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Foreword

This book is the eighth in a series of Proceedings for the Séminaire Poincaré,
which is directed towards a large audience of physicists and of mathematicians.

The goal of this seminar is to provide up to date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
are covered, with some historical background. Inspired by the Bourbaki seminar
in mathematics in its organization, hence nicknamed “Bourbaphy”, this Poincaré
Seminar is held at the Institut Henri Poincaré in Paris, with contributions prepared
in advance. Particular care is devoted to the pedagogical nature of the presentation
so as to fulfill the goal of being readable by a large audience of scientists.

This new volume of the Poincaré Seminar series “The Spin” corresponds
to the eleventh such Seminar, held on December 8, 2007. It describes how this
once mysterious quantum reality called spin has become ubiquitous in modern
physics from the most theoretical aspects down to the most practical applications
of miniaturizing electronic and computer devices or helping medical diagnosis.

The first and more theoretical part of the book starts with a detailed pre-
sentation of the notion of spin by leading world expert Jürg Fröhlich. He reviews
its historical development in quantum mechanics and its increasing relevance to
quantum field theory and condensed matter. The next two papers discuss the
exotic anyon particles. They carry a nontrivial fractional spin, hence lie in be-
tween the integer spin particles, the Bosons, and the half integer spin particles,
the Fermions. The first paper by Nobel laureate Franck Wilczek gives an enticing
introduction to this subject that he pioneered. The following paper by Stephane
Ouvry gives a more in depth review of the corresponding mathematical formalism
and its relevance in the context of the quantum Hall effect.

The second part of the book is more directly aimed at the presentation of the
most advanced current experiments or applications of the notion of spin. Gerald
Gabrielse reviews the extremely precise measurements of the fine structure con-
stant and the electron magnetic moment that he and his group made by confining
for months at a time a single electron in a Penning trap. This is followed by a
presentation on spintronics by Nobel laureate Albert Fert and his collaborators
Pierre Sénéor, Vincent Cros and Frédéric Petroff. Spintronics is the new branch
of electronics in which the spin of the moving electrons is controlled and it has
already lead to momentous developments in solid state physics, in particular by
increasing spectacularly the capacity of magnetic memory storage devices. Finally
Pierre-Jean Nacher explains the history and basic physics of magnetic resonance
imaging and its application to medical diagnosis. He details the particular case of
lung physiology and pathologies.

We hope that the continued publication of this series will serve the community
of physicists and mathematicians at professional or graduate student level.
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Spin,
or actually: Spin and Quantum Statistics∗

Jürg Fröhlich

Abstract. The history of the discovery of electron spin and the Pauli princi-
ple and the mathematics of spin and quantum statistics are reviewed. Pauli’s
theory of the spinning electron and some of its many applications in math-
ematics and physics are considered in more detail. The role of the fact that
the tree-level gyromagnetic factor of the electron has the value ge = 2 in
an analysis of stability (and instability) of matter in arbitrary external mag-
netic fields is highlighted. Radiative corrections and precision measurements
of ge are reviewed. The general connection between spin and statistics, the
CPT theorem and the theory of braid statistics, relevant in the theory of the
quantum Hall effect, are described.

“He who is deficient in the art of selection may, by showing nothing but the
truth, produce all the effects of the grossest falsehoods. It perpetually hap-
pens that one writer tells less truth than another, merely because he tells
more ‘truth’.”
(T. Macauley, ‘History’, in Essays, Vol. 1, p 387, Sheldon, NY 1860)

Dedicated to the memory of M. Fierz, R. Jost, L. Michel and V. Telegdi,
teachers, colleagues, friends.

1. Introduction to ‘Spin’1

The 21st Century appears to witness a fairly strong decline in Society’s – the
public’s, the politicians’, the media’s and the younger generations’ – interest in
the hard sciences, including Physics, and, in particular, in fundamental theoretical
science based on precise mathematical reasoning. It is hard to imagine that reports
on a discovery like the deflection of light in the gravitational field of the sun and

∗Notes prepared with efficient help by K. Schnelli and E. Szabo
1I have to refrain from quoting literature in this introductory section – apologies!



2 Jürg Fröhlich

on the underlying theory, general relativity, along with a photograph of its creator,
Albert Einstein, would make it onto the front pages of major daily newspapers, as
it did in 1919.

This development is, of course, not entirely accidental, and I could easily
present a list of reasons for it. But let’s not!

While the amount of economic wealth and added value that have been and
are still being created on the basis of Physics-driven discoveries of the 19th and 20th

Century is truly gigantic, and while one may expect that this will continue to be
the case for many more years to come, fundamental physical science is confronted
with a certain decline in public funding, e.g., in comparison with the life sciences.
Physics is perceived to have entered a baroque state, with all the beauty that goes
with it.

In this situation, it is laudable that our French colleagues are doing some-
thing to document the continuing importance and the lasting beauty of Physics:
the ‘Séminaire Poincaré’ (or “Bourbaphy”)! I hope that the organizers of the
‘Séminaire Poincaré’ will find the right format and the right selection of topics
for their series, and that their seminar will be accompanied by complementary
activities aimed at a broader public.

This time, the topic of the ‘Séminaire Poincaré’ is ‘Spin (and Quantum Sta-
tistics)’. This choice of topic is not unreasonable, because, on one hand, it involves
some interesting and quite fundamental experiments and theory and, on the other
hand, it is connected to breathtakingly interesting and important practical appli-
cations. The scientific community sees me in the corner of mathematical physics
and, thus, I have been asked to present an introductory survey of, primarily, the
mathematical aspects of ‘Spin and Quantum Statistics’. I am only moderately en-
thusiastic about my assignment, because, as I have grown older, my interests and
activities have shifted more towards general theoretical physics, and, moreover, I
have contributed a variety of results to, e.g., the theory of magnetism and of phase
transitions accompanied by various forms of magnetic order that I cannot review,
for lack of space and time.

In this short introduction, I attempt to highlight the importance of ‘Spin and
Quantum Statistics’ for many phenomena in physics, including numerous ones that
have found important technological applications, and I wish to draw attention to
some of the many unsolved theoretical problems.

Our point of departure is found in the facts that electrons, positrons, neutri-
nos, protons and neutrons are particles with spin 1

2 obeying Pauli’s exclusion prin-
ciple. With the exception of neutrinos, they have a non-vanishing magnetic dipole
moment. Moreover, those particles that carry electric charge experience Coulomb-
and Lorentz forces. In a magnetic field their magnetic moments and spins precess
(like tops in the gravitational field of the Earth). All fundamental forces appear to
be mediated by exchange of bosons of spin 1 (gauge bosons) or helicity 2 (gravi-
tons). These facts, when exploited within the framework of quantum theory, are
at the core of our theoretical description of a vast number of phenomena some of
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which we will now allude to. They are, in their majority, not very well understood,
mathematically.

(1) Chemistry. That electrons have spin 1
2 and obey the Pauli principle, i.e.,

are fermions, is one of the most crucial facts underlying all of chemistry. For
example, it is the basis of our understanding of covalent bonding. If electrons were
spinless fermions not even the simplest atoms and molecules would be the way
they are in Nature: Only ortho-helium would exist, and the hydrogen molecule
would not exist.

If electrons were not fermions, but bosons, there would exist ions of large
negative electric charge, matter would form extremely dense clumps, and bulk
matter would not be thermodynamically stable; (see section 4).

Incidentally, the hydrogen molecule is the only molecule whose stability has
been deduced directly from the Schrödinger-Pauli equation with full mathematical
rigour2. Hund’s 1st Rule in atomic physics, which says that the total spin of the
electrons in an only partially filled p-, d-, . . . shell of an atom tends to be as large
as possible, is poorly understood, mathematically, on the basis of the Schrödinger-
Pauli equation.

We do not understand how crystalline or quasi-crystalline order can be de-
rived as a consequence of equilibrium quantum statistical mechanics.

All this shows how little we understand about ‘emergent behavior’ of many-
particle systems on the basis of fundamental theory. We are not trying to make
an argument against reductionism, but one in favour of a pragmatic attitude: We
should be reductionists whenever this attitude is adequate and productive to solve
a given problem and ‘emergentists’ whenever this attitude promises more success!

(2) ‘Nuclear and hadronic chemistry’. At the level of fundamental theory,
our understanding of binding energies, spins, magnetic moments and other prop-
erties of nuclei or of the life times of radioactive nuclei remains quite rudimentary.
Presently more topical are questions concerning the ‘chemistry of hadrons’, such
as: How far are we in understanding, on the basis of QCD, that a color-singlet
bound state of three quarks (fermions with spin 1

2 ), held together by gluons, which
forms a proton or a neutron, has spin 1

2? How, in the world, can we reliably cal-
culate the magnetic dipole moments (the gyromagnetic factors) of hadrons? How
far are we in truly understanding low-energy QCD? These are questions about
strongly coupled, strongly correlated physical systems. They are notoriously hard
to answer.

(3) Magnetic spin-resonance. The fact that electrons and nuclei have spin
and magnetic dipole moments which can precess is at the basis of Bloch’s spin-
resonance phenomenon, which has enormously important applications in the sci-
ence and technology of imaging; (Nobel Prizes for Felix Bloch, Edward Purcell,
Richard Ernst, Kurt Wüthrich, . . .). Of course, in this case, the basic theory is
simple and well understood.

2by G.M. Graf, J.M. Richard, M. Seifert and myself.
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(4) Stern-Gerlach experiment : a direct experimental observation of the spin
and magnetic moment of atoms. Theory quite easy and well understood.

(5) Spin-polarized electron emission from magnetic materials. This is the
phenomenon that when massaged with light certain magnetic materials emit spin-
polarized electrons. It has been discovered and exploited by Hans-Christoph Sieg-
mann and collaborators and has important applications in, e.g., particle physics.

(6) Electron-spin precession in a Weiss exchange field. When a spin-polarized
electron beam is shot through a spontaneously magnetized iron-, cobalt or nickel
film the spins of the electrons exhibit a huge precession. This effect has been
discovered by H.-C. Siegmann and his collaborators and might have important
applications to ultrafast magnetic switching. Theoretically, it can be described
with the help of the Zeeman coupling of the electrons’ spin to the Weiss exchange
field (much larger than the magnetic field) inside the magnetized film. This effect
can be interpreted as a manifestation of the SU(2)spin-gauge-invariance of Pauli’s
electron equation; (see also section 3.3).

Related effects can presumably be exploited for the production of spin-polari-
zed electrons and for a Stern-Gerlach type experiment for electrons.

(7) Magnetism. There are many materials in Nature which exhibit magnetic
ordering at low temperatures or in an external magnetic field, often in combination
with metallic behavior. One distinguishes between paramagnetism, diamagnetism,
ferromagnetism, ferrimagnetism, anti-ferromagnetism, etc. In the context of the
quantum Hall effect, the occurrence of chiral spin liquids and of chiral edge spin
currents has been envisaged; . . ..

The theory of paramagnetism is due to Pauli; it is easy. The theoretical ba-
sis of diamagnetism is clear. The theory of anti-ferromagnetism and Néel order
at low temperatures in insulators is relatively far advanced. But the theory of
ferromagnetism and the appearance of spontaneous magnetization is disastrously
poorly understood, mathematically. Generally speaking, it is understood that spon-
taneous (ferro- or anti-ferro-) magnetic order arises, at low enough temperature,
by a conspiracy of electron spin, the Pauli principle and Coulomb repulsion among
electrons. The earliest phenomenological description of phase transitions accompa-
nied by the appearance of magnetic order goes back to Curie and Weiss. Heisenberg
proposed a quantum-mechanical model inspired by the idea of direct electron ex-
change interactions between neighboring magnetic ions (e.g. Fe) in a crystalline
back ground. While it has been shown, mathematically, that the classical Heisen-
berg model (large-spin limit) and the Heisenberg anti-ferromagnet exhibit the
expected phase transitions3, no precise understanding of the phase transition in
the Heisenberg ferromagnet (finite spin) has been achieved, yet.

Most of the time, the microscopic origin of exchange interactions between
spins in magnetic materials remains poorly understood, mathematically. No math-
ematically precise understanding of ferromagnetic order in models of itinerant

3in work by Simon, Spencer and myself, and by Dyson, Lieb and Simon; and followers.
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electrons, such as the weakly filled one-band Hubbard model, has been reached,
yet. However, there is some understanding of Néel order in the half-filled one-band
Hubbard model (‘Anderson mechanism’) and of ferromagnetic order in Kondo lat-
tice models with a weakly filled conduction band (Zener’s mechanism of indirect
exchange), which is mathematically rather precise at zero temperature.

Realistic spin glasses are extremely poorly understood, theory-wise.
Altogether, a general theory of magnetism founded on basic equilibrium quan-

tum statistical mechanics still remains to be constructed!
Of course, magnetism has numerous applications of great importance in mag-

netic data storage, used in computer memories, magnetic tapes and disks, etc.

(8) Giant and colossal magneto-resistance. The discoverers of giant magneto-
resistance, Albert Fert and Peter Grünberg, have just been awarded the 2007 Nobel
Prize in Physics. Their discovery has had fantastic applications in the area of data
storage and -retrieval. It will be described at this seminar by Fert and collabora-
tors. Suffice it to say that electron spin and the electron’s magnetic moment are
among the main characters in this story, and that heuristic, but quite compelling
theoretical understanding of these phenomena is quite advanced.

(9) Spintronics. This is about the use of electron spin and multi-spin entangle-
ment for the purposes of quantum information processing and quantum computing.
Presently, it is a hot topic in mesoscopic physics. Among its aims might be the
construction of scalable arrays of interacting quantum dots (filled with only few
electrons) for the purposes of quantum computations; (the spins of the electrons
would store the Qbits).

(10) The rôle of electron spin and the Weiss exchange field in electron – or
hole – pairing mechanisms at work in layered high-temperature superconductors.
This is the idea that the Weiss exchange field in a magnetic material can produce
a strong attractive force between two holes or electrons (introduced by doping)
in a spin-singlet state, leading to the formation of Schafroth pairs, which, after
condensation, render such materials superconducting.

(11) The rôle played by spin and by particle-pairing in the miraculous phase
diagram of 3He and in its theoretical understanding. The rôle played by spin in
the physics of ‘heavy fermions’.

(12) The rôle of the Pauli principle (and spin, in particular neutron spin) in
the physics of stars. The theory of the Chandrasekhar limit for white dwarfs and
neutron stars is based on exploiting the Pauli principle for electrons or neutrons
in an important way. The superfluidity expected to be present in the shell of a
neutron star is a phenomenon intimately related to the spin of the neutron, neutron
pairing and pair condensation.

Many of these topics have been close to my heart, over the years, and I have
written hundreds of pages of scientific articles that have been read by only few
people. One could easily offer a one-year course on these matters. But, in the
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following sections, I really have to focus on just a few basic aspects of ‘Spin and
Quantum Statistics’.

Acknowledgments. I thank C. Bachas, B. Duplantier and V. Rivasseau for
inviting me to present a lecture at the ‘Séminaire Poincaré’ and my teachers and
numerous collaborators for all they have taught me about ‘Spin and Quantum
Statistics’, over many years. I am very grateful to K. Schnelli for his help.

Remark. These notes have been written at a ‘superluminal’ speed and are
therefore likely to contain errors and weaknesses, which I wish to offer my apologies
for.

2. The Discovery of Spin and of Pauli’s Exclusion Principle,
Historically Speaking

My main sources for this section are [1–6]. Let us dive into a little history of
science, right away.

2.1. Zeeman, Thomson and others, and the discovery of the electron

Fairly shortly before his death, in 1867, Michael Faraday made experiments on the
influence of ‘strong’ magnetic fields on the frequency of light emitted by excited
atoms or molecules. He did this work in 1862 and did not find any positive evi-
dence for such an influence. In the 1880’s, the American physicist Henry Augustus
Rowland invented the famous ‘Rowland gratings’, which brought forward much
higher precision in measuring wave lengths of spectral lines.

In 1896, Pieter Zeeman, a student of Kamerlingh Onnes and Hendrik Antoon
Lorentz, took up Faraday’s last experiments again, using Rowland gratings. He
found that the two sodium D-lines are broadened when the magnetic field of an
electromagnet4 is turned on. He proposed to interpret the effect in terms of Lorentz’
theory of charges and currents carried by fundamental, point-like particles. In
1895, Lorentz had introduced the famous Lorentz force acting on charged parti-
cles moving through an electromagnetic field. When Zeeman had discovered the
effect named after him Lorentz proposed a model of harmonically bound charged
particles of charge e. When a magnetic field

→
H is turned on in a direction per-

pendicular to the plane of motion of such a particle the angular frequency of its
motion changes by the amount

Δω =
e

mc
|→
H | ,

where m is its mass and c is the speed of light. Using Lorentz’ formula, Zeeman
inferred from the broadening of the sodium lines that

e

m
� 107emu/g (1.76 × 107emu/g) .

4Concerning electromagnets, one could embark on a report of the important contributions and
inventions of Pierre Weiss, once upon a time a professor at ETH Zurich.
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In 1897, Zeeman discovered a splitting of the blue line of cadmium, in rough
agreement with Lorentz’ theoretical expectations. From polarization effects he in-
ferred that e is negative. George Stoney had earlier provided an estimate for the
elementary electric charge e. Thus, Zeeman could have predicted the mass of the
charged particle that emits electromagnetic radiation from the ‘interior’ of an atom
or molecule, the electron.

In the same year, the quotient e
m was measured in experiments with cathode

rays, first by Emil Wiechert5, who conjectured that such rays consist of charged
particles with a very small mass m (=mass of an electron); then - with very high ac-
curacy - by Walter Kaufman and, more or less simultaneously, by Joseph J. Thom-
son, who also proposed Wiechert’s charged-particle picture. In 1899, Thomson
measured the value of e by cloud chamber experiments, and, in 1894, he had ob-
tained some bounds on the speed of propagation of cathode rays, showing that
this speed is considerably smaller than the speed of light. This combination of
accomplishments led to the common view that J.J. Thomson is the discoverer of
the electron.

After the discovery of relativistic kinematics in 1905, by Einstein, experiments
with electrons became the leading tool to verify the kinematical predictions of the
special theory of relativity.

2.2. Atomic spectra

“Spectra are unambiguous visiting cards for the gases which emit them.”
(Abraham Pais [1])

Spectroscopy started in Heidelberg with the work of Gustav Kirchhoff (1859) and
Robert Bunsen. Against the philosophical prejudices of Auguste Comte, Kirch-
hoff concluded with the help of absorption spectroscopy that the solar atmosphere
must contain sodium6. Kirchhoff and Bunsen are the fathers of modern optical
spectroscopy and its application as an exploratory tool.

The first three lines of the hydrogen spectrum were first observed by Julius
Plücker in 1859, then, more precisely, by Anders Ångström in 1868. Searches for
patterns in spectral lines started in the late 1860’s. The first success came with
Stoney in 1871. The break-through was a famous formula,

λn =
Cn2

n2 − 4
,

where the λn are wave lengths of light emitted by hydrogen, C is some constant,
and n = 3, 4, . . ., discovered by Johann Jakob Balmer in 1885. In 1892, Carl Runge
and Heinrich Kayser made precise measurements of spectral lines of 22 elements.
Runge and Friedrich Paschen discovered the spectra of ortho- and parahelium.
A precursor of the Rydberg-Ritz combination principle was discovered in 1889 by
Johannes Rydberg, its general form was found by Walther Ritz in 1908.

5Of fame also in connection with the Liénard-Wiechert potentials.
6“It’s not philosophy we are after, but the behaviour of real things.” (Richard P. Feynman)
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Precursors of Rutherford’s planetary model of the atom (1911) can be found
in remarks by Heinrich Hertz (lectures about the constitution of matter in Kiel),
Hermann von Helmholtz, Jean Perrin (1901), Hantaro Nagaoka (1903), and J.J.
Thomson (1906).

In 1913, Niels Bohr came up with his quantum theory of the hydrogen atom7,
with the idea that atomic spectra arise by photon emission during transitions of
an electron from one ‘stationary state’ (a term introduced by Bohr) to another,
and with the Bohr frequency condition, which has a precursor in Einstein’s work of
1906 on Planck’s law for black-body radiation. Bohr’s results provided a quantum-
theoretical ‘explanation’ of Balmer’s formula and of a special case of the Rydberg-
Ritz combination principle.

Subsequent to Bohr’s discoveries, in attempts to interpret the so-called ‘fine
structure’ of atomic spectra discovered by Albert Michelson (1892) and Paschen
(1915), Bohr’s quantum theory was to be married with the special theory of relativ-
ity. The pioneer was Arnold Sommerfeld (1916). He introduced the fine structure
constant

α =
e2

�c
.

Sommerfeld’s formula for the relativistic hydrogen energy spectrum is

En,l = −Ry
[

1
n2

+
α2

n3

(
1

l + 1
− 3

4n

)]
+ O(α4) , (2.1)

where n = 1, 2, 3, . . . , l = 0, 1, . . . , n−1 and Ry is the Rydberg constant. Of course
→
L , with |→

L | � �(l + 1), is the (quantized) angular momentum of the electron
orbiting the nucleus.

In trying to explain experimental results of Paschen, Bohr and, indepen-
dently, Wojciech Rubinowicz (a collaborator of Sommerfeld) found the selection
rule

Δl = ±1 (2.2)

for transitions between stationary states.

This rule did not work perfectly. In 1925, in their first publication and after
ground-breaking work of Wolfgang Pauli, George Uhlenbeck and Samuel Goudsmit
proposed a modification of the Bohr-Rubinowicz selection rule: In (2.1), write

l + 1 = j +
1
2

, (2.3)

with j half-integer, and replace (2.2) by

Δj = 0,±1 . (2.4)

7His theory has a more incomplete precursor in the work of Arthur Erich Haas (1910).
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This reproduced data for the fine structure of the He+ spectrum perfectly. Here,
the half-integer quantum number j appears. Similar ideas were proposed indepen-
dently by John Slater.

Of course, the half-integer nature of j (for atoms or ions with an odd number
of bound electrons) is related to electron spin; as everybody knows nowadays.
Actually, half-integer quantum numbers were first introduced systematically by
Alfred Landé in an analysis of the Zeeman effect and correctly interpreted, by Pauli,
as “due to a peculiar classically not describable two-valuedness of the quantum
theoretical properties of the valence electron”, in 1924.

We have now reached the period when electron spin enters the scene of
physics. I shall briefly sketch how it was discovered by Pauli towards the end
of 1924.

2.3. Pauli’s discovery of electron spin and of the exclusion principle

Pauli’s papers on electron spin and the exclusion principle are [7,8,11]. In [7], he
analyzes what is known as the ‘anomalous Zeeman effect’, namely the Zeeman
effect in weak magnetic fields (when relativistic spin-orbit terms dominate over
the Zeeman term in the atomic Hamiltonian). This theme is taken up again in
[8,11] and leads him to discover electron spin and the exclusion principle. Let us
see how this happened!

In [7], Pauli started from the following facts and/or assumptions; (I follow
modern notation and conventions).

(1) Spectral terms (energies corresponding to stationary states) can be labeled
by ‘quantum numbers’:

(i) A principal quantum number, n, (labeling shells).
(ii) L = 0, 1, 2, 3, . . . (S, P, D, F, . . .) with L < n – our orbital angular mo-

mentum quantum number – and ML = −L, −L + 1, . . . , L – the mag-
netic quantum number.

(iii) S = 0, 1/2, 1, . . ., and MS = −S, −S + 1, . . . , S.
(iv) The terms of a multiplet with given L and S are labeled by a quan-

tum number J (our total angular momentum quantum number), whose
possible values are J = L + S, L + S − 1, . . . , |L − S|, and a magnetic
quantum number M = −J, −J + 1, . . . , J .

(2) There are selection rules for the allowed transitions between stationary states:
ΔL = ±1, ΔS = 0, ΔJ = 0,±1 (with J = 0 → J = 0 forbidden).

(3) Denoting by Z the atomic number of a neutral atom, one has the correspon-
dence

Z even ←→ S, J integer ,

Z odd ←→ S, J half-integer .

(4) Bohr’s frequency condition (i.e., the formula for the frequency of light emitted
in a transition from one stationary state to a lower-lying one.)
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(5) Line splittings in a magnetic field
→
H . If Zeeman splitting dominates fine

structure splitting (Paschen-Back effect) then the energy splitting is given
by

ΔE � (ML + 2MS)μ0|
→
H | , (2.5)

where μ0 = e�

2mc is Bohr’s magneton (actually introduced by Pauli in 1920).

If fine structure (spin-orbit interactions) dominates over Zeeman splitting
(anomalous Zeeman effect) a term with quantum number J splits into 2J +1
equidistant levels labeled by a ‘magnetic quantum number’ M = −J, −J +
1, . . . , J , and the energy splitting for a term with given L, S, J and M is
given by

ΔE = Mgμ0|
→
H | ,

where g is the Landé factor,

g =
3
2

+
S(S + 1) − L(L + 1)

2J(J + 1)
. (2.6)

The selection rules for transitions are given by

ΔM = 0,±1 .

Starting from the Paschen-Back effect, Pauli postulates that the sum of en-
ergy levels in a multiplet with given L and M is a linear function of |→

H | when
one passes from strong to weak magnetic fields. He then determines Landé’s g-
factors uniquely from the energy splittings in large fields and the ‘sum rule’ just
stated. Nowadays, these calculations are an elementary exercise in the algebra
of quantum-mechanical angular momenta (see, e.g., [6]), which I will not repro-
duce. Pauli concludes his paper [7] with prophetic remarks that a derivation of the
‘laws’ he analyzed within the principles of the (old) quantum theory then known,
does not appear to be possible; that the connection between angular momentum
and magnetic moment predicted by Larmor’s theorem does not generally hold
(ge = 2 !); and that the appearance of half-integer values of M and J goes beyond
the quantum theory of quasi-periodic mechanical systems.

Soon afterwards, Pauli started to think about the problem of completion of
electron shells in atoms and the doublet structure of alkali spectra. This led him
to his important paper [8]. Before I sketch the contents of [8], I recall a standard
calculation of the gyromagnetic ratio between magnetic moment

→
M , and angular

momentum
→
L . We consider a distribution of rotating, charged, massive matter. If

we assume that the charge and mass densities are proportional to each other then

| →
M |
|→
L |

=
|q|

2mc
, (2.7)

where q is the total charge and m the total mass. Apparently, the Landé factor is
g = 1. If the same calculation is done using relativistic kinematics (as Pauli did
in [8]) one finds that
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| →
M |
|→
L |

=
|q|

2mc
· (γ)−1 , (2.8)

where γ = (1− v2

c2 )−1/2, v is the speed of a mass element, and (·) denotes a suitable
average. Note that (γ)−1 < 1!

When Pauli worked on paper [8] the prejudice was that, for alkaline metals,
the quantum number S was related to the angular momentum of the core (filled
shells) of an atom. It was then to be expected that it would correspond to a
magnetic moment

→
M with

| →
M | =

e

2mc
(γ)−1S .

Thus, the Landé factor of the core should have come out to be

gcore = (γ)−1 < 1 . (2.9)
Since the electrons in the core of large-Z elements are relativistic, the prediction
of the ‘core model’ would have been that gcore is measurably smaller than 1.

However, formula (2.5), well confirmed, for large |→
H |, in experiments by

Runge, Paschen and Back for large-Z elements, and Landé’s formula (2.6) were
only compatible with

gcore = 2 .

Pauli concluded that S could not have anything to do with the angular momentum
of the core (filled shells) of an atom. He goes on to propose that filled shells have
angular momentum 0 and do not contribute to the magnetic moment of the atom.
By studying experimental data for the Zeeman effect in alkali atoms, he arrives at
the following key conclusion:

“The closed electron configurations shall not contribute to the magnetic
moment and angular momentum of the atom. In particular, for the
alkalis, the angular momenta of, and energy changes suffered by, the
atom in an external magnetic field shall be regarded exclusively as an
effect of the valence electron (‘Leuchtelektron’), which is also the source
of the magneto-mechanical anomaly8. The doublet structure of the alkali
spectra, as well as the violation of the Larmor theorem are, according to
this point of view, a result of a classically not describable two-valuedness
of the quantum-theoretical properties of the valence electron.”

Thus, Pauli had discovered the spin of the electron and the ‘anomaly’ in its
g-factor, ge = 2. (See [9] for a recent study why g = 2 is the natural value of
the tree-level gyromagnetic ratio of charged elementary particles.)

Soon, Ralph Kronig and, independently, Uhlenbeck and Goudsmit interpreted
the quantum number S as due to an intrinsic rotation of electrons, picturing
them as little charged balls. Kronig explained his idea to Pauli, who thought

8ge = 2 !
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it was nonsense9, and Kronig did not publish it. Uhlenbeck and Goudsmit were
confronted with objections by Lorentz against their idea related to the fact that
ge = 2, and wanted to withdraw their paper from publication, but Ehrenfest
convinced them to go ahead and publish it.

Now comes the problem of the Thomas precession: As had been discovered by
Einstein and explained by him to his colleagues working on the quantum theory,
an electron traveling through an electric field

→
E with a velocity �v feels a magnetic

field
→
B ′ = −�v

c
∧ →

E + O
(

v2

c2
|→
E |

)
(2.10)

in its rest frame. If its magnetic moment in the rest frame is denoted by
→
M one

expects that its spin
→
S , will exhibit a precession described, in its rest frame, by

d
→
S

dt
=

→
M ∧ →

B ′ , (2.11)

corresponding to a magnetic energy

U ′ = − →
M · →

B ′ . (2.12)

For an electron in the Coulomb field of a nucleus

e
→
E = −�x

r

dV (r)
dr

, (2.13)

where r is the distance to the nucleus, and V is the Coulomb potential. Plugging
(2.13) into (2.10) and (2.10) into (2.12), we find that

U ′ =
ge

2(mc)2
(→
S · →

L
)1
r

dV (r)
dr

,

where
→
L is the orbital angular momentum, the well-known spin-orbit interaction

term. If this formula is taken literally and compared with Sommerfeld’s calcula-
tion of the fine structure (see Eq. (2.1)) one finds that ge must be 1. This is a
contradiction to the value ge = 2 found in the analysis of the Zeeman effect for
alkali atoms.

This contradiction vexed many people, foremost Pauli, and Heisenberg com-
municated it to Uhlenbeck and Goudsmit when he saw their paper, (“ihre mutige
Note”). It was resolved by Llewellyn Thomas, in February 1926. Thomas pointed
out that the rest frame of an electron moving in the Coulomb field of a nucleus
is actually rotating relative to the laboratory frame. The angular velocity of that
rotation is denoted by �ωT . Then the equation for the precession of the electron’s
spin in a non-rotating frame moving with the electron is given by

9One might say: correctly, (since s = 1
2

is far away from the classical limit s = ∞).
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(
d

→
S

dt

)
non-rotating

=

(
d

→
S

dt

)
rest frame

+ �ωT ∧ →
S , (2.14)

with
(

d
→
S

dt

)
rest frame

given by (2.11). The ‘magnetic energy’ in the non-rotating

frame is then given by

U = U ′ +
→
S · �ωT . (2.15)

The problem now boils down to calculating �ωT . This is an exercise in composing
Lorentz boosts whose solution can be looked up, e.g., in [10]. The formula for �ωT

is

ωT =
1
2

�a ∧ �v

c2

(
1 + O

(
v2

c2

))
, (2.16)

where �a is the acceleration of the electron, which, in an electric field, is given by
− e

m

→
E , up to corrections O (

v
c

)
. Then U is given by

U � (ge − 1)e
2mc

→
S ·

(
�v

c
∧ →

E

)
, (2.17)

which, in the Coulomb field of a nucleus, becomes

U � (ge − 1)e
2(mc)2

→
S · →

L
1
r

dV

dr
. (2.18)

This expression reproduces the correct fine structure. Expression (2.16) for the
Thomas precession frequency and the second term on the R.S. of (2.15) have been
verified, experimentally, in data for spectra of nuclei (where the Landé g-factor
does not take the value g = 2).

Thomas’ observations convinced people, including Einstein and Pauli, and
boosted the acceptance of the naive interpretation of electron spin proposed by
Uhlenbeck and Goudsmit in the physics community.

I conclude my excursion into the history of the discovery of spin with com-
ments on precursors.

In 1900, George Francis FitzGerald had raised the question whether mag-
netism might be due to a rotation of electrons. In 1921, Arthur Compton proposed
that “it is the electron rotating about its axis which is responsible for ferromag-
netism”; (see [1], page 279). The same idea was proposed by Kennard, who also
argued (independently of Abraham), that ge could have the value 2. In 1924 (be-
fore he wrote the papers [8] and [11]), Pauli proposed that the atomic nucleus
must, in general, have a non-vanishing angular momentum, which was relevant for
an explanation of hyperfine splitting. (Whether his idea influenced Uhlenbeck and
Goudsmit, or not, is unclear but rather unlikely.) Independently of (and priorly
to) Uhlenbeck and Goudsmit, Kronig and Urey anticipated their idea, and Bose
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had the idea that photons carry an intrinsic ‘spin’ (or helicity, as we would call it
nowadays).

Almost all these ideas were somewhat flawed or incomplete. For example, we
understand – since Heisenberg’s proposal of a model of ferromagnetism – that the
Pauli principle plays as important a rôle in explaining ferromagnetism as electron
spin.

Thus, let me briefly recall the history of the discovery of Pauli’s exclusion
principle10 . This discovery was made on the basis of Bohr’s work on the periodic
table of elements, in particular his ‘permanence principle’ (electrons in the shell of
an ion keep their quantum numbers when further electrons are added), and of an
important paper by Edmund Stoner [12]. Stoner classified electron configurations
corresponding to given values of the quantum numbers L and J and found, for
alkali atoms, that the total number of electrons in such a configuration is identical
to the number of terms in the Zeeman spectrum of these atoms, namely 2(2L+1),
for every L < n (=principal quantum number). Pauli accidentally came across
Stoner’s paper. Considering alkali spectra, Pauli notices that “the number of states
in a magnetic field for given values of L and J is 2J + 1, the number of states
for both doublets together, with L fixed, is 2(2L + 1)”. Using Bohr’s permanence
principle, he extends his counting of states to more complicated atoms and to all
electrons in the hull of an atom. He concludes that “every electron in an atom can
be characterized by a principal quantum number n and three additional quantum
numbers (L, J, mJ)”, (with J = L ± 1

2 ). He notices that, for L = 0, there are
four possible states for two electrons with different principal quantum numbers,
but only one when their principal quantum numbers agree. He then goes on to
explain Stoner’s and his observations by postulating that each state characterized
by quantum numbers (n, L, J, mJ) can be occupied by at most one electron. (Pauli
had actually defined L, J = L± 1

2 , and mJ = J, J−1, . . . ,−J for single electrons.)
This is the exclusion principle. Pauli concludes his paper with the sentence:

“The problem of a more coherent justification of the general rules con-
cerning equivalent electrons in an atom here proposed can probably only
be attacked successfully after a further deepening of the fundamental
principles of quantum theory.”

Further deepening of the fundamental principles of quantum theory was to
come forward, just a few months later, starting with the work of Heisenberg [13],
followed by a paper by Max Born and Pascual Jordan [14], the “Drei-Männer-
Arbeit” [15], Dirac’s first contributions to the new matrix mechanics [16] (pub-
lished before he earned his PhD degree under Fowler in 1926), and, finally, by
Schrödinger’s work on wave mechanics, in 1926; see [17]. When Heisenberg started
to do his fundamental work resulting in the paper [13], his friend Pauli was mo-
mentarily fed up with quantum theory and worked on Kaluza-Klein theory.

10A name introduced by Dirac in 1925.
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The quantum mechanics of angular momentum, including half-integer angu-
lar momentum, was fully developed in [15]. Pauli’s exclusion principle was reformu-
lated, quantum mechanically, as saying that many-electron states (wave functions)
must be totally anti-symmetric under permutations of the positions and spins of
individual electrons. An early contribution in this direction was in a paper by
Heisenberg, the general formulation is due to Dirac (1926) and, in its definitive
version, to Eugene Wigner (1928), who profited from his friend’s, John von Neu-
mann, knowledge of the permutation groups and their representations. The first
applications to statistical mechanics were made by Jordan11, Fermi and Dirac, in
1926, (Fermi-Dirac statistics).

Bose-Einstein statistics (for particles with integer spin) was introduced by
Bose (for photons) and Einstein (for ideal monatomic quantum gases) in 1924.
Its quantum-mechanical reformulation says that wave functions of many identical
bosons must be totally symmetric under permutations of these particles. Einstein
predicted Bose-Einstein condensation for non-relativistic Bose gases (and used a
wave picture for the atoms in the gas) in 1924.

It should be added that the spin and the value ge = 2 of the gyromagnetic
factor of the electron, as well as the fine structure of the hydrogen spectrum that
led to the discovery of the Thomas precession, all found a natural explanation
when Dirac discovered his relativistic electron equation named after him, in 1927;
see [18]. We will briefly return to this equation, later.

I will now leave the history of the discoveries of spin and quantum statistics
and proceed to sketching some highlights, mathematical and physical ones, that
emerged from these discoveries, not attempting to provide a historical perspective
and jumping over many important developments. I try to provide a glimpse at the
usefulness of Mathematics in formulating and understanding the laws of Physics.

3. Some of the Mathematics of Spin and a Theorem of Weyl12

The model of space and time underlying non-relativistic quantum mechanics is in-
herited from Newtonian mechanics: Physical space is homogeneous and isotropic,
and an appropriate model is three-dimensional Euclidian space E3. Time is mod-
elled by the real line, with the standard order relation and metric. Space-time N
is given by E3 × R. Events are identified with points in N . The time difference
between two events and the spatial distance between them are invariants. Dynam-
ical symmetries of autonomous physical systems are described by the group of
Euclidian motions, boosts and time translations, the so-called Galilei group.

The model of space-time underlying special-relativistic quantum theory (grav-
ity neglected) is usually taken to be the one proposed by Poincaré and Minkowski.

11Jordan was apparently first in discovering Fermi-Dirac statistics. But the editor of ‘Zeitschrift
für Physik’, Max Born, forgot to send Jordan’s paper to the publisher during his stay in America.
I thank N. Straumann for communicating this to me.
12Sources for the material in this section are [6, 19–24].
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Space-time is denoted by N � R4, events are labeled by points in N , and the only
invariant for a pair of events labeled by the points (t, �x) and (t′, �x′) is given by

c2(t − t′)2 − |�x − �x′|2 ,

where c is the speed of light. If this quantity is positive then sign(t − t′) is an
invariant, too. Symmetries of autonomous physical systems are described by the
Poincaré transformations of N , which form the Poincaré group.

The Galilei group is recovered from the Poincaré group by ‘group contraction’,
as the ‘deformation parameter’ 1/c tends to 0. As long as recoil on the gravitational
field is neglected and this field is treated as an external field, there are many good
models of Lorentzian space-times that can serve as receptacles for a quantum
theory. But a good model of space-time underlying a quantum theory of matter
and gravitation is not known, yet!

What has all this got to do with spin? Both the Galilei and the Poincaré group
in d = n+1 dimensions (with n = 3, in nature) contain the group SO(n) of spatial
rotations as a subgroup: Generally speaking, if physical space is isotropic spatial
rotations are dynamical symmetries of autonomous non-relativistic and special
relativistic quantum-mechanical systems, and we must ask how these symmetries
are represented on the space of states of such a system, and what this has got to
do with spin.

Let G be any group of symmetries of a quantum-mechanical system with a
Hilbert space H of pure state vectors. Eugene Wigner has shown that symmetry
transformations labeled by elements of G are represented as unitary or anti-unitary
operators acting on H , and that these operators must define a projective repre-
sentation of G on H , (because the phase of a vector in H is not observable; the
space of pure states being given by projective space over H ). Valentin Bargmann
has shown that if G is a connected, compact Lie group then all projective represen-
tations of G are given by unitary representations of the universal covering group
G̃ associated with G.

If G = SO(n), n = 2, 3, 4, . . . , (the rotation group in n dimensions), then

G̃ =

⎧⎪⎨⎪⎩
R , n = 2
SU(2) , n = 3
Spin(n) , n general .

The spin of a quantum-mechanical particle is viewed as its intrinsic angu-
lar momentum and is thus described in terms of the generators of rotations in
an irreducible, unitary representation of the quantum-mechanical rotation group
Spin(n), where n is the dimension of physical space. For n = 2, these represen-
tations are given by the characters of the group R, i.e., labeled by a real number
s, called the ‘spin of the representation’. For n = 3, the representation theory of
(the Lie algebra of) Spin(3) = SU(2) has been worked out in [15] and is taught
in every course on introductory quantum mechanics. Irreducible representations
are labeled by their ‘spin’ s = 0, 1

2 , 1, 3
2 , . . .. For general n, we refer, e.g., to [24].
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We do not have to go into this theory in any detail. We just note that, for n ≥ 3,
Spin(n) is a two-fold cover of SO(n) and that, as a consequence, there are irre-
ducible representations of Spin(n) that are single-valued representations of SO(n)
(rotations through an angle 2π =identity) labeled by ‘σ = 1’, and representations
of Spin(n) that are ‘double-valued representations ’ of SO(n) (rotations through an
angle 2π = −identity) labeled by ‘σ = −1’.

For an understanding of differential-geometric aspects of ‘spin’ it is useful
to consider the quantum mechanics of a single non-relativistic particle with spin
moving in a physical space described by a rather general n-dimensional manifold.
Of course we are mainly interested in the examples n = 2 (planar physics) and
n = 3; but, for purposes of applications in mathematics, it pays to be a little
general, here. We are interested in formulating non-relativistic quantum mechanics
on a space-time N of the form

N = M× R ,

where physical space, M, is a general smooth, orientable spinC manifold, equipped
with a Riemannian metric g, and R denotes time. Our goal is to derive Pauli’s wave
equation for a non-relativistic electron with spin moving in M under the influence
of an external electromagnetic field and to also consider the quantum mechanics
of positronium (a bound electron-positron pair). For the standard choice M = E3

of direct interest in physics, Pauli’s wave equation was discovered in [19].

3.1. Clifford algebras and spin groups

Let Fk be the unital ∗algebra generated by elements b1, . . . , bk and their adjoints
b1∗, . . . ,
bk∗ satisfying the canonical anti-commutation relations (CAR){

bi, bj
}

=
{
bi∗, bj∗} = 0 ,

{
bi, bj∗} = δij , (3.1)

where
{
A, B

}
:= AB + BA. The algebra Fk has a unique (up to unitary equiv-

alence) irreducible unitary representation on the Hilbert space S := C2k

given
by

bj = τ3 ⊗ · · · ⊗ τ3 ⊗ τ− ⊗ 2 ⊗ · · · ⊗ 2 ,

(3.2)

bj∗ = τ3 ⊗ · · · ⊗ τ3 ⊗ τ+ ⊗ 2 ⊗ · · · ⊗ 2 ,

with τ± := 1
2 (τ1 ± iτ2) in the jth factor; τ1 , τ2 and τ3 are the usual 2 × 2 Pauli

matrices. The representation (3.2) is faithful, and hence Fk � M
(
2k, C

)
, the

algebra of 2k × 2k matrices over the complex numbers.

Let V be a real, oriented, n-dimensional vector space with scalar product
〈· , ·〉 . The complexified Clifford algebra Cl(V ) is the algebra generated by vectors
c(v), c(w), linear in v, w, with v and w in V ⊗ C, subject to the relations{

c(v), c(w)
}

= −2〈v , w〉 . (3.3)
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If e1, . . . , en is an orthonormal basis of V , n = dimV , then (3.3) implies that{
c(ei), c(ej)

}
= −2δij .

A ∗operation is defined by
c(v)∗ = −c(v̄) , (3.4)

v ∈ V ⊗ C. Let n = 2k + p, where p = 0 or 1 is the parity of n. Setting

c(e2j−1) := bj − bj∗ ,

(3.5)

c(e2j) := i
(
bj + bj∗) ,

j = 1, . . . , k, and, for p = 1,

c(en) := ±ik+1c(e1) · · · c(e2k) , (3.6)

where b1#, . . . , bk# act on S and generate Fk, we find that c(e1), . . . , c(en) define
a representation of Cl(V ) on S. Eqs. (3.5), (3.6) define the unique, up to a sign
related to space reflection, irreducible unitary representation of Cl(V ), which is
faithful. Hence

Cl(V ) � M
(
2k, C

)
. (3.7)

A scalar product on Cl(V ) extending the one on V is defined by

〈a, b〉 := 2−ktr(a∗b) , (3.8)

a, b ∈ Cl(V ).

The spin group Spin(V ) is defined by

Spin(V ) :=
{
a ∈ ClevenR (V )

∣∣ aa∗ = a∗a = , ac(V )a∗ ⊆ c(V )
}

, (3.9)

where ClevenR (V ) denotes the real subalgebra of Cl(V ) generated by products of an
even number of elements of the form c(v), v ∈ V . We also set Spin(n) = Spin(En).
The group SpinC(V ) is defined by

SpinC(V ) :=
{
eiαa

∣∣α ∈ R, a ∈ Spin(V )
}

. (3.10)

For each a ∈ SpinC(V ), we define a linear transformation Ad(a) of V by

c
(
Ad(a)v

)
:= ac(v)a∗ , v ∈ V . (3.11)

Clearly, this linear transformation preserves the scalar product on V , and we have
the short exact sequence

1 −→ U(1) −→ SpinC(V ) Ad−→ SO(V ) −→ 1 .

The Lie algebra spinC(V ) of SpinC(V ) is given by

spinC(V ) = spin(V ) ⊕ R , (3.12)

where
spin(V ) =

{
ξ ∈ ClevenR (V )

∣∣ ξ + ξ∗ = 0 ,
[
ξ, c(V )

] ⊆ c(V )
}

. (3.13)
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One then finds that

spin(V ) =
{∑

i,j

xijc(ei)c(ej)
∣∣∣xij = −xji ∈ R

}
� so(V ) . (3.14)

Given V , let
∧.(V ⊗C) denote the exterior algebra over V ⊗C. There is a canonical

scalar product on
∧.(V ⊗ C) extending the one on V ⊗ C =

∧1(V ⊗ C). For
v ∈ V ⊗ C, we define operators a∗(v) and a(v) on

∧.(V ⊗ C) by setting

a∗(v)w := v ∧ w , (3.15)

a(v)w := ı(Gv̄)w , (3.16)

where G is the metric on V defining the scalar product on V , so that Gv is in
the dual space of V , and ı denotes interior multiplication. Then a(v) = (a∗(v))∗,
and the operators a∗(v), a(v), v ∈ V ⊗ C, are the usual fermionic creation- and
annihilation operators satisfying the CAR, with∧.

(V ⊗ C) � fermionic Fock space over V ⊗ C . (3.17)

The operators

Γ(v) := a∗(v) − a(v) , Γ(v) := i
(
a∗(v) + a(v)

)
, (3.18)

then define two anti-commuting unitary representations of Cl(V ) on
∧.(V ⊗ C).

Let dim V = 2k (p = 0) be even. We set

γ = ikΓ(e1) · · ·Γ(en) ,

which anti-commutes with all Γ(v), and satisfies γ2 = . Let S � C2k � S. We
then have that ∧.

(V ⊗ C) � S ⊗ S ,

with

Γ(v) � c(v) ⊗ , (3.19)

Γ(v) � γ ⊗ c̄(v) , (3.20)

where c and c̄ denote the irreducible representations of Cl(V ) on S and S, respec-
tively.

If dimV = 2k + 1 is odd then

γ = ik+1Γ(e1) · · ·Γ(en)

commutes with all Γ(v), and satisfies γ2 = . The operator γ has two eigenvalues,
±1, both with multiplicity 2n−1. It follows that∧.

