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Preface

More than five years have passed since the first edition of this book was
published. Surface science is still a very active field of research, and the fact
that the Nobel Prize 2007 in chemistry was awarded to Gerhard Ertl “for his
studies of chemical processes on solid surfaces” reflects the recognition that
surface science has received in recent years. Nevertheless, the traditional sur-
face science approach of studying low-index surfaces and simple adsorbates is
no longer the focus topic of the research in this field. Instead, the interest has
been shifted to the study of more and more complex structures that are also
relevant for nanotechnology and even life sciences. The growing complexity
of the studied systems makes a close collaboration between theory and ex-
periment actually more essential in order to gain deeper insights into these
systems. In fact, there has also been substantial progress in the theoretical
treatment of structures and processes on surfaces. Therefore it was time to
revise and update this textbook.

First of all, in this second edition there is a new chapter on Surface Mag-
netism which reflects the growing interest in low-dimensional magnetic struc-
tures on surfaces for, e.g., the magnetic storage of data. In addition, all other
chapters have been updated in order to take into account novel developments
in theoretical surface science. This is reflected in the fact that there are now
more than one hundred new references. For example, one of the “hot” topics in
surface science is the structure and function of thin oxide films, so-called sur-
face oxides; therefore a discussion of their appropriate theoretical description
including some examples was added. Furthermore, the short section about
STM theory was expanded, and recent ab initio based molecular dynamics
simulations of molecular adsorption on surfaces are addressed. All other top-
ics were carefully reviewed and new important results were incorporated.

As far as the chapter on perspectives is concerned, I decided to leave the
list of topics unchanged. It is true that in every subject covered in this final
chapter there has been significant progress in the last years, which is reflected
in the new version of the chapter. However, all these fields have in my opinion
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not sufficiently matured yet so that it is still justified to consider them as
promising subjects that deserve further consideration.

For the new parts of this textbook I am in particular indebted to my col-
leagues Stefan Blügel, George Kresse, Karsten Reuter and Werner Hofer for
sharing their insights with me. Besides, I want to thank the PostDocs and
graduate students of my new research group in Ulm, Benjamin Berberich,
Christian Carbogno, Arezoo Dianat, Yoshihiro Gohda, Jan Kucera, Daniela
Künzel, Thomas Markert, Christian Mosch, Sung Sakong, Armin Sauter,
Sebastian Schnur, Katrin Tonigold. Doing research and teaching together with
them provided a most stimulating background for the completion of this sec-
ond edition. I also would like to acknowledge the continuing support of Claus
Ascheron from Springer who initiated the completion of this second edition.

Finally I want to thank my wife Daniella and my children Noah and Samira
for their encouragement and for reminding me from time to time that there
are also other things beyond theoretical surface science.

Ulm Axel Groß
April 2009



Preface to the First Edition

Recent years have seen tremendous progress in the theoretical treatment of
surface structures and processes. While a decade ago most theoretical studies
tried to describe surfaces either on a qualitative level using empirical parame-
ters or invoked rather severe approximative models, there is now a large class
of surface system that can be addressed quantitatively based on first-principles
electronic structure methods. This progress is mainly due to advances in the
computer power as well as to the development of efficient electronic structure
algorithms. However, ab initio studies have not only been devoted to micro-
scopic aspects. Instead, starting from a description of the electronic structure
and total energies of surfaces, a hierarchy of methods is employed that allows
the theoretical treatment of surfaces from the microscopic length and time
scales up to the macroscopic regime. This development has led to a very
fruitful cooperation between theory and experiment which is reflected in the
large number of research papers that result from a close collaboration between
experimental and theoretical groups.

Still, in my opinion, this progress had not been reflected in the available
surface science textbooks. I felt that there was a need for an advanced textbook
on theoretical surface science. Rather than following a macroscopic thermody-
namic approach, the textbook should be based on a microscopic point of view,
so-to-say in a bottom-up approach. This provided the motivation to start the
project this book resulted from. The text is based on a class on theoretical
surface science held at the Technical University in Munich. The class and the
manuscript evolved simultaneously, taking into account the feedback from the
students attending the class.

I have tried to give a comprehensive overview of most fields of modern
surface science. However, instead of listing many different data I have rather
picked up some benchmark systems whose description allows the presentation
and illustration of fundamental concepts and techniques in theoretical surface
science. The theoretical results are compared to experiments where possible,
but experimental techniques are not introduced. Still this book is not only
meant for students and researchers in theoretical surface science, but also for
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experimentalists who either are interested in the basic concepts underlying the
phenomena at surfaces or want to get an introduction into the methods their
theoretical colleagues are using. Of course not every aspect of surface science
could have been covered, for example surface magnetism is hardly touched
upon.

I have tried to present derivations for most of the theoretical methods
presented in this book. However, I did not intend to overburden this book
with lengthy calculations. A detailed list of references is provided for the
reader who wants to get more detailed information on specific methods or
systems. In particular, I have tried to select excellent comprehensive review
papers that can serve as a basis for further reading. For that reason, the
reference list does not necessarily reflect the scientific priority, but rather the
usefulness for the reader. In this context I would also like to apologize to
all colleagues who feel that their own work is not properly presented in this
book. It is important to note that in fact I am not the first to use a bottom-up
approach in the presentation of first-principles calculations. This concept was
developed by Matthias Scheffler for his class on theoretical solid-state physics
at the Technical University in Berlin, and in using this concept for the present
textbook I am deeply indebted to him.

Such a book would indeed not be possible without interaction with col-
leagues. I am grateful to my students Arezoo Dianat, Christian Bach, Markus
Lischka, Thomas Markert, Christian Mosch, Ataollah Roudgar and Sung
Sakong for stimulating discussions in the course of the preparation of this
book and for their careful proofreading of the manuscript. Special thanks go
to my colleagues and friends Wilhelm Brenig, Peter Kratzer, Eckhard Pehlke
and again Matthias Scheffler for their careful and competent reading of the
manuscript and their helpful suggestions in order to further improve the book.

This book is also a product of the insight gained in the discussions and
collaborations with numerous colleagues, in particular Steve Erwin, Bjørk
Hammer, Ulrich Höfer, Dimitrios Papaconstantopoulos, Helmar Teichler,
Steffen Wilke, Martin Wolf, and Helmut Zacharias. In addition, I am indebted
to Claus Ascheron from Springer-Verlag who supported this book project from
the early stages on.

Finally I would like to thank my wife Daniella Koopmann, my son Noah
and my yet unborn daughter for their patience and understanding for all the
time that I devoted to writing this book instead of taking care of them.

München Axel Groß
April 2002
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1

Introduction

It has always been the goal of theoretical surface science to understand the
fundamental principles that govern the geometric and electronic structure of
surfaces and the processes occuring on these surfaces like gas-surface scatter-
ing, reactions at surfaces or growth of surface layers. Processes on surfaces
play an enormously important technological role. We are all surrounded by
the effects of these processes in our daily life. Some are rather obvious to
us like rust and corrosion. These are reactions that we would rather like to
avoid. Less obvious are surface reactions that are indeed very advantageous.
Many chemical reactions are promoted tremendously if they take place on a
surface that acts as a catalyst. Actually most reactions employed in the chem-
ical industry are performed in the presence of a catalyst. Catalysts are not
only used to increase the output of a chemical reaction but also to convert
hazardous waste into less harmful products. The most prominent example is
the car exhaust catalyst.

The field of modern surface science is characterized by a wealth of micro-
scopic experimental information. The positions of both substrate and adsor-
bate atoms on surfaces can be determined by scanning microscopes, the initial
quantum states of molecular beams hitting a surface can be well-controlled,
and desorbing reaction products can be analyzed state-specifically. This pro-
vides an ideal field to establish a microscopic theoretical description that can
either explain experimental findings or in the case of theoretical predictions
can be verified by experiment.

And indeed, recent years have seen a tremendous progress in the micro-
scopic theoretical treatment of surfaces and processes on surfaces. While some
decades ago a phenomenological thermodynamic approach was prevalent, now
microscopic concepts are dominant in the analysis of surface processes. A va-
riety of surface properties can be described from first principles, i.e. without
invoking any empirical parameters.

In fact, the field of theoretical surface science is no longer limited to ex-
planatory purposes only. It has reached such a level of sophistication and
accuracy that reliable predictions for certain surface science problems have

A. Groß, Theoretical Surface Science,
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2 1 Introduction

Fig. 1.1. The virtual chemistry and physics lab at surfaces: simulation of surface
structures and processes at surfaces on the computer

become possible. Hence both experiment and theory can contribute on an
equal footing to the scientific progress. In particular, computational surface
science may act as a virtual chemistry and physics lab at surfaces. Computer
experiments can thus add relevant information to the research process. Such
a computer experiment in the virtual lab is illustrated in Fig. 1.1.

In this book the theoretical concepts and computational tools necessary
and relevant for theoretical surface science will be introduced. I will present
a microscopic approach towards the theoretical description of surface science.
Based on the fundamental theoretical entity, the Hamiltonian, a hierarchy of
theoretical methods will be introduced in order to describe surface processes.
But even for the largest time and length scales I will develop a statistical
rather than a thermodynamic approach, i.e., all necessary parameters will be
derived from microscopic properties.

Following this approach, theoretical methods used to describe static prop-
erties such as surface structures and dynamical processes such as reactions
on surfaces will be presented. An equally important aspect of the theoreti-
cal treatment, however, is the proper analysis of the results that leads to an
understanding of the underlying microscopic mechanisms. A large portion of
the book will be devoted to the establishment of theoretical concepts that
can be used to categorize the seemingly immense variety of structures and
processes at surfaces. The discussion will be rounded up by the presentation
of case studies that are exemplary for a certain class of properties. Thus I will
address subjects like surface and adsorbate structures, surface magnetism,
reactivity concepts, dynamics and kinetics of processes on surfaces and elec-
tronically nonadiabatic effects. All chapters are supplemented by exercises in
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which the reader is invited either to reproduce some important derivations or
to determine typical properties of surfaces.

The theoretical tools employed for surface science problems are not exclu-
sively used for these particular problems. In fact, surface science is a research
field at the border between chemistry and solid state physics. Consequently,
most of the theoretical methods have been derived either from quantum chem-
istry or from condensed matter physics. It is outside of the scope of this book
to derive all these methods in every detail. However, most of the methods
used commonly in theoretical surface science will be addressed and discussed.
Hence this book can be used as a reference source for theoretical methods.
It is not only meant for graduate students doing research in theoretical sur-
face science but also for experimentalists who want to get an idea about the
methods their theoretical colleagues are using.

However, it is fair to say that for a certain class of systems theoretical
surface science is still not accurate enough for a reliable description. These
problems will be mentioned throughout the book. The open problems and
challenges will be presented, but also the opportunities will be illustrated
that open up once the problems are solved.

In detail, this book is structured as follows. In the next chapter we first
introduce the basic Hamiltonian appropriate for surface science problems. We
will consider general properties of this Hamiltonian that are important for
solving the Schrödinger equation. At the same time the terminology necessary
to describe surface structures will be introduced.

A large part will be devoted to the introduction of electronic structure
methods because they are the foundation of any ab initio treatment of surface
science problems. Both wave-function and electron-density based methods will
be discussed. In addition, the most important techniques used in implemen-
tations of electronic structure methods will be addressed.

The structure and energetics of metal, semiconductor and insulators sur-
face are the subject of the following chapter. Using some specific substrates
as examples, the different microscopic principles determining the structure of
these surfaces will be introduced. In this context, the theoretical treatment
of surface phonons is also covered. In the succeeding chapter, the theoretical
description of surfaces will be extended to atomic and molecular adsorption
systems. Reactivity concepts will be discussed which provide insight into the
chemical trends observed in adsorption on clean, precovered and structured
surfaces. These concepts are also applied to simple reactions on surfaces.

Magnetic properties of low-dimensional systems can be quite different from
those of three-dimensional solids. This is of particular interest due to the
tremendous technological importance of the magnetic storage of data. The
effects of the dimensionality will be discussed in the chapter on surface mag-
netism where also the theoretical methods to treat magnetic systems will be
briefly introduced.

Dynamics of scattering, adsorption and desorption at surfaces is the sub-
ject of the next chapter. Classical and quantum methods to determine the
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time evolution of processes on surfaces will be introduced. The determina-
tion of reaction probabilities and distributions in gas-surface dynamics will
be illustrated. For processes such as diffusion, growth or complex reactions at
surfaces, a microscopic dynamical simulation is no longer possible. A theoret-
ical treatment of such processes based on ab initio calculations is still possible
using a kinetic approach, as will be shown in the next chapter.

While most of the processes presented in this book are assumed to occur
in the electronic ground state, there is an important class of electronically
nonadiabatic processes at surfaces. The theoretical description of nonadiabatic
phenomena has not reached the same level of maturity as the treatment of
electronic ground-state properties, as the following chapter illustrates, but
there are promising approaches. Finally, I will sketch future research directions
in surface science where theory can still contribute significantly to enhance
the understanding, and I will give examples of first successful applications.



2

The Hamiltonian

Any theoretical description has to start with the definition of the system un-
der consideration and a determination of the fundamental interactions present
in the system. This information is all contained in the Hamiltonian which is
the central quantity for any theoretical treatment. All physical and chemical
properties of any system can be derived from its Hamiltonian. Since we are
concerned with microscopic particles like electrons and atoms in surface sci-
ence, the proper description is given by the laws of quantum mechanics. This
requires the solution of the Schrödinger equation.

In this chapter we will first describe the Hamiltonian entering the Schrö-
dinger equation appropriate for surface science problems. One general approx-
imation that makes the solution of the full Schrödinger equation tractable is
the decoupling of the electronic and nuclear motion which is called the Born–
Oppenheimer or adiabatic approximation. We will then have a closer look at
the specific form of the Hamiltonian describing surfaces. We will discuss the
symmetries present at surfaces. Taking advantage of symmetries can greatly
reduce the computational cost in theoretical treatments. Finally, we will in-
troduce and illustrate the nomenclature to describe the structure of surfaces.

2.1 The Schrödinger Equation

In solid state physics as well as in chemistry, the only fundamental interaction
we are concerned with is the electrostatic interaction. Furthermore, relativistic
effects are usually negligible if only the valence electrons are considered. To
start with, we treat core and valence electrons on the same footing and neglect
any magnetic effects. Then a system of nuclei and electrons is described by
the nonrelativistic Schrödinger equation with a Hamiltonian of a well-defined
form,

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.1)

Tnucl and Tel are the kinetic energy of the nuclei and the electrons, respectively.
The other terms describe the electrostatic interaction between the positively

A. Groß, Theoretical Surface Science,
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6 2 The Hamiltonian

charged nuclei and the electrons. As long as it is not necessary, we will not take
the spin into account for the sake of clarity of the equations. Consequently, ne-
glecting spin the single terms entering the Hamiltonian are explicitly given by

Tnucl =
L∑

I=1

P 2
I

2MI
, (2.2)

Tel =
N∑

i=1

p2
i

2m
, (2.3)

Vnucl−nucl =
1
2

∑

I �=J

ZIZJe
2

|RI −RJ | , (2.4)

Vnucl−el = −
∑

i,I

ZIe
2

|ri −RI | , (2.5)

and

Vel−el =
1
2

∑

i�=j

e2

|ri − rj | . (2.6)

Throughout this book we will use CGS-Gaussian units as it is common prac-
tice in theoretical physics textbooks. Atoms will usually be numbered by cap-
ital letter indices. Thus, ZI stands for the charge of the I-th nuclei. The factor
1
2 in the expressions for Vnucl−nucl and Vel−el ensures that the interaction be-
tween the same pair of particles is not counted twice.

In principle we could stop here because all what is left to do is to solve
the many-body Schrödinger equation using the Hamiltonian (2.1)

HΦ(R, r) = EΦ(R, r) . (2.7)

The whole physical information except for the symmetry of the wave functions
is contained in the Hamiltonian. In solving the Schrödinger equation (2.7), we
just have to take into account the appropriate quantum statistics such as the
Pauli principle for the electrons which are fermions. The nuclei are either
bosons or fermions, but usually their symmetry does not play an important
role in surface science. Often relativistic effects can also be neglected. Only if
heavier elements with very localized wave functions for the core electron are
considered, relativistic effects might be important since the localization leads
to high kinetic energies of these electrons.

Note that only the kinetic and electrostatic energies are directly present
in the Hamiltonian. We will later see that the proper consideration of the
quantum statistics leads to contributions of the so-called exchange-correlation
energy in the effective Hamiltonians. However, it is important to realize that
the energy gain or cost according to additional effective terms has to be derived
from the energy gain or cost in kinetic and electrostatic energy that is caused
by the quantum statistics.
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Unfortunately, the solution of the Schrödinger equation in closed form is
not possible. Even approximative solutions are far from being trivial. In the
rest of the book we will therefore be concerned with a hierarchy of approxima-
tions that will make possible the solution of (2.7) at least within reasonable ac-
curacy. The first step in this hierarchy will be the so-called Born–Oppenheimer
approximation.

2.2 Born–Oppenheimer Approximation

The central idea underlying the Born–Oppenheimer [1] or adiabatic approxi-
mation is the separation in the time scale of processes involving electrons and
atoms. Except for hydrogen and helium, atoms have a mass that is 104 to 105

times larger than the mass of an electron. Consequently, at the same kinetic
energy electrons are 102 to 103 times faster than the nuclei. Hence one sup-
poses that the electrons follow the motion of the nuclei almost instantaneously.
Most often one simply assumes that the electrons stay in their ground state
for any configuration of the nuclei. The electron distribution then determines
the potential in which the nuclei move.

In practice, one splits up the full Hamiltonian and defines the electronic
Hamiltonian Hel for fixed nuclear coordinates {R} as follows

Hel({R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.8)

In (2.8) the nuclear coordinates {R} do not act as variables but as param-
eters defining the electronic Hamiltonian. The Schrödinger equation for the
electrons for a given fixed configuration of the nuclei is then

Hel({R})Ψ(r, {R}) = Eel({R})Ψ(r, {R}) . (2.9)

Again, in (2.9) the nuclear coordinates {R} are not meant to be variables
but parameters. In the Born–Oppenheimer or adiabatic approximation the
eigenenergy Eel({R}) of the electronic Schrödinger equation is taken to be
the potential for the nuclear motion. Eel({R}) is therefore called the Born–
Oppenheimer energy surface. The nuclei are assumed to move according to
the atomic Schrödinger equation

{Tnucl + Eel(R)} Λ(R) = EnuclΛ(R) . (2.10)

Often the quantum effects in the atomic motion are neglected and the classical
equation of motion are solved for the atomic motion:

MI
∂2

∂t2
RI = − ∂

∂RI
Eel({R}) . (2.11)

The force acting on the atoms can be conveniently evaluated using the
Hellmann–Feynman theorem [2, 3]
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FI = − ∂

∂RI
Eel({R}) = 〈Ψ(r, {R})| ∂

∂RI
Hel({R})|Ψ(r, {R})〉 . (2.12)

In principle, in the Born–Oppenheimer approximation electronic transitions
due to the motion of the nuclei are neglected. One can work out the Born–
Oppenheimer approximation in much more detail (see, e.g., [4]), however,
what it comes down to is that the small parameter m/M is central for the
validity of the adiabatic approximation (see Exercise 2.1). In fact, the Born–
Oppenheimer approximation is very successful in the theoretical description
of processes at surfaces. Still its true validity is hard to prove because it is
very difficult to correctly describe processes that involve electronic transition
(see Chap. 9).

If it takes a finite amount of energy to excite electronic states, i.e., if
the adiabatic electronic states are well-separated, then it can be shown that
electronically nonadiabatic transitions are rather improbable (see, e.g., [5]).
In surface science this applies to insulator and semiconductor surfaces with
a large band gap. At metal surfaces no fundamental band gap exists so that
electronic transitions with arbitrarily small excitation energies can occur. Still,
the strong coupling of the electronic states in the broad conduction band leads
to short lifetimes of excited states and thus to a fast quenching of these states
[6] so that their influence on surface processes is often limited.

On the other hand, there are very interesting processes in which electronic
nonadiabatic processes are induced, as we will see in Chap. 9. The theoret-
ical treatment of these systems requires special techniques that will also be
discussed later in this book.

2.3 Structure of the Hamiltonian

Employing the Born–Oppenheimer approximation means first to solve the
electronic structure problem for fixed atomic coordinates. The atomic po-
sitions determine the external electrostatic potential in which the electrons
move. Furthermore, they determine the symmetry properties of the Hamilto-
nian.

Surface science studies are concerned with the structure and dynamics of
surfaces and the interaction of atoms and molecules with surfaces. If not just
ordered surface structures are considered, then the theoretical surface scien-
tists has to deal with a system with only few degrees of freedom, the atom
or molecule, interacting with a system, the surface or semi-infinite substrate,
that has in principle an infinite number of degrees of freedom. Thus the sub-
strate exhibits a quasi-continuum of states. One faces now the problem that
usually different methods are used to treat the single subsystems: molecules
are treated by quantum chemistry methods while surfaces are handled by
solid-state methods.

To deal with both subsystems on an equal footing represents a real chal-
lenge for any theoretical treatment, but it also makes up the special attraction



2.3 Structure of the Hamiltonian 9

of theoretical surface science. We will focus on this issue in more detail in the
next chapter. But before considering a strategy to solve the Schrödinger equa-
tion it is always important to investigate the symmetries of the Hamiltonian.
Not only rigorous results can be derived from symmetry considerations, but
these considerations can also reduce the computational effort dramatically.
This can be demonstrated very easily [7]. Let T be the operator of a symme-
try transformation that leaves the Hamiltonian H invariant. Then H and T
commute, i.e. [H,T ] = 0. This means that according to a general theorem of
quantum mechanics [8] the matrix elements 〈ψi|H |ψj〉 vanish, if |ψi〉 and |ψj〉
are eigenfunctions of T belonging to different eigenvalues Ti �= Tj.

This property of the eigenfunctions can help us enormously in solving
the Schrödinger equation. Imagine we want to determine the eigenvalues of a
Hamiltonian by expanding the wave function in an appropriate basis set. Then
we only need to expand the wave function within a certain class of functions
having all the same eigenvalue with respect to a commuting symmetry opera-
tor. Functions having another symmetry will belong to a different eigenvalue.
Since the numerical effort to solve the Schrödinger equation can scale very
unfavorably with the number n of basis functions (up to n7 for very accurate
quantum chemical methods), any reduction in this number can mean a huge
reduction in computer memory and time.

The mathematical tool to deal with symmetries is group theory. It is be-
yond the scope of this book to provide an introduction into group theory.
There are many text books that can be used as a reference, for example
[7, 9, 10]. I will rather describe the symmetries present at surfaces, which
has also the important aspect of defining the terminology commonly used
to specify surface structures. To set the stage, we will first start with ideal
three-dimensional crystal structures.

A three-dimensional periodic crystal is given by an infinite array of iden-
tical cells. These cells are arranged according to the so-called Bravais lattice.
It is given by all the position vectors of the form

R = n1a1 + n2a2 + n3a3 . (2.13)

The ai are the three non-collinear unit vectors of the lattice, the ni are inte-
ger numbers. The lattice vectors R are not necessarily identical with atomic
positions of the crystal, but in most cases they are indeed identified with
atomic positions. In addition to the translational symmetry, there are also so-
called point operations that transform the crystal into itself. Operations such
as rotation, reflection and inversion belong to this point group. Furthermore,
translations through a vector not belonging to the Bravais lattice and point
operations can be combined to give additional distinct symmetry operations,
such as screw axes or glide planes.

There are 14 different types of Bravais lattices in three dimensions. Now
there can be more than one atom per unit cell of the Bravais lattice. Then the
crystal structure is given as a Bravais lattice with a basis which corresponds to
the positions of the additional atoms in the unit cell. If the lattice has a basis,
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Fig. 2.1. Wigner–Seitz cell for a two-
dimensional Bravais lattice. The six
sides of the cell bisect the lines join-
ing the central point to its six nearest
neighbors. (After [11])

the symmetry of the corresponding crystal will usually be reduced compared
to a crystal with just spherical symmetric atoms at the Bravais lattice sites.
This enhances the number of symmetrically distinct lattices to in total 230.
Details of these structure can be found in any text book of solid-state physics
such as in [11, 12].

There is no way to uniquely choose the primitive unit cell of a Bravais
lattice. Any cell that, when translated through all the Bravais lattice vectors,
fills all space can serve as a unit cell. However, it is convenient to select a unit
cell that has the full symmetry of the Bravais lattice. The so-called Wigner–
Seitz cell has this property. It is defined as the region of space around a
lattice point that is closer to that point than any other lattice point [11]. The
construction of the Wigner–Seitz cell is demonstrated in Fig. 2.1 for a two-
dimensional Bravais lattice. Select a lattice point and draw lines to the nearest-
neighbors. Then bisect each connection with a line and take the smallest
polyeder that contains the points bounded by these lines. Note that in two
dimensions the Wigner–Seitz cell is always a hexagon unless the lattice is
rectangular (see Exercise 4.3).

The periodicity of a crystal lattice leads to the existence of a dual space
that mathematically reflects the translational symmetry of a lattice. The dual
space to the real space for periodic structures is called reciprocal space. The
basis vectors are obtained from the basis vectors of the real space ai via

b1 = 2π
a2 × a3

|a1 · (a2 × a3)| . (2.14)

The other two basis vectors of the reciprocal lattice b2 and b3 are obtained
by a cyclic permutation of the indices in (2.14). By construction, the lattice
vectors of the real space and the reciprocal space obey the relation

ai · bj = 2πδij , (2.15)

where δij is the Kronecker symbol.
The reciprocal space is often called k-space since plane wave character-

ized by their wave vector k are represented by single points in the reciprocal
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Fig. 2.2. Illustration of the defini-
tion of the Brillouin zones for a two-
dimensional square reciprocal lattice.
Note that only the first three Brillouin
zones are entirely within the shaded
areas. (After [11])

space. The eigenenergies of the electronic wave functions in periodic lattices
are usually plotted as a function of their k-vector in the first Brillouin zone
which is defined as the Wigner–Seitz cell of the reciprocal lattice. As the name
first Brillouin zone suggests, there are also higher-order Brillouin zones. Their
construction is illustrated in Fig. 2.2 in two dimensions for a square reciprocal
lattice. The n-th Brillouin zone is defined as the set of points that can be
reached from the origin by crossing the n − 1 nearest bisecting planes. Note
that each Brillouin zone is also a primitive unit cell of the reciprocal lattice. In
fact, by translating the different sections of the higher-order Brillouin zones
by appropriate reciprocal lattice vectors they can be rearranged to cover the
first Brillouin zone. This can be easily checked for the second and third Bril-
louin zone in Fig. 2.2. In the periodic electronic structure theory this is called
backfolding.

Reciprocal lattice vectors are used to denote lattice planes of the real-
space lattice. Lattice planes of a Bravais lattice are described by the shortest
reciprocal lattice vector hb1+kb2+hb3 that is perpendicular to this plane. The
integer coefficients hkl are called Miller indices. Lattice planes are specified
by the Miller indices in parentheses: (hkl). Family of lattice planes, i.e. lattice
planes that are equivalent by symmetry, are denoted by {hkl}. Finally, indices
in square brackets [hkl] indicate directions. For face-centered cubic (fcc) and
body-centered cubic (bcc) crystals the Miller indices are usually related to
the underlying simple cubic lattice, i.e., fcc and bcc crystals are described as
simple cubic lattices with a basis.

For hcp crystals such as Ru, Co, Zn or Ti, the Miller index notation used
to describe the orientation of lattice planes is slightly more complex since no
standard Cartesian set of axes can be used. Instead the notation is based upon
three axes at 120 degrees in the close-packed plane, and one axis (the c-axis)
perpendicular to these planes. This leads to a four-digit index structure. How-
ever, since the first three axes are coplanar, the first three indices are not
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independent but have to add up to zero. Hence the third index is redundant;
in fact, it is sometimes omitted. For example, both Ru(001) and Ru(0001)
describe the close-packed hexagonal plane of the hcp metal Ru.

The power of group theory to derive rigorous results can be nicely illus-
trated for periodic structures. The solution Ψ of the electronic Schrödinger
equation (2.9) is a many-body wave function that incorporates the electron-
electron interaction. However, as we will see below, there are many schemes to
solve the electronic Schrödinger equation that involve the solution of effective
one-particle Schrödinger equations of the form

{
− h̄2

2m
∇2 + veff(r)

}
ψi(r) = εiψi(r) , (2.16)

where the effective one-particle potential veff(r) satisfies translational sym-
metry:

veff(r) = veff(r +R) , (2.17)

with R being any Bravais lattice vector.
The translational operations TR form an Abelian group since the order of

translations does not matter for the result of applying two successive transla-
tions. As mentioned above, the solutions of the Hamiltonian can be classified
according to their symmetry properties. In group theory one says that solu-
tions of different symmetries belong to so-called different representations of
the symmetry group. Now there is an important theorem that the represen-
tations of an Abelian group are one-dimensional [7], which means that the
eigenfunctions of the translational group can be written as

TRψi(r) = ψi(r +R) = ci(R)ψi(r) . (2.18)

The eigenvalues ci(R) are complex numbers of modulus unity that have to
satisfy

ci(R)ci(R′) = ci(R+R′) , (2.19)

which can be derived by applying two successive translation. From this relation
it follows that the eigenvalues ci(R) are complex numbers of modulus one that
can be expressed in an exponential form

ci(R) = eik·R . (2.20)

The eigenfunction ψi(r) is thus characterized by the crystal-momentum k that
acts as a quantum number. Equation (2.18) can now be reformulated to state
that the eigenstates of a periodic Hamiltonian can be written in the form

ψk(r) = eik·ruk(r) (2.21)

with the periodic function

uk(r) = uk(r +R) (2.22)
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Fig. 2.3. Left panel: fcc crystal with 100 faces and one 111 face, right panel: fcc
crystal with 100 faces and one 110 face

for all Bravais lattice vectors R. This is the famous Bloch theorem which is an
exact result since it is purely based on symmetry properties. Functions that
obey the relation (2.21) are usually called Bloch functions.

A surface can be thought to be created by just cleaving an infinite crys-
tal along one surface plane. A bulk-terminated surface, i.e. a surface whose
configuration has not changed after cleavage, is called an ideal surface. Such
ideal surfaces are shown in Fig. 2.3 where two fcc crystals are plotted that
are terminated by the square {100} faces. In addition, the cubes are further
cleaved to indicate the other low-index faces of a face-centered cubic crystal.
In the left panel of Fig. 2.3, the (111) face is shown which is perpendicular to
the diagonal of the cubic unit cell. This (111) face with its hexagonal struc-
ture is the closest-packed fcc surface. In the right panel a (110) face is shown
that is perpendicular to the diagonal of one of the square faces. The (110)
surface has already a rather open structure with troughs running along the
[11̄0] direction.

A semi-infinite solid with an ideal surface has no longer the three-
dimensional periodicity of the crystal. Still there is a two-dimensional pe-
riodicity present parallel to the surface. In two dimensions, Bravais lattices
can also be defined, equivalently to the three-dimensional case. Furthermore,
there is also a two-dimensional Bloch theorem for a crystal having a periodic
structure parallel to the surface which says that the electronic single-particle
wave functions can be written as

ψk‖(r) = eik‖·ruk‖(r) , (2.23)

where uk‖(r) has the two-dimensional periodicity of the surface.
There are five two-dimensional Bravais lattices which are sketched in Ta-

ble 2.1. In fact, the centered rectangular lattice is just a special case of an
oblique lattice, but it is usually listed separately. Examples of low-index planes
of fcc and bcc crystals with the corresponding symmetry are also plotted. The
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Table 2.1. The five two-dimensional Bravais lattices. In addition, examples of low-
index planes of fcc and bcc crystal with the corresponding symmetry are plotted
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square (100) surface has a fourfold symmetry axis. The hexagonal (111) sur-
face with its sixfold symmetry axis corresponding to the closest-packed surface
is usually the most stable surface. Rectangular surfaces such as the (110) sur-
face have already a more open structure. In fact, the low-index (100), (111)
and (110) faces are the most often studied surfaces in surface science. Oblique
surfaces are usually rather complex. Often they correspond to stepped surfaces
like the example of the (210) surface that is shown in Table 2.1.

The planes plotted in Table 2.1 correspond to ideal surfaces where the
interatomic distances are the same as in the bulk. However, at a real surface
the fact that the bonding situation is entirely different compared to the bulk
situation will cause a rearrangement of the atoms at and close to the surface.
If this rearrangement preserves the symmetry of the bulk plane of termina-
tion, it is called relaxation. The corresponding surface structure is refered to
as a (1 × 1) structure. However, if a significant restructuring of the surface
occurs that changes the periodicity and symmetry of the surface, it is termed
reconstruction.

Such a structure is labeled with respect to the ideal termination of the
corresponding surface plane. If the new surface unit cell is spanned by new
vectors as

1 = ma1 and as
2 = na2, the surface is labeled by (hkl)(m × n).

Sometimes (hkl)p(m×n) is written, where p stands for primitive. Frequently,
surface structures are observed with two atoms in the unit cell where the
second atom occupies the centre of the unit cell. Such a situation is then
labeled by (hkl)c(m× n), where c stands for centered [13].

The difference between relaxation and reconstruction is illustrated in Ta-
ble 2.2 using the fcc(110) surface as an example. In the relaxed geometry just
the distance between the top and the second layer is decreased with respect
to the ideal surface. The top view of the relaxed structure indicates that the
lateral symmetry of the surface remains unchanged. The last column of Ta-
ble 2.2 presents a very prominent example for surface reconstructions, namely
the so-called missing-row reconstruction which occurs for a number of mate-
rials such as Au(110) [14] or Pd(110). Every second row of the (110) surface
running in [11̄0] direction is missing. The surface unit cell becomes twice as
large resulting in a 2×1 structure. Note that the microfacets forming the two
ledges of the troughs correspond to close-packed triangular structures.

Semiconductor surfaces often show much more complex reconstruction pat-
terns than metals. This is caused by the covalent nature of bonding in semi-
conductors where creating a surface strongly perturbs the bonding situation.
The most famous example is the 7 × 7 reconstruction of the Si(111) surface.
But also compound semiconductor such as GaAs exhibit extremely complex
reconstruction patterns, as will be demonstrated in Sect. 4.3.

The periodicity of a surface can also be perturbed by the presence of adsor-
bates. For sufficiently strong adsorbate-substrate interactions commensurate
adlayers will be created that result in larger surface unit cells as, e.g., for the
O(2× 2)/Pt(111) structure, where one fourth of the surface three-fold hollow
sites are occupied by oxygen atoms. If the adsorbate-substrate interaction is
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Table 2.2. Illustration of relaxation and reconstruction of the fcc(110) surface.
In the relaxed structure just the distance between the top and the second layer is
changed leaving the surface symmetry unchanged while in the (2 × 1) missing-row
reconstruction every second row on the surface is missing

Structure Ideal Relaxed Reconstructed

1×1 1×1 2×1

Top view

Side view

weaker than the adsorbate-adsorbate coupling strength, as is often the case
for organic adlayers, the adsorbate adlayer is not necessarily in registry with
the surface resulting in an incommensurate adlayer for which no longer any
surface periodicity can be expressed. This makes any theoretical treatment
rather cumbersome.

A surface that is only slightly misaligned from a low index plane is called
a vicinal surface. A vicinal surface is structured as a periodic array of terraces
of a low-index orientation separated by monoatomic steps. In Fig. 2.4, a (911)
surface is shown illustrating the structure of a vicinal surface. The high-index
(911) surface consists of 5 atomic rows of (100) orientation separated by a
step with a (111) ledge, i.e., the ledge represents (111) microfacets. In fact,
in order to make the structure of vicinal surfaces immediately obvious, they
are often denoted by n(hkl) × (h′k′l′) where (hkl) and (h′k′l′) are the Miller
indices of the terraces and of the ledges, and n gives the width of the terraces in
numbers of atomic rows parallel to the ledges. By studying vicinal surfaces, the
influence of steps on, e.g., adsorption properties or reactions on surfaces can
be studied in a well-defined way. Further defects that can exist on surfaces are
kinks, adatoms, vacancies and adatom islands. These defects are illustrated in
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[111]stepterrace [100]

Fig. 2.4. A stepped (911) = 5(100) × (111) vicinal surface. Steps with ledges of
(111) orientations separate (100) terraces that are 5 atom rows wide

vacancy

adatom

adatom island kink
step with (100)−oriented ledge

Fig. 2.5. Illustration of defects on surfaces such as steps, kinks, adatoms, adatom
islands, and vacancies

Fig. 2.5. In fact, the plotted surface corresponds to a defected (755) = 5(111)×
(100) surface where the steps are made of (100)-oriented microfacets. The
creation of defects is usually associated with a cost of energy. Yet, at non-zero
surface temperature there will always be a certain amount of defects present
because of entropic reasons. This is a particular problem for experimentalists
who have to check whether their observed results on nominally flat surfaces
might be dominated by minority defect sites.

On the other hand, the study of defects is important because often the de-
fects are considered to be the active sites for surface reactions. This is relevant
for the understanding of, for example, real catalysts which usually exhibit a
very defect-rich structure. Furthermore, the defects depicted in Fig. 2.5 all
appear during growth processes on surfaces. Thus the properties are relevant
for a true understanding of growth, as will be shown in Sect. 8.5.



18 2 The Hamiltonian

Exercises

2.1 Born–Oppenheimer Approximation

Expand the eigenfunctions of the total Hamiltonian

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el (2.24)

according to
Φ(R, r) =

∑

μ

Λμ(R) Ψμ(r,R) , (2.25)

where the Ψμ(r,R) are the eigenfunctions of the electronic Hamiltonian

Hel({R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.26)

By multiplying the many-body Schrödinger equation (2.7) by
〈
Ψν |, a set

of coupled differential equations for the nuclear wave functions Λμ(R)
can be obtained.
a) Write down the coupled equations for the nuclear wave functions
Λμ(R). Which terms are neglected in the Born–Oppenheimer approxi-
mation (compare with (2.10))?
b) Discuss the meaning of the neglected terms. Give an estimate for the
terms that are diagonal in the electronic wave functions.

2.2 Surface Structures

a) Determine the structure and the reciprocal lattice of the (100), (110)
and (111) unreconstructed surfaces of bcc and fcc crystals. Give the basis
vectors of the corresponding unit cells in units of the bulk cubic lattice
constant a.
b) Find the surface first Brillouin zone for each surface.

2.3 Wigner–Seitz Cell in Two Dimensions

Consider a Bravais lattice in two dimensions.
a) Prove that the Wigner–Seitz cell is a primitive unit cell.
b) Show that the Wigner–Seitz cell for any two-dimensional Bravais lat-
tice is either a hexagon or a rectangle.

2.4 Reciprocal Lattice

a) Show that the reciprocal lattice belongs to the same symmetry group
as the underlying Bravais lattice in real space.
b) Determine the reciprocal lattices and the first Brillouin zones of all
the two-dimensional Bravais lattices shown in Table 2.1.
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2.5 Lattice Spacing and Vicinal Surfaces

Consider a lattice plane in a three-dimensional crystal described by the
Miller indices (hkl).
a) Show that the reciprocal lattice vector G = hb1 + kb2 + lb3 is perpen-
dicular to this plane.
b) Show that the distance between two adjacent (hkl) planes is given by

dhkl =
2π
|G|

c) Consider the unreconstructed (11n) surface of a fcc crystal with cubic
lattice constant a and n an odd number. This surface consists of (001)
terraces terminated by steps of [1̄10] orientation. Show that the terraces
have a width of a × n/

√
8 and that the interlayer distance is given by

a/
√
n2 + 2. Prove that the miscut angle between (11n) and (001) surfaces

is arctan(
√

2/n).
d) The unreconstructed (10n) surface of a fcc crystal with cubic lattice
constant a also consists of (001) terraces terminated by monoatomic steps.
Determine the terrace width, the lattice distance between adjacent (10n)
planes and the miscut angle to the (001) plane.
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Electronic Structure Methods
and Total Energies

In this chapter, we will discuss electronic structure methods for the determi-
nation of total energies of surface systems. The evaluation of total energies is a
prerequisite for the theoretical treatment of many properties and processes at
surfaces. There are two main techniques, wave-function and electron-density
based methods that originate from quantum chemistry and solid-state physics,
respectively. Both types of methods will be introduced and discussed in some
detail. Special attention will be paid to the discussion of electronic exchange
and correlation effects.

Electronic structure calculations for surface science problems are domi-
nated by density functional theory (DFT) methods. Therefore we will have
a closer look at some specific implementations of electronic structure algo-
rithms based on DFT. This chapter will be concluded by an introduction to
the tight-binding method which is well-suited for a qualitative discussion of
band structure effects.

3.1 Hartree–Fock Theory

We start the sections about electronic structure methods with the so-called
Hartree and Hartree-Fock methods. This does not only follow the historical
development [15,16], but it also allows to introduce important concepts such
as self-consistency or electron exchange and correlation.1 In this whole chap-
ter we are concerned with ways of solving the time-independent electronic
Schrödinger equation

HelΨ(r) = EelΨ(r) . (3.1)

1 I thank Matthias Scheffler for providing me with his lecture notes on his theoret-
ical solid-state physics class held at the Technical University Berlin on which the
sections about Hartree-Fock and density functional theory are based to a large
extent.
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Here we have omitted the parametric dependence on the nuclear coordinates
(c.f. (2.9)) for the sake of convenience. As already stated, except for the sim-
plest cases there is no way to solve (3.1) in a close analytical form. Hence we
have to come up with some feasible numerical scheme to solve (3.1). Mathe-
matically, it corresponds to a second order partial differential equation. There
are methods to directly integrate partial differential equations (see, e.g., [17]).
However, if N is the number of electrons in the system, then we have to deal
with a partial differential equation in 3N unknowns with N commonly larger
than 100. This is completely intractable to solve. The way out is to expand
the electronic wave function in some suitable, but necessarily finite basis set
whose matrix elements derived from (3.1) can be conveniently determined.
This will then convert the partial differential equation into a set of algebraic
equations that are much easier to handle. Of course, we have to be aware that
by using a finite basis set we will only find an approximative solution to the
true many-body wave function. However, by increasing the size of the basis
set we have a means to check whether our results are converged with respect
to the basis set. Hence this corresponds to a controlled approximation because
the accuracy of the calculations can be improved in a systematic way.

Furthermore, for the moment we are mainly interested in the electronic
ground-state energyE0. There is an important quantum mechanical principle –
the Rayleigh–Ritz variational principle [18] – that provides a route to find
approximative solutions for the ground state energy. It states that the expec-
tation value of the Hamiltonian in any state |Ψ〉 is always larger than or equal
to the ground state energy E0, i.e.

E0 ≤ 〈Ψ |H |Ψ〉
〈Ψ |Ψ〉 . (3.2)

Hence we can just pick some suitable guess for |Ψ〉. Then we know that
〈Ψ |H |Ψ〉/〈Ψ |Ψ〉 will always be an upper bound for the true ground state en-
ergy. By improving our guesses for |Ψ〉, preferentially in a systematic way, we
will come closer to the true ground state energy.

Before we proceed, we note that the potential term Vnucl−el (2.5) acts as
an effective external one-particle potential for the electrons. Hence we define
the external potential for the electrons as

vext(r) = −
∑

I

ZIe
2

|r −RI| . (3.3)

Now let us assume that the number of electrons in our system is N and that we
have already determined the N lowest eigenfunctions |ψi〉 of the one-particle
Schrödinger equation

{
− h̄2

2m
∇2 + vext(r)

}
ψi(r) = εo

iψi(r) . (3.4)

Here we have completely neglected the electron-electron interaction. Still, we
might simply consider the product wave function
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ΨH(r1, . . . , rN) = ψ1(r1) · . . . · ψN(rN) , (3.5)

in which every one-particle state is only occupied once, as a first crude guess for
the true many-particle wave function. Then we can determine the expectation
value of the electronic Hamiltonian (2.8) using the wave function (3.5). Thus
we obtain

〈ΨH|H |ΨH〉 =
N∑

i=1

∫
d3rψ∗

i (r)
(
− h̄2

2m
∇2 + vext(r)

)
ψi(r)

+
1
2

N∑

i,j=1

∫
d3rd3r′

e2

|r − r′| |ψi(r)|2|ψj(r′)|2 + Vnucl−nucl . (3.6)

Now we would like to minimize the expectation value (3.6) with respect to
more suitable single-particle functions ψi(r) under the constraint that the
wave functions are normalized. This is a typical variational problem with the
constraint taken into account via Lagrange multipliers. If we consider the wave
functions ψi(r) and ψ∗

i (r) as independent, we can minimize (3.6) with respect
to the ψ∗

i under the constraint of normalization via

δ

δψ∗
i

[
〈ΨH|H |ΨH〉 −

N∑

i=1

{εi(1 − 〈ψi|ψi〉)}
]

= 0 . (3.7)

The εi act as Lagrange multipliers ensuring the normalization of the eigen-
functions. This minimization leads to the so-called Hartree equations [15]:
⎧
⎨

⎩− h̄2

2m
∇2 + vext(r) +

N∑

j=1

∫
d3r′

e2

|r − r′| |ψj(r′)|2
⎫
⎬

⎭ψi(r) = εiψi(r) .

(3.8)

The Hartree equations correspond to a mean-field approximation. Equa-
tion (3.8) shows that an effective one-particle Schrödinger equation is solved
for an electron embedded in the electrostatic field of all electrons including
the particular electron itself. This causes the so-called self interaction which
is erroneously contained in the Hartree equations.

Using the electron density

n(r) =
N∑

i=1

|ψi(r)|2 , (3.9)

the Hartree potential vH can be defined:

vH(r) =
∫
d3r′n(r′)

e2

|r − r′| . (3.10)
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Fig. 3.1. Flow-chart diagram of a self-consistent scheme to solve the Hartree equa-
tions

It corresponds to the electrostatic potential of all electrons. With this defini-
tion the Hartree equations can be written in a more compact form as

{
− h̄2

2m
∇2 + vext(r) + vH(r)

}
ψi(r) = εiψi(r) . (3.11)

The Hartree equations have the form of one-particle Schrödinger equations.
However, the solutions ψi(r) of the Hartree equations enter the effective one-
particle Hamiltonian; hence the exact solutions are needed in order to solve
the equations. This dilemma can be resolved in an iterative fashion: One starts
with some initial guess for the wave functions which enter the effective one-
particle Hamiltonian. The Hartree equations are then solved and a new set
of solutions is determined. This cycle is repeated so often until the iterations
no longer modify the solutions, i.e. until self-consistency is reached. Methods
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such as the Hartree approximation that include a self-consistency cycle are
also known as self-consistent field (SCF) methods.

Such a self-consistent scheme is illustrated in a flow-chart diagram in
Fig. 3.1 where we have combined the external and the Hartree potential to an
effective potential veff(r) = vext(r) + vH(r). Furthermore, we have included a
mixing scheme between the new effective potential and the one of the previous
step for the construction of the effective potential entering the next iteration
cycle. Usually a mixing scheme speeds up the convergence of the iteration
scheme significantly; sometimes convergence can even not be reached with-
out a mixing scheme. Note that the general self-consistency cycle depicted in
Fig. 3.1 is not only applicable for the solution of the Hartree scheme but for
any method that requires a self-consistent solution of one-particle equations.

The expectation value of the total energy in the Hartree approximation
EH can be written as

〈ΨH|H |ΨH〉 =
N∑

i=1

εi − 1
2

∫
d3rd3r′

e2n(r)n(r′)
|r − r′| + Vnucl−nucl

=
N∑

i=1

εi − VH + Vnucl−nucl = EH (3.12)

The integral in (3.12) is the so-called Hartree energy VH. It corresponds to the
classical (or mean-field) electrostatic energy of the electronic charge distribu-
tion. It is contained twice in the Hartree eigenvalue; in order to correct for this
double-counting it has to be subtracted in (3.12). In fact, the total energy in
(3.12) would only be a sum over single-particle energies if the particles were
non-interacting (except for the term Vnucl−nucl, which in this context for fixed
nuclei just acts as an energy renormalization constant). If we evaluate the to-
tal energy for interacting particles by self-consistently solving a set of effective
single-particle equations, the total energy is not just a sum over single-particle
energies, but there will always be correction terms reflecting the interaction
between the particles.

The Hartree ansatz obeys the Pauli principle only to some extent by pop-
ulating each electronic state once. However, it does not take into account the
anti-symmetry of the wave function. The Pauli principle requires that the
sign of |Ψ〉 changes when two electrons are exchanged. The simplest ansatz
obeying the antisymmetry requirement is to replace the product wave func-
tion (3.5) by a single Slater determinant. In order to correctly incorporate the
Pauli principle we have to consider the spin degree of freedom in the following,
i.e. we write the single-particle wave functions as ψ(rσ), where σ denotes the
spin. The Slater determinant is then constructed from the single-particle wave
functions by
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ΨHF(r1σ1, . . . , rNσN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

ψ1(r1σ1) ψ1(r2σ2) . . . ψ1(rNσN)
ψ2(r1σ1) ψ2(r2σ2) . . . ψ2(rNσN)

...
...

. . .
...

ψN(r1σ1) ψN(r2σ2) . . . ψN(rNσN)

∣∣∣∣∣∣∣∣∣∣

. (3.13)

Now we follow the same procedure as for the Hartree ansatz; we start by
writing down the expectation value of the total energy:

〈ΨHF|H |ΨHF〉 =
N∑

i=1

∫
d3rψ∗

i (r)
(
− h̄2

2m
∇2 + vext(r)

)
ψi(r)

+
1
2

N∑

i,j=1

∫
d3rd3r′

e2

|r − r′| |ψi(r)|2|ψj(r′)|2 + Vnucl−nucl

−1
2

N∑

i,j=1

∫
d3rd3r′

e2

|r − r′|δσiσjψ
∗
i (r)ψi(r′)ψ∗

j (r′)ψj(r) . (3.14)

There is now an additional negative term for electrons with the same spin.
This extra term is called the exchange energy Ex. Note that the total-energy
expression (3.14) is self-interaction free because the diagonal terms of Ex with
i = j exactly cancel the corresponding terms in the Hartree energy VH.

Again, we minimize the expression (3.14) with respect to the ψ∗
i under the

constraint of normalization. This yields the Hartree–Fock equations [16]:
{

− h̄2

2m
∇2 + vext(r) + vH(r)

}
ψi(r)

−
N∑

j=1

∫
d3r′

e2

|r − r′| ψ
∗
j (r′)ψi(r′)ψj(r)δσiσj = εi ψi(r). (3.15)

The additional term, called the exchange term, introduces quite some com-
plexity to the equations. It is of the form

∫
V (r, r′)ψ(r′)d3r′, i.e., it is an

integral operator. In more compact form, the expectation value of the total
energy in the Hartree-Fock approximation is given by

〈ΨHF|H |ΨHF〉 = EHF =
N∑

i=1

εi − VH − Ex + Vnucl−nucl . (3.16)

Analogously to (3.12), the Hartree energy EH and the exchange energy Ex

have to be subtracted since they enter the Hartree–Fock eigenvalues twice. In
order to understand the physical nature and the consequences of the exchange
term, we will focus on a case where the exchange can be exactly determined:
the homogeneous electron gas.

In this case the resulting electron density n(r) will be just uniform. Let
us assume that the electrostatic potential of the electrons is compensated by
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a positive charge background. This is also called the “jellium model”. Then
the external potential and the Hartree potential exactly cancel: vext(r) +
vH(r) = 0. Let us further apply the other mathematical methods usually em-
ployed in order to deal with infinite systems: we normalize the wave functions
with respect to a cube of volume V and assume periodic boundary conditions
at the faces of the cube. Within the cube we place N electrons. The eigen-
functions of the Hartree equations for the homogeneous electron gas are just
plane waves:

ψi(r) =
1√
V

eiki·r . (3.17)

Furthermore, for a positive charge background the Hartree term VH entering
the expression for the total energy exactly cancels with Vnucl−nucl in (3.12).
The total energy is then simply given by the sum over the kinetic energy of
the electrons:

EH =
N∑

i=1

ε(ki) = 2
∑

|k|<kF

h̄2k2

2m
. (3.18)

Here we have introduced the Fermi vector kF which gives the wave vector of
the occupied one-electron levels of highest energy. It can be related to the
electron density via [11] (see Exercise 3.1)

kF =
(

3π2N

V

)1/3

=
(
3π2n

)1/3
(3.19)

The factor of 2 in (3.18) is due to the spin.
Now we also consider the exchange term. It can be shown that the solutions

of the Hartree-Fock equations for the homogeneous electron gas are still plane
waves, but an extra term due to the exchange appears in the expression for
the one-particle energies. If we set |k| = k, we obtain (see Exercise 3.3)

ε(k) =
h̄2k2

2m
− 2e2

π
kFF

(
k

kF

)
, (3.20)

where

F (x) =
1
2

+
1 − x2

4x
ln
∣∣∣∣
1 + x

1 − x

∣∣∣∣ . (3.21)

Note that the kinetic energy remains unchanged when the anti-symmetry of
the wave-functions is taken into account.

In Fig. 3.2 the one-particle energies of the Hartree and the Hartree–Fock
approximation for the homogeneous electron gas are compared. They are plot-
ted in units of the free-electron Fermi energy εF = (h̄2k2

F)/(2m) as a function
of the wave vector normalized to kF. It is apparent that taking into account the
exchange leads to a strong decrease in the one-particle energies that stabilizes
the homogeneous electron gas. Furthermore, the band width of the occupied
electron states in the Hartree–Fock approximation is increased dramatically
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Fig. 3.2. One-particle energies of the homogeneous electron gas in the Hartree and
the Hartree–Fock approximation

with respect to the Hartree approximation. In fact, this large increase of the
band width is not supported by photoemission experiments [11]. There is
another alarming feature of the Hartree–Fock single-particle energies (3.20).
The derivative ∂ε/∂k becomes logarithmically infinite at k = kF which results
in a vanishing density of states at the Fermi level.

The total energy of the homogeneous electron gas in the Hartree–Fock
approximation is given by

EHF = 2
∑

k<kF

h̄2k2

2m
−
∑

k<kF

2e2

π
kF F

(
k

kF

)

= N

(
3
5
εF − 3

4
e2

π
kF

)
. (3.22)

Note that in the first line, we have added a factor of 2 in order to take account
of the spin; however, for the second term, we have to subtract Ex once in order
to avoid a double counting (see (3.16). The exchange energy εx per electron
in the homogeneous electron gas can be expressed as

εx = −3
4
e2

π

(
3π2n

)1/3

= −3
4
e2

π

(
9π
4

)1/3 1
rs
, (3.23)

where we have used the Wigner–Seitz radius rs

rs =
(

3
4πn

)1/3

, (3.24)

which corresponds to the radius of the sphere whose volume V/N = 1/n
equals the volume per electron in the homogeneous electron gas.
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Fig. 3.3. Normalized mean electron density n = N/V and exchange-hole density
nx(r̄, 0) in the homogeneous electron gas as a function of the distance in units of
the inverse Fermi vector kF

Taking into account exchange leads to a strong decrease in the one-particle
energies and thus also in the total energy of the homogeneous electron gas.
However, it is important to note that the exchange energy is not a new kind of
energy form. It represents the modification of the kinetic and the electrostatic
energy when the anti-symmetry of the many-body wave function is correctly
taken into account.

Both the Hartree and the Hartree–Fock wave function describe the homo-
geneous electron gas. But while in the Hartree approximation the positions
of the electrons are not correlated, the antisymmetry of the electronic wave
function in the Hartree–Fock ansatz results in the so-called exchange hole:
electrons of the same spin can not be at the same position. This can be illus-
trated by introducing the concept of the exchange-hole density ni

x(r, r′) of a
electron in state i. It can be defined as

ni
x(r, r′) = −

N∑

j=1

ψ∗
j (r′)ψi(r′)ψj(r)

ψi(r)
δσiσj . (3.25)

The exchange-hole density satisfies
∫

d3r′ nj
x(r, r′) = −1 . (3.26)

With this exchange-hole density the exchange term in the Hartree–Fock equa-
tions (3.15) can be written as

−
N∑

j=1

∫
d3r′

e2

|r − r′| ψ
∗
j (r′)ψi(r′)ψj(r)δσiσj

=
∫

d3r′
e2

|r − r′| n
i
x(r, r′)ψi(r) . (3.27)
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Fig. 3.4. Exchange and exchange-correlation energy per particle in the homoge-
neous electron gas. Typical valence electron densities of metals are in the range of
5–10 × 102 (Å−3)

The exchange-hole density ni
x(r, r′) describes a nonlocal exchange hole of the

electron in state i. Due to

ni
x(r, r) = −

N∑

j=1

|ψj(r)|2 δσiσj , (3.28)

the exchange-hole density ni
x(r, r′) represents the depletion of the remaining

electrons with the same spin from the location of the i-th electron.
Usually the local exchange density is defined as

nx(r, r′) = g(r, r′) − n(r′) , (3.29)

where g(r, r′) is the conditional density to find an electron at r′ if there is
already an electron at r. It can be expressed as the average of ni

x(r, r′) over
all electrons

nx(r, r′) =
N∑

i=1

ψ∗
i (r′)ni

x(r, r′)ψi(r)
n(r′)

δσiσj . (3.30)

For the homogeneous electron gas nx(r, r′) can be determined analytically. It
only depends on the distance |r − r′| = r̄ between two electrons and is given
by (see Exercise 3.4)

nx(r̄) =
9
2
N

V

(
kF r̄ cos(kF r̄) − sin(kF r̄)

(kF r̄)3

)2

. (3.31)

We have plotted the sum of the average density n = N/V and the normalized
exchange-hole density nx(r, 0) as a function of the distance from the origin for
a electron at r′ = 0 for the homogeneous electron gas and compared it to n
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in Fig. 3.3. Since taking into account the exchange leads to a depletion of the
remaining electron density close to the position of the electron, the exchange
energy just corresponds to the repulsive Coulomb interaction between elec-
trons which is saved when the antisymmetry of electrons with the same spin
is taken into account. The denser the homogeneous electron gas, the larger
the reduction caused by the exchange. This is demonstrated in Fig. 3.4 where
the mean exchange energy per electron in the homogeneous electron gas is
plotted. The net energy gain due to exchange increases monotonically with
increasing electron density.

Since the Hartree ansatz does not take into account the antisymmetry
of the electronic many-body wave function, it does not yield a proper solution
of the many-body Schrödinger equation. The Hartree–Fock method incorpo-
rates the antisymmetry requirement and leads to a reduction of the total en-
ergy. Hence it should be a more appropriate solution for the true ground-state
already on the basis of the Rayleigh-Ritz variational principle. However, in
the Hartree–Fock ansatz, electrons of opposite spin are still not correlated. If
these electrons are also avoiding each other, the energy can be further reduced.
This additional effect is called electron correlation. The electron correlation
energy is defined as the difference between the exact energy of the system and
the Hartree–Fock energy. The distinction between electron correlation and ex-
change is somehow artificial because the Hartree–Fock exchange is in principle
also an electron correlation effect. The correlation energy in the homogeneous
electron gas has been determined by quantum Monte Carlo calculations [19].
In Fig. 3.4, the exchange-correlation energy which is the sum of the exchange
and the correlation energy is also plotted. There is an additional reduction in
the energy of up to more than 1 eV per electron due to the consideration of
electron correlation in the homogeneous electron gas.

3.2 Quantum Chemistry Methods

Many surface reactions are enormously accelerated through the presence of
a catalyst. Therefore, historically chemists were the first to be interested in
the theoretical description of surfaces and processes at surfaces. The theo-
retical tools used by chemists are designed to describe finite systems such
as molecules. In the quantum chemistry approach, surfaces are regarded as
big molecules and modeled by a finite cluster. This ansatz is guided by the
idea that bonding on surfaces is a local process. The validity of this picture
thus depends on the localization of the electronic orbitals which can be es-
timated to be inversely proportional to the width of the band gap. Hence
the cluster approach is most appropriate for wide-gap insulators, but it has
also been used extensively for metal surfaces for which this approach is more
questionable.

One typical example of a cluster used to describe surfaces is shown in
Fig. 3.5. A Si9H12 cluster is plotted which is used as a model for the Si(100)
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Fig. 3.5. Si9H12 cluster used to model a Si(100) substrate. The silicon atoms are
plotted as the darker large balls while the hydrogen atoms are presented by the
lighter small balls

surface. At an ideal surface there are two broken Si-Si bonds per surface
atom. In order to reduce the number of these dangling bonds that correspond
to unsaturated orbitals, the Si(100) surface reconstructs by creating Si dimers
at the surface. The Si9H12 cluster just contains one of these surface dimers.
The hydrogen atoms are added to the Si cluster in order to saturate the silicon
dangling bonds that would be bonded to other silicon atoms.

Once the surface is modeled by a finite cluster, it can be treated by quan-
tum chemistry methods [20]. Usually Hartree–Fock theory is a good starting
point for the theoretical description of molecules and clusters. The exact total
energy of a molecule is often reproduced to up to 99% [21]. Unfortunately,
the missing part, namely the electron correlation energy, is rather important
for a reliable description of chemical bond formation. As Fig. 3.4 shows, the
correlation energy per electron can easily be more than 1 eV. Chemists often
demand an accuracy of 1 kcal/mol≈ 0.04 eV (“chemical accuracy”) for energy
differences in order to consider the calculations useful. If the uncertainty of
the total energies is already above several eV, then only by a fortuitous can-
cellation of errors chemical accuracy can be achieved.

Quantum chemists have developed a whole machinery of so-called post-
Hartree-Fock (post-HF) theoretical methods that treat the electron correla-
tion at various levels of sophistication [22,23]. These methods can be divided
into two categories, the so-called single-reference and the multiple-reference
methods. Both methods take into account the fact that the electrons do not
only experience the mean field of all other electrons, but that they are con-
stantly interacting which each other. In real space, this corresponds to the
consideration of collisions of the electrons which can be described as the ex-
citation of virtual excited orbitals. The most probable and therefore most
important processes are collisions of two electrons which are represented by
double or pair excitations.
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In the single-reference methods, one starts with the Slater determinant
that is the solution of the Hartree–Fock equations. As discussed above, the
electron correlation between electrons with opposite spin is neglected in
Hartree–Fock theory. One way to introduce correlation effects is by consid-
ering virtually excited states. These can be generated by replacing occupied
orbitals in the Slater determinant by unoccupied ones, i.e., by states that do
not correspond to the N lowest Hartree–Fock eigenvalues. By replacing one,
two, three, four or more states, single, double, triple, quadruple or higher
excitations can be created. In the Møller–Plesset theory [24], these excita-
tions are treated perturbatively by regarding the Hartree–Fock Hamiltonian
as the unperturbed Hamiltonian and the difference to the true many-body
Hamiltonian as the perturbation.

To derive the Møller-Plesset theory, we first rewrite the Hartree–Fock equa-
tions (3.15) as

hHF
i ψi(r) = εi ψi(r) , (3.32)

where the effective one-electron operator hHF
i acts on the i-th electron. If we

neglect the nuclear-nuclear interaction Vnucl−nucl for a moment, the Hartree–
Fock Hamiltonian HH can be defined as

HHF =
∑

i

hHF
i − VH − Ex . (3.33)

Here VH and Ex are just treated as constants determined with the true
Hartree–Fock ground state wave-function. Note that HHF does not corre-
spond to the correct many-body electronic Hamiltonian Hel (2.8) since the
correlation effects between electron with opposite spins are not included. The
difference between Hel and HHF is now treated as the perturbation H ′:

H ′ = Hel −HHF . (3.34)

The expression for the ground-state energy in second-order perturbation the-
ory becomes

E(2) = EHF + 〈Ψ0|H ′|Ψ0〉 +
∑

l�=0

|〈Ψl|H ′|Ψ0〉|2
E0 − El

ts. (3.35)

The sum over states l other than the ground state corresponds to Slater de-
terminants with single, double, triple, etc. excitations. In fact it can be easily
shown [24] that the Hartree–Fock theory is correct to first order, i.e., the
first-order correction 〈Ψ0|H ′|Ψ0〉 vanishes. If we now introduce the following
notation for the Coulomb integral
∫
d3rd3r′ψ∗

l (r)ψ∗
m(r′)

e2

|r − r′| ψp(r′)ψq(r) = 〈lm| e2

|r − r′| |qp〉 , (3.36)

the second-order expression is given by
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E(2) = EHF −
occ∑

l<m

unocc∑

p<q

|〈lm| e2

|r−r′| |qp〉 − 〈lm| e2

|r−r′| |pq〉|2
εl + εm − εp − εq

, (3.37)

where the sum is performed over all occupied and unoccupied (virtual) or-
bitals. Second-order Møller–Plesset theory is usually denoted by MP2. If
higher-order corrections are included, the methods are named MP3, MP4
and so forth.

MP2 is a very popular method due to its conceptual simplicity. However,
due to the perturbative treatment of electron correlation its applicability is
still limited. Instead of perturbatively treating single and double excitations
one might just directly express the wave function as a sum of the Hartree–
Fock determinant plus other determinants obtained by replacing one or two
orbitals:

ΨCISD = ΨHF +
∑

c
(1)
i Ψ

(1)
i +

∑
c
(2)
i Ψ

(2)
i . (3.38)

The optimum wave function is then found by varying the coefficients c(j)i .
Since different configurations (or Slater determinants) are included in (3.38),
this method is called configuration interaction (CI). If only single (S) and
double (D) excitations are included in the sum, one refers to the method
as CISD. This approach does not obey one important desirable property of
electronic structure methods, namely the so-called size consistency or size
extensivity. In principle, with size extensivity the linear scaling of the energy
with the number of electrons is meant. For infinitely separated systems, this
comes down to additive energies of the separated components. This property
is not only important for large systems, but even for small molecules [21].
The CISD method does not fulfill size extensivity because the product of two
fragment CISD wave functions contains triple and quadruple excitations and
is therefore no CISD function. One elegant way to recover size extensivity is
to exponentiate the single and double excitations operator:

ΨCCSD = exp(T1 + T2) ΨHF . (3.39)

This approach is called coupled cluster (CC) theory, the limitation to single
and double excitations is denoted by CCSD. If also triple excitations are
included, the method is called CCSDT. However, the computational effort
of this method has an eighth-power dependence on the size of the system
and is therefore rather impractical. The scaling is more favorable if the triple
excitations are incorporated perturbatively; still, this CCSD(T) method is
very accurate.

The single-reference methods can be very reliable in the vicinity of equi-
librium configurations, but they are often no longer adequate to describe a
bond-breaking process. One Slater determinant plus excited states derived
from this determinant are not sufficient because the dissociation products
should be described by a linear combination of two Slater determinants tak-
ing into account the proper spin state. Note that there are even some ground-
state configurations such as for example the triplet mJ = 0 state that cannot
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be represented by a single Slater determinant. However, any many-particle
electronic wave function can in principle be represented by a sum over, if nec-
essary, infinitely many Slater determinants. Hence by considering more and
more configurations in the calculations, the accuracy can be systematically
improved. If all possible determinants are included in an electronic structure
calculation, the method is called full configuration interaction (FCI). Because
of the large computational effort required, FCI calculations are limited to
rather small systems. In particular, the treatment of larger clusters necessary
to model surface science problems is not possible with FCI. Hence approxi-
mate multi-reference methods are needed.

In the multiconfigurational self-consistent field (MCSCF) approach, a rel-
atively small number of configurations is selected and both the orbitals and
the configuration interactions coefficients are determined variationally. The
selection of the configurations included in a MCSCF calculation cannot be
done automatically; usually chemical insight is needed [21] which, however,
might introduce a certain bias in the calculations. This can be avoided to a
certain extent by the complete active space (CAS) approach. In a CASSCF
calculations a set of active orbitals is identified and all excitations within this
active space are included. This method is again computationally very costly.
After all, if the active space is increased to include all electrons and orbitals,
we end up with a FCI calculation.

For a proper treatment of the electronic correlation, not only the appropri-
ate many-body method has to been chosen, but also the basis set for the one-
particle wave functions has to be sufficiently large enough. Quantum chemical
methods usually describe the electrons by a localized basis set derived from
atomic orbitals. The preferred basis functions are Gaussian functions because
they allow the analytical evaluation of the matrix elements necessary to per-
form an electronic structure calculations. In fact, the most popular electronic
structure code used in quantum chemistry, the GAUSSIAN program [23], is
named after the type of basis functions employed in the program.

Quantum chemists have developed a particular nomenclature to describe
the quality of a basis set. It is beyond the scope of this book to give a full
introduction into the terminology. I will only give a short overview. The sim-
plest choice of just one atomic orbital per valence state is called “minimal
basis set” or “single zeta”. If two or more orbitals are included, the basis set
is called “double zeta”(DZ), “triple zeta” (TZ) and so on. Often polarization
functions are added which correspond to one or more sets of d functions on
first row atoms. Then a “P” is added to the acronym of the basis set resulting
in, e.g., DZ2P. These polarization functions describe small displacements of
the atomic orbitals from the nuclear centers. For rather delocalized states such
as anionic or Rydberg excited states, further diffuse functions are added.

In quantum chemical methods the accuracy of the treatment of electron
correlation can be improved in a systematic way by either choosing a more
refined method or by increasing the basis set. This is a very attractive property
of these wave function based methods. Unfortunately, the accuracy is paid by
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an immense computational effort so that accurate calculations are limited
to a rather small number of atoms, typically about 10–20. This is often not
sufficient to model an extended substrate. The accuracy is worthless if the
evaluated system does not correspond to the “real” system it is supposed to
model. There has been a very lively and sometimes heated discussion about
the value of cluster calculations to model surfaces. Adsorption geometries
are usually well-reproduced by cluster calculations, but adsorption energies
often exhibit an strong dependence on the cluster size and can be seriously in
error, in particular for metal surfaces [25]. Cluster calculations can still yield
qualitative trends, but they are “often best used for explanatory rather than
predictive purposes” [26]. In recent years one method has become more and
more popular that is not based on a representation of the many-body wave
function, but on the electron density: density functional theory [27–31].

3.3 Density Functional Theory

There is a simple predecessor of density functional theory, the Thomas–Fermi
theory [32]. In the homogeneous electron-gas, in the presence of a constant
external potential vext the chemical potential μ can be expressed as

μ =
h̄2

2m
(3π2n)2/3 + vext , (3.40)

which follows for example from (3.19). In an inhomogeneous situation, finding
the electron density n(r) usually requires the determination of all occupied
one-particle wave functions by solving the effective one-particle Schrödinger
equations {

− h̄2

2m
∇2 + veff(r)

}
ψi(r) = εiψi(r) . (3.41)

In the case of free, i.e. non-interacting electrons in a constant external poten-
tial veff , the eigenenergies are given by

ε(k) =
h̄2k2

2m
+ veff . (3.42)

Now one assumes that (3.42) also holds for weakly varying effective potentials
veff(r), i.e.,

ε(k) =
h̄2k2

2m
+ veff(r) , (3.43)

The energy of the highest occupied state corresponds to the Fermi energy εF

which at T = 0 equals the chemical potential μ which has to be constant
throughout the whole system:

h̄2k2
F

2m
+ veff(r) = εF = μ . (3.44)
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This corresponds to assuming a position dependent Fermi wave vector

kF(r) =
(
3π2n(r)

)1/3
. (3.45)

Inserting (3.45) into (3.44) yields the so-called Thomas–Fermi equation

h̄2

2m
(3π2n(r))2/3 + veff(r) = μ , (3.46)

which can also been derived from a variational principle. This equation pro-
vides a relation between the effective potential and the electron density at
each point in space. However, (3.43) is strictly only valid for a constant ex-
ternal potential. Therefore, it is only a good approximation for systems that
vary slowly on the length scale of a Fermi wavelength 1/kF . Furthermore, it
is not clear whether there is also a strict relation between the electron density
appearing in the Thomas–Fermi equation and the corresponding many-body
wave function [31].

This connection is in fact provided by the Hohenberg–Kohn theorem [27]
density functional theory (DFT) is based upon. This theorem states that the
ground-state density n(r) of a system of interacting electrons in an exter-
nal potential uniquely determines this potential. The proof for this theorem
which is rather simple will be presented here in order to demonstrate that
also theories that are based on simple ideas can lead to a Nobel prize (Walter
Kohn, Nobel prize for chemistry 1998). However, the formulation of its rigor-
ous mathematical foundations was only completed several years after the first
presentation of the Hohenberg–Kohn theorem (see, e.g., [29]).

Let us assume for the sake of simplicity that the system of interacting elec-
trons has a nondegenerate ground state (the extension to degenerate cases is
straightforward). Let the wave function Ψ1 be the nondegenerate ground state
of the Hamiltonian H1 with external potential v1(r) and the corresponding
ground-state density n(r). The ground-state energy E1 is then given by

E1 = 〈 Ψ1 | H1 | Ψ1 〉
=
∫

v1(r)n(r) d3r + 〈 Ψ1 | (T + U) | Ψ1 〉 . (3.47)

Here T and U are the operators of the kinetic and the interaction energy.
Now let us assume that there is a second potential v2(r) which differs from
v1(r) by not just a constant, i.e. v2(r) �= v1(r)+const., but leads to the same
electron density n(r). The corresponding ground state energy is

E2 = 〈 Ψ2 | H2 | Ψ2 〉
=
∫

v2(r)n(r) d3r + 〈 Ψ2 | (T + U) | Ψ2 〉 . (3.48)

Now we can apply the Rayleigh-Ritz variational principle. Since the ground
state Ψ1 is assumed to be nondegenerate, we obtain the true inequality



38 3 Electronic Structure Methods and Total Energies

E1 < 〈 Ψ2 | H1 | Ψ2 〉
=
∫

v1(r)n(r) d3r + 〈 Ψ2 | (T + U) | Ψ2 〉

= E2 +
∫

(v1(r) − v2(r)) n(r) d3r . (3.49)

Equivalently, we can use the Rayleigh–Ritz variational principle for H2. We
have not explicitly assumed that Ψ2 is nondegenerate, hence we obtain

E2 ≤ 〈 Ψ1 | H2 | Ψ1 〉
= E1 +

∫
(v2(r) − v1(r)) n(r) d3r . (3.50)

If we add (3.49) and (3.50), we end up with the contradiction

E1 + E2 < E1 + E2 . (3.51)

Hence the initial assumption that two different external potential can lead to
the same electron density is wrong. This concludes the proof of the Hohenberg–
Kohn theorem.

Since the density n(r) is uniquely related to the external potential and
the number N of electrons via N =

∫
n(r)d3r, it determines the full Hamilto-

nian. Thus in principle it determines all quantities that can be derived from
the Hamiltonian such as, e.g., the electronic excitation spectrum. However,
unfortunately this has no practical consequences since the dependence is only
implicit.

In the derivation of the Hartree and the Hartree–Fock methods we have
used the Rayleigh-Ritz variational principle. This demonstrated the impor-
tance of variational principles. In fact, there is also a variational principle for
the energy functional (i.e., a function whose argument is another function),
namely that the exact ground state density and energy can be determined by
the minimization of the energy functional E[n]:

Etot = min
n(r)

E[n] = min
n(r)

(T [n] + Vext[n] + VH[n] + Exc[n]) . (3.52)

Vext[n] and VH [n] are the functionals of the external potential and of the clas-
sical electrostatic interaction energy that corresponds to the Hartree energy,
while T [n] is the kinetic energy functional for non-interacting electrons, i.e. the
kinetic energy functional of a non-interacting reference system that is exposed
to the same external potential as the true interacting system. All quantum me-
chanical many-body effects are contained in the so-called exchange-correlation
functional Exc[n]. Yet, this non-local functional is not known; probably it is
even impossible to determine it exactly in a closed form. However, it has the
important property that it is a well-defined universal functional of the electron
density, i.e., it does not depend on any specific system or element. Instead of
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using the many-body quantum wave function which depends on 3N coordi-
nates now only a function of three coordinates has to be varied. In practice,
however, no direct variation of the density is performed, although there is re-
cently a renewed interest in so-called orbital-free DFT calculations [33]. One
of the reasons why the formulation (3.52) is not directly used is that apart
from the exchange-correlation functional the kinetic energy functional T [n] is
not well-known either.

The density is rather expressed as a sum over single-particle states

n(r) =
N∑

i=1

|ψi(r)|2 . (3.53)

Now we make use of the variational principle for the energy functional and
minimize E[n] with respect to the single particle states under the constraint
of normalization. This procedure is entirely equivalent to the derivation of the
Hartree and the Hartree–Fock equations (3.8) and (3.15), respectively. Thus
we obtain the so-called Kohn–Sham equations [28]

{
− h̄2

2m
∇2 + vext(r) + vH(r) + vxc(r)

}
ψi(r) = εi ψi(r) . (3.54)

The effective one-electron potential acting on the electrons is given in the
Kohn–Sham formalism by

veff(r) = vext(r) + vH(r) + vxc(r) . (3.55)

The exchange-correlation potential vxc(r) is the functional derivative of the
exchange-correlation functional Exc[n]

vxc(r) =
δExc[n]
δn

. (3.56)

The ground state energy can now be expressed as

E =
N∑

i=1

εi + Exc[n] −
∫
vxc(r)n(r) d3r − VH + Vnucl−nucl . (3.57)

Here we have added the term Vnucl−nucl in order to have the correct total en-
ergy of the electronic Hamiltonian (2.8). In solid-state applications, the sum
over the single-particle energies in (3.57) is often called the band-structure
energy. However, it is important to keep in mind that the “single-particle
energies” εi enter the formalism just as Lagrange multipliers ensuring the
normalization of the wave functions. The Kohn–Sham states correspond to
quasiparticles with no specific physical meaning except for the highest occu-
pied state [29]. Still it is almost always taken for granted that the Kohn–
Sham eigenenergies can be interpreted, apart from a rigid shift, as the correct
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electronic one-particle energies. This is justified by the success since the
Kohn–Sham eigenenergy spectrum indeed very often gives meaningful physi-
cal results, as will be shown in the next chapters.

