, three and four Cauchy terms as shape functions and an extrapolated
value

Number of Mode 1� 10�2 Hz Mode 4� 10�1 Hz
shape functions Frequency Differences Frequency Differences

1 0.768063 0.287213
0.0016 0

2 0.766446 0.287213
0.0018 0.0063

3 0.764672 0.280926
0.0004 0.0009

4 0.764257 0.280017

Extrapolated 0.762877 0.277845

the results suggest that from the structure of the eigenmodes of such an elongated
lake it appears to be sufficient to work with a two-term model to describe surface
seiches properly’ [28].

The above results and those obtained in previous sections prove the suitability of
the model equations. They clearly provide a rational procedure which replaces the
Kelvin wave dynamics approach which left some subjective element in the selec-
tion of the channel axis. It made measurements of surface elevations at shore stations
necessary to patch the co-range lines and the amphidromic points optimally. Further-
more, an analysis of forced motions, see [24,25,28], indicated clearly a conspicuous
sensitivity of the results with respect to the shape function choice and the limitation
of the model to gravitational modes. Subinertial frequencies, the domain of topo-
graphic Rossby waves could not clearly be identified. They have been dealt with in
Chaps. 19–21.

Shape functions different from Cauchy series ‘may be selected from physically
meaningful assumptions of the particular phenomenon one would like to simulate or
from considerations regarding a minimization of the computational effort. The latter
suggests the use of orthogonal families, generated by inner products of the form

.Pi ; Pj / D
8
<

:

Z b

a

w.n/Pi .n/ Pj .n/ D jjPi jj .i D j /;

0 .i ¤ j /;

(22.196)

in which Pi and Pj are two members of the family and w is a weighting function.
Orthogonal polynomial families are computationally particularly advantageous,
since they can be constructed with three-terms recursive formulae.

The idea is to select shape functions �i that diagonalize a particular submatrix in
(22.178) and are thus orthogonal with respect to that inner product. Raggio [24, 25]
shows that the most convenient choice is to make the matrix

C
.1/
ij D

Z BC

B�

JH.n/�i .n/�j .n/dn; (22.197)
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diagonal or equal to the unit matrix (see (22.178)). Within the class of polyno-
mial families the �i must be numerically evaluated. With �j D P3

�D0 a�.s/n�
this amounts to the evaluation of the coefficients a� along the channel axis, [28].
Considerable expenditure of cpu time is saved and accuracy of numerical result is
gained.

It should also be pointed out that the channel model has been found suitable in
the range of gravitational modes where the currents are essentially irrotational and
driven by pressure gradients caused by differences in the surface elevation of the
lake. Below the inertial frequency the motion is basically non-divergent, rotational
and not primarily dependent on the surface elevation distribution but rather on depth
variation [28]. This is the domain of topographic waves and has extensively been
dealt with in Chaps. 19–21.

Appendix 22.A

In this appendix, we list the definitions of the cross-sectional coefficients, load
and stress resultants, which complement the dynamical equations in Sect. 22.5. Q
denotes the cross-section erected perpendicular to the lake axis, generally in the
present, deformed configuration but in the linear approximation dealt with here
taken in the undeformed reference state.H.s; n/ D z denotes the depth function, and
n D B˙ are the transverse coordinates of the shore lines. Commas followed by an
index, say ./;j , denote partial derivatives with respect to the variable following the
comma, and shape functions carrying a hat are functions of n only. We follow [26].

Cross-Sectional Coefficients

C.m/ D
ZZ

Q

Jm ˝ 
 dndz;

C.m/�j
D
ZZ

Q

Jm ˝ 
;j dndz .j D n; z/;

C.m/ j
D
ZZ

Q

Jm ;j ˝ 
 dndz; .j D n; z/;

OC.m/ D
ZZ

Q

Jm ˝ O
 dndz;

OC.m/�j
D
ZZ

Q

Jm ˝ O
;j dndz .j D n; z/;

H.m/ D
Z BC

B�

Jm ˝ 
 dn .z D H.s; n//;
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H.m/s D
Z BC

B�

JmH;s ˝ 
 dn .z D H.s; n//;

(22.A1)

H.m/n D
Z BC

B�

JmH;n ˝ 
 dn .z D H.s; n//;

Z.m/ D
Z BC

B�

Jm ˝ 
 dn .z D �.s; n; t//;

OZ.m/ D
Z BC

B�

Jm ˝ O
 dndz; .z D �.s; n; t//;

E.m/ D
ZZ

Q

Jm ˝ 
˝ 
 dndz;

E.m/;j D
ZZ

Q

J .m/ ˝ 
;j ˝ 
 dndz .j D n; z/;

OE.m/ D
Z BC

B�

Jm ˝ O
˝ 
 dndz .z D �.s; n; t//;

OE.m/;j D
Z BC

B�

Jm ˝ O
;j ˝ 
 dndz .z D �.s; n; t/; j D n; z/:

These quantities are purely geometric. Analogously, the macroscopic bottom-
friction coefficient is mainly a function of the geometry of the basin:

R.m/ D
Z BC

B�

Jm

R
 ˝ 
 lH .s; n/dn .z D H.s; n//; (22.A2)

where lH .s; n/ is defined in (22.55).