(V ⊗ C) � S ⊗ C2 ⊗ S ,

and

Γ(v) = c(v) ⊗ τ3 ⊗ , (3.21)

Γ(v) = ⊗ τ1 ⊗ c̄(v) . (3.22)
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3.2. Pauli’s wave equation for an ‘electron’ and for ‘positronium’ in a general
differential-geometric formulation – susy QM

We are ready, now, to formulate Pauli’s wave equation for spinning particles [19]
on a space-time N = M× R, where M is a general, n-dimensional smooth (com-
pact) spinC manifold, e.g., M = En, n = 2, 3. Let g = (gij) be a Riemannian
metric on the tangent bundle TM of M, and let G = (gij) denote the corre-
sponding inverse metric on the cotangent bundle T∗M . Let

∧.M be the bundle of
differential forms on M, with Ω

.
(M) the space of complexified sections of

∧.M.
This space is equipped with a natural scalar product 〈· , ·〉, determined by g and
by the Riemannian volume form. Let Cl(M) be the Clifford bundle over M; its
base space is M and its fibres are given by Cl(T∗

xM) � Cl(En), with n = dimM.
Let A = C∞(M) be the algebra of smooth functions on M. The space of sections,
Γ(E), of a vector bundle E over M is a finitely generated, projective module for
A; E is trivial iff Γ(E) is a free A-module. Our standard examples for E are

E = TM, T∗M,
∧.M, Cl(M) .

The Clifford bundle over M has two anti-commuting unitary representations, Γ
and Γ, on the module Ω

.
(M), which we define as follows: Given a (complex) 1-

form ω ∈ Ω1(M), we introduce creation- and annihilation operators, a∗(ω) and
a(ω), on Ω

.
(M),

a∗(ω)σ := ω ∧ σ , a(ω)σ := ı(Gω)σ , (3.23)

for σ ∈ Ω
.
(M). Then (with a# = a or a∗){

a#(ω1), a#(ω2)
}

= 0 ,
{
a(ω1), a∗(ω2)

}
= (ω1 , ω2) , (3.24)

for ω1, ω2 ∈ Ω1(M), where (· , ·) is the hermitian structure on
∧.M determined

by G. We define two anti-commuting representations Γ and Γ of Cl(M) on Ω
.
(M)

by setting

Γ(ω) := a∗(ω) − a(ω) , Γ(ω) := i
(
a∗(ω) + a(ω)

)
. (3.25)

If the manifold M is spinC (which we have assumed) then

Ω
.
(M) = Γ(S) ⊗A

(
C2 ⊗ )

Γ(S) , (3.26)

where S ≡ S(M) is the spinor bundle and S the (charge-) conjugate spinor bundle
over M. The factor C2 on the R.S. of (3.26) only appears if n = dimM is odd.
The modules Γ(S) and Γ(S) carry unitary representations c and c̄, respectively, of
Cl(M) with

Γ(ω) = c(ω) ⊗ (
τ3 ⊗

)
, (3.27)

Γ(ω) = γ ⊗ (
τ1 ⊗

)
c̄(ω) , (3.28)

with γ = if n is odd; see Sect. 3.1. (Over a coordinate chart of M, Eqs (3.26)–
(3.28) always make sense, by the results of Sect. 3.1. But, globally, they only make
sense if M is spinC!)
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Let ∇ be the Levi-Civita connection on
∧.M (unitary with respect to g and

torsion-free). A connection ∇S on S is called a spinC connection iff it satisfies the
‘Leibniz rule’

∇S
X

(
c(ξ)ψ

)
= c(∇Xξ)ψ + c(ξ)∇S

Xψ , (3.29)
where X is a vector field on M, ξ a 1-form and ψ a spinor in Γ(S), i.e., a section
of S.

If ∇S
1 and ∇S

2 are two hermitian spinC connections on S then(∇S
1 −∇S

2

)
ψ = iα ⊗ ψ , (3.30)

for ψ ∈ Γ(S), where α is a real, globally defined 1-form. Physically, α is the
difference of two electromagnetic vector potentials, A1 and A2, so-called ‘virtual
U(1)-connections ’ on S; (Ai, i = 1, 2, is ‘one half times a U(1)-connection’ on a
line bundle, canonically associated with S ⊗ S, with magnetic monopoles inside
non-contractible 2-spheres in the homology of M).

Given a spinC connection ∇S corresponding to a virtual U(1)-connection A,
the Pauli (-Dirac) operator DA associated with ∇S on S is defined by

DA := c ◦ ∇S , (3.31)

which is a linear operator on Γ(S). Locally, in a coordinate chart of M, with
coordinates x1, . . . , xn,

DA =
n∑

i=1

c(dxi)∇S
i , (3.32)

with {
c(dxi), c(dxj)

}
= gij(x) .

To every ∇S there corresponds a unique conjugate connection ∇S
on S, obtained

by reversing the electric charge, i.e., A → −A, and we define

D−A := c̄ ◦ ∇S
, (3.33)

an operator acting on Γ(S).

The bundles S and S are equipped with a natural hermitian structure. Let
dvolg denote the Riemannian volume form on M. By He we denote the Hilbert-
space completion of Γ(S) in the scalar product on Γ(S) determined by the hermit-
ian structure of S and dvolg; Hp is defined similarly, with S replaced by S.

We note, in passing, that the closures of DA, D−A are selfadjoint, elliptic
operators densely defined on He, Hp, respectively.

Thus, M equipped with a Riemannian metric g, gives rise to what Alain
Connes [23] calls spectral triples

(A, DA, He) , (A, D−A, Hp) , (3.34)

which, in turn, determine (M, g) uniquely. In the special case where M = E3,
these spectral triples are familiar to anyone who knows Pauli’s non-relativistic
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quantum theory of the spinning electron and its twin, the positron: A is the algebra
of position measurements; He (Hp) is the Hilbert space of pure state vectors of a
single electron (positron); and DA

(
D−A

)
is the ‘square-root’ of the Hamiltonian

generating the unitary time evolution of states of an electron (positron) moving
in M and coupled to an external magnetic field B = dA. More precisely, the
Hamiltonian is given by

HA =
�2

2m
D2

A , (3.35)

where m is the mass of an electron, � is Planck’s constant, and the gyromagnetic
factor g = ge = 2. (If ge were different from 2 then HA would not be the square of
DA; there would then appear an additional Zeeman term on the R.S. of (3.35), as
Pauli had introduced it in [19]. This term is proportional to Bij c(dxi)c(dxj), in
local coordinates, where B is the field strength corresponding to A.) In the presence
of an electrostatic potential Φ, the Hamiltonian of Pauli’s non-relativistic electron
is given by

H(Φ,A) := HA + Φ , (3.36)

and Pauli’s version of the time-dependent Schrödinger equation reads

i�
∂

∂t
ψt = H(Φ,A) ψt , (3.37)

for ψt ∈ He. The corresponding equation for the non-relativistic positron is

i�
∂

∂t
χt =

( �2

2m
D 2

−A − Φ
)

χt , (3.38)

for χt ∈ Hp.

We observe that when the electrostatic potential Φ vanishes H(0,A) = HA is
the square of a selfadjoint operator (a ‘super charge’)

Q :=

√
�2

2m
DA .

Let the dimension of M be even, and let {ε1, . . . , εn} be a local, orthonormal basis
of Ω1(M);

({ε1, . . . , εn} is called an ‘n-bein’
)
. We set

γ := i
n
2 c(ε1) · · · c(εn) .

Since M is orientable, γ extends to a globally defined involution of Cl(M) anti-
commuting with c(ω), ω ∈ Ω1(M), and hence with Q. Then (γ, Q, He) furnishes
an example of supersymmetric quantum mechanics, with N = 1 (or (1,0)) super-
symmetry. The ‘super trace’

trHe

(
γ e−βQ2

)
, β > 0 , (3.39)

is easily seen to be independent of β and invariant under small deformations of the
metric g and the vector potential A. It computes the index of the ‘Dirac operator ’
DA, which is a topological invariant of M.
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Next, we study the quantum theory of positronium, namely of a bound state
of an electron and a positron. We define He−p to be the Hilbert space completion
of the space Ω

.
(M) of differential forms in the scalar product determined by the

metric g. Then
He−p � He ⊗A

(
C2 ⊗ )

Hp , (3.40)
where the factor C2 is absent if dimM is even. We introduce two anti-commuting
Pauli (-Dirac) operators D and D (densely defined and selfadjoint on He−p):

D := Γ ◦ ∇ , D := Γ ◦ ∇ , (3.41)

where ∇ is the Levi-Civita connection on Ω
.
(M), and Γ, Γ are the two anti-

commuting representations of Cl(M) on Ω
.
(M) introduced in (3.23) - (3.25).

These operators are easily seen to satisfy{D,D}
= 0 , D2

= D2
. (3.42)

Setting

d :=
1
2
(D − iD)

, d∗ :=
1
2
(D + iD)

, (3.43)

we find that d2 = (d∗)2 = 0. In fact, d turns out to be the exterior derivative.
The Hamiltonian (for the center-of-mass motion of the ‘groundstates’ of a bound
electron-positron pair, i.e.,) of positronium is given by

H :=
�2

2μ
D2 =

�2

2μ
D2

=
�2

2μ
(dd∗ + d∗d) , (3.44)

where μ = 2m. Note that D, D and H are independent of the choice of the vector
potential A (and of Φ) which, physically, corresponds to the circumstance that the
electric charge of positronium is zero. The data

(A, D, D, He−p

)
are thus well de-

fined even if M does not admit a spinC structure. These data, together with (3.44),
furnish an example of supersymmetric quantum mechanics with N = (1, 1) super-
symmetry; the supercharges are the operators D and D. They completely encode
the de Rham-Hodge theory and the Riemannian geometry of M.

One may wonder how additional geometric structure of M reveals itself in
Pauli’s quantum theory of a non-relativistic electron, positron or positronium mov-
ing in M. Suppose, e.g., that M is a symplectic manifold equipped with a sym-
plectic 2-form ω. Let Ω denote the anti-symmetric bi-vector field associated with
ω. We define three operators on He−p

L3 := T − n

2
, L+ :=

1
2
ω ∧ ( · ) , L− :=

1
2
ı(Ω) , (3.45)

where Tλ = p λ, for any p-form λ ∈ Ω
.
(M). Then[

L3, L±
]

= ±2L± ,
[
L+, L−

]
= L3 , (3.46)

i.e.
{
L3, L+, L−

}
define a representation of the Lie algebra sl2 on He−p commut-

ing with the representation of the algebra A on He−p. It is actually a unitary
representation, because L3

∗ = L3 and (L±)∗ = L∓, in the scalar product of He−p.
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Since ω is closed, we have that
[
L+, d

]
= 0, where d is the exterior derivative. A

differential d̃∗ of degree −1 can be defined by

d̃∗ :=
[
L−, d

]
. (3.47)

One finds that
{
d̃∗, d

}
= 0, (d̃∗)2 = 0, and

[
L−, d̃∗] = 0. Thus (d, d̃∗) transforms

as a doublet under the adjoint action of sl2.

One can introduce a second sl2 doublet, (d̃,−d∗), of differentials with the
same properties as (d, d̃∗). We are not claiming that {d, d̃} = 0; this equation does
not hold for general symplectic manifolds. It is natural to ask, however, what is
special about the geometry of M if{

d, d̃
}

= 0 . (3.48)

It turns out that, in this case, M is a Kähler manifold. Defining

∂ :=
1
2

(
d − i d̃

)
, ∂ :=

1
2

(
d + i d̃

)
,

one finds that

∂
2

= ∂
2

= 0 ,
{
∂, ∂

#}
= 0 ,

{
∂, ∂∗} =

{
∂, ∂

∗}
.

The differentials ∂ and ∂ are the Dolbeault differentials. The complex structure J
on M generates a U(1)-symmetry on the differentials:[

J, d
]

= −i d̃ ,
[
J, d̃

]
= i d .

J commutes with the representation of the algebra A = C∞(M) on He−p.

The data
(
A, ∂, ∂∗, ∂, ∂

∗
, He−p

)
furnish an example of a supersymmetric

quantum theory with N = (2, 2) supersymmetry. If the sl2-symmetry is broken, but
the U(1)-symmetry generated by J is preserved then M may not be symplectic,
but it is a complex-hermitian manifold.

It is possible to reformulate all special geometries of smooth manifolds in
terms of the supersymmetric quantum mechanics of a non-relativistic electron
or of positronium by analyzing the adjoint action of symmetries on the Pauli
(-Dirac) operators DA, D−A, D and D. This mathematical theme is developed
in [20]. The upshot of that analysis is that the non-relativistic quantum mechanics
of the spinning electron and of positronium encodes the differential geometry and
topology of Riemannian manifolds M (‘physical space’) in a perfect manner. There
is a complete dictionary between the geometry of M and the supersymmetries of
the quantum theory.

What about the non-relativistic quantum mechanics of particles with ‘higher
spin’? Let (M, g) be an n-dimensional, oriented, smooth, Riemannian manifold
with Riemannian metric g and volume form dvolg. Let ρ be a finite-dimensional,
unitary representation of Spin(n) on a Hilbert space Vρ. If ρ is a double-valued
representation of SO(n), i.e., σ(ρ) = −1, then M must be assumed to be spinC;
for σ(ρ) = 1, this assumption is not necessary. From the transition functions of the
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spinor bundle S (or the tangent bundle TM, for σ(ρ) = 1) and the representation
ρ of Spin(n) we can construct a hermitian vector bundle Eρ over M whose fibres
are all isomorphic to Vρ. The hermitian structure on Eρ and dvolg determine a
scalar product 〈· , ·〉ρ on the space of sections Γ(Eρ). The completion of Γ(Eρ)
in the norm determined by the scalar product 〈· , ·〉ρ is a Hilbert space Hρ. A
spinC connection ∇S on S (or the Levi-Civita connection ∇ on

∧.M if σ(ρ) = 1)
determines a connection ∇ρ on Eρ. (As a physicist, I think about these matters in
coordinate charts U of M, with Eρ|U � U×Vρ, use a little representation theory of
Spin(n) and spin(n), and glue charts together using the transition functions of S,
or TM, respectively, in the representation ρ). The connection ∇ρ, the hermitian
structure on Eρ and dvolg determine a Laplace-Beltrami operator −Δg,A densely
defined on Hρ, (e.g., via the Dirichlet form on Hρ determined by ∇ρ).

Pauli’s non-relativistic quantum mechanics for a particle moving in physical
space M, with an ‘intrinsic angular momentum’ described by the representation
ρ of Spin(n), is given in terms of the following data: The Hilbert space of pure
state-vectors is given by Hρ. A real 2-form ϕ on M determines a section of the
subbundle spin(M) of Cl(M), whose fibres are all isomorphic to the Lie algebra
spin(n) � so(n) of Spin(n); see (3.14). By dρ we denote the representation of
spin(n) on Vρ.

The Pauli Hamiltonian is then given by

Hρ
A = − �2

2m
Δg,A + μρdρ(B) + Φ , (3.49)

where m is the mass of the particle, μρ its ‘magnetic moment’, B ∈ Ω2(M) the
curvature (‘magnetic field’) of the virtual U(1)-connection A (the electromagnetic
vector potential), and Φ is an external (electrostatic) potential. The second term
on the R.S. of (3.49) is the Zeeman term.

Remarks.

(1) Relativistic corrections (spin-orbit interactions) and a variety of further ef-
fects can be described in terms of additive contributions to the (U(1)- and)
Spin(n) connection and further Zeeman terms.

(2) In relativistic field theory on four-dimensional space-time, one encounters
acausality phenomena in the propagation of fields of spin > 1 minimally cou-
pled to external electromagnetic fields (‘Velo-Zwanziger phenomenon’) [25].
This may shed some light on the question why, in Nature, there do not ap-
pear to exist any charged elementary particles of spin > 1. See also section
7.1. It should be noted, however, that the Velo-Zwanziger acausality phe-
nomenon disappears in locally supersymmetric field theories [26]. (I thank N.
Straumann for pointing this out to me.)

Well, I suppose this is all we might want to know about these general matters,
right now.
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To conclude this general, mathematical section, I want to specialize to the
case where M = E3, Spin(3) = SU(2), which is what we physicists care about
most.

3.3. Back to physics: multi-electron systems, Weyl’s theorem, the Dirac equation

We first specialize the material of section 3.2 to the case where M = E3. Then
S ≡ S(M) and

∧.(M) are trivial bundles, and

He / p � L2
(
R3, d3x

)⊗ C2 , (3.50)

the space of square-integrable, two-component spinors on R3. Choosing Cartesian
coordinates x1, x2, x3 on E3, the Pauli (-Dirac) operator DA takes the form

DA =
3∑

j=1

σj

(
−i

∂

∂xj
+

e

�c
Aj(x)

)
, (3.51)

where �σ = (σ1, σ2, σ3) are the usual Pauli matrices, and
→
A(x) = (A1(x), A2(x),

A3(x)) is the electromagnetic vector potential in physical units – whence the factor
e
�c multiplying Aj(x) in (3.51), where −e is the charge of an electron and c the
speed of light. The Pauli Hamiltonian HA is given by

HA =
�2

2m
D2

A + Φ , (3.52)

where Φ is an external electrostatic potential.

We easily find that

�2

2m
D2

A = − �2

2m
ΔA +

e

mc

→
S · →

B , (3.53)

where ΔA is the covariant Laplacian,
→
S = �

2�σ is the spin operator of an electron,

and
→
B =

→∇∧ →
A is the magnetic field. Thus, for the ‘supersymmetric’ Hamiltonian

HA, the gyromagnetic factor ge of the electron has the value 2! As long as spin-orbit
interactions can be neglected, i.e., in the absence of heavy nuclei, the Hamiltonian
HA in (3.52) describes the dynamics of a slow electron in an external electromag-
netic field with good accuracy. Yet, one may wonder how the relativistic effects
of spin-orbit interactions and the Thomas precession modify the expression (3.52)
for the Pauli Hamiltonian. From (2.14) and (2.17) we find that HA must then be
replaced by

HSO
A = − �2

2m
Δ2

A +
e

mc

→
S ·

(
→
B − 1

2
�v

c
∧ →

E

)
+ Φ , (3.54)

where the (gauge-invariant) velocity operator �v is given by

�v =
�

m

(
−i

→∇ +
e

�c

→
A

)
, (3.55)
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and − �
2

2mΔA = m
2 �v 2. We introduce a spin (SU(2)-) connection w = (w0, �w) on

S(E3) in terms of its components in the ‘natural orthonormal basis’ of sections of
S(E3):

w0(x) = i
e

mc�

→
B (x) · →

S , (3.56)

�w(x) = −i
e

2mc�

→
E (x) ∧ →

S . (3.57)

We then define covariant derivatives,

D0 =
1
c

∂

∂t
+

i
�c

Φ′ + w0 , (3.58)

where

Φ′ = Φ − �2

2m

e2

8(mc2)2
→
E 2 , (3.59)

(D0 is the covariant time derivative), and
→
D =

→∇ + i
e

�c

→
A + �w . (3.60)

Here (Φ′, e
→
A ) are the components of an electromagnetic U(1)-connection. Then

the Pauli equation,

i�
∂

∂t
Ψt = HSO

A Ψt, Ψt ∈ He ,

can be rewritten in a manifestly U(1) × SU(2)spin gauge-invariant form

i�cD0 Ψt = − �2

2m

→
D2 Ψt . (3.61)

This observation has been made in [27]; (see also the original papers quoted there).
When incorporated into the formalism of quantum-mechanical many-body theory
the U(1)×SU(2)spin gauge-invariance of Pauli’s theory has very beautiful and im-
portant applications to problems in condensed-matter physics, which are discussed
in much detail in [27]. Depending on context, the U(1)- and SU(2)-connections in-
troduced above receive further contributions, e.g., from a divergence-free velocity
field (quantum mechanics in moving coordinates, with applications, e.g., to su-
perconductivity, super-fluidity, a quantum Hall effect for rotating Bose gases [27],
nuclear physics,...), from a non-trivial spin connection on S(E3) with curvature
and torsion describing disclinations and dislocations in a microscopic crystalline
background, and/or from the ‘Weiss exchange field ’ describing a magnetic back-
ground. It is most regrettable that we cannot enter into all these applications,
here. But the reader will find a detailed exposition of these topics in [27].

Next, we recall the quantum theory of a system of many (N = 1, 2, 3, . . .)
Pauli electrons. The Hilbert space of pure state vectors of such a system is given
by

H (N) = He ∧ · · · ∧ He ≡ H ∧N
e , (3.62)

where He is given by (3.50), and ∧ denotes an anti-symmetric tensor product.
The anti-symmetric tensor product in (3.62) incorporates the Pauli exclusion
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principle. Let H(1) denote the Pauli Hamiltonian for a single electron, as given
in (3.52) or (3.54). In applications to atomic, molecular or condensed matter
physics, Φ(x) is the Coulomb potential of the electron in the field of K nuclei
with charges eZ1, . . . , eZK , which we shall usually treat, for simplicity, as static,
(Born-Oppenheimer approximation); i.e.,

Φ(x) = −
K∑

k=1

e2Zk

4π|x − Xk| , (3.63)

where x is the position of the electron, and X1, . . . , XK are the positions of
the nuclei. Moreover,

→
B is an arbitrary external magnetic field, and

→
E (x) �

− 1
e

→∇Φ(x) is the electric field created by the nuclei (regularized or cut-off, for
x near X1, . . . , XK).

The Hamiltonian for the N electrons is chosen to be

H(N) =
N∑

j=1

∧· · ·∧H(1)∧· · ·∧ +VC (x1, . . . , xN )+V nuc
C (X1, . . . , XK) , (3.64)

where, in the jth term of the sum on the R.S. of (3.64), H(1) stands in the jth

place (factor), with ’s in other factors, and

VC (x1, . . . , xN ) =
∑

1≤i<j≤N

e2

4π|xi − xj | , (3.65)

V nuc
C (X1, . . . , XK) =

∑
1≤k<l≤K

e2ZkZl

4π|Xk − Xl| . (3.66)

Properties of the Hamiltonian H(N) (with H(1) as in (3.52) and Φ as in (3.63))
will be studied in the next section.

We observe that the Hilbert space H (N) is given by

H (N) = Pa

(
L2

(
R3N , d3Nx

)
⊗ C2N

)
, (3.67)

where Pa denotes the projection onto the subspace of totally anti-symmetric spinor
wave functions. In an obvious sense, H (N) carries a tensor product representa-
tion of two representations, V orbit and V spin, of the permutation group SN of N
symbols, where

V orbit(π) = Vω(π) ⊗ ,

V spin(π) = ⊗ Vσ(π) , π ∈ SN ,

in the tensor product decomposition (3.67). The projection Pa selects the alternat-
ing representation (multiplication by sig(π), π ∈ SN ) from Vω ⊗ Vσ; only tensor
products of subrepresentations, V i

ω and V j
σ , of Vω and Vσ, respectively, are in the

range of Pa for which V i
ω(π) = sig(π)V j

σ (π), (i.e., V i
ω is ‘associated ’ to V j

σ ).
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The spin space C2N � (
C2

)⊗N carries the N -fold tensor product representa-
tion, ρ, of the spin s = 1

2 representation of SU(2). This representation is a direct
sum of irreducible representations with spin s = s0, s0 + 1, . . . , N

2 , where s0 = 0
if N is even and s0 = 1

2 if N is odd. It commutes with the representation Vσ of

SN on
(
C2

)⊗N .

Hermann Weyl has proven the following

Theorem 3.1. (
C2

)⊗N �
⊕
(Δ, s)

HΔ ⊗ Hs , (3.68)

with

Vσ =
⊕
(Δ, s)

Δ
∣∣
HΔ

⊗ ∣∣
Hs

(3.69)

ρ =
⊕
(Δ, s)

∣∣
HΔ

⊗ ρs

∣∣
Hs

, (3.70)

where the Δ’s are irreducible representations of the group SN labeled by Young
diagrams with one or two rows and a total of N boxes, and ρs is the irreducible
representation of SU(2) with spin s ∈ {s0, s0 + 1, . . . , N

2 }. Moreover, in (3.68),
every Δ and every s occur only once, i.e., a Δ on the R.S. of (3.68) - (3.70)
paired with a spin s is uniquely determined by s, Δ = Δ(s), and conversely. (The
spin s = s(Δ) corresponding to a representation Δ is given by half the number of
columns in the Young diagram of Δ that consist of a single box.)

Weyl’s theorem is a special case of a general theory of ‘dual pairs ’ of groups;
see [28]. Weyl has shown that the groups SN and SU(n), N = 1, 2, 3, . . ., n =
2, 3 . . . are ‘dual pairs’. From our previous discussion we understand that a sub-
representation Δ of Vσ can only be paired with a subrepresentation Δ of Vω given
by

Δ(π) = sig(π)Δ(π), π ∈ SN ,

in order for the tensor product representation Δ⊗Δ to ‘survive’ the projection Pa.
This, together with Weyl’s theorem, implies that the spin s of an N -electron wave
function completely determines its symmetry properties under exchange of electron
positions or momenta (the ‘race’ of the orbital wave function) and under exchange
of electron spins (the ‘race’ of the spin wave function). This explains why in the
classification of atomic spectra the permutation groups do not appear; (see section
2). In a system of many electrons moving in a shell of an atom or in a crystalline
background, one might expect that, by a conspiracy of electron motion (kinetic
energy) and Coulomb repulsion between electrons (potential energy) the energies of
those states are particularly low that correspond to totally anti-symmetric orbital
wave functions, i.e., Δ(π) = sig(π), π ∈ SN . Then the spin wave functions must be
totally symmetric, i.e., Δ must be the trivial representation of SN . This implies
that the spin s of such a state is maximal, i.e., s = N

2 (for N electrons). The
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expectation described here is at the core of explanations of Hund’s first rule and
of ferromagnetism. While, in many situations, this expectation is quite plausible
it is still poorly understood, mathematically.

What is missing? Well, maybe, a few comments on Dirac’s relativistic electron
equation. But I will cut this short, since everybody is familiar with it! A nice
approach to the Dirac equation can be extracted from the theory of projective,
unitary, irreducible representations of the Poincaré group P↑

+, which is the semi-
direct product of the group of proper, orthochronous Lorentz transformations of
Minkowski space M4 and the group of space-time translations. The Poincaré group
has two Casimir operators,

(i)
M2 = P 2

0 − �P 2 , (3.71)
where P0 ≡ H (the Hamiltonian) is the generator of time-translations, and
�P (the momentum operator) is the generator of space-translations; and

(ii)
W 2

0 − →
W 2 , (3.72)

where (W0,
→
W ) is the Pauli-Lubanski pseudo vector ; see, e.g., [29].

For purposes of quantum physics, we are only interested in projective, unitary
representations of P↑

+ for which M2 ≥ 0 and W 2
0 − →

W 2 is finite. In an irreducible,
projective unitary representation of P↑

+,

M2 = m2 ,

W 2
0 − →

W 2 = −m2s(s + 1) ,

where m ≥ 0 is the mass of the representation and (for m > 0) s is the spin
of the representation of the subgroup of space rotations. All projective, unitary,
irreducible representations of P↑

+ corresponding to a given mass m ≥ 0 and a
finite s can be constructed by the method of induced representations developed
by Wigner and generalized by George Mackey. We consider an energy-momentum
vector p = (p0, �p) with p2 = p2

0 − �p2 = m2. By Hp we denote the subgroup of all
those Lorentz transformations that leave p fixed. For m > 0,

Hp � SO(3) ,

while, for m = 0,
Hp � E(2) ,

the group of Euclidian motions of the plane. Representations of SO(3) and E(2)
then determine representations of P↑

+. The Hilbert space of pure state vectors
of a free, relativistic particle of mass m ≥ 0 is the representation space of an
irreducible unitary representation of the quantum-mechanical Poincaré group with
mass m ≥ 0 and a finite eigenvalue for W 2

0 − →
W 2. For an electron or positron,

m is positive, and hence W 2
0 − →

W 2 = −m2s(s + 1) , where s is the spin of the
representation of the little group Hp � SO(3). For the electron or positron, s = 1

2 !
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If we insist that space reflections should be a symmetry of the theory, we must
glue together two unitary, irreducible representations of the quantum-mechanical
Poincaré group with m > 0 and s = 1

2 . Considering that p0 can be ≥ m or ≤ −m,
we find the Dirac equation for the relativistic electron hiding in the representation
theory of P↑

+ with mass m > 0 and spin s = 1
2 . The second-quantized Dirac

theory for free electrons and positrons is obtained by considering anti-symmetric
tensor products of the positive-energy representation of P↑

+ for single electrons
and positrons in a rather standard fashion; see, e.g., [29]. All this is so exceedingly
well-known that I do not want to enter into details. Similar results can be derived
for massless particles (m = 0), with spin s replaced by “helicity”, λ, with values
in (1/2)Z. (I am grateful to my friend R. Stora for education in this matter.)

The results and methods just alluded to, above, can be generalized to
Minkowski space-times of arbitrary dimension d = n + 1 ≥ 2. Formally, a local
quantum field theory of electrons and positrons moving in quite general Lorentzian
space-time manifolds and coupled to external electromagnetic fields can be written
down without difficulty. However, in contrast to the theory of Pauli electrons and
positrons moving in a general physical space, the number of electrons and positrons
is no longer conserved (electron-positron pair creation processes happen), and one
encounters serious analytical problems when one attempts to develop Dirac theory
on general Lorentzian space-times and coupled to general electromagnetic fields.
These problems are only partially solved, and I do not wish to enter into this
matter.

Pauli’s non-relativistic theory of the spinning electron, along with a system-
atic treatment of relativistic corrections, can be recovered by studying the limit of
Dirac’s theory, as the speed of light c tends to ∞. Relativistic corrections can be
found by perturbation theory in c−1. A mathematically careful treatment of such
matters can be found in [30].

4. Stability of Non-Relativistic Matter in Arbitrary External
Magnetic Fields

In order to get a first idea of the importance of electron spin and the Pauli principle
in the physics of systems of many electrons moving in the Coulomb field of static
(light) nuclei and coupled to an arbitrary external magnetic field, I review some
fairly recent results on the stability of such systems. The reference for such results
is [31].

Let us consider a system of N electrons and K static nuclei with nuclear
charges eZ1, . . . , eZk. with

∑K
k=1 Zk ∼ N . The Hilbert space of the system is the

space H (N) introduced in (3.62), the Hamiltonian is the operator H(N) defined
in (3.64), where the one-electron operator H(1) is the Pauli operator of Eq. (3.52),
with DA as in (3.51) and Φ as in (3.63).
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Units: The energy unit is Ry = 2mc2α2, where α = e2

�c ∼ 1
137 is Sommerfeld’s

fine structure constant. The unit of length is half the Bohr radius, i.e., l = �
2

2me2 .

The magnetic field
→
B =

→∇∧ →
A is in units of e

l2α ; the magnetic field energy is given

by ε
∫ →

B 2 d3x, with ε = 1
2α2 .

The Pauli operator DA is given, in our units, by

DA = �σ ·
(
−i

→∇ +
→
A

)
. (4.1)

It is convenient to work in the Coulomb gauge,
→∇ · →

A = 0 . (4.2)

For a vector field
→
X on R3 or a spinor ψ ∈ L2(R3, d3x) ⊗ C2, we say that

→
X ∈

Lp (ψ ∈ Lp) iff (→
X · →

X
)1/2 ∈ Lp(R3, d3x) ,

(ψ , ψ)1/2 ∈ Lp(R3, d3x) .

It is shown in [32] that if
→
B has finite field energy, i.e.,

→
B ∈ L2, then there exists

a unique
→
A such that

→∇ ∧ →
A =

→
B ,

→∇ · →
A = 0 ,

→
A ∈ L6 .

4.1. Zero-modes of the Pauli operator

Loss and Yau [33] have proven, by a fairly explicit construction, the following
important result:

Theorem 4.1. There exists a single-electron two-component spinor wave function
ψ ∈ H1(R3) (the usual Sobolev space) and a vector potential

→
A ∈ L6, with

→∇·→
A = 0

and
→
B =

→∇ ∧ →
A ∈ L2 such that

DA ψ = 0 , (4.3)

i.e, ψ is a zero-mode of the Pauli operator DA.

An explicit choice of a magnetic field leading to a zero-mode, in the sense of
Eq. (4.3) is

→
B (x) =

12
(1 + x2)3

[
(1 − x2)n + 2 (n · x) x + 2n ∧ x

]
,

where n is a unit vector.

This result, whose proof we omit, has some rather remarkable consequences
that we will discuss next. (The proof relies on a three-dimensional analogue of the
celebrated Seiberg-Witten equations.)
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4.2. Stability and instability of atoms and one-electron molecules

We consider the Pauli Hamiltonian for a one-electron ion in a general external
magnetic field

→
B of finite field energy:

HA = D2
A − Z

4π |x| . (4.4)

Let E0 (
→
B, Z) denote the infimum of the spectrum of HA. If

→
B is a constant

external magnetic field,
→
B = (0, 0, B), then it is known from work of Avron,

Herbst and Simon quoted in [32] that

E0 (
→
B, Z) ∼ −const (ln B)2 .

This implies that E0 (
→
Bn, Z) −→ −∞ even for a sequence of suitably chosen

magnetic fields
→
Bn of finite, but ever larger field energy. It is then natural to ask

whether
E0 (

→
B, Z) + ε

∫
d3x |→

B (x)|2 (4.5)

is bounded below, uniformly in
→
B , and for what range of values of the nuclear

charge.

The answer is worked out in [32]. We define a convenient space, C, of config-
urations (ψ,

→
A),

C :=
{(

ψ,
→
A

) ∣∣∣ψ ∈ H1(R3) , ‖ψ‖2
2 = 1 ,

→
A ∈ L6 ,

→∇ · →
A = 0 ,

→∇ ∧ →
A ∈ L2

}
(4.6)

and a space N of ‘zero modes’,

N :=
{ (

ψ,
→
A
) ∣∣ (ψ,

→
A
)
∈ C , DAψ = 0

}
. (4.7)

We then define a critical nuclear charge Zc by

Zc := inf
(ψ,

→
A)∈N

{
ε ‖→

B‖2
2

/〈
ψ , 1

4π|x|ψ
〉}

. (4.8)

(Note that, by scaling, the analogue of Zc vanishes in more than three dimensions.)

The following result has been shown in [32].

Theorem 4.2. Zc is positive and finite.

For Z > Zc,
inf

→
B∈L2

{
E0

(→
B, Z

)
+ ε ‖→

B‖2
2

}
= −∞ .

For Z < Zc,
inf

→
B∈L2

{
E0

(→
B, Z

)
+ ε ‖→

B‖2
2

}
> −∞ ,

and the infimum is a minimum reached for some pair
(
ψ ,

→
A
)
∈ C.



34 Jürg Fröhlich

Furthermore, the infimum on the R.H.S. of (4.8) is reached on a pair
(
ψ ,

→
A
)
∈ N .

In [32], Zc is estimated for the physical value of the fine structure constant and
comes out to be Zc ∼ 17′900. Thus, a single-electron ion coupled to an arbitrary
magnetic field

→
B of finite field energy is stable (the total energy is bounded from

below) if the nuclear charge Z is smaller than Zc, while it is unstable if Z > Zc.
This result crucially depends on the fact that electrons have spin and a magnetic
moment with a gyromagnetic factor ge = 2, (as long as radiative (QED) corrections
are neglected). If ge < 2 then

inf
→
B∈L2

E0

(→
B, Z

)
> −constZ2 > −∞ ,

for all values of Z, by Kato’s ‘diamagnetic inequality’, while for ge > 2, ions would
always be unstable.

In [34], the results summarized in Theorem 4.2 are extended to many-electron
atoms and to a system consisting of a single electron moving in the Coulomb field
of arbitrarily many static nuclei, (one-electron molecule in the Born-Oppenheimer
approximation). For this purpose, one considers the energy functional

E(Ψ,
→
B, X, Z

)
:=

〈
Ψ , H

(N)
→
A

Ψ
〉

+ ε‖→
B‖2

2 , (4.9)

where Ψ ∈ H (N), see (3.62), is an N -electron wave function with 〈Ψ , Ψ〉 = 1, and
H

(N)
→
A

≡ H(N) is the N -electron Hamiltonian introduced in (3.64) - (3.66), with

H(1) as in (3.52) and (3.63), (see also (4.4), with Z
4π|x| replaced by the Coulomb po-

tential (3.63) of many nuclei). There is an obvious extension of the definition (4.6)
of the space C to an N -electron system. We are interested in studying the lowest
possible energy

E0 := inf
(Ψ,

→
A)∈C

X∈R
3K

E(Ψ,
→
B, X, Z

)
. (4.10)

It is shown in [34] that, for K = 1 (one nucleus) and N arbitrary (arbitrarily many
electrons), or for K arbitrary and N = 1,

E0 > −∞ ,

provided Zj < Z̃c < ∞, for all j = 1, . . . , K, and provided

α < αc , (4.11)

with 0.32 < αc < 6.7, i.e., provided the fine structure constant α is sufficiently
small. The bound (4.11) comes from studying 1-electron molecules and is ‘real ’:
If α > αc there are configurations of K identical nuclei with arbitrary Z < Z̃c =
O(α−2) such that, for some choice of K, E0 = −∞, for a 1-electron molecule.
Again, the crucial role in the proofs of these results is played by the electron spin
and the fact that ge = 2!
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The punchline in this analysis of stability of non-relativistic matter was
reached, a little more than ten years ago, in works of Charles Fefferman [35] and
of Elliott H. Lieb, Michael Loss and Jan Philip Solovej [36] (whose treatment is
considerably simpler than Fefferman’s, but came a little later)13. It is summarized
in the next subsection.

4.3. Stability of matter in magnetic fields

Consider the energy functional E (Ψ,
→
B, X, Z ) introduced in (4.9) – with N elec-

trons moving in the Coulomb field of K static nuclei at positions X1, . . . , XK ,
with nuclear charges Z1, . . . , ZK , and coupled to an arbitrary external magnetic
field

→
B of finite field energy ε ‖→

B‖2
2. Let

E0 ≡ E0(α, Z) := inf
(Ψ,

→
A)∈C

X∈R
3K

E(Ψ,
→
B, X, Z

)
. (4.12)

The following result is proven in [36].

Theorem 4.3. Suppose that Zk ≤ Z < ∞, for all k = 1, . . . , K, and that

Zα2 < 0.041 and α < 0.06 . (4.13)

Then
E0(α, Z) ≥ −C (N + K) , (4.14)

for some finite constant C depending on Z and α, but independent of N and K.

Remarks. The bound (4.14) expresses stability of matter in the sense that the
energy per particle (electrons and nuclei) has a lower bound (≥ −constZ2Ry)
independent of the number of electrons and nuclei in the system. This is an ex-
pression of thermodynamic stability of such systems, which is a pillar on which all
of condensed-matter physics rests; (‘independence’ of condensed-matter physics of
nuclear form factors and cut-offs imposed on the magnetic field).

For stability of matter, i.e., for the validity of (4.14), it is crucial that electrons
are fermions, i.e., that they satisfy Pauli’s exclusion principle. In Lieb-Thirring
type proofs of stability of matter, the Pauli principle enters in the form of general-
ized Sobolev inequalities (bounding the electron kinetic energy from below by the
Thomas-Fermi kinetic energy) only valid for fermions; see [31].

We know from the results in the last two subsections that E0(α, Z) = −∞,
i.e., the system becomes unstable, if either Z � α−2 or if α is ‘large’ (α > 6.7). It
is somewhat tantalizing that electron spin and the fact that ge = 2 would render
systems of many electrons and nuclei – as they are studied in atomic, molecular
and condensed-matter physics – unstable if α > 6.7 and/or if Zα2 is very ‘large’.
This is reminiscent of the possibility that the Landau pole in relativistic QED will
descend to the non-relativistic regime if α is large enough.

13All this work came after ground-breaking work of Dyson and Lenard in the 1960’s, and of Lieb
and Thirring ; see [31] and references given there.
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Let us see what the source of the potential instability is! It is actually a short-
distance or ultraviolet instability: If in the definition of H

(N)
→
A

, the electromagnetic

vector potential
→
A in the Coulomb gauge is replaced by a mollified potential

→
Aκ(x) :=

∫
d3y κ(x − y)

→
A(y) ,

where κ is an arbitrary positive, smooth function, with
∫

κ = 1, (i.e., a smooth
approximate δ-function) then the bound

E0(α, Z) ≥ −C (N + K)

is true for arbitrary α and Z, but the constant C now depends on κ, and if α > 6.7
and/or Zα2 is large enough, then C = Cκ −→ ∞, as κ approaches a δ-function.
In order to arrive at a deeper understanding of these matters, we should quantize
the electromagnetic field, too.

5. Electrons Interacting with the Quantized Electromagnetic Field;
Radiative Corrections to the Gyromagnetic Factor

It is important to ask what becomes of the results in the last section if the elec-
tromagnetic field is treated quantum mechanically. One of my strong scientific
interests, during the past fifteen years, has been to find mathematically precise
answers to this question; see [37–49], and [50] for a review of some of these and
other results.

We return to the Hamiltonian (3.64), i.e.

H(N) =
N∑

j=1

{[
�σj ·

(
−i

→∇j +
→
A(xj)

) ]2

−
K∑

k=1

Zk

4π|xj − Xk|
}

+
∑

1≤i<j≤N

1
4π|xi − xj | +

∑
1≤k<l≤K

ZkZl

4π|Xk − Xl| , (5.1)

acting on the N -electron Hilbert space

H (N) =
(
L2

(
R3, d3x

)⊗ C2
)∧N

. (5.2)

We are interested in studying the dynamics of such systems when the electromag-
netic field is quantized, i.e., electrons can emit and absorb photons. We quantize
the electromagnetic field in the Coulomb gauge, i.e.,

→∇ · →
A = 0 . (5.3)

Then
→
A(x) =

1
(2π)3/2

∑
λ=±1

∫
d3k√
2|k|

[
�ελ(k)a∗

λ(k)e−ik·x + �ελ(k)aλ(k)eik·x
]
, (5.4)
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where a∗
λ(k), aλ(k) are the usual creation and annihilation operators for a photon

with wave vector k ∈ R3 and helicity λ = ±, satisfying the canonical commutation
relations (CCR),

[a#
λ (k), a#

μ (l)] = 0 , [aμ(k), a∗
λ(l)] = δμλδ(3)(k − l) , (5.5)

and �ελ(k) ⊥ k, λ = ±, are two orthonormal polarization vectors. We consider the
Fock representation of the commutation relations (5.5) uniquely characterized by
the existence of a vacuum state Ω in which none of the field modes is excited, so
that

aλ(k)Ω = 0 , for all λ and k , (5.6)
and 〈Ω , Ω〉 = 1. Fock space F is the Hilbert space completion of the linear space
obtained by applying arbitrary polynomials in creation operators smeared out
with square-integrable functions to the vacuum Ω. The Hamiltonian of the free
electromagnetic field generating the time evolution of vectors in F is given, in our
units, by the operator

Hf :=
1

2α2

∫
d3x

{
:

→
E (x)

2
: + :

→
B (x)

2
:
}

=α−2
∑
λ=±

∫
d3k a∗

λ(k)|k|aλ(k) , (5.7)

where
→
E (x) =

1
(2π)3/2

∑
λ=±1

∫
d3k

√
|k|
2

[
i�ελ(k)a∗

λ(k)e−ik·x − i�ελ(k)aλ(k)eik·x
]
,

are the transverse components of the electric field,
→
B =

→∇ ∧ →
A is the magnetic

field, the double colons indicate standard Wick ordering, and α−2|k| is the energy
of a photon with wave vector k (in our units).

The total Hilbert space of electrons and photons is given by

H := H (N) ⊗ F , (5.8)

and the Hamiltonian is given by

H := H(N) + ⊗ Hf . (5.9)

Alas, this operator is ill-defined. To arrive at a mathematically well defined expres-
sion for the Hamiltonian (selfadjoint on H and bounded from below), we must
replace the vector potentials

→
A(xj) on the R.S. of (5.1) by ultraviolet regularized

potentials
→
AΛ(xj), j = 1, . . . , N , where

→
AΛ(x) =

∫
d3y κΛ(x − y)

→
A(y) ,

and κΛ is the Fourier transform of, e.g., a normalized Gaussian
1

(2πΛ2)3/2
e−(|k|2/2Λ2) ,
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where Λ is an ultraviolet cutoff energy that one may choose to be of the order of the
rest energy of an electron. Of course one will ultimately be interested in studying
the limit, as Λ −→ ∞. This limit is only meaningful if the mass and the chemical
potential of an electron are renormalized. To study the renormalization theory of
the model of quantum electrodynamics (QED) considered in this section, we must

replace the Pauli Hamiltonians,
[
�σj ·

(− i
→∇j +

→
A(xj)

)]2
on the R.S. of (5.1) by

operators
1

MΛ

[
�σj ·

(
−i

→∇j +
→
AΛ(xj)

) ]2

+ μΛ , (5.10)

for j = 1, . . . , N , where MΛ is the ratio between the ‘bare mass ’ of an electron and
its observed (physical) mass, and μΛ is the bare self-energy (or chemical poten-
tial) of an electron. The Hamiltonians obtained after the replacement (5.10) are
denoted by H

(N)
Λ ≡ H

(N)
Λ (MΛ, μΛ), see (5.1), and HΛ ≡ HΛ(MΛ, μΛ), see (5.9),

respectively. A fundamental question in renormalization theory is whether MΛ > 0
and μΛ can be chosen to depend on the cutoff energy Λ in such a way that the
limiting Hamiltonian

Hren = “ lim
Λ→∞

HΛ” (5.11)

exists as a selfadjoint operator on H .

A mathematically rigorous answer to this question remains to be found. (I
rather bet it might be ‘no’.) However, there are indications of various kinds as to
how to choose MΛ and μΛ and plenty of perturbative calculations (perturbation
theory in α), which we briefly summarize next.

(1) Since, in our model of QED, the number of electrons and nuclei is conserved –
electron-positron pair creation processes are suppressed – there is no vacuum
polarization, and hence the fine structure constant α is independent of Λ.

(2) (Non-rigorous) perturbative renormalization group calculations suggest that

MΛ ∼ Λ−(8α/3π)+O(α2) , (5.12)

i.e., the bare mass of an electron must approach 0 like a small inverse power
of Λ, as Λ −→ ∞; or, in other words, the physical mass of an electron consists
entirely of radiative corrections12.

(3) There are some rather crude bounds on the self-energy μΛ:

c1Λ3/2 ≤ μΛ ≤ c2Λ12/7 ,

for constants c1 and c2 (but derived under the assumption that MΛ = 1);
see [50] and references given there.

(4) Perturbatively, a finite Lamb shift is found, as Λ −→ ∞, which is in rough
agreement with experimental data12; (an improved version of Bethe’s calcu-
lation of 1947).

12In these calculations, the Zeeman terms in H
(N)
Λ are neglected.
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(5) The gyromagnetic factor ge of the electron is affected by radiative corrections.
In low-order perturbation theory in α, it remains finite, as Λ −→ ∞, and is
given by

ge = 2
[
1 +

8
3

α

2π
+ O(α2)

]
; (5.13)

see [50, 51]. This result should be compared to the value for ge predicted by
perturbative fully relativistic QED,

ge = 2
[
1 +

α

2π
+ O(α2)

]
, (5.14)

where the lowest-order correction, α
2π , was first calculated by Julian

Schwinger. Experiment favours Schwinger’s result! This can be viewed – if
one likes – as a high-precision confirmation of, among other things, the special
theory of relativity.

No matter whether electrons are treated non-relativistically or relativistically,
we find that ge > 2! For a single, freely moving electron with Hamiltonian HA given
by (3.52) (with Φ = 0), this results in a breaking of the ‘supersymmetry’ (see
section 3.2) of the quantum theory, and the effects of ‘supersymmetry breaking’
offer a handle on precision measurements of ge − 2; (see section 6).