Note that if the exchange-correlation terms Exc and vxc are neglected
in (3.54)–(3.57), we recover the Hartree formulation of the electronic many-
body problem. Hence the Kohn–Sham theory may be regarded as a formal
extention of the Hartree theory. In contrast to the total energy expression
in the Hartree and the Hartree–Fock approximation, the ground-state energy
(3.57) is in principle exact. The reliability of any practical implementation of
density functional theory depends crucially on the accuracy of the expression
for the exchange-correlation functional.

The exchange-correlation functional Exc[n] can be written as

Exc[n] =
∫
d3r n(r) εxc[n](r) , (3.58)

where εxc[n](r) is the exchange-correlation energy per particle at the point r,
but depends on the whole electron density distribution n(r). In order to dis-
cuss the properties of Exc[n], it is helpful to introduce the exchange-correlation
hole distribution

nxc(r, r′) = g(r, r′) − n(r′) , (3.59)

where g(r, r′) is the conditional density to find an electron at r′ if there is
already an electron at r. Every electron creates a hole corresponding to exactly
one electron out of the average density n(r). This is expressed through the
sum rule ∫

d3r′ nxc(r, r′) = −1 . (3.60)

Furthermore, the exchange-correlation hole vanishes for large distances:

nxc(r, r′) −→
|r−r′|→∞

0 , (3.61)

and there is an asymptotical result for the integral
∫

d3r′
nxc(r, r′)
|r − r′| −→

|r|→∞
− 1
|r| . (3.62)

Since the exchange-correlation functional Exc[n] is not known in general, the
exchange-correlation energy εxc[n](r) cannot be exactly derived either. What
is known is the exchange-correlation energy for the homogeneous electron
gas, i.e. for a system with a constant electron density [19]. This energy is
plotted in Fig. 3.4. In the so-called Local Density Approximation (LDA), the
exchange-correlation energy for the homogeneous electron gas is also used for
non-homogeneous situations,

ELDA
xc [n] =

∫
d3r n(r) εLDA

xc (n(r)) , (3.63)
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Table 3.1. O2 binding energy obtained by DFT calculations using LDA and differ-
ent GGA exchange-correlation functionals [38]

functional LDA PW91 PBE RPBE Exp.

O2 binding energy (eV) 7.30 6.06 5.99 5.59 5.23

As (3.63) shows, at any point in space the local exchange-correlation energy
εLDA
xc (n(r)) of the homogeneous electron gas is used for the corresponding den-

sity, ignoring the non-locality of the true exchange-correlation energy εxc[n].
In a wide range of bulk and surface problems the LDA has been surpris-

ingly successful [30]. This is still not fully understood but probably due to
a cancellation of opposing errors in the exchange and the correlation expres-
sion in the LDA. Furthermore, the LDA satisfies the sum rule (3.60) which
is apparently also very important. For chemical reactions in the gas phase
and at surfaces, however, the LDA results are not sufficiently accurate. Usu-
ally LDA shows over-binding, i.e. binding and cohesive energies turn out to
be too large compared to experiment. This overbinding also leads to lattice
constants and bond lengths that are smaller than the experimental values.
These shortcomings of LDA were the reason why many theoretical chemists
were rather reluctant to use DFT for a long time. There had been attempts
to formulate a Taylor expansion of the exchange-correlation energy εxc[n],
but these first attempts had not been successful because by a straightforward
gradient expansion the sum rule (3.60) is violated. Only with the advent of
exchange-correlation functionals in the Generalized Gradient Approximation
(GGA) [34–38] this situation has changed [39]. In the GGA the gradient of
the density is also included in the exchange-correlation energy,

EGGA
xc [n] =

∫
d3r n(r) εGGA

xc (n(r), |∇n(r)|) , (3.64)

but the dependence on the gradient is modified in such a way as to satisfy the
sum rule (3.60). In addition, general scaling properties and the asymptotic
behavior of effective potentials are taken into account in the construction of
the GGA. DFT calculations in the GGA achieve chemical accuracy (error
≤ 0.1 eV) for many chemical reactions. This improvement in the accuracy
of DFT calculations finally opened the way for Walter Kohn to be honored
with the Nobel prize in chemistry in 1998 for the development of DFT which
is somewhat paradox because DFT was accepted in the physics community
much earlier than in the chemistry community.

Still there are important exceptions where the GGA also does not yield
sufficient accuracy. In Table 3.1 DFT results for the O2 binding energy ob-
tained using LDA and different GGA exchange-correlation functionals [38]
are compared to the experimental value. The LDA result shows the typical
large overbinding. The GGA functional by Perdew and Wang (PW91) [36]
and by Perdew, Burke and Ernzerhof (PBE) [37] have been constructed to
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give similar results. The revised PBE functional (RPBE) [38] follows the same
construction scheme as the PBE functional, just a different interpolation that
is not specified by the construction scheme is used. This leads to a difference
of almost half an eV for the O2 binding energy. This is a rather unsatisfac-
torily result because this means that there is an intrinsic uncertainty of up
to half an eV for energy differences obtained within the generalized gradient
approximation. And still the theoretical O2 binding energies are much larger
than measured in experiment.

The binding energy of O2 is not the only case where DFT calculations are
rather inaccurate. A list of the failures of DFT with present-day functionals
includes: (i) van der Waals forces are not properly described, (ii) negative ions
are usually not bound, i.e. electron affinities are too small, (iii) the Kohn–
Sham potential falls off exponentially for large distances instead of ∝ 1/r,
(iv) band gaps are underestimated in both LDA and GGA by approximately
50%, (v) cohesive energies are overestimated in LDA and underestimated in
GGA, (vi) strongly correlated solids such as NiO and FeO are predicted as
metals and not as antiferromagnetic insulators.

The problem in the development of a more accurate exchange-correlation
functional is the reliable representation of the non-locality of this functional.
One could say that all present formulations of the exchange-correlation func-
tional in principle still represent an uncontrolled approximation. There is no
systematic way of improving the functionals since there is no expansion in
some controllable parameter.

Still the development of more accurate exchange-correlation function is a
very active research field. One route is the development of so-called meta-
GGA’s that include higher-order powers of the gradient or the local kinetic
energy density [40]. Another ansatz is to include to some extent “exact ex-
change” in the construction of the functional [41,42]. Very accurate results for
small molecules can be obtained by methods based on orbital functionals such
as the optimized potential method (OPM) or the optimized effective potential
(OEP) method [43]. In this approach, the exchange-correlational functional
does not explicitly depend on the density but on the individual orbitals. Thus
the self-interaction can be avoided. It is still true that all improved function-
als mentioned above require a significant increase in the computational effort.
Therefore they have not been used yet in standard applications of DFT cal-
culations for surface science problems.

In surface science problems, relativistic effects can often be neglected. How-
ever, for heavy elements such as Au the large charge of the nucleus can accel-
erate the electrons to velocities close to the velocity of light so that relativistic
effects become important [44]. Furthermore, the spin-orbit coupling becomes
important for molecules and materials containing heavy elements [45] and also
for the proper theoretical treatment of magnetism (see Chap. 6). Here we will
not dwell on details of relativistic quantum mechanics which can be found in
standard text books [18]. We will simply note that based on the Dirac equa-
tion, there is an extension of the Hohenberg-Kohn theorem to the relativistic
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regime [46]. Using the four-current Jμ, a relativistic energy functional can be
defined [29]

E[Jμ] = Ts[Jμ] +
∫
d3rJμA

μ
ext(r) +

1
2

∫
d3rd3r′

Jμ(x)Jμ(x′)
|r − r′| + Exc[Jμ],

(3.65)

where Aμ is the four-potential. The variation of the energy functional (3.65)
leads to the relativistic Kohn-Sham or Kohn-Sham-Dirac equations

{
cα ·
(
−i∇− e

c
Aeff

)
+ βmc2 + βveff(r)

}
ψi(r) = εi ψi(r) . (3.66)

with

veff(r) = −e
(
A0

ext +
∫
d3r′

J0(r)
|r − r′| +

δExc[Jμ]
δJ0(r)

)
(3.67)

and

Aeff(r) = −e
(
Aext +

∫
d3r′

J(r)
|r − r′| +

δExc[Jμ]
δJ(r)

)
(3.68)

for all negative and positive energy orbitals where α and β are the usual Dirac
matrices [18]. It should be mentioned that the solution of the Kohn–Sham–
Dirac equations is computationally rather demanding so that they are still
not routinely applied to surface science problems.

In any practical implementation of DFT the computational effort increases
significantly with the number of electrons that have to be taken into account.
However, most chemical and solid-state properties are determined almost en-
tirely by the valence electrons while the influence of the core electrons on these
properties is negligible. Indeed there is a way to replace the effect of the core
electrons by an effective potential so that they do not have to be taken into
account explicitly, namely by constructing so-called pseudopotentials. Since
this significantly reduces the number of electrons that have to be taken into
account, the use of pseudopotentials leads to an enormous saving of computer
time.

3.4 Pseudopotentials

The concept of pseudopotentials is based on the observation that the chemi-
cal properties of most atoms are determined by their valence electrons. Core
electrons hardly participate in any chemical interaction. The starting point
for the generation of pseudopotentials is an all-electron calculation for the
isolated atom. We rewrite the one-particle wave function of a valence electron
as [47, 48]

| ψv 〉 = | ψps 〉 −
∑

i

| ψci 〉 〈 ψci | ψps 〉 . (3.69)
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The |ψci〉 are core states with one-particle energies εci . The valence wave
function is assumed to be orthogonal to the core states. Indeed, in the form
(3.69) the matrix element 〈ψv|ψci〉 of the valence wave-function with any core
state will vanish by construction. However, the pseudo-wave function |ψps〉 is
not uniquely defined by (3.69) since the coefficients 〈ψci |ψps〉 can be chosen
arbitrarily. Substituting the wave function (3.69) into an effective one-particle
Schrödinger equation such as the Kohn–Sham equations (3.54) for the isolated
atom {

− h̄2

2m
∇2 + veff

}
| ψv 〉 = εv | ψv 〉 (3.70)

leads to {
− h̄2

2m
∇2 + vps

}
| ψps 〉 = εv | ψps 〉 , (3.71)

with the pseudopotential vps given by

vps = veff(r) +
∑

i

(εv − εci) |ψci〉 〈ψci | . (3.72)

It is a non-local potential since it does not simply operate on a wave func-
tion by a multiplication of a r-dependent function. In addition, it is energy-
dependent. This constitutes the difference to a “true” potential and is the
reason why it is called a “pseudo-potential”. Since εv > εci and the core
states are localized, the sum in (3.72) acts as a short-range repulsive poten-
tial. Note that the wave function ψps(r) has the same one-particle energy εv

as the true valence wave function ψv(r). Furthermore, ψps(r) does not need
to be orthogonal to the core states. Consequently, it does not have to have a
nodal structure in the core region. Therefore one has the freedom to choose
a smooth pseudo-wave function which is rather advantageous when the wave
function is expanded in some set of basis functions.

The derivation (3.69)–(3.72) captures the essentials of the pseudopotential
generation. Still this simple formulation has some drawbacks. For example, the
pseudo-wave function |ψps〉 entering (3.69) is not normalized. This can easily
be checked by taking the norm on both sides of (3.69) under the assumption
that |ψv〉 is normalized. The deviation of the norm from unity is given by

1 − 〈 ψps | ψps 〉 =
∑

i

|〈 ψci | ψps 〉|2 , (3.73)

which is typically of the order of 0.1. One can of course explicitly normalize
the pseudo-wave function but this leads to an incorrect distribution of the
valence charge. This problem can be avoided by the construction of so-called
norm-conserving pseudopotentials [49,50]. Their construction is guided by the
following requirements. Asymptotically a pseudopotential should describe the
long-range interaction of the core. Outside of a core radius rc the pseudo-
wavefunction should coincide with the full wavefunction. Inside of this radius
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Fig. 3.6. Schematic illustration of the difference between the all-electron (solid line)
and pseudo 3s wave function (dashed line) and their corresponding potentials. The
core radius rc is indicated by the vertical line

both the pseudopotential and the wavefunction should be as smooth as pos-
sible to reduce the computational effort. This property is also referred to as
the softness of the pseudopotential. The requirement that the norm of the
pseudo-wave function is conserved then automatically ensures that it has the
same one-particle energy εv as the true valence wave function.

The general form of norm-conserving pseudopotentials is given by

vps(r) =
∑

lm

|Ylm〉 vl(r) 〈 Ylm| . (3.74)

This form is called semi-local because it is local in the radial part and non-local
in the angular part. The requirements for the construction of norm-conserving
pseudopotentials still leaves a lot of freedom for the specific generation. A
further important property of pseudopotentials which should be considered in
their construction is the transferability. A pseudopotential should give reliable
results independent of the particular environment in which it is used.

The most common pseudopotential generation schemes have been devel-
oped by Bachelet, Hamann and Schlüter [50] and by Troullier and Martins
[51,52]. The Troullier–Martins pseudopotentials are constructed in such a way
as to give particularly soft potentials. A comparison of a typical pseudo-wave
function ψps and the pseudopotential vps with the corresponding all-electron-
results is illustrated in Fig. 3.6 for a 3s state.

A further significant improvement has been the development of the Van-
derbilt or ultra-soft pseudopotentials [53]. In the generation of this pseudopo-
tentials the norm-conserving constraint has been removed. They are rather
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constructed by a generalized orthonormality condition. In order to recover
the correct charge density, augmentation charges are introduced in the core
region. The electron density can thus be subdivided in a delocalized smooth
part and a localized hard part in the core regions. As the name already sug-
gest, by this procedure very soft pseudopotentials can be created that enable
a dramatic reduction in the necessary size of the basis set.

3.5 Implementations of Density Functional Theory

Density functional theory was first accepted as a very valuable method in solid-
state physics where one deals with periodic structures. Many bulk properties
of materials were accurately reproduced by DFT calculations in the local
density approximation. The natural basis to describe periodic structure is
made of plane waves

ψG
k (r) =

1√
V

ei(k+G)·r , (3.75)

because plane waves are already of the form (2.21) required by the Bloch
theorem. In (3.75), G is a reciprocal lattice vector and k is supposed to lie
within the first Brillouin zone. Due to the symmetry properties of an infinite
crystal, plane wave with wave vectors that do not differ by a reciprocal lattice
vector do not couple, i.e.

〈ψk|h|ψk′〉 = 0 for k �= k′ +G , (3.76)

where h is an effective one-particle Hamiltonian, for example the one entering
the Kohn–Sham equations. Hence the expansion of any wave function solving
the Kohn–Sham equations only contains plane waves that differ by reciprocal
lattice vectors. To determine the total energy of a crystal, still a summation
over the lowest eigenvalues has to be performed. For infinite periodic systems,
this band structure energy in the total energy expression has to be replaced
by an integral over the first Brillouin zone

∑

i

εi −→
∑

bands j

V

(2π)3

∫

BZ

d3k εj(k) , (3.77)

where over all occupied energy bands has to be summed. Fortunately this
integral can be approximated rather accurately by a sum over a finite set
of k-points, either by using equally spaced k-points within the first Brillouin
zone or by using so-called special k-points [54]. In practice this means that one
performs a number of calculations for different k-points. The electron density
n(r) in real space that enters the self-consistency cycle is also constructed by
a Fourier transform over these k-points. Finally the eigenenergies εj(k) at the
different k-points are summed up for the band structure term.

The expansion of the electronic wave functions in plane waves is com-
putationally very efficient. This is due to the fact that the plane waves are
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Fig. 3.7. Illustration of the supercell approach, in which surfaces are represented
through an infinite array of slabs

eigenfunctions of the momentum operator and that the kinetic energy oper-
ator is diagonal in momentum space. Hence the kinetic energy can be easily
computed in momentum space whereas the potential energy is evaluated in
real space. The switching between real and momentum space is done by Fast-
Fourier-Transformation (FFT) techniques [17]. However, this expansion usu-
ally requires a three-dimensional periodicity of the considered system. If one
wants to use plane-wave codes for surface science problems, the surface has to
be cast into a three-dimensional periodicity. This is achieved in the so-called
supercell approach, in which a surface is represented through an infinite array
of slabs. The supercell approach for surfaces is illustrated in Fig. 3.7. In order
to give a reliable description of surfaces, firstly, the vacuum layer between the
slabs has to be sufficiently wide to avoid any interaction between the slabs,
and secondly, the slabs have to be thick enough to be a reasonable model for
a surface of a semi-infinite substrate. Both these properties can be checked by
convergence tests of any calculated property with respect to the width of the
vacuum layer and the thickness of the slab.

In the discussion of the pseudopotentials we already mentioned that their
introduction leads to a significant reduction in the computational cost because
of the smaller number of electrons that have to be taken into account explicitly.
In plane wave calculations, however, the softness of a pseudopotential plays an
essential role. The smoother, i.e, the softer a pseudopotential is, the smaller the
number of plane waves necessary in the expansion of the wave function. So to
say, less Fourier coefficients are needed in order to resolve smooth structures.
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This is the reason why many of the modern plane wave DFT codes [55] have
implemented ultrasoft pseudopotentials [53].

Even within the pseudopotential concept the solution of the single-particle
equations would still require the diagonalization of a rather large matrix. The
size of this matrix is determined by the number of plane waves in the expansion
of wave functions. Usually the kinetic energy of the highest Fourier component,
the so-called cutoff energy

Ecutoff = max
G

h̄2(k +G)2

2m
(3.78)

is used as a parameter characterizing the size of the plane wave basis set.
Employing norm-conserving Troullier–Martins pseudopotentials, this cutoff
energy is typically about 10Ryd for semiconductors and more than 50Ryd
for transition metals. Using ultrasoft pseudopotentials, the cutoff energy for
transition metals can be reduced to about 20Ryd. Depending on the number
of atoms in the supercell, the number of plane waves in the expansion can
easily be larger than 10,000. The diagonalization of a 10, 000× 10, 000 matrix
is computationally still very demanding. A full diagonalization is anyways not
required because often only the lowest 100 to 1000 eigenvalues are needed.
Hence in almost all modern DFT algorithms the diagonalization is avoided
by using the fact that the diagonalization can be regarded as a minimization
problem for which many efficient algorithms exist.

The use of pseudopotentials still represents an approximation. For some
elements, there is a significant interaction between core and valence electrons.
Hence all-electron calculations are desirable for systems containing these el-
ements. There are indeed electronic structure methods for extended periodic
systems that do take into account the core electrons. I will present a brief
sketch of the development of these methods which cumulated in the develop-
ment of the so-called PAW method [56] that combines an all-electron treat-
ment with the efficiency of ultra-soft pseudopotentials.

The basic idea, proposed by Slater in 1937 [57], is to expand the electronic
wave function in the core region in a different basis set than in the interstitial
region. In the first implementations, the effective potential was approximated
by the muffin-tin potential

veff(r) =

{
0 interstitial region

vMT(|r −Ri|) |r −Ri| < rMT

. (3.79)

This means that the effective potential is approximated by a constant poten-
tial in the interstitial region and by a radial symmetric potential within the
muffin-tin radius rMT in the core region. As the basis set for the expansion of
the correct solution of the effective one-particle equations within the muffin-
tin approximation (3.79) augmented plane waves (APW) are used which are
defined as
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φk,ε(r) =

⎧
⎪⎨

⎪⎩

1√
V

eik·r interstitial region

∑
lm

alm(k, ε) ul(ri, ε) Ylm(θ, φ) |r −Ri| < rMT

, (3.80)

where we have set ri = |r−Ri| and where θ and φ are related to the origin at
Ri. The plane waves are so-to-say augmented by spherical harmonics times
a radial function in the core region. The augmented plane waves are defined
to be continuous at the boundary between core and interstitial region. The
functions ul(r, ε) are solutions of the radial Schrödinger equation

{
− h̄2

2m
d2

dr2
+
h̄2

2m
l(l+ 1)
r2

+ vMT(r) − ε

}
rul(r, ε) = 0 . (3.81)

Note that one can define augmented plane waves for any wave vector k and any
energy ε; there is no constraint relating the two quantities. The continuity re-
quirement at the boundary between core and interstitial region then uniquely
determines the expansion coefficients alm(k, ε) for any given combination of
k and ε, but the derivative is discontinuous at the boundary. The correct so-
lution of the one-particle Schrödinger equation is written as a superposition
of augmented plane waves, all with the same energy:

ψk(r) =
∑

G

cG φk+G,ε(r) , (3.82)

where the sum is over reciprocal lattice vectors. The APW method for a given
muffin-tin potential can in principle be exact, but it is computationally rather
costly. This is so because the basis functions, the augmented plane waves,
depend on the energy. Therefore the basis set cannot be used for the whole
energy spectrum.

This problem is avoided by the concept of the linearized augmented plane
waves (LAPW) that was proposed by Andersen in 1975 [58]. First, the basis
functions and their first derivative are required to be continuous at the bound-
ary between core and interstitial region. This makes only an approximative
solution of the Schrödinger equation possible, but the associated error is rather
small [58]. Secondly and more importantly, the radial functions ul(r, ε) are
expanded around a fixed energy εl, i.e. they are written as

ul(r, ε) = ul(r, εl) + u̇l(r, εl) (ε− εl) + . . . , (3.83)

where u̇l(r, εl) is the energy derivative

u̇l(r, εl) =
dul(r, ε)
dε

∣∣∣∣
ε=εl

. (3.84)

The fixed energy εl should be in the middle of the corresponding energy band
with l character.

The LAPW basis functions are then given by
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φk(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
V

eik·r interstitial region

∑
lm

[alm(k) ul(ri, εl) +

blm(k) u̇l(ri, εl)] Ylm(θ, φ) |r −Ri| < rMT

. (3.85)

The augmentation parameters alm(k) and blm(k) are determined through
the continuity requirement of both the wave function and its first derivative.
Through the linearization (3.83) the basis functions become energy indepen-
dent and the corresponding radial functions ul(r, εl) only have to be deter-
mined once. This leads to an enormous increase in the efficiency of the method
compared to the original APW method.

The restriction to spherical symmetric potentials in the core region and
constant potentials in the interstitial region can also be lifted in the LAPW
method. The potential is expanded corresponding to the wave function as

veff(r) =

⎧
⎪⎨

⎪⎩

∑
G

veff(G) eiG·r interstitial region

∑
lm

vlm
eff (ri) Ylm(θ, φ) |r −Ri| < rMT

. (3.86)

Since now the “full potential” (FP) can be taken into account, this method is
called FP-LAPW method.

One problem arises for the determination of the atomic forces. The LAPW
basis functions (3.85) depend on the atomic position and move according to
the dynamics of the atoms. For such a basis set the atomic forces are not
simply given by the Hellmann–Feynman theorem (2.12), but in addition basis
set corrections have to taken into account, the so-called Pulay forces. This
makes the evaluation of the atomic forces more complex, but they are now
implemented in standard FP-LAPW packages [59].

All-electron DFT calculations using the FP-LAPW method are considered
to give the most accurate results apart from the errors associated with the
exchange-correlation functional. This requires a large computational effort.
Therefore FP-LAPW calculations are usually more expensive than plane-wave
calculations using ultrasoft pseudopotentials.

An all-electron method that only requires the computational effort of ultra-
soft pseudopotential calculations is based on the so-called projected augmented
waves (PAW) [56, 60]. The augmentation procedure differs from the LAPW
method in that partial-wave expansions are not determined through the con-
tinuity requirement of both the wave function and its first derivative at the
muffin-tin radius, but rather by the overlap with localized projector functions
[56]. In fact, there is a formal relationship between the ultrasoft pseudopo-
tential method and the PAW method. It can be shown that they only differ
by one-center terms [60]. This makes the PAW method to a computationally
very efficient all-electron method.

One of the main goals of total-energy calculations is to find equilibrium
structures of a particular system. These structures corresponds to the minima
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in the Born–Oppenheimer energy surface. Usually the determination of the
minima requires many calculations of the energies and the gradients of the
Born–Oppenheimer surface. In fact, it is not necessary to perform many calcu-
lations on the Born–Oppenheimer surface in order to find the minima. Instead,
taking advantage of the variational principle of density functional theory, both
nuclear and electronic degrees of freedom can be relaxed simultaneously. This
approach which is now known as the Car–Parrinello method [61] was first
proposed by Bendt and Zunger [62]. For a satisfactory convergence, however,
this method requires the existence of an electronic band gap. Therefore, for
metallic systems the Born–Oppenheimer approach is recommended [63]. Still
the Car–Parrinello has been used extensively, in particular for biologically
relevant systems [64].

3.6 Further Many-Electron Methods

Although density functional theory has been remarkably successful, there are
severe shortcomings, as listed on page 41, that need to be overcome. For
weakly correlated solids, very accurate ground-state expectation values can
be obtained by quantum Monte Carlo (QMC) methods [65]. In general, the
term Monte Carlo denotes computational techniques that are based on ran-
dom sampling. There are indeed also several versions of quantum Monte Carlo
methods. In the simplest of these, variational Monte Carlo (VMC), the ex-
pectation values with respect to a chosen trial many-body wave function are
evaluated by a Monte Carlo integration scheme. This requires a good initial
guess for the trial wave function. The more sophisticated diffusion quantum
Monte Carlo avoids this limitation. It corresponds to a projector technique in
which a stochastic imaginary-time evolution is used to suppress the higher-
states components of the trial wave function.

Quantum Monte Carlo calculations can provide very accurate results. For
example, the parameterization of the exchange-correlation energy in the local
density approximation is based on quantum Monte Carlo [19]. On the other
hand, QMC simulations are computationally very demanding so that their
applications are still limited to systems with a rather small number of atoms.
Furthermore, while probabilistic methods such as DMC usually require posi-
tive distributions, many-fermion wave functions change sign due to their an-
tisymmetry. This leads to the fermion sign problem in quantum Monte Carlo.
Therefore there are almost no approximation-free QMC algorithms treating
fermion systems. Usually the fixed-node approximation is employed in which
the nodal structure of the wave-functions is determined by the trial wave func-
tion and kept fixed in the simulation. In spite of these problems, remarkable
progress has been made in the development of efficient and accurate quantum
Monte Carlo algorithms, and first applications to surface science problems
have been carried out.
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As an intermediate approach that is computationally less demanding than
quantum chemistry or quantum Monte Carlo methods but more accurate than
standard DFT methods, natural orbital functional theory [66] has been pro-
posed. Natural orbits are the eigenfunctions of the one-particle density matrix
with the occupation numbers ni as their eigenvalues. In this approach, the true
many-body kinetic energy can be expressed in terms of the natural orbitals so
that the still unknown exchange-correlation functional only includes poten-
tial energy contributions whereas the exchange-correlation functional in the
Kohn–Sham formulation contains both potential and kinetic energy contribu-
tions. This method has not matured yet, but it can produce atomic energies
as good as, and atomic densities that are better than those obtained from the
most accurate DFT implementations [66].

3.7 Tight-Binding Method

Total energy calculations using density functional theory are still computa-
tionally rather expensive. Consequently, the systems treated are often limited
to well below 100 atoms within the supercell. There is a computational scheme
of the early days of computational physics [67] that is still rather popular:
the tight-binding method [68] in which the essentials of quantum mechanics
are retained. Still it is computationally much more effective than a true self-
consistent electronic structure calculation. Compared to ab initio methods,
tight-binding is about two to three orders of magnitude faster, depending on
the particular system. This allows the treatment of large systems with more
than 1000 atoms, in particular in combination with so-called order(N) meth-
ods [69] in massively parallel calculations. Tight-binding is also two to three
orders of magnitude slower than empirical methods which, however, hardly
reproduce the quantum mechanical nature of bonding.

In short, the tight-binding method can be characterized by saying that
it assumes an expansion of the eigenstates of the effective one-particle
Hamiltonian in an atomic-like basis set and replaces the exact many-body
Hamiltonian with parameterized Hamiltonian matrix elements [68]. The
atomic-like basis functions are usually not considered explicitly, but the ma-
trix elements are assumed to have the same symmetry properties as matrix
elements between atomic states. Tight-binding is very similar to the Hückel
and extended Hückel methods used in quantum chemistry.

To be specific, in tight-binding one formally starts with a basis of atomic
functions

φiα(r) = φα(r −Ri) , (3.87)
where i labels the lattice site and α the type of the atomic orbital such as s, p,
d etc. From the atomic orbitals (3.87) periodic functions can be constructed
by forming Bloch sums

φαk(r) =
1√
N

∑

i

eik·Ri φα(r −Ri) , (3.88)
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where N is the number of unit cells within the periodic boundary conditions.
For simplicity we have assumed here that there is only one atom per unit cell.
The extension to a lattice with a basis is straightforward. The sums (3.88) are
then used to determine the matrix elements

hαβ(k) = 〈φαk|h|φβk〉
=

1
N

∑

ij

eik·(Rj−Ri)

∫
φ∗α(r − Ri) h φβ(r − Rj) d3r

=
∑

j

eik·Rj

∫
φ∗α(r) h φβ(r − Rj) d3r

=
∑

j

eik·Rj 〈φ0α|h|φjβ〉 =
∑

j

eik·Rj hαβ(Rj) , (3.89)

where we have used the translational invariance of the Bravais lattice. The
key idea in tight-binding which was formulated by Slater and Koster [67] is
to replace the explicit determination of the integrals hαβ(R) by a parame-
terized function depending on the interatomic distances R. This requires the
so-called two-center approximation. The evaluation of the matrix elements
hαβ(R) usually involves integration over two atomic orbitals and the poten-
tial part of the Hamiltonian. This potential is due to all atoms in the system.
This leads to three and four-center integrals in the evaluation of hαβ(R) which
are neglected in the two-center approximation. In this approximation hαβ(R)
becomes a function of the square modulus R = |R| and of the direction cosines
k, l,m ofR. These direction cosines have been tabulated [67]. Often the atomic
orbitals and matrix elements are further expanded as a sum over functions
with well-defined angular momentum with respect to the axis between the
two atoms, i.e., in σ, π, δ bonds etc.

Any eigenfunction χk of the one-particle Hamiltonian can be written as

χk(r) =
∑

α

cα(k) φαk(r) . (3.90)

The band energies ε(k) can then be evaluated as the eigenvalues of

h(k) c(k) = S(k) ε(k) c(k) , (3.91)

where S(k) is the overlap matrix given by

Sαβ(k) =
∑

j

eik·Rj 〈φ0α|φjβ〉 =
∑

j

eik·Rj Sαβ(Rj) . (3.92)

This means that the dispersion curves ε(k) can be obtained by the diagonal-
ization of S(k)−1h(k). This method is called non-orthogonal tight-binding.
A further simplification results if one assumes that the atomic orbitals are
already orthogonalized according to the Löwdin scheme [70]
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ψiα(r) =
∑

jβ

S
−1/2
iαjβ φjβ(r) . (3.93)

In this orthogonal tight-binding the eigenenergies are just obtained by the
diagonalization of the Hamilton matrix h(k). If there are Nc atoms in the
unit cell and l atomic orbitals per atoms, then a Ncl ×Ncl matrix has to be
diagonalized.

In (3.91), often only the valence electrons are taken into account, i.e. it is
assumed that pseudopotentials are used in the effective one-particle Hamil-
tonian h. As already mentioned, the atomic basis functions do not explicitly
appear in the tight-binding formulation, but only implicitly via the matrix el-
ements hαβ(R) and Sαβ(R) which are both written in a parameterized form.
Hence it is the parameterization scheme that determines the reliability and
accuracy of any tight-binding calculation.

In order to obtain total energies rather than just band energies, usually a
repulsive term written as a sum of pair terms is added

Etot = Eband + Erep

=
∑

k

ε(k) +
∑

ij

Uij . (3.94)

Such a form looks similar to the total energy in DFT (3.57) under the as-
sumption that the exchange-correlation energy and the Hartree energy can
be combined as a pairwise repulsive interaction. In fact, the validity of (3.94)
has been derived from DFT considerations [71]. There is, however, also a
tight-binding scheme in which the repulsive term is contained in the band
energies [72].

Tight-binding supplies a very useful scheme to understand qualitative
trends of band structures. For example, if one assumes in orthogonal tight-
binding that only nearest neighbors (nn) integrals contribute significantly,
then the dispersion for a s-band in a metal is given by

ε(k) = β +
∑

nn

γ cosk ·R , (3.95)

where β = 〈φ0s|h|φ0s〉 is the so-called on-site term and γ = 〈φ0s|h|φ(nn)s〉 is
the hopping matrix element connecting nearest neighbors. For a fcc crystal
the s-band width turns out to be 12γ. Hence it is the magnitude of the overlap
integral to the neighboring atoms that determines the band width: the larger
the overlap, the broader the band. This qualitative picture will be important
for the so-called d-band model (see Sect. 5.6).
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Exercises

3.1 Fermi Energy of Free Electrons

Consider a system of N free electrons in a volume V = L3 that corre-
sponds to a cube with sides L. Assume that there are periodic boundary
conditions at the faces of the cube.
a) How does the ground state of this system look like in k-space?
b) Show that in the ground state the maximum energy of the electrons
is given by

εF =
h̄2k2

F

2m
(3.96)

with
kF = |kF| =

(
3π2n

)1/3
. (3.97)

c) Determine kF for a two-dimensional electron gas.

3.2 Self-consistent Field Scheme
Consider two electrons in one dimension with coordinates r1 and r2 in the
Hartree approximation. The effective one-particle Hamiltonian is given by

H(i) = − h̄2

2m
∇2

i +
(
m

2
ω2

0 +
h̄ω0

2
n2(0)

)
r2i (3.98)

with

n(0) =
2∑

i=1

|ψi(0)|2 (3.99)

The electron system is assumed to be in its ground state.
a) Solve the problem self-consistently. As the initial guess for the density
n(0) at the origin take the solution for two independent electrons in the
harmonic oscillator potential:

H
(i)
0 = − h̄2

2m
∇2

i +
m

2
ω2

0r
2
i (3.100)

Hint: Recall that the ground-state wave function of the harmonic oscil-
lator is given by

ψ0(r) =
1

π1/4

1√
x0
e−x2/(2x2

0) (3.101)

with

x0 =

√
h̄

mω
(3.102)

How many iterations does it take until the relative change of n(0), i.e.
the ratio |(n(j+1)(0)−n(j)(0))|/n(j)(0), is smaller than ε = 10−5? Does a
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mixing scheme speed up the convergence?
b) Solve the problem analytically.

3.3 Hartree–Fock Theory for Free Electrons

Assume that the electrostatic potential of the electrons is compensated
by a uniform positive charge background.
a) Show that then the Hartree–Fock equations are

− h̄2

2m
∇2ψi(r) − e2

∑

j

∫
d3r′

ψ∗
j (r′)ψi(r′)
|r − r′| ψj(r) = εi ψi(r). (3.103)

b) Show that the one-particle eigenenergies are given by

ε(k) =
h̄2k2

2m
− 4π e2

∫

k′<kF

d3k′

(2π)3
1

|k − k′|2

=
h̄2k2

2m
− 2e2

π
kF F

(
k

kF

)
(3.104)

where

F (x) =
1
2

+
1 − x2

4x
ln
∣∣∣∣
1 + x

1 − x

∣∣∣∣ . (3.105)

Hint: Replace
1

|r − r′| by 4π
∫

d3q

(2π)3
1
q2

exp(i q · (r − r′)).

c) Explain briefly the lowering of the energy.

d) Show that for small k the Hartree–Fock one-particle energies can be
approximated by

ε(k) ≈ h̄2k2

2m∗ − 2e2

π
kF , (3.106)

where the effective mass of the electrons m∗ is given by

m∗

m
=
(

1 +
4e2

3π
m

h̄2kF

)−1

. (3.107)

3.4 Exchange Hole

Verify that the exchange hole in the homogeneous electron gas is given by

nx(r̄) =
9
2
N

V

(
kF r̄ cos(kF r̄) − sin(kF r̄)

(kF r̄)3

)2

. (3.108)

Hint: Express the sums in (3.30) as the appropriate integrals.
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3.5 Thomas–Fermi Theory

Show that the Thomas–Fermi equation in the Hartree approximation

h̄2

2m
(3π2n(r))2/3 + vext(r) +

∫
d3r′n(r′)

e2

|r − r′| = μ , (3.109)

can be derived from a variational principle.
Hint: Express the expectation value of the total energy in the Hartree
approximation (3.12) in terms of the density n(r) and assume that the
kinetic energy term

T [n] =
∫
d3r n(r) t[n(r)] (3.110)

can be evaluated using the kinetic energy density t(n) of the homogeneous
electron gas (see (3.22)). Then minimize the energy expression with re-
spect to the electron density under the constraint of particle conservation.

3.6 Density Functional Theory

Consider an inhomogeneous electron gas of N electrons in the volume Vg

subject to the external potential vext(r).
a) Show that a system of noninteracting electrons exists that has the same
ground state density as the inhomogeneous electron gas. Derive that the
functional of the kinetic energy of the noninteracting electrons

Ts[n] =
N∑

i=1

∫
ϕ∗

i (r)
−h̄2

2m
∇2

r ϕi(r) d3r with density n(r) =
N∑

i=1

|ϕi(r)|2

can be written as

Ts[n] =
N∑

i=1

εi −
∫
veff(r)n(r)d3r (3.111)

where the effective potential is given by (3.55) and εi and ϕi are deter-
mined by the Kohn–Sham equation

[
− h̄2

2m
∇2

r + veff(r)
]
ϕi(r) = εiϕi(r) . (3.112)

b) Show that the total energy

Etot = T [n0] + Vext[n0] + VH[n0] + Exc[n0] + Vnucl−nucl (3.113)

can be expressed as (3.57)

E =
N∑

i=1

εi + Exc[n0] −
∫
vxc(r)n0(r) d3r − VH + Vnucl−nucl , (3.114)
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where n0 is the ground state density of the inhomogeneous electron gas.

c) We assume now that the external potential depends parametrically on
the position of the nuclei: v(r) → v(r, {RI}). Show that the gradient of
the ground state energy is given by

∂E

∂RJ
=
∫
∂vext(r, {RI})

∂RJ
n0(r, {RI})d3r +

∂Vnucl−nucl

∂RJ
. (3.115)

3.7 Surface States in the Tight-Binding Approximation

Consider an equidistant linear chain of identical atoms having only one s
orbital |φl

〉
at each site l. Use the orthogonal tight-binding approximation

with only nearest-neighbor interactions. The on-site and hopping matrix
elements are given by

〈
φl|h|φm

〉
= βδl,m + γδl,m±1 . (3.116)

a) Determine the “bulk” band structure for an infinite chain of atoms.
b) Now we consider a semi-infinite chain of atoms with sites n = 0, 1, . . .
as a model for a crystal with a surface. The on-site term for the surface
atom differs from the bulk value, i.e.

〈
φ0|h|φ0

〉
= β′ �= β . (3.117)

Show that for a strong perturbation of the on-site term at the surface
|β′ − β| > |γ|, new states above and below the bulk continuum appear.
These states are called Tamm surface states.
c) Show that the Tamm states are surface states, i.e., that they are lo-
calized at the surface.



4

Structure and Energetics of Clean Surfaces

In the preceding chapter electronic structure methods were introduced which
allow the evaluation of the total energy of a particular system. At zero temper-
ature, the stable structure of a specific system is given by the structure with
the minimal total energy. Therefore total-energy calculations are so impor-
tant for the structural determination of surfaces. As far as finite temperature
effects are concerned, the minimum of the free energy is the appropriate quan-
tity. In the following sections, the electronic and geometric structure and the
energetics of clean surfaces and their determination by first-principles calcu-
lations will be addressed. In addition, the underlying principles that lead to a
particular structure will be thoroughly discussed. Since the surface vibrational
modes are strongly related to the structure of the surface, surface phonons
will also be addressed in this chapter.

4.1 Electronic Structure of Surfaces

Naturally, at the surface of a solid the electronic structure is strongly modified
compared to the bulk electronic structure. The three-dimensional periodicity
of an infinite crystal is broken so that the wave number kz of the Bloch waves
no longer is a good quantum number. Still the periodicity parallel to the
surface is conserved. As we will see, this can lead to electronic bands localized
at the surface. Here we will first introduce some basics about the electronic
structure at surfaces.

Some fundamental properties of the electronic structure of metal sur-
faces, in particular simple metal surfaces, can be deduced from a very simple
model in which the positive ion charges are replaced by a uniform charge back-
ground. In this jellium model, which has already been introduced on p. 26, the
positive ion charges at a surface are simply represented by

n+(r) =

{
n̄, z ≤ 0

0, z > 0
. (4.1)

A. Groß, Theoretical Surface Science,
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Fig. 4.1. Charge density as a function of the distance from the surface in Fermi
wavelengths determined within the jellium model for two different background den-
sities. (After [73])

Here z denotes, as usual, the direction perpendicular to the surface. The
charge density in the jellium model is commonly specified by the corresponding
Wigner–Seitz radius in atomic units, i.e., in multiples of the Bohr radius.

The electronic charge distribution evaluated within the jellium model using
density functional theory in the local density approximation [73] is plotted in
Fig. 4.1. Two different background densities have been chosen corresponding
to a high-density (rs = 2) and a low-density metal (rs = 5). The electron
distribution does not follow the sharp edge of the positive background. Instead,
it decreases smoothly and the electrons spill out into the vacuum. In fact this
creates an electrostatic dipole layer at the surface because above the surface
there is now an excess negative charge density while directly below the jellium
edge there is an excess positive charge density. This dipole layer is sometimes
also called double layer [11].

Furthermore, the charge density profile exhibits a damped oscillatory
structure inside the jellium. These Friedel oscillations are a consequence of
the sharp edge of the background density in the jellium model. The electrons
try to screen out the positive background. Only electrons with wave vectors up
to the Fermi wave vector kF are available while in principle arbitrarily large
wave vectors are needed. Thus the screening is incomplete and the Friedel
oscillations with wavelength π/kF result. For the high-density case (rs = 2),
however, these oscillations are already rather small.

The work function Φ is defined as the minimum work that must be done
to remove an electron from a solid at 0K. Consider a neutral slab representing
the solid. Then the work function is given by

Φ = φ(∞) + EN−1 − EN . (4.2)
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Fig. 4.2. Schematic representation of the electrostatic potential φ(z), the chemical
potential μ̄, and the work function Φ

Here φ(∞) is the total electrostatic potential far from the surface and EM is
the ground-state energy of the slab with M electrons but with an unchanged
number of positive charges. As Fig. 4.1 indicates, the spilling out of the elec-
trons at a surface creates a dipole layer. In order to carry the electron through
the electric field of the dipole double layer at the surface, work has to be done.
The work function can therefore be expressed as [74]

Φ = Δφ − μ̄

= φ(∞) − εF , (4.3)

where Δφ is the change in the electrostatic potential across the dipole layer,
μ̄ is the intrinsic chemical potential of the electrons inside the bulk relative
to the mean electrostatic potential there (see Fig. 4.2), and εF is the Fermi
energy. It is important to note that there are two contributions to the work
function: an intrinsic one due to the binding of the electrons and the effect of
the dipole layer at the surface (see, e.g., the detailed discussion in [11]).

The jellium model has been used to evaluate the work function of simple
and noble metals [74]. In order to estimate the variation of the work function
from one crystal face to another, the ions have been modeled by pseudopo-
tentials

vps(r) =

⎧
⎨

⎩

0, r ≤ rc

−Z
r
, r > rc

. (4.4)

These potentials have been added a posteori in this ion lattice model, i.e.,
the energies and work functions have been evaluated using the electron dis-
tribution determined self-consistently within the jellium model without the
pseudopotentials.

The calculated values of the work function are compared with experimental
results for polycrystalline samples in Fig. 4.3. The plotted results of the ion
lattice model correspond to the mean value of the work function for the (110),
(100) and (111) surface for the cubic metals and to the (0001) surface for the
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Fig. 4.3. Comparison of theoretical values of the work function obtained in the
jellium model and the ion lattice model with the experiment. The experimental
values were measured for polycrystalline samples, while the plotted results of the
ion lattice gas model correspond to an average over the (110), (100) and (111)
surfaces for the cubic metals and to the (0001) surface for the hcp metals Zn and
Mg. (After [74])

hcp metals Zn and Mg. For the simple metals there is a rather good agreement
between the jellium calculations and the experiment which is even somewhat
improved by taking into account the ion lattice contributions. The variations
in the work function between the different surface orientations is of the order
of 10% of the mean work function [74]. In general, the lowest work function is
found for the least densely packed surface considered which is the (110) face
for the fcc metals and the (111) face for the bcc metals.

In addition to the simple metals, the work functions for the three noble
metals Cu, Au and Ag have been calculated. As Fig. 4.3 demonstrates, there
are already large quantitative differences between experiment and jellium cal-
culations for these metals. Although the rather crude jellium model is able to
reproduce certain features of the sp-bonded simple metals with rather delocal-
ized electron orbitals, the jellium approximation breaks down when it comes
to metals with d electrons which are much more localized. Thus, for noble and
transition metals, a more realistic theoretical description is needed.

Despite its shortcomings, the jellium model is well-suited to describe qual-
itative aspects of the change of the electron density in real space at a surface
and related quantities such as the dipole layer. However, it neglects the lat-
tice aspects in the description of the electronic structure at surfaces. These
aspects related to the crystal structure can be best addressed qualitatively
in the nearly-free electron model [11] in which the influence of the screened
positive ion cores is approximated by a weak periodic pseudopotential.
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Let us first focus on a simplified one-dimensional description. Within the
simplest version of the nearly-free electron model, we describe an infinite solid
as a chain of atoms creating an effective potential for the electrons given by

V (z) = V0 + VG cosGz , (4.5)

where G = 2π/a is the shortest reciprocal lattice vector of the chain. Using
perturbation theory for degenerate states at the Brillouin zone edge, it is
easy to show [12] that the periodic potential causes the opening up of a gap
of Eg = 2VG at the zone boundary (see Exercise 4.1). In the gap, solutions
of the one-particle Schrödinger equation with the potential (4.5) also exist,
but they correspond to exponentially growing wave functions. Therefore they
are physically unreasonable. However, at a surface the wave functions that
increase exponentially towards the surface can be matched with wave functions
that decay into the vacuum. This leads to the existence of localized states at
the surface with energies in the gap that are called Shockley surface states.

If the local atomic orbitals are strongly perturbed at the surface, as for
example in the case of semiconductor surfaces with broken bonds, additional
surface states above and below the bulk continuum can appear. The existence
of these so-called Tamm surface states can most easily be derived using a
tight-binding description of the surface (see Exercise 3.7).

In the one-dimensional description, the surface state corresponds to a lo-
calized bound state. In three dimensions, crystal surfaces are still periodic in
the lateral directions and can be characterized by a two-dimensional surface
Brillouin zone. In other words, the wave vector k‖ is still a good quantum
number. This leads to a whole band of surface states. On the other hand,
due to the broken symmetry in the z-direction, the discrete reciprocal lattice
points along the surface normal are turned into rods which reflects that kz

is no longer a good quantum number. In order to analyze the surface band
structure and to determine the nature of the electronic states at the surface,
the presentation of the projected bulk band structure is rather helpful.

The construction of the projected bulk band structure is illustrated in
Fig. 4.4. Two surface state bands are indicated by the solid lines in the band
gaps of the projected bulk band structure. The chosen hypothetical example
corresponds to a metal since for any energy ε there is at least one bulk state
somewhere in the three-dimensional k-space. A semiconductor or an insulator
would have a band gap completely across the entire surface Brillouin zone
(see, e.g., Fig. 4.13).

In the one-dimensional band structure for k = (0, 0, kz), plotted in Fig. 4.4,
two band gaps are present. The lower one is due to the interaction at the
Brillouin zone boundary while the upper one results from an avoided crossing
of two bands. In such a hybridization gap, also true surface states can exist, as
is indicated by the upper surface band. The lower surface band, on the other
hand, joins the projected bulk band structure and mixes with delocalized bulk
states. By this mixing, a bulk state with a significantly enhanced amplitude
at the surface is created. Such a state is called a surface resonance.
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Fig. 4.4. Schematic illustration of the
projected bulk band structure which
is indicated by the grey-shaded areas.
In addition, two surface state bands
are included in the band gaps of the
projected bulk band structure. While
the upper band corresponds to true
surface states, the lower surface band
mixes with bulk states leading to sur-
face resonances

The analysis of the band structure is not always a convenient tool for the
determination and discussion of the bonding situation at surfaces, in particular
when it comes to the understanding of adsorption phenomena [75]. Here, in
particular the local density of states n(r, ε) (LDOS) can be rather useful. The
LDOS is defined as

n(r, ε) =
∑

i

|φi(r)|2 δ(ε− εi) . (4.6)

Using (4.6), the global density of states and the electron density can be con-
veniently expressed through the following integrals

n(ε) =
∫
n(r, ε) d3r ,

n(r) =
∫
n(r, ε) dε . (4.7)

Thus the band-structure energy in the total-energy expression (3.57) can also
be written as an integral

N∑

i=1

εi =
∫
n(ε) ε dε . (4.8)

Furthermore, the projected density of states (PDOS),

na(ε) =
∑

i

|〈φi|φa〉|2 δ(ε− εi) , (4.9)
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Fig. 4.5. Layer-resolved, local d-band density
of states of Pd(210) determined by GGA-DFT
calculations. The Fermi level and the center of
the d-band are indicated by vertical lines. The
third-layer PDOS is already very close to the
bulk density of states of palladium. (After [76])

is also a useful tool since it allows the determination of the nature and sym-
metry of chemical bonds. Actually, its analysis is already very illuminating
even in the case of a clean surface. In Fig. 4.5, the layer-resolved local d-band
density of states is plotted for the three uppermost surface layers of Pd(210).
The electronic structure had been determined by GGA-DFT calculations [76].
The (210) orientation corresponds to a rather open surface that can be re-
garded as a stepped surface with a high density of steps. Due to the lower
coordination of the surface atoms, the d-band width is significantly reduced
at the surface. Since the number of d-electrons remains the same, the local
narrowing of the d-band leads to an upshift of the d-band center which is
indicated by the vertical lines in Fig. 4.5. Otherwise the entire d-band would
be located below the Fermi energy resulting in an increased occupation of the
d-band. As we will see in the next chapter, the upshift of the d-band center
leads to a higher reactivity of the surface (see p. 132).

The local d-band of the second layer is still somewhat narrower than the Pd
bulk d-band, but already the third-layer d-band is practically indistinguishable
from the bulk band. This is a consequence of the good screening properties
of metals which lead to a rapid recovery of bulk properties in the vicinity of
imperfections, which also includes surfaces.

4.2 Metal Surfaces

After introducing the basic concepts relevant for the discussion of the elec-
tronic structure of surfaces, I will first focus on metal surfaces, in particular
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Fig. 4.6. Electron density of a
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at a metal surface. The electronic
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on first-principles studies of noble and transition metals. Low-index metal
surfaces do usually not reconstruct. The electron density of a Cu(100) sur-
face determined by GGA-DFT calculations using ultrasoft pseudopotentials is
shown in Fig. 4.6. Recall that the jellium model turned out not to be appropri-
ate for Cu surfaces (see Fig. 4.3). Figure 4.6 confirms that the electron density
of Cu(100) is indeed rather inhomogeneous. Directly at the surface, however,
the electron distribution is much smoother than in the bulk. At the surface,
the electrons are free to lower their kinetic energy by becoming more uniformly
distributed which results in the so-called Smoluchowski smoothing [77].

Let us now turn from the electronic structure in real space to the electronic
structure in reciprocal space. The calculated band structure of Cu(111) is
shown in Fig. 4.7. The projected bulk d-band is indicated by the darker shaded
areas whereas the lighter shaded areas correspond to states of the sp-bands.
The sp states exhibit an almost free electron behavior which can be infered
from the parabolic shape of the lower and upper band edge. There is a pair
of surface states in the upper band gap which also shows nearly-free-electron
features. If a parabola ε(k) = h̄2k2/2m∗ is fitted to the surface band around
Γ̄ , a so-called effective mass of m∗ = 0.37me is derived [78]. These surface
states correspond to Shockley states in the sp-band gap.

There is another surface state just above the d-band which is located
approximately 1.5 eV below the Fermi level. This is a Tamm state which
is pushed out of the top of the d-band. Although it lies mostly in the sp-
continuum along Γ̄ M̄ , it is still a true surface state since it has a different
symmetry than the sp-states and is therefore orthogonal to the sp-continuum.
There are also surface resonances present at the Cu(111) surface plotted as
dashed lines in Fig. 4.7. For example, focus on the Tamm surface state band.
This band emanating from M̄ bends down and would enter the d-band con-
tinuum were it not repelled. At the point where the surface state is repelled, a
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surface resonance splits off and enters the d-band. Another surface resonance
originates at the Γ̄ point where it is degenerate with the Tamm surface state.

The band structure of Cu(111) is shown up to the vacuum level 5 eV above
the Fermi level which corresponds to the energy of an electron at infinity.
The calculated LDA-DFT work function of 5 eV is in good agreement with
experimental values (see Fig. 4.3). A striking feature of the band structure is
the large band gap along the surface normal at Γ̄ . For Cu(100), the projected
bulk band structure looks qualitatively rather similar [79], although there
is no Shockley surface state in the sp-band gap. However, the projected sp-
band gap along the surface normal even extends above the vacuum level. This
has the consequence that an electron with energy below the vacuum energy
can be trapped in the potential well formed by the attractive image potential
Vim = −e2/4Z (see p. 104) and the repulsive surface barrier [80]. The resulting
quantized image-potential states form a Rydberg series with energies

εn = εvac − 0.85eV
(n+ a)2

, n = 1, 2, . . . . (4.10)

The constant a in the denominator is called the quantum defect which ap-
proximately takes into account the fact that the surface potential is no hard
repulsive wall. These image-potential states are sketched in Fig. 4.8; they have
indeed been detected in experiment and even the dynamical evolution of a
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coherent superposition of several quantum states has been observed by time-
resolved photoelectron spectroscopy [81]. Still there is an overlap of the wave
functions with the bulk electronic states which leads to a finite lifetime τ of
the image-potential states. This lifetime increases from τ1 = 40 fs for the n = 1
state to τ3 = 300 fs for the n = 3 state [81] since the higher lying states are
located further away from the surface and thus have a smaller overlap with
the bulk states.

We will now turn from the electronic to the geometric structure of metal
surfaces, still using Cu surfaces as our exemplary system. The stability of
a particular surface structure is given by its surface energy. In Sect. 2.3, we
demonstrated that a surface can be assumed to be created by just cleaving
an infinite solid. This will cost energy because otherwise the crystal would
cleave spontaneously. Put in other words, creating surfaces by cleaving a solid
is energetically hindered because the bonds between the atoms of the cleavage
planes have to be broken. The surface energy γ is defined as the surface excess
free energy per unit area of a particular crystal face. The pure jellium model
has some severe shortcomings as far as the evaluation of surface energies is
concerned. Calculated surface energies are found to be negative for high den-
sities (rs ≤ 2.5) [73] which means that the crystal would not be stable. Only if
the lattice structure is included non-self-consistently by representing the ion
cores by simple pseudopotentials (4.4), there is semi-quantitative agreement
with the experiment [73].

For a quantitative determination of the surface energy, a realistic self-
consistent electronic structure calculation using the slab model is required. At
zero temperature the surface energy of a monoatomic crystal may be derived
from a N -layer slab calculation for a 1 × 1 surface unit cell by

γ =
1

2A
(Eslab −N · Ebulk) (4.11)
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Fig. 4.9. Polar plot of the surface en-
ergy γ and the Wulff construction to de-
termine the crystal equilibrium shape

whereEslab is the total energy of the slab per supercell,Ebulk is the bulk energy
per atom, and A is the surface area in the supercell. The factor of 2 in the
denominator takes account of the fact that in the slab we have two surfaces,
one at the bottom and one at the top of the slab. In the limit of large N ,
(4.11) should give the correct surface energy. For close-packed metal surfaces
often 4-6 layers are already sufficient to obtain converged results due to the
good screening properties of metals. If the two surfaces are not equivalent as
may happen in the case of binary compounds, then the value of γ evaluated
according to (4.11) corresponds to the average of the two surface energies.

The equilibrium shape of finite mesoscopic crystals can be directly derived
from the surface energies by the so-called Wulff construction which is based on
the concept that the crystal seeks to minimize its total surface energy subject
to the constraint of fixed volume (see Exercise 4.3). The Wulff construction
is illustrated in Fig. 4.9. Draw radius vectors from the origin of the polar plot
of the surface energies. At the points of the intersections, construct a plane
perpendicular to the corresponding radius vector. These planes are known as
Wulff planes. The equilibrium shape of the crystal is given by the interior
envelope of all such possible Wulff planes. This is a convex figure where the
distance of each face from the origin is proportional to its surface energy.

Besides its importance for the equilibrium shape, the determination of
surface energies is also important for an understanding of crystal growth phe-
nomena. Yet it is experimentally not trivial to determine surface energies. It
is hard to directly measure absolute values. Often they are only determined
relative to other surface energies. In fact, many reported surface energies are
derived from surface tension measurements which are made in the liquid phase
and extrapolated to zero temperature [82]. This does also mean that these
surface energies are not related to any particular crystal face. Due to these
problems associated with the measurements, the reliable theoretical determi-
nation of surface energies from first principles is of particular importance. For
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the low index surfaces of 60 metals databases of calculated surface energies
using density functional theory are available [83, 84].

The more densely packed a certain lattice plane and the higher coordinated
the atoms in that plane, the less bonds have to be broken upon cleavage.
Hence the most densely packed surface should have the lowest surface energy.
This is indeed the case for almost all 3d, 4d and 5d transition metals. We
have illustrated this trend in Table 4.1 where we have compiled the surface
energies for some copper surfaces determined by DFT calculations as well as by
experiment. The theoretical results have been obtained by a plane-wave DFT
code [93] using ultrasoft pseudopotentials [53] or the projector augmented-
wave technique [56, 60], respectively, within the PW91-GGA functional [36].

For the low-index surfaces of Cu the trend γ(111) < γ(100) < γ(110) is ob-
vious. Furthermore, we have included some stepped copper ((2n − 1), 1, 1)
surfaces. The ((2n − 1), 1, 1) surfaces are in fact n(100)× (111) surfaces ac-
cording to the notation introduced on page 16, i.e., they consist of (100) ter-
races separated by steps with (111)-oriented ledges. A (911) = 5(100)× (111)
surface is plotted in Fig. 2.4. For large n the ((2n − 1), 1, 1) surface energy
will approach that of the (100) surface, therefore the surface energy decreases
with increasing n. In fact, from the sequence of ((2n−1), 1, 1) surface energies
the step formation energy can be derived.

We have included an experimentally determined surface energy for copper
in Table 4.1. As already mentioned, the measured energy does not correspond
to a particular crystal surface. The most important information gained by
the comparison experiment–theory is thus the fact, that the measured surface
energy has the same order of magnitude as the calculated ones.

Table 4.1. Surface energies γ and relaxations of the uppermost layer of various
Cu surfaces. The relaxations are given in percent relative to the bulk layer spacing
d0(hkl)

Surface Method γ (J/m2) Δd12 Δd23 Δd34 d0(hkl) (Å)

Cu(111) Theorya 1.30 −0.9 −0.3 2.10

Cu(111) Exp. ∼1.79b −0.7c

Cu(100) Theorya 1.45 −2.6 1.5 1.821

Cu(100) Exp. ∼1.79b −2.1d 0.4d 0.1d 1.807

Cu(110) Theorye 1.53 −10.8 5.3 0.1 1.29

Cu(110) Exp. ∼1.79b −8.5f 2.3f

Cu(311) Theoryg 1.82 −15.0 4.0 −0.6 1.10

Cu(311) Exp.h −11.9 1.8 1.10

Cu(511) Theoryg 1.68 −11.1 −16.4 8.4 0.70

Cu(511) Expi −13.2 −6.2 5.2 0.70

References: a) [85], b) [82], c) [86], d) [87], e) [88], f) [89], g) [90], h) [91], i) [92]
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Fig. 4.10. First-principles surface energies for the 4d transition metals calculated
using density functional theory within the local density approximation [83]. The
energies have been determined for the (111), (100) and (110) surfaces in the fcc
structure even for the hcp metals Y, Zr, Tc and Ru and for the bcc metals Nb and
Mo. (a) surface energy in eV/atom, (b) surface energy in J/m2

In order to analyze chemical trends within the transition metals, in
Fig. 4.10 calculated surface energies in eV per surface atom and in J/m2 [83]
are plotted for the 4d transition metals. The results have been obtained using
density functional theory within the local density approximation for the (111),
(100) and (110) surfaces. To make the dependence on the d-band occupation
more obvious, all surface energies have been calculated for the fcc structure,
even for the hcp metals Y, Zr, Tc and Ru and for the bcc metals Nb and Mo.

The parabolic dependence of the surface energy on the d-band occupa-
tion is obvious. The surface energy is largest for a half-full band, while it is
minimal for either an empty or a completely full d-band. The same trend
is also observed for the 3d and the 5d transition metals [84] and is already
well-known for the cohesive energies [11]. This trend can be understood con-
sidering the fact that the lower half of the d band corresponds to bonding
states and the upper part to anti-bonding states, as will be discussed in the
context of Fig. 5.8 in Chap. 5 on adsorption on surfaces.

Using the so-called bond-cutting model, a more quantitative comparison
between surface energies and cohesive energies can be made. A surface atom
of a (111) surface is still nine-fold coordinated compared to the twelve-fold
coordination in the bulk. Thus three out of twelve bonds have to be broken
in order to create a surface; consequently, one would assume that the surface
energy per atom is 3/12 = 0.25 of the cohesive energy. However, this simple
estimate gives surface energies that are about twice as large as the calculated
ones [83] because it does not take into account the fact that the bond strength
varies with the coordination number. For a low-coordinated atom the single
bonds are stronger than for a high-coordinated atom. In a simple tight-binding
picture, the band width is linearly related to the coordination number Nc
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Fig. 4.11. Definition of the layer spacings illustrated for a (110) surface

which leads to an energy gain proportional to (Nc)1/2 due to the down-shift
of the occupied states (see Exercise 4.4). Thus the energy per bond can be
assumed to scale with (Nc)1/2. If we denote the surface energy per atom by
σ, we can estimate it by

σ =

√
N bulk

c −
√
Nsurf

c√
N bulk

c

E′
coh , (4.12)

where N bulk
c and Nsurf

c are the coordination number of the bulk and the
surface, respectively, and E′

coh is the cohesive energy related to a non-magnetic
atom for a non-magnetic surface. For a fcc(111) surface, (4.12) yields a surface
energy per atom of σ = 0.134E′

coh which gives results rather close to the ones
plotted in Fig. 4.10a. Within this bond-cutting model also the increase in
surface energy for the rougher, more open surfaces can be understood. The
coordination of the surface atoms in the (100) surface is eight, while it is only
six for the (110) surfaces. Thus the more bonds are broken to create a surface,
the higher the surface energy per atom.

If we plot the surface energies in J/m2 (Fig. 4.10b), the parabolic depen-
dence on the d-band occupation is much more dramatic. This is due to the
fact that the lattice constant becomes smaller with larger bond strength which
increases the surface energy per unit area for the metals with a half-full band.
On the other hand, the anisotropy in the surface energies between the (111),
(100) and (110) surfaces becomes suppressed because the more open surfaces
have a larger surface area per atom.

In Table 4.1, additionally the relaxations of the top crystal layers with
respect to the bulk layer spacings are tabulated. The definition of the layer
spacings is illustrated in Fig. 4.11. At metal surfaces, the smoothening of the
electron density usually leads to a contractive relaxation of the first layer.
For the densely packed (111) and (100) Cu surfaces, this contraction is rather
small, for the more open surfaces, in particular the stepped surfaces, it can
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+ + + +
− − − − −

Fig. 4.12. Schematic sketch of the electron redistribution and the resulting first
interlayer contraction at a metal surface

already be a rather significant effect. Furthermore, many metal substrates
respond to the contraction of the first interlayer spacing by an expansion of
the second interlayer, as for example the Cu(100), (110) and (311) surfaces.
However, this oscillatory behavior does not necessarily occur, as the case of
the Cu(511) surface demonstrates.

A simple model that explains the first interlayer contraction of metal sur-
faces was proposed by Finnis and Heine [94] based on the Smoluchowski
smoothing [77] already demonstrated in Fig. 4.6. The electron smoothing is
sketched schematically in Fig. 4.12. The plotted quadratic cells correspond to
the Wigner–Seitz cells in this plane. In a first approximation, the electron
density is assumed to be uniform with the density falling off abruptly at a
plane parallel to the surface. This causes a charge transfer from the areas de-
noted by + to the regions labeled by −. Thus the surface Wigner–Seitz cells
become distorted.

Consequently, due to the modified charge distribution the surface ions
are no longer in electrostatic equilibrium, and a net electrostatic force on
the positively charged ions results. The ionic cores will rearrange to a new
equilibrium structure which is determined by the requirement that the electric
field of both the positive ions and negative electronic charge is small outside
the distorted surface Wigner–Seitz cell. This electric field is determined by

E(r) =
∫
d3r′ ρ(r′)

(r − r′)
|r − r′|3 (4.13)

Thus the atomic cores will relax to positions at the “electrostatic center” of
the electron charge distribution that is given by

∫

WS

d3r n(r)
r

r3
= 0 , (4.14)

where the integral is performed over the surface Wigner–Seitz (WS) cell. This
means that the atom cores will be located at positions where the electric field
of the electron charge distribution of the Wigner–Seitz cells vanishes. This
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leads to an inward relaxation of the first atomic layer which is illustrated by the
arrows in Fig. 4.12. For fcc metals the surface Wigner–Seitz cells correspond
to distorted rhombic dodecahedra. Performing the integrals for the (111),
(100) and (110) surfaces of fcc metals yields inward relaxations of −1.6%,
−4.6% and −16%, respectively [94]. This inward relaxation is somewhat too
large compared to experiment and ab initio calculations (see Table 4.1), but
the trend and the relative differences are well-reproduced, in particular with
respect to the fact that the assumptions of the simple model, uniform electron
distribution in the Wigner–Seitz cells and abrupt electron density fall off at
the surface, are crude and not realistic, as Fig. 4.6 demonstrates.

This simple model cannot explain, however, the outward relaxation of the
second layer spacing, because no net effect occurs on the second layer atoms.
In order to understand this mechanism, the change of the electron density
upon the first interlayer contraction has to be taken into account. The inward
relaxation causes a charge accumulation at the second layer. In order to reduce
the density to a bulk-like value that is energetically more favorable, the second
interlayer spacing expands.

4.3 Semiconductor Surfaces

While the surface energies of the transition metals can be reliably estimated
by the modified bond-cutting model given by (4.12), the situation for the
divalent fcc and bcc sp-metals is already more complicated. For metals such
as Ca, Sr or Ba one finds that the surface energy of the second most close-
packed surface is consistently lower than that of the most close-packed surface
[84]. Even more complex is the situation for semiconductor surfaces. Truly
directional bonds between atoms will be broken upon cleavage. This creates
an highly unstable state. The surface will try to minimize the number of
unsaturated bonds, the so-called dangling bonds. A prominent example of the
resulting surface reconstruction is provided by the Si(100) surface. In the ideal
(1× 1) surface termination, every silicon atom on the surface is only two-fold
coordinated. One of the two surface dangling bonds per atom is used to bind
to a neighboring atom. This dimerization creates a (2 × 1) surface structure.
Still there is one dangling bond per surface atom left.

In Fig. 3.5 we have already shown a model of the Si(100)-(2×1) surface
with a symmetric dimer. At each of the dimer atoms an equivalent dangling-
bond orbital is located which are coupled by a π interaction. The π states
are split into a bonding π band and an antibonding π∗ band. In Fig. 4.13a,
the LDA band structure of the Si(100) surface is plotted [95]. The upper
panel shows the π and π∗ band in the symmetric-dimer model (SDM). The
interaction between neighboring dangling bonds is rather strong leading to a
significant dispersion of the bands. In fact, for Si(100) these bands overlap
and the surface becomes metallic.
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Fig. 4.13. Surface band structure of the Si(100)–(2 × 1) surface. (a) LDA calcula-
tions of the band structure in the symmetric dimer model (SDM) and the asymmetric
dimer model (ADM) (after [95]). (b) Comparison of the LDA and GWA band struc-
ture for the asymmetric dimer model (after [96]). The grey-shaded areas correspond
to the calculated projected bulk band structure. In all panels experimental results
of [97] (squares) and [98] (circles) are included

Now it is energetically unfavorable for semiconductors to have metallic
surfaces. The metallic state at the Si(100)-(2×1) can actually be avoided if
there is charge transfer between the dangling bonds so that one of the dang-
ling bonds per dimer is completely filled while the other one becomes empty.
The effect is similar to the Jahn–Teller effect observed in solid-state physics.
Through the interaction between the dangling bonds and the silicon lattice
the symmetry of the surface will be reduced and thus the degeneracy of the
two dangling bond states will be lifted. Geometrically this leads to asymmetric
buckled dimers where the dangling bond at the atom closer to the surface is
unoccupied. The asymmetrically buckled dimer is illustrated in Fig. 4.14.

Because of the asymmetry of the dimers, there is a pronounced splitting
of the related energy bands Dup and Ddown whose states are mainly located
at the up or down atoms, respectively, of the surface dimer. According to
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Fig. 4.14. Si(100) (2×2) surface structure with alternating asymmetric buckled
dimers

the LDA calculations, there is a band gap of 0.1 eV between the two bands
so that the surface is semiconducting, as it is found in the experiment. In
Fig. 4.13 experimental photoemission data of the surface states [97, 98] are
also included, showing a good agreement for the occupied Dup band with the
LDA calculations.

As far as the width of the band gap is concerned, the LDA projected
bulk band structure shown as the grey shaded areas in Fig. 4.13a only ex-
hibits a band gap of approximately 0.5 eV. This is in fact much smaller than
the experimental value of 1.17 eV [11]. Recall that the interpretation of the
Kohn–Sham eigenenergies as electronic one-particle energies does not rest on
a firm theoretical ground (see page 39). Still the underestimation of band
gaps is a well-known shortcoming of LDA-DFT calculations which is also not
corrected for within GGA. The local exchange-correlation potential vxc(r)
does not adequately describe the dynamical correlations of the electrons in a
strongly inhomogeneous environment. In order to obtain a correct treatment
of the correlation effects, the potential vxc(r) has to be replaced by a nonlo-
cal, energy-dependent self-energy operator Σ(r, r′, ε) that enters the effective
one-particle Schrödinger equation

{
− h̄2

2m
∇2 + vext(r) + vH(r)

}
ψi(r)

+
∫

d3r′ Σ(r, r′, εi) ψi(r′) = εi ψi(r). (4.15)

An exact solution of the one-particle equations using the self-energy operator
is not possible. In fact, several coupled integral and differential equations have
to be solved. An approximate expression of the self-energy operator can be
obtained by an expansion of the operator in a series containing the Green
function G and the screened interaction W of the system [99, 100]. In the
so-called GW approximation (GWA), only the first term of the expansion is
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retained so that the self-energy is written as

Σ(r, r′, ε) =
i

2π

∫
dω e−iωδ G(r, r′, ε− ω) W (r, r′, ω) . (4.16)

The single particle Green function can be expressed as

G(r, r′, ε) =
∑

i

ψi(r)ψ∗
i (r′)

ε− εi + iδ sgn(εi − μ)
, (4.17)

whereas the dynamically screened Coulomb interaction is defined as

W = ε−1v , (4.18)

where ε is the dielectric function and v the unscreened Coulomb interaction.
The dielectric function can be evaluated from the polarization within the
random phase approximation. Still the evaluation is computationally rather
complex and costly. Once the GW self-energy operator is defined, the effec-
tive one-particle equations (4.15) have to be solved self-consistently since the
one-particle wave functions ψi enter the expression for the self-energy. How-
ever, although often the LDA energies are not reliable enough, the LDA wave
functions ψLDA

i and consequently the LDA electron density are usually rather
accurate. Hence the self-consistency cycle can be avoided in order to reduce
the computational cost and the GW one-particle energies are determined from
the LDA wave functions via

εi = εLDA
i + Zi

〈
ψLDA

i |Σ(εLDA
i ) − vLDA

xc |ψLDA
i

〉
. (4.19)

The energy dependence of the self-energy is approximately taken into account
by the renormalization constant Zi. Interestingly enough, a self-consistent
determination of the one-particle energies using the GW expression for the
self-energy in general does not lead to improved results. It is important to
realize that the GW formulation still yields an approximate expression for the
self-energy. Apparently, there is an error cancellation if LDA wave functions
are used in a non-self-consistent GW calculation. Note that no total energies
can be derived from the GW approximation since it only yields the electronic
band structure.

This band structure, however, is improved significantly within the GW ap-
proximation. Figure 4.13b shows a comparison between the LDA and GWA
dangling bond bands of the buckled Si(100)-(2 × 1) surface. The shaded
area corresponds to the projected bulk band structure obtained within the
GW approximation. For bulk silicon, the fundamental band gap is increased
to 1.23 eV [96] in excellent agreement with experiment. Also the indirect fun-
damental surface band gap is increased from 0.2 eV (LDA) to 0.7 eV (GWA).
Note that in Fig. 4.13b the top of the valence band has been defined as the
energy zero for both the LDA and the GWA results. In fact, the GWA leads to
a downshift of the Dup band by 0.20–0.35eV while the Ddown band is shifted



78 4 Structure and Energetics of Clean Surfaces

up by 0.10–0.25eV [96]. Although the shifts are slightly energy dependent,
it is apparent from Fig. 4.13 that the improved description of the exchange-
correlation effects with the GWA leads to a rather constant opening of the
band gap. The shape and dispersion of the valence and conduction bands
remain more or less unchanged.

Apart from the single-particle electronic excitations, in addition there are
coupled electron-hole pair excitations. Because of the two-particle nature of
these excitations, their theoretical description is much more demanding [101]
because the so-called Bethe-Salpeter equation for the excited states has to be
solved. This is not trivial, however, it can also be done from first principles. If
the electron-hole pair is bound and localized, it is called an exciton. This re-
quires that its energy is in a band gap because otherwise the electron-hole pair
would couple to the continuum of delocalized states. For the Si(111)-(2 × 1)
surface, a surface exciton at 0.43 eV above the valence band has been identi-
fied by an ab initio approach [102], in good agreement with the experiment
[103]. This exciton is stabilized at the surface compared to the bulk because
of the reduced screening at the surface which leads to a stronger Coulomb
interaction between the hole and the electron.

Returning to the structure of the Si(100) surface, it turns out that the
buckled dimer shown in Fig. 4.14 leads to a significant amount of mechanical
stress at the surface. This surface stress can be partially released if the dimers
are buckled in an alternating fashion [104,105], thereby further reducing the
surface energy. In fact, the structure plotted in Fig. 4.14 already corresponds
to the Si(100)-(2×2) surface with alternating buckled dimers.

In spite of the unambiguous theoretical results, there has been a long de-
bate about the microscopic structure of the dimers at the Si(100) surface.
At room temperature, the dimers appear to be symmetric according to ex-
periments using the scanning tunneling microscope(STM) [106]. It has been
suggested that the symmetric images are caused by the thermal flipping mo-
tion of the dimers between the left- and right-tilted positions [104]. In fact,
at low-temperatures asymmetric dimers have been observed in STM experi-
ments [107].

The most famous example for a semiconductor surface reconstruction is
the Si(111)-(7×7) structure [108] which can be found in almost all text books
on surface science [109, 110]. The large (7 × 7) structure which is referred to
as the DAS (Dimer-Adatom Stacking-fault) model contains twelve top-layer
adatoms, six rest atoms, a stacking fault in one of the two triangular subunits
of the second layer, nine dimers at the borders of the triangular subunit in
the third layer and a deep corner hole at each apex of the surface unit cell.
This reconstruction has already been addressed by first-principles total energy
calculations [111]. Its driving force is again the minimization of the number
of dangling bonds at the surface.

A compound semiconductor with rather complex surface reconstructions
that has been investigated in great detail by first-principles electronic struc-
ture calculations is GaAs [112–114]. The evaluation of surface energies for
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compound materials is more complex than for elemental materials. The sur-
face energy is not simply given by (4.11), it rather depends on the specific
thermodynamic conditions, i.e., the reservoir with which the atoms of the
compound are exchanged in a structural transition. Therefore the chemical
potential of the constituents enters the surface energy. The most stable sur-
face structure is determined by the minimum of the free energy which at zero
temperature is given by

γ =
1
A

(Esurf −
∑

i

μiNi) . (4.20)

Here Esurf is the total energy of the surface per unit cell which can be calcu-
lated in slab calculations according to

Esurf =
1
2

(Eslab −N ·Ebulk) , (4.21)

where N is now the number of bulk unit cells contained in the slab.
There is no complete freedom for the choice of the chemical potentials. Let

us consider the case of GaAs in the following. Bulk GaAs has the zinc-blende-
structure. For a GaAs crystal in thermal equilibrium with atomic reservoirs
of Ga and As the sum of the chemical potentials of Ga and As must be equal
to the chemical potential of bulk GaAs, i.e.