Load Resultants

Let t �̨.˛ D s; n/ be the wind stress components and p�atm the atmospheric pressure.
We then define the macroscopic wind load and macroscopic atmospheric pressure
gradients as follows:

w�.m/˛ D
Z BC

B�

Jm t �̨dn .z D �.s; n; t/; ˛ D s; n/;

(22.A3)

p�.m/˛ D
ZZ

Q

Jm 
@p�atm

@˛
dndz .˛ D s; n/:
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Stress Resultants

These arise only when internal friction is accounted for. The two quantities Js ;Jn,
arising in (22.78) and (22.79) have the form

Js D �pT
s � @T.0/11

@s
C T.0/11s C T.�1/11s C T.1/12n C T.1/13z CKT.0/12 ;

(22.A4)

Jn D �pT
n � @T.0/12

@s
C T.1/22n C T.1/23z CK.T.2/11 � 2T.0/22 /

and the stress resultants are of two types, namely the macroscopic turbulent surface
pressure

pT
s D

Z BC

B�

 .T Eij ninj /
@H

@s
dn;

pT
n D

Z BC

B�

J .T Eij ninj /

"

1C
�
@H

@n

	2#1=2
dn;

9
>>>>=

>>>>;

.z D H.s; n// (22.A5)

and the macroscopic stress resultants

T.m/ij D
ZZ

Q

Jm T Eij dndz;

T.m/ij˛ D
ZZ

Q

Jm ;˛T
E
ij dndz; .˛ D n; z/; (22.A6)

T.m/ijs D
ZZ

Q

@J

@s
Jm T Eij dndz:

The atmospheric pressure and wind-stress terms are

w�.m/
˛.i;j /

D
Z BC

B�

Jmni�j .s; n; t/t �̨dn;

p�.m/
˛.i;j /

D
ZZ

Q

Jmni zj
@p�atm

@˛
dndz;

9
>>>=

>>>;

.˛ D s; n/; (22.A7)

and the turbulent stress terms J.i;j / are

Jsi;j D �pT
s.i;j / � @T.0/

11.i;j /

@s
CK 0KT.�1/

11.iC2;j / C iT.1/
12.i�1;j / �KT.0/

12.i;j /

C jT.1/
13.i;j�1/; (22.A8)

Jni;j D �pT
n.i;j / � @T.0/

12.i;j /

@s
C iT.1/

22.i;j /
C jT.1/

23.i;j /
CK.T.2/

11.i;j /
� 2T.0/

22.i;j /
/;
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with

pT
s.i;j /

D
Z BC

B�

niH j .s; n/
@H.s; n/

@s
.T Ekl nknl /dn;

pT
n.i;j /

D
Z BC

B�

JniH j .s; n/

"

1C
�
@H

@n

	2#1=2
.T Ekl nknl/dn;

T.m/
kl.i;j /

D
ZZ

Q

J .m/ni zjTkldndz;

9
>>>>>>>>=

>>>>>>>>;

k; l D 1; 2; 3;

i D 1; 2; : : : ; N;

j D 1; 2; : : : ;M:

(22.A9)

Appendix 22.B

In this appendix, we derive the global form of the continuity equation with incorpo-
rated boundary conditions; it expresses mass balance in one-dimensional form. To
this end, the following preliminary calculations are needed.

Let F.s; n; z; t/ � 0 be the equation defining the boundary @˝ of the domain
˝ as introduced in the main part of this chapter; let, moreover, da be the vectorial
surface element perpendicular to @˝ . Elementary vector calculus and differential
geometry then shows that in the .s; n; z/-coordinate system one has

da D
�

�@F
@s
;�J @F

@n
; J

	
dnds D das C dal ;

das D
�

�@F
@s
; 0; 0

	
dnds D �.1; 0; 0/da0sds D nsdas ;

dal D
�
0;�@F

@n
; 1

	
J dnds D .0; nl2 ; nl3/da

0
lJ ds D nldal ; (22.B1)

da D jjdajj D J ldnds D da0ds;

l D
"

1C
�
@F

@n

	2
C 1

J 2

�
@F

@s

	2#1=2
D jjgradF jj:

Here, das is the algebraic surface element of the projection of the mantle element da
into the cross-sectional plane (see Fig. 22.23), ns and nl are unit vectors along the
negative s-direction and perpendicular to the cross-sectional periphery but within
the cross-sectional plane. Thus, dal D da0

l
J ds, with da0

l
D .1 C .@F=@n/2/1=2,

is the algebraic area element projected on a cylindrical surface that is parallel to s
and sweeps out the periphery of the cross-section. Also, depending on the choice
of the surfaces @˝
 and @˝n, respectively, we write l as lH and l� D 1 C O.�2/,
respectively, consistently ignoring O.�2/-terms. This assumption implies that the
boundary changes AE and CD in Fig. 22.6 are ignored.
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ds

da s

das
da

da

Z

dada
,

J ds

n

s

Generator parallel to s-axis

Cross-section

Fig. 22.23 Channel-like element of length ds with surface element da on its mantle surface. Pro-
jections of this element into the cross-section and onto the cylindrical surface are shown by the
lightly shaded areas, from [26]. c� Cambridge University Press, reproduced with permission