The fact that ge > 2 and the results in section 4 apparently imply that QED
with non-relativistic matter ultimately only yields a mathematically meaningful
description of physical systems if a (large, but finite) ultraviolet cutoff is imposed
on the interactions between electrons and photons, no matter how small α is
chosen. For large values of α (α > 6.7), this theory is expected to exhibit cutoff
dependence already at atomic and molecular energies.

The need for an ultraviolet cutoff in QED with non-relativistic matter is
reminiscent of the problem of the Landau pole in relativistic QED.

The following results are non-perturbative and mathematically rigorous:
(6) Stability of Matter: For an arbitrary number N of electrons and K static

nuclei with nuclear charges Zk ≤ Z < ∞, for all k = 1, . . . , K and arbitrary
K < ∞,

HΛ ≥ −Cα, Z KΛ , (5.15)
for a finite constant Cα, Z independent of Λ and K. While (5.15) proves
stability of matter if an ultraviolet cutoff Λ is imposed on the theory, the linear
dependence on Λ on the R.S. of (5.15) is disastrous, physically speaking. It is
not understood, at present, whether a lower bound on HΛ (MΛ , μΛ) can be
found that is uniform in Λ, provided MΛ and μΛ are chosen appropriately!

Present mathematically rigorous efforts towards understanding QED with non-
relativistic matter are therefore aimed at an analysis of H

(N)
Λ , for a fixed ultraviolet

cutoff Λ (∼ rest energy of an electron), and at tackling the so-called infrared
problem that is caused by the masslessness of the photons. Here there has been
tremendous progress, during the past fifteen years; see e.g. [37–50].
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The most remarkable results that have been found, during the last ten years,
are, perhaps, the following ones:

We choose an arbitrary, but fixed ultraviolet cutoff Λ.

(7) Atoms have stable ground states; [43–45].
(8) Excited states of atoms are turned into resonances (meta-stable states) whose

energies and widths (inverse life times) can be calculated to arbitrary pre-
cision by a constructive and convergent algorithm. These energies and life
times agree, to leading order in α, with those first calculated by Bethe in
order to explain the Lamb shift, [43, 44].

(9) Scattering amplitudes, Sfi, for Rayleigh scattering of photons at atoms (be-
low the ionization threshold) have asymptotic expansions of the form

Sfi =
N∑

n=0

σfi, n(α)αn + o(αN ) ,

where
lim
α→0

αδσfi, n(α) = 0 ,

for an arbitrarily small δ > 0. It is expected (and can be verified in examples)
that

σfi, n(α) =
n∑

k=0

σfi, n, k

(
ln

1
α

)k

.

The powers of ln 1
α come from infrared singularities that render ordinary

perturbation theory infrared-divergent in large, but finite orders in α; see [48].
Our results yield, among many other insights, a mathematically rigorous
justification of Bohr’s frequency condition for radiative transitions.

(10) Infrared-finite, constructive, convergent algorithms have been developed to
calculate the amplitudes for ionization of atoms by Laser pulses (unpublished
work of the author and Schlein based on earlier work by Fring, Kostrykin and
Schader) and for Compton scattering of photons at a freely moving electron;
see Pizzo et al. [49].

Most proofs of the results reviewed in this section rely on complex spectral defor-
mation methods, multi-scale perturbation theory and/or operator-theoretic renor-
malization group methods; see [43, 44, 48] and references given there.

I now leave this thorny territory and sketch how the gyromagnetic factor of
the electron can be measured experimentally.

6. Three Methods to Measure ge

We have already seen in section 2 that atomic spectroscopy in a magnetic field
(Zeeman splittings) offers a possibility to measure the gyromagnetic factor ge of
the electron.
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Another possibility originating in condensed-matter physics is to exploit the
Einstein–de Haas effect .

6.1. The Einstein–de Haas effect (see, e.g., [27])

Consider a cylinder of iron magnetized in the direction of its axis and suspended
in such a way that it can freely rotate around its axis. Should this cylinder rotate,
then it is advisable to treat the quantum theory of the electrons (and nuclei) in
the iron in a rotating frame.

Let
→
V (�y, t) be a (divergence-free) vector field on physical space that generates

an incompressible flow φt : E3 → E3 with the property that �y = (y1, y2, y3), given
by

�y = φ−1
t (�x) , (6.1)

are coordinates in the moving frame at time t, with �x = (x1, x2, x3) the Cartesian
laboratory coordinates. If

→
V generates space rotations around a point �x0 in space

with a fixed angular velocity �ω then
→
V (�y, t) = �ω ∧ (�y − �x0) . (6.2)

The quantum theory of electrons in the moving frame is described by a (in
general time-dependent) Hamiltonian

H
(N)
→
V

=
N∑

j=1

{ m

2
(�σj · �vj)

2 + (ge − 2)
e

2mc

�

2
�σj ·

→
B (�yj , t)

− e

c

→
A(�yj , t) · →

V (�yj , t) − m

2
→
V (�yj , t)

2}
+ UCoulomb

(
φt(�y1), . . . , φt(�yN ),

→
X 1, . . . ,

→
X K

)
, (6.3)

where the velocity operators �vj are given by

�vj =
�

m

(
−i

→∇j +
e

�c

→
A(�yj , t) +

m

�

→
V (�yj , t)

)
, (6.4)

and UCoulomb is the total Coulomb potential of electrons and nuclei, expressed in

laboratory coordinates. The term −m
2

→
V (�yj , t)

2
appearing in (6.3) is the potential

of the centrifugal force at the position �yj of the jth electron in the moving frame.
We observe that in (6.3) and (6.4)

e

c

→
A and m

→
V (6.5)

play perfectly analogous rôles, at least if ge = 2. As one will easily guess, m
→
V is

the vector potential generating the Coriolis force, which can be obtained from the
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Lorentz force by replacing e
c

→
B = e

c

→∇∧ →
A by m

→∇ ∧ →
V . Note that

m

2
(�σ · �v)2 + (ge − 2)

e

2mc

→
S · →

B

=
1

2m

(
−i�

→∇ +
e

c

→
A + m

→
V
)2

+
gee

2mc

→
S · →

B +
→
S · →

Ω , (6.6)

where
→
S = �

2�σ is the spin operator of an electron and
→
Ω =

→∇ ∧ →
V is twice the

vorticity of
→
V .

What we are describing here is the quantum-mechanical Larmor theorem:
(see, e.g., [27] for details).

Let us now imagine that a magnetized iron cylinder is initially at rest in the
laboratory frame. An experimentalist then turns on a constant external magnetic
field

→
B in the direction opposite to that of the spontaneous magnetization of the

cylinder (parallel to its axis), so as to demagnetize the cylinder. This causes an
increase in the free energy of the cylinder, which can be released in the form of
mechanical energy. What is this mechanical energy? Well, the cylinder starts to
rotate about its axis with an angular velocity �ω it chooses so as to cancel the effect
of the external magnetic field

→
B as best it can. By formula (6.6), the total Zeeman

term in the electron Hamiltonian in the rotating frame, vanishes if

2�ω =
→
Ω = − gee

2mc

→
B (6.7)

and the total vector potential affecting orbital motion of the electrons is then given
by e

c

→
A + m

→
V = O(ge − 2) � 0. The total Coulomb potential UCoulomb is invariant

under the transformation �xj → �yj,
→
X j → �Yj . Thus, in the moving frame, the free

energy of the electrons in a cylinder rotating with an angular velocity �ω given
by (6.7) is approximately the same as the free energy in the laboratory frame
before the field

→
B was turned on and �ω = 0. This explains the Einstein–de Haas

effect.

By measuring
→
B and �ω, one can determine ge!

The Barnett effect describes the phenomenon that an iron cylinder can be
magnetized by setting it into rapid rotation; (see (6.6)).

Other effects based on the same ideas are encountered in cyclotron physics,
two-dimensional electron gases exhibiting the quantum Hall effect, molecular and
nuclear physics; see [27] and references given there.

6.2. Accelerator measurement of ge

Consider an electron circulating in an accelerator ring of radius R. It is kept in
the ring by a constant external magnetic field

→
B perpendicular to the plane of the
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ring. Its angular velocity �ωC ‖ →
B is found by balancing the centrifugal with the

Lorentz force. Thus, its angular velocity is obtained by solving the equation

|�ωC | =
e

γmc
|→
B | , (6.8)

where γ =
(
1 − |�v|2

c2

)−1/2

, |�v| = R |�ωC |.
This means that the velocity �v of the electron precesses around the direction

of
→
B with an angular frequency |�ωC | given by (6.8). What does its spin

→
S do? The

precession of
→
S around

→
B is described by the so-called Bargmann–Michel–Telegdi

(BMT) equation. In the special situation considered here, this equation simplifies
to

d
→
S

dt
=

e

mc

→
S ∧

(
ge − 2

2
+

1
γ

)
→
B , (6.9)

see, e.g., [10]. Thus, the precession frequency of the spin is found to be

�ωS =
e

γmc

→
B +

e

2mc
(ge − 2)

→
B . (6.10)

We find that, for ge = 2, �ωS = �ωC ; but if ge �= 2 the spin- and velocity precession
frequencies differ by an amount

e

2mc
(ge − 2) |→

B | . (6.11)

(If ge > 2 then the spin precesses faster than the velocity.) By measuring the spin
polarization of a bunch of electrons, with the property that, initially, their spins
were parallel to their velocities, after many circulations around the accelerator
ring, one can determine ge − 2 with very high accuracy.

Of course, the formula for the Thomas precession encountered in section 2
can be found as an application of the general BMT equation. How watertight the
derivation of the BMT equation is, mathematically, is still a matter of debate [52].

6.3. Single-electron synchrotron measurement of ge

Consider a single electron in a constant external magnetic field
→
B = (0, 0, B)

in the z-direction whose motion in the z-direction is quantized by a confining
(electrostatic) potential Φ(z). The time-independent Schrödinger equation for this
particle is

H(1)ψ = Eψ , (6.12)

where H(1) is given by

H(1) =
�2

2m

(
−i

→∇ +
e

�c

→
A(�x)

)2

+
gee

2mc
S(3)B + Φ(z) , (6.13)

where
→
A(�x) = 1

2 (−yB, xB, 0), �x = (x, y, z). Eq. (6.12) can be solved by separat-
ing variables:

ψ(x, y, z) = χ(x, y)h(z) ,
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where χ is a two-component spinor wave function only depending on x and y, and
h(z) is a scalar wave function satisfying(

− �2

2m

d2

dz2
+ Φ(z)

)
h(z) = E h(z) , (6.14)

with h ∈ L2(R, dz). Let E0 < E1 < E2 < . . . be the energy eigenvalues of the
eigenvalue problem (6.14). As shown by Lev Landau, the energy spectrum of the
operator H(1) is then given by the energies

En, s, k = �ωC

(
n +

1
2

)
+

ge

2
�ωC s + Ek , (6.15)

where ωC = |eB|
mc , n = 0, 1, 2 . . ., s = ± 1

2 , k = 0, 1, 2 . . ., and Ek as in (6.14).
All these eigenvalues are infinitely degenerate. Their eigenfunctions corresponding
to a degenerate energy level En, s, k can be labeled by the eigenvalues of the z-
component, Lz, of the orbital angular momentum operator, which are given by

�l, with l = −n, −n + 1, . . . , 0, 1, 2 . . . .

We observe that if ge were exactly equal to 2 then

En, − 1
2 , k = En−1, + 1

2 , k , (6.16)

and
E0,− 1

2 , k = Ek .

These equations are an expression of the ‘supersymmetry’ of Pauli’s non-relativistic
quantum theory of an electron with ge = 2; (see section 3). If ge �= 2 this super-
symmetry is broken, and we have that

Em−1, 1
2 , k − En, − 1

2 , k = �ωC(m − n) +
ge − 2

2
�ωC . (6.17)

By measuring such energy differences with great precision in very slow radiative
transitions, one can determine ge with astounding accuracy. The life times of the
excited states can be made long, and hence the energy uncertainties tiny, by using
cavities obeying non-resonance conditions. Very beautiful high-precision measure-
ments of ge based on these ideas have recently been performed by Gerald Gabrielse
and collaborators; see [53].

7. KMS, Spin and Statistics, CPT

In this last section, we study the general connection between the spin of parti-
cles and their quantum statistics – particles with half-integer spin are fermions,
particles with integer spin are bosons – and the related connection between the
spin of fields and their commutation relations within the framework of local rela-
tivistic quantum field theory. Our approach to this subject yields, as a byproduct,
a proof of the celebrated CPT theorem, namely of the statement that the prod-
uct of the discrete operations of charge conjugation (C), space reflection (P ) and
time reversal (T ) is an anti-unitary symmetry of any local quantum field theory
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on an even-dimensional space-time. This symmetry maps states of matter onto
corresponding states of anti-matter. Thus the prediction of the existence of the
positron by Dirac and Weyl, on the basis of Dirac’s hole theory, can be viewed,
in hindsight, as a corollary of the locality of quantized Dirac theory and of the
general CPT theorem.

I should mention that in a three-dimensional space-time, e.g., in the physics
of two-dimensional electron gases exhibiting the quantum Hall effect, or of films,
one may encounter (quasi-) particles with fractional spin �∈ 1

2Z and a type of
‘fractional ’quantum statistics described by representations of the braid groups, or
braid groupoids (originally introduced in mathematics by Emil Artin). Moreover,
in two- and three-dimensional local quantum field theories, there are fields of
fractional spin whose commutation relations give rise to representations of the
braid groups or groupoids. It is conceivable that this exotic type of quantum
statistics is relevant in the context of the fractional quantum Hall effect, and
there are people who hope to exploit it for the purpose of (topological) quantum
computing.14

It may be appropriate to make some sketchy remarks on the history of the
discoveries of the connection between spin and statistics, of the CPT theorem and
of braid statistics.

The general connection between spin and statistics for free fields was dis-
covered, on the basis of earlier work by Heisenberg and Pauli and by Pauli and
Weisskopf, by Markus Fierz in 1939, [54]. His result was later rederived more ele-
gantly by Pauli. In axiomatic field theory, a general result was found by Lüders and
Zumino; see [55, 56]. A much more general analysis of the statistics of superselec-
tion sectors, based on the algebraic formulation of local quantum field theory, was
carried out by Doplicher, Haag and Roberts ; see [58,59]. They showed that general
para-Bose or para-Fermi statistics can always be converted into ordinary Bose or
Fermi statistics by introducing ‘internal degrees of freedom’ on which a compact
topological group of internal symmetries acts, and they rederived the general con-
nection between spin and statistics. All these results only hold in space-times of
dimension ≥ 4.

The CPT theorem, i.e., the statement that the product of C, P and T is
an anti-unitary symmetry of any local, relativistic quantum field theory, was first
derived in [60] and then, in its general form, by Res Jost in [61]; see also [55, 56].
Based on Jost’s analysis and on the KMS condition [62] characterizing thermal
equilibrium states, it was rederived in a general setting by Bisognano and Wich-
mann [63], who established a connection with Tomita-Takesaki theory [64].

We will see that the general connection between spin and statistics and the
CPT theorem are consequences of the fact that the vacuum state of a local rela-
tivistic quantum field theory is a KMS (equilibrium) state for all one-parameter
subgroups of the Poincaré group consisting of Lorentz boosts in a two-dimensional

14An idea probably first suggested by myself.
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plane containing a time-like direction. This observation has been made in [63].
Incidentally, it is at the core of the theory of the Unruh effect.

Exotic commutation relations between fields carrying ‘fractional charges’ in
local relativistic quantum field theories with soliton sectors in two space-time di-
mensions first appeared in work of R. Streater and I. Wilde [65] and of the au-
thor [66], in the early seventies. (They gave rise to certain abelian representations
of the braid groups.) In 1977, M. Leinaas and J. Myrheim [67] discovered the
first example of a system of quantum particles moving in the plane and exhibiting
braid (or ‘fractional’) statistics: Charged point particles carrying magnetic vortic-
ity. The braid statistics of such particles is a consequence of the Aharonov-Bohm
effect. Their analysis was generalized in [68] and [69]. Within the context of abelian
gauge (Higgs) theories in three dimensions, particles with fractional spin and braid
statistics were analyzed in [70]. The general theory of (abelian and non-abelian)
braid statistics was initiated by the author in [71] and completed in [72, 73], and
references given there. A general connection between fractional spin and braid
statistics was established in [73], and it was shown that, in local theories in three-
dimensional space-time, ordinary Bose or Fermi statistics implies that all spins are
integer of half-integer, and that braid statistics implies the breaking of parity (P )
and time reversal (T ).

7.1. SSC, KMS and CPT

I will now first recall the connection between spin and statistics (SSC) in the general
framework of local relativistic quantum field theory (RQFT), as formalized in the
so-called (G̊arding-) Wightman axioms [55, 56]; (see also [57]). As a corollary,
I will then show that the vacuum state of an arbitrary local RQFT is a KMS
(equilibrium) state [62] for any one-parameter group of Lorentz boosts at inverse
temperature β = 2π, [63]. The CPT theorem and SSC turn out to be consequences
of the KMS condition.

I will follow methods first introduced in [61,63], and my presentation is similar
to that in [74], where various mathematical details can be found.

We consider a local RQFT on Minkowski space Md, (d = n + 1), at zero
temperature satisfying the Wightman axioms [55, 56]. Let H denote the Hilbert
space of pure state vectors of the theory and Ω ∈ H the vacuum vector. The space
H carries a projective, unitary representation, U , of P↑

+. We first consider RQFT’s
with fields localizable in points and transforming covariantly under the adjoint
action of U ; a more general framework is considered in the next subsection, (see [76]
for a general analysis of the localization properties of fields). Let Ψ1, . . . , ΨN be the
fields of the theory. Smearing out these fields with test functions in the Schwartz
space over Md, one obtains operators densely defined on H . In fact, H turns
out to be the norm-closure of the linear space obtained by applying arbitrary
polynomials in Ψ1, . . . , ΨN (smeared out with Schwartz space test functions) to
the vacuum Ω. Let Π ⊂ Md be a two-dimensional plane containing a time-like
direction. Without loss of generality, we can choose coordinates x0, x1, . . . , xd−1
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in Md such that Π is the (x0, x1)-coordinate plane. We consider the one-parameter
subgroup of Lorentz boosts given by

x0
θ =cosh(θ)x0 + sinh(θ)x1 ,

x1
θ =sinh(θ)x0 + cosh(θ)x1 , (7.1)

xj
θ =xj , for j ≥ 2 ,

with θ ∈ R the rapidity of the boost. Let MΠ = M∗
Π denote the generator of

the boosts (7.1) in the projective, unitary representation U of P↑
+ on H . To

each field Ψj of the theory, there is associated a finite-dimensional, irreducible
projective representation Sj of the group L↑

+ of proper, orthochronous Lorentz
transformations of Md such that

eiθMΠ Ψj(x0, x1, �x) e−iθMΠ = S−1
j (θ)Ψj(x0

θ, x1
θ, �x) , (7.2)

with �x = (x2, . . . , xd−1), or, in components,

eiθMΠ ΨA
j (x0, x1, �x) e−iθMΠ =

∑
B

S−1
j (θ)A

B ΨB
j (x0

θ, x1
θ, �x) , (7.3)

where ΨA
j is the Ath component of Ψj .

A theorem due to Bargmann, Hall and Wightman [55, 56] guarantees that,
for an RQFT satisfying the Wightman axioms, the Wick rotation from real times
to purely imaginary times ct = iτ , τ ∈ R, is always possible. The vacuum vector
Ω turns out to be in the domain of all the operators

∏n
k=1 Ψ̂jk

(xk), where xk =
(τk, x1

k, �x) ∈ Ed (d-dim. Euclidean space),

Ψ̂j(τ, x1, �x) := Ψj(iτ, x1, �x) = e−τH Ψj(0, x1, �x) eτH , (7.4)

with H ≥ 0 the Hamiltonian of the theory, provided that

0 < τ1 < τ2 < . . . < τn ; (7.5)

see [55, 77]. The Euclidian Green- or Schwinger functions are then defined by

S(n)(j1, x1, . . . , jn, xn) :=
〈
Ω , Ψ̂j1(x1) · · · Ψ̂jn(xn)Ω

〉
. (7.6)

By Bargmann-Hall-Wightman, the Schwinger functions S(n) are defined on all of

Edn
�= :=

{
(x1, . . . , xn)

∣∣∣xj ∈ Ed, j = 1, . . . , n, xi �= xj , for i �= j
}

. (7.7)

It is convenient to introduce polar coordinates, (α, r, �x), with r > 0, α ∈ [0, 2π),
in the (τ, x1)-plane by setting

τ = r sin α, x1 = r cosα, �x = (x2, . . . , xd−1) ; (7.8)

(the angle α is an imaginary rapidity).
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Let S+ denote the Schwartz space of test functions f(r, �x) with support in
R+ × Rd−2. We define functions Φ(n) of n angles as follows:

Φ(n)(j1, f1, α1, . . . , jn, fn, αn) :=∫
S(n)(j1, α1, r1, �x1, . . . , jn, αn, rn, �xn)

n∏
k=1

fk(rk, �xk) drk dd−2xk . (7.9)

As shown in [74] (see also [77]), using Bargmann-Hall-Wightman (see (7.6), (7.7))
– among other things – these functions are given by

Φ(n)(j1, f1, α1, . . . , jn, fn, αn) =
〈
Ω , Ψ̂j1(fj , α1) · · · Ψ̂jn(fn, αn)Ω

〉
, (7.10)

provided α1 < α2 < . . . < αn, with αn − α1 < 2π. On the R.S. of (7.10),

Ψ̂j(f, α + β) = e−αMΠ Rj(α) Ψ̂j(f, β) eαMΠ , (7.11)

for arbitrary angles α > 0, β ≥ 0 with α + β < π, where

Rj(α) := Sj(iα) (7.12)

is the finite-dimensional, irreducible representation of Spin(d) obtained from Sj by
analytic continuation in the rapidity. Formally, (7.10) and (7.11) follow from (7.2),
(7.3) and (7.6); (the details required by mathematical rigor are a little compli-
cated; but see [63, 74]). We note that the vacuum Ω is invariant under Poincaré
transformations; in particular

eiθMΠ Ω = Ω , for all θ ∈ C . (7.13)

We also note that two points (α1, r1, �x1) and (α2, r2, �x2) in Ed are space-like
separated whenever α1 �= α2. Thus, the local commutation relations of fields at
space-like separated points [55, 56, 77] imply that, for αk �= αk+1,

Φ(n)(. . . , jk, fk, αk, jk+1, fk+1, αk+1, . . .)

= exp(i2πθjk jk+1)Φ(n)(. . . , jk+1, fk+1, αk+1, jk, fk, αk, . . .) , (7.14)

for arbitrary 1 ≤ k < n, where, for d ≥ 4,

θj j′ = 0 mod Z if Ψj or Ψj′ is a Bose field , (7.15)

θj j′ =
1
2

mod Z if Ψj and Ψj′ are Fermi fields . (7.16)

For details see [77] and [78]. In two space-time dimensions, the statistics of fields
localizable in points can be more complicated; see subsection 7.2, and [71–73]. In
particular, the phases θj j′ can be arbitrary real numbers, and this is related to the
fact that Spin(2) = SO(2)̃ = R, which implies that the spin (parity) sj of a field
Ψj can be an arbitrary real number. The spin (parity) sj of a field Ψj is defined
as follows: Since Rj is a finite-dimensional, irreducible representation of Spin(d),

Rj(2π) = ei2πsj , (7.17)

where sj = 0, 1
2 mod Z, for d ≥ 3, while sj ∈ [0, 1) mod Z, for d = 2.
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Given a field index j, we define the ‘adjoint’ index j through the equation(
ΨB

j (g)
)∗

= ΨB
j

(g), g ∈ S (Md) , (7.18)

where A∗ is the adjoint of the operator A on H in the scalar product of H .

We are now prepared to prove the general spin-statistics-connection (SSC)
for fields of a local RQFT localizable in space-time points. We first note that,
by (7.11) and (7.18),

Ψ̂j(f, α)∗ =
(
e−αMΠRj(α) Ψ̂j(f, 0) eαMΠ

)∗

= eαMΠRj(α)∗ Ψ̂j(f , 0) e−αMΠ

= Rj(α)∗R−1

j
(−α) Ψ̂j(f , −α)

!= Ψ̂j(f , −α) ,

by (7.2), (7.3) and (7.18). Thus

Rj(α)∗ = Rj(−α) . (7.19)

Furthermore, by (7.3), (7.11) and (7.13),

Φ(n)(j1, f1, α1 + α, . . . , jn, fn, αn + α)

=
〈
Ω ,

n∏
k=1

Ψ̂jk
(fk, αk + α)Ω

〉
=

〈
Ω ,

n∏
k=1

(
e−αMΠ Rjk

(α)Ψ̂jk
(fk, αk) eαMΠ

)
Ω
〉

= Rj1(α) ⊗ · · · ⊗ Rjn(α)Φ(n)(j1, f1, α1, . . . , jn, fn, αn) , (7.20)

which expresses the rotation covariance of the functions Φ(n), (a consequence of the
Poincaré covariance of the fields Ψj and the Poincaré invariance of the vacuum
Ω). Thus, using the positivity of the scalar product 〈· , ·〉 on H , we find that, for
0 < α < π,

0 <
〈
e−αMΠ Ψ̂j(f, 0)Ω , e−αMΠ Ψ̂j(f, 0)Ω

〉
(7.10),(7.11)

= R−1

j
(−α) ⊗ R−1

j (α)Φ(2)(j, f , −α, j, f, α)

(7.14),(7.19)
= R−1

j (α) ⊗ R−1

j
(−α) ei2πθj j Φ(2)(j, f, α, j, f , −α)

= R−1
j (α) ⊗ R−1

j
(−α) ei2πθj j Φ(2)(j, f, α, j, f , 2π − α)

(7.20)
= R−1

j (α − π) ⊗ R−1

j
(−α − π) ei2πθj,j Φ(2)(j, f, α − π, j, f , π − α)

(7.17)
= ei2πθj j ei2πsj R−1

j (α − π) ⊗ R−1

j
(π − α)Φ(2)(j, f, α−π, j, f , π−α)

(7.11)
= ei2πθj j ei2πsj

〈
e(α−π)MΠ Ψ̂j(f , 0)Ω , e(α−π)MΠ Ψ̂j(f , 0)Ω

〉
. (7.21)
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Note that the L.S. and the scalar product (3rd factor) on the very R.S. of (7.21)
are well defined and strictly positive, for 0 < α < π. It then follows that

sj = −sj = θj j mod Z , (7.22)

which is the usual connection between spin and statistics:

sj half-integer ←→ Ψj a Fermi field ,

sj integer ←→ Ψj a Bose field , (7.23)

and, for d = 2,

sj fractional ←→ Ψj a field with fractional (braid) statistics.

Next, we show that our results imply that the vacuum Ω is a KMS state at
inverse temperature β = 2π for the one-parameter group of Lorentz boosts in the
plane Π.

We consider the Schwinger function

Φ(n)(j1, f1, α1, . . . , jn, fn, αn) =
〈
Ω ,

n∏
k=1

Ψ̂jk
(fk, αk)Ω

〉
, (7.24)

for α1 < · · · < αn, with αn−α1 < 2π. For simplicity, we assume that d ≥ 3, so that
all spins are half-integer or integer and, by (7.22), only Fermi- or Bose statistics is
possible. Then Φ(n)(j1, f1, α1, . . . , jn, fn, αn) vanishes, unless an even number of
the fields Ψj1 , . . . , Ψjn are Fermi fields. For every 1 ≤ m < n, we define the phase

ϕm =
∑

k=1,..., m

l=m+1,..., n

θjk jl
, (7.25)

with θjk jl
as in (7.14).

Using Eqs. (7.15) and (7.16) and the fact that the total number of Fermi
fields among Ψj1 , . . . ,Ψjn is even, one easily deduces from the spin statistics con-
nection (7.23) that

ϕm =
m∑

k=1

sjk
mod Z . (7.26)

Next, by repeated use of (7.14), we find that

Φ(n)(j1, f1, α1, . . . , jn, fn, αn)

= ei2πϕm Φ(n)(jm+1, fm+1, αm+1, . . . , jn, fn, αn, j1, f1, α1, . . . , jm, fm, αm)

(7.26)
= exp

(
i2π

m∑
k=1

sjk

)
Φ(n)(jm+1, fm+1, αm+1, . . . , j1, f1, α1, . . .)

(7.17)
= ⊗ · · · ⊗ ⊗ Rj1(2π) ⊗ · · · ⊗ Rjm(2π)

·Φ(n)(jm+1, fm+1, αm+1, . . . , j1, f1, α1 + 2π, . . . , jm, fm, αm + 2π) .

(7.27)
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Note that αm+1 < . . . < αn < α1 + 2π < . . . < α2m + 2π, with αm + 2π −αm+1 <
2π) (⇔ αm < αm+1). Thus, by (7.24) (applied to the L.S. and the R.S. of (7.27)),
we arrive at the identity〈

Ω ,

m∏
k=1

Ψ̂jk
(fk, αk)

n∏
l=m+1

Ψ̂jl
(fl, αl)Ω

〉
=

〈
Ω ,

n∏
l=m+1

Ψ̂jl
(fl, αl)

m∏
k=1

(
e−2πMΠ Ψ̂jk

(fk, αk) e2πMΠ

)
Ω
〉

, (7.28)

which is the celebrated KMS condition.
Defining

ω(A) := 〈Ω , AΩ〉 , (7.29)
and

τθ(A) := eiθMΠ A e−iθMΠ , (7.30)
with (τθ(A))∗ = τθ(A∗) and τθ(A1 · A2) = τθ(A1)τθ(A2), where A, A1, A2 are
operators on H , we find, setting

m∏
k=1

Ψ̂jk
(fk, αk) =: B ,

and
n∏

l=m+1

Ψ̂jl
(fl, αl) =: C ,

that

ω(B · C) = ω(Cτ2πi(B))

= ω(τ−2πi(C)B) , (7.31)

a more familiar form of the KMS condition for (ω, τθ) at inverse temperature
β = 2π; see [62].

It deserves to be noticed that the KMS condition (7.28), (7.31) implies the
spin-statistics connection. We calculate formally: For 0 < ε < π,

ω
(
Ψ̂j1(f1, 0)Ψ̂j2(f2, ε)

)
KMS,(7.11)

= e−i2πsj2 ω
(
Ψ̂j2(f2, 2π + ε)Ψ̂j1(f1, 0)

)
(7.14)
= e−i2πsj2 ei2πθj1 j2 ω

(
Ψ̂j1(f1, 0)Ψ̂j2(f2, 2π + ε)

)
(7.11)
= e−i2πsj2 ei2πθj1 j2 ω

(
Ψ̂j1(f1, 0)Ψ̂j2(f2, ε)

)
. (7.32)

Thus,
sj2 = θj1 j2 mod Z , (7.33)

unless ω(Ψ̂j1(f1, 0)Ψ̂j2(f2, ε)) ≡ 0. If this quantity does not vanish (and in d ≥ 3)
then either Ψj1 and Ψj2 are both Fermi fields (θj1 j2 = 1

2 mod Z) or they are both
Bose fields (θj1 j2 = 0 mod Z). Thus, (7.33) proves (a special case of ) SSC!
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It turns out that the CPT theorem (for d even) is a direct consequence of
the KMS condition (7.31). This claim can be viewed as a corollary of the general
Tomita-Takesaki theory [64]. But, in our concrete context, it is easy to directly
define an anti-unitary involution J acting on H , which, thanks to the KMS con-
dition (7.31), turns out to be a symmetry of the theory: We define

B := Ψ̂j1(f1, α1) · · · Ψ̂jn(fn, αn) , (7.34)

with 0 < α1 < . . . < αn < π, and

C := Ψ̂l1(g1, β1) · · · Ψ̂lm(gm, βm) , (7.35)

with 0 < β1 < . . . < βn < π. We define

JB Ω := e−πMΠB∗ Ω , (7.36)

or

JΨ̂j1(f1, α1) · · · Ψ̂jn(fn, αn)Ω

= e−πMΠ Ψ̂jn
(f n, −αn) · · · Ψ̂j1

(f 1, −α1)Ω

= R−1

jn
(π) Ψ̂jn

(f n, π − αn) · · ·R−1

j1
(π) Ψ̂j1

(f 1, π − α1)Ω , (7.37)

with 0 < π − αn < π − αn−1 < . . . < π − α1 < π. By analytic continuation
of (7.37) in the angles α1, . . . , αn to the imaginary axis, see [74], we see that J
has the interpretation of the product CP1T , where P1 is the space reflection x1 �→
−x1, �x �→ �x, �x = (x2, . . . , xd−1); (geometrically, the action of J only involves a
reflection in the plane Π). Using (7.36), we find that〈

JC Ω , JB Ω
〉 (7.36)

=
〈
e−πMΠ C∗Ω , e−πMΠ B∗Ω

〉
=

〈
e−2πMΠC∗Ω , B∗Ω

〉
= ω(τ−2πi(C)B∗)

(7.31)
= ω(B∗C)
=

〈
B Ω , C Ω

〉
,

which tells us that J is anti-unitary. Moreover,

J(JB Ω) = J
(
e−πMΠ B∗eπMΠ

)
Ω

= e−πMΠ
(
eπMΠ Be−πMΠ

)
Ω

= B Ω ,

i.e., J is an involution.
In even space-time dimension, the product P1P , where P is space reflection,

has determinant = 1 and can be represented as a space rotation. Hence P1P is a
symmetry of the theory. It follows that the CPT operator Θ defined by

Θ := JP1P (7.38)
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is an anti-unitary symmetry of the theory. This is the celebrated CPT theorem [61].
In a space-time of odd dimension, the operators Jj = CPjT, j = 1, . . . , d − 1 are
always anti-unitary symmetries, but, in general, Θ is not a symmetry.

For an analysis of SSC and CPT for local RQFT’s on a class of curved space-
time manifolds with ‘large’ groups of Killing symmetries (Schwarzschild, de Sitter,
AdS), see, e.g., [74].

I conclude my discussion with a result due to Steven Weinberg and Edward
Witten, [75]: In a four-dimensional local RQFT without gravity, but with well
defined current- and charge density operators, there are no massless charged (as-
ymptotic) particles of spin > 1

2 ; and there are no massless (asymptotic) particles
of spin > 1 if the theory admits a well defined energy-momentum tensor.

7.2. Braid statistics in two and three space-time dimensions and SSC15

Two-dimensional electron gases in a transversal external magnetic field exhibiting
the fractional quantum Hall effect appear to be examples of quantum-mechanical
systems with fractionally charged quasi-particles having fractional spin s �∈ 1

2Z
and fractional or braid statistics; see, e.g., [81,82], and references given there. The
analysis of these particles is important in order to calculate, e.g., the value of the
Hall conductivity σH (a rational multiple of e2

h ). Certain systems exhibiting the
fractional quantum Hall effect (e.g., the ones with σH = 5

2
e2

h ) are believed to
be of interest for purposes of quantum computation. All this is quite fascinating
and has been among my more serious scientific interests in the 1990’s. Thus, it
would have been tempting to give a rather detailed account of the theory of planar
systems exhibiting fractional electric charges, fractional spin and fractional or braid
statistics.

However, after much agonizing, I have come to the conclusion that it is im-
possible to give an account of fractional spin and braid statistics that is accurate
(mathematically precise), comprehensible, and short. I therefore decided, with con-
siderable regrets, to limit my account of these matters to some very sketchy re-
marks.

The pure physical states of a quantum-mechanical system with infinitely
many degrees of freedom at zero temperature, described, e.g., by a local RQFT,
fall into different irreducible (‘simple’) superselection sectors. These sectors are in-
variant under the action of operators corresponding to local observable quantities
(‘measurements’) of the theory. (The action of the algebra of all ‘local observables’
on every superselection sector of the theory is usually irreducible.) Superpositions
of states from different superselection sectors are therefore incoherent: Their rela-
tive phases are not observable, and interference terms vanish (‘decoherence’).

15Sources for this section are [58, 59, 71–73, 76, 79, 80].
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Let I = {e, 2, 3, . . . , N}, N ≤ ∞, be a set of indices labeling the different
irreducible superselection sectors of such a system, with e labeling the sector con-
taining the ground state (or vacuum) Ω of the system. Let Uj, j ∈ I, denote the
unitary representation of the quantum-mechanical rotation group Spin(d − 1) on
(the Hilbert space Hj of pure states corresponding to) the superselection sector
j. Since the algebra of local observables is assumed to act irreducibly on Hj , and
because observables commute with rotations through an angle 2π, one can show
that Uj(R(2π)), where R(2π) is a space rotation through an angle 2π, is a multiple
of the identity, i.e.,

Uj

(
R(2π)

)
= ei2πsj

j , (7.39)

where sj is called the ‘spin (parity) of sector j’. For d ≥ 4, sj ∈ 1
2Z, but, for d = 3,

Spin(2) � R , (7.40)

so that sj can, in principle, be an arbitrary real number (mod Z).

If the theory describing the system has a local structure (see [58, 72, 73, 76])
and the vacuum sector e has appropriate properties (‘Haag duality’, see [58]) then
one can show that sectors can be composed, i.e., with two sectors, i and j, one
can associate their composition, i ⊗ j, (a kind of tensor product), and the sector
i⊗j can be decomposed into a direct sum of irreducible sectors with multiplicities,
according to

i ⊗ j =
⊕
k∈I

Nk
ij · k ≡

⊕
k∈I

⎛⎝Nk
ij⊕

α=1

k(α)

⎞⎠ , (7.41)

where Nk
ij = 0, 1, 2, . . . is the multiplicity of the irreducible sector k in the tensor

product sector i ⊗ j, and k(α) � k. The integers Nk
ij are called ‘fusion rules’. If

the theory describing the systems has a local structure one can show that:
• Nk

ij = Nk
ji and i ⊗ j � j ⊗ i;

• to every irreducible sector j ∈ I one can uniquely associate a (charge-) con-
jugate sector j such that j ⊗ j � j ⊗ j contains the vacuum (groundstate)
sector e, exactly once, i.e.,

j ⊗ j = e ⊕
( ⊕

k∈I

k �=e

Nk
ij · k

)
; (7.42)

and
• e ⊗ j � j ⊗ e � j, for all j ∈ I.

Since i ⊗ j � j ⊗ i, there must exist an intertwiner (morphism) εij intertwining
i ⊗ j with j ⊗ i:

εij : i ⊗ j
−→ j ⊗ i . (7.43)

Focusing on systems in two or three space-time dimensions – which we will do in
the following – we find, after some serious reflection, that there are usually two
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distinguished intertwiners ε+
ij and ε−ij satisfying (7.43). (In two space-time dimen-

sions, this can be understood to be a consequence of the fact that the complement
of a light cone has two disjoint components; in three space-time dimensions, it
is related to the circumstance that two points in the plane can be exchanged ei-
ther clockwise or anti-clockwise.) It turns out that, thanks to the associativity
of the composition of sectors (the tensor product ⊗), the operators ε±ij obey the
Yang-Baxter equations (as first observed in [71]), and

ε+
ij ε−ji = identity . (7.44)

It follows from these properties that the intertwiners {ε±ij | i, j ∈ I} determine a
unitary representation of the groupoid of colored braids on n strands (the colors
are the labels of the irreducible sectors, i.e., the elements of I), for arbitrary
n = 2, 3, . . .. These representations describe the quantum statistics of the system.
If

ε+
ij = ε−ij for all i, j ∈ I , (7.45)

then the representations of the braid groupoids are actually representations of the
permutation groups, and the quantum statistics ultimately reduces to ordinary
Bose / Fermi statistics. In d ≥ 4 space-time dimensions, Eq. (7.45) always holds.

Let Ni denote the |I| × |I| matrix with positive integer matrix elements

(Ni)
k
j = Nk

ij . (7.46)

The matrices Ni, i ∈ I, all commute and have a common Perron-Frobenius eigen-
vector Δ, with components Δi ≥ 0, i ∈ I. It is quite easy to show, using (7.41) -
(7.43), that

Ni Δ = Δi Δ , (7.47)
i.e., Δi is the largest eigenvalue of the matrix Ni; Δi, is called the statistical
(or quantum) dimension of the sector i. Clearly Ne = and hence Δe = 1. If all
statistical dimensions Δi, i ∈ I, are positive integers then the quantum statistics is
ordinary Bose / Fermi statistics or abelian braid statistics. Thus non-abelian braid
statistics is only encountered in theories with some fractional quantum dimensions.

Next, we introduce the ‘monodromy operators ’

μij := ε+
ij ε+

ji . (7.48)

One aspect of the general connection between spin and statistics is that the spec-
trum of the monodromy operator μij consists of the eigenvalues

exp [i2π(si + sj − sk)] , k ∈ I , (7.49)

and the multiplicity of the eigenvalue exp [i2π(si + sj − sk)] is given by Nk
ij ; see [73,

79]. Let vk
ij be an intertwiner (‘Clebsch-Gordan operator’) intertwining the sector

i ⊗ j with a subsector k; see (7.43). There are precisely Nk
ij linearly independent

such intertwiners.

Then
μij vk

ij = exp [i2π(si + sj − sk)] vk
ij . (7.50)
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In particular, for i = j, k = e, we have that

μjj ve
jj

= exp [i2π(sj + sj)] v
e
jj

, (7.51)

because se = 0 mod Z. One can show that

sj = −sj mod Z , (7.52)

or, equivalently,
μjj ve

jj
= ve

jj
.

This is a weaker form of Eq. (7.22), subsection 7.1. We conclude this brief survey
with the following result valid (for local RQFT in) three space-time dimensions
and established in [73]; (see also references given there).

Theorem 7.1.

(1) If I is a finite set then sj is a rational number, for all j ∈ I.
(2) If either space reflection in a line or time reversal is a symmetry of the

theory on all its superselection sectors j ∈ I then the quantum statistics of
the theory is ordinary permutation-group (Bose / Fermi) statistics, and

sj ∈ 1
2

Z , for all j ∈ I . (7.53)

(3) The following two statements are equivalent:
(i) The quantum statistics of the theory is ordinary permutation-group

(Bose/Fermi) statistics.
(ii) exp [i2π(si + sj − sk)] = 1, for all i, j, k in I with Nk

ij ≥ 1.
Moreover, both statements imply that

sj ∈ 1
2

Z , for all j ∈ I .

Remarks.
(1) The rationality of the Hall conductivity, i.e., σH = r e2

h , r ∈ Q, in two-
dimensional, incompressible electron gases exhibiting the fractional quantum
Hall effect is intimately connected to part (1) of the theorem; see [82].

(2) Space reflections in a line and time reversal are not symmetries of a two-
dimensional electron gas in a transversal, external magnetic field. In view of
part (2) of the theorem, this explains why such systems may exhibit quasi-
particles with braid statistics.

(3) The precise hypotheses under which the theorem is proven (e.g., local RQFT
satisfying ‘Haag duality’) can be found in [73].
It is not entirely easy to translate the contents of this theorem into purely

field theoretic jargon, at least if one desires to be precise, mathematically. The
remark may help the reader that ‘physical’ examples of sectors with fractional spin
and braid statistics can be found in the realm of abelian and non-abelian Chern-
Simons theories; see, e.g., [70, 83]. In these theories, sectors with fractional spin
and statistics can be constructed by applying field operators with Mandelstam flux
strings to the vacuum sector. In the theory of the quantum Hall effect topological
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versions of these theories play a fundamental rôle; see [82]. They also appear in
the theoretical description of graphene.

Well, I guess it is time to claim victory!
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[21] J. Fröhlich, The Electron is Inexhaustible, Amer. Math. Soc. Publ., Providence RI,
1999.

[22] D. Salamon, Spin Geometry and Seiberg-Witten Invariants, preprint 1995.

[23] A. Connes, Noncommutative Geometry, Academic Press, New York 1994.

[24] J. Fuchs, Chr. Schweigert, Symmetries, Lie Algebras and Representations, Cam-
bridge University Press, Cambridge, New York 1997.

[25] G. Velo, D. Zwanziger, Phys. Rev. 186 (1969), 1337–1341; Phys. Rev. 188 (1969),
2218–2222;

A.Z. Capri, R.L. Kobes, Phys. Rev. D 22 (1980), 1967–1978.



58 Jürg Fröhlich
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mun. Math. Phys. 187 (1997), 567–582.

[42] L. Bugliaro Goggia, C. Fefferman, G.M. Graf, Revista Matematica Iberoamericana
15 (1999), 593–619.

[43] V. Bach, J. Fröhlich, I.M. Sigal, Adv. Math. 137 (1998), 205–298; 137 (1998), 299–
395.
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[60] G. Lüders, Kong. Dansk. Vid. Selskab, Mat.-Fys. Medd. 28 (1954), 5; Ann. Phys.
2 (1957), 1;

W. Pauli, Nuovo Cimento 6 (1957), 204.

[61] R. Jost, Helv. Phys. Acta 30 (1957), 409.

[62] R. Kubo, J. Phys. Soc. Japan 12 (1957), 57;

P.C. Martin, J. Schwinger, Phys. Rev. 115 (1959), 1342;

R. Haag, N. Hugenholtz, M. Winnink, Commun. Math. Phys. 5 (1967), 215.

[63] J.J. Bisognano, E.H. Wichmann, J. Math. Phys. 16 (1975), 985–1007.

[64] M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications,
Lecture Notes in Mathematics 128, Springer-Verlag, 1970;

O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics,
Springer-Verlag, 1979, 1981.

[65] R.F. Streater, I.F. Wilde, Nucl. Phys. B 24 (1970), 561.
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ETH Zürich
CH–8093 Zürich
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c© 2009 Birkhäuser Verlag Basel/Switzerland Poincaré Seminar 2007

New Kinds of Quantum Statistics

Frank Wilczek

Abstract. I review the quantum kinematics of identical particles, which sug-
gests new possibilities, beyond bosons and fermions, in 2+1 dimensions; and
how simple flux-charge constructions embody the new possibilities, leading to
both abelian and nonabelian anyons. I briefly allude to experimental realiza-
tions, and also advertise a spinor construction of nonabelian statistics, that
has a 3+1 dimensional extension.

In quantum theory the notion of identity reaches a new level of precision and
has profound dynamical significance. It becomes important that two particles can
be precisely identical, i.e. indistinguishable, as opposed to merely similar. When
passing from a classical description of indistinguishable particles to a quantum
description one must supply additional rules, known as the quantum statistics of
the particles.

For many years it was thought that there are only two possibilities for quan-
tum statistics: bosons and fermions. But in 1977 Leinaas and Myrheim [1] demon-
strated, at the level of particle quantum mechanics, that there were additional
theoretically consistent possibilities. I’m told there were hints of this in earlier
work in axiomatic field theory [2]. The work of Leinaas and Myrheim received little
attention, and their insight was rediscovered, independently, by Goldin, Menikoff,
and Sharp [3], who realized it in the context of a special formulation of quantum
mechanics using currents and densities; and by me using conventional quantum
field theory [4] (involving solitons, as below, and/or Chern-Simons terms [5]). This
circle of ideas came to life as physics in 1984, when Arovas, Schrieffer and I demon-
strated [6] – theoretically, but I think quite convincingly – that quasiparticles in
the fractional quantum Hall effect obey forms of the new, “anyon” quantum sta-
tistics. (That possibility was foreseen by Halperin [7].). The anyonic behavior of
quasiparticles (and quasiholes) in the fractional quantum Hall effect is so closely
integrated into the overall theory of those states that it can be subtle to demon-
strate as an independent phenomenon. A recent series of impressive experiments
by V. Goldman and his collaborators [8] have been interpreted this way, and other
experiments, requiring less interpretation, are in the works.
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Rich mathematical possibilities arise when we consider nonabelian statistics.
In the abelian case the operations characteristic of quantum statistics – roughly
speaking: slow, distant exchange of particle positions – are implemented as multi-
plications of the wave-function by a complex number (phase). In the nonabelian
case complex motions in large Hilbert spaces of degenerate states can come into
play. The possibility of exploiting a robust mapping from operations in physical
space (characterized topologically) to navigate through large Hilbert spaces has
inspired visions of a possible route to quantum computing, known as topological
quantum computing. Physical realization of topological quantum computing is still
far off, if it can be achieved at all, but the program has inspired impressive work,
both theoretical and experimental. An upcoming milestone may be demonstra-
tion of a proposal by Moore and Read [9] that quasiparticles in an observed ν = 5

2
quantum Hall state obey nonabelian statistics. Experimental programs to test this
are well advanced, as well.