μGaAs = μGa + μAs . (4.22)

Of course the atomic chemical potentials have to be the same in the bulk and
on the surface, e.g. μ(GaAs bulk)

As = μ
(GaAs surface)
As , otherwise we would have

some macroscopic mass transport. Now the atomic chemical potentials can be
varied between certain limits. They should be less than the chemical potential
of the condensed phases of the respective elements, for example

μAs < μ
(As bulk)
As (4.23)

because otherwise the elemental condensed phase would be formed. On the
other hand, the GaAs chemical potential is related to the elemental bulk
chemical potentials through the heat of formation ΔHGaAs via

μGaAs = μ
(Ga bulk)
Ga + μ

(As bulk)
As − ΔHGaAs. (4.24)

Combining (4.22) and (4.24), we obtain a range for possible values of the As
chemical potential

μ
(As bulk)
As − ΔHGaAs < μAs < μ

(As bulk)
As . (4.25)

We can then write the surface energy of GaAs as a function of a single variable
which we will take to be μAs:
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(a) (1×1) (b) α(2×4)

(c) β2(2×4) (d) β2(4×2)

Fig. 4.15. Structural models for the GaAs(100) surface. Dark, filled circles and
bright, empty circles represent As and Ga atoms, respectively. (a) Ball and stick
model of the ideal (1 × 1) As-terminated GaAs(100) surface. (b–d) Schematic top
and side view of the α(2×4), β2(2×4) and β2(4×2) reconstructions. Larger circles
correspond to atoms closer to the surface

γ =
1
A

[Esurf − μGaAs NGa − μAs (NAs −NGa)] . (4.26)

NAs and NGa are the number of As and Ga atoms, respectively, per 1×1 sur-
face unit cell. The stoichiometryΔN = NAs−NGa simply gives the slope of the
surface energy with respect to the chemical potential. Note that similar con-
siderations are also relevant for adsorbate structures in thermal equilibrium
with a surrounding gas reservoir, as will be shown in Sect. 5.10. In Fig. 4.15
we have collected some of the possible reconstructions of the technologically
most relevant GaAs surface, the (100) surface. Figure 4.15a shows a ball and
stick representation of the As-terminated ideal (1×1) surface. This picture
illustrates the problems that arise for a proper definition of the stoichiometry
ΔN . The As and the Ga atoms are not equivalent at the ideal GaAs(100)
surface. In fact, ΔN is defined in such a way that it is equal to 1

2 for the
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Fig. 4.16. Surface energies of different GaAs(100) reconstructions in J/m2 as a
function of the difference of the chemical potential of As and bulk As (after [114]).
The perpendicular dashed lines indicate the range of possible As chemical potentials
given by (4.25)

(1×1) As-terminated surface and − 1
2 for the (1×1) Ga-terminated surface. A

simple way to understand this counting rule is to think of a symmetric slab
with two identical, say, As-terminated surfaces. This slab has one As atom
more than Ga across the slab, so that per (1×1) surface unit cell there is 1

2
additional As atom. By this procedure one obtains stoichiometries of ΔN = 0
for the α(2×4) GaAs(100) surface (Fig. 4.15b), ΔN = 1

4 per 1×1 unit cell for
the β2(2×4) structure (Fig. 4.15c), and ΔN = − 1

4 per 1×1 unit cell for the
β2(4×2) structure (Fig. 4.15d).

This simple counting argument cannot be applied if no symmetric slab can
be constructed. This is the case for the (111) surfaces of zinc-blende-structures
because there the (111) and the (1̄1̄1̄) are inequivalent. Still a counting rule
can be established based on bulk symmetries of the crystal [115].

The surface energies of the structures shown in Fig. 4.15 as a function of
the As chemical potential are plotted in Fig. 4.16. These energies have been
determined by DFT calculations in the local density approximation [114]. In
addition, the surface energy of a completely As-terminated c(4× 4) structure
is plotted for which the surface stoichiometry is ΔN = 5

4 . The perpendicu-
lar dashed lines indicate the range of possible As chemical potentials given
by (4.25). Low As chemical potential corresponds to a Ga-rich environment
while the As bulk chemical potential gives the As-rich limit. For a particular
As chemical potential the surface with the lowest free energy corresponds to
the thermodynamically stable one. As a function of increasing As coverage
the order of the stable structures is given by β2(4×2), α(2×4), β2(2×4) and
c(4 × 4). The unreconstructed Ga and As terminated (1 × 1) surfaces have
much higher surface energies in the order of 3 J/m2.
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It is not trivial to understand the reasons why a particular structure is the
most stable one. First of all it is obvious that the GaAs surface tries to mini-
mize the number of dangling bonds by dimerization. Still, at the dimer atoms
of a (100) surface one dangling bond per atom remains. Secondly, also for the
GaAs it is true that semiconducting surfaces have usually a lower energy than
metallic structures [114]. Ga dangling bonds are energetically higher than As
dangling bonds. The occupation of Ga dangling bonds would lead to a metal-
lic surface which should be avoided. In general, polar semiconductors exhibit
surface reconstructions with the anion dangling bonds filled and the cation
dangling bonds empty. This is referred to as the electron-counting principle.
At the (100) surface of GaAs this causes an electron transfer from the Ga
atoms to the As atoms which formally leads to negatively charged As and
positively charged Ga atoms.

Both the β2(2×4) and the β2(4×2) structure minimize the electrostatic
repulsion [116]. The β2(2×4) surface that is stable over a wide range of As
chemical potentials is actually the As terminated counterpart of the β2(4×2)
structure with As atoms exchanged by Ga atoms and vice versa. The neg-
atively charged As atom at the surface with its completely filled dangling
bond tends to form bonds with its three p orbitals. This leads to bond angles
close to 90◦ which can only be achieved when the As atoms relax outwards.
The positively charged Ga atom at the surface, on the other hand, has lost
an electron and prefers a sp2-like hybridization. Therefore Ga favors a more
planar configuration and relaxes inward. Apparently this is energetically more
costly than the outward relaxation of the As atoms so that the Ga-terminated
β2(4×2) surface is only stable under extreme Ga rich conditions.

4.4 Ionic Surfaces

In the case of the GaAs(100) surface we already realized the importance of
electrostatic effects if there is a charge transfer between the two constituents
of a compound semiconductor. These considerations are even more impor-
tant in the case of ionic crystals where the bonding is entirely dominated by
electrostatics. Depending on the difference in ionic radii, alkali halide solids
crystallize in the sodium chloride or cesium chloride structure [11]. The sodium
chloride structure is shown in Fig. 4.17. It corresponds to two fcc sublattices
translated by a/2(ex + ey + ez).

The electrostatic potential outside a slab structure can be derived by a
Madelung summation [117]. Far outside the surface plane the potential ap-
proaches

φ(z → ∞) = φG exp
(
−2π
z
a

)
+ 2πσ⊥ , (4.27)

where σ⊥ is the dipole moment perpendicular to the plane per unit area.
Hence, if there are normal dipoles in the slab, the asymptotic value of the
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Fig. 4.17. Sodium chloride structure
with non-polar {100} surfaces

potential is 2πσ⊥, but if there are no normal dipoles present, the potential
vanishes exponentially. In fact, for a so-called non-polar surface without any
normal dipole moment the electrostatic potential falls off very rapidly with a
decay length in the order of the lattice constant. Due to cancellation effects
between anionic and cationic contributions, the potential of a non-polar ionic
crystal surfaces has thus a much shorter range than, e.g., that caused by the
van der Waals interaction.

Since the formation of a dipole layer is energetically rather costly, polar
surfaces are usually highly unstable. Hence alkali halide crystals in equilibrium
are usually terminated by non-polar surfaces such as the {100} surfaces of
the sodium chloride structure shown in Fig. 4.17. That is the reason why for
example salt grains have an almost perfect cubic shape.

If one applies (4.27) to determine the potential inside the bulk, then it
turns out that potentials at bulk sites only one lattice constant distant from
the surface are practically indistinguishable from those in the bulk. This means
that also the potential felt by the surface atoms is rather close to the bulk po-
tential, and consequently no strong relaxations occur. Therefore alkali halides
exhibit surface terminations that are almost ideal.

Surface structures are more complicated for insulating oxide materials
where the bonds still have a covalent character although there is a significant
charge transfer between the constituents. Here we focus on the (0001) surface
of α-Al2O3 (corundum or sapphire) which has been studied extensively by
both theory [118–121] and experiment [122,123]. The α-Al2O3(0001) surface
is an important substrate for very high frequency microelectronic devices due
to its insulating character, but it is also of interest in the automobile industry,
in atmospheric treatments and in catalytic reactions.

Oxides usually have rather complicated bulk structures. α-Al2O3 (sap-
phire) crystallizes in the corundum structure that can be described by a pri-
mitive rhombohedral unit cell with two Al2O3 formula units. More convenient
is the hexagonal unit cell that contains 12 Al atoms and 18 O atoms. The side
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1: Al →
2: O3 →
3: Al →
4: Al →
5: O3 →
6: Al →

Fig. 4.18. Side and top view of the ideal Al-terminated α-Al2O3(0001) surface. In
addition the uppermost layers are labeled

and the top view of the ideal Al-terminated α-Al2O3(0001) surface are shown
in Fig. 4.18. The hexagonal cell corresponds to a layered structure with six
oxygen planes associated with aluminum planes above and below it, forming
stoichiometric triple layers. There are three O atoms and just one Al atom in
each layer per unit cell. The O atoms are stacked in a slightly distorted hcp
structure, as can be seen in the top view of Fig. 4.18. The Al atoms occupy
two-third of the octahedral holes in the oxygen sublattice. Due to this layered
structure, there is no non-polar termination of the α-Al2O3(0001) surface.

Although Al2O3 crystallizes in a rather complex bulk structure, at room
temperature no reconstructions of α-Al2O3(0001) are observed [122,124]. Cal-
culated surface energies as a function of the oxygen chemical potential for dif-
ferent (1×1) terminations are plotted in Fig. 4.19 [118, 121]. Over the entire
range of oxygen chemical potentials the stoichiometric AlO3Al-termination is
by far the energetically most favorable one. This can be understood by simple
electrostatic arguments because the triple AlO3Al layer does not have a dipole
moment while all other (1 × 1) surface terminations have one. Seemingly, at
ionic oxide surfaces electrostatic considerations are more important for the
determination of stable surface structures than bond-saturation arguments.

However, the situation is in fact not as simple as suggested above. In
Table 4.2 calculated and measured interlayer relaxations of the Al-terminated
α-Al2O3(0001) are listed. First of all it is remarkable that the theoretical
values agree rather well with each other, independent of the functional that has
been used. All calculations give a strong inward relaxation of the first Al-layer
so that it practically becomes coplanar with the oxygen layer. In contrast, the
interlayer spacing between the second and third layer is only slightly modified
compared to the bulk spacing. This creates a surface dipole of the uppermost
triple AlO3Al layer and should thus be energetically unfavorable.

There are two seemingly conflicting explanations for the large inward re-
laxation. The inward relaxation could be viewed as driven by a rehybridization



4.4 Ionic Surfaces 85

–6 –5 –4 –3 –2 –1 0
0

2

4

6

8

su
rf

ac
e 

en
er

gy
 (
J/

m
2 )

AlO3Al

AlA
lO 3

O1A
lAl

O
3 A

lA
l

O
2AlAl

H
3 O

3 AlAl

Al rich O2μO – μO  (eV) O rich

Fig. 4.19. Surface energies of different Al2O3(0001) (1 × 1) structure in J/m2 as
a function of the difference of the oxygen chemical potential (after [118]). The
uppermost layers of the corresponding structures are indicated in the figure. The
perpendicular dashed lines indicate the range of possible oxygen chemical potentials

of the surface Al atom to an sp2 orbital configuration which favors the pla-
nar configuration. By this rehybridization the Al 3pz orbital perpendicular
to the surface becomes empty so that no partially occupied dangling bonds
are present at the surface. Therefore the surface becomes insulating with the
lowest empty surface state 4.5 eV above the Fermi level [118]. In addition,
the non-stoichiometric O3-terminated surfaces which are already energetically
unfavorable due to their large dipole moment are found to be metallic which
should further increase their energy.

Table 4.2. Interlayer relaxations at the Al-terminated α-Al2O3(0001) surface in
percent of the corresponding bulk spacings

Interlayer Theorya Theoryb Theoryc Theoryd Exp.e Exp.f Exp.g

GGA LDA LDA LDA

Al-O3 1-2 −86 −87 −85 −77 −51 +30 −52.8

O3-Al 2-3 +6 +3 +3 +11 +16 +6 +1.5

Al-Al 3-4 −49 −42 −45 −34 −29 −55 –

Al-O3 4-5 +22 +19 +20 +19 +20 – –

O3-Al 5-6 +6 +6 – +1 – – –

References: a Wang et al. [118], b Verdozzi et al. [119], c Di Felice et al. [120],
d Batyrev et al. [121], e Guenard et al. [122], f Toofan et al. [123], g Soares

et al. [125]
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On the other hand, the strong inward relaxation of the surface Al layer
spacing has also been explained by the reduction of the electrostatic dipole
of just the first two layers [121]. This explanation is supported by the fact
that early studies with just classical ionic interatomic potentials [126] that
did not take into account any rehybridization effects have also found this large
relaxation.

Restricting this electrostatic argumentation just to the first interlayer spac-
ings, however, is obviously not appropriate with regard to the large relaxations
that have been found for up to the fourth interlayer spacing (see Table 4.2).
These cannot be explained in terms of bond saturation effects, either, since
the coordination is not changed for this inner layers. Hence the most reason-
able mechanism for the strong relaxation effects is a mixture of hybridization
effects at the uppermost layer and electrostatic effects that can be rather
far-reaching into the bulk.

The agreement with the experiment is not too satisfactorily. At least there
is a qualitative agreement with the results of Guenard et al. [122] and Soares
et al. [125]. The agreement could even be made quantitative if one assumes
that hydrogen atoms had been present in the experiment because this re-
duces the calculated relaxations [118]. The experimental results of Toofan
et al. [123] do even not qualitatively agree with the calculations. Again, this
could be explained by hydrogen-induced effects, in this case on the oxygen ter-
minated surface. As Fig. 4.19 demonstrates, the oxygen terminated surfaces
are energetically very unfavorable. However, the large surface dipole and the
oxygen dangling bonds can be compensated by hydrogen adsorption. These
hydrogen terminated surfaces have in fact the lowest surface energy in the
range of physically realistic conditions if the energy is calculated with respect
to the hydrogen chemical potential of H2 (see Fig. 4.19). The result that the
surface energies even become negative reflects the fact that the hydroxilated
surface is lower in energy than bulk sapphire and H2. The hydrogen termina-
tion actually also leads to an outward relaxation of the first layer thus giving
a reasonable explanation for the experimental results of Toofan et al. [123].

However, in LEED experiments the hypothesis of the influence of hydrogen
on the surface termination has been tested by processing the Al2O3 surface un-
der hydrogen-rich, oxygen-rich and vacuum-like sample preparation conditions
[125]. It turned out that the α-Al2O3(0001) surface structure is insensitive to
the different processing methods: it is always terminated by a single Al layer.
At the same time the experiments found unusually large vibrational ampli-
tudes of the topmost Al layer at room temperature. This might suggest that
the disagreement between theory and experiment is related to the fact that
the experiments are performed at room temperature while the calculations
correspond to zero temperature [125].

As for further temperature effects, the Al-terminated surface is in fact
stable for temperature up to 1350 K. Above this temperature oxygen evapo-
rates from the crystal leading to Al rich surfaces. Upon heating to more than
1600 K, a sequence of different surface reconstructions is observed that ends
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Fig. 4.20. Atomic configuration of the (3
√

3 × 3
√

3)r30◦ reconstructed α-
Al2O3(0001) surface obtained by simulations using empirical potentials [127] (Cour-
tesy of F. Lançon). The surface unit cell and the fcc(111) and fcc(100)-like regions
are indicated

with a
√

31 × √
31 structure [124]. This surface is terminated by Al atoms

arranged in two fcc-like layers. DFT calculations for 1× 1 Al-terminated sur-
faces suggest that it might be terminated by a two-dimensional Al3 fcc layer,
i.e. a layer with three Al atoms per 1×1 surface unit cell, on top of a Al2 layer
[120]. For the (3

√
3 × 3

√
3)r30◦ reconstructed α-Al2O3(0001) surface simula-

tions using empirical potentials exist [127]. These calculations confirm the
complex structure of these large reconstructions: the hexagonal reconstructed
unit cell is composed of triangles where two layers of Al adatoms are ordered
as fcc(111) whereas the stacking between the triangles is fcc(100)-like. This
surface structure is illustrated in Fig. 4.20.

The experimental investigation of oxide surfaces is hindered by the fact
that many surface-sensitive techniques involving charged particles can not be
applied at these insulating surfaces. This problem is circumvented if ultrathin
oxide films are deposited on conducting substrates. These so-called surface
oxides are also technologically important as protective films; furthermore, they
can in fact also be the active phase of catalyst surfaces [128], as we will discuss
in Sect. 5.10.

In particular ultrathin aluminum oxide films deposited on NiAl(110) have
been used as a model substrate in order to study oxide-supported catalysts
[129]. The question whether the structure of the aluminum oxide film on
NiAl(110) resembles the one of α-Al2O3(0001) or not is important in order
to understand in detail the influence of the oxide support on the catalytic
activity. However, in spite of its importance, this issue was the subject of
a long-standing debate [130]; only by a combination of scanning tunneling



88 4 Structure and Energetics of Clean Surfaces

Fig. 4.21. Structure of the ultrathin
aluminum oxide film on NiAl(110).
The parallelogram enclosed by the
dashed lines corresponds to the sim-
ulation cell whereas the dashed rect-
angle illustrates the surface oxide
unit cell. In addition, building blocks
of the oxide film structure are indi-
cated by the rectangles, squares and
triangles enclosed by the full white
lines

microscopy, infrared vibrational spectroscopy and DFT calculations it was
possible to determine the structure unambiguously [131].

The resulting structure together with some characteristic structure ele-
ments are shown in Fig. 4.21. The parallelogram enclosed by the dashed lines
indicates the simulation cell which consists in total of 580 atoms with six
NiAl bulk layers. This structure was determined by analyzing the experimen-
tal data and by starting with smaller systems where the building blocks of the
oxide film could be identified. It is important to note that such a complicated
structure as shown in Fig. 4.21 cannot be predicted from first principles with-
out any further information because without a knowledge of the periodicity
and the symmetry of the structure the number of possible structure is just
too large to be handled.

The stacking sequence of the film is 4(Al4O6Al6O7) which leads to a stoi-
chiometry of Al10O13. This means that the stoichiometry differs from the usual
one of Al2O3. The uppermost layer is made out of oxygen atoms whereas the
second layer of Al atoms that are arranged in a nearly hexagonal pattern
is almost coplanar with the oxygen atoms. A closer analysis yields that all
surface Al atoms are either tetrahedrally or pyramidally coordinated to the
oxygen atoms which form tetrahedrons and square pyramids with their tips
pointing down. The bases of the tetrahedrons and pyramids form the trian-
gular and square features, respectively, that are indicated by the full white
lines in Fig. 4.21. The interface structure between the aluminum oxide film
and NiAl(110) is dominated by the strong interaction between Ni and Al re-
sulting in Al pentagon-heptagons pairs, in contrast to the corundum structure
of α-Al2O3.

It is interesting to not that the (3
√

3 × 3
√

3)r30◦ reconstructed α-Al2O3

(0001) surface shown Fig. 4.20 also displays a coexistence of square and tri-
angular features. This indicates that both surfaces are built from the same
structural elements which are only arranged differently.
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4.5 Interpretation of STM Images

The scanning tunneling microscope (STM) [14] has become one of the most
valuable experimental tools for the microscopic determination of surface struc-
tures. Although we do not want to dwell on STM theory (for a comprehensive
overview see, e.g., [132,133]), this chapter on the theoretical determination of
the structure and energetics of surfaces would not be complete without some
remarks about the use of ab initio electronic structure calculations for the
interpretation of STM images.

The STM is based on the fact that the tunneling current through a bar-
rier depends exponentially on the thickness of the barrier (see Exercise 4.5),
However, it is important to note that in the STM the atoms are not directly
imaged. Rather the tunneling current between surface and STM tip is moni-
tored. In first-order perturbation theory, the current between two electrodes
can be expressed as

I =
2πe
h̄

∑

μν

f(Eμ) [1 − f(Eν)] |Mμν |2 δ(Eμ − (Eν + eV )) , (4.28)

where f(E) is the Fermi function, V is the applied voltage and Mμν is the
tunneling matrix elements between tip states χμ and surface states ψν .

In the limit of small voltage and temperature, (4.28) can be simplified.
Thus it takes the form

I =
2π
h̄
e2V
∑

μν

|Mμν |2 δ(Eμ − EF ) δ(Eν − EF ) , (4.29)

where EF is the Fermi energy. The matrix element Mμν is given by

Mμν =
h̄2

2m

∫
dS
(
χ∗

μ∇ψν − ψν∇χ∗
μ

)
. (4.30)

The integral is over any surface lying entirely within the vacuum barrier region
separating the two systems. Tersoff and Hamann [134, 135] have shown that
the current can be expressed as

I ∝
∑

ν

|ψ(rt)|2δ(Eμ − Eν) = ρ(rt, EF ) , (4.31)

if the tip is modeled as a locally spherical potential centered at rt. In this so-
called Tersoff–Hamann picture, the tunneling current is simply proportional
to the local density of states of the surface ρ(rt, EF ) at the position of the
tip. The tunneling current is just given by a property of the surface alone,
i.e., the surface-tip interaction does not influence the measured current in
this model. This makes the simulation of STM images rather straightforward.
All that is needed is the local density of states at a certain distance from
the surface which is a standard information evaluated in electronic structure
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Fig. 4.22. Comparison of measured (left panel) and simulated (right panel) STM
image of highly oriented pyrolytic graphite(0001) (courtesy of W. Heckl and T.
Markert). Only every second atom of the graphite surface is imaged, leading to a
seemingly hexagonal structure instead of the honeycomb structure. This feature is
reproduced by the simulated image within the Tersoff–Hamann model using GGA-
DFT

methods. This simple Tersoff–Hamann expression for the tunneling current is
indeed widely used because in most cases it is sufficient to reproduce the most
important features of STM images, as will be shown below.

The simulation of STM pictures is in fact very important for the interpre-
tation of imaged structures because there is not necessarily a simple relation
between the STM picture and the real structure. A prominent example is
given by STM images of graphite. In Fig. 4.22 a STM picture of highly ori-
ented pyrolytic graphite (HOPG) is plotted. The bright spots correspond to
atoms that are arranged in a hexagonal structure and not in the honeycomb
structure that is characteristic for the (0001) plane of graphite. This means
that in fact only every second carbon atom in the graphite basal plane is
imaged.

A simulated STM image based on GGA-DFT calculations within the
Tersoff–Hamann picture reproduces this peculiar feature of the graphite sur-
face, as Fig. 4.22 demonstrates. This asymmetry in the imaging of the carbon
atoms in the (0001) surface is explained by a purely electronic effect [136].
The graphite crystal is composed of two sublattices, sublattice Σ1 with neigh-
boring atoms directly above and below in adjacent layers and sublattice Σ2

without such neighbors. The Fermi surface of bulk graphite lies close to the
P line in the Brillouin zone which is defined by k = (1

3 ,
1
3 , x) in units of the

reciprocal lattice vectors. Along this line, the electronic states on the atoms
of the one sublattice are decoupled from the states on the other sublattice.
Furthermore, atoms of sublattice Σ2 do not interact with those of adjacent
planes leading to localized dispersionless electronic states along the P line
in the Brillouin zone. This causes a high density of states close to the Fermi
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Fig. 4.23. Illustration of the
perturbation approach to simulate
STM images. The tip and the sam-
ple are treated as isolated systems,
and their electronic structure is cal-
culated separately. The current for
the tip-sample distance d is deter-
mined by calculating the matrix
element (4.30) at the dividing sur-
face S at an intermediate distance
between the tip and the sample in
the vacuum region

energy in the surface Brillouin zone and therefore also a large tunneling current
at small bias. The atoms of sublattice Σ1, on the other hand, are interact-
ing across the layers leading to dispersive states which have a lower density
of states close to the Fermi energy. Therefore it is a density of states effect
which causes a significantly smaller tunneling current at surface atoms that
have nearest neighbors directly below them.

Of course, in the case of graphite we know the surface structure already
without the simulation of STM images. However, if it comes to more com-
plicated systems such as organic adsorbates on surfaces, the interpretation of
STM images is no longer that straightforward. Then the simulation of STM
images is rather helpful in order to identify the chemical nature of the imaged
structures.

As already mentioned, the Tersoff–Hamann approach is often sufficient in
order to allow a qualitative comparison between experimental and simulated
STM images. However, the nature of the tip is not included at all in this
approach. STM images can in fact be dependent on the composition of the
tip [137]. A further severe shortcoming of the Tersoff–Hamann model is that
the corrugation amplitude of STM images is usually substantially underes-
timated. The tip-sample coupling in first-order perturbation theory can be
extended beyond the Tersoff–Hamann theory in order to take into account
higher angular momenta in the tip states or more realistic models for the tip
structure [138]. Also nonperturbative approaches for the evaluation of STM
tunneling probabilities have been developed [139].

However, the simplest way to incorporate the effect of the tip based on
first-principles calculations is within a perturbative approach which is also
called the Bardeen approach [140]. In this model, the surface and the tip are
treated as isolated systems, and their electronic structure is determined sepa-
rately. The tunneling current is determined by evaluating the matrix elements
(4.30) explicitly using the wave functions obtained from the calculations of
the separated systems, so that the current is then given by [133,137]
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I =
4πe
h̄

∑

μν

∣∣∣∣
h̄2

2m

∫

S

(
χ∗

μ∇ψν − ψν∇χ∗
μ

)
dS

∣∣∣∣
2

δ(Eμ − (Eν + eV )) . (4.32)

The integral is performed over some dividing surface S between tip and sur-
face which is illustrated in Fig. 4.23. Equation (4.32) shows that within the
perturbation approach the tunneling current is basically proportional to the
overlap of wave functions.

Simulated STM images obtained within the Tersoff-Hamann model and the
Bardeen approach often agree qualitatively. However, there are cases where
the contrast depends on the used tip material. For example, the LDOS at
the Pt25Ni75(100) alloy surface shows a contrast between the imaged Pt and
Ni atoms that is opposite to the experimental results. Only when a realistic
W tip is used in the STM simulations within the Bardeen approach, the correct
chemical contrast is reproduced [137].

4.6 Surface Phonons

So far we have treated surfaces as static objects. However, surface atoms
are not at rest at non-zero temperatures. Instead, they vibrate about their
equilibrium positions. In periodic structures, these vibrations form waves, the
phonons, that are characterized by their frequency, their momentum and their
displacement pattern. Although phonons are a dynamical phenomenon, we fo-
cus on them in this chapter since, first, they are directly related to the struc-
ture of surfaces, and secondly, their description does not necessarily require a
dynamical treatment.

The vibrational frequencies of a system of L atoms can be determined in
the harmonic approximation by solving the secular equation

det
∣∣∣∣

1√
MIMJ

∂2Eel({R})
∂RI∂RJ

− ω2

∣∣∣∣ = 0 , (4.33)

where Eel({R}) is the Born–Oppenheimer energy surface. This means that
the frequencies are given by the Hessian of the Born–Oppenheimer energy
scaled by the nuclear masses. Let us now consider a periodic crystal given by
the Bravais lattice {RI} with r atoms in the unit cell at positions RIα =
RI + uIα, α = 1, . . . , r. The second derivatives

Cαβ
ij (RI ,RJ ) =

∂2Eel({R})
∂RIαi∂RJβj

, (4.34)

where i and j denote the Cartesian coordinates, are also called elastic force
constants. In a periodic crystal, the elastic force constants only depend on
the distance RIJ = RJ −RI . Because of this periodicity, it is sufficient to
consider 3r×3r determinants in order to calculate the phonon frequencies ω(q)
as a function of the wave vector q instead of taking a 3N × 3N determinant
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into account. The phonon frequencies ω(q) are the solutions of the secular
equation [4]

det
∣∣∣Dαβ

ij (q) − ω2(q)
∣∣∣ = 0 , (4.35)

where Dαβ
ij (q) is the dynamical matrix defined by

Dαβ
ij (q) =

1√
MαMβ

∑

RIJ

Cαβ
ij (RIJ ) e−iq·RIJ . (4.36)

Equivalent to the case of surface electronic states, surface phonons are vibra-
tional modes that are localized at the outermost layers of the solid. Already
at the end of the nineteenth century it was known that localized waves, the
so-called Rayleigh waves, exist at the surface of isotropic continuous elastic
media [141]. The Rayleigh waves can be calculated exactly using elasticity
theory [13, 109]. They correspond to long wavelength acoustic phonons since
their frequency depends linearly on the wave vector q‖ in the surface plane.
Their displacements are confined to the sagittal plane which is the plane de-
fined by the wave vector q‖ and the surface normal.

If the wavelength of the surface phonons becomes comparable to the inter-
atomic distances, a continuous elastic description of the substrate is no longer
justified. Instead, the discrete atomic nature of the solid and its surface has
to be taken into account. There are basically three methods for the micro-
scopic theoretical treatment of surface phonons using first-principles tech-
niques: molecular dynamics simulations, frozen-phonon techniques, and the
linear response formalism [142]. To extract phonon modes from classical tra-
jectory calculations (see Sect. 7.1), one performs finite-temperature molecular
dynamics runs of the substrate for a sufficiently long period of time. The
frequency spectrum of the phonons is then given by the Fourier transform

g(ω) =
1
T

∫
dtW (t) g(t) cos(ωt) (4.37)

of the velocity autocorrelation function

g(t) =
L∑

I=1

〈
u̇I(t)u̇I(0)

〉
〈
u̇I(0)u̇I(0)

〉 , (4.38)

where T is the total simulation time, u̇I(t) is the velocity of the I-th particle
in the supercell at time t,

〈
. . .
〉

denotes the ensemble average, and W (t)
is an window function. In order to determine phonon modes not only at the
zone center, sufficiently large unit cells are required. Furthermore, rather large
simulation times are needed to resolve low-frequency vibrational modes since
the resolution of the Fourier transform is given by Δω > 2π/T . On the other
hand, anharmonicities and temperature effects can be addressed with this
method.
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In the frozen-phonon approach, total energies and Hellmann–Feynman
forces are evaluated as a function of atomic displacements from the equilibrium
positions. The forces are fitted to a quadratic expansion in the distortions so
that the harmonic contributions can be extracted and the dynamical matrix
be determined. The unit cell that is used to calculate the forces has to match
the wave vector of the considered phonon mode. This method has been used
to address the phonon anomalies observed at hydrogen covered Mo(110) and
W(110) surfaces [59].

The problem of a matching supercell to determine phonons of a given
wavevector can in fact be avoided. In density-functional perturbation schemes
[143], dynamical matrices can be calculated for arbitrary wave vectors by us-
ing the same unit cell as for the ground state calculations. Density-functional
perturbation theory (DFPT) is based on the Born–Oppenheimer approxima-
tion. To determine the dynamical matrix, the second derivatives of the energy
with respect to the nuclear coordinates are needed. By differentiating the
Hellmann–Feynman forces, a general expression for these second derivatives
can be found [143],

∂2Eel({R})
∂RI∂RJ

= − ∂F I

∂RJ
=
∫

d3R
∂n(r)
∂RJ

∂Vnucl−el(r)
∂RI

+
∫

d3r n(r)
∂2Vnucl−el(r)
∂RI∂RJ

+
∂2Vnucl−nucl

∂RI∂RJ
. (4.39)

This means that for the determination of the second derivatives in addition to
the calculation of the ground-state electron density n(r), its linear response
to a distortion of the nuclear geometry, ∂n(r)/∂RI , is required.

In order to obtain the electron-density response ∂n(r)/∂RI within density-
functional theory, we first linearize the terms appearing in the Kohn–Sham
equations (3.54) with respect to wave function, density, and potential varia-
tion. For the electron density this gives

Δn(r) = 2
N∑

n=1

ψ∗
n(r)Δψn(r) . (4.40)

The variation of the Kohn–Sham orbitals Δψi(r) follows from standard first-
order perturbation theory

(H0 − εn) |Δψn

〉
= −(Δveff −Δεn)|ψn

〉
. (4.41)

In atomic physics, this equation is known as the Sternheimer equation. The
variation of the effective potential can be written as

Δveff(r) = Δvext(r) +
∫
d3r′Δn(r′)

e2

|r − r′|

+
dvxc(n)
dn

∣∣∣∣
n=n(r)

Δn(r′) (4.42)
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Fig. 4.24. Phonon dispersion curve of the buckled Si(100)–(2 × 1) surface. Vibra-
tional modes located at the surfaces are plotted as solid lines while the shaded area
corresponds to the bulk projected band structure (after [144]). The experimentally
measured velocity of the Rayleigh wave (RW) [145] is indicated by the broken lines.
The surface Brillouin zone and the special points are indicated in the right panel

and the first-order variation of the Kohn–Sham eigenenergies is given by

Δεn =
〈
ψn|Δveff |ψn

〉
. (4.43)

The equations (4.40)–(4.43) form a set of coupled self-consistent equations for
the perturbed system. The Kohn–Sham eigenvalue equation (3.54) has been
replaced by the solution of a linear system (4.41). The crucial advantage of
density-functional perturbation theory is that the response to perturbations
of different wavelengths is decoupled [142, 143]. Only periodic displacements
characterized by the wavevector q have to be considered. The derivatives
entering the determination of the dynamical matrices can be obtained from the
self-consistent solution of (4.40)–(4.43) with the first-order variations replaced
by the derivatives [142]

∂

∂RIα(q)
=
∑

I

∂

∂RIα
e−iq·RI (4.44)

As an example of the first-principles calculation of surface phonons, the
phonon spectrum of the buckled Si(100)-(2×1) surface determined by density-
functional perturbation theory [144] is shown in Fig. 4.24. The surface phonons
in this system have been addressed before by tight-binding calculations [146]
with qualitatively very similar results. There is a large number of phonon
modes localized at the surfaces which are indicated by the solid lines. This is
due to the large structural changes of the reconstructed Si(100) surface. There
are some special modes labeled in Fig. 4.24, such as the rocking mode (r), the
dimer stretching (ds) and the dimer back bond (sb) mode. Of particular inter-
est with respect to the buckled dimer structure of the Si(100) is the rocking
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mode which has an energy of about 20 meV. The displacement pattern of
this mode corresponds to the rocking motion of the surface dimer. The eigen-
vectors and the frequencies of this phonon mode remain almost unchanged if
they are calculated in a larger c(4 × 2) surface unit cell [144]. This mode is
excited at room temperature (kBT ≈ 25meV). Its existence supports the sug-
gestion that the seemingly symmetric dimers observed in room-temperature
STM experiments are in fact an averaged image over back and forth flipping
dimers (see p. 78).

The energy of the dimer stretching mode (ds), about 43meV, is directly
related to the surface dimer bond strength. Actually, for Ge(100) the same
mode has been found with a slightly lower energy [142] reflecting the fact that
the dimer bond in Ge is weaker than in Si. The dimer back bond mode above
the bulk continuum corresponds to an opposing motion of the dimer atoms
with respect to the second layer atoms. Therefore it has the character of an
optical phonon.

The Rayleigh wave (RW) is the lowest mode in the surface phonon spec-
trum. The broken lines in Fig. 4.24 correspond to h̄ω = h̄cRq where cR is the
experimentally measured velocity of the Rayleigh wave [145]. The comparison
with the calculated dispersion curve in the long-wavelength limit indicates a
very good agreement between experiment and theory.

Exercises

4.1 Electronic Surface States in the One-dimensional Nearly-Free
Electron Model

We describe an infinite solid in the one-dimensional nearly-free electron
model as a chain of atoms with an effective potential for the electrons
given by

V (z) = V0 + VG cos(Gz) ,

where G = 2π/a is the shortest reciprocal lattice vector of the chain.
a) Determine the dispersion ε(k) and the eigenfunctions for wave-vectors k
near the zone boundary, i.e. for |G/2 − k| � G.
Hint: Use degenerate perturbation theory
b) Now we consider a semi-infinite crystal. The potential barrier at the
surface at z = 0 is modeled by a potential step of height W0 so that the
whole potential is given by

V (z) = V0 + W0Θ(−z) + VG cos(Gz) Θ(z) ,

where Θ(z) is the step function.
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Show that now localized electronic states can exist at the surface with an
energy that lies in the band gap. Which sign of VG is necessary for the
existence of a localized surface state?

4.2 Density of States

a) Determine the density of states of the free electron gas in one, two
and three dimensions. Use periodic boundary conditions for N electrons
along a line of length L, in a square of area A = L2, and in a cube of
volume V = L3, respectively.
Hint: Use n(ε)dε = nd(k)ddk, where nd(k) is the density of the states in
the d-dimensional k-space.
b) Show that in the general case the density of states in the j-th band,
ignoring the spin, is given by

nj(ε) = V

∫

Sj(ε)

dS

(2π)3
1

|∇k ε(k)| , (4.45)

where Sj(ε) is a surface of constant energy in the first Brillouin zone and
∇k ε(k) is the gradient of ε(k) in k-space.
c) Verify, that for free electrons in three dimensions the general expression
(4.45) gives the same density of states as the one derived in a).

4.3 Equilibrium Shape of Crystals

In equilibrium, a crystal assumes the shape with the lowest total surface
energy under the constraint of constant volume.
a) Assume that the surface energy is independent of the orientation, as
it is appropriate for liquids. Show that the equilibrium shape of a liquid
droplet is the sphere.
b) Consider a three-dimensional crystal that is a rectangular prism hav-
ing sides lx, ly and lz and surface energies γx, γy and γz.
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Show that the equilibrium condition for the crystal shape leads to [147]

γx

lx
=

γy

ly
=

γz

lz
= const. (4.46)

This means that in equilibrium the distance of each crystal face from the
center of the crystal is proportional to its surface energy which is the
basis of the Wulff construction (see Fig. 4.9).

4.4 Cohesive Energy in Tight-Binding

Use the tight-binding expression for the band width to show that the
band energy contribution to the cohesive energy of a transition metal is
proportional to the square root of the coordination number.
Hint: Replace the exact density of states by a rectangular density of states
with band width W .

4.5 Tunneling current through a barrier in the STM

Use a simple piecewise constant potential barrier of height V0 and width a
to show that the tunneling current I(E) for E < V0 is given by

I(E) =
{

1 +
V 2

0

4E(V0 − E)
sinh2

(
a

√
2m(V0 − E)/h̄2

)}−1

(4.47)

What is the value of the current in the limit of a very high and wide

barrier characterized by a
√

2m(V0 − E)/h̄2 
 1?

4.6 Localized Vibrations on a Semi-infinite Linear Chain

Consider a semi-infinite linear chain consisting of atoms with mass M
and a spacing a. The first atom of the chain has a mass Ms �= M . The
atoms are coupled by springs with force constant k:



Exercises 99

a

M M M M MM s

k kkkk

a) Determine the equations of motion for the displacements un for the
n-th atom, n = 1, . . .
b) Show that a localized vibrational mode exists for Ms < M/2 [13] and
determine its frequency. Compare this frequency to the maximum “bulk”
frequency for an infinite linear chain.



5

Adsorption on Surfaces

The study of adsorption is of central importance in the field of surface science.
Adsorption processes are involved in almost all technological processes in
which surfaces play a crucial role. Often they are an important step in the
preparation of a device as, e.g., in the growth of a semiconductor device. But
adsorption can also be of significant importance in industrially relevant pro-
cesses. The most prominent example is heterogeneous catalysis since usually
the reactants have to adsorb on the catalyst before they can react. But of
course, also from a fundamental point of view the physical and chemical fac-
tors determining adsorption processes are most interesting. In this chapter I
will first introduce the basic quantities necessary to describe adsorption. After
classifying the different types of adsorption systems the necessary theoretical
tools to treat these systems will be addressed. Furthermore, reactivity con-
cepts will be discussed and their usefulness will be demonstrated in some case
studies.

5.1 Potential Energy Surfaces

The central quantity in any theoretical description of adsorption is the poten-
tial energy surface (PES) of the system. It corresponds to the energy hyper-
plane over the configuration space of the atomic coordinates of the involved
atoms. The PES directly gives information about adsorption sites and ener-
gies, vibrational frequencies of adsorbates, reaction paths, and the existence
of barriers for adsorption, desorption, diffusion and reactions.

There is a long tradition in surface science of using one-dimensional po-
tential curves to describe adsorption. The most prominent one goes back to
Lennard-Jones [148] and is shown in Fig. 5.1. Two curves are plotted: the
curve denoted by AB+S represents the potential energy of the molecule AB
approaching the surface S. There is a shallow minimum EAB

ad before the curve
rises steeply. The other curve A+B+S corresponds to the interaction of the
two widely separated atoms A and B with the surface. Far away from the

A. Groß, Theoretical Surface Science,
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Fig. 5.1. Potential energy curves for molecular and dissociative adsorption accord-
ing to Lennard-Jones [148]

surface the energetic difference D between the two potential curves is equal
to the dissociation energy of the free molecule AB. Close to the surface it
is energetically more favorable to have two separate atoms interacting with
the surface than the intact molecule. This corresponds to a dissociative ad-
sorption scenario. The energy gain upon the dissociative adsorption of the
molecule AB is EA+B

ad whereas the energy gain upon the adsorption of the
two isolated atoms A and B is given by EA+B

ad +D.
The exact location of the crossing point between the curves AB+S and

A+B+S determines whether there is a barrier for dissociative adsorption or
not. The scenario depicted in Fig. 5.1 illustrates the case of activated disso-
ciative adsorption with the diabatic dissociation barrier given by Ea. The
adiabatic barrier will be somewhat lower due to the avoided crossing between
the adiabatic potential curves. If the crossing of the two curves is closer to
the surface and thus at a potential energy < 0 eV, the molecule can dis-
sociate spontaneously at the surface and we have non-activated dissociative
adsorption.

Potential curves like the ones presented in Fig. 5.1 illustrate the energetics
of the adsorption process. However, without any additional information we do
not learn anything about the physical and chemical nature of the interaction
between the surface and the adsorbates. The shallow molecular adsorption
well in Fig. 5.1 usually corresponds to a physisorption well caused by van der
Waals attraction while the steep rise of the potential energy is due to the Pauli
repulsion between the molecular and substrate wave functions. The energy
gain upon dissociative adsorption is typical for the so-called chemisorption
which corresponds to the creation of true chemical bonds between adsorbate
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Adsorbed

reactants
Activation barrier
on the surface

Reactants
Gas phase
barrier Products

Fig. 5.2. Schematic illustration of the role of a catalyst using a two-dimensional
representation of the potential energy surface. A catalyst provides a detour in the
multi-dimensional PES with lower activation barriers

and substrate. This interaction can be further classified into ionic, metallic or
covalent bonding.

In the following sections we will learn how to theoretically describe the
interaction of atoms and molecules with surfaces. First we will address physi-
sorption which still represents a challenge in density functional theory. In the
discussion of chemisorption we will focus on the analysis of the electronic
structure which is crucial for the understanding of the nature of the chemical
bond.

One note of caution should be added. One-dimensional representations of
potential energy surfaces can be quite misleading. For example, it is often
argued that the presence of a catalyst lowers activation barriers significantly.
However, usually intermediate products are involved in heterogeneous cata-
lysis which can only be illustrated in a multi-dimensional representation of
a PES. This is demonstrated in Fig. 5.2. A catalytic reaction corresponds in
principle to a detour in the multi-dimensional PES on the path from the
reactants to the products. Along this detour, however, the activation barrier
is much smaller than for example in the gas phase. Thus the reaction rate
is enormously enhanced in the presence of a catalyst since the rate depends
exponentially on the barrier height (see Sect. 8.1).

5.2 Physisorption

In the weakest form of adsorption no true chemical bond between surface
and adsorbate is established. The bonding is rather due to the induced dipole
moment of a nonpolar adsorbate interacting with its own image charges in
the polarizable solid, which means that the attraction is caused by van der
Waals forces. Although this bonding is usually rather weak (∼ 0.1 eV), it is
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Fig. 5.3. Schematic illustration of a hydrogen atom in front of a perfect conductor
interacting with its image charges

in fact crucial for the bonding in a wide range of matter. For example, the
exceptional ability of geckos to climb up smooth vertical surfaces is caused by
the van der Waals attraction between foot-hairs of the gecko and the surface
[149]. Measurements indicate that a single foot of a gecko could produce 100N
of adhesive force which means that the feet of a gecko could lift a load of 40 kg.
Here we are more concerned with van der Waals interaction of rare gases and
molecules with filled electron shells with surfaces since it is the main source
of the attraction between these species and surfaces.

I will first give a very elementary introduction into to the essential physics
of the van der Waals interaction between an atom and a solid surface [150].
Let us first consider a hydrogen atom in front of a perfect conductor (Fig. 5.3).
The positively charged nucleus is located at R = (0, 0, Z), and the electronic
coordinates r = (x, y, z) are given with respect to the nucleus. This hydrogen
atom is interacting with its image charges of both the nucleus and the electron
in the conductor. The total electrostatic energy is then a sum of two repulsive
and two attractive terms,

Vim = −e
2

2

[
1

|2R| +
1

|2R+ r + r′| − 1
|2R+ r| − 1

|2R+ r′|
]

= −e
2

2

[
1

2Z
+

1
2(Z + z)

− 2
|2R+ r|

]
. (5.1)

We assume that the atom is not too close to the surface which means that
|r| � |R|. A Taylor expansion of (5.1) in powers of the small quantity |r|/|R|
yields

Vim = − e2

8Z3

[
x2 + y2

2
+ z2

]
+

3e2

16Z4

[z
2
(x2 + y2) + z2

]
+O(Z−5) . (5.2)

Let us first consider the leading term of (5.2). The nominator is proportional
to the square of the electronic displacement from the nucleus. For the sake
of simplicity we model the electronic motion in the free atom by a three-
dimensional oscillator:
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V free
atom =

meω
2
vib

2
(
x2 + y2 + z2

)
. (5.3)

The frequency of the unperturbed oscillator is given by ωvib. The atomic
potential (5.3) is modified by the presence of the surface. The image charges
lead to additional potential terms that are quadratic in the displacements.
This causes a change in the vibrational frequencies. The modified atomic
potential is given by

Vatom = V free
atom + Vim

Vatom =
meω

2
vib

2
(
x2 + y2 + z2

) − e2

8Z3

[
x2 + y2

2
+ z2

]
+ . . .

≈
meω

2
‖

2
(
x2 + y2

)
+

meω
2
⊥

2
z2 , (5.4)

where the modified vibrational frequencies are

ω‖ = ωvib − e2

16meωvibZ3
and ω⊥ = ωvib − e2

8meωvibZ3
. (5.5)

Here we have used meω
2
vib 
 e2/(4Z). If we assume that the atomic oscillator

remains in its quantum mechanical ground state, then the van der Waals
binding energy in this simple picture is exactly given by the change in the
zero-point energy of the atomic oscillator

VvdW (Z) =
h̄

2
Δω(Z) =

h̄

2
(ω⊥(Z) + 2ω‖(Z) − 3ωvib) =

−h̄e2
8meωvibZ3

. (5.6)

This also demonstrates the long-range nature of the van der Waals interaction
which is proportional to Z−3.

The van der Waals potential (5.6) can be further simplified by introducing
the atomic polarizability

α =
e2

meω2
vib

. (5.7)

Substituting (5.7) into (5.6) yields

VvdW (Z) = − h̄ωvibα

8Z3
= −Cv

Z3
(5.8)

Here Cv = h̄ωvibα/8 is the van der Waals constant that is directly related to
the atomic polarizability.

By writing the fourth-order correction in the Taylor expansion (5.2) as
3CvZ0/Z

4, the so-called dynamical image plane at Z0 is defined

Vim(Z) = −Cv

Z3
− 3CvZ0

Z4
+O(Z−5) = − Cv

(Z − Z0)3
+O(Z−5) (5.9)
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Note that the 1/Z3 long-range van der Waals attraction can also be ratio-
nalized from a 1/R6 atom-atom dispersion interaction summed over lattice
atoms (see Exercise 5.1).

The derivation of the van der Waals force between an hydrogen atom and a
perfect conductor given above basically corresponds to the interaction of two
dipoles at distance 2Z. However, a hydrogen atom in the ground state has
no permanent dipole moment. Hence there is a rigorous quantum mechanical
derivation necessary of the long-range interaction between a neutral atom and
a solid surface. Such a derivation was given by Zaremba and Kohn [151]. They
treated the interaction in perturbation theory under the assumption that there
is no overlap between the wave functions of the atom and the solid. The full
Hamiltonian is given by

H = Ha +Hs + Vas , (5.10)

where the subscripts a and s denote the atom and the solid, respectively.
The perturbation term Vas describes the electrostatic interaction between the
atom and the solid

Vas =
∫

d3rd3r′
ρ̂s(r)ρ̂a(r′)
|r − r′| , (5.11)

where ρ̂ corresponds to the total charge density of the positive ion core n+

and the electron number operator n̂,

ρ̂s,a(r) = n+
s,a(r) − n̂s,a(r) . (5.12)

It can be shown that the first-order contribution vanishes [151]. The second-
order interaction energy E(2) is expressed in terms of the retarded response
functions χa,s of the atom and the solid, respectively,

E(2) =
∑

α�=0

∑

β �=0

|〈ψa
0ψ

s
0|V ′

as|ψa
αψ

s
β〉|

(Ea
0 − Ea

α) + (Es
0 − Es

β)

= −
∫
d3r

∫
d3r′
∫
d3x

∫
d3x′ e

|R+ x− r|
e

|R + x′ − r′|

×
∞∫

0

dω

2π
χa(x,x′, iω)χs(r, r′, iω) . (5.13)

Regrouping the terms and integrating over the atomic response function leads
to a term proportional to the atomic polarizability α which already appeared
in the simple qualitative derivation above. The remaining integrals can be
expressed in terms of the dielectric function ε of the solid. Finally one arrives
at the result that the interaction term E(2) indeed corresponds to the van der
Waals atom-metal potential
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Table 5.1. Van der Waals coefficient CV and dynamical image plane Z0 for rare-gas
atoms on various noble metals obtained by jellium calculations [151]. CV is given
in eV/Å3 and Z0 in Å

He Ne Ar Kr Xe

CV Z0 CV Z0 CV Z0 CV Z0 CV Z0

Cu 0.225 0.22 0.452 0.21 1.501 0.26 2.110 0.27 3.085 0.29

Ag 0.249 0.20 0.502 0.19 1.623 0.24 2.263 0.25 3.277 0.27

Au 0.274 0.16 0.554 0.15 1.768 0.19 2.455 0.20 3.533 0.22

E(2)(Z) = VvdW(Z) = − Cv

(Z − Z0)3
+O(Z−5) , (5.14)

where the van der Waals constant is given by

Cv =
1
4π

∞∫

0

dω α(iω)
ε(iω) − 1
ε(iω) + 1

(5.15)

and the position Z0 of the dynamical image plane by

Z0 =
1

4πCv

∞∫

0

dω α(iω)
ε(iω) − 1
ε(iω) + 1

z̄(iω) . (5.16)

Here z̄ is the centroid of the induced charge density. This derivation confirms
that the long-range interaction potential is expressible as a polarization en-
ergy. The polarization is due to the interaction of the instantaneous dipole
on the atom caused by charge fluctuations with the induced image charge
distribution in the solid.

The equations (5.15) and (5.16) provide a convenient scheme to evaluate
the van der Waals interaction from first principles. For simple and noble met-
als the substrate can be reasonably well represented by the jellium model.
Calculated values obtained in this way for rare-gas atoms on various noble
metal surfaces are listed in Table 5.1 [151]. It is obvious that the van der
Waals coefficient increases strongly from He to Ne for all considered metal
surfaces. This increase is basically a direct consequence of the larger atomic
polarizability of the heavier rare-gas atoms. As far as the dependence on the
substrate is concerned, the van der Waals coefficients CV reflect the increase
in the dielectric function from Cu to Au. The positions of the image plane,
on the other hand, depend only weakly on the atomic polarizabilities but de-
crease with increasing dielectric functions. The values for Z0 are rather small
in the order of 0.15–0.3 Å.

The van der Waals interaction (5.14) is purely attractive. However, closer
to the surface the wave functions start to overlap with the substrate wave
functions. There will be some electrostatic attraction towards the positive ion



108 5 Adsorption on Surfaces

0 1 2 3 4 5 6

Distance from the surface z(Å)

–8

–6

–4

–2

0

2

4

6

8

10

Ph
ys

is
or

pt
io

n 
po

te
nt

ia
l (

m
eV

)

He/Ag

He/Cu
He/Au
He/Li

Li

Ag

Cu

Au

Fig. 5.4. Physisorption potential for He interaction with different jellium surfaces
as a function of the distance from the jellium edge. The jellium electronic densities
correspond to the noble metals Ag, Cu and Au and the simple metal Li, respectively.
(After [152])

cores of the substrate. On the other hand, the orbitals of the approaching atom
have to be orthogonal to the substrate wave functions which increases their
kinetic energy. This Pauli repulsion is particularly strong for atoms with closed
valence shells for which it dominates the interaction close to the surface. Thus
there will be a balance between the short-range Pauli repulsion and the long-
range van der Waals attraction leading to a physisorption minimum. In order
to determine the physisorption equilibrium position for rare gases adsorbed
on jellium, Zaremba and Kohn divided the total interaction into two parts: a
short-range term described by Hartree–Fock theory and the longe-range van
der Waals interaction. Thus the physisorption potential is given by

V (Z) = VHF(Z) + VvdW(Z) . (5.17)

The physisorption potential for He interaction with jellium surfaces with den-
sities corresponding to Ag, Cu and Au is shown in Fig. 5.4. It is obvious that
the attraction due to the van der Waals interaction is rather weak leading
to well depths below 10meV for He. Furthermore Fig. 5.4 demonstrates that
the divergence of the van der Waals attraction at Z0 ≈ 0.2 Å is irrelevant
for physisorption systems since the Pauli repulsion sets in much further away
from the surface.

There is, however, a certain inconsistency in the determination of the equi-
librium physisorption energy and position using (5.17). In the derivation of the
van der Waals attraction VvdW(Z) (5.14) it was assumed that the wave func-
tion were not overlapping while the Pauli repulsion requires a wave function
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overlap. It would be desirable to have a consistent unified description of both
van der Waals interaction and chemical interaction. Unfortunately, density
functional theory using the LDA or GGA for the exchange-correlation func-
tional does not properly describe the long-range van der Waals interaction.
This is closely related to the fact that in the LDA and the GGA the exchange-
correlation hole is still localized. Therefore the effective electron potential
outside of a metal falls off exponentially and not proportional to 1/z. Hence
neither image forces nor the van der Waals interaction is appropriately repro-
duced. Still there have been calculations of the interaction of rare-gas atoms
with surfaces using DFT within the GGA [153] and LDA [154]. These calcu-
lations yield reasonable potential well depths for rare-gas adsorption on metal
surfaces. It has been argued that this is due to the fact that physisorption can
induce a static dipole moment at the adsorbate [154] which is correctly de-
scribed within LDA or GGA and which contributes significantly to the bond
strength [155].

Still there have been several attempts to properly include the van der
Waals interaction in density functional theory. Two recent approaches [156,
157] utilize the adiabatic connection formula

Exc[n] =
1
2

∫
d3rd3r′

e2

|r − r′|
∫ 1

0

dλ[〈ñ(r)ñ(r′)〉n,λ − δ(r − r′)〈n(r)〉] .
(5.18)

For λ = 0, the HamiltonianH(λ) does not contain any longe-range interaction.
This interaction is adiabatically switched on as a function of the coupling
parameter λ so that for λ = 1 the Hamiltonian H(λ) corresponds to the true
physical Hamiltonian. In (5.18), 〈. . .〉n,λ means the expectation value in the
ground state H(λ) with a potential Vλ which keeps the ground-state density
nλ(r) equal to the exact physical density nλ=1(r) for all λ. The advantage of
the exact formula (5.18) is that approximate expressions for the interacting
system can be used which can still be solved. The adiabatic connection formula
then corresponds to an extrapolation to the exact expression.

Hult et al. use second-order perturbation theory equivalent to (5.13) and
then introduce a local dielectric function

ε(ω;n(r)) = 1 − κ(n(r))
ω2

p(n(r))
ω2

(5.19)

with the plasma frequency

ω2
p(n(r)) =

4πe2n(r)
me

, (5.20)

thus defining a density functional. A cutoff function κ(n(r)) has to be in-
troduced because the local approximation (5.19) tends to overestimate the
response in the low-density tails of the wave functions [157]. Kohn et al. avoid
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the introduction of a cutoff function by transforming the adiabatic connection
formula into the time domain [156].

Both approaches give very satisfactory results for van der Waals constants.
However, it would be much more desirable to find a more appropriate nonlo-
cal form for the exchange-correlation functional that reproduces the correct
long-range form of the effective one-particle potential. This would avoid the
introduction of an explicit van der Waals density functional which requires
some extra computational effort to include the long-range van der Waals at-
traction. Because of this extra effort so far the van der Waals functionals are
usually not included in standard DFT implementations.

There is a relativistic modification of the van der Waals potential at dis-
tances larger than Z ∼ λ/2π, where λ is the effective atomic transition wave-
length that contributes to the polarizability. This distance is of the order of
0.1 μm. At such a large distance the finite velocity of the photons cannot be ne-
glected which causes retardation effects in the electrostatic interaction. Hence
the van der Waals interaction falls off more rapidly with distance and becomes
proportional to −1/Z4 [158]. The retarded van der Waals or Casimir-van der
Waals potential is in fact a manifestation of the Casimir effect [159] which
is a consequence of the zero-point energy of a quantized field. Although this
effect leads to small changes in the attractive potential on an absolute scale,
it has still been observed in the scattering of an ultracold beam of metastable
neon atoms from silicon and glass surfaces [160].

5.3 Newns–Anderson Model

In contrast to physisorption, in chemisorption true chemical bonds between
adsorbate and substrate are formed. This means that there is a significant hy-
bridization between the adsorbate and substrate electronic states which causes
a modification of the electronic structure. Let us recall that within the super-
cell approach the one-electron eigenfunctions of the Kohn–Sham equations are
delocalized Bloch functions. In the bulk, their eigenenergies as a function of
the crystal momentum ε(k) directly give the electronic band structure which
is crucial for the electronic, structural and optical properties of the solid.
However, adsorption at surfaces corresponds to the making of localized bonds
between the substrate and the adsorbate. The band structure is not a conve-
nient tool for a direct analysis and discussion of the nature of the chemical
bonds. Often, an analysis of the local density of states n(r, ε) (LDOS), in par-
ticular the projected density of states, is better suited to analyze the nature
and symmetry of chemical bonds between substrate and adsorbate [75].

In order to obtain the change in the density of states upon chemisorption,
a full self-consistent electronic structure calculation of the interacting sys-
tem has to be performed. However, to establish qualitative trends and basic
mechanisms, it is often very useful to describe a complex system by a sim-
plified Hamiltonian with a limited number of parameters. The dependence of
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the properties of the system on these parameters can then be studied in a
well-defined way. In the next sections I will discuss approximative theories of
chemisorption such as the Newns–Anderson model or the effective medium
theory. When these methods were first introduced, they were also meant to
provide semiquantitative results for chemisorption properties. Nowadays, due
to the relative ease with which self-consistent electronic structure calculations
can be performed, these approximative methods are mainly used for explana-
tory purposes.

The modification of the electronic structure upon adsorption in terms of
the adsorbate-substrate coupling can be particularly well derived using the
so-called Newns–Anderson or Anderson–Grimley–Newns model which was de-
veloped independently by Grimley [161] and by Newns [162] based on a model
proposed by Anderson [163] for bulk impurities.

Consider a substrate characterized by a quasi-continuum of Bloch states
φk with eigenenergies εk and an adatom interacting with the substrate. The
adatom shall be described by a single valence state φa with energy εa. The
interaction can be described in its simplest form by the following model
Hamiltonian

H = εan̂a +
∑

k

εkn̂k +
∑

k

(Vak b̂
†
ab̂k + Vka b̂

†
kb̂a) , (5.21)

with
n̂i = b̂†i b̂i , i = a, k , (5.22)

where n̂i is the number operator, and b̂†i and b̂i are the creation and annihila-
tion operator of the orbital φi, respectively. The interaction of the substrate
and adatom states is given by the matrix elements Vak. In (5.21) we have ig-
nored the spin degree of freedom. Often the Coulomb repulsion U in the doubly
occupied valence state is taken into account by adding a term 1

2Un̂a↑n̂a↓ in
the Newns–Anderson Hamiltonian. Usually the two-body operator n̂a↑n̂a↓ is
treated in the Hartree-Fock approximation [13] in which it is replaced by an
effective one-body operator. This leads to an effective decoupling of the spins
and only causes a shift of the eigenenergies εa. Since the consideration of the
Coulomb repulsion does not change the general conclusions, we will neglect
it here. Note that (5.21) in this simple form could in principle be decom-
posed into a sum over independent one-particle Hamiltonians, i.e., it could be
diagonalized to correspond to a sum over one-particles states H =

∑
i εin̂i.

However, a direct solution of the Schrödinger equation

Hci = εici (5.23)

by diagonalization is intractable due to the infinite number of substrate states.
Nonetheless, the Newns–Anderson Hamiltonian (5.21) can be used to derive
some fundamental aspects of the behaviour of the adatom valence state φa

upon adsorption. We rewrite the projected density of states (4.6) as

na(ε) =
∑

i

|〈φi|φa〉|2 δ(ε − εi)
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= − 1
π

Im
∑

i

〈φa|φi〉〈φi|φa〉
ε− εi + iδ

= − 1
π

Im Gaa(ε) , (5.24)

where G is the single particle Green function

G(ε) =
∑

i

|φi〉〈φi|
ε− εi + iδ

. (5.25)

Here, as usual, δ is assumed to be a small positive number, δ = 0+, and G is
formally defined by

(ε−H + iδ) G(ε) = 1 . (5.26)

By writing (5.26) in matrix form and eliminating Gka = 〈φk|G|φa〉 it can be
easily shown (see Exercise 5.2 [150]) that Gaa(ε) can be written as

Gaa(ε) =
1

ε− εa −Σ(ε)
, (5.27)

where the self-energy Σ(ε) = Λ(ε) − iΔ(ε) is given by

Δ(ε) = π
∑

k

|Vak|2 δ(ε− εk) (5.28)

and

Λ(ε) =
1
π
P

∫
Δ(ε′)
ε− ε′

dε′ . (5.29)

Here P denotes the principal part integral. Inserting (5.27) into (5.24) yields
the projected density of states in terms of Λ(ε) and Δ(ε),

na(ε) =
1
π

Δ(ε)
(ε− εa − Λ(ε))2 +Δ2(ε)

. (5.30)

Two limiting cases can now be conveniently discussed. Let us denote the sub-
strate band width by W . If Vak � W , then we may just take the average
value Vav = 〈Vak〉 and insert it in (5.28)

Δ(ε) ≈ π
∑

k

|Vav|2 δ(ε− εk) = π V 2
av nk(ε) , (5.31)

where nk(ε) is the density of states of the unperturbed substrate. In the wide-
band limit, we may assume that nk(ε) and consequently also Δ is independent
of the energy. Such a situation is typical for the sp-band of a simple metal.
In this case Λ is zero, and the projected density of state simply corresponds
to a Lorentzian of width Δ centered around εa. Physically this means that
the adatom valence level is broadened into a resonance with a finite lifetime
τ = Δ−1. This scenario is called the weak chemisorption case.

We will deal with this scenario in much more detail in the next section.
Here we only note that even if Δ(ε) varies slowly with energy on the scale
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of Vak, the adatom projected density of state (5.24) will still essentially be of
Lorentzian shape. The lifetime broadening of the resonance then reflects the
local substrate density of state. As far as the dependence of Δ with respect
to the adatom distance from the surface z is concerned, it is usually assumed
that Δ ∝ e−αz since the matrix elements Vak fall off exponentially with the
distance from the surface.

The other limiting case is given by Vak ≥W . It is characterized by a weak
continuous spectrum extending over the substrate energy band. In addition,
increasing the coupling Vak leads to two localized states outside the continuous
spectrum given by the roots of ε−εa−Λ(ε) = 0. This situation is equivalent to
the case of two interacting level resulting in bonding and antibonding states
above and below the two original states. This strong chemisorption case is
often observed in the adsorption of atoms and molecules on metal surfaces
with d-bands which are usually narrow compared to the interaction strength.
Examples for strong chemisorption will be given at the end of this chapter.

The equations (5.28) and (5.29) show that the knowledge of Δ(ε), which is
sometimes called the chemisorption function, is crucial for the determination
of the adsorbate resonances. However, only with simplifying assumptions with
respect to the substrate density of states, it may be directly evaluated [162].
Often its dependence on the energy and on the distance of the adatom from
the surface is used as a variable parameter in simulations.

The same is true for the energetic location of the adatom resonance
ε∗a(z) = εa(z) +Λ(z). In particular in weak chemisorption scenarios, the shift
Λ(z) is usually not explicitly considered, but rather the function ε∗a(z) is pa-
rameterized and the superscript suppressed [164]. Far away from the surface
where there is negligible overlap with the substrate wave function, the depen-
dence of both occupied and unoccupied adatom levels on the distance from
the surface can be derived by simple electrostatic arguments. Before we do
so, we first have to define the ionization energy I and the electron affinity A.
The ionization energy I is defined as the energy to remove an electron from
a neutral atom and bring it to infinity, i.e., to the vacuum level. It is always
positive, otherwise neutral atoms would not be stable. The electron affinity
is given by the energy that is gained when an electron is taken from infinity
to the valence level of an atom, i.e. it corresponds to the energy difference
between the neutral atom plus an electron at the vacuum level and the neg-
atively ionized atom. The electron affinity can be both positive and negative
depending on whether the negative ion is stable or not.

Ionization energy and electron affinity are not the same because of the
additional Coulomb repulsion U between the electrons if another electron is
added to the atom. Therefore the electron affinity is always smaller than the
ionization energy, and the difference is given by U :

U = I −A . (5.32)
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Only for extended states the Coulomb repulsion might be negligible. In fact,
for metals the ionization energy and the electron affinity are the same and
equal to the metal work function.

The presence of a surface will modify both the ionization energy and the
electron affinity. To see this, let us again consider a hydrogen atom in front of
a perfect conductor, as in Fig. 5.3. For the sake of convenience, let us assume
that the electron and the nucleus are collinear with respect to the surface
normal and that their coordinates are both given with respect to the origin
at the surface plane. The image potential (5.1) is then given by

Vim = −e
2

2

[
1

2Z
+

1
2z

− 2
(Z + z)

]
. (5.33)

If we remove the electron from the adatom to infinity, we have to do work
against the force ∂Vim/∂z due to the image charges of both the electron itself
and the positive ion. Since the attraction of the electron to its own image
is overcompensated by the repulsion with respect to the negatively charged
image of the ion which stays at −Z, the ionization energy of the adatom in
front of the surface is decreased by

∞∫

z=Z

∂Vim

∂z′
dz′ = − e2

4z
. (5.34)

Hence the effective ionization energy in front of a perfect conductor is given by

Ieff(z) = I − e2

4z
. (5.35)

If, on the other hand, we want to add an electron to a neutral atom in front of
a surface, we gain the additional energy due to the interaction of the electron
with its own image charge. Therefore, the electron affinity is increased to

Aeff(z) = A+
e2

4z
. (5.36)

The influence of the image potential on the ionization and affinity levels is
sketched in Fig. 5.5. Depending on whether the affinity or the ionization level
crosses the Fermi energy of the metal when the atom approaches the surface,
the adatom will become negatively or positively charged, respectively. How-
ever, the adatom may well be neutral, if the Fermi energy remains between
the ionization and the affinity levels.

The considerations with respect to the ionization and affinity levels of a
hydrogen atom can be extended to occupied and unoccupied atomic levels in
general. Thus the energy of unoccupied levels tends to shift down in front of
a conductor while occupied levels are shifted up. This is only true as long
as there is negligible overlap with the substrate wave functions. Close to the



5.3 Newns–Anderson Model 115

Fig. 5.5. Schematic sketch of the shift of the ionization energy I and the electron
affinity A in front of a perfect conductor caused by the image potential. The metal
work function is denoted by Φ

surface, there is the additional modification of the adatom levels due to the
interaction with the substrate states. A typical example of the shift and broad-
ening of an affinity level is plotted in Fig. 5.6. Far away from the surface the
affinity level is subject to the image interaction. Note that the increase of the
electron affinity Aeff(z) = A+ e2/4z translates into a downshift of the affinity
level εa(z) = εata − e2/4z. When εa(z) crosses the Fermi level, the level will be
filled and consequently the adsorbate becomes negatively charged. Close to
the surface the pure 1/z dependence of the affinity level becomes modified due
to the hybridization with the substrate states. In fact, the level approximately
follows the effective one-electron potential veff(z) of the bare substrate. In the
next section we will see that this can be made plausible within first-order
perturbation theory.

The Newns–Anderson model is rather useful for explanatory purposes.
However, due to its approximative nature it is not suited for predictive pur-
poses. For example, since the interaction between the substrate and adatom
electrons is described only by hopping terms, electron correlation effects are
not included [165]. Despite some efforts to consider some correlation effects
within a self-energy matrix formalism [166] it has hardly been used for the
determination of chemisorption properties. Recently it has been employed
predominantly in the modeling of the dynamics of charge transfer processes
in molecule-surface scattering [164]. For a reliable description of chemisorp-
tion and the determination of chemical trends it is necessary to perform self-
consistent electronic structure calculations. This will be the subject of the
next sections.
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Fig. 5.6. Schematic sketch of the shift and the broadening of an adatom valence level
εa(z) upon approaching a surface. veff(z) corresponds to the effective one-electron
potential of the bare substrate. The shaded areas illustrate the filled levels

5.4 Atomic Chemisorption

Chemisorption corresponds to the creation of a true chemical bond between
adsorbate and substrate, which means that the electronic structure of both
the substrate and adsorbate are strongly perturbed by the interaction [167].
In order to discuss the energetic contributions to chemisorption within density
functional theory, it can be useful to regroup the different energetic terms in
the total energy expression (3.57):

Etot =
N∑

i=1

εi + Exc[n] −
∫
vxc(r)n(r)d3r − VH + Vnucl−nucl

=
N∑

i=1

εi + Exc[n] −
∫
veff(r)n(r)d3r + VH + Vel−nucl + Vnucl−nucl

=
N∑

i=1

εi + Exc[n] −
∫
veff(r)n(r)d3r + Ees . (5.37)

Here Ees corresponds to the total electrostatic energy of the system. The
atomic adsorption energy is given by the energy difference between the ener-
gies of the separate constituents and the interacting system

Eads = Etot(adatom/substrate) − (Etot(substrate) + Etot(atom)) . (5.38)

Note that according to (5.38) adsorption energies are negative if the adsorption
is stable with respect to desorption. However, there is no consistency in the
literature as far as the sign of the adsorption energy is concerned. Better
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check the sign convention always carefully. Throughout this book we will use
the above convention (5.38) for the definition of the adsorption energy (Eads)
whereas by binding energy (Eb) we will denote the negative of the adsorption
energy.

There are several terms contributing to the total energy and consequently
to the energy difference. There can be a delicate cancellation of different op-
posing effects. Hence it is no trivial task to determine the most crucial one
for a particular adsorption system. In the following we will try to establish
chemical trends in the adsorption properties by disentangling the different
energetic contributions.

One of the first applications of self-consistent electronic structure calcu-
lations to adsorption properties was performed by Lang and Williams [168].
In this seminal paper, DFT-LDA calculations of atomic adsorption on jellium
surfaces were presented modeling the interaction of adsorbates with sp-bonded
metals such as Al or Na. These calculations do not yield quantitative results
but they are ideally suited in order to illustrate qualitative trends. In this
particular treatment, the Kohn–Sham equations were not directly solved. It
was rather taken advantage of the fact that the solution of Kohn–Sham equa-
tions can be regarded as being equivalent to solving a scattering Lippmann–
Schwinger equation:

ψka(r) = ψk(r) +
∫
d3r′Gk(r, r′)δveff(r′)ψka(r′) . (5.39)

Here the subscripts k and ka denote the unperturbed metal and the metal-
adsorbate system, respectively, and δveff(r) is the change of the effective po-
tential due to the presence of the adsorbate. Equation (5.39) can be interpreted
as describing the elastic scattering of metal states ψk(r) by the adsorbate in-
duced effective potential δveff(r).

Figure 5.7 shows the calculated charge contour plots for a representative
set of atoms adsorbed on a high-density jellium substrate simulating Al. The
upper panel shows the total charge densities of Li, Si and Cl, respectively, on
jellium. The charge distributions around Li and Cl are still almost spherical
while in the case of Si there is an elongated structure in the region between
adatom and surface. Much more instructive is the lower panel of Fig. 5.7 where
the charge density difference between the interacting system and the superpo-
sition of the bare atom and surface are plotted. These charge density difference
plots exhibit regions of charge depletion and charge accumulation illustrating
the charge redistribution and the rehybridization due to the interaction of the
reactants.

For Li, there is a charge transfer from the vacuum side of the adatom to-
wards the metal. This can be simply understood by the larger electronegativity
of Al compared to Li which is prototypical for positive ionic chemisorption.
Chlorine, on the other hand, is more electronegative than Al, and this fact is
reflected by the significant charge transfer from the substrate to the adsorbed
Cl atom. Thus chlorine adsorption provides a clear example of negative ionic
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Fig. 5.7. Contours of constant charge density calculated using DFT for Li, Si and
Cl adsorbed on a high-density jellium substrate. The solid vertical line indicates the
jellium edge. Upper panel: Total charge density of states; lower panel: charge density
difference, broken lines correspond to charge depletion. (After [168])

chemisorption. Note that in the total charge density plots of lithium and chlo-
rine adsorbed on jellium the contour lines in the metal are curved indicating
the ionic attraction towards the positively charged Li and the repulsion away
from the negatively charged Cl.

Adsorbed silicon, on the other hand, shows charge transfer from the region
close to the nucleus to both the vacuum and the bond region. Such a charge
accumulation in the bond region is typical for the formation of a covalent bond.
However, the spatial information about the charge redistribution alone is not
sufficient in order to gain insight into the delicate energetic balance between
band-structure and electrostatic contributions. Additional information about
density of states effects is provided by electronic structure calculations. The
change of the density of states upon the adsorption of Li, Si and Cl is plotted
in Fig. 5.8. Clearly visible are several peaks. These resonances which have been
discussed in the previous section correspond to adatom levels that have been
shifted and broadened due to the interaction with the jellium substrate.

The Li 2s derived state which is singly occupied in the free atom lies
primarily above the Fermi energy εF . This confirms the charge transfer from
the Li atom to the substrate and hence the positive ionic chemisorption. The
Cl 3p derived state is basically fully occupied since it is almost entirely below
εF indicating the negative ionic chemisorption. With respect to the illustration
of the ionization and affinity levels in Fig. 5.5, Li provides an example where
the ionization levels is shifted above the Fermi energy while for Cl the affinity
level has crossed the Fermi energy.

The density of states of Si adsorbed on jellium shows two prominent peaks
which can be associated with the Si 3s and 3p atomic levels. The Si 3p derived
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Fig. 5.8. Change of the density of states upon the adsorption of Li, Si and Cl on
jellium with an electron density corresponding to Al. (After [168])

state is only half-filled. By analyzing the local density of states attributed to
the Si derived states Lang and Williams were able to show that the lower
parts of the resonance add charge to the bond region while the upper parts
subtract charge from this region [168]. The lower parts can therefore be asso-
ciated with a bonding contribution while the upper parts have an antibonding
character. Hence a half-filled resonance level corresponds to a covalent inter-
action in weak chemisorption cases. For Cl adsorption, both the bonding and
antibonding contributions are occupied. In this case it is the electrostatic at-
traction between the Cl core and the transferred electron that stabilizes the
adsorption.

In fact, there is an alternative derivation of the division of the resonance
levels in bonding and antibonding contributions which is based on the scatter-
ing formulation (5.39) of atomic adsorption. If the metal states are elastically
scattered at the adsorbate induced potential, there is a phase shift of the
scattering states given by [155,169]

tan δα(ε) = − ImDa(ε)
ReDa(ε)

, (5.40)

where Da(ε) is the determinant

Da(ε) = det[1 −GM (ε)δveff ] . (5.41)

If one assumes that the system is enclosed in a sphere of Radius R → ∞ so
that the wave function vanishes for r = R, it is relatively easy to show (see
Exercise 5.4 [13]) that the change in the density of states induced by the
perturbing potential is related to the phase shift by
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δn(ε) =
ga

π

dδa(ε)
dε

, (5.42)

where ga is the dimension of the representation of the symmetry group the
adsorbate state ψa belongs to. Let now εa be the energy where ReDa(ε)
vanishes. If we expand ReDa(ε) around εa, to first order we get

ReDa(ε) ≈ dReDa(ε)
dε

∣∣∣∣
ε=εa

(ε− εa) . (5.43)

Inserting this Taylor expansion in the denominator of (5.40) allows us to
simplify the expression of the phase shift to

δa(ε) = − arctan
Γ

ε− εa
, (5.44)

with the constant Γ given by

Γ =
[

ImDa(ε)
(dReDa(ε)/dε)

]

ε=εa

. (5.45)

Combining (5.42) and (5.44) gives a simple Lorentzian for the change of the
density of state near a resonance

δn(ε) =
ga

π

Γ

(ε− εa)2 + Γ 2
(5.46)

with the width of the resonance determined by Γ . However, the definition of
Γ given by (5.45) does not provide a straightforward interpretation. Note the
similarity with the expression (5.30) for the density of states projected onto
an adsorbate level derived within the Newns–Anderson model.

This proves that the resonance occurs at energies εa where ReDa(ε) van-
ishes. It follows that the phase shift

tan δa(ε) = − Γ

ε− εa
(5.47)

increases through π/2 as the energy goes through εa from below which is a
well-known phenomenon in resonance scattering. In elementary textbooks on
quantum mechanics [8, 18] it is shown that a phase shift of 0 < δa < π/2
corresponds to a situation in which the wave function is pulled towards the
scattering potential. This means that at the lower energy side of the resonance
the phase shift of the wave function leads to an accumulation of charge density
in the region of the adatom-substrate bond which is just a characterization
of an interaction of bonding character. On the other hand, a phase shift of
π/2 < δa < π pushes the wave function away from the scattering potential. As
a consequence, at the higher energy side of the resonance the phase shift leads
to a reduction of the electron density in the region of the adatom-substrate
bond resulting in an antibonding contribution.
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Fig. 5.9. Variation of the hydrogen-induced density of states as a function of the
atomic distance from the surface (after [168,170]). The electron density corresponds
to Al (rs = 2). The effective one-electron potential veff(z) of the bare substrate is
additionally plotted as the dashed line

These considerations are not only relevant for resonance levels but indeed
also for extended states which form energy bands. The lower half of an energy
band can be associated with states of bonding character while the upper
half corresponds to states of antibonding character. Thus for a transition
metal with a half-filled d-band this band is of purely bonding character. This
provides a natural explanation for the fact that transition metals with a half-
filled d-band exhibit the largest cohesive and surface energies (see Fig. 4.10).