We also need the following formulae:

@

@s

ZZ

Q

f dndz D
ZZ

Q

@f

@s
dndz C

I

@Q

f da0s ;

ZZ

Q

@f

@n
dndz D

I

@Q

f nl2da0l ; (22.B2)

ZZ

Q

@f

@z
dndz D

I

@Q

f nl3da0l :

The first is based on the Reynolds transport theorem if s is interpreted as time and the
remaining two expressions follow from the Gauss law. Q denotes the cross-section
and @Q its periphery. With these preliminary calculations it is now straightforward
to derive the global form of the mass-balance equation. In a first step we transform
ıI1 in (22.65),

ZZZ

˝

div vı
dV D
Z s

s0

ı� �
�ZZ

Q

 

�
1

J

@vs
@s

C @vn
@n

C @vz

@z
� K

J
vn

	
J dndz

�
ds

D
Z s

s0

ı� �
�ZZ

Q

 
@vs
@s

dndz C
ZZ

Q

 
@vn
@n
J dndz

C
ZZ

Q

 
@vz

@z
J dndz �K

ZZ

Q

 vndndz

�
ds: (22.B3)
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The first three inner most cross-sectional integrals can be transformed with the aid
of (22.B2) so that (22.B3) may be written as

Z s

s0

ı� �
� �

@

@s

�ZZ

Q

 vsdndz

	
�
I

@Q

 vsda
0
s

�

C
�I

@Q

 J vnnl2da0l �
ZZ

Q

@ 

@n
J vndndz CK

ZZ

Q

 vndndz

�

C
�I

@Q

 J vznl3da0l �
ZZ

Q

@ 

@z
J vzdndz

�
�K

ZZ

Q

 vndndz

�
ds; (22.B4)

or, after rearranging terms,

ZZZ

˝

div vı
dV D
Z s

s0

ı� �
�

�
I

@Q

 vsda0s C
I

@Q

 J vˇnlˇda0l

C @

@s

�ZZ

Q

 vsdndz

	

�
ZZ

Q

�
@ 

@n
J vn C @ 

@z
J vz

	
dndz

�
ds .ˇ D n; z/; (22.B5)

in which summation over Greek indices is understood. To eliminate the contour
integrals, consider the weighted residual expressions ıI3 and ıI5 for the kinematic
boundary conditions (22.67)3;5. Set ı
3 D ı
2, which is permissible, and form
ıI3 C ıI5 D 0; this yields

0 D
ZZ

@˝�

1

jjgradF� jj
dF�
d t

ı
2daC
ZZ

@˝n

1

jjgradFH jj
dFH
d t

ı
3da

D
ZZ

@˝

1

jjgradF jj
dF

d t
ı
2da

D
ZZ

@˝

1

jjgradF jj
@F

@t
ı
2da C

ZZ

@˝

v � gradF

jjgradF jjı
2da

D
ZZ

@˝

jjgradF jj�1 @F
@t
ı
2da �

ZZ

@˝

jvı
2 � da; (22.B6)

in which the sign change in the last term follows since gradF=jjgradF jj is the
inward unit normal vector. Splitting the surface element da into the two perpendic-
ular surface elements das and dal yields
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ZZ

@˝

jjgradF jj�1 @F
@t
ı
2da �

ZZ

@˝

vı
2 � das �
ZZ

@˝

vı
2 � dal

D
ZZ

@˝

jjgradF jj�1 @F
@t
ı
2da �

ZZ

@˝

v � nsı
2 � das �
ZZ

@˝

v � nlı
2dal

D
Z s

s0

�I

@˝

jjgradF jj�1 @F
@t
ı
2da0 C

I

@˝

vsı
2da0s �
I

@˝

vˇnlˇ ı
 J da0l
�

ds;

or, after expansion of the weighting functions ı
2,

I

@˝

jjgradF jj�1 dF

dt
ı
2da

D
Z s

s0

ı�2 �
�I

@˝

 jjgradF jj�1 @F
@t

da0 C
I

@Q

 vsda0

�
I

@Q

 vˇnlˇ ı
J da0l
�

ds: (22.B7)

When the expressions (22.B5) and (22.B7) are added together it is seen that the
contour integrals cancel, so that the equation ıI1 C ıI3 C ıI5 D 0 implies

Z s

s0

ı� �
� Z BC

B�

 ˝ 
J dn
@�

@t
C @

@s

�ZZ

Q

 ˝ 
 dndz vs

	

�
ZZ

Q

@ 

@n
˝ 
J dndz vn �

ZZ

Q

@ 

@z
˝ 
J dndz vz

�
ds D 0;

or since ı� is arbitrary, and in view of the definitions in Appendix A,

OZ.1/ @�
@t

C @

@s

�
C.0/vs

�
� C.1/ nvn � C.1/ z

v D 0: (22.B8)

This is the form of the global mass balance equation. In the main text it corresponds
to (22.67).
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