Here I will describe a few of the most fundamental concepts underlying these
developments in what might appear, to a quantum field theorist, as their simplest
natural context. (I will mention quantum Hall physics, experimental aspects, and
quantum computing, but I will not even begin to do them justice.) In the course
of this review a few intriguing new ideas will come up, too.

1. Braids, Permutations, and In Between

Traditionally, the world has been divided between bosons (Bose-Einstein statistics)
and fermions (Fermi-Dirac statistics). Let’s recall what these are, and why they
appear to exhaust the possibilities.

If two identical particles start at positions (A, B) and transition to (A′, B′),
we must consider both (A, B) → (A′, B′) and (A, B) → (B′, A′) as possible ac-
counts of what has happened. According the rules of quantum mechanics, we must
add the amplitudes for these possibilities, with appropriate weights. The rules for
the weights encode the dynamics of the particular particles involved, and a large
part of what we do in fundamental physics is to determine such rules and derive
their consequences.

In general, discovering the rules involves creative guesswork, guided by ex-
periment. One important guiding principle is correspondence with classical me-
chanics. If we have a classical Lagrangian Lcl., we can use it, following Feynman,
to construct a path integral, with each path weighted by a factor

ei
∫

dtLcl. ≡ eiScl. (1)

where Scl. is the classical action. This path integral provides – modulo several
technicalities and qualifications – amplitudes that automatically implement the
general rules of quantum mechanics. Specifically: it sums over alternative histories,
takes products of amplitudes for successive events, and generates unitary time
evolution.
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The classical correspondence, however, does not instruct us regarding the
relative weights for trajectories that are topologically distinct, i.e. that cannot
be continuously deformed into one another. Since only small variations in tra-
jectories are involved in determining the classical equations of motion, from the
condition that Scl. is stationary, the classical equations cannot tell us how to inter-
polate between topologically distinct trajectories. We need additional, essentially
quantum-mechanical rules for that.

Now trajectories that transition (A, B) → (A′, B′) respectively (A, B) →
(B′, A′) are obviously topologically distinct. The traditional additional rule is: for
bosons, add the amplitudes for these two classes of trajectories1; for fermions,
subtract.

These might appear to be the only two possibilities, according to the following
(not-quite-right) argument. Let us focus on the case A = A′, B = B′. If we run an
“exchange” trajectory (A, B) → (B, A) twice in succession, the doubled trajectory
is a direct trajectory. The the square of the factor we assign to the exchange
trajectory must be the square of the (trivial) factor 1 we associate to the direct
trajectory, i.e. it must be ±1.

This argument is not conclusive, however, because there can be additional
topological distinctions among trajectories, not visible in the mapping between
endpoints. This distinction is especially important in 2 spatial dimensions, so let
us start there. (I should recall that quantum-mechanical systems at low energy can
effectively embody reduced dimensionality, if their dynamics is constrained below
an energy gap to exclude excited states whose wave functions have structure in
the transverse direction.) The topology of trajectory space is then specified by the
braid group. Suppose that we have N identical particles. Define the elementary
operation σj to be the act of taking particle j over particle j + 1, so that their
final positions are interchanged, while leaving the other particles in place. (See
Figure 1.) We define products of the elementary operations by performing them
sequentially. Then we have the obvious relation

σjσk = σkσj ; |j − k| ≥ 2 (2)

among operations that involve separate pairs of particles. We also have the less
obvious Yang-Baxter relation

σjσj+1σj = σj+1σjσj+1 (3)

which is illustrated in Figure 1. The topologically distinct classes of trajectories
are constructed by taking products of σjs and their inverses, subject only to these
relations.

If we add to the relations that define the braid group the additional relations

σ2
j = 1 (4)

then we arrive at the symmetric (permutation) group SN . In 3 spatial dimensions,
there are more ways to untangle trajectories. Indeed, one can always untangle two

1As determined by the classical correspondence, or other knowledge of the interactions.
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Figure 1. The elementary acts of crossing one particle trajectory
over another generate the braid group. The Yang-Baxter relation
σ1σ2σ1 = σ2σ1σ2, made visible here, is its characteristic con-
straint.

world-lines by escaping into the transverse direction to avoid potential intersec-
tions, so the permutation of endpoints captures all the topology.

Yet in 3 dimensions, famously, rotations through 2π are not topologically
trivial. This topological fact underlies the possibility of spin- 1

2 (projective) repre-
sentations of the rotation group. In such representations, the action of a 2π rotation
is to multiply the wave function by −1. On the other hand, rotations through 4π
are topologically trivial. This suggests that for particles with extended structure,
that cannot be adequately represented as simple points (e.g., magnetic monopoles,
or solitons with extended zero-modes) we should consider relaxing Eqn. (4) to

σ4
j = 1 (5)

since σ2
j can be implemented by a 2π rotation moving the particles (j, j + 1)

around one another, and σ4
j by a 4π rotation. The relations Eqn. (5), together

with Eqns. (2, 3), define a group intermediate between the braid group and the
symmetric group.

2. Abelian Anyons

The substitution
σj → eiθ (6)

preserves the defining relations of the braid group for any phase factor eiθ, so
it generates a unitary representation of the braid group. Thus, at the level of
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quantum kinematics, it is consistent to weight the amplitudes from topologically
distinct classes of trajectories with the corresponding phase factors. (Of course, the
additional constraint Eqn. (4) reduces the freedom to eiθ = ±1.) This possibility
defines the classic, abelian anyons.

There is a simple dynamical realization of anyons, using flux and charge.
Consider a U(1) gauge theory that has particles of charge q, associated with a
field η and is spontaneously broken by a condensate associated with a field of ρ of
charge mq, with m an integer2 Gauge transformations that multiply η by e2πik/m

will multiply ρ by e2πik. Thus for integer k they will leave the condensate invariant,
but generally act nontrivially on η. We are left with an unbroken gauge group Zm,
the integers modulo m. No conventional long-range gauge interaction survives the
symmetry breaking, but there is a topological interaction, as follows:

The theory supports vortices with flux quantized in units of

Φ0 =
2π

mq
(7)

in units with � ≡ 1. A particle or group of particles with charge bq moving around
a flux Φ will acquire a phase

exp i(
∮

dt�v · �A) = exp i(
∮

d�x · �A) = eiΦbq. (8)

If the flux is bΦ0, then the phase will be e2πi ab
m .

Composites with (flux, charge) = (aΦ0, bq) will be generally be anyons: as we
implement the interchange σj , each charge cluster feels the influence of the other’s
flux. (Note that in two dimensions the familiar flux tubes of three-dimensional
physics degenerate to points, so it is proper to regard them as particles.) There
are also topological interactions, involving similar accumulations of phase, for non-
identical particles. What matters are the quantum numbers, or more formally the
superselection sector, not the detailed structure of the particles or excitations
involved.

The phase factors that accompany winding have observable consequences.
They lead to a characteristic “long range” contribution to the scattering cross-
section3, first computed by Aharonov and Böhm [10] in their classic paper on
the significance of the vector potential in quantum mechanics. Unfortunately, that
cross-section may not be easy to access experimentally for anyons that occur as
excitations in exotic states of condensed matter.

Interferometry appears more practical. The basic concept is simple and famil-
iar, both from optics and (for instance) from SQUID magnetometers. One divides
a coherent flow into two streams, which follow different paths before recombin-
ing. The relative phase between the paths determines the form of the interference,
which can range from constructive to destructive recombination of the currents.

2If m is irrational the gauge group is not compact, i.e. it is the additive group R+ rather than
U(1).
3It diverges at small momentum transfer and in the forward direction.
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Figure 2. A schematic interference experiment to reveal quan-
tum statistics. We study how the combined current depends on
the occupation of the quasiparticle island.

We can vary the superselection sector of the area bounded by the paths, and
look for corresponding, characteristic changes in the interference. (See Figure 2.)
Though there are many additional refinements, this is the basic concept behind
both the Goldman experiments and other planned anyon detection experiments
[11].

Elementary excitations in the fractional quantum Hall effect are predicted
to be anyons. By far the simplest states to analyze are the original Laughlin 1/m
states, where the excitations are anyons with θ = π/m. There is a rich theory
covering more general cases.

3. Nonabelian Anyons

The preceding field-theoretic setting for abelian anyons immediately invites non-
abelian generalization. We can have a nonabelian gauge theory broken down to
a discrete nonabelian subgroup; vortex-charge composites will then exhibit long
range, topological interactions of the same kind as we found in the abelian case,
for the same reason.

The mathematics and physics of the nonabelian case is considerably more
complicated than the abelian case, and includes several qualitatively new effects.
First, and most profoundly, we will find ourselves dealing with irreducible mul-
tidimensional representations of the braiding operations. Thus by winding well-
separated particles4 around one another, in principle arbitrarily slowly, we can not

4From here on I will refer to the excitations simply as particles, though they may be complex
collective excitations in terms of the underlying electrons, or other degrees of freedom.
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only acquire phase, but even navigate around a multidimensional Hilbert space.
For states involving several particles, the size of the Hilbert spaces can get quite
large: roughly speaking, they grow exponentially in the number of particles.

As will appear, the states in question are related by locally trivial but globally
non-trivial gauge transformations. Thus they should be very nearly degenerate.
This situation is reminiscent of what one would have if the particles had an internal
of freedom – a spin, say. However the degrees of freedom here are not localized on
the particles, but more subtle and globally distributed.

The prospect of having very large Hilbert spaces that we can navigate in a
controlled way using topologically defined (and thus forgiving!), gentle operations
in physical space, and whose states differ in global properties not easily obscured by
local perturbations, has inspired visions of topological quantum computing. (Preskill
[12] has written an excellent introductory review.) The journey from this vision to
the level of engineering practice will be challenging, to say the least, but thankfully
there are fascinating prospects along the way.

Figure 3. By a gauge transformation, the vector potential ema-
nating from a flux point can be bundled into a singular line. This
aids in visualizing the effects of particle interchanges. Here we see
how nonabelian fluxes, as measured by their action on standard-
ized particle trajectories, are modified by particle interchange.

The tiny seed from which all this complexity grows is the phenomenon dis-
played in Figure 3. To keep track of the topological interactions, it is sufficient to
know the total (ordered) line integral of the vector potential around simple circuits
issuing from a fixed base point. This will tell us the group element a that will be
applied to a charged particle as it traverses that loop. (The value of a generally
depends on the base point and on the topology of how the loop winds around
the regions where flux is concentrated, but not on other details. More formally, it
gives a representation of the fundamental group of the plane with punctures.) If
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a charge that belongs to the representation R traverses the loop, it will be trans-
formed according to R(a). With these understandings, what Figure 3 makes clear
is that when two flux points with flux (a, b) get interchanged by winding the sec-
ond over the first, the new configuration is characterized as (aba−1, a). Note here
that we cannot simply pull the “Dirac strings” where flux is taken off through
one another, since nonabelian gauge fields self-interact! So motion of flux tubes in
physical space generates non-trivial motion in group space, and thus in the Hilbert
space of states with group-theoretic labels.

Figure 4. Winding a flux-antiflux pair around a test flux, and
seeing that it gets conjugated, we find that the pair carries charge.

As a small taste of the interesting things that occur, consider the slightly
more complicated situation displayed in Figure 4, with a pair of fluxes (b, b−1) on
the right. It’s a fun exercise to apply the rule for looping repeatedly, to find out
what happens when we take this pair all the way around a on the right. One finds

(a, (b, b−1)) → (a, (aba−1, ab−1a−1)) (9)

i.e., the pair generally has turned into a different (conjugated) pair. Iterating, we
eventually close on a finite-dimensional space of different kinds of pairs. There is
a non-trival transformation R̃(a) in this space that implements the effect of the
flux a on pairs that wind around it. But this property – to be transformed by the
group operation – is the defining property of charge! We conclude that flux pairs
– flux and inverse flux – act as charges. We have constructed, as John Wheeler
might have said, Charge Without Charge.

This flux construction makes it clear that nonabelian statistics is consistent
with all the general principles of quantum field theory. Physical realization in
condensed matter is a different issue – in that context, nonabelian gauge fields
don’t come readily to hand. Fortunately, and remarkably, there may be other
ways to get there. At least one state of the quantum Hall effect, the so-called
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Moore-Read state at filling fraction 5
2 , has been identified as a likely candidate to

support excitations with nonabelian statistics.
The nonabelian statistics of the Moore-Read state is closely tied up with

spinors [13] [14]. I’ll give a proper discussion of this, including an extension to 3 +
1 dimensions, elsewhere [15]. Here, I’ll just skip to the chase. Taking N γj matrices
satisfying the usual Clifford algebra relations

{γj , γk} = 2δjk (10)

the braiding σj are realized as

σj = eiπ/4 1√
2
(1 + γjγj+1). (11)

It’s an easy exercise to show that these obey Eqns. (2, 3), and σ4
j = 1 (Eqn. (5))

but not σ2
j = 1 (Eqn. (4)).
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Anyons and Lowest Landau Level Anyons

Stéphane Ouvry

Abstract. Intermediate statistics interpolating from Bose statistics to Fermi
statistics are allowed in two dimensions. This is due to the particular topology
of the two dimensional configuration space of identical particles, leading to
non trivial braiding of particles around each other. One arrives at quantum
many-body states with a multivalued phase factor, which encodes the any-
onic nature of particle windings. Bosons and fermions appear as two limiting
cases. Gauging away the phase leads to the so-called anyon model, where
the charge of each particle interacts ”à la Aharonov-Bohm” with the fluxes
carried by the other particles. The multivaluedness of the wave function has
been traded off for topological interactions between ordinary particles. An
alternative Lagrangian formulation uses a topological Chern-Simons term in
2+1 dimensions. Taking into account the short distance repulsion between
particles leads to an Hamiltonian well defined in perturbation theory, where
all perturbative divergences have disappeared. Together with numerical and
semi-classical studies, perturbation theory is a basic analytical tool at dis-
posal to study the model, since finding the exact N-body spectrum seems out
of reach (except in the 2-body case which is solvable, or for particular classes
of N-body eigenstates which generalize some 2-body eigenstates). However, a
simplification arises when the anyons are coupled to an external homogeneous
magnetic field. In the case of a strong field, by projecting the system on its
lowest Landau level (LLL, thus the LLL-anyon model), the anyon model be-
comes solvable, i.e., the classes of exact eigenstates alluded to above provide
for a complete interpolation from the LLL-Bose spectrum to the LLL-Fermi
spectrum. Being a solvable model allows for an explicit knowledge of the
equation of state and of the mean occupation number in the LLL, which do
interpolate from the Bose to the Fermi cases. It also provides for a combina-
torial interpretation of LLL-anyon braiding statistics in terms of occupation
of single particle states. The LLL-anyon model might also be relevant exper-
imentally: a gas of electrons in a strong magnetic field is known to exhibit
a quantized Hall conductance, leading to the integer and fractional quantum
Hall effects. Haldane/exclusion statistics, introduced to describe FQHE edge
excitations, is a priori different from anyon statistics, since it is not defined
by braiding considerations, but rather by counting arguments in the space
of available states. However, it has been shown to lead to the same kind of
thermodynamics as the LLL-anyon thermodynamics (or, in other words, the
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LLL-anyon model is a microscopic quantum mechanical realization of Hal-

dane’s statistics). The one dimensional Calogero model is also shown to have

the same kind of thermodynamics as the LLL-anyons thermodynamics. This

is not a coincidence: the LLL-anyon model and the Calogero model are in-

timately related, the latter being a particular limit of the former. Finally,

on the purely combinatorial side, the minimal difference partition problem

— partition of integers with minimal difference constraints on their parts —

can also be mapped on an abstract exclusion statistics model with a constant

one-body density of states, which is neither the LLL-anyon model nor the

Calogero model.

1. Introduction

Quantum statistics, which is concerned with quantum many-body wavefunctions
of identical particles, has a long history going back to Bose and Fermi. The concept
of statistics originates at the classical level in the Gibbs paradox, which is solved
by means of the indiscernibility postulate for identical particles. At the quantum
level, the usual reasoning shows that only two types of statistics can exist, bosonic
or fermionic. Indeed, since

• interchanging the positions of two identical particles can only amount to
multiplying their 2-body wavefunction by a phase factor,

• a double exchange puts back the particles at their original position,
• and one usually insists on the univaluedness of the wavefunction,

this phase factor can be only 1 (boson) or -1 (fermion).
However, non trivial phase factor should be possible, since wavefunctions are

anyway defined up to a phase. The configuration space of two, or more generally, N
identical particles has to be defined cautiously [1]: denoting by C the configuration
space of a single particle (C = R2 for particles in the two-dimensional plane, d = 2),
the configuration space of N particles should be of the type CN/SN , where C×C×
... × C = CN and SN is the permutation group for N identical particles. Division
by SN takes into account the identity of the particles which implies that one cannot
distinguish between two configurations related by an operation of the permutation
group. One should also subtract from CN the diagonal of the configuration space
DN , i.e., any configurations where two or more particles coincide. The reason
is, having in mind Fermi statistics, that the Pauli exclusion principle should be
enforced in some way. A more precise argument is to have a valid classification
of paths in the N -particle configuration space, which would be ambiguous if two
or more particles coinciding at some time is allowed (since they are identical, did
they cross each other, or did they scatter off each other ?). It follows that the
configuration space of N identical particles should be

C̃N =
CN − DN

SN
. (1)
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Note that on this configuration space, a fermionic wavefunction is multivalued
(two values 1 and -1), so there is no reason not to allow more general multivalued-
ness. Here come some topological arguments, which allow to distinguish between
d = 2 and d > 2, and, as we will see later, which can be related to spin con-
siderations. In 2 dimensions, CN is multiply connected and its topology is non
trivial: it is not possible to shrink a path of a particle encircling another particle,
due to the topological obstruction materialized by the latter. It follows that C̃N is
multiply connected. This is not the case in dimensions higher than 2, where CN is
simply connected, meaning that all paths made by a particle can be continuously
deformed into each other, i.e., one cannot distinguish the interior from the exterior
of a closed path of a particle around other particles.

These arguments imply that the equivalent classes of paths (first homotopy
group) in C̃N are, when d = 2, in one-to-one correspondence with the elements of
the braid group

Π1(C̃N ) = BN (2)
whereas, when d > 2, they are in one-to-one correspondence with the elements of
the permutation group

Π1(C̃N ) = SN . (3)

The braid group generators σi interchange the position of particle i with
particle i + 1. This operation can be made in an anti-clockwise manner (σi) or
a clockwise manner (σ−1

i ). Each braiding of N particles consists of a sequence of
interchanges of pairs of neighboring particles via the σi’s and the σ−1

i ’s, with i =
1, 2, ..., N − 1. The braid group relations list the equivalent braiding, i.e., braiding
that can be continuously deformed one into the other without encountering a
topological obstruction

σiσi+1σi = σi+1σiσi+1; σiσj = σjσi when |i − j| > 2. (4)

Saying that d = 2 is different from d > 2 is nothing but recognizing that
σi �= σ−1

i when d = 2, whereas σi = σ−1
i when d > 2 (σi can be continuously

deformed into σ−1
i when particles i and i + 1 are not stuck in a plane). It follows

that when d > 2, the braid generators σi’s defined by (4) with the additional
constraint σi = σ−1

i are the permutation group generators.
Note also that the d = 2 paradigm, σi �= σ−1

i , hints at an orientation of the
plane, a hallmark of the presence of some sort of magnetic field. This point will
become apparent in the Aharonov-Bohm formulation of the anyon model.

The fact that CN is multiply connected when d = 2 and not when d > 2 can
also be related to the rotation group O(d), and thus to some spin-statistics consid-
erations [2]. When d > 2, the rotation group is doubly connected, [Π1(O(d)) = Z2],
its universal covering, for example when d = 3, is SU(2), which allows for either
integer or half integer angular momentum states, that is to say either single valued
or double valued representations of the rotation group. On the other hand, when
d = 2, the rotation group is Abelian and infinitely connected [Π1(O(2)) = Z], its
universal covering is the real line, that is to say arbitrary angular momenta are
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Figure 1. The braid group generators and their defining relations.

possible, and therefore multivalued representations. One can see here a hint about
the spin-statistics connection, where statistics and spin are trivial (Bose-Fermi
statistics, integer-half integer spin) when d > 2, and not when d = 2.

Let us consider the simple one-dimensional irreducible representation of the
braid group, which amounts to a common phase factor exp(−iπα) for each gen-
erator σ (and thus exp(iπα) to σ−1). It means that a non trivial phase has been
associated with the winding of particle i around particle i+1. Higher dimensional
representations (quantum vector states) are possible -one speaks of non Abelian
anyons, in that case not only a non trivial phase materializes during a winding,
but also the direction of the vector state in the Hilbert space is affected- but they
will not be discussed here (even though they might play a role in the discussion of
certain FQHE fractions [3], and, in a quite different perspective, in the definition
of topologically protected fault-tolerant quantum computers [4]).

Clearly, when d > 2, σi = σ−1
i implies α = 0 or α = 1, i.e., Bose or Fermi

statistics (an interchange leaves the wavefunction unchanged or affected by a minus
sign).

From now on let us concentrate on d = 2 and denote the free many-body
wavefunction of N identical particles by ψ′(�r1, �r2, ..., �rN ). Indeed, statistics should
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be defined for free particles with Hamiltonian

H ′
N =

N∑
i=1

�pi
2

2m
(5)

and special boundary conditions on the wavefunction, as in the Bose case (symmet-
ric boundary condition) and the Fermi case (antisymmetric boundary condition).
As already said, ψ′(�r1, �r2, ..., �rN ) is affected by a phase exp(−iπα) when particles
i and i+1 are interchanged: one can encode this non trivial exchange property by
defining

ψ′(�r1, �r2, ..., �rN ) = exp(−iα
∑
i<j

θij)ψ(�r1, �r2, ..., �rN ) (6)

where ψ(�r1, �r2, ..., �rN ) is a regular wavefunction, say bosonic by convention, and
θij is the angle between the vector �rj −�ri ≡ �rij and a fixed direction in the plane.
Indeed interchanging i with j amounts to θij → θij ±π, which altogether with the
bosonic symmetry of ψ(�r1, �r2, ..., �rN ), leads to

ψ′(�r1, �r2, ...�rj , ...�ri, ..., �rN ) = exp(∓iπα)ψ′(�r1, �r2, ...�ri, ...�rj , ..., �rN ) (7)

By the above bosonic convention for ψ(�r1, �r2, ..., �rN ), the statistical param-
eter α even (odd) integer corresponds to Bose (Fermi) statistics. It is defined
modulo 2, since two quanta of flux can always be gauged away by a regular gauge
transformation while preserving the symmetry of the wavefunctions in the Bose
or Fermi systems. Indeed, (6) can be interpreted as a gauge transformation. Let
us compute the resulting Hamiltonian HN acting on ψ(�r1, �r2, ..., �rN )

HN =
N∑

i=1

1
2m

(�pi − �A(�ri))2 (8)

where

�A(�ri) = α�∂i

(∑
k<l

θkl

)
= α

∑
j,j �=i

�k ∧ �rij

r2
ij

(9)

is the statistical potential vector associated with the multivalued phase (the gauge
parameter). The free multivalued wavefunction has been traded off for a regular
bosonic wavefunction with topological singular magnetic interactions. The statis-
tical potential vector (9) can be viewed as the Aharonov-Bohm (A-B) potential
vector that particle i carrying a charge e would feel due to the flux tube φ car-
ried by the other particles, with e and φ related to the statistical parameter α by
α = eφ/(2π) = φ/φ0 (φ0 = 2π/e is the flux quantum in units � = 1). The resulting
composite charge-flux picture is known under the name of anyon model [5] since
it describes particles with ”any” (any-on) statistics.

Computing the field strength one obtains

α

e
�∂i ∧

∑
j,j �=i

�k ∧ �rij

r2
ij

=
2πα

e

∑
j,j �=i

δ(�rij) (10)
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Figure 2. The two equivalent formulations of anyon statistics in
terms, on the left, of a punctured plane and, on the right, of usual
bosonic particles interacting via topological A-B interactions. The
loop of particle i around particle j cannot be continuously de-
formed to nothing due to the topological obstruction materialized
by the puncture at the location of particle j.

meaning that each particle carries an infinite singular magnetic field with flux
φ = 2πα/e. The gauge transformation is singular since it does not preserve the
field strength (which vanishes in the multivalued gauge and is singular in the
regular gauge). This is due to the singular behavior of the gauge parameter θij

when particle i come close to particle j, thus the singular Dirac δ(�rij) function in
the field strength.

It is not surprising that topological A-B interactions are at the heart of
quantum statistics. In its original form, the A-B effect [6] consists in the phase
shift in electron interference due to the electromagnetic field, determined by the
phase factor exp[(ie/�c)

∫
γ

Aμdxμ] along a closed curve γ passing through the
beam along which the field strength vanishes. This effect1 is counter-intuitive to
the usual understanding that the influence of a classical electromagnetic field on
a charged particle can only occur through the local action of the field strength. In
the context of quantum statistics, it means that non trivial statistics arise through
topological ”infinite”-distance interactions where no classical forces are present,
as it should and as it is the case for Bose and Fermi statistics. Finally, singular
magnetic fields give an orientation to the plane, which, as already said, shows up
in σi 	= σ−1

i .
All this can be equivalently restated in a Lagrange formulation which de-

scribes again the system in topological terms, i.e., free particles minimally coupled
to a potential vector whose dynamics is not Coulomb-like (Maxwell Lagrangian)

1The effect was first experimentally confirmed by R. G. Chambers [7], then by A. Tonomura [8].
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but rather Chern-Simons [9]

LN =
N∑

i=1

(
1
2
m�v2

i + e
(

�A(�ri)�vi − A0(�ri)
))

− κ

2
εμνρ

∫
d2�rAμ∂νAρ (11)

with εμνρ the completely antisymmetric tensor (the metric is (+,−,−), xμ =
(t, �r) = (t, x, y), Aμ = (Ao, Ax, Ay), ε012 = ε012 = +1). Solving the Euler-Lagrange
equations, in particular

∂σ δLN

δ(∂σA0)
=

δLN

δA0
→ κ�∂ ∧ �A(�r) = e

N∑
j=1

δ(�r − �rj) (12)

leads to a magnetic field proportional to the density of particles in accordance
with (10). Solving this last equation for �A(�r) in the Coulomb gauge gives

�A(�r) =
e

2πκ

N∑
j=1

�k ∧ (�r − �rj)
(�r − �rj)2

(13)

in accordance with the A-B potential vector (9). Here again there is no Lorentz
force, the potential vector is a pure gauge, the Chern-Simons term is metric inde-
pendent, and the field strength is directly related to the matter current.

Coming back to the Hamiltonian formulation (8), one might ask how the
exclusion of the diagonal of the configuration space materializes in the Hamiltonian
formulation. One way to look at it is perturbation theory [10, 11]. Let us simplify
the problem by considering the standard A-B problem, i.e., a charged particle in
the plane coupled to a flux tube at the origin with the Hamiltonian

H =
1

2m

(
�p − α

�k ∧ �r

r2

)2

. (14)

Let us see what happens close to Bose statistics when α 
 0 (by periodicity α
can always been chosen in [−1/2, +1/2], an interval of length 1, since in the one-
body case one quantum of flux can always be gauged away via a regular gauge
transformation). The A-B spectrum [6] is given by the Bessel functions

ψ(�r) = eilθJ|l−α|(kr) E =
k2

2m
(15)

with wavefunctions vanishing close to the origin r → 0 as J|l−α|(kr) 
 r|l−α|.
When the angular momentum l 	= 0, this is the only possible locally square-
integrable function. However, when l = 0, one could have as well J−|α|(kr) as a
solution, since it is still locally square-integrable even though it diverges at the
origin as r−|α|. In principle, the general solution in the l = 0 sector should be a
linear combination of J|α|(kr) and J−|α|(kr), introducing an additional scale in the
coefficient of the linear combination [12]. Restricting the space of solutions as in
(15), i.e., wavefunctions vanishing at the origin, means that a short-range repulsive
prescription has been imposed on the behavior of the wavefunctions when the
particle comes close to the flux tube. One can give a more precise formulation of this



78 Stéphane Ouvry

fact by trying to compute in perturbation theory the spectrum (15). Expanding the
square in the Hamiltonian (14), one finds that the α2/r2 term, which is as singular
as the kinetic term, is divergent at second order in perturbation theory in the l = 0
sector. It follows that perturbation theory is not well defined in the problem as
defined by the Hamiltonian (14). A renormalization has to be implemented: one
realizes that by adding the counterterm π|α|δ(�r) to (14), i.e., by considering

H =
1

2m
(�p − α

�k ∧ �r

r2
)2 +

2π|α|
m

δ(�r) (16)

the perturbative divergences due to the α2/r2 term are exactly cancelled by those
arising from the π|α|δ(�r) term at all orders in perturbation theory, giving back the
spectrum (15). Physically, this repulsive δ contact term means that the particle
is prevented from penetrating the core of the flux tube where the field strength
is infinite, thus the (at least) r|α| behavior when r → 0. Note that this has been
achieved without introducing any additional scale in the problem.

Clearly, in the N -body A-B anyon formulation of the model, the correspond-
ing renormalized Hamiltonian should read

HN =
N∑

i=1

1
2m

⎛⎝�pi − α
∑
j �=i

�k ∧ �rij

r2
ij

⎞⎠2

+
2π|α|

m

∑
i�=j

δ(�rij) (17)

realizing the quantum mechanical exclusion of the diagonal of the configuration
space in terms of contact repulsive interaction between particles. Note that the
term π|α|∑i�=j δ(�rij) in (17) can also be viewed [11] as the Pauli spin coupling of
the spin of the particles to the singular magnetic field (10) associated to the flux
tubes.

The anyon model defined in (17) is properly defined as far as short-distance
considerations are concerned. It is the interacting formulation for regular wave-
functions of the free particles formulation for multivalued wavefunctions. Both
Hamiltonians HN and H ′

N are equivalent, the former being more familiar in terms
of usual quantum mechanics, the latter more relevant to study braiding and wind-
ing properties.

The anyon model has been the subject of numerous studies in the eighties
and the nineties [13], some of them analytical, starting with the 2-body case which
is solvable since its relative 2-body problem is the usual A-B problem (14) with an
even (Bose) angular momentum l. The exact solution [1, 5] for the relative 2-body
problem is given by (15), l being an even integer, therefore when α is odd, l − α
is odd, corresponding to Fermi statistics (the periodicity α → α ± 2p is manifest
in the shift l → l − α). These studies were followed by the 3-body [14] and then
the N -body problem [15]. Statistical mechanics was also considered (second virial
coefficient [16, 17], third virial coefficient [18]). However, it soon became apparent
that a complete N -body spectrum was out of reach, to the exception of particular
classes of exact eigenstates generalizing the 2-body eigenstates. Numerical [19] as
well as semi-classical [20] studies were performed giving indications on the low
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energy N -body spectrum. A systematic study of the model was achieved at first
[21] and at second order [22] in perturbation theory (at second order the complexity
of the model shows up clearly). Numerical studies [23], taking some input from
the perturbative results, were performed for the 3rd and 4th virial coefficients.
Last but not least, on the experimental side, Laughlin quasiparticles [24] were put
forward as the elementary excitations of highly-correlated fractional quantum Hall
electron fluids [25]. They were supposed to carry a fractional charge and to obey
anyon statistics [26], a fact confirmed by Berry phase calculations, at least for
quasiholes [27] (for quasiparticles the situation is less clear). The quasiparticles
can propagate quantum-coherently in chiral edge channels, and constructively or
destructively interfere. Unlike electrons, the interference condition for Laughlin
quasiparticles has a non-vanishing statistical contribution which might be observed
experimentally [28].

Some kind of simplification had to be made to render the model more
tractable, and possibly solvable, at least in a certain sector. One realized that
this was the case if one considered, in addition to the singular statistical magnetic
field, an external homogeneous magnetic field perpendicular to the plane, to which
the charge of the anyons couple. In the case of a strong magnetic field, by pro-
jecting the system of anyons coupled to the magnetic field in its LLL, the model
becomes solvable meaning that one can find a class of N -body eigenstates which
interpolates continuously from the LLL-Bose to the LLL-Fermi eigenstates basis:
this is the LLL-anyon model [29].

2. The LLL-anyon model

From now on, let us set the mass of the particles m = 1 and choose the statistical
parameter α ∈ [−2, 0]. It is understood that all the results below are obtained
for α in this interval, but they can be periodically continued to the whole real
axis. Before introducing an external magnetic field, let us come back to the anyon
Hamiltonian (17) and take advantage of wavefunctions vanishing at least as r−α

ij

when rij → 0 (exclusion of the diagonal of the configuration space in the quantum
mechanical formulation) by encoding this short distance behavior in the N -body
bosonic wavefunction [10]

ψ(�r1, �r2, ..., �rN ) =
∏
i<j

r−α
ij ψ̃(�r1, �r2, ..., �rN ). (18)

ψ̃(�r1, �r2, ..., �rN ) is regular but does not have to vanish at coinciding points. From
HN in (17) one can compute the new Hamiltonian H̃N acting on ψ̃(�r1, �r2, ..., �rN ).
Since HN is itself obtained from the free Hamiltonian H ′

N in (5) via the singular
gauge transformation (6), it is more transparent to start directly from the free
formulation. In complex notation (the free Hamiltonian is H ′

N = −2
∑N

i=1 ∂∂̄i)
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the wavefunction redefinitions (6) and (18) combined take the simple form

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N) =
∏
i<j

z−α
ij ψ̃(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N). (19)

The Jastrow-like prefactor
∏

i<j z−α
ij in (19) encodes in the wavefunction the

essence of anyon statistics: topological braiding phase and short-distance contact
exclusion behavior. It is immediate that H̃N rewrites as

H̃N = −2
N∑

i=1

∂i∂̄i + 2α
∑
i<j

1
zi − zj

(∂̄i − ∂̄j). (20)

It is a non-Hermitian Hamiltonian (the transformation (19) is non-unitary), but
it has a simple form, linear in α and well defined in perturbation theory (it is
perturbatively divergence free). Any analytic wavefunction of the zi’s is a N -body
eigenstate of H̃N , and therefore of the N -anyon Hamiltonian (17) taking into
account (18). Analytical eigenstates are known to live in the LLL of a magnetic
field, if such a field were present. Let us couple the electric charge of each anyon to
an external magnetic field B perpendicular to the plane such that by convention
eB > 0 and let us denote by ωc = eB/2 half its cyclotron frequency. One now
starts from the Landau Hamiltonian

H ′
N = −2

∑
i

(
∂i − ωc

2
z̄i

)(
∂̄i +

ωc

2
zi

)
. (21)

In a magnetic field, the 1-body eigenstates have a long-distance Landau exponen-
tial behavior exp(− 1

2ωcziz̄i). Let us also encode this behavior in the wavefunction
redefinition (19) so that it becomes

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N )

=
∏
i<j

z−α
ij exp

(
−1

2
ωc

N∑
i=1

ziz̄i

)
ψ̃(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ). (22)

One obtains

H̃N = −2
N∑

i=1

(∂i∂̄i − ωcz̄i∂̄i) + 2α
∑
i<j

1
zi − zj

(∂̄i − ∂̄j) + Nωc (23)

where the trivial constant energy shift from the Pauli coupling to the magnetic
field has been ignored. As announced, H̃N acts trivially on N -body eigenstates
made of symmetrized products of analytic 1-body LLL eigenstates√

ωli+1
c

πli!
zli

i ; li ≥ 0; E = ωc (24)
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(in (24) the Landau exponential term is missing since it has already been taken
into account in (22)). So, up to an overall normalization,

ψ̃(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ) = Sym
N∏

i=1

zli
i ; 0 ≤ l1 ≤ l2 ≤ ... ≤ lN (25)

is an eigenstate with a degenerate N -body energy, EN = Nωc, a mere reflection
of the fact that there are N particles in the LLL. From (22) and (25) one finally
gets

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N )

=
∏
i<j

z−α
ij exp

(
−1

2
ωc

N∑
i=1

ziz̄i

)
Sym

N∏
i=1

zli
i ; 0 ≤ l1 ≤ l2 ≤ ... ≤ lN . (26)

The basis (26) continuously interpolates when α = 0 → −1 from the complete
LLL-Bose N -body basis to the complete LLL-Fermi N -body basis. Indeed, when
α = −1,

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ) = exp

(
−1

2
ωc

N∑
i=1

ziz̄i

)∏
i<j

zijSym
N∏

i=1

zli
i ;

0 ≤ l1 ≤ l2 ≤ ... ≤ lN (27)

is equivalent to

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ) = exp

(
−1

2
ωc

N∑
i=1

ziz̄i

)
Antisym

N∏
i=1

z
l′i
i ;

0 < l′1 < l′2 < ... < l′N (28)

i.e., the LLL fermionic basis. One has therefore obtained a complete LLL-Bose →
LLL-Fermi interpolating basis which allows, in principle, for a complete knowledge
of the LLL-anyon system with statistics intermediate between Bose and Fermi
statistics.

One could ask about going beyond the Fermi point α = −1 up to the Bose
point α = −2. This question is related to the validity of the LLL projection, since
ignoring higher Landau levels amounts to assuming that excited non LLL states
above the N -body LLL ground state have a non vanishing gap. Considerations
around the Fermi point, as well as numerical and semiclassical analysis, support
[29] this scheme as long as α does not come close to −2. However, when α → −2,
known linear as well as unknown nonlinear non LLL eigenstates do join the LLL
ground state [31]. Said differently, the LLL-anyon basis (26) does not constitute a
complete LLL-Bose basis when α → −2, i.e., some N -body LLL bosonic quantum
numbers are missing at this point. We will come back to this issue later.

One has not seen yet any α dependence in the N -body energy, a situation
already encountered in the 1-body A-B problem, where the free continuous energy
spectrum (15) is α-independent. This is due to the fact that a magnetic field does



82 Stéphane Ouvry

Figure 3. Linear and non linear non LLL eigenstates merge in
the LLL ground state at the bosonic values of α.

not confine particles: classical orbits are circular cyclotron orbits, but their cen-
ters, due to translation invariance, are located anywhere in the plane. Translation
invariance in turn gives, in quantum mechanics, a Landau spectrum which is li
independent, and therefore infinitely degenerate2. The degeneracy factor scales as
the infinite surface V of the 2d sample: it is the flux of the magnetic field counted
in units of the flux quantum φ0 = 2π/e (in units � = 1)

NL =
V B

φ0
. (29)

Statistical interactions being topological interactions, one does not expect, in the
infinite plane limit, any effect on the N -body energies. To see such an effect, one
has to introduce a long-distance confinement, like putting the particles in a box.
Let us rather introduce [30] a more convenient harmonic well confinement where
the particles are trapped, so that the Landau Hamiltonian (21) becomes

H ′
N = −2

N∑
i=1

(
∂i − eB

4
z̄i

)(
∂̄i +

eB

4
zi

)
+

1
2
ω2

N∑
i=1

ziz̄i. (30)

The virtue of the harmonic confinement is to lift the degeneracy with respect to
the angular momentum li of the 1-body Landau eigenstates: the harmonic LLL

2From this point of view one can argue that the Landau spectrum is continuous, albeit being
made of discrete Landau levels, due to the infinite degeneracy on each level.
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spectrum3 becomes√
ωli+1

t

πli!
zli

i exp
(
−1

2
ωtziz̄i

)
; li ≥ 0; E = (ωt − ωc)(li + 1) + ωc (31)

where ωt =
√

ω2 + ω2
c . Each harmonic LLL level in (31) has now a finite degen-

eracy, with an eigenstate still analytic in zi, up to the long-distance harmonic
Landau combined exponential behavior. Let us take into account this exponential
behavior in the redefinition of the free N -body wavefunction so that (22) now
becomes

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N )

=
∏
i<j

z−α
ij exp

(
−1

2
ωt

N∑
i=1

ziz̄i

)
ψ̃(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ). (32)

Starting from the Hamiltonian (30) one obtains [32, 33]

H̃N = −2
N∑

i=1

(
∂i∂̄i − ωt + ωc

2
z̄i∂̄i − ωt − ωc

2
zi∂i

)
+ 2α

∑
i<j

[
1

zi − zj

(
∂̄i − ∂̄j

)− ωt − ωc

2

]
+ Nωc. (33)

Again let us act on N -body eigenstates made, in analogy with (25), of symmetrized
products of the 1-body harmonic LLL eigenstates (31)

ψ̃(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N) = Sym
N∏

i=1

zli
i ; 0 ≤ l1 ≤ l2 ≤ ... ≤ lN . (34)

Acting on this basis, the Hamiltonian (33) rewrites as

H̃N = (ωt − ωc)

[
N∑

i=1

zi∂i − α
N(N − 1)

2
+ N

]
+ Nωc, (35)

so that the N -anyon energy spectrum is

EN = (ωt − ωc)

[
N∑

i=1

li − α
N(N − 1)

2
+ N

]
+ Nωc. (36)

The N -anyon spectrum (36) is a sum of 1-body harmonic LLL spectra shifted by
the 2-body statistical term −(ωt − ωc)αN(N − 1)/2. The effect of the harmonic
well has been not only to lift the degeneracy with respect to the li’s, but also

3The complete 2d harmonic Landau spectrum is, with the convention eB > 0,

ωt(2ni + li + 1) − liωc; ni ≥ 0, li ∈ Z.

The LLL quantum numbers are ni = 0 and li ≥ 0.
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to make the energy dependence on α explicit. When computing thermodynami-
cal quantities like the equation of state, the harmonic well regulator will also be
needed to compute finite quantities in a finite “harmonic” box, and then take the
thermodynamic limit, by letting ω → 0 in an appropriate way.

The resulting eigenstates from (32)

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ) =
∏
i<j

z−α
ij exp

(
−1

2
ωt

N∑
i=1

ziz̄i

)
Sym

N∏
i=1

zli
i ;

0 ≤ l1 ≤ l2 ≤ ... ≤ lN (37)

are called ”linear states” since their energy (36) varies linearly with α. As already
stressed, they constitute a set of exact N -body eigenstates which is only a small
part of the complete N -body spectrum, which remains mostly unknown. However,
what makes, in the LLL context, these linear states particularly interesting is that
they continuously interpolate when α = 0 → −1 from the complete harmonic
LLL-Bose basis to the complete harmonic LLL-Fermi basis.

Before turning to LLL-anyon thermodynamics, let us reconsider the physical
charge-flux composite interpretation of the anyon model, where the charges are
now coupled to an external magnetic field. A given particle, say the Nth, sees a
“positive” (eB > 0) magnetic field perpendicular to the plane, and N−1 “negative”
(eφ = 2πα < 0, α ∈ [−1, 0]) point vortices piercing the plane at the positions of
the other particles. This is a screening regime: in the large N limit where a mean
field picture is expected to be valid, the more α is close to the fermionic point
α = −1, the more the external magnetic field is screened by the mean magnetic
field associated with the vortices. In terms of the total (external + mean) magnetic
field 〈B〉 that the Nth particle sees, or rather in terms of its flux V 〈B〉, or, when
counted in units of the flux quantum, in terms of the Landau degeneracy 〈NL〉,
one has

V 〈B〉/φ0 = (V B)/φ0 + (N − 1)φ/φ0 i.e. 〈NL〉 = NL + (N − 1)α. (38)

Moving away from the Bose point, i.e., α ≤ 0, as N increases the number 〈NL〉 of
1-body quantum states available for the Nth particle in the LLL of 〈B〉 decreases.
This sounds reasonable, bearing in mind that a fermion occupies a quantum state
to the exclusion of others (Pauli exclusion), whereas bosons can condense (Bose
condensation). Introducing the LLL filling factor

ν =
N

NL
(39)

one deduces from (38) a maximal critical filling [29] for which the screening is
total, 〈NL〉 = 0

ν = − 1
α

. (40)

This is nothing but recognizing once more that bosons (α = 0) can infinitely fill a
quantum state (ν = ∞), whereas fermions (α = −1) are at most one per quantum
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state (ν = 1). In between, one finds that there are at most −1/α anyons per
quantum state.

Interestingly enough, Haldane/exclusion statistics definition4 happens to co-
incide with (38): for a gas of particles obeying Haldane/exclusion statistics [34]
with statistical parameter g ∈ [0, 1], given NL degenerate energy levels and N − 1
particles already populating the levels, the number dN of quantum states still
available for the Nth particle is given by (38) where −α is replaced by g

dN = NL − (N − 1)g. (41)

On the one hand, Haldane’s definition (41) stems from an arbitrary combinatorial
point of view, inspired by the Bose and Fermi counting of states. On the other
hand, in the LLL-anyon model, (38) is obtained from a somehow ad-hoc mean field
ansatz. We will come back to these issues in the next section.

3. LLL-anyon thermodynamics

Let us rewrite the N -body energy (36) as [37]

EN =
N∑

i=1

(ε0 + liω̃) − α
N(N − 1)

2
ω̃; 0 ≤ l1 ≤ l2 ≤ ... ≤ lN (42)

with ω̃ = (ωt − ωc) and ε0 = ωc. Introducing the fugacity z and the inverse
temperature β, one wants to compute the thermodynamic potential

ln Z(β, z) = ln

( ∞∑
N=0

zNZN

)
; Z0 = 1 (43)

where Z(β, z) is the grand partition function defined in terms of the N -body
partition functions ZN = Tr exp(−βH ′

N ) = Tr exp(−βHN ) = Tr exp(−βH̃N ). The
thermodynamic potential rewrites as lnZ(β, z) =

∑∞
n=1 bnzn where, at order zn,

the cluster coefficient bn only requires the knowledge of the Zi’s, with i ≤ n. One
is interested in evaluating the thermodynamic potential in the thermodynamical
limit, i.e., ω is small, which means, here, that the dimensionless quantity βω is
small. The N -body spectrum, as given in (42), allows to compute, at leading order
in βω → 0, the Zi’s for i ≤ n, and thus the bn’s

bn =
1

βω̃

e−nβε0

n2

n−1∏
k=1

k + nα

k
; b1 =

1
βω̃

e−βωc . (44)

One has still to give a meaning, in the thermodynamic limit βω = 0, to the scaling
factor 1/(βω̃) in (44). To this purpose, one temporarily switches off the anyonic
interaction and the external magnetic field, and considers a quantum gas of non
interacting harmonic oscillators per se. One asks, when βω → 0, for its cluster

4This is Haldane’s statistics for one particle species. It can be generalized to the multispecies
case.
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coefficients to yield the infinite box (plane wave) cluster coefficients. At order n in
the cluster expansion, in d dimensions, one obtains [10]

lim
βω→0

(
1

n(βω)2

) d
2

=
V

λd
(45)

where λ =
√

2πβ is the thermal wavelength and V is the d-dimensional infinite
volume (in d = 2 dimensions, V is, as defined above, the infinite area of the 2d
sample). Using the thermodynamic limit prescription (45), the cluster coefficient
(44) rewrites, in the thermodynamic limit, as [29]

bn = NL
e−nβωc

n

n−1∏
k=1

k + nα

k
; b1 = NLe−βωc . (46)

The cluster expansion ln Z(β, z) =
∑∞

n=1 bnzn, as a power series of ze−βωc < 1,
can be summed up

ln Z(β, z) = NL ln y(ze−βωc) (47)
where y(ze−βωc), a function of the variable ze−βωc , is such that

ln y = ze−βωc +
∞∑

n=2

(ze−βωc)n

n

n−1∏
k=1

k + nα

k
. (48)

It obeys [29]
y − ze−βωcy1+α = 1 (49)

and has in turn a power series expansion [38]

y = 1 + ze−βωc +
∞∑

n=2

(ze−βωc)n
n∏

k=2

k + nα

k
. (50)

From (47) one infers that Z(β, z) = yNL so that [32, 39]

Z(β, z) = yNL = 1+NLze−βωc +NL

∞∑
N=2

(ze−βωc)N
N∏

k=2

k + NL + Nα − 1
k

. (51)

Clearly, from (51), the N -body partition function ZN is

ZN = NLe−Nβωc

N∏
k=2

k + NL + Nα − 1
k

. (52)

It is, by construction, positive. Necessarily, α and NL being given, N has to be
such that NL + Nα ≥ 0. This always is the case as long as N is finite, since NL

scales like the infinite surface of the 2d sample. In the thermodynamic limit, where
N → ∞, the condition NL + Nα ≥ 0 implies for the filling factor

ν ≤ − 1
α

. (53)

It is rather striking that the RHS of (53), which has just been derived from the
exact computation of the cluster coefficients from the N -body spectrum, is nothing
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but the critical filling (40) obtained in the mean field approach when the screening
is total.