The jellium calculations do not only yield the resonance structure at the
adsorption equilibrium position, they also allow to trace the shift and the
broadening of valence levels as a function of the distance from the surface.
This is illustrated in Fig. 5.9 for the interaction of a hydrogen atom with
a high-density jellium surface. Close to the surface, the hydrogen induced
resonance broadens considerably and shifts down in energy. In Fig. 5.9, the
effective one-electron potential veff(z) of the bare substrate is also plotted
as the dashed line. The center of the resonance approximately follows this
effective potential.

For the hydrogen atom penetrating into the jellium substrate the resonance
narrows in fact again. According to (5.28), the width of the resonance is
determined both by the strength of the interaction Vak and by the density of
substrate states that couple to the adatom. At the bottom of the metal band
given by veff inside the jellium substrate the density of states decreases which
overcompensates the increase in the interaction and thus causes the narrowing
of the hydrogen resonance.

The fact that the resonance level tracks the effective potential can in fact be
made plausible within first-order perturbation theory [168]. Let us consider
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an adatom valence state φa with eigenenergy ε∞a in the gas phase. Upon
chemisorption this state is shifted to ε∞a + δεa. In first-order perturbation
theory, the shift can be estimated by

δεa(z) = 〈φa|δveff(r)|φa〉 , (5.48)

where the adsorbate induced change of the effective potential δveff(r) can be
expressed as

δveff(r) = veff(r;nka) − veff(r;na) . (5.49)

nka(r) and na(r) are the electron density associated with the interacting
system and the free atom, respectively. Ignoring any charge transfer, we can
approximate

nka(r) ≈ nk(r) + na(r) . (5.50)

For a given electron density distribution n(r), the total electrostatic potential
is given by

ves(r) = vext(r) + vH(r) = e2
∫

d3r′
n(r′) − n+(r′)

|r − r′| , (5.51)

where n+(r′) is the charge distribution of the positive ion cores.
Now we can write δveff , using (3.55) and (5.50), as

δveff(r) = ves(r;nk) + vxc(r;nk + na) − vxc(r;na)
= ves(r;nk) + δvxc(r) . (5.52)

The exchange-correlation potential vxc(r;n) is a function that increases mono-
tonically with n in the local-density approximation. Doing Taylor expansions,
we can thus write δvxc(r) ≈ vxc(r;nk) for nk(r) 
 na(r) and δvxc(r) ≈ 0 for
nk(r) � na(r). Consequently, in these two limiting cases we have

δεa(z) ≈
{
veff(r;nk) nk(r) 
 na(r)

ves(r;nk) nk(r) � na(r)
. (5.53)

This suggests that the shift δεa(z) indeed follows either the electrostatic or the
effective surface potential in the two limiting cases and some mean value for
intermediate situations. This is true for a hydrogen atom approaching a jellium
surface, as Fig. 5.9 shows. However, the derivation (5.48)–(5.53) uses some
rather crude assumptions. Hence it is not surprising that for more complex
systems the simple relation (5.53) is not necessarily fulfilled.

5.5 Effective Medium Theory
and Embedded Atom Method

So far we have analyzed the atomic chemisorption with respect to the shift
and broadening of electronic adatom resonances upon the interaction with the
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Fig. 5.10. Immersion energy for H, O and He embedded in infinite jellium obtained
by LDA-DFT calculations as a function of the electron density (after [173]). The
energy zero corresponds to the free atom

substrate which causes a change in the local electron density of states. There
is an alternative theoretical model that is very helpful in deriving trends in
atomic chemisorption properties, namely the effective medium theory [171,
172]. It is based on the idea that an adsorbate can be considered as being
embedded in an inhomogeneous electron gas set up by the substrate. The
energy of an adsorbate at the position r where the substrate has the density
n(r) is then estimated as the embedding cohesive energy of the adsorbate
in a homogeneous electron gas of the same density which is regarded as the
effective medium:

E ≈ Ec(n(r)) (5.54)

For each element, the embedding energy Ec(n) is an universal function inde-
pendent of the particular substrate that only has to be evaluated once and for
all. This function is plotted in Fig. 5.10 for helium, hydrogen and oxygen as
determined by DFT-LDA calculations [173]. Elements with a stable free neg-
ative ion, i.e. with a positive electron affinity like hydrogen and oxygen, show
a minimum at negative energies which is due to the electrostatic attraction
between the electrons and the positive ion core. Embedding closed-shell atoms
such as the rare-gas element helium in an electron gas is associated with an
energy cost which is basically linearly related to the electron density. At suffi-
ciently high densities, the embedding energy becomes positive for all elements.
This is due to the rise in kinetic energy associated with the orthogonalization
of the electronic states to the occupied core states of the atoms.

In the limit of vanishing electron density, the embedding energy of atoms
with stable negative ions does not approach the energy of the free atom (see
Fig. 5.10). This is due to the fact that for arbitrarily small electron densities
it is still energetically more favorable to transfer one electron from the infinite
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Fig. 5.11. Illustration of the potential energy of a hydrogen atom at a surface, in the
bulk and in a vacancy as determined by the unperturbed substrate electron density
through the hydrogen embedding energy. The dashed lines indicate the optimum
density for hydrogen embedding. (After [172])

electron gas to the affinity level of the atom. Hence the limit of the embedding
energy for n→ 0 is given by the electron affinity A.

Using the embedding energy Ec(n) (5.54), it is very simple to construct
the potential energy for, e.g., a hydrogen atom approaching and penetrating
a solid by just reading off the energy corresponding to any density. This is
demonstrated in Fig. 5.11. The hydrogen atom is attracted towards the surface
until it reaches the position that corresponds to the optimum density. In
Fig. 5.11, these positions are indicated by the dashed line. The chemisorption
minimum is thus a direct reflection of the minimum of the Ec(n) curve.

In the bulk, the electron density is in general higher than the optimum
density for hydrogen embedding which means that one is in a regime where the
embedding energy rises monotonically with the electron density. Hence there is
a one-to-one correspondence between energy and electron density. In the mid-
dle of a vacancy, on the other hand, the density can be smaller than the
optimum density. In such a situation the hydrogen does not sit in the middle
of the vacancy but rather off-center in the vacancy since the electron density
is too low in the center of the vacancy.

There are further adsorption properties which can be easily qualitatively
understood within the framework of the embedding function. For example,
the adsorbate-substrate chemisorption bond length is the shorter, the lower
the adsorbate coordination is because then there are less substrate atoms
contributing to provide the optimum electron density.

The vibrational frequency of the adsorbate with respect to the substrate is
determined by the curvature of the potential energy at the equilibrium posi-
tion. Hence one can write, using that dEc(n)/dn vanishes at the chemisorption
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position,

ωvib ∝
√
d2Ec(n(r))

dz2
=

√
d2Ec(n)
dn2

dn

dz
. (5.55)

For a given adsorbate, the factor
√
d2Ec(n)/dn2 is the same for all substrates

and adsorption sites. Consequently, the factor dn/dz is crucial for the partic-
ular frequency at a given site. If one assumes that the electron density asso-
ciated with a single substrate atoms decays exponentially, natom ∝ exp(−βr),
the gradient is given by

dn

dz
= β n0 sinα , (5.56)

where n0 corresponds to the optimum density and α is the angle of the metal-
adsorbate line with the surface plane. On low-index surfaces, this angle is
usually the smaller, the larger the coordination of an adsorption site, so that
we have

ωtop
vib > ωbridge

vib > ω
(111)hollow
vib > ω

(100)hollow
vib . (5.57)

Although the formulation of the potential energy with the simple embedding
function (5.54), Etot = Ec(n), is rather convenient and instructive, there
are severe shortcomings of this model. First of all, within this model an
adatom will find a position with the optimum density on any substrate. Con-
sequently, the adsorption energy is independent of the substrate which means
that no chemical trends are described within this simple form. Furthermore,
an adatom will have no diffusion barrier on the surface in this simple model
since it can always move on the contour line of the optimum density parallel
to the surface which corresponds to a constant energy.

An improved description of the effective medium theory avoiding the prob-
lems mentioned above can be derived within perturbation theory [171, 174].
In the following, the letter Δ will indicate the deviations from homogeneity
in the homogeneous electron gas, i.e., the effective medium, induced by the
presence of the adatom while the differences between the real host and the
effective medium are denoted by δ.

In zeroth order, the density n(r) appearing in the embedding energy Ec(n)
is replaced by an average density n̄ which is given by

n̄ =
∫
n(r) Δφ(r) d3r∫
Δφ(r) d3r

, (5.58)

where the sampling function Δφ(r)

Δφ(r) =
∫
Δn(r′) − Zδ(r′)

|r − r′| d3r′ (5.59)

is the change in the electrostatic potential in the jellium induced by the atom.
The atom-induced change of the charge density Δρ = Δn(r) − Zδ(r) also
enters the first-order correction term
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ΔE(1) =
∫
φ0(r) Δρ(r) d3r , (5.60)

where φ0(r) is the unperturbed electrostatic potential of the substrate. Finally,
it is only the second-order term where corrections due to the perturbation of
the substrate enter. It describes the total change in the density of states
both in the jellium and in the surface and thus corresponds to the covalent
contribution to the bonding:

ΔE(2) = δ

⎛

⎝
εF∫

−∞
Δn(ε) ε dε

⎞

⎠ . (5.61)

Summarizing (5.58)–(5.61), the total energy in the effective medium theory
taking into account electrostatic and band-structure corrections is given by

Etot = Ec(n̄) +
∫
φ0(r)Δρ(r)d3(r) + δ

⎛

⎝
εF∫

−∞
Δn(ε) ε dε

⎞

⎠ . (5.62)

In fact, the total energy expression (5.62) can be further simplified by ap-
proximating the first and second order corrections by ΔE(1) ≈ αatn̄ and
ΔE(2) ≈ αvn̄+ΔEhyb [174]. Adding the terms linear in the averaged density
n̄ to the embedding energy Ec(n̄), the total energy can be written as

Etot = Eeff
c (n̄) +ΔEhyb . (5.63)

The term ΔEhyb describes the hybridization between the adatom level εa and
the metal d-band. This interaction might be regarded as the hybridization of
two levels. The adatom level which is fully occupied is shifted down (bonding)
while the metal d levels are shifted up. To second order, these antibonding
and bonding contributions can be written as

ΔEhyb =
∑

d occ

|Vad|2
εd − εa

−
∑

d

|Vad|2
εd − εa

. (5.64)

As shown in the last section, the position of the adatom level is given roughly
by the effective potential at the adsorption site εa ≈ veff . This energy cor-
responds to the bottom of the sp-band and is usually well separated from
the d-band. Therefore, the differences in the denominator of (5.64) can be
approximated by εd − εa ≈ cd − veff where cd is the center of the d-band. If
we further assume that the matrix element Vad is independent of εd, ΔEhyb

is given by the simple form

ΔEhyb = −2 (1 − f)
|Vad|2
cd − veff

, (5.65)

where f is the filling factor of the d-band and the factor of two takes ac-
count of the assumed spin degeneracy. Roughly speaking, the term Eeff

c (n̄)
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Fig. 5.12. Hydrogen and oxygen binding energy on 3d metals calculated within
the effective medium theory (open circles) and compared to the experiment
(filled squares). The dash-dotted lines correspond to the homogeneous contribution
Eeff

c (n̄0) in (5.63). (After [172])

in (5.63) represents the interaction of the adatom level with the sp electrons
of the substrate while ΔEhyb describes the additional hybridization with the
d-band [175].

Using a somewhat more elaborate formulation of the effective medium the-
ory, the atomic adsorption energies of hydrogen and oxygen on the 3d transi-
tion metals have been calculated [172,175]. A comparison of these results with
experimental values is presented in Fig. 5.12. As far as the general chemical
trend is concerned, it is obvious that the adsorption strength decreases by
going from the left to right to the noble metals. The qualitative agreement
between theory and experiment is quite satisfactory, for hydrogen the results
even agree quantitatively. However, for oxygen there are differences of up to
4 eV.

Part of the discrepancy is due to the overbinding of LDA (see Table 3.1),
since Eeff

c (n̄) used for the results in Fig. 5.12 is based on LDA jellium cal-
culation, but it cannot take account of the whole difference. A perturbative
treatment of covalent bonding is not sufficient to obtain quantitative results in
general. In fact, this is a general feature of the effective medium theory. While
it gives almost quantitative results for system with non-directional bonds such
as adsorption of atomic hydrogen on metal surfaces or the metal-metal bond-
ing [176], all attempts have failed to extend the theory to give a reliable
description of the directional covalent bonding of more complex atoms and
molecules. Therefore its main purpose nowadays is to give qualitative insight
into general trends observed in bonding.

There is another method based on the same ideas as the effective medium
theory, but with a more modest claim, the Embedded Atom Method (EAM)
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Fig. 5.13. Semiempirically determined functions for Pd, Ni, and H entering the
embedded atom method. (a) Embedding energies F (n) as a function of the back-
ground electron density; (b) Effective charges Z(r)/Z0 as a function of the distance
from the nucleus. (After [177])

[177, 178]. The main idea underlying the EAM is to express the total energy
as a sum of an embedding energy plus an electrostatic core-core repulsion

Etot =
∑

i

Fi(nh,i) +
1
2

∑

i�=j

φij(rij) . (5.66)

Here nh,i is the host density at atom i due to the remaining atoms of the
system and φij(rij) is the core-core pair repulsion between atoms i and j sep-
arated by rij . The host density nh,i is estimated as a superposition of atomic
densities, usually taken from independent quantum chemical calculations,

nh,i =
∑

j( �=i)

na
j (rij) , (5.67)

while φij(r) is represented by the interaction of two neutral, screened atoms

φij(r) = Zi(r)Zj(r)/r . (5.68)

The embedding energy F (n) and the effective charge Z(r) in the embedded
atom method are regarded as semiempirical parameters that are fitted to re-
produce lattice and elastic constants, cohesive and vacancy formation energy,
and energy difference between fcc and bcc phases. Figure 5.13 presents em-
bedding energies and effective charges for Ni, Pd and H determined in this
way [177]. Note that the parameterizations shown in Fig. 5.13 are by no means
unique. Depending on the parametric form chosen in a particular fit, a differ-
ent division of the total energy between the embedding and the repulsive part
can result [178].

Using the functions plotted in Fig. 5.13, atomic hydrogen binding energies
for different adsorption sites on Pd(100) and Pd(111) have been evaluated
[177]. These EAM energies are compared to recent DFT results obtained with
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the PW91-GGA functional [36] in Table 5.2. Again, there is an almost quan-
titative agreement of the EAM results with the ab initio results. Only the
splitting between the adsorption energies for the fcc and the hcp hollow ad-
sorption sites which differ by the position of the second-layer metal atom is
not reproduced since the effective charge is too short-ranged.

Table 5.2 demonstrates that the EAM gives a reasonable description of
hydrogen chemisorption energies. However, it has been mainly used within
the materials science community for bulk and surface properties of metals
and alloys [179]. It is particularly suited for metals with empty or filled d
bands where the bonding is not as directional as for transition metals with
their partially filled d band.

Like the effective medium theory, the embedded atom method does not
satisfactorily describe covalent bonding. There have been extensions such as
the modified embedded atom method (MEAM) [180, 181] and the embedded-
diatomics-in-molecules (EDIM) formalism [182]. The MEAM includes angu-
lar forces so that the effects of covalent bonding can be included. The EDIM
method combines the EAM with semiempirical valence bond theory. In the
EDIM formalism, Coulomb and exchange integrals are expressed in a param-
eterized form. Usually the parameters entering both the EAM and the EDIM
formalism are fitted to experimental results. They might equally well be ad-
justed to reproduce first-principles calculations thus extending the range of
ab initio derived applications.

5.6 Reactivity Concepts

It has been a long-term goal in the study of chemical reactions in the gas
phase and at surfaces to gain an understanding of the reactivity of an inter-
acting system from the properties of the isolated reactant systems alone. If
such a reactivity concept were available, calculations of the interacting sys-
tem would no longer be necessary. This would not only save a large amount of
computer time but it would also help enormously, say, in the design of better
catalysts. Unfortunately there is no single concept that has predictive power
for all possible types of reactions. Often reactivity concepts are only reliably

Table 5.2. Hydrogen binding energies for different adsorption sites on Pd(100) and
Pd(111) determined by the embedded atom method [177] and by DFT calculations
with the PW91-GGA functional for a coverage of 1/4 (courtesy of A. Roudgar). h, b
and t denote the adsorption sites at the hollow, bridge and top position, respectively

Method Pd(100) Pd(111)
h b t fcc h hcp h b t

EAM 0.53 0.45 0.10 0.53 0.53 – 0.03
GGA-DFT 0.468 0.426 −0.047 0.554 0.518 0.410 0.010
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applicable as long as the perturbation of the isolated systems by the inter-
action is not too strong. Still, the reactivity concepts can be used to provide
some guidelines for the understanding of the vast variety of possible reaction
mechanisms. In this section some reactivity concepts will be introduced and
their predictions tested against explicit calculations of adsorption energies and
reaction barriers.

The starting point for any analysis of the reactivity of a particular system
is the characterization of the electronic structure of the interacting fragments.
Atoms and molecules in the gas phase have well-defined discrete energy lev-
els. A classical theoretical measure of the strength of the interaction [75] is
provided by the second order perturbation theory expression

ΔE =
|Vij |2
εi − εj

, (5.69)

where εi and εj are the eigenenergies of particular levels of the isolated sys-
tems. For atoms and molecules, the levels are usually well-separated, and the
interaction is governed by a particular subset of states. It turns out that for
gas-phase reactions the interaction is often dominated by the highest occu-
pied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) or a subset of states close to these orbitals. These states are called
the frontier orbitals [75, 183].

At surfaces, there are no discrete energy levels corresponding to localized
orbitals but rather energy bands. In particular for metals which do not have
a band gap, the HOMO and the LUMO could be considered to be electronic
states at the Fermi energy. And in fact, the local density of states at the Fermi
energy has been successfully correlated with the reactivity of metal surfaces
[184–186]. A more general theory has been derived that uses the concept of
the local softness s(r) to characterize the chemical reactivity. The softness
can be expressed as [187]

s(r) =
∂n(ε, r)
∂μ

∣∣∣∣
ε=εF

=
∫
dr′K−1(r, r′)n(εF , r) . (5.70)

This shows that the softness corresponds to an average of the local density
of states n(εF , r) at the Fermi level with the weighting function K−1(r, r′).
The kernel K(r, r′) is the transpose of a response function κ(r, r′) so that
the softness can be regarded as a response to n(εF , r). However, although the
softness as a reactivity measure is more complex, it gives basically the same
conclusions concerning the chemical reactivity as the local density of states
at the Fermi level [187].

However, there are examples of metal surfaces, for example Cu3Pt(111),
which have a very low density of states at the Fermi level but are rather re-
active [188]. Still gas-phase reactivity concepts based on the frontier orbital
concept can be applied to the strong chemisorption of atoms and molecules
[75]. But instead of focusing on the Fermi level, it is more appropriate to
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regard the whole d-band as a single level located at the center of the d-band
εd interacting with an adsorbate. This is justified since the d-band is usu-
ally relatively narrow due to the rather strong localization and small overlap
between the wave functions of the d electrons.

The resulting interaction picture is illustrated in Fig. 5.14 for the case
of the interaction of a hydrogen molecule with a d-band metal. Two Fermi
levels, typical for a transition metal and for a noble metal, respectively, are
indicated by the dash-dotted lines. In the gas phase, the bonding σg state
of H2 is fully occupied while the antibonding σ∗

u state is empty. Thus these
states correspond to the HOMO and LUMO, respectively, of the adsorbate.
Upon the interaction with the d-band of the metal, both states split into a
bonding and antibonding state with respect to the surface-molecule bond.
This splitting, however, is not symmetric. The up-shift of the antibonding
state is larger than the down-shift of the bonding state. This is caused by the
orthogonalization of the states which raises the kinetic energy and therefore
leads to an energetic cost. Thus if both the bonding and the antibonding state
are occupied, the total energy is raised leading to a repulsion. The energetic
cost of the orthogonalization is the reason why the interaction of closed-shell
atoms such as the rare gases with surfaces is usually repulsive except for the
weak van der Waals attraction.

In the case of the interaction of H2 with metal surfaces, we also have to
consider the σ∗

u state which is split, too. The metal-σ∗
u interaction usually leads
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Fig. 5.15. Schematic drawing of the interaction of an atomic level with a transition
metal surface

to an attraction because the σ∗
u-derived antibonding level remains unoccupied.

Hence only the downshift of the bonding level contributes. Now it depends
on the position of the Fermi level whether the overall interaction is purely
attractive or not. For transition metals, the Fermi level lies within the d-band.
Then both the σg and the σ∗

u-derived bonding levels become occupied while
the antibonding states stay empty (see Fig. 5.14). This causes an attractive
interaction and is the reason for the high reactivity of transition metals. Due
to the population of the σ∗

u-derived bonding level, in fact the H–H bond will be
weakened and eventually broken. For a noble metal, on the other hand, both
the bonding and the anti-bonding state of the σg–d interaction are occupied
making this interaction repulsive. This is the reason why noble metals are
noble, i.e., less reactive than transition metals.

This scenario has been made quantitative in the d-band model by Hammer
and Nørskov [188, 189]. Let us first consider the interaction of an atomic
level with a transition metal surface which is illustrated in Fig. 5.15. This
interaction is formally split into a contribution arising from the s and p states
of the metal and a second contribution coming from the d-band. The s and p
states lead to a broadening and a shift of the atomic level to lower energies.
This broadening and shift is called renormalization of the energy level and can
be modeled by the interaction with a jellium surface which has been discussed
in detail in Sect. 5.4.

This renormalized level then splits due to the strong hybridization with
the metal d-states in a bonding and an anti-bonding contribution. It depends
on the position of the Fermi energy whether the anti-bonding state is fully or
partially occupied or empty. Assuming that the anti-bonding state is below
the upper edge of the d-band, the occupation of this state is related to the
filling of the d-band. For a completely filled d-band, the overall effect of the
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Table 5.3. Center of the d-band, energetic contributions and resulting reactivity
measure (5.73) for the transition state configuration (rH−H, Z) = (1.2 Å, 1.5 Å) in
H2 dissociative adsorption on various metals compared to the DFT total energies.
All energies are given in eV. (From [188])

Metal εd V 2 −2 V 2

εσ∗
u
−εd

2(1 − f) V 2

εd−εσg
αV 2 δEts EDFT

ts

Cu −2.67 2.42 −1.32 0 1.02 −0.30 0.70

Cu:Cu3Pt −2.35 2.42 −1.44 0 1.02 −0.42 0.80

Pt:Cu3Pt −2.55 9.44 −5.32 −0.42 3.96 −1.78 −0.33

Pt −2.75 9.44 −5.03 −0.44 3.96 −1.51 −0.28

Ni −1.48 2.81 −2.27 −0.10 1.18 −1.19 −0.15

Ni:NiAl −1.91 2.81 −1.93 −0.11 1.18 −0.86 0.48

Au −3.91 8.10 −3.30 0 3.40 0.10 1.20

adsorbate-d interaction is repulsive, since the up-shift of the anti-bonding
state is larger than the down-shift of the bonding state.

An estimate for the additional chemisorption energy of a hydrogen atom
due to the interaction with the d-band is given by [188]

δEd ≈ −2(1 − f)
V 2

εd − εH
+ αV 2 . (5.71)

Here εd is the center of the d-band, εH is the renormalized H adsorbate reso-
nance, and f is the filling factor of d-band. The coupling matrix element V is
approximated as

V = η
MHMd

r3
. (5.72)

The potential parametersMH andMd are estimated from the isolated systems,
and η is a metal-independent constant [188].

The first term in (5.71) describes the energy gain due to the interaction
of the H resonance level with the d-band which depends on the filling of the
d-band. The second term αV 2 gives the repulsion due to the energetic cost
of the orthogonalization. For noble metals with f = 1 it should be the only
active term. Still, irrespective of the filling factor a linear relationship between
the d-band center upshift and the increase in the chemisorption strength of
atomic hydrogen on metal surfaces has been found [190].

In the case of the interaction of hydrogen molecules with metal surfaces,
both the renormalized H2 bonding σg and the anti-bonding σ∗

u states have to
be considered. The interaction with the σ∗

u state is always attractive since the
σ∗

u-d antibonding level is too high in energy to become populated while for the
σg state the filling of the d-band is again crucial. In total, the approximate
reactivity measure due to the coupling of a hydrogen molecule to the metal
d-bands takes the form
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δEd = −2
V 2

εσ∗
u
− εd

− 2(1 − f)
V 2

εd − εσg

+ αV 2 . (5.73)

This expression has been used to estimate the d-band contribution to the
height of the barrier to dissociative adsorption on different metal surfaces
[188]. The renormalized levels have been assumed to be at εσg = −7 eV and
εσ∗

u
= 1eV relative to the Fermi level for all metals. The three terms of (5.73)

are listed in Table 5.3. The parameter α has been used as the only fitting
parameter independent of the metals. The resulting reactivity measure δEts

is compared to the DFT activation barrier δEDFT
ts for adsorption which has

been calculated at an H-H bond length rH−H = 1.2 Å and an H2 center of
mass distance from the surface of Z = 1.5 Å.

In order to make the correlation clearer, EDFT
ts has been plotted as a

function of δEts in Fig. 5.16. There is indeed a very close correlation between
δEts and EDFT

ts . In fact, for the transition metal surfaces, the barrier is below
zero indicating that hydrogen dissociates spontaneously on these surfaces. The
noble metals, on the other hand, show the largest dissociation barriers.

We will now analyze the different contributions in more detail. It is obvious
that the dominant attraction comes from the σ∗

u−d interaction which is mainly
due to the fact that the σ∗

u level is initially empty. The comparison between
the different metal surfaces, in particular between Cu and Pt, shows that the
position of the d-band center alone is not sufficient to explain the reactivity.
The d-band center of Cu is in fact closer to the Fermi energy than the d-
band center of Pt. Still Pt is more reactive because of the much larger matrix
element V 2. Gold, on the other hand, has a similarly large matrix element, but
the energy difference εσ∗

u
− εd appearing in the denominator of the attractive
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term is the highest of all the metal surfaces considered. Therefore the relatively
large attractive term is overcompensated by the repulsive term causing a high
dissociation barrier.

In recent years, the d-band model has been used very often and very suc-
cessfully in order to understand trends in the reactivity of transition metal
surfaces. However, the d-band model has been reformulated; it is no longer
used in the more quantitative sense as expressed in (5.73), but mainly in a
more qualitative sense. Its main statement is now that small changes in the
position of the d-band center δεd can be linearly correlated to the change in
the chemisorption energy δEchem via [190,191]

δEchem =
V 2

|εd − εa|2 δεd . (5.74)

It is in this more qualitative sense that we will apply the d-band model in the
following in order to understand chemical trends. Still it should to be noted
that there are cases in which adsorption energies and dissociation barriers do
not correlate with the position of the center of the local d-band, as was in
particular found in DFT calculations addressing the interaction of hydrogen
with structured [192] and strained [193] Cu surfaces. The analysis of the
underlying electronic structure revealed that the d-band model is no longer
appropriate when the local density of states at the substrate atoms is strongly
perturbed by the presence of the adsorbate which occurs especially at low-
coordinated adsorption sites.

5.7 Adsorption on Low-Index Surfaces

After the presentation of important concepts for the understanding of bond-
making processes at surfaces we will now discuss particular adsorption sys-
tems. The chosen systems will be used to introduce typical properties and
general mechanisms occuring in the adsorption at surfaces. Instead of ad-
dressing a broad variety of systems, we will first concentrate on atomic and
molecular adsorption on well-defined low-index single-crystal surfaces that
serve as model systems. With low-index surfaces, for example the (111), (100)
and (110) surfaces of fcc crystals are meant.

One particular well-studied system, experimentally as well as theoretically,
is the hydrogen adsorption on Pd surfaces. The interest was, among other rea-
sons, motivated by the fact that bulk palladium can absorb huge amounts of
hydrogen so that it was considered as a possible candidate for a hydrogen
storage device needed for fuel cell technology. Although the absorption of
hydrogen in the bulk is exothermic with respect to free hydrogen molecules,
hydrogen adsorption on the surface is energetically even more favourable [194].
In Fig. 5.17a we have plotted the adsorption energy of atomic H on Pd(100)
in the fourfold hollow position as a function of the coverage determined by
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Fig. 5.17. Coverage dependence of the binding energy of atomic H on various Pd
surfaces determined by DFT calculations. (a) H adsorption energy on Pd(100) on
the hollow and bridge site determined by LDA-FP-LMTO calculations [194] and
by GGA-US-PP calculations [195]. (b) H adsorption energies on the most favorable
adsorption sites on Pd(100) and Pd(111) [195], on Pd(110) [196], and on Pd(210)
[76] (note the different energy scale)

LDA-FP-LMTO calculations [194] and by GGA calculations using ultrasoft
pseudopotentials (US-PP) [195]. It is obvious that the binding energy de-
pends only weakly on the coverage. In fact, the binding energy is largest for
θ = 0.5 corresponding to a c(2 × 2) structure, and also the (1 × 1) hydrogen
overlayer has a higher adsorption energy per hydrogen atom than the (2× 2)
structure.

Figure 5.17a also includes hydrogen binding energies on the bridge site as
a function of coverage. First of all it is evident that hydrogen prefers highly
coordinated sites since the adsorption energy on the two-fold coordinated
bridge site is significantly lower than on the fourfold-hollow site. This trend
is also true for the hydrogen adsorption on Pd(111) and Pd(110) where the
highly coordinated adsorption sites are preferred as well [197], similar to many
other metal surfaces [198]. However, in contrast to the fourfold hollow site on
Pd(100), on the bridge site the adsorption energy decreases with increasing
coverage (Fig. 5.17a) indicating repulsion between the adsorbed H atoms. This
repulsion can actually be traced back to the dipole-dipole interaction between

Table 5.4. Binding energies Eb, adsorption heights h0 and adsorbate-induced work
function change ΔΦ calculated for the adsorption of (1×1)H monolayer on Pd(100).
(From [194])

Site Eb (eV) h0 (Å) ΔΦ (meV)

hollow 0.47 0.11 180

bridge 0.14 1.01 390
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adsorbed hydrogen atoms. On the bridge site, the hydrogen atoms are located
1 Å above the surface layer (see Table 5.4). Due to a partial charge transfer
from the surface there is a dipole moment associated with the hydrogen atoms.
This is confirmed by the calculated hydrogen-induced work function change
of 390meV which is also given in Table 5.4. The dipole-dipole interaction
is repulsive leading to the decrease in the adsorption energies for increasing
coverage.

At the fourfold hollow site, on the other hand, the hydrogen atom is located
at almost the same height as the surrounding Pd atoms. Therefore there
is almost no dipole moment associated with the hydrogen atoms which is
reflected by the much lower work function change. The hydrogen atoms are
effectively screened by the surrounding Pd atoms which then leads to a much
smaller coverage dependence of the adsorption energy.

The fourfold hollow adsorption site on Pd(100) shows in fact an exceptional
coverage dependence. This is demonstrated in Fig. 5.17b where the atomic hy-
drogen adsorption energies for the most favorable adsorption sites on Pd(100)
and Pd(111) [195], Pd(110) [196] and Pd(210) [76] determined by GGA-DFT
calculations have been plotted as a function of the coverage. Note that since
the coverage θ is related to the surface unit cells whose area is not the same
for the different surfaces, the same coverage does not necessarily correspond
to the same density. Still the general trend, with the exception of Pd(100), is
obvious: hydrogen atoms on the surface repel each other so that the hydrogen
adsorption energy decreases for increasing coverage.

This trend is also true for Pd(110). As far as the hydrogen adsorption on
Pd(110) is concerned, there is another very interesting phenomenon which
occurs, namely adsorbate-induced reconstructions. Strongly interacting ad-
sorbates like sulphur, oxygen, carbon and nitrogen can induce a restructuring
of the surface [199]. As for clean (110) metal surfaces, 5d fcc metal surfaces
such as Au(110) or Pt(110) undergo a spontaneous reconstruction, whereas 3d
and 4d metal surfaces such as Ni(110) and Pd(110) are stable in the unrecon-
structed (1 × 1) structure. However, already a relatively weakly chemisorbed
species such as hydrogen induces a surface reconstruction of the Pd(110) sur-
face. The hydrogen induced reconstruction is very sensitive to the hydrogen
coverage. At coverages up to θ = 1, unreconstructed Pd(110) surfaces have
been found [200]. Experimentally, however, it is very hard to determine the
positions of hydrogen atoms on the reconstructed surfaces. This is due to
that fact that hydrogen scatters electrons only very weakly, so that it is al-
most invisible for experimental methods using electron diffraction. This calls
for theoretical support, and indeed, the hydrogen induced polymorphism has
been studied in detail by DFT calculations [196,201].

For one monolayer H on unreconstructed Pd(110), DFT calculations find
that the (1 × 1) structure shown in Fig. 5.18a is not stable [196]. Hydrogen
atoms adsorb rather in a (2 × 1) structure illustrated in Fig. 5.18b which is
more stable by 29meV/atom. The driving force is again the dipole-dipole
repulsion between the adsorbed hydrogen atoms. In the (2 × 1) structure
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a) (1×1) unreconstructed b) (2×1) unreconstructed

c) missing-row reconstruction d) pairing-row reconstruction

Fig. 5.18. Hydrogen adsorption structures on Pd(110). (a) (1× 1) unreconstructed
structure for a hydrogen coverage of θ = 1; (b) (2×1) unreconstructed surface for
θ = 1; (c) hydrogen-induced missing-row reconstruction for θ = 1; (d) hydrogen-
induced pairing-row reconstruction for θ = 1.5. (After [196])

consisting of zigzag chains of H atoms the distances between the hydrogen
atoms on the surface are maximized. In addition, the hydrogen atoms are
effectively screened by the Pd atoms in the top layer in this configuration
which further reduces the repulsion. The (2 × 1) structure is indeed verified
by the experiment [200].

Later experiments found that already at hydrogen coverages at and below
θ = 1 adsorbate-induced reconstructions can occur [199]. Several different
hydrogen adsorbate structures on reconstructed surfaces have been considered
in the calculations. The most stable one for θ = 1 is shown in Fig. 5.18c which
is energetically more favorable by 62meV/atom than the (2×1) superstructure
on the unreconstructed surface. The structure corresponds to a missing-row
reconstruction where every second row of Pd atoms on the (110) surface is
missing. Upon this reconstruction, close-packed (111) facets are formed at
the slopes of the V-shaped troughs. The particular hydrogen configuration
maximizes the distance between the hydrogen atoms in the same trough thus
minimizing their electrostatic repulsion.
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Although this hydrogen-induced missing-row reconstruction is most sta-
ble, it is kinetically hindered which means that it is separated from the (2×1)
superstructure by a sufficiently high energetic barrier so that the unrecon-
structed surface is metastable at low temperatures and only reconstructs when
the temperature is increased [196].

Of course the question arises about the driving force that makes the
missing-row reconstruction stable. The electronic structure calculations show
that there is a general downshift of the energy levels upon hydrogen adsorption
on the reconstructed surface compared to the unreconstructed surface. Thus
it is the better adsorbate-substrate interaction that stabilizes the missing-row
reconstruction [196].

Experimentally, a (1 × 2) pairing-row reconstruction has also been ob-
served [200]. Its structure is illustrated in Fig. 5.18d. It is obtained from the
unreconstructed surface by pushing two adjacent Pd rows together. Further-
more, Fig. 5.18d illustrates the hydrogen adsorption pattern at a coverage of
θ = 1.5. There is also a stable pairing-row reconstruction for θ = 1 which is
equivalent to the structure for θ = 1.5 with just the hydrogen atoms in the
fourfold hollow positions between the paired rows missing. However, at both
coverages the pairing-row reconstructions are only meta-stable with respect to
the missing-row reconstructions which are energetically still more favorable.

As far as the electronic structure of the hydrogen-covered Pd(110) sur-
face in the pairing-row reconstruction is concerned, there is no indication of
a significant downshift of the energy levels compared to the unreconstructed
case. Hence electronic structure effects cannot be responsible for this recon-
struction. An inspection of Fig. 5.18d shows that by pushing the Pd rows
together, the hydrogen atoms in the threefold coordinated sites can increase
their distance with respect to each other and thereby reduce their mutual
repulsion. Hence the driving force for this reconstruction is mainly due to the
electrostatic adsorbate-adsorbate repulsion.

Usually hydrogen molecules adsorb dissociatively on metal surfaces [198].
In order to determine whether the dissociation of molecules on surfaces is ac-
tivated or non-activated, the potential energy surface (PES) of the molecule
approaching the surface has to be determined. In Fig. 5.19 contour plots along
two-dimensional cuts through the six-dimensional coordinate space of H2 in-
teracting with (100) metal surfaces, so-called elbow plots, determined by GGA
calculations [85, 202] are shown. The coordinates in the figure are the H2

center-of-mass distance from the surface Z and the H–H interatomic distance
d. The lateral H2 center-of-mass coordinates in the surface unit cell and the
orientation of the molecular axis, i.e., the coordinates X , Y , θ, and φ are kept
fixed for each 2D cut and depicted in the insets. Figure 5.19a and c represent
so-called h–b–h dissociation paths which means that the H2 center of mass is
located above the bridge site and the two hydrogen atoms are oriented towards
the hollow sites. The dissociation paths shown in Fig. 5.19b and d correspond
to the h–t–h configuration, i.e., here the H2 center of mass is located above
the top site.
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Fig. 5.19. Contour plots of the potential energy surface along two-dimensional
cuts through the six-dimensional coordinate space of H2 in front of (100) metal
surfaces determined by DFT-GGA calculations. The contour spacing is 0.1 eV per
H2 molecule. (a,b) Elbow plots for the h–t–h and h–b–h geometry of H2/Pd(100),
respectively. The molecular configuration is shown in the insets (after [202]); (c,d)
the corresponding elbow plots for the same geometries in the system H2/Cu(100) [85]

Contour plots of the potential energy surface of two prototype systems
for the interaction of molecules with surfaces, H2/Pd(100) and H2/Cu(100),
are presented in Fig. 5.19. When the H2 molecule approaches the Pd(100)
surface with its center of mass above the bridge site and the H atoms pointing
towards the four-fold hollow sites, the molecule can dissociate spontaneously
without any hindering barrier. However, dissociative adsorption corresponds
to a bond making–bond breaking process that depends sensitively on the local
chemical environment. Indeed, if the molecule comes down over the on-top site,
the shape of the PES looks entirely different. First the molecule is attracted
towards the surface, in fact even stronger than above the bridge site, but then
it encounters a barrier of above 0.15 eV towards dissociation. The minimum
in Fig. 5.19b is closely related to the molecular dihydride PdH2 configuration
which is stable in the gas phase [203]. It does not, however, correspond to
a local minimum but rather to a saddle point in the multi-dimensional PES.
The H2 molecule can still move further downhill in the energy landscape if
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the center of mass of the H2 molecule moves laterally away from the on-top
position [204].

While the dissociation of H2 on Pd(100) can happen spontaneously, on
Cu(100) it is hindered by significant energetic barriers. The minimum dissoci-
ation barrier is about 0.5 eV along a h–b–h path which is shown in Fig. 5.19c.
Above the top site (Fig. 5.19d), the barrier is 0.7 eV which is only slightly
higher compared to the bridge site. The difference in the barrier height for
H2 dissociation between the two systems Pd and Cu can be well understood
within the d-band model (5.73). Cu with the completely filled d-band is much
less reactive than the transition metal Pd. Interestingly enough, apart from
the difference in the barrier heights the shape of the minimum energy paths
shows similar features. For Pd(100) as well as for Cu(100), the dissociation
path above the top site is energetically less favorable, the minimum path is
further away from the surface compared to the h–b–h path, and the curvature
is stronger for the h–t–h path.

It is important to note that the PES does not only depend on the lat-
eral position of the H2 molecule, i.e., the PES is not only corrugated. It is
also highly anisotropic which means that the interaction of the H2 with the
metal surfaces strongly depends on the orientation of the molecular axis. Only
molecules with their axis close to being parallel to the surface can dissociate,
for molecules approaching the Pd surface in an upright orientation the PES
is purely repulsive [202]. For H2 adsorption on Pd(111) and Pd(110), the
potential energy surfaces look similar [205,206].

We now turn to another molecule-surface system that belongs to the most
extensively studied systems in surface science: the chemisorption of CO on
transition metals. In particular, the CO interaction with Pt(111) has attracted
a lot of attention, certainly also motivated due to its relevance for processes
occuring in the car exhaust catalyst.

In the spirit of the frontier orbital concept (see page 130), Blyholder has
proposed [207] that only the 5σ and the 2π orbitals play a role in the bonding
of CO to the surfaces. These states correspond to the HOMO and LUMO in
this system, respectively. The CO 5σ orbital which is completely filled in the
gas phase becomes partially empty upon the interaction with the metal surface
(“donation”) whereas the originally empty 2π orbitals become partially filled
(“backdonation”). The lower lying 4σ and 1π levels of CO remain filled upon
chemisorption and thus do not contribute to the bonding.

The binding of CO to the on-top site of Pt(111) has been addressed by
LDA-DFT calculations [208]. CO adsorbs perpendicularly on Pt(111) with the
C-end down. A gross population analysis similar to the Mulliken population
analysis well-known in quantum chemistry showed that the 5σ and the 2π
states are occupied by 1.47 and 0.52 electrons thus confirming the Blyholder
model.

The bonding and antibonding character of the levels has been analyzed
in more detail by determining the crystal orbital overlap population (COOP)
[75]. Positive values of the COOP indicate bonding contributions to the bond
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Fig. 5.20. Crystal orbital overlap population (COOP) curve with respect to the
bond between CO and Pt(111) determined by LDA-DFT calculations [208]. Positive
and negative values correspond to bonding and antibonding contributions which
have been labeled by b and a, respectively

whereas negative values correspond to antibonding contributions. The COOP
determined by the LDA-DFT calculations [208] is plotted in Fig. 5.20. Upon
the interaction of CO with Pt(111), the 4σ and 5σ states hybridize with each
other. There are two states derived from this hybridization which are denoted
by 4σ+5σ. Still, a detailed analysis of the electronic structure revealed that the
bonding contribution from the (4σ+5σ) states is mainly due to the interaction
of the 5σ orbital with the Pt substrate bands. Figure 5.20 shows that there
are in fact 1π derived states that lie higher in energy than the 5σ states. This
means that the ordering of these levels is reversed compared to the gas phase
which has also been observed for CO adsorption on other metal surfaces [155].
The bonding and antibonding contributions of the 1π derived peaks effectively
cancel each other leading to a non-bonding character, as it is expected from
completely filled states. However, there is a net bonding contribution from the
2π states which are partially occupied. This partial occupation also leads to a
slight elongation of the CO bond length from its calculated gas-phase value of
1.131 Å to 1.143 Å, since the 2π level is of antibonding character with respect
to the C–O bond. The COOP analysis again confirms that mainly the 5σ and
the 2π orbitals are involved in the CO bonding to Pt(111).

However, there are disturbing results as far as the energetics of the CO
bonding to Pt(111) is concerned [209]. Experimentally it is well established
that the CO molecule adsorbs at the on-top site on Pt(111) [210]. For this site,
GGA-DFT yields a CO binding energy of 1.5 eV [191]. However, no matter
whether DFT calculations are based on LDA or GGA functionals, whether
pseudopotentials are employed or all electrons are taken into account, all
these calculations yield the fcc hollow site as the most favorable adsorption
site [209]. On the average, the fcc hollow site is prefered by about 0.2 eV
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compared to the atop-site. No “stone was left unturned” [209] in order to
determine the reason for the discrepancy between theory and experiment, but
neither defect structures nor contaminations nor relativistic or spin effects
nor zero-point energies can account for the difference. Later it was shown
that the discrepancy between theory and experiment is most probably caused
by the overestimation of the back-donation into the 2π∗ orbital of CO which is
mainly due to the fact that the HOMO-LUMO gap is too small in most of the
semi-local DFT exchange-correlation functionals. In this case, the 2π∗ orbital
interacts stronger with the surface electrons at the hollow site than at the
top site [211]. Applying a constraint in the occupancies of the CO molecular
orbitals within a GGA+U approach leads to a larger HOMO-LUMO gap
which results in an appropriate description of the adsorption site and a more
accurate binding strength of CO on the metal surface [212,213].

So far, I have discussed the atomic and molecular adsorption on low-index
crystal surface. For years, surface science studies have concentrated on such
adsorption systems, and many important concepts have been gained from
these investigations, as demonstrated in this section. However, surfaces under
realistic conditions are neither microscopically flat nor are they clean and free
of adsorbates. This difference between the ideal surfaces subject to most of the
academic research and realistic surfaces has been termed the structure gap.
There has been a long, ongoing debate whether the insight gained from studies
of clean, low-index crystal surfaces can be directly applied to surfaces present,
e.g., in heterogeneous catalysis. However, the surface science approach can still
be used in order to close the structure gap, namely by studying adsorbate-
covered and structured, defect-rich surfaces under well-defined conditions so
that the influence of the particular co-adsorbate or the specific surface defect
on adsorption properties can be derived. There is an increasing number of
studies devoted to complex structures which will be addressed in the next two
sections.

5.8 Adsorption on Precovered Surfaces

The modification of the reactivity of a surface structure by the presence of ad-
sorbates is of great technological relevance, especially in heterogeneous catal-
ysis. These processes do usually not occur under vacuum conditions so that
the presence of co-adsorbates cannot be avoided. On the other hand, further
reactants might be deliberately added to a reaction chamber since adsorbates
can either promote or poison a particular reaction on the surface. The most
prominent example for the reduction of the activity is the poisoning of the
platinum-based car-exhaust catalyst by lead present in the gasoline. But not
only lead, also sulfur causes a reduction of the efficiency of the car-exhaust
catalyst.

In fact, the poisoning effect of sulfur is not restricted to oxidation reac-
tions on platinum surfaces. On Pd(100), sulfur adsorption leads to a significant
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Fig. 5.21. Local density of states for three different configurations in the hydrogen
dissociation process on (2 × 2) sulfur-covered Pd(100). The upper panels indicate
the corresponding position of the hydrogen molecule. (After [217])

reduction of the hydrogen dissociation probability [214,215]. In order to exam-
ine the microscopic effects of sulfur preadsorption, the potential energy sur-
face of the H2 dissociation on the p(2×2) and c(2×2) sulfur-covered Pd(100)
surface has been determined in great detail by DFT studies [216, 217]. On
p(2× 2)S/Pd(100), H2 dissociation is no longer non-activated as on the clean
Pd(100) surface but hindered by a barrier of 0.1 eV. The closer the hydro-
gen molecules come to the adsorbed sulfur atoms, the higher the barriers are
for hydrogen dissociation indicating a strong repulsion between the adsorbed
sulfur and H2. On the c(2 × 2) sulfur-covered Pd(100) surface, the density
of sulfur atoms is so high that the H2 dissociation is effectively blocked by
dissociation barriers larger than 2 eV [217].

The electronic factors influencing the reactivity of the sulfur-covered
Pd(100) surface have been determined by analysing the local density of state
of the interacting system. In Fig. 5.21, the density of states projected onto
the hydrogen, sulfur and palladium atoms is plotted for three different con-
figurations. Figure 5.21a corresponds to the non-interacting system with the
hydrogen molecule still far away from the surface. The prominent peak in the
hydrogen 1s density of states is given by the bonding σg state. It seems to be
in resonance with a sulfur-related state at the same energy, however, this is
just coincidental. This is confirmed by Fig. 5.21b which shows the projected
density of states for the hydrogen molecule located at the minimum barrier for
dissociation. The hydrogen and sulfur-related states are no longer in resonance
indicating that there is no direct interaction between the hydrogen molecule
and the sulfur atoms for this configuration. In fact, it turns out that the build-
ing up of the minimum barrier is an indirect effect of the presence of sulfur
[217]: sulfur adsorption leads to a downshift of the Pd d-states in the surface
which makes the surface more repulsive with respect to hydrogen dissociation
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Fig. 5.22. Dependence of the dissociation barriers and the chemisorption energies on
the Ru d-band center for N2 adsorption on clean and precovered Ru(0001) surfaces.
The considered precoverages correspond to 1/4, 1/2 and 3/4 monolayers. (After
[218])

according to the d-band model (5.73) [188,189]. On the other hand, when the
H2 molecule directly approaches a sulfur atom (Fig. 5.21c), there is a strong
hybridization and splitting in bonding and anti-bonding states between the
H2 and the sulfur orbitals. Since both the bonding and anti-bonding contri-
butions are fully occupied, the interaction is strongly repulsive [188].

The d-band model has also been used to analyze the influence of coadsor-
bates on the dissociative adsorption of N2 on Ru(0001) [218], a system which
is of relevance for the ammonia synthesis. Precovering the Ru(0001) surface
with atomic nitrogen, oxygen or hydrogen shifts the center of the Ru d-band
to lower energies, i.e., leads to a poisoning of the surface. This is illustrated in
Fig. 5.22 where the dissociation barriers and the atomic chemisorption energies
are plotted as a function of the Ru d-band center. The considered precover-
ages correspond to 1/4, 1/2 and 3/4 monolayers. It is apparent that nitrogen
preadsorption has the strongest influence on the electronic structure of the
Ru surface atoms while the effect of hydrogen adsorption is relatively mod-
erate. Both the dissociation barriers and the atomic chemisorption energies
show a linear relationship with respect to the Ru d-band center, regardless
of the chemical nature of the coadsorbate. This confirms the universal role
of the d-band center for the comparison of the reactivity of related adsorp-
tion systems. Consequently, there is also a linear relationship between the
N2 dissociation barrier and the atomic N chemisorption energies. This so-
called Brønsted–Evans–Polanyi relation has in fact been found for a number
of transition metal surfaces [219].

Here we have mainly discussed the influence of adsorbates on dissociation
barriers and adsorption energies. There are also dynamical and kinetic effects
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Fig. 5.23. CO adsorption on top of the kink sites at the steps of a Pt(11,7,5) surface.
CO binds with the C end down

in the adsorption probabilities that will be addressed in Sects. 7.7 and 8.4,
respectively.

5.9 Adsorption on Structured Surfaces

The activity of realistic catalysts is often assumed to be dominated by so-
called active sites, i.e., sites with a specific geometric configuration that mod-
ifies their electronic and chemical properties. In order to identify the nature
of these active sites, surfaces with well-defined defect structures have been
investigated. Vicinal surfaces are particularly well-suited since they can be
relatively easily prepared in the experiment, they are accessible by electronic
structure calculations, and they allow to determine the role of steps in the
interaction of atoms and molecules with surfaces.

In fact, many adsorbates bind much stronger to step sites than to sites
on a flat terrace. Again, the CO/Pt system will serve as a model system.
Variations of 1 eV in the adsorption energies of CO at on-top sites of several
flat, stepped, kinked and reconstructed Pt surface have been found by DFT-
GGA calculations [191] revealing a strong structure sensitivity of the binding
strength. As far as stepped surfaces are concerned, the Pt(211) and Pt(11,7,5)
surfaces have been considered. Both surfaces have (111) terraces of similar
width, but while the (211) surface is close-packed along the steps, the (11,7,5)
surface has a open kinked structure along the steps (see Fig. 5.23). And indeed,
the lowest-coordinated Pt atoms which are the kink atoms of the (11,7,5)
surface show the strongest binding to CO with bonding energies that are
about 0.7 eV stronger than on the flat Pt(111) terrace.

These findings can again been rationalized using the d-band model which
provides an intuitive picture for the enhanced reactivity of structured surfaces.
Consider a typical late transition metal with a more than half-filled d-band
(Fig. 5.24a). In a simple tight-binding picture, the width of a band is directly
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related to the coordination and the overlap of the orbitals (see (3.95)). At a
low-coordinated site, the d-band will therefore become narrower (Fig. 5.24b).
Note that the same is in fact also true for pseudomorphic overlayers under
tensile strain which reduces the overlap between the electronic orbitals [195,
220–223], as we will see at the end of this section. For a late transition metal
with a more than half-filled, but not completely filled the d-band, the number
of d-states below the Fermi energy will increase if the d-band center is kept
fixed. This would lead to an higher occupation of the d-band. However, in order
to obey charge conservation, the narrowed d-band has to shift up (Fig. 5.24c)
so that the number of occupied states remains conserved [220]. Hence also
the d-band center will move up which results in a higher reactivity of the
structured system.

Note that the Pt(100) surface exhibits in equilibrium a Pt(100)-hex re-
construction which is an otherwise flat (100) surface covered by a hexagonally
packed, buckled Pt overlayer. This overlayer is buckled because the Pt density
in the overlayer is 4% higher than in the Pt(111) surface. This larger density
has the same effect as a higher coordination. Because of the increased overlap
the d-band broadens and shifts to lower energies making it less reactive. This
is exactly what has been found for the binding of CO on the Pt(100)-hex(1×5)
surface which is weaker by 0.1 eV compared to the Pt(111) surface.

We will now return to stepped Pt surfaces. As will be discussed in detail in
Sect. 7.7, the interaction of molecular oxygen with Pt surfaces represents one
of the best studied systems in surface science. Experimentally, the influence
of steps on adsorption properties can be relatively easily identified since steps
can be readily decorated and thus passivated by some inert metal, for example
Ag. Thus it was found that the O2 dissociation is strongly favored at the step
sites of Pt[9(111)× (111)] and Pt[8(111)× (100)] [224], which have both (111)
terraces that are nine and eight atom rows wide, separated by {111} and {100}
monatomic steps, respectively. In order to understand the enhanced reactivity
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of the Pt steps, GGA-DFT calculations have been performed [224, 225] in
which the O2 adsorption and dissociation on Pt(211)=Pt[3(111)× (100)] was
studied. Although the terraces of the (211) surface are only three atom rows
wide, they are still far enough from each other in order to make the calculations
relevant for the understanding of the reactivity of the vicinal surfaces.

In the calculations, the energies of the O2 molecular adsorption state Emol

and of the transition state to dissociation ETS were determined for the step
site and a “near step” (NS) site one row away from the steps of the clean
Pt(211) surface. In addition, the same energies were evaluated for the steps
of Pt(211) decorated by a monatomic row of silver atoms. The energetically
most favorable molecular adsorption state of O2 on Pt(211) is indeed at the
Pt step atoms (see Fig. 5.25a). The same is true for oxygen atoms which also
preferentially adsorb at the Pt step atoms [226].

In Fig. 5.25b, the O2 adsorption and transition state energies are compared
to the corresponding ones for the Pt(111) surface as a function of the local
d-band center εd. As the reader might expect, the low coordination at the step
sites leads to an upshift of the d-band center resulting in a stronger interaction.
Interestingly enough, the local barrier for dissociation Ea = ETS−Emol is not
reduced at the steps of Pt(211); on the contrary, it is even higher than on
the flat Pt(111) surface. At first sight, it seems to be surprising that there
is a higher rate for dissociation at the steps. However, not only the height of
the local dissociation barrier matters, but also the absolute energetic position
of the transition state with respect to the O2 molecule in the gas phase. For
Pt(111), the transition state energy and the energy of O2 in the gas phase
are almost equal which means that the dissociation barrier and the desorption
barrier are similar. Hence, in a thermally activated situation, a large fraction of
the molecules will rather desorb than dissociate. This is different at the steps
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Fig. 5.26. Energetics of the N2 dissociation on a terrace and a step of Ru(0001) as
determined by DFT calculations [227]. The insets show the corresponding configu-
rations at the transition state (TS) for dissociation. The energy zero corresponds to
the energy of the N2 molecule in the gas phase

where the transition state energy is well below the O2 gas phase energy. Hence
the desorption barrier is much larger than the dissociation barrier so that
the branching ratio between dissociation and desorption is strongly shifted
towards dissociation although the absolute value of the barrier is higher at
the steps. Consequently, it is the stabilization of the molecular adsorption
state that leads to an enhanced dissociation at steps.

However, there are systems such as N2 dissociation on Ru(0001) where
reaction barriers are significantly lowered at step sites [227,228]. This system
is of particular importance since the N2 dissociation represents the first and
rate-limiting step in the ammonia synthesis [229,230]. By again blocking the
step sites with noble metal atoms it could be shown that the dissociation rate
at the steps is at least nine orders of magnitude higher than on the terraces
at 500 K [227,228].

The dissociation of N2 on flat and stepped Ru(0001) surfaces was addressed
by DFT calculations [227,231] in which the step was modeled by using a (2×4)
unit cell and removing two rows of Ru atoms. As Fig. 5.26 demonstrates, the
barrier for the dissociative adsorption of N2 at the steps is about 1.5 eV lower
than on the terraces, in agreement with the experiment. Note that whereas the
N2 molecular precursor is also strongly stabilized at the steps, the difference
in the binding energies of atomic nitrogen at the steps and the terraces is
much smaller. This is important because it means that the nitrogen atoms do
not block the step sites after dissociation but can diffuse towards the terraces.

In order to understand the strongly modified reactivity of the steps, it is
instructive to examine the transition state configurations on the terrace and
at the step. At first sight, they do not seem to be too different. In both cases,
one nitrogen atom is close to the most stable hcp site while the other one is
located at a bridge position. However, at the step the two N atoms do not
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Fig. 5.27. Side view of the Pd(210)
surface with a monolayer H precov-
erage and the molecular H2 adsorp-
tion state [76]

share any Ru atoms as nearest neighbors. This reduces the indirect repulsive
interactions which is the reason for the high N2 dissociation barrier on the
terrace [232]. Hence it is the modified geometrical arrangement of the steps
that contributes significantly to the higher reactivity.

A dramatic lowering of the dissociation barrier at stepped ruthenium sur-
faces has also been found for NO. According to DFT calculations, this barrier
is reduced from 1.28 eV at the flat Ru(0001) surface to 0.17 eV at a stepped
Ru surface [233], thus rationalizing experimental findings of a STM study
that NO dissociation only occurs at the steps of a vicinal Ru surface [234].
A closer analysis yields that this strong reduction is caused by so-called fi-
nal state effects. First, the reaction products, atomic nitrogen and oxygen are
more strongly bound at the steps than on the terrace, and second, at the steps
the reaction products share less nearest neighbor surface atoms, as in the case
of N2 dissociation. This confirms that the modified structural arrangement at
the steps plays a very important role for the reactivity.

Stepped surfaces do not only show higher adsorption energies, they can also
induce unusual adsorption structures. While hydrogen usually adsorbs disso-
ciatively at metal surfaces [198], as already mentioned, experiments have found
the coexistence of chemisorbed hydrogen atoms and molecules on Pd(210)
[235]. The microscopic nature of the adsorbate states has been identified by
DFT-GGA calculations [76, 235].

The (210) surface is a relatively open surface that can be regarded as a
stepped surface with a high density of steps. The geometry of this surface is
shown in Fig. 5.27. Vicinal fcc(n10) surfaces have (100) terraces with steps
running along the [001] direction. These steps are forming open (110)-like
microfacets. The most favourable adsorption site for atomic hydrogen is in
fact the long-bridge position between two Pd step atoms, as indicated in
Fig. 5.27. Still two other atomic adsorption sites are available in the (210)
surface unit cell.
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Fig. 5.28. Dependence of the O and CO adsorption energy and the CO dissociation
barrier on Ru(0001) on the lattice strain. The results have been obtained by DFT-
GGA calculations [238]

On the hydrogen precovered Pd(210) surface, H2 can chemisorb molecu-
larly over the Pd step atoms with a binding energy of 0.27 eV [76,235]. How-
ever, this molecular state which is also illustrated in Fig. 5.27 is only stabilized
by the presence of atomic hydrogen on the surface. Without any precoverage,
H2 does spontaneously dissociate on Pd(210). The preadsorbed atomic hydro-
gen does not significantly disturb the interaction of the H2 molecules with the
step Pd atoms but hinders the H2 dissociation on Pd(210). In fact, the molec-
ular adsorption state corresponds locally to the apparent well on Pd(100)
shown in Fig. 5.19b which is changed from a saddle point to a local mini-
mum on Pd(210) due to the presence of the atomic hydrogen. Such unique
features of structured surfaces might be useful for catalyzing certain reactions
in which, e.g., relatively weakly bound hydrogen molecules are required.

Finally, we will discuss that an increased reactivity can not only be caused
by a lower coordination but also by a reduced overlap due to tensile stress to
surfaces, as we already mentioned when we discussed Fig. 5.24. Experimen-
tally, laterally stretched and compressed surface regions can for example be
created by implementing subsurface argon bubbles, as has be done for the
Ru(0001) surface [236,237]. The modified surface was then exposed to oxygen
and CO. STM images confirmed that oxygen atoms and CO molecules adsorb
preferentially in the regions of the expanded lattice.

These findings have been rationalized by DFT-GGA calculations. The ad-
sorption energies of O and CO on Ru(0001) and the CO dissociation barrier
have been calculated as a function of the lattice strain (Fig. 5.28) [238]. In
general, the surface reactivity increases with lattice expansion. This can be
explained by the accompanying upshift of the d-band center (see Fig. 5.24).
Increasing the distance between the substrate atoms lowers the overlap be-
tween the metal orbitals which narrows the width of the d-band. If the band
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is more than half-filled, charge conservation than leads to the upshift of the
d-band.

Figure 5.28 demonstrates that the qualitative trend due to the strain is
the same for the O and CO adsorption energy and the CO dissociation bar-
rier, but the quantitative effect can be quite different. Still the strain effect
could be used as a means to tailor the catalytic activity of transition met-
als since, within certain limits, the lattice constant can be modified by the
heteroepitaxial growth of a metal overlayer on another metal with a lattice
mismatch, as has for example been demonstrated for the interaction of CO
with pseudomorphic Pt/Ru(0001) overlayer systems [239].

5.10 Adsorbate Structures at Non-zero Temperatures
and Pressures

So far we have described the adsorption of atoms and molecules at zero tem-
perature. Furthermore, we have neglected that the substrate might be in con-
tact with a surrounding gas phase. Such an situation is illustrated in Fig. 5.29
which can for example be interpreted as a metal surface in contact with an
oxygen atmosphere. The surface region which is indicated by the box bounded
by the dashed line is affected by the flux of the impinging particles character-
ized by a pressure p and a temperature T . After a certain time, a steady state
will be reached with no net adsorption or desorption flux. It is important to re-
alize that such a situation can be regarded as a thermodynamical equilibrium
structure of a substrate in contact with a reservoir of the corresponding gas.
The appropriate thermodynamical potential describing such a system is the
Gibbs free energy G(T, p,Ni). Using such a thermodynamical formulation, it
is not necessary to model the impinging gas particles explicitly. Instead, their
influence is described by the chemical potential μ which corresponds to the
energy cost at which the reservoir provides particles.

In practice, one divides the Gibbs free energy of the whole system into
three contributions from the bulk solid phase Gbulk, the gas phase Ggas, and
the surface region ΔGsurface indicated by the dashed box in Fig. 5.29,

G = Gbulk +Ggas +ΔGsurface . (5.75)

Although the different contributions of the free energy are defined with respect
to a system with a surface, we will assume that we can take the values of the
corresponding homogeneous systems for Gbulk and Ggas which is justified for a
sufficiently large surface region. The connection between the Gibbs free energy
and the results of ab initio total energy calculations can be established using
the Helmholtz free energy F (T, V,Ni) which is the thermodynamical potential
relevant for a system at a fixed volume V ,

F (T, V,Ni) = Etot(V,N) + TSconf + F vib(T, V,Ni) , (5.76)
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substrate

gas phase (T,p)

Fig. 5.29. Schematic representation of a
substrate in contact with a surrounding
gas phase at temperature T and pressure p

where Etot(V,N) is the total (internal) energy that can be determined by
electronic structure calculations, TSconf is the configurational free energy, and
F vib(T, V,Ni) is the vibrational contribution to the Helmholtz free energy. The
Gibbs free energy is related to the Helmholtz free energy by

G(T, p,Ni) = F (T, V,Ni) + pV (T, p,Ni) . (5.77)

In order to determine the stability of surface adsorbate phases, it is convenient
to determine the Gibbs free energy of adsorption with respect to the clean
surface system. If there are NM substrate atoms in the surface region per unit
cell for the clean surface and MM substrate atoms and Nads adsorbate atoms
for the adsorbate-covered surface, we obtain from (5.75)

ΔGad(T, p) = G(T, p,MM, Nads) −G(T, p,NM, 0)
− (MM −NM)μM(T, p) −Nadsμgas(T, p) , (5.78)

where we have introduced the chemical potentials μM = gbulk and μgas = ggas,
which correspond to the Gibbs free energies of the substrate and gas atoms,
respectively, per corresponding formula unit in the homogeneous phases. This
expression still contains thermodynamical quantities that are in general dif-
ficult to calculate. However, since we are concerned with free energy differ-
ences, it is reasonable to assume that the differences in the free energy are
well-approximated by the leading total energy terms [240]. This means that
the contributions coming from the configurational entropy, the vibrations and
the work term pV can be neglected. One then arrives at an expression

ΔGad(T, p) ≈ Etot(MM, Nads) − Etot(NM, 0)
− (MM −NM)Etot

M −Nadsμgas(T, p) , (5.79)

where Etot
M corresponds to the total energy per substrate atom in the bulk.

The first three terms are accessible by total energy calculations, and the fourth
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Fig. 5.30. Top and side view of the (
√

5 × √
5)R27◦ PdO surface oxide structure

on Pd(100) based on DFT calculations (after [241]). The Pd atoms of the ultrathin
surface oxide layer are plotted in a darker grey than the Pd atoms of the underlying
Pd(100) substrate

term leads to a straight line if the Gibbs free energy of adsorption is plotted
as a function of the gas chemical potential. Note that the resulting expression
is equivalent to (4.26) which is concerned with the stability of compound
surfaces.

As an example, we consider the oxide formation on Pd(100) [242,243]. The
structure of transition metal surfaces in contact with an oxygen-containing
atmosphere is of particular interest in the context of the CO oxidation which
occurs, e.g., in the car exhaust catalyst. The active phase is not necessarily
a bulk oxide but can consist of thin oxide layers on the substrate, a so-called
surface oxide. The structure of surface oxides are often quite different from
the bulk oxide structure. This is among others caused by the strong coupling
to the underlying metal substrate. These special structure then lead to unique
properties of the surface oxides.

In particular in the case of oxidation catalysis over ruthenium surface it
has been shown that it is not the pure metal, but rather ruthenium oxide
(RuO2) which is the active phase [128]. For the PdO oxide on Pd(100), the
structure has been determined combining experiment with DFT calculations
[241]. The resulting structure of the Pd(100)-(

√
5×√

5)R27◦-O surface oxide
phase is illustrated in Fig. 5.30. It corresponds to a rumpled, but commensu-
rate PdO(101) film strongly coupled to the Pd substrate.

In Fig. 5.31a, the Gibbs free energy of adsorption per surface area A

Δγ(T, p) = γ(T, p,MM, Nads) − γclean(T, p,NM, 0)

=
1
A
ΔGad(T, p) , (5.80)

is plotted as a function of the chemical potential of oxygen μO. It is convenient
to separate the total energy of the O2 molecule which is the stable oxygen
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Fig. 5.31. Calculated Gibbs free energy plot (a) and surface phase diagram (b)
for the clean Pd(100) surface and several oxygen-containing structures (after [243]
including additional results concerning the surface oxide)

species in the gas phase from the temperature and pressure dependent parts
of the oxygen chemical potential:

μO(T, p) =
1
2
Etotal

O2
+ΔμO(T, p) , (5.81)

Using the definition

Eads =
1
NO

(
Etot(MM, Nads) − Etot(NM, 0)

−(MM −NM)Etot
M − 1

2
Etotal

O2

)
, (5.82)

of the adsorption energy per oxygen atom at zero temperature, the Gibbs free
energy of adsorption can be expressed as

Δγ(T, p) =
NO

A
(Eads −ΔμO(T, p)) . (5.83)

This expression is very helpful in discussing free energy plots such as Fig. 5.31a.
Every structure is represented by a line whose slope is proportional to the
number NO of adsorbed atoms per unit cell. This means that the higher the
number of oxygen atoms in a structure, the steeper the corresponding curve
in the free energy plot. The curve for the adsorbate structures crosses the
curve for the clean surface exactly at the oxygen adsorption energy per oxy-
gen atom. The thermodynamically most stable structure is then given by the
system with the lowest free energy for a particular chemical potential.
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Using (5.83), the stability range of the bulk oxide can also be understood.
A bulk oxide corresponds to a structure with in principle infinitely many
oxygen atoms per surface unit cell. Therefore the corresponding curve in the
free energy plot is given by a perpendicular line. Its position is given by the
heat of formation at zero temperature. This means that for oxygen chemical
potential larger than this value, the bulk oxide corresponds to the most stable
phase.

Furthermore, the chemical potential can be directly related to the ther-
modynamical properties of the gas phase reservoir. This is how in fact the
pressure p and the temperature T enter the formalism here. It is important
to realize that there is no need to include any gas phase atoms or molecules
explicitly in the calculational set-up. The reservoir is just represented by the
corresponding chemical potential contained in the free energy expression that
is dependent on the pressure and the temperature.

In order to derive the dependence of the chemical potential on the pressure
and temperature, it is usually sufficient to consider the reservoir as an ideal
gas. Hence the oxygen chemical potential can be written as

μO(T, p) =
1
2
μO2(T, p) =

1
2
Etot

O2
+ΔμO(T, p)

=
1
2
Etot

O2
+ΔμO(T, p0) +

1
2
kBT ln

(
p

p0

)
. (5.84)

Here the total energy of the O2 molecule has been separated from the pres-
sure and temperature dependent parts of the chemical potential. These parts
contain contributions from the vibrations and rotations of the molecule as
well as the ideal gas entropy at p0 = 1 atmosphere. These contributions can
either be calculated from first principles or taken from experimental values;
both approaches yield practically the same results [242]. Using these values,
the chemical potential can be converted to pressure scales for chosen temper-
atures which has been done for T = 300K and T = 600K on top of Fig. 5.31a.

We will now discuss the structure of this surface free energy plot em-
phasizing some general properties. Very low pressures correspond to strongly
negative chemical potentials which make any oxygen containing surface struc-
ture (NO > 0) very unfavorable. Therefore the clean surface will always be the
stable structure under these conditions. Increasing oxygen content in the gas
phase makes the oxygen chemical potential less negative which leads to more
favorable Gibbs free energies of adsorption. Consequently, at some value of the
chemical potential some oxygen-containing structure will exhibit a Δγ < 0 so
that this structure becomes more stable than the clean surface. This point is
reached for Eads = ΔμO(p, T ) (see (5.83)), i.e., when the adsorption energy
per oxygen atom equals the pressure and temperature dependent part of the
chemical potential. For the O/Pd(100) system, this is the p(2× 2) oxygen ad-
sorbate structure corresponding to a coverage of one quarter of a monolayer
(ML).
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Surface structures with smaller adsorption energies per oxygen atom but
higher coverage are represented by a line that crosses the Δγ = 0 level at
higher chemical potentials. However, since they have a more negative slope
NO/A, they will eventually be more stable than the low-coverage phase. For
the O/Pd system, this structure is the (

√
5×√

5)R27◦- surface oxide structure
at a coverage of 0.8 ML (see Fig. 5.30). Finally, in oxygen-rich environments
represented by a large oxygen chemical potential the bulk oxide becomes the
most stable phase.

Free energy plots as a function of the chemical potential are convenient but
not always very intuitive, as far as the stability of the corresponding phases
with respect to the pressure and the temperature is concerned. However, using
the pressure scales of the chemical potential as a function of temperature, the
free energy plot Fig. 5.31a can be converted into a surface phase diagram
depicted in Fig. 5.31b. This diagram shows the most stable structures as a
function of temperature and pressure which can be more easily compared
with experimental observations.

5.11 Reactions on Surfaces

The dissociative adsorption of diatomic molecules corresponds to a simple
reaction on a surface since it involves a bond-breaking and bond-making pro-
cess. Technologically relevant reactions on surfaces, however, are usually much
more complex (see Sect. 8.6). The phase space of reactions on surfaces in-
volving more than two adsorbate atoms is already so high-dimensional that
studying these reactions by ab initio electronic structure calculations is com-
putationally very demanding.

Nonetheless, in order to understand catalytic reactions, the study of dis-
sociative adsorption on surfaces is not sufficient. In fact, DFT studies have
already addressed more complex reactions on surfaces and thus contributed
to the elucidation of catalytic reaction channels. I will focus on a relatively
simple, but still technologically immensely important reaction, the CO oxi-
dation on Pt(111). Transition metals such as Pt, Pd, or Rh are the active
components in car exhaust catalytic converters which remove CO and other
pollutants from exhaust emission. The CO oxidation on Pt(111) represents the
model system for the understanding of the post-combustion oxidation of CO.
Note that the reaction CO+ 1

2O2 → CO2 is strongly exothermic (ΔH ≈ 3 eV),
but it is hindered by high energetic barriers in the gas phase. The role of the
catalyst is to provide a route for the CO oxidation with a much smaller acti-
vation barrier (see Fig. 5.2).

Two different CO oxidation paths on Pt(111) have been considered by
DFT calculations: CO oxidation by adsorbed atomic oxygen [244,245] and by
adsorbed molecular oxygen [245]. Figures 5.32a–c show the initial, transition
and final state of the CO oxidation by adsorbed atomic oxygen on Pt(111)
[244], COads + Oads → COads

2 . The minimum energy path has been found
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Pt

d

O C

Fig. 5.32. CO oxidation on Pt(111) studied by DFT calculations. Panels (a–c) show
top views of the initial, transition and final state, respectively, along the reaction
path of the CO oxidation by adsorbed atomic oxygen [244], whereas panel (d) shows
a side view of the transition state of the CO oxidation by adsorbed molecular oxygen
[245]. In panels (a–c) the surface unit cell used in the calculations is indicated

using a constraint minimization scheme. In the initial state, atomic oxygen is
located in a three-fold hollow position whereas CO is adsorbed perpendicularly
at the on-top position. Along the minimum energy path, the CO moves via the
bridge site to the on-top position adjacent to the O atom, thereby pushing the
O atom towards the neighboring bridge site (Fig. 5.32b). Finally the adsorbed
O atom and the CO molecule move together and form a new bond whereby
the bond between the O atom and the Pt substrate is broken.

The transition state geometry of CO oxidation on Pt(111) can be char-
acterized by a bonding competition effect [244]. The oxygen atom prefers an
adsorption site with high coordination. On the other hand, there is a strong
indirect repulsion mediated by the surface d-band between the oxygen atom
and the CO molecule if they share a surface atom that they are bind to [246].
Hence the transition state geometry corresponds to a compromise between al-
lowing the reacting atoms to interact with as many distinct surface atoms as
possible while still approaching each other. In fact, this bonding competition
effect also determines the transition state geometries for CO dissociation on a
number of other transition metal surfaces [246,247]. In addition, it contributes
to the high reactivity of stepped surfaces since the reacting atoms can often
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Fig. 5.33. Reaction scheme for the partial and the total oxidation of methanol on
oxygen-covered Cu(110) derived from DFT calculations [250]. Panels (a) and (c)
illustrate the methoxy and formate formation schemes, respectively. Panel (b) de-
scribes the final steps in the partial oxidation of methanol from methoxy to formalde-
hyde while panel (d) shows the corresponding final steps in the total oxidation from
formate to CO2 operative at higher temperatures

maintain a high coordination along reaction paths close to the steps due to
the open structure, as was confirmed in a DFT study of the NO+CO reaction
catalyzed by flat and stepped palladium surfaces [248].

Returning to the CO oxidation on Pt(111), we now focus on the CO ox-
idation by an adsorbed O2 molecule, COads + Oads

2 → COads
2 + Oads. The

transition state geometry is plotted in Fig. 5.32d. Prior to the CO oxidation,
the adsorbed O2 molecule dissociates. At the transition state, one O atom is
located above a bridge site, the other one at an on-top position [245]. The CO
molecule then reacts with this more weakly bound O atom to form CO2. This
process is hindered by a barrier of 0.46 eV [245] and can be associated with the
α peak observed in temperature programmed desorption (TPD) experiments
(see p. 252) at T ≈ 150K [249]. Above this temperature, O2 starts to disso-
ciate on Pt(111) so that the CO can only react with adsorbed oxygen atoms.
Since these atoms are more strongly bound than the oxygen molecules, in
fact the activation barrier for CO oxidation by adsorbed atoms is higher than
for adsorbed molecules. This barrier has been calculated to be about 1.0 eV
[244] or 0.75 eV [245] which corresponds to the β peaks above 200K observed
in the TPD experiments. The relatively large discrepancy between the two
calculated barriers indicates that the determination of activation barriers for
the catalytic oxidation by DFT methods is still far from being trivial.

Nevertheless, the reaction paths of more complex reactions such as the oxi-
dation of methanol at clean and oxygen-covered Cu(110) [250,251] can nowa-
days be addressed and identified from first principles. This is illustrated in
Fig. 5.33 where the reaction scheme of the methanol partial and total oxidation
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on oxygen-covered Cu(110), derived from DFT calculations, are illustrated.
Methanol oxidation on Cu(110) has been one of the model systems for the
study of oxidation of small alcohol molecules [252–255]. In spite of the fact
that methanol (CH3OH) is still a relatively simple molecule, its oxidation pro-
cess on catalytic surfaces exhibits a surprisingly large complexity with several
different possible reaction routes.