The “degeneracy“ associated with N anyons populating the LLL quantum
states is, from (52),

NL

N∏
k=2

k + NL + Nα − 1
k

=
NL

N !
(N + NL + Nα − 1)!

(NL + Nα)!
(54)

where a factorial with a negative argument has to be understood as (−p)! =
limx→0(−p + x)!.

When α = 0, this is the usual Bose counting factor for the number of ways
to put N bosons in NL states

(N + NL − 1)!
N !(NL − 1)!

. (55)

When α = −1, this is the Fermi counting factor NL!/(N !(NL − N)!). If one con-
siders for a moment the statistical parameter to be a negative integer α ≤ −1 ,
the degeneracy (54) still allows for a combinatorial interpretation [38] : provided
again that NL + Nα ≥ 0, it is the number of ways to put N particles on a circle
consisting of NL quantum states such that there are at least −α−1 empty states in
between two occupied states. When α = −1, this is nothing but the usual exclusion
mechanism for fermions (one fermion at most per quantum state). When α ≤ −1,
i.e., beyond the Fermi point, more and more states are excluded between two filled
states. In the case of interest α in [−1, 0], one has a ”fractional“ exclusion where
one can put more than one particle per quantum state according to the fractional
α, but not infinitely many as in the Bose case.

The degeneracy (54) originates from the exact N -body spectrum (36). In
the case of Haldane statistics as defined in (41), there is no Hamiltonian and no
N -body spectrum to begin with. One rather starts from the Bose counting factor
(55) and bluntly replaces, in accordance with (41), NL by NL− (N −1)g to obtain

(NL − (N − 1)(g − 1))!
N !(NL − (N − 1)g − 1)!

(56)

which indeed interpolates, when g = 1, to the Fermi counting factor. The degener-
acy (56) is similar to (54): if one allows the exclusion parameter g to be an integer,
it counts [38] the number of ways to put N particles on a line of finite length
consisting of NL quantum states such that there are at least g− 1 empty states in
between two occupied states. Up to boundary conditions on the space of available
quantum states (periodic versus infinite wall), both counting (54, 56) are identical.
In the thermodynamic limit when N becomes large, boundary conditions should
not play a role anymore: not surprisingly, starting from (56) and following the
usual route of statistical mechanics [40] (saddle-point approximation) leads, in the
thermodynamic limit, to the same LLL-anyon thermodynamic potential given by
the equations (47) and (49), where the anyonic parameter −α is replaced by the
exclusion parameter g.



88 Stéphane Ouvry

Note that the grand partition factorization Z(β, z) = yNL in (47) could sug-
gest [41] an interpretation of y as a LLL-anyon grand-partition function for a
single quantum state at energy ωc, on the same footing as, when α = 0 or α = −1,
y = (1 ∓ ze−βωc)∓1 is indeed the single quantum state grand partition function
for a Bose or Fermi gas. This interpretation is not possible for the reason advo-
cated above: it would yield, as soon as α is fractional, negative N -body partition
functions. This is clearly impossible: the N -body anyonic system is, except in the
Bose and Fermi cases, truly interacting and therefore its statistical mechanics is
by no means factorisable to a single-state statistical mechanics.

From (47, 49), the average energy Ē ≡ −∂ ln Z(β, z)/∂β and the average
particle number N̄ ≡ z∂ ln Z(β, z)/∂z or, equivalently, the filling factor ν = N̄/NL,
can be computed. ν satisfies

y = 1 +
ν

1 + αν
(57)

or, equivalently, using (49),

ze−βωc =
ν

(1 + (1 + α)ν)1+α(1 + αν)−α
. (58)

When α 	= 0 and α 	= −1, this equation cannot in general be solved analytically,
except in special cases like α = −1/2 (semions). The equation of state follows

βPV = ln
(

1 +
ν

1 + αν

)
. (59)

In all these equations, it is understood from (53) that ν ≤ −1/α. When ν = −1/α,
the pressure diverges, a manifestation of the fact that there are as many anyons
as possible in the LLL, higher Landau levels being forbidden by construction. One
also notes that, for the degenerate LLL gas, the filling factor in (58) is nothing but
the mean occupation number n at energy ε = ωc and fugacity z. As expected, (58)
at α = 0 gives the standard Bose mean occupation number n = ze−βε/(1−ze−βε),
whereas at α = −1 it gives the Fermi mean occupation number n = ze−βε/(1 +
ze−βε).

The entropy S ≡ ln Z(β, z) + βĒ − (ln z)N̄ is (trivially Ē = N̄ωc since the
N particles are in the LLL)

S = NL

[
(1 + ν(1 + α)) ln(1 + ν(1 + α)) − (1 + να) ln(1 + να) − ν ln ν

]
. (60)

It vanishes when ν = −1/α, an indication that the N -body LLL anyon eigenstate
is not degenerate at the critical filling. From (36), one infers that the N -body
eigenstate of lowest energy has all its one-body orbital momenta quantum numbers
li = 0. It follows from (26) that, in the thermodynamic limit at the critical filling,
the LLL-anyon non-degenerate groundstate wavefunction is

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N) =
∏
i<j

z−α
ij exp(−1

2
ωc

N∑
i=1

ziz̄i); ν = − 1
α

(61)
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with total angular momentum

L =
N(N − 1)

2ν
. (62)

The pattern in (61) is reminiscent of the Laughlin wavefunctions at FQHE fillings
ν = 1/(2m + 1)

ψ(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N ) =
∏
i<j

z2m+1
ij exp

(
−1

2
ωc

N∑
i=1

ziz̄i

)
; ν =

1
2m + 1

.

(63)
On the one hand, Laughlin wavefunctions are fermionic, their filling factors are
rational numbers smaller than 1, and they are approximate solutions to the under-
lying N -body Coulomb dynamics in a strong magnetic field. On the other hand,
LLL-anyon wavefunctions are multivalued, their filling factor continuously inter-
polates between ∞ and 1, and they are exact solutions to the N -body LLL anyon
problem. Still, the similarity between (61) and (63) is striking.

Trying to push (61) further beyond the Fermi point eventually up to the Bose
point at α = −2, one obtains a Bose gas at filling ν = 1/2 with the non-degenerate
wavefunction

ψ′(z1, z2, ..., zN ; z̄1, z̄2, ..., z̄N) =
∏
i<j

z2
ij exp

(
−1

2
ωc

N∑
i=1

ziz̄i

)
; ν =

1
2

. (64)

One already knows that the LLL-anyon basis (26) is not interpolating to the
complete LLL-Bose basis when α = −2. At this point, non LLL N -body eigenstates
merge in the LLL ground state to compensate for some missing bosonic quantum
numbers -see Figure 3. Clearly, (64) should reproduce, by periodicity, the bosonic
non-degenerate wavefunction (61) at α = 0, but it does not. On the same footing,
when α = −2 the critical filling should be bosonic, i.e., ν = ∞, whereas ν =
1/2. The unphysical critical filling discontinuity, ∞ versus 1/2, is yet another
manifestation of the missing bosonic quantum numbers. In other words, the very
eigenstates which join the LLL ground state at the Bose point α = −2 and provide
for the missing quantum numbers, have the effect to smooth out the critical filling
discontinuity. Still, it has been shown [35] that the stronger the magnetic field B
is, the more valid (61) remains closer and closer to α = −2. The limit α → −2
is, due to periodicity, the same as the limit α → 0 from above, which can be
described as an anti-screening regime. One concludes that close to the Bose point
α = 0, the critical filling of a LLL-anyon gas is ν = ∞ or ν = 1/2 depending
on infinitesimally moving away from the Bose point in the screening regime (the
ground state wavefunction is the usual non degenerate bosonic wavefunction), or
in the anti-screening regime (the ground state wavefunction is (64)). Again, the
Bose point has a somehow singular behavior, a feature already encountered in
perturbation theory. Note finally that the occurrence of the ν = 1/2 fraction for
the bosonic filling factor in the antiscreening regime is physically challenging: fast
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rotating Bose-Einstein condensates in the FQHE regime are expected [36] to reach
a 1/2 filling described by the Laughlin-like wavefunction (64).

α

ν

0 1 4−1

1
2

1

+∞+∞ +∞− 1

α

−3−4 −2 32

Figure 4. The critical LLL-anyon filling curve as a function of
α. The critical Bose filling ν = 1

2 occurs at the Bose points in
the anti-screening regime. The continuity of the critical curve at
these points is restored by the non LLL eigenstates joining the
LLL ground state.

So far one has been concerned with two-dimensional systems: in the thermo-
dynamic limit, a single particle in the LLL, and, consequently, a gas of LLL-anyons,
are two dimensional, as can be seen from the NL 
 V scalings5 of the 1-body LLL
partition function ZLLL = NL exp(−βωc) and the LLL anyon thermodynamic po-
tential (47). Denoting by ρLLL(ε) = NLδ(ε−ωc) the 1-body LLL density of states,
(47) can be rewritten as

ln Z(β, z) =
∫ ∞

0

ρLLL(ε) ln y(ze−βε)dε. (65)

Convincingly, in (65) the one-body dynamics of individual particles is described
by the one-body density of states, whereas the LLL statistical collective behavior
is encoded in the y function which depends on the statistical parameter α.

One might ask about other integrable N -body systems which would lead
to the same kind of statistics. It would be tempting to define a model obeying
fractional/exclusion statistics if, its one-body density of states ρ(ε) being given,
its thermodynamic potential has the form

ln Z(β, z) =
∫ ∞

0

ρ(ε) ln y(ze−βε)dε (66)

with
y − ze−βεy1+α = 1 (67)

5In the LLL there is only one quantum number li per particle, still the system is 2d.
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so that

y = 1 + ze−βε +
∞∑

n=2

(
ze−βε

)n
n∏

k=2

k + nα

k
. (68)

The mean occupation number follows as n = z∂ ln y/∂z. It obeys

y = 1 +
n

1 + αn
; or n =

y − 1
1 − α(y − 1)

≥ 0 (69)

or, equivalently,
ze−βε =

n

(1 + (1 + α)n)1+α(1 + αn)−α
. (70)

One has the duality relation [41]

1 =
1
y

+
1
ỹ
; where ỹ − (ze−βε)−1ỹ1+ 1

α = 1 (71)

or, equivalently

−αn − 1
α

ñ = 1 (72)

where ñ is related to ỹ as n to y in (69). The duality relation (71,72) can be
interpreted as a particle-hole symmetry relation. Setting t = ze−βωc , one also has
a simple expression [42] for dn(t)/dt

t
dn

dt
= n(1 + (1 + α)n)(1 + αn). (73)

All these equations have been understood as arising microscopically from the
LLL anyon Hamiltonian with one-body density of states ρ(ε) = ρLLL(ε). It happens
that it is possible to find another N -body microscopic Hamiltonian which leads
to the thermodynamics (66). Consider, in one dimension, the integrable N -body
Calogero model [43] with inverse-square 2-body interactions

HN = −1
2

N∑
i=

∂2

∂x2
i

+ α(1 + α)
∑
i<j

1
(xi − xj)2

+
1
2

ω2
N∑

i=1

x2
i (74)

where xi represents the position of the i-th particle on the infinite 1d line. This
model is known to describe particles with nontrivial statistics in one dimension
interpolating from Bose (α = 0) to Fermi (α = −1) statistics. It means that
the 1/x2 Calogero interaction is purely statistical, without any classical effect on
particle motions, up to a overall reshuffling of the particles [44]. The Calogero
model remains integrable when, as in (74), a confining 1d harmonic well is added.
This is the harmonic Calogero model, whereas the Calogero-Sutherland model [46]
would have the particles confined on a circle. The effect of the harmonic well is, as
in the LLL anyon case, to lift the thermodynamic limit degeneracy in such a way
that the N -body harmonic Calogero spectrum ends up depending on the Calogero
coupling constant α

EN = ω

[
N∑

i=1

li − α
N(N − 1)

2
+

N

2

]
; 0 ≤ l1 ≤ l2 ≤ ... ≤ lN . (75)
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Here the li’s correspond to the quantum numbers of the 1-d harmonic Hermite
polynomials free 1-body eigenstates

(
ω

π
)1/4 1√

2li li!
e−

1
2 ωx2

i Hli(
√

ωxi); li ≥ 0; E = ω(li +
1
2
). (76)

It is remarkable that (75) happens to be again of the form (42) with ω̃ = ω,
ε0 = ω/2. Following the same steps as in the LLL-anyon case, i.e., (44), and using
again (45) while taking the thermodynamic limit βω → 0, the Calogero cluster
coefficients rewrite as

bn =
L

λ

1
n
√

n

n−1∏
k=1

k + nα

k
; b1 =

L

λ
(77)

where the infinite length of the 1d line has been denoted by L. The cluster expan-
sion can still be resumed using (48) provided the unwanted 1/

√
n term in (77) is

properly taken care of. Introducing the 1d plane wave momentum k

1
λ
√

n
=

1
2π

∫ ∞

−∞
dke−nβ k2

2 (78)

and denoting the 1-body energy as ε = k2/2, one finally obtains

ln Z(β, z) =
∫ ∞

0

ρ0(ε) ln y(ze−βε)dε (79)

where
ρ0(ε) =

L

π
√

2ε
(80)

is the free 1-body density of states in one dimension. This is not a surprise: in
the thermodynamic limit ω → 0, where li → ∞ with liω = k2

i /2 kept fixed, the
Hermite polynomial Hli becomes a plane wave of momentum ki.

From (79), one concludes6 that, in the thermodynamic limit, the Calogero
model has indeed a LLL-anyon/exclusion like statistics [45] according to (66) and
(67), interpolating, as it should, from a free bosonic 1d gas at α = 0 to a free
fermionic 1d gas at α = −1.

It follows that the 2d LLL-anyon and 1d Calogero models, which seem a
priori unrelated, do obey the same type of statistics. This is not a coincidence.
Looking at their harmonic N -body spectrum (36) and (75), one realizes that, up
to an irrelevant zero-point energy, the latter is the B → 0 limit of the former.
This remains true in the thermodynamic limit ω → 0. So, not only (65) and
(79) are of the same type, but also, when B → 0, (65) has to become (79). It
follows that, necessarily, the 1-body densities of states ρLLL(ε) and ρ0(ε) satisfy
limB→0 ρLLL(ε) = ρ0(ε), i.e.,

lim
B→0

eBV

2π
δ(ε − eB

2
) =

L

π
√

2ε
, (81)

6The same conclusion would be reached starting form the Calogero-Sutherland model and taking
the corresponding thermodynamic limit, i.e., the radius of the confining circle going to infinity.
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a relation which has to be understood as arising in the thermodynamic limit ω → 0.
To arrive at (81), one could as well consider directly the 1-body harmonic

LLL spectrum (31) and harmonic 1d spectrum (76)

E = (ωt − ωc)(li + 1) + ωc; E = ω(li +
1
2
). (82)

They are such that the latter is the vanishing B limit of the former, so it is the case
for the corresponding 1-body partition functions. Taking then7 the thermodynamic
limit βω → 0, i.e., (45), implies the relation limB→0 ZLLL = Z0, where ZLLL is,
as above, the LLL partition function and Z0 is the free partition function in one
dimension. Consequently for the densities of states (the inverse Laplace transforms)
the relation (81) follows. This result has its roots in the different energy gaps of the
spectra (82) at small ω: in the harmonic LLL case, the gap behaves like ω2/(2ωc),
whereas, in the 1d harmonic case, the gap is ω.

The relation (81) could also have been understood from the 1-body eigen-
states themselves. In the limit B → 0, the LLL induced harmonic analytic eigen-
states are, from (31), √

(
ωli+1

πli!
)zli

i e−
1
2 ωziz̄i . (83)

There is only one parameter ω left so that the states in (83) can be put in one-to-one
correspondence with the Hermite polynomials (76) via the Bargmann transform

√
ωli+1zli

i = ω

∫ ∞

−∞
dxi

1√
2li

e−ω(x2
i−zixi

√
2+z2

i /2)Hli(
√

ωxi). (84)

From (84) one can infer [47] that the N -body harmonic anyon eigenstates (37) are
a coherent state representation of the N -body harmonic Calogero eigenstates.

From all these considerations (thermodynamics, eigenstates,...) it follows that
the vanishing magnetic field limit8 of the LLL-anyon model is the Calogero model
itself. It seems paradoxical to consider such a limit in the LLL which assumes
a priori a strong magnetic field. Still, doing so, one has dimensionally reduced
the 2d anyon model to the 1d Calogero model. This dimensional reduction has
a simple geometrical interpretation. The LLL induced harmonic states (83) are
localized in the vicinity of circles of radius li/ω. In the thermodynamic limit, one
has li → ∞ with liω = k2

i /2 kept fixed. It follows that the corresponding 1d
Hermite polynomials Hli , which become in this limit plane waves of momentum
ki, have a radius of localization diverging like k2

i /ω2. The dimensional reduction
which has taken place consists in going at infinity on the edge of the plane: in the

7The order of limits is crucial here: first the limit B → 0, then the thermodynamic limit ω → 0.
8Since one has ended up by taking the limit B → 0, one could have avoided right from the
beginning to introduce a B field, and started directly from the harmonic N-body anyon model.
What has been done above by taking the limit B → 0 is nothing but to project the harmonic
anyon model on the LLL induced harmonic subspace (83) (the B field and its LLL should still
be invoked to justify the selection of the LLL quantum numbers in the 2d harmonic basis) and
to recognize that the projected harmonic anyon model is the harmonic Calogero model. This
relation remains true in the thermodynamic limit ω → 0.



94 Stéphane Ouvry

thermodynamic limit, the Calogero model can be viewed as the edge projection of
the anyon model.

The LLL anyon thermodynamics, or, equivalently, the Haldane/exclusion
thermodynamics, and the Calogero thermodynamics as well, have been the subject
of an intense activity since the mid-nineties. Let us mention their relevance in more
abstract contexts, such as conformal field theories [48]. On the experimental side,
FQHE edge currents can be modelled by quasiparticles with fractional statistics,
which in turn might affect their transport properties such as the current shot noise
[49, 42].

4. Minimal Difference Partitions and Trees

Up to now one has been concerned with quantum mechanical models defined by
a microscopic quantum Hamiltonian. Both the LLL anyon and Calogero models
have been shown to have a thermodynamics controlled by (66) and (67). Let us
leave quantum mechanics and address a pure combinatorial problem, the minimal
difference partition problem [50]. Consider the number ρ(E, N) of partitions of an
integer E into N integer parts where each part differs from the next by at least
an integer p and the smallest part is ≥ l. Usual integer partitions correspond to
p = 0 and l = 1, whereas restricted partitions, where the parts have to be different,
correspond to p = 1 and l = 1.

It is known that∑
E

ρ(E, N)xE =
xlN+pN(N−1)/2

(1 − x)(1 − x2)...(1 − xN )
. (85)

The ρ(E, N) generating function Z(x, z) =
∑∞

E,N ρ(E, N)xEzN factorizes when
p = 0 or p = 1

p = 0, Z(x, z) =
∞∏

i=0

1
1 − xl+iz

; p = 1, Z(x, z) =
∞∏

i=0

(1 + xl+iz). (86)

In terms of bosons or fermions, (86) is the grand partition function for a bosonic
or fermionic gas with fugacity z and, denoting x = e−β , temperature T = 1/β
where

E =
∞∑

i=0

ni(l + i) N =
∞∑

i=0

ni (87)

with ni = 0, 1, 2, ... in the Bose case (p = 0) and ni = 0, 1 in the Fermi case (p = 1).
Equivalently

E =
N∑

i=1

li (88)

with l ≤ l1 ≤ l2 ≤ . . . ≤ lN (Bose) or l ≤ l1 < l2 < . . . < lN (Fermi).
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Figure 5. A minimal difference partition configuration, or Young
diagram. The column heights are such that (li − li+1) ≥ p for
i = 1, 2, . . . , N − 1 and li ≥ l. Their total height is E =

∑N
i=1 li.

Wh is the width of the Young diagram at height h, i.e., the number
of columns whose heights ≥ h.

When p is an integer ≥ 2, (85) can be regarded as the N -body partition
function of an interacting bosonic gas with the N -body spectrum

E =
N∑

i=1

li + pN(N − 1)/2; l ≤ l1 ≤ l2 ≤ . . . ≤ lN . (89)

Clearly, (89) goes beyond the Fermi point p = 1 and describes some kind of
”superfermions”. In contrast to the Bose and Fermi cases, a factorization such as
(86) is not possible, due to the interacting nature of (89). One has instead the
functional relation

Z(x, z) = Z(x, xz) + xlzZ(x, xpz) (90)
which embodies the combinatorial identity

ρ(E, N) = ρ0

(
E − p

N(N − 1)
2

, N

)
(91)

where ρ0(E, N) stands for the usual partition counting.
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One could push [51] this analysis further to p real positive. When p ∈ [0, 1]
and l = 1, one would obtain a partition problem interpolating between the usual
(bosonic) one and the restricted (fermionic) one. It is manifest that, if p is replaced
by −α, the spectrum (89) coincides, under a rescaling and up to an irrelevant zero-
point energy, with the N -body quantum spectrum (75) of the harmonic Calogero
model. In a partition problem, one is interested in the large E and N asymptotic
behavior of ρ(E, N), which corresponds to the regime x → 1, i.e., β → 0. Consider
the cluster expansion lnZ(x, z) =

∑∞
n=1 bnzn. In the limit β → 0 one obtains,

accordingly to (44) with ε0 = l and ω̃ = 1,

bn =
1
β

e−nlβ

n2

n−1∏
k=1

(
1 − pn

k

)
; b1 =

1
β

e−lβ. (92)

The limit β → 0 should not be confused with the thermodynamic limit in quantum
systems. There is no thermodynamic limit prescription like (45). Still, using (48)
(with ωc replaced by l) and taking care of the unwanted 1/n factor in (92), one
obtains, provided that ze−βl < 1,

ln Z(β, z) =
∫ ∞

l

ln y(ze−βε)dε (93)

with
y − ze−βεy1−p = 1. (94)

This is again of the form (66) and (67), the statistical parameter −α being replaced
by the minimal difference partition parameter p, and the 1-body density of states
being the Heaviside function ρ(ε) = θ(ε − l). The minimal difference partition
combinatorics is equivalently described, in the small β limit, by a gas of particles
obeying exclusion statistics with a uniform density of states9.

This correspondence happens to be useful technically: (93) and (94) are the
building blocks of the minimal difference partition asymptotics. The average in-
teger Ē = −∂ ln Z(β, z)/∂β =

∫∞
l

nεdε and the average number of integer parts
N̄ = z∂ ln Z(β, z)/∂z =

∫∞
l

ndε, are both given in terms of n = z∂ ln y/∂z, the
mean occupation number at ”part” ε and fugacity z, which satisfies

ze−βε =
n

(1 + (1 − p)n)1−p(1 − pn)p
with n ≤ 1

p
. (95)

One obtains

Ē − lN̄ =
1
β

ln Z(β, z) N̄ =
1
β

ln y(ze−βl) (96)

so that the entropy10 S ≡ ln Z(β, z) + βĒ − (ln z)N̄ rewrites as

S = 2β

(
Ē − lN̄ − p

2
N̄2

)
− N̄ ln(1 − e−βN̄) (97)

9There is no microscopic quantum Hamiltonian leading to (93) and (94).
10The simple expression in (96) for N̄ is possible because of the constant density of states.
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with

Ē − lN̄ − p

2
N̄2 = − 1

β2

∫ 1−e−βN̄

0

ln(1 − u)
u

du. (98)

Inverting (98) gives β as a function of Ē and N̄ so that the entropy S in (97)
becomes a function of Ē and N̄ only. Doing so, one has a definite information [51]
on the asymptotic behavior of ρ(E, N) 
 eS(E,N) when E and N are large, and
also, of ρ(E) =

∑∞
N=1 ρ(E, N) when E is large. One obtains a generalization of the

Hardy-Ramajunan asymptotics [52] to the minimal difference partition problem.
One can also obtain [53] the average limit shape of the Young diagrams associated
with the minimal difference partition problem, generalizing the usual partition
limit shape [54]. The limit shape at a part of height h depends solely on the
statistical function y evaluated at ε = h and at z = 1

βW̄h = ln y(e−βh) (99)

where β scales as β2E =
∫∞
0

ln y(e−ε)dε.
So far p being a positive integer has insured that the N -body spectrum in

(89) is well defined. However, y in (94) is still meaningful when p is a negative
integer. It is the (1 − p)-ary tree generating function, so that the coefficient at
order n of its expansion in powers of ze−βε as given in (68) (with −α replaced by
p) is the number of ways to build a (1− p)-ary tree with n nodes. For example, at
p = −1, y generates the Catalan numbers associated with binary trees.

Consider, as a toy model [55], the factorized (1−p)-ary tree generating func-
tion

Z(x, z) =
∞∏

i=0

y
(
zxl+i

)
(100)

where y satisfies (100) with ε = l+i. (100) narrows down to (86) when p = 0 (Bose
case). Its combinatorial interpretation is that ρ(E, N) deduced from (100) counts
the number of usual partitions of an integer E into N integer parts bigger or equal
to l, with an additional degeneracy stemming from the (1 − p)-tree arborescence
when, in a given partition, a part occurs n times. This enlarged degeneracy goes
beyond the Bose point to define some kind of ”superbosons”.

One can analytically continue p to the whole negative real axis. In the large
E and N limit, i.e., β smaller and smaller, one encounters a maximal temperature
beyond which it is not possible to heat the system. Indeed, from (94) it follows
that y(zxl+i) in (100) obeys to y − ze−β(l+i)y1−p = 1, which is well defined only
if [39]

ze−βl < (1 − p)p−1(−p)−p < 1. (101)
When z = 1, it defines a dimensionless ”Hagedorn temperature”

T =
l

(1 − p) ln(1 − p) + p ln(−p)
(102)

just below which E and N become large so that the asymptotic of ρ(E, N) can be
addressed.
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5. Conclusion

In two dimensions intermediate anyonic statistics interpolating from Bose to Fermi
statistics are allowed. Their definition does not involve anything else than the
usual concept at the basis of quantum statistics, namely free particles endowed
with particular boundary exchange conditions on their N -body wavefunctions.
It happens that these boundary conditions have a much richer structure in two
dimensions than in three and higher dimensions. This in turn can be understood
in terms of the topology of paths in the N -particle configuration space, where
non trivial braiding occurs in two dimensions, and not in higher dimensions. A
flux-charge composite picture emerges to encode the braiding statistics in physical
terms, via topological Aharonov-Bohm interactions and singular magnetic fields.

The anyon model as such is certainly fascinating as far as quantum mechanics
is concerned, but it remains an abstract construction whose complexity is daunting.
However, when projected onto the LLL of an external magnetic field, the model
becomes tractable and, even more, solvable. The LLL set up is clearly adapted
to the QHE and to the FQHE physics. Haldane/exclusion statistics, which can
be obtained as a LLL-anyon mean-field picture in the screening regime, leads to
LLL-anyon thermodynamics.

It would certainly be rewarding if LLL anyons could be relevant experimen-
tally, for example by uncovering some experimental hints at FQHE filling factors of
the existence of quasiparticles with anyonic/exclusion statistics. Fractional charges
have already been seen in shot noise FQHE experiments [56], but the nontrivial
statistical nature of the charge carriers in FQHE edge currents has so far remained
elusive in experiments which rely mainly on Aharonov-Bohm interferometry [28].
Note also a recent proposal for the possible experimental tracking of abelian and
nonabelian anyonic statistics in Mach-Zehnder interferometers [57].

Finally, on the theoretical side, physical interactions, together with topolog-
ical anyonic interactions, should also be taken into account in order to produce
more realistic models.
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Probing a Single Isolated Electron:
New Measurements of the Electron Magnetic
Moment and the Fine Structure Constant

Gerald Gabrielse

1. Introduction

For these measurements one electron is suspended for months at a time within
a cylindrical Penning trap [1], a device that was invented long ago just for this
purpose. The cylindrical Penning trap provides an electrostatic quadrupole poten-
tial for trapping and detecting a single electron [2]. At the same time, it provides
a right, circular microwave cavity that controls the radiation field and density of
states for the electron’s cyclotron motion [3].

Quantum jumps between Fock states of the one-electron cyclotron oscillator
reveal the quantum limit of a cyclotron [4]. With a surrounding cavity inhibiting
synchrotron radiation 140-fold, the jumps show as long as a 13 s Fock state lifetime,
and a cyclotron in thermal equilibrium with 1.6 to 4.2 K blackbody photons. These
disappear by 80 mK, a temperature 50 times lower than previously achieved with
an isolated elementary particle. The cyclotron stays in its ground state until a
resonant photon is injected. A quantum cyclotron offers a new route to measuring
the electron magnetic moment and the fine structure constant.

The use of electronic feedback is a key element in working with the one-
electron quantum cyclotron. A one-electron oscillator is cooled from 5.2 K to
850 mK using electronic feedback [5]. Novel quantum jump thermometry reveals
a Boltzmann distribution of oscillator energies and directly measures the corre-
sponding temperature. The ratio of electron temperature and damping rate (also
directly measured) is observed to be a fluctuation-dissipation invariant, indepen-
dent of feedback gain, as predicted for noiseless feedback. The sharply reduced
linewidth that results from feedback cooling illustrates the likely importance for
improved fundamental measurements and symmetry tests.



106 Gerald Gabrielse

Electronic feedback that self-excites the axial oscillation of a single electron
in a Penning trap is used to detect spin flips and one-quantum cyclotron excita-
tions [6]. Large, stable, easily detected oscillations arise even in an anharmonic
potential. Amplitudes are controlled by adjusting the feedback gain, and frequen-
cies can be made nearly independent of amplitude fluctuations. Quantum jump
spectroscopy of a perpendicular cyclotron motion reveals the absolute temperature
and amplitude of the self-excited oscillation. The possibility to quickly measure
ppb frequency shifts opens the way to improved measurements of the electron
magnetic moment.

The new experimental methods make it possible for the first time to use quan-
tum jump spectroscopy of the lowest cyclotron and spin levels for a single-electron
quantum cyclotron [7]. The measured electron magnetic moment has an uncer-
tainty that is nearly six times lower than in the past, and the moment is shifted
downward by 1.7 standard deviations. The new magnetic moment, with a quantum
electrodynamics (QED) calculation, determines the fine structure constant with a
0.7 ppb uncertainty [8, 9] – ten times smaller than for atom-recoil determinations.
Remarkably, this 100 mK measurement probes for internal electron structure at
130 GeV.

A big additional reduction in the measurement accuracy is soon to be an-
nounced, based upon a new measurement for which the analysis is nearly finished.

2. Quantum Cyclotron

The quantum limit of an electron cyclotron accelerator was demonstrated and
reported in collaboration with my student S. Peil [4].

When the cyclotron is cooled to 80 mK, 50 times lower than previously re-
alized with an isolated elementary particle, quantum nondemolition (QND) mea-
surements show that the electron stays in the ground state of its cyclotron motion
for hours, leaving only in response to resonant photons deliberately introduced
from outside. At higher temperatures, bl ackbody photons are present in sufficient
numbers to occasionally excite the electron cyclotron motion. QND measurements
show the cyclotron oscillator remains in an excited energy eigenstate for many sec-
onds before making an abrupt quantum jump to an adjacent state. The striking
isolation of the electron from its environment is due to a 140-fold cavity-induced
suppression of the spontaneous emission of synchrotron radiation. Analysis of the
quantum jumps provides a way to measure the temperature of the electron, the av-
erage number of blackbody photons, and the spontaneous emission rate. Quantum
jump spectroscopy provides a way to precisely measure the frequency separation of
the lowest quantum states. A variety of applications are mentioned in conclusion.

The quantum cyclotron provides an unusual opportunity to observe and ma-
nipulate long lived states of a harmonic oscillator. When written in terms of rais-
ing and lowering operators, the Hamiltonian of the two dimensional cyclotron
Hc = hνc(a†a+1/2) is formally equivalent to that of the familiar one dimensional
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harmonic oscillator. The energy eigenstates of the electron cyclotron (|n = 0〉,
|n = 1〉, ... in Fig. 1a) are often called Landau levels. They are formally equivalent
to the familiar number states of the harmonic oscillator, often called Fock states in
quantum optics. Though these states are well known to every student of quantum
mechanics, the production, observation and use of Fock states in experiments is
surprisingly difficult and rare. The unusually high probability P > 0.999 to be in
the ground state of the quantum cyclotron, and the extremely long lifetime of the
Fock states, should make it possible to excite any superposition of the lowest Fock
states with a properly tailored sequence of drive pulses.
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Figure 1. (a) Energy levels of the one-electron cyclotron oscil-
lator. (b) Electrodes of the cylindrical Penning trap cavity.

We report the nondestructive observation of Fock states as high as |n = 4〉.
Only zero- and one-photon Fock states, |n = 0〉 and |n = 1〉, have previously been
observed for a radiation mode of a cavity [10, 11], though efforts are underway to
observe two-photon and higher Fock states [12]. A ground state occupation frac-
tion P = 0.95 was reported. Vibrational Fock states of a laser-cooled Be+ ion in
a potential well have also been selectively excited, starting from a similar ground
state occupation of P = 0.95[13]. The formation of these Fock states was deduced
destructively, from repeated measurements which transferred the population of
identically prepared states to internal energy levels, whose monitored time evolu-
tion revealed the original state. Very recently, the |n = 0〉 and |n = 1〉 Fock states
of neutral atoms oscillating in a one dimensional harmonic well were also observed
[14] with P = 0.92 for the ground state.

The quantum cyclotron is realized with a single electron stored in a cylindri-
cal Penning trap [4, 2] that is cooled by a dilution refrigerator. The trap cavity
(Fig. 1b) is a good approximation to a cylindrical microwave cavity at frequencies
up to 160 GHz [15]. Tiny slits (125 μm) in the walls of the cavity make it possible
to apply a trapping potential between the central ring electrode and the two flat
endcap electrodes. The small slits include quarter wave “choke flanges” to minimize
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the loss of microwave radiation from the cavity. The potential is made a better
approximation to a harmonic potential along the central symmetry axis of the trap
by tuning an additional voltage applied to the two compensation electrodes.

Cavity radiation modes that couple to the cyclotron oscillator [15, 16] have
quality factors as high as Q = 5×104. The energy in a 150 GHz mode with this Q
value damps exponentially with a 50 ns time constant that is very short compared
to all relevant time scales. (The frequency widths of the cavity mode resonances,
for example, are much wider than the oscillator’s cyclotron resonance width.) The
radiation modes of the cavity are thus thermal states with the temperature of the
trap cavity. Thermal contact to a dilution refrigerator allows us to adjust the trap
temperature between 4.2 K and 70 mK (only to 80 mK when our detector is on.)
We detune the frequency of the one-electron cyclotron oscillator away from the
radiation modes to decrease the spontaneous emission rate.

Two of the three motions of a trapped electron (charge −e and mass m) in a
Penning trap [17] are relevant to this work. Our central focus is upon the circular
cyclotron motion, perpendicular to a vertical 5.3 T magnetic field, with cyclotron
frequency νc = eB/(2πm) = 147 GHz and energy levels separated by hνc. The
Fock states |n〉, often called Landau states for the particular case of a charged
particle in a magnetic field, decay via spontaneous emission to |n − 1〉 at a rate
nγ, where γ is the classical decay rate of the oscillator. In free space for our field,
γ = (4πεo)−116π2ν2

c e2/(3mc3) = (94 ms)−1. This is the rate that is inhibited by
the trap cavity.

The electron is also free to oscillate harmonically along the direction of the
vertical magnetic field, ẑ, at a frequency νz = 64 MHz ≈ νc/1000. We drive this
axial motion by applying an oscillatory potential between the ring and an endcap
electrode, and detect the oscillatory current induced through a resonant tuned
circuit attached between the ring and the other endcap. The electron axial motion
damps as energy dissipates in the detection circuit, yielding an observed reso-
nance width of 5 Hz for the driven axial motion. With appropriate amplification
and narrow bandwidth detection we are able to measure small (1 Hz) shifts in νz .
A heterostructure field effect transistor (HFET), constructed with Harvard collab-
orators just for these experiments, provides the radiofrequency gain that is needed
while dissipating only 4.5 μW. The dilution refrigerator had difficulty with the
nearly 700 times greater power dissipation (3 mW) of the conventional MESFET
used initially.

The cyclotron and axial motions of the electron would be uncoupled except
that we incorporate two small nickel rings into the ring electrode of the trap
(Fig. 1b). These saturate in and distort the otherwise homogeneous magnetic field.
The resulting “magnetic bottle”,

Δ �B = B2

[(
z2 − (x2 + y2)/2

)
ẑ − z(xx̂ + yŷ)

]
, (1)

is similar to but much bigger than what was used to determine an electron spin
state [18]. Coupling the combined cyclotron and spin magnetic moment �μ to Δ �B
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gives a term in the Hamiltonian that is harmonic in z,

V = −�μ · Δ �B = 2μBB2(a†a + 1/2 + Sz/�)z2, (2)

where μB is the Bohr magneton, Sz is the spin operator, and the electron g value
is taken to be 2. This V makes νz shift in proportion to the energy in the cyclotron
and spin motions,

Δνz = δ(n + 1/2 + ms). (3)

A one quantum excitation of the cyclotron oscillator shifts the monitored νz by
δ = 2μBB2/(mωz) = 12.4 Hz, substantially more than the 5 Hz axial linewidth
and the 1 Hz resolution.

The measurement of the cyclotron energy is an example of a QND measure-
ment [19, 20] in that V and Hc commute, [V, Hc] = 0. The desirable consequence
is that a second measurement of the cyclotron energy at a later time will give the
same answer as the first (unless a change is caused by another source). This is not
generally true for measurements with a quantum system. For example, measuring
the position of a free particle would make its momentum completely uncertain.
After additional time evolution a second measurement of the particle’s position
would give a different outcome.

Five one-hour sequences of QND measurements of the one-electron oscilla-
tor’s energy are shown in Fig. 2. Each is for a different cavity temperature T , as
measured with a ruthenium oxide sensor attached to the ring electrode. Greatly
expanded views of several quantum jumps are shown in Fig. 3. Energy quantiza-
tion is clearly visible, as are the abrupt quantum jumps between Fock states. The
upward quantum jumps are absorptions stimulated by the blackbody photons in
the trap cavity. The downward transitions are spontaneous or stimulated emis-
sions. Mostly we see the oscillator in its ground state |n = 0〉, with occasional
quantum jumps to excited Fock states. Fig. 3b shows a rare event in which 4.2
K blackbody photons sequentially excite the one-electron cyclotron oscillator to
the Fock state |n = 4〉. It takes of order 2 s of signal averaging for us to ascertain
the quantum state of the cyclotron oscillator. This true measurement time is less,
being the time required to establish the quantum state in principle. An estimate
of this time [21] unfortunately uses assumptions that do not correspond well to
the experimental conditions.

We analyze the quantum jumps to measure the temperature of the cyclotron
oscillator, Tc. The measured probabilities Pn for occupying Fock states |n〉, aver-
aged over many hours, are shown to the right in Fig. 2 for each cavity temperature.
The measured Pn fit well to the Boltzmann factors Pn = Ae−nhνc/kTc which per-
tain for thermal equilibrium, demonstrating that averaged over hours the oscillator
is in a thermal state. The fit determines Tc. Measurements with this “quantum
Boltzmann thermometer” (solid points in Fig. 4a) shows that Tc is equal to the
cavity temperature T ; the cyclotron oscillator is in thermal equilibrium with the
blackbody photons in the cavity. The solid points in Fig. 4b show the measured
average quantum number superimposed upon the curve n̄ = [ehνc/kT −1]−1 which
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pertains for an oscillator in thermal equilibrium at the measured cavity temper-
ature T . For temperatures of 4.2 K, 1 K and 80 mK, n̄ varies dramatically from
0.23, to 9 × 10−4, to 6 × 10−39.
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Figure 2. Quantum jumps between the lowest states of the one-
electron cyclotron oscillator decrease in frequency as the cavity
temperature is lowered.
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Figure 3. Excitations to excited Fock states which are stim-
ulated by 4.2 K blackbody photons in (a) and (b), and by an
externally applied microwave field in (c) and (d).

Below 1 K the oscillator resides in its ground state for so long (we estimate
1032 years for 80 mK) that it is difficult to directly measure the oscillator tem-
perature Tc. The best we can do is to establish that at some confidence level C,
this temperature is below a limit given by kTc ≤ hνc/ln[1 − γt/ln(1 − C )] if we
observe no excitation for time t. When no excitation is observed for t = 5 hours,
for example, we establish that Tc < 1.0 K at the C = 68% confidence level. For
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temperatures below 1 K, blackbody photons have been essentially eliminated, and
the one-electron cyclotron oscillator is virtually isolated from its environment.
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and deduced from the transition rates (open points) are compared
to the temperature of a ruthenium oxide thermometer attached
to a trap electrode. (b) Measured average values n̄ and �̄ as a
function of cavity temperature.

We can separately measure the rate Γabs for the upward jumps (corresponding
to stimulated absorption), and the rate Γem for downward jumps (corresponding
to stimulated and spontaneous emission together). For T = 1.6 K, Fig. 5 shows
a histogram of the dwell times in |n = 0〉 in (a) and for |n = 1〉 in (b). Both
histograms decrease exponentially, indicating random processes, so the fitted life-
times (Γabs)−1 and (Γem)−1 are just the average values of the dwell times. The
rates for stimulated emission from |n〉 to |n − 1〉 and for stimulated absorption
from |n − 1〉 to |n〉 are expected to be equal by the principle of detailed balance.
Thus the spontaneous emission rate is simply the difference between the observed
emission rate and the observed absorption rate, γ = Γem − Γabs. At T = 1.6
K (Fig. 5) the measured stimulated absorption rate is negligibly smaller so that
γ−1 ≈ Γ−1

em = 13 s.
Comparing the 13 s spontaneous emission lifetime that is measured with the

94 ms expected for free space shows that spontaneous emission of synchrotron
radiation is strongly suppressed. The 140-fold inhibition is due to the copper trap
cavity that encloses the electron oscillator [22]. By adjusting the magnetic field, the
frequency of the cyclotron oscillator is tuned away from resonance with the radia-
tion modes of the trap cavity. The electron oscillator then couples only very weakly
to the modes of the radiation field, and spontaneous emission is suppressed. We
would not otherwise be able to signal average sufficiently to observe the quantum
jumps so distinctly, nor would the excited Fock states persist so long.

The measured emission and absorption rates determine the average number �̄
of resonant blackbody photons within the cavity. Quantum electrodynamics indi-
cates that stimulated emission from |n〉, and stimulated absorption into |n〉, both
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Figure 5. Histograms of the dwell times preceding stimulated
absorption from n = 0 to n = 1 in (a), and for spontaneous and
stimulated emissions from n = 1 to n = 0 in (b), both for T = 1.6
K. Dwell times less than 5 s are excluded since short dwell times
are obscured by detection time constants.

have the same rate given by �̄nγ. Applied to n = 1, this means that Γabs = �̄γ
and Γem = (1 + �̄)γ. The average number of blackbody photons in terms of mea-
surable quantities is thus given by �̄ = Γabs/(Γem − Γabs). The measured open
points in Fig. 4b agree well with the expected curve �̄ = [ehνc/kT − 1]−1, and
n̄ = �̄ as predicted. Fitting to the measured �̄ gives an independent measurement
of the temperature of the cavity (open points in Fig. 4a). These agree well with
the directly measured cavity temperature.

Extremely precise quantum jump spectroscopy of the lowest levels of the
quantum cyclotron should become possible with blackbody photons eliminated
from the trap cavity. Quantum jumps (e.g. Fig. 3c-d) will take place only when
externally generated microwave photons are introduced into the trap cavity, in-
creasing in rate as the drive frequency is swept through resonance. One challenge
is that the z2 term in the magnetic bottle (Eq. 1) not only couples νz to the cy-
clotron energy (Eq. 3) as is desired for good detection sensitivity. It also shifts the
cyclotron frequency in proportion to the axial energy Ez with Δνc = δ Ez/(hνz).
The measured distribution of cyclotron frequencies shows that the current axial
detector heats the axial motion of the electron to 17 K, well above the 80 mK
temperature of the trap and cyclotron motion. However, the long lifetime of the
first excited Fock state should make it possible to introduce microwave photons
while the axial motion is cooled to 80 mK, before turning on the axial detector to
observe whether a cyclotron excitation has been made.

In conclusion, a quantum cyclotron is demonstrated using one electron in a
cylindrical Penning trap cavity. QND measurements of quantum jumps between
cyclotron Fock states shows that the temperature of the cyclotron motion tracks
the cavity temperature where this can be measured, from 4.2 K to 1.6 K. At 80
mK the electron is 50 times colder than previously demonstrated for an isolated
elementary particle. Blackbody photons are completely absent and the cyclotron
remains in its quantum ground state. The jumps also show that the Fock states are
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long lived; the cavity suppresses the spontaneous emission of synchrotron radiation
140-fold.

The quantum cyclotron is so well prepared in its ground state, and so well
isolated from its environment, that it may be possible to excite any desired su-
perposition of excited states, to probe the nature of decoherence and quantum
measurement. Quantum jump spectroscopy offers the prospect to measure the
frequency between the lowest Fock states (and spin states) with the exquisite pre-
cision required to significantly improve the very accurate measurement of the the
electron magnetic moment and the fine structure constants, as illustrated in fol-
lowing sections. A better lepton CPT test, comparing the magnetic moments of
the electron and positron, should be possible, along with a better measurement of
the proton-to-electron mass ratio.

The work of this section was done as part of the Ph.D. work of S. Peil, with
early experimental contributions from K. Abdullah and D. Enzer. Support came
from the NSF with some assistance from the ONR.

3. Feedback Cooling

Feedback cooling of the axial motion of a single suspended electron in a cylindrical
Penning trap was initially reported in collaboration with my students B. D’Urso,
B. Odom and D. Hanneke [5].

At a time when the importance of feedback for reducing amplifier noise was
already recognized [23], Kittel described the theory and limits of “noiseless” feed-
back damping [24]. Feedback damping has been applied in subsequent decades to
a variety of oscillatory systems including an electrometer[25], a torsion balance
[26], a mechanical gravity gradiometer [27], a laboratory rotor [28], a vibration
mode of an optical mirror [29], and to the stochastic cooling of particle beams
[30]. The possible application of Kittel’s “noiseless” feedback to trapped particles
was mentioned [31], as was the relevance of the limitations he discussed [32] to pro-
posed stochastic cooling of trapped antiprotons [33]. Using feedback to improve
measurements is an active area of current research [34].