Experimentally it is known that on Cu oxygen promotes the oxidation
of methanol [252]. The DFT calculations showed that this is done by sta-
bilizing the methoxy intermediate and in particular by removing the hy-
drogen produced from the dehydrogenation of methanol via water desorp-
tion (see Fig. 5.33a). Although the formaldehyde desorption is endothermic
(Fig. 5.33b), once the hydrogen is desorbed the recombinative desorption path
of methoxy and hydrogen as methanol is no longer available so that methoxy
can only be further oxidized.

Formaldehyde (CH2O) immediately desorbs after its formation because of
its low binding energy to Cu(110) [251, 256] so that no further oxidation of
methanol to CO2 is possible. Only under a high concentration of oxygen on
the surface, the oxidation of methanol can proceed: in the presence of iso-
lated oxygen atoms formaldehyde converts spontaneously to dioxymethylene
(H2COO) associated with a large energy gain (Fig. 5.33c). Dioxymethylene
then easily decays to formate (HCOO) which corresponds to the most stable
reaction intermediate in the methanol oxidation. Therefore the rate-limiting
step in the total oxidation of methanol is then the formate decomposition into
CO2 and hydrogen (Fig. 5.33d).

The reaction scenarios derived from the DFT calculations are in good
agreement with experimental suggestions. The DFT barriers were also used
to perform kinetic Monte Carlo simulations (see Sect. 8.5) of the partial oxida-
tion of methanol on oxygen-covered Cu(110) [256]. These simulations yielded
insights for example in the competing pathways after the methoxy decom-
position (formaldehyde desorption, recombinative desorption of methanol, re-
combinative desorption of hydrogen). Furthermore, the comparison between
measured and simulated TPD spectra indicated that the calculated C-H bond
scission barriers seem to be slightly overestimated which has also been found
in DFT calculations for other small organic molecules on metal surfaces [257–
260].

In spite of the remaining discrepancies, these calculations demonstrated
that DFT studies can be rather helpful in elucidating even rather complex
surface reactions.
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Exercises

5.1 Atom-Surface van der Waals Attraction

Show that the atom-atom long-range attraction

VaI = − C6

R6
αI

(5.85)

between a gas atom α and the substrate atoms I of a semi-infinite cubic
lattice with lattice constant a leads to a long-range atom-surface interac-
tion potential of

VvdW(Z) = −π
6
C6

Z3

1
a3

(5.86)

Hint: Express the sum over the lattice atoms as an integral and use

∞∫

0

xμ−1

(1 + βxp)ν
dx =

1
p
β−μ/p B(μ/p, ν − μ/p) (5.87)

with B(x, y) = Γ (x)Γ (y)/Γ (x+ y) [261].

5.2 Newns–Anderson Model

a) Prove explicitly that the projected density of states na(ε) in a system
described by the Newns–Anderson Hamiltonian

H = εan̂a +
∑

k

εkn̂k +
∑

k

(Vak b̂
†
ab̂k + Vkab̂

†
k b̂a), (5.88)

is given by

na(ε) =
1
π

Δ(ε)
(ε− εa − Λ(ε))2 +Δ2(ε)

. (5.89)

with
Δ(ε) = π

∑

k

|Vak|2 δ(ε − εk) (5.90)

and

Λ(ε) =
P

π

∫
Δ(ε′)
ε− ε′

dε′ . (5.91)

b) For a semi-elliptical band of width W centered at ε = 0, determine the
density of states (normalized to unity). Determine Δ(ε) and Λ(ε) under
the assumption that Vak ≡ V is independent of k.

5.3 Effective Medium Theory

Assume that the embedding energy Ec(n) (5.54) of hydrogen if given by
the simple expression
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Ec(n) = E0
H

(
1 − 1

16

(
n− n0

n0

)2
)
, n ≥ 0 , (5.92)

with E0
H = −2.0 eV and n0 = 0.025 Å

−3
.

a) Consider a flat metal surface. The electron density as a function of the
distance z from the surface is given by

n(z) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , z > 1 Å
nmax

1
2

(
1 − sin

(
2π
an
z
))

, −1 Å ≤ z ≤ 1 Å

nmax

(
1 − 0.2 sin2

(
2π
an
z
))

, z < −1 Å
, (5.93)

with nmax = 0.1 Å
−3

and an = 4.0 Å. Determine the hydrogen adsorption
position and the hydrogen adsorption energy, the barrier height towards
subsurface penetration and the hydrogen absorption energy in the bulk.
b) Instead of a flat surface we now consider a corrugated surface. Using
the function n(z) (5.93), the electron density at the surface is expressed as

ncorr(x, y, z) = n

(
z − 1

2
Δz

(
cos
(

2π
ax
x)
)

+ cos
(

2π
ay
y

)))
, (5.94)

with Δz = 0.2 Å and ax = ay = 2.5 Å. Determine the most favorable
adsorption position as a function of the lateral coordinates. How high is
the diffusion barrier on the surface?

5.4 Adsorbate-Induced Change of the Density of States

The effect of an adsorbate on the electronic structure of a substrate can be
modeled by free electrons scattered by a perturbing spherical potential.
Show that in this model the adsorbate-induced change of the density of
states can be estimated by

δn(ε) =
1
π

dδl(ε)
dε

, (5.95)

where l is the angular momentum and δl the associated phase shift.
Hint: The radial part of the wave function of a particle scattered at a
spherical potential of finite range is asymptotically given by

ul(r → ∞) =
Dl sin(kr − lπ/2 + δl)

kr
. (5.96)

Assume that the system is enclosed in a sphere of Radius R → ∞ so that
the wave function vanishes for r = R.
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5.5 Adsorbate Vibrations

In the harmonic approximation for a rigid substrate, the adsorption po-
tential is in general given by

Vads(Re,u) = Eads(Re)+Ax2 +By2 +Cz2 +Dxy+Eyz+Fzx , (5.97)

where Re is the equilibrium position and x, y, and z are the components
of the displacement vector u.
a) Using symmetry, simplify (5.97) so that it is appropriate for high-
symmetry sites, i.e., the on-top, bridge, three-fold and four-fold hollow
site.
b) Assuming that the optimum density n0 can be described by a superpo-
sition of exponentially decaying atomic densities of the nearest neighbors

n0(Re) = e−βRe

∑

n.n.

natom , (5.98)

show that the perpendicular vibration frequency in the effective medium
theory using the embedding energy Ec is given by

ωvib =

√
1
Ma

d2Ec(n)
dn2

∣∣∣∣
n=n0

β n0 sinα (5.99)

where α is the angle of the metal-adsorbate line with the surface plane.
c) Verify that ωvib decreases when the coordination number increases.



6

Surface Magnetism

So far, we have entirely ignored any magnetic properties of surfaces. How-
ever, the magnetism of surface and interfaces is of great technological interest
because of the magnetic storage of data. Furthermore, the so-called spintron-
ics, i.e. spin-dependent charge transport, has also drawn a lot of attention.
This has motivated an extensive research of the magnetic properties of sur-
faces which can be quite different from those of three-dimensional solids. Every
solid exhibits magnetic properties related to the properties of the individual
atoms or ions, namely diamagnetism or paramagnetism, which describe the
magnetic response of the atoms to an external magnetic field. We do not focus
on this kind of magnetism here but rather on magnetic effects that are also
present in the absence of any magnetic field, mainly ferromagnetism (FM)
and antiferromagnetism (AF). In order to understand these effects, we will
briefly review the theory of the exchange interaction, before discussing the
special properties of magnetic surfaces. In fact, in the area of surface mag-
netism, theory was ahead of the experiment because of difficulties in detecting
magnetic properties on the atomic scale. Therefore there are many theoret-
ical predictions, as we will see in this chapter, that have only recently been
confirmed by experiment.

6.1 Exchange Interaction

The magnetism of atoms, molecules and solids is mainly related to their elec-
tronic properties whereas the magnetic moment of the nuclei can usually be
neglected. For free atoms, the magnetic moment of the electrons comes from
two contributions, from the angular momentum and from the intrinsic spin
of the electrons. Except for the heaviest elements, the particular ground state
configuration of the atoms is given by Hund’s rules [18].

For solids, the delocalization of the electronic orbitals has to be taken
into account. If the overlap of adjacent orbitals is still sufficiently small, as
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for example for the 4f electrons of rare earths elements, the magnetism can
be described within a localized picture. In transition metals, on the other
hand, such a localized picture is no longer appropriate. Magnetic materials are
mainly d-band metals where the magnetic effects originate from the exchange
coupling between the d electrons. There is a competition between these ex-
change effects and the smearing of the density of state. Broad bands resulting
from small nearest-neighbor distances are usually non-magnetic, while transi-
tion metals with partially filled d-bands are magnetic for larger volumes and
lower densities. As a consequence, a magnetic material such as iron becomes
non-magnetic when it is compressed, or conversely, a non-magnetic material
such as Pd becomes magnetic upon expansion [262]. With the same argu-
ments, surfaces should show larger magnetic moments as the bulk because of
the lower coordination of the atoms.

Although the d-electrons of transition metals are forming bands, they are
still rather localized compared to s and p electrons. Therefore the magnetism
in these materials is controlled by the hybridization between the d electrons of
nearest-neighbor sites. The basic physics underlying the exchange interaction
can thus be understood using the simplest molecule, the H2 molecule, as an
example [11]. We will show that a magnetic solution can exist even if no
magnetism is explicitly taken into account in the Hamiltonian. The electronic
Hamiltonian of a hydrogen molecule for fixed nuclei can be written as

H =
p2

1

2me
+
p2

1

2me
− e2

|r1 −R1| −
e2

|r1 −R2|
− e2

|r2 −R1| −
e2

|r2 −R2| +
e2

|r1 − r2| +
e2

|R1 −R2| , (6.1)

where pi and ri are the momenta and the coordinates of both electrons,
respectively, and Ri are the locations of the nuclei, i.e., here the protons.
Note that this Hamiltonian does not depend on the spin state of the electrons.
Therefore, the two-electron wave function solving the Hamiltonian (6.1) can
be separated into a spatial and a spin part,

Ψ = ψ(r1, r2) |ms1ms2〉 . (6.2)

The spin part consists of a linear combination of the four spin states

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 . (6.3)

These four states are common eigenvectors of the operators S2
1, S

2
2, S1z , and

S2z. Alternatively, the spin states may also be expressed in the {s,m} or
triplet-singlet representation based on the eigenkets of the total spin operator
S2 = (S1 + S2)2 and its component Sz along the z-axis:

|s = 1,m = 1〉 = |↑↑〉 ,
|s = 1,m = 0〉 =

(
1√
2

)
(|↑↓〉+ |↓↑〉) ,
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|s = 1,m = −1〉 = |↓↓〉 ,
|s = 0,m = 0〉 =

(
1√
2

)
(|↑↓〉 − |↓↑〉) , (6.4)

The three |s = 1,m = ±1, 0〉 states are referred to as the spin triplet, while
|s = 0,m = 0〉 is called the spin singlet state.

The Pauli exclusion principle requires that the total wave function Ψ is
antisymmetric with respect to the interchange of both electrons. The spin
singlet state is antisymmetric; hence it has to be coupled with a symmetric
spatial wave function. The triplet state, on the other hand, is symmetric with
respect to the interchange of the two electrons; therefore the spatial part has
to be antisymmetric. We will denote by Es and Et the lowest eigenvalues of
the singlet (symmetric) and triplet (antisymmetric) solutions of the electronic
two-particle Hamiltonian (6.1). The sign of the singlet-triplet splitting Es−Et

will determine whether the ground state will have spin zero or spin one. It is
important to recall that this splitting is a consequence of a spin-independent
Schrödinger equation, i.e., there might be a magnetic solution although no
magnetic effects are explicitly included.

In order to approximately solve the electronic Schrödinger equation, we
follow the so-called Heitler–London ansatz of using the single-particle solu-
tions of the isolated hydrogen atom. If we denote with φi the electronic wave
function of the hydrogen atom i, the symmetric and antisymmetric solutions
are given by

ψs,t(r1, r2) =
1√
2

(
φ1(r1)φ2(r2) ± φ1(r2)φ2(r1)

)
. (6.5)

The + sign is for the spin singlet, the − sign for the spin triplet. Using these
singlet and triplet wave functions, the singlet-triplet splitting can be evaluated
in the limit of large spatial separations:

Es − Et = 〈 ψs(r1, r2)|H |ψs(r1, r2)〉 − 〈 ψt(r1, r2)|H |ψt(r1, r2)〉
= 2
∫
d3r1d

3r2 φ1(r1)φ2(r2)
(

e2

|r1 − r2| +
e2

|R1 −R2|
− e2

|r1 −R1| −
e2

|r2 −R2|
)
φ1(r2)φ2(r1) . (6.6)

This singlet-triplet splitting arises from a matrix element between two two-
electron states that differ only through the exchange of the coordinates of
the electrons; this difference is therefore referred to as the exchange splitting.
Since the electronic hydrogen wave functions are strongly localized close to
the nuclei, the exchange splitting falls off rapidly with increasing distance
|R1 −R2|.

If one only considers the singlet and triplet states, then the two-particles
Hamiltonian (6.1) can be cast into a form in which the spin explicitly appears
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and whose eigenfunctions give the spin of the corresponding state. First we
note that

S2 = (S1 + S2)2 = S2
1 + S2

2 + 2S1 · S2 =
3
2

1 + 2S1 · S2 , (6.7)

where 1 here is the 2 × 2 unit matrix and where we have used the fact that
each individual spin operator satisfies S2

i = 1
2 (1

2 + 1) = 3
4 . The total spin

operator S2 has the eigenvalues s(s+1). Therefore it is easy to see from (6.7)
that the operator S1 · S2 has the eigenvalues − 3

4 in the singlet state (s = 0)
and + 1

4 in the triplet state (s = 1). Then the eigenvalues of the Hamiltonian

Hspin =
1
4
(Es + 3Et) − (Es − Et)S1 · S2 (6.8)

are Es in the singlet state and Et in each of the three triplet states. This
Hamiltonian is referred to as the spin Hamiltonian. We can further simplify
this spin Hamiltonian by redefining the energy zero so that the constant (Es+
3Et)/4 vanishes. Thus we get

Hspin = −J S1 · S2 , (6.9)

where the exchange coupling parameter J corresponds to the singlet-triplet
splitting

J = (Es − Et) . (6.10)

If J is positive, it is energetically favorable for both spins to be parallel while
for negative J the antiparallel configuration is favored.

This derivation for the spin Hamiltonian of the H2 molecule can be gen-
eralized to the case of a solid. If the overlap of the electronic wave functions
is rather small, the spin Hamiltonian of a solid can be written as

Hspin = − 1
2

∑

i�=j

Jij Si · Sj . (6.11)

where the factor 1/2, as usual, corrects for the double counting. This Hamil-
tonian is called the Heisenberg Hamiltonian, and the coupling constants Jij

are known as the exchange coupling constants.
Although the Hamiltonian (6.11) looks rather simple, solving the corre-

sponding Schrödinger equation is far from being trivial. Still one has to take
into account that (6.11) only represents an approximate description of mag-
netic properties caused by the electron-electron interaction.

Because of magnetic interactions, the individual atoms of some solids show
non-vanishing magnetic moments below a critical temperature Tc. Those solids
are called magnetically ordered. If the exchange coupling parameters are all
positive, i.e. Jij = Jji ≥ 0, the material exhibits a spontaneous magnetization,
and the single localized moments add up to a macroscopic net magnetization
density even in the absence of a magnetic field. This ordered state is called
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ferromagnetic antiferromagnetic

a b

Fig. 6.1. Simple magnetically ordered structures on a body-centered cubic lattice.
(a) Ferromagnetic structure, (b) antiferromagnetic structure

ferromagnetic. However, it is more common that the individual magnetic mo-
ments do not add up to a macroscopic magnetic moment but rather yield a
zero total moment. These magnetically ordered states are called antiferromag-
netic resulting from a Hamiltonian of the form

H =
1
2

∑

i�=j n.n.

|Jij |Si · Sj . (6.12)

The simplest cases of ferromagnetic and antiferromagnetic ordering are il-
lustrated in Fig. 6.1 for a body-centered cubic lattice. In Fig. 6.1a, the fer-
romagnetic structure, all magnetic moments have the same magnitude and
direction. The simplest antiferromagnetic structure results from two identical
interpenetrating sublattices with magnetic moments of the same magnitude
but opposite direction. The bcc lattice can be regarded as two interpenetrat-
ing simple cubic sublattices. Figure 6.1b demonstrates how antiferromagnetic
ordering results if these two sublattices have opposite magnetic moments.

In general, the ordered magnetic structures can be much more complicated.
If, for example, the two interpenetrating sublattices are occupied by two dif-
ferent kinds of atoms with an antiparallel alignment of the magnetic moments,
there will usually be a net magnetic moment when the moments of the two
kinds of atoms do not exactly cancel. Such a solid is called ferrimagnetic.

For the occurrence of ferromagnetism, there is in fact a simple criterion,
the so-called Stoner criterion. The total electron density can be divided into
spin-dependent densities, n↑ and n↓. Using these densities, the total electron
density n and the spin density m can be expressed as

n = n↑ + n↓ , m = n↑ − n↓ . (6.13)
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Within a mean-field Hubbard Hamiltonian approach, the energy of a system
of N atoms with total spin Sz = 1

2mN can be written as

E(Sz) =
∑

σ

∑

i

εiσ +
1
4
NI
(
n2 −m2

)
, (6.14)

The first term is the band-structure energy (4.8), while the second term is
the exchange term that leads to a stabilization of the magnetic solution for
m > 0. I is the Stoner parameter that is related to the exchange interaction.
However, changing the system from being paramagnetic to ferromagnetic leads
to a rearrangement of the band occupation that in general costs energy. If we
assume that the exchange splitting between spin up and spin down states is
small and that the density of states at the Fermi level n(εF ) is constant close
to the Fermi energy and almost the same for both σ =↑ and σ =↓ spin states,
then the change of the charge density δn and the spin density m = n↑ − n↓
are given by

δn = n(εF ) (δε↑ + δε↓) /N = 0
m = n(εF ) (δε↑ + δε↓) /N = 2g(εF )δε , (6.15)

where g(εF ) = n(εF )/N is the density of states per electron at the Fermi level.
It is a simple exercise (see Exercise 6.1) to show that under the conditions of
(6.15) the rearrangement of the band occupation corresponds to a change in
the band-structure energy (4.8) of

ΔEbs =
N2

4
m2

n(εF )
=
N

4
m2

g(εF )
(6.16)

Thus the creation of the ferromagnetic phase is associated with the energy

ΔEfm = E(Sz =
1
2
mN) − E(Sz = 0)

=
N

4

(
1

g(εF )
− I

)
m2 . (6.17)

This leads to the Stoner criterion that a ferromagnetic phase may form for

I g(εF ) > 1 . (6.18)

6.2 Spin-density Formalism

The first-principles treatment of magnetism in solids and surfaces is usually
based on the spin-polarized density functional theory introduced by von Barth
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and Hedin in 1972 [263] who developed a generalization of the Hohenberg-
Kohn theorem for the spin-dependent case. In a fully relativistic treatment,
magnetism appears naturally, but in a non-relativistic framework, the mag-
netic coupling has to be explicitly included. The energy functional of a general
magnetic system can be expressed as a functional of the Hermitian 2× 2 den-
sity matrix ρ which is defined by

ρ =
1
2

(n1 + σ ·m) =
1
2

(
n+mz mx − imy

mx + imy n+mz

)
, (6.19)

where 1 is again the 2×2 unit matrix and σ is the vector of the Pauli matrices.
n and m are the charge density and the magnetization density vector field
which in the two-component formalism can be expressed in terms of the Kohn-
Sham orbitals ψi = (ψi,1, ψi,2) as

n(r) =
N∑

i=1

ψ†
i (r)1ψi(r)

m(r) =
N∑

i=1

ψ†
i (r)σψi(r) . (6.20)

It is left as an exercise (see problem 6.2) that the density matrix (6.19) can
be written as

ρkl =
N∑

i=1

ψ∗
i,kψi,l , k, l = 1, 2 . (6.21)

In the two-component spinor formalism, the potential matrix V is expressed as

V = V 1 + μB σ ·B . (6.22)

The first term contains the external, the Hartree, and the exchange-correlation
potential averaged over the two spin directions. μB is Bohr’s magneton, and
the vector B incorporates the external magnetic field B and the difference
of the spin-dependent exchange-correlation potential 1

2 (vxc(↑) − vxc(↓)) in a
local frame of reference where the z-axis is parallel to the quantization axis. In
the local spin-density approximation (LSDA), the exchange-correlation energy
is written as

ELSDA
xc [ρkl] =

∫
d3r

{
ρ+(r) + ρ−(r)

}
εLDA
xc (ρ+(r), ρ−(r)) , (6.23)

where ρ+(r) and ρ−(r) are the eigenvalues of the density matrix ρkl(r). The
exchange correlation potential in the LSDA is then given by

v(α)
xc =

∂

∂ρ(α)

{(
ρ+(r) + ρ−(r)

)
εLDA
xc (ρ+(r), ρ−(r))

}
. (6.24)

Note that there are also spin-polarized versions of all popular GGA functionals.
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Using the expression (6.22), the Kohn-Sham equations become
{
− h̄2

2m
∇2 1 + V

}
ψk = εk ψk . (6.25)

While the kinetic part of the Hamiltonian is diagonal in the two-dimensional
spin space, the two components of the Pauli spinor ψk can only be coupled
by the off-diagonal elements of the potential matrix. If the B-field is collinear,
the coordinate system can always be chosen in such a way that the B-fields
are oriented in the z-direction. Then the total Hamiltonian is diagonal in spin
space. This means that the spin-up and the spin-down problem decouple so
that they can be treated almost independently as two non-magnetic calcula-
tions.

There are, however, situations where the spins are not aligned in a collinear
way. The proper theoretical treatment of such non-collinear spin structures
is much more involved [264–266]. In addition, the calculations also become
computationally much more demanding. The spin-up and spin-down problems
can no longer be solved separately so that the Hamiltonian matrix that has to
be diagonalized effectively doubles in size. Certain magnetic systems involving
non-collinear structures even require orbital functionals such as the exact
exchange for an appropriate description within density functional theory [267].
Consequently, most of the DFT studies addressing magnetic problems have
been restricted to collinear magnetism. We will also first focus on surface
magnetism phenomena that can be treated within the collinear formalism,
but we will also discuss systems such as frustrated triangular spin structures
that require a non-collinear treatment.

It is important to realize that the spin-polarized formalism just introduced
is not only relevant for the treatment of magnetism in solids and at surfaces
but it is also necessary for an appropriate description of atoms and solids with
a non-vanishing magnetic moment, such as the hydrogen atom or the oxygen
atom and molecule.

6.3 Two-dimensional Ferro- and Antiferromagnetism

For three-dimensional transition metal bulk systems, spontaneous magnetism
is limited to the 3d metals, in particular metals and compounds including Fe,
Co and Ni. The outer d electrons become less localized when moving from
3d to 4d and 5d metals. Consequently, because of the larger overlap between
the d electrons, the d band becomes broader and the density of states at the
Fermi energy becomes smaller. At the same time, also the exchange interac-
tion decreases so that the Stoner parameter I becomes smaller. Therefore the
Stoner criterion (6.18) is no longer satisfied for 4d and 5d metals.

However, in a two dimensional layer of transition metal atoms, the coor-
dination of the atoms is lower, and consequently the width of the d band is
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Fig. 6.2. (a) Local magnetic moments calculated for 3d and 4d monolayers on
Ag(100) from scalar-relativistic LSDA calculations, i.e. without spin-orbit coupling
[270] and from fully relativistic LSDA calculations [271]; (b) Local density of states
of a Ru overlayer on Ag(100). (After [270])

smaller. In addition, there are band structure effects which can also stabilize
magnetic phases. Such two-dimensional systems can be approximately real-
ized by transition metal overlayers grown on noble metal substrates because
of the relatively small interaction between the overlayer and the noble metal
substrate. Interestingly, according to the Mermin–Wagner theorem [268], at
finite temperatures there can be neither a ferromagnetic nor an antiferro-
magnetic order in one- or two-dimensional isotropic Heisenberg spin models
(6.11) with short-range interactions (

∑
j Jijr

2
ij < ∞). However, in thin films

deposited on substrates the spin interaction is usually not isotropic since the
surface breaks the symmetry perpendicular to the film. One can show that
this magnetic anisotropy stabilizes the long-range order in thin films [269].

Using a scalar-relativistic LSDA approach, the magnetism of transition
metal overlayers on the (100) surfaces of Au and Ag has been investigated
[270]. The local magnetic moments obtained from these calculations are plot-
ted in Fig. 6.2a. And indeed, according to these calculations, monolayers of
the 4d metals Tc, Ru and Rh are ferromagnetic although the corresponding
bulk materials are non-magnetic. Obviously, band structure effects induced
by the lower coordination stabilize the overlayer magnetism for the late 4d
transition metals.

In Fig. 6.2a, additional results for Ru and Rh from fully relativistic cal-
culations are included [271] which also take the spin-orbit coupling into ac-
count. As can be seen, for the 4d metals, the spin-orbit coupling hardly has an
influence on the magnetic moments. However, the inclusion of this coupling
does in fact matter for the 5d metals, where scalar-relativistic calculations
predict the Os/Ag(100) and Ir/Ag(100) overlayers to be ferromagnetic [270]
while the ferromagnetism vanishes when the spin-orbit coupling is taken into
account [271].
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In addition, Fig. 6.2b displays the local density of states of the Ru overlayer
on Ag(100). The majority band, i.e., the band with the larger degree of filling,
is about 1 eV lower in energy than the minority band which means that there
is an exchange splitting between the spin up and the spin down states of
roughly 1 eV. For the 3d metals on Ag(100), however, the exchange splitting
is much larger, for example, it amounts to about 3 eV for Fe. There are also
subtle effects due to the coupling to the substrate. While the Tc overlayer
on Ag(100) still exhibits a weak ferromagnetism, on Au(100) this overlayer is
non-magnetic because of the stronger interaction with Au d states which are
higher in energy than the Ag d states.

It should be emphasized that the results presented in Fig. 6.2 corresponded
to real predictions when they were made because the magnetic moments of
these overlayer systems were not measured yet when the calculations were
done. In fact, most of these predictions still await an experimental verification.

So far we have just discussed the ferromagnetic state of the metallic mono-
layers. Depending on the exchange coupling, there might as well be antiferro-
magnetic solutions. Within a Heisenberg model for a square lattice, as given
by the (100) surface, the situation is simple if nearest-neighbor interactions
J1 are dominating: For J1 > 0, the monolayers are ferromagnetic, while for
J1 < 0 a c(2 × 2) antiferromagnetic structure is stable.

DFT calculations indeed suggest that V, Cr, and Mn monolayers on sev-
eral (100) surfaces of late d transition and noble metals exhibit a c(2 × 2)
antiferromagnetic configuration whereas Fe, Co, and Ni prefer a p(1 × 1) fer-
romagnetism. The c(2 × 2) antiferromagnetic phase was first predicted by
theory; later experimental observations of a Mn overlayer on W(110) using a
spin-polarized STM were interpreted to be an indication for the existence of
this phase [272]. These experiments have then motivated further calculations
based on DFT [273,274] which will be discussed in the following.

Tungsten has an interatomic distance in the bulk that is 7% larger than
the one of manganese. Hence the pseudomorphic Mn films on W(110) are
significantly strained. Still, experimentally it has been observed that up to
four monolayers of Mn can grow pseudomorphically on W(110) [273]. The
DFT calculations confirm that the adsorption of Mn on W(110) is associated
with a large energy gain of 1.79 eV/atom for a Mn monolayer in the most
favorable magnetic configuration [274]. Still it should be noted that this energy
is considerably smaller than the bulk cohesive energy of Mn, 2.92 eV [12],
which means that the Mn films on W(110) are not thermodynamically stable
against the formation of Mn droplets.

The different magnetic structures of the Mn/W(110) film considered in
two different GGA-DFT calculations using a FP-LAPW [273] and a plane-
wave approach [274] are illustrated in Fig. 6.3. For one Mn monolayer, the
antiferromagnetic c(2 × 2) structure (Fig. 6.3b) where all nearest-neighbor
atoms couple antiferromagnetically is the most stable, followed by the antifer-
romagnetic p(2 × 1) structure (Fig. 6.3c), where two nearest-neighbor atoms
couple antiferromagnetically and two other couple ferromagnetically, and the
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a) FM b) c(2x2) AF c) p(2x1) AF d) AF layer−by−layer

Fig. 6.3. Different magnetic orders considered in the studies of pseudomorphic
Mn layers on W(110). The brighter, larger atoms correspond to the first layer, the
darker, smaller atoms to the second layer. (a–c) One monolayer of Mn on W(110)
with (a) ferromagnetic order, (b) c(2× 2) antiferromagnetic order, and (c) p(2 × 1)
antiferromagnetic order. (d) Multilayer Mn film on W(110) with layer-by-layer an-
tiferromagnetic order. The corresponding unit cells are indicated by the white lines

ferromagnetic configuration (Fig. 6.3a). While both DFT methods [273, 274]
agree qualitatively on the energetic ordering of the structures, there are some
quantitative differences. According to the FP-LAPW calculations [273], the
p(2×1) AF and the FM structures are 102 and 188meV/atom higher in energy
than the c(2 × 2) AF configuration, respectively, whereas the corresponding
plane-wave values [274] are 151 and 186meV/atom.

In spite of the relatively strong Mn-W interaction, the Mn atoms in the
two-dimensional film on W(110) exhibit a larger magnetic moment (3.47 μB/
atom) than Mn atoms in a bulk structure with the interatomic spacing of
W (2.48 μB/atom) [274]. This shows that the Mn films act as a quasi-two-
dimensional magnetic system. Still, because of the hybridization at the in-
terface, the Mn magnetic moments in the Mn/W(100) film are lower than in
a strained free-standing monolayer (3.99μB/atom). Furthermore, the Mn–W
interaction also induces small magnetic moments in the tungsten atoms close
to the interface (≤ 0.26 μB/atom).

For a three-layer Mn film on W(110), the c(2 × 2) AF configuration be-
comes in fact energetically degenerate with an antiferromagnetic layer-by-layer
structure (Fig. 6.3d), in which the Mn atoms within a layer are coupled fer-
romagnetically whereas they are coupled antiferromagnetically between the
layers. The coexistence of different magnetic structures with similar energies
is actually found quite often at surfaces; this can in fact lead to technical prob-
lems in the electronic structure calculations as far as their convergence with
respect to the electronic iterations is concerned. The programmes may not
find the true groundstate when they switch back and forth between different
magnetic structures in the electronic iteration cycles.
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Fig. 6.4. Illustration of spin spirals as a consequence of the Dzyaloshinskii–Moriya
interaction (DMI) obtained from a Heisenberg Hamiltonian with an additional DMI
term. From right to left : ferromagnetic chain with a strong DMI, a weak DMI, in a
strong magnetic field, and antiferromagnetic chain with DMI (courtesy of A. Sauter)

Furthermore, the true magnetic groundstate may also not be found if cru-
cial interaction terms are neglected. A careful analysis of the spin-polarized
STM data of the Mn film on W(110) [275] revealed the existence of a long-wave
modulation with a period of 6 nm in addition to a magnetic corrugation with
a periodicity of 0.448nm that had been associated with the row-wise antifer-
romagnetic c(2 × 2) structure shown in Fig. 6.3b. The long-wavelength mod-
ulation was attributed to spin-orbit induced variations of the spin-averaged
electronic structure.

One of the consequences of the spin-orbit interaction is that it leads to
an additional interaction, the Dzyaloshinskii–Moriya interaction (DMI) [276,
277], in systems with a broken inversion symmetry such as surfaces,

EDM =
∑

ij

Dij · (Si × Sj) , (6.26)

where the sum goes over all electrons and Dij is the Dzyaloshinskii vector.
The DMI arises as the first-order perturbation in the spin–orbit interaction
and causes a destabilization of uniform ferro- or antiferromagnetic order which
is replaced by a directional non-collinear magnetic structure with a specific
chirality. Indeed, spin-polarized DFT calculations within a non-collinear for-
malism that include the spin–orbit interaction find a left-handed cycloidal
spin spiral along the [11̄0] direction with a period of 8 nm to be the energy
minimum structure in the Mn/W(110) system [275] thus supporting the ex-
perimental interpretation of the observed magnetic structures. Such structures
are illustrated in Fig. 6.4 which were obtained for spin chains using the Heisen-
berg Hamiltonian (6.11) together with the DMI (6.26) and also an external
magnetic field. The strength of the DMI determines the period of the spin
spiral: the chain at the right hand side is subject to a DMI that is ten times
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´a) row−wise antiferromagnetic b) non−collinear 120° Neel structure

Fig. 6.5. Possible magnetic structures of a hexagonal (111) surface. (a) row-wise
antiferromagnetic and (b) non-collinear 120◦ Néel structure. The corresponding sur-
face unit cells are indicated by the dashed lines

stronger than for the adjacent chain to the left. An additional magnetic field
suppresses the full rotation of the spins along the chain, as the second spin
chain to the left shows. Finally, for a ferromagnetic chain, two interpenetrating
spin spirals result.

6.4 Frustrated Spin Structures

At surfaces with square and rectangular unit cells, the spins are usually aligned
in a parallel fashion so that they can be treated within a collinear spin for-
malism. This changes when antiferromagnetic interactions in a triangular or
hexagonal symmetry are considered (see Fig. 6.5). On such a lattice, it is
not possible to construct a solution where all nearest neighbor spins are ar-
ranged antiferromagnetically since two adjacent nearest neighbors of a partic-
ular atom are nearest neighbors themselves. This leads to so-called frustrated
spin systems.

The possible magnetic structures can be analyzed using the Heisenberg
Hamiltonian (6.11) with nearest and next-nearest neighbor interactions J1

and J2, respectively [278]. If both J1 and J2 are positive, then the groundstate
corresponds to the ferromagnetic order, but if J2 is negative, the non-collinear
120◦ Néel state is energetically favored. This state corresponds to a coplanar
spin structure with three atoms in a (

√
3×√

3)R30◦ unit cell where the angle
between spins at neighboring sites is 120◦ (see Fig. 6.5b). If J1 is negative,
then depending on the sign and magnitude of J2 a row-wise antiferromagnetic
state (Fig. 6.5a) or incommensurable spiral spin-density waves (SSDW) are
energetically preferred. In the SSDW state, the magnetic moments are rotated
by a constant angle from atom to atom along a particular direction of the
surface.

These results using the Heisenberg Hamiltonian are helpful in order to
understand which magnetic structures are possible. However, the coupling
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constants Ji of particular systems are usually not directly accessible. Therefore
electronic structure calculations are needed in order to determine the magnetic
structure in these systems. The spin structures of frustrated two-dimensional
Cr, Mn and Fe monolayers on Cu(111) were investigated by DFT calculations
using a non-collinear FP-LAPW formalism [278]. These calculations showed
that the ground state of Fe/Cu(111) is ferromagnetic whereas Cr exhibits the
non-collinear 120◦ Néel structure shown in Fig. 6.5b.

For Mn/Cu(111), the most stable magnetic structure is the row-wise an-
tiferromagnetic state shown in Fig. 6.5a. This state can also be regarded as a
commensurable spiral spin-density wave where the wave vector corresponds to
the M̄ point of the two-dimensional surface Brillouin zone; therefore it is also
called a 1Q-state. This state is three-fold degenerate with respect to the three
possible orientations of the unit cell on a triangular lattice (recall that the
fcc(111) surface has only a threefold symmetry when the subsurface planes
are also taken into account). This degeneracy is lifted when not only second-
order spin interactions as in (6.11), but also fourth-order spin interactions are
taken into account [278]. Then the so-called 3Q-state becomes more stable
which corresponds to a three-dimensional non-collinear spin-structure with
four atoms in the two-dimensional surface unit cell where the angle between
all neighboring spins is given by the tetrahedron angle of 109.47◦.

6.5 Magnetic Nanostructures on Surfaces

The study of magnetism at the nanoscale on surfaces is not only interesting
and challenging from a fundamental point of view but it is also technologically
relevant for applications in magnetic high density recording media and mem-
ory devices. Here we will briefly discuss one- and zero-dimensional magnetic
structures on surfaces, namely chains, adatoms and clusters.

An important issue in the context of magnetic storage materials is the mag-
netic anisotropy which is the dependence of magnetic properties on a preferred
direction. It leads to the existence of easy and hard directions in magnetic
materials and thus allows the two possible magnetization directions along the
easy axis to be interpreted in terms of the bits “0” and “1”. Hence, without
any magnetic anisotropy probably no magnetic storage would be possible. The
magnetic anisotropy in materials arises from different contributions. The so-
called magnetocrystalline anisotropy is an intrinsic property of a ferromagnet
that is a consequence of the interaction of the spin magnetic moments with
the crystal lattice via spin-orbit coupling. In addition, there is a long range
magnetic dipolar interaction which leads to the influence of the outer bound-
aries of an sample or a grain in a magnetic material on the magnetization
direction. This is the source of the so-called shape anisotropy.

The magnetic anisotropy is in general a complex function of the orientation
of the magnetization with respect to the crystal axes. In low-dimensional
systems, however, where twofold symmetries are most relevant the magnetic
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anisotropy can be expressed as

HMA =
∑

i

Si ·K · Si , (6.27)

where K is the tensor of single-site anisotropy constants. For perfect films
and isolated wires, the magnetic anisotropy energy per atom takes the form

EMA(θ) = −K cos2 θ , (6.28)

where θ is the angle between the magnetization and the film or wire normal,
and the uniaxial anisotropy constantK is also given as an energy per atom. For
infinitely extended perfectly flat films or perfectly cylindrical wires of infinite
length the shape anisotropy constant Kshape can explicitly be expressed [279]
as a function of the local magnetic moment m and the atomic volume V as

K2D
shape = −2π

2
c2
m2

V
, K1D

shape = −π 2
c2
m2

V
, (6.29)

where all entries are expressed in atomic units and c is the speed of light
expressed in terms of the finestructure constant α as c = 2/α. The minus sign
means that the easy axis lies within the film plane or is aligned along the wire
axis, respectively.

We will now start the discussion of the magnetic properties of metallic
wires on surfaces by briefly summarizing the results of Weinert and Freeman
[280] who where the first to treat the electronic and magnetic structure of
free-standing linear chains of transition metal atoms, namely Ni and Fe, using
DFT. Because of the lower coordination, these chains exhibit an exchange
splitting that is much larger than in the bulk. Thus both the Ni and Fe chains
become so-called strong Stoner ferromagnets, i.e., their majority d bands are
completely filled, in contrast to the bulk where Fe is a weak ferromagnet. The
Fe chain even exhibits a gap between the majority and the minority band.
Consequently, the spin magnetic moments of the chains per atom of 1.07 μB

for Ni and 3.36 μB for Fe are quite large compared to the respective bulk
values of 0.6 μB and 2.2 μB. The lower coordination does not only increase the
magnetic moments in Fe and Co wires, it also turns materials such as Mo,
Tc, W, Ru, Rh or Ir that are non-magnetic in the bulk into magnetic metal
wires [281].

The magnetic anisotropy of Fe and Co wires was addressed by using a
tight-binding Hubbard Hamiltonian in the unrestricted Hartree–Fock approx-
imation including spin-orbit interaction [282]. For freestanding Co wires, these
calculations find a magnetic anisotropy energy of about EMA ≈ −10meV with
the easy axis along the wire axis, in agreement with (6.29). For wider chains,
i.e. chains that are two or three atoms wide, so-called two- and three-leg
ladders, the magnetic anisotropy exhibits an oscillatory behavior which was
confirmed experimentally [283].
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side
view

top
view

b 

a

Fig. 6.6. Geometry of the seven-atom Co chain along a Pt(111) step edge used
in Green’s function calculations [285]; (a) side view, (b) top view. Full circles: Co
atoms, shaded circles: Pt atoms, open circles: empty spheres. The solid lines indicate
the embedded cluster employed in the Green’s function calculation. The thick arrow
in (a) illustrates the experimentally measured easy magnetization axis [284]

In the tight-binding Hubbard-like calculations [282], also a Co chain de-
posited on a Pd(110) surface was considered. The interaction of the atomic
wire with the substrate leads to a change of the easy magnetization axis away
from the direction along the wire together with a significant reduction of the
magnetic anisotropy energy to EMA ≈ 1meV.

In the theoretical work by Weinert and Freeman [280], it was suggested
that linear chains of transition metal atoms could be realized by depositing
these transition metals onto a stepped surface. And indeed, monatomic chains
of Co atoms have later been produced at the steps of the vicinal Pt(997) sur-
face [284]. These chains exhibit a long-range ferromagnetic order with local-
ized orbital moments of 0.68 μB which are about five times larger than in the
bulk. Also the observed magnetic anisotropy energy of 2.0meV/atom is very
large compared to the bulk value of 40μeV per atom. The easy magnetization
direction was found to be perpendicular to the chain at an angle of 43◦ with
respect to the normal of the (111) facets of the (997) surface.

This particular system was then addressed in a first-principles spin-
dynamics approach within a full relativistic Green’s function embedded cluster
method [285]. The Co chain was modeled by a finite chain of Co atoms ad-
jacent to a step edge in an extended vacancy island of the otherwise pristine
Pt(111) surface. In this Green’s function approach, first a self-consistent cal-
culation for the pure Pt(111) surface was performed using a slab model. In a
second step, a cluster formed by a seven-atom chain of Co together with ten
empty spheres and 48 Pt nearest neighbors of the Co atoms was embedded in
the Pt slab and treated as a perturbation. The Green’s function of the new
system is then obtained self-consistently by solving the Dyson equation
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G(r, r′, E) = G0(r, r′, E)

+
∫
d3r′′G0(r, r′′, E)ΔV (r′′)G(r, r′, E) , (6.30)

where ΔV (r) represents the distortion of the potential in the region of the
embedded cluster, while G0(r, r′, E) is the reference Green’s function of the
undistorted surface. The Co chain together with the embedded cluster is il-
lustrated in Fig. 6.6.

In this particular study, the magnetic ground state was obtained by per-
forming damped ab initio spin dynamics calculations. The final converged
state exhibits an easy magnetization axis perpendicular to the chain at an an-
gle of 42◦ with respect to the (111) plane which is in a very good agreement
with the experimentally found angle of 43◦ that is indicated in Fig. 6.6. The
magnetic anisotropy energy was calculated to be 1.42meV/Co atom which
compares reasonably well with the experimental value of 2.0meV [284]. In a
subsequent DFT slab calculation studying a Co chain on the vicinal Pt(664)
surface [286] it was shown that the Pt substrate has a decisive influence on
the magnetic anisotropy energy. The Co atoms magnetically polarize the Pt
atoms which then exhibit large orbital moments due to their large spin-orbit
interaction and can thus even dominate the total magnetization direction.
However, still the calculated orbital moment of about 0.2 μB is only less than
one-third of the measured value. This is a well-known deficiency of LSDA and
GGA calculations. On the other hand, the calculated spin moments of 2.2 μB

[285] and 2.1 μB [286] are in good agreement with the experimentally deduced
value of 2.1 μB [284].

One disadvantage of the calculations using the Green’s function approach
is that it is not easy to include relaxations of the atoms. This means that the
Co atoms are located at the ideal Pt positions. Subsequent slab calculations
including surface relaxations [286] have shown that upon relaxation of the
Co atoms the magnetic moments of the Co atoms are reduced because of the
stronger interaction with the Pt substrate, but this decrease is compensated
by an increase of the induced Pt moments. Furthermore, the relaxation also
causes a tilting of the easy axis towards the substrate so that the agreement
with the experiment is diminished; the value of the magnetic anisotropy, how-
ever, remains almost unchanged.

Finally, we want to discuss the magnetic properties of small clusters sup-
ported on a metal substrate. We will continue to concentrate on the Co/Pt sys-
tem. Con clusters with n = 1–10 deposited on Co(111) and Au(111) have been
considered in a fully relativistic LSDA-DFT Green’s function study [287,288].
Some of the considered structures are illustrated in Fig. 6.7 where the darker
shaded atoms correspond to the Pt substrate atoms. In addition, the cal-
culated local spin magnetic moments in μB are displayed. Most of the spin
moments of the Co atoms are larger than the bulk value of 1.73 μB. Note
that the results obtained for the linear Co trimer are rather close to those
calculated for the extended chains along steps [285,286].
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Fig. 6.7. Local spin magnetic moments in μB of Co and Pt atoms for Co clusters
supported by Pt(111), as obtained in Green’s function calculations [287]. The darker
shaded circles correspond to the Pt substrate atoms

Qualitatively, it is evident that the local spin moments decrease with in-
creasing coordination number. Quantitatively, one finds an almost linear de-
pendence of the local spin moments in the monolayer Co clusters on the
coordination number nc, μspin = anc + b, nc = 1, . . . , 6 with a = 2.26 μB and
b = 0.08 μB. Note that nc denotes only the number of nearest Co neighbors.
The data for the bilayer 10-atom cluster and also for an overlayer do not fol-
low this relationship quantitatively, but qualitatively. Similar relations have
also been found for the local spin magnetic moments in planar Fe clusters on
Ni and Cu [289].

The orbital magnetic moments of the Co atoms show also a qualitatively
similar behavior, but with smaller moments, the maximum orbital moment
being μorb = 0.64 μB for a single Co atoms on Pt(111) and the minimal
moment of μorb = 0.05 μB found for the central atom of the Co bilayer 10-atom
cluster.

The interaction of the Co atoms with the Au(111) substrate is weaker
than with Pt(111); furthermore, Au atoms are much less polarizable because
of the small density of states at the Fermi level. As a consequence, the in-
duced spin magnetic moments of the Au atoms are much smaller and even
negative with absolute values below 0.02 μB [287]. Still, the spin magnetic
moments of the Co atoms in the clusters deposited on Au(111) are slightly
larger (0.02–0.08μB) than on Pt(111). The opposite is true for the orbital
magnetic moments. A single Co atom adsorbed on Au(111) has a calculated
orbital magnetic moment of μorb = 1.00 μB (note that usually LSDA calcula-
tions even underestimate orbital magnetic moments). For larger Co clusters
on Au(111), the orbital magnetic moments are typically 0.02–0.12μB larger
than on Pt(111).
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Exercises

6.1 Stoner criterion

Consider a system of N electrons. Assume that the conditions described
in (6.15) are fulfilled. Show that the change in the band-structure en-
ergy upon creating a ferromagnetic phase out of a paramagnetic phase is
given by

ΔEbs =
∑

σ

ε0
F+δεσ∫

ε0
F

εn(ε)dε =
N2

4
m2

n(εF )
(6.31)

6.2 Density matrix

Use the definition of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(6.32)

and (6.20) in order to show, that the density matrix (6.19) can be writ-
ten as

ρkl =
N∑

i=1

ψ∗
i,kψi,l , k, l = 1, 2 . (6.33)

6.3 Exchange interaction

The singlet-triplet splitting (6.6) of the hydrogen molecule has been de-
rived for the limit of large spatial separations. Use the Hamiltonian (6.1)
to show that in the Heitler–London ansatz (6.5) the singlet and triplet
energies of the H2 molecule for a general H–H distance are given by

Es = 2E0 +
Q+A

1 + s2
, (6.34)

Et = 2E0 +
Q−A

1 − s2
, (6.35)

where E0 is the energy of the hydrogen atom, s is the overlap between
the atomic hydrogen functions, Q is the classical Coulomb energy of the
charge distribution and A is the exchange term.
Hint: Use the fact that the one electron wave functions φ1 and φ2 are
exact electronic ground-state wave functions for the hydrogen atom at
R1 and R2, respectively. Furthermore, note that for large spatial sep-
aration, as assumed in the derivation of (6.6), the overlap s vanishes,
i.e., lim|R1−R2|→∞ s = 0, so that the singlet-triplet splitting reduces to
Es − Et = 2A.
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6.4 Ferromagnetism

Consider the ferromagnetic Heisenberg Hamiltonian in the presence of an
external homogeneous magnetic field B in z direction:

Hspin = − 1
2

∑

i�=j

Jij Si · Sj − gμBB
∑

i

Siz Jij ≥ 0 . (6.36)

Show that the ground state energy of the ferromagnetic Heisenberg
Hamiltonian is given by

E0 = − 1
2
S2
∑

i�=j

Jij −NgμBBS , (6.37)

where N is the number of sites.

6.5 Antiferromagnetic chain

Consider an one-dimensional array of four spins with nearest-neighbor
interactions within periodic boundary conditions that are coupled anti-
ferromagnetically [11]. This means that the Heisenberg Hamiltonian of
this chain can be written as

Hspin = J (S1 · S2 + S2 · S3 + S3 · S4 + S4 · S1) (6.38)

Show that the ground state energy of this spin Hamiltonian is given by

E0 = −4JS2

(
1 +

1
2S

)
. (6.39)

Hint: Write the Hamiltonian as a sum of total spin Hamiltonians S2:

Hspin =
1
2
J
[
(S1 + S2 + S3 + S4)

2

− (S1 + S3)
2 − (S2 + S4)

2
]
. (6.40)
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Gas-Surface Dynamics

In the preceding chapters we have been concerned with the solution of the
electronic Schrödinger equation for fixed nuclear coordinates. By perform-
ing total-energy calculations for many different nuclear configurations, energy
minima and whole potential energy surfaces for chemical reactions at surfaces
can be determined. However, this static information is often not sufficient to
really understand how a reaction proceeds. Furthermore, in the experiment
the potential energy surface (PES) is never directly measured but just reac-
tion rates and probabilities. For a real understanding of a reaction mechanism
a dynamical simulation has to be performed. This also allows a true compar-
ison between theory and experiment and thus provides a reliable check of the
accuracy of the calculated PES on which the dynamics simulation is based.

In this chapter methods to perform dynamical simulations will be intro-
duced. In principle the atomic motion should be described by a quantum
mechanical treatment, but often classical mechanics is sufficient. I will there-
fore first present classical methods and then review quantum mechanical
methods.

7.1 Classical Dynamics

One can perform classical molecular dynamics studies by integrating the clas-
sical equations of motion, either Newton’s equation of motion

Mi
∂2

∂t2
Ri = − ∂

∂Ri
V ({Rj}) , (7.1)

or Hamilton’s equation of motion

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (7.2)

The solution of the equations of motion can be obtained by standard numerical
integration schemes like Runge–Kutta, Bulirsch–Stoer or predictor-corrector
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methods (see, e.g., [17]). Very often the rather simple Verlet algorithm [290,
291] is used which is easily derived from a Taylor expansion of the trajectory.

ri(t+ h) = ri(t) + h
dri

dt

∣∣∣∣
h=0

+
h2

2
d2ri

dt2

∣∣∣∣
h=0

+
h3

6
d3ri

dt3

∣∣∣∣
h=0

+ . . .

= ri(t) + h vi(t) +
h2

2
F i(t)
m

+
h3

6
d3ri

dt3

∣∣∣∣
h=0

+ . . . (7.3)

Here we have introduced the velocity vi = dri/dt. Furthermore, we have used
Newton’s equation of motion to include the force F i = md2ri/dt

2 acting on
the i-th particle. Analogously we can derive

ri(t− h) = ri(t) − h vi(t) +
h2

2
F i(t)
m

− h3

6
d3ri

dt3

∣∣∣∣
h=0

+ . . . (7.4)

Adding (7.3) and (7.4) yields the Verlet algorithm [290]

ri(t+ h) = 2ri(t) − ri(t− h) + h2 F i(t)
m

+ O(h4) . (7.5)

There is a simple test whether the numerical integration of the equations of
motion is accurate and reliable: the total energy, i.e., the sum of the kinetic
energy and potential energy, should be conserved along the trajectory. In order
to evaluate the kinetic energies, the velocities at time t are needed. Note that
they do not explicitly appear in (7.5). They can be estimated by

vi(t) =
ri(t+ h) − ri(t− h)

2h
. (7.6)

However, the kinetic energy evaluated with (7.6) belongs to the time step
prior to the one used for the positions (7.5) which enter the evaluation of the
potential energy. This problem can be avoided in the so-called velocity Verlet
algorithm [291]

ri(t+ h) = ri(t) + h vi(t) +
h2

2
F i(t)
m

vi(t+ h) = vi(t) + h
F i(t+ h) + F i(t)

2m
, (7.7)

which is mathematically equivalent to the Verlet algorithm (Problem 7.1).
In order to perform molecular dynamics simulations with the Verlet algo-

rithm, a specific time step has to be chosen. Of course, the error associated
with each time step is the smaller, the shorter the time step. On the other
hand, a shorter time step means more iterations for a given trajectory or sim-
ulation time which increases the computational cost. Furthermore, the error
of each time step may accumulate. Hence the chosen time step will represent a
compromise. The change in the total energy during one molecular run should



7.2 Quantum Dynamics 187

be well below 1%. As a rule of the thumb, the time step should be ten times
smaller than the shortest vibrational or rotational period of a given system.
If, e.g., hydrogen belongs to the simulation ensemble, then usually the H-H
intramolecular vibration corresponds to the fastest time scale with a vibra-
tional period of τvib ≈ 8 fs, hence the time step should be shorter than 0.8 fs.

In a conservative system, the energy is conserved in a molecular dynamics
run. In a thermodynamical sense this means that the phase space trajectory
belongs to the microcanonical ensemble. Often it is desirable to include dis-
sipation effects in the gas-surface dynamics simulations. The simplest way to
achieve this is to add a friction term to the Hamiltonian. If, however, the
substrate should not only act as an energy sink but rather as a heat bath
in order to model thermalization and accommodation processes, both energy
loss and energy gain processes have to be taken into account. This can be
achieved by a number of techniques. The most prominent ones are the gener-
alized Langevin equation approach [292] and the Nosé thermostat [293, 294].
In both approaches, the molecular dynamics simulations sample the canonical
ensemble at a specified temperature.

7.2 Quantum Dynamics

There are two ways to determine quantum mechanical reaction probabilities:
by solving the time-dependent or the time-independent Schrödinger equation.
Both approaches are equivalent [295] and should give the same results. The
question which method is more appropriate depends on the particular prob-
lem. Time-independent implementations are usually more restrictive as far as
the form of the potential is concerned, but often the choice of the method is
a matter of training and personal taste.

In the most common time-independent formulation, the concept of defin-
ing one specific reaction path coordinate is crucial. Starting from the time-
independent Schrödinger equation

(H − E) Ψ = 0 , (7.8)

one chooses one specific reaction path coordinate s and separates the kinetic
energy operator in this coordinate

(
−h̄2

2μ
∂2

s + H̃ − E) Ψ = 0 . (7.9)

Here H̃ is the original Hamiltonian except for the kinetic energy operator
in the reaction path coordinate. Usually the use of curvelinear reaction path
coordinates results in a more complicated expression for the kinetic energy
operator involving cross terms, but for the sake of clarity I have neglected this
in (7.9). As the next step one expands the wave function in the coordinates
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perpendicular to the reaction path coordinate in some suitable set of basis
functions,

Ψ = Ψ(s, . . .) =
∑

n

ψn(s) |n〉 . (7.10)

Here n is a multi-index, and the expansion coefficients ψn(s) are assumed to
be a function of the reaction path coordinate. Now we insert the expansion of
Ψ in (7.9) and multiply the Schrödinger equation by 〈m|, which corresponds
to performing a multi-dimensional integral. Since the basis functions |n〉 are
assumed to be independent of s, we end up with the so-called coupled-channel
equations,

∑

n

{
(
−h̄2

2μ
∂2

s − E) δm,n + 〈m|H̃ |n〉
}
ψn(s) = 0 . (7.11)

Instead of a partial differential equation – the original time-independent
Schrödinger equation (7.8) – we now have a set of coupled ordinary differential
equation. Still a straightforward numerical integration of the coupled-channel
equations leads to instabilities, except for in simple cases, due to exponentially
increasing so-called closed channels. These problems can be avoided in a very
stable and efficient coupled-channel algorithm [296–298] that will be briefly
sketched in the following.

For the solution Ψ defined in (7.10), which represents a vector in the space
of the basis functions, the initial conditions are not specified. This function
can also be considered as a matrix

Ψ = (ψ)nl , (7.12)

where the index l labels a solution of the Schrödinger equation with an incident
plane wave of amplitude one in channel l and zero in all other channels.
Formally one can then write the solution of the Schrödinger equation for a
scattering problem in a matrix notation as

Ψ(s→ +∞) = e−iqs − eiqs r ,

Ψ(s→ −∞) = e−iqs t . (7.13)

Here q = qmδm,n is a diagonal matrix, r and t are the reflection and transmis-
sion matrix, respectively. Now one makes the following ansatz for the wave
function,

Ψ(s) = (1 − ρ(s))
1
τ(s)

t . (7.14)

Equation (7.14) defines the local reflection matrix ρ(s) (LORE) and the
inverse local transmission matrix τ(s) (INTRA). The boundary values for
these matrices are (except for phase factors which, however, do not affect the
transition probabilities):
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(ρ(s); τ(s)) =
{

(r; t) s→ +∞
(0; 1) s→ −∞ . (7.15)

From the Schrödinger equation first order differential equations for both ma-
trices can be derived [296] which can be solved by starting from the known
initial values at s→ −∞; at s→ +∞ one then obtains the physical reflection
and transmission matrices. Thus the numerically unstable boundary value
problem has been transformed into a stable initial value problem.

In the time-dependent or wave-packet formulation, the solution of the time-
dependent Schrödinger equation

ih̄
∂

∂t
Ψ(R, t) = H Ψ(R, t) (7.16)

can formally be written as

Ψ(R, t) = e−iHt/h̄ Ψ(R, t = 0) . (7.17)

Here where we have used the time evolution operator exp(−iHt/h̄) with the
Hamiltonian H = T + V for time-independent potentials V . The evaluation
of the time evolution operator is unfortunately not straightforward because
the kinetic energy operator T and the potential V do in general not com-
mute. The most common methods to represent the time-evolution operator
exp(−iHt/h̄) in the gas-surface dynamics community are the split-operator
[299, 300] and the Chebychev [301] methods. In the split-operator method,
the time-evolution operator for small time steps Δt is written as

e−iHΔt/h̄ = e−iTΔt/2h̄ e−iV Δt/h̄ e−iTΔt/2h̄ + O(Δt3) , (7.18)

Interestingly enough, the split-operator technique for a certain number of
time steps corresponds to a naive successive application of the operator
exp(−iTΔt/h̄) and exp(−iV Δt/h̄) except for the first and last step. How-
ever, apparently this is sufficient to approximately take into account the fact
that T and V do not commute.

In the Chebyshev method, the time-evolution operator is expanded as

e−iHΔt/h̄ =
jmax∑

j=1

aj(Δt) Tj(H̄) , (7.19)

where the Tj are Chebyshev polynomials and H̄ is the Hamiltonian rescaled
to have eigenvalues in the range (−1, 1). Both propagation schemes use the
fact that the kinetic energy operator is diagonal in k-space and the potential
is diagonal in real-space. The wave function and the potential are represented
on a numerical grid, and the switching between the k-space and real-space
representations is efficiently done by Fast Fourier Transformations (FFT) [17].

Quantum dynamical studies are still computationally very demanding.
This prevents the explicit dynamical consideration of surface degrees of free-
dom. At most, one surface oscillator has been taken into account to model
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the influence of the substrate vibrations on scattering or adsorption probabili-
ties [302–304]. However, usually one is not interested in the explicit dynamics
of the substrate vibrations in the context of gas-surface dynamics as long as
there is no strong surface rearrangement due to the interaction with atoms
and molecules. In such a case, substrate phonons are then rather treated as
a heat bath that lead to thermalization and dissipation effects. In order to
describe these effects in terms of an open system dynamics, the system can
be partitioned into a subsystem (often referred to as just the system) and the
surrounding bath. The reduced density matrix

ρ =
∑

m,n

wmn |m〉〈n| , (7.20)

is then defined in the Hilbert space of the system Hamiltonian H . If the
functions |n〉 form a basis of this space, the diagonal matrix elements wnn =〈
n|ρ|n〉 are interpreted as the population of the state |n〉, whereas the off-

diagonal elements wmn =
〈
m|ρ|n〉 are related to the phase coherence between

the states |m〉 and |n〉 with respect to interference effects [305]. Physical
observables are obtained as usual in a density matrix formulation by forming
the trace 〈

A
〉

= tr (Aρ) . (7.21)

The time-evolution of the reduced density matrix is given by the Liouville–von
Neumann equation [305, 306]

∂ρ

∂t
= − i

h̄
[H, ρ] + LBρ , (7.22)

where dissipation effects are taken into account through the Liouville bath
operator LB. Without the dissipation term, (7.22) is equivalent to the time-
dependent Schrödinger equation. However, solving (7.22) for a closed system
is not advisable, since a N × N matrix has to be determined if the wave
functions are expanded in a set of N basis functions while in the ordinary
time-dependent Schrödinger equation the wave function is just represented
by a N -dimensional vector. Still, the computational effort associated with the
density-matrix formalism is necessary in order to include dissipation effects in
the quantum dynamics. This is not only essential for scattering and reactive
processes at surface, but also for reactions induced by electronic transitions
(see Sect. 9.5). The dissipative term can describe vibrational or electronic re-
laxation effects as well as so-called dephasing processes with corresponding
time scales, T1, T2 and T ∗

2 , respectively.
There is no unique way to choose the bath operator LB. Usually one

invokes the Markov approximation, which means that one assumes that the
change of the density matrix at time t is a function of the reduced density
matrix at that time only, i.e. there are no memory effects of the past history.
Even in this approximation, LB is not fully specified. There is a phenomeno-
logical form proposed by Lindblad [307] which guarantees that at all times the
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diagonal elements of ρ properly correspond to state populations. The Lindblad
semigroup functional is given by

LBρ =
∑

k

(
CkρC

+
k − {C+

k Ck, ρ
})

, (7.23)

where {A,B} = AB+BA denotes the anticommutator. The Ck are the Lind-
blad operators. The dissipative channel is labeled by the subscript k. In the
Lindblad approach, different diagonal elements are coupled by energy relax-
ation processes on a timescale T1. The off-diagonal elements decay because
of energy relaxation on the timescale T2 = 2T1 as well as because of pure
dephasing processes due to elastic processes on a time scale T ∗

2 . A shortcom-
ing of the Lindblad approach is that the operators are not connected in a
physically transparent way to the interaction Hamiltonian between system
and bath [305].

In the Redfield approach [308], the bath operator LB is derived from the
system-bath interaction using second-order perturbation theory. This leads to
the Redfield equations

LBρ =
∑

l

([
G+

l ρ,Gl

]
+
[
Gl, ρG

−
l

])
, (7.24)

where the bath modes are labeled by l and the system dependence of the
system-bath operators is represented by the operators Gl. Still, the Redfield
approach suffers from another deficiency, namely the possible violation of the
positivity of the density matrix. There have been further proposals for the
construction of LB [305] which will not be discussed here.

Often negative imaginary potentials, so-called optical potentials have been
used in dissipative dynamics. However, it is important to realize that there is a
difference between the use of a friction term in classical dynamics and the use
of an optical potential in quantum dynamics. Whereas a friction term leads
to momentum relaxation processes, an optical potential reduces the norm of
the wave function.

It is a wide-spread believe that classical dynamical methods are much less
time-consuming than quantum ones. This is certainly true if one compares
the computational cost of one trajectory to a quantum calculation. If inte-
grated quantities such as the sticking probability are to be determined, then
the statistical error of the result is only related to the number of computed
trajectories and not to the dimensionality of the problem. For example, if the
sticking probability S lies in the range 0.1 ≤ S ≤ 1, then usually 103–104

trajectories are sufficient to obtain an adequately accurate result independent
of the complexity of the system.

However, for the evaluation of detailed microscopic distribution function
in scattering or desorption processes at surfaces the statistical requirements
are much more demanding. Then the delocalized nature of the wave func-
tions in the quantum dynamics can be advantageous. Instead of many tra-
jectory calculations one quantum calculation might be sufficient. Quantum
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calculations correspond in a sense to the simultaneous determination of many
trajectories. The crucial difference between quantum and classical dynam-
ics is that in quantum dynamics the averaging is done coherently while it is
done incoherently in classical dynamics. In addition, in wave-packet calcula-
tions dynamical simulations are performed for a whole range of energies in
one run, and in a time-independent coupled-channel method the microscopic
transitions probabilities of all open channels are determined simultaneously.
Consequently, quantum dynamical simulations do not necessarily have to be
more time-consuming that classical calculations.

7.3 Parameterization of ab initio Potentials

In order to perform dynamical simulations on a potential energy surface
derived from first-principles calculations, one needs a continuous description
of the potential. This is especially true for quantum dynamical simulations.
Since the wave functions are delocalized, they always probe a certain area
of the PES at any time. The total energy calculations, however, just provide
total energies for discrete configurations of the nuclei. In classical molecular
dynamics simulation, the gradients of the potential are only needed for one
particular configuration at any time. This makes ab initio molecular dynam-
ics simulations possible in which the forces necessary to integrate the classical
equations of motions are determined by electronic structure calculations in
each step [309–312]. The evaluation of the forces for every time step of a
MD run is computationally still so demanding that most ab initio molecular
dynamics studies have been limited to the simulation of well below 100 trajec-
tories. This number is usually much too small to obtain sufficient statistics for
the reliable determination of reaction probabilities or distributions. However,
this situation is changing. Recently the first ab initio molecular dynamics stud-
ies addressing dissociative adsorption on surface have been performed [313]
that is based on more than 4.000 ab initio trajectories so that statistically
meaningful results can be obtained, as will be demonstrated at the end of this
chapter in Sect. 7.7.

On the other hand, molecular dynamics simulations on a suitable analytic
representation of a potential energy surface can be extremely fast. Hence it is
desirable to adjust the first-principles energies to an analytical or numerical
continuous representation of the PES. This is a highly non-trivial task. On the
one hand the representation should be flexible enough to accurately reproduce
the ab initio input data, on the other hand it should have a limited number
of parameters so that it is still controllable. Ideally a good parameterization
should not only accurately interpolate between the actually calculated points,
but it should also give a reliable extrapolation to regions of the potential
energy surface that have actually not been determined by the ab initio calcu-
lations.
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The explicit form of the chosen analytical or numerical representation of
the ab initio potential varies from application to application. Often the choice
is dictated by the dynamics algorithm in which the representation is used.
Most applications have been devoted to the interaction of a diatomic molecule
with the surface [314, 315]. The angular orientation of the molecule has usu-
ally been expanded in spherical harmonics and the center-of-mass coordinates
parallel to the surface in a Fourier series [316–319]. For the PES in the plane
of the molecular distance from the surface and the interatomic separation a
representation in reaction path coordinate has been employed [317–320], but
also two-body potentials have been used [316]. Before detailed ab initio po-
tentials became available, the so-called LEPS (London-Eyring-Polanyi-Sato)
form was often used to construct a global PES [321]. This parameterization
contains only a small number of adjustable parameters which made it so at-
tractive for model calculations, but which makes it at the same time relatively
inflexible. A modified LEPS potential has still been successfully used to fit an
ab initio PES of the interaction of atomic hydrogen with the hydrogenated
Si(100) surface [322].

Ab initio total energies are often mainly determined at high-symmetry
points of the surface in order to reduce the computational cost. It is true that
these high-symmetry points usually reflect the extrema in the PES. However,
due to this limitation the fitted continuous PES can only contain terms that
correspond to these high-symmetry situations. On the one hand this often
saves computer time also in the quantum dynamics because certain additional
selection rules are introduced which reduces the necessary basis set [316,317].
On the other hand, of course this represents an approximation since it intro-
duces additional artificial symmetries into the simulations. The question, how
serious the neglect of terms with lower symmetry is, remains open until these
terms have been determined and included in actual dynamical calculations. In
fact, the influence of these terms can be quite significant, as has been revealed
in ab initio molecular dynamics simulations [313].

Most of the corrugation in molecule-surface potential energy surfaces can
already be derived from the atom-surface interaction. This observation has
been used in corrugation-reducing procedures [323,324]. The first step is the
ab initio determination of the interaction of both the atomic and the molecular
species with the surface. From the atomic data, a three-dimensional refer-
ence function is constructed which is subtracted from the molecular potential
energy surface. The remaining function is much smoother than the original
potential energy surface and therefore much easier to fit. In addition, the in-
terpolated PES reflects the correct symmetry of the system. This method has
been successfully used for a continuous representation of several gas-surface in-
teraction systems including H2/Pd(111) [323], H2/Ni(111) [324], H2/Pt(211)
[325], or H2/Cu(110) [326].

If more than just the molecular degrees of freedom should be considered in
a parameterization of an ab initio PES, analytical forms become very compli-
cated and cumbersome. As an alternative, the interpolation of ab initio points
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by a neural network has been proposed [327–329]. Neural networks can fit, in
principle, any real-valued, continuous function to any desired accuracy. They
require no assumptions of the functional form of the underlying problem. On
the other hand, there is no physical insight that is used as an input in this
parameterization. Hence the parameters of the neural network do not reflect
any physical or chemical property.

This deficiency is avoided if the results of first-principles electronic struc-
ture calculations are used to adjust the parameters of a tight-binding formal-
ism [72]. A tight-binding method is more time-consuming than an analytical
representation or a neural network since it requires the diagonalization of a
matrix. However, due to the fact that the quantum mechanical nature of bond-
ing is taken into account [68] tight-binding schemes need a smaller number of
ab initio input points to perform a good interpolation and extrapolation [330].
This is demonstrated in Fig. 7.1 that shows the PES of H2/Pd(100) obtained
by a tight-binding fit to the ab initio data [202]. The plots should be com-
pared with the ab initio PES in Fig. 5.19. The filled circles denote the points
that have been used to obtain the fit. While for the h–b–h cut (see p. 139) a
relatively large number of input points were necessary for the fit (Fig. 7.1a),
for the h–t–h three points were sufficient for a satisfactory agreement with the
ab initio data (Fig. 7.1a). This is caused by the fact that the parameters of
the tight-binding scheme, the Slater-Koster integrals [67], have a well-defined
physical meaning.

An important issue is to judge the quality of the fit to an ab initio PES.
Usually the root mean squared (RMS) error between fit and input data is
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used as a measure of the quality of a fit. If this error is zero, then everything
is fine. However, normally this error is larger than zero. The systematic error
of the ab initio energies is usually estimated to be of the order of 0.1 eV. Often
it is said that the RMS error of the fit should be of the same order. But the
dynamics of molecular dissociation at surfaces can be dramatically different
depending on whether there is a barrier for dissociation of height 0.1 eV or
not [331]. Hence for certain regions of the PES the error has to be much
less than 0.1 eV, while for other regions even an error of 0.5 eV might not
influence the dynamics significantly. Another example occurs in a reaction
path parameterization. If the curvature in the parameterization is off by a
few percent, the energetic distribution of barrier heights is not changed and
the dynamical properties are usually not altered significantly. However, the
location of the barriers is changed and consequently the RMS error can become
rather large. Hence one has to be cautious by just using the RMS error as a
quality check of the fit. Unfortunately there is no other simple error function
for the assessment of the quality of a fit. If it is possible, one should perform a
dynamical check. Obviously, if the dynamical properties calculated on a fitted
PES agree with the ones calculated on the original PES, the quality of the fit
should be sufficient.

7.4 Scattering at Surfaces

If a beam of atoms or molecules is hitting a surface that has a small adsorption
well for the particular particles, most of them will be scattered back into the
gas phase. Especially for the case of light atoms and molecules when the
de Broglie wave length of the particles is of the order of the lattice spacing,
the quantum nature of the scattering event has to be taken into account which
leads to elastic scattering and diffraction.

Let us first consider a beam of atoms with initial wave vector Ki that is
scattered elastically at a periodic surface. The component of the wave vector
parallel to the surface K‖

f after the scattering is given by

K
‖
f = K

‖
i + Gmn , (7.25)

whereGmn is a vector of the two-dimensional reciprocal lattice of the periodic
surface. Since there is no energy transfer to the surface in elastic scattering,
the total kinetic energy of the atoms is conserved:

h̄2K2
f

2M
=
h̄2K2

i

2M
. (7.26)

By (7.25) and (7.26) all possible final scattering angles are specified. This
leads to a discrete, finite set of scattering channels. Note that for a given
incident energy, angle and mass of the atoms the scattering angles are entirely
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determined by the geometry of the surface. The interaction potentials only
influences the intensity of the scattering peaks, but not their position. That is
why diffraction at surfaces can be used to determine the structure of surfaces.

Now we allow for energy transfer processes to the surface, i.e., we consider
the inelastic scattering of atoms. The main source for inelastic effects is the
excitation and deexcitation of substrate phonons. These phonons also carry
momentum so that the conservation of parallel momentum leads to

K
‖
f = K

‖
i +Gmn +

∑

exch.phon.

±Q , (7.27)

where Q is a two-dimensional phonon-momentum vector parallel to the sur-
face. The plus-signs in the sum correspond to the excitation or emission of
a phonon while the minus-signs represent the deexcitation or absorption of a
phonon. The excitation and deexcitation of phonons with momentum Q and
mode index j also modifies the energy conservation relation:

h̄2K2
f

2M
=
h̄2K2

i

2M
+

∑

exch.phon.

±h̄ωQ,j . (7.28)

If only one phonon is emitted or absorbed in the collision process, the sums in
(7.27) and (7.28) reduce to one term. If one-phonon processes are dominant
in scattering, the phonon spectrum of a surface can be measured.

A schematic summary of possible collision processes in nonreactive scat-
tering is presented in Fig. 7.2. With Imn the intensity of the elastic diffrac-
tion peak mn according to (7.25) is denoted. The scattering peak I00 with
K

‖
f =K

‖
i is called the specular peak. The excitation of phonons usually leads
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to a reduced normal component of the kinetic energy of the back-scattered
atoms or molecules. Thus the reflected beam is shifted in general to larger
angles with respect to the surface normal compared to the angle of incidence.
The resulting supraspecular scattering is indicated in Fig. 7.2 as the phonon-
inelastic reflection event.

The coherent scattering of atoms or molecules from surfaces has been
known as a tool for probing surface structures since 1930 [333]. The diffraction
pattern yields direct information about the periodicity and lattice constants
of the surface. Furthermore, if one measures the intensity of the specular peak
as a function of the angle of incidence, then at specific angles resonances ap-
pear [334]. They are due to so-called selective adsorption resonances which are
also indicated in Fig. 7.2. These resonances occur when the scattered particle
can make a transition into one of the discrete bound states of the adsorption
potential. This can only happen if temporarily the motion of the particle is en-
tirely parallel to the surface. The interference of different possible paths along
the surface causes the resonance effects. Energy and momentum conservation
yields the selective adsorption condition

h̄2K2
i

2M
=
h̄2(K‖

i +Gmn)2

2M
− |El| , (7.29)

where El is a bound level of the adsorption potential. Usually these selec-
tive adsorption resonances only occur for relative weak adsorption potentials
that are not strongly corrugated, i.e., mainly for physisorption potentials.
The bound state energies can be obtained without detailed knowledge of the
scattering process. Typically one assumes a Morse potential

V (z) = D0

(
e−2α(z−zo) − 2e−α(z−zo)

)
, (7.30)

or some other parameterization of the interaction potential and can then de-
rive the well depth, position and range of the adsorption potential from an
adjustment of the parameters of the potential to reproduce the experimentally
observed binding energies [109]. In particular helium atom scattering (HAS)
has been used intensively to study surface crystallography and the shape
of physisorption potentials (see, e.g., [335] and references therein). Helium
atom scattering has furthermore been employed extensively in order to de-
termine the surface phonon spectrum in one-phonon collisions via (7.27) and
(7.28) [335].

Hydrogen molecules have been utilized less frequently in order to study
interaction potentials [336]. The coherent elastic scattering of molecules is
more complex than atom scattering because in addition to parallel momen-
tum transfer the internal degrees of freedom of the molecule, rotations and
vibrations, can be excited during the collision process. Then the total energy
balance in the scattering reads

h̄2K2
f

2M
=
h̄2K2

i

2M
+ΔErot + ΔEvib +

∑

exch.phon.

±h̄ωQ,j . (7.31)
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Usually the excitation of molecular vibrations in molecule-surface scattering
is negligible, in contrast to the phonon excitation. This is due to the fact
that the time-scale of the molecular vibrations is usually much shorter than
the scattering time or the rotational period. Therefore the molecular vibra-
tions follow the scattering process almost adiabatically. Molecular rotations,
on the other hand, can be excited rather efficiently in the scattering at highly
anisotropic surfaces. The rotational excitation leads to additional peaks in the
diffraction spectrum, the rotationally inelastic diffraction peaks.

Experimentally, rotationally inelastic diffraction of hydrogen molecules has
been first observed in the scattering at inert ionic solids such as MgO [337] or
NaF [338]. At metal surfaces with a high barrier for dissociative adsorption,
rotationally inelastic diffraction peaks are usually hard to resolve except in the
case of HD scattering, where the displacement of the center of mass from the
center of the charge distribution leads to a strong rotational anisotropy [339].

In the case of hydrogen scattering from reactive surfaces, where non-
activated dissociative adsorption is possible, the repulsive interaction is not
mediated by the tail of the metal electron density, but occurs rather close to
the surface. Due to the chemical nature of this interaction the potential is
strongly corrugated and anisotropic with regard to the molecular orientation.
Thus there should be large intensities in the off-specular and rotationally in-
elastic diffraction peaks. This is indeed the case, as six-dimensional quantum
coupled-channel calculations for the scattering of H2/Pd(100) showed [340]. In
these calculations a parameterization of the ab initio PES plotted in Fig. 5.19
[202] was used.