This section describes the feedback cooling of the simplest of oscillators –
one with demonstrated potential for fundamental measurements. A one-electron
oscillator is cooled from 5.2 K to 0.85 K. A unique feature is that this classical
oscillator’s temperature and damping rate are both determined absolutely by mea-
suring frequencies. A novel feature is that quantum jump thermometry (utilizing
quantum electron cyclotron motion orthogonal to the cooled classical oscillation)
directly displays the Boltzmann distribution of oscillator energies [4]. The measure-
ments reveal cooling to an ideal, noiseless feedback limit that is characterized by
a fluctuation-dissipation invariant. Noise added by the active feedback electronics
limits the lowest temperature attained.

The observed narrowing of an electron’s cyclotron resonance line, with sim-
ilar narrowing of the “anomaly” resonance [17] at the difference of its spin and
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cyclotron frequencies, will allow higher precision measurements of these frequencies
and more precise systematic studies. The higher accuracy determination of these
frequencies expected as a result could enable better measurements of the mag-
netic moments of the electron and positron, an improved determination of the fine
structure constant, an improved CPT test with leptons, and a better measurement
of the proton-to-electron mass ratio.

The oscillation cooled with feedback is that of a single electron along the
central symmetry axis (ẑ) of a cylindrical Penning trap [1, 2] (Fig. 6). The trap
electrodes are biased so the electron oscillates in a harmonic potential well (∼ z2)
with frequency νz = 64.787 MHz. The z4 well distortion is tuned out by adjusting
the potential on small, orthogonalized compensation electrodes [1].
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Figure 6. Representation of trap and high frequency electronics
used for feedback cooling. Static potentials applied to suspend the
electron at the trap center are not shown.

We treat the one-electron oscillator as a charge attached to a massless spring,
focussing upon potentials and currents that oscillate near νz , while ignoring the
additional static trapping potentials always applied to the trap. Oscillatory po-
tentials applied to either of the two endplate electrodes (Fig. 7) drive the electron
oscillator. The electron motion, in turn, induces a current I to flow through R,
a resistance due to unavoidable loss in an attached amplifier and inductor. The
inductor (in parallel to R but not shown) tunes out trap capacitance (e.g. between
the plates).

With no feedback (Fig. 7a), the induced current I removes energy from the
electron oscillator at the familiar rate I2R, with the result that the damping
rate Γ ∝ R. The proportionality constant depends upon the electron charge, the
electron mass and the geometry of the trap [17]. Measurements to be discussed
show that the electron oscillator is weakly damped (i.e. Γ/2π � νz) with Γ/2π =
8.4 Hz.

The random thermal fluctuations of electrons within R, in thermal equilib-
rium at temperature T , produce a fluctuating Johnson-Nyquist noise potential
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Figure 7. Conceptual circuit without (a) and with (b) feedback.
For ideal noiseless feedback, Vg = 0. For the electron, circuits (b)
and (c) are equivalent.

[35, 36] Vn. This frequency independent white noise, with

V 2
n = 4kTRΔν (4)

in a frequency bandwidth Δν, drives the electron. This noise and the induced
current both contribute to the voltage on the upper plate, V = Vn+IR. A sensitive
HEMT (high electron mobility transistor) amplifier [37] amplifies V so it can be
detected.

The measured power spectrum for V (Fig. 8a) has a constant baseline due
to the Johnson noise. The current induced by the noise-driven electron produces
a notch in this flat spectrum at νz; the angular frequency width of this notch is
the damping rate Γ. The notch is most easily understood if the oscillating charge
is represented as a familiar electrical oscillator, an inductor � and a capacitor c in
series, connected between the plates. On resonance at νz the electron acts as an
electrical short between the plates since the reactances of the � and c cancel. The
notch has the characteristic Lorentzian shape of a damped harmonic oscillator.
The observed noise cancellation is not perfect (i.e. the dip does not go perfectly
to zero power in Fig. 8a) because of amplifier noise, trap potentials that are not
perfectly stable, and residual trap anharmonicity.

When the amplifier is on, as it must be for feedback to be applied, measure-
ments to be discussed show that R is at a temperature of 5.2 K. This is higher
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Figure 8. Oscillator damping rate Γe (the width of the notch
in the white Johnson noise) without feedback (a) and when de-
creased using feedback (b)-(c).

than the 1.6 K of the trap apparatus (maintained by thermal contact to a pumped
4He system), despite the minimal 420 μW power dissipation of the current-starved
HEMT, and heroic efforts to thermally anchor the HEMT at 1.6 K.

Feedback is applied as shown conceptually in Fig. 7b. The fluctuating upper
plate voltage V is fed back to the lower plate with feedback gain, g. A more
complete representation (Fig. 6) shows amplifiers, attenuators and variable cable
lengths used to adjust the feedback phases. Correctly phased feedback to two
electrodes, rather than just to the bottom plate in the conceptual Fig. 7b, applies
feedback to the electron while cancelling feedback to the amplifier. Feedback to the
amplifier would modify its properties [23], perhaps improving particle detection in
some situations [38], but would complicate the relationship between feedback gain,
electron temperature and electron damping.

For the electron, the effect of feedback is equivalent to the circuit in Fig. 7c,
with Re and Te chosen to make the motion-induced potential and the fluctuation
potential across the plates the same as for Fig. 7b.

To determine Re (and hence the damping rate Γe ∝ Re) we insist that
electron motion induces the same potential difference across the plates. Equating
IR − gIR for Fig. 7b with IRe for Fig. 7c yields Re = (1 − g)R, and an electron
damping rate

Γe = (1 − g)Γ. (5)

When g = 0 we recover the damping rate Γ for no feedback. When g = 1 the
electron oscillator is undamped.

To determine the effective temperature Te we insist that the electron see the
same noise fluctuations across the plates in Figs. 7b and 7c. Equating Vn − gVn

for Fig. 7b with Ve for Fig. 7c, yields

Te = (1 − g)T. (6)
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We recover the resistor temperature T when there is no feedback (g = 0). The
temperature decreases as the feedback gain is increased. We shall see that noise
added in the feedback process prevents attaining 0 K as g → 1.

The fluctuations (characterized by a temperature) and the dissipation (char-
acterized by a damping rate) are related for ideal, noiseless feedback by a
fluctuation-dissipation invariant [24],

Te/Γe = T/Γ. (7)

Noiseless feedback with gain g < 0 increases the damping rate but at the expense
of also increasing the temperature and fluctuations. Noiseless feedback cooling,
with 0 < g < 1, decreases the temperature, but at the expense of reducing the
damping rate. The advantage of a reduced Te is to reduce deleterious effects of
axial fluctuations upon other electron motions, as we will illustrate with a reduced
cyclotron linewidth.

Real feedback amplifiers add fluctuations Vg that increase Te above the the
ideal Eqs. 6-7, and reduce the depth of the observed Lorentzian noise notch. Equat-
ing the fluctuations across the plates for Figs. 7b-c yields

Te = T

[
1 − g +

g2

1 − g

Tg

T

]
. (8)

Tg is a feedback “noise temperature” such that V 2
g /V 2

n = Tg/T . The relative depth
of the Lorentzian notch in the observed noise power,

F = 1 − (1 − g)−2(1 + T/Tg)−1, (9)

is the ratio of this noise power on and off resonance.
Te initially drops linearly with g increasing from zero as in the ideal case

(Eq. 6). (An example is the function fit to measured temperatures in Fig. 10a,
discussed later.) Te then rises rapidly as g → 1, the limit of an undamped oscillator
driven by feedback noise.

The lowest temperature is Te(min) ≈ 2
√

TgT , for Tg � T , is at an optimal
feedback gain g ≈ 1 −√

(Tg/T ), and our amplifier has Tg ≈ 40 mK. Meanwhile,
the deep notch (F ≈ 1 for g = 0) goes to essentially no notch at all (F ≈ 0) at the
gain that minimizes Te. Damping remains but we cannot measure its rate by this
method.

The temperature Te of the effective damping resistance is important because
the electron axial oscillation comes into thermal equilibrium at Te. Averaged over
many axial damping times Γ−1, the probability that the oscillator has energy
between Ez and Ez + dEz goes as the Boltzmann factor, e−Ez/kTe .

Remarkably, we can directly measure this Boltzmann distribution, and hence
Te, using quantum jump thermometry. The quantum jumps [4] are between the
ground and first excited states of the electron’s cyclotron motion in a 5.24 Tesla
magnetic field directed along the electron’s axial oscillation (Fig. 6). Compared to
the rapid 146.7 GHz cyclotron motion the axial motion is adiabatic. It is unaffected
by a single quantum cyclotron excitation except for the tiny shift of νz (Eq. 11)
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that we discuss next. The cyclotron damping lifetime is extended to 15 seconds
(from 0.1 seconds for free space) using a trap cavity that inhibits spontaneous
emission [4].

The coupling of cyclotron and axial motion comes from the small “magnetic
bottle” gradient [17] from two small nickel rings (Fig. 6). The electron sees a
magnetic field that increases slightly as z2 as it moves away from the center of
the trap in its axial oscillation. This coupling shifts the cyclotron frequency by a
measured [4] δ = 12 Hz for every quantum of axial excitation,

Δνc = δ(Ez/hνz). (10)

The axial frequency shifts by the same amount,

Δνz = δ(Ec/hνc), (11)

for every quantum of cyclotron excitation. Both tiny shifts are used for the quan-
tum jump thermometry.

A Boltzmann distribution of axial energies, owing to Eq. 10, makes an asso-
ciated distribution of cyclotron frequencies, given that the axial damping time is
longer than the time associated with the noise fluctuations of the axial frequency
[17]. A cyclotron driving force at frequency ν excites a quantum jump between the
ground and first excited cyclotron states with a probability

P (ν) ∼
{

0, ν < νc

e−
νz
δ

h(ν−νc)
kTe , ν > νc,

(12)

provided that the jumps happen more rapidly than the one per hour stimulated
by black body photons in the 1.6 K trap cavity.

To determine whether a quantum jump has taken place we look for the cor-
responding axial frequency shift (Eq. 11). We do not simply observe the center
frequency of a noise dip (Fig. 8), though this would likely suffice. Instead, before a
cyclotron excitation decays (in typically 15 s), we observe the electron’s response
to a strong axial drive for the 1 second needed to measure Δνz and determine the
cyclotron state.

The measurement cycle starts with 0.5 s of magnetron sideband cooling [17]
to keep the electron near the center axis of the trap. Feedback cooling is then
applied for 6 seconds, with the cyclotron drive at ν turned on for the last 2 of
these seconds. The axial drive to determine Δνz and the cyclotron state is applied
next, along with more magnetron cooling. The cyclotron state is read out once
each second until the ground state is observed for 2 s. The cycle then repeats.

The measured cyclotron lineshapes (Fig. 9) narrow significantly as the feed-
back gain increases. Each shows the characteristic Boltzmann distribution that
signifies thermal equilibrium. Each is fit to Eq. 12 to determine the equilibrium
axial temperature, Te. The lowest observed Te = 850 mK (Fig. 9c) is a substantial
reduction of the 5.2 K realized without feedback.

The measured axial temperature (Fig. 10a) decreases linearly as g increases
from 0, as predicted in Eqs. 6 and 8. There is a good fit to Eq. 8, including the
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Figure 9. Cyclotron resonances show a Boltzmann distribution
of axial energies that decreases as feedback gain g in increased.
Dashed lines bound the 68% confidence area.

rapid increase for g → 1 which corresponds to a nearly undamped system being
driven by the noise added in the feedback signal. It is difficult to fix g accurately
enough to measure points on this rapid rise.

The damping rate Γe, the width of a noise dip (e.g. Fig. 8), is measured
directly (Fig. 10b). The damping rate decreases linearly with increasing g as pre-
dicted in Eq. 5. The vanishing dip width and the instabilities mentioned earlier
keep us from measuring Γ near to g = 1.

Because we directly measure Te (characterizing fluctuations) and Γe (char-
acterizing dissipation) we can compare their ratio (Fig. 10c) to the fluctuation-
dissipation invariant that pertains for noiseless feedback (Eq. 7). The measured
ratio is invariant and is at the ideal limit, though we expect that it would rise
above the ideal limit if we could measure it for feedback gains closer to unity.

In conclusion, feedback cooling to the noiseless limit is demonstrated with the
simplest of oscillators. Characterization of the cooling of a one-electron oscillator
is direct and complete because both fluctuations and dissipation are directly and
absolutely determined by frequency measurements. In addition, sharply narrowed
cyclotron lineshapes present the possibility of much more accurate measurements
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of the electron cyclotron frequency, with similar line narrowing and accuracy im-
provement expected for the electron “anomaly” resonance [17]. Better measure-
ments of these frequencies for a single trapped electron and positron opens the
way to better measurements of their magnetic moments, a more accurate value of
the fine structure constant, a more precise test of CPT invariance for leptons, and
an improved proton-to-electron mass ratio.

The work of this section was supported by the NSF, the ONR, and the
AFOSR. B.D. was also supported by the Fannie and John Hertz Foundation.

4. First One-Particle Self-Excited Oscillator

The initial demonstration of the use of electronic feedback to produce a one-particle
self-excited oscillator was done in collaboration with my students B. D’Urso, R.
Van Handel, B. Odom and D. Hanneke [6]

The harmonic motion of an oscillator can be excited and sustained with a
driving force derived from its own oscillation. A wide range of macroscopic oscil-
lators are operated as self-excited oscillators (SEO), from the electromechanical
clock [39] and its ubiquitous quartz successors, to the nanomechanical cantilevers
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Figure 11. The vertical oscillation of a trapped electron, shown
within a cutaway of a cylindrical Penning trap, induces a voltage
across resistor R that is amplified and fed back to drive the oscil-
lation. Unavoidable trap capacitance in parallel to R is tuned out
at ωz with a parallel inductor.

used in atomic force microscopes [40] and sensitive electrometers [41]. A micro-
scopic SEO is more difficult to realize because such small signals and driving forces
are involved. The possibility of realizing a one-ion SEO in a Paul trap was once
discussed [31], and self-driven feedback cooling of a one-electron oscillator has been
realized [5].

In this section we demonstrate a microscopic, one-particle SEO for the first
time. The axial motion of a single electron suspended in a Penning trap is driven
by an electric field derived from the current that its motion induces in an electrical
circuit. The principal challenge is in stabilizing the electron’s oscillation amplitude,
an amplitude measured here using quantum jump spectroscopy of a perpendicular
cyclotron motion. The frequency stability and the signal-to-noise allow detection
of a 5 parts in 1010 frequency shift in a few seconds – a sensitivity that allows
the detection of a one quantum change in the electron cyclotron energy and an
electron spin flip. Likely applications are improved measurements of the electron,
positron, proton and antiproton magnetic moments.

The oscillation which is self-excited is that of a single electron (charge −e
and mass m) along the central axis (ẑ) of a cylindrical Penning trap [1] (Fig. 11)
maintained at either 0.1 or 1.6 K. A ring electrode at potential −V0 with respect
to grounded endcaps generates a potential on the z-axis,

Φ(z) =
V0

2

[
C2

z2

d2
+ C4

z4

d4
+ C6

z6

d6
+ · · ·

]
, (13)
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where d = 0.35 cm indicates the trap size. The Ck are determined by trap geometry
and by the potential Vc applied to small compensation electrodes (Fig. 11) to
adjust C4 and C6. An “orthogonalized” trap geometry [1] makes C2 essentially
independent of Vc.

A drive force Fd(t) and a damping force −mγzż yield

z̈ + γz ż + [ωz(A)]2z = Fd(t)/m. (14)

The angular oscillation frequency ωz(A) is

ωz(A)
ωz

≈ 1 +
3C4

4C2

(
A

d

)2

+
15C6

16C2

(
A

d

)4

, (15)

for small (C4/C2)2. It depends weakly upon the oscillation amplitude A [17], and
ωz =

√
eV0C2/(md2) pertains for small amplitudes.

The motion induces a voltage proportional to ż across a Q ≈ 600 tuned
circuit (R in Fig. 11). Energy dissipated in R damps the motion. The signal is
amplified with a high electron mobility transistor (Fujitsu FHX13LG) anchored
to the cryogenic environment, and operated at a very low current to minimize
trap heating. For the two realizations of the SEO that we will describe, typically
420 μW is used to detect the comparator SEO operated at 1.6 K, and only 12 μW
for the DSP SEO at 0.1 K. Some amplified signal is phase shifted and fed back to
the opposite endcap to drive the SEO. The rest is fourier transformed to determine
its amplitude and the SEO oscillation frequency.

The feedback produces a force Fd(t) = Gmγz ż. Feedback cooling of the
electron motion takes place if G < 1 [5]. Self-excitation occurs in principle when the
feedback cancels the damping, for unit feedback gain G = 1. Any noise will cause
amplitude diffusion and energy growth, however. Also, if G differs even slightly
from unity, A will either decrease or increase exponentially.

A stable and useful SEO thus requires a fixed oscillation amplitude Ao, ar-
ranged using an amplitude-dependent gain G(A) that decreases with increasing A
near G(Ao) = 1. This gain in Eq. (14) yields

Ȧ = − 1
2γzA [1 − G(A)] (16)

for the time evolution of the amplitude [42]. In practice, the gain-control system
may average the signal for a time τ before determining A. Eq. (16) is valid if τ �
1/ωz and 1/τ is much larger than the resulting self-excited oscillator linewidth.

We demonstrate two methods of stabilizing the amplitude of a SEO – passing
the feedback drive through a comparator (Fig. 12a) and employing a fast digital
signal processor or DSP (Fig. 12b). The first was realized at ωz/(2π) = 64 MHz and
the second at ωz/(2π) = 200 MHz for reasons not related to this demonstration.
The comparator is simpler, but the DSP is the more flexible option that can be
made much more immune to noise. For both demonstrations the technical noise
added by the feedback amplifier is so small [5] that we neglect it in our analysis. We
were unable with the electrodes of our trap to realize a third method – applying
the signal induced on one electrode to a second electrode (not the image of the
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Figure 12. Overview of the comparator (a) and DSP (b) feed-
back used to obtain amplitude stabilization. Phase shifters are
labeled with φ.

first under z → −z) to make the effective feedback gain decrease with oscillation
amplitude.

A noiseless feedback drive passing through a comparator generates a fixed
oscillation amplitude Ao. Thus G(A) = Ao/A and Eq. (16) together yield

Ȧ = − 1
2γz(A − Ao). (17)

The amplitude A damps exponentially to Ao; the time constant γz/2 is the same
as for damping without feedback. Noise injected into a comparator softens its gain
response, limiting the gain at low A [43]. Narrow band filters (Fig. 12a) to reduce
the noise are thus essential. A big challenge is in adjusting the trapping potential
to keep the shifting oscillation frequency centered on the filters. (The drives to
two electrodes in Fig. 12a are effectively one drive insofar as the electron mixes
the two frequencies [17].)

We program the DSP chip to calculate a running Fourier transform of the
amplified induced signal, and to adjust the feedback gain as a cubic function of
the largest transform amplitude, so

Ȧ = − 1
2γz[a1(A − Ao) + a2(A − Ao)2 + a3(A − Ao)3]. (18)

For this demonstration only the linear term is used, with a2 = a3 = 0. The effective
bandwidth (related to the fourier transform bin width) is 8 Hz, but the “filter” is
always centered on the oscillation frequency. No square wave is generated so no
filtering of harmonics is required.

Fig. 13 shows that ωz(Ao) − ωz depends approximately quadratically upon
A2

o as predicted by Eq. 15 for A � d. Ao is varied by changing the gain for three
different Vc. Ao is determined from the size of the induced signal to which it is
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Figure 13. The axial frequency measured as a function of the
square of the axial amplitude Ao using the comparator SEO.

proportional, with a proportionality constant that will be discussed shortly. Fits
of Eq. 15 to the measurements in Fig. 13 allow us to determine and adjust C4 and
C6 with unprecedented accuracy.

One consequence is that extremely small frequency shifts can be quickly
detected with the SEO. In a given averaging time, a frequency can typically be
measured to the familiar limit provided by the uncertainty principle, divided by
the signal-to-noise ratio (S/N) [44]. A large induced S is possible due to the large
oscillation amplitudes, illustrated in Fig. 13. The effect of amplitude fluctuation
noise N (driven by thermal fluctuations in the detection resistor) is particularly
small if the oscillator amplitude is stabilized at a maxima (e.g. Fig. 13) caused when
the effects of C4 and C6 of opposite sign cancel. An oscillator is locally harmonic
at such maxima, with the oscillation frequency insensitive to small, noise-driven,
amplitude fluctuations, despite the large oscillation in an anharmonic potential.
Fig. 14a shows the standard deviation of repeated frequency measurements as a
function of averaging time. With only four seconds of averaging time a 5 parts in
1010 (0.5 ppb) shift in ωz can be measured – a substantial improvement on any
other method.

In principle, a fixed frequency drive could sustain a large oscillation in an
anharmonic potential. In practice, however, if the oscillator frequency changes
suddenly the oscillation could be lost. Also, a fixed frequency drive cannot generally
build up a large oscillation amplitude in the first place since the oscillator shifts
out of resonance with the drive as the oscillation amplitude increases.

The considerable advantage of a SEO is that its self-derived drive always
stays resonant, even if its oscillation frequency changes suddenly. It also stays
resonant while the oscillation amplitude builds up to a large value, during which
time the oscillation frequency is shifting. Typically our SEO is excited in less than
1 second.
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Figure 14. Fractional standard deviation of repeated frequency
measurements for SEO with indicated bandwidth (a). Small shifts
in the frequency of a 200 MHz SEO indicate a one-quantum cy-
clotron excitation (b) and a separate spin flip (c). The SEO is off
while a drive is applied to flip the spin, giving the gap in (c).

A calibration of the axial oscillation amplitude – using quantum jump spec-
troscopy of an orthogonal cyclotron motion – is next. Noise applied to the oscillator
gives a distribution of axial energies Ez about the stable oscillation energy Eo, am-
plitude Ao and phase φo that pertain for no noise. A reservoir at temperature Tz,
weakly coupled to the axial motion, gives a distribution [45]

P (Ez ; Eo, Tz) =
1

kTz
e−

Ez+Eo
kTz I0

(
2
√

EzEo

kTz

)
, (19)

where I0 is a modified Bessel function. No feedback drive gives Eo → 0 and a
Boltzmann distribution of Ez .

A simple derivation verifies this distribution and highlights the assumptions.
For small fluctuations from Ao the oscillation can be taken as harmonic at angular
frequency ωo = ωz(Ao), with Eo = 1

2mω2
o |Aoe

iφo |2. Noise alone would drive the
oscillator into thermal equilibrium, to a Boltzmann distribution of energies En =
1
2mω2

o |Aneiφn |2, where φn is a random oscillation phase. The oscillation amplitude
Az and phase φz due to independent feedback and noise drives is the superposition
Aze

iφz = Aoe
iφo + Aneiφn for a harmonic oscillation. The combined effect of

feedback and noise for a particular φn arises from the distribution of the total
amplitude

P̃ (Aze
iφz) ∝ e−

En
kTz = e−

mω2
o|Azeiφz −Aoeiφo |2

2kTz
. (20)

The probability distribution of Ez = 1
2mω2

o |Aze
iφz |2 in Eq. 19 is the average of

this distribution over random φz .
Remarkably, quantum jump spectroscopy directly measures Eq. 19 and thus

determines Ao and Tz. The quantum jumps [4] are between the ground and first
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excited states of cyclotron motion at frequency νc = 148 GHz in a B = 5.24 Tesla
magnetic field Bẑ. A small “magnetic bottle” gradient ΔB ∼ z2ẑ [46] from two
nickel rings (Fig. 11) weakly couples the cyclotron (or spin) magnetic moment
μ to the axial motion, adding a coupling term that goes as μΔB ∼ μz2 to the
Hamiltonian.

The corresponding small addition to the oscillator’s restoring force, ∼ μz,
shifts the observed axial oscillation frequency in proportion to μ. Our frequency
resolution makes it possible to observe that ωz shifts by δ for a single quantum
excitation from the cyclotron ground state (Fig. 14b). The probability Pc that a
cyclotron driving force at a frequency ν causes a quantum jump [4] thus becomes
measurable. For the 200 MHz oscillator, δ = 3.9 Hz. For the 64 MHz oscillator,
δ = 12 Hz.

The second consequence of the magnetic bottle coupling is that the magnetic
field averaged over an axial oscillation changes with oscillation energy, shifting νc

by δ for every quantum of axial energy. The quantum jump spectrum,

Pc(ν; Eo, Tz) ∝ P (�ωz(ν − νc)/δ; Eo, Tz), (21)

thus reveals the distribution of axial energies of Eq. 19.
Figs. 15a-c show examples for the three axial oscillation amplitudes that

result for the trap settings of Fig. 13a-c. The extracted temperature Tz (Fig. 15d)
is independent of oscillation amplitude. The detection amplifier makes Tz hotter
than the ambient temperature, emphasizing that either this amplifier must be
off, or feedback cooling must be applied, [5] to achieve low axial temperatures.
Fig. 15e shows that the extracted Eo ∼ A2

o is proportional to the induced signal
power, which can be measured in only seconds. The quantum jump spectroscopy
in Fig. 15 which calibrates this signal took about 40 hours.

The one-electron SEO allows such good detection of small frequency shifts
that a likely application is the measurement of electron and positron magnetic
moments – to provide the most accurate direct lepton CPT test, and the most
accurate determination of the fine structure constant α. Figs. 14b-c illustrate the
detection of a one-quantum cyclotron excitation and a spin flip. Quantum jump
spectroscopy – measuring the number of quantum jumps as appropriate drive
frequencies are changed – could provide the first fully quantum measurement of
these moments.

Averaging the frequency of a one-antiproton (p) SEO over a long time, to
detect extremely small δ, may make possible the long-time goal [47] of measuring
the p magnetic moment. Improving the 0.3% current accuracy [48] by a factor
of a million or more seems conceivable. The needed νc can already be measured
to such an accuracy [49]. Measuring the needed spin precession frequency requires
observing a p spin flip. The δ that would signal such a flip is proportional to μ/

√
m

for a particle with magnetic moment μ and mass m. The challenge is that μ for
the p is 658 times smaller than that of the electron, and

√
m is 43 times larger, so

that δ is a daunting 3 × 104 smaller than that of an an electron in the same trap.
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Figure 15. (a-c) Measured quantum jump spectra (points), fits
to Pc(ν; Eo, Tz) (solid) and 68% confidence limits (dashes) for the
comparator SEO conditions of Fig. 13a-c. (d) Tz from the fits. (e)
Induced signal (in arbitrary units) is proportional to A2

o from fits.

Fortunately, the size of the frequency shift δ can be increased, since δ is
proportional to an apparatus factor βM/(d

√
Vo) [17]. For example, making the

ring electrode in the trap of Fig. 11 out of iron rather than copper would increase
the product of a relative geometry factor β and the magnetization M for the
magnetic material (and hence δ) by a factor of 16. Substantial additional increases
could come from reducing the trap size and potential, d and Vo, limited by the
extent to which this makes a more anharmonic axial oscillation. The fractional
stability required in the trapping potential goes as μβM/Vo and seems possible.
To avoid broadened resonances, spin flips and cyclotron excitations would be made
in a trap without a magnetic gradient, then transferred to a detection trap with
a large magnetic gradient, as in measurements of magnetic moments of bound
electrons [50].

In conclusion, self-excitation is demonstrated with the simplest of microscopic
oscillators - a single electron suspended in a Penning trap. Both a comparator and
a DSP are used to stabilize large, easily observed oscillations that are much larger
than noise-driven fluctuations. Despite the anharmonic trap potential, with the
right choice of feedback gain, the SEO rapidly excites itself to a large oscillation
that is locally harmonic – with an oscillation frequency largely independent of
amplitude fluctuations. It maintains the large oscillation even when its oscillation
frequency shifts suddenly. The great signal-to-noise ratio observed with the SEO
makes it possible to detect small frequency shifts quickly. The SEO could thus
enable better measurements of the electron and positron magnetic moments. It
may also make it possible to detect antiproton spin flips for the first time, thereby
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opening the way to greatly improved measurements of the antiproton magnetic
moment.

The work of this section was supported by the NSF. B.D. was also supported
by the Fannie and John Hertz Foundation, and D.H. by the ARO.

5. New Measurement of the Electron Magnetic Moment

The discussion of a new measurement of the electron magnetic moment in this
section is based a recent report [7] that was published in collaboration with my
students, B. Odom, B. D’Urso and D. Hanneke.

Measurements of the electron magnetic moment (μ) probe the electron’s in-
teraction with the fluctuating vacuum of QED, and also probe for possible electron
substructure. As an eigenstate of spin S, the electron (charge −e and mass m) has
μ ∝ S,

μ = −g
e�

2m

S
�

. (22)

The g-value is a dimensionless measure of the moment1, with the dimensions and
approximate size given by the Bohr magneton, e�/(2m). If the electron was a
mechanical system with an orbital angular momentum, then g would depend upon
the relative distributions of the rotating charge and mass, with g = 1 for identical
distributions. (Cyclotron motion of a charge in a magnetic field B, at frequency
νc = eB/(2πm), is one example.) A Dirac point particle has g = 2. QED predicts
that vacuum fluctuations and polarization slightly increase this value. Electron
substructure [51] would make g deviate from the Dirac/QED prediction (as quark-
gluon substructure does for a proton).

Measurements of the electron g have a long history [52, 53], with a celebrated
measurement [18] providing the accepted value [54] since 1987. The new g has a
six times smaller standard deviation and is shifted by 1.7 standard deviations
(Fig. 16a). A one-electron quantum cyclotron [4], cavity-inhibited spontaneous
emission [22], a self-excited oscillator (SEO) [6], and a cylindrical Penning trap [1]
contribute to the extremely small uncertainty. For the first time, spectroscopy is
done with the lowest cyclotron and spin levels of a single electron fully resolved
via quantum non-demolition (QND) measurements [4], and a cavity shift of g is
directly observed.

What can be learned from the more accurate electron g? The first result
beyond g itself is the fine structure constant, α = e2/(4πε0�c), determined from g
and QED with ten times smaller uncertainty compared to any other method [8].
This fundamental measure of the strength of the electromagnetic interaction is a
crucial ingredient in our system of fundamental constants [54]. Second, the most
demanding test of QED continues to be a comparison of measured and calculated g-
values, and the way is now prepared for a ten times more stringent test. Third, even

1The “g” used here and in what follows should not be confused the feedback gain in Section 3
which unfortunately is referred to with the same symbol.
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Figure 16. Measurements of the electron g-value.

though muon g-values [55] have nearly 1000 times larger uncertainties compared to
the electron g, heavy particles (possibly unknown in the standard model) make a
contribution that is relatively much larger for the muon. However, the contribution
is small compared to the calculated QED contribution which depends on α and
must be subtracted out. The electron g provides α and a confidence-building test
of the required QED.

The g-value determines the spin frequency νs = g
2νc for a free electron in a

magnetic field Bẑ. To weakly confine the electron, an electric quadrupole potential,
V ∼ 2z2 − ρ2, is added, with ρ = xx̂ + yŷ. Optimal biasing of the electrodes
(Fig. 17a) of an orthogonalized cylindrical Penning trap [1] minimizes an undesired
z4 term. The electron-trap system has four eigenfrequencies. The spin and trap-
modified cyclotron frequencies are approximately equal at νs ≈ ν̄c ≈ 149 GHz.
A harmonic axial oscillation along B is at ν̄z ≈ 200 MHz, and an orthogonal
circular magnetron oscillation is at ν̄m ≈ 134 kHz. The latter three frequencies are
shifted by the unavoidable leading imperfections of a real Penning trap – harmonic
distortions of the quadrupole potential, and a misalignment of the electrode axis
and B [56]. Silver trap electrodes were used after the nuclear paramagnetism of
copper electrodes caused unacceptable temperature-dependent fluctuations in B
near 100 mK.

The spin motion is undamped, being essentially uncoupled from its environ-
ment [17]. The cyclotron motion would damp in ∼ 0.1 s via synchrotron radiation
in free space. This spontaneous emission is greatly inhibited in the trap cavity (to
6.7 s or 1.4 s here) when B is tuned so ν̄c is far from resonance with cavity radi-
ation modes [22, 17]. Blackbody photons that would excite the cyclotron ground
state are eliminated by cooling the trap and vacuum enclosure below 100 mK with
a dilution refrigerator [4]. (Thermal radiation through the microwave inlet makes
< 1 excitation/hr.) The axial motion, damped by a resonant circuit, cools below
0.3 K (from 5 K) when the axial detection amplifier is off for crucial periods. The
magnetron motion radius is minimized with axial sideband cooling [17].

For the first time, g is deduced from observed transitions between only the
lowest of the spin (ms = ±1/2) and cyclotron (n = 0, 1, 2, . . .) energy levels
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Figure 17. Cylindrical Penning trap cavity used to confine a
single electron and inhibit spontaneous emission (a), and the cy-
clotron and spin levels of an electron confined within it (b).

(Fig. 17b),

E(n, ms) =
g

2
hνcms + (n + 1

2 )hν̄c − 1
2hδ(n + 1

2 + ms)2. (23)

The needed νc = eB/(2πm) (for a free electron in a magnetic field) is related to
the observable eigenfrequencies by the Brown-Gabrielse invariance theorem [56],

(νc)2 = (ν̄c)2 + (ν̄z)2 + (ν̄m)2, (24)

which applies despite the mentioned imperfection shifts of the three eigenfre-
quencies. The third term in Eq. 23, the leading relativistic correction [17] with
δ/νc ≡ hνc/(mc2) ≈ 10−9, would add uncertainty to the measurement if cyclotron
energy levels were not resolved.

The anomaly and spin-up cyclotron frequencies (ν̄a ≈ 173 MHz and f̄c in
Fig. 17b) are measured, since

g

2
=

ν̄c + ν̄a

νc

 1 +

ν̄a − ν̄2
z/(2f̄c)

f̄c + 3δ/2 + ν̄2
z/(2f̄c)

. (25)

We use the approximation to the right which requires no measurement of ν̄m. It
incorporates an expansion of the invariance theorem [56], using ν̄c � ν̄z � ν̄m � δ.
Corrections go as the product of (ν̄z/ν̄c)4 ∼ 10−12 and a misalignment/harmonic
distortion factor ∼ 10−4 [56].

A change in cyclotron or spin state is revealed by ν̄z shifts (Fig. 18a-b) of a
one-electron self-exited oscillator (SEO) [6]. The electron’s axial oscillation induces
a signal in a resonant circuit that is amplified and fed back to drive the oscillation.
QND couplings of spin and cyclotron energies to ν̄z [4] arise because saturated
nickel rings (Fig 17a) produce a small magnetic bottle, ΔB = β2[(z2−ρ2/2)ẑ−zρρ̂]
with β2 = 1540 T/m2.

Anomaly transitions are induced by applying potentials oscillating at ν̄a to
electrodes, to drive an off-resonance axial motion through the bottle’s zρ gradient.
The electron sees the oscillating magnetic field perpendicular to B as needed to flip
its spin, with a gradient that allows a simultaneous cyclotron transition. Cyclotron
transitions are induced by microwaves with a transverse electric field that are
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injected into and filtered by the cavity. The electron samples the same magnetic
gradient while ν̄a and f̄c transitions are driven, because both drives are kept on,
with one detuned slightly so that only the other causes transitions.
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Figure 18. Sample ν̄z shifts for a spin flip (a) and for a one-
quantum cyclotron excitation (b). Quantum jump spectroscopy
lineshapes for anomaly (c) and cyclotron (d) transitions, with a
maximum likelihood fit to the calculated lineshapes (solid). The
bands indicate 68% confidence limits for distributions of measure-
ments about the fit values.

A measurement starts with the SEO turned on to verify that the electron is in
the upper of the two stable ground states, |n = 0, ms = 1/2〉. Simultaneous ν̄c−δ/2
and ν̄a drives prepare this state as needed. The magnetron radius is reduced with
1.5 s of strong sideband cooling [17] at ν̄z + ν̄m, and the detection amplifier is
turned off. After 1 s, either a f̄c drive, or a ν̄a drive, is on for 2 s. The detection
amplifier and the SEO are then switched on to check for a cyclotron excitation, or
a spin flip (from an anomaly transition followed by a cyclotron decay). Inhibited
spontaneous emission gives the time needed to observe a cyclotron excitation before
an excited state decays. We step through each ν̄c and ν̄a drive frequency in turn,
recording the number of quantum jumps per drive attempt. This measurement
cycle is repeated during nighttimes, when electrical and magnetic noise are lower.
A low drive strength keeps the transition probability below 20% to avoid saturation
effects.

Quantum jump spectroscopy (measuring the quantum jumps per attempt to
drive them as a function of drive frequency) gives resonance lineshapes for f̄c and
ν̄a (Fig. 18c-d). For weak drives that avoid saturation, the line shape comes from
thermal axial motion within the magnetic bottle [45]. The small coherent axial
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oscillation at ν̄a has no noticeable effect. However, otherwise undetectable ppb
fluctuations in B, on time scales shorter than an hour, would smear the expected
lineshapes.

At the first of two magnetic fields used, ν̄c ≈ 146.8 GHz. A 1.4 s damping
time gives good lineshape statistics (e.g., Fig. 18c-d) with 66 measurement cycles
per night on average. Three methods to extract ν̄a and f̄c from lineshapes give
the same g within 0.6 ppt – our “lineshape model” uncertainty in Table 1. The
first is maximum likelihood fitting of the Brownian motion lineshape. The second
method fits a convolution of this lineshape and a Gaussian resolution function,
about 1 ppb wide. The third method weights each drive frequency by the number
of quantum jumps it produces, and uses the weighted average frequencies in Eq. 25
for ν̄a and f̄c. (Understood shifts proportional to axial temperature, common to
both frequencies, do not increase the uncertainty.) This weighted average method
should account for Brownian axial motion and additional fluctuations of B. At
our second field, where ν̄c ≈ 149.0 GHz, the 6.7 s damping time allows only 29
measurement cycles per night on average. A long wait is needed to make certain
that a spin flip has not occurred. The weighted averages method is used for the
lower statistics lineshapes.

The ν̄z in Eq. 25 pertains while f̄c and ν̄a are driven – not what is measured
when the SEO amplifier is on and increasing the axial temperature from 0.3 to
5 K. Limits on axial heating shifts come from the width of a notch in the noise
spectrum resonance for the resonant circuit [17] (Table 1), measured less well for
ν̄c ≈ 146.8 GHz.

Source ν̄c = 146.8 GHz 149.0 GHz

ν̄z shift 0.2(0.3) 0.00(0.02)
Anomaly power 0.0(0.4) 0.00(0.14)
Cyclotron power 0.0(0.3) 0.00(0.12)
Cavity shift 12.8(5.1) 0.06(0.39)
Lineshape model 0.0 (0.6) 0.00 (0.60)
Statistics 0.0 (0.2) 0.00 (0.17)
Total (in ppt) 13.0(5.2) 0.06(0.76)

Table 1. Applied corrections and uncertainties for g in ppt.

Although the g-value from Eq. 25 is independent of B, field stability is still an
important challenge, since ν̄a and f̄c are measured at different times. After the su-
perconducting solenoid settles for several months, field drifts below 10−9/night
have been observed. This requires regulating five He and N2 pressures in the
solenoid and experiment cryostats, and the surrounding air temperature to 0.3
K. We correct for drifts up to 10−9/hr using a cyclotron resonance edge measured
once in three hours.
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The trap cavity modifies the density of states of radiation modes of free space,
though not enough to significantly affect QED calculations of g [57]. However, cav-
ity radiation modes do shift f̄c [3] – still a significant uncertainty, as in the past
[3, 18]. We use a synchronized-trapped-electrons method [15] to observe quanti-
tatively understandable radiation modes (Fig. 19a) of a good cylindrical Penning
trap cavity [1]. Our best measurement comes from choosing ν̄c ≈ 149.0 GHz, max-
imally detuned from modes that couple to a centered electron’s cyclotron motion.
A measurement at ν̄c ≈ 146.8 GHz, uncomfortably close to TE127, checks how well
cavity shifts are understood. Until the cavity spectrum and its frequency calibra-
tion is more carefully studied, TE127 and TM143 are assumed only to lie within
the shaded bands. A renormalized calculation (Eq. 8.19 of [17]) gives a range of
possible cavity shifts of the measured g (Fig. 19b) that is insensitive to mode qual-
ity factors for Q > 500. Assigned shifts and uncertainties are indicated in Fig. 19b
and in Table 1. The first direct observation of a cavity shift of g, the difference
between our two measurements (Fig. 19c), lies within the predicted range.
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Figure 19. Modes of the trap cavity observed with synchronized
electrons (a). Resulting assigned cavity shifts (points and Table 1)
(b). First measured cavity shift of g (point) is the shift between
measurements at 146.8 and 149.0 GHz (c). Gray bands are the
assumed calibration and identification uncertainties for mode fre-
quencies in (a), and the resulting range of predicted cavity shifts
in (b) and (c).

A new value for the electron magnetic moment,

g/2 = 1.001 159 652 180 85 (76) (0.76 ppt), (26)

comes from the measurement at ν̄c ≈ 149.0 GHz. (A weighted average with the
more uncertain measurement at ν̄c ≈ 146.8 GHz is larger by 0.06 ppt, with a
decreased uncertainty of 0.75 ppt.) The standard deviation, about six times smaller
than from any previous measurement, arises mostly from the lineshape model and
cavity shifts (Table 1). Varying the ν̄a and f̄c drive power causes no detectable
shifts of g.
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QED provides an asymptotic series relating g and α,
g

2
= 1 + C2

(α

π

)
+ C4

(α

π

)2

+ C6

(α

π

)3

+ C8

(α

π

)4

+ ... + aμτ + ahadronic + aweak, (27)

with hadronic and weak contributions added, and assuming no electron substruc-
ture. Impressive calculations, summarized in the next section, give exact C2, C4

and C6, a numerical value and uncertainty for C8, and a small aμτ .
The next section details a new determination of α, from the measured g and

Eq. 27,

α−1(H06) = 137.035 999 068 (12) (30) (90) (28)
= 137.035 999 068 (96) [0.70 ppb], (29)

The first line gives the experimental uncertainty first and the QED uncertainty
second, including an estimated contribution from a yet uncalculated C10 [8]. The
total 0.70 ppb uncertainty is ten times smaller than for the next most precise
methods (Fig. 16b) – determining α from measured mass ratios, optical frequencies,
together with either Rb [58] or Cs [59] recoil velocities.

The most stringent test of QED (one of the most demanding comparisons of
any calculation and experiment) continues to come from comparing measured and
calculated g-values, the latter using an independently measured α as an input.
The next section shows that the new g, compared to Eq. 27 with α(Cs) or α(Rb),
gives a difference |δg/2| < 17 × 10−12. The small uncertainties in g/2 will allow a
ten times more demanding test if ever the large uncertainties in the independent
α values can be reduced. The prototype of modern physics theories is thus tested
far more stringently than its inventors ever envisioned [60], with better tests to
come.

The same comparison of theory and experiment probes the internal structure
of the electron [8, 51] – limiting the electron to constituents with a mass m∗ >

m/
√

δg/2 = 130 GeV/c2, corresponding to an electron radius R < 1 × 10−18 m.
If this test was limited only by our experimental uncertainty in g, then we could
set a limit m∗ > 600 GeV. These high energy limits seem somewhat remarkable
for an experiment carried out at 100 mK.

Are experimental improvements possible? A reduction of the 0.76 ppt uncer-
tainty of the measured electron g seems likely, given that this fully-quantum mea-
surement has only recently been realized. Time is needed to study the lineshapes
and cavity shifts as a function of magnetic field, to improve cooling methods, and
to make the magnetic field more stable.

In conclusion, greatly improved measurements of the electron magnetic mo-
ment and the fine structure constant, and a sensitive probe for internal electron
structure, come from resolving the lowest cyclotron and spin levels of a one-electron
quantum cyclotron. A self-excited oscillation of the electron reveals one-quantum
transitions. A cylindrical Penning trap cavity narrows resonance lines by inhibit-
ing spontaneous emission. Electromagnetic modes of this understandable cavity
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geometry, probed with synchronized electrons, shift g in a measurable way that
can be corrected. The new g/2 differs from a long accepted value by 1.7 standard
deviations, and its fractional uncertainty of 7.6×10−13 is nearly six times smaller.
The new α has an uncertainty ten times smaller than that from any other method
to determine the fine structure constant.

Measurement details and a preliminary analysis of the work in this section
are in a thesis [61]. S. Peil, D. Enzer, and K. Abdullah contributed to earlier
versions of the apparatus, and J. McArthur gave electronics support. The NSF
AMO program provided long-term funding.

6. New Determination of the Fine Structure Constant

The new determination of the fine structure constant discussed in this section was
initially reported in collaboration with my students D. Hanneke and B. Odom,
and in collaboration with theorists T. Kinoshita and M. Nio [8]. This section has
been updated to include the most recent correction to the QED evaluation [9].

The electron g-value, the dimensionless measure of the electron magnetic
moment in terms of the Bohr magneton, provides our most sensitive probe into the
structure of what is believed to be the only stable point particle with substantial
mass – a particle that seems very insensitive to physics at small distance scales.
The fundamental fine structure constant, α = e2/(4πε0�c), gives the strength of
the electromagnetic interaction, and is a crucial building block in our system of
fundamental constants [54]. Quantum electrodynamics (QED), the wonderfully
successful theory that describes the interaction of light and matter, provides an
incredibly accurate prediction for the relationship between g and α, with only
small corrections for short distance physics.

A new measurement of g [7] achieves an accuracy that is nearly six times
more accurate than the last measurement of g back in 1987 [18]. An improved
QED calculation that includes contributions from 891 Feynman diagrams [62]
now predicts g in terms of α through order (α/π)4. Together, the newly measured
g, with the more accurate QED calculation, determined a new and much more
accurate determination of α. It is the first higher accuracy measurement of α since
1987 (Fig. 20), and is ten times more accurate than any other method to determine
α. The most stringent test of QED is also presented.

Since g = 2 for a Dirac point particle, the dimensionless moment is often
written as g = 2(1 + a). The deviation a has come to be called the anomalous
magnetic moment of the electron or sometimes simply the electron anomaly. It
arises almost entirely from the vacuum fluctuations and polarizations that are
described by QED,

a = a(QED) + a(hadron) + a(weak), (30)

with only small additions for short distance physics, well understood in the context
of the standard model [63] (unlike the case for the heavier muon lepton). Any
additional contribution to the anomaly would therefore be extremely significant,
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the small uncertainties in the new α announced here. Traditional
determinations can be seen on a larger scale (b). Measured g are
converted to α using current QED theory.

indicating electron substructure [51], new short distance physics, or problems with
QED theory (and perhaps with quantum field theory more generally).

A long tradition of improved measurements of g [52, 18] now continues after
a hiatus of nearly twenty years. A new measurement achieves a much higher ac-
curacy for g [7] by resolving the quantum cyclotron and spin levels of one electron
suspended for months at a time in a cylindrical Penning trap. Quantum jump
spectroscopy of transitions between these levels determines the spin and cyclotron
frequencies, and g/2 is essentially the ratio of such measured frequencies. The
cylindrical Penning cavity shapes the radiation field in which the electron is lo-
cated, narrowing resonance linewidths by inhibiting spontaneous emission, and
providing boundary conditions which make it possible to identify the symmetries
of cavity radiation modes. A QND (quantum nondemolition) coupling, of the cy-
clotron and spin energies to the frequency of an orthogonal and nearly harmonic
electron oscillation, reveals the quantum state. This harmonic oscillation of the
electron is self-excited, by a signal derived from its own motion, to produce the
large signal-to-noise ratio needed to quickly read out the quantum state without
ambiguity.

The newly measured g has an uncertainty of only 7.6 parts in 1013. Subtract-
ing off the g = 2 for a Dirac point particle gives an anomaly [7]

a(H06) = 1 159 652 180.85 (76)× 10−12 [0.66 ppb]. (31)

As detailed in the previous section, the uncertainty mostly originates from three
sources. The largest contribution arises from imperfect fits to the expected line-
shape model; likely these can be understood and reduced with careful study. Tiny
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magnetic field instabilities are one possible cause. The second source of uncertainty
is cavity shifts, caused when the cyclotron frequency of an electron in trap cavity
is shifted by interactions with cavity radiation modes that are near in frequency.
The frequencies of cavity radiation modes are measured well enough to identify the
spatial symmetry of the modes, and to calculate and correct for cavity shifts to g
from the known electromagnetic field configurations. A smaller third uncertainty
is statistical, and could be reduced as needed with more measurements.

QED calculations involving many Feynman diagrams provide the coefficients
for expansions in powers of the small ratio α/π ≈ 2 × 10−3. The QED anomaly

a(QED) = A1 + A2(me/mμ) + A2(me/mτ )
+ A3(me/mμ, me/mτ ), (32)

is a function of lepton mass ratios. Each Ai is a series,

Ai = A
(2)
i

(α

π

)
+ A

(4)
i

(α

π

)2

+ A
(6)
i

(α

π

)3

+ . . . . (33)

The calculations are so elaborate that isolating and eliminating mistakes is a sub-
stantial challenge, as is determining and propagating numerical integration uncer-
tainties.

contribution to g/2 = 1 + a
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Figure 21. Contributions to g/2 for the experiment (green),
terms in the QED series (black), and from small distance physics
(blue). Uncertainties are in red. The μ, τ and μτ indicate terms
dependent on mass ratios me/mμ, me/mτ and the two ratios,
me/mμ and me/mτ , respectively.
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Fig. 21 compares the contributions and uncertainties for g/2. The leading
constants for second [64], third [65, 66, 67] and fourth [68, 69, 70, 71, 72] orders,

A
(2)
1 = 0.5, (34)

A
(4)
1 = −0.328 478 965 579 . . . , (35)

A
(6)
1 = 1.181 241 456 . . . , (36)

have been evaluated exactly. The latter confirms the value 1.181 259 (4) obtained
numerically [73]. Mass-dependent QED additions [74, 75, 76, 77, 78, 79],

A
(4)
2 (me/mμ) = 5.197 386 70 (27) × 10−7,

A
(4)
2 (me/mτ ) = 1.837 63 (60) × 10−9,

A
(6)
2 (me/mμ) = −7.373 941 58 (28) × 10−6,

A
(6)
2 (me/mτ ) = −6.581 9 (19) × 10−8,

A
(6)
3 (me/mμ, me/mτ )

= 0.190 95 (63) × 10−12,

(37)

make only very small contributions. Uncertainties derive from the uncertainties in
measured lepton mass ratios.

Crucial progress came in evaluating, checking, and determining the uncer-
tainty in the eighth order A

(8)
1 , which includes contributions of 891 Feynman dia-

grams. Typical diagrams of the 13 gauge invariant subgroups are shown in Fig. 22.
Integrals of 373 of these (Groups I - IV) have been verified (and corrected) by
more than one independent formulation [80, 62]. The 518 diagrams of Group V,
with no closed lepton loops, await completion of an independent verification. How-
ever, their renormalization terms are derived by systematic reduction of original
integrands applying a simple power-counting rule [81], allowing extensive cross-
checking among themselves and with exactly known diagrams of lower order [82].
Numerical integrations with VEGAS [83], on many supercomputers over more than
10 years [62, 84], then yields

A
(8)
1 = −1.9144 (35) (38)

The uncertainty, determined using estimated errors from VEGAS, is improved by
an order of magnitude over the previous value [85].

This value differs from that listed in [8]. An automated code generator [62],
produced to calculate the tenth-order contribution to g/2, was used to examine the
518 of 891 eighth-order QED diagrams that had no previous independent check.
Only 47 integrals represent the 518 vertex diagrams when the Ward-Takahashi
identity and time-reversal invariance are used. A diagram-by-diagram comparison
with the previous calculation [86] showed that 2 of the 47 require a corrected
treatment of infrared divergences [84], leading to the corrected value used here.

Is it likely that other adjustments of the QED theory will shift the α that
is determined from the electron g? Hopefully not, now that all eighth-order con-
tributions have been checked independently by two or more methods for the first



Probing a Single Isolated Electron 139

time. What could further shift this determination of α would be a larger-than-
expected tenth-order QED contribution to g/2 – now being evaluated using the
new computational method that revealed the need for this update.

The summary of precise α determinations (Fig. 20) differs from that of one
year earlier [8] in several ways. The corrected QED evaluation shifts the α from
the Harvard and UW g measurements. The atom-recoil determination of α(Rb)
shifts due to an experimental correction [87]. The neutron α is no longer included
awaiting a change required by the reevaluations of the Si lattice constant and its
uncertainties (eg. [88]).

Figure 22. Typical diagrams from each gauge invariant sub-
group that contibutes to the eighth-order electron magnetic mo-
ment. Solid and wiggly curves represent the electron and photon,
respectively. Solid horizontal lines represent the electron in an
external magnetic field.

The high experimental precision makes the tenth order contribution to g

potentially important if the unknown A
(10)
1 is unexpectedly large, though this

seems unlikely. To get a feeling for its possible impact we use a bound

|A(10)
1 | < x (39)

with an estimate x = 3.8 [54], while awaiting a daunting evaluation of contributions
from 12672 Feynman diagrams that is now underway [62].

Also owing the high precision, non-QED contributions,

a(hadron) = 1.671 (19) × 10−12,

a(weak) = 0.030 (01) × 10−12, (40)

must be included. Fortunately, these are small and well understood in the context
of the standard model [54, 63]. They are much larger and more important for the
muon.

The new experimental measurement of g, and the greatly improved QED
calculation, thus determine a value of α that is ten times more accurate than any
other method to determine α,

α−1(H06) = 137.035 999 068 (12) (30) (90) (41)
= 137.035 999 068 (96) [0.70 ppb], (42)
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In the first line, the first uncertainty is from the calculated A
(8)
1 and the last is

from the measured g. The middle uncertainty is from the estimated bound on the
unknown A

(10)
1 in Eq. (39). More generally it is (8x), which rounds to (30) for the

estimate x = 3.8 [54].
Note that while the tenth order impact on α is not large since 8x � 90, a real

calculation will be needed before a much more accurate α can be deduced from a
better g. Note also that the exact A

(6)
1 of Laporta and Remiddi, in Eq. (36) and

[72], eliminates an earlier numerical uncertainty [73] that would add (60) to the
list of three uncertainties in Eq. (41), significantly increasing the total uncertainty
in Eq. (42).

Testing QED requires an independent measurement of α, to be used with
QED theory, to determine an anomaly that can be compared to what is measured.
Recent measurements utilizing Cs and Rb atoms yield

α−1(Cs06) = 137.036 000 00 (110) [8.0 ppb], (43)
α−1(Rb06) = 137.035 998 84 ( 91) [6.6 ppb]. (44)

The latest versions rely upon many experiments, including the measured Rydberg
constant [89], the Cs or Rb mass in amu [90], and the electron mass in amu [91, 92].
The needed �/M [Cs] comes from an optical measurement of the Cs D1 line [59, 93],
and the “preliminary” recoil shift for a Cs atom in an atom interferometer [94].
The needed �/M [Rb] come from a measurement of an atom recoil of a Rb atom
in an optical lattice [58] as recently corrected[87].

The Cs and Rb determinations of α, together with QED theory (and hadronic
and weak corrections), give

a(Cs06) = 1 159 652 173.00 (0.10) (0.31) (9.30)× 10−12,

a(Rb06) = 1 159 652 182.80 (0.10) (0.31) (7.70)× 10−12.

Uncertainties are from the eighth order calculation, the estimated tenth order
limit, and the determinations of α. Calculated and measured anomalies differ by

a(Cs06) − a(H06) = − 7.9 (9.3) × 10−12, (45)
a(Rb06) − a(H06) = 1.9 (7.7) × 10−12, (46)

with the uncertainties limited by the uncertainties in α(Cs) and α(Rb), in Eqs. (43)-
(44).

What theory improvements might be expected in the future? The theory
contribution to the uncertainty in the new α is less than that from experiment by
a factor of 3. The eighth order uncertainty in A

(8)
1 can be reduced with the ac-

cumulation of better statistics in the numerical evaluation of integrals. Ambitious
efforts underway aim for an analytic evaluation of this coefficient [95]. Another big
theory challenge is in evaluating the tenth-order coefficient, A

(10)
1 , with the men-

tioned contributions from 12672 Feynman diagrams. Work underway suggests that
it should be possible to evaluate A

(10)
1 to a few percent, reducing the theoretical

uncertainty in ae to 0.1 ppb or less.
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What experimental improvements can be expected? A reduction of the 0.76
ppt uncertainty of the measured electron g seems likely, given that this fully quan-
tum measurement has only recently been realized. With time to study the line-
shapes and cavity shifts at many values of the magnetic field, to improve cooling
methods, and to incorporate a more stable magnetic field, an improved α from g
and QED seems quite possible. Experiments are also underway under the assump-
tion that a substantially higher accuracy can be achieved in atom recoil measure-
ments – currently the weak link in determinations of α that are independent of
g and QED. A ten-fold improved accuracy in the independent α would allow a
QED test that is more stringent than current tests by this factor, even without
improved measurement of g, or more accurate QED theory.

In conclusion, a slightly shifted and much more accurate determination of
the fine structure constant comes from the new measurement of the electron g
value, and improved QED theory. It is more accurate than any other method to
determine α by a factor of ten. The working assumption is that the electron has
no internal structure that is not described by QED, nor by small distance scale
physics other than what is well understood within the context of the standard
model of particle physics. Comparing the α from g and QED, to the α determined
with Cs and Rb atoms, shows that QED continues to be a superb description of
the interaction of atoms and light. However, a ten times more stringent QED test
awaits a determination of α that is independent of the electron g and QED, but
achieves the accuracy in the α reported here. We expect more accurate measure-
ments of the electron g, along with more accurate QED calculations, and are thus
optimistic that more accurate future determinations of α may be possible.

Experiments at Harvard to measure g used in this section were supported
by the NSF AMO experimental program. Theory work by T.K. was supported
by the NSF theory program of the US, the Eminent Scientist Invitation Program
of RIKEN, Japan, and a grant-in-aid from Japan’s Ministry of Education, Sci-
ence and Culture. M.N. was partly supported by a JSPS grant-in-aid, and used
computational resources of the RIKEN Super Combined Cluster System.

7. Almost Outdated

As these notes are being prepared for publication, my student D. Hanneke and I
are nearly finished with our analysis of new measurements of the electron magnetic
moment and the fine structure constant that look to have a precision that is two
to three time better than what is reported here. Stay tuned.

8. Conclusion

Quantum jump spectroscopy of the lowest spin and cyclotron energy levels of
a one-electron quantum cyclotron yields the most precise measurement of the
electron magnetic moment, and the most precise measurement of the fine structure



142 Gerald Gabrielse

constant. The electron is suspended for months at a time in a cylindrical Penning
trap, the electrodes of which provide the electrostatic quadrupole potential for
trapping the electron, and also modify the radiation field and density of states
as needed to inhibit the spontaneous emission of synchrotron radiation. Feedback
methods provide cooling possibilities and turn the electron into a one-particle self-
excited oscillator that is used for QND measurements of the cyclotron and spin
states. One spin-off measurement being pursued, in collaboration with my student
S. Fogwell, is making the most stringent test of CPT invariance with a lepton
system, by comparing measured g values for the electron and positron. Another
spin-off measurement underway, in collaboration with my student N. Guise, is to
make a one-antiproton self-excited oscillator to measure the antiprotons magnetic
moment a million times more accurately than has been possible so far. A third
spin-off measurement being contemplated is a direct measurement of the electron-
to-proton mass ratio.
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Note added by the Editors

Since this paper was written, Professor Gabrielse and his group have obtained
and published even more precise results on the electron magnetic moment and the
fine structure constant [96]:

g/2 = 1.00115965218073(28) [0.28ppt] (47)

with an uncertainty 2.7 and 15 times smaller than for previous measurements in
2006 and 1987, and

α−1 = 137.035999084(51) [0.37ppb] (48)

with an uncertainty 20 times smaller than for any independent determination of α.

[96] D. Hanneke, S. Fogwell, and G. Gabrielse, New Measurement of the Electron
Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100, 120801
(2008).
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The 2007 Nobel Prize in Physics: Albert Fert
and Peter Grünberg

Vincent Cros, Albert Fert, Pierre Sénéor and Frédéric Petroff

Albert Fert and Peter Grünberg are well-known for having opened a new
route in science and technology by their discovery of the Giant MagnetoResis-
tance (GMR) in 1988. Soon after this discovery, the exploitation of the GMR had
a considerable impact in data storage technologies. The GMR-based read heads
developed by several major companies have led to a considerable increase of the
density of information stored on computer’s hard discs drives (HDD) of today
and are the most important of the multiple applications of the GMR. The discov-
ery of GMR kicked off the development of a new field in science and technology
called spintronics in considerable expansion today. Not only Albert Fert and Pe-
ter Grünberg are regarded as the fathers of spintronics but they have also made
outstanding contributions to its development until today. Their recent work on
magnetic tunnel junctions, current-induced magnetization switching, microwave
generation by spin transfer, or applications of carbon nanotubes in spintronics
will certainly have an important impact on the technology of the near future.

1. The roots of spintronics and the discovery of GMR

GMR and spintronics take their roots in the pioneering work of Albert Fert around
1970 on the influence of the spin on the mobility of electrons in ferromagnetic
materials [1]. After having experimentally demonstrated that, in a ferromagnetic
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metal, the electrons of opposite spin directions (spin up and spin down along
the magnetization axis) carry different currents (as originally suggested by Mott),
Fert worked out the well known two current model of the electrical conduction
in ferromagnetic metals. He also showed that very large spin asymmetries of the
conduction can be obtained by doping the ferromagnetic metal with impurities
selected to scatter very differently the spin up and spin down electrons (iron or
cobalt impurities in nickel, for example, scatter the spin down electrons 20 times
more strongly than the spin up electrons). Moreover, some experiments of Fert
on ternary alloys were already introducing the idea that he will exploit later to
produce the GMR effects. He showed that the resistivity of a ternary alloy, for
example N1−x(Ax−y, By), is strongly enhanced if the scattering by the impurities
A and B have inverse spin asymmetries. Replacing the impurities A and B by
magnetic layers A and B, one equally expects a large enhancement of the resistivity
when their magnetizations are in opposite directions, which the basic concept of
the GMR. However, this concept can work only if the thickness of the layers is in
the nanometer range. The fabrication of multilayers with thicknesses in this range
became technologically possible in the mid-eighties and, in particular, the growth
of magnetic multilayers by Molecular Beam Epitaxy (MBE) was developed in the
groups of Albert Fert and Peter Grünberg.

Another important step, two years before the discovery of the GMR, came
from the demonstration by Brillouin scattering experiments in the group of Peter
Grünberg that the magnetizations of two layers of iron separated by an ultra-
thin layer of chromium were spontaneously oriented in opposite directions by an
antiferromagnetic exchange interaction [2]. This was opening the way to the de-
sign of Fe/Cr multilayered structures in which the magnetizations of the adjacent
magnetic layers can be switched from their spontaneous opposite orientations to
parallel by applying a magnetic field. The GMR was discovered almost simultane-
ously in 1988 on Fe/Cr multilayers by Albert Fert [3] and on Fe/Cr/Fe trilayers
by Peter Grünberg [4]. Fert’s paper presented both the experimental results and
their interpretation on the basis of his previous work on the spin dependent conduc-
tion in ferromagnetic materials. As the change of resistance between the parallel
and antiparallel magnetic configurations of the Fe/Cr multilayer was as large as
80%, Fert also coined the expression “Giant Magnetoresistance” to describe such
huge effects (see Figure 1). The paper of Grünberg reporting the results on the
Fe/Cr/Fe trilayers in 1989 was preceded by an outstanding patent filed in 1988,
introducing the concept of Spin Valve (SV), and anticipating most of the present
applications of the GMR (US patent 4949039, 1990). The discovery of the GMR
created a considerable stir, first because it immediately turned out that it was
opening a new field of research (called today spintronics), and secondly because
the potential of applications became rapidly very clear as detailed in the final sec-
tion. In 2003, with 2455 citations (more than 3500 in 2007), Fert’s article of 1988
was ranked 6 in the Top Ten of the most cited Physical Review Letters since the
creation of the review in 1953.
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Figure 1. (left) Variation of the resistance as a function of the
applied magnetique field (in kG) for an Fe/Cr multilayer.The
decrease of the resistance that occurs when the magnetic field
is applied is related to the change from an antiparallel configu-
ration of the two magnetizations to a parallel configuration at
high field. That is the Giant Magnetoresistance effect (GMR).
(right) Illustration of the mechanism of GMR in terms of spin
dependent scattering processes for the two configurations of the
magnetizations i.e. antiparallel or parallel.

2. From GMR to spintronics

The goal of this section is not to review the entire field of spintronics but rather
highlight some major steps and the contributions of Fert and Grünberg. The dis-
covery of GMR triggered immediately an extensive research on magnetic multilay-
ers and GMR attracting researchers worldwide in the new field of spintronics. On
the experimental side, it was rapidly shown that GMR effects could be obtained
not only with samples grown by molecular beam epitaxy but also with the faster
and cheaper method of sputtering. In 1991, the GMR of the Co/Cu system was
simultaneously discovered on samples grown by sputtering in Fert’s group [5] and
S. Parkin’s group [6]. Co/Cu became the archetypal structure for GMR and in-
spired the advanced materials used today in the sensors of HDD’s read heads. On
the theory side, the first semi-classical model of the GMR was published in 1989
Phys. Rev. Lett. by Camley and Barnas in the laboratory of Peter Grünberg. To-
gether with Levy and Zhang, Fert equally worked out the first quantum mechanical
theory of the GMR in 1990 [7]. Initially studied in the CIP configuration (Current
In the Plane), experiments soon followed exploring the Current Perpendicular to
the Plane (CPP) geometry. CPP-GMR is not only interesting for applications but



150 Vincent Cros, Albert Fert, Pierre Sénéor and Frédéric Petroff

also because it has revealed spin accumulations effects which were analyzed in a
seminal paper [8]. These effects play a major role in the most recent developments
of spintronics such as spintronics with semiconductors [9], or molecular spintronics
[10] which will not be detailed here.

The second important step in the history of spintronics is related to the in-
troduction of the Magnetic Tunnel Junctions (MTJ). A MTJ is another type of
SV in which the two magnetic layers are separated by an ultra-thin insulating
layer (around 1 nm) instead of a metallic layer. Its electrical resistance is different
for the parallel and antiparallel magnetic configurations of the electrodes, what is
called the Tunneling MagnetoResistance effect (TMR). Some early observations
of TMR effects, small and at low temperature, were already reported in 1975, but
they had been hardly reproducible during 20 years. It is only in 1995 that large
( 20% for the ratio of the resistance change to the resistance of the parallel state)
and reproducible effects were obtained by Moodera (MIT) and Miyazaki (Sendai)
groups on MTJ with a tunnel barrier of amorphous alumina. Among others, Fert
and Grünberg have actively contributed to the research on TMR. Grünberg stud-
ied the potential of semiconducting tunnel barriers [11]. On the fundamental side,
a better understanding of the physics of MTJ came from the classical paper in
which Fert demonstrated the active role of the electronic properties of the barrier
on the TMR as shown in Figure 2 (Science 286, 507, 1999). Also new directions
were explored to obtain much higher TMR than with the alumina-based MTJ.
Very high TMR ratios (1800% at low temperature) were obtained in the group
of Fert with MTJ based on the magnetic oxide La2/3Sr1/3MnO3 see Figure 3
[12]. The exploration of these new directions was of high fundamental interest,
but, for applications, the La2/3Sr1/3MnO3-based MTJ had a too low TMR at
room temperature. The real breakthrough for the TMR came from the devel-
opment of MgO-based single crystal MTJ. The first publication reporting TMR
effects on MgO-based MTJ was published by the group of Fert in collaboration
with a Spanish group and showed that, with similar electrodes, the TMR could
be slightly larger with MgO than with alumina [13]. This triggered the research
on similar junctions in several groups, and, in 2004, the major breakthrough was
the demonstration by an IBM group and by a Japanese group that the TMR ratio
of MgO-based MTJ could reach 200% at room temperature. It was the kick off
of an intense research on MgO-based MTJ which has led to TMR ratios as high
as 500% together with relatively small resistances needed for many applications.
These remarkable MTJ will have multiple applications (see last section). From a
technological point of view, the interest of the MTJ with respect to the metallic
spin valves comes from the vertical direction of the current and from the resulting
possibility of a reduction of the lateral size to a submicronic scale by lithographic
techniques. As a third step, the growth of semiconductor heterostructures incor-
porating ferromagnetic material is a challenge for today’s spintronic. The general
objective is to combine spintronic and traditional electronic. Semiconductor ma-
terials bring also long spin life time, well define energy levels when confine to 0D
1D or 2D and coupling with optical properties which make them a unique tool



The 2007 Nobel Prize in Physics: Albert Fert and Peter Grünberg 151

Figure 2. (left) High resolution TEM image of a
La2/3Sr1/3MnO3/ SrT iO3/ La2/3Sr1/3MnO3 het-
erostructure deposited by pulsed laser ablation.
(right) Resistance as function of the field for a similar het-
erostructure measured at 4.2 K. The TMR ratio, about 1800%
corresponds to a very large spin polarization (95%) of this
magnetic oxyde.

to explore new spin related effect [14]. Classically 2 roads are follow, the first one
take advantage of the properties of well know transition metal whereas the second
investigate diluted magnetic semiconductors as GaMnAs. The recent theoretical
advances lead to integration of well controlled interfacial resistance and demon-
stration of efficient spin injection. As an example we recently observed more than
50% of circular light polarization when injecting from CoFeB/MgO into a III-
V light emitting diode. The next step is the fabrication of a complete electrical
device.
In the case of GaMnAs related junctions, the complexity of the transport mech-
anisms associated with spin-orbit coupled states make this material a powerful
means for finding novel effects and provides new challenges for theoretical under-
standings. This includes tunnel magnetoresistance (TMR) across single and double
barriers [15], Spin transfer torque effect (STT) [16] and tunnel anisotropic mag-
netoresistance (TAMR). As an illustration (see Figure 3), the resonant TAMR
on a GaAs quantum well can be used as a probe of the GAMnAs valence band
anisotropy [17]. Nanospintronics is another prospective field at the interface be-
tween spintronics and nanophysics and deals with spin injection and detection in
objects with reduced dimensions such as wires (1D) and nanoparticles (0D). Spin
manipulation in such nanostructures is one route among many others to quantum
computing. As a first step, one needs to contact a single nanoparticle and under-
stand the interplay between Coulomb blockade and nanomagnetism, the so called
magneto-Coulomb effects. Using an in-house developed near field nanolithography
technique it has been made possible to contact a single nanometer sized (2-3nm)
Au cluster to ferromagnetic electrodes and demonstrate a significant enhancement
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Figure 3. a) Schematic representation of the sample structure.
b) TAMR − V signal (straight red line) and dI/dV − V (dashed
line) acquired on the 6 − nmGaAs QW . The left axis displays
the measured TAMR ; the right one takes into account the up-
renormalization due to the additional resistance from the deple-
tion GaAs region.

of the spin lifetime on the nanoparticle [18]. Moreover, it has been shown that
the magnetic anisotropy of the ferromagnetic electrodes can affect strongly the
energetic state of the particle in a way similar to a gate effect. Studies are now
being extended to other nano-objects such as nanomagnets, molecules, and semi-
conducting quantum dots. An other important step is related to the spin transfer

Figure 4. (left) Schematic view of the stud-
ied Co/Al203/AuNanopart./Al203/Co structure.
(center) I(V) curve showing Coulomb-blockade.
(right) I(V) curve shifting due to spin accumulation.
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phenomenon. In a spin transfer phenomenon, one manipulates the magnetic mo-
ment of a ferromagnetic body without applying any magnetic field but only by a
transfer of spin angular momentum from a spin-polarized electrical current. The
result of this transfer of spin can be described as a torque acting on the magnetiza-
tion (Spin Transfer Torque or STT). This torque can be used either to rotate and
switch the magnetization, or to displace a domain wall separating two magnetic
domains, or to generate oscillations in the microwave frequency range. Originally
predicted by John Slonczewski from IBM, a group in Cornell in 2000 and the
group of Fert in 2001 [19] were the first to observe the reversal of a magnetization
by spin transfer-induced precessions. These results triggered an intense activity of
research and, today, the precessional magnetic switching by spin transfer torque
is mastered in several types of magnetic devices, metallic multilayers, spin valves
or tunnel junctions. As discussed in the next section, magnetic switching by STT,
that is by an electronically induced precession without any need of magnetic field,
will replace the switching by an applied field used in today’s MRAM.

Figure 5. (left) Representative view of a spin valve nanopil-
lar for spin transfer torque experiments composed of a
NiFe layer with a fixed magnetization separated from
a second thin NiFe layer by a nonmagnetic Cu layer.
(right) Representative curves of the differential resistance vs in-
jected current in the two regime of spin transfer phenomena : at
zero applied field, hysteretic curve and at high field, reversible
peak only for one current polarity.

3. Present and future technological impact of GMR and spintronics

Most applications of the GMR are based on trilayer structures of spin valve (SV)
type, in which the switching between magnetic states (antiparallel and parallel
magnetizations) is obtained at very low field by the rotation of the magnetization
of a free magnetic layer. The concept was initially described in Grünberg’s 1988
patent and, with some additional aspects, in an IBM patent of 1993 (US patent
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52065590r). GMR read heads for hard discs drives (HDD) were introduced onto
the market by IBM in 1997 only 8 years after the discovery of GMR. In terms of
economical impact, about 5 billion GMR read-heads have been produced in total as
for 2007 with a worldwide annual revenue larger than 31 billion $. The sensitivity of
the GMR to detect small fields has led to a huge increase of the density of magnetic
information stored in a disc.The compound growth rate of storage areal density
has increased up to 100% per year (doubling every in the period 1997-2002), and
the areal density is now around 200Gbit/in2, which corresponds to an increase by
more two orders of magnitude with respect to the pre-GMR HDD. This opened the
way to both smaller HDD forms factors (down to 0.85 disc diameter!) for mobile
appliances such as ultra laptops or portable multimedia players, and to record HDD
capacities (up to 1 Tbyte!). More generally, the availability of cheap HDD with
high capacity (> 100GB) has triggered today’s pervasiveness of hard disk drives
in consumer’s electronics such as portable MP3 players, hard-disk-video recorders,
automotive HDDs, and digital cameras to list a few. HDD are also now replacing
tape in at least the first tiers of data archival strategies, for which they provide
faster random access and higher data rates. A transition to TMR heads began
in 2004 (Seagate) with volumes now at about 300 million vs GMR heads of 500
million (2007 projected, see Figure 6). The TMR provides a higher sensitivity than
the conventional GMR but sensors have a large resistance and the increase of this
resistance at smaller size is a disadvantage for a further downscaling of the heads.
Going forward to reach an areal density above the Tbit/in2, a transition back to
all metallic GMR multilayer devices is likely due to favourable sheet resistance
scaling with smaller size. These heads will exploit the CPP-GMR effect.

Figure 6. Evolution of the storage density : from Anositropic
MagnetoResistance to Giant MagnetoResistance.

Actually GMR/TMR has many other applications than the HDD. A very
important application relates to non volatile memories called MRAM (Magnetic
Random Access Memory). The MRAMs, with their combination of the non volatil-
ity (they retain data after the power is turned off), a fast random access similar
to that of the semiconductor-based RAM (5 ns read/write has been demonstrated
for MRAM) and an infinite endurance (against 105 cycles for a Flash), are likely
candidates for becoming the universal memory, one of the Holy Grails of nanoelec-
tronics. The first generation of MRAM was developed with alumina-based MTJ.
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The first product, a 4 Mbit standalone memory, was commercialized by Freescale
in 2006 and soon voted Product of the Year by Electronics Products Magazine.
Moreover Freescale introduced in June 2007 a new version able to work in the
enhanced 40◦C to 105◦C temperature range, i.e. qualifying for military and space
applications where the MRAM will also benefit from the intrinsic radiation hard-
ness of magnetic storage. However, a major limitation to ultrahigh density in this
first generation of MRAM comes from the relatively low TMR of the alumina-based
MTJ and from the resulting requirement of one transistor per MTJ. Another limi-
tation comes from the writing by magnetic fields generated by current lines. With
this type of writing, the needed very large current densities and the unavoidable
distribution of the writing parameters also limits the downscaling of the device.
These limitations will be turned away in the next generation of MRAM using the
very high TMR of MgO-based MTJ and a new concept of writing based on the
STT mechanism (both described above). Several companies have already presented
very promising demonstrators of this new type of MRAM which has been called
STT-RAM.

GMR/TMR has also a significant impact on magnetic field sensing devices,
used in a number of very competitive markets. GMR-based magnetic field sensors
for the automotive industry have been on the market since 1993. GMR/TMR
sensors are also used now for biomedical applications, for example in the analysis
of biomolecules (ultra-sensitive detection of molecules once they have been labeled
with magnetic particles, see, for example [20], and show promises for biomedical
imaging such as magnetocardiography and magnetoencephalography [21].

Last but not least, spin transfer devices will certainly have also important
applications in the technology of telecommunications for the generation of oscil-
lations in the microwave frequency range. The so-called Spin Transfer Oscillators
(STO) have interesting advantages, in particular the easy and fast control (agility)
of the frequency by tuning a DC current (see Figure 7). Up to recently, they had
the disadvantage of needing an applied field but the group of Fert has now con-
ceived and operated a special type of STO working at zero field [22]. As, at the
moment, the microwave power of the STOs is still too small for applications, syn-
chronizing an array of STOs to increase this power is now the crucial challenge
before developing practical devices. Fert’s team is one of the three groups in the
world having already obtained successful theoretical [23] and experimental results
[24] on this problem of synchronization of STOs.

In summary, the pioneering research of Albert Fert and Peter Grünberg on
spin dependent transport and magnetic multilayers led them to the discovery of
the GMR in 1988. Following this discovery, the new field of spintronics has un-
dergone outstanding progress in twenty years, under the convergence of a chain of
scientific breakthroughs and technology advances. Traditional hard disk recording
has gained orders of magnitude in storage capacity, thus entering the consumer
electronics market. New applications have or will appear, yet only for niche mar-
kets, but expected to progress and impact rapidly. On a more long term, the use of
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Figure 7. (left) High frequency peak due to the spin transfer
induced emission in a spin valve nanopilar (see inset) recorded
at room temperature for I = −13mA and H = 6kG. (right)
Variation of the emission frequency as a function of the injected
current (the color power scale indicates the amplitude of the
power).

spin injection and spin currents may lead to spin logic devices, a promising route
for nanoelectronics.
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Magnetic Resonance Imaging:
From Spin Physics to Medical Diagnosis

Pierre-Jean Nacher

Abstract. Two rather similar historical evolutions are evoked, each one orig-
inating in fundamental spin studies by physicists, and ending as magnetic
resonance imaging (MRI), a set of invaluable tools for clinical diagnosis in the
hands of medical doctors. The first one starts with the early work on nuclear
magnetic resonance, the founding stone of the usual proton-based MRI, of
which the basic principles are described. The second one starts with the op-
tical pumping developments made to study the effects of spin polarization in
various fundamental problems. Its unexpected outcome is a unique imaging
modality, also based on MRI, for the study of lung physiology and pathologies.

1. Historical introduction

Magnetic Resonance Imaging (MRI), now widely known for its usefulness as a
medical diagnosis tool and for the variety of clear pictures of the body’s interior
obtained in a harmless and non-invasive manner, had its foundations laid more
than 60 years ago in physics experiments designed to measure properties of the
nuclear spins of hydrogen atoms. In even earlier experiments, Rabi had shown that
an oscillating magnetic field could induce transitions between levels associated to
the spin state of various nuclei in an applied static magnetic field [1]. This pio-
neering work was performed on molecular beams, using a selection and detection
method of the nuclear spin state similar to that developed in the 1920’s by Stern
and Gerlach for their demonstration of spin quantification in silver atoms. The
transposition of Rabi’s observation of Nuclear Magnetic Resonance (NMR) in a
beam of independent molecules to solid and liquid samples was successfully done
independently in 1945 by Purcell and by Bloch.1 The key feature of both experi-
ments was the observation of the resonance phenomenon through electromagnetic

1An earlier attempt in Leiden to observe NMR in solids had failed because of exceptionally long
relaxation times [9]. Gorter first used the term “nuclear magnetic resonance” in this publication,
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detection at the resonance frequency. At the M.I.T.,2 Purcell, Torrey, and Pound,
worked on solid paraffin filling a 1-liter cavity tuned at 30 MHz. They observed a
0.4% change in the rf signal amplitude fed to the cavity due to energy dissipation
arising from nuclear spin relaxation of H atoms [2]. Meanwhile, at Stanford Uni-
versity, Bloch, Hansen, and Packard, performed similar experiments at 7.7 MHz
on a 1.5-cc sample of water. They used two orthogonal rf coils: the receive coil de-
tected the re-emission of the resonant rf power absorbed from the transmit coil by
the nuclei of the water protons (H atoms) [3, 4]. Although Rabi’s work was crucial
as the initial demonstration of NMR (he was awarded the Physics Nobel prize in
1944 “for his resonance method for recording the magnetic properties of atomic
nuclei”), the conceptual and technical leap achieved by Bloch and Purcell really
opened the way to modern NMR and MRI. They were awarded the 1952 Physics
Nobel prize “for their development of new methods for nuclear magnetic precision
measurements and discoveries in connection therewith”. A last essential tool of
NMR was found independently by Torrey [5] and Hahn [6], who demonstrated the
feasibility of pulsed NMR (initially suggested by Bloch) and observed free Larmor
precession. Hahn further used pulsed NMR to generate and observe spin echoes [7].

The next 20 years saw the development of NMR as a powerful investigative
tool in many areas of physics and even more so in chemistry. The sensitivity of the
nucleus to its electronic environment in a molecule (the “chemical shift”) and spin-
spin interactions were seen at first in the nuclear physics community as annoying
features, but the potential of NMR spectroscopy for analytical studies was soon
revealed by the discovery of the 3 peaks of ethanol in Purcell’s group [8]. Almost
none of the early applications of NMR were medical, although a large amount of
work was published on relaxation, diffusion, and exchange of water in cells and
tissues, even in living human subjects [10] and whole animals [11].

However it was not until 1973 that NMR was used to generate true (2-D) im-
ages, when Lauterbur, after his early work on chemical shifts, produced images (of
two glass tubes filled with water) reconstructed from a series of 1-D projections
obtained using a magnetic field gradient [12]. Soon, MRI benefited from essen-
tial developments performed by Mansfield in Nottingham to efficiently generate
images, such as slice selection [13] and fast acquisition schemes [14]. These pio-
neering contributions were jointly rewarded by the 2003 Nobel prize in Medicine
“for their discoveries concerning magnetic resonance imaging”. Another essential
contribution to MRI originated from Zurich, where Ernst applied his Fourier spec-
troscopy techniques [15] to imaging [16] (Ernst was awarded the Nobel Prize in

attributing the coining of the expression to Rabi. In Kazan, another place where major contri-
butions to NMR were made, Zavoiskii had also failed to reliably detect NMR in 1941, but he
discovered electron spin resonance (EPR) in 1944.
2Purcell obtained his PhD degree in 1938 at Havard University, where he returned in 1945,
became Professor of Physics in 1949, and performed most of his work. But he spent the war years
in the Fundamental Developments Group in the Radiation Laboratory of the M.I.T., where he
was associated in particular to Rabi. Purcell’s seminal publication on NMR [2] bears the M.I.T.
address.
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Chemistry in 1991 “for his contributions to the development of the methodology
of high resolution nuclear magnetic resonance spectroscopy”).

Research in MRI was pursued only in a few academic laboratories, mostly in
the UK, with the first image of a human thorax in 1977, of a head in 1978, until
1980 when Edelstein, in Mallard’s team in Aberdeen, obtained the first clinically
useful image of a patient [17]. After this date, several companies started to invest in
MRI developments and to promote clinical trials. For instance, Toshiba marketed
the first commercial MRI scanner in 1983 (with a 0.15 T field), while General
Electric, the current leading manufacturer, enrolled several of the MRI pioneers,
including Edelstein, and produced the first 1.5 T clinical system in 1985. With the
growing availability and performance of MRI instruments, scientific publications
on MRI in medical journals linearly increased in number from 1984, to reach 16000
per year in 2006 [18]. At the same time, MRI exams progressively became a routine
diagnosis tool, with now 70 million exams per year and 40 thousand machines in
the world.

The rest of this paper is organized as follows. The next section briefly provides
the simple notions required to understand the usual NMR dynamics involved in
MRI applications. The following section describes the basic principles of imaging,
and the influence of elementary physical processes such as relaxation and molecu-
lar diffusion on image quality. Finally, the last section is devoted to an unexpected
application of decades of developments in the field of polarized noble gas produc-
tion. This work, that originally aimed at providing tools for various fundamental
studies involving spin physics, now also provides an unrivaled tool for MRI of the
lung.

2. Basic physics of NMR

2.1. Bloch’s equations and NMR dynamics

The phenomenon of magnetic resonance results from the dynamics of spins in
combined static and oscillating magnetic fields. Since, by far, most NMR and MRI
applications involve spin 1/2 nuclei, only such spin systems will be considered in
the following. NMR indeed also operates for nuclei with higher spin values, but
has more complex features. The quantum-mechanical derivation of spin dynamics
can be found in many textbooks, and the main results are only recalled here.

In an applied static magnetic field B0, the two eigenstates that correspond to
the projections ±�/2 of the angular momentum on the quantization axis defined
by B0 have an energy difference:

ΔE = E− − E+ = �ω0 = �γB0, (1)

where the transition (Larmor) angular frequency ω0 usually falls in the radio-
frequency (rf) domain, and γ is the gyromagnetic ratio associated with the spin of
the considered nucleus. For protons, the nuclei of H atoms, γ/2π=42.58 MHz/T. At
thermal equilibrium (for a temperature T ), the system is described by a diagonal
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density matrix with a ratio of populations:

N−/N+ = exp(−�γB0/kBT ). (2)

For a positive gyromagnetic ratio (such as that of protons or 13C for instance,
but contrary to the case of the spin 1/2 noble gases 3He and 129Xe that will
be considered in section 4), the more populated low-energy state is that with the
nuclear spin aligned in the direction of the applied field.

Transitions can be driven between these two eigenstates by a transverse rf
field B1(i.e., perpendicular to B0) rotating at angular frequency ω, and the prob-
ability that the system is in the initial state at time t oscillates according to the
Rabi formula:

P(t) = 1 − ω2
1

ω2
1 + (ω − ω0)

2 sin2

(
t

2

√
ω2

1 + (ω − ω0)
2

)
(3)

where the amplitude of the rf field, ω1 = γB1 (in angular frequency units), and
the detuning from resonance, ω −ω0, determine the characteristic features of the
oscillation (see Fig. 1, left)3. In the historical Rabi experiment [1], where the
fraction of atoms remaining in the initially prepared state is measured after the
action of the rf field for a variable time depending on the molecular velocity,
the observed resonance curve is indeed described by Eq. 3, simply replacing the
oscillating sin2 term by its time-averaged value, 1/2. An additional effect of the
applied resonant rf field is to periodically create coherences (off-diagonal terms) in
the density matrix describing the spin 1/2 system. They correspond to transverse
components of the angular momentum, which have a time evolution best described
in the rotating frame synchronous with the applied rf field (see Fig. 1, right).4 An
equivalent classical description of the spin dynamics is obtained if one considers
a system with an angular momentum j and a magnetic moment m such that
m = γj. This vector proportionality5 is responsible for the gyroscopic-like response
of spins to an applied magnetic field, similar to the dynamics of a spinning top in
a gravity field. In a physical sample, the time evolution of the macroscopic local
magnetization density M that results from the magnetic moments of the nuclei
behaves in the same way, and thus obeys Bloch’s equation [4]. In fact, in most cases,
this classical description can be extended to interacting spin systems by simply
introducing phenomenological relaxation terms to take into account the stochastic

3If the transverse field is oscillating, it can be considered as composed of two counter-rotating
components, among which only one (with half of the total amplitude) is resonant, whereas the
other has no effect.
4Since any two-level quantum system is formally equivalent to a spin 1/2 system, such repre-
sentation is used in many physical problems, even if the levels correspond to electronic states
of an atom, connected by an electric dipolar transition. Rydberg atoms in a box are near-ideal
examples of such two-level systems [19]. NMR concepts and vocabulary, such as π/2 or π pulses,
are used, and the (optical) Bloch equations rules the evolution of the system.
5This non-classical relation does not hold, for instance, for the magnetized needle of a compass.
The magnetic moment is a constant locked to the long axis of the needle, but the angular
momentum is proportional to the angular frequency of rotation of the needle.
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Figure 1. Left: time evolution of the probability for a spin 1/2
to be in the initial eigenstate under rf irradiation (Eq. 3). Solid
line: resonant rf, ω=ω0; dashed line: detuned rf , ω − ω0 = 2
ω1; ω0 is the resonance (Larmor) angular frequency, ω1 is the
amplitude of the rotating rf component in angular frequency units.
Right: The corresponding trajectories of the classical momentum
associated with this spin are circles on the so-called Bloch unity
sphere. The longitudinal (Z) component is the Rabi oscillation
probability plotted on the left, and the projection in the transverse
(XY ) plane or represents the off-diagonal elements in the spin
density matrix (Y is the direction of the rf field).

effect of dipolar spin interactions.6 This leads to the usual Bloch’s equation in its
complete form:

dM
dt

= γM × Beff − [R]M − DΔM. (4)

It is most conveniently written in the rotating frame synchronous with the rf field.
The effective field in the first term of Eq. 4 is then given by:

Beff = −ω1x̂/γ − (ω − ω0) ẑ/γ. (5)

When no rf field is applied, a frame rotating at the local Larmor frequency is most
convenient (then Beff=0), but a frame rotating at any frequency ω, e.g. the average
Larmor frequency over the extended physical sample, can also advantageously
be used (then Beff is given by Eq. 5 with ω1=0). The second term in Eq. 4 is
a relaxation term characterized by two different rates: one for the longitudinal
component Mz of M, noted 1/T1, and one for the transverse components, noted

6A full quantum treatment of the spin dynamics is required only in rare particular cases, for
instance when short-range quantum correlations between interacting spins of nuclei in a molecule
play a key role. Such unusual situations will not be considered here, and the classical description
will always be used. A discussion regarding the necessity of using a quantum formalism can be
found in [23] and references therein.
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1/T2. The last term in Eq. 4 describes the irreversible effect of atomic diffusion,
that depends on the spin diffusion coefficient D.

In cw NMR with weak rf fields, relaxation phenomena play an important
role to determine the response of the spin system to irradiation, and hence deeply
influence the observed spectra. In contrast, in pulsed NMR, as performed for MR
imaging (see section 3), the rf field is usually so intense that relaxation and diffusion
phenomena have no significant influence during the pulse. Hence the right hand
side of Bloch’s equation (Eq. 4) is reduced to its first term, and M simply undergoes
a rotation around the direction of the effective field. At resonance, any tip angle
with respect to the initially longitudinal orientation of M can be achieved using an
appropriately timed tipping rf pulse (see Fig. 1, right). Finally, in the absence of
applied rf (e.g., during the free evolution following a tipping pulse), the complete
Bloch’s equation shows that a uniform magnetization in a uniform field B0 simply
precesses at Larmor frequency around the field axis, with a transverse component
that decays exponentially (with a rate 1/T2) and a longitudinal component that
exponentially recovers its equilibrium value, determined by Eq. 2 (with a rate
1/T1). If the magnetic field B0 is not uniform (as is inevitably the case in an
experiment), the transverse part M⊥ of M progressively acquires a non-uniform
phase, and magnetization currents induce an additional decay of M⊥ according to
the third term in Bloch’s equation.

2.2. Signal amplitude considerations

In the historical Rabi experiment, the resonance was observed by monitoring the
flux of molecules in a weak but fully polarized beam. Similarly, optical detection of
magnetic resonance in optically pumped atomic vapors, proposed by Kastler7 [21]
and demonstrated by Brossel and Cagnac [22], was a very sensitive method to ob-
serve magnetic resonance phenomena in very dilute systems. The common feature
of these approaches is that the system’s polarization is complete or very high, and
that the detection of atoms or of visible photons, with energies in the eV range,
can provide excellent signal-to-noise ratios (SNRs) even with a modest number
of detected events. In contrast, standard NMR with radioelectric detection of the
resonance, as pioneered by Purcell and Bloch in their seminal work, relies on
the detection of (magnetic) rf oscillations involving much lower energies (NMR
frequencies are in the MHz range, 10−9 times lower than optical frequencies).
Moreover it is performed in weakly polarized samples (from Eq. 2, equilibrium
polarization is of order 10−5 at room temperature for B0=1T). Altogether, a dra-
matic loss of sensitivity (of 14 orders of magnitude) is expected to result from
these combined reductions in signal amplitude. Fortunately, this is compensated
by a huge increase in density from molecular beams or dilute atomic vapors to
liquid or solid samples.

7A. Kastler was awarded the 1966 Nobel prize in physics “for the discovery and development of
optical methods for studying Hertzian resonances in atoms”. The principle of optical pumping,
and its application to the obtention of nuclear polarization in noble gases, will be described in
section 4.
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Indeed, such a discussion on signal amplitudes only is rather crude, and more
careful SNR arguments must be considered. NMR signal during free precession is
usually picked up by a coil that converts the oscillating flux of precessing mag-
netization into a recorded electromotive force (emf). For given sample and coil
geometries (their effect is not discussed here), the emf simply scales with B2

0 be-
cause the equilibrium magnetization is proportional to B0, and because Faraday’s
law introduces a time derivative, hence a factor ω0. Estimating the field dependence
of noise is more delicate, and implies making assumptions on its physical origin.
Disregarding instrumental noise arising from rf interference (efficiently suppressed
when operating in a Faraday cage or shielded room) or generated by amplifiers
and recording electronics, unavoidable noise originates from the coil and from the
sample. This thermal (Johnson-Nyquist) noise results from thermal agitation of
charge carriers, in the coil and in the sample. For the latter, Faraday’s law intro-
duces the same factor ω0 into the induced emf as in does for the signal, so whenever
noise mostly originates from the sample, SNR increases only linearly with B0. In
contrast, whenever noise mostly originates from the coil, it can be argued that
SNR increases more rapidly with the operating field, scaling as B

7/4
0 [24]. For a

well-designed coil and for medical MRI applications, the sample (i.e., the patient’s
tissues) is the dominating source of noise for sample sizes exceeding a few cen-
timeters. Conversely, coil noise dominates for non-conducting samples, for MRI of
small animals or for MR microscopy using small-sized surface coils. In this case,
it can be efficiently reduced using cold probes, or even superconducting coils [25].
The thermal noise spectral density, that is given by

√
4kBTR (across a resistor

R at temperature T ), is thus decreased through the reduction both of R and T .
More exotic options are being explored to further improve SNR in MRI, such as
the use of SQUID-based devices [26] or of optical magnetometers [27] at very low
field, or of force detection in magnetic resonance force microscopy for sub-micron
resolution MRI [28].