One typical calculated angular distribution of H2 molecules scattered at
Pd(100) is shown in Fig. 7.3. The total initial kinetic energy is Ei = 76meV.
The incident parallel momentum corresponds to 2h̄G along the 〈01̄1〉 direc-
tion. This leads to an incident angle of θi = 32◦. The molecules are initially
in the rotational ground state ji = 0. (m,n) denotes the parallel momentum
transfer ΔG‖ = (mG,nG). The specular peak is the most pronounced one,
but the first order diffraction peak (10) is only a factor of four smaller (note,
that in a typical HAS experiment the off-specular peaks are about two orders
of magnitude smaller than the specular peak). The results for the rotation-
ally inelastic diffraction peaks j = 0 → 2 have been summed over all final
azimuthal quantum numbers mj . The excitation probability of the so-called
cartwheel rotation with m = 0 is for all peaks approximately one order of
magnitude larger than for the so-called helicopter rotation m = j, since the
polar anisotropy of the PES is stronger than the azimuthal one.

This steric effect in scattering could already be expected from detailed
balance arguments. According to the principle of detailed balance [341–343],
in a equilibrium situation the flux impinging on a surface from the gas-phase,
which is rotationally isotropically distributed, should equal the desorption
plus the scattering flux. Since in desorption the helicopter rotations are pref-
erentially occupied (see p. 223), in scattering the cartwheel rotations have to
be preferentially excited.
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Fig. 7.3. Six-dimensional quantum results of the rotationally inelastic scattering
of H2 on Pd(100) for a kinetic energy of 76 meV at an incidence angle of 32◦ along
the [10] direction of the square surface lattice. The upper panel shows the inplane
diffraction spectrum where all peaks have been labeled according to the transition.
The lower spectrum shows all diffraction peaks where the open and filled circles cor-
respond to the rotationally elastic and rotationally inelastic scattering, respectively.
The radius of the circles is proportional to the logarithm of the scattering intensity.
(After [340])

The intensity of the rotationally inelastic diffraction peaks in Fig. 7.3 is
comparable to the rotationally elastic ones. Except for the specular peak they
are even larger than the corresponding rotationally elastic diffraction peak
with the same momentum transfer (m,n). Note that due to the initial con-
ditions the rotationally elastic and inelastic (2̄0) diffraction peaks fall upon
each other.

The out-of-plane scattering intensities are not negligible, which is demon-
strated in the lower panel of Fig. 7.3. The open circles correspond to rota-
tionally elastic, the filled circles to rotationally inelastic diffraction. The radii
of the circles are proportional to the logarithm of the scattering intensity.
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spectra in the scattering of He at Xe covered Cu surfaces. (a) He→Xe/Cu(111)
scattering, (b) He→Xe/Cu(100) scattering [346]

The sum of all out-of-plane scattering intensities is approximately equal to
the sum of all in-plane scattering intensities. Interestingly, some diffraction
peaks with a large parallel momentum transfer still show substantial inten-
sities. This phenomenon is well known from helium atom scattering and has
been discussed within the concept of so-called rainbow scattering.

The experimental observation of diffraction in reactive systems is not triv-
ial. Because of the attractive molecule-surface interaction, an adsorbate layer
builds up very rapidly during the experiment. The adatoms destroy the per-
fect periodicity of the surface and thus suppress diffraction effects. In order to
keep the surface relatively clean, one has to use rather high surface tempera-
tures so that adsorbates quickly desorb again. High surface temperatures, on
the other hand, also smear out the diffraction pattern. Still experimentalists
managed to clearly resolve rotationally inelastic peaks in the diffraction pat-
tern of D2/Ni(110) [344] and D2/Rh(110) [345] in addition to rotationally
elastic peaks.

However, for a complete description of the diffraction of light atoms and
molecules from surfaces the excitation of substrate phonons has to be taken
into account. This is not possible in a full-dimensional quantum dynamical
framework. Instead, standard approximative methods known from scattering
theory [295] have to be used. A considerable amount of effort has been devoted
to the theoretical description of helium atom scattering [332] since this is a
well-established technique to measure surface and adsorbate structures and
surface phonon dispersion curves [335].

Adsorbed monolayers of heavy rare gas atoms have served as a benchmark
system for the study of single- and multiphonon excitation in atom-surface
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scattering [332]. These monolayers have non-dispersive Einstein surface vibra-
tional modes which can be easily identified in energy transfer scattering spec-
tra. Figure 7.4 shows a comparison of measured and calculated multiphonon
spectra in the scattering of He at Xe/Cu(111) and Xe/Cu(100) [346]. Whereas
Xe forms a commensurate adlayer on Cu(111) above 50K, on Cu(100) there
is an incommensurate hexagonal Xe adlayer. The calculations were performed
in the so-called exponentiated distorted-wave Born approximation [332], the
interaction potential was determined empirically from the simulation of single-
phonon scattering in the same systems. For Xe/Cu(111), the spectrum shows
well-defined, uniformly spaced peaks with a distance of 2.62meV. The peaks
correspond to the uncorrelated multiple absorption and emission of a disper-
sionless collective Xe vibrational mode perpendicular to the surface, called the
S-mode. The broad background is caused by other adlayer modes that show
a stronger dispersion.

In the case of the incommensurate Xe adlayer on Cu(100), it is not possible
to set up a finite surface unit cell and the corresponding dynamical matrix.
Instead, the scattering is modeled by a floating adlayer on a rigid substrate.
There is also a dispersionless S-mode evident with energy 2.71meV (Fig. 7.4b).
The hump seen in the experiment near the elastic line is due to the excitation
of the Cu(001) Rayleigh wave which is of course not reproduced in the model
with a fixed Cu substrate. Apart from that, the agreement between theory and
experiment for both systems is rather satisfactory, except for the elastic line.
The intensity of the elastic line can also be reproduced if diffuse scattering
contributions are taken into account [332].

7.5 Atomic and Molecular Adsorption on Surfaces

The sticking or adsorption probability is defined as the fraction of atoms or
molecules impinging on a surface that are not scattered back, i.e. that remain
on the surface. In principle, at surfaces with non-zero temperatures every
adsorbed particle will sooner or later desorb again because of thermal fluctu-
ations. Hence there is no unambiguous definition of the sticking probability
since it depends on the time-scale of the required residence time on the sur-
face. However, often the residence times of adsorbed atoms or molecules are
rather long compared to microscopic time scales so that this unambiguity does
not really pose a problem for the definition of the sticking probability.

First we consider atomic adsorption and molecular adsorption. With the
latter term we allude to adsorption events in which the molecule stays intact
on the surface. In the following we will refer to both processes by the term
atomic adsorption. In order to stick on a surface in an attractive potential well,
an atom has to transfer its kinetic energy to the substrate because otherwise it
would be scattered back into the gas phase. We define PE(ε) as the probability
that an incoming particle with kinetic energy E will transfer the energy ε to
the surface. If an atom impinging on a surface looses more energy than its
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Fig. 7.5. Schematic illustration of the hard-cube model. An atom or molecule with
mass m is impinging in an attractive potential with well depth Ead on a surface
modeled by a cube of effective mass Mc. The surface cube is moving with a velocity
vc given by a Maxwellian distribution

kinetic energy in the gas phase, then it cannot escape the adsorption well and
will remain trapped at the surface. Hence the atomic or molecular sticking
probability can be expressed as

S(E) =
∫ ∞

E

PE(ε) dε . (7.32)

The atomic excess energy has to be transferred to substrate excitation, i.e.,
either to phonons or electron-hole pairs. Hence any theoretical description of
atomic or molecular adsorption has to consider dissipation to the continuous
excitation spectrum of the substrate.

In the simplest approximation, the scattering of an atom at a surface can
be treated as a binary elastic collision between a gas phase atom (mass m)
and a stationary substrate atom (mass M). Using energy and momentum
conservation, the energy transfer Δ = Ei − Ef to the substrate is given by
the Baule formula [347] (see Problem 7.3)

Δ =
4μ

(1 + μ)2
Ei , (7.33)

where μ is the mass ratio μ = m/M .
This simple Baule model is also the basis of the somewhat more sophisti-

cated hard-cube model (HCM) [348,349] for the estimation of trapping prob-
abilities in atomic adsorption. In this model that is illustrated in Fig. 7.5, the
surface is described by a cube of effective mass Mc which is moving freely
with a velocity distribution Pc(vc). An atom impinging on the surface with
an attractive well of depth Ead will hit the hard cube with a velocity

vwell = −
√
v2
g +

2Ead

m
. (7.34)

Taking energy and momentum conservation into account, the velocity of the
atom in the potential well after the collision is given by



7.5 Atomic and Molecular Adsorption on Surfaces 203

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

T
ra

pp
in

g 
pr

ob
ab

ilt
y

0.0

0.2

0.4

0.6

0.8

1.0

Kinetic energy (eV)
0.0 1.8

Ead = 0.1 eV, μ = 0.25, T s = 100 K
Ead = 0.1 eV, μ = 0.33, T s = 100 K
Ead = 0.4 eV, μ = 0.25, T s = 100 K
Ead = 0.4 eV, μ = 0.25, T s = 400 K

Fig. 7.6. Trapping probability as a function of the kinetic energy evaluated accord-
ing to the hard cube model (7.39) for different adsorption energies Ead, mass ratios
μ = m/Mc and surface temperatures Ts

v′well =
μ− 1
μ+ 1

vwell +
2

μ+ 1
vc , (7.35)

where now μ is the mass ratio μ = m/Mc. Particles with a velocity v′well <√
2Ead/m cannot escape the potential well and will remain at the surface.

For a given velocity vg, v′well depends on vc. Using (7.35), an atom that hits
the surface cube with a velocity

vc <
μ+ 1

2

√
2Ead

m
− μ− 1

2
vwell = vlim (7.36)

will get trapped. This means that the trapping probability is determined by

Ptrap(vg) =

vlim∫

−∞
Pc(vc)dvc . (7.37)

Now we use a weighted Maxwellian velocity distribution

Pc(vc) =
α√
πvg

(vg − vc) exp
{−α2v2

c

}
, (7.38)

with α =
√
Mc/2kBTs. This distribution takes the fact into account that

collisions are more probable when the surface cube is moving toward the
incoming atom than when it is moving away from it [348]. The trapping
probability is then given by [349] (Problem 7.4)

Ptrap(vg) =
1
2

+
1
2

erf(αvlim) +
exp
{−α2v2

lim

}

2
√
παvwell

. (7.39)
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In Fig. 7.6, trapping probabilities evaluated according to (7.39) are plotted
as a function of the kinetic energy for different parameters of the model. All
curves show a typical behavior, namely the decrease of the sticking probability
with increasing kinetic energy. This is due to the fact that the energy transfer
to the surface becomes less efficient at higher kinetic energies. Of course, the
higher the kinetic energy is, the more energy is transfered to the surface. But
the fraction of particles that loose more energy than their initial kinetic energy
becomes smaller at higher kinetic energies. It is important to note, however,
that the hard-cube model describes the adsorption of a point-like object on
a flat surface. In the case of the trapping of diatomic molecules at surfaces,
the trapping probability can become constant at high kinetic energies due to
the conversion of the initial kinetic energy into lateral and internal molecular
degrees of freedom, as will be shown in Sect. 7.7.

The examples plotted in Fig. 7.6 illustrate general trends in atomic adsorp-
tion. Heavier atoms will transfer more energy to the surface than lighter atoms
and therefore stick more easily at the surface. Larger adsorption energies will
also enhance the energy transfer and consequently the trapping probability.
Increasing the surface temperature leads to a broader velocity distribution.
Thus a temperature rise corresponds to an averaging over a wider range of
kinetic energies which leads to a decrease for negative curvature of the sticking
curve, i.e. at high sticking probabilities, and an increase for positive curvature,
i.e. at low sticking probabilities.

The hard-cube model has often been used in order to derive adsorption
well depths from measured trapping probabilities, also for molecular adsorp-
tion (see, e.g., [349, 350]). In the hard-cube model the surface is assumed to
be flat and structureless which means that in any scattering and adsorption
process the incident parallel momentum would be conserved. For the sticking
probability this leads to the normal energy scaling, i.e., the sticking proba-
bility is a function of the normal component Ei cos2 θi of the incident energy
alone, where θi is the angle of incidence.

However, real surfaces are not structureless as far as the interaction of
atoms and molecules is concerned. Adsorption corresponds to the making
of a chemical bond which strongly depends on the local environment. This
leads to corrugation in the potential energy surface, i.e., the potential depends
on the lateral position of the interacting particle on the surface. Trapping
probabilities often scale as Ei cosn θi with n < 2. An exponent of n = 0
corresponds to total energy scaling which is usually associated with a highly
corrugated potential energy surface.

In the case of molecular adsorption, the dynamics of adsorption become
even more complex due to the presence of the internal degrees of freedom of the
molecule, rotations and vibrations. During the trapping process, energy can be
very efficiently stored in these internal degrees of freedom thus enhancing the
trapping probability. This has been carefully analyzed in a molecular dynamics
study of the trapping of ethane, C2H6, on Pt(111) [352]. Experimentally, it
was found that the adsorption probability scales as Ei cos0.6 θi [351]. This



7.5 Atomic and Molecular Adsorption on Surfaces 205

0.1 0.2 0.3 0.4

experiment
MD simulations
HCM, Mc = 2 MPt

T
ra

pp
in

g 
pr

ob
ab

ilt
y

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5

Kinetic energy Ei cos0.6θi (eV)

Fig. 7.7. Trapping probability of ethane (C2H6) on Pt(111) at a surface temperature
of Ts = 95 K as a function of Ei cos0.6 θi where Ei is the initial kinetic energy and
θi the angle of incidence. Diamonds: experiment (from [351], not all measured data
points are plotted), circles: molecular dynamics simulations (from [352]), dashed
line: hard-cube model (HCM) at normal incidence for a well depth of 0.28 eV and
cube mass of 2 ·MPt to account for finite size effects

is demonstrated in Fig. 7.7 where the adsorption probabilities plotted as a
function of Ei cos0.6 θi roughly fall on one line.

Additionally we have plotted the results of the prediction of the hard-cube
model for the trapping probability using a realistic well-depth of 0.28 eV [352]
and a cube mass of 2 · MPt. This higher mass takes into account that the
impinging molecule interacts with more than a single substrate atom due to
its finite size. First of all, the hard-cube model would not be able to reproduce
the observed energy scaling. But it also predicts sticking probabilities that are
much smaller than the ones measured in the experiment. In order to reproduce
the experimental trapping probability, an unrealistically deep adsorption well
of more than 0.6 eV has to be assumed. However, it is not possible to get a
good fit of the measured data over the whole energy range with the hard-cube
model. This shows how dangerous it is to derive potential parameters from
low-dimensional model calculations.

In order to understand the role of the corrugation and the internal degrees
of freedom of the molecule, classical molecular dynamics simulations have
been performed [352] within periodic boundary conditions using a three-layer
Pt slab with 36 atoms per layer in the supercell and friction and random
forces applied to the bottom layer. The ethane molecule was described as a
pseudo-diatomic molecule consisting of two methyl groups. The parameters
of the interaction potential were determined empirically.

The classical equations of motion were integrated numerically with a
time step of 2 fs. Each trapping probability was obtained by averaging over
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Fig. 7.8. Illustration of the difference between cartwheel motion (angular momen-
tum vector ω parallel to the surface) and helicopter motion (ω parallel to the surface
normal) for a molecule rotating at a surface

N = 2000 trajectories yielding a statistical uncertainty in the calculated trap-
ping probabilities s of

√
s(1 − s)/

√
2000 ≤ 0.02. The results of the molecular

dynamics simulations are also plotted in Fig. 7.7. They reproduce the mea-
sured data quite well. The scatter in the theoretical data is not due to the
statistical uncertainty but rather to the scaling of the data for different angles
of incidence.

To analyze the role of the different degrees of freedom in the trapping pro-
cess, the partitioning of the energy was examined in detail for the first bounce
on the surface. The rotational motion was further divided into cartwheel
rotations with the angular momentum vector ω perpendicular to the surface
normal and into helicopter rotation with ω parallel to the surface normal.
These two types of rotational motion are illustrated in Fig. 7.8.

The average energy storage in the different degrees of freedom after the
first bounce at the surface for those molecule that remain trapped on the

Table 7.1. Average of the calculated energy storage in different modes after the first
bounce from ethane incident on Pt(111) for four different initial conditions for those
molecules that remained trapped on the surface. All energies in meV. (From [352])

Incident energy 200 200 400 400

Angle of incidence 0◦ 45◦ 0◦ 45◦

Trapping probability 0.63 0.78 0.13 0.35

Cartwheel 72 70 215 134

Helicopter 17 13 19 13

Parallel 37 95 50 182

Perpendicular −68 −85 −66 −71

Phonons 142 107 182 142
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surface are listed in Table 7.1. Two initial energies, 0.2 eV and 0.4 eV, and
two different angles of incidence, 0◦ and 45◦, have been chosen. It is obvious
that the excitation of surface phonons at the first bounce plays an important
role as a dissipation channel. However, due to the corrugation and anisotropy
of the potential the impinging molecule can transfer initial kinetic energy
into rotational motion and motion parallel to the surface. This energy is then
not available for the backscattering into the gas phase. In fact, it was found
that the trapping probability is determined to within 10% by the first surface
collision. That is how the transient energy transfer into rotational and parallel
motion leads to an enhancement of the sticking probability.

Indeed, the excitation of cartwheel rotations and phonons are the pri-
mary dissipation channels determining the trapping. Conversion of the inci-
dent energy into motion parallel to the surface and into helicopter rotations
is less important. The relative influence of the cartwheel excitation even in-
creases with increasing kinetic energy so that at high energies it is mainly the
excitation of cartwheel rotation that determines the trapping probability. This
is confirmed by the findings that the measured slope of the trapping proba-
bility in Fig. 7.7 cannot be reproduced by the hard-cube model alone since
the phonon-mediated trapping mechanism becomes too quickly ineffective at
higher energies. Thus only within multi-dimensional theoretical treatment the
rather large sticking probabilities at higher energies can be understood.

So far we have treated the atomic and molecular adsorption with purely
classical dynamical methods. Let us focus on the low-energy regime in the
following. At low kinetic energies all the trapping probabilities that have been
presented so far rise to values close to one. In fact, no matter how small the
adsorption well, no matter how small the mass ratio between the impinging
atom and the substrate oscillator, for E → 0 and Ts → 0 the sticking probabil-
ity will always reach unity if there is no barrier in front of the finite adsorption
well. This is due to the fact that every impinging particle will transfer energy
to the substrate at zero temperature. In the limit of zero initial kinetic energy
any energy transfer will be sufficient to keep the particle in the adsorption well.
However, this behavior is intimately linked to classical physics. Quantum me-
chanically, however, there is a non-zero probability for elastic scattering at
the surface, i.e., without any energy transfer. Hence the sticking probabilities
should become less than unity in the zero-energy limit, in particular for light
atoms impinging on a surface. In fact, this has been observed for example in
the sticking of rare gas atoms at cold Ru(0001) surfaces [353, 354].

Any theoretical description trying to reproduce elastic scattering has to
take into account the quantum nature of the phonon system. In the following
we model the surface as an ensemble of independent quantum surface oscilla-
tors. Since the oscillators are assumed to be independent, we can capture the
essential physics by just considering the two-dimensional problem of an atomic
projectile interacting via linear coupling with a single surface oscillator. The
total Hamiltonian has the following form:
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H0 = − h̄2

2M
∂2

∂Z2
+ V0(Z) + h̄ω (a+a+

1
2
) + V1(Z) x , (7.40)

where Z and x are the coordinates of the atom and the oscillator, respectively.
The linear coupling V1(Z) leads to a displacement of the surface oscillator.
Now we assume that the motion of the atom is hardly influenced by the exci-
tation of the surface oscillator. Furthermore, we treat the atom as a classical
particle that is subject to the force F = −∂V0(Z)/∂Z. This is called the tra-
jectory approximation since the atomic projectile moves on a fixed classical
trajectory given by the equation of motion

MZ̈ = −∂V0(Z)
∂Z

. (7.41)

The classical trajectory Z(t) introduces a time-dependent force in the Hamil-
tonian for the oscillator, therefore it is called the forced oscillator model. The
time-dependent Hamiltonian is given by

Hosc = h̄ω (a+a+
1
2
) + V1(Z(t)) x

= h̄ω (a+a+
1
2
) + λ(t) (a+ + a) , (7.42)

where we have introduced the coupling parameter

λ(t) = V1(Z(t))

√
h̄

2mω
. (7.43)

In the following we use the Heisenberg representation of quantum mechanics,
i.e., we assume that the operators a+ and a are time-dependent. a obeys the
equation of motion

ih̄ ȧ = [a,Hosc] = h̄ω a+ λ(t) (7.44)

with the solution

a(t) = − i
h̄
e−iωt

t∫

−∞
eiωt′ λ(t′)dt′ + e−iωta0 , (7.45)

where we have used the notation a0 = a(t = −∞). Now we suppose that before
the scattering event no phonons have been excited, i.e., a0|Ψ(t = −∞)〉 = 0.
The expectation or mean value of excited phonons n̄ after the scattering is
obtained from

n̄ = 〈Ψ(t = −∞)| a+(t = ∞)a(t = ∞) |Ψ(t = −∞)〉

=

∣∣∣∣∣∣
1
h̄

∞∫

−∞
eiωt′ λ(t′)dt′

∣∣∣∣∣∣

2

, (7.46)
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which means that n̄ is basically given by the square of the Fourier transform
of the coupling λ(t). In fact, for the forced oscillator the probability Pji for a
transition from an initial oscillator state i to the final state j can be explicitly
derived from n̄ [355]:

Pji =
i!
j!
e−n̄ n̄j−i [Lj−i

j (n̄)]2 , j ≥ i , (7.47)

where Lj−i
j is an associated Laguerre polynomial [356]. For an excitation from

the ground state one obtains a Poisson distribution

Pj0 =
n̄j

j!
e−n̄ . (7.48)

The probabilities (7.47) or (7.48), respectively, yield the energy distribution
of excited phonons and hence also the energy transfer to the surface. This
means that they correspond to the probability PE(ε) entering the expres-
sion (7.32) for the sticking probability. However, it should be noted that the
determination of the sticking probability within the trajectory approximation
seems to be inconsistent since the sticking probability is derived from tra-
jectories that correspond to non-sticking, namely scattering events. Still, the
trajectory approximation gives a reliable qualitative picture of the trends in
atomic and molecular adsorption. This approximation can even be improved
somewhat by considering backscattered trajectories with less kinetic energy
and by introducing reduced mass corrections [261, 354].

In fact, a compact expression can be derived for the energy distribution
in the scattering of an atom at a system of phonon oscillators with a Debye
spectrum at a temperature Ts [357,358]. Assuming a Morse potential for the
potential V0(Z), this expression depends on a small set of parameters such as
the potential well depth, the potential range, the mass of the surface oscillator
and the surface Debye temperature. This model was used in order to reproduce
the measured sticking probabilities of rare gas atoms on a Ru(001) surface at
a temperature of Ts = 6.5K [354]. Quantitatively, these parameters have to
be taken with caution because of the low dimensionality and simplicity of the
model, but they should be accurate in a semi-quantitative sense due to the
relatively small corrugation on the atom-surface potential for rare gas atoms.

A comparison between the measured and calculated sticking probabilities
for Ne, Ar, Kr and Xe on Ru(001) is shown in Fig. 7.9. The lighter the atoms,
the smaller the sticking probability. At low energies, the sticking probabilities
do not reach unity due to the quantum nature of the substrate phonons except
for the heaviest rare gas atom Xe. Indeed, attempts to reproduce the measured
sticking probabilities with purely classical methods have failed, at least for Ne
and Ar [353,354]. A classical treatment of the solid is only appropriate if the
energy transfer to the surface is large compared to the Debye energy of the
solid [359].

At even lower kinetic energies than reached in the experiment [354], the
quantum nature of the adsorbing particles cannot be neglected any longer
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ature of Ts = 6.5 K. Stars (*): experiment; lines: theoretical results obtained with
the forced oscillator model (after [354], not all measured data points are included)

and the trajectory approximation cannot be applied any more. In fact, for
short-range forces the matrix elements vanish for E → 0 while the classical
Fourier transform (7.46) remains finite [359, 360]. Therefore the quantum
mechanical sticking probability also vanishes for E → 0. However, in order to
see this effect extremely small kinetic energies corresponding to a temperature
below 0.1K are required [359]. Nevertheless, this quantum phenomenon in
the sticking at surfaces has been verified experimentally for the adsorption of
atomic hydrogen on thick liquid 4He films [361].

There is yet another effect that also leads to zero sticking at very low
energies. In quantum mechanics, there is a non-zero probability that a quan-
tum particle is reflected at attractive parts of the potential. If the potential
falls off asymptotically faster than 1/Z2, then the reflection amplitude R ex-
hibits the universal behavior [362, 363]

|R| −→
k→0

1 − bk , (7.49)

where k is the wave number corresponding to the asymptotic kinetic energy
E = h̄2k2/2M . This means that in the low energy limit the reflection proba-
bility |R|2 goes to unity even if the particle does not reach a classical turning
point. Such a quantum reflection has indeed been observed in the scattering
of an ultracold beam of metastable neon atoms from silicon and glass surfaces
[160]. In order to reproduce the measured reflectivities, an 1/Z4 dependence
of the potential has to be assumed [160,363] which indicates that the atoms
are scattered at the long-range tail of the Casimir-van der Waals potential
(see p. 110).
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Fig. 7.10. Illustration of the dissociative adsorp-
tion process on a surface for a diatomic molecule

7.6 Dissociative Adsorption and Associative Desorption

In the case of dissociative adsorption, there is yet another channel for energy
transfer, which is the conversion of the kinetic and internal energy of the
molecule into translational energy of the atomic fragments on the surface rel-
ative to each other. This process which is illustrated in Fig. 7.10 represents the
fundamental difference to atomic or molecular adsorption. It is true that even-
tually the atomic fragments will also dissipate their kinetic energy and come
to rest at the surface. However, especially in the case of light molecules like
hydrogen dissociating on metal surfaces the energy transfer to the substrate is
very small due to the large mass mismatch. Whether a molecule sticks on the
surface or not is almost entirely determined by the bond-breaking process for
which the energy transfer to the substrate can be neglected. This makes it pos-
sible to describe the dissociative adsorption process within low-dimensional
potential energy surfaces neglecting the surface degrees of freedom if further-
more no substantial surface rearrangement upon adsorption occurs, as it is
usually the case in the dissociative adsorption on close-packed metal surfaces.

The dynamics of the interaction of hydrogen with metal surfaces has been
well-studied, both experimentally [364] and theoretically [314, 315, 365, 366].
The dynamics of hydrogen require a quantum mechanical description because
of its light mass. Due to the high computational effort of quantum methods, for
a long time the theoretical treatment was limited to studies within a reduced
dimensionality. Only recently the first quantum studies were performed in
which the full dimensionality of the hydrogen molecule was taken into account
[317,367].

As far as the activated adsorption is concerned, the interaction of hydrogen
with copper surfaces has served as a model system [314,319,365,367,369–371].
It was also the first system for which high-dimensional potential energy sur-
faces were mapped out with DFT methods [316,372,373]. Based on an ab initio
PES, six-dimensional wave-packet calculations of the dissociative adsorption
of H2/Cu(100) were performed [367, 368]. Figure 7.11 shows the calculated
sticking probabilities for molecules that are initially non-rotating and either
in the vibrational ground state or in the first excited state, respectively. These
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Fig. 7.11. Dissociative adsorption probability of H2 on Cu(100) as a function of
the incident kinetic energy determined by six-dimensional quantum wave-packet
calculations for molecules initially in the vibrational ground state (v = 0) and first
excited state (v = 1), respectively. (After [368])

sticking probabilities are rather close to the experimental results which were
derived from an analysis of both adsorption and desorption experiments [374].
This indicates the reliability of both the DFT calculations determining the
PES as well as of the quantum dynamics simulations.

The onset of the sticking probability at approximately 0.5 eV for H2

molecules initially in the vibrational ground state is given by the minimum
energy barrier including zero-point effects. The zero-point effects arise from
the quantization of the molecular levels due to the localization of the wave
function in the degrees of freedom perpendicular to the reaction path at the
minimum barrier position. The rise in the sticking probability is determined
by the distribution of the barrier heights for dissociative adsorption in the
multidimensional potential energy surface [319]. Thus sticking can be un-
derstood in terms of the region of the surface that classically is available to
dissociation. This so-called hole model [375] is valid at high kinetic energies
if the incoming particles are not significantly redirected by the shape of the
potential energy surface.

As Fig. 7.11 demonstrates, in the system H2/Cu the sticking probability
is significantly enhanced if the impinging molecules are initially vibrationally
excited. In order to quantify the effect, the vibrational efficacy is introduced.
It is defined as

χ =
ΔEv

h̄ωvib
, (7.50)

where ΔEv is the energetic shift between the sticking curves for molecules in
the vibrationally ground and first-excited state. In Fig. 7.11 we have indicated
the energy shift which is of course not uniquely defined since the two sticking
curves are not really parallel to each other. This shift is approximately 0.3 eV
so that for the vibrational frequency of H2, h̄ωvib = 0.516 eV, the vibrational
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Fig. 7.12. Potential energy surfaces describing dissociative adsorption. The energy
spacing between the contour lines is 0.1 eV. (a) Model potential with a late barrier. In
addition, two typical trajectories are plotted illustrating the vibrationally enhanced
dissociative adsorption process; (b) elbow plot of the minimum barrier in the system
H2/Cu(100) determined by DFT-GGA calculations [85]

efficacy is χ ≈ 0.6. This is interpreted to mean that 60% of the vibrational
energy is used to overcome the barrier for dissociative adsorption.

Vibrationally enhanced dissociation has been known for years in gas
phase dynamics [376]. The basic mechanism can be discussed within a two-
dimensional elbow plot as shown in Fig. 7.12a. The plotted model PES cor-
responds to a so-called late barrier system which refers to the fact that the
barrier is located after the curved region of the PES. Two typical trajectories
are included in the elbow plot. A dissociation event corresponds to a trajectory
that crosses the barrier and enters the exit channel. If initially non-vibrating
molecules have a kinetic energy that is less than the barrier height, they are
scattered back into the gas phase. However, if the molecule is already initially
vibrating, i.e., if it is oscillating back and forth in the d-direction, then the
vibrational energy can be very efficiently used “to make it around the curve”
and enter the dissociation channel.

Potential energy surfaces such as the one plotted in Fig. 7.12a had been
used to model the adsorption dynamics in the system H2/Cu [377–379] be-
fore potential energy surfaces derived from electronic structure calculations
became available [372,373]. Figure 7.12b shows the elbow plot of the minimum
barrier for H2/Cu(100), as determined by DFT-GGA calculations [85]. It is
obvious that the curvature of the reaction path is much less than assumed in
the model potential. Furthermore, the barrier is “earlier”, i.e., it is not located
after the curved region but rather in the curved region of the PES. Still the
PES plotted in Fig. 7.12b produces the same vibrational efficacy as the PES of
Fig. 7.12a. This is due to vibrationally adiabatic effects that will be explained
in much more detail on p. 218.
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Fig. 7.13. Sticking probability of H2/Pd(100) as a function of the initial kinetic
energy. Circles: molecular beam experiment by Rendulic et al. [214], dashed and
solid line: theory according to H2 initially in the ground state and with a thermal
distribution appropriate for a molecular beam, respectively [317]. The dash-dotted
line shows a H2 effusive beam scattering experiment with an incident angle of of
θi = 15◦ (Rettner and Auerbach [382])

While the system H2/Cu serves as the benchmark system for activated
dissociative adsorption on surfaces, H2/Pd plays the same role for the non-
activated adsorption [380]. Figure 7.13 compares the sticking probability for
H2/Pd(100) as a function of the kinetic energy obtained by molecular beam
experiments [214] with the results of six-dimensional quantum calculations
based on ab initio potential energy surfaces [317,381]. The experiment shows
an initial decrease of the sticking probability as a function of the kinetic energy
while at larger kinetic energies the sticking probability slowly rises again.

The decrease of the sticking probability is typical for atomic or molecular
adsorption (see Figs. 7.6 and 7.7). Consequently, the measured results were
explained to be caused by the so-called precursor mechanism [214,364]: before
dissociation, the hydrogen molecule is assumed to be temporarily trapped in a
molecular precursor state from which it then dissociates, and it is the trapping
probability into the precursor state that determines the dependence of the
sticking probability on the kinetic energy.

However, there is a large mass mismatch between the impinging hydro-
gen molecule and the palladium substrate. If one makes a simple hard-cube
model analysis taking the mass of one palladium atom as the mass of the
hard cube and assuming a typical precursor well depth of 0.25 eV, then the
sticking probability is below one percent for kinetic energies above 85meV.
Furthermore, the calculated potential energy surface shows no evidence of a
metastable precursor state of H2 at clean Pd(100).

The quantum results of the sticking probability [317] are in semi-quanti-
tative agreement with the experiment by Rendulic et al. However, the results
of an effusive beam scattering experiment [382] that are also included differ
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Fig. 7.14. Illustration of the steering effect. The potential energy surface is plotted
as a function of the reaction path coordinate and one surface coordinate. The re-
action path coordinate connects the molecule in the gas phase with the dissociated
molecule on the surface. Three typical trajectories are included. By symmetry, the
low and medium energy trajectories have the same initial conditions except for the
initial kinetic energy

quite significantly from the molecular beam data. It is known that the Pd(100)
surface can become rapidly contaminated by hydrogen after a cleaning process
[383]. Such a contamination, in addition to further probable contaminants such
as sulfur, would explain the low sticking coefficient in the earlier experiment
by Rendulic et al. [384]. In fact, ab initio molecular dynamics simulations of
the adsorption of H2/Pd(100) found a much larger sticking probability [313]
which is in better agreement with the effusive beam data. An analysis of the
interaction potential showed that the discrepancy between the two sets of the-
oretical results can be traced back to the fact that the initial parameterization
of the PES [317] was only based on high-symmetry points of the surface unit
cell. This leads to artificial symmetries in the interpolated PES that influ-
ences the dissociation dynamics considerably as far as quantitative, but not
qualitative aspects are concerned.

The advantage of a computer simulation compared to an experiment is
that the simulation is performed under well-defined conditions and can be an-
alyzed at any point of the simulation. This analysis showed that the initially
decreasing sticking probability is caused by a dynamical process which had
been proposed before [385] but whose efficiency had been grossly underesti-
mated: dynamical steering. This process can only be understood if one takes
the multi-dimensionality of the PES into account. The PES of H2/Pd(100)
shows purely attractive paths towards dissociative adsorption, but the ma-
jority of reaction paths for different molecular orientations and impact points
exhibits energetic barriers hindering the dissociation.

At very low kinetic energies, the particles are so slow that they can be very
efficiently steered to a favorable configuration for dissociation. This leads to a
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very high dissociation probability. Since this mechanism becomes less effective
at higher kinetic energies, the reaction probability decreases. This scenario is
illustrated in Fig. 7.14. A cut through the six-dimensional potential energy
surface of H2/Pd(100) is plotted along the reaction path coordinate and one
surface coordinate. The reaction path coordinate connects the molecule in
the gas phase with the dissociated molecule on the surface. There is one
purely attractive path in the center which corresponds to the dissociation at
the hollow-bridge-hollow configuration indicated in Fig. 5.19a while the path
directly over the maximum barrier in Fig. 7.14 (the “hilltop”) represents the
dissociation above the top site (Fig. 5.19b).

Three typical trajectories are included in Fig. 7.14. The low and medium
energy trajectories are related to each other by the symmetry along the surface
coordinate. They are supposed to have the same initial conditions except for
the initial kinetic energy. Both energies are too small to allow a direct crossing
of the barrier the particles are directed at. However, at the low kinetic energy
the forces acting on the incoming particle can redirect it so that it follows a
path that leads to the purely attractive region of the PES. At the medium
energy, of course the same forces act on the incoming particle. But now it
is too fast to be steered significantly. It is reflected at the repulsive part of
the potential and scattered back into the gas phase. This suppression of the
steering effect for increasing kinetic energy leads to the initial decrease of the
sticking probability in Fig. 7.13. If the energy is further increased, then the
particle will eventually have enough kinetic energy to directly cross barriers,
as the high-energy trajectory illustrates in Fig. 7.14. This leads to the rise of
the sticking probability at high kinetic energies.

In general, the reactive trajectories are not always as simple as illustrated
in Fig. 7.14. In particular in the low-energy regime, steered particles may not
directly find a path through the barrier region. However, due the conversion
of the initial kinetic energy into internal and lateral degrees of freedom, the
particles may neither have enough kinetic energy to escape back into the
gas phase. This leads to a dynamical trapping of the particles [386, 387]. In
this state, the particles can bounce back and forth several times with respect
to the surface [386] before their fate is decided. However, once a particle is
dynamically trapped, the probability that it will eventually stick to the surface
is much larger than the probability that it will scatter back into the gas phase.
In quantum dynamics, the existence of these transient trapping states leads
to the occurrence of the peaked resonance structure in the sticking probability
(see Fig. 7.13).

The most favorable path towards dissociative adsorption in the system
H2/Pd(100) is purely attractive and has a rather small curvature (Fig. 5.19a).
Therefore one would not expect any substantial influence of the vibrational
state of H2 on the sticking probability. Still the six-dimensional quantum
calculations show a significantly larger dissociation probability for molecules
in the first excited vibrational state v = 1 compared to the vibrational
ground state [388] which is demonstrated in Fig. 7.15a. In fact, the energetic
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Fig. 7.15. Vibrational effects in the dissociation of H2/Pd(100). (a) Sticking prob-
ability for a H2 beam initially in the vibrational ground state (lower curves) and the
first excited state (upper curves). The results of six-dimensional and five-dimensional
vibrationally adiabatic quantum calculations are shown. (b) H2 vibrational fre-
quency h̄ωvib, potential and vibrational adiabatic potentials along the reaction path.
(After [388])

separation of the sticking curves for the two vibrational states is about 0.4 eV,
as indicated in Fig. 7.15a, leading to a vibrational efficacy of χ ≈ 0.75 which
is even larger than in the H2/Cu system (see p. 212).

In order to clarify the nature of the vibrationally enhanced dissociation in
the system H2/Pd(100), vibrationally adiabatic five-dimensional calculations
have also been performed in which the molecules were kept in their initial
vibrational state. Although no vibrational transitions are allowed, the vibra-
tional frequency still changes along the reaction pathway. As Fig. 7.15a shows,
the five-dimensional results are very close to the full dimensional 6-D results.
This reflects two facts. First, the molecular vibrational state is a sufficiently
good quantum number and is almost conserved during the scattering, i.e.,
the probability for transitions between different vibrational states during the
scattering event is rather low. This can be understood from the fact that the
vibrational motion corresponds to the fastest degree of freedom in this system
so that the vibrational energy acts as an adiabatic invariant. And second, the
curvature of the reaction path of the H2/Pd(100) PES is not crucial for the
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vibrational effects in this system because in the 5-D calculations no curvature
is present in the Hamiltonian.

Consequently, the influence of the molecular vibrations on the dissociation
can only be understood within an adiabatic picture. To see that, we introduce
the “vibrationally adiabatic potentials” which are defined by

V vi

adia(s) = V0(s) + (h̄ω(s) − h̄ωvib) (vi +
1
2
) , (7.51)

where s is the coordinate along the reaction path (see Fig. 5.19a). The
vibrationally adiabatic potential is the relevant potential for the H2 molecule
moving on the PES in a fixed vibrational state. It takes the change of the
vibrational frequency along the reaction path into account. In Fig. 7.15b, we
have plotted the vibrational frequency together with the potential and the
vibrational adiabatic potentials for vi = 0 and vi = 1 along the reaction path
coordinate s. At s = 0, the point of maximum curvature along the reaction
path, the vibrational frequency is strongly reduced from its gas phase value
of h̄ω = 516meV to about 150meV. This leads to a lowering of the vibra-
tionally adiabatic potential by 180meV for vi = 0 and by 550meV for vi = 1.
Such a lowering does not only occur for the most favorable adsorption path,
but also for other non-activated and activated pathways, i.e., for other impact
sites in the surface unit cell and for other molecular orientations. There are
now two points of view to describe the vibrational adiabatic effects. Either
one says that the decrease of the vibrational frequency leads to an effective
energy transfer from the vibrations to the translation which increases with
the vibrational quantum number v, or one states that vibrationally excited
molecules experience a potential energy surface with effectively lower bar-
riers than molecules in the vibrational ground state. Both descriptions are
equivalent and explain why vibrationally excited H2 molecules have a higher
dissociation probability on Pd(100). These adiabatic effects also contribute to
the vibrational enhanced dissociation in the system H2/Cu.

Information about the dissociation process at surfaces can not only be
gained by studying the adsorption, but also by investigating the desorption
of molecules. Adsorption and desorption are related to each other by time-
reversal symmetry. Using the principle of detailed balance [342, 343], rela-
tive adsorption probabilities can be derived from the measurement of the
state-resolved desorption flux. This has been used extensively to obtain the
dependence of dissociative adsorption probabilities on the initial vibrational
and rotational state (see, e.g., [374, 389]). However, it is important to note
that detailed balance couples adsorption and desorption at a particular cov-
erage and temperature. Adsorption experiments are usually done on a clean
substrate at low temperatures while desorption fluxes are measured at high
surface temperatures and high coverages.

Theoretically, the time-reversal symmetry of reaction probabilities can
be directly employed to relate adsorption and desorption. We denote by
Sn(E⊥, Ts) the state-specific sticking probabilities at a surface with
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Fig. 7.16. Vibrational and rotational temperatures of hydrogen desorbing from
Pd(100) as a function of the surface temperature. The experimental results have
been determined by tunable vacuum ultraviolet laser ionization spectroscopy for
D2 while the theoretical results have been derived from six-dimensional quantum
calculations for H2 (After [390])

temperature Ts as a function of the incident normal kinetic energy E⊥. Here n
stands for a multi-index that describes the initial vibrational, rotational and
parallel momentum state of the molecule. The population Dn of the state n
in desorption at a surface temperature of Ts is directly related to the sticking
probability via

Dn(E⊥, Ts) =
1
Z
Sn(E⊥, Ts) exp

(
−En + E⊥

kBTs

)
. (7.52)

In the desorption distribution (7.52), E⊥ is the kinetic energy perpendicular
to the surface of the desorbing particles, En is the energy associated with
the internal state n, and Z is the partition sum that ensures the normaliza-
tion of the distribution. In quantum dynamical simulations of the dissociative
adsorption, often the substrate is kept fixed so that it does not participate
dynamically in the adsorption/desorption process. Still desorption distribu-
tions can be derived by assuming that the substrate acts as a heat bath that
determines the population distribution of the molecular states on the surface.

The vibrational distribution in desorption is often characterized by the
so-called vibrational temperature as a function of the surface temperature.
Classically, it corresponds to the mean vibrational energy in desorption at the
surface temperature Ts converted into a temperature by dividing it by the
Boltzmann constant

Tvib(Ts) =
〈
Evib

〉
Ts
/kB . (7.53)

The vibrational energy quantum h̄ωvib is usually large compared to kBTs.
Hence only the vibrational ground and first excited state are significantly
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populated in desorption. Therefore the vibrational temperature is normally
determined via

Tvib(Ts) =
h̄ωvib

kB ln(D(v = 0, Ts)/D(v = 1, Ts))
, (7.54)

where D(v = n, Ts) is the population of the n-th vibrational level. It should
be noted that the vibrational temperature does not correspond to a real tem-
perature. It is rather a parameter characterizing the distribution. If the stick-
ing probability is independent of the vibrational state, then the vibrational
temperature equals the surface temperature. A sticking probability increas-
ing with the vibrational quantum number leads to vibrational temperatures
in desorption that are larger than the surface temperature. This is called
vibrational heating. Conversely, if vibrational excitation suppressed the stick-
ing probability, vibrational cooling would result.

The measured and calculated vibrational temperatures of hydrogen des-
orbing from Pd(100) are plotted in Fig. 7.16. The experimental results have
been obtained by tunable vacuum ultraviolet laser ionization spectroscopy for
D2 [390]. Deuterium is often used in desorption experiments because the res-
ults are hardly influenced by background signals in contrast to the case of H2

for which there is always an unavoidable background in the vacuum cham-
bers. The calculations, on the other hand, are done for H2 because of the
much smaller computational effort for light hydrogen in quantum methods.
Still both experiment and theory agree well as far as the vibrational heating
is concerned.

Figure 7.16 also shows the rotational temperatures as a function of the
surface temperature determined via

Trot(Ts) =
〈
Erot

〉
Ts
/kB . (7.55)

In contrast to the vibrations, the rotational temperatures in desorption are
below the value expected for thermal equilibrium. According to the principle
of detailed balance, this rotational cooling in desorption should be reflected
by rotational hindering in adsorption, i.e., a suppression of the sticking prob-
ability for rapidly rotating molecules.

Rotational hindering in the dissociative adsorption has actually been con-
firmed in the system H2/Pd(111) [391, 392] where also steering dominates
the dissociative adsorption at low kinetic energies. By seeding techniques,
the translational energy of a H2 beam can be changed in a nozzle experi-
ment without altering the rotational population of the beam. The rotationally
hot beams showed a much smaller sticking probability than rotationally cold
beams [391,392]. The mechanism underlying the rotational hindering in dis-
sociative adsorption is illustrated in Fig. 7.17. Hydrogen molecules can only
dissociate on metal surfaces if their axis is close to being parallel to the sur-
face. A rapidly rotating molecule hitting the surface might in fact be in this
favorable orientation for a short time, but it will rotate out of this orientation
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Fig. 7.17. Schematic trajectory illustrating the rotational hindering in dissociative
adsorption. A rapidly rotating molecule impinging on the surface will rotate out of
a favorable orientation for dissociation, it experiences a repulsive interaction and is
scattered back into the gas phase

during the time it takes to complete the dissociation. In the upright position,
the interaction between the molecule and the surface is purely repulsive. Thus
rotating molecules have a higher probability to probe the repulsive regions of
the potentials which leads to an enhanced reflectivity and consequently to a
suppression of the sticking probability.

However, in state-resolved experiments it has been observed in the sys-
tems H2/Cu and H2/Pd that for higher rotational quantum numbers j the
sticking probability increases again [389, 392]. This effect was confirmed in
three-dimensional quantum calculations for H2/Cu(111) [393]. It is caused
by an adiabatic effect [393] similar to the one resulting from the lowering
of the vibrational frequency upon adsorption. Along the reaction path, the
bond length re(s) and thus the moment of inertia I = μr2e(s) increases. Con-
sequently, the rotational energy

Erot(j) =
h̄2j(j + 1)

2I
=
h̄2j(j + 1)
2μr2e(s)

(7.56)

associated with the rotational state j decreases. Assuming that the dissocia-
tion occurs rotationally adiabatically, i.e., without any change in the rotational
quantum state, this would correspond to an effective energy transfer from the
rotation to the translation which increases with the rotational quantum num-
ber.

The rotational effects in the system H2/Pd have been studied in detail in
five-dimensional vibrational adiabatic quantum calculations [394]. As far as
the potential energy surface is concerned, a simplified version of the ab initio
PES for the system H2/Pd(100) was used in order to allow a systematic varia-
tion of certain features of the potential. In Fig. 7.18, the sticking probabilities



222 7 Gas-Surface Dynamics

0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0
j=0
j=2
j=6
j=10

m = 0

a

j=10

re= const.

Kinetic energy (eV)

St
ic

ki
ng

 p
ro

ba
bi

lit
y

0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

j=0
j=2
j=6
j=10

b

Kinetic energy (eV)

St
ic

ki
ng

 p
ro

ba
bi

lit
y

0 0.6

m = j

Fig. 7.18. Five-dimensional calculation of the sticking probability of D2/Pd(100)
for a range of initial rotational states j as a function of kinetic energy under normal
incidence. (a) Molecules initially rotating in the cartwheel fashion m = 0. For j = 10,
additionally the results for a fixed hydrogen bond length are plotted. (b) Molecules
initially rotating in the helicopter fashion m = j

are plotted for a range of initial rotational states j as a function of the kinetic
energy under normal incidence. As for the initial rotational state, in addition
to the rotational quantum number j also the azimuthal quantum number m
has to be specified. In the field of gas-surface dynamics m is usually defined
with respect to the surface normal. Molecules rotating with m = 0 have their
rotational axis preferentially oriented parallel to the surface. This means that
they correspond to molecules rotating in the cartwheel fashion which is illus-
trated in Fig. 7.8. In contrast, azimuthal quantum numbers m = j indicate
molecules rotating in the helicopter fashion with their rotational axis oriented
preferentially perpendicular to the surface.

Figure 7.18a demonstrates that rotational motion with (j = 2,m = 0)
leads to a suppression of the sticking probability compared to non-rotating
molecules, but a closer look reveals that there is no monotonic trend in the
dependence of the sticking probability on j. Over the whole considered energy
range the sticking probability only decreases by going from j = 0 to j = 2, but
for higher quantum numbers the trend is reversed. Increasing the rotational
quantum number from J = 6 to J = 10 does not lead to a further suppression
but rather to a rising sticking probability.

In order to confirm that the eventual increase in the sticking probability
at higher j is indeed caused by the adiabatic rotational-translational en-
ergy transfer due to the lowering of the rotational energy quantum, the five-
dimensional quantum calculations have been repeated using exactly the same
potential energy surface except for the hydrogen bond length and consequently
also the moment of inertia kept frozen at their gas phase values. The corre-
sponding results for j = 10 are also included in Fig. 7.18a. And indeed, if
the elongation of the molecular bond length along the reaction path is not
taken into account in the Hamiltonian, the sticking probability is strongly
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suppressed for rapidly rotating molecules with j = 10, i.e., there is pure rota-
tional hindering.

The sticking probabilities for molecules rotating in the helicopter fashion
are plotted in Fig. 7.18b. Interestingly enough, no rotational hindering is ap-
parent. The sticking probability is monotonically rising with increasing rota-
tional quantum number j. In addition to the effective rotational-translational
energy transfer, there is a steric effect promoting the dissociative adsorption.
Helicopter molecules have their axis already parallel to the surface which is
favorable for dissociation while cartwheel molecules have a high probability to
hit the surface in the unfavorable upright orientation. In fact, the alignment
of the molecular axis parallel to the surface is the better, the higher the rota-
tional quantum number is. This counteracts the rotational hindering which is
still present due to the azimuthal anisotropy of the potential energy surface.
This steric effect of the rotational motion in adsorption has not been observed
yet because it is difficult to align rotating hydrogen molecules in the gas phase.
Again, the way out is to look at the time-reverse process, the associative des-
orption. Using state-specific laser techniques, it is possible to measure the
rotational alignment of desorbing molecules. The alignment parameters A(k)

0

contain the complete dynamical information about a reaction product. They
correspond to the expectation values of the monopole, quadrupole and higher
multipole moments of the angular momentum operators J :

A0
0 = 1 (7.57)

A
(2)
0 =

〈
3J2

z − J2

J2

〉
, (7.58)

where Jz is the z-component of the angular momentum operator J . The values
of the alignment parameter A(2)

0 lie in the range

− 1 ≤ A
(2)
0 ≤ 2 (7.59)

An alignment parameter of A(2)
0 ≤ 0 means that the cartwheel rotations are

preferentially populated in desorption while positive alignment A(2)
0 > 0 re-

flects a preferential population of helicopter states. A comparison between
the measured rotational alignment for H2 [395] and D2 [396] with the five-
dimensional quantum calculations [394] is shown in Fig. 7.19. Within the ex-
perimental uncertainty, there is a satisfactory agreement between theory and
experiment. Except for the j = 2 experimental result of D2, the rotational
alignment parameters are positive reflecting the fact that the parallel orien-
tation of the molecules is favorable for dissociation. In agreement with the
experiment, the theoretical results show a non-monotonic behavior. The ro-
tational alignment parameters show a maximum for j = 6 and then decrease
again. This is caused by the same mechanism that is responsible for the non-
monotonic behavior of the sticking probability of cartwheel molecules as a
function of the rotational quantum number. The rotationally adiabatic effects
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Fig. 7.19. Rotational alignment in the desorption of hydrogen from Pd(100) at a
surface temperature of Ts = 700 K. Comparison of the experimental results for H2

[395] and D2 [396] with five-dimensional quantum calculations [394]

reduce the difference between cartwheel and helicopter dissociation proba-
bilities and thus lead to a smaller rotational alignment. This has again been
confirmed by determining the rotational alignment with a fixed hydrogen bond
length. In this case the alignment is a monotonically increasing function of
j [394].

The role of the anisotropy of the PES is formally equivalent to the influence
of the corrugation on the sticking probability. The energetic corrugation, i.e.,
the variation of the barrier height within the surface unit cell, leads to a
suppression of the sticking probability for non-normal incidence [397, 398].
On the other hand, in the case of geometric corrugation, i.e. the variation of
the barrier location within the surface unit cell, the section of the surface unit
cell in which the incoming beam hits barriers locally in a perpendicular fashion
is increased for non-normal incidence which enhances the sticking probability.

In the case of dissociative adsorption on surfaces, the higher barriers are
often further away from the surface than the lower ones. These features are for
example present in the calculated PES of H2/Cu [372,373]. For this so-called
balanced corrugation [314], the opposing effects of energetic and geometric
corrugation can cancel each other to a large extent [393]. This effect is the
reason for the observed normal energy scaling of H2/Cu [399] in spite of the
strong corrugation of this system.

In contrast to close-packed metal surfaces, semiconductor surfaces show
a strong surface rearrangement upon hydrogen adsorption. This is caused by
the covalent nature of the bonding in semiconductors where an additional
chemisorbed adsorbate strongly perturbs the bonding situation of the sub-
strate. Hydrogen on silicon has become the model system for the study of
adsorption on semiconductor surfaces [315,400]. This system is not only inter-
esting from a fundamental point of view, but also because of its technological
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relevance. Hydrogen desorption is the rate determining step in the growth of
silicon wafers from the chemical vapor deposition (CVD) of silane.

This system provides a good example of the close fruitful collaboration
between experiment and theory that is possible in surface science, but it also
demonstrates that progress is not always achieved in a straightforward, but
rather in an erratic way. Therefore the chronological progress in the under-
standing of this system will be sketched here. Desorption of hydrogen from
Si(100) shows first-order kinetics [401,402]. For associative desorption one nor-
mally expects second-order kinetics since two atoms have to find each other
on the surface before they can desorb. The unusual first-order desorption ki-
netics had been explained by a prepairing mechanism [402, 403]: Desorbing
molecules originate from the same dimer since it is energetically favorable for
two hydrogen atoms to bind on the same dimer rather than on two indepen-
dent dimers.

The interest in this system was even further increased by the so-called
barrier puzzle: While the sticking coefficient of molecular hydrogen on Si sur-
faces is very small [404, 405] indicating a high barrier to adsorption [406],
the low mean kinetic energy of desorbing molecules [407] suggests a small
adsorption barrier. This puzzle was assumed to be caused by the strong sur-
face rearrangement of Si upon hydrogen adsorption [406,407]: The hydrogen
molecules impinging on the Si substrate from the gas phase typically encounter
a Si configuration which is unfavorable for dissociation, while desorbing hy-
drogen molecules leave the surface from a rearranged Si configuration with a
low barrier. In the adsorption process, such a surface rearrangement can only
be achieved by thermal excitations of the lattice since due to the mass mis-
match the silicon substrate atoms are too inert to change their configuration
during the time the hydrogen molecule interacts with the surface.

It was immediately realized that the large influence of the dissociation
barrier on the substrate configuration should cause a strong surface temper-
ature dependence of the hydrogen dissociation probability on Si [406]. This
proposed phonon assisted sticking motivated experimental studies of the tem-
perature dependence of the sticking probability which indeed confirmed the
theoretical predictions [405,408,409]. However, the microscopic details of the
H2 dissociation path in the coupling to Si substrate degrees of freedom re-
mained unclear. Furthermore, the situation was confusing because of large
quantitative discrepancies between different experiments [404,409].

As for the ab initio electronic structure calculations, H2/Si(100) is a sys-
tem that initially was studied extensively using quantum chemical methods in
which the extended substrate was modeled by finite clusters [410–412], such
as the one shown in Fig. 3.5. Due to the localized nature of the covalent bonds
in semiconductors it was believed that the cluster description for a Si surface
might be appropriate. These cluster studies could not reproduce the experi-
mentally observed activation energy for H2 adsorption from Si(100) for a clean
surface. Therefore defect-mediated desorption mechanisms had been proposed
[410, 412, 413]. DFT calculations based on the slab approach, however, were



226 7 Gas-Surface Dynamics

(a)

(b)

(c)

Fig. 7.20. Structural changes of the Si(100) surface upon hydrogen adsorption
determined with DFT-GGA calculations [310, 414, 415]. (a) (2 × 2) structure for
the clean surface with anti-buckled dimers. (b) Symmetric surface dimer upon the
dissociative intradimer adsorption of a hydrogen molecules. (c) Snapshots of an ab
initio molecular dynamics simulation of a hydrogen molecule desorbing from Si(100).
The resulting surface relaxation is indicated by the darker Si atoms [310]

in good agreement with experiment, as far as the desorption barrier was con-
cerned [310,414,415]. There were speculations whether the difference between
cluster and slab calculations was due to the different treatment of the electron
exchange-correlation [416]. A later study showed [417] that one has to use
rather large clusters to appropriately model the extended Si substrate. For
example, the correct buckled structure of the Si(100) surface is only repro-
duced in cluster calculations if more than one surface dimer is included in the
cluster.

There are two possible dissociation pathways for hydrogen on clean Si(100):
the intradimer pathway where the hydrogen atoms of the dissociating molecule
end up on both ends of a dimer, and the interdimer pathway where the
H-H bond is oriented perpendicular to the Si dimers and the hydrogen atoms
adsorb at two neighboring dimers. An earlier study suggested that the adsorp-
tion barrier of the interdimer pathway is approximately 0.3 eV higher than the
intradimer barrier [418]. Therefore, most DFT slab studies first focused on
the intradimer pathway [310,414,415] which is illustrated in Fig. 7.20. Upon
adsorption of H2 on a Si dimer, the buckling of the dimer (Fig. 7.20a) is lifted
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and the dimer becomes symmetric in the monohydride phase (Fig. 7.20b). This
strong surface rearrangement was considered as a possible candidate responsi-
ble for the barrier puzzle [414,415]. Ab initio molecular dynamics simulations
were performed in order to determine the energy distribution of hydrogen
molecules desorbing from Si(100) [310]. Snapshots of one of the forty calcu-
lated trajectories are shown in Fig. 7.20c. The dark Si atoms correspond to the
relaxation of the Si lattice after the desorption event. Approximately 0.1 eV
of the potential energy at the transition state is transfered to vibrations of
the Si lattice. The simulations reproduced the vibrational heating and the
rotational cooling observed in the desorption experiments [400]. However, the
kinetic energy in desorption was still much larger in the ab initio molecular
dynamics runs than in the experiment [407]. This is due to the fact that the
elastic energy of the surface frozen in the transition state configuration is only
about 0.15 eV [415] which is too little in order to explain the barrier puzzle.

Later it turned out that it is not sufficient to focus on the H2 dissoci-
ation on clean Si(100). Instead, it is important to consider the influence of
the hydrogen coverage on the adsorption/desorption barriers [419, 420]. The
progress in the understanding has been achieved in a close collaboration be-
tween experiment and electronic structure calculations. It was realized that
it is very important to determine the exact surface structure. At surface im-
perfections such as steps the reactivity of a surface can be extremely altered.
Indeed it was found experimentally on vicinal Si(100) surfaces that the stick-
ing coefficient at steps is up to six orders of magnitude higher than on the
flat terraces [421]. This finding was supported by DFT studies which showed
that non-activated dissociation of H2 on the so-called rebonded DB steps on
Si(100) is possible [421,422], while on the flat Si(100) terraces the dissociative
adsorption is hindered by a barrier of 0.4 eV [310].

Indeed adsorbates can have a similar effect on the dissociation probability
as steps since the electronic structure of the dangling bonds is perturbed in a
similar way by both steps and adsorbates [419]. Recent scanning tunneling mi-
croscope (STM) experiments demonstrated that predosing the Si(100) surface
by atomic hydrogen creates active sites at which the H2 adsorption is consid-
erably facilitated [423]. Actually, the predosing of atomic hydrogen makes the
adsorption of H2 in an interdimer configuration possible. This renewed the
interest in the theoretical study of the interdimer pathway. The interdimer
pathway was revisited by DFT-GGA calculations [419] which in fact found
that its barrier is smaller than the barrier along the intradimer pathway. The
discrepancy to the former calculations [418] was attributed to the fact that
different transition state geometry had been considered. The DFT-GGA calcu-
lations further confirmed that on hydrogen-precovered Si(100) highly reactive
sites exist at which H2 can spontaneously dissociate.

Now a consistent qualitative picture of the adsorption/desorption of
H2/Si(100) has emerged. From hydrogen-covered Si(100) at full coverage,
H2 molecules can desorb without being accelerated towards the gas phase
which explains the low kinetic energy measured in desorption experiments.
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In adsorption experiments, on the other hand, this dissociation path without
a barrier is not present at clean Si(100) leading to the small observed sticking
probability. At intermediate coverages, both activated as well as non-activated
adsorption paths are present leading to a crossover from activated dissociation
dynamics to non-activated dissociation dynamics.

7.7 The Full Concert: Molecular and Dissociative
Adsorption and Scattering

So far we have focused on systems where molecules impinging on surfaces
mainly scatter or adsorb molecularly or adsorb dissociatively. However, there
are molecule-surface systems in which all these processes can occur at the
same time. One prominent example is the interaction of O2 with Pt(111).
Many studies have addressed this system motivated by the fact that the ad-
sorption of oxygen on platinum represents one of the fundamental microscopic
reaction steps for the oxidation reactions occuring in the car-exhaust cata-
lyst. Oxygen can exist in different states on Pt(111). At surface temperatures
below 30K, a weakly bound physisorbed species has been observed [424,425].
Chemisorbed peroxo-like (O−2

2 ) and superoxo-like (O−
2 ) molecular states are

found up to surface temperatures of about 100K [426,427]. For higher surface
temperatures, oxygen adsorbs dissociatively. The chemisorbed oxygen species
have also been identified in GGA-DFT total-energy calculations [428,429].

Measured sticking probabilities of O2/Pt(111) as a function of the kinetic
energy [430, 431] are plotted in Fig. 7.21a. At low kinetic energies, the stick-
ing probability exhibits a strong decrease, and then after passing a mini-
mum at approximately 0.15 eV it levels off at a value of about 0.3 [430, 431].
Furthermore, the molecular beam experiments also yielded the surprising re-
sult that oxygen molecules do not dissociate on cold Pt surfaces below 100K
[350, 431, 432], even at kinetic energies above 1 eV which are much greater
than the dissociation barrier.

To address the adsorption dynamics of O2/Pt(111) theoretically represents
in fact a significant challenge. On the one hand, a realistic PES is needed that
reliably describes both the molecular as well as the dissociative adsorption
channels. On the other hand, molecular trapping processes can only be repro-
duced if the energy dissipation to the platinum substrate is properly taken
into account, as discussed in Sect. 7.5. Using empirical classical potentials,
almost arbitrarily many trajectories can be computed, however, there are no
reliable interaction potentials available treating reactions on the surface and
the surface recoil upon impact on an equal footing.

Ab initio molecular dynamics (AIMD) simulations represent a method
that is well-suited for this task, but they are computationally still very expen-
sive [310,315]. With the improvement of the computer power, AIMD studies
of reactions at surfaces with thousands of trajectories have become possible
[313], but for the system O2/Pt(111) discussed in this section tight-binding
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Fig. 7.21. O2 adsorption on Pt(111). (a) Trapping probability of O2/Pt(111) as
a function of the normal component of the kinetic energy. Results of molecular
beam experiments for surface temperatures of 90K and 200 K (Luntz et al. [430])
and 77 K (Nolan et al. [431]) are compared to tight-binding molecular dynamics
simulations for the surface initially at rest (Ts = 0K). (b,c) Elbow plots of the PES
of the dissociation of O2/Pt(111) determined by an ab initio derived tight-binding
Hamiltonian [429, 433]. The configurations of the remaining O2 degrees of freedom
are illustrated in the insets. The contour spacing is 0.2 eV per O2 molecule. In (b)
a trajectory of an O2 molecule with an initial kinetic energy of 0.6 eV scattered at
Pt(111) is also plotted

molecular dynamics (TBMD) simulations have been performed [330,433] with
the parameters of the tight-binding Hamiltonian derived from ab initio cal-
culations [72, 428, 429]. This approach combines a quantum mechanical de-
scription of the molecule-surface interaction with the numerical efficiency of
tight-binding calculations which are about three orders of magnitude faster
than DFT calculations (for a description of the tight-binding method, see
Sect. 3.7).

In Fig. 7.21a, the calculated TBMD sticking probabilities [433] are also
included. The theoretical values have been obtained but averaging over a suf-
ficient number of trajectories with random initial lateral positions and orien-
tations of the O2 molecules. The statistical error ΔS of the calculated sticking
probability S can be estimated by

ΔS =
√
S(1 − S)/

√
N , (7.60)

where N is the number of calculated trajectories. Already for a relatively
small number of trajectories such as N = 200 the statistical uncertainty of
the calculated sticking probability is below 3.5% which is usually sufficient if
the sticking probabilities lie in the range between 0.1 and 1.

The experimental and theoretical data plotted in Fig. 7.21a agree qual-
itatively and even semi-quantitatively thus validating the ab initio TBMD
approach. It is important to note that the simulations also reproduced the
experimental finding that O2 does not directly dissociate upon adsorption,
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even at kinetic energies of 1.1 eV. This is indeed very surprising considering
the fact that the dissociation of O2/Pt(111) is only hindered by a barrier of
about 0.2 eV [429] with respect to the gas-phase. One dissociation channel is
depicted in the elbow plot shown in Fig. 7.21b where the molecular adsorption
well corresponds to the superoxo-like (O−

2 ) molecular states.
The topology of this elbow plot can actually be used in order to understand

why O2 does not directly dissociate on Pt(111). Dissociation corresponds to
an event in which the molecules impinging from the gas phase enter the exit
channel towards the lower right corner of the PES figures. An inspection
of Fig. 7.21b reveals that entering this channel directly from the gas phase
through the molecular adsorption state requires a sharp turn of the trajecto-
ries. In the figure, one typical trajectory of an O2 molecule directly aimed at
the molecular precursor state is included. Its kinetic energy of 0.6 eV is much
higher than the dissociation barrier so that the molecule could in principle
adsorb dissociatively. Still it does not dissociate. It becomes accelerated by
the attractive potential, hits the repulsive wall of the potential and is scat-
tered back into the gas phase. It does not enter the dissociation channel since
this would correspond to a sharp turn on the potential energy surface. This
does not mean that direct dissociation of O2/Pt(111) is impossible, but it
means that it is very unlikely. Because of this steric hindrance, dissociation
of O2 on Pt(111) is usually a two-step process. First the molecule becomes
trapped and accommodated in the molecular chemisorption state, and only
subsequently it dissociates at sufficiently high surface temperatures due to
thermal fluctuations which will make the O2 molecules enter the dissociation
channel.

The molecular dynamics simulations showed furthermore that contrary to
common belief [350, 431] the strong initial decrease of the sticking probabil-
ity is not caused by the trapping into a shallow physisorption state. Instead,
the high sticking probability at low kinetic energies is again caused by the
steering effect. Thus it is not the energy transfer per se that determines the
sticking probability at low kinetic energies but rather the probability to en-
ter the molecular chemisorption state. All molecules that find their way to
the molecular chemisorption state at low kinetic energies do in fact remain
trapped. The probability to access the molecular states becomes quickly sup-
pressed for higher kinetic energies since steering is then less effective. This
leads to the strong initial decrease in the sticking probability.

The magnitude of the steering effect is a consequence of the strong cor-
rugation and anisotropy of the PES of O2/Pt(111) which is illustrated in
Figs. 7.21b and c. The lateral position of the O2 center of mass is only shifted
by about 1 Å between the two cuts. Nevertheless, there is no longer any
chemisorption well present but rather a large barrier of about 1 eV towards
dissociative adsorption. This barrier becomes even larger for the molecule di-
rectly at the on-top site. In fact, the majority of adsorption pathways are
hindered by barriers; direct non-activated access to the adsorption states is
possible for only a small fraction of initial conditions.
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Fig. 7.22. Angular distribution of O2 scattered from Pt(111) with an angle of
incidence of 60◦ and an initial kinetic energy of 1.1 eV. a) Calculated angular dis-
tribution (surface temperature Ts = 300 K) for an initial rotational energy of 0.1 eV
(filled circles) and 0.3 eV (open circles). b) Comparison of the measured and the
calculated angular distribution in in-plane scattering for an angle of incidence of
60◦. The initial kinetic energy in the experiment was 1.27 eV [434] while the TBMD
simulations have been performed for an initial energy of 1.1 eV. Theoretical results
are shown for both an initial rotational energy of 0.1 eV and 0.3 eV

The leveling off of the sticking probability at higher kinetic energies is
also a surprising result. Using the hard-cube model, we had shown that a
decreasing sticking probability as a function of the kinetic energy is typical
for atomic or molecular adsorption (see Fig. 7.6). At high kinetic energies,
O2 still adsorbs molecularly on Pt(111) but the trapping probability stays
rather constant. This behavior can in fact again be explained by the strong
corrugation and anisotropy of the PES. They lead to a high probability of
dynamical trapping due to the conversion of the initial kinetic energy into
lateral and internal molecular degrees of freedom which for this particular
system is almost independent from the kinetic energy. This causes the leveling
off of the trapping probability at higher kinetic energies.

The strong corrugation has also consequences as far as the role of addi-
tional parallel momentum in adsorption is concerned. In Fig. 7.21a, the results
of calculations for non-normal incidence are shown for two different total ki-
netic energies, Ei = 0.3 eV and 1.1 eV. It is obvious that the trapping of
O2/Pt(111) does not obey normal energy scaling since the results for non-
normal incidence do not fall upon the results for normal incidence at the
same normal kinetic energy. Total energy scaling is not obeyed either since
the results for non-normal incidence are smaller than those for normal inci-
dence. Additional parallel momentum in fact strongly suppresses the sticking
probability, in agreement with the experiment [430].

Molecules that do not become trapped on the surface scatter back into
the gas phase. The angular distribution of scattered molecules for one partic-
ular initial condition, incident kinetic energy 1.1 eV and incident angle 60◦,
is shown in Fig. 7.22a. Every dot corresponds to one scattering event. The
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distribution shows that there is predominantly in-plane scattering, i.e., the
molecules do not significantly change their azimuthal angle. The angular dis-
tribution in inplane scattering, i.e. along the incident direction, is plotted
in Fig. 7.22b and compared to the experiment [434]. There is a rather good
agreement between theory and experiment: both are peaked about the spec-
ular peak and show a similar width.

As far as this width is concerned, it is interesting to note that the angular
distribution of Ar atoms scattered from Pt(111) is very similar to that of O2

scattered at the same surface [434, 435]. The similarity between Ar/Pt(111)
and O2/Pt(111) scattering indicates that the O2 scattering corresponds to the
reflection from a rather flat surface since the interaction potential of noble gas
atoms with low-index metal surfaces is usually relatively structureless and only
weakly corrugated. Since the parallel momentum is conserved in the scattering
from a flat surface, the width of the in-plane distribution is caused by changes
in the normal component of the kinetic energy due to energy transfer processes
with a vibrating flat surface [434].

Thus there is the paradox situation that adsorption experiments suggest
that the O2/Pt(111) interaction potential should be strongly corrugated while
scattering experiments indicate a rather small corrugation. This seeming con-
tradiction can be understood by considering the details of the interaction
dynamics. Scattered molecules are mainly reflected directly from the repul-
sive tails of the potential which is less strongly corrugated. In the trapping,
however, the corrugation and anisotropy of the potential energy surface closer
to the surface become important. For non-normal incidence, this corrugation
strongly suppresses adsorption, but since adsorption is the minority channel
compared to reflection, the additional scattering flux caused by the suppres-
sion of adsorption at higher angles of incidence does not crucially influence
the scattering distribution.

All the simulations so far were concerned with the interactions of atoms
and molecules with clean surfaces. However, in a typical adsorption scenario,
the surface might be initially uncovered, but after the first atoms or molecules
have been adsorbed, the sticking probability will be modified by the presence
of the adsorbates. Furthermore, under reaction conditions, i.e., if a gas is
present above a surface, there will also be a certain amount of adsorbates on
the surface. This can significantly alter the adsorption and reaction proba-
bilities which has already been discussed in Sect. 5.8 where poisoning or pro-
moting effects of adsorbates have been addressed as far as reaction barriers
and adsorption energies are concerned. However, at precovered surfaces there
might be dynamical effects that may also alter the adsorption probabilities.
For example, the adsorbate atoms will typically have a different mass than
the substrate atoms which can have a decisive influence on the energy transfer
and thus on the molecular adsorption probability, as discussed in Sect. 7.5.

The inclusion of an adsorbate layer in the theoretical treatment of the
adsorption dynamics adds further complexity to the problem because both a
accurate description of the interaction potential as well as a proper handling
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Fig. 7.23. Dissociative adsorption probability of H2 impinging on hydrogen-covered
Pd(100) and Pd(111) as a function of coverage for an initial kinetic energy of 0.1 eV
at normal incidence. 2V, 3VH and 3VT denote the dimer vacancy and the trimer
vacancy centered around a Pd hollow and a Pd top site, respectively

of dynamical effects are required. A parameterization of such a complex
interaction potential is hardly possible. This problem can be circumvented
by performing ab initio molecular dynamics simulations in which the forces
necessary to integrate the classical equations of motion are calculated in each
step by first-principles electronic structure calculations. In fact, it has nowa-
days become possible to run a sufficient number of ab initio trajectories in
order to derive statistically significant reaction probabilities.

This has been demonstrated in a theoretical study of the hydrogen adsorp-
tion on hydrogen precovered Pd surfaces [313]. This study had been motivated
by STM experiments addressing the hydrogen dissociation at an almost com-
pletely hydrogen-covered Pd(111) surface [436]. The observations indicated
that apparently at least three vacancies sites are required for the dissociative
adsorption of hydrogen molecules exposed to the surface as a gas at rather
low temperature. A subsequent DFT study [437] suggested that this effect is
caused by a poisoning effect similar to the one discussed in Sect. 5.8. This has
been verified in ab initio molecular dynamics simulations of the H2 adsorp-
tion at hydrogen-precovered Pd surfaces. The calculated sticking probabilities
as a function of hydrogen coverage at the hydrogen-precovered Pd(111) and
Pd(100) surfaces for an initial kinetic energy of 0.1 eV are shown in Fig. 7.23.
The plotted values have been normalized to the sticking probability at the cor-
responding clean Pd surfaces for that kinetic energy. On hydrogen-precovered
Pd(111), H2 dissociative adsorption into the hydrogen dimer vacancy 2V and
the trimer vacancies 3VH and 3VT is still possible whereas at a kinetic en-
ergy of 0.02 eV (not shown in Fig. 7.23) no adsorption into the dimer vacancy
occurs, thus confirming the experimental findings [436].
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Fig. 7.24. a) Energy distribution in eV along a trajectory of an H2 molecule
impinging with an initial kinetic energy of 0.1 eV at a hydrogen-precovered Pd(100)
surface with a dimer vacancy within a (3 × 3) periodicity. In addition, the center-
of-mass distance of the H2 molecule from the surface is plotted in Å. b) Snapshot
of the trajectory at t = 1898 fs

In addition, in Fig. 7.23 also the curves S(ΘH) = S(0)(1 − ΘH), and
S(ΘH) = S(0)(1 −ΘH)2 are plotted. These curves describe the relative stick-
ing probability when it is solely determined by pure site-blocking, i.e., without
any longer-range poisoning and further dynamical effects, in the two cases
that one or two empty adsorption sites, respectively, are required. Fig. 7.23
demonstrates that at low and intermediate coverages the sticking probabil-
ity of hydrogen on the hydrogen-precovered surfaces is larger than predicted
from a simple site-blocking picture, in particular for S(ΘH) = 0.5 at Pd(100).
In order to understand the details of the adsorption dynamics, additional
molecular dynamics runs have been performed for S(ΘH) = 0.5 with the sub-
strate atoms fixed. In this case, the sticking probability drops dramatically
which shows that the motion of the surface atoms plays a crucial role in the
adsorption process at hydrogen-precovered Pd surfaces, in contrast to the
clean surface [313].

A rather surprising result is, however, that both the motion of the hydrogen
atoms and the Pd atoms contribute to the high sticking probability at the pre-
covered surfaces, as the simulations with only fixed Pd atoms and with only
fixed hydrogen overlayer atoms show. The mass mismatch between the im-
pinging H2 molecules and the hydrogen overlayer atoms is of course much
more favorable than between H2 and the Pd substrate atom. However, be-
cause of their small mass the hydrogen atoms vibrate with a much higher
frequency than the Pd substrate atoms. Quantum mechanically this means
that it takes much more energy to vibrationally excite the hydrogen atoms
than the Pd atoms which exhibit in principle a continuous phonon spectrum.
Classically this is reflected by the fact that upon the impact of the imping-
ing H2 molecule the adsorbed hydrogen atoms can follow the perturbation
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almost adiabatically (cp. the discussion of vibrationally adiabatic effects in
the dissociative adsorption of H2, p. 7.6), so that there is hardly any energy
transfer.

In Fig. 7.24a, the energy distribution during the interaction of a H2

molecule impinging on a hydrogen-precovered Pd(100) surface with a dimer
vacancy along a typical trajectory within a (3 × 3) periodicity is plotted;
Fig. 7.24b shows a snapshot of the trajectory. After the initial encounter with
the surface, the molecule is first scattered back. However, it has lost too much
energy to substrate and internal degrees of freedom so that it cannot escape
back into the vacuum. Interestingly enough, Fig. 7.24a demonstrates that the
initial energy transfer from the H2 molecule to the Pd substrate atoms is
larger than to the hydrogen overlayer atoms in spite of the more unfavorable
mass mismatch. After about 1.6 ps, the H2 molecule becomes trapped in a
molecular chemisorption state at the ontop position similar to the molecular
adsorption state at the Pd(210) surface discussed in Sect. 5.9. The snapshot
shown in Fig. 7.24b illustrates this situation. After 2.2 ps, the H2 molecule
enters the dimer vacancies, thereby first gaining more than 0.7 eV. This large
amount of energy is now mainly transferred to the hydrogen overlayer atoms
which start vibrating considerably. The Pd substrate atoms also take up some
energy, but much slower. The adsorbed hydrogen molecule loses its excess en-
ergy within about 1 ps whereas the equilibration between the Pd substrate
atoms and the hydrogen overlayer atoms lasts much longer.

A detailed analysis of the adsorption trajectories reveals that the impor-
tant dynamical role of the Pd atoms in the initial stages of the dissociative
adsorption of H2 on hydrogen precovered surfaces is not only due to energy
transfer to them but is also caused by relaxation effects [313]. The PES of the
hydrogen covered surface is much more corrugated than the PES of the clean
surface due to the existence of blocked sites. Therefore small relaxations of
the substrate Pd atoms have a much larger influence on the dissociation dy-
namics than on the clean surface in opening up channels towards dissociative
adsorption.

Exercises

7.1 Verlet Algorithm

a) Show that the velocity Verlet algorithm

ri(t+ h) = ri(t) + h vi(t) +
h2

2
F i(t)
m

vi(t+ h) = vi(t) + h
F i(t+ h) + F i(t)

2m
(7.61)

is mathematically equivalent to the Verlet algorithm
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ri(t+ h) = 2ri(t) − ri(t− h) +
h2

2
F i(t)
m

. (7.62)

b) Now consider a diatomic molecule interacting with a frozen substrate
described using center-of-mass coordinates. The relative coordinates of
the molecule are given in spherical coordinates (r, θ, φ). Try to formulate
the Verlet algorithm using spherical coordinates. Why does this not work?

7.2 Isotope Effect in Classical and Quantum Dynamics

a) Show that for a given interaction potential, the sticking probability as
a function of the kinetic energy only depends on the mass ratio between
the considered atoms in classical mechanics. In particular, this means
that for a system of atoms with equal masses the sticking probability
does not depend on the mass of the atoms [438], i.e. there cannot be an
isotope effects in such systems in classical dynamics.
Hint: Consider the Lagrangian of the system and perform appropriate
transformations.
b) Why is this not true in quantum mechanics?

7.3 Energy Transfer in Collision on Surfaces

Consider the elastic binary collision between an atom (mass m) and a
substrate atom (mass M) as a model for the interaction of a gas phase
atom with a surface. μ denotes the mass ratio μ = m/M .
a) Show that the energy transfer Δ = Ei − Ef to a substrate atom is
given by

Δ =
4μ

(1 + μ)2
Ei , (7.63)

if the substrate atom is initially at rest.
b) In order to take the surface temperature Ts into account, we assume
that the surface atom moves with an initial velocity vs before the collision.
Show that now an energy

Δ =
4μ

(1 + μ)2

(
Ei − 1

2
kBTs

)
(7.64)

is transferred to the substrate.
Hint: Average the energy transfer to the substrate over a velocity distri-
bution with

〈
vs

〉
= 0 and

〈
v2

s

〉
= kBTs/M

c) In the hard-cube model [348, 349], a weighted Maxwellian velocity
distribution

Pc(vc) =
α√
πvg

(vg − vc) exp
{−α2v2

c

}
(7.65)
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is used for the velocity of the cube which represents the substrate. Prove
that this velocity distribution yields an energy transfer of

Δ =
4μ

(1 + μ)2
{
Ei −

(
1 − μ

2

)
kBTs

}
. (7.66)

7.4 Hard-Cube Model

Verify that the trapping probability

Ptrap(vg) =

vlim∫

−∞
Pc(vc)dvc . (7.67)

in the hard-cube model is given by

Ptrap(vg) =
1
2

+
1
2

erf(αvlim) +
exp
{−α2v2

lim

}

2
√
παvwell

(7.68)

with

vlim =
μ+ 1

2

√
2Ead

m
+
μ− 1

2

√
v2
g +

2Ead

m
, (7.69)

where Pc(vc) is the weighted Maxwellian velocity distribution (7.65).

7.5 Activated dissociative adsorption

Assume that the minimum barrier for the dissociative adsorption of H2

on Cu is modeled by a simple square potential barrier (see the figure
below)

V (x) = V0 θ(a− |x|) =
{
V0 , |x| < a,
0 , |x| ≥ a,

V0 > 0 , (7.70)

where θ(x) is the Heaviside step function defined as

Θ(x) =
{

0 , x < 0
1 , x ≥ 0 (7.71)

V0

x−a

V(x)

a

Square potential barrier of energetic height V0 and width 2a.
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a) Calculate the dissociative adsorption probability for H2/Cu, i.e., the
transmission probability through the square barrier (7.70) by solving the
appropriate Schrödinger equation. Use a barrier height of V0 = 0.5 eV and
a barrier thickness of d = 2a = 4 Å. Plot the transmission probability as
a function of the kinetic energy and compare the results with Fig. 7.11.
Hint: Since the potential is piecewise constant, the solutions correspond
to a combination of either plane waves or exponentially increasing and
decreasing functions with the appropriate boundary conditions.
b) Now assume that the surface is corrugated which means that there
is a distribution of barrier heights. In order to estimate the adsorption
probability at the corrugated surface, use the so-called sudden approxi-
mation: The H2 molecule is supposed not to be redirected laterally upon
approaching the barriers. The adsorption probability is then obtained by
summing up the transmission probabilities classically, i.e. incoherently, for
a uniform distribution of barrier heights between 0.5 and 1.5 eV with con-
stant barrier thickness of 4 Å. Compare the result with the corresponding
result at a single barrier.



8

Kinetic Modeling of Processes on Surfaces

Many processes on surfaces such as diffusion, desorption etc. are hindered by
large energetic barriers. On a microscopic time scale, these processes occur
very rarely. Many unsuccessful attempts are performed before eventually the
corresponding barrier is crossed. The time between two successful events can
easily be in the order of nanoseconds or even longer. In any microscopic molec-
ular dynamics simulation all unsuccessful events are explicitly included. Since
the time scale of MD runs is typically limited to picoseconds, the simulation of
these rare events is prohibited. Besides, such a simulation would mean a waste
of computer time because a lot of useless information would be gathered.

Therefore, for the simulation of these processes a kinetic approach is nec-
essary in which the single processes are described by the corresponding rates.
Note that in the chemistry literature a rate usually has the dimension con-
centration per time. In contrast, here rates will simply be quantities with the
dimension one over time which a chemist would call rate constants. In this
chapter, we will first show how the rates can be determined from microscopic
information via transition state theory. We will then show how processes such
as diffusion and growth can be described either by rate equations or by kinetic
Monte Carlo simulations. This allows to extend the information gained from
microscopic electronic structure calculations to simulations on mesoscopic or
even macroscopic time and length scales which will be illustrated in detail.

8.1 Determination of Rates

Experimentally it is well established that the rate of many processes as a
function of temperature follows the Arrhenius behavior

k = k0 exp
(
− Ea

kBT

)
. (8.1)

In (8.1), Ea is the apparent activation energy which is usually interpreted
as the minimum barrier hindering the particular process. From a microscopic
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ωT

ωf

ω0
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k
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xi xT= 0 xf

Eb

V(x)

+

–

Fig. 8.1. Schematic representation of escape processes between to locally stable
states with forward rate k+ and backward rate k−

point of view, it is desirable to derive an expression for a rate from the proper-
ties of the underlying potential energy surface. This can in fact be done using
transition state theory (TST) [439].

Consider a potential V (x) along the reaction path coordinate x connect-
ing two locally stable states (Fig. 8.1). At x = xT = 0 the transition state
is located. The barrier for the forward escape is given by Ea while the cor-
responding barrier for the backward process is Eb. In the following we are
mainly concerned with the derivation of the forward rate k+. The frequency
of particles vibrating in the initial well around xi is given by ω0. The transition
state is characterized by an imaginary frequency ωT.

There are two basic assumptions underlying transition state theory. First,
it is assumed that the moving particles are sufficiently strongly coupled to a
heat bath so that there is local thermodynamic equilibrium along the whole
reaction path. Secondly, the transition state corresponds to a point of no re-
turn which means that any trajectory passing through the transition state will
not recross it. This last assumption is inherently coupled to classical mechan-
ics because in quantum mechanics it does not make sense to speak of single
trajectories with no recrossings. Hence transition-state theory is fundamen-
tally a classical mechanical theory, although the concept can be generalized
to consider the leading quantum corrections within semiclassical quantum
theory [439].

Using the basic assumptions mentioned above, the equilibrium average of
the one-way forward flux at the transition state can be expressed as

k+
TST =

〈 δ(x) ẋ Θ(ẋ) 〉
〈Θ(−x)〉 . (8.2)

Here the average 〈. . .〉 denotes the thermal expectation value. Θ is the step
function defined by
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Θ(x) =

{
1 , for x > 0

0 , for x < 0
. (8.3)

Hence 〈Θ(−x)〉 = n̄i corresponds to the equilibrium population for x < 0, i.e.,
of the initial state i in the left well of Fig. 8.1. It is important to note that the
rate (8.2) always gives an upper bound for the true rate, i.e. k+

TST ≥ k, since
recrossing of reactive trajectories are neglected.

In order to derive the rate expression within TST, we start with the simple
case of an one-dimensional system according to Fig. 8.1. A particle of mass m
moves in the potential V (x) with two local minima. Using (8.2), the transition-
state forward rate from state i to state f is given by

kTST = Z−1
0

1
2πh̄

∫
dq dp δ(q) q̇ θ(q̇) exp(−βH(q, p)) , (8.4)

where we have identified the variable q with the reaction-path coordinate x.
β = 1/kBT is the inverse temperature and Z0 denotes the partition sum in
the initial well

Z0 =
1

2πh̄

∫

q<0

dq dp exp(−βH(q, p)) . (8.5)

The integral over the momentum coordinate p in (8.4) can easily be evaluated
to yield

∞∫

−∞
dp q̇ θ(q̇) exp

(
−β p

2

2m

)
=

∞∫

0

dp
p

m
exp
(
− p2

2mkBT

)

= kBT , (8.6)

while the integral over the coordinate q simply gives
∫

dq δ(q) exp
(
−V (q)
kBT

)
= exp

(
− Ea

kBT

)
. (8.7)

Inserting the expressions for the integrals into (8.4), we get for the reaction
rate

kTST =
kBT

h

1
Z0

exp
(
− Ea

kBT

)
. (8.8)

In the harmonic approximation, the partition sum in the initial well is given
by Z0 = kBT/h̄ω0, i.e., we obtain the following rate

kTST =
ω0

2π
exp
(
− Ea

kBT

)
. (8.9)

Here we already see that the prefactor before the exponential in (8.9) cor-
responds to an attempt frequency that yields the number of attempts that
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the particle tries to get over the barrier. The Boltzmann factor then gives the
thermal probability that the particle has enough energy to cross the transition
state.

This formalism can relatively easily be extended to the multi-dimensional
case starting from the flux expression (8.2), in particular for the case of a
nonlinear coordinate (i = 0) coupled to N vibrational degrees of freedom. In
the harmonic approximation, which is valid for h̄ω 
 kBT , the partition sums
Z0 and ZTS in the initial well and at the transition state are simply given by

Z0 =
N∏

i=0

{
kBT

h̄ω
(0)
i

}
, ZTS =

N∏

i=1

{
kBT

h̄ωTS
i

}
, (8.10)

where ω(0)
i and ωTS

i are the vibrational frequencies in the initial well and at
the transition state, respectively. We note in passing that often the transition
state is denoted by (�=), i.e. ZTS ≡ Z �=. The transition rate can now be
expressed as [439]

kTST =
kBT

h

ZTS

Z0
exp
(
− Ea

kBT

)

=
1
2π

N∏
i=0

ω
(0)
i

N∏
i=1

ωTS
i

exp
(
− Ea

kBT

)
. (8.11)

This result for the TST rate can be reformulated employing the Helmholtz
free energy F via the substitution

Z = exp[−(E − TS)/(kBT )] = exp[−F/(kBT )] (8.12)

Inserting this expression into (8.11), we arrive at

kTST =
kBT

h
exp
(
ΔS

kB

)
exp
(
− Ea

kBT

)
= k0 exp

(
− Ea

kBT

)
, (8.13)

where ΔS = STS − S0 is the entropy change and STS and S0 are the entropy
of the 2N -dimensional phase space at the transition state and the 2(N + 1)-
dimensional phase space in the initial well. Hence we have derived the Arrhe-
nius expression (8.1) from transition state theory. Note that the prefactor k0

which is usually assumed to be temperature-independent has in fact a linear
dependence on the temperature according to (8.13). However, since the tem-
perature dependence is dominated by the exponential term, it is still often
justified to neglect the temperature dependence of the prefactor. Further-
more, as (8.11) shows, in the harmonic approximation the linear temperature
dependence of the first factor is canceled by the temperature dependence of
the entropy change.
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In principle, all variables in (8.11) can be evaluated from electronic struc-
ture calculations since they are all related to the potential energy surface.
However, usually the determination of eigenmode-frequencies is computation-
ally very demanding since it involves the evaluation and diagonalization of a
Hesse matrix. Hence often the prefactor in (8.11) is just estimated and only
barrier heights are computed from first principles.

Furthermore, it is not trivial to locate the transition state. There is no
uniquely defined way of finding the minimum energy path between a given
initial and final state. One way to determine this path is to simply map out
the relevant potential energy surface in great detail, but this can be com-
putationally very demanding. However, there are robust methods that can
be used to find a minimum energy path. In the nudged elastic band method
[440, 441], first the energy and the forces of the system are determined along
a string usually interpolating linearly between initial and final state. Neigh-
boring points along the string are connected by springs in order to guarantee
a continuous path. Then an optimization algorithm is performed which in-
volves force projections of both the true forces and the spring forces. Thus
the string of points is dragged closer and closer to the minimum energy path
until the transition state is located. In that way, also nonintuitive transition
state geometries might be detected.

8.2 Diffusion

A single particle on a surface can jump laterally along the surface from one
stable adsorption site to the next. This process is a typical process that is
driven by thermal fluctuations. Each adsorbate performs thermal vibrations
around the equilibrium site in the adsorption well. The rate for a jump to a
next nearest neighbor site is then given by an Arrhenius expression

kj = k0 exp
(
− Ea

kBTs

)
, (8.14)

where Ea is the energetic barrier to the next-nearest neighbor site and Ts

is the surface temperature. To obtain a more detailed understanding of the
so-called self-diffusion process, we introduce the probability P (R, t) that the
lattice site R on the surface is occupied a time t. The probability that the
atom is still at site R at time t+Δt can be expressed as

P (R, t+Δt) =
∑

R′
W (R,R′, Δt) P (R′, t) . (8.15)

Here W (R,R′, Δt) describes the conditional probability that the atom is at
site R at time t+Δt given that it was at site R′ at time t. Now we assume
that only nearest-neighbor (n.n.) jumps can occur and that the time Δt is so
short that at most one jump happens during this time. Since kj is the overall
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rate that a jump to any of the nearest neighbors occurs, the rate of a jump
to a particular nearest neighbor is given by kj/N where N is the number of
nearest neighbors. Then the probability of a jump to this nearest neighbor
site within the time Δt is simply Δt ·kj/N . Thus we can write the probability
W as

W (R,R′, Δt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kjΔt/N , if R,R′ n.n. ,

1 − ∑
n.n.

kjΔt/N , if R = R′ ,

0 else ,

(8.16)

where we have used the fact that W is a probability, i.e.,
∑
R

W (R,R′, Δt) = 1.

This last relation simply says that if an atom is at site R′ at time t, it will
also be at some lattice site at time t+ Δt with certainty (which means that
desorption events are not considered).

If we insert (8.16) in (8.15), we obtain

P (R, t+Δt) =
∑

n.n.

kjΔt

N
P (R′, t) +

(
1 −
∑

n.n.

kjΔt

N

)
P (R, t) . (8.17)

Now we subtract P (R, t) from both sides of (8.17), divide by Δt, and take
the limit Δt → 0. This leads to the differential equation

∂P (R, t)
∂t

=
kj

N

∑

n.n.

[P (R′, t) − P (R, t)] . (8.18)

An equation such as (8.18) is called a master equation. In general, master
equations give the time dependence of probability distributions of physical
observables. Equation (8.18) is valid for diffusion via nearest-neighbor jumps
in arbitrary environments. Let us now assume that the jumps are confined
to a two-dimensional square lattice with lattice constant a. The number of
nearest neighbors is 4. If we now perform a Taylor expansion of P (R′, t) at
the nearest-neighbor sites, for example in x-direction:

P (R± aêx, t) = P (R, t) ± a
∂P (R, t)

∂x
+
a2

2
∂2P (R, t)

∂x2
± . . . , (8.19)

where êx is the unit vector in x-direction, we obtain the well-known diffusion
equation

∂P (R, t)
∂t

=
kja

2

4
∇2P (R, t) . (8.20)

The factor

Ds =
kja

2

4
(8.21)

is called the self-diffusion or tracer-diffusion coefficient. It is often denoted by
D∗. This coefficient also enters the mean square displacement of the particle
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on the surface. Let us assume that the adatom was at the origin R = 0 at
time t = 0. After the time t the particle has performed t · kj jumps, each with
a square displacement of a2. Hence the mean square displacement is given by

〈R2(t)〉 = t kj a
2

= 4 Ds t . (8.22)

In fact, (8.22) is often used to define the self-diffusion coefficient Ds. It is
important to note that Ds differs from the chemical diffusion coefficient Dc.
Consider an ensemble of particles on the surface. If one assumes that the num-
ber of particles stays constant with time, their particle distribution function
n(R, t) obeys a conservation law given by a continuity equation

∂n(R, t)
∂t

+ ∇ · j(R, t) = 0 , (8.23)

where j(R, t) is the particle current. Now we assume that the particle cur-
rent is driven by the non-uniformity of the density distribution. The simplest
assumption is a linear dependence

j = −Dc ∇n(R, t) . (8.24)

This equation is known as Fick’s law. Substituting Fick’s law into the conser-
vation law yields Fick’s second law, the diffusion equation

∂n(R, t)
∂t

= ∇ · (Dc∇n(R, t)) . (8.25)

The chemical diffusion coefficient does not describe the motion of a single
atom due to thermal fluctuations, but the transport of a large number of
atoms due to a gradient in the particle density. In general, Dc depends on
the particle density. Only in the case of vanishing particle densities when Dc

does not depend on the density any more, Ds and Dc become equal, as a
comparison of (8.20) and (8.25) confirms.

The usual mode of surface diffusion is assumed to proceed via hops between
adjacent equilibrium adsorption sites (see Fig. 8.2a). This is indeed true for a
number of close-packed metal surfaces. However, for self-diffusion on Pt(100)
[442] and Ir(100) [443] another diffusion mechanism has been experimentally
observed. On these surfaces, the adatoms diffuse along the [001] and [010]
directions by displacing a neighboring surface atom. This exchange mechanism
is illustrated in Fig. 8.2b.

An explanation for the driving force of the exchange diffusion has been
given by Feibelman based on LDA-DFT calculations for the diffusion of Al
adatoms on Al(100) [444]. He realized that it is important to regard a diffusion
process as a motion associated with the making and breaking of chemical
bonds rather than as a hard sphere rolling over a corrugated plane. For the
hopping diffusion along the [110] direction, the atom at the transition state
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a)

initial transition final state

b)

Fig. 8.2. Diffusion mechanisms on a fcc(100) surface. (a) hopping diffusion, (b)
exchange diffusion

is only twofold coordinated resulting in a rather large barrier of 0.65 eV. On
the other hand, for the exchange mechanism the transition state is threefold
coordinated which is especially favorable for the trivalent aluminum where it
leads to a reduction of the diffusion barrier to 0.20 eV [444]. The coordination
argument is not restricted to trivalent systems. It has been shown that the
exchange mechanism in the late 5d metals Ir, Pt and Au can be explained by
the unusually high surface stress which is a consequence of relativistic effects
[445, 446]. This high stress pulls the two atoms of the exchange transition
state closer to the surface which lowers the energy barrier. As far as other
fcc(100) metal surfaces are concerned, exchange diffusion has only been found
experimentally [447] and confirmed theoretically by DFT calculations [448]
for Ni(100) and predicted for strained Ag(100) [446].

8.3 Kinetic Lattice Gas Model

The derivation of the self-diffusion coefficient (8.15)–(8.21) actually presented
a special case of the application of a much more general model that allows the
description of processes on the surface such as diffusion, adsorption, desorption
or growth on mesoscopic length and time scales: the kinetic lattice gas model
[449]. Note that the same model for the three-dimensional bulk description is
known as the cluster expansion [450]. The prerequisites for its application are
that the geometry of the surface remains unperturbed and that adsorption
occurs at well-defined sites. Then the substrate can be divided into Nc cells
where each cell corresponds to a possible adsorption site. In principle these
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cells can also describe different layers. The cells can either be occupied by
an adsorbate or empty. This means that the whole microscopic motion of the
atoms around their equilibrium position is entirely neglected. Let us denote by
{Ri} the set of occupied cells. We further introduce the occupation numbers
ni which are either 0 or 1 depending on whether the adsorption site in cell
Ri is empty or occupied. Note that we only consider one type of adsorbate
here, but the model can easily be extended to multiple adsorbate species. The
energetics of the system are described by the lattice gas Hamiltonian

H({R}) =
∑

Ri

E(Ri) ni +
1
2

∑

Ri

∑

Rj

V2(Ri,Rj) ninj

+
1
6

∑

Ri

∑

Rj

∑

Rk

V3(Ri,Rj ,Rk) ninjnk + . . . , (8.26)

where E(Ri) is the single-particle Helmholtz free energy of an atom at site Ri,
and V2 and V3 are the two-particle and three-particle interactions, respectively.
Usually only two-particle interactions are included, but for certain problems
also so-called triples have to be included.

Time-dependent phenomena on a mesoscopic or macroscopic time and
length scale are best described in an approach based on nonequilibrium sta-
tistical mechanics [343] using time-dependent distribution functions. Usually
one assumes that the variables at any moment determine the further devel-
opment of the system in time, i.e., one uses the Markov approximation. One
then introduces the function P ({R}, t) which gives the probability that the
system is in the state {R} = (n1, n2, . . . , nNc) at time t. The time-evolution
of this probability function is determined by the master equation

dP ({R}, t)
dt

=
∑

{R′}
[k({R}, {R′}) P ({R′}, t) − k({R′}, {R}) P ({R}, t)] . (8.27)

Here k({R′}, {R}) describes the transition probability per unit time, i.e., it
corresponds to the rate at which the system changes from state {R} to {R′}.
Equation (8.27) corresponds to the generalization of (8.18). The population
of state {R} is increased by any process in which the system switches from
{R′} to {R} (first term at the right-hand side of (8.27)), but it decreases
when the system switches from {R} to {R′} (second term at the right-hand
side of (8.27)). The change is given by the rate at which the transition occurs
weighted by the probability that the initial state is occupied. The transition
rates k({R′}, {R}) are in fact not entirely independent. They must satisfy
the principle of detailed balance [343] which is related to the time-reversal
symmetry or microscopic reversibility. It ensures that forward and backward
rates weighted by the Boltzmann factor are the same and is expressed as
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k({R}, {R′}) exp

⎛

⎝−β
⎡

⎣H({R′}) −
∑

{R′
j}
n′

j μ(R′
j)

⎤

⎦

⎞

⎠

= k({R′}, {R}) exp

⎛

⎝−β
⎡

⎣H({R}) −
∑

{Ri}
ni μ(Ri)

⎤

⎦

⎞

⎠ . (8.28)

The factor β = 1/kBT in the exponent is the inverse temperature and μ(Ri)
is the equilibrium chemical potential of the atom at site Ri. The change from
state {R} to {R′} in general involves a number of different microscopic pro-
cesses. These are usually assumed to be independent from each other so that
the transition rate k({R′}, {R}) can be expressed as a sum over individual mi-
croscopic processes. For example, for surface processes the rate can be written
as a sum of adsorption-desorption and diffusion terms

k({R}, {R′}) = kad−des({R}, {R′}) + kdiff ({R}, {R′}) (8.29)

Except for the detailed balance relation there is no constraint within the
lattice gas model on the rates. They have either to be guessed or fitted or
derived from electronic structure calculations.

8.4 Kinetic Modelling of Adsorption and Desorption

In Chap. 7, we have already treated the dynamics of atomic and molecular
adsorption on surfaces and of the time-reverse process, desorption. If a gas of
atoms or molecules at a certain temperature is in contact with a surface, we
have to average over the thermal distribution. The sticking probability then
becomes dependent on the temperature of the gas. Furthermore, we have
to take into account that a surface in such a situation will not stay clean
but becomes covered with adsorbates. In Sect. 7.7, the dynamics of hydrogen
dissociation on a precovered surface have been discussed. Here we will present
a kinetic description of the adsorption and desorption which among others
allows to derive simple qualitative trends.

In the following, we consider an adsorbate on the surface for which the
interaction energy is described by the lattice gas Hamiltonian (8.26). The
change of the adsorbate coverage is due to adsorption processes that increase
the coverage and desorption processes which decrease the coverage. The time
rate of the change is therefore given by [451]

dθ

dt
= Rad −Rdes , (8.30)

where Rad and Rdes give the rate of adsorption and desorption, respectively.
The flux F of particles impinging from the gas phase at pressure P and tem-
perature T on the surface unit cell with area as is given by
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F =
Pasλth

h
, (8.31)

where
λth =

h√
2πmkBT

(8.32)

is the thermal wavelength of a molecule of mass m. Introducing the coverage
and temperature dependent sticking probability S(θ, T ), the rate of adsorption
can be expressed as

Rad =
S(θ, T )Pas√

2πmkBT
. (8.33)

In order to make contact with the kinetic lattice gas model, we have to specify
the transition probabilities entering the master equation (8.27). For the sake
of simplicity we consider only nearest neighbor interactions between sites Ri

and Ri+a. The adsorption-desorption term becomes [452]

kad−des({R′}, {R}) =

k0

∑

i

⎧
⎨

⎩(1 − ni)

⎛

⎝1 +A1

∑

a

ni+a +A2

∑

a,a′
ni+ani+a′ + . . .

⎞

⎠

+D0ni

⎛

⎝1 +D1

∑

a

ni+a +D2

∑

a,a′
ni+ani+a′ + . . .

⎞

⎠

⎫
⎬

⎭

×δ(n′
i, 1 − ni)

∏

j �=i

δ(n′
j , nj) , (8.34)

where the Ai refer to adsorption processes and the Di to desorption processes.
The Kronecker delta for sites Ri �= Rj excludes multiple transitions so that
only one transition occurs at any given time. To study the time evolution, the
coverage is defined as

θ(t) = N−1
c

∑

i

∑

{R}
ni P ({R}, t) = N−1

c

∑

i

〈
ni

〉
. (8.35)

The time evolution of the coverage is then obtained by multiplying the master
equation (8.27) with ni and summing over all sites and configurations. By
comparison with the phenomenological ansatz (8.33), the rate k0 in (8.34)
can be identified as

k0 =
S0(T )Pas√
2πmkBT

, (8.36)

where S0(T ) is the temperature-dependent sticking coefficient for zero cover-
age. The coverage-dependent sticking coefficient is then given by a product of
S0(T ) with a sum that yields the coverage dependence,
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Fig. 8.3. Coverage dependence of the relative sticking probability S(θ, T )/S0(T )
on a disordered adsorbate (low T) on a square lattice for strong nearest neighbor
(n.n.) attraction, repulsion and pure site exclusion (Langmuir kinetics) determined
within the kinetic lattice gas model [451]

S(θ, T ) = S0(T )

⎧
⎨

⎩(1 − θ) +
∑

{R}

(
A1

∑

a

〈
(1 − ni)ni+a

〉

+ A2

∑

a,a′

〈
(1 − ni)ni+ani+a′

〉
+ . . .

⎞

⎠

⎫
⎬

⎭ . (8.37)

It is important to note that within the lattice gas model not all the parame-
ters can be uniquely specified. Detailed balance yields only one condition for
each pair Ai and Di [451]. For example, for the first pair of parameters this
condition is

1 +A1 = (1 +D1) exp(−Vnn/kBT ) , (8.38)

where Vnn is the interaction energy between adsorbates on nearest neighbor
sites. Furthermore, the sticking probability S0(T ) can only be determined in a
dynamical calculation since it depends on the energy transfer to the substrate
degrees of freedom such as phonons or electron-hole pairs (see Sects. 7.5 and
9.4). The functional relation between Ai and Di and the sticking probability
S0(T ) must therefore be postulated ad hoc or derived from a microscopic the-
ory that takes the necessary couplings to the substrate explicitly into account.
It is also important to note that any dynamical effects due to a modified recoil
of the partially covered surface as discussed in Sect. 7.7 are not included in
(8.37).

Still the relative sticking coefficient S(θ, T )/S0(T ) can be evaluated in
closed form within the kinetic lattice gas model under the assumption that
the temperature is so low that the surface diffusion is too slow to establish
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equilibrium during the adsorption process [451]. Then the adsorbate remains
disordered and the correlation functions appearing in (8.37) can be factorized
to give products of only θ and (1 − θ). For strong nearest neighbor repulsion,
i.e., Vnn 
 kBT , one obtains a simple expression for the relative sticking
coefficient,

S(θ, T )/S0(T ) = (1 − θ)z+1 , (8.39)

where z is the number of nearest neighbors in the surface. For strong nearest
neighbor attraction −Vnn 
 kBT , on the other hand, and symmetric lat-
eral interaction for adsorption and desorption, i.e. Ai = −Di, the sticking
probability is given by

S(θ, T )/S0(T ) = (1 − θ) (1 + θ)z . (8.40)

The symmetric effect of the lateral interactions for adsorption and desorption
can be made reasonable by considering that lateral repulsion will suppress
adsorption and aid desorption, whereas for lateral attraction it is the other
way around.

We have plotted the coverage dependent sticking probabilities in these two
limiting cases on a square lattice in Fig. 8.3. It is obvious how significantly
the lateral interactions influence the sticking probabilities. In addition, we
have included the sticking probability when the adsorption is independent of
the neighboring sites. This so-called Langmuir kinetics is obtained by setting
all Ai = 0 in (8.37). The sticking probability is then simply given by the
availability of empty sites, i.e., S(θ, T )/S0(T ) = (1−θ). Langmuir kinetics has
only been observed in a few systems [451]; in most systems the dependence of
the sticking probability is modified by lateral interactions, multilayer growth
or the existence of precursors. The influence of precursors and longer-range
lateral interactions on adsorption and desorption properties can be build into
the kinetic lattice gas formalism without any principal difficulty, the equations
just become more complex [451,452].

Since adsorption and desorption are related through detailed balance, the
same mechanisms must be operative for both processes. If the surface diffusion
is much faster than adsorption and desorption, it can be assumed that there is
always a quasi-equilibrium on the surface. In such a situation, the desorption
rate can be derived from non-equilibrium thermodynamics [449]. It can be
written as a product of the sticking probability and the activity, i.e., the
chemical potential of the adsorbate:

Rdes = S(θ, T )
as

λ2
th

kBT

h
Zint exp(βμ) . (8.41)

Here Zint is the internal partition function of the adsorbate in the gas phase
and μ is its chemical potential.

Traditionally, in the description of the adsorption and desorption kinet-
ics, the parameters of the model have been adjusted in order to reproduce
experimental data. Nevertheless, the most significant interaction parameters
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Fig. 8.4. TPD spectra for the associative desorption of oxygen from Ru at a heating
rate of 6 K/s for initial coverages up to one monolayer. (a) Theoretical results derived
from ab initio results using the kinetic lattice gas model [453], (b) experimental
results [454]

entering the lattice gas Hamiltonian are accessible by total-energy calculations
which has been demonstrated for the system O/Ru(0001) [453, 455]. Based
on a series of DFT-GGA calculations for different adsorption structures, the
parameters for first, second and third-neighbor two-body interaction energies
and nearest-neighbor three-body interactions have been derived (see Exer-
cise 8.2). Since oxygen desorbs associatively, the expression for the desorption
rate slightly differs from the general expression (8.41) for atomic desorption.
Furthermore, the chemical potentials of the gas phase and the adsorbate are
the same in equilibrium. This allows to break up the term exp(βμ) into dif-
ferent factors. In total, one obtains for the desorption rate [453]

Rdes = 2S(θ, T )
as

λ2
th

kBT

h

Zint

q23

θ2

(1 − θ)2
exp(−2β|V0|) exp(βμlat) , (8.42)

where q3 is the partition function of the oxygen atoms on the surface, 2|V0|
is the energy required to desorb two atoms from the substrate and associate
them in the gas phase, and μlat is the contribution of the lateral interaction
to the chemical potential of the adsorbate. The thermodynamic information
about the system such as for example the chemical potential has been de-
termined from the lattice gas Hamiltonian by the so-called transfer matrix
technique [449]. The coverage-dependent sticking probability S(θ, T ) of O2

on Ru(0001) entering (8.42), however, had to be parameterized and adjusted
to experimental data.

The calculated desorption rate for O2/Ru(0001) as a function of the sub-
strate temperature for different initial coverages is shown in Fig. 8.4a. In panel
b, the corresponding experimental results [454] are plotted. The spectra are
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obtained using the method of temperature programmed desorption (TPD).
The surface temperature is increased linearly with time, i.e. T = T0 + αt,
and the desorption flux is determined as a function of the temperature. The
maxima in the TPD spectra at the temperature Tmax can be related to the
desorption energy Edes. For a simple n-th order desorption process, for which
the desorption rate can be written as

dθ

dt
= Rdes = R0 θ

n exp(−βEdes) , (8.43)

the relation between Edes and Tmax reads (see Exercise 8.3 [110])

ln
(
Tmax R0 θ

n−1

α

)
=

Edes

kBTmax
+ ln

(
Edes

kBTmax

)
. (8.44)

However, often TPD spectra are distorted due to lateral interactions or pre-
cursor and dynamical effects, or additional peaks show up. This makes the
derivation of interaction energies from the spectra ambiguous. Therefore the
calculation of realistic theoretical TPD spectra derived from first principles is
very helpful for the interpretation of experimental spectra.

The comparison of the calculated and the measured TPD spectra in
Fig. 8.4 demonstrates that there is a satisfactory agreement between both.
At low initial coverages, in the theory the oxygen desorbs at temperatures
that are about 100K higher than in the experiment. This has been traced
back to the overbinding present in the DFT calculation. Except for that, all
features of the experimental TPD spectra are nicely reproduced. The peak
maximum shifts to lower temperatures for higher initial coverages. This is a
consequence of the repulsive interaction between the adsorbed oxygen atoms
which lowers the binding energy and thus leads to an onset of desorption at
lower temperatures. The maximum for higher initial coverages is due to the
(1× 1) oxygen monolayer on Ru(0001). The very steep leading edge is caused
by the rapidly decreasing sticking coefficient for higher coverages. This leads
to a delay of the desorption of the first oxygen molecules to higher temper-
atures over a very narrow temperature range. The shoulders at 1100K and
1300K in the spectra can be related to the formation of ordered (2 × 1) and
(2 × 2) structures [453].

The influence of the trio interactions on the TPD spectra has also been
investigated. It turns out that neglecting them leads to broader spectra for
higher coverages which reduces the agreement with experiment. Thus the trio
interactions are indeed important for a reliable description of the desorption
kinetics in the system O/Ru(0001).

8.5 Growth

So far, in this chapter we have addressed diffusion on the surface and ad-
sorption/desorption processes. We have not focused on changes of the surface
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Fig. 8.5. Illustration of three dis-
tinct growth modes, Frank–van der
Merwe, Volmer–Weber and Stranski–
Krastanov growth. γs, γa and γi

denote the free surface energy of the
substrate, the adsorbate overlayer and
the substrate-adsorbate interface, re-
spectively

structure caused by these processes. Now consider a flux of particles imping-
ing on a surface. If more particles stick on the surface per unit time than
desorb again, adlayers will start to grow on the surface. This is a typical
non-equilibrium situation because in thermal equilibrium the impinging flux
would be balanced by the flux of scattered and desorbing particles so that
there would be no net growth of the surface.

If the temperature is sufficiently high, the resulting surface structures in
growth can still be classified by thermodynamic stability arguments. Exper-
imentally, it is common to distinguish between three different growth modes
[109], the so-called Frank–van der Merwe (FV), Volmer–Weber (VW) and
Stranski–Krastanov (SK) growth modes. These growth modes are illustrated
in Fig. 8.5. The FW growth mode corresponds to a layer-by-layer growth while
in the VW growth mode the adsorbate grows in a three-dimensional fashion by
building small crystallites. The SK growth mode is an intermediate case where
a few monolayers adsorb in a layer-by-layer fashion before three-dimensional
growth starts.

In Fig. 8.5, the free surface energy of the substrate γs and of the adsorbate
overlayer γa and the substrate-adsorbate interface energy γi are depicted. If
the sum of the adsorbate surface energy plus the interface energy is smaller
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than the substrate surface energy, i.e. γa + γi < γs, then it is energetically
favorable that the adsorbate layer covers the whole substrate (FV growth).
This two-dimensional growth scenario is also called wetting. On the other
hand, if γs < γa + γi, then it is energetically more favorable that not the
whole substrate is covered by an overlayer but that the substrate surface is
still exposed. This causes a three-dimensional growth mode (VK growth). In
the intermediate SK case, the energy difference Δγ = γa + γi − γs changes
sign at a critical layer thickness leading to a transition from two-dimensional
growth to three-dimensional growth.

This argumentation is entirely based on macroscopic properties of the
surface and the interface; it neglects any microscopic details of the growth
process. For a microscopic understanding, however, one has to take into ac-
count that even in the case of two-dimensional growth a whole layer is not
grown at one time. Before a new layer is completed, the uppermost layer will
exhibit a rough structure with single adatoms, islands, steps and kinks. The
morphology of the resulting surface structure depends sensitively on the mo-
bility of the adatoms which have been deposited from the gas phase. If this
mobility is high, the situation is close to thermal equilibrium and the atoms
can travel far enough on the surface to find the most favorable adsorption
sites. These are usually located at steps and kinks. The adatoms therefore
propagate along the surface until they attach to a step or kink, and through
this attachment steps advance along the surface. This growth mode is called
step flow. During the step flow process, the macroscopic morphology of the
surface is not modified, and the resulting structure corresponds to a flat film.

Fig. 8.6. Atomistic processes during growth: (a) deposition, (b) diffusion on ter-
races, (c) nucleation of an island, (d) nucleation of a second-layer island, (e) diffusion
to a lower terrace, (f) attachment to an island, (g) diffusion along a step edge, (h)
detachment from an island, (i) diffusion of a dimer (or a larger island). (After [445])
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If the mobility is not that high, the adatoms do not necessarily find the
most favorable adsorption sites. Then the growth mode is determined by the
kinetics of the transport and diffusion processes on the surface. Therefore it is
important to consider the microscopic diffusion processes and the probabilities
with which they occur. In Fig. 8.6 the atomistic processes during film growth
are illustrated. After the deposition of the atoms (a) the atoms can diffuse on
the surface (b). Some atoms may meet to form the small nucleus of an island,
either on a flat terrace (c) or on top of an island (d). If the atom was deposited
on top of an existing island, it might move down to the lower terrace (e). An
atom on the terrace can directly attach to an existing island (f). Once it is
attached, it might diffuse along the step edge (g) or it might again detach
from the island (h). Finally, a dimer or larger islands can move as a whole (i).

Note that in homoepitaxial growth, the energy again upon adsorption at
a kink site exactly corresponds to the cohesive energy per atom of the bulk
material. This somehow surprising fact can most easily be understood by
considering that upon adsorption at the kink site neither the area of the faces
nor the length of the steps and the number of kinks are changed. Hence the
sum of all surface, step and defect energies remains the same, the substrate
just contains one more atom.

Before we proceed, we should consider the barrier for diffusion across a
step. Consider the situation depicted in Fig. 8.7. At the upper step edge, a
diffusing atom is only bound to a small number of neighbors. This low coor-
dination leads to a weak binding and thus to a barrier for diffusion across
the step ES that is larger than the diffusion barrier ET on the terraces.

Fig. 8.7. Schematic representation of the Ehrlich-Schwoebel barrier for an adatom
moving over a step edge. Due to the lower coordination for adatoms above a step
edge atom, the barrier for diffusion ES is larger than the diffusion barrier ET on
the terraces. This leads to an additional barrier for the diffusion over the step, the
Ehrlich–Schwoebel barrier EES = ES − ET
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Consequently there is an additional step-edge barrier

EES = ES − ET , (8.45)

the so-called Ehrlich–Schwoebel barrier [456,457], which hinders the diffusion
across a step. The magnitude of this barrier in fact decides whether two-
dimensional or three-dimensional growth occurs in the kinetic regime. For
a large Ehrlich–Schwoebel barrier, adatoms that have landed on top of an
existing island cannot move to the lower terrace. They stay ontop of the
island so that the islands grow vertically and become three-dimensional. On
the other hand, if this barrier is small, adatoms are able to move down to
the lower terrace and attach to the edge of the island so that the islands
grow laterally and eventually coalesce leading to two-dimensional growth. We
will later see that the Ehrlich–Schwoebel barrier can be quite small for metals.
This is particularly true if diffusion across the steps proceeds via the exchange
mechanism because then the low coordination during the diffusion process is
avoided.

There is another important aspect illustrated in Fig. 8.7. The energy well
for adatoms attached to the steps is much larger than for adatoms adsorbed on
the flat terraces. Again this can be understood by the modified coordination
of the adatoms at the steps which is higher at the lower side of the steps.
One consequence of the resulting higher binding energy is that the barrier for
moving up a step is even much larger than for moving down a step. This is
the reason why we did not include this process in Fig. 8.6 because adatoms
usually do not move to upper terraces. Just a note of caution should be added
here. Going up or down has nothing to do with gravity here. Gravitational
forces are entirely negligible for all our considerations here.

Many qualitative and even some quantitative aspects of growth processes
at surfaces can already be derived from mean-field nucleation theory using
phenomenological rate equations [458]. A central concept is the critical cluster
size i. Neglecting any effects of the shape of the islands, the critical cluster
size is defined as the size i at which islands are just not stable, i.e., all clusters
of size j > i are stable. Stability is defined dynamically here which means
that a stable cluster grows more rapidly than it decays during deposition.

In order to derive the basic equations of nucleation theory [459], we assume
that only single atoms are mobile. We define nx as the density of stable clusters
or islands:

nx =
∞∑

j=i+1

nj . (8.46)

By considering all possible processes, we can derive the rate equations for the
densities nj of clusters of size j. For single atoms the rate equation is

dn1

dt
= F − σiDnin1 − σxDnxn1 − Fθ . (8.47)

The meaning of the single terms on the right-hand side of (8.47) is as follows.
The number of single atoms on the surface increases through the flux F of
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deposited particles. On the other hand, a single atom can diffuse with diffusion
coefficient D to a cluster of critical size ni leading to the nucleation of a new
stable cluster. This is described by the nucleation term σiDn1ni. Furthermore,
an atom can attach to an existing stable cluster at the diffusion capture rate
σxDnx. Finally, the deposited atom can directly attach to a stable cluster
with a rate Fθ where θ is the coverage of stable clusters. Reevaporation of
atoms back into the gas phase is neglected in (8.47). This approximation is
justified if the growth temperature is not too high.

We assume that there is local thermodynamic equilibrium between sub-
critical clusters so that their distribution is stationary, i.e., it does not change
in time. This can be expressed as

dnj

dt
= 0 , 2 ≤ j ≤ i . (8.48)

As far as the stable clusters are concerned, their number can increase by
nucleation processes given by the nucleation term σiDn1ni. On the other
hand, stable cluster can coalesce which reduces the number of stable clusters
by one. The rate of this process is given by 2nx(dθ)/(dt). Hence the rate
equation for nx becomes

dnx

dt
= σiDn1ni − 2nx

dθ

dt
. (8.49)

Solving the coupled rate equations (8.47)–(8.49) is not trivial [459]. Assuming
steady-state conditions, i.e. dn1/dt = 0, and local thermodynamic equilibrium
between ni and n1, the island density of stable clusters is given by

nx = f(θ, i)
(
D

F

)− i
i+2

exp
(

Ei

(i+ 2)kBT

)
, (8.50)

where Ei is the binding energy of a i-sized cluster. Equation (8.50) is often
expressed as a scaling relation connecting the island density with the flux and
the diffusion coefficient

nx ∝
(
D

F

)− i
i+2

. (8.51)

This scaling relation can be used to extract microscopic parameters from
experimental results. If the island density nx is measured as a function of
the flux F , the critical size i can be derived. The temperature dependence
of nx for a known critical size i yields both the diffusion barrier Ea and the
prefactor D0 entering the diffusion coefficient.

Simple scaling theory often works rather well, but it is only valid for com-
pact islands in the coverage regime of saturation. Furthermore, as a mean-field
theory it cannot properly describe island size distributions and coalescence ef-
fects. Therefore a microscopic approach is needed that explicitly includes the
randomness of the size and shape distribution of islands, but still allows the
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Fig. 8.8. Illustration of the kinetic Monte Carlo scheme using the diffusion of
adatoms at a stepped and kinked (100) substrate. The black circles denote the im-
mobile substrate atoms at the step. The selected process corresponds to the diffusion
of an adatom on the terrace which is indicated by the light-grey shaded circle

simulation of systems having mesoscopic time and size scales. Kinetic Monte
Carlo (kMC) simulations can in fact meet all these requirements. Kinetic
Monte Carlo simulations can be regarded as a coarse-grained, lattice-based
atomistic simulation technique [256, 460–462]. In a kMC simulation, first of
all a list of all relevant processes that are allowed for the various atoms present
on the surface has to be made. Furthermore, a rate with which each process
occurs has to be specified. These rates have to be guessed, they can be used
as adjustable parameters, or they can be derived from electronic-structure
calculations via transition state theory (see Sect. 8.1).

A typical kinetic Monte Carlo algorithm proceeds as follows [441,445]. For
a given configuration, all possible processes and their corresponding rates ki

are determined. Then the sum of all the rates R =
∑
ki is formed. A random

number ρ1 in the range (0,1] is picked and the process with rate kl which
satisfies

l−1∑

i=0

ki ≤ ρ1R <

l∑

i=0

ki (8.52)

is performed. The average period of time until the next event will occur is
given by Δt = 1/R. However, it is more realistic to allow for fluctuations in
the time interval. Hence another random number ρ2 between 0 and 1 is cho-
sen and the simulation time is updated by t = t+Δt with Δt = − ln(ρ2)/R.
After the process l has been performed, the configuration of the system has
changed. Hence there might be other processes possible for this new configu-
ration. Therefore the list of all possible processes has to be updated, and the
procedure described above starts again.

The kinetic Monte Carlo scheme is illustrated in Fig. 8.8 using the example
of the diffusion of adatoms at a stepped and kinked (100) substrate. The black
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Fig. 8.9. Orientation of the close-packed steps on fcc(111) surfaces

balls represent substrate atoms at a step which are supposed to be immobile.
There are six adatoms which can perform in total 15 different processes which
are indicated by the arrows: diffusion on the terrace, diffusion along the step,
detachment from the step and from the kink. Some of the processes are equiv-
alent which is reflected by the shading and hatching of the arrows. The rates
of the single processes are depicted by the bars with the corresponding shad-
ing and hatching where the thickness of the bars describes the magnitude
of the rate. A random number between zero and one then acts as a pointer
that selects a certain process which is then executed. In the example shown
in Fig. 8.8, the selected process corresponds to a diffusion event of an adatom
on the terrace which is illustrated by the light-grey shaded atom.

The kinetic Monte Carlo scheme represents a very efficient method that
allows simulations up to the time scale of seconds [462–464]. However, if there
are processes with rates that differ by several orders of magnitudes, then most
time of the simulation is spent by performing always the same type of processes
whereas the rare events with small rates are almost never performed. In such
a situation one can in fact freeze in the fast processes after a certain number
of steps in order to speed up the simulation [464]. This is equivalent to the
assumption that the distribution of the atoms related to the fast processes
corresponds to an equilibrium situation because of the different time scales
on which fast and slow events occur.

In any reliable kinetic Monte Carlo simulation it is crucial to take into
account all relevant microscopic processes. Unfortunately, there is no scheme
that guarantees that one indeed has considered all important transitions. One
has to try to find all relevant processes by either clever search algorithms or
based on experience and intuition. Hence an otherwise sound kMC simulation
can still yield unrealistic results if some important microscopic mechanism
has been overlooked.

In this elementary introduction, we focus on the growth processes at
fcc(111) surfaces. Before we proceed, it is important to note that on fcc(111)
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surfaces two different kinds of close-packed steps exist that exhibit different
facets. This is illustrated in Fig. 8.9. The close-packed steps running along
the [110] direction can either consist of {100} microfacets or of {111} micro-
facets. Sometimes these steps are also called A and B steps, respectively. These
steps have slightly different formation energies on Al(111): E{100} = 0.248,
E{111} = 0.232 eV/atom [465].

At high surface temperatures, the shape of the island should be close to
their equilibrium structure. Neglecting entropy effects, the edges of equilib-
rium islands are determined by the step formation energies in analogy to the
Wulff construction for the shape of three-dimensional crystallites (see p. 69).
On Al(111), this results in hexagonally shaped islands with close-packed steps
along the [110] directions. Due to the difference in the formation energies of
the two kinds of close-packed steps, the hexagons are slightly distorted. The
equilibrium shape determined by the Wulff construction yields a length ratio
of L{100} : L{111} = 4 : 5 [465].

At lower surface temperatures, the island size distribution and their shape
occuring in growth no longer follows from equilibrium considerations. In fact,
the size and shape is determined by the diffusion processes which are domi-
nant in a particular temperature range. This is beautifully demonstrated by
a kinetic Monte Carlo study of the growth of Al(111) based on microscopic
input from LDA-DFT total-energy calculations [466].

As already mentioned, the first step in a kinetic Monte Carlo algorithm is
the microscopic determination of all relevant processes. Table 8.1 provides a
list of the diffusion mechanisms considered in the kMC study. The diffusion
barriers have been evaluated by LDA calculations [465]. On Al(111), hopping
self-diffusion is rather fast, hindered by a barrier of only 0.04 eV. Along the
{111} faceted close-packed steps, diffusion occurs via the exchange mechanism.
The exchange mechanism is favored because hopping would go through a
transition state with only two neighbors. Along the {100} faceted step, on
the other hand, an Al atom has four nearest neighbors at the transition state
for hopping diffusion. This coordination leads to a diffusion barrier of 0.32 eV

Table 8.1. Diffusion mechanisms and barriers for the self-diffusion of Al/Al(111)
surface. (From [465])

adatom diffusion mechanism Ea (eV)

flat Al(111) hopping 0.04

parallel to {111}-faceted step exchange 0.42

parallel to {100}-faceted step hopping 0.32

descent down {111}-faceted step exchange 0.06

descent down {100}-faceted step exchange 0.08

corner jump (bridge) hopping 0.17

corner jump (atop) hopping 0.28
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that is 0.1 eV smaller than the barrier for diffusion along the {111} faceted
steps.

The barriers for diffusion across the steps in the descending direction are
only slightly larger than for diffusion on flat Al(111) which means that the
Ehrlich–Schwoebel barrier (8.45) is rather small. This low barrier is again a
consequence of the exchange mechanism. Adatoms landing on top of existing
islands will rather easily move to lower terraces where they will attach to
the step or island edges. Hence a three-dimensional growth of Al on Al(111)
is rather improbable. In Table 8.1, the barriers for diffusion around the cor-
ners are also included which can as well be rather relevant for the resulting
structures in growth.

In order to estimate the different diffusion coefficients, the prefactors D0

are needed. Since these prefactors are related to an analysis of the relevant
phase space or, equivalently, of the normal modes perpendicular to the diffu-
sion path, they require a high computational effort. For the diffusion processes
on Al(111), the prefactors had not been evaluated. Therefore they had to be
guessed. Since hopping and exchange mechanisms correspond to microscop-
ically rather different processes, it is reasonable to assume that they have
different prefactors. The prefactors used for the main processes in the kMC
simulation are listed in Table 8.2. They were estimated as weighted averages
of data found in the literature for (111) surfaces of metallic system [466];
hence they can be regarded as an educated guess.

Using the diffusion processes listed in Table 8.1, kinetic Monte Carlo sim-
ulations of the growth of Al/Al(111) using a (600 × 600) array have been
performed. Note that no detachment from any island is taken into account in
the simulations. This means that irreversible attachment of the adatoms to
form dimers is assumed or, in other words, the critical cluster size is taken to
be i = 1. The results of the kMC simulations for different surface tempera-
tures are shown in Fig. 8.10 where approximately 1/8 of the simulation area is
plotted. The deposition flux corresponds to 0.08 monolayer per second (ML/s)
which is realistic, but still larger than typical deposition fluxes used in exper-
iments. The high flux has been chosen in the simulations in order to keep the
computational effort still tractable. The coverage reached in the simulations
is 0.08ML which means that the total simulation time is one second.

Table 8.2. Assumed prefactors for the main diffusion mechanisms of Al/Al(111)
surface. (From [466])

adatom diffusion mechanism Prefactor (cm2/s)

flat Al(111) hopping 2 × 10−4

parallel to {111}-faceted step exchange 5 × 10−2

parallel to {100}-faceted step hopping 5 × 10−4
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Fig. 8.10. Kinetic Monte Carlo simulation of the growth of Al(111) for four different
temperatures. The plotted simulation area corresponds to 1/8 of the total simulation
area. The deposition flux is 0.08 ML/s and the coverage is θ = 0.08 ML. (After [466])

First of all, it is evident in Fig. 8.10 that the shape of the resulting islands
strongly depends on the temperature regime. At low temperatures (T = 80K)
the islands are very irregular. The mechanism responsible for the irregular
shapes is called diffusion limited aggregation [467,468] which corresponds to
a hit and stick mechanism. At these low temperature the adatoms irreversibly
stick to the site of first attachment to an existing island without any further
mobility along the edges. The randomness of the site of the attachment then
leads to the fractal growth patterns.

If the temperature is increased, the islands become triangular bounded by
{100} faceted steps at T = 130K. At T = 210K the islands approximately
have a hexagonal shape and then become triangular again at T = 250K, but
with a different orientation caused by the termination of the island by {111}
faceted steps.

The orientation of the islands in this temperature regime is in fact a con-
sequence of the adatom mobilities along the steps. The basic mechanism is
illustrated in Fig. 8.11. Consider an island with edges that have quite different
diffusion coefficients. Adatoms at an edge with a high diffusion coefficient will
be very mobile while adatoms at the edge with a low diffusion coefficient will
stay much longer at a specific site. Consequently, the step edges with a low
lateral mobility for adatoms will advance. Because of the finite islands size,
the advancing steps will become shorter until they eventually disappear.

However, this does still not explain why the Al islands in Fig. 8.10 change
their orientation for temperatures of 130–250K. According to the resulting
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Fig. 8.11. Illustration of the growth direction of islands on a fcc(111) surface.
Adatoms will preferentially remain at edges with slow diffusion or, equivalently, a
low mobility. These edges will therefore advance, their length will shorten due to
the finite island size and these step edges will eventually disappear

island shapes, for T = 130K the diffusion along the {100}-facetted steps
should be faster than along the {111}-facetted steps while for T = 250K it
should be the other way around. In order to understand this phenomenon, it is
important to consider the temperature dependence of the diffusion coefficients
D = D0 exp(−Ea/kBT ). Note that at high temperatures when the exponent
is small, the diffusion coefficient is dominated by the prefactor D0 while for
low temperatures the diffusion barrier Ea is crucial for the mobility of the
adatoms.

As Table 8.1 demonstrates, the barrier for diffusion along the {100}-
facetted steps E{100}

a is 0.1 eV smaller than E
{111}
a along the {111}-facetted

steps. Consequently, at the lower temperature of T = 130K, where the dif-
fusion coefficient is dominated by the diffusion barrier, the adatoms are less
mobile along the {111}-facetted steps so that they disappear and the triangu-
lar islands become bounded by the {100}-facetted steps. On the other hand,
the prefactor for diffusion along the {111}-facetted steps is by two orders of
magnitude larger than along the {100}-facetted steps. At the higher temper-
ature of T = 250K, the diffusion along the {100}-facetted steps is therefore
slower and the triangular shape of the islands becomes inverted. The tempera-
ture of T = 210K corresponds to an intermediate case for which the diffusion
coefficient along both step edges is similar resulting in hexagonally shaped
islands.

This explanation, however, has been questioned [469]. It has been argued
that instead of the diffusion along the step the barrier for diffusion around
the corner is crucial for the evolution of the island shape. The corner barrier
for diffusion from the {111}-facetted step to the {100}-facetted step differs
from the barrier for the reverse motion. If this is taken into account, the
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diffusion along the steps has almost no influence on the island shape any
more. This demonstrates how severe the neglect of some crucial processes in
kMC simulations can be. Still this issue is not fully settled yet since both
models yield the same result.

The simulations of the epitaxial growth of Al on Al(111) provide a de-
tailed picture of the important microscopic processes determining the result-
ing structures. Unfortunately, due to experimental problems the island shapes
in the two-dimensional growth of Al on Al(111) have not been measured yet
so that the results of the simulations are not confirmed.

The growth of Pt on Pt(111), on the other hand, has been studied in
detail by scanning tunneling microscopy [470–472]. In fact, the mechanism
for the inversion of the triangular shapes had already been proposed before
the simulation of the growth of Al on Al(111) were performed, based on a
STM study of the growth of Pt on Pt(111) [470]. At submonolayer coverages
this system shows exactly the same qualitative trend as far as the shape of
the islands as a function of the temperature is concerned, only at a higher
temperature range of 350–650K.

The homoepitaxial growth of Pt on Pt(111) has also been the subject
of a series of LDA-DFT studies by Feibelman [473–475]. Some of the re-
sults of these studies were seemingly at variance with the experimental re-
sults. For example, at T > 700K, i.e., near equilibrium, it was found that
the {111}-facetted edges of the distorted hexagonal Pt islands are longer by
about 50% than the {100}-facetted edges, corresponding to a formation en-
ergy that is 13% lower [470]. The LDA-DFT calculations, on the other hand,
yielded step formation energies of 0.46 eV/atom for the {111}-facetted edge
and 0.47 eV/atom for the {100}-facetted edge, i.e., almost equal formation
energies [473].

Furthermore, experiments had shown that Pt grows on Pt(111) in a three-
dimensional fashion [471]. This was at variance with the DFT calculations
[474] which produced an Ehrlich-Schwoebel barrier for the downward self-
diffusion across the {100}-facetted steps in the exchange mechanism of only
0.02 eV. Such a small barrier would always favor two-dimensional instead of
three-dimensional growth.

These apparent contradictions were resolved when the experiments were
repeated under improved conditions [472]. The new experiments showed that
island shapes, island densities and step-edge barriers are strongly affected
by minute CO coverages as low as 10−3 monolayers. In fact, under clean
conditions three-dimensional growth is suppressed and the two-dimensional
islands are only bounded by {111}-facetted steps in the entire temperature
range from about 350–650K.

Now we turn to the growth of semiconductors which is of tremendous
technological relevance for the fabrication of semiconductor devices. The de-
scription of growth processes on semiconductor surfaces is much more involved
than on metal surfaces because of the complex surface reconstructions that
can occur (see Sect. 4.3). Nevertheless, the island nucleation and growth of
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Fig. 8.12. Island density on GaAs(100) as a function of the inverse growth temper-
ature. The filled circles correspond to the results of kinetic Monte Carlo simulations
[463] whereas the dashed line shows the predictions of nucleation theory with a
critical island size i = 1. One experimental data point [476] is shown as an open
box

compound semiconductor has already been addressed by kinetic Monte Carlo
simulations on the basis of rates derived from DFT calculations [463]. In or-
der to study the island growth on the β2(2 × 4) reconstruction of GaAs(100)
(Fig. 4.15c), the barriers for 32 microscopically different Ga diffusion processes
and As2 adsorption/desorption were determined. The derived rates span a
time scale from picoseconds to milliseconds. The simulation cell was chosen
to be 160× 320 sites which corresponds to 64 nm× 128 nm.

The kinetic Monte Carlo simulations reveal that the island growth at
T = 700K starts in the trenches of the β2(2×4) reconstruction of GaAs(100)
(right part of the surface unit cell shown in Fig. 4.15c). From there, growth pro-
ceeds along the trenches (for an animation, see [463]). The island density has
been determined in the temperature range from 500 up to 900K. The results
are compared to predictions of the nucleation theory with a critical island size
of i = 1 in Fig. 8.12. At lower temperatures up to T = 600K nucleation theory
and kinetic Monte Carlo simulations agree; however, at higher temperatures
the results start to deviate, and for T > 800K the island density even rises
again in the kMC simulation, a result that cannot be understood at all within
nucleation theory. At such a high temperature, T = 850K, the island den-
sity was already determined experimentally [476]. This STM results actually
agrees well with the kinetic Monte Carlo simulations, as Fig. 8.12 shows.

A detailed analysis of the simulation revealed that at these elevated
temperatures the Ga-As-As-Ga2 complexes forming the island nuclei in the
trenches are no longer stable, which means that they can dissolve again. Only
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if an existing island already extends into a new layer, it will continue to grow.
However, due to detachment processes of Ga atoms from the Ga-As-As-Ga2

complexes, the density of mobile Ga adatoms becomes higher. This causes an
increased nucleation rate of new islands and thus leads to the observed rise in
the island densities. This analysis demonstrates the importance of microscopic
considerations for the understanding of macroscopic growth phenomena.

8.6 Reaction Kinetics on Surfaces

A catalytic process on a surface often consists of a number of different micro-
scopic reaction steps. First of all, the reactants have to adsorb and possibly
dissociate on the surface, then the wanted product has to be formed on the
surface and desorb again. Furthermore, there can be a large number of inter-
mediate steps. As an example, I present a proposed scheme for the ammonia
(NH3) synthesis

N2 + ∗ → N(ads)
2 , (8.53)

N(ads)
2 + ∗ → 2N(ads) , (8.54)

H2 + 2∗ → H(ads)
2 , (8.55)

N(ads) + H(ads) → (NH)(ads) + ∗ , (8.56)
(NH)(ads) + H(ads) → (NH2)(ads) + ∗ , (8.57)
(NH2)(ads) + H(ads) → (NH3)(ads) , (8.58)
(NH3)(ads) → NH3 + ∗ , (8.59)

where ∗ denotes a free surface site and X(ads)
n is an adsorbed Xn species. The

dissociation of N2, step (8.54), is actually the rate limiting step for the NH3

synthesis.
The determination of the reaction paths and barriers of such a large num-

ber of processes from electronic structure calculations is still computationally
very demanding if not impossible. Even if the potential energy surface of all
reaction steps were known, a dynamical simulation of such a complex process
would not be feasible since many of the microscopic reaction steps correspond
to rare events on the scale of typical simulation times. Again, only a kinetic
modeling makes the theoretical determination of catalytic reaction rates pos-
sible.

The reaction rates entering the kinetic description of reactions such as the
ammonia synthesis (8.53)–(8.59) are usually taken from experiment. These ex-
periments are mostly performed under ultrahigh vacuum (UHV) conditions on
single-crystal surfaces. Catalytic reactors, on the other hand, run at pressures
that are many orders of magnitude higher. This can influence the reaction
rates and microscopic mechanisms when the high pressure induces changes
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Fig. 8.13. Photoemission electron microscopy (PEEM) image of a Pt(110) surface
exposed to 4×10−4 mbar O2 and 4.3×10−5 mbar CO at a temperature of T = 448 K.
(After [479])

in the surface coverages, composition and structure. In addition to the struc-
ture gap addressed in Sects. 5.8 and 5.9, there is hence also the pressure gap
between surface science and heterogeneous catalysis.

The ammonia synthesis, however, seems to be a system were the pressure
gap is not relevant. Using data from UHV studies of the N2, H2 and NH3

adsorption on clean and K-precovered Fe single crystal surfaces, kinetic simu-
lations correctly predicted the NH3 synthesis rate for an iron-based industrial
NH3 catalyst at 1–300atm and 375–500◦C [477]. This suggests that the in-
sight gained from well-defined chemisorption systems can be transferred to
the more complex catalytic systems.

However, there are also systems that show a pronounced pressure gap. Un-
der UHV conditions, Ru surfaces are very inactive, as far as the catalytic CO
oxidation is concerned. However, at high pressures the situation is reversed,
and the catalytic properties of Ru are superior compared to other metals [155].
The reason for this peculiar behavior remained unclear for a long time. Now
the formation of RuO2 at high pressures is considered to be the source of the
high catalytic activity [478].

One of the most fascinating phenomenon with respect to reactions at sur-
faces is the evolution of spatiotemporal self-organization patterns formed in
the course of a catalytic reaction [480,481]. The model system in this respect
is the catalytic oxidation of CO on Pt(110). Figure 8.13 corresponds to an
photoemission electron microscopy (PEEM) image of a Pt(110) surface ex-
posed to O2 and CO [479,482]. The contrast imaged in the PEEM is caused
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by local differences of the work function associated with varying adsorbate
concentrations. The work function change Δφ is proportional to the oxygen
coverage θO which in turn is directly related to the reaction rate of CO oxi-
dation. The image shows three different spirals with different rotation periods
and wavelengths.

In order to understand the origin of this pattern formation, the microscopic
steps of the CO oxidation on Pt(110) have to be considered. The overall
reaction 2CO + O2 → 2CO2 proceeds through the Langmuir–Hinshelwood
mechanism which corresponds to the recombinative desorption of the surface
species CO(ads) and O(ads). These are formed by the adsorption of O2 and
CO from the gas phase. CO(ads) is bound relatively weakly to the surface and
may desorb as well as diffuse on the surface while oxygen is so strongly bound
that it is assumed to remain at its adsorption site. Furthermore, depending on
the CO coverage, the Pt(110) surface undergoes reversible structural changes
between a 1 × 2 missing-row reconstruction and a 1 × 1 phase. In total, the
CO oxidation scheme on Pt(110) is given by

CO + ∗ ↔ CO(ads) , (8.60)
O2 + ∗ → 2O(ads) , (8.61)

O(ads) + CO(ads) → 2 ∗ + CO2 , (8.62)
1 × 2 ↔ 1 × 1 . (8.63)

The adsorption energy of CO on the 1 × 1 phase is larger than on the 1 × 2
phase. This induces a 1 × 2 → 1 × 1 transformation for CO coverages larger
than θCO = 0.2 [483]. On the other hand, the 1 × 1 phase exhibits a larger
sticking probability for oxygen than the 1 × 2 phase. For a specific external
parameter range (temperature and partial pressures of the reactants), the
following scenario occurs: CO adsorbs on the 1 × 2 phase which eventually
causes the 1 × 2 → 1 × 1 surface transition. On the 1 × 1 phase, oxygen
adsorbs more easily and reacts with the adsorbed CO to CO2 which desorbs.
This lowers the CO concentration again until the surface switches back to the
1×2 phase which is less reactive with respect to O2 adsorption, and the cycle
can start again. The strongly nonlinear behavior of this oscillating reaction
leads to a wide range of spatiotemporal patterns such as propagating wave
fronts, spiral waves, solitary-type waves, standing waves or chaotic structures
denoted chemical turbulence.

For a mathematical modeling of this spatiotemporal behavior, the local
CO and O coverage are denoted by u = θCO and v = θO, respectively. In
addition, w is the fraction of the surface area consisting of the 1 × 1 phase.
Using these three variables, the following phenomenological kinetic model has
been proposed for the CO oxidation on Pt(110) [483]

u̇ = sCO pCO − k2u− k3uv +D∇2u , (8.64)
v̇ = sO2 pO2 − k3uv , (8.65)
ẇ = k5 [f(u) − w] . (8.66)
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The rate constants for CO desorption and CO2 reactive combination are given
by k2 and k3, respectively. D is the surface diffusion coefficient of adsorbed
CO. The sticking coefficients sCO and sO of CO and O are a function of the
coverages. O adsorption is assumed to be prohibited on CO covered sites and
to be dependent on the surface structure. In contrast, CO adsorption is taken
to be independent of the O coverage and surface structure. Hence for sCO the
simple form

sCO = k1 (1 − u3) (8.67)

has been assumed while sO is much more complicated:

sO2 = k4[s1w + s2(1 − w)] (1 − u− v)2 . (8.68)

A modified simpler version of (8.64) and (8.65) can in fact be solved analyti-
cally and yields a temporal oscillatory structure (see Exercise 8.1). However,
a complex set of coupled differential equations such as (8.64)–(8.68) can only
be solved numerically [484]. Since u and v are strictly anticorrelated [485],
one adsorbate variable can be eliminated. Finally one ends up with a nonlin-
ear set of equations which corresponds to a two-variable model with so-called
delayed inhibitor production because the phase transition of the Pt(110) sur-
face sets only in at a CO coverage of 0.2ML. These differential equation are
then numerically solved on a grid with a spatial resolution in the μm range
[485], i.e., no microscopic details of the reaction mechanism such as the spatial
arrangement of the reaction partners are taken into account.

Depending on the CO partial pressure and the temperature, the solution
of the kinetic model yields oscillatory, excitable or bistable regimes. Nonlinear
phenomena such as traveling solitary pulses [486] or spiral waves [485] can
indeed been reproduced within such a model. In a defect-free region, spirals
result from a broken plane wave. Then the open ends of the wave start to
curl and form rotating waves. It turns out that the rotation period is mainly
determined by the rate k5 (see (8.66)) which is therefore used as an adjustable
parameter in the simulations. At a defect-free surface, there should be only
spirals with almost the same rotation periods. However, as Fig. 8.13 demon-
strates, in the experiment spirals with quite different rotation periods are
found [479]. These can be simulated in the kinetic model by introducing ar-
tificial nonexcitable regions that are larger than the core size of free spirals
(≥ 1 μm, depending on the temperature). Then the spirals are pinned to these
defects with rotation periods that depend almost linearly on the defect radius
[479]. This size is large compared to microscopic length scales. Hence these
spirals must be caused by patches of enlarged roughness or accumulated im-
purities that change the kinetic parameters mesoscopically from the values of
a perfect Pt(110) surface.

Most of the kinetic parameters entering (8.64)–(8.68) are derived empiri-
cally or have to be guessed. Furthermore, because of the simplified structure
of the kinetic equations, it is not guaranteed that the solution is unique, i.e.
the same spatiotemporal pattern might be reproduced with another set of
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kinetic equations and parameters. The phenomenological kinetic model corre-
sponds to a mean-field approximation, which means that the reacting mixture
is considered to be an ideal solution without any fluctuations. Furthermore, it
is assumed that there is no correlation between the locations of the reactants
on the surface.

Phenomenological kinetic simulations can yield valuable qualitative insight
into the underlying reaction mechanisms, as demonstrated above. For the CO
oxidation on RuO2(110), phenomenological kinetics equations were compared
to the results of kinetic Monte Carlo simulations [487] based on rates that
have been calculated using transition state theory with activation energies
obtained by DFT [462]. The comparison shows that the phenomenological
kinetics reproduces most of the kMC results qualitatively. However, when the
correct calculated rates are used, phenomenological kinetics yields turnover
frequencies that differ by up to several order of magnitude from those obtained
in the kMC simulations. Furthermore, phenomenological kinetics does not
find the correct dominant reaction in the CO oxidation. On the other hand,
when the parameters of the phenomenological equations are adjusted in order
to reproduce the results provided by the kMC simulations, poor rates are
obtained. Thus the rates derived from phenomenological equations should
always be taken with appropriate caution.

Exercises

8.1 Rate Equations

Consider the system of coupled rate equations
dx

dt
= α1x − β1xy (8.69)

and
dy

dt
= −α2y + β2xy (8.70)

with αi, βi > 0, i = 1, 2. These equations can be considered as a modified
version of (8.64) and (8.65) describing the temporal evolution of two
different species.

a) Solve the set of coupled differential equations analytically.
Hint: show that

H(x, y) = −α2 ln(x) + β2x− α1 ln(y) + β2x (8.71)

is constant along the trajectory (x(t), y(t)). Such a function is called a
first integral of the system.
b) Sketch the solution as a curve in the xy plane for α1 = α2 = β1 =
β2 = 1 for different values of the H(x, y) = c > 0. Give an interpretation
of the resulting curves in terms of a population analysis.
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8.2 Lattice Gas Hamiltonian from First Principles

a) The lattice gas Hamiltonian of one species of atoms adsorbed on a
square lattice considering first and second-neighbor two-body interactions
is given by

H = Es

∑

i

ni +
1
2

⎛

⎝V1n

∑

i,a

nini+a + V2n

∑

i,b

nini+b

⎞

⎠ . (8.72)

The indices a and b indicate first and second-neighbor distances, respec-
tively. How can the parameters Es, V1n and V2n be determined from first-
principles calculations? Specify the adsorbate structures and the set of
linearly coupled equations necessary to derive the parameters for T = 0,
i.e., if no distinction between binding energy and Helmholtz free energy
has to be made.
Hint: For the case of a hexagonal substrate, see [453].
b) Now consider additionally third-neighbor interactions V3n

∑
i,c

nini+c in

(8.72). How can the parameters of the lattice gas Hamiltonian be evalu-
ated from total-energy calculations in this case?
c) Three-body terms account for modifications of the interaction be-
tween two adsorbed atoms when a third adatom is adsorbed close
by. Considering only so-called trio interactions between three nearest
neighbors, we get an additional term in the lattice gas Hamiltonian∑
i,a,a′

V3n(i, a, a′)nini+ani+a′ , where the interaction energy V3n(i, a, a′) de-

pends on the specific configuration of the trio. Which trio configurations
exist on a square lattice? Repeat the derivation of the lattice gas parame-
ters including first, second and third-neighbor two-body interactions and
trio three-body interactions.

8.3 Temperature Programmed Desorption (TPD)

In TPD experiments, the surface temperature is increased linearly, i.e.
T = T0 + αt, and the desorption flux is monitored as a function of the
temperature. Under the assumption that the rate for n-th order desorp-
tion can be written as

dθ

dt
= Rdes = R0 θ

n exp(−βEdes) , (8.73)

where θ is the coverage, prove (8.44), i.e., show that the maxima in the
TPD spectra are given by

ln(Tmax R0 θ
n−1/α) =

Edes

kBTmax
+ ln

(
Edes

kBTmax

)
. (8.74)
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8.4 Random Deposition

Random deposition is one of the simplest growth models [488]: Particles
are deposited randomly on the surface. They stay where they are landed
so that all columns grow independently, as illustrated in the figure.

A

A¢

B¢

B

a) There are no correlations between the columns. Hence the height h(i, t)
of every column grows independently by one with a probability p = 1/L
where L is the number of lattice sites. Determine the probability P (h,N)
that a column has height h after the deposition of N particles.
b) Let the time be defined by the mean number of deposited layers,
t = N/L. Show that the average height

h̄(t) =
〈
h
〉

=
N∑

h=1

hP (h,N) (8.75)

grows linearly in time.
c) The surface width that characterizes the roughness of the surface is
defined by the root mean square fluctuation in the height,

w(t) =
√〈

(h− 〈h〉)2〉 =

√√√√ 1
L

L∑

i=1

[h(i, t) − h̄(t)]2 . (8.76)

Determine the growth exponent β that is given by w(t) ∝ tβ.
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Electronically Non-adiabatic Processes

So far we have almost entirely dealt with surface processes that proceed in
the electronic ground state. This means that we have assumed that the Born–
Oppenheimer approximation is justified. Although there are many important
processes at surfaces that involve electronic transitions [305, 489, 490], the
status of the theoretical treatment of processes with electronically excited
states is not very satisfactory. Many factors still hamper the development of
quantitative models incorporating electronic excitations. Neither the deter-
mination of the electronically excited states nor the calculation of coupling
matrix elements between these excited states is trivial. But even if the excited
states and the coupling between them is known, the simulation of the reaction
dynamics with electronic transitions still represents a challenge. In the next
sections I will illustrate why the treatment of excited states is so complicated,
but I will also show that there are some promising approaches to overcome
the problems. In addition, concepts to treat reaction dynamics with electronic
transitions will be discussed.

9.1 Determination of Electronically Excited States

In Sect. 4.3, we already saw that for example the GW approximation allows for
an accurate determination of the electronic band structure including excited
electronic states. However, no total energies can be derived from the GW
approximation so that the evaluation of excited state potential energy surfaces
is not possible.

In principle, energies of excited states can be determined by quantum
chemistry methods. This has in fact been done successfully for the descrip-
tion of electronically nonadiabatic processes at surfaces, as will be shown in
Sect. 9.5. Still, quantum chemistry methods are limited to finite systems of
a rather small size. Density functional theory, which is so successful for elec-
tronic ground state properties of extended system, can not be directly used for
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electronically excited states since it is in principle an electronic ground-state
theory.

Still DFT can be extended to allow the determination of excited state
energies, namely in the form of the time-dependent density-functional theory
(TDDFT) [491, 492]. It rests on the Runge–Gross theorem which is the ana-
logue to the Hohenberg–Kohn theorem of time-independent density-functional
theory. The Runge–Gross theorem states:

The densities n(r, t) and n′(r, t) evolving from a common ini-
tial state Ψ0 = Ψ(t0) under the influence of two potentials v(r, t)
and v′(r, t) are always different provided that the potentials differ
by more than a purely time-dependent, i.e. r-independent function
v(r, t) �= v′(r, t) + c(t).