3. Principles of MRI

3.1. Effect of an applied field gradient: 1-D imaging

When NMR is performed in a position-dependent magnetic field B0(r), the Larmor
precession frequency correspondingly depends on position r in the sample. An
important practical case is met when a uniform field gradient Gk̂ is applied:

B0(r) = B0(0) + Gk̂ · r. (6)

The precession frequency only depends on position along the direction k̂ of the
gradient, and resonance synchronously occurs in any plane perpendicular to k̂. If
cw NMR is performed, signal at a given frequency is induced by atoms the vicin-
ity of one such plane (there is in fact a limit to the accuracy of the localization
resulting from the NMR intrinsic line width for G=0). If the NMR signal is re-
ceived using a coil with uniform coupling to all parts of the sample (e.g., using a
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long solenoidal coil), NMR spectra recorded when sweeping the field or the fre-
quency represent 1-D projections of the magnetization density in the sample. The
frequency scale is set by the amplitude G of the gradient, and the projection is
actually convolved with the Lorentzian line shape corresponding to the relaxation
rate 1/T2, which limits the achievable resolution along the direction of the gradi-
ent to a scale δr=1/γGT2. This is illustrated in Fig. 2 for the case of a spherical
sample with uniform magnetization density. In the remainder of this section, we
shall assume that large values of G are used (γGρT2 � 1), and moreover that
diffusion effects can be neglected.

-2 -1 0 1 2
 (ω-ω0) / γGρ

Figure 2. Computed cw NMR spectra for a uniform spherical
sample of radius ρ in a uniform gradient of amplitude G. Without
relaxation (dashed line), the spectrum is the positive part of the
parabola 1-(ω−ω0)2/(γGρ)2, directly mapping the sections of the
sphere. With some amount of relaxation in Bloch’s equation (but
neglecting diffusion effects), sharp edges are smoothed out (solid
line: γGρT2=0.01).

Pulsed NMR is actually preferred to the very time-consuming cw NMR for
imaging applications. Following a tipping pulse, the free-precessing magnetization
induces an emf in the coil:

e(t) ∝
∫

sample

M(k̂ · r) cos [γB0(r)t + ϕ] e−t/T2 , (7)

where the local value of the field (Eq. 7) sets the local Larmor frequency, and ϕ is
a phase term depending on the tipping pulse and on the coil position. The actually
recorded NMR signal is obtained by beating the high-frequency voltage e(t) with
a reference voltage at a fixed frequency ωref , e.g. γB0(0). The resulting in-phase
and quadrature voltages are the components of a complex signal S(t):

S(t) =
∫

sample

M(k̂ · r) exp
[
iγtGk̂ · r

]
e−t/T2 (8)
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that represents the sum of contributions from all parts of the sample in the frame
rotating at the reference frequency ωref . This complex signal keeps track of the
sense of rotation in the rotating frame, and thus discriminates between frequencies
higher and lower than ωref . The time evolution of S is illustrated in Fig. 3 for the
same spherical sample as in Fig. 2. A Fourier transform (FT) allows one to switch

0 10 20
 2πγGρ x time

Figure 3. Computed NMR signal (Eq. 8) for a uniform spherical
sample of radius ρ in a uniform gradient of amplitude G (neglect-
ing relaxation and diffusion effects). The signal has a constant
phase, and the quadrature (dotted line) remains null at all times.

from the time domain to the frequency domain, and to obtain from this signal the
spectrum that would be recorded in a cw experiment. Although the knowledge
of S only at positive times is in principle sufficient to derive the spectrum, hence
the 1-D projection image of the sample (computing the FT of the function defined
from the signal by setting S(−t)=S∗(t)), gradient-echo or spin-echo techniques are
often used to acquire more information in the time domain.

The fast decay of the signal, with a time scale of order 1/γGρ for a sample of
size ρ, essentially results from the phase decoherence of the local magnetization.
Since the local magnetization has hardly decayed under the action of relaxation,
the phases can be refocused, and a so-called gradient echo can be formed with a
large value of the signal recovered at a finite time after the tipping pulse. Phase
refocusing can result from an inversion of the gradient at time τ , after which the
signal is given by:

S(t > τ) =
∫

sample

M(k̂ · r) exp
[
iγ (2τ − t)Gk̂ · r

]
e−t/T2 . (9)

The initially fast precessing spins become slow precessing ones after the gradient
sign change, and all phases are back to their initial values at time 2τ, i.e. the
magnetization is uniform again. Following this, evolution proceeds as it does just
following a tipping pulse (see Fig. 3). A more general time variation of G can
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be used, with different amplitudes before and after the time τ . G can also be
periodically reversed at times τ , 3τ , 5τ ,...: an echo is formed whenever the time
integral of G(t) vanishes and an echo train is obtained.

Another method to obtain an echo consists in leaving the gradient unchanged,
but in inverting the sign of all phases at time τ using a π rotation around any
direction in the transverse plane. The phase advance of the “fast” spins suddenly
becomes a phase lag, and rephasing occurs again at time 2τ . These so-called spin
echoes can also be periodically refocused by repeating the rf pulse inducing the π
rotation.

Signals obtained using a spin echo or a gradient echo technique are similar,
but experimental constraints or imperfections may support the choice of either
technique. The main drawback of the gradient echo technique is that gradients
can only be approximately reversed. Indeed, the applied gradient that results from
current fed to a dedicated set of coils (the gradient coils) can be reversed. But
the unavoidable static field map imperfections (that are usually not a uniform
gradient) induce a progressive loss of phase coherence that is unaffected by the
inversion of G at time τ. Altogether, a gradient echo can be observed only during
the experimental coherence time of the signal, T ∗

2 , that is often shorter than the
transverse relaxation time T2. This limitation is removed by the use of a spin
echo technique, since the dephasing due to all field variations (both G and the
imperfections of B0) is exactly refocused. However frequently firing intense rf pulses
to induce π rotations requires a fair amount of power, which may in some cases
pose safety problems due to tissue heating.

The time variation of the signal is sampled, with a sampling frequency fs,
during a time window of duration Tobs that is usually centered8 on the echo time 2τ .
The spectrum obtained by FT from these data has a frequency resolution 1/Tobs

and extends over a frequency range ±fs/2. For the 1-D projection of the sample,
the frequency resolution corresponds to a spatial resolution of 1/γGTobs. Of course
this is only a maximal resolution, that is reduced due to transverse relaxation time
(T2, see Fig. 2, or T ∗

2 ), and also due to SNR limitations. The frequency range
implies a so-called field of view (FOV) of fs/γG. The FOV must be larger than
the sample size to avoid folding artifacts resulting from the undersampling of high
frequencies.

3.2. 2-D and 3-D imaging methods

Various strategies can be used to obtain information on distribution of magneti-
zation in a sample, based on extensions of the 1-D projection imaging method.

8This is not in fact mandatory. Using symmetry properties of echoes that result from the fact
that the magnetization phase is uniform at t=0, half of the echo is sufficient to provide the
information needed to retrieve spectral data. It is only important to include the echo time 2τ in
the recording. It is technically difficult in simple pulsed NMR to have the full decay from t=0
due to the delay for recovery of saturated detection electronics following the rf tipping pulse. A
symmetric echo is usually recorded to increase SNR, but asymmetric echoes are used is ultra-fast
acquisition schemes.
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A widely used technique is the selective rf excitation of only part of the
sample, or slice selection. If a rf tipping pulse is applied in the presence of a
gradient Gk̂, it is non-resonant, and has thus no tipping action, over all of the
sample but in the plane defined by k̂ · r = (ω − ω0) /γG. The time duration of the
rf pulse determines the thickness of the slice in which significant tipping occurs,
and the time envelope of its rf amplitude sets the variation of the tip angle with
position. For small tip angles, these are indeed linked by FT relations, and uniform
tipping in a slice of given thickness is obtained using a sinc-shaped rf pulse. More
complicated pulse shaping [29] is required at large tip angle because of the non-
linear variation of the angle with rf amplitude and detuning (see Fig. 1). 3-D
imaging of the sample can be performed combining slice selection, and 2-D imaging
in each selectively excited plane.

The standard 2-D cartesian imaging technique consists in acquiring a series
of gradient echoes obtained in an applied (so-called readout) gradient Gr, using
a variable (so-called phase-encoding) gradient Ge applied along a perpendicular
direction before the echo is obtained. For simplicity, we assume here that Gr is
oriented along the x-axis, and Ge along the y-axis, but all orientations can be freely
chosen. The recorded signal is thus modified with respect to Eq. 9 and reads:

S(t > τ) =
∫

sample

M(x, y) exp [iγτeGey] exp [iγ (2τ − t)Grx] e−t/T2 . (10)

For each value of the phase-encoding parameter τeGe, a Fourier component of
the spatial modulation of the magnetization in the sample along the y-axis is
probed (see Fig. 4, left). With Ne data acquisitions performed for evenly-spaced
gradients amplitudes between -Gmax and Gmax, the so-called k-space (here a 2-D
array of data filled recorded time-varying signals) contains sufficient information
to compute a 2-D image by (discrete) inverse FT of the data. The FOV in the
physical direction of the readout gradient is given by the formula of the previous
section 3.1, while in the direction of the encoding gradient the FOV given by
Ne/2γτeGmax.

The original radial projection method introduced by Lauterbur [12] can be
used with a series of gradient-echo acquisition of data, for successive gradient
orientations k̂ sampling a plane (see Fig. 4). Image reconstruction can be performed
using back-projection algorithms, or by considering that the acquired data provide
enough information on the 2-D FT of the image (the k-space) to perform an inverse
FT after regridding and interpolation. Radial acquisition is often preferred when
fast movements are recorded: at the time of each echo, the center of the Fourier
space is re-sampled, which eliminates movement artifacts that deeply affect other
imaging methods, and allows high time resolution using sliding window methods.

There are indeed other strategies to acquire k-space data, e.g. following differ-
ent trajectories (spiral or interleaved spiral trajectories), or performing only par-
tial (e.g. half-plane) acquisition [30]. Current advances in fast MRI involve both
hardware and software developments. Parallel data acquisition using coil arrays to
directly provide spatial information allows one to undersample the k-space [31, 32].
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Figure 4. Examples of trajectories for 2-D k-space sampling.
Left: cartesian mapping of the plane is obtained by a series of
data acquisitions with steps of phase encoding in the Y direction.
Right: radial mapping is obtained by projections onto different
successive directions.

Sparse sampling of the k-space exploiting the spatial or temporal redundancy that
usually allows image compression can also provide high-quality images [33]. All
these techniques aim at accelerating data acquisition in order to reduce movement
artifacts or to capture relevant anatomical motion (e.g. in cardiac imaging). An-
other motivation is that imaging sessions can take up to several tens of minutes
for each patient, because of the large number of data required for high-resolution
multi-slice or 3-D images, and due to the necessary signal averaging to obtain high
SNR. Reducing the examination time can reduce patient discomfort and allows
more cost-efficient use of the clinical MRI systems.

3.3. Contrast mechanisms

For all the above imaging strategies, the collected signal and the resulting image
reflect the local magnetization density in the sample. This scales with the density
of H atoms, which is high both in water and lipids of all tissues. This provides
anatomical images that are usually poorly contrasted and of little clinical use.
Fortunately, various physical effects can be put to use to provide enhanced contrast
between different organs with similar proton density, or reveal differences between
normal and pathological regions.

T1-weighting is obtained in imaging sequences where the repetition period
TR of NMR pulses is of the order of the longitudinal relaxation time. In steady-
state, the local magnetization is reduced from its thermal equilibrium value Meq

according to:

M = Meq
1 − exp (−TR/T1)

1 − cosα exp (−TR/T1)
, (11)
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where α is the tip angle of the rf pulse. For an appropriate choice of α and TR, parts
of the sample with short T1 will provide a stronger signal and will thus appear more
intense in images than parts with a long T1, where magnetization does not recover
much between tipping pulses. In normal tissues, fat (lipids) has a shorter T1 than
water and thus appears white in T1-weighted images (e.g., cerebral white matter
appears so since it contains more lipids than grey matter). Paramagnetic contrast
agents can be injected to locally induce a reduction of T1 and thus increase signal
intensity wherever blood perfusion is present.

T2-weighting is obtained in imaging sequences where the signal acquisition
time is delayed long enough after the tipping pulse (until the echo time Te) for
attenuation of the transverse magnetization (T2 in Eq. 9 or 10) to be significant.
T2-weighted images appear reversed compared to T1-weighted images, with bright
water-containing regions and weaker signal from lipids. Both T1- and T2-weighted
images are acquired for most medical examinations. Together, they provide the
trained radiologist with a lot of morphological and functional information, since
for instance flowing blood, haematomas, and various types of tumors differently
affect signal intensity in MR images.

Diffusion is the last physical effect (neglected so far) that affects spin dynam-
ics. Diffusion-weighted images are obtained by adding a bipolar gradient pulse
following the tipping rf pulse before the rest of the usual imaging sequence. This
first imprints a helix-like phase pattern along the direction of this added diffusion-
sensitizing gradient, then unwinds it. The net result is that the transverse ampli-
tude is reduced by a factor exp(−Dγ2G2τ3

d ), where D is the diffusion coefficient,
G the amplitude and τd a time scale associated with the sensitizing gradient. In
the human brain, water diffusion is impeded by natural barriers (cell membranes,
myelin sheaths, ...) and a reduced apparent diffusion coefficient (ADC) is measured
instead of D. ADC imaging of the brain is routinely performed in case of stroke
(ischemic or hemmoragic). ADC mapping can also be performed as a function
of the direction of the sensitizing gradient. The resulting diffusion-tensor images
allow for the determination of directionality as well as the magnitude of water
diffusion. This kind of MR imaging enables to visualize white matter fibers in the
brain and can for instance map subtle changes in the white matter associated with
diseases such as multiple sclerosis or epilepsy.

4. Lung MRI with polarized noble gases

In spite of its high abundance in tissues, H is not the only element that can be
detected and imaged by NMR. Non-proton MRI, although it is not part of routine
clinical exams, allows for instance useful investigation of the human heart when
tuned to the frequencies of 31P or 23Na, which are both naturally abundant isotopes
with non-zero spin. The low abundance of 13C (1%) prevented carbon-based MRI
until ex-vivo pre-polarization of its nuclei in selected bio-compatible molecules was
used to provide dramatic signal enhancement [34, 35].
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In addition to these nuclei, that are naturally present in biological tissues, the
spin 1/2 noble gases 3He and 129Xe can be used to image the lung airways. This
was first demonstrated in 1994 by a Princeton-Stony Brook collaboration using
polarized xenon in excised mouse lungs [36], and was soon followed by similar
demonstrations in human volunteers using polarized helium, both in the USA and
in Germany [37, 38]. The striking difference between proton and 3He chest images
is illustrated in Fig. 5. Both images have been obtained in a 1.5 Tesla clinical

      

        

Figure 5. Chest MR images (1 cm thick slices) of the same nor-
mal subject acquired during breath hold. Left: FLASH 3He image
of the inhaled gas. Right: fast spin-echo proton image. The NMR
frequency is changed from 49 MHz for 3He to 64 MHz for protons.
Courtesy of Jim Wild, Academic Radiology Dept., U. of Sheffield,
UK.

MRI scanner, but using different coil systems operating at different frequencies
(the gyromagnetic ratio of 3He, γHe/2π=-32.44 MHz/T, is 30% lower than that
of H). The left part of the figure displays a 3He image recorded after the subject
has inhaled a volume of order 0.3 liter of polarized gas in addition to a normal
air intake. An intense signal is obtained from the lung airspaces in this slice,
and a set of 15-20 such slices, recorded during a 10-12 s breath hold, allows to
reconstruct a 3-D map of the gas distribution in the lungs. In this image, the
space occupied by the heart is clearly visible, as well as a peripheral wedge-shape
ventilation defect in the right lung, of a kind more often observed in asthmatic
subjects. More details on the gas polarization process and on the specific imaging
protocol will be given in the following. The proton image, on the right of Fig. 5,
displays features that appear to be complementary. Indeed, intense signal now
arises from parts of the chest that consist of tissues and contain no helium gas.
But the striking feature is that the lung parenchyma appears to be dark, except
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for a few large blood vessels (corresponding to hypointense signal in the helium
image). This is partly due to the low proton density of tissues, with airspaces
occupying a significant fraction of the volume, but mostly results from the very
short transverse relaxation time T ∗

2 for protons in this highly heterogeneous tissue.
Due to the magnetic susceptibility of the various components of the parenchyma,
and to the small scales characterizing the alveolar structures (0.1-0.3 mm), strong
internal magnetic field gradients resulting from the applied 1.5 T field very rapidly
dephase the precessing magnetization, and this makes MRI of the lung a very
difficult technical challenge [20]. Fortunately, these internal gradients less severely
affect the precessing magnetization in the gas phase, thanks to the rapid diffusive
movement of the gas atoms across alveoli that efficiently averages out spatial field
variations at that scale. This motional averaging leads to NMR line narrowing,
and T ∗

2 for the gas is long enough (>15 ms) for imaging purposes.
As was briefly mentioned in section 2.2, MRI of a low-density sample having

the weak nuclear polarization (of order 10−5) that results from thermal equilib-
rium is not feasible for SNR reasons. For instance, the 3He image in Fig. 5 has been
obtained with a number density of helium of order 1018 atoms/cc, 105 times lower
than that of protons in water: a high, out-of-equilibrium nuclear polarization, of-
ten referred to as hyperpolarization, is required to compensate for this decrease in
density and thus provide a high enough magnetization for MRI purposes. In this
section we first describe a few striking milestones in the development of hyperpo-
larization of noble gases, together with the motivations that drove these develop-
ments. Some specific features of MRI with polarized gases are then discussed, and
selected topic in clinical research using lung MRI with polarized helium are finally
outlined.

4.1. Hyperpolarization of noble gases

In the early days of optical pumping in atomic vapors [21, 22], no method had yet
been found to polarize noble gases due to the lack of convenient optical transition
from the atomic ground state. Still, as early as 1956, Walters and Fairbanks used
a 1-D NMR imaging technique to study a phase-separation transition in liquid
isotopic helium mixtures [39]. They filled a set of 3 connected reservoirs with liquid
mixtures of 3He and 4He (see Fig. 6, left), and obtained 3 resolved NMR lines in
the applied field gradient. The line intensities in the upper and lower reservoirs
were interpreted as measurements of the 3He concentration (with assumptions on
magnetic susceptibility), and the coexisting concentration values were plotted as a
function of the temperature (Fig. 6, right). Various other methods have been used
since then to obtain this phase-separation diagram with improved accuracy, but
this is probably the first MRI experiment with 3He, for which polarization was
increased (×100) by the use of low temperatures, and it was performed more than
50 years ago.

However, it is only with the development of optical pumping methods for
noble gases that almost full nuclear polarization could be achieved. Optical pump-
ing (OP) is the redistribution of atoms among the energy sublevels of the ground
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Figure 6. Early use of 1-D MRI in 3He to study phase-separation
in liquid helium mixtures. Left: Principle of the experiment: the
interface of the phase-separated mixture lies in the central part of
the cell, while the upper and lower ends contain the 3He-rich and
the dilute phases, respectively. The amplitudes of the frequency-
resolved NMR lines from these parts of the cell are used to derive
the 3He concentrations Right: The coexisting concentrations, on
the horizontal axis, are plotted for the explored temperature range
(on the vertical axis), providing the first reported experimental
phase-separation diagram in liquid helium mixtures (data from
reference [39]).

state induced by resonant absorption of light [40]. In order to operate, OP thus
requires an atomic system with (at least) two energy levels connected by an optical
transition, and a light source tuned to this optical transition. The ground state
(lower atomic level), and optionally the excited state (upper atomic level) have
at least two sublevels, which may arise from fine or hyperfine structure terms, or
from magnetic energy terms in the atomic Hamiltonian.

A very simple two-level system, used as a convenient illustrative model, is de-
picted in Fig. 7. Resonant light with circular polarization selectively depopulates
one of the two sublevels of the ground state. Depending on the relative proba-
bilities of spontaneous emission, a fraction of the re-emitted light takes away the
angular momentum of the absorbed photon, which corresponds to inefficient OP
cycles. The rest of the emitted photons have a linear (π) polarization (vertical
dotted arrows in Fig. 7), and a net quantum of angular momentum is deposited
in the system. Indeed, the statistical properties of an ensemble of atoms are com-
puted using a density operator formalism to describe the populations and quantum
coherences of the sublevels; in most simple cases, only atomic populations are af-
fected by OP processes, and simple rate equations can be derived. In this frame,
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ΔE=hν 

J=1/2

J’=1/2

Figure 7. Example of OP processes in a two-level model system.
The levels have angular momenta J=J ′=1/2, and each one con-
tains two sublevels mJ , mJ′=±1/2. The sublevels are represented
by circular symbols, more or less filled depending on their rela-
tive population. With a σ+ circular polarization of the OP light
tuned to the optical transition frequency ν, the transition mJ

=−1/2 → mJ′ =1/2 (wavy arrow) is selectively excited. Sponta-
neous emission from the excited state (downwards dotted arrows)
repopulates the sublevels of the ground state. Relaxation (pop-
ulation transfer between sublevels) is represented by additional
dotted arrows in the right-hand side diagram.

the pumping rate scales with the incident light intensity as long as saturation ef-
fects can be neglected, i.e. typically below 10mW/cm2 to 1W/cm2depending on
the actual system.

When relaxation processes (additional arrows in the right hand side part of
Fig. 7) efficiently transfer atoms between the sublevels of a given state, the overall
OP efficiency can be significantly altered. Relaxation usually results from atomic
collisions in the gas, and its rate strongly depends on the atomic state symmetry.
For instance, even at moderate density (e.g. 1017cm−3, or a few mbar at room
temperature), relaxation rates can be higher than the radiative decay rates for a P
or D state, but they are negligible for an S state. Assuming full redistribution of the
atomic populations among the excited sublevels, the emitted light is unpolarized
and the OP efficiency fully results from a depopulation mechanism, that can still
be very efficient. In contrast, any relaxation in the ground state tends to reduce
the OP efficiency; OP will thus easily and efficiently operate only if the atomic
ground state is weakly affected by collisions, or at very low atomic densities (e.g.
in an atomic beam).

As already mentioned, no convenient optical transition allows to perform OP
on the ground state of any of the noble gases; among other reasons, they lie in
the far-UV range. This is unfortunate since among their various isotopes, some of
these atoms have a well-shielded, purely nuclear angular momentum. Especially
for I=1/2, i.e. for 3He and 129Xe, very long relaxation times (hours) of the nuclear
polarization can be obtained in spite of frequent atomic collisions with other atoms
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or with adequately chosen cell walls. However, two indirect OP methods have been
discovered in the 1960’s to override this problem.

The first one, spin-exchange OP (SEOP) was demonstrated in 1960 [41], but
at that time it only provided very low nuclear polarizations (0.01%). Following this
early demonstration, the reasons of its limited performance have been systemati-
cally studied, understood, and bypassed [42]. SEOP consists in performing OP on
an alkali vapor mixed with a noble gas in a cell, usually Rb (see Fig. 8). Due to the
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Figure 8. Spin-exchange OP in a Rb - 3He or 129Xe mixture;
OP is performed on the alkali atom, and its electronic orientation
creates nuclear orientation of the noble gas during binary colli-
sions (the dominant process for 3He SEOP) or 3-body collisions
(the dominant process for 129Xe SEOP).

complicated structure of the atomic levels involved in the OP process (both Rb
isotopes have a non-zero nuclear spin giving rise to hyperfine-structure sublevels),
the OP process is not as simple as depicted in Fig. 7. Moreover, radiative decay
from the excited state is advantageously quenched by collisions with added N2 gas
to prevent reabsorption of unpolarized light. Still, using suitable powerful lasers for
the 795 nm transition of Rb, an efficient depopulation OP process allows to sustain
a high degree of electronic polarization for the Rb atoms, that is transferred to
the nuclei noble gas atoms during collisions via transient hyperfine coupling.

The second indirect method, metastability exchange OP (MEOP), was dis-
covered in 1963 [43] and exclusively applies to 3He. It is interesting to note that
in this first experiment, NMR measurements were performed and the optical de-
tection of pulsed NMR was performed together with standard cw NMR (Fig. 9).
This attention paid to NMR is probably due to the fact that this work was led by
G.K. Walters, who conducted the NMR experiment depicted in Fig. 6 a few years
before, and to the interest in magnetometry that motivated this research.

In a helium gas, MEOP is actually performed between two excited levels,
the lower 23S level being metastable with a radiative lifetime of several thousands
seconds (see Fig. 10). This level, which acts as a ground state for the OP process, is
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Figure 9. Sketch of the first MEOP experiment providing high
nuclear polarization in 3He. Optical detection of NMR precession
(top right) provided a much higher SNR than cw NMR (bottom
right). Figures are from reference [43].
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Figure 10. Left: Schematic view of a MEOP setup. In a low-
pressure helium-3 gas cell, a weak RF discharge promotes a small
fraction (∼10−6) of the atoms into the excited metastable state
23S, where resonant absorption of the circularly polarized 1083 nm
light can occur. Nuclear polarization is transferred to the ground
state atoms by metastability exchange collisions. Long OP cells
can be used thanks to the weak absorption of OP light, espe-
cially by a polarized gas. Right: Atomic levels of 3He and physical
processes involved in the OP cycle. The 23S and 23P states are
composed of 2 and 5 sublevels, respectively, and the 1083 nm line
has a complex structure. An efficient OP transition actually con-
nects the highest-lying F=1/2 sublevels of the 23S and 23P states,
and the OP process is similar to that sketched in Fig. 7.
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usually populated by electron collisions in a plasma discharge in a gas at moderate
density (1016-1017 cm−3). The lifetime of these metastable states is actually limited
to 1-10 ms by diffusion to the cell walls, and their number density is of order
10−6 of the total density. For the 3He isotope in this excited metastable state, an
efficient coupling between the nucleus and the electrons (the hyperfine interaction)
results in a strong entanglement of electronic and nuclear spins. Therefore the OP-
enforced optical orientation of the electronic angular momentum simultaneously
induces nuclear orientation as well. This nuclear orientation is rapidly transferred
to the atoms having remained in the ground state through metastability exchange
collisions. This important collisional process takes place between the true ground
state and the 23S metastable state, and corresponds to a very short interaction
resulting in a fast exchange of the electronic excitations of the colliding atoms,
with no change in the nuclear orientations.

Each of the two methods has its own advantages and limitations. For instance,
SEOP operates both for 3He and 129Xe, and is used for numerous studies involving
polarized gases [44], e.g. in precise nuclear co-magnetometers in the search of the
electric dipole moment of neutrons [45]. Progress in laser technology at 795 nm,
at first with Ti:Sapphire lasers, then with dedicated diode laser arrays, has made
it an efficient tool for all applications requiring high-density polarized gases, such
as spin filters for cold neutrons [46] or lung imaging [47]. To date, it is the only
method to polarize xenon, of which large amounts can now be obtained with a
high polarization (e.g. 0.3 liter/hour with 50% polarization [48]). For 3He, SEOP
directly operates at high pressure (several bars), but is a slow process (several hours
are required to obtain a sizable polarization). This difference originates from the
much lower spin-exchange cross section that ensures polarization transfer from
Rb to He., and current studies using mixtures of alkali atoms yield promising
results [49].

When laser light with adequate spectral characteristics is used, MEOP pro-
vides very high nuclear polarization (>70%) with good efficiency (>1 polarised
nucleus per absorbed photon) [50]. With the recent development of spectrally
suitable high power fiber lasers [51], the only drawback of this method is its lim-
ited range of operating pressures, of order 0.5-5 mbar, required to have a suitable
plasma discharge in which metastable atoms are populated [52, 53]. Whenever a
higher final pressure is needed, non-relaxing compression of the gas is required.
This is the case for several applications including lung MRI, and it introduces
demanding requirements on the gas handling and compressing devices. However,
it was recently shown that the range of operating pressures can be extended to
several tens of mbar by performing MEOP in a high magnetic field, such as the
1.5 T field of an MRI system [54, 55], which could make subsequent compression
less difficult to perform.

The first attempt at compressing 3He after it has been polarized by MEOP
dates back to 1968 [56], using cryogenic means to increase the gas density and
ultimately liquefy it. But only limited polarization (of order 1%) could be obtained
due to fast wall relaxation. It was only with the use of non-relaxing cryogenic
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coatings providing long T1s [57] that polarized 3He could be successfully cooled
as a highly polarized gas, or liquid [58], allowing for instance studies of the effect
of spin-polarization on quantum properties of gaseous 3He [59, 60]. This series
of studies in dense polarized systems obtained by cryogenic methods is currently
focused on the non-linear NMR behavior that results from the action of distant
dipolar fields in hyperpolarized liquids [61].

The following attempt at compressing polarized 3He was made in 1970 us-
ing a mechanical Toepler pump (a mercury piston moving in a glass vessel) and
only met with a limited success (less than 4% polarization at 0.3 bar) [62] due
to the lack of powerful OP light sources. Mechanical compression attempts re-
sumed only after the first multi-watt lasers for MEOP have been developed in
the late 1980s [63], this time succeeding in reaching sufficient polarization and
pressure for use in various experiments [64, 65], in particular to prepare polarized
3He targets for the measurement of the neutron electric form factor in scatter-
ing experiments of polarized electron beams [66]. Since then, various non-relaxing
mechanical compression techniques have been applied to polarized 3He, using a
diaphragm pump [67], a peristaltic pump [68], or a piston compressor [69, 70] for
applications in lung MRI, in more accurate electron scattering experiments, and
in neutron spin filters [71, 72].

A convenient feature of MEOP-based polarization systems is the possibility
to up- or down-scale the apparatus depending on requirements, and on available
budget. Commercially available fiber lasers9 deliver up to 15 W. The optimized
large-scale system currently in operation at Mainz University, that is used to pro-
duce polarized gas for lung MRI, for scattering experiments and for neutron spin
filters, makes use of five OP cells, each one being over 2 m-long, to efficiently
absorb as much as possible of the available pumping power [70]. With the high
quantum efficiency of MEOP, this system routinely yields 1.2 bar×liter/hour of
80%-polarized 3He, or 3.3 bar×litre/hour of 60%-polarized 3He [70]. To date, sys-
tems with similar performance operate only at the ILL in Grenoble [69] and in
Garching10 for neutron spin filters. For all applications, polarized 3He gas must
be shipped to the final user since these systems are too bulky and delicate to be
transported. Storage cells suitable for transportation, i.e. with very long relaxation
times and magnetic shielding to avoid loss of polarization, have been developed,
and shipping of hundreds of liters of polarized gas has now been successfully per-
formed [70]. More compact systems, in which cell size, laser power, and compressor
flow rate are all consistently lower, have of course a significantly reduced perfor-
mance, yielding e.g. 0.2-0.3 bar×liter/hour of 50%-polarized 3He [67, 68]. Still, for
less demanding applications such as methodological developments in MRI, lung

9We are aware of two companies having provided lasers at 1083 nm with the 2-GHz bandwidth
matched to the Doppler absorption profile of He atoms: Keopsys (Lannion, France) and IPG
Photonics (Burbach, Germany).
10The gas polarizer used in Garching was manufactured by IC-Automation, a Mainz-based com-
pany who built this sole system using the expertise of the research team of Mainz University.
They have currently no plans to make more gas polarizing systems.
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imaging in small animals, or imaging with a limited number of patients, these
systems might offer an increased ease of use by providing locally-polarized gas on
demand.

These options to gas provision must indeed be compared to the use of SEOP-
based systems. In-house SEOP systems have been developed by several groups,
and in addition a dozen commercial units11 have been implemented in selected
hospitals for research on lung MRI. These systems routinely yield 1 liter of 30%
polarized gas after 8-12 hours of OP, which is currently less than what both kinds
of MEOP-based systems can provide.

4.2. Specific features of imaging with polarized gases

The most obvious difference between MRI with polarized noble gases and usual
proton MRI is of course the lower operating frequency which results from the lower
value of the gyromagnetic ratio (30% lower for 3He, 3.6 times lower for 129Xe). All
rf systems, including transmit and receive coils, thus have to be designed for these
unusual frequencies. However, more than ten years after the first lung image was
obtained using prototype systems, commercial solutions now exist and operation
at these frequencies is now a standard option for many systems.

The main difference that makes MRI with polarized gases so unusual for
untrained MR physicists or radiologists is the non-renewable character of the po-
larization. Nuclear relaxation has to be considered as a plague, not as a natural
way to obtain signals after just waiting a few seconds (the usual T1 value for
protons in tissues). Gas management has to carefully avoid relaxation losses at
all stages, from the preparation of the polarized gas until the end of the image
acquisition. Magnetic relaxation induced by walls of gas containers is now well
understood and controlled [73, 74, 75], and all materials in contact with the gas
(tubes, valves, mouthpieces or respiratory masks...) must be selected with care.
Magnetic relaxation can also occur in the bulk of the gas due to atomic diffusion
in inhomogeneous magnetic field, with a typical rate:

1/T magn.
1 ∼ D(G/B)2, (12)

that scales with the diffusion coefficient D (2 cm2/s at 1 bar for 3He) and with the
square of the relative field inhomogeneity (G/B in the case of a uniform gradient
G). This shows in particular that polarized gas should not dwell in parts of the
MRI magnet where the field has a steep variation with position. A last important
source of relaxation lies in collisions with the paramagnetic O2 molecules of air,
which induce a decay rate:

1/T magn.
1 ∼ 0.41 × pO2, (13)

11The polarizers have been developed on the late 1990s by MITI, Magnetic Imaging Technologies,
Inc., a spinoff company from the Princeton Group that was involved in the first lung imaging
demonstration [36]. MITI was then sold to Nycomed-Amersham, which later became Amersham
Health, which in turn was later sold to GE Healthcare. The polarizers are still maintained in
operation, but their future status is unknown.
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where pO2 stands for the partial pressure of O2 (in bars). This value is inferred
from reference [76] for room temperature, and corresponds to a relaxation time
of 11.4 s in room air (with 21% O2). Polarized 3He must thus be preserved from
exposure to air until the time at which it is inhaled. Polarization decays rather
rapidly in-vivo, and data acquisition must be performed in a matter of seconds -
which anyhow usually corresponds the maximum time patients with respiratory
problems can hold their breaths. This relaxation process is indeed a constraint,
but can also be used to evaluate the O2 contents of the lungs (see Fig. 14 in
the next section). The last feature of imaging with a hyperpolarized sample is
that the sequence of rf pulses must be tailored for an optimal use of the available
magnetization, either by an appropriate choice of successive small tip angles, or
by using multiple echo acquisition whenever possible. Since polarized gas is not
easily available, and so far only in rather limited amounts, a careful planning of
the patients’ imaging sessions is necessary.

A second specific series of features of MRI with polarized gases originates
from the fast diffusion of atoms in a gas phase. The beneficial consequence on
transverse relaxation induced by internal gradients has already been discussed at
the beginning of section 4, but adverse effect of diffusion also exist. For instance,
the spatial resolution is intrinsically limited by diffusion: for a given amplitude G of
an imaging gradient, the spatial resolution is δx=1/γGTobs (see section 3.1), while
diffusion-induced attenuation limits the useful time to Tobs ∼ Dδx2. The maximum
resolution thus scales as δx ∼ (D/γG)1/3. For standard MRI systems, for which
G cannot exceed 30 mT/cm, the highest resolution for 3He diffusing in air is of
order 0.4 mm, not quite small enough to directly image alveolar structures: MR
microscopy is not possible with gases. However diffusion weighting in MRI offers
the potential to probe gas diffusion over a wide range of time and paces scales,
linked by the same relation that directly limits image resolution: Tobs ∼ Dδx2.
Characterizing apparent diffusion at various scales within the lung may indirectly
provides relevant information on the lung microstructure.

A last specific feature of NMR or MRI with polarized samples is that the
SNR is field-independent over a wide range of field values B0 (see section 2.2).
The direct influence of B0 is limited to the effect of internal gradients on the sig-
nal characteristics. From this point of view, high fields (1.5 T and above) induce
short values for T ∗

2 , that may be more sensitive to the alveolar characteristic size
and shape, thus providing a physiologically relevant contrast mechanism [77]. Con-
versely, transverse relaxation times are longer at reduced fields, as demonstrated
for instance at 0.1 T [78] and at 3 mT [79]. Weaker field gradients can then be used
for imaging or for ADC measurements. This actually improves SNR in images and
allows measuring diffusion coefficients at longer time scales, thus providing more
information on the connectivity of lung air spaces. Monitoring the decay of spin-
echo trains provides a precise way of measuring ADC coefficients in this case. At
ultra-low fields, internal gradients are so low that the observed decay in spin-echo
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experiments results from the oxygen-induced relaxation process for which Eq. 13
also applies [79].

Another clear advantage of operating at low field is the reduced cost and
increased flexibility of the imaging system: an open geometry can be designed,
and standing or sitting patients may be examined. Initial studies at ultra low field
in home made vertical scanners have demonstrated the potential of the technique
[80, 81]. This could open up possibilities of low-cost dedicated scanners for the
screening or follow-up of lung diseases.

4.3. Current status of research

In this section we present a selection of results chosen to illustrate the potential of
lung MRI in humans with polarized 3He, deliberately overlooking all the impor-
tant work done using 129Xe or in animal models, for which much information can
be found in the literature (e.g. [82]). These results have been obtained by clinical
research teams participating in the PHIL project (Polarized Helium to Image the
Lung), a joint effort of nine European research teams in five countries [83]. An
important objective of the project was to demonstrate the potential and the va-
lidity of the new MRI method as a diagnostic and prognostic tool for given lung
pathologies: emphysema and selected Chronical Obstructive Pulmonary Diseases
(COPD), such as bronchitis and bronchiolitis. This choice was motivated by the
frequent occurrence of these diseases and the very high cost of their treatment
for society: 10% of the population and 25% of the smokers suffer from COPD,
which is the fourth cause of mortality in Europe and in the USA. The core of the
project was to perform a clinical trial on a large group of patients with the 3He
MRI method and with conventional techniques: pulmonary function tests, High
Resolution Computed Tomography (HRCT), Krypton scintigraphy. An important
objective of the PHIL project was to provide new tools for the study of COPD,
aiming at differentiation of various types of diseases, as well as their detection at
an early stage, with expectation that in the long range the findings of the project
could lead to monitoring therapeutic treatment. The clinical trial successfully en-
rolled a total of 116 subjects (62 COPD, 17 alpha-1-antitrypsin deficiency (ATD)
and 37 healthy volunteers). The collaborative work has triggered the dissemination
of the method in Europe. In addition to the trials performed in Mainz, Sheffield
and Copenhagen, animal model studies have been made in Lyon and Madrid, and
methodological developments in Paris area, Cracow and Mainz. The collaboration
is currently pursued, including several new participants, in the Phelinet project
that aims at promoting the training of young researchers and scientific exchanges
between participants [84].

An important objective of research with 3He MRI is the systematic com-
parison of MR images with other existing imaging modalities. Sets of images ob-
tained by 3He ventilation images obtained during 12 s-long breath holds and by
81mKr single photon emission computed tomography (SPECT)12 are displayed in

12A cyclotron produces the radioactive isotope 81Rb, that decays to metastable 81mKr, which the
patient inhales. The metastatable isotope decays and emits gamma photons that are detected. A
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Figure 11. Lung images in a normal volunteer: 3He MRI (top),
and 81mKr SPECT (bottom).- Coronal slices from the posterior
part of the lung to the anterior part, from the upper left corner.
Courtesy of Trine Stavngaard and Lise Vejby Soegaard, Danish
Research Centre for Magnetic Resonance, Copenhagen University
Hospital, Hvidovre, Denmark.

Figs. 11 (for a normal volunteer) and 12 (for a COPD patient). In both sets of
images, the spatial resolution provided by 3He MRI is far superior (1.3×1.3 mm2

in each 10 mm-thick slice), and much more detailed information is provided on
ventilation defects in Fig 12. The study included 32 patients, and showed good
correlation between the ventilation defects assessed by the two methods, in spite
of the difference in lung inflation conditions for the two methods (17 min.-long
SPECT images were acquired close to tidal volume during normal breathing) [85].

Much higher time-resolution can be obtained using a sliding window radial
acquisition scheme [86]. Projection images obtained by this method are shown in
Fig. 13, with a time interval between displayed images of 0.54 s. For the normal
volunteer, the temporal passage of gas down the trachea, into the bronchi and
peripheral lung is clearly resolved. For the COPD patient, the image series shows
regions of ventilation obstruction in both lungs, particularly in the upper lobes,

gamma camera records planar projections (scintigrams) showing the ventilated area in the lung.
From several scintigrams taken from various angles, a 3-D reconstruction of the lung ventilation
is obtained. For the images in Figs 11 and 12, the spatial resolution was 8 mm, the radiation
dose was 1/2 mSv, and the imaging time was 17 min.
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Figure 12. Same 3He MRI and 81mKr SPECT lung images as
in Fig. 11 for a COPD patient. Courtesy of Trine Stavngaard and
Lise Vejby Soegaard.

and a delayed emptying/depolarization of gas in the lower left lobe which could be
indicative of air trapping. Such dynamic ventilation maps may provide valuable
information on ventilation defects in COPD patients, complementary to the static
ventilation defect data obtained during a breath hold (Figs. 11 and 12) [87].

Decay of signal during a breath hold resulting from O2-induced relaxation
(Eq. 13) can be recorded in a series of images, from which maps of the local
partial pressure of oxygen are computed, as displayed in Fig. 14 for a normal
subject and a COPD patient [88]. When low-resolution images are acquired, pO2

values are determined with such high accuracy that their time-evolution provides
information on regional oxygen uptake. It is dependent on lung perfusion, and thus
the uptake map can be seen as a regional ventilation perfusion (VA/Q) map of
the lung [89], allowing a direct measurement of the regional VA/Q distribution in
a noninvasive fashion at relatively high resolution when compared to ventilation
perfusion scintigraphy.

Figure 15 displays examples of ADC maps obtained using a bipolar diffusion-
sensitization gradient, a standard technique which provides information on diffu-
sion of 3He atoms over relatively short times and distances. Such images and the
related histograms of increased ADC values have been shown to correlate well with
enlarged alveolar sizes of patients with emphysema [90].
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Figure 13. Dynamic projection images obtained using a radial
sequence (time resolution: 0.135 s). Top: selected images in a series
from a healthy normal subject recorded during an inhalation of
300 ml of 40%-polarized 3He gas. Bottom: Similar dynamic time
series from a COPD patient. Courtesy of Jim Wild, Academic
Radiology Dept., U. of Sheffield, UK.

These few sets of images have been chosen as illustrative examples of the
various relevant physiological information that MRI with polarized 3He may quan-
titatively provide. Similar research has been indeed performed since the early days
of polarized gas MRI also in the USA, where the University of Virginia has been,
and remains, one of the most active research centers. It is pursued by tens of teams
worldwide, including in Canada and in Japan, who are involved in lung MRI with
polarized 3He or 129Xe. More than 1000 patients have now been subject to var-
ious imaging protocols, and the potential of MRI in the early detection and in
the staging of disorders such as asthma, emphysema, and cystic fibrosis has been
explored. Its potential interest has also been suggested for very different problems
such as the follow-up of lung transplants, or the comparison of lung development
during childhood for normal children [91] and for children with a pre-term birth
history [92].

5. Conclusion and prospects

Looking back at the history of NMR and of MRI, one is impressed by its fast
development as a research field, as a tool, as an industrial opportunity, and as
widespread clinical imaging modality. NMR moved rapidly from fundamental re-
search at Stanford University to commercialization because of Varian’s involve-
ment. From that point, industry led the development, that depended more on
technology than on fundamental research. Later on, through most of MRI’s evolu-
tion, the challenges were to improve image quality and to reduce scan times, which
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Figure 14. Measurement of oxygen concentration in the lung
using 3He imaging. Left: Image of a healthy volunteer with rela-
tively homogeneous distribution of oxygen. Right: Image of a pa-
tient with chronic obstructive pulmonary disease (COPD) demon-
strating inhomogeneous distribution of oxygen because of regional
impairment of oxygen uptake by blood. Thus, alveolar oxygen con-
centration remains elevated in these regions when compared with
regions with normal ventilation and perfusion. Data from refer-
ence [88] - Courtesy of Wolfgang Schreiber, Johannes Gutenberg-
University Mainz, Medical School, Germany.

again involved a lot of technology. As regards MRI, every decade was marked by
spectacular qualitative and quantitative progress. Following the physicists’ early
demonstrations in the 70s, leading instrumentation companies heavily invested in
research and development in the 80s, and started clinical evaluation of images. The
90s were the time of the increase in available equipment for routine use, and of
the growing clinical usefulness of the images. In the recent years, together with a
steady increase in the number of operational imaging sites, there is an impressive
reduction of scan times with the use of revolutionary methods for data acquisition
and signal processing.

It can be argued that one key factor for this success story probably lies in its
excellent timing [93]. For instance, two decades earlier, the technology for whole-
body superconducting magnets and, more importantly, for computers performing
all the necessary Fourier transforms, simply did not exist. Two decades later,
the demand for diagnostic imaging would have been less compelling, and better-
established imaging modalities using well-controlled ionizing radiations (e.g. CT-
scans) would possibly have been considered as sufficient golden standards. Both the
equipment industry and the radiologic profession would probably have required a
strong incentive to accept such innovative methods and techniques. But even more
important is the fact that the regulatory environment has drastically changed
since the 80s. With the increasing concern regarding the impact of static and
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Figure 15. Left to right: 3He MRI gas density projection images,
ADC maps and ADC histograms. Top to bottom: data from a 48-
year-old female healthy non-smoker, a 51-year-old female healthy
smoker, and a 62-year-old male diagnosed COPD patient. Cour-
tesy of J. Wild, Academic Radiology Dept., U. of Sheffield, UK.

oscillatory fields, the level of proof of safety required for new instruments based
on new principles is now tremendous. As a result, the development costs until
the obtention of FDA approval in the USA, and of the equivalent certification
in other countries, has become so high that it would probably be impossible to
fund, neither by industry, who now have limited freedom for such ventures, nor
by academic institutions, who have increasingly limited budget for unscheduled
research.
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The history of the new MRI technique for imaging the lung - the only organ
that conventional MRI can hardly observe - has in a way followed a parallel,
or rather a delayed path. Like NMR, it appeared as an unexpected outcome of
decades of research and of instrumental developments aiming at totally different
fundamental studies with highly polarized helium-3. With optical pumping, the
stage was set since the 60s, but the main character in the story - the powerful
laser needed for sufficient gas polarization - delayed its appearance until the 90s.
Up to now, access to polarized gas has been difficult and this remains the main
bottleneck preventing many research groups to become active in the field. The
technology exists, it has been demonstrated for both optical pumping methods,
including with a small number of commercial systems, and yet it is not widely
developed. The arguments given by potential manufacturers include the uncertain
status of patents regarding MRI with polarized gases, the increasing difficulty
and cost of certification processes: since gases are inhaled, they are considered as
drugs, and approval is consequently much harder to obtain than for a new type of
coil or of MR sequence. Such arguments are disturbingly reminiscent of the above
uchronic discussion on proton MRI.

In spite of these differences in timing, both proton MRI and polarized gas
MRI are incredibly versatile imaging modalities with a unique potential for di-
agnosis. They are totally non-invasive, they can be rugged tools for the clinician
or powerful instruments for the most advanced research - one may think, for in-
stance, of the studies of cognitive processes using functional MRI of the brain.
The remaining challenges for the dissemination and use of helium-3 MRI are now
probably off the hands of the physicists who contributed to the beginning of this
story, but they all wish it will have a happy end.
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