This means that there is an one-to-one mapping between time-dependent
potentials and time-dependent densities. However, it is important to note
that the functional depends on the initial conditions, i.e. on Ψ0 = Ψ(t0). Only
if the initial state corresponds to the electronic ground state, the functional
is well-defined since then it depends on the density n(r, t) alone.

The proof of the Runge-Gross theorem is a little bit more complex than
the one for the Hohenberg–Kohn theorem. Still it is not too complicated [492].
Here I only sketch the main ideas of the lines of reasoning. First one shows by
using the quantum mechanical equation of motion that the current densities

j(r, t) =
〈
Ψ(t)|ĵp|Ψ(t)

〉
(9.1)

and
j ′(r, t) =

〈
Ψ ′(t)|ĵp|Ψ ′(t)

〉
(9.2)

are different for different potentials v and v′. The current densities are related
to the density by the continuity equation. By using

∂

∂t
(n(r, t) − n′(r, t)) = −∇ · (j(r, t) − j′(r, t)) , (9.3)

the one-to-one mapping between time-dependent potentials and densities can
be proven.

Still it does not seem to be obvious why time-dependent DFT should lead
to the determination of electronic excitation energies. To see this, we have
to use linear response theory. We consider an electronic system subject to an
external potential of the form

vext(r, t) =

{
v0(r) ; t ≤ t0

v0(r) + v1(r, t) ; t > t0
, (9.4)

In perturbation theory, the change of the density due to the external potential
v1(r, t) is expanded in powers of v1, i.e., the density is written as
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n(r, t) = n0(r) + n1(r, t) + n2(r, t) + . . . , (9.5)

where the single terms correspond to the different orders of v1. The first order
or linear response to the perturbation v1(r, t) is given by

n1(r, t) =
∫
dt′
∫
d3r′ χ(r, t, r′, t′)v1(r′, t′) , (9.6)

where the density-density response function χ is defined as

χ(r, t, r′, t′) =
δn[vext](r, t)
δvext(r′, t′)

∣∣∣∣
v0

. (9.7)

The Runge–Gross theorem is not only valid for interacting particles, but
also for non-interacting particles moving in an external potential vs(r, t).
The density-density response function of non-interacting particles with un-
perturbed density n0 corresponds to the Kohn–Sham response function and
is given by

χs(r, t, r′, t′) =
δn[vs](r, t)
δvs(r′, t′)

∣∣∣∣
vs[n0]

. (9.8)

This linear response formalism can be used in order to determine polarizabil-
ities not only of atoms and molecules [493], but also for large systems. For
the fullerene molecule C60, e.g., the results have been quite accurate; however,
for polyacetylene chains the conventional exchange-correlation functionals fail
[494]. I do not want to address this subject any further, but rather focus on
another application of time-dependent DFT, the calculation of excitation en-
ergies [492,495]. The main idea rests on the fact that the frequency-dependent
linear response of a finite system, i.e. the Fourier transform of (9.6), has dis-
crete poles at the excitation energies Ωj = Ej−E0 of the unperturbed system.
By using the functional chain rule, it can be shown that the noninteracting and
interacting response functions are related by a Dyson-type equation [492,495].
This leads to an integral equation for the frequency-dependent linear response
n1(r, ω)

∫
d3x K(x, r, ω) n1(x, ω) =

∫
d3r′ χs(r, r′, ω) v1(r′, ω) , (9.9)

where the Kernel K(x, r, ω) is given by

K(x, r, ω) = δ(r − x) −
∫
d3r′ χs(r, r′, ω)

×
(

1
|r′ − x| + fxc[n0](r′,x, ω)

)
, (9.10)

with the Fourier transform fxc[n0](r′,x, ω) of the so-called time-dependent
exchange-correlation kernel
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fxc[n0](r, t, r′, t′) =
δvxc[n](r, t)
δn(r′, t′)

∣∣∣∣
n0

. (9.11)

Now one uses the fact that the Kohn–Sham excitation energies ωj are in
general not identical with the true excitation energies Ωj . Hence the right
hand side of (9.9) remains finite for ω → Ωj . On the other hand, the exact
density response n1 diverges for ω → Ωj . In order that the integral operator
acting on n1 on the left hand side of (9.9) yields a finite result, the eigenvalues
of this integral operator have to vanish. This is equivalent to the statement
that the true excitation energies Ω are characterized as those frequencies
where the eigenvalues λ(ω) of

∫
d3x

∫
d3r′ χs(r, r′, ω)

(
1

|r′ − x| + fxc[n0](r′,x, ω)
)
g(r′, ω)

= λ(ω) g(r, ω) (9.12)

satisfy λ(Ω) = 1. This can easily be shown by performing the integration
over the delta function in (9.10). The solution of (9.12) is still not trivial. For
practical purposes, further approximations have to be made. If the standard
LDA is used in TDDFT for the exchange-correlation functional, then not only
locality in space, but also locality in time is assumed. Therefore it is then called
the adiabatic local density approximation (ALDA). Analogously, standard
GGA functionals become the adiabatic generalized gradient approximation in
TDDFT.

9.2 Electronic Excitation Mechanisms at Surfaces

If we consider electronic excitations in the interaction of atoms or molecules
with surfaces, we have to distinguish between delocalized excited states of the
surface and localized excitations at the adsorbate or the adsorbate-surface
bond. These two different kinds of excitation modes are illustrated in Fig. 9.1
where potential energy surfaces reflecting the interaction of a molecule with
a surface are plotted.

First of all, the interaction of a molecule with a surface can lead to the
excitation of a electron-hole (e-h) pair in the surface. In particular in metals,
the electronic states show a continuous spectrum. More importantly, they are
rather delocalized. Hence the local interaction of a molecule with a metal
surface will hardly be influenced by the excitation of an electron-hole pair.
In Fig. 9.1, this is schematically illustrated by a multitude of shifted ground
state potentials. Still, the excitation of an electron-hole pair corresponds to an
energy transfer process to the surface that leads to dissipation effects. Thus
the influence of the excitation of e–h pairs on the molecule-surface dynamics
can be described within a friction-dissipation formalism.

The situation is entirely different in the case of an electronic excitation
of the molecule or atom interacting with the surface. Then the shape of the
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Fig. 9.1. Illustration of electronically excited states in the interaction of atoms or
molecules with surfaces

excited-state potential might be entirely different from the ground-state po-
tential. In a theoretical description of such a process usually the potential of
the excited state must be explicitly considered. These two scenarios can be
considered as the adiabatic and the diabatic limit of electronic transitions at
surfaces.

9.3 Reaction Dynamics with Electronic Transitions

In order to couple the direct determination of excited states by electronic
structure methods with a dynamical simulation, a full quantum treatment
of the system would be desirable. However, this is usually computationally
not feasible because of the different mass and time scales associated with nu-
clei and electrons, respectively. In any case, for atoms heavier than hydrogen
or helium a classical description of the reaction dynamics is usually suffi-
cient. Hence a mixed quantum-classical dynamics method is appropriate in
which a multi-dimensional classical treatment of the atoms is combined with
a quantum description of the electronic degrees of freedom. The crucial issue
in mixed quantum-classical dynamics is the self-consistent feedback between
the classical and the quantum subsystems. There are two standard approaches
that incorporate self-consistency, mean-field or Ehrenfest and surface-hopping
methods [496].

These methods are based on the separation of the kinetic energy of the
classical particles from the total Hamiltonian

H = TR +Hel(r,R) , (9.13)

where R are the classical and r the quantum degrees of freedom. The time
evolution of the quantum wave function is then given by the time-dependent
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Schrödinger equation using the electronic Hamiltonian Hel

ih̄
∂

∂t
ψ(r,R, t) = Hel(r,R(t)) ψ(r,R, t) , (9.14)

where the coordinates R of the classical degrees of freedom enter as parame-
ters. In both the mean-field and the surface-hopping methods, the quantum
particles are subject to a Hamiltonian that varies in time due to the motion of
the classical particles. On the other hand, the quantum state of the system de-
termines the forces that act on the classical particles. Thus the self-consistent
feedback cycle between quantum and classical particles is realized.

The difference between the two methods lies in the treatment of the back-
response of the classical system to quantum transitions. In the mean-field
method, the motion of the classical particles is determined by a single effective
potential that corresponds to an average over quantum states

MI
d2

dt2
RI = −∇RI

〈
ψ(r,R)|Hel(r,R)|ψ(r,R)

〉
, (9.15)

which, using the Hellmann–Feynman theorem, can be transformed to

MI
d2

dt2
RI = −〈ψ(r,R)|∇RI

Hel(r,R)|ψ(r,R)
〉
. (9.16)

The mean-field approach properly conserves the total energy, furthermore it
does not depend on the choice of the quantum representation since the wave
function can be directly obtained by the numerical propagation of the wave
packet using (9.14). However, this approach violates microscopic reversibility,
and it is subject to the deficiency of all mean-field methods: the classical path
is mainly determined by the major channel trajectory so that branching and
correlation effects in the time-evolution are not appropriately accounted for.

A proper treatment of the correlation between quantum and classical mo-
tion requires a distinct classical path for each quantum state. This is in fact
fulfilled in the surface-hopping method. In this approach, the wave function
is expanded in terms of a set of basis functions

ψ(r,R, t) =
∑

j

cj(t)φj(r,R) . (9.17)

With respect to this basis, matrix elements of the electronic Hamiltonian are
constructed

Vij =
〈
φi(r,R)|Hel(r,R)|φj(r,R)

〉
. (9.18)

Furthermore, the nonadiabatic coupling vector is defined as

dij =
〈
φi(r,R)|∇R|φj(r,R)

〉
, (9.19)

where the gradient is taken with respect to all atomic coordinatesR. Inserting
the wave function (9.17) into (9.14), one obtains [497] (see Exercise 9.2)
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ih̄ċk =
∑

j

cj(Vkj − ih̄Ṙ · dkj) . (9.20)

In the adiabatic representation, the matrix elements Vkj are zero while in a
diabatic representation the nonadiabatic coupling vector vanishes.

In any surface-hopping method, the classical particles move on the poten-
tial energy surface of one particular quantum state subject to the classical
equation of motion

MI
d2

dt2
RI = −∇RI

〈
φi(r,R)|Hel(r,R)|φi(r,R)

〉
. (9.21)

At the same time, the set of coupled differential equations (9.20) is solved in
order to obtain the amplitudes cj of each electronic quantum state. What is
left, is the specification of a rule for the switches or jumps between the dif-
ferent potential energy surfaces. This rule can in fact not be uniquely defined
so that many different algorithms exist (see, e.g., [498]). One particularly
elegant method is the so-called fewest-switches algorithm [497] which is a
variationally-based hopping algorithm that guarantees the correct population
|cj(t)| of each state in an ensemble of many calculated trajectories with the
minimum number of hops (see Exercise 9.3).

There are also caveats of surface hopping algorithms. They are not inde-
pendent of the quantum representation [497,499], and there is some ambiguity
in the velocity adjustment if Vkk(R) �= Vll(R) at the position of the switch
between state k and l. In addition, they are computationally more demanding
than mean-field methods, and in fact there are cases for which the mean-field
method is more accurate [496]. We will first discuss processes that can be
treated within a mean-field formalism.

9.4 Electronic Friction Effects

The determination of the role of electron-hole pairs in the scattering and
sticking of molecules at surfaces is rather cumbersome. There are hardly any
reliable studies where the influence of the e-h pairs has been investigated from
first-principles. Hence there is also no accepted viewpoint about the impor-
tance of the e–h pairs. It seems that whenever there are some unclear results
in sticking or scattering experiments, e–h pairs are made responsible. Equiv-
alently, the validity of Born–Oppenheimer molecular dynamics simulations is
often questioned because of the neglect of e–h pair excitations.

Using a thin polycrystalline Ag film deposited on n-type Si(111) as a Schot-
tky diode device, the nonadiabatically generated electron-hole pairs upon both
atomic and molecular chemisorption can be detected [500,501]. A strong cor-
relation between the adsorption energy and the measured chemicurrent has
been observed. For NO adsorption on Ag (adsorption energy ∼ 1 eV), it has
been estimated that one quarter of the adsorption energy is dissipated to
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electron-hole pairs. Adsorption-induced electron hole-pair creation has also
been found for other metal substrates, such as Au, Pt, Pd, Cu, Ni or Fe, and
even for semiconductors such as GaAs and Ge [500,502].

The understanding of this nonadiabatic dissipation channel is still rather
incomplete. There are, however, theoretical studies that used ab initio input
in order to assess the effects of electron-hole pair excitations in adsorption and
reaction processes on surfaces. An approach based on time-dependent density
functional theory was used in order to estimate the electron-hole pair excita-
tion due to an atom incident on a metal surface [503, 504]. This particular
method consists of three independent steps. First, a conventional Kohn-Sham
DFT calculations is performed in order to determine the ground state po-
tential energy surface for various configurations of the incident atom. Then,
the resulting Kohn-Sham states are used in the framework of time-dependent
DFT in order to obtain a position-dependent friction coefficient. Finally, this
friction coefficient enters a forced oscillator model (see p. 208) in which the
probability density of electron-hole pair excitations caused by the classical
motion of the incident atom is estimated.

This formalism has been applied [504] to address the chemicurrent mea-
sured in experiments of the adsorption of hydrogen atoms on copper surfaces
[505]. Satisfactory agreement between theory and experiment was obtained
[504]. However, only one single trajectory for the hydrogen impinging on the
top site has been used in the forced oscillator description so that the effect of
corrugation has been entirely neglected.

The excitation of electron-hole pairs upon atomic hydrogen adsorption was
also addressed in a TDDFT study of the chemisorption of H on Al(111) [506,
507]. The dynamics of the nuclei were treated in the mean-field or Ehrenfest
method, i.e., the trajectory RI(t) of the nuclei with mass MI follows from the
classical equation of motion

MIR̈I = −〈∇RV
〉
, (9.22)

where the brackets denote the expectation value of the gradient of the po-
tential for the system in its current electronic state. At the same time, the
time evolution of the electron system is determined by integrating the time-
dependent Kohn–Sham equations

ih̄
∂

∂t
φj(r, t) = − h̄2

2m
∇2φj(r, t) + veff(r, t)φj(r, t) . (9.23)

Because of the light mass of the electrons, a rather short time step for the
numerical integration of the time-dependent Kohn–Sham equations has to be
chosen which is of the order of 0.002–0.003fs [506, 507]. This is about three
orders of magnitude smaller than the time step necessary for electronically
adiabatic molecular dynamics simulations. Therefore only very few selected
trajectories could be calculated.

In the TDDFT study of the chemisorption of H/Al(111), trajectories were
performed for different initial kinetic energies with the hydrogen atom above
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Fig. 9.2. Spin moments of the majority and minority states of a hydrogen atom
approaching an Al(111) surface. The open and filled circles denote the local spin
moments n↑ and n↓ in the electronic ground state whereas the solid lines show the
nonadiabatic variation from the TDDFT molecular dynamics [507]. The direction
of the H atom is indicated by the arrows. The inset displays results obtained within
the Newns-Anderson model [508]

either the ontop or the fcc hollow site. These two types of trajectories show
a rather different qualitative behavior. The hydrogen atom impinging at the
fcc hollow site penetrates into the Al crystal where it couples strongly to the
substrate electrons, and the energy loss to electron-hole pairs and phonons
becomes comparable. At the ontop site, on the other hand, the energy dissi-
pated to electron-hole pairs is much smaller, below 0.1 eV, whereas there is
still a significant energy transfer to the phonons [506].

In these nonadiabatic simulations, the hydrogen atom was assumed to be
spin-unpolarized in order to save computer time. However, far from the surface
the H atom is spin-polarized since there is only one electron with a specific
spin. The occupied state can be regarded as the majority spin state, whereas
the affinity level corresponds to the minority spin state that is empty in the gas
phase. As the atom approaches the surface, the affinity level drops in energy,
broadens, and becomes partially occupied when it crosses the Fermi level, as
illustrated in Fig. 5.9. At the same time, the occupied state rises in energy until
both spin states become degenerate so that the spin-polarization disappears
and there is no net polarization. This spin transition is not continuous but
occurs like a second-order phase transition with a square root behavior near
the transition point, as simulations within the Newns-Andersen model show
[508]. A hydrogen atom approaching the surface will not necessarily follow the
adiabatic spin ground state, and the nonadiabatic spin dynamics will lead to
additional electronic dissipation.

In order to estimate this additional electronic loss channel, the TDDFT
simulations of the chemisorption of H on Al(111) were also performed in a
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spin-polarized framework as described in Sect. 6.2. In Fig. 9.2, the time-
dependent local electronic spin moments n↑ and n↓ at the H atom approaching
the Al(111) surface are plotted. The initial kinetic energy 4 Å away from
the surface was 60meV but increased to about 1.5 eV at the potential min-
imum. The spin moments are compared to the respective adiabatic local
moments in the ground state (open and filled circles). Any deviation between
the MD and the ground state results corresponds to nonadiabatic effects.
These are particularly strong at the spin transition point, i.e., the point
where the adiabatic spin-polarization of the H atom disappears.

From static ground-state DFT calculations, the energy εa of the affinity
level, its width Γ and the intra-adsorbate Coulomb interaction energy U can
be derived. These data were used as an input for a time-dependent Newns-
Anderson model [508] (see Sect. 5.3) in the wide-band limit. The corresponding
results for the spin moments are shown in the inset of Fig. 9.2. There is a
semi-quantitative agreement between the TDDFT and the Newns-Anderson
simulations. This indicates that, first, the Newns-Anderson model captures
the essential physics of the H spin transition dynamics upon the adsorption of
hydrogen atoms on a metal surface, and second, that the lifetime of the holes
and electron in the H1s orbitals as estimated from the width of the peaks in
the spin-resolved density of states is crucial for the non-adiabatic spin effects.

Ab initio MD simulations incorporating electronically nonadiabatic effects
are still very time-consuming, as the example just discussed demonstrates. In
the so-called molecular dynamics with electronic friction method [509], the
effects of e–h pair excitation have been incorporated in an otherwise classical
molecular dynamics simulation on a parameterized potential which allows
to evaluate many trajectories. In this approach, the energy transfer between
nuclear degrees of freedom and the electron bath of the surface is modeled with
a friction term, but additionally temperature-dependent fluctuating forces are
included.

In detail, the equations of motion for the nuclear adsorbate degrees of
freedom are

MIR̈I = − ∂V

∂RI
−
∑

J

KIJṘJ + SI(t) . (9.24)

Here SI(t) is a stochastic fluctuating force satisfying the fluctuation-dissipation
theorem 〈

SI(t)SJ (t′)
〉

= kBTKIJδ(t− t′) . (9.25)

KIJ is the friction matrix in the adsorbate degrees of freedom which depends
on the position of the adsorbate. Several assumptions enter the derivation of
this method. First of all, it is assumed that the coupling is weak. Furthermore,
the metal density of states at the Fermi level should be smooth so that the
important coupling matrix elements become energy-independent. Then the
energy-independent friction kernel can be written as

KIJ = πh̄ Tr{P (εF )GRIP (εF )GRJ} , (9.26)
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Fig. 9.3. Role of e–h pairs in the scattering and sticking of CO/Cu(111) at a surface
temperature of Ts = 100 K; (a) sticking probability for CO/Cu(111) under normal
incidence calculated without and with electronic friction, (b) Energy distribution
of CO molecules scattered under normal incidence from Cu(111) in percent of the
initial kinetic energy. (After [510])

where GRI
corresponds to the derivative of the Hamiltonian and overlap

matrices H and S, respectively, with respect to the nuclear coordinates RI

GRI
=

∂

∂RI
H − εF

∂

∂RI
S , (9.27)

and where P is a split-time local density of states:

P (ε, t, t′) =
∑

i

ci(t)ci(t′)δ(ε− εi) . (9.28)

The friction kernel KIJ was evaluated for CO/Cu(100) by Hartree–Fock
cluster calculations using single excitations; it was then parameterized in a
form suitable for molecular dynamics simulations. The interaction potential
of CO/Cu(100) in the nuclear degrees of freedom was derived empirically.

By averaging over molecular dynamics trajectories with 108 surface atoms
in the periodic surface unit cell and stochastic boundary conditions represent-
ing interactions with the bulk, the sticking probability of CO/Cu(100) was
evaluated. Figure 9.3a compares the sticking probability as a function of the
kinetic energy with and without the consideration of e-h excitations. First of
all it is evident that the sticking probability shows the typical monotonically
decreasing behavior. The incorporation of e–h leads to an additional channel
for energy transfer to the surface. Hence the sticking probability should in-
crease by taking into account e–h pair excitations. This is confirmed by the
calculations. However, the effect is rather small. This means that e–h pair
excitation plays only a minor role as a dissipation channel in the sticking and
scattering of CO/Cu(100).



286 9 Electronically Non-adiabatic Processes

In order to quantify the energy transfer to the e-h pairs, the energy distri-
bution for directly scattered molecules was determined (Fig. 9.3b). Less than
10% of the incident kinetic energy is transfered to e-h pairs in a direct scat-
tering process which is less than observed for NO/Ag [500]. The main energy
loss channel for CO/Cu(100) is the excitation of surface phonons. The elec-
tronic friction does not influence the equilibrium surface diffusion either, it
only affects the transient mobility of molecules following adsorption [510]. The
relative unimportance of electronic friction can be related to the different time
scales of electronic and nuclear motion which already entered the derivation
of the Born–Oppenheimer approximation. Even if it takes infinitesimal ener-
gies to excite e–h pairs as in the case of metal surfaces, still their excitation
probability is small compared to the excitation of surface phonons.

It is important to note, however, that it is not appropriate to naively
generalize the results for the CO/Cu(100) system to other systems. Copper
has almost no d-band density of states at the Fermi level, furthermore CO
has a closed shell electronic configuration. For other substrate materials and
molecules the coupling between surface e–h pairs and impinging molecules
might be much stronger. For example, the observed stronger nonadiabatic
dissipation effects in the system NO/Ag [500] might be caused by the unpaired
electron in NO. There is certainly plenty of room for further investigations.

9.5 Electronic Transitions

We now turn to electronic excitations that change the shape of the potential
energy surface so that the dynamics of the nuclei can no longer be treated
within the Ehrenfest method. We will first discuss the adsorption of O2 on
Al(111). This system had puzzled theoreticians for a long time. The experi-
mentally measured sticking probability [511] as a function of kinetic energy
shown in Fig. 9.4a exhibits a S shape with a vanishing probability at low
kinetic energy. This is indicative of an activated process hindered by a mini-
mum energy barrier. DFT calculations, however, did not find any barrier for
the dissociative adsorption of O2/Al(111) [513]; in fact, according to ground-
state DFT, O2 dissociates spontaneously for almost any configuration of the
impinging molecule leading to a sticking probability of one [512], as the boxes
in Fig. 9.4a demonstrate. A similar discrepancy has been found for the system
O2/Ag(110) [514,515] where the substrate is also characterized by a relatively
small density of state at the Fermi energy.

It has been speculated that nonadiabatic spin-flip effects might be the
reason for the discrepancy between molecular beam experiments and ground-
state DFT calculations [513]. This idea was tested using a constrained DFT
approach [512]. The potential energy surface for O2 fixed in the triplet state
was evaluated in DFT calculations using an auxiliary magnetic field in order
to keep O2 in its triplet state. Figure 9.4b shows the potential energy profile
in the triplet state along one specific reaction for O2 approaching the Al(111)
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Fig. 9.4. Adsorption of O2 on Al(111). a) Sticking probability of O2 molecules
impinging on Al(111). Diamonds: molecular beam experiment [511]; triangles and
circles: molecular dynamics simulations performed on the adiabatic and the spin-
triplet potential energy surface, respectively [512]. b) Potential energy curves along
one specific reaction path for O2 approaching in the adiabatic ground state (boxes),
the triplet state (circles) and the singlet state (triangles), respectively (courtesy of
C. Carbogno)

surface together with the corresponding curves for the adiabatic ground state
and the singlet state. On the six-dimensional triplet PES, molecular dynamics
simulations were performed with the substrate kept fixed, the corresponding
sticking probability is also plotted in Fig. 9.4a.

On the triplet PES, the O2 adsorption is no longer non-activated but hin-
dered by a small barrier. Consequently, the sticking probability exhibits an
activated behaviour in rather nice agreement with the agreement. In Fig. 9.4b,
also a potential curve for O2 in the singlet state is included which has been
obtained using spin-unpolarized calculations. The singlet curve crosses the
triplet curve before the maximum of the triplet curve. Hence, if triplet-singlet
transitions are allowed, the effective barrier will be lowered (as indicated by
Ecross in Fig. 9.4b), and consequently an increase in the sticking probability
with respect to the triplet results is expected. And indeed, mixed quantum-
classical dynamical simulations of the adsorption of O2/Al(111) including
triplet-singlet transitions yield a sticking probability which is very close to
the experimental results [516]. Still it should be mentioned that the absence



288 9 Electronically Non-adiabatic Processes

Excited state

P
ot

en
tia

l e
ne

rg
y

Ground state

Molecule-surface separation

a b

Excited state

Ground state

Molecule-surface separation

Fig. 9.5. Illustration of Menzel–Gomer–Redhead (MGR) (a) and the Antoniewicz
(b) scenario to model desorption induced by electronic transitions (DIET)

of a non-vanishing energy minimum barrier for the dissociative adsorption in
the adiabatic DFT calculations might well be an artefact of the present-day
exchange-correlation functionals so that in reality there would be no need to
involve nonadiabatic spin-flips in the explanation of the O2/Al(111) sticking
probability.

There is another class of reactions at surfaces with electronic transitions
that have attracted considerable attention from experimentalists, namely pho-
tochemical reactions [517]. Ultraviolet (UV) or visible phonons can induce
dissociation or reactions on surfaces. A very common process is the de-
sorption induced by electronic transitions (DIET) which encompasses photon-
stimulated desorption (PSD) as well as electron-stimulated desorption (ESD).
DIET processes are usually described using two different scenarios which are
sketched in Fig. 9.5. Both correspond to one-dimensional two-electronic-state
models.

In the Menzel–Gomer–Redhead (MGR) [518, 519] model (Fig. 9.5a) the
molecule is excited to a repulsive potential energy surface. The repulsive
excited potential accelerates the molecule away from the surface before it is
transferred back to the ground-state potential in a Franck–Condon transition,
i.e. without any change in position and momentum of the nuclei. Depending
on for how long the molecule has been accelerated on the repulsive potential,
it can have gained enough kinetic energy to overcome the desorption bar-
rier. This model was originally developed in order to provide an explanation
for the rather large isotope effects observed is ESD experiments. For a given
lifetime on the excited potential energy surface, the lighter isotope is more
strongly accelerated and consequently gains more energy than the heavier
isotope; therefore is also shows a much larger desorption probability. To be
more specific, if the total desorption probability σi of an isotope with mass
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Mi can be expressed as
σi = σexPi , (9.29)

where σex is a primary excitation probability and Pi the escape probability
for isotope i, then the isotope effect in the MGR model can be expressed as
[520] (see Exercise 9.4)

σ1

σ2
=
(

1
P1

)√(m2/m1)−1

. (9.30)

However, often the excited molecule corresponds to an ionic resonance which
is subject to image forces. Hence the excited complex is more strongly bound
and located closer to the surface. Antoniewicz showed [521] that in such a
scenario still DIET processes can occur (Fig. 9.5b). The excited molecule is
first accelerated towards the surface and then bounces off. Again, the exci-
tation/deexcitation channel causes an energy transfer into the center-of-mass
motion of the adsorbate which can lead to desorption.

A large number of one-dimensional, two-state dynamical simulations of
DIET processes have been performed, pioneered by Gadzuk [522, 523], with
the desorption of NO from Pt(111) serving as a prototype system [306]. The
desorption process has been modeled using jumping wave packets: After initial
excitation the wave packet is propagated for a certain residence time τr on the
excited state potential and then transferred back to the ground state. Then
the final fate of the wave packet on the ground state is determined by con-
tinuing the propagation and evaluating desorption probabilities and velocity
distributions. Such simulations have also been performed for two-dimensional
potentials, for example to model the photo-induced desorption of NH3 from
Cu(111) [524, 525] where a significant excitation of the NH3 vibrational um-
brella mode was detected [526]. Also purely quantum mechanical simulations
of DIET processes have been performed [527].

Almost all of the simulations of DIET processes have been based on empir-
ical model potentials due to the problems associated with the first-principles
determination of excited state potentials. There are exceptions, however. In
order to address the laser-induced desorption of NO from NiO(100) configu-
ration interaction (CI) calculations have been performed. One specific charge
transfer state in which one electron was transferred from the NiO(100) sur-
face to the NO molecule was used as a representative electronically excited
state [528]. This charge transfer PES of NO− on NiO(100) which is plotted
in Fig. 9.6a was determined as a function of the NO center of mass distance
from the surface and the polar orientation of the molecule with respect to
the surface normal. In the CI calculations, a NiO8−

5 cluster was embedded
in a semi-infinite Madelung potential of ±2e point charges for the simulation
of the NiO(100) surface. In addition, the ground state potential was deter-
mined. The calculated ground state potential did in fact not reproduce the
experimentally found binding energy of 0.52 eV [529]. This is a well-known
problem of cluster calculations which often give good adsorption geometries
and frequencies but poor adsorption energies [25]. The ab initio minimum has
therefore been scaled to fit the experimental data [528].
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Fig. 9.6. Theoretical description of the photoinduced desorption of NO/NiO(100).
(a) Charge transfer PES of NO/NiO(100) as a function of the NO center of mass
distance from the surface and the polar orientation of the molecule α. FC denotes
the Franck–Condon point at which the wave packet propagation is started. (b)
Calculated velocity distribution of NO molecules as a function of the rotational
quantum number j. (After [528])

The laser-induced desorption of NO from NiO(100) was simulated using
the jumping wave packet technique in three dimensions. The molecular dis-
tance from the surface and the polar and azimuthal orientation of the molecule
were considered explicitly. The laser-induced electronic excitation was mod-
eled by putting the three-dimensional ground state wave function of the elec-
tronic ground state onto the electronically excited PES. Thereby the center
of the wave function is located at the Franck-Condon point FC shown on
Fig. 9.6. The photoinduced desorption on NO/NiO(100) proceeds according
to the Antoniewicz scenario [521] since the minimum of the excited state po-
tential is closer to the surface than in the ground state potential. The wave
packet has been propagated on the excited state potential for a number of
different lifetimes. The coupling between adsorbate and substrate leading to
the deexcitation of the charge transfer state is still unknown. Hence the mean
residence time, the so-called resonance time τr, has entered as an adjustable
parameter in the dynamics simulation. A value of τr = 24 fs has been cho-
sen which yields a desorption probability of 3.3% in agreement with typical
experimental data [528, 530].

Since the wave packet calculations are performed within a restricted di-
mensionality, quantitative agreement with the experiment [530] cannot be the
ultimate goal of this theoretical study. More important is to gain a qualita-
tive understanding of experimental trends. And indeed this study provides
such a qualitative concept. The excited state potential has a complicated
shape as a function of the polar orientation of the molecule. Two possible
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pathways are sketched in Fig. 9.6 along which partial wave packets can prop-
agate. This bifurcation of the wave packet causes a bimodality in the velocity
distribution of desorbing molecules. This is demonstrated in Fig. 9.6b where
the calculated velocity distribution of desorbing NO molecules as function of
the rotational quantum number j is plotted. Furthermore, a strong correla-
tion between rotational state and kinetic energy of the desorbing molecules is
apparent. These features of the velocity distribution have also been found in
the experiment [530].

It should be noted here that mixed quantum-classical simulations of the
laser-induced desorption of NO/NiO(100) based on the two-dimensional ab
initio PES but extended empirically to six dimensions did not find any bi-
modality in the velocity distribution of desorbing molecules [531]. This mo-
tivated the determination of a four-dimensional ab initio PES on which wave
packet simulations were performed [532]. These simulations also reproduced a
bimodality in the velocity distribution, however, they confirmed that the shape
of the PES in the polar angle is not sufficient to produce this bimodality in
higher-dimensional simulations. The bimodality is still due to a bifurcation of
the wave packet on the excited state PES, but in the lateral center-of-mass
degree of freedom and not in the angular degrees of freedom. Overall, the
qualitative picture remains valid that a bifurcation on the excited state PES
is the origin of the bimodality.

If there is a transient high concentration of excited carriers, then multi-
ple excitations in the adsorbate/substrate complex will become possible. This
leads to a nonlinearly enhanced reaction probability in the so-called desorption
induced by multiple electronic transitions (DIMET). DIMET processes medi-
ated by substrate excitations can be described in the open-system density-
matrix approach by supplementing the Lindblad functional (7.23) with a
term that accounts for the substrate-mediated excitation of the adsorbate
[305]. DIMET of NO from metal surfaces, in particular Pt(111), has been
treated by this approach using empirical potentials [533, 534]. These studies
confirmed the high desorption yield in DIMET processes which increases non-
linearly with the peak temperature of the substrate carriers. However, already
two-dimensional DIMET processes treated by the density-matrix technique
are computationally extremely demanding so that no quantitative agreement
with real experiments could be achieved.

Not only lasers can induce reactions of atoms and molecules on surfaces,
they can also be triggered by the scanning tunneling microscope. In a pioneer-
ing work, the ability to control the hydrogen desorption from a Si surface by
current injection from the STM tip was demonstrated [535]. The STM current
is assumed to cause a σ → σ∗ excitation of the Si-H bonds which weakens the
bond and eventually leads to the hydrogen desorption.

This STM-induced desorption of hydrogen from the H-terminated Si(111)–
(1×1) was addressed by first-principles molecular dynamics simulations [536]
using a scheme based upon time-dependent density functional theory [537]. In
order to reduce the computational cost, no electronic transitions were allowed.
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Fig. 9.7. Contour plots of the time evolution of a Si–H σ hole state determined by
TDDFT calculations [536] using GGA. The contour plots were recorded 1.94 fs and
7.26 fs after the initial σ → σ∗ excitation

The time-evolution of the n-th electronic state was determined by integrating
the time-dependent Kohn–Sham equation

ih̄
∂ψn

∂t
= HKSψn (9.31)

for each state n separately and coupling it with classical equations of motions
for the ions. Hence the ionic motion was restricted to one particular excited
Born–Oppenheimer energy surface. Cluster and periodic slab calculations were
performed in order to simulate the excitation process. A σ → σ∗ excitation
which creates both an electron in the conduction band plus an hole in the
valence band was prepared as the initial state and the time-evolution of the
excitation and the location of the hydrogen atom was determined.

It turned out that in the cluster models the localization of the electronic
excitation was over-estimated due to the limited size of the clusters. Slab mod-
els are more appropriate to model delocalized electronic excitations. However,
in order to induce a localized σ → σ∗ excitation that is described by one
excited eigenstate of the Kohn–Sham Hamiltonian, one Si–H bond had to be
deliberately elongated by 0.05 Å.

Figure 9.7 shows the time evolution of a Si–H σ hole state determined
by the TDDFT calculations [536] using GGA. It is apparent that after 7 fs
the initially strongly localized hole has become delocalized. An analysis of
the electronic structure revealed that no direct σ∗ → σ recombination has
occurred but that the σ hole rather relaxed to extended bulk states. Still, no
breaking of the Si–H bond caused by the electronic excitation was observed.
Thus the simulations provided no explanation for the STM-induced H des-
orption observed in the experiment [535]. However, it is fair to say that the
first-principles treatment of reactions at surfaces with electronic excitations
is still in its infancy. The computational schemes developed so far are still
incomplete. For example, the TDDFT calculations could be coupled with a



Exercises 293

surface hopping method (see p. 280) in order to describe nonadiabatic transi-
tions. For finite systems, this approach has already been applied successfully
[538, 539]. It is certainly worth the effort to extend this approach to periodic
systems since this would allow the ab initio treatment of an important class
of reactions at surfaces.

Exercises

9.1 Induced Potential in the
Time-dependent Local Density Approximation

Show that the electric potential φind(r, ω) induced by an external electric
potential φext(r, ω) in the time-dependent local density approximation is
given by [540]

φind(r, ω) =
∫

d3r′ K(r, r′) n1(r′, ω) (9.32)

with the kernel

K(r, r′) =
1

|r − r′| +
∂Vxc[n]
∂n

∣∣∣∣
n0(r)

δ(r − r′) . (9.33)

Here, n1(r, ω) is the frequency-dependent linear response:

n1(r, ω) =
∫
d3r′ χ(r, r′, ω)φext(r′, ω) . (9.34)

Hint: Approximate the induced potential by a sum of electrostatic and
exchange-correlation terms.

9.2 Surface Hopping

Consider a time-dependent electronic Hamiltonian Hel(r,R(t)). The elec-
tronic wave function is expanded in some suitable set of basis functions

ψ(r,R, t) =
∑

j

cj(t)φj(r,R) . (9.35)

In this basis, the matrix elements of the electronic Hamiltonian are de-
fined as

Vij =
〈
φi(r,R)|Hel(r,R)|φj(r,R)

〉
. (9.36)

Show that inserting the wave function into the time-dependent
Schrödinger equation yields the following set of coupled differential equa-
tions for the coefficients ck

ih̄ċk =
∑

j

cj

(
Vkj − ih̄Ṙ · 〈φk|∇R φj

〉)
. (9.37)
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9.3 Fewest Switches Algorithm

In the following we will use the density matrix notation for the occupation
of the electronic states:

akj = ckc
∗
j . (9.38)

a) Show that in this notation (9.37) becomes [497]

ih̄ȧkj =
∑

l

{
alj(Vkl − ih̄Ṙ · dkl) − akl(Vlj − ih̄Ṙ · dlj)

}
, (9.39)

where dij =
〈
φi|∇R φj

〉
is the nonadiabatic coupling vector. Show that

the populations satisfy
ȧkk =

∑

l�=k

bkl (9.40)

with
bkl =

2
h̄

Im (a∗klVkl) − 2Re (a∗klṘ · dkl) . (9.41)

b) The fewest switches algorithm [497] for a two state system is defined
as follows:
Consider a trajectory which is in state 1 at integration step i. Both the
trajectory and (9.39) are integrated one time interval Δt to step i + 1.
Now a random number x between 0 and 1 is drawn. A state switch from
state 1 to 2 will be performed if

Δt b21
a11

> x . (9.42)

Similarly, if the system is in state 2 it will switch to state 1 if

Δt b21
a22

> x . (9.43)

Show that this algorithm satisfies the fewest switches criterion, i.e., prove
that it minimizes the number of state switches subject to the constraint
that the correct statistical populations of states 1 and 2 is maintained at
all times.

9.4 Isotope Effect in the MGR Model

Consider the DIET process in the Menzel–Gomer–Redhead scenario
(Fig. 9.5(a)). The total desorption probability σi of an isotope with mass
Mi is expressed as

σi = σexPi , (9.44)

where σex is a primary excitation probability and Pi the escape probabil-
ity for isotope i. Show that ratio in the desorption probabilities between
two isotopes is given by
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σ1

σ2
=
(

1
P1

)√(m2/m1)−1

. (9.45)

Hint: Assume that the repulsive potential curve of the excited state can
be taken to be linear over the relevant range and that the lifetime of the
excited state τ is independent of the distance from the surface.
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Perspectives

Traditionally, surface science studies have focused on the investigation of low-
index single crystal surfaces and the interaction of atoms and simple molecules
with them. As shown in the previous chapters, the focus in experimental as
well as theoretical surface science shifts more and more to surfaces with well-
defined defects such as for example the steps of vicinal surfaces. However, even
more complex systems have become the subject of microscopic studies [541].
In this final chapter I present some examples of such microscopic studies based
on ab initio electronic structure calculations. The examples do not only show
the state of the art but they also indicate the promising perspective and future
directions of theoretical research in surface science.

10.1 Solid-liquid Interface

All the examples presented so far have been concerned with solid surfaces
either in vacuum or interacting with gas particles, i.e. we did not consider
any liquids in contact with a solid surface. Still, the solid-liquid interface is
of significant importance in the fields of electrochemistry and electrocatalysis
which deal with reactions of molecules at this interface [542]. Such reactions
are of enormous technological relevance, for example with respect to the de-
velopment of more efficient fuel cells. In theoretical surface science, however,
the solid-liquid interface has hardly been studied microscopically yet because
of the difficulties in the reliable description of both the liquid or electrolyte
and the solid surface. Often electronic structure studies addressing electro-
chemical systems omit the description of the electrolyte with the hope that
the influence of it on, e.g., adsorption and reaction properties of molecules is
negligible [543].

In principle, it is not particularly difficult to include a liquid in periodic
supercell calculations. Instead of leaving the region between the slabs empty,
it can well be filled with the liquid. This is illustrated in Fig. 10.1. Indeed
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Fig. 10.1. Illustration of the description of the solid-liquid interface within the
supercell approach in periodic electronic structure calculations. The region between
the adsorbate covered slabs is filled with water molecules

there are first supercell calculations that have addressed surface energies and
structures [544,545] and even reactions at the solid-liquid interface. A particu-
larly impressive study addressed the deprotonation of acetic acid (CH3COOH)
over Pd(111) [546]. In this study, DFT calculations were performed in order
to examine how solvating molecules influence the bond-breaking and bond-
making process at metal surfaces. The dissociation of acetic acid into the
acetate anion and a proton is highly endothermic in the gas phase. However,
the DFT calculations found that this dissociation is almost thermoneutral
in the presence of water molecules [546]. The dissociation is facilitated in
an aqueous environment since the fragments which are highly unstable when
formed in the gas phase become stabilized by the solvation. The Pd(111) sur-
face also catalyzes the deprotonation of acetic acid and strongly binds the
acetate intermediates, but the dissociative adsorption is more endothermic
than the dissociation in water without the metal surface. The dissociation is
even less favorable at Pd(111) if water is present at the surface because the
solvating water molecules weaken the interaction of the acetic acid with the
Pd(111) surface.
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In the field of electrochemistry, the atomistic knowledge about reaction
steps and mechanisms at the liquid-solid interface is still rather limited. There-
fore there is a strong need for studies like the one just presented which will
open the way to a microscopic description and analysis of electrocatalytic
reactions. However, there is an additional problem associated with the theo-
retical description of electrochemical processes, namely the correct treatment
of applied external fields always present in electrochemistry.

There have already been several attempts to model external fields or the
electrochemical potential within the DFT slab approach. An external field can
be explicitly included by using a dipole layer in the vacuum region between
the slabs [547, 548], but in such an approach only a thin liquid layer cover-
ing the electrode can be modeled, and the evaluation of the corresponding
electrochemical potential is not trivial. The electrochemical potential can be
introduced by charging the slab which is counterbalanced by a homogeneous
background charge [549–551], but this also introduces an interaction between
the charged slab and the background charge which has to be subtracted from
the total energy.

In yet another approach [552], hydrogen atoms are added to a water bilayer
outside the slab. The hydrogen atoms become solvated as protons leading to
the formation of hydronium ions (H3O+), and the electrons move to the metal
electrode. By changing the hydrogen concentration, the surface charge and
hence the electrode potential can be varied. The fine-tuning of the electrode
potential, however, demands relative large surface unit cells in order to adjust
the required hydrogen coverage. Furthermore, there is a rather substantial
gap in the possible electrode potentials once the coverage becomes larger than
unity. It is certainly fair to say that there is still enough room for improvements
in the realistic theoretical description of solid-liquid interfaces in the presence
of external fields.

10.2 Nanostructured Surfaces

The last years have seen a tremendous interest in the so-called nanoscience
and nanotechnology. Small particles or clusters with sizes in the nanometer
range show strongly modified electronical, optical and chemical properties,
compared to bulk materials. The research on nanosized particles has been
fueled by the hope that the modified properties can be used to build new or
better devices or chemical reactors [129].

The theoretical treatment of nanosized particles by electronic structure
theory methods represents a great challenge. Due to the large number of
symmetrically different atoms in nanostructures, the numerical effort required
to treat these structures is enormous. On the other hand, there is definitely a
need for the microscopic description of nanoparticles because the knowledge
of the underlying mechanism leading to the modified nature of the particles
is still rather limited. It is often not clear whether the specific properties are
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Fig. 10.2. CO oxidation on an Au8 cluster ad-
sorbed on a MgO(100) surface containing an
oxygen-vacancy F-center. Due to the perspective,
not all Au atoms are visible. A snapshot of a
CO molecule approaching an adsorbed oxygen
molecule is shown. (After [555])

caused by the reduced dimension of the particles (“quantum size effects”) or
by the large surface area of the nanocluster where furthermore often many
defects are present.

One of the most remarkable modifications of the properties of a material
by going from the bulk to nanoscale particles has been found with respect to
the catalytic activity of gold. While gold as a bulk material is chemically inert
[189], nanoscale gold particles supported on various oxides show a surprisingly
large catalytic activity, especially for the low-temperature oxidation of CO
[553,554].

In a collaboration between experiment and electronic structure theory, the
CO oxidation catalyzed by size-selected Aun clusters with n ≤ 20 supported
on defect-poor and defect rich MgO(100) films has been investigated [555].
The experiments revealed that the gold clusters deposited on defect-rich MgO-
films have a dramatically increased activity compared to clusters deposited
on defect-poor films at temperatures between 200 K and 350 K. Furthermore,
the Au8 cluster was found to be the smallest catalytically active particle.

In order to explore the microscopic mechanisms underlying the observed
behavior, LDA-DFT calculations have been performed [555]. Between 27 and
107 substrate atoms have been embedded into a lattice of about 2000 ± 2 e
point charges at the positions of the MgO lattice. In order to model the defect-
rich substrate, an oxygen vacancy was introduced at the MgO(100) surface
which is called a colour center or F-center (from German “Farbzentrum”) be-
cause of its optical properties. The equilibrium shape of a Au8 cluster adsorbed
on the defect-free MgO surface and on the F-center was determined and re-
action paths of the CO oxidation catalyzed by the Au8 cluster were explored.
Figure 10.2 shows a side view of the Au8 cluster adsorbed on the F-center. The
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Fig. 10.3. One-dimensional rod model for the adsorption of O2 an Au/TiO2

nanoparticles used in GGA-DFT calculations. a) Illustration of the rod geometry.
The dark-shaded area indicates the lateral extension of the unit cell. b) Relaxed
structure of O2 binding at the Ti trough close to a supported one-dimensional Au
rod with a sharp Au edge (after [556,557])

structure corresponds to a deformed close-packed stacking. A sizable charge
transfer of 0.5 e from the MgO(100) surface to the gold octamer has been
found.

In addition, a snapshot along the CO oxidation path according to an ab-
straction or so-called Eley–Rideal mechanism is shown. A CO molecule ap-
proaches an adsorbed O2 molecule and reacts spontaneously to form a weakly
bound (∼ 0.2 eV) CO2 molecule that can directly desorb plus an adsorbed
oxygen atom. Recall that although the CO oxidation is strongly exothermic,
it is hindered by a large activation barrier in the gas phase. Another reaction
pathway of the Langmuir-Hinshelwood type where the two reactants are ini-
tially coadsorbed on the top-facet of the Au8 cluster has also been found with a
similarly small barrier. Through these reaction channels the low-temperature
CO oxidation down to 90K can proceed. As far as the higher-temperature ox-
idation is concerned, further channels have been identified at the periphery of
the gold cluster. Their barriers are much smaller at the Au8 cluster adsorbed
above the F-center than on the perfect surface giving an explanation for the
enhanced activity of the clusters on the defect-rich substrate.

In general, supported clusters studied in the experiments are significantly
larger than those accessible to first-principles electronic structure calculations
where the number of clusters atoms is typically below 10, as just demon-
strated. For example, the Au clusters deposited on TiO2(110) that exhibit a
surprisingly high catalytic activity for the low-temperature oxidation of CO
have a diameter of 3 nm [553, 554] which means that they contain several
hundreds of atoms and thus are not accessible by DFT calculations. Still one
can address binding of O2 and CO to such supported nanoparticles by re-
placing the supported nanoparticle with one-dimensional rods [556,557]. This
approach is illustrated schematically in Fig. 10.3a. One side of the rod was
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modeled according to the local bonding situation of the Au atoms at the edge
of the supported nanoparticles while the other side of the rod only served
the correct boundary conditions towards the interior of the supported clus-
ters. Thus it could be shown that the adsorption of O2 on top of a Ti trough
atom is strongly stabilized by the presence of an adjacent Au cluster with its
edge above the bridging O atoms of the TiO2(110) surface (see Fig. 10.3b),
resulting in a binding energy of 0.45 eV. In contrast, on clean, stoichiometric
TiO2(110), O2 does not bind [558].

10.3 Biologically Relevant Systems

Molecules relevant in biology, biochemistry and biological surface science [559]
are usually much too complex to be fully treated by ab initio electronic struc-
ture methods. Typically, classical force field methods dominate in the sim-
ulation of biomolecular systems. However, these methods do not give any
information about the electronic structure. These information can be obtained
by mixed quantum-classical embedding schemes in which the active center
treated by electronic structure methods is embedded in a classical potential
of the remaining atoms at the periphery. This QM/MM (Quantum Mechan-
ics/Molecular Mechanics) hybrid method [560] has been used successfully for,
e.g., the simulation of enzymatic systems [64].

When the biomolecular systems are relatively simple, they can in fact
nowadays be fully treated by periodic calculations [561]. However, using cur-
rent DFT functionals, one faces one severe problem: The interaction of organic
molecules with substrates and between organic molecules themselves is often
dominated by weak van der Waals or dispersion forces which are often refered
to as dispersion forces in quantum chemistry. Hence, one is often in a dilemma
if one wants to treat the adsorption of organic molecules on substrates: For
the description of the substrate a periodic DFT code is required in order to
take the delocalized nature of the substrate states into account, but the func-
tionals do not appropriately reproduce the weak van der Waals interaction
necessary for an adequate treatment of the organic molecules.

One possibility to deal with this problem is to simply add the van der Waals
interaction between to atoms i and j explicitly, e.g. via the London dispersion
formula [562]

EvdW
ij (r) = − 3

2r6
αiαjIiIj
Ii + Ij

(10.1)

This method has been successfully used to describe the interaction of the DNA
base adenine with graphite [563]. However, due to the fact that GGA already
contains some correlation effects, the additional van der Waals term has to be
modified in an empirical way which depends on the particular system looked
at. This is not very satisfactorily from a fundamental point of view.

One promising hybrid approach to treat dispersion effects in extended sys-
tems from first principles has recently been proposed [564–566] which is based
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on the observation that the error due to exchange-correlation effects converges
rather rapidly with the size of the system. Hence one can determine the error
due to the inaccuracy of the chosen DFT exchange correlation functional by
doing cluster calculations. In practice, one starts by doing a DFT calculation
for the extended periodic system. Then a cluster with the same geometry as
the extended system is chosen, and for this cluster the difference between
DFT and any appropriate post-HF method (see section 3.2) that takes the
many-body effects correctly into account is evaluated. The corrected energy
is then obtained by

Ehybrid = E(DFT)extended + E(post − HF)Cluster − E(DFT)Cluster . (10.2)

If necessary, cluster of different sizes can be employed in order to obtain
converged correction terms. This approach has for example successfully been
applied to protonation reactions of isobutene in a zeolite [565] where for the
clusters the MP2 method has been used in order to derive a damped dispersion
expression (10.1) for the dispersion effects between the zeolite catalyst and
the hydrocarbon species.

If the interaction of the organic molecules with the substrate is governed
by strong bonds, as for example in the case of the interaction of thiols with
gold because of the strong Au-S bond, current DFT functionals are able to
give reliable results. As an example, we consider the adsorption of cysteine
(HS-CH2-CH(NH2)-COOH), an amino acid, on Au(110) which has been inves-
tigated by both STM experiments and DFT calculations [567,568]. Cysteine
exists in two different so-called enantiomeric forms, L-cysteine and D-cysteine,
i.e. two forms that are each others’ mirror image with different chirality. The
STM experiments have found a high stereoselectivity in the dimerization of
adsorbed cysteine molecules on the Au(110) surface which reconstructs in the
missing-row structure. Only either LL pairs or DD pairs have been identified.

These findings have been rationalized by DFT-GGA calculations [567].
The calculated most favourable adsorption configuration for a DD-cysteine
dimer on Au(110) is illustrated in Fig. 10.4. The presence of sulfur causes the
formation of four vacancies on the gold rows due to the tendency of sulfur to
bind to low-coordinated atoms. Since sulfur prefers the bridge site, the DD
dimer is slightly rotated. In this configuration, three bonds are formed which
mainly stabilize this structure: sulphur–gold, amino–gold and carboxylic–
carboxylic. In any possible LD dimer adsorption structure, at least one of
these bonds is lost, making the LD dimer energetically unfavourable. This ex-
plains the high selectivity observed in the STM experiments and fits into the
picture that chiral recognition might be in general driven by the formation of
three-point contacts [569].

In the STM experiments, not only isolated cysteine dimers are found, but
also extended molecular dimer rows [568]. In fact, Fig. 10.4 shows the energet-
ically most stable structure of these rows. The driving force for the formation
of these rows is the fact that the formation energy of the four-adatom vacancy
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Fig. 10.4. The energetically most stable configuration of the amino acid cysteine
on Au(110) calculated by DFT calculations [568]. It corresponds to two units of the
double row structure of D cysteine

on Au(110) required for the adsorption of cysteine is considerably lowered ad-
jacent to already existing vacancies. Hence ones a cysteine dimer is adsorbed
forming a first double-row unit, additional cysteine dimers will preferentially
attach to the existing dimer instead of forming isolated adsorbates. Thus uni-
directional, self-assemblied molecular nanowires can be formed even in the
absence of any significant direct adsorbate-adsorbate interaction along the
growth direction.

10.4 Industrial Applications

Quantum chemistry methods based on Hartree-Fock theory have been an in-
tegral part of research and development in the chemical and pharmaceutical
industry for some decades. Companies which manufacture products for which
surface structures are relevant have been much more reluctant to employ first-
principles electronic structure methods. This is caused by the fact that surface
structures that are employed for industrial purposes are usually far away from
being perfect. Cluster or slab calculations containing in the order of 100 atoms
are therefore often not directly relevant for the research and development pro-
cess of new catalysts or semiconductor devices. Still, although it is impossible
to create new products theoretically from the scratch (and probably will re-
main impossible for a long time), electronic structure calculations can still
add valuable information to the research and development process, in partic-
ular for properties where measurements are much more time consuming or
not possible [570].

This has already been realized by some manufacturers in the semicon-
ductor and chemical industry. One of the first examples of a successful col-
laboration between fundamental academic research, both experimental and
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theoretical, and industrial development has led to the design of a new cata-
lyst for the steam-reforming process [571]. Here I will focus on the contribution
of electronic structure calculations [257,571] to the design of the catalyst; the
corresponding experiments have already been reviewed in detail [572].

In the steam-reforming process, hydrocarbon molecules (mainly CH4) and
water are converted into H2 and CO. This is a important process of great
technological relevance since it is the first step for several large scale chemical
processes such as ammonia synthesis, methanol production or reactions that
need H2 [572]. The catalysts usually used for this reaction are based on Ni.
However, during the catalyzed reaction also an unwanted by-product, namely
graphite, is formed. A graphite overlayer on the Ni surface leads to a poisoning
of the reaction, i.e., it lowers the activity of the catalyst. Such poisoning
processes are very costly since they reduce the time the catalyst can be used
so that they require a more frequent maintenance of the reactor unit in the
chemical plant.

One way of changing the reactivity of metal surfaces is to modify their
chemical composition by alloying them with other metals. Some metals that
are immiscible in the bulk may still be able to form alloys at the surface.
Au and Ni is such a system. The rate-limiting process in the steam-reforming
process on Ni is the dissociation of CH4 into CH3 and H. DFT calculations
by Kratzer et al. showed that this process is hindered by a relatively high
barrier of 1.1 eV on Ni(111) [257]. If a Ni atom on the (111) surface has one
or two Au atoms as neighbors, this barrier is even increased by 165 meV
and 330 meV, respectively. Due to the fact that Au is a noble metal, the
CH4 dissociation barrier over the Au atom is even much higher [571]. An
analysis of the calculated electronic structure revealed that the presence of
neighboring Au atoms leads to a downshift of the d states at the Ni atom
which reduces the reactivity at the Ni atoms [189]. Hence alloying a Ni surface
with Au atoms leads to a reduced activity of the catalyst. However, DFT
calculations also demonstrated [571] that the presence of the Au atoms lowers
the chemisorption energy considerably for C atoms on Ni. If carbon is less
strongly bound to the surface, the formation of CO becomes more likely which
prevents the building up of a graphite layer.

Altogether, the DFT calculations showed that the lowering of the C
chemisorption energy by alloying Ni with Au is much more effective than
the increase of the CH4 dissociation barrier. Hence one ends up with a cata-
lyst that is slightly less reactive but much more robust and stable due to its
higher resistance to graphite formation. These fundamental theoretical results
together with experimental studies have led to the design of a new catalyst
that is now patented [572].

Besides this application for the development of better catalysts, DFT cal-
culations have for example also contributed to the research and development
process with respect to the equipment simulation in the electronic industry
[573] and in the manufacturing of discharge fluorescent lamps [574]. Recent
example of the impact of DFT on materials research are collected in an issue
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of the MRS Bulletin [575]. However, although the number of DFT applica-
tions in industry is increasing, it is fair to say that there is still a long way to
go before DFT calculations will become generally accepted as a valuable tool
in industrial research.
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16. V. Fock, Näherungsmethode zur Lösung des quantenmechanischen

Mehrkörperproblems, Z. Phys. 61, 126 (1930).
17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical

Recipes in Fortran 90. The Art of Parallel Scientific Computing, 2nd edn.
(Cambridge University Press, 1996).



308 References

18. G. Baym, Lectures on Quantum Mechanics, (Benjamin/Cummings, Menlo
Park, 1973).

19. D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic
method, Phys. Rev. Lett. 45, 566 (1980).

20. A. Szabo and N.S. Ostlund, Modern quantum chemistry: introduction to ad-
vanced electronic structure theory, (McGraw-Hill, New York, 1989).

21. K. Raghavachari and J. Anderson, Electron correlation effects in molecules, J.
Phys. Chem. 100, 12960 (1996).

22. A.A. Hasanein and M.W. Evans, Computational Methods in Quantum Chem-
istry, (World Scientific, Singapore, 1996).

23. J.A. Pople, Nobel Lecture: Quantum chemical models, Rev. Mod. Phys. 71,
1267 (1999).

24. C. Møller and M. Plesset, Note on an approximation treatment for many-
electron systems, Phys. Rev. 46, 618 (1934).

25. J.L. Whitten and H. Yang, Theory of chemisorption and reactions on metal
surfaces, Surf. Sci. Rep. 24, 55 (1996).

26. M. Head-Gordon, Quantum chemistry and molecular processes, J. Phys. Chem.
100, 13213 (1996).

27. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136,
B864 (1964).

28. W. Kohn and L. Sham, Self-consistent equations including exchange and cor-
relation effects, Phys. Rev. 140, A1133 (1965).

29. R.M. Dreizler and E.K.U. Gross, Density Functional Theory: An Approach
to the Quantum Many-Body Problem, (Springer, Berlin Heidelberg New York
1990).

30. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iter-
ative minimization techniques for ab initio total-energy calculations: molecular
dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045 (1992).

31. W. Kohn, Nobel Lecture: Electronic structure of matter – wave functions and
density functionals, Rev. Mod. Phys. 71, 1253 (1999).

32. E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev.
Mod. Phys. 53, 603 (1981).

33. B.J. Zhou, V.L. Ligneres, and E.A. Carter, Improving the orbital-free density
functional theory description of covalent materials, J. Chem. Phys. 122, 044103
(2005).

34. A.D. Becke, Density-functional exchange-energy approximation with correct
asymptotic behavior, Phys. Rev. A 38, 3098 (1988).

35. C. Lee, W. Yang, and R. Parr, Development of the Colle-Salvetti correlation-
energy formula into a functional of the electron density, Phys. Rev. B 37, 785
(1988).

36. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J.
Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications
of the generalized gradient approximation for exchange and correlation, Phys.
Rev. B 46, 6671 (1992).

37. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation
made simple, Phys. Rev. Lett. 77, 3865 (1996).

38. B. Hammer, L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics
within density-functional theory using revised Perdew-Burke-Ernzerhof func-
tionals, Phys. Rev. B 59, 7413 (1999).



References 309

39. B.G. Johnson, P.M.W. Gill, and J.A. Pople, The performance of a family of
density functional methods, J. Chem. Phys. 98, 5612 (1993).

40. J.P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Accurate density functional
with correct formal properties: a step beyond the generalized gradient approx-
imation, Phys. Rev. Lett. 82, 2544 (1999).

41. A.D. Becke, A new mixing of Hartree-Fock and local density-functional theo-
ries, J. Chem. Phys. 98, 1372 (1993).

42. J. Paier, R. Hirschl, M. Marsmann, and G. Kresse, The Perdew-Burke-
Ernzerhof exchange-correlation functional applied to the G2-1 test set using a
plane-wave basis set, J. Chem. Phys. 122, 234102 (2005).

43. T. Grabo, T. Kreibich, S. Kurth, and E.K.U. Gross, Orbital functionals in
density functional theory: the optimized effective potential method, in Strong
Coulomb correlations in electronic structure: Beyond the Local Density Approx-
imation, ed. by V.I. Anisimov (Gordon and Breach, Tokyo, 1998).

44. R. Wesendrup, J.K. Laerdahl, and P. Schwerdtfeger, Relativistic effects in gold
chemistry. VI. Coupled cluster calculations for the isoelectronic series AuPt−,
Au2, and AuHg+, J. Chem. Phys. 110, 9457 (1999).

45. J. Anton, B. Fricke, and P. Schwerdtfeger, Non-collinear and collinear four-
component relativistic molecular density functional calculations, Chem. Phys.
311, 97 (2005).

46. A.K. Rajagopal and J. Callaway, Inhomogeneous Electron Gas, Phys. Rev. B
7, 1912 (1973).

47. J.C. Phillips and L. Kleinman, New method for calculating wave functions in
crystals and molecules, Phys. Rev. 116, 287 (1959).

48. M.L. Cohen and J.R. Chelikowsky, Electronic Structure and Optical Properties
of Semiconductors, (Springer, Berlin Heidelberg New York 1988).
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reactivity, and transition metal surface chemistry, Phys. Rev. Lett. 72, 3222
(1994).

188. B. Hammer and J.K. Nørskov, Electronic factors determining the reactivity of
metal surfaces, Surf. Sci. 343, 211 (1995).

189. B. Hammer and J.K. Nørskov, Why gold is the noblest of all the metals, Nature
376, 238 (1995).

190. V. Pallassana, M. Neurock, L.B. Hansen, B. Hammer, and J.K. Nørskov,
Theoretical trends of hydrogen chemisorption on Pd(111), Re(0001) and
PdML/Re(0001), ReML/Pd(111) pseudomorphic overlayers, Phys. Rev. B 60,
6146 (1999).

191. B. Hammer, O.H. Nielsen, and J.K. Nørskov, Structure sensitivity in adsorp-
tion: CO interaction with stepped and reconstructed Pt surfaces, Catal. Lett.
46, 31 (1997).

192. Z̆. S̆ljivanc̆anin and B. Hammer, H2 dissociation at defected Cu: preference for
reaction at vacancy and kink sites, Phys. Rev. B 65, 085414 (2002).

193. S. Sakong and A. Groß, Dissociative adsorption of hydrogen on strained Cu
surfaces, Surf. Sci. 525, 107 (2003).
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288. J. Minár, S. Bornemann, O. Šipr, S. Polesya, and H. Ebert, Magnetic properties
of Co clusters deposited on Pt(111), Appl. Phys. A 82, 139 (2006).

289. P. Mavropoulos, S. Lounis, R. Zeller, and S. Blügel, Fe clusters on Ni and Cu:
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552. E. Skúlason, G.S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson,
and J.K. Nørskov, Density functional theory calculations for the hydrogen evo-
lution reaction in an electrochemical double layer on the Pt(111) electrode,
Phys. Chem. Chem. Phys. 9, 3241 (2007).

553. M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today
36, 153 (1997).

554. M. Valden, X. Lai, and D.W. Goodman, Onset of catalytic activity of gold
clusters on titania with the appearance of nonmetallic properties, Science 281,
1647 (1998).

555. A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett,
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568. A. Kühnle, L.M. Molina, T.R. Linderoth, B. Hammer, and F. Besenbacher,
Growth of unidirectional molecular rows of cysteine on Au(110)-(1x2) driven by
adsorbate-induced surface rearrangements, Phys. Rev. Lett. 93, 086101 (2004).

569. T.D. Booth, D. Wahnon, and I. Wainer, Is chiral recognition a three-point
process? Chirality 9, 96 (1997).

570. A. Groß, The virtual chemistry lab for reactions at surfaces: Is it possible? Will
it be helpful? Surf. Sci. 500, 347 (2002).

571. F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A.M. Molenbroek,
J.K. Nørskov, and I. Stensgaard, Design of a surface alloy catalyst for steam
reforming, Science 279, 1913 (1998).

572. J.H. Larsen and I. Chorkendorff, From fundamental studies of reactivity on
single crystals to the design of catalysts, Surf. Sci. Rep. 35, 165 (1999).

573. M. Hierlemann, C. Werner, and A. Spitzer, Equipment simulation of SiGe
heteroepitaxy – model validation by ab initio calculations of surface diffusion
processes, J. Vac. Sci. Technol. B 15, 935 (1997).

574. J. Almanstötter, T. Fries, and B. Eberhard, Electronic structure of fluorescent
lamp cathode surfaces: BaO/W(001), J. Appl. Phys. 86, 325 (1997).

575. J. Hafner, C. Wolverton, and G. Ceder, Toward computational material design:
the impact of density functional theory on materials research, MRS Bulletin
31, 659 (2006).



Index

ab initio molecular dynamics simula-
tions, 192

absorption, 135
acetic acid, 298
acoustic phonons, 93
active sites, 146
adatom resonance, 113
adatoms, 16
adiabatic connection formula, 109
adiabatic representation, 281
adlayer

commensurate, 15, 200
incommensurate, 15, 200

adsorption
atomic, 201
dissociative, 211, 228

Al2O3(0001), 84
Al(100)

exchange diffusion, 245
Al(111), 261

diffusion barriers, 262
all-electron methods, 48–50
ammonia synthesis, 267
Anderson–Grimley–Newns model, 110
antiferromagnetism, 168

two-dimensional, 172–177
Antoniewicz model, 289
APW method, 48
asymmetric dimer model, 75
attempt frequency, 241
Aun/MgO(100), 300
Au(110), 303

backdonation, 141

backfolding, 11
band gap, 76
band structure, 54, 77
barrier

late, 213
Baule formula, 202, 236
Bethe-Salpeter equation, 78
biologically relevant systems, 302
Bloch functions, 13
Bloch sum, 52
Bloch theorem, 13
Blyholder model, 141
bonding competition, 158
Born–Oppenheimer approximation, 7,

18, 94
Born–Oppenheimer energy surface, 7,

51, 92, 292
Bravais lattice

three-dimensional, 9
two-dimensional, 13, 14

Brillouin zone
first, 11

Brønsted–Evans–Polanyi relation, 145

C2H6/ Pt(111), 204
car exhaust catalyst, 141, 143, 157
Car–Parrinello method, 51
Casimir effect, 110
Casimir-van der Waals potential, 110,

210
CH4/Ni(111), 305
chemical potential, 79, 152
chemical turbulence, 269
chemicurrent, 281–282



338 Index

chemisorption

ionic, 118

strong, 113

weak, 112

chiral recognition, 303

chirality, 303

classical dynamics, 185–187

cluster, 300

CO oxidation, 157–159, 269, 271, 300

CO/Cu(111)

sticking probability, 285

CO/Pt(111), 141

CO/Ru(0001), 151

coadsorbates, 143, 145

cohesive energy, 71

configuration interaction, 34

correlation

energy, 31

corrugation, 204

energetic, 224

geometric, 224

coupled cluster theory, 34

coupled-channel equations, 188

critical cluster size, 257

crystal orbital overlap population
(COOP), 141

crystal-momentum, 12

Cu surfaces, 70

d-band model, 132, 145, 146

dangling bonds, 32

density functional perturbation theory
(DFPT), 94

density functional theory (DFT), 36–43,
76

relativistic, 42

time-dependent (TDDFT), 276–278,
291

density matrix, 294

reduced, 190

density of states, 63–65

local, 64

projected, 65

deposition, 256

flux, 258

desorption induced by electronic
transitions (DIET), 288–291

desorption induced by multiple elec-
tronic transitions (DIMET),
291

detailed balance, 198, 218, 247
diabatic representation, 281
diffraction, 195

rotationally inelastic, 198
diffusion, 243

exchange, 245
hopping, 245

diffusion coefficient
chemical, 245
tracer, 244

diffusion limited aggregation, 263
diffusion quantum Monte Carlo, 51
dissipation, 187, 190, 282, 285
dynamical image plane, 105
dynamical matrix, 93
dynamical trapping, 216
dynamics, 185, 201, 211
Dyson equation, 180
Dzyaloshinskii-Moriya interaction, 176

effective medium theory, 123
atomic chemisorption energies, 127

Ehrenfest method, 279, 282
Ehrlich–Schwoebel barrier, 257
elastic force constants, 92
elbow plot, 139
electrocatalysis, 297
electrochemistry, 297
electron

correlation, 31
counting principle, 82
exchange, 26

electron affinity, 113
electron-hole pairs, 278
electron-stimulated desorption (ESD),

288
electronic friction, 284
electronically non-adiabatic processes,

275
Eley–Rideal mechanism, 301
embedded atom method, 128
embedded-diatomics-in-molecules, 129
embedding energy, 123
energy transfer, 196, 204, 207, 211

rotation to translation, 221
to electron-hole pairs, 285
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to parallel motion, 207
to phonons, 196
to rotations, 207
vibration to translation, 218

equilibrium shape
of a crystal, 69
of an island, 261

exchange
hole, 29

exchange interaction, 165–168
exchange splitting, 167, 170, 173, 179
exchange-correlation

hole, 40
exchange-correlation energy, 6, 31
exciton, 78
exponentiated distorted-wave Born

approximation, 201
external field, 298

F-center, 300
Fermi energy, 27
Fermi vector, 27
ferrimagnetic, 169
ferromagnetism, 168

two-dimensional, 172–177
fewest-switches algorithm, 281, 294
Fick’s law, 245
fluctuation-dissipation theorem, 284
forced oscillator model, 208
Franck–Condon transitions, 288
Frank–van der Merwe growth, 254
Friedel oscillations, 60
frontier orbitals, 130
frozen-phonon technique, 93
frustrated spin structures, 177
fuel cells, 297

GaAs, 79
(100), 80

generalized gradient approximation
(GGA), 41

generalized Langevin equation, 187
Gibbs free energy, 152
graphite(0001), 90
group theory, 9
growth, 253–267

direction, 264
modes, 254
of fcc(111) surfaces, 260

GW approximation, 76

H2/Cu(100), 211
H2/Pd(100), 198, 213
H2/S/Pd(100), 144
H2/Si(100), 225
H/Al(111), 282
H/Pd(110), 137
H/Si(111), 291
Hückel method, 52
hard-cube model, 202–205, 236, 237
Hartree energy, 25
Hartree equations, 23
Hartree theory, 21–25
Hartree–Fock equations, 26, 56
Hartree–Fock theory, 25–31
He interaction with jellium surfaces, 108
Heisenberg Hamiltonian, 168
helium atom scattering, 197, 200
Hellmann–Feynman theorem, 7, 280
Helmholtz free energy, 152
highest occupied molecular orbital

(HOMO), 130, 141
Hohenberg–Kohn theorem, 37
hole model, 212
homogeneous electron gas, 26

image charge, 104
image potential, 67, 114
image potential states, 67
industrial applications, 304
ionization energy, 113
island density, 257
island nucleation, 258
islands, 263
isotope effect, 236, 288, 294

Jahn–Teller effect, 75
jellium model, 27, 59
jellium surface, 107, 117

k-space, 11, 55
kinetic lattice gas model, 246
kinetic Monte Carlo, 160, 259
kinetics, 239–273

of adsorption and desorption, 248
of diffusion, 243
of growth, 253
phenomenological, 257, 269–271

kinks, 16, 256
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Kohn–Sham equations, 39, 282

Langmuir kinetics, 251
Langmuir–Hinshelwood mechanism, 269
lattice gas, 246

Hamiltonian, 247
lattice with a basis, 9
Lindblad operator, 191
linear response, 94
linearized augmented plane waves

(LAPW) method, 49
full potential (FP-LAPW), 50

Liouville–von Neumann equation, 190
Lippmann–Schwinger equation, 117
local density approximation (LDA), 40,

51, 76
adiabatic (ALDA), 278
overbinding, 41, 127

local spin-density approximation
(LSDA), 171

lowest unoccupied molecular orbital
(LUMO), 130, 141

magnetic anisotropy, 178
Markov approximation, 190, 247
master equation, 244, 247
mean-field method, 279, 282
Menzel–Gomer–Redhead (MGR)

model, 288, 294
microfacets, 261
microscopic reversibility, 247, 280
Miller indices, 11
mixed quantum-classical dynamics, 279
modified embedded atom method, 129
molecular dynamics, 185–187

ab initio, 192
tight-binding, 229
with electronic friction, 284
with electronic transitions, 281

muffin-tin potential, 48
multi-reference methods, 35
Møller–Plesset theory, 33–34

N2/Ru(0001), 145
nanostructured surfaces, 299
nanotechnology, 299
natural orbital functional theory, 52
nearly-free electron model, 62
Newns–Anderson model, 110–115

chemisorption function, 113
NH3/Cu(111), 289
NO/Ag, 281
NO/NiO(100), 289
NO/Pt(111), 289, 291
Nosé thermostat, 187
nucleation theory, 257
nudged elastic band method, 243

O2/Al(111), 286–288
O2/Pt(111), 147, 228–232
O/Ru(0001), 151, 252
open system dynamics, 190
optical potentials, 191
orbital functionals, 42, 52

Pd(110), 137
Pd(111), 298
Pd(210), 65
phase shift

in resonance scattering, 119–120
photoemission electron microscopy

(PEEM), 268
photon-stimulated desorption (PSD),

288
physisorption, 103–110
plane waves, 46

augmented, 48
linearized augmented, 49

poisoning, 143
polarizability, 105
post-Hartree Fock methods, 32
potential energy surface, 101
precursor, 214
prepairing mechanism, 225
pressure gap, 268
projected augmented waves (PAW), 50
projected bulk band structure, 63, 75,

77
pseudopotential, 43–46

norm-conserving, 44
ultra-soft, 45

Pt(100)-hex, 147
Pt(11,7,5), 146
Pt(111), 141, 146, 265
Pulay forces, 50

quantum chemistry methods, 31–36,
275

quantum dynamics, 187–192



Index 341

quantum Monte Carlo (QMC), 31, 51
quantum reflection, 210

rare gas, 104, 107
rare gas sticking, 207
rate equations, 257
rates, 239
Rayleigh waves, 93, 201
Rayleigh–Ritz variational principle, 22
reciprocal space, 10
reconstruction, 15, 16

adsorbate-induced, 137
missing row, 15, 138, 269, 303
pairing row, 139

Redfield approach, 191
reflection, 195
relaxation, 72
rotation

cartwheel, 206
helicopter, 206

rotational alignment, 223
rotational hindering, 220
roughness, 273
Ru(0001), 151, 207
Runge–Gross theorem, 276

sagittal plane, 93
scanning tunneling microscope (STM),

89–92, 291
scattering, 195

elastic, 195
inelastic, 196
multiphonon, 200
rotationally inelastic, 199
singlephonon, 200

Schrödinger equation, 5
selective adsorption resonances, 197
self interaction, 23
self-consistency, 24
self-consistent field (SCF) methods, 25
Shockley surface state, 63, 66
Si

(100), 74
(111)-(7×7), 78

single-reference methods, 32
size extensivity, 34
slab model, 47
Slater determinant, 25
Smoluchowski smoothing, 66, 73

sodium chloride structure, 82
solid-liquid interface, 297
spatiotemporal self-organization, 268
specular reflection, 196
spin Hamiltonian, 168
spin-orbit coupling, 42
steam reforming, 305
steering, 215
step flow, 255
sticking probability, 202

normal energy scaling, 204, 231
total energy scaling, 204

STM
Bardeen approach, 91
spin-polarized, 174, 175
Tersoff-Hamann approach, 89

STM-induced desorption, 291
Stoner criterion, 169, 183
Stranski–Krastanov growth, 254
structure gap, 143
sudden approximation, 238
supercell approach, 47
surface

ionic, 82–87
metal, 65–74
non-polar, 83
polar, 83
semiconductor, 74–82

surface band structure, 74
surface dimer, 74
surface energy, 68, 69, 254
surface exciton, 78
surface magnetism, 165
surface oxide, 87, 154
surface phonons, 92, 200
surface relaxation, 72
surface resonance, 63
surface stoichiometry, 80
surface-hopping method, 279

Tamm surface state, 58, 63, 66
temperature programmed desorption

(TPD), 159, 253
Tersoff–Hamann picture, 89
Thomas–Fermi equation, 37
Thomas–Fermi theory, 36
tight-binding, 52–54

tight-binding molecular dynamics,
229
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time-reversal symmetry, 218, 247
trajectory approximation, 208
trajectory calculations, 93
transition state theory, 240–243, 259

multi-dimensional rate, 242
one-dimensional rate, 241

unit cell, 10, 15
unit vectors, 9

vacancy, 16
van der Waals constant, 107
van der Waals interaction, 104–110

London dispersion formula, 302
variational Monte Carlo, 51

Verlet algorithm, 186, 235
vibrational efficacy, 212
vibrational temperature, 219
vibrationally enhanced dissociation, 213
vicinal surface, 16
Volmer–Weber growth, 254

wetting, 255
Wigner–Seitz cell, 10
Wigner–Seitz radius, 28
work function, 60, 269
Wulff construction, 69, 261

Xe/Cu(100), 200
Xe/Cu(111), 200
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